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Abstract

This thesis describes experiments focused on investigating out-of-equilibrium phenomena in the Bose-Hub-

bard Model and exploring novel cooling techniques for ultracold gases in optical lattices.

In the first experiment, we study quenches across the Mott-insulator-to-superfluid quantum phase tran-

sition in the 3D Bose-Hubbard Model. The quench is accomplished by continuously tuning the ratio of the

Hubbard energies. We observe that the degree of excitation is proportional to the fraction of atoms that

cross the phase boundary, and that the amount of excitations and energy produced during the quench have a

power-law dependence on the quench rate. These phenomena suggest an excitation process analogous to the

mechanism for defect generation in non-equilibrium classical phase transitions. This experiment constitutes

the first observation of the Kibble-Zurek mechanism in a quantum quench. We have reported our findings

in Ref. [1].

In a second experiment, published in Ref. [2], we investigate dissipation as a method for cooling a strongly

interacting gas. We introduce dissipation via a bosonic reservoir to a strongly interacting bosonic gas in

the Mott-insulator regime of a 3D spin-dependent optical lattice. The lattice atoms are excited to a higher

energy band using laser-induced Bragg transitions. A weakly interacting superfluid comprised of atoms in a

state that does not experience the lattice potential acts as a dissipative bath that interacts with the lattice

atoms through collisions. We measure the resulting bath-induced decay using the atomic quasimomentum

distribution, and we compare the decay rate with predictions from a weakly interacting model with no free

parameters. A competing intrinsic decay mechanism arising from collisions between lattice atoms is also

investigated. The presence of intrinsic decay can not be accommodated within a non-interacting framework

and signals that strong interactions may play a central role in the lattice-atom dynamics. The intrinsic

decay process we observe may negatively impact the success of cooling via dissipation because a fraction of

intrinsic decay events can deposit a large amount of energy into the lattice gas.

In a third experiment, we develop and carry out the first demonstration of cooling an atomic quasimo-

mentum distribution. Our scheme, applied in a proof-of-principle experiment to 3D Bose-Hubbard gas in

the superfluid regime, involves quasimomentum-selective Raman transitions. This experiment is motivated
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by the search of new cooling techniques for lattice-trapped gases. Efficient cooling exceeding heating rates

is achieved by iteratively removing high quasimomentum atoms from the lattice. Quasimomentum equi-

libration, which is necessary for cooling, is investigated by directly measuring rethermalization rates after

bringing the quasimomentum distribution of the gas out of equilibrium. The measured relaxation rate is

consistent at high lattice depths with a short-range, two-particle scattering model without free parameters,

despite an apparent violation of the Mott-Ioffe-Regel bound. Our results may have implications for mod-

els of unusual transport phenomena in materials with strong interactions, such as heavy fermion materials

and transition metal oxides. The cooling method we have developed is applicable to any species, including

fermionic atoms. Our results are available in Ref. [3].
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Chapter 1

Introduction

Despite the success of quantum statistical mechanics to describe equilibrium states, little is known about

dynamics in strongly correlated systems. How do open and closed quantum many-body systems reach

equilibrium? How do these systems thermalize given that they comprise a large number of degrees of

freedom? These questions were posed many decades ago, but most have remained largely unsolved. It

was not until relatively recently that they have re-gained momentum thank to the immense progress in

experimental techniques and advances in theoretical methods [6].

The standard approach to understanding many-body systems involves simplified models that are believed

to reproduce the relevant interactions responsible for the observed physics. Given a specific model, one

traditionally relies on numerical methods to determine their properties (with the exception of a few cases

that are exactly solvable) [7]. However, the Hilbert space of many-body systems is a really big place! For

example, for a system of N spin-1/2 particles, the dimension of the Hilbert space is 2N , which is exponentially

large in the number of states and already intractable at N ∼ 50 by a classical computer. Furthermore,

complexity in strongly correlated systems still remains poorly understood [8]. Several numerical methods

have been developed to solve these problems, but all the existing techniques have their own limitations. For

example, mean field theories fail at describing effects of quantum correlation [9], tensor network methods

for one-dimensional (1D) systems (e.g. density matrix renormalization group) are efficient only for short

times [10], and quantum Monte Carlo methods for static fermionic systems suffer from the sign problem.

Fortunately, experiments in optical lattices have enabled the possibility of investigating static and dynam-

ical properties in strongly correlated systems by creating well understood quantum systems with microscopic

parameters and controlled initial conditions [11–17]. In particular, optical lattices can almost ideally realize

the Bose-Hubbard and Fermi-Hubbard Hamiltonians [18], which are minimal models of electronic solids

that exhibit many-body quantum effects. For examples, the Mott-insulator (MI) phase has been observed

for bosonic and fermionic atoms in 3D lattices [19–21], Anderson and many-body localization have been

detected in disordered lattices [22, 23], interaction has been studied in Bose-Fermi mixtures [24], antiferro-

magnetic ordering has been achieved in 1D pseudo-spin chains, 2D dimerized lattices [25,26], and 3D simple

1



cubic lattices [27], and quantum criticality in a superfluid-MI transition has been measured via atomic gas

microscopy [28,29].

A particular topic that has recently become a focus of attention is quantum phase transitions [30], which

have important fundamental and practical implications (e.g. for adiabatic quantum computing [31]). A key

theoretical model for understanding the dynamics of quantum phase transitions has been provided by the

Kibble-Zurek mechanism (KZM) [32–35]. The KZM predicts scaling laws for defect generation in classical

and quantum phase transitions moving from a gapped phase to criticality. In Chapter 3, I describe how

we captured, for the first time, the KZM in a quantum quench and how we investigated the scaling laws

predicted by this mechanism.

Another interesting topic on its own is how strongly correlated systems relax and thermalize toward

equilibrium. Studies have been done on correlation dynamics in a quenched MI in 1D [36,37], equilibration

dynamics in a tilted lattice in a 1D Ising chain [38, 39], and lattice transport in interacting bosonic and

fermionic gases in 1D, 2D, and 3D [40,41]. In Chapter 5, I present the first thermalization measurement in

a strongly correlated 3D atomic gas. Interestingly, we find a discrepancy with predictions based on weakly

interacting physics, which may be evidence of an effect analogue to the non-Fermi liquid behavior in strongly

correlated fermionic systems [42]. Understanding the origin of such breakdown is an outstanding challenge

in strongly correlated physics.

Despite the wide success of optical lattices as quantum simulators, ultra-low entropy regimes are still

out of reach and, consequently, more complex quantum phases, such as spin liquids in frustrated geometries

and the Néel state in the Fermi-Hubbard Hamiltonian at half filling, are currently unrealizable. The latter

example is of particular importance for investigating high-Tc superconductivity [43,44], since it is conjectured

that a doped Néel state [45] (realizable in a Fermi gas by creating an initial spin imbalance) undergoes

a quantum phase transition to a d-wave superconducting state [46]. Currently, temperatures below the

bandwidth of the ground band and the interaction energy U are routinely achieved. The next lower energy

scale is set by the superexchange energy t2/U (associated with virtual tunneling processes) [18]. For 87Rb,

magnetically ordered states in the MI are expected to arise at temperatures around 100–200 pK [47], which

is significantly below the temperatures presently accessible in ultracold atoms. On the other hand, for a

fermionic gas, the estimated temperature needed to observe antiferromagnetic and d-wave superfluidity is

T/TF ∼ 0.01 (TF is the Fermi temperature of the trapped gas) [46], and numerical simulations predict a

Néel temperature of TNéel/t ≈ 0.3 and a critical entropy of SNéel ≈ 0.3 kB [48]. These value, even though

small, are close to being achieved in current experiments, in which incipient short-range magnetic ordering

has been observed [27].

2



Several cooling schemes have been suggested as new routes to reach lower temperatures and entropies

in optical lattices. For example, it has been proposed to selectively address and remove defects in the

lattice [49], or to localize regions of low entropy and isolate them from the rest of the system [49–55].

Experimental demonstrations, however, have been scarce [56, 57]. In Chapter 4, I explore the method

proposed in Refs. [58,59] to perform cooling through dissipation. This so-called “immersion” cooling consists

of a low entropy, dissipative bath that interacts with a strongly correlated gas and carries entropy away as

excitations.

Motivated by the search of new cooling methods, in Chapter 5 I discuss a novel cooling technique that

we have developed which works for any atomic species. The scheme uses stimulated Raman excitation to

selectively remove atoms with high kinetic energy from a strongly correlated atomic gas. In a proof-of-

principle experiment, we demonstrate quasimomentum-selective Raman cooling as a method to reduce the

temperature and entropy of a strongly correlated bosonic gas. This promising technique may pave the way

towards realization of exotic quantum states that may exist at low entropies [60–65].

This thesis is organized as follows. In the remaining sections of this chapter, I will give a brief overview

of our 87Rb apparatus. Chapter 2 introduces the implementation of an optical system for driving stimulated

Raman and Bragg excitations in ultracold atomic gases. Chapters 3 to 5 report three different experiments.

Chapter 3 describes the observation of excitation generation in a quantum quench. Chapter 4 explores dissi-

pation effects in an open strongly correlated atomic gas. Chapter 5 presents measurements on thermalization

and cooling in a strongly correlated atomic gas.

1.1 Apparatus Overview

The experiments reported in this thesis were performed using a 87Rb apparatus that is thoroughly described

in Ref. [66]. In this section, I briefly present a few aspects of the apparatus relevant to this thesis.

1.1.1 Optical and Magnetic Traps

We start our experiments with the preparation of a 87Rb Bose-Einstein condensate (BEC) in the |F =

1,mF = −1〉 hyperfine state with ∼ 105 atoms and Tc ∼ 100 nK. For experiments with spin mixtures

(Chapter 4), we use an adiabatic rapid passage driven by a radio-frequency magnetic field to partially transfer

atoms to a different magnetic state mF . In this thesis, two different trap configurations are employed. The

first configuration is a hybrid trap formed by an optical trap superimposed on a magnetic trap. The second

configuration consists of a purely optical trap formed by two crossing laser beams. The advantage of using
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an all-optical trap over a hybrid trap is in its capability of trapping atoms of arbitrary magnetic states

mF . In Chapter 3, I discuss experiments performed in the hybrid trap, whereas in Chapters 4 and 5, I

discuss experiments carried out in the crossed trap. The experiments presented in this thesis are performed

in traps with geometric mean of the trap frequencies ω̄ in the range 2π × (40 − 75) Hz (the traps provide

approximately harmonic confinement).

The hybrid trap is formed by an optical dipole trap superimposed on a quadrupole magnetic trap [67].

The dipole trap mainly provides radial confinement, whereas the magnetic trap provides axial confinement.

The optical dipole trap is generated from a fiber laser (IPG Photonics YLR-20-1064-LP) which provides

20W, 1064 nm, single mode, multi-frequency, linearly polarized light. The light field has a gaussian intensity

profile in the form

I(x, y, z) =
2P

πw(z)2
e
− 2(x2+y2)

w2(z) , (1.1)

where z is the direction of light propagation, P is the beam power, w(z) = w0[1 + (z/z0)2]1/2 is the beam

waist, z0 = πw2
0/λ is the Rayleigh length, w0 is the beam waist at z = 0, and λ is the wavelength. The light

intensity is regulated using a servo-controlled acousto-optic modulator1 (AOM). The laser light interacts

with the induced electric dipole moment of the atoms through the potential [68–72]

Vd(x, y, z) = −πc
2I(x, y, z)

2

[
2Γ3/2

ω3
3/2

(
1

ω3/2 − ω
+

1

ω3/2 + ω

)
+

Γ1/2

ω3
1/2

(
1

ω1/2 − ω
+

1

ω1/2 + ω

)]
(1.2)

where I(x, y, z) is given by Eq. 1.1, ω is the laser frequency, Γ1/2 and Γ3/2 are the natural linewidths of the

electronic transitions D1 and D2, respectively, and ω1/2 and ω3/2 are the corresponding resonance frequencies

(Fig. 1.1). The spontaneous scattering rate associated with the optical radiation is

ΓD =
πc2ω3I(x, y, z)

2~

[
2Γ2

3/2

ω6
3/2

(
1

ω3/2 − ω
+

1

ω3/2 + ω

)2

+
Γ2

1/2

ω6
1/2

(
1

ω1/2 − ω
+

1

ω1/2 + ω

)2
]
. (1.3)

When the laser is far detuned from the D1 and D2 transitions (which is the case of 1064 nm light), the

counter-rotating terms 1/(ω3/2 + ω) and 1/(ω1/2 + ω) in Eqs. 1.2 and 1.3 are not negligible.

The magnetic field is generated by quadrupole coils in an anti-Helmholtz configuration. In order to

characterize the magnetic field, it is convenient to define the coordinate basis {x̂1, x̂2, x̂3} shown in Fig. 1.2,

where x̂1 lies along the imaging axis and x̂2 points in the opposite direction of gravity. In this basis, the

1AOMs use a traveling RF acoustic wave in a crystal to diffract an incoming beam. They are utilized throughout the
apparatus to control light intensity (by changing the RF power), to steer beams (by changing the RF frequency), and to shift
the frequency of beams (via diffraction from the traveling wave, which results in a Doppler shift).
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Figure 1.1: Fine and hyperfine energy levels in 87Rb relevant to this thesis (not to scale). The value 0.7
MHz/G represents the Zeeman splitting. Details can be found in Ref. [73].

5



Figure 1.2: Atomic chamber. The imaging axis is parallel to x̂1 and gravity points in the −x̂2 direction.
None of the three lattice directions x̂, ŷ, and ẑ (red lines) are parallel to the imaging axis. Projection of the
lattice wavevectors onto the imaging plane are shown in Fig. 1.5. The red arrows indicate the sign convention
for the lattice wavevectors used throughout this thesis. The blue arrows show the Raman beams (described

in Chapter 2), which propagate along k̂1 = −x̂2 and k̂2 = x̂3, and their wavevector difference lies along ẑ.
Figure adapted from Ref. [66].
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magnetic field is expressed as

B(x1, x2, x3) = B0

(
x1

2
x̂1 +

x2 − x′2
2

x̂2 +−x3x̂3

)
, (1.4)

where the zero of the field is offset a distance x′2 ≈ 100 µm above the overall trap center to suppress Majorana

losses [74]. Atoms interact with this field through the potential

VQP(x1, x2, x3) = mF gFµB |B(x1, x2, x3)|, (1.5)

where mF is the projection of the total atomic spin F onto the quantization axis, gF is the Lande g-factor,

and µB = e~/2me is the Bohr magneton.

The laser beam for the optical dipole trap propagates along the −(x̂1 + x̂3) direction. The total potential

acting on the atoms, including gravity and the magnetic trap, is therefore

Vtrap(x1, x2, x3) = Vd

(
x2,

x1 − x3√
2

,−x1 + x3√
2

)
+ VQP(x1, x2, x3) +mgx2, (1.6)

with Vd(x, y, z) given by Eq. 1.2

In the crossed configuration, the laser is double passed though the atomic chamber. The forward and

crossed beams lie in the horizontal plane and intersect in approximately 90◦2. The total trap potential is

given by

Vtrap(x1, x2, x3) = Vd

(
x2,

x1 − x3√
2

,−x1 + x3√
2

)
+ Vd

(
x2,−

x1 + x3√
2

,
x3 − x1√

2

)
+mgx2, (1.7)

where Vd(x, y, z) is defined in Eq. 1.2. Because of gravity, atoms sit below the intersection point of the two

beams. The position of the gas can be estimated by minimizing Eq. 1.7 under the harmonic approximation

I(x, y, z) = 2P/πw2
0[1− 2(x2 + y2)/w2

0] (since x, y, z � w0), which results in a vertical offset of mgw2
0/8Vd.

Under the same harmonic approximation, the trap frequencies are ω ≈
√
−8Vd/mw2

0 in the vertical direction

and ω ≈
√
−4Vd/mw2

0 in the two horizontal directions.

A magnetic field ranging from a few G to 60 G is generally present during the experiments to suppress

spin exchange. The Zeeman shift induced by the magnetic field can be calculated using the Breit-Rabi

Formula [76].

2For this thesis, the beam configuration, described in Refs. [66,72,75], was modified in two ways. The laser beam path was
shortened to enhance the point stability of the trap, and the crossed beam was translated to the horizontal plane to improve the
optical transmittance through the atomic chamber. The beam alignment was performed according to the procedure detailed
in Refs. [66, §2.12.3] and [72, §C.7].
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1.1.2 Optical Lattice

After creating a BEC, we slowly superimpose a simple cubic optical lattice onto the hybrid or crossed dipole

trap. The lattice potential is formed by three mutually orthogonal, near infrared, linearly polarized, gaussian

laser beams which are retro-reflected using gold mirrors [66]. The spatial configuration of the beams relative

to the atomic chamber is illustrated in Fig. 1.2. The lattice vectors x̂, ŷ, and ẑ are expressed in terms of the

coordinate system {x̂1, x̂2, x̂3} shown in Fig. 1.2 as

x̂ = − x̂1√
2
− x̂2

2
+
x̂3

2

ŷ =
x̂1√

2
− x̂2

2
+
x̂3

2

ẑ =
x̂2√

2
+
x̂3√

2
.

(1.8)

Details of the implementation of the optical lattice are addressed in Refs. [66, 72].

A single lattice laser with its retro-reflected beam (Fig. 1.3) creates an intensity and polarization gradient

potential of the form [72, §C.2]

Vlat(r) = −2
πc2

2
I0

[(
2Γ3/2

ω3
3/2

1

ω3/2 − ω
+

Γ1/2

ω3
1/2

1

ω1/2 − ω

)
[1 + cos(θ) cos(2k · r)] +

+ gFmF

(
Γ3/2

ω3
3/2

1

ω3/2 − ω
−

Γ1/2

ω3
1/2

1

ω1/2 − ω

)
(k̂ · B̂) sin(θ) sin(2k · r)

]
, (1.9)

where k is the forward-going wavevector, I0 = 2P/(πw2
0) is the light intensity, P is the light power, F and mF

are the atomic hyperfine quantum numbers, θ is the relative polarization angle between the forward-going

and the retro-reflected beams, gF is the Lande g-factor, and B̂ is a unitary vector along the quantization

magnetic field. The counter-rotating terms in Eq. 1.9 have been ignored, since their contribution to the

potential is negligible at the laser wavelengths 790 nm and 812 nm used in this thesis. The second line

on the right side of Eq. 1.9 is proportional to mF , which implies that atoms with different spin states mF

experience a different lattice potential. We refer to this potential as a spin-dependent lattice. The dependence

on mF arises because light couples the atomic ground and excited electronic states with different strength

depending on the atomic spin state and light polarization. In contrast, the first line on the right side of

Eq. 1.9 is spin-independent, which means that all the spin states interact with the same potential. The ratio

between the spin-dependent and spin-independent components is determined by the relative polarization

angle θ. We experimentally modify θ using a quarter waveplate positioned in front of each mirror, as shown

in Fig. 1.3.
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θB

k -k
λ/4

Figure 1.3: Optical lattice generation. Each linearly polarized lattice beam is retro-reflected using a gold
mirror (yellow). The polarization of the retro-reflected beam can be rotated in θ using a quarter waveplate
(λ/4) to form a spin-dependent lattice. The magnetic field B defines the quantization axis for the atomic
gas (blue).

In the experiments presented in Chapters 3 and 5, we use optical lattices in the spin-independent config-

urations (θ = 0◦). In the experiments performed in Chapter 4, we employ a spin-dependent lattice (θ = 90◦)

to form a spin mixture of a lattice-confined spin state in thermal contact with a different spin state that

does not interact with the lattice potential.

The energy transferred to the atomic gas per unit time due to spontaneous scattering from the lattice

beams is given by

Ė = 4ERΓ, (1.10)

where Γ is given by Eq. 1.3 [77]. This rate is independent of mF , gF , θ and the direction of the quantization

field. Understanding heating of a strongly correlated lattice gas is an outstanding problem [78].

1.1.3 Band Structure

The superposition of three mutually orthogonal potentials in the form of Eq. 1.9 creates a simple 3D cubic

lattice. The frequency of each lattice beam is slightly offset to prevent effects from interference between

orthogonal beams3. The total lattice potential for any particular mF state can be express as (ignoring the

overall energy offset and phase shift)

Vlat(r) = s
∑

i=x,y,z

cos2(kxi) (1.11)

where k = 2π/λ = π/d is the wavevector of the lattice beams, λ is the wavelength, d = λ/2 is the lattice

spacing, and s is the lattice depth (which is usually expressed in units of the photon recoil energy ER).

3The frequency shifts for the lattice beams x̂, ŷ, and ẑ are 80 MHz, -80 MHz, and 100 MHz, respectively.
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Figure 1.4: Energy bands in 1D induced by the lattice potential 1.11 at (a) s = 4 ER and (b) s = 18 ER.
Only the ground (n = 0), first-excited (n = 1) and second-excited (n = 2) bands are shown over the first
(solid) and second (dotted) Brillouin zones. At low lattice depths (s ∼ 4 ER), difference in curvature between
bands enables quasimomentum-selective Raman transitions (Chapter 2). The black horizontal lines indicate
the energy levels treating each site as a harmonic well.

The Schrödinger equation with the potential 1.11 leads to a single-particle solution with energy bands

εn(q) and Bloch states φn,q(r), where q is quasimomentum, and n is the band index [19,66,72,79]. Energy

bands in 1D for s = 4 ER and s = 18 ER are shown in (a) and (b) of Fig. 1.4, respectively. At low lattice

depths (∼ 4 ER), the gap between bands (or bandgap) depends on the quasimomentum state q, as shown in

(a). In Chapter 5, we employ such quasimomentum dependence of the bandgap to perform quasimomentum-

selective Raman excitation; this technique is introduced in Chapter 2. In the deep lattice limit, the energy

bands become flat, since each lattice site resembles a harmonic oscillator, as shown in (b). However, due to

anharmonicity of the lattice potential, the bands remain unequally spaced even for very deep lattices. This

observation has important implications for the band decay experiment in Chapter 4, since it implies that

weakly interacting particles in the first-excited band can not experience two-body collisions at high lattice

depths because of energy conservation.

Beyond a single-particle picture, second quantization is used to describe many-body systems. The second-

quantized representation of an interacting gas in a 3D cubic lattice-plus-parabolic potential is given by

Ĥ = −t
∑
〈i,j〉

â†i âj +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

(εi − µ)n̂i, (1.12)

which is known as the the Bose-Hubbard (BH) Hamiltonian [13,18,80]. Here, i and j index the lattice sites,

〈i, j〉 stands for nearest-neighbor sites, âi and â†i are the annihilation and creation operators, respectively,
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n̂i = â†i âi is the particle number operator, µ is the chemical potential, t is the tunneling energy between

neighbor sites

t = −
∫
d3r w∗R(r)

[
− ~2

2m
∇2 + Vlat(r)

]
wR+d x̂(r), (1.13)

d is the lattice spacing, U is the on-site interaction energy

U =
4π~2as
m

∫
d3r |wR(r)|4, (1.14)

as is the s-wave scattering length, m is the atomic mass, εi = Vtrap(ri) is the local energy offset that arises

from the overall external parabolic confinement, and wR(r) are the Wannier wavefunctions localized at the

lattice site R. We have restricted ourselves to the lowest band (i.e., n = 0 only), since higher bands are

typically frozen out in the ultracold regime. The Wannier wavefunctions are defined as

wn,R(r) =
1√
Ns

∑
q ∈ 1BZ

e−iq·R/~φn,q(r), (1.15)

where n is the band index [81].

For a non-interacting gas in the ground band, the second-quantized Hamiltonian leads to the tight-binding

dispersion

ε0(q) = 2t
∑

i=x,y,z

[
1− cos

(
π
qi
qB

)]
, (1.16)

where t is the tunneling energy defined in Eq. 1.13, qi is quasimomentum in the lattice direction i, and

qB = ~π/d. This equation is derived in Appendix D.

1.1.4 Overall Harmonic Confinement

In the lattice potential 1.9, the gaussian profile of the lattice beams were approximated as plane waves. This

is a good approximation on the length scale of the lattice spacing, since the size of the atomic gas is usually

much smaller than the beam waist (≈ 120 µm). For example, 20 µm off-center, the lattice depth is 5% less

than in the middle. In terms of the Hubbard parameters t and U (Eq. 1.12), a 5% decrease in lattice depth

corresponds to a ≈ 10% increase in t and a 2% decrease in U . By contrast, on the length scale of the entire

gas size, the gaussian shape of each lattice beam gives rise to an additional gaussian potential transverse

to the direction of propagation k. This additional potential alters the gas density, and therefore, must be

considered.

The gaussian potential could be confining or de-confining depending on the sign of Eq. 1.9 [19, 72]. If
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Eq. 1.9 is positive, the additional harmonic confinement from a cubic lattice is

ω2
lat =

8s

w2m

(
1− 1

2
√
s/ER

)
, (1.17)

where w is the beam waist, s is the lattice depth, and ER = ~2k2/2m is the photon recoil energy. If Eq. 1.9

is negative, the de-confining potential is instead

ω2
lat = − 4

w2m

√
s/ER. (1.18)

As an example, in 87Rb at λ = 812 nm and θ = 0◦, the confining potential from the lattice beams is

ωlat/2π ≈ 30 Hz at s = 5 ER and ωlat/2π ≈ 60 Hz at s = 18 ER, which are comparable to the frequencies

of the dipole trap

The confining (or de-confining) frequency ωlat must be added in quadrature to the dipole trap frequency

ω̄0, namely [72, §D]

ω̄ =
√
ω̄2

0 + ω2
lat. (1.19)

1.1.5 Time-of-Flight Imaging

In order to image the ultracold gas with enough resolution (the gas has typically an in-trap size of ∼ 10 µm

and our imaging system has a resolution of≈ 3 µm/pix), all the confining potentials are quickly turned off and

the gas is allowed to freely expand (typically for 20 ms) for subsequent absorption imaging [66]. Absorption

imaging is a destructive technique, and therefore, a full experimental sequence has to be repeated every time

a measurement is performed.

