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Abstract. We consider the problem of safety verification for hybrid sys-
tems, whose continuous dynamics in each mode is affine, Ẋ = AX + b,
and invariants and guards are specified using rectangular constraints.
We present a counter-example guided abstraction refinement framework
(CEGAR), which abstract these hybrid automata into simpler ones with
rectangular inclusion dynamics, ẋ ∈ I, where x is a variable and I is an
interval in R. In contrast to existing CEGAR frameworks which consider
discrete abstractions, our method provides highly efficient abstraction
construction, though model-checking the abstract system is more expen-
sive. Our CEGAR algorithm has been implemented in a prototype tool
called HARE (Hybrid Abstraction-Refinement Engine), that makes calls
to SpaceEx to validate abstract counterexamples. We analyze the perfor-
mance of our tool against standard benchmark examples, and show that
its performance is promising when compared to state-of-the-art safety
verification tools, SpaceEx, PHAVer, SpaceEx AGAR, and HSolver.

1 Introduction

The safety verification of cyber-physical systems is a computationally challeng-
ing problem that is in general undecidable [1, 3, 22, 27, 35]. Thus, verifying re-
alistic designs often involves crafting an abstract model with simpler dynam-
ics that is amenable to automated analysis. The success of the abstraction
based method depends on finding the right abstraction, which can be difficult.
One approach that tries to address this issue is the counterexample guided ab-
straction refinement (CEGAR) technique [12] that tries to automatically dis-
cover the right abstraction through a process of progressive refinement based
on analyzing spurious counterexamples in abstract models. CEGAR has been
found to be useful in a number of contexts [5, 13, 23, 24], including hybrid sys-
tems [2, 10,11,15,17,25,33,34].

There are two principal CEGAR approaches in the context of verifying hy-
brid system that differ primarily on the space of abstract models considered.
The first approach [2, 10, 11, 32–34] tries to abstract hybrid models into finite



state, discrete transition systems that have no continuous dynamics. The second
approach [15,25,29] abstracts a hybrid automaton by another hybrid automaton
with simpler dynamics. Using hybrid automata as abstractions has the advantage
that constructing abstract models is computationally easier.

In this paper, we present a CEGAR framework for verifying cyber-physical
systems, where the concrete and abstract models are both hybrid automata.
We consider hybrid automata with affine dynamics and rectangular constraints
(affine hybrid automata for short) which are a subclass of hybrid automata,
where invariants, guards, and resets are given by rectangular constraints (con-
junctions of constraints comparing variables to constants), but the continuous
flow in control locations is given by linear differential equations of the form
Ẋ = AX + b; here X is the vector of continuous variables, A is a rational ma-
trix, and b is a vector of rational numbers. The safety verification problem for
such automata is challenging — not only is the problem undecidable, but it is
even unknown whether the problem of checking if the states reachable within
a time bound t (without taking any discrete transitions) intersects a polyhe-
dral unsafe region is decidable. We abstract such affine hybrid automata by
rectangular hybrid automata. Rectangular hybrid automata are similar to affine
hybrid automata except that the continuous dynamics is given by rectangular
differential inclusions (i.e., dynamics of each variable is of the form ẋ ∈ [a, b])
as opposed to linear differential equations. Our results extend previous hybrid
automata based CEGAR algorithms [15,25,29] to a richer class of hybrid models
(from concrete automata that have rectangular dynamics to automata that have
affine dynamics).

We establish a few basic results about our CEGAR framework. First we
show that any spurious counterexample will be detected during the counterex-
ample validation step. This result is not obvious because it is unknown whether
the bounded time reachability problem is decidable for affine hybrid automata.
Hence validation cannot be carried out “exactly”. Our proof relies on the obser-
vation that the sets computed during counterexample validation are bounded,
and uses the fact that continuous time bounded posts of affine hybrid automata
can be approximated with arbitrary precision. Next, we show that our refinement
algorithm makes progress. More precisely, we prove that any abstract counterex-
ample, if it appears sufficiently many times, is eventually eliminated. Progress is
proved by observing that, for a bounded time, linear dynamics can be approxi-
mated with arbitrary precision by rectangular dynamics [31].

We have extended our CEGAR-based tool HARE (Hybrid Abstraction Refine-
ment Engine) to verify affine hybrid automata; the previous HARE implementa-
tion only handled rectangular hybrid automata. Furthermore, we found existing
tools for model checking rectangular hybrid automata (HyTech [21], PHAVer [19],
SpaceEx [20], and FLOW* [8]) inadequate for our purposes (see Section 5 for ex-
planations). So we implemented a new model checker for rectangular hybrid
automata that uses the Parma Polyhedral Library (PPL) [4] and Z3 [14]. Coun-
terexample validation is carried out by making calls to SpaceEx and PPL.



We have compared the performance of the new version of our tool HARE

against SpaceEx with the Supp and PHAVer scenarios, SpaceEx AGAR [7], and
HSolver [32] on standard benchmark examples. SpaceEx is the state-of-the-art
symbolic state space explorer for affine hybrid automata that over-approximates
the reachable set, and may occasionally converge to a fixpoint in the process.
SpaceEx AGAR is a CEGAR-based tool that merges different locations and over-
approximates their dynamics. HSolver is a another CEGAR-based tool that
abstracts hybrid automata into finite-state, discrete abstractions (as opposed to
other hybrid automata). HSolver failed to terminate within a reasonable time on
almost all of our examples. The running time of HARE was roughly comparable
to SpaceEx and SpaceEx AGAR (details in Section 5), with each tool beating
the other on different examples. But we found that HARE was more accurate.
On quite a few examples, SpaceEx (and SpaceEx AGAR) fails to prove safety
either because it does not converge to a fixpoint or because it over-approximates
the reach set too much. A virtual machine containing the scripts to run all
the examples reported in the paper on the 5 tools considered can be found at
https://uofi.box.com/cegar-hare-tacas-2016.

2 Related Work

Doyen et al. consider rectangular abstractions for safety verification of affine
hybrid systems in [16]. However, their refinement is not guided by counter-
example analysis. Instead, a reachable unsafe location in the abstract system
is determined, and the invariant of the corresponding concrete location is split
to ensure certain optimality criteria on the resulting rectangular dynamics. This,
in general, may not lead to abstract counter-example elimination, as in our CE-
GAR algorithm. We belive that the refinement algorithms of the two papers are
incomparable — one may perform better than the other on certain examples.
Empirical evaluations could provide some insights into the merits of the ap-
proaches, however, the implementation of the algorithm in [16] was not available
for comparison at the time of writing the paper.

Bogomolov et al. consider polyhedral inclusion dynamics as abstract models
of affine hybrid systems for CEGAR in [7]. Their abstraction merges the loca-
tions, and refinement corresponds to splitting the locations. Hence, the CEGAR
loop ends with the original automaton in a finite number of steps, if safety is not
proved by then. Our algorithm splits the invariants of the locations, and hence,
explores finer abstractions. Our method is orthogonal to that of [7], and can be
used in conjunction with [7] to further refine the abstractions.

