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ABSTRACT 

Morphological	 or	 shape	 properties	 of	 virgin	 and	 recycled	 aggregate	 sources	 are	

known	 to	 affect	 pavement	 and	 railroad	 track	 mechanistic	 behavior	 and	 performance	

significantly	 in	 terms	 of	 strength,	modulus	 and	 permanent	 deformation.	 Under	 repeated	

traffic	loading	aggregate	particles	used	in	construction	of	pavement	and	railroad	track	are	

routinely	 subjected	 to	degradation	 through	 attrition,	 impact,	 grinding	 and	polishing	 type	

mechanisms,	which	result	in	altering	their	shape	and	size	properties.	The	recent	advances	in	

digital	 image	 acquisition	 and	 processing	 techniques	 have	 the	 potential	 to	 be	 used	 for	

objective	and	accurate	measurement	of	aggregate	particle	 size	and	shape	properties	 in	a	

rapid,	reliable	and	automated	fashion	both	in	the	laboratory	and	in	the	field.	The	primary	

focus	of	this	dissertation	includes	the	design,	manufacturing,	calibration	and	validation	of	

different	 hardware	 and	 software	 components	 of	 an	 Enhanced‐University	 of	 Illinois	

Aggregate	 Image	 Analyzer	 ሺE‐UIAIAሻ	with	many	 improvements	 over	 the	 first	 generation	

device.	A	new	fully	automated	color	image	segmentation	algorithm	was	developed	as	part	of	

this	 research	which	 showed	 excellent	 performance	 in	 detecting	 aggregate	 particles	with	

different	 sizes	and	natural	 colors.	Customized	Look	Up	Tables	 ሺLUTsሻ	were	developed	 to	

enhance	the	Hue	ሺHሻ	and	Saturation	ሺSሻ	representations	of	dark	and	bright	aggregate	images	

which	 improved	 the	 thresholding	results.	The	different	binary	 image	processing	modules	

available	in	the	original	UIAIA	device	for	computing	size	and	shape	properties	of	aggregate	

particles	were	updated	and	merged	into	a	single	user	friendly	 interface.	Moreover,	a	new	

processing	algorithm	for	image	arithmetic	operations	and	thresholding	was	developed	and	

validated	for	computing	the	percentages	of	asphalt	coating	on	Reclaimed	Asphalt	Pavement	

ሺRAPሻ	aggregates.		

The	research	findings	presented	in	this	dissertation	include	the	 implementation	of	

newly	developed	E‐UIAIA	in	capturing	the	rate	and	magnitude	of	changes	in	shape	and	size	

properties	 of	 aggregate	 particles	 caused	 by	 abrasion,	 polishing	 and	 breakage	 actions	 at	

different	degradation	levels.	The	standard	laboratory	degradation	test	results	including	Los	

Angeles	Abrasion	ሺLAAሻ	and	Micro‐Deval	ሺMDሻ	were	combined	with	imaging	based	particle	



iii	

	

shape	 indices	 to	 successfully	 classify	 different	 aggregate	 sources	 according	 to	 their	

resistance	to	degradation.				

As	a	step	forward	for	bringing	the	advances	in	aggregate	imaging	methods	to	project	

sites	 and	 quarries,	 this	 dissertation	 introduces	 a	 field	 aggregate	 image	 acquisition	 and	

processing	procedure.	Advanced	image	analysis	and	segmentation	techniques	that	combine	

a	Markov	Random	Field	ሺMRFሻ	approach	for	image	modeling,	graph	cut	for	optimization	and	

user	 interaction	 for	 enforcing	hard	 constraints	were	used.	 The	developed	 algorithm	was	

utilized	for	extraction	and	analyses	of	individual	aggregate	particle	size	and	shape	properties	

from	2D	field	images	of	multi‐aggregate	particles	captured	in	a	single	frame	using	a	Digital	

Single	 Lens	 Reflex	 ሺDSLRሻ	 camera.	 The	 developed	 field	 imaging	 and	 segmentation	

methodology	showed	satisfactory	performance	in	two	case	studies	involving	quantification	

of	 size	 and	 shape	 properties	 of	 large	 size	 aggregate	 sources	 as	 well	 as	 railroad	 ballast	

samples	collected	from	various	ballast	depths	in	a	mainline	freight	railroad	track.	The	image	

acquisition	and	processing	methodologies	presented	in	this	dissertation	hold	the	potential	

to	 provide	 optimized	 aggregate	 resource	 selection,	 better	 aggregate	 quality	 control	 and	

quality	assurance	ሺQC/QAሻ	as	well	as	improved	material	specifications.		
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INTRODUCTION 

1.1 Introduction 

Aggregate	materials	are	used	as	the	main	component	of	road	subbase/base,	riprap,	

cement	concrete,	asphalt	concrete	and	railroad	ballast.	Since	transportation	infrastructure	

continues	to	age	and	expand	in	size,	 the	need	for	repair,	maintenance	and	reconstruction	

grows.	As	 a	 result,	 the	demand	 for	 aggregates	 increases.	On	 the	other	hand,	high	quality	

aggregate	materials	are	becoming	increasingly	scarce	and	expensive	 in	many	parts	of	 the	

country	because	gravel	mines	and	rock	quarries	are	being	lost	to	other	land	uses.	Aggregate	

materials	are	characterized	for	uses	and	applications	in	construction	projects	according	to	

specifications	that	are	often	not	directly	linked	to	their	performance.	For	example,	current	

revisions	 of	 Super	 Performing	 Asphalt	 Pavements	 ሺSuperpaveሻ	 and	 American	 Railway	

Engineering	 and	Maintenance‐of‐way	Association	 ሺAREMAሻ	 design	 specifications	 suggest	

that	aggregate	materials	need	to	be	characterized	from	three	main	perspectives	including	

“consensus	or	physical	properties”,	“soundness	or	chemical	properties”	and	“gradation	or	

particle	size	distributions”	ሾ1,	2ሿ.	 In	these	two	important	specifications,	 the	history	of	 the	

development	of	recommended	standard	aggregate	testing	methods,	e.g.,	evaluating	particle	

shape	properties,	often	goes	back	more	than	half	a	century.	Considering	the	recent	advances	

in	 data	 acquisition,	 sensor	 technology,	 control	 systems	 and	 computer	 signal	 processing,	

there	is	a	need	to	review	the	current	conventional	aggregate	testing	procedures	with	the	goal	

of	 developing	 new	 techniques.	 Improvements	 to	 be	 made	 in	 performance‐based	 testing	

procedures	by	implementing	new	technologies	result	in	characterizing	aggregate	materials	

accurately	and	objectively.					

During	 the	 last	 decade,	 machine	 vision	 technology	 and	 image	 analysis	 has	 been	

utilized	as	an	objective	and	accurate	inspection	system	for	quantifying	the	aggregate	particle	

size	 and	 shape	 properties	 in	 a	 rapid,	 reliable	 and	 automated	 fashion	when	 compared	 to	

traditional	 manual	 methods	 ሾ3ሿ.	 Three‐dimensional	 laser	 scanning	 techniques	 combined	
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with	optical	equipment	have	also	been	used	to	develop	computational	programs	for	shape	

and	 size	 characterization	of	 aggregates	 ሾ4,	 5ሿ.	 These	 approaches	hold	 the	potential	 to	be	

applied	in	the	field	and	automatically	control	the	size	and	shape	properties	of	construction	

aggregate	materials	in	the	job	sites	and	quarries	to	evaluate	the	influences	of	different	quarry	

operations	 such	 as	 crushing	method	 and/or	 crusher	 arrangements.	 Additionally,	 proper	

packing	 of	 aggregate	 particles	 as	 a	 granular	 layer	 would	 maximize	 the	 level	 of	 internal	

friction	 angle	 and	 number	 of	 contact	 forces	 which	 all	 depend	 on	 the	 aggregate	 shape	

properties.	Implementation	of	these	computer	vision	based	technologies	therefore	provides	

the	 opportunity	 for	 optimized	 aggregate	 selection/utilization	 and	 significant	 economic	

benefits	 with	 sustainable	 uses	 of	 aggregate	 resources	 in	 building	 transportation	

infrastructure.	Objective	measurement	of	aggregate	shape	properties	needs	to	be	considered	

as	an	essential	component	in	designing	layered	pavement	and	railroad	track	structures.	In	

recent	years,	the	shape	or	morphological	properties	of	construction	aggregates	have	been	

successfully	 correlated	 to	 the	 improved	 properties	 and	 performances	 of	 transportation	

facilities	in	terms	of	strength,	modulus	and	deformation	characteristics	ሾ6,	7,	8,	9ሿ.	

1.2 Shape Properties of Construction Aggregates  

The	mineralogy	 and	 geological	 origin	 of	 a	 rock	 source	 primarily	 affect	 the	 shape	

properties	 of	 aggregates	 during	 the	 crushing	 operation	 in	 quarries	 ሾ10ሿ.	 There	 are	 three	

basic	 types	 of	 rocks	 that	 exist	 on	 planet	 earth;	 igneous	 rocks,	 sedimentary	 rocks	 and	

metamorphic	 rocks.	Granite	as	an	 igneous	 rock	and	 limestone	as	a	sedimentary	 rock,	 for	

example,	are	widely	used	in	highway	and	railroad	track	construction.			

The	chemical	composition	and	shape	of	rock’s	crystals	controls	the	level	of	brittleness	

and	 how	 it	 fractures	 during	 crushing	 operation	 ሾ11ሿ.	 Limestone	 with	 “aphinitic”	 or	 fine	

grained	crystals	tends	to	be	more	brittle	and	fractures	into	more	Flat	and	Elongated	ሺF&Eሻ	

particles	 ሾ10ሿ.	 Brown	 and	Marek	 ሾ12ሿ	 reported	 that	 the	 shape	 of	 aggregate	 particle	 is	 a	

function	of	mineralogical	composition	of	the	source	rock.	

In	 terms	 of	 method	 of	 crushing	 in	 the	 quarry,	 Kojovic	 ሾ13ሿ	 suggests	 running	 the	

crusher	with	a	full	or	choked	feed	cavity	and	crusher	operation	in	closed	circuits	to	improve	

the	shape	of	the	produced	aggregate	particles.	Brown	and	Marek	ሾ12ሿ	also	showed	that	jaw	
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or	gyratory	 type	crushers	as	compression	type	machines	when	used	as	primary	crushers	

tend	to	produce	more	F&E	particles	in	comparison	to	impact	type	crushers.	

Figure	1.1	illustrates	the	key	physical	shape	properties	of	an	aggregate	particle.	At	the	

scale	 of	 macro	 level,	 angularity	 is	 generally	 defined	 as	 a	 measure	 of	 crushed	 faces	 and	

sharpness	of	the	corners	in	an	aggregate	particle.	In	general,	using	aggregate	sources	with	

equidimensional	ሺcubicalሻ	and	angular	particle	shapes	are	preferred	in	comparison	to	flat,	

thin,	 or	 elongated	 particles	 ሾ14ሿ.	 The	 level	 of	 internal	 shear	 resistance	 in	 the	 particulate	

medium	is	highly	influenced	by	the	particle	angularity.	Consequently,	rounded	or	uncrushed	

aggregates	increase	the	rutting	susceptibility	at	the	construction	stage	during	compaction	

operations	ሾ15ሿ.	Furthermore,	Perdomo	ሾ16ሿ	observed	that	using	rounded	particles	is	one	of	

the	chief	asphalt	mixture	deficiencies	that	contribute	to	low	rutting	resistance.		

	Roughness	or	irregularities	at	micro	level	on	the	surface	of	the	aggregate	is	called	

surface	texture	of	the	aggregate.	This	aggregate	property	is	the	main	factor	which	controls	

the	magnitude	of	frictional	resistance	ሺmicro	textureሻ	of	road	surface	ሾ17ሿ.	Aggregate	surface	

texture	 can	 also	 affect	 the	 deformational	 properties	 of	 granular	 layers	 under	 repeated	

loading.	 In	 a	 research	 study	 by	 Thom	 and	 Brown	 ሾ18ሿ,	 the	 visible	 surface	 roughness	 of	

aggregate	particles	was	reported	to	primarily	affect	the	base	layer	permanent	deformation.		

	

		

	

	

	

	

	

Figure	1.1	Illustration	of	Shape	Properties	for	an	Aggregate	Particle		

	

The	dimensional	ratio	of	an	aggregate	particle	is	generally	referred	to	F&E	ratio	or	

form	property.	Superpave	asphalt	concrete	mixture	design	specifications	use	this	aggregate	

shape	 property	 to	 identify	 aggregate	 sources	 that	 may	 have	 tendency	 to	 impede	 the	

compaction	 process	 or	 might	 not	 satisfy	 the	 Voids	 in	 Mineral	 Aggregate	 ሺVMAሻ	

Angularity

Surface	TextureShape	or	Form
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requirements.	 These	 type	 of	 particles	 are	 more	 susceptible	 to	 breakage	 during	 the	

compaction	process	and	under	the	service	loads.	As	a	result,	particle	size	distribution	that	is	

used	in	the	design	phase	deviates	from	the	target	gradation	ሾ19ሿ.		

Currently	 there	 are	 only	 a	 few	 standard	 testing	 procedures	 to	measure	 aggregate	

shape	properties.	ASTM	D3398,	“Index	of	Aggregate	Particle	Shape	and	Texture”,	provides	a	

combined	 assessment	 of	 particle	 shape	 and	 texture.	 In	 this	 testing	 method,	 voids	 in	

aggregate	layers	compacted	at	different	levels	of	compaction	energy	is	used	as	an	indirect	

indicator	 of	 angularity	 and/or	 roughness	 of	 particles.	 ASTM	 D5821,	 “Test	 Method	 for	

Determining	 the	 Percentage	 of	 Fractured	 Faces	 in	 Coarse	 Aggregate”,	 is	 defined	 as	 the	

percentage	 ሺby	massሻ	 of	 aggregates	 larger	 than	No.4	 sieve	 ሺ4.75	mmሻ	with	 one	 or	more	

fractured	faces.	ASTM	C1252	“Uncompacted	Void	Content	of	Fine	Aggregates”	is	used	for	an	

indirect	measurement	of	particle	shape	and	surface	texture	of	aggregate	smaller	than	No.8	

sieve	ሺ2.36	mmሻ.	ASTM	D4791	“Flat	or	Elongated	Particles	in	Coarse	Aggregates”	is	used	to	

determine	the	percentage	by	mass	of	coarse	aggregates	that	have	a	maximum	to	minimum	

dimension	 ratio	 greater	 than	 five.	 In	 this	 method,	 a	 standard	 caliper	 device	 is	 used	 to	

measure	the	dimensional	ratio	of	particles.																		

1.3 Application of Machine Vision in Evaluating Aggregate Shape Properties 

Standard	test	methods	described	in	the	previous	section	use	indirect	indicators	for	

evaluating	aggregate	shape	properties.	These	methods	have	several	shortcomings	including	

being	laborious	and	subjective	with	low	repeatability.	Thus,	the	results	from	these	tests	often	

lack	 a	 direct	 linkage	 to	 accurate	measurements	 of	 strength	 and	 permanent	 deformation	

characteristics	of	constructed	aggregate	layers.	

Computer	vision	or	Machine	Vision	ሺMVሻ	is	the	technology	that	mimics	the	human	

vision	 sense	 and	 is	 used	 to	 develop	 imaging	 based	 systems	 for	 applications	 such	 as	

automated	inspection	systems,	process	control	and	robot	guidance.	Digital	image	processing	

techniques	 such	 as	 morphological	 filtering,	 thresholding,	 pattern	 recognition	 and	

segmentation	 are	 used	 to	 process	 the	 acquired	 images	 in	 imaging	 systems	 ሾ20ሿ.	 Digital	

cameras	 can	 also	 be	 used	 to	 capture	 the	 vertical	 laser	 plane	 images	 generated	 by	 laser	
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scanners.	The	three‐dimensional	laser	scanner	data	can	be	converted	into	gray‐scale	digital	

images	such	that	a	pixel	intensity	is	the	representation	of	the	height	of	each	data	point.		

In	many	cases,	machine	learning	is	combined	with	computer	vision	to	make	decisions	

or	perform	actions.	In	a	computer	vision	problem,	there	are	typically	six	stages	that	need	to	

be	followed	to	interact	with	the	available	knowledge	and	finally	generate	the	output	results	

ሺsee	 Figure	 1.2ሻ.	Many	 different	 approaches	 and	 processing	methods	 have	 already	 been	

developed	and	are	available	to	use	in	each	of	these	stages.		

	

	

	

	

	

	

	

	

	

	

	

Figure	1.2	Stages	in	Solving	a	Problem	with	Computer	Vision	Approach	ሾ21ሿ		

	

During	 the	 last	 two	 decades,	 researchers	 and	 practitioners	 in	 the	 field	 of	 civil	

engineering	have	started	to	take	advantage	of	machine	vision	approaches	for	a	multitude	of	

applications	such	as	tracking	construction	site	resources	ሾ22ሿ,	inspection	of	railroad	track	

ሾ23ሿ	and	measuring	in‐situ	displacement	of	unsaturated	soils	ሾ24ሿ.	Generally,	the	efficiency	

of	these	methods	is	evaluated	by	comparing	the	MV	based	results	and	the	results	obtained	

from	 conventional	 computer	 modeling	 or	 laboratory	 testing.	 MV	 based	 approaches	 are	

known	for	their	accuracy,	reliability,	speed	and	repeatability.						

Machine	 vision	 technology	 has	 also	 been	 utilized	 to	 develop	 imaging	 systems	 for	

direct	and	objective	measurement	of	aggregate	size	and	shape	properties.	These	systems	

have	 different	 capabilities	 and	 features	 in	 terms	 of	 hardware	 and	 software	 components.	
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Masad	 et	 al.	 ሾ25ሿ	 studied	 the	 capabilities	 and	 concepts	 as	 well	 as	 advantages	 and	

disadvantages	of	these	aggregate	imaging	systems.	In	addition	to	the	need	for	appropriate	

hardware	selection,	the	main	challenge	in	developing	these	aggregate	imaging	systems	is	to	

define	a	proper	mathematical	based	aggregate	shape	index	associated	with	the	digital	image	

of	 an	 aggregate	 particle	 captured	 by	 one	 or	 more	 cameras.	 Different	 image	 processing	

approaches	 such	 as	 binary	 image	 morphology,	 image	 Fourier	 analysis	 and	 wavelet	

decomposition	have	been	incorporated	into	these	systems.	Validating	these	imaging	systems	

in	 terms	of	accuracy,	 repeatability	and/or	precision	 includes	 the	ability	 to	detect	particle	

shape	variations	between	crushed	versus	uncrushed	aggregate	sources,	unpolished	versus	

polished	aggregate	particles	and	correlating	the	shape	indices	with	the	field	or	laboratory	

performance.	More	 information	related	 to	aggregate	 imaging	systems	will	be	provided	 in	

Chapter	2	of	this	dissertation.				

1.4 Research Approach 

1.4.1 Background 

The	commonly	used	aggregate	property,	which	makes	a	certain	aggregate	material	to	

pass	 any	 agency’s	 specifications	 for	 construction	 and	 field	 utilization	 in	 transportation	

infrastructure,	 has	 typically	 been	 the	 particle	 size	 distribution	 or	 gradation.	 Certainly,	

gradation	is	an	 important	property	that	 influences	the	 loss	 in	performance	with	usage	or	

degradation	 patterns	 of	 aggregates	 in	 bound/unbound	 layers	 of	 road	 pavements	 and	

railroad	 tracks.	 To	 assess	 aggregate	 degradation,	 loss	 in	mass	 and	 the	 related	 change	 in	

gradation	 is	 currently	used	 as	 the	only	 indicator	 of	 aggregate	 resistance	 to	 abrasion	 and	

polishing	as	well	as	breakage	during	laboratory	durability	tests	such	as	Los	Angeles	Abrasion	

ሺLAAሻ	 and	Micro‐Deval	 ሺMDሻ.	 In	 addition	 to	 gradation,	 particle	 shape	 also	 degrades	 and	

needs	 to	 be	 considered	when	 it	 comes	 to	 sustainable	 and	mechanistic	 based	 designs	 of	

pavements	and	railroad	track	structures.		

As	 aggregates	 undergo	 degradation	 due	 to	 traffic	 loading	 and	 environmental	

conditions,	both	 the	 size	 and	 shape	properties	deteriorate.	 Systematic	 registration	of	 the	

magnitude	and	rate	of	this	change	can	be	used	in	the	assessment	of	life	cycle	analysis	which	

is	essentially	linked	to	the	development	of	performance	models.	Due	to	lack	of	a	unifying	and	
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advanced	 standard	 method	 to	 efficiently	 quantify	 aggregate	 shape	 properties,	 the	

degradation	behavior	of	aggregates	with	respect	to	change	in	particle	shape	has	not	been	

properly	 considered	 in	 transportation	 geotechnics	 field	 and	 needs	 further	 research	 and	

investigation.								

As	described	in	the	previous	section,	computer	vision	technology	has	been	applied	to	

develop	 aggregate	 imaging	 systems	 and	 imaging	 based	 shape	 indices	 for	 efficient	

measurement	of	the	shape	of	aggregate	particles.	These	aggregate	imaging	systems	typically	

use	 mathematical	 algorithms	 for	 identifying	 a	 numerical	 shape	 index	 to	 compute	 form,	

angularity	and	surface	texture	properties	of	aggregates.	Among	many	imaging	based	shape	

indices,	summarized	by	Al‐Rousan	et	al.	ሾ3ሿ,	Flat	and	Elongated	Ratio	ሺF&E	Ratioሻ,	Angularity	

Index	ሺAIሻ	and	Surface	Texture	Index	ሺSTIሻ	measured	by	the	University	of	Illinois	Aggregate	

Image	Analyzer	ሺUIAIAሻ	were	recommended	as	promising	key	indices	from	the	findings	of	

national	studies	ሾ26,	27,	28ሿ.			

Figure	1.3	illustrates	the	UIAIA	system	featuring	an	individual	aggregate	particle	with	

three	 orthogonal	 views	 captured	 using	 three	 progressive	 scan	 digital	 cameras.	 In	 this	

system,	monochrome	digital	images	of	three	views	of	aggregate	particles	are	captured.	The	

corresponding	binary	 images	are	 then	generated	 through	an	 image	processing	 technique	

called	“thresholding”.	 	Extracting	the	pixel	coordination	of	the	boundaries	of	an	aggregate	

particle	 therefore	makes	 it	 possible	 to	 define	 the	mathematical	 based	 shape	 indices	 and	

quantify	 the	 morphological	 properties	 through	 the	 use	 of	 AI,	 STI	 and	 F&E	 Ratio	 of	 the	

particles.		

Recent	 research	 findings	 at	 the	 University	 of	 Illinois	 showed	 that	 adequately	

quantifying	 aggregate	 F&E	 Ratio,	 AI	 and	 STI	 improved	 considerably	 the	 ability	 of	 the	

regression	based	predictive	models	 in	estimating	the	modulus	and	strength	properties	of	

commonly	 used	 aggregates	 in	 highway	 pavement	 construction	 ሾ29ሿ.	 Such	 predictive	

equations	can	be	used	more	commonly	to	generate	reasonable	default	mechanistic	design	

input	properties	for	aggregates	received	from	certain	rock	quarries,	gravel	pits	and	other	

commercial	aggregate	sources	throughout	the	country. Another	important	conclusion	of	this	

study	was	that	locally	available	aggregate	sources	even	with	marginal	level	of	quality	could	
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be	 used	 to	 satisfy	 mechanistic‐empirical	 pavement	 design	 requirements	 considering	

optimizing	gradation	and	particle	shapes	ሾ30ሿ.	

	

	

	

	

	

	

	

	

	

	

	

	

										Figure	1.3	University	of	Illinois	Aggregate	Image	Analyzer	ሺUIAIAሻ	ሾ31ሿ 

 

In	a	recent	study	by	Wnek	et	al.	ሾ9ሿ,	aggregate	shape	properties	identified	by	UIAIA	

were	linked	to	strength	properties	of	different	railroad	ballast	density	groups.	The	authors	

were	 able	 to	 show	 that	 higher	 angularity	 generally	 resulted	 in	 higher	 ballast	 strength	

properties.	 Depending	 on	 aggregate	mineralogy,	 certain	 aggregates	 could	 also	 yield	 high	

fouling	susceptibility	and	increased	breakage	potential	in	railroad	ballast	field	application.			