In the particular case of a harmonically-trapped BEC, the gas density has a bimodal distribution with

a Thomas-Fermi profile for the condensed component and a Bose-Einstein distribution for the thermal

atoms [71]. The Thomas-Fermi profile is given by

n (x, y, z) = n0

(
1− x2

σ2
x

− y2

σ2
y

− z2

σ2
z

)
, (1.20)

where n0 is the peak density. During time of flight (TOF), it has been shown that free expansion rescales the

width of the Thomas-Fermi profile [82]. On the other hand, TOF imaging reveals the momentum distribution

of the thermal component, since the in-trap wavefunction Ψ(r) of a single particle evolves in time under a
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ballistic approximation as [83]

Ψ(p, τ) =
( m

2πi~τ

)3/2

eimr2/2~τ
∫
d3r′ Ψ(r′)e−ip·r

′/~, (1.21)

which represents the Fourier transform of Ψ(r′) with p = mr/τ . Even though this result is only valid in the

single-particle picture, information about many-body states can be extracted from higher order correlations

in the momentum distribution [84].

In the quench experiment presented in Chapter 3, long expansion times (∼ 50 ms) are required to resolve

quasiparticle excitations and topological defects in the gas. We therefore employ a magnetic field gradient

to hold the gas against gravity. This magnetic field is also used in Chapter 4 to separate different spin

components for individual imaging.

1.1.6 Bandmapping

Immediately before releasing the gas from the trap for TOF imaging, we ramp down the lattice potential

adiabatically with respect to its vibrational frequencies to avoid exciting atoms to higher bands, but quickly

compared with h/t such that the population in each band is conserved. This procedure is called “bandmap-

ping”, and it is used to image the quasimomentum distribution of the lattice-confined gas by projecting

it onto free particle states [19]. In this thesis, we are mostly interested in imaging atoms in the ground

and first-excited bands which, after bandmapping, appear in the first and second Brillouin zones (BZ),

respectively. Atoms in higher excited bands appear outside the second BZ.

Part (a) of Fig. 1.5 shows the reciprocal space of a 3D simple cubic lattice. The red and blue dots

indicate nearest-neighbor and next-nearest-neighbor points with respect to the origin. The solid black cube

is the first BZ, and the dashed lines indicate the second BZ. Atoms promoted to the first-excited band along

the lattice direction ẑ appear inside the shaded areas after bandmapping, as we experimentally observe in

Chapters 4 and 5. Figure (b) shows the reciprocal lattice projected onto the imaging plane. Quasimomentum

redistribution during bandmapping can lead to systematic errors in the condensate fraction and in the

quasimomentum population close to the edge of the Brillouin zones [85,86].
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Figure 1.5: Reciprocal space of a simple cubic lattice. Red and blue dots indicate nearest-neighbor and
next-nearest-neighbor points to the origin. The lattice wavevectors lie along x̂, ŷ, and ẑ (see also Figs. 1.2
and E.1). Distances are in units of qB = ~π/d. (a) The first BZ is a cube of length 2 qB (bold lines)
and the second BZ is formed by six square pyramids (dotted lines) attached to each face of the first BZ.
(b) In TOF imaging, the reciprocal lattice is projected onto the imaging plane along x̂1. None of the
three lattice directions x̂, ŷ, and ẑ are parallel to the imaging axis x̂1. On the imaging plane, the first BZ
appear as a rectangle of length 2 qB by 2

√
2 qB and the second BZ partially overlaps with the first BZ. After

bandmapping, atoms promoted to the first-excited band along the lattice direction ẑ are mapped onto the
shaded areas in the second BZ. Typical images after bandmapping are shown in (b) and (c) of Fig. 4.5.
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Chapter 2

Stimulated Raman Transitions

Stimulated Raman transitions are a coherent two-photon process in an atom or molecule driven by two

applied radiation fields. The fields induce absorption and stimulated emission between two ground states

and an intermediate excited state, as shown in Fig. 2.1. In ultracold gas experiments, stimulated transitions

are “Raman” when they couple two different hyperfine levels, whereas they are “Bragg” when they couple

states in the same hyperfine levels. The two cases are described by the same theoretical framework, and

therefore, both will be referred to as Raman transitions in this chapter.

Stimulated Raman transitions have been extensively applied to ultracold gas experiments. Raman beams

have been used for cooling the motional [87] and vibrational [88, 89] degrees of freedom of a atomic gas,

probing a low-temperature BEC via Bragg filtering [90], performing Bragg spectroscopy in strongly correlated

phases [91], preparing higher orbital states in a lattice [92], detecting antiferromagnetism [27,93], generating

synthetic gauge fields [94–98], spin-orbit coupling [99–101] and spin-Hall effect [102, 103], and preparing

the Hofstadter, Harper, and Haldane Hamiltonians [104–106]. Furthermore, Raman transitions have been

proposed for detecting topological phases of matter [107–113].

In this chapter, we present the general theory of stimulated Raman transitions. Specifically, we derive

the transition probability and coupling strength associated with Raman processes. In the experiments in

Chapters 4 and 5, we employ this technique to prepare a gas in the first-excited band and to bring a strongly

correlated gas out of equilibrium, respectively.

2.1 Three-Level Systems

A three-level system in a “Λ” configuration represents the atomic energy levels relevant to stimulated Raman

transitions, as illustrated in Fig. 2.1, where |1〉 and |2〉 are two ground states, and |e〉 is an excited electronic

state. Without loss of generality, we set the energy of |1〉 to zero. We denote the energy difference between

the states |e〉 and |1〉 as ~ωe, and the energy difference between |2〉 and |1〉 as ~ω0. The Hamiltonian of the
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Figure 2.1: A three-level system in a “Λ” configuration. The electric fields E(1) and E(2) couple |1〉 with
|e〉 and |2〉 with |e〉, respectively. The frequency offset ω0 could be positive or negative depending on the
relative energy levels of |1〉 and |2〉. When the detuning ∆ is large compared with the coupling constants
Ω1 and Ω2, the system behaves as an effective two-level system.

system is therefore

Ĥ = ~ωe|e〉〈e|+ ~ω0|2〉〈2|. (2.1)

By convention, we only consider situations where ωe > 0. The frequency offset ω0 could be positive or

negative depending on the relative energies of |1〉 and |2〉. In atomic systems, ωe is in the optical range,

whereas ω0 can span from a few kHz to a few GHz depending on the transition under consideration.

To drive Raman transitions in this Λ system, we consider classical external electric fields in the form

E(r, τ) = E(1) cos(k1 · r− ω1τ) + E(2) cos(k2 · r− ω2τ). (2.2)

We assume that the electric field 1 only couples |1〉 with |e〉 and the electric field 2 only couples |2〉 with |e〉.

Under the electric dipole approximation eiki·r̂ ≈ 1 —valid when the wavelength of the electric field is much

longer than the length scale of the electronic wavefunctions [114, 115]—the electric fields interact with the

atomic gas via the Hamiltonian

ĤI = −d̂ ·E(0, τ), (2.3)

where d̂ = −er̂ is the induced electric dipole moment [116].

We look for solutions to the full Hamiltonian of the system

Ĥ = Ĥ0 + ĤI (2.4)
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with the ansatz

|ψ(τ)〉 = c1(τ)|1〉+ ce(τ)e−iωeτ |e〉+ c2(τ)e−iω2τ |2〉, (2.5)

which leads to (in the basis ordering {|1〉, |e〉, |2〉})

i~
d

dτ


c1

ce

c2

 =
~
2


0 Ω∗1 e

i∆τ 0

Ω1 e
−i∆τ 0 Ω2 e

−i(∆−δ)τ

0 Ω∗2 e
i(∆−δ)τ 0



c1

ce

c2

 . (2.6)

The fast oscillating counter-rotating terms e±i(ω1+ωe)τ and e±i(ω2+ωe−ω0) have been neglected under the

rotating-wave approximation [117].

The Rabi rates Ω1 and Ω2 in Eq. 2.6 quantify the strength of the one-photon dipole coupling between

the ground and excited electronic states, and they are defined as

Ωi = 〈e|er̂ ·E(i)|i〉/~ i = 1, 2. (2.7)

The frequency

∆ = ω1 − ωe (2.8)

is the detuning of the electric field 1 from the transition |1〉 ↔ |e〉, and the frequency

δ = ω1 − ω2 − ω0 (2.9)

is the detuning of the two-photon transition from |1〉 ↔ |2〉 (see Fig. 2.1). In our experiments, ∆ is typically

a few hundreds of GHz, whereas δ usually ranges from 0 to a few tens of kHz.

In order to eliminate the time dependence in the matrix in Eq. 2.6, we switch the system to a co-rotating

frame using the unitary transformation

U =


1 0 0

0 e−i∆τ 0

0 0 e−iδτ

 , (2.10)

where the wavefunctions transform as |ψ̃〉 = U†|ψ〉, and the Hamiltonian transforms as H̃ = U†HU −
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i~U†∂U/∂τ . The system therefore becomes

i~
d

dτ


c̃1

c̃e

c̃2

 =
~
2


0 Ω∗1 0

Ω1 −2∆ Ω2

0 Ω∗2 −2δ



c̃1

c̃e

c̃2

 (2.11)

Even though there is an exact analytical solution to Eq. 2.11 [118], a practical approximation can be

obtained when ∆ is large compared with Ω1, Ω2 and δ, which is usually the case in our experiments. In

such approximation, the dynamics of c̃e is much faster than that of c̃1 and c̃2, and thus, c̃e instantly follows

the slow dynamics of c̃1 and c̃2. Therefore, c̃e can be “adiabatically eliminated”1 from Eq. 2.11 by setting

˙̃ce ≈ 0, which results in

c̃e(τ) ≈ Ω1

2∆
c̃1(τ) +

Ω2

2∆
c̃2(τ) (2.12)

and the effective two-level system

i~
d

dτ

c̃1
c̃2

 = ~

 |Ω1|2
4∆

Ω∗1Ω2

4∆

Ω1Ω∗2
4∆ −δ + |Ω2|2

4∆


c̃1
c̃2

 . (2.13)

The terms ~|Ω1|2/4∆ and ~|Ω2|2/4∆ represent the light shift (a.c. Stark shift) induced by weak electric

dipole coupling with |e〉, and the off-diagonal elements are the coupling strength between the states |1〉 and

|2〉.

The probability of exciting an atom from |1〉 to |2〉 is obtained from solving Eq. 2.13. If we assume the

initial conditions c̃1(0) = 1 and c̃2(0) = 0, the solution is

|c̃2(τ)|2 =
|Ω|2

|Ω|2 +
(
δ − |Ω2|2−|Ω1|2

4∆

)2 sin2

√(δ − |Ω2|2 − |Ω1|2
4∆

)2

+ |Ω|2 ∆τ

2

 , (2.14)

where

Ω =
Ω1Ω∗2
2∆

(2.15)

is the effective Rabi rate of the two-photon transition [121, 122], Ω1 and Ω2 are the one-photon Rabi rates

defined in Eq. 2.7, and ∆τ is the duration of the light pulse. The frequency shift (|Ω2|2 − |Ω1|2)/4∆ in

Eq. 2.14 represents the relative light shift between |2〉 and |1〉. As a way of simplifying the notation, the

frequency ω0 in Eq. 2.9 can be re-defined to include such frequency shift.

1For a discussion on the validity of adiabatic elimination, see Refs. [119,120].
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2.2 Multi-Level Systems

So far we have only considered Raman excitations in a simple Λ model. In a real atomic system, however,

multiple energy levels are involved in the process.

In order to derive the Rabi rate in a multi-level system, we consider the fine and hyperfine structure of an

atomic system, such as that shown in Fig. 1.1 for 87Rb. The quantum numbers J , F , and mF are the total

electronic angular momentum, the total electronic-plus-nuclear angular momentum2, and the projection of F

onto the quantization axis. The primed symbols J ′, F ′,m′F label quantum numbers in the excited electronic

states. Because δ is usually small compared with the hyperfine energy splitting, it is a good approximation

to assume that the Raman fields drive transitions between two specific hyperfine states. On the other hand,

the detuning ∆ is usually large compared with the hyperfine energy splitting, and therefore, all the excited

levels within a hyperfine manifold have to be taken into account to determine the effective Rabi rate.

If we consider two ground atomic states |J1 F1mF1
〉 and |J2 F2mF2

〉, the multi-level effective Rabi rate

results from summing over all the adiabatically eliminated3 excited states |J ′ F ′m′F 〉, namely

Ω =
∑
F ′,m′F

Ω1Ω∗2
2∆

=
1

2~2∆

∑
F ′,m′F

〈J2 F2mF2 |er̂ ·E(2)|J ′ F ′m′F 〉〈J ′ F ′m′F |er̂ ·E(1)|J1 F1mF1〉. (2.16)

The dipole matrix elements are more easily computed in the spherical basis4 ε̂±1 = ∓(x̂±iŷ)/
√

2 and ε̂0 = ẑ.

In this basis, d̂ · E =
∑
q d̂
∗
qEq =

∑
q d̂qE

∗
q =

∑
q(−1)qd̂−qEq and the spherical components of the electric

field are given by

E±1 = ∓ 1√
2

(Ex ± iEy)

E0 = Ez.

(2.17)

By definition, ε̂0 is parallel to the quantization magnetic field B̂, which lies along x̂1 in our apparatus.

The effective Rabi rate is therefore

Ω =
1

2~2∆

∑
q1,q2

E(1)∗
q1 E(2)

q2 (−1)q2
∑
F ′,m′F

〈J2 F2mF2
|er̂−q2 |J ′ F ′m′F 〉〈J ′ F ′m′F |er̂q1 |J1 F1mF1

〉. (2.18)

The second matrix element is nonzero only if m′F = mF1
+ q1, and the first matrix element is nonzero only if

2F = J + I, with I the nuclear spin (I = 3/2 for 87Rb).
3An alternative derivation without adiabatic elimination is presented in Ref. [122].
4In the spherical basis, an arbitrary vector A is decomposed as A =

∑
q Aq ε̂∗q =

∑
q A∗q ε̂q =

∑
q(−1)q A−q ε̂q , where

A±1 = ∓(Ax ± iAy)/
√

2 and A0 = Az (they are the σ± and π-polarization components, respectively).
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mF2 = m′F − q2. Consequently, a two-photon transition must satisfy the momentum conservation condition

mF2
= mF1

+ q1 − q2. Each matrix element in Eq. 2.18 can be expressed as the product of a geometrical

factor with a reduced dipole matrix 〈J ′‖er̂‖J〉, namely

〈JFmF |er̂q|J ′F ′m′F 〉 = 〈J ′‖er̂‖J〉(−1)J+I−mF
√

(2F + 1)(2F ′ + 1)

 J F I

F ′ J ′ 1


 F ′ 1 F

m′F q −mF

 ,

(2.19)

where { } and ( ) denote the Wigner six and three-J symbols, respectively. The reduced dipole matrix element

depends on the internal structure of the atom and is not easily calculated. However, it can be experimentally

determined from measurements of spontaneous decay from the excited level J ′ to the ground level J [73,123]

via

Γ =
ω3

0

3πε0~c3
|〈J ′‖er̂‖J〉|2

2J ′ + 1
. (2.20)

The effective Rabi rate then becomes

~Ω =
3πε0c

3Γ

2ω3
0∆

∑
q1,q2

E(1)∗
q1 E(2)

q2 (−1)q2
∑
F ′,m′F

G
J′ F ′m′F
J2 F2 mF2

(−q2)G
J1 F1 mF1

J′ F ′m′F
(q1), (2.21)

where we have defined the geometrical factor

G
J′ F ′m′F
J F mF

(q) = (−1)J+I−mF
√

(2J ′ + 1)(2F + 1)(2F ′ + 1)

 J F I

F ′ J ′ 1


 F ′ 1 F

m′F q −mF

 . (2.22)

Eq. 2.21 is valid for any stimulated two-photon transition between two ground hyperfine states |J1 F1mF1
〉

and |J2 F2mF2〉. In particular, Eq. 2.21 reduces to the formula for light shift when E
(1)
q1 = E

(2)
q2 , q1 = q2,

|J1 F1mF1
〉 = |J2 F2mF2

〉 and an additional factor of 1/2 is included (the light-shift formula has an extra

factor of 1/2 in the definition), namely

~|Ω1|2

4∆
=

3πε0c
3Γ

4ω3
0∆

∑
q1

E(1)
q1 E

(1)∗
q1

∑
F ′,m′F

|GJ1 F1 mF1

J′ F ′m′F
(q1)|2. (2.23)

This expression can be further simplified using I
(1)
q = cε0E

(1)
q E

(1)∗
q /2 and the identity

∑
F ′,m′F

|GJ1 F1 mF1

J′ F ′m′F
(q)|2 =

J ′ + 1/2 + 2(J ′ − 1)qgFmF

3
. (2.24)
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The equation reduces to

~|Ω1|2

4∆
=

πc2Γ

2ω3
0∆

∑
q

I(1)
q [J ′ + 1/2 + 2(J ′ − 1)qgF 1mF1 ] . (2.25)

For linearly polarized light (q = 0), this formula leads to the dipole potential given by Eq. 1.2 (when the

counter-propagating terms are ignored).

2.3 Motional Degrees of Freedom

In this section, we include in the theoretical framework the motional degrees of freedom of the atoms, such

as their position, momentum or quasimomentum. Specifically, we will calculate the Rabi rate of a free and

lattice-bound gas. For the sake of simplicity, we will only consider a three-level system, although the result

can be straightforwardly extended to a multi-level system by summing over the excited electronic states.

Furthermore, we will make the assumption that the dynamics of the gas is frozen out during the Raman

process, since the Raman fields are on for a short period of time (< 1 ms) compared with the motional time

scales.

2.3.1 Stimulated Raman Transitions in Free Space

We consider stimulated Raman transitions in a free gas, which is also applicable to a harmonically-trapped

gas, since the duration of the Raman process is usually much shorter than the time associated with the trap

frequencies. We include the atomic kinetic energy p̂2/2m into the Hamiltonian 2.4, and we label the atomic

states by their internal state and momentum, namely |1,p〉, |2,p′〉, and |e,pe〉. Moreover, we consider the

center of mass coordinate R̂ in addition to the internal coordinate r.

The atomic system is now solved using the ansatz [121]

|ψ(τ)〉 =
∑

i=1,2,e

ci,p(τ)e
−i
(
ωi+

p2

2m~

)
τ |i,p〉, (2.26)

which, under the dipole approximation eiki·(r̂+R̂) ≈ eiki·R̂, leads to the effective Rabi rate [124]

Ω(p′,p) =
1

2~2∆
〈2,p′|er̂ ·E(2)e−ik2·R̂|e,pe〉〈e,pe|er̂ ·E(1)eik1·R̂|1,p〉. (2.27)

The first matrix element is equal to 〈2|er̂ ·E(2)|e〉〈p′|e−ik2·R̂|pe〉 = ~Ω∗2〈p′|pe−~k2〉, and the second matrix

21



Figure 2.2: TOF images of a BEC after stimulated Raman excitation. Energy diagrams along ẑ are shown
on the right. The Raman beams give a momentum impulse ~∆k = ~k1 − ~k2 to the gas. (a) The gas is
confined in a harmonic trap. (b) The gas is confined in a lattice-plus-harmonic trap. In this particular
example, atoms are transferred to the first-excited band. After bandmapping, the excited atoms appear
outside the first BZ (the dotted rectangle marks the first BZ projected onto the imaging plane, as detailed in
Appendix E). Only the ground and first-excited bands are shown in the energy diagram. The quasimomenta
±qB mark the edge of the first BZ, where qB = ~π/d.
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element has a similar expression. The effective Rabi rate is therefore

Ω(p′,p) =
Ω1Ω∗2
2∆
〈p′|p + ~k1 − ~k2〉, (2.28)

which ensures the condition p′ = p + ~k1 − ~k2 for momentum conservation. Part (a) of Fig. 2.2 shows a

TOF image of a BEC after stimulated Raman excitation in a harmonic trap.

The Raman detuning δ in Eq. 2.9 is modified by the free-particle dispersion relation as

δ = ω1 − ω2 −
[
ω0 +

1

~

(
p′2

2m
− p2

2m

)]
. (2.29)

The terms inside the innermost brackets are equal to p(k1 − k2)/m+ ~(k1 − k2)2/2m, where the first term

is the Doppler shift that arises from the atomic motion along k1 − k2, and the second term is the recoil

shift from the two-photon absorption-emission process [121]. The Doppler and recoil shifts also modify the

detuning ∆ in Eq. 2.8 [121], but the change is negligible compared with ω1−ωe (in ultracold gas experiments,

ω1 − ωe is typically a few hundred of GHz, whereas the Doppler and recoil shifts are just a few kHz).

2.3.2 Stimulated Raman Transitions in a Lattice Potential

For a gas confined in a lattice potential, we include the term p̂2/2m+Vlat(R̂) in the Hamiltonian 2.4, where

the lattice potential is given by Eq. 1.11. We consider Bloch states with band index n and quasimomentum q.

Specifically, we consider two ground states and one intermediate excited state in the form |1, n,q〉, |2, n′,q′〉,

and |e, ne,qe〉, respectively.

Because ∆ is large compared with the vibrational energies, we consider the same detuning ∆ for all the

sublevels |e, ne,qe〉. On the other hand, we assume δ small compared with the vibrational energies so that

the Raman fields couple individual vibrational states |n〉 and |n′〉.

To solve the system, we consider the ansatz

|ψ(τ)〉 =
∑

i=1,2,e

ci,q(τ)e−i[ωi+ε
(n)(q)/~]τ |i, n,q〉, (2.30)

where ε(n)(q) is the energy of the n-th band. The resulting effective Rabi rate, under the dipole approxima-
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tion, is given by Eq. 2.15 under summation over all the vibrational states in |e〉, namely

Ωn′,n(q′,q) =
1

2~2∆

∑
ne

〈2, n′,q′|er̂ ·E(2)e−ik2·R̂|e, ne,qe〉〈e, ne,qe|er̂ ·E(1)eik1·R̂|1, n,q〉

=
Ω1Ω∗2
2∆

∑
ne

〈n′,q′|e−ik2·R̂|ne,qe〉〈ne,qe|eik1·R̂|n,q〉

=
Ω1Ω∗2
2∆
〈n′,q′|ei(k1−k2)·R̂|n,q〉. (2.31)

This Rabi rate is zero unless q′ = q+~k1−~k2 (besides a vector of the reciprocal lattice), which is consistent

with momentum conservation. Part (b) of Fig. 2.2 shows a TOF image of a BEC after stimulated Raman

excitation in a lattice-plus-harmonic potential.

The matrix element in Eq. 2.31 is the analogous to the Franck-Condon factor for molecular physics, and it

determines the strength of the Raman coupling between different vibrational states [125]. The exponential

term in Eq. 2.31 modifies the spatial overlap between the Bloch states |n,q〉 and |n′,q′〉. In order to

understand the effect of the Franck-Condon factor on the effective Rabi rate, we approximate the lattice

sites by harmonic oscillators to obtain the explicit formula (in 1D) [124,126]

|〈n′|ei∆k ẑ|n〉| = e−
(∆kz0)2

2

(
n<!

n>!

)1/2

|∆k z0||n
′−n|L|n

′−n|
n< (∆k2z2

0), (2.32)

where n< (n>) is the lesser (greater) of n′ and n, z0 =
√
~/(2mωz), ~ωz is the bandgap, and Lαn is the

generalized Laguerre polynomial

Lαn(x) =

n∑
m=0

(−1)m
(
n+ α

n−m

)
xm

m!
. (2.33)

In our experiments, we usually start from the ground vibrational state (n = 0), for which the Laguerre

polynomial simplifies to Lα0 (x) = 1. In the particular case of n = n′ = 0, the Franck-Condon factor reduces

to the Debye-Waller factor e−(∆kz0)2/2 familiar from the studies of x-ray scattering in solids [126].

In Fig. 2.3, we plot |〈n′|ei∆k ẑ|0〉| versus the Raman wavevector ∆k and versus the bandgap ~ωz. We

observe in (a) that, in order to couple n = 0 to a higher vibrational state (n′ 6= 0), the wavelength of the

excitation field must be comparable to the lattice spacing d 5. For this reason, long wavelength radiation,

such as radio and microwave-frequency fields, can not change the vibrational state of particles confined in an

optical lattice (where d ∼ µm). This limitation can be overcome by spatially displacing the wavefunctions

of the excited vibrational state, for example, by using a spin-dependent optical lattice [127,128].

5This is generally true for any transition with n 6= n′, since |〈n′|ei∆k ẑ |n〉| ≈ |〈n′|n〉| = 0 when ∆k z � 1.
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Figure 2.3: Coupling strength between vibrational levels. (a) Plot of the Franck-Condon factor in Eq. 2.32
versus ∆k between n = 0 and n′ = 0, 1, 2. The bandgap used is ~ωz = 20 kHz × h. The dotted vertical
line indicates ∆k = 1.45π/d, which is approximately the wavevector used in the experiments in Chapters 4
and 5. (b) Plot of the Franck-Condon factor versus ~ωz using ∆k = 1.45π/d.

The Raman detuning δ in Eq. 2.9 is modified by the band structure as

δ = ω1 − ω2 −

[
ω0 +

ε(n
′)(q′)− ε(n)(q)

~

]
, (2.34)

where q′ = q+~k1−~k2. The momentum impulse ∆q = q′−q = ~k1−~k2 is set by the spatial configuration

of the Raman beams and is usually fixed in an experiment.

The relative Raman detuning ω1 − ω2 can be adjusted to target different quasimomenta. At sufficiently

low lattice depths, the curvature of the energy bands can be used to address different quasimomentum states,

as shown in Fig. 2.4. We refer to this process as quasimomentum-selective stimulated Raman transition. In

(b) of Fig. 2.4, the excitation probability is calculated using

P (q) =
|Ω|2

|Ω|2 + δ(q)2
sin2

[√
δ(q)2 + |Ω|2 ∆τ

2

]
, (2.35)

where Ω is the effective Rabi rate defined in Eq. 2.31 and δ(q) is defined in Eq. 2.34. Eq. 2.35 follows

directly from Eq. 2.14. The degree of quasimomentum selectivity in P (q) is controlled by the pulse length

∆τ . Indeed, the profile P (q) becomes narrower for longer pulses. In practice, however, Raman pulses are

chosen to be short compared with the time scale of the gas dynamics.
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Figure 2.4: Quasimomentum-selective Raman transition. (a) Ground and first-excited energy bands in a
s = 4 ER lattice for 87Rb (black curves). The red and grey arrows represent effective Raman transitions
for two different detunings: δ = (2π) × 14.7 kHz and δ = (2π) × 13 kHz, respectively. Here, we consider
transitions with ω0 = 0 in Eq. 2.34. (b) Excitation probabilities for the detunings aforementioned calculated
using Eq. 2.35 with ∆q = 0.5 qB , Ω = (2π) × 1 kHz, and ∆τ = 0.5 ms. Different quasimomenta can be
targeted by varying δ.