Nellen et al. use CEGAR in [28] to model check chemical plants controlled by
programmable logic controllers. They assume that the dynamics of the system
in each location is given by conditional ODEs, and their abstraction consists of
choosing a subset of these conditional ODEs. The refinement consists of adding
some of these conditional ODEs based on a unsafe location in a counter-example.
The methods does not ensure counter-example elimination in successive itera-
tions. Their prototype tool does not automate the refinement step, in that the
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inputs to the refinements need to be provided manually. Hence, we did not ex-
perimentally compare with this tool.

Zutshi et al. propose a CEGAR-based search in [36] to find violations of safety
properties. Here they consider the problem of finding a concrete counter-example
and use CEGAR to guide the search of the same. We instead use CEGAR to
prove safety — the absence of such concrete counter-examples.

3 Preliminaries

Numbers. Let N, Q, and R denote the set of natural, rational, and real num-
bers, respectively. Similarly, N+, Q+, and R+ are respectively the set of pos-
itive natural, rational, and real numbers, and Q≥0 and R≥0 are respectively
the set of non-negative rational and real numbers. For any n ∈ N we define
[n] = {0, 1, . . . , n− 1}.

Sets and Functions. For any sets A and B, |A| is the size of A (the number
of elements in A), P(A) is the power set of A, A × B is the Cartesian product
of A and B, and [A → B] is the set of all (total) functions from A to B. AB

is a vector of elements in A indexed by elements in B (we treat an element of
AB as a function from B to A). In order to make the notations simpler, for any
n,m ∈ N, by An and An×m, we mean A[n] and A[n]×[m]. The latter represents
matrices of dimension n×m with elements from A. For any f ∈ [A→ B] and set
C ⊆ A, f(C) = {f(c) | c ∈ C}. Similarly, for any π = a1, a2, . . . , an, a sequence
of elements in A, we define f(π) to be f(a1), f(a2), . . . , f(an).

Distance and Intervals. When A and B are non-empty subsets of a normed
space with norm J.K, we define their Hausdorff distance distH(A,B) by

max{sup
a∈A

inf
b∈B

Ja− bK, sup
b∈B

inf
a∈A

Ja− bK}

An interval is any subset of real numbers of the form [a, b], (a, b], [a, b), or (a, b).
We denote the set of all intervals by I and the set of all closed-bounded intervals
by I◦.

3.1 Hybrid Automata

In this section, we present a hybrid automaton model for representing hybrid
systems.

Definition 1. A hybrid automaton H is a tuple (Q, X, I, F, E, Qinit, Qbad), where
– Q is a finite non-empty set of (discrete) locations.
– X is a finite set of variables. A valuation ν ∈ RX assigns a value to each

variable in X. We denote the set of all valuations by V.
– I ∈ [Q→ IX◦ ] maps each location q to a closed bounded rectangular region as

its invariant. We denote I(q)(x) by I(q, x).



– F ∈ [Q× V→ P(V)] maps each location q and valuation ν to a set of possible
derivatives of the trajectories in that location and valuation.

– E is a finite set of edges e of the form (s, d, g, j, r) where:
• s, d ∈ Q are source and destination locations, respectively.
• g ∈ IX◦ is guard of e and specifies the set of possible values for each

variable in order to traverse e.
• j ∈ P(X) is the set of variables whose values change after traversing e.
• r ∈ Ij◦ is reset of e and specifies the set of possible values for each variable

in j after traversing e.
We write Se, De, Ge, Je, and Re to denote different elements of an edge e,
respectively. Also we denote (Ge)(x) and (Re)(x) respectively by G(e, x) and
R(e, x).

– Qinit, Qbad ⊆ Q are respectively the set of initial and unsafe locations.
For all hybrid automata H, we display elements of H by QH , XH , IH , FH , EH ,
SH , DH , GH , JH , RH , QinitH , QbadH , and VH . We may omit the subscript when it is
clear from the context.

We define the semantics of a hybrid automaton by a transition system it
represents. Hence, we first define transition systems.

Definition 2. A transition system T is a tuple (S, Σ,→, Sinit, Sbad) in which
1. S is a (possibly infinite) set of states,
2. Σ is a (possibly infinite) set of labels,
3. →⊆ S× Σ× S is a transition relation,
4. Sinit ⊆ S is the set of initial states, and
5. Sbad ⊆ S is the set of unsafe states.

We write s
α→ s′ instead of (s, α, s′) ∈→. Also, we write s→ s′ as a shorthand

for ∃α ∈ Σ • s
α→ s′, and→∗ denotes the reflexive transitive closure of→. Finally,

for any s ∈ S we define reachT (s) to be the set {s′ ∈ S|s →∗ s′}, and reach(T )
to be

⋃
s∈Sinit reachT (s).

For all transition systems T , we denote the elements of T by ST , ΣT , →T ,
SinitT , SbadT . In addition, whenever it is clear, we drop the subscript T to make the
notation simpler.

The semantics of a hybrid automaton H = (Q, X, I, F, E, Qinit, Qbad) can be
defined as a transition system JHK = (S, Σ,→, Sinit, Sbad) in which
– S = Q× V,
– Σ = E ∪ R≥0,

– Sinit =
{

(q, ν) ∈ S | q ∈ Qinit
}

,
– Sbad = {(q, ν) ∈ S | q ∈ Qbad},

– →=→1 ∪ →2 where

• →1 is the set of time transitions and for all t ∈ R≥0 (q, ν)
t→1 (q′, ν′)

iff q = q′ and there exists a differentiable function f ∈ [[0, t] → V]
such that 1. f(0) = ν, 2. f(t) = ν′, 3. ∀t′ ∈ [0, t] • f(t′) ∈ I(q), and
4. ḟ(t′) ∈ F(q, f(t′)).

• →2 is the set of jump transitions and (q, ν)
e→2 (q′, ν′) iff 1. q = Se,

2. q′ = De, 3. ν ∈ I(q) ∩ Ge, 4. ν′ ∈ I(q′), and 5. ∀x ∈ X • x ∈ Je ⇒
ν′(x) ∈ R(e, x) and x /∈ Je⇒ ν(x) = ν′(x).

In this paper, we deal with two subclasses of hybrid automata:



1. An affine hybrid automaton is a hybrid automaton in which for every location
q ∈ Q there exists a matrix M ∈ QX2 and a vector b ∈ QX such that for every
valuation ν ∈ V we have F(q, ν) = {Mν + b}. This is the class of hybrid
automata we intend to analyse for safety.

2. A rectangular automaton is a hybrid automaton in which for every location
q ∈ Q there exists a rectangular region f ∈ IX such that for every valuation
ν ∈ V we have F(q, ν) = f . We may write F(q, x) to denote the set of possible
flows for variable x at location q. We use this class to represent abstract
hybrid automata in our CEGAR algorithm.