1.4.2 Research Need Statement  

Mineralogy	 and	 chemical	 compositions	 are	 primary	 factors	 that	 affect	 aggregate	

particle	color	ሾ32ሿ.	Many	sources	of	construction	aggregates	such	as	basalt	and	peridotite	or	

in	general	“trap	rocks”	include	a	high	portion	of	dark	colored	particles.	It	is	important	to	note	

that	capturing	good	quality	images	in	any	type	of	aggregate	imaging	system	is	an	essential	

step	for	successful	computation	of	imaging	based	shape	properties	of	aggregates.	According	

to	Rao	ሾ31ሿ,	a	minimum	contrast	level	needs	to	be	achieved	between	an	aggregate	particle	

and	 the	 black	 background	 surfaces	 used	 in	 UIAIA.	 It	 is	 beyond	 the	 capability	 of	 image	

processing	algorithm	incorporated	in	UIAIA	to	distinguish	the	particles	from	the	background	

if	the	aggregate	color	is	as	dark	as	or	darker	than	the	background.		This	deficiency	can	be	

45o
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particularly	 problematic	 when	 it	 comes	 to	 identifying	 the	 shape	 of	 Reclaimed	 Asphalt	

Pavement	ሺRAPሻ	type	recycled	aggregates.	Processed	RAP	produces	particles	that	are	coated	

with	some	percentages	of	asphalt	and	are	very	hard	to	be	distinguished	if	placed	on	a	black	

background.	Another	limitation	of	the	original	UIAIA	system	was	the	low	resolution	cameras	

limited	to	640	ൈ	480	pixels	and	also	the	non‐adjustable	focal	lengths	of	the	lenses.	These	two	

fixed	parameters	limit	the	field	of	view	of	the	cameras	and	cause	difficulties	when	capturing	

the	images	of	large	size	railroad	ballast	particles	which	can	have	sizes	up	to	3	in.	ሺ76.2	mmሻ.	

Therefore,	an	improved	image	acquisition	and	processing	interface	with	advanced	hardware	

and	software	components	had	to	be	developed	to	overcome	these	problems	and	enhance	the	

capabilities	of	UIAIA.			

A	 basic	 technique	 for	 image	 segmentation	 is	 “thresholding”.	 The	 thresholding	

technique	seeks	to	find	boundaries	between	different	regions	in	the	image	according	to	the	

differences	 in	pixel	 intensities/colors.	Usually,	 the	threshold	valueሺsሻ	are	either	preset	or	

adaptively	ሺautomatically	and	iterativelyሻ	chosen	and	used	to	partition	pixels	into	different	

sets	based	on	their	intensities/colors	ሾ33ሿ.	Advanced	methods	in	color	image	thresholding	

holds	the	potential	to	be	implemented	in	a	new	image	acquisition	and	processing	interface	

to	improve	the	efficiency	of	capturing	and	analyzing	the	images	of	aggregates	with	different	

color	variations.		

During	the	last	decade,	researchers	have	started	to	take	advantage	of	imaging	based	

measurement	of	aggregate	shape	properties	combined	with	laboratory	testing	methods	to	

quantify	the	magnitude	and	trend	of	aggregate	degradation.	UIAIA	has	been	combined	with	

Los	Angeles	Abrasion	ሺLAAሻ	apparatus	ሺASTM	C535ሻ	to	measure	the	effect	of	abrasion	and	

impact	 forces	 on	 changing	 aggregate	 shape	 properties	 during	 degradation	 process	 ሾ34ሿ.	

More	recent	studies	have	shown	the	successful	application	of	imaging	techniques	to	evaluate	

the	level	of	aggregate	degradation	on	the	job	site	by	measuring	the	shape	properties	of	the	

aggregate	 samples	 collected	 from	 asphalt	 plants	 or	 in‐service	 unbound	 aggregate	 layers				

ሾ35,	 36ሿ.	 Therefore,	 the	 development	 of	 a	 second	 generation	 of	 UIAIA	 with	 enhanced	

capabilities	will	make	it	possible	to	efficiently	capture	the	changes	in	the	validated	imaging	

based	shape	indices	for	all	sources	of	aggregate	materials	including	the	railroad	ballast	and	

the	RAP	aggregate	with	darker	colors.	Detecting	the	magnitude	and	rate	of	these	changes	can	
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be	used	to	develop	performance	models	and	better	classify	aggregate	sources	in	terms	of	

their	resistance	to	polishing,	abrasion	and	breakage.		

RAP	materials	 include	 recycled	aggregate	with	varying	degrees	of	 asphalt	 coating.	

The	asphalt	coating	percentage	on	RAP	particles,	which	is	a	function	of	particle	size,	binder	

content	and	method	of	RAP	production,	is	an	important	characteristic	of	the	different	RAP	

materials.	According	to	NCHRP	452	report	ሾ37ሿ,	the	binder	content	and	physical	properties	

of	RAP	aggregates	including	particle	shape,	texture	and	angularity	need	to	be	determined	for	

their	proper	use	in	the	desired	mixture	design.	These	factors	also	control	the	performance	

of	RAP	in	terms	of	stiffness,	crack	resistance,	modulus	and	deformation	characteristics.	The	

digital	raw	and	processed	images	of	RAP	particles	generated	by	an	improved	generation	of	

UIAIA	holds	the	potential	to	be	used	in	the	development	of	a	post	image	processing	algorithm	

for	evaluating	the	 level	of	asphalt	coating	on	particles.	 Implementation	of	this	technology	

provides	 the	 opportunity	 for	 optimized	RAP	 selection	 and	 utilization	which	will	 provide	

sustainability	benefits	to	the	transportation	infrastructure.	

Although	 imaging	 techniques	 have	 been	 recognized	 as	 an	 improvement	 for	

quantifying	aggregate	shape	properties,	there	are	still	some	difficulties	in	implementing	this	

method	 by	 DOTs	 and	 highway	 agencies.	 This	 includes	 aggregate	 sampling	 in	 job	

sites/quarries	for	shipping	to	laboratory	and	one	at	a	time	single	particle	image	scanning	

and	processing	which	makes	the	process	tedious	and	time	consuming.	Recently,	 low	cost,	

powerful	 high‐resolution	 digital	 cameras	 have	 been	 available	 for	 everyday	 use	 by	

practitioners.	A	 fast,	 simple	and	cost	 effective	 field	 imaging	procedure	with	user	 friendly	

hardware	and	software	components	can	also	be	developed	to	facilitate	quantifying	aggregate	

shape	properties	in	the	job	sites/quarries	using	high	resolution	color	images	captured	by	

digital	cameras	available	in	the	market.		

1.4.3 Research Objectives 

The	 development	 of	 an	 “Enhanced”	 version	 of	 the	University	 of	 Illinois	Aggregate	

Image	Analyzer	ሺE‐UIAIAሻ	with	hardware	and	software	improvements	including	color	image	

acquisition	 and	 processing	 capability	 to	 distinguish	 dark	 colored	 aggregates	 is	 the	main	

objective	of	this	research.	As	was	discussed	before,	the	three	cameras	used	in	UIAIA	have	a	

sensor	resolution	of	640	ൈ	480	pixels	and	are	capable	of	taking	only	monochrome	images.	
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Since	the	distance	between	the	cameras	and	the	aggregate	particles	are	fixed	and	the	focal	

length	of	the	camera	lenses	are	also	fixed,	the	UIAIA	is	only	capable	of	capturing	images	with	

160	pixels/inch	ሺ0.1875	mm/pixelሻ	spatial	resolution.	Therefore,	capturing	the	 images	of	

large	aggregate	particles	with	sizes	greater	than	1.5	in.	ሺ38.1	mmሻ	would	be	very	challenging	

in	this	system.	Additionally,	Rao	ሾ31ሿ	found	that	the	number	of	pixels	required	to	represent	

a	1	in.	ሺ25.4	mmሻ	length	measurement	is	inversely	proportional	to	size	of	the	object.	This	

simply	means	that	using	cameras	with	higher	sensor	resolution	will	improve	the	accuracy	of	

size	measurement	since	higher	number	of	pixels	can	be	allocated	to	smaller	particles.	Thus,	

the	E‐UIAIA	needs	to	be	equipped	with	cameras	with	higher	sensor	resolution	and	lenses	

with	variable	focal	lengths.	E‐UIAIA	will	be	calibrated	using	several	calibration	sphere	balls	

with	 known	 diameters	 and	 shape	 properties.	 Considering	 the	 final	 arrangement	 of	 the	

cameras,	different	spatial	resolutions	will	be	identified	to	capture	the	images	of	aggregate	

particles	with	 sizes	 from	No.4	 sieve	 ሺ4.75	mmሻ	 to	 3	 in.	 ሺ76.2	mmሻ.	 The	 E‐UIAIA	will	 be	

validated	by	the	use	of	UIAIA	and	its	well	established	imaging	based	particle	size	and	shape	

indices	for	individual	measurement	of	Volume	ሺVሻ,	F&E	Ratio,	AI,	STI	and	Surface	Area	ሺSAሻ.	

The	performance	of	the	new	system	in	characterizing	several	aggregate	sources	as	well	as	

its	 repeatability	 and	 precision	 will	 be	 studied	 as	 part	 of	 this	 PhD	 dissertation.	 The	

development	 of	 a	 robust	 and	 accurate	 post	 image	 processing	 algorithm	 to	 quantify	 the	

asphalt	coating	percentages	of	RAP	particles	is	another	scope	of	this	research.	A	combination	

of	 image	 processing	 and	 enhancement	 techniques,	 including	 histogram‐based	 image	

thresholding,	binary	image	morphology	analysis	and	arithmetic	image	operation	will	be	used	

to	segment	the	asphalt	coating	from	the	RAP	images	captured	by	the	E‐UIAIA.		

A	second	objective	of	this	research	is	the	implementation	of	E‐UIAIA	to	quantify	and	

link	the	extent	of	coarse	aggregate	degradation	as	determined	in	the	laboratory	with	MD	and	

LAA	 type	 test	 procedures.	 A	 statistical	 evaluation	 of	 the	 shape	 property	 results	 will	 be	

performed	 to	 develop	 regression	 based	 models.	 These	 models	 are	 used	 to	 describe	 the	

degradation	 behavior	 of	 individual	 aggregate	 sources	 in	 terms	 of	 the	 loss	 in	 AI	 and	 STI.	

Furthermore,	 material	 weight	 loss	 at	 different	 MD	 and	 LAA	 degradation	 cycles	 will	 be	

correlated	 with	 the	 percentage	 of	 change	 in	 shape	 properties	 in	 order	 to	 verify	 the	
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applicability	 of	 imaging	 based	methods	 in	 characterizing	 the	 resistance	 of	 aggregates	 to	

degradation.		

Third	 objective	 of	 this	 research	 is	 the	 development	 and	 implementation	 of	 a	

customized	machine	vision	system	to	acquire	and	process	the	images	of	a	group	of	aggregate	

particles	 in	 the	 field.	Field	 imaging	 involves	capturing	color	photos	of	multiple	aggregate	

particles	 in	 a	 single	 2D	 image	 using	 a	 high‐resolution	 Digital	 Single	 Lens	 Reflex	 ሺDSLRሻ	

camera.	Separate	images	of	single	aggregate	particles	are	then	automatically	extracted	by	

applying	the	appropriate	image	segmentation	techniques	including	Markov	Random	Field	

ሺMRFሻ	and	graph	cut	segmentation	methods.	The	size	and	shape	properties	of	each	particle	

are	 subsequently	 analyzed	 based	 on	 image	 processing	 algorithms	 of	 the	 E‐UIAIA.	 This	

technology	 will	 be	 evaluated	 using	 two	 case	 studies	 to	 assess	 the	 effectiveness	 of	 the	

developed	method.	In	the	first	case	study,	the	size	and	shape	of	aggregate	particles	collected	

from	 three	 depths	 of	 an	 in‐service	 railroad	 ballast	 layer	will	 be	 evaluated.	 This	 includes	

capturing	 the	 size	 and	 shape	 variations	 at	 different	 depths	 under	 the	 effect	 of	 ballast	

degradation	caused	by	repeated	train	loading.	The	second	case	study	includes	characterizing	

size	and	shape	properties	of	large	size	aggregate	particles	with	sizes	up	to	6	in.	ሺ152.4	mmሻ	

used	as	aggregate	subgrade	materials.	Due	to	large	size	of	these	aggregates,	laboratory	sieve	

analysis	 is	unable	 to	 identify	 the	particle	size	distribution.	Therefore,	 the	developed	 field	

imaging	methodology	would	be	a	good	alternative	 to	be	used	as	a	 control	quality	 tool	 to	

measure	the	size	and	shape	properties	of	these	large	sized	particles.				

1.5 Dissertation Outline  

This	 dissertation	 has	 been	 divided	 into	 eight	 chapters.	 An	 overview	 of	 upcoming	

chapters	is	presented	in	this	section.		

Chapter	2	includes	an	overview	and	operational	principles	related	to	UIAIA	and	its	

imaging	based	shape	indices.	A	literature	review	is	provided	on	the	influence	of	aggregate	

shape	 properties	 and	 their	 impact	 on	 the	 design	 and	 performance	 of	 asphalt	 concrete	

mixtures,	cement	concrete,	subbase/base	unbound	layers	and	railroad	ballast.	Additionally,	

a	brief	background	is	provided	in	this	chapter	on	the	degradation	mechanisms	of	aggregates,	

testing	 procedures	 to	 assess	 aggregate	 degradation,	 digital	 image	 segmentation,	 color	
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thresholding	as	well	 as	 image	acquisition	and	processing	using	National	 Instrument	 ሺNIሻ	

LabView	platform.		

Chapter	3	includes	comprehensive	information	and	discussions	related	to	the	design	

and	 development	 of	 E‐UIAIA.	 	 The	 camera	 and	 conveyor	 selection	 as	well	 as	 design	 and	

manufacturing	 stages	 for	 different	 hardware	 components	 of	 E‐UIAIA	 are	 described.	 The	

improved	 NI	 LabView	 based	 image	 acquisition,	 image	 calibration	 and	 image	 processing	

software	 interfaces	 including	 color	 thresholding	 in	 Hue,	 Saturation,	 Intensity	 ሺHSIሻ	

representation	 and	 innovative	 software	 camera	 triggering	 features	 of	 E‐UIAIA	 are	

introduced.	 Furthermore,	 the	 calibration	 procedure	 using	 calibration	 spheres	 and	

identification	of	required	spatial	resolution	for	capturing	images	of	particles	with	different	

sizes	 is	explained	 in	detail.	This	 chapter	also	 includes	 the	description	of	a	validation	and	

comparison	study	to	ensure	that	E‐UIAIA	generates	accurate	and	repeatable	measurements	

of	size	and	shape	properties	similar	to	UIAIA.							

Chapter	4	of	this	dissertation	includes	laboratory	testing	and	image	analysis	results	

which	 demonstrate	 the	 applicability	 of	 E‐UIAIA	 in	 evaluating	 aggregate	 resistance	 to	

degradation	 through	 LA‐Abrasion	 tests.	 Image	 acquisition	 and	 processing	 procedures	 as	

well	as	the	statistical	analysis	results	for	fourteen	sources	of	railroad	ballast	are	provided	in	

this	 chapter.	 Additionally,	 regression	 based	 degradation	 models	 are	 established	 and	

presented	based	on	the	rate	and	magnitude	of	change	in	morphological	properties	captured	

by	 E‐UIAIA.	 Finally,	 LA‐Abrasion	 testing	 results	 combined	 with	 developed	 degradation	

models	 are	 used	 to	 classify	 ballast	 sources	 into	 different	 categories	 considering	 their	

resistance	to	abrasion,	breakage	and	polishing	forces.							

Chapter	 5	 of	 this	 dissertation	 presents	 the	 laboratory	 testing	 and	 image	 analysis	

results	 to	 demonstrate	 the	 applicability	 of	 E‐UIAIA	 in	 evaluating	 aggregate	 resistance	 to	

degradation	through	MD	testing.	Eleven	sources	of	single	size	aggregates	from	the	state	of	

Illinois	that	are	used	for	surface	asphalt	mixes	are	studied.	Similar	to	Chapter	4,	this	chapter	

also	includes	the	regression	based	degradation	models	based	on	MD	testing	results	as	well	

as	rate	and	magnitude	of	change	in	particle	shape	properties.	MD	testing	results	combined	

with	 developed	 degradation	 models	 are	 used	 to	 classify	 these	 aggregate	 sources	 into	

different	zones	considering	their	resistance	to	abrasion,	breakage	and	polishing	forces.					
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Chapter	6	focuses	on	the	application	of	E‐UIAIA	to	determine	the	imaging	based	size	

and	shape	indices	of	RAP	aggregates	 from	six	different	sources	such	that	 the	 influence	of	

asphalt	 coating	 in	 altering	 morphological	 properties	 is	 studied.	 The	 development	 and	

validation	of	 an	 image	processing	algorithm	which	 is	 able	 to	estimate	 the	percentages	of	

asphalt	coating	on	RAP	aggregates	is	also	presented	in	this	chapter.				

Chapter	7	of	this	dissertation	elaborates	on	the	development	of	an	image	acquisition	

and	processing	methodology	 for	 shape	 and	 size	 characterization	of	 a	 group	of	 aggregate	

particles	captured	in	the	field.	The	observations	and	analysis	results	from	two	case	studies	

for	the	implementation	of	this	field	imaging	technology	are	presented	in	this	chapter		

The	 summary	 of	 the	 findings	 and	 conclusions	 related	 to	 this	 PhD	 research	 are	

provided	in	Chapter	8.	Recommendations	for	future	research	and	further	development	 in	

this	area	are	also	given	at	the	end	of	this	chapter.			
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LITERATURE REVIEW 

2.1 Aggregate Imaging Systems  

As	part	of	NCHRP	4‐30	research	project,	several	different	aggregate	imaging	systems	

and	 their	 associated	 imaging	based	 shape	 indices	were	 comprehensively	 studied	 ሾ25ሿ.	 In	

total,	eight	different	imaging	systems	equipped	with	one	to	three	cameras	were	evaluated	in	

terms	of	the	characteristics	of	the	image	acquisition	procedure	and	the	accuracy	of	the	image	

analysis	methods.	Table	2.1	lists	the	names	and	features	of	each	of	these	systems.			

	

										Table	2.1	Aggregate	Imaging	Systems	and	their	Salient	Features	ሾ25ሿ			

Name of Imaging System Analysis Concept 
Measured Aggregate 

Shape Properties 
VDG – 40 Videograder 

Uses one camera to capture 
image and evaluate particles as 

they fall in front of a backlight 

Form / Size 

Computer Particle Analyzer (CPA) Form / Size 
Micromeritics OptiSizer PSDA Form / Size 
Buffalo Wire Works PSSDA Form / Size 

Camsizer 
Uses two cameras to capture 

image and evaluate particles as 
they fall in front of a backlight 

Form / Size 
Angularity  

WipShape 
Uses two cameras to capture 

image of aggregates passing on a 
mini conveyor system 

Form / Size 
Angularity 

University of Illinois Aggregate 
Image Analyzer (UIAIA) 

Uses three cameras to capture 
three projections of a particle 

moving on a conveyor belt 

Form / Size 
Angularity 

Surface Texture 
Volume  

Surface area 

Aggregate Imaging System (AIMS) 

Uses one camera and autofocus 
microscope to measure the 

characteristics of coarse and fine 
aggregates  

Form / Size 
Angularity 

Surface Texture 

	

In	this	section	a	brief	description	is	provided	regarding	each	of	these	systems.	It	needs	

to	be	noted	that	none	of	these	imaging	systems	have	been	currently	approved	as	a	standard	

procedure	for	characterizing	the	shape	properties	of	aggregates.	However,	the	findings	of	
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NCHRP	4‐30	research	project	indicated	that	UIAIA	and	Aggregate	Imaging	System	ሺAIMSሻ	

could	be	considered	as	the	two	most	reliable	imaging	systems	to	evaluate	the	shape	and	size	

properties	 of	 aggregates.	 For	 each	 system	 the	 relevant	 references	 are	 provided	 here	 for	

further	information.	Since	the	main	focus	of	this	dissertation	relates	to	the	development	of	a	

new	generation	of	UIAIA,	more	detailed	descriptions	are	provided	about	this	device.		

2.1.1 VDG – 40 Videograder 

French	 public	 works	 laboratory	 ሺLCPCሻ	 has	 developed	 VDG‐40	 Videograder.	 An	

electromagnetic	vibrator	is	used	in	this	device	to	extract	the	constituents	of	the	sample	in	a	

hopper	which	directs	them	along	a	feed	channel	toward	separator	drum.	Using	the	separator	

drum,	the	aggregate	particles	are	oriented	toward	the	falling	plane	at	the	desired	speed.	A	

line	scan	Charge‐Couple	Device	ሺCCDሻ	camera	acquires	the	images	of	aggregate	particles	as	

they	 fall	 in	 front	 of	 a	 backlight.	 Each	 particle’s	 third	 dimension	 is	 computed	 from	 2D	

projection	 image	based	on	the	assumption	of	elliptical	particles.	Therefore,	 this	system	is	

capable	of	measuring	the	particle	size	distribution,	flatness	ሺVDG‐40	FLATሻ	and	slenderness	

ratios	ሺVDG‐40	SLENDሻ.	Figure	2.1	illustrates	VDG‐40	Videograder	and	a	schematic	of	image	

capturing	 procedure	 of	 falling	 aggregates.	 Further	 information	 related	 to	 VDG‐40	 can	 be	

found	elsewhere	ሾ38ሿ.					

	

									

	

	

	

	

	

Figure	2.1	Components	of	VDG‐40	Videograder	and	Image	Acquisition	of	Falling	
Aggregates	ሾ25ሿ	

2.1.2 Computer Particle Analyzer (CPA)  

Similar	 to	 VDG‐40,	 this	 device	 also	 uses	 a	 line‐scan	 CCD	 camera	 and	 a	 backlight	

surface	 to	 capture	 the	 images	 of	 particles	 as	 they	 fall.	 This	 device	 can	 be	 used	 in	 the																					
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laboratory	 or	 as	 a	 continuous	 scanner	 of	 a	 product	 stream.	 2D	 projection	 image	 of	 an	

aggregate	 particle	 is	 used	 to	 reproduce	 an	 idealized	 3D	 shape.	 Therefore,	 this	 system	 is	

capable	of	generating	the	particle	size	and	form	distribution	for	aggregate	samples.	Further	

technical	information	about	this	system	is	provided	elsewhere	ሾ39ሿ.	This	device	and	the	size	

related	properties	of	a	particle	are	shown	in	Figure	2.2.	

	

	

			

	

	

	

	

	

	

Figure	2.2	Components	of	Computer	Particle	Analyzer	and	Associated	Particle	Size	
Properties	ሾ40ሿ	

2.1.3 Micromeritics OptiSizer (PSDA) 

This	device	also	uses	a	line	scan	CCD	camera	to	capture	image	and	evaluate	particles	

ae	they	fall	in	front	of	a	backlight.	The	2D	binary	projected	images	are	used	to	measure	the	

size	properties.	Similar	to	the	method	described	in	CPA,	these	values	will	be	later	used	to	

represent	the	ideal	3D	shapes	of	particles.	This	device	can	be	used	to	measure	the	gradation	

and	form	of	aggregate	particles	ሾ38ሿ.	PSDA	device	is	shown	in	Figure	2.3	

	

	

	

						

	

	

	

	

																																				Figure	2.3	Micromeritics	OptiSizer	ሺPSDAሻ	ሾ25ሿ	
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2.1.4 Buffalo Wire Works (PSSDA) 

This	device	has	been	developed	by	Dr.	Penumadu	at	the	University	of	Tennessee.	This	

system	operates	very	similar	to	VDG‐40	and	captures	images	of	particles	as	they	fall	in	front	

of	the	backlight.	The	system	provides	information	about	gradation	and	form	of	particles.	All	

analysis	 and	 data	 reporting	 are	 performed	 in	 a	 custom	 software	 package	 ሾ38ሿ.	 Two	

experimental	test	devices	that	have	the	same	analysis	concept	are	developed.	These	devices	

are	 called	 PSSDA‐Large	 and	 PSSDA‐Small.	 PSSDA‐Large	 is	 used	 for	 analyzing	 coarse	

aggregate	 particles	while	 PSSDA‐Small	 is	 used	 for	 analysis	 of	 fine	 aggregates.	 Figure	 2.4	

shows	both	of	these	systems.		