2.4 Implementation

The Raman beams are generated from a CW single frequency titanium-sapphire laser (Tekhno Scan TIS-

SF-07) similar to the laser used for the lattice beams (Section 1.1.2). A schematic diagram of the Raman

beam setup is shown in Fig. 2.5.

2.4.1 Sideband Modulation

The Ti:Sa laser is phase-modulated by an electro-optic modulator (EOM) to create sidebands to drive

the Raman transitions. An EOM is a birefringent crystal that changes the phase of an incoming light

proportionally to the applied voltage V(t) [129], namely6

φ(τ) = φ0 − π
V(τ)

Vπ
, (2.36)

where Vπ is the voltage at which the phase of the light field shifts by π. In our experiments, we use a fiber

coupled lithium niobate EOM (EOspace PM-0K5-00-PFA-PFA-800-S)7.

6The phase constant φ0 is irrelevant for our calculation and will be ignored.
7The specifications are: Vπ ≈ 1 Vrms, wavelength: 800 nm, bandwidth: DC to > 500 MHz, no internal termination

(capacitive): ±20 − 25 V, insertion loss < 5 dB, input and output: PM 5 µm PANDA, polarization crosstalk: −18 dB. The
EOM is not properly terminated. The voltage on the EOM depends on ω and is not simply related to the power setting on the
generator.
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Figure 2.5: Simplified schematic of the optical setup for the Raman beams. The system is composed of a
titanium:sapphire (Ti:Sa) laser, an electro-optic modulator (EOM), beam splitters (BS), polarizing beam
splitters (PBS), half waveplates (HWP), photodiodes (PD), and single-mode polarization maintaining optical
fibers. The PBSs are used to filter the laser polarization. HWP-3 and HWP-5 are used to change the light
polarization from pure σ to pure π. Focusing lenses are not shown. Each acousto-optical modulator (AOM)
is driven by a direct digital synthesizer (DDS). Each Raman beam is intensity-regulated using a PI servo and
a variable-gain amplifier (VGA). A control computer dynamically sets the reference for the AOM frequency
and the light intensity. Dotted lines indicate electrical connections.

27



The implementation of Raman beams via sideband modulation is relatively simpler than using other

techniques, such as phase-locked lasers or high frequency AOMs. The disadvantage of using sidebands is

that part of the optical power is unused. Nevertheless, power limitation is rarely a concern, since the power

requirement rarely exceeds 1 mW per beam. Using sideband modulation, we have demonstrated stimulated

Raman transitions in the range kHz–GHz.

We modulate the EOM using a voltage source (SRS SG384) able to generate a broadband sine wave from

DC to 4 GHz with µHz resolution. For concreteness, we consider a modulation voltage in the form

V(t) = V0 sinωmt (2.37)

with the modulation frequency ωm. The phase-modulated laser light has an electric field given by (ignoring

the spatial coordinate)

E(τ) = E cos(−ωτ + φ(τ))

= E cos(ωτ + φ1 sinωmτ)

= E

∞∑
j=−∞

Jj(φ1) cos[(ω + j ωm)τ ] (2.38)

where ω is the frequency of the Ti:Sa laser, φ1 = πV0/Vπ is the amplitude of the phase modulation, and

Jj are Bessel functions of the first kind. This electric field has sidebands at multiples of ωm about the

carrier frequency ω, and the weight of each sideband can be adjusted through the modulation voltage V0.

In Fig. 2.6, we plot the sideband power J2
j (πV0/Vπ) versus the modulation voltage V0 measured using a

Fabry-Perot interferometer. We observe that the carrier (j = 0) is entirely suppressed at approximately

V0 = 13 dBm = 1 Vrms.

The phase-modulated light from the EOM is subsequently split into two Raman beams, as illustrated in

Fig. 2.5. Each beam is then passed through an AOM (NEOS 23080-1 for beam 1 and NEOS 23120-1 for

beam 2) to servo-control the light intensity. The AOMs also shift the laser frequencies by ωa in beam 1 and

ωb in beam 28. The Raman fields after the AOMs are therefore expressed as

E(1)(τ) = E(1)
∞∑

j=−∞
Jj(φ1) cos[(ω + j ωm + ωa)τ ]

E(2)(τ) = E(2)
∞∑

j′=−∞
Jj′(φ1) cos[(ω + j′ ωm + ωb)τ ],

(2.39)

8In our setup, the nominal frequencies of the AOMs are ωa = (2π)× 80 MHz and ωb = (2π)× 120 MHz (the +1 diffracted
beam is used in both cases).
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Figure 2.6: Fractional sideband power versus the modulation amplitude V0 in Eq. 2.37. The EOM is driven
at ωm = (2π) × 3337.351305 MHz. The solid lines are Bessel fits AJ2

j (πV0/Vπ) to the experimental data
with only two fit parameters (A and Vπ) for all the sidebands shown. The fit gives Vπ = 1.3 Vrms. Deviation
of the fit from the experimental data may arise from nonlinear effects.

Figure 2.7: Spectrum of the Raman light after phase modulation. The carrier frequency ω is generated
by a single-frequency Ti:Sa laser, ωm is the modulation frequency, and ωa and ωb are the frequency shifts
induced by the AOMs. The weight of each sideband is E(1)Jj(φ1)/2 for beam 1 and E(2)Jj′(φ1)/2 for beam
2 (sidebands are not drawn to scale). Negative arrows indicate sidebands out of phase, since J−j(φ1) =
(−1)jJj(φ).
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which have frequency components in the form ω1 = ω0 + jωm + ωa and ω2 = ω0 + j′ωm + ωb, respectively.

The sidebands can be better visualized in the frequency domain. Fig. 2.7 illustrates the Fourier transform

of the electric fields in Eq. 2.39. The weight of each sideband is proportional to Jj which, in some cases, is

180◦ out of phase (indicated by the negative arrows).

In principle, any sideband pair j, j′ can be used to drive Raman transitions, as long as their relative

frequency ω1 − ω2 = (j − j′)ωm + ωa − ωb matches the targeted frequency ω0. The resonance frequency ω0

could represent, for example, the dispersion relation of a free particle, the bandgap between energy bands,

the Zeeman shift between magnetic states, or the energy splitting between hyperfine levels. In Chapters 4

and 5, we drive Raman transitions between hyperfine states separated by ≈ (2π)× 6.8 GHz. In particular,

we chose to modulate the EOM at ωm ≈ (2π)× 3.4 and employ sideband pairs with j − j′ = ±2.

In practice, the relative frequency ω1 − ω2 is matched to ω0 by adjusting ωm, ωa, and ωb. To find the

resonant condition, we set δ = ω1 − ω2 − ω0 to zero in Eq. 2.9. If ω0 > 0, we require that ω1 > ω2, and

therefore, ω1 − ω2 = 2ωm + ωa − ωb − |ω0|. In the opposite case, if ω0 < 0, we require that ω1 < ω2, and

therefore, ω1 − ω2 = −2ωm + ωa − ωb + |ω0|. Both results can be combined as

ωm =
|ω0| ± (ωb − ωa)

2
, (2.40)

where the ± sign corresponds to the case ω1 ≷ ω2.

We have experimentally optimized the modulation voltage V0 by driving Raman transitions in a BEC

in the dipole trap. The modulation frequency ωm was set according to Eq. 2.40 and V0 was adjusted to

maximize the excitation fraction. We find that the optimal voltage is V0 = 13 dBm, which coincides with

the voltage at which the carrier vanishes, as shown in Fig. 2.6. We measured the phase noise of the Raman

beams by looking at the spectrum of the beat signal. The phase noise is smaller than 1 Hz at FWHM.

2.4.2 Spatial Configuration

In this subsection, we describe the particular spatial beam configuration employed in the experiments re-

ported in Chapters 4 and 5.

The two Raman beams are mutually perpendicular and do not coincide with any of the three lattice

directions x̂, ŷ, and ẑ (see Figs. 1.2 and 1.5). The beams were aligned to the gas using the same method

employed for the lattice beams [66]. The total Raman field from both beams in the {x̂1, x̂2, x̂3} basis (see
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Section 1.1.1 and Figs. 1.2 and 1.5) is

E(r, τ) =

√
2I(1)

cε0
x̂3 cos(kR x̂2 · r− ω1τ) +

√
2I(2)

cε0
x̂2 cos(−kR x̂3 · r− ω2τ), (2.41)

where kR = 2π/λ is the Raman wavevector and λR is the corresponding wavelength. The relative Raman

wavevector

∆k = k1 − k2 = kR x̂2 − (−kR x̂3) =
√

2kR ẑ (2.42)

lies along the lattice direction ẑ.

Using Eq. 2.17, we decompose the electric fields into spherical components

E(1) =

√
2I(1)

cε0

i(ε̂1 + ε̂−1)√
2

=⇒ E
(1)
±1 = i

√
I(1)

cε0

E(2) =

√
2I(2)

cε0

−ε̂1 + ε̂−1√
2

=⇒ E
(2)
±1 = ∓

√
I(2)

cε0
.

(2.43)

We observe that the electric fields only have σ± components. The quantization magnetic field B̂ in our

apparatus is parallel to the vector x̂1 (see Fig. 1.5) and sets the direction ε̂0 of the spherical basis.

The Raman beam waists are approximately 180 µm and 50 µm for beams 1 and 2, respectively. The

second beam was recycled from a previous experimental setup which required a beam waist comparable with

the gas size (∼ 10 µm). Limited optical access along x̂2 has made difficult to upgrade the beam. Variation

in the beam intensity across the gas is not ideal for driving Raman transitions because different parts of the

gas experience different Rabi rates. Using a numerical calculation that averages over the beam profile, we

found that inhomogeneity in the beam intensity results in damping in the Rabi oscillations. Nevertheless,

the Raman pulses employed in this thesis are much shorter than the damping time constant observed.

We have experimentally tested the Rabi rate predicted by Eq. 2.21. The measured Rabi rate with

P1 = 930 µW, P2 = 72 µW, and ∆ = 200 GHz (from D1) is Ω = (2π) × 2 kHz. The rate calculated from

Eq. 2.21 is Ω = (2π) × 4.7 kHz. The discrepancy may be explained by uncertainty in the beam waists and

loss of optical power on optical elements, such as the surface of the atom chamber.

In Fig. 2.8, we show Rabi oscillations in a BEC in both a harmonic trap and a lattice potential. The

gas is driven by a pair of Bragg beams which couple states in the same hyperfine level |F = 1,mF = −1〉.

In these plots, the spatial configuration of the Bragg beams is k̂1 = −(x̂1 + x̂3)/
√

2 and k̂2 = −x̂1, which

differs from that used throughout this thesis (described in Eq. 2.41). The momentum impulse experienced

by the gas is ∆k = 0.5π/d and does not lie along any of the three lattice directions. In part (a), the BEC is
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Figure 2.8: Rabi oscillations experienced by a BEC in |F = 1,mF = −1〉 driven by Bragg beams. The
beams change the momentum of the gas by ∆k = 0.5π/d. (a) Rabi oscillation in a harmonic trap. The
measured Rabi rate with ∆ = 1000 GHz, δ = 0, P1 = 170 µW, and P2 = 220 µW is Ω = (2π) × 1.3 kHz.
(b) Rabi oscillation in a s = 6 ER lattice potential. The measured Rabi rate between n = 0 and n′ = 1 with
∆ = 500 GHz, δ = 0, P1 = 390 µW, and P2 = 530 µW is Ω = (2π)× 1.5 kHz. Both Rabi rates (normalized
by
√
P1P2/∆ to account for different power and detuning) differ by a factor of 0.23, which is approximately

the Franck-Condon factor at ∆k = 0.5π/d shown in (a) of Fig. 2.3. A damped sine-squared function is fit
to the data points.

confined in a harmonic trap. The gas is initial centered around |p = 0〉 and is coupled by the Bragg beams

with the momentum states around |p = ~∆k〉. In (b), the BEC is confined in a 6 ER lattice potential.

The gas is initially centered around |n = 0, q = 0〉 and coupled with the quasimomentum states around

|n′ = 1, q = ~∆k〉. Inhomogeneity in the Bragg beam intensity damps the Rabi oscillations.
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Chapter 3

Quantum Quench of a Mott Insulator

3.1 Introduction

The study of non-equilibrium phase transitions is wide ranging, touching on topics as diverse as the formation

of structures in the early Universe [32] and the practicality of adiabatic quantum computing [31]. The so-

called Kibble-Zurek mechanism (KZM) has been used to understand some universal features—principally the

rate of topological defect formation—of quenches across classical phase transitions [32,34]. “Quench” in this

context refers to rapidly varying a thermodynamic parameter in order to drive the system across the critical

point of a phase transition and out of equilibrium for a finite time. The KZM has successfully been tested

for classical transitions by numerical simulations of the time-dependent Ginzburg-Landau model [130–137]

and by experiments in a wide range of condensed matter systems, such as liquid crystals [138], superfluid

3He [139, 140], superconductors [141, 142], non-equilibrium convection systems [143, 144], and dilute atomic

gases driven through the Bose-Einstein condensation transition [145, 146]. The Kibble-Zurek theory has

recently been extended to quantum phase transitions [147–158] (for reviews articles, see Refs. [30,159–162]).

In contrast to the classical case, quantum phase transitions involve closed quantum mechanical evolution at

zero temperature, for which quenches are accomplished by varying a parameter in the Hamiltonian in order

to tune between different quantum phases [163].

3.2 The Quantum Kibble-Zurek Mechanism

When a system undergoes a continuous phase transition from a disordered symmetric phase to an ordered

broken-symmetry phase, it is observed that, regardless of how slowly the process is driven, defects develop

in the new phase with a characteristic size and density that depend on the transition rate. Such excitations

arise because divergence of the relaxation time at the critical point (phenomenon known as critical slowing

down) prevents an adiabatic passage across the phase boundary [163,164]. In this section, we will introduce

the quantum Kibble-Zurek mechanism which, similarly to the classical version, provides a framework for
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predicting scaling relations for defect generation after a quantum phase transition. Specifically, the KZM

predicts power laws for the excitation density and correlation length as a function of the transition rate,

while scaling laws for other physical quantities can be derived via dimensional analysis. The KZM described

in this section is in its “canonical” form, this is, when the system experiences a phase transition between

two gapped phases. The principles behind this particular case can be extended to other quantum phase

transitions [30], such as the MI-to-SF transition in the BHM.

According to critical phenomena, as a system approaches the critical point, the relaxation time τ0 and

the correlation length of the order parameter ξ increase as

τ0 ∼ |ε|−νz and ξ ∼ |ε|−ν , (3.1)

where

ε = (g − gc)/gc (3.2)

is a dimensionless parameter that measures the distance of the tuning parameter g from the critical point

gc, and ν and z are universal critical exponents1. Because τ0 diverges as ε approaches to zero, dynamics of

the system comes to a halt nearby the critical point, and therefore, if the system starts from a disordered

phase, a mosaic-like state comprised of domains of the new ordered phase will develop, since long wavelength

excitations cease to be adiabatic. The orientation of the order parameter in each domain is approximately

constant, but different domains are uncorrelated. As time evolves, the system is assumed to remain in this

frozen state while it crosses the critical point, and dynamics does not resume until the relaxation time τ0

decreases to a finite value. Once dynamics resumes, the system starts time-evolving from an excited state.

This framework is termed the adiabatic-impulse-adiabatic approximation and is illustrated in Fig. 3.1.

Quantitatively, the KZM postulates that the crossover from the adiabatic stage to the impulse stage

occurs when the relative transition rate |ε−1dε/dτ | and the relaxation rate τ−1
0 ∼ |ε|νz are equal, this is,

when ∣∣∣∣1ε dεdτ
∣∣∣∣ ∼ |ε|νz. (3.3)

In order to introduce time dependence into Eq. 3.3, the tuning parameter ε is assumed to be a continuous

function of time and linearizable about τ = 0, namely

ε(τ) ≈ − τ

τQ
, (3.4)

1In critical phenomena, the correlation length scales with ε as ξ ∼ |ε|−ν and the relaxation time τ0 scales with the correlation
length as τ0 ∼ ξz . See, for example, Refs. [163,164].
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Figure 3.1: Illustration of critical slowing down and the adiabatic-impulse-adiabatic approximation during
a continuous phase transition between two gapped phases. The black line is τ0 ∼ |ε|−νz (the relaxation
time) and the red line is |ε/ε̇| (the inverse of the transition rate). The critical point ε = 0 is characterized
by divergent correlation length ξ and relaxation time τ0. The complex dynamics of the phase transition
is approximated by an impulse regime surrounded by two adiabatic stages. During the impulse stage, the
dynamics of the system is frozen, and therefore, the system is quenched from the disordered phase to the
ordered phase. Figure adapted from Ref. [30].
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where τQ = |ε̇(0)|−1 is the quench time and 1/τQ is the quench rate. Without loss of generality, we have

assumed that the system crosses the critical point at time τ = 0 from ε > 0 to ε < 0. After substituting ε(τ)

into Eq. 3.3 and solving for τ , one finds that the “freeze up” time τ∗ scales as

τ∗ ∼ τ
νz

1+νz

Q . (3.5)

At this exact time, ε scales as

ε∗ = ε(τ) ∼
(

1

τQ

) 1
1+νz

. (3.6)

The parameter ε∗ defines the left and right boundaries of the impulse stage, as illustrated in Fig. 3.1. The

correlation length ξ∗, which remains constant during the impulse stage, scales as

ξ∗ ∼ |ε∗|−ν ∼ τ
ν

1+νz

Q . (3.7)

A scaling relation for the density of excitations results from the dimensional analysis nex ∼ (ξ∗)−D, where

D is the spatial dimensionality of the system. The KZM therefore predicts

nex ∼
(

1

τQ

) Dν
1+νz

. (3.8)

At finite temperature, the classical version of the KZM incidentally leads to the same results in Eqs. 3.7

and 3.8. However, defects are generated through thermal fluctuations and not through quantum fluctuations,

as in the quantum KZM [30].

The scaling laws found in Eqs. 3.7 and 3.8 predict that the defect size ξ∗ shrinks and the excitation

density nex increases as the quench rate 1/τQ increases (i.e., for faster quenches). The decrease in ξ∗ can

be understood by analyzing the parameter ε∗ (Eq. 3.6), which sets the boundaries of the impulse stage. A

fast quench implies a wide impulse region, and therefore, the system freezes up at a far distance from the

critical point where correlation has not built up considerably.

While the KZM has been successfully tested for classical transitions, experimental studies of quantum

quenches in the context of the KZM has been scant. Experiments are needed for verifying, for example, the

scaling of defect density with the transition rate in various quantum systems. Notably, there is evidence

that the formation of ferromagnetic domains in a spin-1 Bose-Einstein condensate can be attributed to a

quantum quench [165]. More recently, emergence of coherence in a quenched 1D Mott-insulator-to-superfluid

transition has been investigated [166].
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Figure 3.2: Phase diagram of the Bose-Hubbard model at zero temperature [169] showing the MI phase
(grey area), the SF phase (white area), and the quench across the phase boundary (arrow). The vertical
lines illustrate that the trapped gas samples a range of densities and effective chemical potentials µ̃ in the
LDA [170]. MI regions in the gas are colored red and SF blue. The quench is accomplished by rapidly
reducing s, and thereby increasing t/U .

3.3 Hubbard Lattice Quench

In this chapter, we perform quantum quenches with atoms confined in an optical lattice. The lattice-bound

atoms realize the Bose-Hubbard Hamiltonian defined in Eq. 1.12 with the tunneling and interaction energies

t and U , respectively. In contrast to previous experiments on the superfluid-to-Mott-insulator transition

[167, 168], we quench from the Mott insulator (MI) to the superfluid (SF) state, and we systematically

investigate the formation of excitations as the quench amplitude and rate are varied.

Quenching across the MI-SF phase boundary is accomplished by adjusting the lattice potential depth s

dynamically in such a way to transform the gas between equilibrium configurations with and without atoms

in the MI phase present. While quenches are possible on all relevant time scales, we explore quenches that

occur at rates

1

τQ
=

d

dτ

(
t

U

)
(3.9)

that are too slow to excite atoms into higher vibrational states in the lattice potential (the bandgap between

vibrational states sets the limiting time scale, and in our system is typically on the order of a few tens

of µs). How 1/τQ compares with U/h and t/h is complicated because the phase boundary is crossed at
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a range of densities across the trap (represented by the vertical line in Fig. 3.2). Therefore, the Hubbard

energies Uc and tc at the phase transition change during the quench. Despite this, the quench rate is always

slow compared with Uc, since 1/τQ varies from (0.001− 0.2)Uc/h. The quench rate is not consistently fast

or slow compared with tc or the confining trap frequencies. For our fastest quenches, the quench rate is

1/τQ = (10 − 100) tc/h, which is always fast compared with tc/h. For the slowest quenches, the rate is

1/τQ = (0.01− 1) tc/h, which is comparable to or slower than tc/h. For intermediate speeds, 1/τQ may be

fast compared with tc/h at the beginning of the quench (at s = 25 ER) and slow at the end.

We start the experiment by preparing a BEC in the hybrid dipole trap with (161 ± 13) × 103 atoms

and condensate fraction higher than 90%. The dipole trap configuration and the evaporation method are

detailed in Section 1.1.1. A cubic spin-independent optical lattice with wavelength λ = 812 nm (which is

far red-detuned from the resonance frequencies in 87Rb) is slowly superimposed onto the BEC in 100 ms.

The lattice potential is described by Eq. 1.9 in the spin-independent configuration (θ = 0◦). Given the

gas size and overall confining potential in our experiment, the maximum µ̃ is roughly fixed at 2U for the

measurements described here, which corresponds to a central filling (particles per lattice site) of n ≈ 4 atoms

per site at low s and a central MI with n ≈ 3 atoms per site at high s according to a site-decoupled mean

field calculation (Appendix F). The measured geometric mean of the trap frequencies is (43±2) Hz at s = 0.

We estimate, using Eq. 1.19, that the additional confinement from the lattice beams increases the mean

frequency to (82± 6) Hz at s = 25 ER. The aspect ratio of the trap changes from 1:1.3:1.8 to 1:1:1.2 across

the same range.

3.3.1 Defect Formation

We investigate excitation generation by varying the fraction of atoms crossing the MI-SF phase boundary.

We quench the lattice depth from a variable initial value s0 to the fixed final depth s = 4 ER for all data.

The initial depth ranges from s0 = 25 ER (t/U= 0.002) to s0 = 4 ER. At s0 = 25 ER (t/U � 1), the gas

is deep in the MI phase; at s0 = 4 ER (t/U ≈ 1), the gas is deep in the SF phase. The timeline of the

experiment is illustrated in Fig. 3.3. At high s0, nearly all the atoms start in the MI phase with fillings

ranging from 1 to 3 particles per site, and therefore, almost all the atoms cross the phase boundary. In

contrast, at low enough s0, all the atoms are in the SF phase and, consequently, no atoms cross the phase

boundary.

The lattice depth is linearly quenched over 5 ms for all data. The quench time was chosen so that the

finite excitation lifetime has little effect on the experiment. The ratio t/U and the quench rate 1/τQ change
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Figure 3.3: Experimental sequence for a linear quench in s (not to scale). The ultracold gas is adiabatically
loaded into the optical lattice in 100 ms using an exponential ramp. The lattice potential is then linearly
quenched in 5 ms (shaded area) from a variable initial depth s0 = (4− 25) ER to the fixed value s = 4 ER.
Absorption images are taken after 50 ms of TOF. The solid and red-dotted lines indicate some of the possible
paths that the lattice depth can follow.

nonlinearly during this quench, namely

t

U
∝ e−2

√
s/ER . (3.10)

This expression results from using approximated analytic forms for the Hubbard energies in the large s

limit [171], specifically

t ≈ 4 ER√
π

(
s

ER

)3/4

e−2
√
s/ER

U ≈
√

8

π
kas

(
s

ER

)3/4

ER,

(3.11)

where k = 2π/λ is the wavevector of the lattice beams, as is the s-wave scattering length, and s is in units

of ER = ~2k2/2m.

After the quench, the lattice is bandmapped in 500 µs and the gas is released from the hybrid dipole trap

for a period of free expansion, which converts phase gradients related to topological or wavelike excitations

into large density fluctuations [172–174]. In order to resolve defects in the gas, absorption images are taken

after a relatively long 50 ms of TOF, which expands the Thomas-Fermi radius of the condensate from

≈ 10 µm to ≈ 100 µm. A magnetic field gradient is applied to support the atoms against gravity. The

bandmapping technique (discussed in Section 1.1.6) improves the low imaging signal-to-noise ratio resulting

from the long expansion times employed for these measurements.

In Fig. 3.4, we display typical absorption images after TOF of quenches from different initial lattice

depths. A condensate is present after the quench under all circumstances, and the condensate fraction varies
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Figure 3.4: Typical absorption images after quenching the lattice potential from different initial depths
(brighter areas indicate higher atomic density). The gas is allowed to expand for 50 ms to resolve defects
in the gas. Perturbations to a smooth density profile emerge when the system crosses the MI-SF phase
boundary.

Figure 3.5: Slice (black line) through a typical absorption image (inset) taken after a lattice quench from
s0 = 25 ER. The image is fit to a smooth profile (red line), which is used to determine the deviation χ̃2

ij at
each pixel (blue line) in a masked region (gray area) with ODij ? 0.2.
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from 0.35 to 0.6 across all the data. We observe that, when the quench start from a lattice depth below

s ≈ 13 ER, the gas has a smooth profile. In contrast, defects develop for deep quenches. Based on mean

field calculations, the tip of the unit filling lobe in the Bose-Hubbard phase diagram (Fig. 3.2) is located

at s = 13.6 ER (t/U ≈ 0.03) [71, 163, 169], which implies that below this critical lattice depth the gas is

purely in the SF phase. The presence of defects for s0 ? 13 ER suggests that quasiparticle and topological

excitations emerge from atoms crossing the phase boundary.