For a hybrid automaton H, a path is defined to be a finite sequence e1, e2, . . . ,
en of edges in E such that Dei = Sei+1 for all 0 < i < n. A timed path π is a finite
sequence of the form (t1, e1), (t2, e2), . . . , (tn, en) such that e1, . . . , en is a path
in H and ti ∈ R≥0 for all 0 < i ≤ n. A run ρ from s0 to sn is a finite sequence
s0, (t1, e1), s1, (t2, e2), . . . , (tn, en), sn such that 1. (t1, e1), . . . , (tn, en) is a timed
path in H, 2. for all 0 ≤ i ≤ n we have si ∈ SJHK, and 3. for all 0 < i ≤ n there

exists a state s′i ∈ SJHK for which si−1
ti−→ s′i

ei−→ si. We will denote the first
and last elements of ρ respectively by ρ0 and ρlst.

For any hybrid automaton H, the reachability problem asks whether or not
H has a run ρ such that ρ0 ∈ SinitJHK and ρlst ∈ SbadJHK. If the answer is positive, we
say the H is unsafe. Otherwise, we say the H is safe.

For any hybrid automaton H, set of states S ⊆ SJHK, and edge e ∈ EH we
define the following functions:

– dposteH(S) = {s′ | ∃s ∈ S • s e−→ s′}. Discrete post of S in H with respect to
e is the set of states reachable from S after taking e.

– dpreeH(S) = {s | ∃s′ ∈ S • s e−→ s′}. Discrete pre of S in H with respect to e
is the set of states that can reach a state in S after taking e.

– cpostH(S) = {s′ | ∃s ∈ S, t ∈ R≥0 • s
t−→ s′}. Continuous post of S in H

is the set of states reachable from S in an arbitrary amount of time using
dynamics specified for the source states.

– cpreH(S) = {s | ∃s′ ∈ S, t ∈ R≥0 • s
t−→ s′} Continuous pre of S in H is the

set of states that can reach a state in S in an arbitrary amount of time using
dynamics specified for the source states.

4 CEGAR Algorithm for Safety Verification of Affine
Hybrid Automata

Every CEGAR-based algorithm has four main parts [9]: 1. abstracting the con-
crete system, 2. model checking the abstract system, 3. validating the abstract
counterexample, and 4. refining the abstract system. We explain parts of our
algorithm regarding each of these parts in this section. Before that, Algorithm 1
shows at a very high level what the steps of our algorithm are.



Algorithm 1 High level steps of our CEGAR algorithm

Input: C an affine hybrid automaton . C is called concrete hybrid automaton. Def 1
Output: Whether or not C is safe . this is the reachability problem. Sec 3
1. Add a trivial self loop to every location of C . Sec 4.2
2. P ← the initial partition of invariants in C . Sec 4.2
3. A← α(C,P ) . A is called abstract hybrid automaton. Def 4
4. ρ = ORHA(A) . ORHA model checks rectangular automata. Sec 4.3
5. . ρ is an annotated counterexample. Sec 4.3
6. while ρ 6= ∅ do . while abstract system is unsafe
7. if ρ is valid in C then return ‘unsafe’ . Sec 4.4
8. (q, p)← abstract location that should be split . Sec 4.5
9. p1, p2 ← sets that should be separated in (q, p) . Sec 4.5

10. refine P (q) such that p1 and p2 gets separated . Sec 4.5
11. A← α(C,P ) . Sec 4.2
12. ρ = ORHA(A) . Sec 4.3
13. end while
14. return ‘safe’

4.1 Time-Bounded Transitions

A step of every CEGAR algorithm is to validate a counterexample of an abstract
system returned by the model-checking phase (Section 4.4). We do validation by
running the counterexample of the abstract model checker against the concrete
hybrid automaton. In our discussion, we will assume that for affine hybrid au-
tomata one can compute the continuous post of a set of states for an arbitrary
amount of time. But this is not completely true. What we can do is to only
compute approximations of the continuous post of a set of states. In addition,
bounded error approximations can be computed only for a finite amount of time.
Hence, we convert a hybrid automaton H to another hybrid automaton H ′ with
the same reachability information and with the additional property that in H ′,
there is no time transition with a label larger than t, for some parameter t ∈ R+.
With this transformation, we can compute bounded error approximations of the
unbounded time post, since it is actually a continuous post over a bounded time
t. Appendix B shows how the new automaton is formally constructed.

4.2 Abstraction

Input to our algorithm is an affine hybrid automaton C which we call the concrete
hybrid automaton. The first step is to construct an abstract hybrid automaton A
which is a rectangular automaton. The abstract hybrid automaton A is obtained
from the concrete hybrid automaton C, by splitting the invariant of any location
q ∈ QC into a finite number of cells of type IX◦ and defining an abstract location
for each of these cells which over-approximates the linear dynamics in the cell
by a rectangular dynamics. Definition 3 and Definition 4 formalizes the way an
abstraction A is constructed from C.

Definition 3 (Invariant Partitions). For any hybrid automaton C and func-
tion P ∈ [Q→ P(IX◦)] we say P partitions invariants of C iff the following con-
ditions hold for any location q ∈ Q:



–
⋃
P (q) = I(q), which means union of cells in P (q) covers invariant of q.

– ∀p1, p2 ∈ P (q), x ∈ X at least one of the following conditions are true:
• |p1(x) ∩ p2(x)| = 0 • |p1(x) ∩ p2(x)| = 1 • p1(x) = p2(x)

Definition 4 (Abstraction Using Invariant Partitioning). For any affine
hybrid automaton C and invariant partition P ∈ [Q→ P(IX◦)], α(C,P ) returns
rectangular automaton A which is defined below:
– QA = {(q, p) | q ∈ QC ∧ p ∈ P (q)},
– QinitA =

{
(q, p) ∈ QA | q ∈ QinitC

}
,

– QbadA = {(q, p) ∈ QA | q ∈ QbadC },

– XA = XC ,
– IA((q, p)) = p,

– EA = {((s, p1), (d, p2), g, j, r) | (s, d, g, j, r) ∈ EC ∧ (s, p1), (d, p2) ∈ QA}, and
– FA((q, p), ν) = recthull(

⋃
ν∈p FC(q, ν)), where for any set S ⊂ RX, recthull(S)

is the smallest possible element of IX◦ such that ∀ν ∈ S • ν ∈ recthull(S).
In addition, we define function γA to map 1. every state in JAK to a state in

JCK, and 2. every edge in EA to an edge in EC . Formally, for any s = ((q, p), ν) ∈
SJAK and e = ((q1, p1), (q2, p2), g, j, r) ∈ EA, we define γA(s) to be (q, ν) and γA(e)
to be (q1, q2, g, j, r).