	

	

	

	

	

	

	

	

Figure	2.4	Buffalo	Wire	Works	ሺPSSDAሻ	System	for	Evaluating	Size/Form	for		
Coarse	ሺLeft‐Side	Pictureሻ	and	Fine	ሺRight‐Side	Pictureሻ	Aggregates	ሾ38ሿ		

2.1.5 Camsizer  

Camsizer	system	uses	two	optically	matched	cameras	to	capture	images	of	fine	and	

coarse	aggregate	particles	at	different	resolution.	Individual	particles	exit	the	hopper	to	a	

vibrating	 feed	 channel	 and	 fall	 between	 the	 light	 source	 and	 the	 camera.	 Particles	 are	

detected	as	projected	surfaces	and	are	digitized	in	the	computer.	This	system	can	measure	

the	 size	 and	 form	 as	 well	 as	 a	 convexity	 based	 angularity	 index	 for	 the	 particles.	 More	

information	 related	 to	 hardware	 and	 software	 components	 of	 this	 system	 can	 be	 found	

elsewhere	ሾ25ሿ.	Figure	2.5	shows	an	overall	view	of	the	Camsizer.	
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2.1.6 WipShape 

Dr.	Maerz	at	the	University	of	Missouri	was	the	developer	of	Wipshape	system.	Two	

orthogonal	 oriented	 synchronized	 cameras	 are	 used	 in	 this	 system	 to	 capture	 images	 of	

coarse	aggregate	particles.	Coarse	aggregates	are	placed	on	a	rotary	backlight	tray	while	a	

second	backlight	surface	provides	the	background	for	the	front	camera.		Therefore,	both	the	

top	 and	 front	 cameras	 can	 easily	 capture	 the	 silhouette	of	 the	particles.	 This	 system	 can	

measure	 the	aggregate	 shape	and	gradation.	WipShape	uses	 the	minimum	average	 curve	

radius	method	 to	quantify	 the	aggregate	angularity.	More	detailed	 information	about	 the	

hardware	 and	 technical	 background	 related	 to	 WipShape	 can	 be	 found	 elsewhere	 ሾ41ሿ.	

Figure	2.6	shows	the	WipShape	system.											

	

	

	

	

	

	

	

	

Figure	2.5	Overall	View	of	Camsizer	Imaging	System	ሾ25ሿ		
	

	

	

	

	

	

	

	

	

	
	

	

Figure	2.6	WipShape	System	ሾ42ሿ		
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2.1.7 Aggregate Image Measurement System (AIMS) 

This	system	has	been	originally	designed	and	manufactured	by	Dr.	Eyad	Masad	at	

Texas	A&M	University.	Two	modules	are	incorporated	in	this	system.	The	first	module	is	for	

the	analysis	of	fine	aggregates;	black	and	white	images	are	captured	using	a	video	camera	

and	a	microscope.	The	second	module	is	used	for	the	analysis	of	coarse	aggregate;	grayscale	

images	as	well	 as	black	and	white	 images	are	captured.	Fine	aggregates	are	analyzed	 for	

shape	and	angularity,	while	coarse	aggregates	are	analyzed	for	shape,	angularity	and	texture.	

A	 video	microscope	 is	 used	 to	 determine	 the	 depth	 of	 particles,	while	 the	 images	 of	 2D	

projections	provide	the	other	two	dimensions.	These	three	dimensions	quantify	the	shape	of	

particle.	Additionally,	angularity	is	determined	using	gradient	method	by	analyzing	the	black	

and	 white	 images,	 while	 texture	 is	 determined	 by	 analyzing	 the	 grayscale	 images	 using	

wavelet	image	processing	technique	ሾ43ሿ.		

	Recently,	a	second	generation	of	this	imaging	system,	AIMS2,	has	been	developed	and	

commercialized	in	the	US	as	part	of	a	national	initiative	sponsored	by	the	Federal	Highway	

Administration	under	the	Highways	for	LIFE	program	ሾ44ሿ,	The	improvements	in	the	new	

system	 includes	 a	 variable	 magnification	 microscope‐camera	 system	 and	 two	 different	

lighting	 configurations	 to	 capture	 aggregate	 images	 for	 analysis.	 Additionally,	 the	 entire	

system	is	placed	inside	a	box	with	a	door	to	reduce	the	effect	of	ambient	light	on	the	quality	

of	captured	images.		

	

	

	

	

								

	

	

	

Figure	2.7	AIMS	First	Generation	ሺLeft‐Side	Pictureሻ	and	the	Second	Generation	AIMS‐II																										
ሺRight‐Side	Pictureሻ	ሾ44ሿ	

	
It	needs	to	be	noted	that	 the	maximum	particle	size	that	can	be	scanned	with	this	

system	is	1	in.	ሺ25.4	mmሻ.	Therefore,	the	shape	properties	of	railroad	ballast	particles	with	
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sizes	 above	 1	 in.	 ሺ25.4	mmሻ	 cannot	 be	 evaluated	with	 this	 system.	 The	 first	 and	 second	

generation	of	AIMS	is	shown	in	Figure	2.7.	

2.1.8 University of Illinois Aggregate Image Analyzer (UIAIA)   

Rao	 and	 Tutumluer	 ሾ27,	 31ሿ	 developed	 University	 of	 Illinois	 Aggregate	 Image	

Analyzer	 ሺUIAIAሻ	 to	automate	 the	process	of	measuring	 the	 shape	and	size	properties	of	

coarse	 aggregates.	 This	 section	 briefly	 describes	 the	 image	 acquisition	 and	 processing	

features	of	this	system.	UIAIA	uses	three	Charge	Couple	Device	ሺCCDሻ	cameras	with	sensor	

resolution	of	640	x	480	pixels	to	capture	images	of	aggregate	particles	from	top,	side	and	

front	views.	Using	these	three	orthogonally	views,	the	Volume	ሺVሻ,	Surface	Area	ሺSAሻ,	Surface	

Texture	Index	ሺSTIሻ,	Angularity	Index	ሺAIሻ	and	size	of	each	aggregate	particle	are	evaluated.	

Figure	2.8	shows	a	schematic	of	UIAIA	describing	different	parts	of	this	machine.	Infrared	

and	fiber	optic	sensors	detect	the	location	of	the	particles	on	the	conveyor	and	they	send	a	

signal	to	trigger	three	cameras.	1/30th	of	a	second	delay	between	detecting	a	particle	and	

camera	triggering	lets	the	particle	to	move	into	the	field	of	view	of	three	cameras.	

	

	

	

	

	

	

	

	

	

	

	

																																				Figure	2.8	Illustration	of	UIAIA	Components	ሾ31ሿ	

	

Three	 fluorescent	 lights	 and	 three	black	backgrounds	are	provided	 to	 capture	 the	

monochrome	 images	of	 bright	 colored	 aggregates.	 Progressive	 scan	 cameras	with	higher	

shutter	 speeds	are	used	 in	 this	 system	 to	address	 the	motion	blur	caused	by	 the	moving	
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nature	 of	 aggregate	 particles	 on	 the	 conveyor.	 National	 Instrument	 Image	 Acquisition										

ሺNI‐IMAQሻ	acts	as	an	interface	between	the	PCI	1408	frame	grabber	board	and	the	LabView	

2006	 programming	 environment	 as	 the	 acquisition	 software.	 Captured	 digital	 images	 of	

aggregate	particles	are	converted	to	array	of	pixels.	Then,	inter‐class	variance	thresholding	

operation	ሾ45ሿ	is	performed	on	individual	greyscale	images	to	generate	the	corresponding	

binary	 images.	After	assigning	a	threshold	value	to	each	 image,	all	pixels	with	gray	 levels	

below	this	threshold	value	are	reduced	to	‘0’	ሺblackሻ	while	all	pixels	with	gray	levels	greater	

than	threshold	value	are	made	equal	to	‘255’	ሺwhiteሻ	ሺsee	Figure	2.9ሻ.	

	

	

	

	

	

	

	

	

																									Figure	2.9	Grayscale	Image	Thresholding	in	UIAIA	ሾ46ሿ	

	

Obviously,	successful	thresholding	operation	is	highly	dependent	on	the	particle	color	

as	well	as	the	level	of	contrast	between	the	object	and	background.	Five	modules	that	use	

post‐processing	 particle	 morphology	 analysis	 on	 binary	 images	 have	 been	 developed	 to	

quantify	 the	main	aggregate	 shape	properties.	The	outputs	of	 these	modules	 are	particle	

volume,	particle	sieve	size,	flat	and	elongated	ratio,	angularity	index,	surface	texture	index	

and	surface	area	ሾ46ሿ.	A	brief	background	is	provided	here	about	the	methodology	that	is	

used	for	computation	of	these	shape	indices.	More	detailed	description	about	UIAIA	and	its	

shape	indices	can	be	found	elsewhere	ሾ27,	31ሿ		

ሺ1ሻ 	Volume	computation	

The	3D	equivalent	of	a	pixel,	a	pixel	cube,	is	termed	as	voxel	ሾ47ሿ.	3D	reconstruction	

method	that	is	used	in	UIAIA	to	calculate	the	volume	of	each	particle	is	basically	counting	the	

number	 of	 these	 voxels	 belonging	 to	 an	 aggregate	 particle.	 Initially,	 grayscale	 image	
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thresholding,	conversion	of	image	to	array	and	particle	subset	array	selection	are	performed	

to	 identify	 the	domain	of	 an	aggregate	particle.	Then,	 the	volume	computation	algorithm	

examines	each	voxel	that	belongs	to	the	domain	of	the	particle	image.	Corresponding	three	

pixels	in	xy,	yz	and	zx	planes	are	counted	as	part	of	the	particle	if	they	have	the	threshold	

pixel	intensity	equal	to	255.	Finally,	total	number	of	cubic	pixels	that	satisfy	this	condition	

give	the	volume	of	an	aggregate	particle	in	terms	of	number	of	voxels.	The	UIAIA	is	adjusted	

for	 a	 calibration	 factor	 of	 1	 in.	 ሺ25.4	 mmሻ	 ൌ	 158.6	 pixels	 or	 1	 pixel	 ൌ	 0.006305	 in.										

ሺ0.160147	mmሻ.	Therefore,	Equation	2.1	can	be	used	to	calculate	the	particle	volume:	

		

Particle	Volume	ሺin3ሻ	ൌ	number	of	counted	voxels	 	ሺ0.006305ሻ3																																																		2.1	

	

Rao	 ሾ31ሿ	 was	 able	 to	 verify	 and	 validate	 this	 volume	 computation	 technique	 by	

comparing	 the	 imaging	 based	 volume	 results	 with	 the	 weights	 of	 particles	 for	 a	 known	

specific	gravity	ሺGsሻ.	The	capability	of	UIAIA	to	estimate	the	volumes	of	particles	improves	

the	 accuracy	 of	 this	 system	 in	measuring	 the	 particle	 size	 distribution	 comparable	with	

laboratory	 sieve	 analysis.	 This	 point	 will	 be	 later	 discussed	 in	 this	 chapter.	 Figure	 2.10	

illustrates	 the	 3D	 reconstruction	 and	 voxel	 based	 volume	 computation	 of	 an	 aggregate	

particle.	

	

	

	

	

			 	

	

								

	

	

	

Figure	2.10	Projected	Images	of	an	Aggregate	Particle	in	Cartesian	Planes	and												
3D	Volume	Reconstruction	by	Voxel	Counting	ሾ48ሿ			
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ሺ2ሻ 	Flat	and	Elongated	Ratio	ሺF&Eሻ	

According	to	ASTM	D	4791,	the	F&E	Ratio	of	an	aggregate	particle	is	defined	as	the	

ratio	 of	 the	 maximum	 dimension	 of	 the	 particle	 to	 the	 minimum	 dimension.	 First,	 the	

maximum	intercept	which	is	the	longest	segment	in	the	particle	in	all	possible	directions	of	

projection	is	identified.	Then,	the	dimension	that	is	perpendicular	to	the	maximum	intercept	

is	determined.	After	detecting	the	maximum	intercept	and	the	perpendicular	dimension	of	

each	of	the	three	views	of	an	aggregate	particle,	the	six	dimensions	are	sorted	to	determine	

the	maximum	 and	minimum	 values.	 Finally,	 the	 ratio	 of	 the	maximum	dimension	 to	 the	

minimum	dimension	gives	the	desired	F&E	Ratio.	ሺsee	Figure	2.11ሻ	

	

	

	

	

	

	

Figure	2.11	F&E	Ratio	Measurement	of	an	Aggregate	Particle	in	UIAIA	

	

ሺ3ሻ 	Particle	Size	Distribution	ሺSieve	Analysisሻ		

Rao	ሾ31ሿ	suggests	that	for	identifying	the	particle	size	distribution	using	UIAIA,	the	

intermediate	 imaging	based	size	 for	each	aggregate	particle	needs	 to	be	determined.	The	

lowest	of	the	three	maximum	intercept	values	computed	from	the	three	captured	views	is	

chosen	as	the	intermediate	aggregate	particle	dimension.	Accordingly,	if	this	dimension	is	

smaller	than	the	diagonal	length	of	the	square	mesh/opening	in	a	desired	laboratory	sieve,	

the	particle	passes	through	that	given	sieve.	Rao	ሾ31ሿ	was	able	to	show	that	gradation	curves	

developed	based	on	this	described	imaging	approach	matched	very	closely	with	laboratory	

mechanical	sieve	analysis	results	obtained	from	ASTM	C136	testing	procedure.								

ሺ4ሻ 	Angularity	Index			

Rao	ሾ31ሿ	developed	the	image	processing	algorithm	for	evaluating	the	angularity	of	

aggregate	particles	in	UIAIA.	To	approximate	the	profile	of	each	2D	image	of	a	particle,	the	

coordinates	of	the	particle	profile	are	initially	extracted.	Then,	the	outline	is	approximated	
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by	an	n‐sided	polygon	as	shown	in	Figure	2.12.	An	optimum	“n”	value	of	24	was	found	to	give	

the	best	results	 in	terms	of	separating	crushed	particles	 from	uncrushed	gravel	 ሾ27ሿ.	The	

angle	α	subtended	at	each	vertex	of	the	polygon	is	computed	next.			

	

	

	

	

	

	

	

													Figure	2.12	Replacing	an	Aggregate	Particle	with	an	n‐Sided	Polygon	ሾ27ሿ												

	

A	relative	change	in	slope	of	the	n	sides	of	the	polygon	is	subsequently	estimated	by	

computing	the	change	in	angle	α	at	each	vertex	with	respect	to	the	angle	in	the	preceding	

vertex.	The	frequency	distribution	of	the	changes	in	the	vertex	angles	is	established	in	10‐

degree	class	intervals.	The	number	of	occurrences	in	a	certain	interval	and	the	magnitude	

are	then	related	to	the	angularity	of	the	particle	profile.	Equation	2.2	is	used	for	calculating	

angularity	of	each	projected	image.		
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In	this	equation,	e	 is	 the	starting	angle	value	for	each	10‐degree	class	 interval	and	

Pሺeሻ	is	the	probability	that	change	in	angle	α	has	a	value	in	the	range	of	e	to	ሺe൅10ሻ.	From	its	

definition	 as	 given	 in	 Equation	 2.2,	 the	 angularity	 has	 units	 of	 degree.	 Therefore,	 the	

angularity	 for	a	 circle	will	be	0.	The	AI	of	a	particle	 is	 then	determined	by	averaging	 the	

angularity	 values	 calculated	 from	 all	 three	 views	when	weighted	 by	 their	 corresponding	

areas	as	given	in	Equation	2.3.	
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In	this	equation,	i	takes	values	from	1	to	3	for	top,	front	and	side	orthogonal	views.	

The	 final	 AI	 for	 the	 entire	 aggregate	 sample	 can	 be	 represented	 as	 the	 average	 or	 the	

distribution	curve	for	all	the	particles.			

ሺ5ሻ 	Surface	Texture	Index			

The	STI	measurement	in	UIAIA	is	performed	based	on	a	familiar	concept	in	binary	

image	morphology	 analysis	 that	 is	 called	 “erosion	 and	 dilation.”	 ሾ46ሿ.	 One	 erosion	 cycle	

processes	each	2D	image	by	removing	boundary	pixels	of	an	object	surface	to	leave	the	object	

less	dense	along	its	outer	boundary.	However,	dilation	is	the	reverse	process	of	erosion	and	

a	single	dilation	cycle	increases	the	particle	shape	or	image	dimension	by	the	same	pixels	

around	its	boundary.	Erosion	cycles	followed	by	the	same	number	of	dilation	cycles	tend	to	

smoothen	the	surface	of	a	particle	by	trimming	the	peaks	and	corners	and	patching	the	sharp	

dents	on	the	boundary	ሺsee	Figure	2.13ሻ.	The	difference	in	area	in	terms	of	pixel	counts	for	

2D	images	before	and	after	equal	number	of	erosion	and	dilation	is	directly	related	to	the	

surface	micro‐irregularities	ሾ46ሿ.	Equation	2.4	defines	the	STI	for	each	particle	image.	

Surface	Texture	Index	ൌ	 1 2

1

100
A A

A


 																																																																																																				2.4	

where,		

A1	ൌ	Area	ሺin	pixelsሻ	of	the	2D	image	before	applying	erosion	and	dilation;	

A2	ൌ	Area	 ሺin	 pixelsሻ	 of	 the	 2D	 image	 after	 applying	 a	 sequence	 of	 “n”	 cycles	 of	 erosion	

followed	by	“n”	cycles	of	dilation.	

	

	

	

	

	

	

	

Figure	2.13	Smoothing	the	Surface	of	a	Particle	Image	Linking	to	Surface	Texture	Before	and	
After	Cycles	of	Erosion	and	Dilation	ሾ46ሿ		

	

Before Erosion & Dilation After Erosion & Dilation
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Pan	ሾ46ሿ	was	able	to	show	that	in	order	to	set	up	an	index	independent	of	particle	

size,	the	optimum	number	of	cycles	of	erosion	and	dilation	or	“n”	needs	to	be	identified	using	

the	Equation	2.5.	

L
n


 																																																																																																																																																																	2.5	

where,	

L	ൌ	Longest	or	maximum	intercept	of	the	particle	image;		

β	ൌ	Scaling	factor	for	erosion	and	dilation	operations.		

	The	optimal	n	value	was	determined	as	20	at	which	STI	of	a	set	of	smooth	surface	coarse	

aggregates	such	as	river	gravel	was	recognized	as	significantly	different	from	the	STI	of	a	set	

of	rough	surface	coarse	aggregates	ሾ46ሿ.	The	final	STI	value	is	a	weighted	average	value	of	its	

individual	image	STI	values	determined	from	three	views	ሺfront,	top,	side	imagesሻ.	

ሺ6ሻ 	Surface	Area	

Pan	ሾ46ሿ	developed	an	algorithm	for	surface	area	computation	using	images	captured	

by	UIAIA.	 Surface	 area	 calculation	 of	 an	 aggregate	 particle	with	 irregular	 shape	 requires	

representation	 of	 the	 entire	 surface	 of	 an	 aggregate	 particle	with	 self‐oriented	 small	 2D	

plane	elements	or	∆ ௜ܵ.	Basically,	voxel	elements	that	are	used	in	3D	volume	reconstruction	

and	are	located	on	the	surface	of	the	particle	and	stablish	these	surface	elements.	Finally,	

Equation	2.6	is	used	to	calculate	the	surface	area	of	each	particle.	The	solution	to	this	double	

integration	 is	 estimated	 by	 summation	 of	 ∆ ௜ܵ	 series	 over	 the	 domain	 of	 the	 particle	 in	

Euclidian	coordinate	system	while	the	∆ ௜ܵ	elements	are	sufficiently	small	ሾ27ሿ.	
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Each	of	these	2D	∆ ௜ܵ	elements	on	the	surface	of	the	particle	have	different	orientation	

and	 therefore	 contribute	 with	 different	 magnitude	 to	 the	 total	 surface	 area.	 Since	 the	

projections	 of	 each	 2D	 ∆ ௜ܵ	 element	 contained	 in	 a	 voxel	 are	 three	 pixels	 in	 the	 three	

coordinate	planes,	the	magnitude	of	a	2D	∆ ௜ܵ	element	can	be	determined	by	its	orientation	

as	devoted	by	three	directional	cosines	as	described	in	Equation	2.7.	

cos( )
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i
ij
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S


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	where,	ϕij	is	the	directional	normal	angle	of	each	area	element	∆ ௜ܵ	wih	respect	to	the	three	

coordinate	planes	ሺjൌ1,	2,	3ሻ	respectively.		

It	needs	to	be	noted	that	this	approach	do	not	consider	that	curvature	exists	on	the	

surface	of	a	 real	aggregate	particle.	Later,	Pan	et	al.	 ሾ48ሿ	were	able	 to	show	that	because	

surface	curvature	is	a	function	of	particle	angularity,	a	correction	factor	ሺsee	Equation	2.8ሻ	

can	be	considered	to	improve	the	accuracy	of	surface	area	estimation.		

Surface	Area	ൌ
1 (0.2291 0.0004 )

TotalS

AI


 

																																																																																																				2.8	

where,	∆்ܵ௢௧௔௟	is	the	area	summation	of	all	the	2D	∆ ௜ܵ	elements	in	terms	of	in.2	or	m2	and	AI	

is	the	angularity	index	for	the	aggregate	particle.				

2.2 Laser Based Systems for Evaluating Aggregate Shape Properties   

In	addition	 to	camera	based	 imaging	systems,	 laser	scan	 technology	has	also	been	

used	to	characterize	the	shape	and	size	properties	of	aggregate	particles.	Pan	ሾ46ሿ	used	a	

Roland	 LPX‐1200	 3D	 laser	 scanner	 to	 verify	 the	 accuracy	 of	 surface	 area	measurements	

performed	by	UIAIA.	Figure	2.14	shows	this	laser	system	which	is	set	up	to	scan	an	aggregate	

particle.		

	

	

	

	

	

	

	

	

	

Figure	2.14	Roland	LPX‐1200	3D	Laser	Scanner	ሾ49ሿ	

	

He	was	able	to	show	that	measured	surface	areas	with	UIAIA	matched	very	closely	

with	 surface	 area	measurements	 by	 laser	 scanner.	 Pan	 ሾ46ሿ	 observed	 that	 scanning	 one	

aggregate	particle	with	laser	scanner	took	almost	90	minutes	while	he	was	able	to	capture	
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the	 images	 of	 1000	 aggregate	 particles	 in	 only	 70	 minutes	 with	 UIAIA.	 Considering	 the	

significant	variability	in	particle	shapes	in	a	given	aggregate	sample,	it	is	important	to	use	an	

efficient	 system	 which	 can	 capture	 statistically	 sufficient	 number	 of	 scans/images	 in	 a	

reasonable	amount	of	time.	Later,	Anochie‐Boateng	et	al.	ሾ50ሿ	combined	the	aforementioned	

laser	scanner	with	developed	analysis	techniques	to	quantify	the	sphericity	and	F&E	Ratio	

related	to	different	aggregate	samples.	They	reported	that	approximately	30	minutes	was	

required	to	scan	a	0.75	in.	ሺ19	mmሻ	aggregate	particle.	

Recently,	 as	part	 of	NCHRP	4‐43	 research	project,	Wang	et	 al.	 ሾ4ሿ	developed	a	3D	

aggregate	characterization	system	and	analysis	method	using	Laser	Detection	and	Ranging	

ሺLADARሻ	 approach.	 LADAR	 is	 a	 remote	 sensing	 technology	 that	 measures	 distance	 by	

illuminating	 a	 target	with	 a	 laser	 and	 analyzing	 the	 reflected	 light.	 This	 system	 is	 called	

Fourier	 Transform	 Interferometry	 ሺFTIሻ	 which	 acquires	 3D	 surface	 coordinates	 of	 the	

particles	using	the	combination	of	laser	and	imaging.	A	fiber	optic	switch	is	adopted	in	FTI	

to	adjust	the	input	of	laser	signals	from	two	sources	with	wavelengths	of	675	nm	and	805	

nm,	respectively.	The	image	of	the	aggregate	surface	in	the	mirror	is	later	captured	by	a	CCD	

camera	 and	 analyzed	using	 the	 Fourier	 transform	 to	 represent	 the	 surface	 profile	 of	 the	

particle.	Figure	2‐15	shows	a	picture	of	the	FTI	aggregate	imaging	system.	