Topological excitations (e.g. vortices) are oriented randomly with respect to the imaging direction and,

sometimes, we see them clearly, as shown in the images in Fig. 3.4 and in the density profile in Fig. 3.5.

3.3.2 Excitation Measurement

We determine the amount of excitation produced during the quench by measuring the deviation of the

absorption images from a smooth profile. We fit each absorption image to a smooth function that is a

combination of a gaussian and a Thomas-Fermi profile (defined in Eq. 1.20). We find that all the images

used in the experiment are well described by this fit, as observed in the slice through a typical image in

Fig. 3.5.

We amount excitation in the gas through2

χ̃2 =
∑
ij

χ̃2
ij = α

∑
ij(ODij − fij)2/2fij∑

ij ODij
, (3.12)

where i and j index the pixels in the image ODij , fij is the smooth profile obtained from the fit, and

α is a proportionality constant that compensates for attenuation in the measured excitation level because

of column integration along the imaging axis. In Section 3.3.3, we have estimated α through numerical

simulations, and we found that χ̃2 accurately reproduced the fraction of Bogoliubov excitations in a trapped

condensate.

The sum in Eq. 3.12 is constrained to an area in the image with

ODij
〈δOD〉rms

> 5, (3.13)

where 〈δOD〉rms = 0.044 is the root-mean-square imaging noise measured from absorption images without

the gas present. The imaging noise, readily observable in the background of the main figure in Fig. 3.5,

arises primarily from shot noise on the CCD camera, as we will discuss in Section 3.3.4. The optimal signal-

to-noise ratio used in Eq. 3.13 was found by maximizing χ̃2 when excitations are present and, at the same

2The symbol χ̃2 used for the expression defined in Eq. 3.12 does not have any statistical meaning.
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time, minimizing χ̃2 when excitations are absent and the gas profile is smooth.

The quantity χ̃2 is chosen such that it measures the fraction of excited atoms in a weakly interacting

trapped gas. The physical meaning of χ̃2 can be understood most straightforwardly for a one-dimensional

non-interacting gas. In this case, the density profile after a sufficiently long TOF is the momentum distri-

bution (in the momentum-space representation)

n(p) = |Ψ(p)|2 = |Ψ0(p) + δΨ(p)|2, (3.14)

where δΨ(p) is a small deviation from the condensate wavefunction in the ground state

Ψ0(p) =
√
n0(p). (3.15)

After neglecting the second order term |δΨ|2 in Eq. 3.14, the momentum distribution becomes

n(p) = n0(p) +
√
n0(p)[δΨ(p) + δΨ†(p)], (3.16)

and therefore,

[n(p)− n0(p)]2

n0(p)
= 2|δΨ(p)|2 + Ψ2(p) + Ψ†

2
(p). (3.17)

In the particular case of Bogoliubov excitations, it can be shown that the last two terms in Eq. 3.17 are

exactly zero after averaging over random excitation phases and integrating over momentum. Bogoliubov

excitations in a uniform BEC are expressed as wavefunctions in the form (in the position-space representa-

tion) [71]

δΨk(r) =
√
n0

[
uke

i(k·r−φ) − vke−i(k·r−φ)
]
, (3.18)

where n0 is the gas density, φ is the phase of the excitation, and uk and vk are coefficients expressed by

u2
k =

1

2

(
εk + g n0

εk
+ 1

)
v2
k =

1

2

(
εk + g n0

εk
− 1

)
,

(3.19)

which depend on the excitation wavevector k = |k|. The excitation energy is given by

εk =

√
~2k2

2m

(
~2k2

2m
+ 2g n0

)
(3.20)

and the interaction parameter for the Bose gas is g = 4π~2as/m.
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The number of excited atoms in the condensate is therefore given by

∫
dp |δΨ(p)|2 =

∫
dp

[n(p)− n0(p)]2

2n0(p)
(3.21)

after averaging over random phases φ. We identify Eq. 3.21 with the numerator of χ̃2 defined in Eq. 3.12,

apart from the absorption cross-section σ that relates OD with n(p). The denominator of Eq. 3.12, on the

other hand, is proportional to the total number of atoms
∫
dp n0(p). Therefore, χ̃2 is naturally interpreted

as the fraction of excited atoms in the weakly interacting regime.

3.3.3 Determination of α via Numerical Simulation

In the previous section, we concluded that χ̃2 is the fraction of excited atoms in a one-dimensional condensate.

This interpretation can be trivially extended to a three-dimensional system. In practice, however, absorption

imaging hinders such straightforward interpretation given that excitations in the gas are projected onto the

imaging plane. In order to relate excitations present in the gas with excitations observed in the imaging

plane, we adopt a practical approach by numerically comparing the measure χ̃2 against simulated Bogoliubov

excitations in a 3D weakly interacting BEC under similar experimental conditions.

We start the simulation by finding the ground-state wavefunction Ψ0 of a condensate at equilibrium in an

isotropic harmonic potential V (r) = mω2r2/2. The mean trap frequency is ω = (2π)× 40 Hz and the total

atom number is N = 1.5×105. We find Ψ0 by numerically solving the 3D time-independent Gross-Pitaevskii

Equation (GPE) for a BEC at zero temperature [71]

− ~2

2m
∇2Ψ0(r) + V (r)Ψ0(r) + g|Ψ0(r)|2Ψ0(r) = µΨ0(r), (3.22)

where the spatial coordinates are discretized using a 128× 128× 128 grid over a finite volume of (100 µm)3.

We employ a time-splitting spectral method that computes the solution in small steps and treats the linear

part of the GPE in the time domain and the nonlinear part in the frequency domain. Details regarding this

method are presented in Appendix B. The simulation results in a gas with a Thomas-Fermi density profile

with an approximate radius of 10 µm.

To simulate quasiparticle excitations present in the condensate after quenching the lattice depth, we

imprint excitations on the condensate by introducing a small deviation δΨk(r) to the ground state Ψ0(r).

For δΨk(r), we consider Bogoliubov excitations defined by Eq. 3.18. Because Eq. 3.18 is valid only for a

uniform system, we assume excitations with wavelength shorter than the size of the gas and we write the
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gas wavefunction δΨk(r) under a local density approximation in the form

δΨk(r) = Ψ0(r)
[
uke

i(k·r−φ) − vke−i(k·r−φ)
]
. (3.23)

The wavefunction of the excited gas is therefore formulated as

Ψ(r) =

√
1− Nex

N
Ψ0(r) +

√
Nex

N
δΨk(r), (3.24)

where the ratio Nex/N represents the fraction of excited atoms in the condensate and the wavefunctions

Ψ0(r) and δΨk(r) are normalized to the total atom number N . In the simulation, we have assumed small

Nex/N to ensure validity of the Bogoliubov equations and the LDA.

In analogy to TOF imaging, the confining potential is instantly switched off (i.e., V (r) = 0) and Ψ(r) is

time-evolved using the time-dependent GPE

[
− ~2

2m
∇2 + V (r)− µ+ g|Ψ(r, τ)|2

]
Ψ(r, τ) = i~

∂

∂τ
Ψ(r, τ), (3.25)

which we numerically solve using the same time-splitting spectral method aforementioned.

The measure χ̃2 is calculated from the gas density |Ψ(r, τ)|2 after integration along the imaging line of

sight. In Fig. 3.6 we show the result from the numerical simulation, where the range of excitation fractions

and excitation wavelengths probed are Nex/N = 0.02− 0.1 and k = (0.8− 3) µm−1, respectively, and each

point is averaged over 10 relative phases φ uniformly distributed over 0 and 2π. Fig. 3.6 shows that χ̃2

depends linearly on the excitation fraction Nex/N . We conclude that χ̃2 is proportional to the fraction of

excited particles present in the gas and it is independent of the excitation wavevector (within the range of

validity of the LDA). Therefore, under the fit parameter α = 10.7±0.2, χ̃2 is equal to the fraction of excited

atoms in the gas. This numerical method, however, is only valid at zero temperature and does not properly

account for trap-length-scale excitations or topological excitations such as vortices [175], which are evident

in Fig. 3.4.

3.3.4 Testing the Kibble-Zurek Mechanism

In Fig. 3.7, we plot χ̃2 versus the lattice depth s0 from which the quench is initiated. As we concluded in the

previous section, χ̃2 is interpreted as the fraction of excited atoms in the gas. We observe that, below the

emergence of the unit filling MI phase at s0 ≈ 13 ER, the measure χ̃2 is constant at χ̃2
0 ≈ 0.06 (determined

by averaging χ̃2 over data points with s0 ≤ 12 ER); whereas above s0 ≈ 13 ER, the degree of excitation
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Figure 3.6: Numerical simulation of the measured excitation level χ̃2 versus the fraction of excited atoms
Nex/N introduced to the condensate. The measure χ̃2 is computed according to Eq. 3.12 with α = 1. Each
data point is averaged over excitation phases that range from φ = 0− 2π and wavevectors that range from
k = (0.8− 3) µm−1. The error bars show the standard deviation. The TOF employed is 10 ms, which was
limited by the grid size. The slope of the linear fit (red line) is 0.093 ± 0.002. The dashed line has a slope
of 1 and is shown to guide the eye.

grows until χ̃2 saturates to approximately 0.17 at high lattice depths, for which more than 90% of the atoms

are in the MI phase before the quench.

The offset χ̃2
0 in Fig. 3.7 is consistent with imaging noise present in the absorption images3. The numerical

value of χ̃2
0 can be roughly estimated from the definition of χ̃2 in Eq. 3.12. If we consider that the mean

imaging noise is 〈δOD〉rms ≈ 0.044 and the mean optical depth of an image is 〈fij〉 ≈ 0.6 (see, for example,

Fig. 3.5), we estimate an offset χ̃2
0 ≈ α (0.044/0.6)2 ≈ 0.054, which is comparable with the value observed

in the plot.

The red line in Fig. 3.7 shows the fraction of atoms in the MI phase before the quench, which we have

determined according to a zero-temperature mean-field calculation in the LDA [170] (see Appendix F). We

observe that the fraction of excited atoms measured by χ̃2 is proportional to the fraction of atoms in the

MI phase, which is identical to the overall fraction of atoms crossing the SF-MI phase boundary. Given that

in the KZM only the regions of the lattice crossing the phase boundary give rise to excitations, the direct

relation between the fraction initially in the MI phase and the degree of excitation is strong evidence that

a Kibble-Zurek-like mechanism is responsible for generating excitations during the quench.

3The dominant source of imaging noise is shot noise.
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Figure 3.7: Excitation generated by quenching the lattice potential from different initial depths s0. The
data sample a range of s0 such that at high s0 nearly all the atoms start in the MI phase, whereas at low
enough s0 all the atoms are in the SF phase, as seen in the phase diagram in Fig. 3.2. The error bars are the
standard error for the average taken over 5 images. The dashed line indicates the offset in χ̃2 that arises from
the imaging noise. The red line is the fraction of atoms in the MI phase before the quench. The red vertical
axis has been adjusted to overlap the two curves. The overall uncertainty in the MI fraction (which arises
from uncertainty in t/U and N) ranges from 30% at s0 = 16 ER to 10% at s0 = 20 ER. Below s0 = 12 ER

and above s0 = 22 ER, the uncertainty in the MI fraction is zero.
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Figure 3.8: Experimental sequence for a linear quench in t/U (not to scale). The sequence is identical to
that of Fig. 3.3 except for the quench procedure (shaded area) . The quench is performed using the ramp
defined in Eq. 3.26 to ensure crossing the SF-MI phase boundary at a constant rate d(t/U)/dτ = 1/τQ.
Most of the gas is in the MI phase before the quench, and the entire gas is in the SF phase after the quench.

3.4 Scaling Relations

In the Kibble-Zurek scenario, the quench rate controls the amount of excitations generated according to

a power law that depends on the critical exponents for the phase transition. As a second experiment,

we investigate this power law across 2 orders of magnitude in quench rate. The lattice potential depth is

quenched maintaining the rate d(t/U)/dτ = 1/τQ approximately constant, and we probe the quench rates

1/τQ = (0.003−0.3) ms−1. The quench is performed over 5 ms for all data and initiated from a gas composed

nearly entirely of the MI phase at s0 = 20 ER (t/U = 0.005). The evolution of the lattice depth s as a

function of time is given by the nonlinear form

s(τ) =
1

4
ln2

[(
πas√

2d

)
τ

τQ
+ e−2

√
s0/ER

]
ER (3.26)

derived from the analytical expressions for t and U in Eq. 3.11, where d = λ/2 is the lattice spacing. The

lattice potential is quenched to a variable final lattice depth which depends on the quench rate. The final

lattice depth ranges from s ≈ 2.2 ER for 1/τQ = 0.3 to s ≈ 13.6 ER for 1/τQ = 0.003 (the gas is always

entirely in the SF phase after the quench). The full experimental sequence for s(τ) is shown in Fig. 3.8.

Besides measuring χ̃2 for this nonlinear quench—which may misinterpret topological excitations such as

vortices—we also obtain the increase in energy induced by the quench by measuring the kinetic energy per
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particle of the gas after TOF using the formula

K =
m

2τ2
TOF

〈r2〉, (3.27)

where τTOF is the time of flight, 〈r2〉 is the second moment of the density distribution given by

〈r2〉 =
3

2
·
∑
ij ODijr2

ij∑
ij ODij

, (3.28)

and the factor of 3/2 arises from assuming an isotropic energy distribution among three spatial directions.

K measures the total increase in energy induced by the quench, because the gas expansion converts the

in-trap potential and interaction energy into kinetic energy.

A fit to the data shown in Fig. 3.9 reveals power laws for χ̃2 and K mutually consistent within the fit

uncertainty, namely

χ̃2 ∝
(

1

τQ

)0.31±0.03

(3.29)

and

K ∝
(

1

τQ

)0.32±0.02

. (3.30)

However, our experimental results are inconsistent with the universal exponents predicted by the simplest

version of the adiabatic-impulse-adiabatic approximation in the Kibble-Zurek mechanism. In an inhomoge-

neous gas, nearly all the atoms cross the “generic” phase transition and not the “multicritical” points at

the tip of the MI lobes (see the phase diagram in Fig. 3.2). The generic points obey the dilute Bose gas

universality class with critical exponents ν = 1/2 and z = 2, whereas the multicritical points are governed by

the universality class of the O(2) quantum rotor with critical exponents z = 1 and ν = 1 [163,169,176,177].

Given that most of the atoms cross the generic points at the phase boundary, the number of excitations

predicted by the KZM (Eq. 3.8) is nex ∼ (1/τQ)3/4, which is inconsistent with our data.

When we published our results in Ref. [1], we suggested that the disagreement between our experimental

exponents and the theoretical predictions might be explained by numerous details that deserved more theo-

retical attention. For example, the spatially inhomogeneous nature of the gas gives rise to a phase transition

“front” that moves through the gas. This has been examined in the context of certain classical and quantum

phase transitions [30, 178, 179]. In a recent numerical study, it has been shown that the quenched gas does

not have enough time to develop long range correlation, and therefore, the correlation length does not have

a well defined power law [157]. Discrepancies may also arise from temperature effects, since the data in

this work were taken at a low but nonzero temperature (the initial condensate fraction is higher than 90%
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Figure 3.9: Scaling for the excitation level and the kinetic energy versus the quench rate 1/τQ. The measured
offset χ̃2

0 is subtracted from χ̃2. Analogously, the kinetic energy without the quench K0 (determined by
averaging across images with s0 < 13 ER) is subtracted from K. For comparison, the critical temperature
for condensation in the trap before turning on the lattice and after bandmapping is approximately 100 nK.
The error bars are the standard deviation for the average taken over 5 images.
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before turning on the lattice) [150, 180]; from the finite size of the gas, as discussed in Ref. [151] for the

Bose-Hubbard model in 1D; and from difference in the quench dynamics depending on the nature of the

excitations (for example, nex scales differently if the excitations are only vortices). Finally, our measure χ̃2

(defined in Eq. 3.12) is only an estimate of the excitations, and thus, a more sophisticated formulation must

be developed.

3.4.1 Quench in the Non-Universal Regime

After we published our results, Zurek et. al. numerically simulated our experiment by calculating the MI-to-

SF quench dynamics for a zero-temperature, 3D gas using the Truncated Wigner Approximation [157] (the

TWA approximates the full quantum dynamics of the original Hamiltonian by the evolution of ensemble

averages [181–185]). It was found that the energy of the gas scales with the quench rate as a power law with

exponent ≈ 1/3, which is consistent with our experimental measurements. In this subsection, we present a

brief outline of the numerical and analytical calculations presented in Ref. [157] (also see Ref. [185]).

The Bose-Hubbard Hamiltonian (Eq. 1.12) in 1D under the TWA4 reduces to the classical Hamiltonian

(besides an energy offset) [157,186]

H = −t
∑
j

(ψ∗j+1ψj + ψj+1ψ
∗
j ) +

nU
2

∑
j

|ψj |4 +
∑
j

(
1

2
mω2d2j2 − µ

)
|ψj |2, (3.31)

where ψj is a complex lattice field defined as
√

nψj = 〈âj〉, 〈âj〉 is the ensemble-averaged annihilation

operator, n is the lattice filling, j indexes the lattice sites, d is the lattice spacing and ω is the frequency

of the parabolic confinement. The discrete Gross-Pitaevskii Equation follows from i∂ψj/∂τ = δH/δψ∗j and

reads

i~
∂ψj
∂τ

= −t(ψj+1 + ψj−1 − 2ψj) + nU |ψj |2ψj +

(
1

2
mω2d2j2 − µ

)
ψj . (3.32)

Ref. [157] simulates Eq. 3.32 numerically in 3D considering a linear quench in the tunneling energy t, which

is ramped up from zero according to

ε(τ) =
t(τ)

nU
=

τ

τQ
. (3.33)

In this MI-to-SF quench, the phase boundary is crossed at the rate 1/τQ and the critical point is at approx-

imately ε = 0 for a large filling (n � 1), since z (t/U)c ≈ 1/n [71, 163, 169] (z is the lattice coordination

number) and therefore εc = (t/nU)c ∼ 1/n2 ≈ 0. The simulation shows that the gas energy scales with the

4This approximation is valid when n� 1. For a discussion on the validity of the TWA in boson lattice models, see Ref. [186].
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quench rate as

E = 〈H〉 ∼
(

1

τQ

)0.31±0.01

(3.34)

across four orders of magnitude in quench time (from τQ ' 10 ms to τQ ' 105 ms). The expectation

values are estimated by averaging over stochastic realizations of ψj(0) = eiθj(0) with random initial phases

θj(0). The exponent in Eq. 3.34 coincides with the experimental value 0.32 ± 0.02 (Eq. 3.30) within the

uncertainties, even though the experiment only marginally satisfies the condition n � 1 for validity of the

TWA.

An analytical calculation based on the KZM in a non-universal regime also agrees with the experimental

exponent 1/3. In a MI-to-SF quench, the KZM arises from an impulse-adiabatic approximation, where the

initial state is a frozen MI phase with negligible tunneling between neighbor sites and the system evolves

into an adiabatic regime as the tunneling energy increases. The KZM postulates that the dynamics in the

system becomes adiabatic when

1

ε(τ)

dε(τ)

dτ
∼ 1

τ0(τ)
, (3.35)

where the left side is determined directly from the ramp equation defined in Eq. 3.33. The relaxation time

τ0(τ), on the other hand, scales with t as

τ0 ∼ t−1/2 (3.36)

in the so-called Josephson regime, where the impulse-adiabatic crossover occurs in the deep MI phase (t/U �

1), and therefore, Eq. 3.32 can be approximated by the Josephson equation5

∂2θj
∂τ2

=
2ntU
~2

[
sin(θj+1 − θj) + sin(θj−1 − θj)

]
. (3.37)

The scaling relation expressed in Eq. 3.36 follows from a dimensional analysis on Eq. 3.37 and it has been

numerically verified in Ref. [157]. Disagreement with the universal scaling τ0 ∼ t−νz = t−1 suggests that the

regime probed is non-universal. A similar non-universal behavior has been observed in 1D via density-matrix

renormalization group [187]. The impulse-adiabatic crossover condition (Eq. 3.35) then reduces to

1

τ∗
∼

√
τ∗

τQ
, (3.38)

and, consequently, τ∗ ∼ τ
1/3
Q and t∗ ∼ τ

−2/3
Q . Ref. [157] shows that the time-dependent temperature in the

5In the Josephson regime, dynamics consists of small density fluctuations δnj = nδfj on top of a uniform background n.

Therefore, ψj is approximated as ψj =
√

1 + δfj e
iθj , with δfj and θj real variables and |δfj | � 1. Substitution of ψj into the

Hamiltonian in Eq. 3.31 leads to the equations of motion for δnj and θj which becomes the Josephson equation after elimination
of δnj .
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adiabatic stage scales as T ∼ t1/2(t∗)1/2 and, combined with E ∼ T from the equipartition theorem, we find

that the energy of the system scales as

E ∼ t1/2τ1/3
Q . (3.39)

Consistency between the experiment and the non-universal Kibble-Zurek prediction strongly suggests that

the quench rates in our experiments—which are in the range τQ ≈ (1− 300) ms—are too fast to probe the

universal regime [30]. Implementing slow quenches to test quantum criticality is experimentally challenging

because quantum coherence and atom number stability are required for long quench times. Furthermore,

the universal regime may not even be experimentally accessible. For example, simulations in 1D show that

the universal scaling regime is reached at the “astronomical” quench time of τQ ' 1010 τ0 [158].

The presence of phase domains and vortex excitations after the quench is confirmed via computational

simulations [157]. In the KZM picture, the initial MI state with random phases remains unchanged during

the impulse stage and, once the evolution becomes adiabatic, phase correlation starts growing across the

system. Given that long range order can not be reached in a finite quench time, the lattice-potential quench

leads to a state comprised of phase domains and topological vortex excitations. In the simulation, the

correlation length does not have a simple power law with the quench time, and therefore, we were unable to

compare the numerical excitation density nex with the experimental data.

3.5 Conclusions

The methodology we have demonstrated in this chapter provides a window into excited states and dynamics

which are beyond our current theoretical understanding in a wide variety of strongly interacting many-body

quantum systems.

We have found that the amount of excitations after a MI-to-SF quench is proportional to the fraction

of atoms crossing the phase boundary. This result strongly supports the Kibble-Zurek picture, where the

diverging relaxation time near the phase boundary “freezes in” phase fluctuations present in the MI, and

dynamics only effectively restart some time after crossing the phase boundary. Once the dynamics becomes

adiabatic, the phase fluctuations develop into superfluid excitations which potentially include sound waves

and topological excitations such as vortices. While it was suggested in Ref. [188] that the condensate fraction

may oscillate after the quench, we find no evidence for such behavior.

The measured power-law relation for the gas energy versus the quench rate is consistent with numer-

ical simulations of the Bose-Hubbard Model using the TWA in the Josephson regime. Furthermore, the

KZM correctly predicts the observed scaling based on non-universal power laws. In contrast, the scaling
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relation for the excitation density nex in the experiment does not coincide neither with the simple adiabatic-

impulse-adiabatic universal Kibble-Zurek prediction nor with the numerical simulation. Potential sources

of disagreement are the presence of topological defects, thermal and finite size effects, and the spatially

inhomogeneity of the gas.

In order to investigate different aspects of a quantum phase transition, new tools and techniques have

to be developed. For example, there are several proposals for measuring critical exponents in ultracold

gas experiments [28, 176, 177, 189]. Moreover, a quantum gas microscope with single lattice-site resolution

[168,190–197] could potentially measure the local gas configuration during a phase-transition quench.

A particularly important application of quantum criticality and quench dynamics is adiabatic quantum

computing [31], where a system is prepared in a simple quantum state of an initial Hamiltonian and adiabat-

ically driven to a final Hamiltonian (usually across a phase transition) whose ground state is the solution to

a non-trivial computational problem. Quantum dynamics may also have significant consequences for ther-

mometry in optical lattice experiments [198]. One commonly employed technique to estimate temperature

in a lattice is to slowly turn off the lattice potential, measure temperature, and then infer entropy in the

lattice assuming that the turn-off is adiabatic. We have found that adiabaticity is violated across a wide

range of linear lattice quench rates. For example, for a quench from s0 = 20 ER, the amount of excitation

decreases from χ̃2 = 0.17 to only χ̃2 = 0.12 when the ramp time is increased fivefold from 5 ms to 25 ms.
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Chapter 4

Bath-Induced Band Decay

4.1 Introduction

Dissipation plays an essential role in determining the behavior of many quantum systems [199, 200]. In

the form of decoherence, dissipation is deleterious and an obstacle to activities that involve controlling

quantum states, such as quantum information processing [201]. Conversely, the effects of dissipation can be

advantageous. For example, new paradigms have emerged for engineering dissipation to give rise to desired

quantum states [202–211] and even as a resource for universal quantum computing [212]. Furthermore,

dissipation could potentially be used to cool many-particle systems into manifestly quantum regimes via

coupling to a reservoir, as exemplified in Fig. 4.1. Intense research into manipulating dissipation is ongoing,

inspired both by these applications and by the many open questions regarding the dynamics of dissipation,

especially in strongly interacting systems [213,214].

Ultracold gases are remarkably dissipation-free, closed quantum systems and, thus, an ideal platform for

harnessing and studying engineered dissipation. In this chapter, we investigate dissipation on a strongly

correlated atomic gas confined in an optical lattice due to interaction with a thermal bath. Using a three-

dimensional spin-dependent lattice, we engineer a low-entropy, dissipative bath that interacts with a band-

excited strongly correlated thermal lattice gas prepared in the Mott-insulator regime of the Bose-Hubbard

model (Eq. 1.12). Previous experiments probing dissipation and entropy exchange in species-dependent

potentials have utilized one-dimensional lattices and explored the weakly interacting regime [215,216].