For each concrete location we will have one or more abstract locations. By
making invariants of abstract locations small (and thus increasing the number of
abstract locations) we want to be able to make behavior of A as close as required
to the behavior of C. This requires trajectories to be always able to jump between
two abstract locations when they correspond to a single concrete location. But we
did not add any such edge to A in Definition 4. Although defining abstract system
in this way just imposes an additional initial step to our algorithm, we find it
very convenient not to introduce any edge in the abstract hybrid automata that
corresponds to no edge in the concrete hybrid automata. Nonetheless, it is easy
to see that if for every location q ∈ QC , EC contains a trivial edge (i.e. an edge
with no guard and no reset) from q to itself, abstracting C using Definition 4 will
produce a trivial edge between all abstract locations corresponding to a single
concrete location. One can easily add these edges to C in an initial step, so in
the rest of this paper, wlog. we assume every location of C has a trivial self loop.
Finally, it is easy to see that these trivial self loops along with Definition 3 and
Definition 4 introduce Zeno behavior in the abstract system (i.e. the abstract
system can make an infinite number of discrete transitions in a finite amount
of time), but our model checker can easily handle it. In fact since we check for
a fixed-point, we believe our tool is not considerably affected by this type of
behavior.

Proposition 5 (Over-Approximation). For any affine hybrid automaton C
and invariant partition P , A = α(C,P ) is a rectangular automaton which over-
approximates C, that is, reach(C) ⊆ γA(reach(A)).

It is clear that if A is safe then C is also safe. Also, one can easily see that if P
is defined as P (q) = {IC(q)} (for all q ∈ QC), it is a valid invariant partition of C.
It is actually what our algorithm always uses as the initial invariant partitioning
(initially we do not partition any invariant).



4.3 Counterexample and Model Checking Rectangular Automata

After an abstract hybrid automaton is constructed (initially and after any re-
finement), we have to model check it. In this section we define the notion of
a counterexample and annotation of a counterexample, which we assume is re-
turned by the abstract model checker ORHA when it finds that the input hybrid
automaton is unsafe.

Definition 6. For any hybrid automaton H, a counterexample is a path e1, . . . ,
en such that Se1 ∈ Qinit and Den ∈ Qbad.

Definition 7. A counterexample π is called valid in H iff H has a run ρ and ρ
has the same path as π. A counterexample that is not valid is called spurious.

Definition 8. An annotation for a counterexample π = e1, . . . , en of hybrid
automaton H is a sequence ρ = S0 −→ S′0

e1−→ S1 −→ S′1
e2−→ · · · en−→ Sn −→ S′n such

that the following conditions hold:
1. ∀0 ≤ i ≤ n • ∅ 6= Si, S

′
i ⊆ SJHK,

2. ∀0 ≤ i ≤ n • Si = cpreH(S′i),
3. ∀0 ≤ i < n • S′i = dpre

ei+1

H (Si+1),
4. S′n = SbadJHK ∩ ({Den} × VH).

Condition 1 means that each Si and S′i in ρ are a non-empty set of states.
Conditions 2 and 3 mean that sets of states in ρ are computed using backward
reachability. Finally, condition 4 means that S′n is the set of unsafe states in
destination of en. Note that these conditions completely specify S0, . . . , Sn and
S′0, . . . , S

′
n from e1, . . . , en and H. Also, every Si and S′i is a subset of states

corresponding to exactly one location.
In this paper, we assume to have access to an oracle ORHA that can correctly

answer reachability problems when the hybrid automata are restricted to be rect-
angular automata. If no unsafe location of A is reachable from an initial location
of it, ORHA(A) returns ‘safe’. Otherwise, it returns an annotated counterexample
of A.

4.4 Validating Abstract Counterexamples

For any invariant partition P and affine hybrid automaton C, if ORHA(A) (for
A = α(C,P )) returns ‘safe’, we know C is safe. So the algorithm returns C is
‘safe’ and terminates. On the other hand, if ORHA finds A to be unsafe it returns
an annotated counterexample ρ of A. Since A is an over-approximation of C, we
cannot be certain at this point that C is also unsafe. More precisely, if π is the
path in ρ, we do not know whether γA(π) is a valid counterexample in C or it is
spurious. Therefore, we need to validate ρ in order to determine if it corresponds
to any actual run from an initial location to an unsafe location in C.

To validate ρ, an annotated counterexample of A = α(C,P ), we run ρ on C.

More precisely, we create a sequence ρ′ = R0 −→ R′0
e′1−→ R1 −→ · · ·

e′n−→ Rn −→ R′n
where



i-1

R’i-1

cpostC(Ri)

Ri
Si+1

S’i

      > ε

cpostA’(γ
-1
A’(Ri))

i i+1

Fig. 1: Validation and Refinement. There are three locations: i − 1, i, and i + 1. Si+1 and S′i
are elements of annotated counterexample ρ. R′i−1, Ri, and cpostC(Ri) are computed when ρ is

validated. i is the smallest index for which cpostC(Ri) and γA(S′i) are separated. Hence we need to
refine A in location i. Refinement should be done in such a way that for the result of refinement A′

we have cpostA′ (γ
−1

A′ (Ri)) ∩ γA′ (S
′
i) = ∅.

1. e′i = γA(ei),
2. R0 = γA(S0),

3. R′i = cpostC(Ri) ∩ γA(S′i),

4. Ri = dpost
e′i
C (R′i−1) ∩ γA(Si).

Condition 1 states that edges in ρ′ correspond to the edges in ρ as defined by
the function γA in Definition 4. Condition 2 states that R0 is just concrete states
corresponding to S0. Note that R0 is never empty. Condition 3 states that each
R′i is the intersection of two sets: 1. concrete states corresponding to abstract
states in S′i, and 2. continuous post of Ri. Condition 4 states that each Ri is
the intersection of two sets: 1. concrete states corresponding to abstract states
in Si, and 2. discrete post of R′i−1 using e′i. It is easy to see that for any i if Ri
or R′i becomes empty then for all j > i both Rj and R′j will be empty. Also,
if Ri is empty then R′i is empty too. Figure 1 depicts the situation when the
counterexample is spurious and R′i is the first empty set we reach during our
validation. Proposition 9 proves that the first empty set (if any) is always R′i for
some i and not Ri.

Proposition 9. R′n = ∅ in ρ′ implies there exists i such that 1. R′i = ∅, 2. Ri 6=
∅, 3. ∀j < i •Rj , R

′
j 6= ∅, and 4. cpostC(Ri) and γA(S′i) are nonempty disjoint

sets.

Lemma 10. The counterexample π′ = e′1, . . . , e
′
n of C is valid iff R′n 6= ∅.

Proposition 9 tells us that two sets cpostC(Ri) and γA(S′i) are disjoint.
Lemma 11 states a stronger result that there is a minimum distance ε > 0
between those two sets, by exploiting the compactness of the two sets.

Lemma 11. There exists ε ∈ R+ such that distH(cpostC(Ri), γA(S′i)) > ε.