	

	

	

	

	

	

	

	

	

Figure	2.15	FTI	Aggregate	Image	System	ሾ4ሿ			

	

Morphological	properties	of	particles	including	form,	angularity,	surface	texture	and	

surface	 area	 are	 analyzed	 using	 Fourier	 transform	 signal	 processing	method.	 As	 part	 of	
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NCHRP	 4‐43	 research	 effort,	 Wang	 et	 al.	 ሾ4ሿ	 compared	 the	 FTI	 results	 with	 those	 from															

AIMS‐II	and	UIAIA	systems.	They	concluded	that	when	angularity	and	texture	between	two	

aggregate	sources	are	significantly	different,	these	three	imaging	systems	may	be	sensitive	

enough	to	differentiate	them	with	similar	order	of	ranking.	Major	safety	concern	incurred	by	

the	users	of	FTI	system	is	the	risk	of	eye	damage	associated	with	the	laser	source.	The	risk	

of	 ocular	 damage	 can	 be	 managed	 by	 limiting	 the	 power	 of	 the	 laser	 source	 for	 the	

interferometer.	 Additionally,	 surface	 area	 and	 volume	 computation	 of	 the	 particles	 is	

reported	to	be	very	time	consuming	with	this	system.	

									In	 summary,	 the	 reviewed	 literature	 shows	 that	 laser	 based	 systems	 are	 capable	 of	

generating	 promising	 results	 and	 certainly	 need	 to	 be	 considered	 as	 an	 alternative	 for	

further	research	and	development	in	aggregate	shape	characterization	area.	However,	these	

systems	are	still	associated	with	several	disadvantages	and	concerns	including	the	length	of	

time	required	to	scan	each	particle,	the	high	initial	cost	of	laser	device	as	well	as	safety	risks.		

2.3 Influence of Aggregate Shape Properties on Performance 

	The	morphological	or	shape	properties	of	aggregate	particles	significantly	affect	the	

performances	of	the	unbound/bound	layers	of	highway	and	airfield	pavements	as	well	as	

railroad	 ballast	 under	 dynamic	 traffic	 loading.	 These	 constructed	 aggregate	 layers	 are	

evaluated	in	terms	of	shear	strength,	modulus	and	permanent	deformation	characteristics	

ሾ6,	 7,	 8,	 51ሿ.	 Additionally,	 road	 safety	 from	 the	perspective	 of	 frictional	 resistance	 of	 the	

pavement	surface	is	a	function	of	pavement	micro‐texture,	which	is	highly	influenced	by	the	

magnitude	of	aggregate	surface	texture	and	angularity	ሾ17,	52,	53ሿ.		

According	to	laboratory	and	field	performances	and	numerical	modeling	results	such	

as	from	Discrete	Element	Method	ሺDEMሻ,	ballast	layers	in	railroad	track	that	are	constructed	

with	 angular	 aggregate	 particles	 possess	 higher	 strength	 properties	 and	 thus	 improved	

lateral	 track	 stability	 when	 compared	 to	 rounded	 aggregate	 particles	 ሾ54ሿ.	 Uthus	 ሾ55ሿ	

studied	 the	 deformational	 properties	 of	 unbound	 granular	 aggregates	 used	 as	 railroad	

ballast.	 She	 concluded	 that	 aggregate	 shape	 properties	 strongly	 influenced	 the	 internal	

friction	angles	and	therefore	the	shear	strength	properties	of	ballast	layers.	Recently,	Huang	

ሾ54ሿ	used	DEM	ballast	computer	modeling	and	considered	the	effect	of	individual	particle	
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size	 and	 shape	 properties	 on	 railroad	 ballast	 strength,	 lateral	 stability	 and	 settlement	

potentials.	 The	 findings	 of	 Huang’s	 study	 confirmed	 that	 ballast	 with	 angular	 aggregate	

particles	had	higher	strength	and	lateral	stability	in	comparison	to	rounded	particles	due	to	

better	aggregate	interlock.	

				Han	 ሾ56ሿ	developed	a	 railroad	ballast	 quality	 evaluation	 computer	model	which	

considered	particle	 characteristics	 including	 shape,	 angularity,	 surface	 texture,	 gradation	

and	specific	gravity.	He	was	able	to	evaluate	the	model	using	field	data	related	to	ballast	layer	

track	 performance.	 The	 findings	 showed	 that	 particle	 shapes	were	 indeed	 an	 important	

factor	and	had	to	be	considered	in	design.		

Rao	et	al.	ሾ27ሿ	demonstrated	that	the	AI	values	measured	with	UIAIA	for	50‐50	blends	

of	the	crushed	stone	and	gravel	samples	correlated	well	with	the	shear	strength	properties	

from	triaxial	tests.	Later,	Pan	et	al.	ሾ28ሿ	studied	the	effects	of	particle	angularity	and	surface	

texture	for	21	blends	of	uncrushed	and	crushed	aggregate	sources	on	the	resilient	modulus	

and	 permanent	 deformation	 behavior	 of	 unbound	 granular	 material	 samples	 in	 the	

laboratory.	 They	 concluded	 that	 both	 AI	 and	 STI	 were	 closely	 linked	 to	 modulus	 and	

deformation	properties	of	aggregate	sources.	

Quiroga	et	al.	ሾ57ሿ	studied	the	effect	of	aggregate	shape,	texture	and	gradation	on	the	

performance	 of	 fresh	 concrete.	 They	 observed	 that	 aggregate	 blends	with	 cubical	 shape,	

rounded	and	smooth	particles	required	less	paste	at	a	given	slump	as	opposed	to	blends	with	

flat,	 elongated,	 angular	 and	 rough‐surfaced	 particles.	 On	 the	 other	 hand,	 uniform	 size	

distribution	with	sufficient	amounts	of	each	size	resulted	in	aggregate	blends	with	improved	

aggregate	packing	and	low	water	demand.	Recently,	Polat	et	al.	ሾ58ሿ	investigated	the	effects	

of	shape	properties	of	aggregates	quantified	by	digital	image	processing	on	the	compressive	

strength	properties	of	cement	concrete.	They	were	able	to	show	that	spherical	particles	were	

desirable	for	increased	compressive	strength,	unit	weight	and	slump	values.						

A	comprehensive	research	project	sponsored	by	Iowa	Department	of	Transportation	

investigated	the	effects	of	aggregate	shape	properties	on	the	volumetric	properties	of	Hot	

Mix	Asphalt	ሺHMAሻ,	particularly	Voids	in	Mineral	Aggregates	ሺVMAሻ.	Statistical	regression	

based	analyses	showed	that	the	combination	of	the	maximum	aggregate	size	and	gradation	

in	addition	to	particle	shape	and	texture	properties	influenced	the	volumetric	conditions	of	
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HMA	mixtures	at	the	stable‐unstable	threshold.	Based	on	the	findings	of	this	study,	a	new	

paradigm	 to	 volumetric	 mix	 design	 was	 developed	 which	 is	 capable	 of	 considering	 the	

aggregate	shape	factors	including	gradation,	shape	and	texture	in	the	mixture	design	ሾ59ሿ.	

Recently,	 Prowell	 et	 al.	 ሾ10ሿ	 studied	 the	 aggregate	 properties	 and	 the	 performance	 of	

Superpave	designed	HMA	as	part	of	the	NCHRP	9‐35	research	project.	The	outcome	of	this	

study	 showed	 that	 increasing	 coarse	 aggregate	 fractured	 faces	 or	 “angularity”	 increased	

rutting	 resistance.	 Additionally,	 increased	 particle	 index	 value	 or	 uncompacted	 voids	 in	

coarse	aggregates	also	provided	increased	rutting	resistance.	The	latter	combines	the	effect	

of	form,	angularity	and	surface	texture	associated	with	each	particles.		

As	part	of	NCHRP	IDEA	Project	114,	Masad	et	al.	 ሾ60ሿ	conducted	a	comprehensive	

study	investigating	the	relationship	of	aggregate	surface	texture	to	asphalt	pavement	skid	

resistance	using	image	analysis.	The	findings	of	this	project	verified	that	skid	resistance	was	

not	only	related	to	the	average	aggregate	surface	texture,	but	also	to	the	texture	distribution	

within	 an	 aggregate	 sample.	 They	 suggested	 that	 aggregate	 surface	 texture	 distribution	

could	be	 considered	 in	developing	more	accurate	performance	models	 to	predict	 asphalt	

pavement	skid	resistance.				

2.4 Degradation Mechanism of Aggregates  

According	 to	 Tolppanen	 ሾ61ሿ,	 the	 most	 important	 factors	 which	 cause	 in‐service	

aggregate	 degradation	 include:	 aሻ	 material	 source	 properties	 including	 mineralogy	 and	

petrography,	bሻ	shape	of	aggregate	particles,	cሻ	initial	size	distribution	and	arrangement	of	

particles,	dሻ	 force	concentration	on	particle	surfaces	and	eሻ	aggregate	 layer	maintenance	

operations	and	environmental	conditions.	

Since	the	energy	required	to	crush	aggregate	particles	is	a	function	of	the	amount	of	

created	new	surface	areas,	Moavenzadeh	et	al.	ሾ62ሿ	used	the	concept	of	an	increase	in	surface	

area	of	particles	as	a	tool	in	measuring	the	magnitude	of	degradation	in	an	aggregate	matrix.	

They	showed	that	in	a	uniform	as	opposed	to	a	dense	graded	aggregate	mixture,	the	number	

of	contact	forces	were	fewer	and	particles	were	subjected	to	higher	contact	pressures	which	

in	turn	causes	much	more	breakage	and	degradation.	Increasing	the	average	grain	size	of	the	

particle	chain	transmitting	the	load	increased	the	force	required	to	break	particles.	However,	
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by	increasing	grain	size,	the	contact	point	between	particles	becomes	fewer	which	eventually	

increases	the	forces	acting	on	contact	surfaces.	Nurmikolu	ሾ63ሿ	states	that	“The	breakage	of	

the	particles	is	compounded	by	the	fact	that	a	particle	needs	to	transmit	the	same	load	after	

having	 been	 broken	 and	 is	 increasingly	 susceptible	 to	 breakage	 due	 to	 its	 smaller	 size”.	

Several	types	of	forces	such	as	attrition,	impact	and	grinding	are	imposed	on	the	aggregate	

particles	at	different	stages	of	degradation	including	production	at	the	quarry/plant	ሾ64ሿ,	

transporting	to	job	site	and	compaction	during	construction.	All	of	these	factors	in	addition	

to	 in‐service	 dynamic	 traffic	 loading	 as	 well	 as	 environmental	 effects	 cause	 “aggregate	

degradation”	or	deviating	the	aggregate	structure	from	its	target	condition	in	terms	of	both	

size	and	shape	of	particles.		

As	mentioned	 before,	 the	 initial	 shape	 distribution	 of	 particles	 can	 also	 affect	 the	

aggregate	 degradation.	 Raymond	 ሾ65ሿ	 investigated	 the	 performance	 of	 a	 thin	 layer	 of	

granular	material	when	 acting	 as	 a	 foundation	material	 under	 repeatedly	 loaded	 surface	

footing.	Raymond	observed	negligible	to	zero	breakdown	when	rounded	aggregates	were	

used	 while	 particle	 breakdown,	 including	 powdering,	 was	 noticeable	 after	 testing	 the	

crushed	particles	as	the	foundation	layer.		

Several	 studies	 in	 the	 literature	 investigated	 the	 characterization	 of	 aggregate	

degradation	 and	 its	 effects	 on	 the	 bearing	 capacity	 of	 unbound/bound	 layer	 from	 the	

perspective	 of	 change	 in	 size	 distribution	 or	 decrease	 in	 coarse	 to	 fine	 fraction	 ratio																	

ሾ66,	67,	68ሿ.	 It	 is	 important	 to	note	 that	aggregate	degradation	can	cause	abrasion	which	

results	in	particles	to	lose	their	angularity	and	surface	texture	or	become	more	rounded	and	

spherical.	Aggregate	degradation	changes	the	void	ratio	or	packing	properties	and	ultimately	

influences	the	performance.	On	the	other	hand,	aggregate	particles	after	breakage	possess	

fresh	surfaces	which	might	have	sharp	edges	and	rougher	surface	texture.		

2.5 Evaluation of Aggregate Resistance to Degradation   

	Several	 standards	 and	 test	 procedures	 such	 as	 Los	 Angeles	 Abrasion	 ሺLAAሻ,	Mill	

Abrasion	ሺMAሻ,	Deval	Abrasion	ሺDAሻ	and	Micro‐Deval	ሺMDሻ	have	been	developed	to	evaluate	

the	resistance	of	aggregates	to	degradation.	In	these	laboratory	tests,	aggregate	particles	are	

subjected	to	different	levels	and	combinations	of	abrasion	or	attrition,	impact	and	grinding	
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forces	for	a	certain	time	or	number	of	revolutions.	Occasionally,	water	may	be	added	to	the	

specimen	to	consider	the	effect	of	moisture	during	degradation	process.	At	the	end	of	each	

test,	loss	of	material’s	mass	in	terms	of	percentage	relative	to	the	original	mass	is	considered	

as	 the	 degradation	 evaluation	 criteria.	 Tables	 2.2	 and	 2.3	 summarize	 the	 American	 and	

European	standard	procedures	for	evaluating	aggregate	resistance	to	degradation	based	on	

LAA	and	MD	methods.	Note	that	ASTM	method	is	not	currently	available	for	performing	MA,	

DA	and	MD	on	railroad	ballast.		

	

Table	2.2	ASTM	Standard	Procedures	for	LAA	and	MD	Laboratory	Tests	

	

DA	 was	 initially	 used	 in	 England	 to	 measure	 the	 quality	 of	 highway	 aggregate	

materials.	Later,	British	Rail	ሺBRሻ	used	a	modified	version	of	this	test	to	assess	the	minimum	

durability	 of	 ballast	 life.	 This	 test	 can	 be	 conducted	 in	 dry	 and	 wet	 conditions.	 The	

dimensions	of	cylinder	in	the	DA	testing	machine	is	7.87	in.	ሺ200	mmሻ	diameter	and	13.38	

in.	ሺ340	mmሻ	depth.	The	cylinder	shall	be	mounted	on	a	shaft	at	an	angle	of	30	degrees	with	

Standard 
number 

ASTM C131 ASTM C535 ASTM D6928 

Description 
LAA on regular size 

aggregate 
LAA on railroad ballast 

MD on regular size 
aggregate 

Action 
imposed on 
aggregate 

Abrasion or attrition - 
Impact - Grinding 

Abrasion or attrition - 
Impact - Grinding 

Abrasion and grinding in 
the presence of water 

Size of 
aggregate 

4 gradations covers  
1 in. (25 mm) to No.8   

sieve 

3 gradations covers  
2.5 in. (63 mm) to 0.75 in. 

(19 mm) 

3 gradations covers  
0.75 in. (19 mm) to No.4 

sieve 
Mass of 
sample 

11 lbs. (5000 gr) 22 lbs. (10000 gr) 3.3 lbs. (1500 gr) 

Charge type 
Steel spheres with  

Dia. = 1.84 in. (46.8 mm) 

Steel spheres with  
Dia. = 1.84 in. 

 (46.8 mm)  

Steel spheres with  
Dia. = 0.374 in.  

(9.5 mm) 

Amount of 
charge 

6 to 12 steel balls based 
on aggregate grading 

12 steel balls 
5000 gr of balls and  

2 Liters of water 

Number of 
revolutions 

500 @ 30 rpm 1000 @ 30 rpm 
95 min to 120 min 

depending on gradation 
@100 rpm 

Degradation 
criteria 

Loss as a percentage of 
original mass after wash 

sieving through  
No.12 sieve 

Loss as a percentage of 
original mass after wash 

sieving through  
No.12 sieve 

Loss as a percentage of 
original mass after wash 

sieving through  
No.16 sieve 
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the	axis	of	rotation	of	the	shaft.	Depending	on	the	maximum	particle	size	and	gradation	of	

the	sample,	6	to	12	standard	steel	spheres	with	approximately	1.89	in.	ሺ48	mmሻ	diameter	

are	charged	to	the	cylinder	and	the	machine	starts	to	rotate	for	10,000	revolutions	at	33	rpm.	

After	finishing	the	test,	the	weight	of	the	material	passing	through	No.8	sieve	or	No.12	sieve,	

depending	on	sample	gradation,	divided	by	the	initial	weight	of	material	is	considered	as	the	

degradation	criteria	ሾ69ሿ.		

	

Table	2.3	European	Standard	Procedures	for	LAA	and	MD	Laboratory	

Standard 
number 

EN 1097-2 
EN 1097-2 Annex 
"A" or EN 13450 

Annex "C" 
EN 1097-1 

EN 1097-1  
Annex "A" or 

 EN 13450 Annex 
"E" 

Description 
LAA on regular 
size aggregate 

LAA on railroad 
ballast 

MD on regular size 
aggregate 

MD on railroad 
ballast 

Action 
imposed on 
aggregate 

Resistance to 
fragmentation - 
Different test for 

Impact 

Resistance to 
fragmentation - 
Different test for 

Impact 

Resistance to wear
Resistance to 

wear 

Size of 
aggregate 

Covers 0.55 in. 
(14mm) to 0.4 in. 

(10mm) * 

Covers 2 in. 
(50mm) to 1.2 in. 

(31.5mm) 

Covers 0.55 in. 
(14mm) to 0.4 in. 

(10mm) ** 

Covers 2 in. 
(50mm) to 1.2 in. 

(31.5mm) 
Mass of 
sample 

5000 gr 10000 gr 1000 gr 10000 gr 

Charge 

Steel spheres 
with D = 46.8 mm 
and weight of 400 

gr 

Steel spheres 
with D = 46.8 mm 
and weight of 400 

gr 

Steel spheres with 
D = 9.5 mm 

No steel ball used 

Amount of 
charge 

11 steel balls 12 steel balls 
5000 gr of balls 
and 2.5 Liters of 

water 

No steel ball and 2 
Liters of water 

Number of 
revolutions 

500 @ 30rpm 1000 @ 30 rpm 
120 min  

 @100 rpm 
140 min   

@100 rpm 

Degradation 
criteria 

Loss as a 
percentage of 
original mass 

after wash sieving 
through No.12  

(1.7 mm) 

Loss as a 
percentage of 
original mass 

after wash sieving 
through No.12  

(1.7 mm) 

Loss as a 
percentage of 

original mass after 
wash sieving 

through No.12  
(1.7 mm) 

Loss as a 
percentage of 

original mass after 
wash sieving 

through No.12  
(1.7 mm) 

							

MA	is	a	wet	abrasion	test	which	needs	6.6	lbs	ሺ3	kgሻ	of	railroad	ballast	material	with	

specified	gradation.	The	MA	procedure	includes	revolving	the	sample	without	charging	any	

steel	spheres	around	the	longitudinal	axis	of	a	9	in.	ሺ229	mmሻ	external	diameter	porcelain	

jar	for	10,000	revolution	at	33	rpm.	The	MA	value	is	the	amount	of	material	passing	No.200	
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sieve	relative	to	the	original	mass	of	the	sample	ሾ70ሿ.	Note	that	although	DA	and	MA	methods	

have	been	common	in	the	past,	currently	Superpave	mix	design	procedure	and	American	

Railway	Engineering	and	Maintenance‐of‐Way	Association	ሺAREMAሻ	both	recommend	LAA	

method	 to	 evaluate	 the	 resistance	 of	 aggregate	 to	 degradation.	 Additionally,	 most	 state	

DOT’s	use	MD	method	to	evaluate	the	properties	of	highway	aggregates	related	to	polishing	

and	frictional	resistance.		

In	 addition	 to	 aforementioned	 tests,	 some	 other	 standard	 procedures	 have	 been	

developed	for	assessing	aggregate	resistance	to	degradation.	Aggregate	Impact	Value	ሺAIVሻ	

and	Aggregate	Crushing	Value	ሺACVሻ	are	the	two	indices	that	are	also	used	by	practitioners	

to	 evaluate	 the	 breakage	 susceptibility	 of	 aggregates.	 British	 Standards,	 BS	 812‐112	 and								

BS	812‐110	describe	the	laboratory	procedure	related	to	these	two	laboratory	tests.	In	terms	

of	evaluating	the	influence	of	environmental	conditions	on	aggregate	degradation,	“sodium	

and	magnesium	sulfate	soundness”	tests	ሺAASHTO	T	104ሻ	is	generally	considered	ሾ15ሿ.	

According	 to	 findings	 from	NCHRP	 4‐23	 research	 project	 ሾ71ሿ,	 LAA	 and	MD	were	

considered	among	the	most	important	tests	which	influence	the	performance	of	aggregates	

used	in	unbound	pavement	layers.	Wu	et	al.	ሾ72ሿ	compared	several	abrasion/degradation	

testing	procedures	with	the	objective	of	correlating	the	laboratory	testing	results	with	the	

field	 performance	 of	 asphalt	 pavement.	 They	 reported	 that	Micro‐Deval	 and	magnesium	

sulfate	soundness	tests	showed	the	best	correlation	with	field	performance.		

						As	part	of	NCHRP	Project	4‐20C,	Folliard	et	al.	ሾ73ሿ	listed	LAA	and	MD	as	the	required	

tests	 at	 level	 1	 design	 category.	 They	 reported	 that	 abrasion	 and	 polishing	 resistance	 of	

aggregates	 evaluated	 by	 these	 two	 tests	 are	 among	 the	 properties	 that	 most	 affect	 the	

performance	parameters	of	concrete	pavements.				

Using	the	results	of	a	comprehensive	railway	ballast	survey	performed	by	CP	Rail,	

Clifton	et	al.	ሾ74ሿ	proposed	a	method	to	predict	the	service	life	of	ballast	layer	by	relating	the	

train	traffic	in	terms	of	Million	Gross	Tons	ሺMGTሻ	with	abrasion	and	degradation	properties	

of	aggregates	considering	particle	size	distribution.	Recently,	Boler	et	al.	ሾ34ሿ	conducted	LAA	

laboratory	testing	with	different	number	of	turns	applied	on	limestone	and	granite	ballast	

sources	to	simulate	the	particle	breakage	under	track	usage.	They	reported	that	at	around	

400	 LAA	 turns	 the	 original	 uniform	 ballast	 gradation	 generally	 become	 “well‐graded”.	
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Furthermore,	using	ballast	shear	box	test	results	they	observed	decreasing	trends	in	shear	

strength	with	decreasing	the	AI	and	F&E	Ratio	of	the	particles.	Klassen	et	al.	ሾ75ሿ	suggested	

the	Abrasion	Number	ሺANሻ	for	railroad	ballast	as	the	sum	of	LAA	and	five	times	MA	values.	

Later,	Raymond	&	Bathurst	 ሾ76ሿ	 reported	 that	AN	showed	good	correlations	with	ballast	

permanent	deformation	properties	under	cyclic	triaxial	testing.	

The	degradation	process	that	happens	in	a	granular	medium	under	field	conditions	is	

an	extremely	complicated	mechanism.	By	the	time	of	writing	this	dissertation,	no	standard	

laboratory	test	has	been	developed	that	can	fully	simulate	degradation	of	unbound	aggregate	

layers	 under	 the	 effect	 of	 variable	 field	 environmental	 conditions	 and	 repeated	 traffic	

loading.	 Deep	 understanding	 of	 aggregate	 performance	 associated	with	 its	 life	 cycle	 and	

degradation	 patterns	 in	 terms	 of	 particle	 abrasion	 and	 breakage	 requires	 accurate	 and	

systematic	measurement	of	both	particle	size	and	shape	properties	at	different	deterioration	

levels.	

2.6 Introduction to Machine Vision   

Machine	vision	aims	to	create	a	model	of	the	real	world	using	digital	images	ሾ77ሿ.	In	

other	words,	the	ability	of	a	computer	to	“see	and	compute	differences”	is	called	machine	or	

computer	 vision.	 The	main	 components	 of	 any	machine	 vision	 system	 include:	 problem	

definition,	 image	 acquisition	 and	 image	 processing	 including	 segmentation	 as	 well	 as	

interpretation	of	 the	extracted	 features.	Human	eyes	can	only	detect	 the	electromagnetic	

wavelengths	ranging	from	390	to	770	nanometers	ሺnmሻ.	However,	the	video	cameras	can	be	

sensitive	to	a	much	wider	wavelengths	which	make	them	an	efficient	tool	for	many	industrial	

and	 medical	 applications	 such	 as	 handwriting	 recognition,	 material	 inspection,	 medical	

image	analysis	and	pattern	recognition	ሾ78ሿ.	