The bath in our measurements affects the lattice gas similarly to the way in which the electromagnetic

vacuum causes decay of excited electronic states in an atom via spontaneous emission [206,217–219]. Fluctu-

ations of the electric field of the electromagnetic vacuum couple electronic states through the electric dipole

interaction, while in our system, collisions with the bath couple lattice atoms to different bands. Because

the electromagnetic vacuum is a zero-entropy state, the dipole interaction only causes decay to lower energy

states. Likewise, since the bath in our experiment is a weakly interacting superfluid and thus a low-entropy

reservoir, lattice atoms exclusively decay to lower energy bands. Irreversible decay of electronic states only
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Figure 4.1: Scheme proposed in Refs. [58,59] for cooling an atomic gas confined in an optical lattice through
dissipation. (a) Stimulated Bragg excitation is engineered to selectively transfer atoms from states in the
ground Bloch band with large quasimomentum q to states with small quasimomentum in the first-excited
band. (b) The excited atoms decay to the ground band through collisions with a background gas which acts
as a thermal reservoir. By performing the cooling cycle iteratively, the quasimomentum distribution of the
lattice-bound gas becomes narrower about the origin.

happens when the spontaneously emitted photon escapes and does not interact with the atom; otherwise,

coherent vacuum Rabi oscillations occur [220]. We achieve irreversible decay in our system by tuning the

trap depth so that the bath atoms involved in inter-band transitions can escape from the gas.

4.2 Experimental Procedure

To carry out the experiment, we start with a partially condensed 87Rb gas in the |F = 1,mF = −1〉 hyperfine

state confined in a crossed dipole trap (described in Section 1.1.1). Subsequently, an unequal mixture of

|1,−1〉 (lattice) and |1, 0〉 (bath) states is prepared using an adiabatic rapid passage driven by a radio-

frequency magnetic field1. This mixture is miscible in the dipole trap and stabilized against spin-exchange

collisions by a 10 G uniform magnetic field. The atom number in each state is N (l) = (13 ± 2) × 103 for

the lattice atoms and N (b) = (36± 5)× 103 for the bath atoms, and the temperature of the spin mixture is

(91±6) nK. At this temperature, the lattice atoms are above the critical temperature for Bose condensation,

while the bath atoms are below the critical temperature with (30−40)% condensate fraction. The geometric

mean of the dipole trap frequencies is 2π × (75± 6) Hz, and the trap depth is (420± 60) kB × nK.

1The RF field is adiabatically swept across resonance to drive a Landau-Zener transition.
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Figure 4.2: Lattice atoms (blue spheres) and bath atoms (red spheres) in a spin-dependent lattice generated
from 790 nm laser beams. Both species are harmonically confined in a crossed dipole trap formed from
1064 nm laser beams, but only the lattice atoms experience the periodic potential.

4.2.1 Lattice-Bath Atom Mixture

A spin-dependent, cubic optical lattice formed from three pairs of counter-propagating laser beams with

λ = 790 nm2 is slowly superimposed on the gas over 50 ms. Both species in the mixture experience identical

confinement from the dipole trap, but only the lattice atoms interact with the optical lattice, since the

potential is proportional to |mF |, as expressed by Eq. 1.9 in the θ = 90◦ configuration. An illustration of

the spin mixture in the optical lattice is shown in Fig. 4.2. The lattice atoms realize the strongly interacting

Bose-Hubbard model with tunneling energy t and interaction energy U controlled by the lattice potential

depth s [221], and the |1, 0〉 atoms form a spatially overlapping, weakly interacting superfluid bath [222].

Similar 1D spin-dependent lattices have also been used to investigate atomic impurity [223,224], matter-wave

probes [225], and mixed-dimensional scattering [226]. Spin mixtures in 3D spin-dependent lattices have been

used to explore applications to thermometry [77,222] and to study superfluid coherence [227].

We set the lattice depth along the lattice directions x̂ and ŷ to 22.5 ER, and along the third direction ẑ

to s = (13.5 − 18) ER
3. The spatial configuration of the lattice vectors x̂, ŷ, and ẑ are shown in Fig. 1.2.

At zero temperature, the lattice atoms would be in the Mott-insulator phase for the lattice potential depths

explored in this experiment. The bandgap between the ground and first-excited bands Ebg for the lattice

atoms along the z direction is in the range (1100 − 1300) kB × nK, which is greater than the dipole trap

depth for the bath atoms. The corresponding bandgap along the x and y directions is 1500 kB×nK. The

bandgap difference in ẑ and x̂, ŷ is greater than the excited bandwidths and prevents interparticle collisions

between lattice atoms in excited bands from transferring energy between lattice directions.

2We chose λ = 790 nm for the spin-dependent lattice because it nearly minimizes the heating rate from spontaneous
scattering. See Ref. [77].

3The lattice depths were chosen to sample the MI phase of the lattice gas with the available laser power at λ = 790 nm.
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For all the lattice depths sampled in this work, we estimate that the temperature of the lattice atoms

ranges from 50 to 130 times the Hubbard tunneling energy t of the ground band, and therefore, atoms fill

the ground band almost uniformly. Moreover, the temperature is 0.07 times the bandgap in the z direction,

and consequently, all the atoms are approximately in the ground band according to the estimation for the

excited-band population 1/(1 + e−Ebg/kBT ) ≈ 1. The temperature of the lattice atoms is estimated using

semiclassical thermodynamics (which neglects interactions) [85]. We assume that the lattice turn-on is

isentropic, and we solve self-consistently for the chemical potential µ and temperature T that reproduce the

number of lattice atoms N and entropy S before turning on the lattice. The entropy of the lattice gas is

given by

S =
E − µN − Ω

T
, (4.1)

where the gas energy E, atom number N and grand canonical potential Ω are calculated using the semiclas-

sical quasimomentum distribution

n(qx, qy, qz) =
1

h3

∫
d3r

1

e−µ/kBT e2t
∑
i=x,y,z [1−cos (qid/~)]/kBT emω2r2/2kBT − 1

(4.2)

(ω is the mean dipole trap frequency and d = λ/2 is the lattice spacing). Details regarding this semiclassical

approach can be found in Appendix D.

4.2.2 Bragg Excitation

After turning the lattice on, we use a pair of Bragg laser beams 500 GHz detuned from the 5P3/2 excited

electronic state to transfer a fraction of the lattice atoms from the ground band to the first-excited band

along the lattice z-direction. The spatial configuration of the Bragg beams is illustrated in Fig. 1.2. The

wavevector difference between the Bragg beams is ∆k = 1.43π/d and it is aligned along the z direction. The

relative frequency is tuned to match the bandgap frequency Ebg/h, which ranges from 22 kHz at s = 13.5 ER

to 27 kHz at s = 18 ER. The Bragg light is pulsed on for 200 µs and the relative frequency is swept across

resonance over 2 kHz. According to the Rabi formula 2.14 for stimulated Bragg transitions, we estimate that

the excitation probability along ẑ varies from 0.45 to 0.65 across the band, and excitation in the transverse

directions is negligible because of the lattice depth mismatch. We estimate, using Eq. 1.3, that spontaneous

scattering caused by the Bragg beams occurs at a rate lower than 1 s−1. The experimental sequence is

depicted in Fig. 4.3.
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Figure 4.3: Timeline of the experimental sequence for measuring band decay (not to scale). The lattice
potential is slowly turned on in 50 ms using an exponential ramp. A fraction of the lattice atoms are
transferred to the first-excited band by a 200 µs Bragg pulse. The hold time τhold in our experiments ranges
from 0 to 100 ms. Bandmapping is performed with a linear ramp in 300 µs and absorption images are taken
after 10 ms of TOF.

4.3 Band Decay Mechanisms

Once the lattice atoms are band-excited, the gas is held in the lattice for τhold while it decays back to the

ground band. The band decay is dominated by two decay channels: collisions between lattice atoms (intrinsic

decay) and collisions between lattice and bath atoms (bath-induced decay). Both cases are illustrated in (a)

and (b) of Fig. 4.4, respectively.

4.3.1 Intrinsic Decay

In this mechanism, two lattice atoms in the first-excited band (n = 1) mutually collide. One atom decays

to the ground band (n = 0), while the other atom is promoted to the second-excited band (n = 2). Intrinsic

decay has previously been investigated in species-independent optical lattices in 1D [228] and in very deep

3D potentials [92].

In a non-interacting system, the intrinsic decay channel is suppressed at the relatively high lattice depth

we employ because of energy and momentum conservation in a binary intra-band collision, namely

ε(1)(q1z) + ε(1)(q2z) = ε(0)(q′1z) + ε(2)(q′2z)

q1z + q2z = q′1z + q′2z,

(4.3)

where (q1z, q2z) are the initial quasimomenta with n = 1 and (q′1z, q
′
2z) are the final quasimomenta with

n = 0 and n = 2. Suppression of intrinsic collisions as the lattice depth increases can be understood more

easily in the limit of a very deep lattice. In this regime, the energy bands become approximately flat, and
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Figure 4.4: Illustration of possible band decay processes in the z direction of the lattice. (a) Intrinsic decay
arises from collisions between lattice atoms (blue spheres). The band energies as a function of quasimomen-
tum q are shown using blue lines. Atoms begin in the initial states 1 and 2 and scatter to the states 1′ and
2′ through a collision. (b) The bath-induced decay process arises as a result of inter-species collisions. The
Bogoliubov dispersion (red line) as a function of momentum p for the bath atoms (red spheres) is super-
imposed on the band structure. The bath atoms scatter into particle-like Bogoliubov excitations that can
escape from the trap.

therefore, two lattice atoms within the same band can not mutually collide because of mismatching bandgaps

(the lattice potential is inherently anharmonic, as shown in (b) of Fig. 1.4).

4.3.2 Bath-Induced Decay

In this decay channel, the bath-induced decay can be understood as a lattice atom in the first-excited band

colliding with a Bogoliubov quasiparticle initially at low energy and momentum in the superfluid bath. After

the collision, the quasiparticle is scattered to higher energy and momentum, and the lattice atom decays to

the ground band. Based on energy conservation, the energy of the excited quasiparticle will approximately

be equal to Ebg (within the bandwidth), which is larger than the dipole trap depth for the bath atoms.

Furthermore, for our range of experimental parameters, a quasiparticle with energy equal to Ebg has a

momentum more than 6 times greater than
√

2mµ, where µ ≈ 20 kB×nK is the chemical potential of the

bath. Therefore, the excited quasiparticle is particle-like, and the bath-induced decay process can result in

a bath atom leaving the trap.

We have experimentally shown in a previous work, reported in Ref. [222], that thermalization between

ground-band atoms and the bath is suppressed for deep enough lattices, because energy and momentum
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conservation can not be satisfied in such inter-species collision. This result has important consequences in

the cooling scheme proposed in Fig. 4.1, since the cooled atoms in the ground-band must remain thermally

insulated from the bath.

The lattice depth threshold at which inter-species thermalization becomes suppressed can be estimated

from energy and momentum conservation, specifically

ε(q + p/2) = ε(p) + ε(q− p/2), (4.4)

where ε(q) is the excitation energy of a lattice atom with quasimomentum q = (qx, qy, qz), ε(p) is the

excitation energy of a quasiparticle in the bath with momentum p = (px, py, pz), and we have approximated

the initial momentum of the bath to zero. For ε(q), we consider the tight-binding energy of a non-interacting

gas

ε(q) =
∑

i=x,y,z

2ti

[
1− cos

(
qid

~

)]
, (4.5)

and for ε(p) we use the Bogoliubov excitation spectrum of a weakly interacting uniform Bose gas [71]

ε(p) =
√
ε0(p)[ε0(p) + 2gn] ≈ p

√
g n

m
, (4.6)

where ε0(p) = p2/2m is the free-particle energy, g = 4π~2as/m is the interaction parameter, and n is the

gas density. The bath energy has been approximated to a linear function of p, since collisions with lattice

atoms in the ground band can only excite low energy modes in the bath. Substitution of Eqs. 4.5 and 4.6

into Eq. 4.4 leads to

p

√
g n

m
=

∑
i=x,y,z

4ti sin

(
qid

~

)
sin

(
pid

2~

)
. (4.7)

For each pair of vectors q and p, there is a tunneling energy threshold tc below which Eq. 4.7 can not be

satisfied and, consequently, collisions between the ground-band atoms and the bath are suppressed. Eq. 4.7,

however, does not apply to lattice atoms in higher-energy bands, and therefore, bath-induced band decay

can occur.

We can estimate tc by finding an upper bound4 of the right side of Eq. 4.7, namely

p

√
g n

m
≤ 2
√

3 t
pd

~
, (4.8)

4We use the inequalities sin (qid/~) ≤ 1, sin (pid/2~) ≤ |pi|d/2~ and
∑
i=x,y,z |pi| ≤

√
3p.
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and therefore,

tc '
√

4

3π3

(as
d

)
n d3 ER, (4.9)

where n d3 is the lattice filling (number of particles per lattice site). A more accurate estimation of tc would

require to solve Eq. 4.7 numerically for each pair of vectors p and q under a local-density approximation.

In most ultracold gas experiments, the lattice filling n is not uniform because of the overall parabolic

confinement. Consequently, as the lattice depth increases, suppression of collisions start at the gas center,

where n is highest, and progresses towards the edge, where n vanishes. Even though the outermost atoms in

the lattice are always in thermal contact with the bath because n ≈ 0, the bulk of the gas remains thermally

insulated from the bath at high enough lattice depths.

In the experiments in this chapter, the central filling calculated using a site-decoupled mean-field approxi-

mation (Appendix F) is nd3 = 0.13. The corresponding critical tunneling and lattice depth are tc ≈ 0.016 ER

and sc ≈ 11 ER, respectively.

4.4 Band Decay Measurement

The fraction of lattice atoms in each band is measured from quasimomentum distributions after holding

the gas in the lattice for τhold. The quasimomentum distribution of the gas is acquired using bandmapping

in 300 µs and an expansion time of 10 ms. The bath atoms are spatially separated from the lattice atoms

during TOF using a magnetic field gradient. After bandmapping, atoms populating the ground band appear

inside the first BZ and atoms in the first-excited band are mapped onto the second BZ. Fig. 1.5 shows the

first and second BZ in 3D and their projection onto the imaging plane.

Fig. 4.5 shows typical images of the lattice atoms taken after Bragg excitation and after holding the

lattice potential on for τhold. Two different situations are presented: Part (b) illustrates the band decay

for the lattice atoms when the bath is absent and (c) shows the band decay when the bath is present. To

characterize the decay process, we determine the fraction of lattice atoms in the ground band N
(l)
g /N (l)

taken at different τhold, where N
(l)
g is the number of lattice atoms in the ground band, and N (l) is the total

number of lattice atom. We obtain N
(l)
g and N (l) by integrating the optical depth of the absorption images

over the first BZ and over the entire image, respectively. At τhold = 0, we measure that approximately 40%

of the lattice atoms are in the first-excited band along ẑ, and off-resonant excitation through the first-excited

band leads to 10% of the atoms driven to the second-excited band.

Two systematic issues potentially affect our determination of N
(l)
g /N (l). First, atoms excited along the x

and y directions can appear to be within the first BZ, as observed in (b) of Fig. 1.5. Nevertheless, excitations
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Figure 4.5: TOF images of the lattice atoms only (spatially separated from the bath) taken at s = 16.2 ER.
The images are projections of the 3D gas onto the imaging plane. (a) Lattice atoms before Bragg excitation.
The geometry of the Bragg beams (white arrows) and lattice beams (black arrows) has been superimposed
on the image. The Bragg beams propagate along k1 and k2, so that their wavevector difference lies along
the z direction. As discussed in the text, the lattice atoms uniformly fill the ground band. (b) Lattice atoms
after holding the lattice on for τhold without the bath present. (c) Lattice atoms after holding the lattice on
for τhold when the bath is present. The first BZ projected onto the imaging plane is displayed using dashed
lines.

Figure 4.6: TOF images of the bath associated with the images in part (c) of Fig. 4.5. The lattice and bath
atoms interact for τhold after Bragg excitation, and they are spatially separated for imaging. A slice along
the dashed line displays the result of a two-component fit (shaded grey).
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along these directions are highly suppressed because the Bragg wavevector lies along ẑ. Furthermore, we

have employed larger lattice depths along x̂ and ŷ to prevent exchange of excitation energy between lattice

directions. Second, a systematic error is introduced to measuring N
(l)
g /N (l) using our imaging method

because bandmapping fails at the band edge, and thus, a fraction of atoms within the ground band appear

outside the first BZ. For example, before Bragg excitation we measureN
(l)
g /N (l) = 0.77±0.06 even though the

gas temperature is sufficiently low compared with Ebg such that almost all the atoms are in the ground band.

This error does not significantly affect the measured decay rate, since the ground band is homogeneously

filled and the excitation is nearly uniform across the BZ.

In both situations, with and without the bath present, the decay channels involve binary collisions, and

therefore, the excited lattice atoms decay exponentially to the ground band, as shown in (a) of Fig. 4.7 for

the fraction of atoms in the ground band N
(l)
g /N (l) versus τhold. We extract a decay time constant τ (and

a decay rate Γ = 1/τ) by fitting a single exponential decay to N
(l)
g /N (l), as shown by the solid and dashed

lines in Fig. 4.7.

If we consider Γll as the rate of binary collisions between excited lattice atoms (lattice-lattice), then 1/Γll

gives the decay time constant in absence of the bath. On the other hand, if we consider Γlb as the rate of

binary collisions between the bath and excited lattice atoms (lattice-bath), then the total rate of change in

N
(l)
g is given by

dN
(l)
g

dτ
= Γll + Γlb, (4.10)

and therefore 1/(Γll + Γlb) is the decay time constant of the excited atoms when the bath is present. The

enhancement in the decay rate observed in (a) of Fig. 4.7 when the bath is present confirms the existence of

additional decay mechanisms in the system.

Even though the bath marginally increases the ground-band fractionN
(l)
g /N (l) once the decay is complete,

N
(l)
g /N (l) is greatly reduced compared with the state before Bragg excitation. For example, for the lattice

depth s = 16.2 ER shown in (a) of Fig. 4.7, the ground-band fraction increases from 0.496 ± 0.006 to

0.516±0.007 according to the exponential fits, but the final ground-band fraction is considerably lower than

the initial fraction 0.77± 0.06. Heating in the lattice gas occurs because a small fraction of intrinsic decay

events can deposit a large amount of energy into the gas, since Ebg is much larger than the bandwidth of

the ground band. For instance, at s = 16 ER, Ebg ≈ 1 µK×kB , whereas the ground-band bandwidth is just

a few nK×kB

We also analyze images of the bath atoms (for example, see Fig. 4.6) using a bimodal fit to measure

the condensed and non-condensed components of the gas. From the fit, we obtain the condensate fraction

N
(b)
0 /N (b) of the bath and the atom number N (b), as shown in (b) and (c) of Fig. 4.7. For all s, the condensate
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Figure 4.7: Observables for the lattice and bath atoms during the band decay process in a 16.2 ER lattice.
The error bars show the standard error of the mean of 4 to 6 experimental runs for each point. (a) Fraction
of lattice atoms in the ground band versus τhold extracted from images such as those shown in Fig. 4.5.
Two situations are considered: with the bath present (red circles) and absent (blue squares). The solid and
dashed lines are exponential fits to the experimental data. (b–c) Condensate fraction and atom number of
the bath versus τhold are shown as red circles. Control data taken with the lattice atoms absent are shown
as black triangles.
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fraction is approximately constant during the decay process (τhold > 20 ms). At longer hold times, a decrease

in condensate fraction is caused by heating induced from spontaneous scattering associated with the lattice

light5. Regarding the atom number of the bath N (b), we observe an exponential-like decrease over time

for all s, which is independent of the presence of the lattice atoms, as shown in (c) of Fig. 4.7. Losses

in N (b) are not consistent with calculated rates for three-body recombination [229] and evaporation [230].

Instead, losses are consistent with bath atoms being spontaneously excited to other spin states by the lattice

beams [231,232].

Given the relative small number of lattice atoms, losses in bath atoms N (b) induced by inter-species

collisions are too small to be resolved within the noise in N (b)6. Even though the data suggest a lower N (b)

when the lattice atoms are present (triangles versus circles in (c) of Fig. 4.7), the effect is only marginal and

further investigation would be required to come to a conclusion.

The fitted decay time constant τ with and without the bath present is shown as data points in Fig. 4.8 for

three different lattice depths: s = 13.5 ER, 16.2 ER, and 18 ER. The red circles represent the spin mixture,

while the blue squares correspond to the lattice atoms without the bath. For this range of lattice potential

depths, the measured decay time constants do not vary strongly with s, and the bath-induced decay rate

is at least a factor of two larger than the intrinsic decay rate. In order to gain insight into the band-decay

mechanisms experienced by the lattice atoms, we numerical calculate the decay time constants shown in

Fig. 4.8 using Fermi’s golden rule.

4.5 Fermi’s Golden Rule Prediction

We compare the fitted decay time constants with predictions based on a Fermi’s golden rule (FGR) calculation

without free parameters. We calculate the collisions rate Γ that leads to decay into the ground band using

the contact potential for low-energy binary collisions

Vint =
4π~2as
m

δ3(ri − rj), (4.11)

where ri is the location of particle i and as is the scattering length. FGR is evaluated using the Fourier

expansion

Vint =
4π~2as
mL3

∑
p′

e−
i
~p′·(ri−rj), (4.12)

5The rate at which a single atom is heated by the lattice beams is discussed in Ref. [77].
6The experimental noise in N(b) is comparable to the effect we would like to investigate. Indeed, the expected loss in

N(b) = (36 ± 5) × 103 from inter-species collisions is smaller than 10% of N(b), since approximately 5000 lattice atoms are
Bragg-excited and only a fraction of them decay to the ground band and induce loss in the bath atoms.
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Figure 4.8: Decay time constant at different lattice depths when the bath is present (red circles) and absent
(blue squares). The error bars are the uncertainty in the fit to data such as those shown in (a) of Fig. 4.7.
The solid and dashed lines are the FGR prediction for 1/Γll and 1/(Γll + Γlb), respectively.

where L3 is the volume of the system, p′ is momentum, and we approximate sums over momentum (or quasi-

momentum) by
∑

p′ → (L/2π~)3
∫
d3p′. Single-particle quantum states are used for the lattice component,

and we only consider atoms in the n = 0 and n = 1 bands.

For the intrinsic decay, depicted in (a) of Fig. 4.4, we apply FGR to collisions between two lattice atoms

assuming that dynamics are frozen along the x and y directions. The rate for collisions that scatter a pair

of atoms with quasimomentum q1z and q2z from the first-excited band (n = 1) into the ground (n = 0) and

second excited (n = 2) band is

Γll =
2π

~
∑
q′1z,q

′
2z

|〈ψ(0)
q′1z
ψ

(2)
q′2z
|Vint (r1 − r2)|ψ(1)

q1zψ
(1)
q2z 〉|

2δ
(
ε(0)(q′1z) + ε(2)(q′2z)− ε(1)(q1z)− ε(1)(q2z)

)
, (4.13)

where q′1z (q′2z) represents quasimomentum in the band n = 0 (n = 2). For determining Γll, we treat the

lattice atoms as uniform and contained in a cube of volume L3. We evaluate Γll using wavefunctions

ψ(n)
qiz (r) = w(0)(x)w(0)(y)φ(n)

qiz (z), (4.14)

where φ
(n)
qz (z) is the Bloch wavefunction in band n with quasimomentum qz along the lattice direction ẑ,
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and w(0)(x) and w(0)(y) are the Wannier wavefunctions for band n along the lattice directions x̂ and ŷ. The

coefficients c
(n)
j (qz) for the plane-wave expansion

φ(n)
qz (z) =

e
i
~ qzz

√
L

∞∑
j=−∞

c
(n)
j (qz)e

i2kjz (4.15)

and the non-interacting lattice dispersion ε(n)(qz) for band n (Section 1.1.3) are determined numerically

(with k = 2π/λ). We truncate the sum over plane-wave components to |j| ≤ 3 and approximate the

Wannier wavefunctions by the harmonic-oscillator ground states of the lattice wells. We average Γll over q1z

and q2z assuming a uniform distribution of initial quasimomentum, reflecting the high entropy per particle

we employ for the lattice component.

Given the non-interacting lattice dispersion ε(n)(qz) and the range of s we sample, the intrinsic decay

process should be prevented by the energy-conserving delta function in Γll, and thus, Γll = 0 (as concluded in

Section 4.3.1, at high enough lattice depths, energy conservation can not be fulfilled in binary collisions that

scatter non-interacting lattice atoms). The decay we observe is thus evidence that strong interactions may

play a central role in dynamics. In order to compare numerical predictions with the measured decay rate,

we relax energy conservation and represent the delta function in Γll by a Gaussian with root-mean-squared

radius

Ull =
4π~2as
m

∫
d3r |w(0)(x)|4|w(0)(y)|4|w(1)(z)|4, (4.16)

which is the Hubbard interaction energy between atoms in the first-excited band along the z direction and

in the ground band in the x and y directions. This approach is inspired by Fermi-liquid theory, in which

interactions lead to a finite quasiparticle lifetime and broadening of the spectral function.

To compute the bath-induced decay rate Γlb, we treat the lattice atoms as confined to single sites of

the lattice, which are approximated by three-dimensional harmonic oscillator potentials. The bath atoms

are described as a weakly interacting zero-temperature superfluid. We consider energy-conserving collisions

between a single lattice atom and the bath that cause the lattice atom to decay from the first to the ground

vibrational level along ẑ and produce a quasiparticle in the bath with momentum p, as illustrated in (b) of

Fig. 4.4. We compute

Γlb =
2π

~
∑
p

|〈Φp, ψ000|
∑
j

Vint (r− rj)|Φ0, ψ001〉|2δ (ε(p)− ~ωz) , (4.17)

where rj are the coordinates of the bath atoms, r is the coordinate of the lattice atom, |Φ0〉 is the ground

state of the SF bath, |Φp〉 is the bath with a Bogoliubov quasiparticle of momentum p and excitation
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spectrum ε(p), |ψnxnynz 〉 is the harmonic oscillator state with quantum numbers nx, ny, and nz, and ωz is

the vibrational frequency of the lattice well along ẑ (approximately Ebg/~ in the deep lattice limit). The

bath is treated as uniform and contained in a cube of volume L3.