4.5 Refinement

Let us fix a concrete automaton C, an invariant partition P , and an abstract
automaton A = α(C,P ). Suppose model checking A reveals a counterexample
π and its annotation ρ. If ρ is found to be spurious by the validation algorithm
(in Section 4.4), then we need to refine the model A by refining the invariant
partition P . We will do this by refining the invariant of only a single location of
A. In this section we describe how to do this.



Since ρ is spurious, there is a smallest index i such that R′i = ∅ (where the
sets Ri, R

′
i are as defined in Section 4.4); we will call this the point of refinement

and denote it as porC,A(ρ). We will refine the location (q, p) = Dei of A by
refining its invariant p. We know from Proposition 9, cpostC(Ri) ∩ γA(S′i) = ∅.
However, the coresponding sets in the abstract system A are not disjoint, that
is, cpostA(γ−1

A (Ri)) ∩ S′i 6= ∅. Our refinement strategy is to find a partition for
the location (q, p) such that in the refined model R = α(C,P ′) (for some P ′), S′i
is not reachable from Ri. In order to define the actual refinement, and to make
this condition precise, we need to introduce some definitions.

Let C, A, Ri, S
′
i, and (q, p) be as above. Let us denote by Cq,p the re-

striction of C to the single location q with invariant p, i.e., Cq,p has only one
location q whose flow and invariant is the same as that of (q, p) in A, and only
transitions whose source and destination is q. We will say that an invariant par-
tition Pr of Cq,p separates Ri from S′i iff in the automaton A1 = α(Cq,p, Pr),
reachA1

(γ−1
A1

(Ri)) ∩ γ−1
A1

(γA(S′i)) = ∅. In other words, the states corresponding

to S′i in A1 are not reachable from γ−1
A1

(Ri) in A1.
Refinement Strategy. Let Pr be an invariant partition of Cq,p that sepa-

rates Ri from S′i. Define the invariant partition P ′ of C as follows: P ′(q′) = P (q′)
if q′ 6= q, and P ′(q) = (P (q) \ {p})∪Pr(q). The new abstract automaton will be
R = α(C,P ′). Observe that R is a refinement of A (since the invariant partition
is refined), and the relationship between the locations and edges of the two au-
tomata is characterized by a function αR,A(·) defined as follows. For a location
(q′, p′), αR,A(q′, p′) = (q′, p′) if either q′ 6= q, or p′ 6⊆ p, and αR,A(q′, p′) = (q, p)
otherwise. Having defined the mapping between locations, the mapping between
edges is its natural extension:

αR,A((q1, p1), (q2, p2), g, j, r) =
(αR,A(q1, p1), αR,A(q2, p2), g, j, r).

The goal of the refinement strategy outlined above is to ensure that a given
counterexample π is eventually eliminated, if the abstract model checker gener-
ates it sufficiently many times. To make this statement precise and to articulate
the nature of progress we need to first identify when a counterexample of R cor-
responds to a counterexample of A. Observe that a path π of A can “correspond”
to a longer path π′ in R, where previous sojourn in location (q, p) in π, now corre-
sponds to a path in π′ that traverses the newly created locations by partitioning
p. Recall that we are assuming that porC,A(ρ) = i, where ρ is the annotation
corresponding to π. We will say that a counterexample π′ = e′1, e

′
2, . . . e

′
m cor-

responds to counterexample π = e1, e2, . . . en, if there exists k, 0 ≤ k ≤ m − i,
such that 1. for all j ≤ i, αR,A(e′j) = ej , 2. for all j > i + k, αR,A(e′j) = ej−k,
and 3. for all i < j ≤ i + k, source and destination of αR,A(e′j) is (q, p). If π′

corresponds to π, we will call k its witness. Using this notion of correspondence,
we are ready to state what our refinement achieves.

Proposition 12. Let π be a counterexample of A and ρ its annotation. Let R
be the refinement constructed by our strategy after ρ is found to be spurious. Let



π′ be a counterexample of R that corresponds to π, and let ρ′ be its annotation.
Then, porC,R(ρ′) < porC,A(ρ).

The above proposition implies that a counterexample π can appear only
finitely many times in the CEGAR loop. This is because the point of refinement
of any π′ in R corresponding to π in A is strictly smaller.

Next, we claim that a partition satisfying the refinement strategy always
exists. It relies on the following observation from [30] which states that the
reach set of a linear dynamical system can be approximated to within any ε by
a rectangular hybridization over a bounded time interval.

Theorem 13 ( [30]). Let H be a linear hybrid automaton with a single location
such that there is a bound T on the time for which the system can evolve in the
location. Then, for any ε > 0, there exists an invariant partition P of H such
that distH(reach(H), reach(α(H,P ))) < ε.

Corollary 14 (Existence of Refinement). There always exists a partition
P ′ that separates Ri and S′i.

4.6 Validation Approximation

In order to validate a counterexample, we assumed to be able to exactly compute
continuous post of a set of states in the affine hybrid automaton for a finite
amount of time. But the best one can actually hope for is computing over and
under approximation of this set. In this section we show that being able to
approximate the continuous post is enough for our algorithm. For any hybrid
automaton H, set of states S ⊆ SJHK, edge e ∈ EH , and parameter ε ∈ R+ we
define the following functions:
– cpostεover(S) is an over-approximation of cpost(S). Formally, if cpostεover(S)

returns S′ then we know cpost(S) ⊆ S′ and distH(S
′, cpost(S)) < ε.

– cpostεunder(S) is an under-approximation of cpost(S). Formally, if cpostεunder(S)
returns S′ then we know cpost(S) ⊇ S′ and distH(S

′, cpost(S)) < ε.
During the validation procedure, instead of computing ρ′ we compute ρo and
ρu. They are computed exactly as ρ′, except that in ρo and ρu, instead of cpost,
we respectively use cpostεover and cpostεunder. Let us denote the last elements of ρo
and ρu respectively by R′n and U ′n. If U ′n is non-empty, we know ρ represents at
least one valid counterexample. Therefore, the algorithm outputs ‘unsafe’ and
terminates. If U ′n is empty but R′n is non-empty, it means ε is too big. Therefore,
the algorithm repeats itself using ε

2 . If R′n is empty, it means all counterexamples
in ρ are spurious. Therefore, too much over-approximation is deployed in A and
it needs to be refined as stated in Section 4.5.

Lemma 15. Given a counterexample π of A, if γA(π) is spurious, then there
exists an ε > 0 for which R′n is empty.

The above lemma states that if the abstract counterexample is spurious,
then the same will be detected by our algorithm. This is a direct consequence of
Lemma 11.