In	 this	 section,	 a	 brief	 overview	 related	 to	 color	 image	 processing	 and	 color	

thresholding	 is	 provided.	 Later,	 this	 concept	will	 be	 implemented	 in	 the	 development	 of	

image	acquisition	and	processing	of	E‐UIAIA.	Additionally,	a	short	 introduction	related	to	

image	acquisition	and	processing	using	National	Instrument	ሺNIሻ	Lab	View	and	its	graphical	

or	“G”	programing	interface	is	provided.						
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2.6.1 Color Image Processing  

An	image	that	is	acquired	by	a	camera	generally	needs	to	be	pre‐processed	to	gain	

compatibility	with	the	desired	vision	processing	method.	Poor	contrast,	random	variation	in	

intensity	 or	 “noise”	 and	 insufficient	 illuminations	 need	 to	 be	 addressed	 using	 image	

enhancement	methods	during	the	early	phase	of	image	processing.	Histogram	modification	

and	 linear	 filters	 such	 as	 mean	 filtering,	 median	 filtering,	 look	 up	 tables	 and	 Gaussian	

smoothing	are	generally	used	to	remove	these	noises	and	enhance	the	image.	The	human	eye	

can	 distinguish	 thousands	 of	 different	 color	 shades	 and	 intensities	 but	 only	 around	 100	

shades	of	grey.	Therefore,	a	great	amount	of	information	can	be	found	in	the	color	image	and	

this	extra	information	helps	to	improve	image	analysis	tasks	such	as	object	identification	and	

extraction	based	on	color	 ሾ79ሿ.	Figure	2.16	shows	 the	 range	of	wavelengths	 for	 the	main	

three	Red,	Green	and	Blue	ሺRGBሻ	colors.		

	

	

	

	

	

	

	

	

	

																					Figure	2.16	The	Visible	Spectrum	and	Colors	ሾ80ሿ		

	

There	are	three	types	of	cones	in	human	retina	which	respond	differently	to	incident	

light	associated	with	the	three	main	colors.		Figure	2.17	shows	responses	of	these	cones	as	a	

function	of	wavelength.		

In	 computer	 vision,	 there	 are	 different	 ways	 to	 represent	 a	 color	 image.	 These	

alternatives	are	called	“Color	Models”.	Red,	Green,	Blue	ሺRGBሻ	and	Hue,	Saturation,	Intensity	

ሺHSIሻ	are	the	two	most	important	color	models	that	are	further	described	in	this	section.	
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											Figure	2.17	Spectral	Responses	for	Each	Cone	Type	in	Human	Eye	ሾ79ሿ		

	

In	the	RGB	model,	an	image	consists	of	three	independent	image	planes,	one	in	each	

of	the	primary	colors:	red,	green	and	blue.	Figure	2.18	shows	the	geometry	of	the	RGB	color	

model	for	specifying	colors.	

	

	

				

	

	

	

	

	

																																															Figure	2.18	RGB	Color	Cube	ሾ79ሿ	

	

The	color	image	also	can	be	specified	by	three	quantities	including	Hue,	Saturation	

and	Intensity.	The	entire	space	of	colors	can	be	represented	in	HSI	model	as	shown	in	Figure	

2.19.		
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Figure	2.19	HSI	Color	Model	ሾ81ሿ	

	

RGB	and	HSI	color	representation	models	can	be	converted	to	each	other.	The	HSI	

color	 space	 is	 very	 attractive	 color	 model	 for	 image	 processing	 applications	 since	 it	

represents	colors	similarly	to	how	the	human	eye	senses	colors.	Therefore,	HSI	is	generally	

considered	as	 the	preferred	color	model	when	 it	 comes	 to	 color	 image	processing.	Many	

image	 processing	 techniques	 that	 are	 available	 for	 gray	 scale	 images	 are	 applicable	 to	

individual	color	planes	to	enhance	a	particular	channel	so	that	the	desired	features	or	objects	

in	 the	 image	 stand	 out.	 These	 enchantments	 help	 to	 achieve	more	 accurate	 results	 after	

applying	segmentation/thresholding.			

2.6.2 Image Segmentation and Color Image Thresholding  

The	 process	 of	 partitioning	 an	 image	 into	 different	 areas/zones	 is	 called	 image	

segmentation.	 As	 an	 initial	 post‐processing	 step	 in	 image	 segmentation,	 “image	

thresholding”	 is	generally	used	to	determine	boundaries	between	different	regions	 in	the	

image	according	to	the	differences	in	intensity	and	color.	The	result	of	this	analysis	is	called	

binarization	results.	 In	many	cases,	thresholding	can	effectively	be	applied	to	images	that	

have	“bimodal	histograms”.	These	type	of	histograms	are	associated	with	images	that	include	

objects	and	background	having	significantly	different	average	brightness.	The	main	goal	in	

many	applications	is	solving	the	problem	of	separating	the	background	and	the	foreground.	

Finding	 the	 correct	 approach	 and	 parameters	 to	 threshold	 an	 image	 can	 be	 very	

challenging.	Bovic	ሾ82ሿ		states	that	“Direct	human	operator	intervention	is	generally	needed	
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to	get	successful	binarization	results.	However,	even	with	human	picking	a	visually	optimal	

value	 for	 thresholding,	 the	 results	 are	 rarely	 perfect.	 There	 is	 nearly	 always	 some	

misclassification	of	object	as	background	and	vice	versa”.	Therefore,	innovative	approaches	

and	algorithms	called	“region	correction	methods”	are	generally	developed	to	correct	these	

misclassification	errors.		

Color	 image	 thresholding	 can	 be	 performed	 on	 RGB	 or	 HSI	 representation	 of	 an	

image.	This	 technique	performs	 image	enhancement	on	each	 individual	channel	and	then	

provides	 the	 final	 output	 with	 combining	 the	 results	 from	 desired	 channels.	 Several	

researchers	have	applied	HSI	color	thresholding	and	concluded	that	this	method	gives	better	

results	in	comparison	to	RGB	color	thresholding	ሾ83ሿ.	Clustering	is	a	widely	used	technique	

for	image	segmentation	ሾ84,	85ሿ.	In	this	technique,	a	feature	vector,	which	records	pertinent	

information	about	the	pixel	such	as	its	spatial	coordinates,	intensity/color,	gradient	and	so	

on,	is	first	generated	for	each	pixel	in	the	image.	Thus,	the	image	is	segmented	according	to	

the	clusters	in	the	high	dimensional	feature	vector	space.	Another	major	technique	in	image	

segmentation	is	region	growing	ሾ86ሿ.	This	technique	begins	with	a	selection	of	a	set	of	seed	

pixels	by	the	user.	After	that,	comparison	tests	are	performed	in	order	to	determine	pixels	

bearing	similarity	to	the	seed	pixels.	The	process	is	then	iterated	until	convergence.	Region	

growing	techniques	provide	users	with	better	control	of	the	process	and	output	segmented	

regions	that	the	users	define	with	clear	edges.		

Graph	based	approaches	are	also	popular	for	image	segmentation	and	thresholding.	

A	 graph	 is	 constructed	 where	 every	 pixel	 corresponds	 to	 a	 node	 and	 every	 pair	 of	

neighboring	pixels	is	connected	by	an	ሺweightedሻ	edge.	The	technique	then	aims	to	cut	the	

graph	into	certain	connected	components	so	that	the	total	weight	of	the	edges	that	are	cut	is	

minimal.	Many	cutting	algorithms	are	suggested	 in	 the	 literature,	 such	as,	 the	graph‐cuts	

algorithm	ሾ87ሿ	and	normalized‐cuts	algorithm	ሾ88ሿ.	Note	that	the	graph‐cut	techniques	are	

minimizing	an	underlying	energy/cost	functional.	There	is	a	multitude	of	other	segmentation	

techniques	that	are	also	based	on	the	minimization	of	a	suitable	cost	functional.	As	part	of	

graph‐cut	segmentation,	The	Markov	Random	Field	ሺMRFሻ	technique	ሾ89ሿ	is	widely	used	for	

pixel	labeling	problems	in	computer	vision.	When	only	two	labels	exist,	they	are	labeled	as	

“foreground”	and	“background”.	Pixels	 that	belong	 to	 the	 foreground	ሺobjectሻ	are	usually	
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labeled	as	1	while	pixels	that	belong	to	background	are	labeled	as	0.	This	technique	will	be	

further	discussed	in	chapter	7	of	this	dissertation.		

2.6.3 Image Acquisition and Processing Using National Instrument (NI) LabView 

Laboratory	 Virtual	 Instrument	 Engineering	 Workbench	 ሺLabViewሻ	 developed	 by	

National	Instrument	Corporation	in	Austin,	TX	is	a	graphical	programming	language	that	is	

widely	used	in	different	fields	of	research.	Using	its	graphical	programming	interface,	called	

“G”,	the	programs	or	Virtual	Instruments	ሺVIsሻ	can	be	designed	as	graphical	block	diagrams	

for	data	acquisition,	control	and	processing.	The	interactive	user	interface	of	each	VI	is	called	

front	panel	which	 includes	all	 the	 indicators	and	controls	as	well	as	display	windows	 for	

input	 and	processed	 images.	The	user	 can	 enter	 the	parameters	 and	 input	 values	 in	 this	

panel.	NI	Vision	Image	Acquisition	Software	ሺNI‐IMAQሻ	makes	it	possible	to	communicate	

with	different	types	of	frame	grabbers	and	cameras	to	acquire,	save	and	display	images.	NI	

Vision	 Development	 Module	 provides	 a	 comprehensive	 library	 with	 many	 imaging	 and	

machine	vision	 functions.	These	 functions	as	 readily	programmed	algorithms	called	 “Sub	

VIs”,	which	can	be	used	for	many	image	processing	operations	such	as	converting	images	

with	 different	 formats	 to	 arrays,	 image	 enhancements	 and	 filtering,	 segmentation	 and	

thresholding	as	well	as	morphological	binary	 image	processing.	The	processed	 images	as	

well	as	the	quantitative	values	of	the	measured	features	can	be	stored	in	the	hard	disk	for	

further	post‐processing	and	analysis.	Vision	Assistant,	another	software	product	 from	NI,	

allows	 the	 user	 to	 quickly	 prototype	 and	 test	 different	 image	 processing	 approaches	 to	

determine	the	best	alternative	for	a	desired	purpose.	Figure	2.20	illustrates	different	parts	

of	a	processing	window	in	Vision	Assistant.					

NI	Vision	VIs	are	divided	into	three	main	categories	including:	Vision	Utilities,	Image	

Processing	 and	 Machine	 Vision.	 Vision	 utilities	 are	 used	 for	 image	 manipulation	 and	

management	tasks	such	as	reading,	writing	and	displaying	the	images	with	BMP,	TIFF,	JPEG,	

PNG	and	AIPD	formats.	Image	processing	category	allows	the	user	to	perform	wide	range	of	

processing	 operations	 such	 as	 pixel	 comparison,	 frequency	 analysis	 by	 2D	 Fast	 Fourier	

Transform	ሺFFTሻ	and	computing	the	histogram	of	an	image.	Finally,	machine	vision	module	

can	be	employed	to	perform	common	machine	vision	inspection	tasks	such	as	checking	for	

the	presence	or	absence	of	a	part	in	an	image	and	measuring	dimensions	ሾ82ሿ.	
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																							Figure	2.20	NI	Vision	Assistant	Processing	Window	ሾ90ሿ	

	

The	 challenging	 part	 in	 developing	 any	 robust	 algorithm	 using	 NI	 Vision	 is	

discovering	the	appropriate	combinations	and	arrangements	of	these	three	main	categories	

of	VIs,	or	in	other	words,	laying	out	the	“architectural	configuration	of	the	graphical	code”.	

As	an	example,	Figure	2.21	shows	the	block	diagram	of	a	simple	VI	which	reads	an	RGB	color	

image	 and	 extracts	 and	 displays	 the	 corresponding	 intensity	 plane.	 The	 aforementioned	

features	 of	 NI	 Vision	 will	 be	 implemented	 in	 this	 research	 for	 the	 development	 of	 an	

improved	image	acquisition,	 image	calibration	and	image	processing	interface	in	E‐UIAIA.	

For	further	information	regarding	image	processing	with	LabView	please	refer	to	ሾ91ሿ.			
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Figure	2.21	Block	Diagram	of	a	Sample	VI	for	Reading	an	Image,	Extracting	Intensity	
Channel	and	Displaying	the	Results		

	

2.7 Summary 

A	 brief	 and	 technical	 background	 related	 to	 aggregate	 imaging	 system	 and	 their	

associated	 shape/size	 indices	 was	 provided	 in	 this	 chapter.	 The	 advantages	 and	

disadvantages	 of	 laser	 based	 systems	 in	 comparison	 to	 imaging	 based	 systems	was	 also	

discussed.	 Additionally,	 available	 laboratory	 testing	methods	 for	 evaluating	 resistance	 of	

aggregate	particles	to	degradation	was	reviewed	in	more	details.	A	comprehensive	literature	

review	 was	 performed	 regarding	 the	 effect	 of	 aggregate	 shape	 and	 size	 properties	 in	

controlling	 the	 performance	 of	 unbound/bound	 layers	 of	 highway	 pavement	 as	 well	 as	

railroad	ballast.		By	looking	into	several	research	projects	and	reports	during	the	past	two	

decades,	it	cannot	be	overstated	that	aggregate	shape	properties	need	to	be	considered	as	a	

critical	 factor	 which	 influence	 the	 laboratory	 and	 in‐service	 performance	 of	 different	

aggregate	 construction	 materials.	 Therefore,	 advanced	 and	 unified	 testing	 methods	 are	

needed	to	efficiently	and	objectively	characterize	the	shape	properties	of	aggregate	particles.					

Reviewing	 the	 literature	 showed	 that	 the	 degradation	 behavior	 with	 focus	 on	

recording	 the	 change	 in	 particle	 shape	 distributions	 has	 not	 been	 well	 understood	 yet.	

Therefore,	 this	 topic	 needs	 to	 be	 systematically	 studied	 to	 assist	 in	 quality	 control	 and	

development	of	 improved	methods	 for	 classifying	aggregate	 sources	and	predicting	 their	

performances.							
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DEVELOPMENT OF ENHANCED UNIVERSITY OF ILLINOIS 

AGGREGATE IMAGE ANALYZER  

This	chapter	provides	detailed	information	on	the	different	design	and	manufacturing	

stages	including	the	calibration	phase	for	the	development	of	Enhanced	University	of	Illinois	

Aggregate	Image	Analyzer	ሺE‐UIAIAሻ.		

3.1 Selection, Manufacturing, and Assembly of Hardware Components 

The	initial	efforts	for	the	development	of	E‐UIAIA	started	in	September	2011.	After	

consulting	 with	 Graftek	 Imaging	 Inc.,	 different	 alternatives	 for	 proper	 selection	 of	 main	

components	of	 the	 imaging	system	 including	camera,	LED	 lights,	 cables,	 laser	sensor	and	

frame	grabber	were	discussed.	It	was	decided	that	a	Dorner	2200	Series	small	belt	conveyor	

with	aluminum	 frame	with	 flat	belt	 and	drive	would	be	 considered	as	 the	main	 frame	of											

E‐UIAIA.	Note	 that	 a	modified	 treadmill	 conveyor	 belt	was	 originally	 used	 in	UIAIA.	 The	

heavy	 weight	 and	 large	 dimensions	 of	 this	 treadmill	 conveyor	 limited	 the	 portability	 of	

UIUIA.	The	Dorner	2200	small	belt	conveyor	is	made	out	of	aluminum	which	makes	it	light	

weight	and	easy	to	move.	Appropriate	dimensions	for	the	belt,	12	in.	ሺ304.8	mmሻ	width	by	

42	 in.	 ሺ1066.8	 mmሻ	 length,	 provided	 enough	 room	 for	 the	 aggregate	 particles	 and	 also	

mounting	 three	 cameras.	 An	 adjustable	 support	 stand	 and	 a	 motor	 with	 variable	 speed	

control	were	also	added	to	the	conveyor	system.	Further	information	related	to	the	conveyor	

belt	system	can	be	found	elsewhere	ሾ92ሿ.			

In	the	preliminary	design	of	E‐UIAIA,	it	was	first	envisioned	to	use	black	and	white	

cameras	 to	 capture	 monochrome	 images	 similar	 to	 UIAIA.	 To	 address	 the	 problem	 in	

capturing	the	images	of	dark	aggregate	particles,	it	was	originally	decided	to	consider	using	

one	belt	with	black	color	and	another	belt	with	white	color.	Although	this	approach	could	

resolve	 the	 issue	 in	 regard	 to	 imaging	 the	 dark	 colored	 particles,	 it	 could	 cause	 other	

difficulties.	Furthermore,	two	separate	image	processing	modules	would	then	be	needed	to	
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segment	aggregate	particles	placed	on	backgrounds	with	black	or	white	colors.	It	means	that	

each	time	the	operator	had	to	visually	 inspect	 the	aggregate	sample	and	make	a	decision	

regarding	which	color	of	background	to	use.	Additionally,	the	belt	had	to	be	switched	every	

time	to	provide	the	desirable	background	considering	the	color	of	aggregate	particles	in	the	

sample.	Although	switching	the	belt	and	finding	the	proper	background	color	could	be	done	

in	a	reasonable	amount	of	time,	it	would	not	be	practical	and	causes	delay	and	difficulties	in	

aggregate	image	acquisition	stage.		

The	 machine	 shop	 services	 in	 the	 Civil	 and	 Environmental	 Engineering	 ሺCEEሻ	

Department	at	the	University	of	Illinois	were	rendered	to	manufacture	the	camera	mounts,	

light	mounts	 as	well	 as	 installing	 a	metal	 background	 for	 side	 and	 front	 cameras.	 In	 the	

original	design	of	UIAIA,	the	front	and	side	cameras	were	orthogonal	to	each	other	in	a	way	

that	it	required	using	two	separate	backgrounds	for	side	and	front	cameras.	However,	in	the	

improved	 design	 of	 E‐UIAIA,	 it	was	 decided	 to	 rotate	 both	 front	 and	 side	 cameras	 up	 to	

exactly	45	degrees	while	 still	 keeping	 them	orthogonal.	This	 improvement	 in	 the	design,	

eliminates	the	need	for	using	two	separate	backgrounds.	Note	that	the	background	for	front	

and	side	cameras	needed	to	be	replaced	with	white	color	in	case	of	 imaging	dark	colored	

aggregates.	Originally,	three	LED	lights	were	used	in	E‐UIAIA.	The	front	and	side	lights	were	

positioned	vertically	and	perpendicular	relative	to	the	surface	of	the	belt.	Furthermore,	the	

top	LED	light	was	positioned	perpendicular	to	the	background	surface.	It	was	observed	that	

capturing	 the	 images	 of	 aggregates	 with	 these	 light	 arrangements	 caused	 considerable	

amount	of	shadow	around	the	aggregate	particle	in	the	image.	Figure	3.1	shows	the	initial	

assembly	of	E‐UIAIA	with	black	and	white	cameras.	This	figure	shows	the	shadow	in	the	top	

image	of	aggregate	particle.		

Considering	 the	 aforementioned	 limitations,	 it	 was	 finally	 decided	 to	 use	 color	

cameras	and	a	blue	background	for	E‐UIAIA.	A	custom	designed	non‐reflective	blue	belt	was	

ordered.	 The	 blue	 color	 was	 chosen	 to	 assure	 achieving	 the	 best	 contrast	 between	 the	

aggregate	 particles	 with	 all	 possible	 natural	 colors	 ሺexcept	 blueሻ	 and	 the	 background.	

Additionally,	a	blue	metal	sheet	was	installed	along	the	conveyor	belt	to	provide	a	continuous	

and	consistent	blue	color	background	for	side	and	front	cameras.	
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						Figure	3.1	Initial	Assembly	of	E‐UIAIA	with	Black	and	White	Cameras	

	

One	of	the	shortcomings	of	UIAIA	was	its	using	a	fixed	focal	length	type	of	lens	for	the	

cameras.	Considering	that	the	distance	between	the	cameras	and	the	object	was	fixed,	the	

system	would	be	limited	to	capture	images	at	a	fixed	spatial	resolution	of	160	pixels	per	inch	

ሺppiሻ.	Since	the	sensor	resolution	of	the	cameras	in	UIAIA	were	fixed	at	640	ൈ	480	pixels,	

capturing	 the	 images	of	 large	 size	 aggregate	particles	 such	 as	 railroad	ballast,	with	 sizes	

above	 2.5	 in.	 ሺ63.5	 mmሻ,	 would	 be	 very	 challenging	 with	 this	 system.	 After	 extensive	

research	 during	 the	 design	 phase	 of	 E‐UIAIA,	 it	 was	 decided	 to	 use	 AVT	 Stingray	 CCD	

progressive	scan	color	cameras	with	1292	ൈ	964	pixel	sensor	resolution	and	using	variable	

focal	 length	 lenses.	 Therefore,	 considering	 the	 12‐36	mm	 variability	 in	 focal	 length	 and	

keeping	a	fixed	distance	between	cameras	and	the	particles	at	18	in.	ሺ457.2	mmሻ,	it	would	

be	possible	to	capture	the	images	of	aggregate	particles	with	sizes	from	0.187	in.	ሺ4.75	mmሻ	

up	to	3	in.	ሺ76.2	mmሻ	

The	associated	variable	image	calibration	interface	of	E‐UIAIA	will	be	described	later	

in	this	chapter.	Noted	that	considering	the	moving	nature	of	aggregate	particles	on	the	belt	

and	the	variability	of	the	location	of	particles	when	the	cameras	are	triggered,	there	should	

be	enough	room	in	the	image	frame	for	the	particle	to	always	stay	in	the	field	of	view	of	the	

Shadow	around	
the	particle	

LED	Lights	
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cameras.	Considering	the	focal	length	of	the	used	lenses	and	the	fixed	distance	between	the	

cameras	 and	 the	 object	 as	 described	 above,	 the	minimum	 spatial	 resolutions	 to	 capture	

images	of	aggregate	particles	can	be	identified	and	are	recommended	as	listed	in	Table	3.1.			

	

Table	3.1	Recommended	Spatial	Resolutions	for	Imaging	of	Aggregates	with	Different	Sizes	

	

	

	

	

	

As	 it	 was	 discussed	 earlier,	 using	 three	 vertical	 LED	 lights	 were	 found	 to	 cause	

shadows	around	the	particle.	Therefore,	it	was	decided	to	use	four	High	Intensity	Advanced	

Illumination	White	24V	LED	lights	and	mount	them	horizontally	relative	to	the	belt	at	left,	

right,	front	and	top	with	dimmer	controls	to	assure	sufficient	and	uniform	light	distribution	

all	around	the	aggregate	particle.	Through	extensive	trials	and	errors,	the	optimum	locations	

and	angles	of	these	LED	lights	were	finalized	to	minimize	reflection	on	the	belt	as	well	as	

shadows	 around	 the	 rock.	 The	 improved	 illumination	 design	 would	 make	 the	 operator	

capable	of	achieving	images	with	best	contrast	considering	the	natural	color	variations	in	

the	aggregate	particles.	A	TDK‐Lambda	AC‐DC	24V@25A	power	supply	was	installed	on	the	

conveyor	to	provide	the	required	power	for	four	LED	lights	as	well	as	the	laser	sensor.	Note	

that	the	cameras	are	powered	up	directly	from	the	computer	using	the	PCI	card.			

Since	the	resolution	of	the	captured	images	in	E‐UIAIA	are	almost	four	times	higher	

than	UIAIA,	a	fast	and	reliable	1394b	Dual	Bus	PCI	Express	Card	with	Four	ports	was	used	to	

transfer	the	acquired	images	to	the	computer	at	high	speed	rate.	This	card	is	compatible	with	

progressive	scan	CCD	cameras	and	offers	good	reliability	for	real	time	image	acquisition	and	

processing.	In	order	to	trigger	the	cameras	at	the	right	moment	while	the	particle	is	moving	

on	the	belt,	a	Banner	Q30	Diffuse‐Mode	Laser	Sensor	was	mounted	on	top	of	the	conveyor.	

All	the	three	cameras	were	connected	to	this	laser	sensor	using	a	I/O	12	pin	Hirose	to	open	

end	cable.	Note	that	a	software	triggering	module	was	designed	to	automatically	ሺwithout	

the	need	for	laser	sensorሻ	save	the	right	image	frame	while	the	cameras	are	in	live	or	real	

Aggregate size 
Target spatial 

resolution (ppi) 
2 in. (50.8 mm) and above 160 
1 in. (25.4 mm) and 1.5 in. (38.1 mm) 230 
0.5 in. (12.7 mm) and 0.75 in. (19.05 mm) 330 
0.187 in. (4.75 mm) and 0.375 in. (9.525 mm) 430 
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time	acquisition	mode	and	recording	up	to	30	frames/second.	This	feature	of	E‐UIAIA	will	

be	 further	 explained	 in	 this	 chapter.	 The	 speed	of	 the	 conveyor	belt	 is	 adjustable	with	 a	

dimmer	control.	The	hardware	triggering	control	of	 the	E‐UIAIA	is	designed	to	adjust	the	

delay	 in	 triggering	 the	 cameras	 according	 to	 the	 speed	of	 the	 conveyor	belt.	 Four	 swivel	

casters	 were	 also	 assembled	 on	 the	 conveyor	 belt	 to	 facilitate	 moving	 the	 E‐UIAIA	 and	

improve	the	portability	of	the	system.	A	Vostro	260	Mini	Tower	Dell	Personal	Computer	was	

selected	 to	control	 the	system.	The	 important	specifications	of	 this	computer	 includes	an	

Intel	i5	Processor	with	3.1	GHz	and	6	MB	Cache	as	well	as	8	GB	Dual	Channel	DDR3	SDRAM	

and	500	GB	Hard	Drive	space.	Table	3.2	summarizes	all	the	final	hardware	components	of				

E‐UIAIA.	More	details	regarding	the	electrical	wiring	drawing	for	connecting	different	parts	

can	be	found	in	Appendix	A	of	this	dissertation.	