Inserting the interaction potential into Eq. 4.17 leads to

Γlb =
2π

~

(
4π~2as
mL3

)2∑
p

|〈Φp|
∑
j

e
i
~p·rj |Φ0〉|2 |〈ψ000|e−

i
~p·r|ψ001〉|2 δ (ε(p)− ~ωz) . (4.18)

Given that ~ωz is much greater than the chemical potential of the bath, we approximate the SF dispersion

(expressed in Eq. 4.6) as ε(p) ≈ p2/2m, and we use the result

|〈Φp|
∑
j

e
i
~p·rj |Φ0〉|2 = n0L

3 p2

2mε(p)
≈ n0L

3 (4.19)

from Refs. [233,234]. The density in the center of the trapped SF is estimated according to the Thomas-Fermi

approximation for n0. The matrix element

〈ψ000|e−
i
~p·r|ψ001〉 = 〈ψ0|e−

i
~px·x|ψ0〉〈ψ0|e−

i
~py·y|ψ0〉〈ψ0|e−

i
~pz·z|ψ1〉 (4.20)

is evaluated using the formula for coherent coupling between 1D harmonic states presented in Eq. 2.32. The

bath-induced decay rate in Eq. 4.18 then becomes

Γlb ≈
2πn0L

3

~

(
4π~2as
mL3

)2 ∑
px,py,pz

(pzz0

~

)2

e−( pxx0
~ )

2−( pyy0~ )
2−( pzz0~ )

2

δ

(
p2

2m
− ~ωz

)
, (4.21)

where x0 =
√

~/(2mωx), y0 =
√
~/(2mωy), and z0 =

√
~/(2mωz).

We show predictions for τ with and without the bath present in Fig. 4.8. When the bath is present, we

account for both decay channels. The computed intrinsic time constant increases for higher s because the

phase space for collisions that conserve momentum and energy within Ull shrinks. In contrast, the bath-

induced decay rate is largely independent of s because the bandgap, which determines the density of states

of quasiparticle excitations in the bath, depends weakly on the lattice potential depth7.

The predicted and measured decay time constants τ agree within the experimental uncertainty at s =

16.2 ER and s = 18 ER, but disagree significantly at s = 13.5 ER. The FGR calculation we implement

is limited and should not be expected to entirely model the decay. We ignore the non-zero temperature

of the bath and the additional decay channels introduced by off-resonant Bragg excitations to the n = 2

7If each lattice site is approximated by a parabolic potential, then the bandgap scales as Ebg ∝
√
s.
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band, which is noticeable in (b) of Fig. 4.5. Including these effects is computationally intensive because a

large number of states must be included. Nevertheless, collisions involving atoms in the n = 2 band will

tend to increase the decay rate into the ground band, and therefore, our model is expected to overestimate

the decay time constant. On the other hand, fully including tunneling or implementing approaches such as

dynamical density-matrix renormalization group methods [235] to more accurately treat strong interactions

would require significant computational resources and is beyond the scope of this work.

4.6 Conclusions

We have investigated the dissipation mechanisms introduced to a band-excited, strongly interacting MI gas

in contact with a weakly interacting superfluid. We have identified two band-decay mechanisms for lattice

atoms in the first-excited band. In the intrinsic decay, two excited lattice atoms collide and one particle

decays to the ground band, while the second particle is promoted to the second-excited band. In the bath-

induced decay, the condensate exchanges energy and momentum with the excited lattice atoms, resulting in

an excited lattice atom decaying to the ground band and a Bogoliubov particle is created in the superfluid.

The bath-induced decay is a key element in the cooling scheme proposed in Ref. [58], in which bath atoms

act as a thermal reservoir and carry entropy away from the lattice-bound species. We have found that the

presence of the bath enhances the intrinsic decay rate and marginally increases the fraction of atoms in the

ground band. However, the presence of intrinsic decay, evident in Fig. 4.7, was not considered in Ref. [58]

and its occurrence may negatively impact the success of such cooling scheme (a small fraction of intrinsic

decay events can deposit a large amount of energy into the lattice gas). This problem could be mitigated by

employing a larger ratio N (b)/N (l) to increase the bath-induced decay rate (since the rate is proportional to

the bath density) or by utilizing Feshbach resonance [236] to transiently suppress the interactions between

lattice atoms.

The measured time constants for the bath-induced decay are in general consistent with the FGR calcu-

lations with no free parameters. The discrepancy at s = 13.5 ER may arise from dynamics introduced by

atoms promoted to higher energy bands, or from the non-zero temperature of bath. Studying such effects

would require more sophisticated techniques and substantial computational power which are beyond the

objective of this work.

We have observed that the intrinsic decay rate does not depend strongly on the lattice depth within the

range sampled (blue dots in Fig. 4.8). This is inconsistent with suppression of interparticle collisions for

deep lattices predicted by our FGR calculation (blue line in Fig. 4.8). The disagreement may indicate that
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strong interactions between lattice atoms could play a fundamental role in the intrinsic decay dynamics.

The study of quantum dynamics in strongly correlated systems is an active field of research.

In the future, the intrinsic decay process may be important to proposals for Bose condensation via

dissipation [202] and techniques for preparing ultracold gases in excited bands of optical lattices [237–240].

Furthermore, the lattice-bath interaction we have demonstrated may be a rich platform for exploring the

influence of dissipation on strongly correlated dynamics [213] and on exotic many-particle quantum states,

such as excited-orbital superfluids [63,65,241–243].

70



Chapter 5

Quasimomentum Relaxation and
Cooling

5.1 Introduction

Over the last decade, optical lattice experiments have proven to be a versatile platform for the study

of Hubbard models [80], which are our simplest paradigms of strongly correlated electronic solids [244].

However, our inability to reach temperatures much lower than the magnetic super-exchange energy has

prevented us from accessing new quantum regimes, such as the analog of d -wave superconductivity in the

cuprates [198]. Several cooling schemes in optical lattices have been proposed, such as immersion cooling [245]

and filter cooling [49–55], but experimental demonstrations have been limited [56, 57]. Notably, the kinetic

energy, or quasimomentum degree of freedom, has not been cooled directly and remains hotter than the Néel

temperature in experiments with fermionic atoms [27].

In this chapter, we have developed and demonstrated a promising novel technique for cooling the quasi-

momentum distribution of a strongly correlated atomic gas trapped in an optical lattice, which in principle

can operate with any atomic species. The entropy of the gas is reduced by ejecting the most energetic

atoms from the lattice, in direct analogy to evaporative cooling, where the entropy per particle of the system

decreases as atoms with energy greater than the ensemble average escape from the trap [230]. We have also

investigated thermalization in this lattice gas. Despite the importance of rapid thermalization to cooling

(since any cooling method requires that the cooling power exceed the heating mechanisms present in the

system [198]), it has remained essentially unexplored in experiments on strongly correlated quantum sys-

tem [246]. Remarkably, we have observed gas relaxation faster than the Hubbard parameters ~/t and ~/U ,

which can not be completely explained by a weakly interacting theory even for a low-density thermal gas.

In the next section, we describe the experimental parameters in our measurements. In Section 5.3,

we present a review of stimulated Raman excitation applied to quasimomentum selectivity (which was

generically described in Section 2.3.2). In Sections 5.4 and 5.5, we report the rethermalization and cooling

measurements, respectively.
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5.2 Experimental Procedure

We start the experiments with a partially condensed gas of 87Rb atoms in the |F = 1,mF = 0〉 state prepared

according to Section 1.1.1. The gas is confined in a 1064 nm crossed dipole trap with a geometric mean of

the trap frequencies of ω = 2π × (55 ± 5) Hz. The atom number in the trap is N = (84 ± 4) × 103, the

temperature is (91±4) nK, and the condensate fraction is N0/N = 0.23±0.02. A cubic optical lattice formed

from three pairs of counter-propagating laser beams with wavelength λ = 812 nm is exponentially ramped

up in 100 ms to a lattice depth s ranging from 4 ER to 8 ER (U/t = 1.3− 7.4), where ER = ~2π2/2md2 is

the recoil energy, m is the atomic mass, h = 2π~ is Planck’s constant, and d = λ/2 = 406 nm is the lattice

spacing. A 10.15 G uniform magnetic field is applied to the atom gas to suppress spin-exchange collisions.

The lattice-confined atoms are described by the Bose-Hubbard (BH) model (Eq. 1.12) with tunneling energy

t and interaction energy U , and the ratio U/t is adjusted by varying s [221]. The range of s and U/t

accessed in these measurements corresponds to the superfluid regime of the BH model (the phase diagram of

the BH model is illustrated in Fig. 3.2). The initial gas temperature in the lattice potential is (100±15) nK,

which is comparable with the bandwidth 12t of the ground band (at 4 ER, 12t ≈ 170 nK× kB and at 8 ER,

12t ≈ 60 nK× kB). The initial temperature is inferred from the temperature in the parabolic trap using a

non-interacting semiclassical calculation that conserves the entropy per particle during the lattice turn-on

(Appendix D).

5.3 Quasimomentum-Selective Raman Excitation

We use quasimomentum-selective stimulated Raman excitation to rapidly modify the quasimomentum dis-

tribution of the gas. The Raman light couples the ground band (n = 0) of the hyperfine state |↓〉 = |F =

1,mF = 0〉 to the first-excited band (n = 1) of the hyperfine state |↑〉 = |2, 0〉, as depicted in Fig. 5.1.

We have chosen to drive Raman excitations between spin states with mF = 0 because this transition is

insensitive against first order Zeeman shift, and consequently, robust against magnetic noise. The general

theoretical framework of Raman transitions is described in Chapter 2.

In our experimental configuration, the Raman laser beams provide a momentum impulse ~∆k = 1.45 qB

to the lattice-confined atoms along the lattice direction −ẑ (see part (ii) of Fig. 5.2), where qB = ~π/d. Such

momentum impulse is equivalent to a change in quasimomentum of ∆q = 2qB − 1.45 qB = 0.55 qB
1.

As described in Section 2.3.2, selectivity in quasimomentum is enabled by the difference in curvature

1The signs of ∆k and ∆q are with respect to the coordinates shown in Fig. 5.2
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Figure 5.1: Energy diagram of 87Rb confined in a lattice potential that illustrates quasimomentum-selective
stimulated Raman excitation (not to scale). Only the ground (n = 0) and first-excited (n = 1) bands in |↓〉
and |↑〉 are shown. A pair of Raman beams (solid red arrows) are used to selectively transfer atoms from
|↓, n = 0〉 to |↑, n = 1〉. The Raman beams with Rabi rates Ω1 and Ω2 are detuned by ∆ from the transition
to the 5P1/2 excited electronic state, and provide a quasimomentum impulse ∆q = 0.55 qB to the lattice-

confined atoms. The dashed blue arrow indicates the resonance frequency ω0 + [ε(1)(qz + ∆q) − ε(0)(qz)]/~
between the coupled states. The |↑〉 atoms are subsequently ejected from the trap using light resonant with
the 5S1/2, F = 2↔ 5P3/2 transition, which is indicated by the hollow arrow.
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between the ground and first-excited bands. The quasimomentum-dependent Raman detuning is given by

δ(qz) = ω1 − ω2 −
[
ω0 +

ε(1)(qz + ∆q)− ε(0)(qz)

~

]
(5.1)

and it is shown in Fig. 5.1. The quantity ω1 − ω2 is the relative frequency between the Raman beams,

ε(0)(qz) and ε(1)(qz) are the ground and first-excited energy bands associated with the lattice potential, and

the frequency offset ω0 accounts for the hyperfine splitting and second order Zeeman shift between |↓〉 and

|↑〉2. We measured a frequency offset of ω0 = 2π× (6834.742± 0.001) MHz at the quantization field 10.15 G

used in the experiments. The terms between brackets in Eq. 5.1 represent the resonance frequency between

the states |↓, n = 0〉 and |↑, n = 1〉, which is shown as a dashed blue arrow in Fig. 5.1.

When the Raman beams are pulsed on for ∆τ , the probability of exciting atoms from |↓, n = 0〉 to

|↑, n = 1〉 in the z direction is given by the Rabi formula

P (qz) =
Ω2

Ω2 + δ(qz)2
sin2

(√
Ω2 + δ(qz)2

∆τ

2

)
, (5.2)

where δ(qz) is the effective detuning defined in Eq. 5.1, Ω is the effective Rabi rate given by

Ω =
Ω1Ω∗2
2∆
〈↑, n = 1|ei∆qz·z/~| ↓, n = 0〉, (5.3)

Ω1 and Ω2 are the Rabi rates associated with each individual Raman beam, and ∆ is the detuning from

the 5S1/2 ↔ 5P1/2 transition. The Rabi rates are usually tuned by adjusting the laser light intensities.

The quasimomentum selectivity is controlled by choosing an appropriate combination of ω1 − ω2, Ω, and

∆τ [245].

5.4 Rethemalization

In our first experiment, we measure the quasimomentum relaxation of a lattice-trapped thermal gas in the

superfluid regime of the BH model after its quasimomentum distribution is brought out of equilibrium. We

employ quasimomentum-selective stimulated Raman excitation to rapidly remove atoms with low quasimo-

mentum (which include most of the condensed gas) along the z direction of the lattice, i.e., atoms with

qz ≈ 0.

The experimental sequence starts by pulsing the Raman beams on for 200 µs to excite atoms from |↓, n =

2The hyperfine splitting between |↓〉 and |↑〉 is approximately 6834.6826 MHz [73]. The second order Zeeman shift is a few
tens of kHz for a 10 G field.
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0〉 to |↑, n = 1〉. The relative frequency ω1 − ω2 has been tuned to target atoms with low quasimomentum.

We sweep ω1 − ω2 across resonance over 1.6 kHz with a central frequency in the range ω1 − ω2 = ω0 +

2π × (10− 14.8) kHz, which corresponds to the lattice depths s = (4− 8) ER explored in this chapter. The

Raman beams are detuned by ∆ = 2π × 200 GHz from the 5S1/2 ↔ 5P1/2 transition and the effective Rabi

rates employed vary within the range Ω = 2π× (3.2− 4.2) kHz. The experimental sequence is illustrated in

Fig. 5.2.

Immediately after the Raman light pulse, atoms in |↑, n = 1〉 are ejected from the trap by pulsing on light

resonant with the 5S1/2, F = 2 ↔ 5P3/2 transition for 50 µs. Thereafter, the remaining out-of-equilibrium

quasimomentum distribution is allowed to time evolve in the lattice potential for τhold = (0 − 10) ms. The

atom number of the remaining gas is N = (40± 6)× 103. The lattice is then bandmapped in 300 µs and the

gas is released from the dipole trap for 20 ms of free expansion. As described in the introduction chapter

(Section 1.1.6), bandmapping projects the quasimomentum distribution onto the free particle momentum

distribution and, consequently, atoms in excited bands appear outside the first BZ in TOF images.

Fig. 5.2 shows TOF images of intermediate stages of the atom removal procedure. Figure (i) shows the

quasimomentum distribution of the gas before the Raman pulse (i.e., all the atoms are in |↓, n = 0〉). Figure

(ii) is taken immediately after the Raman pulse excites atoms with low quasimomentum from |↓, n = 0〉 to

|↑, n = 1〉. Figure (iii) occurs immediately after the resonant light removes the |↑, n = 1〉 atoms from the

trap.

We show characteristic TOF images at different lattice hold times τhold in the inset of Fig. 5.3. We

observe that the quasimomentum distribution relaxes to the equilibrium distribution as τhold increases. The

gas becomes thermal once the condensed atoms are removed from the gas.

5.4.1 Image Processing

To quantify the quasimomentum relaxation of the gas, we fit a non-interacting semiclassical model to each

TOF image. The model describes the equilibrium quasimomentum distribution of a non-interacting bosonic

gas trapped in a combined lattice-parabolic potential (Appendix E). The model, projected onto the imaging

plane, is given by

n(q2, q3) = A

∞∑
j=1

e−2jβt(3−cos b)zj

j3/2

[
(π − a)I0(αj) + 2

∞∑
l=1

Il(αj)
sin l(π − a)

l

]
, (5.4)

where q2 and q3 are the horizontal and vertical directions in the absorption images, respectively (see Eq. E.2

and Fig. E.1), z is fugacity, Il is the modified Bessel function of the first kind, αj = 4jβt cos a, a =
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Figure 5.2: Experimental sequence for measuring thermalization in a lattice-trapped gas (not to scale). The
lattice potential is ramped up exponentially in 100 ms. The Raman light is pulsed on for 200 µs and the
relative detuning is tuned to target low quasimomentum. A resonant light is then pulsed on for 50 µs and
the gas is subsequently allowed to relax in the lattice potential for τhold. Absorption images are taken after
bandmapping in 300 µs and 20 ms of TOF. Figures (i)-(iii) are TOF images showing intermediate steps of
the sequence. The images have been obtained before (i) and immediately after (ii) the Raman pulse; and
subsequent to the resonant pulse (iii). The lattice directions are indicated by x̂, ŷ, and ẑ. The Raman beams
excite atoms in |↓, n = 0〉 with qz ≈ 0 to |↑, n = 1〉 with qz ≈ 0.55qB (light grey arrow). After bandmapping,
atoms in |↑, n = 1〉 appear outside the first BZ with momentum pz ≈ −1.45qB (dark grey arrow). The
projection of the first BZ onto the imaging plane is displayed with dashed lines.
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Figure 5.3: Typical TOF images of the gas after being brought out of equilibrium and held in the lattice
potential for τhold. The white line marks the first BZ.

Figure 5.4: Mean squared residual r2 versus τhold for s = 6 ER. The measure r2 is defined in Eq. 5.5 and
quantifies the relaxation of the gas in quasimomentum. Each data point corresponds to a single measure-
ment on an image such as those shown in Fig. 5.3. The red line is a single exponential-decay fit used to
determine the relaxation time constant τ . The offset from zero is consistent with imaging noise and failure
of bandmapping at the edge of the first BZ.
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Figure 5.5: Relaxation time constant for r2 at different lattice depths. These values are obtained from a
single exponential-decay fit to r2 versus τhold such as that shown in Fig. 5.4 for s = 6 ER. Because r2 relaxes
exponentially in time, atoms with quasimomentum qz ≈ 0 relax to equilibrium with an exponential time
constant of 2τ . The error bars display the fit uncertainty.

π|q2− q3|/(2qB), b = π(q2 + q3)/(
√

2qB), β = 1/kBT , qB = ~π/d, and A is a fitting constant. The derivation

of Eq. 5.4 is presented in Appendix E.

To measure the deviation of the quasimomentum distribution of the gas from equilibrium, we define the

mean squared residual of the fit as

r2 =

∑
ij(ODij − nij)2∑

ij 1
, (5.5)

where ODij is the optical depth of the absorption image, nij is the fit function given by Eq. 5.4 after

expansion time, and the summations in i and j extend over a mask that covers the first Brillouin zone (BZ)

projected onto the imaging plane. The mask size is reduced by 20% at the edge of the first BZ along ẑ to

account for failure of bandmapping [86]. We also mask out the residual condensate (less than 6% of the

initial condensate which occasionally remains in |↓, n = 0〉) using a circular mask with twice the Thomas-

Fermi radius. We measure r2 versus τhold for four different lattice depths: s = 4, 5, 6, and 8 ER. Fig. 5.4

shows r2 versus τhold for the particular case of s = 6 ER. For all lattice depths, we find that r2 versus τhold

is well described by a single exponential-decay fit, from which we extract a decay time constant τ . Because

r2 relaxes exponentially in time, we conclude that atoms with quasimomentum qz ≈ 0 relax to equilibrium

with an exponential time constant of 2τ .

In Fig. 5.5, we show τ for different lattice depths s. The relaxation time speeds up for a stronger lattice
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Figure 5.6: Relaxation of a thermal gas in a harmonic trap. The plot shows r2 versus τhold, where r2 is the
mean squared residual of a gaussian fit (defined in Eq. 5.5), and τhold is the evolution time in the harmonic
trap. Individual points are single measurements, and the red line is a damped sine-squared fit to the linear
response regime (τhold > 12 ms). The measured oscillation period is (11.7± 0.2) ms, and the damping time
constant is (44± 10) ms. The offset is consistent with imaging noise.

potential, ultimately reaching just 2τ ≈ 400 µs at s = 8 ER. The quasimomentum relaxation is always faster

than the timescale associated with both Hubbard energies, which lie within the range ~/t = (0.5− 1.5) ms

and ~/U = (0.2 − 0.4) ms for the lattice depths s = (4 − 8) ER sampled. Additionally, the relaxation time

is approximately two orders of magnitude faster than the time constant observed in the harmonic trap, as

we will discuss in the next subsection.

5.4.2 Momentum Relaxation in a Harmonic Trap

In order to test and validate our r2 analysis, we apply the same relaxation measurement to a gas confined in

a parabolic trap (i.e., without the lattice potential). Given that the thermodynamic properties of a weakly

interacting, semi-classical gas are well understood, we compare the experimental results against theoretical

calculations and numerical simulations.

We begin the measurement with a partially condensed gas with initial parameters similar to those used in

the lattice experiment. The gas is brought out of equilibrium by rapidly removing atoms with low momentum

along ẑ. The remaining atoms are allowed to relax for τhold = (0−100) ms and we fit a gaussian distribution

to each TOF image to determine the mean squared residual r2.

We plot r2 versus τhold in Fig. 5.6. We observe damped oscillations in r2 with a frequency matching that

of the harmonic trap. The data for τhold > 12 ms fit well to a damped sine-squared function with a damping
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time constant of (44 ± 10) ms. We exclude data taken at short τhold when the gas is far from equilibrium,

since the relaxation does not appear to be exponential in that region.

In a classical gas, the rate of (total) collisions is given by [247]

Γ = σn dwd vrel, (5.6)

where σ = 8πa2
s is the elastic collision cross section, as is the s-wave scattering length, ndwd is the density-

weighted density defined as

ndwd =

∫
d3r n(r) n(r), (5.7)

n(r) is the gas density, vrel is the mean relative speed defined as

vrel =
1

N2

x
d3p1 d

3p2
|p1 − p2|

m
Π(p1)Π(p2), (5.8)

Π(p) is the momentum distribution of the gas, and N is the atom number. For the particular case of a

harmonic trap we find

ndwd = N2

(
mω2

4πkBT

)3/2

(5.9)

and

vrel =

(
16kBT

πm

)1/2

. (5.10)

Under experimental parameters, we find that Eq. 5.6 predicts a collision time of N/Γ = 150 ± 40 ms.

In order to relate the predicted collision time to the damping time measured in Fig. 5.6, we use a 3D

molecular dynamics simulation of hard spheres confined in a harmonic trap to determine the average number

of collisions required for rethermalization after the gas is brought out of equilibrium. We consider 5000

particles with an initial Maxwell-Boltzmann distribution of velocities and positions. At the beginning of

the simulation, particles with speeds 20% smaller than the average are removed along one direction, which

approximately emulates the experimental procedure. Particle trajectories are then propagated using the

velocity-Verlet method. When an overlap between two particles is detected, the direction of the relative

velocity is randomized to simulate s-wave collisions (while preserving the center-of-mass velocity of the

pair). The velocity distribution is analyzed at each time step to compute the residual from the equilibrium

distribution. We observe behavior similar to that displayed in Fig. 5.6. A fit of an exponentially damped

oscillatory function to r2 versus the evolution time indicates that the damping time constant corresponds to

0.5 collision per particle for a wide range of particle diameters. Therefore, the measured time constant for
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relaxation in the dipole trap is consistent with N/Γ within a factor of two. The discrepancy between the

measured time constant and the inferred collision rate may arise from systematic uncertainty in the number

of particles, trap anharmonicity, and quantum degeneracy effects [248].

5.4.3 Fermi’s Golden Rule Prediction

The measured time constants shown in Fig. 5.5 are compared to a short-range, two-body scattering calcu-

lation based on Fermi’s golden rule (FGR), treating the Hubbard interaction term as a perturbation to the

single-particle tight-binding Hamiltonian3. This mechanism, which is analogous to electron-electron scatter-

ing, is distinct from the kinetic processes, such as electron-phonon and electron-impurity interactions that

dominate in most solid-state systems.

We consider a 3D classical gas initially at equilibrium in a cubic lattice potential plus an overall harmonic

confinement. We remove all the atoms at q = 0 and we calculate the relaxation rate of the occupation number

nq=0 to the equilibrium value. The relaxation time τ predicted by FGR is given by4

1

τ
=

4

~
〈n〉F

(
t

kBT

)
U2

t
, (5.11)

where the function F is plotted in Fig. 5.7 and is given by the integral

F (x) =

∫
d3θ1
(2π)3

d3θ2
(2π)3 e

−2x[C(θ1)+C(θ2)]2πδ(2C(θ1) + 2C(θ2)− 2C(θ1 + θ2))∫
d3θ

(2π)3 e−2xC(θ)
, (5.12)

with C(θ) =
∑
i=x,y,z(1−cos θi). The density-weighted average lattice filling 〈n〉 of the harmonically-trapped

gas is given by

〈n〉 = N

(
mω2d2

4πkBT

)3/2

, (5.13)

where N is the atom number and T is the temperature of the gas before it is brought out of equilibrium.

The derivation of Eq. 5.11 is presented in Appendix G.

We compare the relaxation times predicted by Eq. 5.11 with the experimental values shown in Fig. 5.5.

The initial gas temperature in the lattice (before bringing the gas out of equilibrium) is in the range Ti =

(96 − 102) nK and the corresponding lattice filling is 〈ni〉 = 0.11 − 0.16. The temperature is inferred

by matching the entropy per particle in the lattice to that of the harmonic trap (i.e., before loading the

gas into the lattice potential) using non-interacting semiclassical thermodynamics (Appendix D). For the

3At s = 8 ER, U ≈ 0.23 ER is only marginally smaller than the ground-band bandwidth 12t ≈ 0.38 ER. Beyond this
regime, interaction effects become dominant, and therefore, perturbation theories break down.

4This formula was derived by Professor Erich Mueller (Cornell University).
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Figure 5.7: Function F (x) from the FGR calculation. F (x) is defined in Eq. 5.12.

range s = (4 − 8) ER probed, the tunneling energy is in the range t/kBT ≈ 0.07 − 0.14, and therefore,

F (t/kBT ) ≈ 0.3. We have also inferred the gas temperature after equilibration in the lattice by measuring

the temperature in the parabolic trap after slowly ramping down the lattice in 100 ms. The equilibrium

temperature in the lattice is in the range Tf = (184 − 223) nK. The corresponding lattice filling is in the

range 〈nf 〉 = 0.04−0.05 and F (t/kBT ) ≈ 0.3. As mentioned before, the atom number in the lattice potential

is N = (40± 6)× 103.