5 Experimental Results

Our tool (Hybrid Abstraction Refinement Engine or HARE, for short) is imple-
mented in Scala. The CEGAR framework relies on a model checker that an-
alyzes an abstract model and produce a counterexample if the abstract model
violates the safety requirement. In our case this is a model checker for rectangu-
lar hybrid automata that produces counterexamples. The only model checkers
for rectangular automata that produce counterexample that we are aware of are
HyTech [21] and the old version of HARE [29] 3. Unfortunately, because HyTech is
not being actively maintained, it does not have support for numbers of arbitrary
size, and so in our experiments we frequently ran into overflow problems. Also,
we decided not to use the old version of HARE to model check rectangular au-
tomata for two reasons: 1. we wanted to only study the effects of the abstraction
techniques introduced in this paper, and not have our results compromised by
other simplification steps introduced in [29] like merging control locations and
transitions, and ignoring variables. 2. The old version of HARE internally calls
HyTech, hence, the overflow error happens when the size of the automaton be-
comes large as a result of refinements. Therefore, we implemented a new model
checker for rectangular hybrid automata. Our implementation uses the Parma
Polyhedral Library (PPL) [4] to compute the discrete and continuous pre in rect-
angular hybrid automata 4, and Z3 [14] to check for fixpoints or intersection
with initial states. Starting from the unsafe states, we iteratively compute pre
until either a fixed point is found or we reach an initial state. Both of these
libraries can handle numbers of arbitrary size. Validation of counterexamples
requires computing posts in the concrete affine hybrid automata. For discrete
post we use the PPL library, and for the continuous post we call SpaceEx [20]
with either Supp or PHAVer [19] scenario. Note that SpaceEx only computes an
over-approximation of the continuous post and does not have support for com-
puting under-approximations. Therefore, currently in our tool, we stop when an
abstract counterexample is validated using the over-approximation implemented
by SpaceEx. Finally, in the current implementation, in order to refine a location
we simply halve its invariant along some variable at the point of refinement.

We evaluate our tool against four suites of examples that have been proposed
by the community [2,6,18] as benchmarks for model checkers of hybrid systems.
Each of these suites is qualitatively different and tests different aspects of the
performance of a model checker. They are Tank, Satellite, Heater, and Naviga-
tion benchmarks. A short description of each of the benchmarks appears in the
Appendix C.

We ran different instances of the above examples on 4 different tools, in
addition to HARE — SpaceEx, PHAVer (i.e. SpaceEx using PHAVer scenario),

3 Note that FLOW* produces counterexamples and can even handle non-linear ODEs.
But it does not support differential inclusions and therefore it is incapable of handling
rectangular automata.

4 Technically, we first convert the problem of computing pre to an equivalent problem
of computing post, and then use PPL to find the solution.



HSolver

Name Dim. Locs. Trns. Time Safe Time FP. Safe Time FP. Safe Merged9
Locs

Time FP. Safe Time

Tank914 7 7 12 4 No 4 No No 56 Yes No 3 10 Yes No ...
Tank916 3 3 6 <01 Yes 3 No No 1414 No Yes 2 1133 No Yes ...
Tank917 3 3 6 <01 Yes 5 No* Yes 1309 No Yes 2 1041 No Yes ...
Satellite903 4 64 198 91 No <01 No No 1804 No No 28 >0600 ... ... ...
Satellite904 4 100 307 <01 Yes <01 No* Yes <01 Yes Yes 91 49 Yes Yes ...
Satellite911 4 576 1735 1 Yes <01 No* Yes <01 Yes Yes 449 >0600 ... ... ...
Satellite915 4 1296 3895 2 Yes <01 No* Yes <01 Yes Yes 264 >0600 ... ... ...
Heater901 3 4 6 <01 No <01 No* No <01 Yes No ... ... ... ... >0600
Heater902 3 4 6 <01 No 10 No No <01 Yes No ... ... ... ... >0600
Nav901 4 25 80 9 Yes <01 Yes Yes <01 Yes Yes 21 5 Yes Yes >0600
Nav908 4 16 48 7 Yes 685 No Yes <01 Yes Yes 10 <01 Yes Yes >0600
Nav909 4 9 16 8 Yes <01 No No <01 Yes No 4 <01 Yes No >0600
Nav913 4 9 18 8 Yes <01 No* Yes <01 Yes Yes 4 <01 Yes Yes >0600
Nav920 4 33 97 29 Yes 2 No* Yes <01 Yes Yes 11 <01 Yes Yes >0600

HARE SpaceEx PHAVer SpaceEx9AGARExample9Size

Table 1: Experimental Results. Columns Dim., Locs., and Trns. specify number of respectively vari-
ables (dimension), locations, and transitions in each benchmark. Five different Time columns specify
amount of time each tool took to solve a problem. Times are all in seconds. ‘< 1’ means less than a
second and ‘> 600’ means time out (more than 10 minutes). Also, ‘- - -’ means one of the following:
1) it could not be run on HSolver because of specific features the model has, 2) it could not be run
on SpaceEx AGAR because we could not find any set of locations that can be merged without causing
the tool to terminate unexpectedly, 3) we do not have the data because of SpaceEx AGAR’s time out.
Four different Safe columns specify the output of each tool. Note that all tools perform some kind
of over-approximation. Three FP. columns mean whether or not the corresponding tool reached a
fixed-point in its reachability computation. No* in the FP. column of SpaceEx means that the tool
reached a fixed-point, but it also generates the following warning which invalidates the reliability of
its “safe” answer: WARNING (incomplete output) Reached time horizon without exhausting
all states, result is incomplete.

SpaceEx AGAR [7], and HSolver [32]. We do not compare with the older version of
HARE, since it implements a CEGAR algorithm for rectangular hybrid automata
and not for affine hybrid automata.

Table 1 shows the results on some of the instances we ran the tools on 5. All
examples were run on a laptop with Intel i5 2.50GHz CPU, 6GB of RAM, and
Ubuntu 14.10. The salient observations, based on the experiments reported in
Table 1, are summarized below.
1. The Satellite benchmark shows that HARE scales up to automata with a large

control structure.
2. HARE often beats the SpaceEx scenario in terms of proving safety or running

time. For 4 problems, HARE performed faster. For 3 problems both tools have
the same time, but in one of them only HARE proved safety. For 5 out of the
remaining 7 problems in which SpaceEx performed faster, only HARE proved
safety.

3. The PHAVer scenario is often faster but there are cases where HARE beats
PHAVer. There are only 4 instances in which HARE performed faster, but in 7
examples PHAVer performed faster. Also there are 3 cases (including one in
which PHAVer performed faster) where only HARE proved safety.

4. HARE often beats SpaceEx AGAR in terms of proving safety or running time.
In 2 problems, we could not find any two locations such that merging them
does not cause SpaceEx AGAR to encounter internal error. In 7 problems,
HARE performed faster. In the remaining 5 problems SpaceEx AGAR performed

5 Due to space limits, the table of full results (including all 65 examples along with
quite a few metrics on HARE) can be found at the following link: https://uofi.box.
com/cegar-hare-tacas-2016. The link also points to a virtual machine containing
different scripts to run all the examples on each of 5 tools.

https://uofi.box.com/cegar-hare-tacas-2016
https://uofi.box.com/cegar-hare-tacas-2016


faster, but there is one problem among them for which only HARE proved
safety.