The	assembly	and	mounting	the	parts	on	the	conveyor	was	accomplished	around	July	

2012.	Two	more	prototypes	of	E‐UIAIA	were	manufactured	in	2013	and	were	delivered	to	

two	 industry	 partners.	 Figure	 3.2	 shows	 the	 final	 assembly	 of	 E‐UIAIA	 with	 all	 of	 its	

components.		

	

			

	

	

	

	

	

	

	

	

	

	

	

	

	

									Figure	3.2	Final	Assembly	of	E‐UIAIA	with	Color	Cameras	and	Blue	Background	
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													Table	3.2	Description	of	Hardware	Components	of	E‐UIAIA				

Hardware Part Manufacturer Important Features & Descriptions 

Conveyor Dorner 2200 Series - Flat End Belt Drive - Aluminum Frame 

Blue Belt 
Dorner 

(Special order) 
1G - Color Contrasting - Urethane Material 

CCD Camera 
Allied Vision 
Technology 

F-125 Color- Progressive Scan - 1292 x 964 Resolution          
30 Frames/Sec 

Laser Sensor Banner 
Q30LDLQ Model - Diffuse Mode - Class 2  

Static/Dynamic/Single Point 

I/O Cable 
Allied Vision 
Technology 

Compatible with AVT IEEE 1394 Cameras - 8 pin Hirose Female 
to Open End 

PCI Express 
Card 

Allied Vision 
Technology 

1394 Dual Bus Adaptor with Four Ports 
Up to 800 Mb/Sec Transfer Rate 

IEEE 1394 
Cable 

Allied Vision 
Technology 

Compatible with AVT IEEE 1394 Cameras - b to b Cable - 9 pin 
- Screw Lock 

LED Light 
Advanced 

Illumination 
LL6212-WHI24HD- High Intensity Line light With Diffuser White 

Color 

Camera Lens Computar 
M3Z1228CMP-Manual Variable 12-36 mm Focal Length      Max 

Aperture Ratio 1:2:8 
Personal 
Computer 

Dell 
Vostro 260 Mini Tower - Intel Core i5 Processor 3.1 GHz 6MB 

Cache - 8GB DDR3 - 500 GB Hard Disk 

LED Dimmer 
Super Bright 

Leds 
LDK-8A-DC 24V LED – Output 192 Watts -  Max load 8 Amps 

Power Supply TDK-Lambda DSP60-24 – AC/DC 24V @ 2.5A 
Calibration 

Balls 
Hoover 

Precision 
Derlin Material – 2”,2.25”, and 3” Diameters -Special Grade 

	

3.2 Improved Software Design  

Graphical	programming	in	LabView	2012	platform	was	used	to	develop	VIs	to	capture	

and	process	the	images	of	aggregate	particles	from	three	views.	The	main	task	in	developing	

the	control	software	for	E‐UIAIA	was	establishing	an	efficient	color	thresholding	algorithm	

to	be	able	to	automatically	segment	the	aggregate	particles	with	both	dark	and	bright	colors	

from	the	blue	background	and	convert	them	into	their	corresponding	black	and	white	binary	

images.	The	color	threshloding	scheme	is	not	only	used	in	aggregate	shape	property	image	

processors	but	also	is	applied	in	hardware	and	software	triggering	image	acquisition	module	

as	well	as	image	calibration	interfaces.	Therefore,	this	algorithm	will	be	initially	discussed	in	

more	detail	in	this	section.	
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3.2.1 Color Thresholding Scheme in E-UIAIA using HSI Image Representation  

As	already	discussed	in	Chapter	2,	any	color	image	can	be	represented	in	different	

color	 spaces	 and	 channels.	 In	 a	 color	 image,	 each	 pixel	 has	 three	 intensity	 values	

corresponding	to	Red,	Green	and	Blue	components.	Each	channel	of	a	color	image	is	basically	

a	gray	scale	image	with	pixel	values	from	0	to	255.	Therefore,	grayscale	image	processing	

methods	 can	 also	 be	 applied	 into	 individual	 components	 of	 a	 color	 image.	 Figure	 3.3	

illustrates	how	the	pixels	from	an	RGB	color	image	are	formed	from	corresponding	pixels	of	

three	channels.		

	

	

	

	

	

	

	

	

																							Figure	3.3	Three	Color	Components	of	an	RGB	Image	ሾ93ሿ	

	

The	RGB	color	image	can	be	represented	in	Hue	ሺHሻ,	Saturation	ሺSሻ,	and	Intensity	ሺIሻ	

channels	using	Equations	from	3.1	to	3.3.		In	these	equations,	it	is	assumed	that	RGB	pixel	

values	have	been	normalized	to	the	range	between	0	and	1	ሾ93ሿ.	
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Gray	 scale	 images	 and	 their	 corresponding	 pixel	 intensity	 histogram	 distribution	

related	to	RGB	and	HSI	channels	of	several	bright	colored	and	dark	colored	aggregates	were	

inspected	carefully.	Two	examples	of	these	distribution	analysis	are	shown	in	Tables	3.3	and	

3.4.	 Table	 3.3	 shows	 how	dark	 particle	 bi‐modal	 image	 histograms	 could	 be	 achieved	 in	

saturation	channel.	According	 to	Table	3.4,	bi‐modal	histograms	were	observed	 in	all	 the	

channels	of	RGB	and	HSI.		As	discussed	in	Chapter	2,	generally	the	image	histograms	with				

bi‐modal	 shapes	 are	 related	 to	 images	 with	 good	 contrast	 between	 foreground	 and	

background.	One	of	 the	common	challenges	 in	 segmenting	an	 image	 into	 foreground	and	

background	 is	 the	 determination	 of	 a	 proper	 threshold	 value.	 This	 happens	 when	 the	

background	and	the	object	have	very	similar	pixel	intensity	values,	which	results	in	unimodal	

or	multimodal	shapes	of	 image	histograms.	 In	 these	cases,	 it	would	be	very	 important	 to	

choose	the	correct	channel	and	also	identify	the	appropriate	threshold	values	which	can	give	

the	best	results.		

In	 cases	where	sufficient	 contrast	does	not	exist	between	 the	background	and	 the	

foreground,	 image	manipulation	techniques	such	as	image	filtering	and	applying	Look	UP	

Tables	 ሺLUTሻ	 to	 the	 pixel	 values	 are	 used	 to	 enhance	 the	 image	 and	 facilitate	 the	 image	

segmentation.	LUT	method	will	be	further	discussed	in	this	chapter	since	it	 is	used	in	the	

image	processing	algorithm	of	E‐UIAIA.	Achieving	binary	images	of	aggregate	particles	with	

minimum	 amount	 of	 noise	 is	 the	 final	 goal	 in	 developing	 a	 robust	 image	 processing	

algorithm.	Image	thresholding	is	the	operation	which	is	used	to	generate	binary	images.	In	a	

binary	image,	the	pixel	values	can	have	only	two	values	which	are	0	ሺblackሻ	or	1	ሺwhiteሻ.			

	Global	thresholding	which	is	the	automatic	clustering	threshold	function	in	LabView	

was	 applied	 to	 generate	 the	 binary	 black	 and	 white	 images.	 All	 automatic	 thresholding	

functions	 that	 are	 available	 in	 LabView	 use	 the	 histogram	 of	 an	 image	 to	 identify	 the	

threshold.	Figure	3.4	shows	a	bimodal	image	histogram.	In	this	figure,	 i	presents	the	gray	

level	value	and	hሺiሻ	shows	the	frequency	related	to	each	pixel	value.	The	task	is	to	determine	

a	proper	threshold	value	k	to	divide	the	histogram	into	classes	0	and	1.	 	Accordingly,	 the	

following	iterative	procedure	is	the	approach	used	to	determine	the	threshold	value.	This	

method	is	known	as	clustering	with	K‐Means	variations	ሾ93ሿ:	

1. Select	an	initial	estimate	for	the	global	threshold,	k;	
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						Table	3.3	RGB	and	HSI	Representation	of	a	Dark	Aggregate	Particle	and	Histograms					

	

Color Image of a Dark Aggregate Particle 

 
 
 
 
 

 

Red Channel Blue Channel Green Channel 
 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
 

  

Hue Channel Saturation Channel Intensity Channel 
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Table	3.4	RGB	and	HSI	Representation	of	a	bright	Aggregate	Particle	and	Histograms					

	

Color Image of Bright Aggregate Particle

	
	
	

	
	

Red Channel  Blue Channel Green Channel 

	
	
	
	
	
	
	
	

	

	
	
	
	
	
	
	

	
	

	

	

Hue Channel         Saturation Channel Intensity Channel 
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																Figure	3.4	Typical	Shape	of	a	Bimodal	Histogram	of	an	Image						

	

2. Segment	the	image	using	k.	This	will	produce	two	classes	of	pixels:	class	0	includes	

all	the	pixels	with	intensity	values	less	than	k	and	class	1	includes	all	the	pixels	with	

intensity	values	greater	than	k;	

3. Calculate	the	average	intensity	values	m1	and	m2	for	the	pixels	in	regions	class	0	

and	class	1,	respectively;	

4. An	updated	threshold	value	is	computed	according	to	Equation	3.4;																							

1 2

1
( )

2
k m m  																																																																																																																																	3.4						

5. Steps	2	through	4	are	repeated	until	the	difference	in	k	in	successive	iterations	is	

smaller	than	a	predefined	value	which	is	generally	considered	as	0.5.						

	

To	 identify	 the	 best	 channels	 for	 representing	 the	 color	 images	 of	 aggregates,	 the	

described	clustering	thresholding	method	was	applied	to	RGB	and	HSI	channels	of	both	dark	

and	 bright	 color	 aggregates	 shown	 in	 Tables	 3.2	 and	 3.3.	 The	 output	 binary	 images	

corresponding	 to	 each	 channel	 is	 shown	 in	 Table	 3.5	 and	 3.6.	 By	 visual	 inspection	 and	

comparing	these	binary	images	in	terms	of	level	of	noise	after	thresholding,	it	was	decided	

to	 select	Hue	 and	 Saturation	 channels.	Note	 that	 these	 two	 channels	were	 selected	 since	

automatic	 thresholding	 algorithm	 showed	 more	 or	 less	 satisfactory	 performance	 in	

separating	the	background	and	the	particle	without	pre‐processing	of	the	image.	In	the	next	

section,	the	image	manipulation	and	enhancement	operations	that	are	used	to	further	reduce	

the	noise	in	binary	images	are	described.		
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		Table	3.5	Clustering	Threshold	Performance	on	RGB	and	HSI	Channel	on	a	Dark	Aggregate	

	

Color Image of a Dark Aggregate Particle 
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Table	3.6	Clustering	Threshold	Performance	on	RGB	and	HSI	Channel	on	a	Bright	Aggregate	

	

Color Image of Bright Aggregate Particle

	
	
	

	
	

Red Channel Blue Channel Green Channel 
 
 

 
 
 
 
 
 
 

  

Red Thresholded Blue Thresholded Red Thresholded 
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ሺ1ሻ Look	Up	Table	ሺLUTሻ	

Similar	to	adjusting	the	brightness	and	contrast	levels	while	displaying	an	image	on	a	

digital	monitor,	the	goal	of	image	manipulation	is	generally	providing	a	“better”	image.	This	

can	be	achieved	by	a	function	fሺgሻ	where	g	values	are	the	pixels	for	the	original	image.	This	

function	assigns	a	new	value	to	each	pixel.	The	process	can	be	shown	in	Equation	3.5	ሾ90ሿ.	

	

( , ) ( ( , ))out ins x y f s x y 																																																																																																																												3.5	

In	this	equation,	Sin	function	incudes	the	original	pixel	values	and	Sout	function	the	resulting	

values.	The	input	range	obviously	spans	discrete	values	between	0	to	255	and	the	output	

pixel	values	can	be	projected	to	the	same	range	or	can	be	normalized	to	a	desired	range.	The	

function	fሺgሻ	is	often	identified	by	a	table	including	256	values.	This	table	is	called	“Look	Up	

Table”.		

Two	customized	LUTs	were	developed	as	part	of	 color	 thresholding	algorithm	 for									

E‐UIAIA	 to	 enhance	 the	 Hue	 and	 Saturation	 channels.	 These	 two	 LUTs	 project	 the	 pixel	

intensities	 into	 a	 normalized	 range	 between	 0	 ሺblackሻ	 to	 16	 ሺwhiteሻ	 for	 both	 Hue	 and	

Saturation	Channels.	Figure	3.5	illustrates	these	two	LUTs.		

				

	

	

	

	

	

	

	

	

						Figure	3.5	Look	Up	Tables	for	Enhancing	Saturation	and	Hue	Channels							

	

According	to	Figure	3.5,	the	pixel	values	between	0	and	120	in	Saturation	channel	are	

converted	 to	values	between	0	and	16	by	a	 linear	 step	 function.	Any	pixel	with	 intensity	

above	 120	 will	 take	 16	 as	 the	 new	 pixel	 value.	 The	 maximum	 Saturation	 intensity	 was	
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selected	as	120	based	on	the	observed	bi‐modal	shape	of	pixel	histograms	corresponding	to	

Saturation	channel	for	both	dark	and	bright	aggregate	particles	ሺsee	Tables	3.3	and	3.4ሻ.	By	

inspecting	the	Saturation	histograms	it	can	be	observed	that	pixels	with	intensities	below	

120	most	probably	belong	to	the	particle	and	the	pixels	with	intensities	above	120	belong	to	

background.	It	is	a	reasonable	assumption	to	consider	that	the	pixels	with	intensities	closer	

to	0	ሺblackሻ	belong	to	the	particle	with	a	higher	chance.	Likewise,	all	the	pixel	values	above	

120	will	be	returned	to	16	which	means	they	will	be	considered	as	background.	Therefore,	

the	 linear	 step	 function	 was	 selected	 to	 improve	 the	 contrast	 between	 particle	 and	

background	with	a	primary	focus	on	highlighting	the	pixels	that	belong	to	aggregate	particle.		

Inspecting	 the	 image	 histograms	 related	 to	Hue	 channel	 for	 both	 dark	 and	 bright	

particle	 shows	 that	 these	 histograms	 have	 uni‐modal	 shape.	 However,	 a	 clear	 peak	 is	

observed	in	both	of	the	histograms	which	reflects	the	effect	of	background.	A	conservative	

assumption	through	trial	and	error	was	made	to	select	the	pixels	with	intensities	in	the	range	

of	90	to	160	and	project	them	to	the	range	of	0	and	16.	It	means	that	pixels	with	intensities	

closer	to	90	will	belong	to	particle	with	a	higher	chance	while	the	pixel	with	values	closer	to	

160	most	probably	belong	to	the	background.	A	similar	approach	was	applied	to	the	pixels	

with	 values	 between	 160	 and	 230.	 Therefore,	 a	 step	 quadratic	 function	 was	 used	 to	

uniformly	project	the	pixel	values	between	90	and	230	to	0	and	16.	The	pixels	with	values	

below	90	and	above	230	were	returned	to	0	since	it	was	assumed	that	most	probably	they	

belong	to	particle.		

Considering	the	assumptions	that	were	described	above,	the	enhanced	images	in	Hue	

and	 Saturation	 channels	 were	 generated	 and	 are	 shown	 in	 Table	 3.7.	 Note	 that	 pixel	

intensities	in	these	manipulated	images	are	between	0	and	16.	

ሺ2ሻ 	Pointwise	Image	Multiplication		

The	enhanced	images	for	Hue	and	Saturation	channels	were	multiplied	by	each	other	

in	order	to	bring	the	pixel	intensities	back	to	values	between	0	and	255.	According	to	the	

definition	regarding	pointwise	image	multiplication,	the	product	image	Q	can	be	obtained	

from	images	P1	and	P2	based	on	Equation	3.6.	

	

1 2(i, j) P(i, j) (i, j)Q P  																																																																																																																																3.6	
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Table	3.7	Presentation	of	Enhanced‐Hue	and	Enhanced‐Saturation	Channels		
after	Applying	LUT	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Multiplication	 of	 two	 enhanced	 images	 by	 each	 other	 will	 result	 in	 generating	 a	

greyscale	 image	 with	 significant	 improvement	 in	 terms	 of	 level	 of	 contrast	 between	

aggregate	 particle	 and	 the	 background.	 Therefore,	 applying	 the	 clustering	 threshold	

operation	 on	 the	 product	 of	 the	 enhanced	 Hue	 and	 Saturation	 image,	 gives	 clear	 and	

noiseless	binary	images	which	yield	satisfactory	segmentation	process.	The	product	image	

Dark Aggregate Particle Bright Aggregate Particle 
 
 
 
 
 
 
 

 

 

      Hue Channel Hue Channel 
 
 
 
 
 
 
 
 

 

Enhanced-Hue Channel After LUT Enhanced-Hue Channel After LUT 
 
 
 
 
 
 
 

 

 

Saturation Channel Saturation Channel 
 
 
 
 
 
 
 
 

 

Enhanced- Saturation Channel  
After LUT 

Enhanced-Saturation Channel 
After LUT 
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and	the	corresponding	binary	image	after	thresholding	is	shown	in	Table	3.8	for	both	dark	

and	bright	aggregate	particles.	

	

Table	3.8	Product	Image	and	Corresponding	Thresholded	Binary	Images	for	Dark	and	Bright	
Aggregate	Particles	

	
     Dark Aggregate Particle    Bright Aggregate Particle 

	
	
	
	
	
	
	
	
	

Product Image from Multiplying Enhanced 
Hue and Enhanced Saturation

Product Image from Multiplying Enhanced 
Hue and Enhanced Saturation

	
	
	
	
	
	
	
	
	

Thresholded Product Image Thresholded Product Image	
	

ሺ3ሻ 	IMAQ	Fill	Hole	

As	the	final	stage	in	color	thresholding	process,	IMAQ	Fill	Hole	function	in	LabView	

ሾ90ሿ	was	applied	on	 the	 thresholded	 images	 shown	 in	Table	3.7	 in	order	 to	 improve	 the	

quality	and	reduce	the	noise	in	the	binary	images.	This	function	finds	and	fills	all	the	holes																			

ሺwhite	pixelsሻ	inside	the	particle	by	replacing	their	pixel	values	with	0.	

	The	performance	of	 the	described	color	 thresholding	algorithm	in	segmenting	the	

aggregate	 particles	with	 different	 colors	 are	 shown	 in	 Table	 3.9.	 According	 to	 this	 table,	

visual	inspection	of	the	generated	binary	images	confirms	the	satisfactory	performance	of	

the	developed	method	 in	 thresholding	 the	black	and	grey	particles.	Note	 that	 the	 images	

were	captured	at	200	ppi	spatial	resolution	to			
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The	 LabView	 block	 diagram	 related	 to	 color	 thresholding	 method	 is	 provided	 in	

Appendix	B	of	this	dissertation.		

	

Table	3.9	Segmentation	of	Aggregate	Particles	with	Different	Natural	Colors	
	

 
Aggregate 

Color Image 

	
	
	

	

Aggregate 
Natural color 

Pink	 Gray Light	brown White	 Black

 
 
Binary Image 

 
 

	
	
	

	

3.2.2 Camera Setup and Calibration Interface 

According	to	Figure	3.6,	the	main	user	interface	of	the	control	software	in	E‐UIAIA	

includes	four	different	sections.	All	of	 the	four	main	modules	can	be	controlled	using	this	

interface.			

	

	

	

	

	

	

	

	

	

	

	

	

																																					Figure	3.6	Main	User	Interface	of	the	Software	in	E‐UIAIA							

	

The	“setup”	button	in	the	main	user	interface	is	used	to	assign	the	cameras	to	each	

view	as	well	as	selecting	the	desired	folder	in	the	hard	disk	for	saving	the	images,	calibration	
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files	 and	 the	 analysis	 results.	 The	 first	 important	 step	 in	 successful	 measurement	 of	

aggregate	 shape	 properties	 is	 accurate	 and	 consistent	 image	 calibration.	 As	 discussed	 in	

section	3.1,	using	the	camera	setup	and	calibration	module	and	the	variable	focal	lengths	of	

the	camera	lenses,	the	operator	is	able	to	adjust	the	system	to	capture	images	at	160	ppi	to	

430	ppi	spatial	resolution	by	taking	into	account	the	size	of	the	aggregate	particles.	The	white	

spherical	calibration	balls	with	known	diameters	are	used	to	verify	the	achieved	number	of	

pixels	per	inch	for	each	of	the	three	cameras.		

Additionally,	camera	setup	and	calibration	module	allows	the	operator	to	adjust	the	

gain	 levels	 for	 each	 camera.	 This	 feature	 helps	 to	 numerically	 control	 the	 intensity	 of	

illumination	 that	will	 be	 experienced	 by	 camera	 sensors.	 In	 other	words,	 controlling	 the	

camera	 gains	 make	 it	 possible	 to	 determine	 the	 optimum	 digital	 illumination	 levels	

associated	with	the	natural	color	variation	of	aggregate	sources.		

During	 the	 calibration	 process,	 all	 the	 three	 cameras	 are	 in	 continuous	 image	

acquisition	mode.	Thus,	a	real	time	color	thresholding	scheme,	as	described	in	section	3.2.1,	

assists	the	operator	to	observe	the	effect	of	change	in	illumination	levels	on	the	generated	

black	and	white	binary	images	for	both	aggregate	particles	and	calibration	balls.	Figure	3.7	

shows	 the	block	diagram	 for	 continuous	 image	acquisition	and	display	mode	used	 in	 the	

calibration	module	of	E‐UIAIA.	NI‐Vision	Acquisition	Software	in	LabView	was	used	to	design	

this	feature.				

After	final	adjustment	of	all	three	cameras	and	achieving	desired	identical	number	of	

pixels	per	inch	in	addition	to	identifying	camera	gain	levels,	“save	calibration”	controller	on	

the	front	panel	is	used	to	save	the	associated	calibration	file.	The	system	records	and	saves	

the	calibrated	values	in	a	text	file	named	“calibration”.	This	calibration	file	is	later	used	in	

image	analysis	module	to	convert	the	size,	surface	area	and	volume	of	aggregate	particles	

into	real	engineering	units	in	terms	of	in.,	in.2	and	in.3	respectively.		

Figure	3.8	shows	a	screen	shot	of	the	calibration	interface	in	E‐UIAIA.	Verifying	and	

evaluating	the	accuracy	of	the	system	in	identifying	size	and	shape	properties	of	calibration	

spheres	will	be	presented	later	in	this	chapter.		
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Figure	3.7	Block	Diagram	for	Continuous	Vision	Acquisition	and	Display	in	E‐UIAIA
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																														Figure	3.8	Camera	Setup	and	Image	Calibration	User	Interface	in	E‐UIAIA
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3.2.3 Aggregate Image Acquisition in Hardware and Software Modes 

After	 calibration	 of	 all	 three	 cameras,	 the	 operator	 can	 decide	 between	 two	

alternatives	 to	 start	 acquiring	 the	 images	 of	 aggregate	 particles.	 If	 “Acquiring	 Hardware	

Trigger”	mode	is	selected,	the	conveyor	belt	speed,	camera	delay	and	the	laser	sensor	need	

to	be	adjusted	relative	to	each	other	so	that	the	cameras	can	be	triggered	at	the	right	moment	

to	 save	 the	 images	 of	 particles	when	 the	 aggregates	 are	 both	 in	 the	 field	 of	 view	 of	 the	

cameras	and	in	the	middle	of	the	captured	frame.	The	camera	delay	controller	on	the	front	

panel	can	control	all	the	three	cameras.	This	method,	which	was	originally	used	in	UIAIA,	has	

several	 drawbacks.	 For	 example,	 increasing	 or	 decreasing	 the	 conveyor	 belt’s	 speed	will	

require	 the	 operator	 to	 re‐adjust	 the	 camera	 delays	 and	 reprogram	 the	 laser	 sensor.	