In Fig. 5.8, we plot the measured relaxation rate 1/τ (normalized by the Hubbard tunneling rate t/~)

versus U2/t2. The dotted line represents Eq. 5.11. No free parameters were used for the theoretically

predicted τ , which is only constrained by the known experimental values. We have used the initial lattice

filling 〈ni〉 = 0.13 averaged across all lattice depths. By contrast, the final lattice filling (i.e., after relaxation

of the gas) does not reproduce the experimental results.

We find excellent quantitative agreement between the predicted and the measured relaxation rates at

s = 6 ER and s = 8 ER. This agreement is surprising considering that the relaxation time is short compared

with the time for an atom to tunnel between neighboring lattice sites, a condition that corresponds to a mean-

free path shorter than the lattice spacing and a violation of the Mott-Ioffe-Regel (MIR) bound [249]. The

MIR limit is the requirement that the uncertainty in the quasimomentum of a particle must be less than the

extend of the BZ for a semiclassical transport theory to be valid. The breakdown of the MIR bound has been

associated with unusual transport phenomena in metallic compounds that are not completely understood.

Remarkably, our simple kinetic theory works in this regime, even though it fails to capture rethermalization
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Figure 5.8: Normalized relaxation rate ~/tτ versus U2/t2. The dashed line represents the scaling law pre-
dicted by Eq. 5.11 using 〈ni〉 = 0.13 and F (t/kBT ) = 0.3. No free parameters were used in the theoretically
prediction. The points show the measured relaxation rate in Fig. 5.5. The error bars include the fit uncer-
tainty used to determine τ and the standard deviation of the mean temperature and atom number.

time at lower lattice depths. The measured normalized relaxation time does not scale linearly with U2/t2

and decreases less rapidly with U2/t2 than predicted by Eq. 5.11. The time constant τ is therefore smaller

(and the rethermalization rate faster) at lower lattice depths than the FGR prediction, which is surprising

because one would expect a perturbative calculation in U/t to be more accurate at lower lattice depths

(where interactions are weaker) and to break down as the lattice depth and interaction strength increase.

The failure of a scattering model at low lattice depths may be related to the long-debated breakdown of

quasiparticles and Fermi liquid theory in the low density limit of the Hubbard model (see Ref. [250], for

example).

5.5 Quasimomentum-Selective Raman Cooling

In a second experiment, we have demonstrated a novel technique for reducing the entropy of a superfluid gas

in an optical lattice which, in principle, works with any atomic species. The extraordinarily fast relaxation in

quasimomentum (compared with ~/t and ~/U) we observe enables efficient cooling by iteratively removing

the most energetic atoms of the gas from the ground band, in direct analogy to evaporative cooling [230].

In a proof-of-principle experiment, we demonstrate cooling in a partially condensed gas trapped in a 4 ER
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optical lattice. The 87Rb gas is prepared in the same hyperfine state and with the same initial conditions as

in the thermalization experiment. After the lattice potential is ramped up to 4 ER (U/t ≈ 1.3) in 100 ms,

the Raman beams and resonant light are consecutively pulsed on for ∆τ = 400 µs and 50 µs. For this

experiment, each Raman pulse is designed to remove only atoms with high quasimomentum, whereas the

condensate is left largely unaffected. The spatial configuration of the Raman beams allows to remove atoms

from one side of the first BZ along the z direction, as shown in (ii) of Fig. 5.9. After the resonant pulse, a

1 ms delay before the start of the next cooling cycle is included to allow the quasimomentum distribution

to equilibrate. After all the cycles are completed, the gas is held in the lattice potential for 4 ms before

bandmapping in 300 µs and TOF imaging. Fig. 5.9 illustrates the full experimental sequence.

The Raman beams couple the same spin states used in the thermalization experiment (i.e., |↓, n = 0〉

and |↑, n = 1〉), and the momentum impulse is also the same (i.e., ∆q = 0.55 qB). The beams are detuned

by ∆ = 2π × 430 GHz from the 5S1/2 ↔ 5P1/2 transition, and the effective Rabi rate is Ω = 2π × 1.0 kHz5.

For the first cooling cycle, we use ω1 − ω2 = ω0 + 2π × 15.8 kHz6. For the second cycle, we use ω1 − ω2 =

ω0 + 2π× 16 kHz instead to target quasimomenta slightly closer to qz = 0. The optimal Raman parameters

were found through maximization of the resulting condensate fraction.

In parts (i) and (ii) of Fig. 5.9, we show the quasimomentum distribution (projected onto the imaging

plane) immediately before and after atoms have been removed from the thermal component. In Fig. 5.10, we

plot the excitation probability P (qz) in Eq. 5.2 using the experimental parameters. The plot is qualitatively

consistent with the experimental image observed in (ii) of Fig. 5.9.

5.5.1 Cooling Power and Efficiency

We present the results from the cooling experiment in (a)–(d) of Fig. 5.11. In (a), we show the quasimomen-

tum profile of the gas along ẑ before (black) and after (shaded gray) two cooling cycles. We observe that

the width of the thermal component shrinks and the condensate number grows as the cooling sequence is

performed. For a quantitative analysis, we fit the TOF images using Eq. 5.4 plus an independent Thomas-

Fermi profile for the condensate. From the fit, we determine the number of thermal and condensed atoms,

the condensate fraction N0/N and the parameter βt = t/kBT which estimates the temperature of the gas.

The results of the semiclassical fits are shown in (b)–(d) of Fig. 5.11. In (b), we show the atom number

in the thermal component (N) and in the condensate (N0) as the cooling cycles are performed. We observe

that N decreases, since atoms are expelled from the trap, whereas N0 increases because of redistribution

of atoms from the thermal component to the condensate. We interpret this redistribution as a sign of

5At this Rabi rate, the pulse length applied is nearly a π-pulse.
6The relative Raman frequency ω1 − ω2 remains fixed during each Raman pulse.
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Figure 5.9: Experimental sequence for cooling a lattice-confined gas using quasimomentum-selective stimu-
lated Raman excitation (not to scale). During each cooling cycle, the Raman and resonant lights are pulsed
on for 400 µs and 50 µs, respectively. In a proof-of-principle experiment, we have carried out two cooling
cycles followed by 4 ms of equilibration time. Absorption images show the quasimomentum distribution
before a Raman pulse (i) and after a resonant-light pulse (ii).

Figure 5.10: Probability of exciting a particle from |↓, n = 0〉 to |↑, n = 1〉 using a Raman pulse along
qz (black line). The plot is calculated using Eq. 5.2 with ∆q = 0.55 qB , ω1 − ω2 = ω0 + (2π) × 15.8 kHz,
Ω = (2π)×1 kHz, and ∆τ = 0.4 ms. The probability profile qualitatively agrees with the experimental image
in (ii) of Fig. 5.9. The red lines show the energy bands ε(0) and ε(1) in the tight-binding approximation (the
frequency offset ω0 is not shown).
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Figure 5.11: Observables in the cooling experiment. (a) Quasimomentum profile along ẑ averaged over
3− 4 images before (black) and after (gray-shaded) two cooling cycles. (b) Atom number in the condensate
(triangles) and in the thermal component (circles) as the cooling cycles are performed. (c) and (d) show
the condensate fraction and the fit parameter βt, respectively, versus the cooling cycles (T is monotonically
related to 1/(βt)). Plots (b)–(d) are obtained by fitting the TOF images to a non-interacting semiclassical
model plus a Thomas-Fermi profile. The error bars represent the standard error of the mean.
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rethermalization of the gas during the cooling sequence. Moreover, the steady increase in the condensate

fraction N0/N shown in (c) is a direct evidence for reduction of entropy per particle during cooling. This

technique, therefore, may be used to reach new quantum phases that exist at ultra low entropies.

In part (d) of Fig. 5.11, we plot the parameter βt obtained from the semiclassical fit. Even though

temperature can not be accurately determined from βt = t/kBT because bandmapping fails at the edge of

the first BZ (refer to Section 1.1.6), 1/(βt) is monotonically related to T [85], and therefore, a decrease in

1/(βt) is an unambiguous signal of reduction in temperature, as we observe in the plot. Such decrease in

temperature further suggests that the gas has achieved thermal equilibrium during cooling.

A measure of efficiency for any evaporative cooling scheme is

α =
d logN

d log T
. (5.14)

A small value of α indicates efficient cooling—fewer atoms are removed for the same change in T . To calculate

α for our method, we use the values of N shown in (b) of Fig. 5.11, and we estimate T by matching the

condensate fraction measured in (c) to that obtained from a semiclassical model (Appendix D). The resulting

efficiency parameter is α = 1.75 ± 0.04. This performance compares favorably with recent results for non-

lattice gases, including α ≈ 1.5 and 1.9 for “tilt” evaporation in a hybrid magnetic-optical trap [67,251] and

α ≈ 2.7 for dipole-trap evaporation of 87Rb [252].

The ultimate limit to the lowest temperature achievable by any cooling method is determined by compe-

tition between cooling and heating rates—cooling ceases when the two are equal. The heating rate in optical

lattices is primarily determined by momentum diffusion resulting from the interaction between the laser light

and atoms [253]. This effect can be minimized by detuning the laser far from any electronic transition. In

our experiment, the heating rate induced by the three lattice beams is 0.15 ER/s = 25 pK/ms at s = 4 ER

(estimated using Eq. 1.10), while the cooling power, based on the data shown in (c) of Fig. 5.11, is approx-

imately 9 nK × kB/ms (corresponding to 0.6 t/ms). This extraordinary cooling power is possible because

of the high thermalization rate. In the regime we explore, heating from the lattice is not a limitation to

the cooling method. An analysis of the cooling power at lower temperatures and for fermions would require

developing a method for quantitatively predicting the thermalization rate.

In principle, more cooling cycles could have been carried out in our experiment, since there are no

technical limitations to this method other than phase noise in the Raman pulses. However, temperature

drift in the gas preparation (via forced evaporative cooling in the dipole trap) has constrained our time

window for data acquisition. In the next subsection, we will see that the ultimate cooling limit of this
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Figure 5.12: Excitation probability of a Raman pulse when ∆q = 0.05 qB (black lines). As shown in this
plot, both sides of the first BZ can be addressed simultaneously when ∆q is small enough compared with qB .
The parameters used in this calculation are s = 4 ER, ∆q = 0.05 qB , Ω = (2π) × 1 kHz, ∆τ = 0.4 ms, and
three different detunings: ω1−ω2 = ω0 +(2π)×6.7 kHz (solid), ω1−ω2 = ω0 +(2π)×7.7 kHz (dashed), and
ω1−ω2 = ω0 +(2π)×10 kHz (dotted). The red lines show the energy bands ε(0) and ε(1) in the tight-binding
approximation. The frequency offset ω0 is not shown.

technique, as applied to bosonic atoms, is determined by selectivity in quasimomentum together with the

finite momentum spread of the condensate.

5.5.2 Scalability

In our proof-of-principle cooling experiment, the quasimomentum impulse ∆q = 0.55 qB employed only

allows removing atoms from one side of the first BZ at a time (along ẑ). A more efficiency scheme would be

to address both sides of the BZ simultaneously, which could be achieved by using a smaller ∆q compared with

qB = ~π/d. As an example, in Fig. 5.12 we use Eq. 5.2 to predict the excitation profile for ∆q = 0.05 qB (black

lines). We observe that both sides of the first BZ can be targeted simultaneously (solid) and, furthermore,

different quasimomenta can be progressively targeted by adjusting the relative Raman frequency ω1 − ω2

(dashed and dotted). In practice, a small ∆k could be implemented by using a small relative angle between

the Raman beams. The drawback of this configuration is the need for more laser power given that the

effective Rabi rate decreases with ∆k, as shown in (a) of Fig. 2.3.

The cooling efficiency can be further improved by simultaneously driving quasimomentum-selective Ra-

man excitation along more lattice directions. In practice, this can be achieved by implementing additional
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Raman beams in the system. We numerically investigate the cooling performance under realistic heating

mechanisms when the cooling sequence is simultaneously applied along one, two, and three lattice directions.

We start the simulation with a non-interacting semiclassical model which describes the 3D equilibrium quasi-

momentum distribution of a bosonic gas in a lattice potential (Appendix D). We emulate the atom-removal

step by truncating the quasimomentum distribution beyond a certain threshold ε · qB (exemplified in (f) of

Fig. 5.13), where ε ranges from 0 to 1. Subsequently, we emulate the rethermalization process by calculating

the new equilibrium temperature of the system via energy conservation. For example, in the case of cooling

along three lattice directions, the truncated kinetic energy is given by

Kε(T0) =

∫ ε·qB

−ε·qB

∫ ε·qB

−ε·qB

∫ ε·qB

−ε·qB
d3q 2t

∑
i=x,y,z

[1− cos (πqi/qB)]n(qx, qy, qz), (5.15)

where n(qx, qy, qz) is the equilibrium quasimomentum distribution at temperature T0 (Eq. D.10). The new

equilibrium temperature T1 after thermalization is determined from

K(T1) + V (T1) = Kε(T0) + V (T0) + Ė∆τ, (5.16)

where Ė is the heating rate associated with the three lattice beams (Ė = 25 pK/ms at s = 4 ER), ∆τ is

the duration of a cooling cycle, and K and V are the equilibrium kinetic and potential energies of the gas

(Appendix D).

In Fig. 5.13, we show the cooling simulation performed on a 3D gas with initial atom number N = 1×105,

temperature T = 50 nK, and condensate fraction N0/N ≈ 0.6. We iteratively reduce the cutoff parameter

ε using the exponential function shown in (a), which has not been optimized. In (b)–(e), we show the atom

number N , gas temperature T , condensate fraction N0/N and entropy per particle S/N versus the number

of cooling cycles. The 1/2D line (black squares) corresponds to the case where atoms are removed from one

side of the first BZ along one of the lattice vectors, as we have demonstrated experimentally. The 1D line

(red circles) represents the case where atoms on both sides of the first BZ are addressed simultaneously.

The 2D (blue triangles) and 3D (magenta diamonds) cases refer to the extension of the technique into the

orthogonal directions using additional pairs of beams. We observe that the cooling efficiency improves as the

technique is extended beyond 1D, and S/N approaches to zero in a reasonable number of steps in the 2D and

3D cases. We conclude that realistic heating rates from the optical lattice are not a limitation to cooling.

Ultimately, the spread in momentum of the condensate, which was not considered in the simulation, sets

practical limitations to quasimomentum selectivity on the thermal component of the gas. On the other hand,

Pauli blocking [254] and hole heating [255] may limit the lowest temperatures achievable by this method for
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Figure 5.13: Semiclassical simulation of cooling a 3D gas in a cubic lattice (s = 4 ER) using quasimomentum-
selective Raman excitation. The quasimomentum distribution is truncated along one (1/2D and 1D), two
(2D), and three (3D) lattice directions. (a) Quasimomentum cutoff parameter ε versus cooling iteration.
(b) Atom number N . (c) Temperature T . (d) Condensate fraction N/N0. (e) Entropy per particle S/N .
The 1/2D schemes refers to removing atoms from one side of the quasimomentum distribution at a time, as
exemplified in (f). For the 1D, 2D, and 3D cases, both sides of the quasimomentum distribution are targeted
simultaneously. The cooling parameters have not been optimized.
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fermionic atoms. An analysis of strong interaction effects that may also introduce difficulties is beyond the

scope of this work.

5.6 Conclusions and Outlook

We have developed a novel cooling technique that selectively removes atoms with large quasimomentum

from a lattice-trapped gas. In a proof-of-principle experiment, we have demonstrated for the first time direct

cooling of the kinetic energy of a bosonic gas in the Hubbard superfluid regime. The observed reduction in

condensate fraction is an evidence for a gas with lower entropy.

Even though thermalization is a key factor for any cooling scheme, it has remained largely unexplored

by experiments with strongly correlated systems [256]. In this chapter, we have measured for the first time

(to our knowledge) rethermalization rates in a three-dimensional, strongly interacting gas confined in an

optical lattice. The rethermalization process observed is extremely fast compared with ~/t and ~/U , and

sufficiently rapid to support cooling rates that exceed the heating mechanisms present in the system.

We have compared the experimental equilibration time to a prediction based on FGR with no free

parameters. The observed deviation from the FGR calculation at low lattice depths (s ≈ 4 ER) highlights

the need for a better understanding of dynamics in strongly correlated systems. While density matrix

renormalization group approaches can predict dynamics in 1D for short times, there is no method, to

our knowledge, for simulating dynamics with controlled uncertainty in this 3D strongly interacting system.

Furthermore, exact equilibrium theories, such as quantum Monte Carlo simulations, do not yet have access to

the full range of excited states in trapped systems for large N needed to describe our system (quantum Monte

Carlo has recently been applied to time evolution in 1D and 2D [257]). Understanding out-of-equilibrium

phenomena and dynamics in 3D strongly correlated systems remains an outstanding problem [6].

Numerical simulations based on a non-interacting semiclassical model show that the cooling power and

efficiency in our cooling method can be dramatically enhanced by addressing both sides of the first BZ

simultaneously along the three lattice directions. The ultimate limit of this cooling technique, as applied to

bosons or fermions, must be further investigated.

In the future, this cooling method, which is applicable to any atomic species, could be used on fermionic

atoms trapped in optical lattices in order to reach exotic quantum states that may exist at low entropy

per particle [60, 62]. Further studies of relaxation in this system may contribute to our understanding of

thermalization in closed quantum systems [246] and transport in materials that also display a violation of

the MIR bound [249].

91



Appendix A

Bogoliubov-de-Gennes Equations

In this section, we derive the spectrum of a weakly interacting Bose-Einstein condensate [71]. The time-

dependent Gross-Pitaevskii equation is given by [71]

[
− ~2

2m
∇2 + V (r)− µ+ g|Ψ(r, τ)|2

]
Ψ(r, τ) = i~

∂

∂τ
Ψ(r, τ) (A.1)

where τ is time, µ is the chemical potential, V (r) is a time-independent external potential acting on the

system, and g = 4π~2as/m is the interaction parameter. In order to solve Eq. A.1 for Ψ(r, τ), we consider

small deviations from the ground state Ψ0(r) in the form

Ψ(r, τ) = e−iµτ/~
[
Ψ0 + u(r)e−iωτ + v∗(r)eiωτ

]
. (A.2)

Substitution of Eq. A.2 into Eq. A.1, where we have only kept the linear terms in u and v. Matching the

terms with e−iµτ/~ in A.1 leads to the equation for the ground state

H0Ψ0 + g|Ψ0|2Ψ0 = µΨ0, (A.3)

where we have defined the single-particle Hamiltonian H0 = −~2∇2/2m+ V (r). Analogously, matching the

terms with e−i(µ+~ω)τ/~ and e−i(µ−~ω)τ/~ leads to the Bogoliubov-de-Gennes (BdG) equations

H0 + 2g|Ψ0|2 − µ gΨ2
0

gΨ∗20 H0 + 2g|Ψ0|2 − µ


u
v

 = ~ω

 u

−v

 . (A.4)

In the particular case of a uniform Bose gas (i.e., V (r) = 0), the single-particle Hamiltonian H0 is that

of a free particle, H0 = ~2k2/2m, µ = g|Ψ0|2, and the excitations are plane waves

u =
uk√
V
eik·r v =

vk√
V
eik·r (A.5)
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where k is wavevector and V is the volume of the system. The BdG equations then reads

~2k2

2m + g|Ψ0|2 gΨ2
0

gΨ∗20
~2k2

2m + g|Ψ0|2


u
v

 = ~ω

 u

−v

 . (A.6)

Therefore,

~ω =
√
ε0(k)[ε0(k) + 2g|Ψ0|2] (A.7)

where ε0(k) = ~2k2/2m is the free-particle energy.
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Appendix B

Time-Splitting Spectral Method

In Chapter 3, we have employed the time-splitting spectral method to solve numerically the time-dependent

Gross-Pitaevskii equation (GPE)

[
− ~2

2m
∇2 + V (r)− µ+ g|ψ(r, τ)|2

]
ψ(r, τ) = i~

∂

∂τ
ψ(r, τ). (B.1)

This method is numerically stable and accurate with limited grid points [258].

The time-splitting spectral method propagates the GPE in time through steps ∆τ , with the linear and

nonlinear parts are treated separately, namely

i~
∂

∂τ
ψ(r, τ) =

(
V (r)− µ+ g|ψ(r, τ)|2

)
ψ(r, τ) (B.2a)

i~
∂

∂τ
ψ(r, τ) = − ~2

2m
∇2ψ(r, τ), (B.2b)

where τ is in the time interval [τn, τn + ∆τ ]. Each equation is solved separately and the final solution is

combined using the Strang-splitting formula [259]. If we consider the solutions to Eq. B.2a and Eq. B.2b as

Φ1,τ and Φ2,τ , respectively, then

ψ(τn + ∆τ) = (Φ1,∆τ/2 ◦ Φ2,∆τ ◦ Φ1,∆τ/2)(ψ(τn)). (B.3)

To solve Eq. B.2a, we first notice that ∂ψ/∂τ ·ψ∗ is a pure imaginary number, and therefore, ∂|ψ|2/∂τ =

2 Re (∂ψ/∂τ · ψ∗) = 0, which implies that |ψ(r, τ)|2 is time-invariant during each time step. Consequently,

U defined as U = V (r) − µ + g|ψ(r, τn)|2 is time independent, and therefore, the solution to Eq. B.2a is

simply

ψ(r, τn + ∆τ) = e−
i∆τ
~ Uψ(r, τn). (B.4)

On the other hand, Eq. B.2b can be efficiently solved using the spatial fast Fourier transform FFT {·}. We
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therefore find

ψ̃(k, τn + ∆τ) = e−
i~k2

2m ∆τ ψ̃(k, τn), (B.5)

where ψ̃(k, τ) = FFT {ψ(r, τ)}.

Combining Eqs. B.4 and B.5 via Eq. B.3 yields

ψ(r, τn + ∆τ) = e−
i∆τ
2~ UFFT −1

{
e−

i~k2∆τ
2m FFT

{
e−

i∆τ
2~ Uψ(r, τn)

}}
. (B.6)

The time and spatial discretization errors are O(∆τ3) and O(∆L2), respectively, where ∆τ is the time step

and ∆L is the mesh size [258].

The algorithm defined in B.6 can also be used to find the ground state of the GPE under a Wick rotation

on the time coordinate, i.e., τ → −iτ ′.
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Appendix C

Two-Level System

Given a two-level atomic system

Ĥ0 = ~ωg|g〉〈g|+ ~ωe|e〉〈e|, (C.1)

where |g〉 and |e〉 are the ground and excited states respectively, and an electric field E = E0 cosωτ that

induces on the atom a dipole moment d = −er. The oscillatory electric field couples both energy levels

through the interaction Hamiltonian

Ĥ1 = ~Ω cosωτ |e〉〈g|+ ~Ω∗ cosωτ |g〉〈e| (C.2)

where

Ω = −〈e|d̂ ·E0|g〉/~ (C.3)

is the Rabi rate. Under the ansatz |ψ〉 = cg(τ)|g〉+ ce(τ)|e〉, the Schrödinger equation reads

i~
d

dτ

cg
ce

 = ~

 ωg Ω∗ cosωτ

Ω cosωτ ωe


cg
ce

 (C.4)

It is evident that the Hamiltonian on the right hand side is equivalent to

H =
~
2

ω̄ 0

0 ω̄

+
~
2

 −ω0 2Ω∗ cosωτ

2Ω cosωτ ω0

 , (C.5)

where ω0 = ωe−ωg and ω̄ = (ωg +ωe)/2. The diagonal matrix corresponds to an overall shift in energy and

it will be ignore in the following calculation.

To eliminate the time dependence in the matrix, we switch to a co-rotating frame through the unitary

transformation |ψ̃〉 = U†|ψ〉, where

U =

eiωτ/2 0

0 e−iωτ/2

 , (C.6)
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where the Hamiltonian transforms as H̃ = U†HU − i~U†∂U/∂τ . The new Schrödinger equation reads

i~
d

dτ

c̃g
c̃e

 =
~
2

 δ Ω∗
(
1 + e−i2ωτ

)
Ω
(
1 + ei2ωτ

)
−δ


c̃g
c̃e

 (C.7)

where δ = ω − ω0.

The time evolution of Eq. C.7 has three different time scales: |δ|, 2ω, and |Ω|, and usually 2ω is much

larger than |δ| and |Ω|. Consequently, the fast oscillating term in Eq. C.7 can be averaged out under a

rotating-wave approximation (RWA) [117], which results in

i~
d

dτ

c̃g
c̃e

 =
~
2

δ Ω∗

Ω −δ


c̃g
c̃e

 . (C.8)

Alternative approaches that include the counter-rotating terms are presented in Ref. [71, 260,261].

The eigenenergies of Eq. C.8 are

E± = ±~
2

√
δ2 + |Ω|2, (C.9)

and the respective (unnormalized) eigenvectors are

v± =

δ ±√|Ω|2 + δ2

Ω

 . (C.10)

If we assume that the system is initially in the ground state, i.e., cg(0) = 1 and ce(0) = 0, the explicit

time evolution of the system is

c̃g
c̃e

 =

cos (
√
|Ω|2 + δ2 τ

2 )− iδ√
|Ω|2+δ2

sin (
√
|Ω|2 + δ2 τ

2 )

− iΩ√
|Ω|2+δ2

sin (
√
|Ω|2 + δ2 τ

2 )

 , (C.11)

and the wavefunction evolves in time as

|ψ〉 = U |ψ̃〉 = c̃g(τ)eiωτ/2|g〉+ c̃e(τ)e−iωτ/2|e〉. (C.12)
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Appendix D

Semiclassical Thermodynamics

We present details of the thermodynamic model used in Chapters 3 and 4 for estimating the temperature,

entropy, and energy of a non-interacting gas trapped in a lattice potential. We first derive the tight-

binding energy of a single particle in the lattice. We then calculate the quasimomentum distribution of a

non-interacting atomic ensemble and we use it as a starting point for deriving thermodynamic quantities.