5. In some instances, SpaceEx, PHAVer, and SpaceEx AGAR failed to prove safety
while HARE did not. There are two reasons for it. Sometimes those three tools
fail to reach a fixpoint in the reachability computation. Examples of this are
Tank 16-17, Satellite 4,11,15, and Nav 8,9,13,20 for SpaceEx, and Tank 16-
17 for both PHAVer and SpaceEx AGAR. The other reason is that sometimes
those three tools over-approximate too much. Examples of this is Nav 9 for
PHAVer and SpaceEx AGAR. Furthermore, it seems merging locations is a very
expensive task in SpaceEx AGAR, which we believe is the main reason for the
time outs of this tool.

6. On all our examples, HSolver either timed out or the specific constraints in
the model made them unamenable to analysis by HSolver. HSolver is an
abstraction based tool that abstracts hybrid automata into finite state, dis-
crete transition systems. It can handle models with non-linear dynamics, and
so applies to automata more general than what HARE, SpaceEx, and PHAVer

analyze. This suggests that HSolver’s algorithm makes certain decisions that
are not effective for affine hybrid automata.

6 Conclusion

We presented a new algorithm for model checking safety problems of hybrid
automata with affine dynamics and rectangular constraints in a counterexam-
ple guided abstraction refinement framework. We show that our algorithm is
sound and have implemented it in a tool named HARE. We also compared the
performance of our tool with a few state-of-the-art tools. Results show that per-
formance of our tool is promising compared to the other tools (SpaceEx, PHAVer,
and HSolver).

In the future, we intend to incorporate certain improvements to our imple-
mentation. In particular, we would like to integrate an algorithm for computing
an under-approximation of the continuous post. The will allow us to definitively
validate abstract counterexamples. Theoretically, we would like to explore the
completeness of our algorithm, in terms of finding a concrete counterexample
when the concrete system is unsafe. This may require a novel notion of coun-
terexample in the abstract system, which is shortest in terms of the number of
edges in the concrete system which do not correspond to self-loops. Our broad
future goal is to extend the hybrid abstraction refinement method for non-linear
hybrid systems.
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2. Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of
hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (Feb 2006)

3. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems hav-
ing piecewise-constant derivatives. TCS 138(1), 35–65 (1995)

4. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1–2), 3–21 (2008)

5. Ball, T., Rajamani, S.: Bebop: A symbolic model checker for Boolean programs.
In: Proc. of the SPIN. pp. 113–130 (2000)

6. Bogomolov, S., Donze, A., Frehse, G., Grosu, R., Johnson, T.T., Ladan, H., Podel-
ski, A., Wehrle, M.: Guided search for hybrid systems based on coarse-grained
space abstractions. International Journal on Software Tools for Technology Trans
fer (Oct 2014)

7. Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasareanu, C.S., Podelski,
A., Strump, T.: Assume-guarantee abstraction refinement meets hybrid systems.
In: 10th International Haifa Verification Conference. pp. 116–131 (2014)
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A Need for Annotated Counterexamples in Refinement

In a CEGAR framework, validating a counterexample typically involves just per-
forming a forward search (with respect to the transitions in the counterexample)
in the concrete system; henceforth called the standard validation algorithm. How-
ever, in the validation algorithm outlined in Section 4.4 is different. The forward
search in the concrete system uses a sequence of sets of abstract states computed
using backward reachability in abstract model (i.e., the annotated counterexam-
ple). Thus, validation for us involves doing a backward search in the abstract
model, and a forward search in the concrete model. The reason for doing this
is because the standard validation algorithm fails to identify the correct refine-
ment step in our case, where the counterexample corresponds to infinitely many
executions.

We illustrate this through an example affine hybrid automaton C shown
in Figure 2a. The automaton has 3 states {1, 2, 3}, with 1 as the only initial
location, and 3 as the only unsafe location. The automaton has two variables
x and z. z is a clock that is used to ensure that a discrete transition is taken
every 1 unit of time; invariants of z in each location, and its guards and resets
on every transition are set to ensure this. The dynamics of variable x in 1 are
given by the equation ẋ = x, while that in location 2 are given by ẋ = 0.5x;
the dynamics in 3 is not important as that is the unsafe location. The invariant
in all locations is x ∈ [0, 1] and z ∈ [0, 1]. There are 5 transitions: self loop
on every location, transition e1 from 1 to 2 and the transition e2 from 2 to
3. All transitions reset z to 0, and leave x unchanged. All transitions except
transition e2 are always enabled; the transition e2 is enabled when x ∈ [0.75, 1].
Assuming that the initial value of x is 0 in location 1 6, the automaton is safe.
This is because no matter how many discrete transitions are taken, the value of
x remains 0 in both locations 1 and 2, and so the transition from 2 to 3 is never
taken.

Consider the trivial invariant partition P for this automaton that leaves the
invariant for each location intact. The rectangular automaton A = α(C,P ) is
shown in Figure 2b. The only difference between A and C is in the dynamics for
variables x in locations 1 and 2 — the dynamics in 1 is given by ẋ ∈ [0, 1] and
in 2 by ẋ ∈ [0, 1

2 ]. Observe that A is unsafe because of the execution

(1, x = 0)
0.5−−→ (1, x = 0.5)

e1−→ (2, x = 0.5)
0.5−−→ (2, x = 0.75)

e2−→ (3, x = 0.75)

6 Our model does not have initial values for continuous variables. But having initial
values can easily be ensured by adding a new initial location, where the invariant for
the variables is constrained to be the initial value. We did not do this here to keep
the number of locations small.
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(b) Rectangular automaton A = α(C,P )

Fig. 2: Need for annotated counterexamples in refinement. ż = 1 in all locations.

In the above execution, we have skipped the value of variable z, since it does not
play an important role. Thus, the abstract counterexample is π = e1, e2. The
annotated counterexample ρ corresponding to π is

(1, x ∈ [0, 0])
≤1−−→ (1, x ∈ [0.25, 1])

e1−→ (2, x ∈ [0.25, 1])
≤1−−→ (2, x ∈ [0.75, 1])

e2−→ (3, x ∈ [0.75, 1])

Now doing the standard validation algorithm for the counterexample π using
forward search in C results in the following sequence.

(1, x ∈ [0, 0])
≤1−−→ (1, x ∈ [0, 0])

e1−→ (2, x ∈ [0, 0])
≤1−−→ (2, x ∈ [0, 0])

e2−→ (3, x ∈ ∅)

The counterexample π is spurious because the set (2, x ∈ [0, 0]) does not intersect
the guard of e2 suggesting that the dynamics in location 2 needs to be refined.
How do we refine? We need to ensure that in the new abstract model (after
refinement), there is no way to reach the guard of e2 from the state (2, x = 0),
which is the entry state for location 2. But notice that the set of states reachable
in A from (2, x = 0) is (2, x ∈ [0, 0.5]) which is already disjoint from guard of e2.
So no matter how we refine A will not make any progress from the standpoint
of eliminating the counterexample π.