Additionally,	the	particles	may	not	be	positioned	exactly	on	the	center	of	the	belt	which	may	

prevent	the	laser	sensor	to	detect	them.	The	need	to	adjust	these	parameters	during	image	

acquisition	reduces	the	productivity	of	the	system	in	terms	of	accuracy	and	scanning	speed.	

Moreover,	identifying	the	correct	parameters	can	be	a	time‐consuming	and	tedious	process.		

Therefore,	an	innovative	live	image	acquisition	and	automatic	real‐time	binary	image	

processor/displayer	was	developed	and	a	new	module	was	added	to	E‐UIAIA.	If	”Acquiring		

Software	Trigger”	mode	is	selected,	all	three	cameras	are	set	at	the	image	capturing	rate	of	

30	frames/second	at	shutter	speed	of	500	milliseconds.	The	captured	frames	are	stored	in	

the	temporary	memory	and	continuously	inspected	to	check	the	existence/nonexistence	of	

the	particles.	When	the	particle	arrives	to	the	center	of	field	of	view	of	the	three	cameras,	the	

captured	 frame	 is	 saved	 and	 sent	 to	 the	 hard	 disk.	 Also,	 the	 color	 thresholding	 scheme	

generates	the	corresponding	black	and	white	binary	image	which	is	displayed	on	the	front	

panel	 of	 user	 interface.	 Therefore,	 the	 software	 triggering	 module	 makes	 it	 possible	 to	

bypass	the	laser	sensor	and	trigger	the	cameras	based	on	the	location	of	the	particles	in	the	

image.	This	facilitates	the	process	of	image	acquisition	and	also	increases	the	scanning	speed.	

A	screen	shot	of	the	control	software	while	acquiring	three	images	of	an	aggregate	particle	

with	pink	color	at	software	triggering	mode	is	shown	in	Figure	3.9.	It	needs	to	be	added	that	

Region	of	Interest	ሺROIሻ	tools	in	LabView	was	used	to	focus	the	segmentation	operation	on	

just	the	aggregate	particle	and	not	the	metal	parts	of	the	conveyor	which	might	be	visible	in	

the	side	and	front	views.		
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	 Figure	3.9	Software	Triggering	Module	in	E‐UIAIA	
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3.2.4 “Analyze Images” Interface  

The	first	stage	in	developing	the	“Analyze	Images”	module	of	E‐UIAIA	was	carefully	

inspecting	the	current	VIs	used	in	UIAIA	for	calculating	the	shape	properties	of	aggregates.	

Note	 that	 UIAIA	was	 programmed	 based	 on	 LabView	 2006	 platform	 and	 calculating	 the	

shape	 properties	 require	 running	 separate	 VIs	 to	 compute	 each	 imaging	 based	 index.	

Additionally,	a	few	programming	errors	or	“bugs”	were	found	in	the	current	VIs	that	were	

corrected.	In	the	angularity	 index	VI,	 last	angle	measurement	on	the	boundary	of	particle	

skipped	a	point	and	considered	23	points	around	the	particle.	According	to	angularity	index	

definition	given	in	ሾ31ሿ	and	described	in	Chapter	2,	the	algorithm	was	supposed	to	use	24	

points	on	the	boundary	of	aggregate	particle	to	measure	the	angle	at	each	vertex.	Therefore,		

measuring	23	angles	instead	of	24	angles	resulted	in	over	estimating	the	angularity	index	

values.	The	related	numerical	error	will	be	discussed	later	in	the	validation	section	of	this	

chapter.		

Additionally,	 it	 was	 observed	 that	 an	 error	 in	 surface	 area	 VI	 resulted	 in	 over	

estimating	 the	 surface	 area	 of	 calibration	 spheres	 with	 known	 surface	 area	 values.		

Therefore,	 all	 of	 the	 VIs	were	 reprogrammed	 using	 2012	 LabView	version	 following	 the	

mathematical	 definitions	 of	 individual	 shape	 indices	 as	 described	 in	 ሾ31,	 46ሿ.	 The	 block	

diagram	of	these	new	reprogrammed	VIs	for	calculating	the	imaging	based	shape	indices	are	

included	 in	Appendix	B	 of	 this	 document.	 Finally,	 all	 of	 the	VIs	were	 combined	 into	 one	

master	VI	in	a	way	that	each	shape	index	could	be	called	as	a	“sub	VI”	when	needed.		

All	 of	 the	 shape	 indices	 can	 be	 computed	 simultaneously	 in	 the	 image	 analysis	

interface	of	E‐UIAIA.	The	calibration	file	reader	as	well	as	color	thresholding	sub	VI	were	also	

added	to	the	master	VI.	Consequently,	this	module	is	capable	of	accepting	color	or	black	and	

white	binary	 images	 for	processing	and	 returning	 the	 indices	 in	engineering	units.	Using	

“Analyze	 Images”	 module,	 the	 operator	 can	 select	 the	 folder	 that	 includes	 the	 acquired	

images	and	the	associated	calibration	 file	 is	automatically	 loaded	ሺsee	Figure	3.10ሻ.	After	

loading	the	acquired	images,	if	the	operator	pushes	“start	analysis”	controller	on	the	front	

panel,	the	shape	properties	are	computed	and	the	numerical	results	are	stored	in	an	MS	Excel	

file	for	further	statistical	post‐processing	analysis.		
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Figure	3.10	Analyze	Image	Module	in	E‐UIAIA	
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Finally,	the	most	important	hardware	and	software	modifications	and	advantages	of	

E‐UIAIA	in	comparison	to	UIAIA	are	summarized	in	Table	3.10.	

	

Table	3.10	Comparison	of	UIAIA	and	E‐UIAIA	

Feature Description UIAIA E-UIAIA 

Thresholding scheme Black and white 
Color-HSI Multichannel with Image 

Enhancement  

Image processing speed 1 particle/second - Binary 
20 particles/second -   

RGB & Binary  
Camera sensor resolution 640 × 480 1292 × 964 

Image format bmp / monochrome png / color 

Light intensity control Constant Dimmer control/Camera gain control 

Focal length Constant Variable with 12-36 mm 

Spatial resolution 
160 pixels/inch 

(0.1875 mm/pixels) 
Variable 160-430 pixels/inch 
(0.1875-0.0564 mm/pixels) 

Calibration method Constant Variable for each aggregate size 

Camera triggering method Laser sensor 
Live video (30 frames/second) -Automatic 

simultaneous frame grabber 
 

3.3 Validation of E-UIAIA 

This	section	includes	the	final	stage	in	the	development	of	the	E‐UIAIA.	This	task	was	

accomplished	by	evaluating	the	performance	of	the	E‐UIAIA	system	in	generating	repeatable	

and	accurate	measurements	of	imaging	based	shape	indices.			

3.3.1 Validation in Calibration Interface with Calibration Balls 

Image	calibration	is	used	to	convert	the	measurements	made	in	terms	of	number	of	

pixels	into	engineering	units.	Generally,	calibration	objects	with	known	dimensions	are	used	

in	 image	 calibration	 to	 evaluate	 the	 accuracy	 of	 the	 measurements	 in	 the	 system.	

Measurement	error	in	imaging	systems	is	called	“digitization	error”	which	is	a	function	of	

several	 factors	 including	 the	 sensitivity	 of	 the	 camera	 sensor	 to	 temperature	 and	

illumination	in	addition	to	magnitude	of	existing	lens	distortion.	These	factors	not	only	vary	

from	sensor	to	sensor	but	also	vary	from	pixel	to	pixel	in	the	same	sensor.	These	effects	may	

corrupt	 the	 intensity	 levels	 represented	 in	every	pixel	of	 the	 image	which	 influences	 the	

measurement	 accuracy.	 Fortunately,	 these	 errors	 can	be	 significantly	decreased	by	using	
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simple	and	frequent	calibration	operation	on	an	imaging	system	to	ensure	the	accuracy	of	

the	measurements	and	monitor	the	errors.		

Four	calibration	spherical	balls	with	1	in.	ሺ25.4	mmሻ,	0.75	in.	ሺ19.05	mmሻ,	0.625	in.									

ሺ15.875	mmሻ,	and	0.5	in.	ሺ12.7	mmሻ	diameters	have	been	originally	used	in	calibrating	the	

UIAIA.	Since	E‐UIAIA	is	capable	of	capturing	the	 images	of	particles	with	sizes	up	to	3	 in.	

ሺ76.2	mmሻ,	three	additional	calibrations	spheres	with	3	in.	ሺ76.2	mmሻ,	2.75	in.	ሺ69.85	mmሻ	

and	1.5	in.	ሺ38.1	mmሻ	were	provided	to	achieve	the	average	measurements	for	all	sizes	as	

well	as	finding	the	most	accurate	calibration	factors	at	all	levels	of	spatial	resolution.	These	

calibration	balls	are	shown	in	Figure	3.11.	Additionally,	their	expected	shape	and	size	indices	

are	 presented	 in	 Table	 3.11.	 Note	 that	 the	 surfaces	 of	 these	 spheres	 are	 fully	 polished;	

therefore,	their	expected	surface	texture	index	would	be	close	to	zero.		

	

	

	

	

	

	

	

	

	

Figure	3.11	Calibration	Spheres	Used	for	Calibrating	E‐UIAIA	
	ሺDrawn	to	Relative	Scale	of	1:2ሻ	

	
Table	3.11	Expected	Shape	and	Size	Indices	for	Calibration	Spheres	

Calibration Sphere 

Expected Theoretical Shape and Size Indices 

Sieve 
size (in) 

Area 
(in2) 

Volume
(in3) 

Angularity 
Index 

(Degrees) 

Surface 
Texture 
Index 

F&E 
Ratio 

3 in. diameter sphere 3.00 28.2743 14.1372 0 0 1 

2.75 in. diameter sphere 2.75 23.7583 10.8892 0 0 1 

1.5 in. diameter sphere 1.50 7.0686 1.7671 0 0 1 

1 in. diameter sphere 1.00 3.1416 0.5236 0 0 1 

0.75 in. diameter sphere 0.75 1.7671 0.2209 0 0 1 

0.625 in. diameter sphere 0.625 1.2272 0.1278 0 0 1 

0.5 in. diameter sphere 0.50 0.7854 0.0654 0 0 1 
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In	 Table	 3.11	 and	 other	 sections	 of	 this	 chapter,	 sieve	 size,	 area	 and	 volume	 are	

reported	in	terms	of	US	measurement	system	because	both	UIAIA	and	E‐UIAIA	are	calibrated	

based	 on	 the	 number	 of	 pixels	 per	 inch.	 According	 to	 Rao	 ሾ31ሿ,	 the	 calibration	 factor	 as																		

1	 in.	ൌ158.6	pixels	 is	recommended	 for	 images	 that	are	captured	by	UIAIA.	The	size	and	

shape	properties	of	calibration	balls	measured	by	UIAIA	in	addition	to	their	associated	error	

values	are	summarized	in	Table	3.12.	Note	that	measurement	errors	for	calibration	balls	are	

calculated	 by	 comparing	 the	 size	 and	 shape	 values	 measured	 by	 UIAIA	 with	 their	

corresponding	expected	values	listed	in	Table	3.11.	The	effect	of	new	software	and	hardware	

components	used	in	E‐UIAIA	on	the	reported	imaging	based	shape	indices	will	be	further	

discussed	in	this	chapter.		

	

Table	3.12	Measurements	and	Errors	Achieved	with	UIAIA	at	158.6	ppi		
Calibration	Factor	ሾ31ሿ	

	

	

It	was	observed	that	the	highest	errors	belong	to	angularity	index	and	surface	area	

measurements.	As	it	was	discussed	earlier,	these	errors	were	partially	due	to	“programming	

bugs”	and	therefore,	malfunctioning	the	associated	VIs.	Table	3.12	also	lists	how	the	error	

values	in	measuring	the	surface	texture	index	are	increasing	for	smaller	size	spheres.		

Object 

                          Measurement with UIAIA 

Sieve 
size (in) 

Area 
(in2) 

Volume
(in3) 

Angularity 
Index 

(Degrees) 

Surface 
Texture 
Index 

F&E 
Ratio 

1 in. diameter sphere 1.002 83.368 0.544 49.942 0.071 1.078 

0.75 in. diameter sphere 0.741 34.776 0.229 39.442 0.084 1.107 

0.625 in. diameter sphere 0.627 19.599 0.130 62.940 0.156 1.060 

0.5 in. diameter sphere 0.516 10.805 0.073 119.518 0.216 1.059 

Object 

                             Measurement Errors (%) 

Sieve 
size 

Area Volume 
Angularity 

Index 

Surface 
Texture 
Index 

F&E 
Ratio 

1 in. diameter sphere 0.197 2553.699 3.807 6.936 1.183 1.300 

0.75 in. diameter sphere -1.266 1867.892 3.756 5.478 1.400 1.783 

0.625 in. diameter sphere 0.382 1497.075 1.994 8.742 2.600 1.000 

0.5 in. diameter sphere 3.135 1275.738 11.037 16.600 3.600 0.983 

Average Error for all 
sizes 

0.612 1798.6 5.149 9.439 2.196 1.267 
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This	 can	be	 related	 to	using	 fixed	spatial	 resolution	 in	UIAIA	and	 increasing	noise	

levels	 in	capturing	and	processing	 the	 images	of	smaller	size	objects.	Nevertheless,	Table	

3.12	shows	that	the	average	error	values	for	size,	volume,	surface	texture	and	F&E	Ratio	for	

all	sizes	are	less	than	10%.			

E‐UIAIA	was	calibrated	at	four	different	target	spatial	resolutions	according	to	Table	

3.13	using	the	variable	focal	length	capability	of	the	lenses.	Table	3.13	shows	the	average	of	

achieved	maximum	intercept	for	all	the	three	orthogonal	views	that	are	normalized	to	1	inch.	

Note	 that	 5	 trials	 for	 individual	 sizes	 were	 used	 and	 the	 average	 of	 measurements	 are	

reported	in	Table	3.13.	Since	the	fields	of	view	of	cameras	decrease	by	increasing	the	focal	

length	 of	 lenses,	 capturing	 images	 of	 3	 in.	 and	 2.75	 in.	 calibration	 spheres	 at	 the	 spatial	

resolutions	above	160	ppi	was	not	possible.	Therefore,	the	average	captured	values	for	all	

available	 sizes	 and	 for	 all	 the	 three	 cameras	 in	 E‐UIAIA	 are	 used	 to	 convert	 the	

measurements	into	engineering	units	and	also	calculating	the	errors.				

	

												Table	3.13	Average	of	Achieved	1	in.	Normalized	Maximum	Intercept	in	E‐UIAIA	

Object 
Target Spatial Resolution (ppi) 

160.00 230.00 330.00 430.00 
3 in. diameter sphere 169.34 N/A N/A N/A 

2.75 in. diameter sphere 168.13 N/A N/A N/A 

1.5 in. diameter sphere 163.78 234.77 335.93 436.91 

1 in. diameter sphere 164.60 233.80 333.84 434.54 

0.75 in. diameter sphere 167.68 236.30 334.42 436.43 

0.625 in. diameter sphere 168.41 237.24 334.46 432.29 

0.5 in. diameter sphere 170.24 237.90 335.72 436.98 
Average of all sizes 167.46 236.00 334.88 435.43 

	

The	measured	shape	indices	for	calibration	spheres	and	error	values	in	E‐UIAIA	are	

summarized	in	Table	3.14,	3.15	and	3.16	at	different	spatial	resolutions.	The	following	points	

can	be	concluded	by	comparing	these	results	with	those	given	in	Table	3.12:	

1‐ The	 average	 error	 related	 to	 surface	 area	 has	 significantly	 decreased.	 The	

reprogrammed	 VI	 follows	 the	 exact	 procedure	 developed	 by	 Pan	 ሾ46ሿ	 for	

calculating	the	surface	area.		
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																					Table	3.14	Measurements	and	Errors	Achieved	with	E‐UIAIA	at	160	ppi	

	

	

2‐ The	 average	 error	 related	 to	 angularity	 index	 has	 decreased	 as	 a	 result	 of	

debugging	 the	 associated	 VI	 as	 well	 as	 using	 higher	 spatial	 resolution	 for	

smaller	objects.	

3‐ The	average	error	related	to	flat	&	elongated	ratio	has	decreased.		

4‐ The	average	error	values	related	to	volume,	surface	texture	and	size	are	all	

less	 than	 6%	 which	 confirms	 accurate	 imaging	 based	 measurement	 at	

different	spatial	resolutions.			

Note	that	the	errors	in	surface	area	and	volume	increased	up	to	1‐2%	at	higher	spatial	

resolutions.	This	finding	might	be	related	to	“optical	distortion.”	Optical	distortion	is	caused	

by	the	optical	design	of	lenses	and	is	also	called	“lens	distortion.”	

	

																					

Object 

           Measurement with E-UIAIA @ 160 ppi 

Sieve 
size (in) 

Area 
(in2) 

Volume 
(in3) 

Angularity 
Index 

(Degrees) 

Surface 
Texture 
Index 

F&E 
Ratio 

3 in. diameter sphere 2.937 32.789 14.814 0.000 0.133 1.052 

2.75 in. diameter sphere 2.694 27.357 11.373 0.000 0.092 1.046 

1.5 in. diameter sphere 1.451 7.760 1.730 0.000 0.080 1.022 

1 in. diameter sphere 0.970 3.434 0.509 3.978 0.190 1.032 

0.75 in. diameter sphere 0.731 1.981 0.219 43.054 0.154 1.060 

0.625 in. diameter sphere 0.612 1.359 0.127 45.348 0.102 1.050 

0.5 in. diameter sphere 0.494 0.889 0.066 74.078 0.144 1.050 

Object 

               Measurement Errors @ 160 ppi (%) 

Sieve 
size 

Area Volume 
Angularity 

Index 

Surface 
Texture 
Index 

F&E 
Ratio 

3 in. diameter sphere -2.114 15.967 4.568 0.000 2.222 0.861 

2.75 in. diameter sphere -2.054 15.146 4.250 0.000 1.533 0.767 

1.5 in. diameter sphere -3.271 9.784 -2.175 0.000 1.333 0.367 

1 in. diameter sphere -3.036 9.320 -2.881 0.553 3.167 0.533 

0.75 in. diameter sphere -2.492 12.086 -0.722 5.980 2.567 1.000 

0.625 in. diameter sphere -2.065 10.737 -0.541 6.298 1.700 0.833 

0.5 in. diameter sphere -1.125 13.186 0.141 10.289 2.400 0.833 

Average Error for all sizes -2.308 12.318 0.377 3.303 2.132 0.742 
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Table	3.15	Measurements	and	Errors	Achieved	with	E‐UIAIA	at	230	ppi	

Object 

Measurement with E-UIAIA @ 230 ppi 

Sieve 
size (in) 

Area 
(in2) 

Volume 
(in3) 

Angularity 
Index 

(Degrees) 

Surface 
Texture 
Index 

F&E 
Ratio 

3 in. diameter sphere 1.452 8.033 1.783 0.000 0.118 1.036 

2.75 in. diameter sphere 0.984 3.571 0.536 0.000 0.130 1.020 

1.5 in. diameter sphere 0.740 2.007 0.227 13.334 0.094 1.028 

1 in. diameter sphere 0.621 1.390 0.132 8.588 0.232 1.026 

0.75 in. diameter sphere 0.500 0.897 0.067 60.984 0.254 1.022 

Object 

Measurement Errors @ 230 ppi (%)  

Sieve 
size  

Area  Volume 
Angularity 

Index 

Surface 
Texture 
Index 

F&E 
Ratio 

3 in. diameter sphere -3.200 13.645 0.924 0.000 1.967 0.600 

2.75 in. diameter sphere -1.579 13.660 2.278 0.000 2.167 0.333 

1.5 in. diameter sphere -1.274 13.596 2.737 1.852 1.567 0.467 

1 in. diameter sphere -0.687 13.274 3.000 1.193 3.867 0.433 

0.75 in. diameter sphere 0.064 14.181 3.094 8.470 4.233 0.367 

Average Error for all 
sizes  

-1.335 13.671 2.407 2.303 2.760 0.440 

	

Increasing	the	level	of	distortion	at	higher	focal	length	values	is	a	known	concept	in	

computational	photography.	Further	 information	regarding	this	fact	can	be	found	in	ሾ94ሿ.		

Note	that	higher	spatial	resolution	in	E‐UIAIA	was	achieved	by	using	camera	lens	zoom	and	

without	physically	moving	the	cameras	closer	to	the	object.	Since	the	error	values	caused	by	

lens	distortion	did	not	have	a	significant	effect	in	increasing	the	errors	on	the	shape	indices,	

it	was	decided	 to	 fix	 the	 location	of	 the	cameras	 in	order	 to	 facilitate	easier	operation	of													

E‐UIAIA.	Note	 that	 the	hardware	design	of	E‐UIAIA	provides	 the	possibility	 to	 adjust	 the	

positions	of	all	cameras.				

	In	 general,	 the	 findings	 of	 the	 calibration	 experiment	 showed	 that	 E‐UIAIA	 could	

successfully	 identify	 the	 known	 shape	 indices	 for	 spherical	 calibration	 balls.	 The	 overall	

measurement	errors	were	found	to	be	in	reasonable	ranges.	Therefore,	it	was	concluded	that	

the	established	configuration	of	hardware	and	the	features	of	the	developed	software	were	

efficient	 enough	 for	 accurate	 measurements	 of	 shape	 indices.	 Further	 validation	 of	 the	

system	is	discussed	next.								
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							Table	3.16	Measurements	and	Errors	Achieved	with	E‐UIAIA	at	330	ppi	and	430	ppi	

	

	

Object 

Measurement observed with E-UIAIA @ 330 ppi 

Sieve 
size  
(in) 

Area 
(in2) 

Volume 
(in3) 

Angularity 
Index 

(Degrees) 

Surface 
Texture 
Index 

F&E 
Ratio 

1.5 inch diameter sphere 1.471 8.132 1.865 0.000 0.108 1.022 

1 inch diameter sphere 0.990 3.616 0.553 0.000 0.110 1.030 

0.75 inch diameter sphere 0.747 2.045 0.236 0.000 0.120 1.020 

0.625 inch diameter sphere 0.620 1.405 0.135 0.000 0.106 1.020 

0.5 inch diameter sphere 0.498 0.901 0.069 5.334 0.102 1.020 

Object 

Measurement Errors @ 330 ppi (%)  

Sieve 
size  

Area  Volume 
Angularity 

Index 

Surface 
Texture 
Index 

F&E 
Ratio 

1.5 inch diameter sphere -1.960 15.043 5.565 0.000 1.800 0.367 

1 inch diameter sphere -0.993 15.101 5.553 0.000 1.833 0.500 

0.75 inch diameter sphere -0.416 15.738 6.696 0.000 2.000 0.333 

0.625 inch diameter sphere -0.722 14.530 5.248 0.000 1.767 0.333 

0.5 inch diameter sphere -0.464 14.680 5.940 0.741 1.700 0.333 

Average Error for all sizes  -0.911 15.019 5.800 0.148 1.820 0.373 

Object 

Measurement observed with E-UIAIA @ 430 ppi 

Sieve 
size  
(in) 

Area 
(in2) 

Volume 
(in3) 

Angularity 
Index 

(Degrees) 

Surface 
Texture 
Index 

F&E 
Ratio 

1.5 inch diameter sphere 1.471 8.132 1.865 0.000 0.108 1.022 

1 inch diameter sphere 0.990 3.616 0.553 0.000 0.110 1.030 

0.75 inch diameter sphere 0.747 2.045 0.236 0.000 0.120 1.020 

0.625 inch diameter sphere 0.620 1.405 0.135 0.000 0.106 1.020 

0.5 inch diameter sphere 0.498 0.901 0.069 5.334 0.102 1.020 

Object 

Measurement Errors @ 430 ppi (%)  

Sieve 
size  

Area  Volume 
Angularity 

Index 

Surface 
Texture 
Index 

F&E 
Ratio 

1.5 inch diameter sphere -1.960 15.043 5.565 0.000 1.800 0.367 

1 inch diameter sphere -0.993 15.101 5.553 0.000 1.833 0.500 

0.75 inch diameter sphere -0.416 15.738 6.696 0.000 2.000 0.333 

0.625 inch diameter sphere -0.722 14.530 5.248 0.000 1.767 0.333 

0.5 inch diameter sphere -0.464 14.680 5.940 0.741 1.700 0.333 

Average Error for all sizes  -0.911 15.019 5.800 0.148 1.820 0.373 
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3.3.2 Validation of VIs for Computing Shape Indices – Comparison Study with UIAIA 

An	aggregate	imaging	database	that	was	used	back	in	2005	in	a	validation	study	on	

UIAIA	ሾ46ሿ	was	used	in	this	research	to	evaluate	the	performances	of	improved	VIs	used	in	

E‐UIAIA	 to	 calculate	 shape	 and	 size	 properties	 similar	 to	 UIAIA.	 This	 imaging	 database	

includes	the	binary	images	for	more	than	15,000	aggregate	particles	from	different	sources.	