Semiclassical thermodynamics in optical lattices have previously been used for studying thermometry and

bandmapping in ultracold gases [77, 85]. A thorough discussion on the validity of the tigh-binding model

and the semiclassical approximation can be found in Ref. [72]. Exact quantum Monte Carlos simulations for

a bosonic gas in the superfluid regime of the Bose-Hubbard model have been performed in Ref. [262,263].

D.1 Tight-Binding Approximation

The Hamiltonian of a particle with mass m confined in a simple cubic lattice potential with lattice spacing

d and an overall harmonic potential with frequency ω is

Ĥ =
p̂2

2m
+ s

∑
i=x,y,z

cos2 (πx̂i/d) +
1

2
mω2

∑
i=x,y,z

x̂2
i , (D.1)

where s is the lattice potential depth. Eq. D.1 is diagonalizable using Bloch wavefunctions in the form

φq(x) =
1√
Ns

∑
j

e
i
~ qjdw(x− jd), (D.2)

where q is quasimomentum, Ns is the number of lattice sites and w(x) represents a localized Wannier function

about the origin. In 1D we obtain

ε(q, x) =

∫
dx′ φ∗q(x

′)H0(x′)φq(x
′) +

1

2
mω2x2

=
1

Ns

∑
j,j′

e
i
~ q(j−j

′)d

∫
dx′ w∗(x′ − jd)H0(x′)w(x′ − j′d) +

1

2
mω2x2, (D.3)
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where H0(x) = −(~2/2m)∇2 + s cos2 (πx/d) is periodic in x with period d. In the tight-binding approxima-

tion, the sum over j′ is truncated to the nearest-neighbor terms, i.e., j′ = j, j± 1. In practice, this is a good

approximation once the lattice depth s ? 4 ER (see Chapter 2.3 in Ref. [72], for example).

If we define the offset energy as

ε0 =

∫
dx′ w∗(x′)H0(x′)w(x′) (D.4)

and the tunneling energy as

t = −
∫
dx′ w∗(x′)H0(x′)w(x′ − d), (D.5)

then we obtain

ε(q, x) =
1

Ns

∑
j

(
ε0 − te−

i
~ qd − te i~ qd

)
+

1

2
mω2x2

= 2t [1− cos (qd/~)] +
1

2
mω2x2, (D.6)

where, without loss of generality, we have chosen ε0 = 2t. Finally, we extend the result to a cubic lattice as

ε(qx, qy, qz, x, y, z) = 2t
∑

i=x,y,z

[1− cos (πqi/qB)] +
1

2
mω2

∑
i=x,y,x

x2
i , (D.7)

where qi is quasimomentum in the lattice direction i and qB = ~π/d.

D.2 Quasimomentum distribution

In this section, the quasimomentum distribution of the gas is derived using the grand canonical ensemble

with the eigenenergies found in Eq. D.7. To evaluate sums over the quantum states (i.e., quasimomentum

and position), we use a semiclassical approximation in which states are “coarse-grained” and sums over

states are approximated by integrals [71]. In order for the semiclassical approximation to remain valid,

the quantum states have to be densely populated. Such condition is satisfied in the context of a gas in a

harmonic-plus-lattice confinement when kBT � ~2π2/(2mL2) (for quasimomentum) and kBT � ~ω (for

position) or, equivalently, when the thermal wavelength λT = h/
√

2πmkBT is much smaller than the linear

size of the system L and the length scale over which the trapping potential varies significantly, a =
√

~/(mω).

In our experiments, λT is typically a few hundred of nm, while a and L are tens of µm.

The quasimomentum distribution of a non-interacting gas in a harmonic-plus-cubic-lattice potential is
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calculated as

n(qx, qy, qz) =
1

h3

∫
d3r

1

z−1eβE(qx,qy,qz,x,y,z) ∓ 1

=
4π

h3

∫ ∞
0

dr r2 1

z−1e2βt
∑
i[1−cos (πqi/qB)]e

1
2βmω

2r2 ∓ 1
, (D.8)

where z = eβµ is fugacity, β = (kBT )−1 and the −/+ sign corresponds to bosons/ fermions. After making

the change of variables u = βmω2r2/2, the quasimomentum distribution becomes

n(qx, qy, qz) =
2π

h3

(
2

βmω2

)3/2 ∫ ∞
0

du

√
u

z−1e2βt
∑
i[1−cos (πqi/qB)]eu ∓ 1

. (D.9)

The integral is equal to ±2−1
√
π Li3/2(±ze−2βt

∑
i[1−cos (πqi/qB)]), where Li3/2 is the polylogarithm function1.

Therefore,

n(qx, qy, qz) = ± 1

~3(2πβmω2)3/2
Li3/2(±ze−2βt

∑
i[1−cos (πqi/qB)])

= ±
(
a2

~λT

)3

Li3/2(±ze−2βt
∑
i[1−cos (πqi/qB)]). (D.10)

D.3 Non-condensed atom number

Integration of Eq. D.10 over the first Brillouin zone results in the total atom number of the non-condensed

gas (the integral does not properly take into account the condensate), namely

N = ±
(
a2

~λT

)3 ∫
d3q Li3/2(±ze−2βt

∑
i[1−cos (πqi/qB)]). (D.11)

The polylogarithm function can be expressed as an infinite series2, which leads to

N = ±
(
a2

~λT

)3 ∞∑
j=1

(±z)je−6βtj

j3/2

(∫ qB

−qB
dq e2βtj cos (πq/qB)

)3

. (D.12)

1Lis(±z) = ± 1
Γ(s)

∫∞
0 du us−1

z−1eu∓1
2Lis(z) =

∑∞
j=1

zj

js
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Under the change of variables θ = πq/qB , the integral between parentheses becomes 2qB/π
∫ π

0
dθ e2βtj cos θ

and it can be expressed in terms of modified Bessel functions of the first kind3. We find

N = ±8π3

(
a2

λT d

)3 ∞∑
j=1

(±z)je−6βtjI3
0 (2βtj)

j3/2
. (D.13)

D.4 Kinetic and Potential Energy

The average potential energy is given by

V =
2πmω2

h3

∫
d3q

∫ ∞
0

dr r4 1

z−1e2βt
∑
i[1−cos (πqi/qB)]eβmω2r2/2 ∓ 1

=
πmω2

h3

(
2

βmω2

)5/2 ∫
d3q

∫ ∞
0

du
u3/2

z−1e2βt
∑
i[1−cos (πqi/qB)]eu ∓ 1

= ±6(2π)3/2mω2

4h3

(
1

βmω2

)5/2 ∫
d3q Li5/2(±ze−2βt

∑
i[1−cos (πqi/qB)])

= ±12π3

β

(
a2

λT d

)3 ∞∑
j=1

(±z)je−6βtjI3
0 (2βtj)

j5/2
. (D.14)

On the other hand, the average kinetic energy is given by

K =

∫
d3q 2t

∑
i=x,y,z

[1− cos (πqi/qB)]n(qx, qy, qz)

= 6tN − 6t

∫
dq3 cos (πqx/qB)n(qx, qy, qz), (D.15)

where the last integral is equal to

∫
dq3 cos (πqx/qB)n(qx, qy, qz) ± 1

(2πβmω2)3/2~3

∫
d3q cos (πqx/qB) Li3/2(±ze−2βt

∑
i[1−cos (πqi/qB)])

= ± 1

(2πβmω2)3/2~3

∞∑
j=1

(±z)je−6βtj

j3/2

(∫
dq e2βtj cos (πqi/qB)

)2

×

×
∫
dq cos (πq/qB) e2βtj cos (πq/qB)

= ± 8q3
B

(2πβmω)3/2~3

∞∑
j=1

(±z)je−6βtjI1(2βtj)I2
0 (2βtj)

j3/2
. (D.16)

Therefore,

K = ±48 t

(
a2

λT d

)3 ∞∑
j=1

(±z)je−6βtjI2
0 (2βtj) [I0(2βtj)− I1(2βtj)]

j3/2
. (D.17)

3Ij(z) = 1
π

∫ π
0 dθ ez cos θ cos jθ
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D.5 Grand potential

The grand potential is

Ω = ± 1

βh3

∫
d3r

∫
d3q ln

(
1∓ ze−βE(qx,qy,qz,x,y,z)

)
= ± 4π

βh3

∫ ∞
0

dr r2

∫
d3q ln

(
1∓ ze−2βt

∑
i[1−cos (πqi/qB)]− 1

2βmω
2r2
)
. (D.18)

Expansion of the natural logarithm as an infinite series4 leads to

Ω = ∓ 4π

βh3

∞∑
j=1

(±z)je−6βtj

j

∫ ∞
0

dr r2e−
jβmω2r2

2

∫
d3q e2βtj

∑
i cos (πqi/qB). (D.19)

The first and second integrals are equal to
√

2π(2(jβmω2)3/2)−1 and 8q3
BI

3
0 (2βtj), respectively. Therefore,

Ω = ∓8π3

β

(
a2

λT d

)3 ∞∑
j=1

(±z)je−6βtjI3
0 (2βtj)

j5/2
. (D.20)

D.6 Entropy

In the grand canonical ensemble, the gas entropy is expressed by the formula

S = −∂Ω

∂T
=
E − µN − Ω

T
, (D.21)

where N is the total particle number given by Eq. D.13, Ω is the grand potential given by Eq. D.20, and

E = K + V is the total energy with K and V given by Eq. D.17 and Eq. D.14, respectively.

4ln(1 + x) =
∑∞
j=1

(−1)j+1xj

j
for − 1 < x ≤ 1
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Appendix E

Quasimomentum Distribution:
Projection onto the Imaging Plane

In Chapter 5, we have fit a model of the quasimomentum distribution of the lattice gas projected onto the

imaging plane to the TOF absorption images. In the present Appendix, we derive an analytical expression

for this model.

The quasimomentum distribution of a 3D non-interacting bosonic gas confined in a 3D cubic lattice

potential is (see Appendix D)

n (qx, qy, qz) ∝ Li3/2

(
ze−2βt

∑
i=x,y,z(1−cos(πqi/qB))

)
, (E.1)

where Li is the polylogarithm function1, z is fugacity, t is the tight-binding tunneling energy, β = 1/kBT qB =

~π/d, d is the lattice spacing, and qx, qy, qz are quasimomenta in the lattice directions x̂, ŷ, ẑ, respectively. In

our imaging system, none of the three lattice directions are parallel to the imaging axis. In order to project

n(qx, qy, qz) onto the imaging plane, we define the coordinates q1, q2, and q3 in the basis {x̂1, x̂2, x̂3} defined

in Section 1.1.1, where x̂1 is parallel to the imaging axis, as shown in Figs. 1.2, 1.5 and E.1. Both sets of

coordinates are mutually related via the transformation

qx = − q1√
2
− q2

2
+
q3

2

qy =
q1√

2
− q2

2
+
q3

2

qz =
q2√

2
+

q3√
2

(E.2)

Eqs. E.2 are determined by the spatial configuration of the lattice beams and the imaging system in our

apparatus.

Projection of the gas onto the imaging plane is computed as the column integration of Eq. E.1 along x̂1,

namely

n (q2, q3) =

∫
dq1 n (qx, qy, qz) (E.3)

1The polylogarithm function is defined as Lis (z) =
∑∞
j=1

zj

js
.
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Figure E.1: Spatial configuration of the lattice wavevectors x̂, ŷ, ẑ and the coordinates x̂1, x̂2, x̂3 defined in
Section 1.1.1 (we follow the right-hand rule convention). The first BZ in both figures is delimited by the
dashed lines. (a) The first BZ as seen through the camera. The dots in the image indicate the reciprocal
lattice. (b) The first BZ viewed from a different angle. Projection of the gas onto the imaging plane occurs
along x̂1.

with qx, qy, and qz given by Eq. E.2.

The series expansion of the polylogarithm function leads to

n (q2, q3) ∝
∞∑
j=1

e−2jβt[3−cos(πqz/qB)]zj

j3/2

∫
dq1 e

2jβt[cos(πqx/qB)+cos(πqy/qB)], (E.4)

where the integral can be written as2

I =

∫
dq1 e

4jβt cos
(
π
2
q3−q2
qB

)
cos
(
π√
2

q1
qB

)
. (E.5)

We need to express the limits of integration of I in terms of q2 and q3. The upper limit is set by the two

planes qx = −qB and qy = qB , as shown in (b) of Fig. E.1. Substitution into Eq. E.2 leads to

qx = −qB =⇒ q1 =
√

2qB −
q2√

2
+

q3√
2

(E.6)

qy = +qB =⇒ q1 =
√

2qB +
q2√

2
− q3√

2
(E.7)

When q3 ≥ q2, the upper limit of integration is set by Eq. E.7 (dashed line in the bottom-left of (b) of

Fig. E.1). Analogously, when q3 ≤ q2, the upper limit is set by Eq. E.6 (dashed line in the top-left of (b)

of Fig. E.1). Both cases can be combined as q∗1 =
√

2qB − |q3 − q2|/
√

2. On the other hand, because of

2 We have used the identity cosA+ cosB = 2 cos A+B
2

cos A−B
2

.
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symmetry, the lower limit of integration of Eq. E.5 is −q∗1 . Eq. E.5 therefore becomes

I =

∫ q∗1

−q∗1
dq1 e

4jβt cos
(
π
2
q3−q2
qB

)
cos
(
π√
2

q1
qB

)
. (E.8)

Under the change of variables θ = πq1/(
√

2qB) and the definition of two new variables: a = π|q3 −

q2|/(2qB) and αj = 4jβt cos a, the integral is equal to

I ∝
∫ π−a

0

dθ eαj cos θ

=

∫ π−a

0

dθ

[
I0(αj) + 2

∞∑
l=0

Il(αj) cos(lθ)

]

= (π − a)I0(αj) + 2

∞∑
l=0

Il(αj)
sin l(π − a)

l
, (E.9)

where we have expressed the exponential function in terms of modified Bessel functions of the first kind3.

Finally, substitution of Eq. E.9 into Eq. E.4 results in

n (q2, q3) = A

∞∑
j=1

e−2jβt(3−cos b)zj

j3/2
·

[
(π − a)I0(αj) + 2

∞∑
l=1

Il(αj)
sin l(π − a)

l

]
(E.10)

where a = π|q2 − q3|/(2qB), b = π(q2 + q3)/(
√

2qB), αj = 4jβt cos a ,and A is a fitting constant.

3ez cos θ = I0(z) + 2
∑∞
l=0 Il(z) cos(lθ)
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Appendix F

Site-Decoupled Mean-Field Theory

Throughout this thesis, we have calculated a series of observables in the Bose-Hubbard model (Eq. 1.12)

using a site-decoupled mean-field calculation. More details on this topic can be found in Ref. [75,221,264,265]

and references therein.

The creation and annihilation operators in the Bose-Hubbard Hamiltonian can be separated into a mean

field plus a small deviation, namely, âj = 〈âj〉 + (âj − 〈âj〉) and â†i = 〈â†i 〉 + (â†i − 〈â
†
i 〉), from which the

number operator n̂i = â†i âj can be expressed as

â†i âj = 〈âj〉â†i + 〈â†i 〉âj − 〈â
†
i 〉〈âj〉+ (â†i − 〈â

†
i 〉)(âj − 〈âj〉). (F.1)

The last term in Eq. F.1 is neglected under a mean-field approximation, since it represents fluctuations

about a mean field. Consequently, the Bose-Hubbard Hamiltonian can be decoupled into sub-Hamiltonians

at each lattice site i in the form

ĤMF
i = −tz

(
ψi â

†
i + ψ∗i âi − |ψi|2

)
+
U

2
n̂i (n̂i − 1)− µ̃in̂i, (F.2)

where z is the coordination number of the lattice (z = 6 for a cubic lattice),

µ̃i = µ− εi (F.3)

is the local chemical potential under the LDA, and ψi = 〈âi〉 is the expected value of the annihilation

operator, which is interpreted as the order parameter of the system [266].

In the occupation-number basis {|n〉}∞n=0, the system of equations in Eq. F.2 forms a tridiagonal matrix,

where the diagonal terms is

〈m|HMF
i |n〉 =

(
U

2
n(n− 1)− µ̃in+ tz|ψi|2

)
δm,n − tzψi

√
n+ 1 δm,n+1 − tzψ∗i

√
n δm,n−1 (F.4)
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In practice, the basis is truncated for a large enough occupation number n.

The solution to Eq. F.4 leads to a set of energies {εν}ν and eigenstates {|φν〉}ν associated with each

lattice site i. For sake of clarity, the lattice-site index i is omitted from εν and |φν〉. Each eigenvector

is expressed as a linear combination of number states, namely, |φν〉 =
∑∞
n=0 f

n
ν |n〉, where ν indexes the

energies and eigenstates.

The order parameter is obtained by calculating the ensemble average self-consistently. The canonical

partition function is used as opposed to the grand canonical because the number of particles in each eigenstate

is fixed. The order parameter is given by

ψ(µ̃i, T ) = 〈âi〉

=
1

Z
tr

(∑
ν

e−βεν |φν〉〈φν |âi

)

=
1

Z

∑
ν

e−βεν
∑
n

f∗n−1
ν fnν

√
n, (F.5)

where Z(µ̃i, T ) =
∑
ν e
−βεν is the canonical partition function.

The average occupation number at each lattice site i is

n(µ̃i, T ) = 〈n̂i〉

=
1

Z
tr

(∑
ν

e−βεν |φν〉〈φν |â†i âi

)

=
1

Z

∑
ν

e−βεν
∑
n

n · |fnν |2, (F.6)

and the energy is

ε(µ̃i, T ) =
1

Z

∑
ν

ενe
−βεν . (F.7)

The entropy is determined from the Helmholtz free energy F = −kBT logZ via F = E − TS, namely

s(µ̃i, T ) =
ε(µ̃i, T )

T
+ kB logZ(µ̃i, T ) (F.8)

When an three-dimensional isotropic harmonic confinement is present, the local chemical potential in

Eq. F.3 takes the particular form µ̃i = µ − 1
2mω

2r2, where ω is the trap frequency. The total gas entropy

and atom number results from integrating the number and entropy densities n(µ̃i, T )/d3 and s(µ̃i, T )/d3
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across the parabolic potential, namely,

N(µ, T ) =
4π

d3

∫
dr r2n(µ− 1

2
mω2r2, T ) (F.9)

and

S(µ, T ) =
4π

d3

∫
dr r2s(µ− 1

2
mω2r2, T ), (F.10)

where d is the lattice spacing. Furthermore, the total particle number in the condensate is given by

N0(µ, T ) =
4π

d3

∫
dr r2

∣∣∣∣ψ(µ− 1

2
mω2r2, T )

∣∣∣∣2 , (F.11)

and therefore, the condensate fraction is N0(µ, T )/N(µ, T ).
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Appendix G

Quasimomentum Relaxation via FGR

We present the derivation of the predicted quasimomentum relaxation rate introduced in Section 5.4.3.

We consider a 3D thermal gas confined in a uniform cubic lattice potential (i.e., without a harmonic

confinement). After removing all the atoms with q = 0 from the gas, we expect an exponential relaxation of

the quasimomentum distribution n0 to the equilibrium value neq
0 = e−β(ε0−µ) (with β = 1/kBT ). In other

words, we expect n0 to relax as n0(τ) = neq
0 (1 − e−τ/τ0) ≈ neq

0 τ/τ0. Therefore, the relaxation time τ0 is

determined by the formula

1

τ0
=

1

neq
0

∂n0

∂τ
, (G.1)

where ∂n0/∂τ is given by Fermi’s golden rule

∂n0

∂τ
=

∑
q1q2q3

|〈q3,0|Ĥint|q1,q2〉|2nq1
nq2

(1 + nq3
)(1 + n0)δ(εq1

+ εq2
− εq3

− ε0). (G.2)

In the subsequent calculations, we will ignore quantum statistics by considering a classical gas with nq1
,

nq2
, nq3

, n0 � 1. The interaction Hamiltonian Ĥint is given by

Ĥint =
U

2

∑
j

â†j â
†
j âj âj , (G.3)

where U is the Hubbard interaction energy, and â†j (âj) creates (annihilates) a particle at the lattice site j.

In order to determine 〈q3,0|Ĥint|q1,q2〉, we construct the initial and final states as

|q1,q2〉 = âq1
âq2
|gnd〉 and |q3,0〉 = â†0 â

†
q3
|gnd〉, (G.4)

where â†q (âq) creates (annihilates) a quasiparticle with quasimomentum q, |gnd〉 is the referential state

|gnd〉 =
∏
q

(â†q)n
i
q

(niq!)1/2
|vac〉, (G.5)
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and niq is the initial occupation number, which is either 0 or 1 in the classical regime. The initial and final

states are properly normalized if we consider ni0 = niq1+q2
= 0 and niq1

= niq2
= 1.

Using the transformation

âj =
1√
Ns

∑
q

e
i
~q·rj âq, (G.6)

We convert the Hamiltonian in Eq. G.3 into the quasimomentum space, where Ns is the number of lattice

sites and the sum extends over the first BZ. The matrix element is therefore

〈q3,0|Ĥ|q1,q2〉 =
U

2N2
s

∑
q q′q′′q′′′

〈q3,0|â†qâ
†
q′ âq′′ âq′′′ |q1,q2〉

∑
j

e
i
~ (q+q′−q′′−q′′′)·rj

=
U

2Ns

∑
q q′q′′q′′′

〈q3,0|â†qâ
†
q′ âq′′ âq′′′ |q1,q2〉δ̃q+q′,q′′+q′′′ , (G.7)

where δ̃q,q′ is the periodic Kronecker delta1. Because the final state |q3,0〉 has the operator â†0, the sum

over q and q′ results in only two nonzero terms: one term with q = 0 and q′ = q′′ + q′′′, and another with

q′ = 0 and q = q′′ + q′′′. Therefore

〈q3,0|Ĥint|q1,q2〉 =
U

Ns

∑
q′′q′′′

〈q3,0|â†0â
†
q′′+q′′′ âq′′ âq′′′ |q1,q2〉. (G.8)

Similarly, the sum over q′′ and q′′ leads to a term with q′′ = q1 and q′′′ = q2, and another with q′′ = q2

and q′′′ = q1. Moreover, Eq. G.8 is zero unless q3 = q1 + q2. Therefore

〈q3,0|Ĥint|q1,q2〉 =
2U

Ns
δ̃q3,q1+q2 . (G.9)

The total rate is then given by

∂n0

∂τ
=

1

2

∑
q1q2

neq
q1

neq
q2

2π

~

(
2U

Ns

)2

δ(εq1
+ εq2

− εq1+q2
− ε0), (G.10)

where we have divided by 2 to account for double counting, εq is the ground-band dispersion relation

εq = 2t
∑
i=x,y,z[1−cos(qi/qB)] in the tight-binding approximation (notice that ε0 = 0) and neq

q = e−β(εq−µ).

After transforming sums into integrals
∑

q → Ns
∫

d3q
(2π)3 (we consider q dimensionless to preserve the

correct units), Eq. G.3 becomes

1

τ0
=

2U2

~

∫
d3q1
(2π)3

d3q2
(2π)3 e

−β(εq1
+εq2

−2µ)2πδ(εq1 + εq2 − εq1+q2)

eβµ
(G.11)

1The periodic Kronecker delta satisfies δ̃q,q′ = 1 if q− q′ is a reciprocal lattice vector; δ̃q,q′ = 0 otherwise.
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Dividing both sides by the lattice filing n =
∫

d3q
(2π)3 e

−β(εq−µ), and defining C(q) =
∑
i=x,y,z(1 − cos qi)

results in

1

τ0
=

2

~
n F

(
t

kBT

)
U2

t
(G.12)

where

F (x) =

∫
d3q1
(2π)3

d3q2
(2π)3 e

−2x[C(q1)+C(q2)]2πδ(2C(q1) + 2C(q2)− 2C(q1 + q2))∫
d3q

(2π)3 e−2xC(q)
. (G.13)

Notice that the equilibration rate in Eq. 5.11 has an additional factor of 2 because we predict the relaxation

time of the squared quasimomentum distribution.

In the experiments carried out in Chapter 5, n varies across the trap because of the overall harmonically

confinement. In order to compare the experimental measurements with the theoretical predictions, we

average n in Eq. G.12 across the gas using 〈n〉 =
∫
d3r n(r) n(r)/N, where N is the atom number,

n(r) = N

(
βmω2

2π

)3/2

e−
β
2mω

2r2

(G.14)

is the gas density, and the lattice filling is n(r) = n(r)d3. Therefore, the density-weighted filling is

〈n〉 = N

(
βmω2d2

4π

)3/2

(G.15)
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Appendix H

Experimental Data Index

All the experimental data are located at:

\\phyfalle.physics.uiuc.edu\data share\lattice\

Data for Chapter 3

• 8/21/10 – log2 ramp

• 8/30/10 – Linear ramp

Data for Chapter 4

• 11/6/12 – Band decay in a 13.5 ER lattice

• 12/2/12, 12/6/12, 12/18/12 –Band decay in a 16.2 ER lattice

• 11/17/12, 12/8/12 – Band decay in a 18 ER lattice

Data for Chapter 5

• 12/21/13 – Cooling in a 4 ER lattice

• 6/15/14 – Relaxation in 4 ER and 8 ER lattices

• 7/30/14 – Relaxation in a 6 ER lattice

• 8/17/14 – Relaxation in a 5 ER lattice
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relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas,” Nature
Physics, vol. 8, no. 4, pp. 325–330, 2012. 2

[37] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross, I. Bloch,
C. Kollath, and S. Kuhr, “Light-cone-like spreading of correlations in a quantum many-body system,”
Nature, vol. 481, no. 7382, pp. 484–487, 2012. 2

[38] F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Weinmann, A. J. Daley, and H. C. Nägerl, “Quantum
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[46] A. M. Rey, R. Sensarma, S. Fölling, M. Greiner, E. Demler, and M. D. Lukin, “Controlled preparation
and detection of d-wave superfluidity in two-dimensional optical superlattices,” Europhysics Letters
(EPL), vol. 87, no. 6, p. 60001, 2009. 2

[47] T.-L. Ho and Q. Zhou, “Intrinsic heating and cooling in adiabatic processes for bosons in optical
lattices,” Phys. Rev. Lett., vol. 99, p. 120404, Sep 2007. 2
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