On the other hand, our validation algorithm will correctly identify that what
needs to be refined is the dynamics in location 1 (and not 2). Recall that our
validation algorithm does a forward search in C, and each post computation is
intersected with the corresponding set in the annotated counterexample ρ. This
will result in the following sequence.

(1, x ∈ [0, 0])
≤1−−→ (1, x ∈ ∅) e1−→ (2, x ∈ ∅)

≤1−−→ (2, x ∈ ∅) e2−→ (3, x ∈ ∅)

Thus, the reason π is spurious is because the set of states reachable in C from
(1, x = 0) (without any discrete transitions) is (1, x = 0) which is disjoint from



the set of all abstract states (1, x ∈ [0.25, 1]) that can exhibit the transitions
e1, e2. Thus, we need to refine the dynamics in location 1 in such a way that
the set of states reachable from (1, x = 0) (initial state) is disjoint from the set
(1, x ∈ [0.25, 1]). This is easily achieved by splitting the invariant of location 1
into [0, 0.2] and [0.2, 1].

B Time-Bounded Transitions - Formal Construction

Section 4.1 talks about the requirement of bounding duration of time transitions
in hybrid automata. We mentioned that for any hybrid automaton H and t ∈
R+, one can always construct hybrid automaton H ′ with the same reachability
information and with the additional property that no time transition in H ′ can
take longer than t units of time 7. To construct H ′, we add a new variable z
to H. It will be a clock, initially 0, with no guard but always reset to 0 on
transitions. Furthermore, its invariant puts an upper bound on possible values
of z which makes duration of any continuous trajectory finite. More precisely,
H ′ is constructed in the following way:
– XH′ = XH ∪ {z} assuming z /∈ XH ,
– QH′ = QH ,

– QinitH′ = QinitH ,
– QbadH′ = QbadH ,

– ∀q, x • IH′(q, x) = IH(q, x) if x 6= z and [0, t] otherwise,
– ∀q, x, ν • FH′(q, ν)(x) = FH(q, ν)(x) if x 6= z and {1} otherwise, and
– ∀e ∈ EH • (SHe, DHe, g, j, r) ∈ ED where
• g = GHe ∪ {(z, (−∞,∞))}
• j = JHe ∪ {z}

• r = RHe ∪ {(z, [0, 0])}

Because z is a clock and its invariant restricts its value to be always between
0 and t, we know that unbounded time continuous post becomes equivalent to
continuous post for at most t units of time.

C Benchmarks

In this section we provide a short description of each of four class of benchmarks
we considered in this paper.

Tank Benchmark [6]. Each problem in this benchmark consists of some
N ∈ N tanks. Each tank i ∈ {1, . . . , N} loses volume xi at some constant flow
rate vi. Hence, dynamics of tank i is ẋi = −vi for a rational constant vi ≥ 0.
Furthermore, one of the tanks is filled from an external inlet at some constant
flow rate w which makes its dynamics ẋi = w−vi, for a rational constant w ≥ 0.
The volume lost by each tank simply vanishes and does not move from one tank
to another.

Satellite Benchmark [6]. These examples model two satellites orbiting the
earth with nonlinear dynamics described by Kepler’s laws (see [26] for details).

7 One can merge new edges in this construction with trivial self loops mentioned in
Section 4.2.



The nonlinear dynamics were hybridized in [6] to generate an affine hybrid au-
tomaton. The size of the problems varies from 36 to 1296 locations and so this
benchmark can test the scalability of the tool. The safety property being checked
is collision avoidance, i.e., whether there is a trajectory in which satellites come
too much close to each other.

Heater Benchmark [6]. There are three rooms with three heaters. For
each room, we have one automaton with two states modeling heater being on
and off in that room. Composition of these three room automata gives us a
heater system.

Navigation Benchmark [2,18]. This benchmark considers a robot moving
in the R2 plane. There is a desired velocity vd that is determined by the current
location of the object in an n×m grid. Each grid has one of the 8 possible desired
velocities pointing to the usual 8 possible directions in the plane. Dynamics of
object’s velocity is determined by v̇ = A(v − vd) where A ∈ Q2. There are two
special type of cells. Those that are unsafe and those that are blocked. Some of
the problems in this class use the following variation: For an small value ε ∈ Q+,
neighbor cells overlap with each other. This introduces non-nondeterminism into
the model.

D Proofs

Proposition 9. R′n = ∅ in ρ′ implies there exists i such that 1. R′i = ∅, 2. Ri 6=
∅, 3. ∀j < i •Rj , R

′
j 6= ∅, and 4. cpostC(Ri) and γA(S′i) are nonempty disjoint

sets.

Proof. We know that for all i neither Si nor S′i is empty. We prove that if
R′i−1 6= ∅ then Ri 6= ∅. By definition we have 1. R′i−1 ⊆ γA(S′i−1), and 2. ∀ν1 ∈
S′i−1 • ∃ν2 ∈ Si • ν1

ei−→ ν2. Note that we do not change guards and resets in
abstraction. Therefore, R′i−1 is a subset of states that can take edge e′i and after
transition they go to γA(Si), which means Ri 6= ∅. This proves the first three
parts. Let i be such that those parts hold. Note that γA(S′i) 6= ∅, and if Ri 6= ∅
then cpostC(Ri) 6= ∅. Furthermore, γA(S′i) and cpostC(Ri) are disjoint, since,
otherwise R′i would be non-empty.

Lemma 11. There exists ε ∈ R+ such that distH(cpostC(Ri), γA(S′i)) > ε.

Proof. Invariants, guards, and resets of the affine hybrid automaton C are all
closed and bounded (by definition). Hence, the invariants, guards, resets, and
flow of the abstract rectangular automaton A = α(C,P ) are also closed and
bounded. Therefore, each of the sets Si, S

′
i and Ri, R

′
i are compact (closed and

bounded). Since, cpostC(Ri) and γA(S′i) are compact sets, there exists a mini-
mum distance between them.

Proposition 12. Let π be a counterexample of A and ρ its annotation. Let R
be the refinement constructed by our strategy after ρ is found to be spurious. Let
π′ be a counterexample of R that corresponds to π, and let ρ′ be its annotation.
Then, porC,R(ρ′) < porC,A(ρ).



Proof. Let i = porC,A(ρ), and let Ri and S′i be sets as defined in the validation
algorithm. Let k be the witness for the correspondence between π′ and π. Observe
that our refinement strategy ensures that the set of states that can reach S′i
through the path π′[i, i + k] is disjoint from γ−1

A (Ri). Hence if the sequence
U0, U

′
0, U1, . . . Um is computed by the validation algorithm for ρ′, we know that

Ui = ∅. Using Proposition 9, we can conclude that porC,R(ρ′) < i.

Corollary 14 (Existence of Refinement). There always exists a partition P ′

satisfying the conditions outlined in the refinement strategy.

Proof. The result follows from Theorem 13 and Lemma 11.
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