State	highway	agencies	 from	South	Carolina,	Mississippi,	Alabama,	Georgia,	Kentucky	and	

Tennessee	provided	these	aggregate	samples	with	a	wide	range	of	shape	and	size	properties.	

These	aggregate	materials	were	used	in	constructing	different	sections	of	a	test	track	at	the	

National	Center	for	Asphalt	Technology	ሺNCATሻ	in	Auburn,	Alabama.	The	names,	sources,	

and	types	of	these	aggregate	samples	can	be	found	in	Table	3.17.	

	

Table	3.17	NCAT	Aggregate	Materials	and	Number	of	Aggregate	Particles	Analyzed	with	
UIAIA	and	E‐UIAIA	

 

Aggregate Sample Source Material Type 
Number of Particles 

Scanned 

Blacksburg 67 South Carolina Granite 497 

Blacksburg 78M South Carolina Granite 1030 

Blain 1/2 crushed gravel Mississippi Gravel 1404 

Blain 3/4 crushed gravel Mississippi Gravel 814 

Calera 67 Alabama Limestone 539 

Calera 7 Alabama Limestone 1593 

Columbus 6 Georgia Granite 306 

Columbus 7 Georgia Granite 1098 

Gadsden slag 78 Alabama Slag 1390 

Gilbertsville 57 Kentucky Limestone 363 

Gordonville 78 Tennessee Limestone 1670 

Jemison 1/2 crushed gravel Alabama Gravel 1809 

Jemison 1/2 crushed gravel Alabama Gravel 1843 

Lithia Springs 7 Georgia Granite 1199 

	

In	 this	 section,	 the	 imaging	 based	 shape	 and	 size	 indices	 generated	 from	 image	

processing	 algorithms	 used	 in	 both	UIAIA	 and	 E‐UIAIA	 are	 presented	 and	 differences	 in	

measurement	 in	 terms	 of	 percentage	 of	 errors	 between	 these	 two	 systems	 are	 further	

discussed.	Noted	that	in	the	study	by	Pan	ሾ46ሿ	all	of	these	aggregate	sources	were	initially	

selected	with	bright	natural	colors.	As	it	was	discussed	previously,	it	is	beyond	the	capability	
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of	UIAIA	to	capture	high	quality	images	from	dark	color	aggregates	as	well	as	thresholding	

and	generating	associated	binary	images.	Therefore,	the	performances	of	UIAIA	and	E‐UIAIA	

imaging	systems	in	acquiring	and	processing	the	images	of	dark	color	aggregate	particles	are	

the	subject	of	discussion	in	the	next	section.	The	imaging	based	indices	for	volume	weight	

prediction,	angularity	index,	surface	texture	index,	F&E	Ratio	and	average	sieve	size	results	

from	both	systems	are	presented	in	Tables	3.18	to	3.22	respectively.							

According	to	Table	3.18,	both	UIAIA	and	E‐UIAIA	systems	were	able	to	estimate	the	

actual	weights	of	14	aggregate	samples	with	less	than	10%	error	for	both	of	the	trials.	In	fact,	

the	measurement	difference	between	the	two	systems	were	observed	to	be	less	than	3%.		

	
Table	3.18	UIAIA	and	E‐UIAIA	Weight	Predictions	Based	on	Imaging	Based	Volume	

Measurements	
	

Aggregate 
Sample 

Specific 
Gravity 

Actual 
Weight 

(gr) 

UIAIA 
Estimated 

Weight 
(gr) 

E-UIAIA 
Estimated 

Weight 
(gr) 

UIAIA 
Error 
(%) 

E-UIAIA 
Error 
(%) 

 Error 
Difference 

(%) 

Blacksburg 67 2.747 1176.1 1177.585 1189.725 0.126 1.158 -1.032 

Blacksburg 78M 2.690 535.03 508.54 511.336 -4.951 -4.429 -0.523 

Blain 1/2 
crushed gravel 

2.429 1278 1364.58 1366.266 6.775 6.907 -0.132 

Blain 3/4 
crushed gravel 

2.442 1513.9 1514.53 1518.057 0.042 0.275 -0.233 

Calera 67 2.690 1868.4 1840.17 1845.618 -1.511 -1.219 -0.292 

Calera 7 2.752 1237.7 1343.56 1345.818 8.553 8.735 -0.182 

Columbus 6 2.670 1937.9 1799.91 1854.783 -7.121 -4.289 -2.832 

Columbus 7 2.611 1354.5 1308.77 1335.984 -3.376 -1.367 -2.009 

Gadsdenslag 78 2.270 982.1 1033.51 1053.378 5.235 7.258 -2.023 

Gilbertsville 57 2.651 1602.1 1579.44 1588.176 -1.414 -0.869 -0.545 

Gordonville 78 2.735 1711.2 1860.75 1861.839 8.739 8.803 -0.064 

Jemison 1/2 
crushed gravel 

2.548 986.3 1037.2 1038.142 5.161 5.256 -0.096 

Jemison 3/8 
crushed gravel 

2.546 986.4 1037.7 1038.794 5.201 5.312 -0.111 

Lithia Springs 7 2.558 1774.3 1872.35 1892.338 5.526 6.653 -1.127 

Average of Percentage Error Difference in Weight Estimation Between UIAIA & E-UIAIA -0.800 

	

It	needs	to	be	added	that	the	weights	were	calculated	based	on	volume	measurement	

with	assuming	a	constant	specific	gravity	value	for	all	the	particles.	The	weight	measurement	

results	confirm	the	accuracy	of	the	new	VI	incorporated	in	E‐UIAIA	for	repeatable	volume	
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computation	and	verify	that	the	new	and	old	VIs	return	almost	identical	volume	and	weight	

values.		

Based	on	angularity	index	measurements	listed	in	Table	3.19,	the	average	angularity	

index	measurement	difference	for	all	the	14	aggregate	samples	between	UIAIA	and	E‐UIAIA	

was	found	to	be	around	10%.	It	was	observed	that	E‐UIAIA	was	consistently	reporting	lower	

angularity	values	and	in	one	case	even	up	to	23%	lower	in	comparison	to	UIAIA.	According	

to	what	was	discussed	previously	regarding	the	debugged	and	improved	angularity	index	VI	

used	in	E‐UIAIA,	this	finding	could	be	expected.	However,	both	of	the	systems	are	capable	of	

generating	 repeatable	 angularity	 index	 values.	 Note	 that	 in	 most	 cases	 lower	 standard	

deviation	values	were	observed	in	AI	measurement	with	E‐UIAIA.				

	

Table	3.19	UIAIA	and	E‐UIAIA	Imaging	based	Angularity	Index	for	NCAT	Aggregates	

	

Surface	texture	measurements	for	both	UIAIA	and	E‐UIAIA	are	reported	in	Table	3.20	

which	shows	that	there	is	a	very	good	match	between	these	two	systems	for	this	shape	index.	

Aggregate 
Sample 

UIAIA E-UIAIA Measurement 
Difference (%) Ave. 

Diff. 
(%) 

Trial1 Trial2 Trial1 Trial2 

Ave. 
Std. 
Dev 

Ave. 
Std. 
Dev 

Ave. 
Std. 
Dev 

Ave. 
Std. 
Dev 

Trial1 Trial2 

Blacksburg 67 441 82 418 70 421 86 396 71 4.425 5.190 4.81 

Blacksburg 78M 439 73 436 76 387 64 385 68 11.845 11.697 11.77 

Blain 1/2 
crushed gravel 

400 78 396 76 363 69 358 68 9.250 9.596 9.42 

Blain 3/4 
crushed gravel 

405 85 407 87 374 84 378 86 7.654 7.125 7.39 

Calera 67 392 70 395 69 370 64 372 63 5.730 5.899 5.81 

Calera 7 393 65 395 66 354 55 357 58 9.997 9.667 9.83 

Columbus 6 453 86 459 97 452 103 461 117 0.144 -0.497 -0.18 

Columbus 7 515 97 523 89 433 97 436 100 15.964 16.604 16.28 

Gadsdenslag 78 477 86 473 88 427 82 417 80 10.400 11.839 11.12 

Gilbertsville 57 415 71 405 76 392 76 388 74 5.592 4.320 4.96 

Gordonville 78 477 86 473 88 367 60 367 60 23.073 22.507 22.79 

Jemison 1/2 
crushed gravel 

380 78 362 82 328 67 326 65 13.786 10.041 11.91 

Jemison 3/8 
crushed gravel 

375 84 371 88 330 71 329 73 11.893 11.260 11.58 

Lithia Springs 7 432 72 428 73 401 70 398 71 7.145 7.026 7.09 

Average of Average Percentage Difference for Angularity Index Between UIAIA & E-UIAIA 9.61 
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The	average	recorded	surface	texture	index	difference	between	the	two	systems	was	found	

to	be	less	than	1%.	Therefore,	these	result	confirm	that	the	new	VI	for	computing	surface	

texture	index	in	E‐UAIA	is	capable	of	generating	repeatable	texture	results	similar	to	UIAIA.				

	

Table	3.20	UIAIA	and	E‐UIAIA	Imaging	Based	Surface	Texture	Index	for	NCAT Aggregate   

Aggregate 
Sample 

UIAIA E-UIAIA Measurement 
Difference (%) Ave. 

Diff. 
(%) 

Trial1 Trial2 Trial1 Trial2 

Ave. 
Std. 
Dev 

Ave. 
Std. 
Dev 

Ave. 
Std. 
Dev 

Ave. 
Std. 
Dev 

Trial1 Trial2 

Blacksburg 67 2.453 1.75 1.943 1.37 2.449 1.750 1.945 1.372 0.158 -0.080 0.04 

Blacksburg 78M 1.741 1.41 1.662 1.28 1.738 1.409 1.659 1.282 0.179 0.159 0.17 

Blain 1/2 
crushed gravel 

1.152 0.59 1.114 0.53 1.150 0.589 1.112 0.532 0.133 0.194 0.16 

Blain 3/4 
crushed gravel 

1.333 0.79 1.285 0.75 1.333 0.789 1.281 0.751 0.021 0.307 0.16 

Calera 67 1.291 0.67 1.297 0.67 1.292 0.665 1.291 0.674 
-

0.098 
0.460 0.18 

Calera 7 1.192 0.61 1.231 0.73 1.194 0.607 1.228 0.735 
-

0.144 
0.264 0.06 

Columbus 6 2.145 1.55 2.199 1.88 2.141 1.554 2.191 1.882 0.175 0.357 0.27 

Columbus 7 1.947 1.34 1.876 1.24 1.939 1.339 1.870 1.243 0.425 0.338 0.00 

Gadsdenslag 78 1.414 0.65 1.443 1.34 1.408 0.655 1.440 1.410 0.426 0.208 0.32 

Gilbertsville 57 1.593 0.89 1.634 1.19 1.588 0.893 1.605 1.186 0.313 1.804 0.00 

Gordonville 78 1.461 1.06 1.361 0.95 1.465 1.060 1.362 0.952 
-

0.258 
-0.071 0.00 

Jemison 1/2 
crushed gravel 

1.098 0.7 1.156 0.88 1.086 0.700 1.103 0.881 1.073 4.569 0.00 

Jemison 3/8 
crushed gravel 

1.145 0.94 1.154 0.87 1.140 0.938 1.153 0.872 0.431 0.129 0.00 

Lithia Springs 7 1.712 1.07 1.412 0.85 1.704 1.069 1.413 0.850 0.481 -0.100 0.00 

Average of Average Percentage Difference for Surface Texture Index Between UIAIA & E-UIAIA 0.10 

 

According	to	Table	3.21,	a	very	good	match	was	observed	for	flat	&	elongated	ratio	

measurements	 between	 UIAIA	 and	 E‐UIAIA.	 The	 average	 of	 measurement	 differences	

between	the	 two	systems	 for	 this	shape	 index	was	 less	 than	1%.	Therefore,	 these	results	

confirm	the	validity	and	repeatability	of	the	new	flat	and	elongated	ratio	VI	in	E‐UIAIA	for	

repeatable	estimation	of	the	aggregate	form	and	aspect	ratios	of	particles.						
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Table	3.21	UIAIA	and	E‐UIAIA	Imaging	Based	Flat	&	Elongated	Ratio	for	NCAT	Aggregates	

Aggregate 
Sample 

UIAIA E-UIAIA Measurement 
Difference (%) Ave. 

Diff. 
(%) 

Trial1 Trial2 Trial1 Trial2 

Ave. 
Std. 
Dev 

Ave. 
Std. 
Dev 

Ave. 
Std. 
Dev 

Ave. 
Std. 
Dev 

Trial1 Trial2 

Blacksburg 67 3.006 1.000 2.826 0.938 3.086 1.060 2.841 0.943 -2.656 -0.545 -1.60 

Blacksburg 
78M 

2.512 0.768 2.632 1.768 2.517 0.767 2.644 1.866 -0.182 -0.454 -0.32 

Blain ½ 
crushed gravel 

2.085 0.502 2.106 0.516 2.094 0.504 2.116 0.519 -0.437 -0.458 -0.45 

Blain 3/4 
crushed gravel 

2.031 0.511 2.093 0.558 2.049 0.518 2.104 0.561 -0.856 -0.480 -0.67 

Calera 67 2.372 0.760 2.402 0.749 2.381 0.767 2.412 0.753 -0.375 -0.413 -0.39 

Calera 7 2.415 0.748 2.409 0.871 2.431 0.754 2.417 0.889 -0.657 -0.367 -0.51 

Columbus 6 2.207 0.701 2.213 0.695 2.218 0.715 2.225 0.703 -0.503 -0.520 -0.51 

Columbus 7 2.304 0.671 2.327 0.687 2.323 0.681 2.338 0.691 -0.822 -0.484 -0.65 

Gadsdenslag 
78 

1.871 0.389 1.890 0.456 1.879 0.393 1.889 0.391 -0.455 0.056 -0.20 

Gilbertsville 57 2.558 0.818 2.572 0.828 2.573 0.823 2.581 0.836 -0.587 -0.355 -0.47 

Gordonville 78 2.316 0.795 2.387 1.314 2.334 0.800 2.400 1.370 -0.762 -0.569 -0.67 

Jemison 1/2 
crushed gravel 

2.179 0.718 2.211 0.735 2.184 0.718 2.217 0.738 -0.226 -0.287 -0.26 

Jemison 3/8 
crushed gravel 

2.243 0.745 2.219 0.742 2.249 0.752 2.221 0.739 -0.264 -0.124 -0.19 

Lithia Springs 
7 

2.099 0.605 2.173 0.627 2.126 0.616 2.179 0.627 -1.280 -0.279 -0.78 

Average of Average Percentage Difference for Flat & Elongated Ratio Between UIAIA & E-UIAIA -0.55 

	

Finally,	the	average	sieve	size	measurements	for	UIAIA	and	E‐UIAIA	are	presented	in	

Table	3.22,	which	shows	a	very	good	match	between	these	two	systems.	According	to	what	

was	discussed	 in	Chapter	2,	 the	 lowest	of	 the	 three	maximum	intercept	values	computed	

from	the	three	captured	views	is	chosen	as	the	intermediate	aggregate	particle	dimension.	

Accordingly,	 if	 this	 dimension	 is	 smaller	 than	 the	 diagonal	 length	 of	 the	 square	

mesh/opening	in	a	desired	laboratory	sieve,	the	particle	passes	through	that	given	sieve.	The	

average	 of	 measured	 size	 difference	 between	 the	 two	 systems	 for	 all	 the	 14	 aggregate	

sources	was	 found	 to	be	 less	 than	1%	 to	verify	 that	 the	new	size	VI	used	 in	E‐UIAIA	 for	

estimating	the	sizes	of	aggregate	particles	gives	very	similar	results	to	UIAIA	system.		

In	 summary,	 the	 findings	 from	 the	 comparison	 study	on	NCAT	 aggregate	 samples	

between	 the	 two	 imaging	 system	 showed	 that	 E‐UIAIA	 and	 its	 image	 processing	 VIs	 for	

computing	shape	and	size	indices	are	accurate	enough	in	terms	of	generating	outputs	that	
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are	very	close	to	UIAIA.	In	the	next	section,	the	effect	of	digitization	error	and	natural	color	

of	the	aggregates	on	angularity	and	surface	texture	measurements	are	presented.			

	

								Table	3.22	UIAIA	and	E‐UIAIA	Imaging	Based	Average	Size	for	NCAT	Aggregates	

Aggregate 
Sample 

UIAIA E-UIAIA Measurement 
Difference (%) Ave. 

Diff. (%)
Trial1 Trial2 Trial1 Trial2 

Ave. 
Std. 
Dev 

Ave. 
Std. 
Dev 

Ave. 
Std. 
Dev 

Ave. 
Std. 
Dev 

Trial1 Trial2 

Blacksburg 67 0.576 0.143 0.565 0.129 0.576 0.142 0.565 0.129 0.033 -0.068 -0.02 

Blacksburg 
78M 

0.331 0.097 0.328 0.093 0.331 0.097 0.329 0.093 -0.163 -0.088 -0.13 

Blain 1/2 
crushed gravel 

0.422 0.087 0.406 0.083 0.422 0.087 0.406 0.083 -0.043 -0.029 -0.04 

Blain 3/4 
crushed gravel 

0.507 0.129 0.500 0.131 0.507 0.129 0.500 0.131 0.037 -0.025 0.01 

Calera 67 0.558 0.188 0.547 0.176 0.558 0.188 0.547 0.176 -0.006 -0.046 -0.03 

Calera 7 0.372 0.098 0.383 0.103 0.372 0.098 0.383 0.103 -0.061 -0.074 -0.07 

Columbus 6 0.758 0.116 0.746 0.112 0.735 0.116 0.746 0.112 2.991 -0.013 1.49 

Columbus 7 0.452 0.097 0.452 0.099 0.452 0.097 0.452 0.099 -0.010 -0.067 -0.04 

Gadsdenslag 
78 

0.380 0.092 0.381 0.092 0.380 0.092 0.381 0.093 -0.009 0.032 0.01 

Gilbertsville 57 0.660 0.173 0.657 0.172 0.660 0.173 0.657 0.172 0.040 -0.073 -0.02 

Gordonville 78 0.411 0.104 0.417 0.108 0.411 0.104 0.417 0.108 -0.025 -0.022 -0.02 

Jemison 1/2 
crushed gravel 

0.338 0.087 0.337 0.087 0.338 0.087 0.338 0.086 -0.088 -0.132 -0.11 

Jemison 3/8 
crushed gravel 

0.337 0.091 0.336 0.091 0.337 0.091 0.336 0.091 -0.074 -0.084 -0.08 

Lithia Springs 
7 

0.473 0.088 0.477 0.093 0.473 0.088 0.477 0.093 0.081 0.008 0.04 

Average of Average Percentage Difference for Size Between UIAIA & E-UIAIA 0.07 

	

	

3.3.3 Effect of Improved Illumination, Higher Spatial Resolution and Color Thresholding 

In	 this	 section,	 the	performances	of	UIAIA	 and	E‐UIAIA	 in	differentiating	between	

uncrushed	and	crushed	aggregate	particles	with	dark	and	bright	colors	are	presented.	Two	

important	shape	 indices	 that	are	used	 in	separating	crushed	versus	uncrushed	aggregate	

sources	including	angularity	index	and	surface	texture	index	are	reported.	Additionally,	the	

variability	of	these	shape	indices	as	well	as	their	corresponding	separation	parameters	are	

demonstrated	as	indicators	to	compare	the	efficiency	and	repeatability	of	UIAIA	and	E‐UIAIA	

imaging	 systems.	 The	 separation	 parameter	 between	 crushed	 and	 uncrushed	 aggregate	
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particle	or	SCU	for	a	desired	shape	index	was	developed	by	Pan	ሾ46ሿ	and	defined	according	to	

Equation	3.7.		

	

( )CU

C U

C U

S
SD SD

 



																																																																																																																																																		3.7		

where,	

µC	ൌ	Mean	of	the	desired	shape	index	distribution	for	crushed	particle		

µU	ൌ	Mean	of	the	desired	shape	index	distribution	for	uncrushed	particle			

SDC	ൌ	Standard	deviation	of	the	desired	shape	index	distribution	for	crushed	particle		

SDU	ൌ	Standard	deviation	of	the	desired	shape	index	distribution	for	uncrushed	particle		

	

The	average	of	shape	index	results	and	the	separation	parameters	for	the	two	systems	

are	summarized	in	Table	3.23.	Moreover,	the	images	of	these	particles	are	shown	in	Figure	

3.12.	

																												

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	3.12	Crushed	and	Uncrushed	Bright	and	Dark	Colored	Aggregate	Particles	

	

 
 
 
 
 
 
 
 
 

 

Bright crushed particle Bright uncrushed particle 

 
 
 
 
 
 
 
 
 
 

 

Dark crushed particle Dark uncrushed particle 
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Only	 four	aggregate	particles	 including	two	uncrushed	and	two	crushed	with	dark	

and	bright	colors	were	selected	for	this	experiment	in	order	to	eliminate	the	effect	of	shape	

variability	associated	with	aggregate	sources.	Each	particle	was	scanned	10	times	by	both	

imaging	systems	with	random	positioning	on	the	conveyor	belt	while	the	sitting	surface	of	

particles	kept	constant	between	different	trials.		

	

Table	3.23	UIAIA	and	E‐UIAIA	Imaging	Based	AI	and	STI	for	Crushed	and	Uncrushed	Particles	
 

	

Therefore,	the	sources	of	errors	that	were	causing	the	variability	of	a	shape	index	for	

an	 individual	 particle	 at	 each	 image	 acquisition	 trials	 were	 limited	 to	 a	 combination	 of	

digitization	error,	the	position	of	particle	on	the	image	frame	as	well	as	the	aggregate	face	

coverage	captured	by	front	and	side	cameras.		

	

	

Particle 
Color 

UIAIA 

Scu (AI) Uncrushed Crushed 
Angularity 

Index 
Std. Dev

Angularity 
Index 

Std. Dev 

Dark 381 111 479 104 0.912 

Bright 241 35 428 63 3.982 

 
Particle 
Color 

E-UIAIA 

Scu (AI) Uncrushed Crushed 
Angularity 

Index 
Std. Dev

Angularity 
Index 

Std. Dev 

Dark 115 7 385 52 14.15 

Bright 205 20 394 40 6.68 

 
Particle 
Color 

UIAIA 

Scu  (STI) Uncrushed Crushed 
Surface 

Texture Index 
Std. Dev

Surface 
Texture Index 

Std. Dev 

Dark 33.01 41.29 14.92 27.89 - 0.533 

Bright 0.60 0.13 1.24 0.34 3.015 

 
Particle 
Color 

E-UIAIA 

Scu  (STI) Uncrushed Crushed 
Surface 

Texture Index 
Std. Dev

Surface 
Texture Index 

Std. Dev 

Dark 0.63 0.09 1.44 0.31 4.798 

Bright 0.59 0.07 1.21 0.18 5.530 
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- Discussion	on	imaging	results	for	bright	color	particles		

The	 imaging	 results	 show	 that	 both	 imaging	 systems	 successfully	 differentiated	

between	 bright	 colored	 crushed	 versus	 uncrushed	 aggregate	 particles	 by	 their	

corresponding	angularity	and	surface	texture	indices.	A	close	match	between	two	systems	

was	 observed	 regarding	 the	 average	 recorded	 surface	 texture	 index.	 Additionally,	 the	

observed	 standard	 deviation	 values	 were	 lower	 in	 uncrushed	 as	 opposed	 to	 crushed	

aggregate	particles	which	is	expected	as	of	lower	variability	in	more	rounded	and	smoother	

particles.	However,	 the	 standard	deviation	values	 for	all	 cases	achieved	with	E‐UIAIA	 for	

both	angularity	index	and	surface	texture	index	were	lower	than	UIAIA.	This	finding	shows	

the	 influence	of	more	efficient	 illumination	design	as	well	as	 thresholding	scheme	 that	 is	

used	in	E‐UIAIA.	These	factors	contribute	to	reduction	of	noise	in	generated	binary	images.	

Note	that	the	average	angularity	index	values	recorded	by	E‐UIAIA	were	10‐20%	lower	than	

those	recorded	by	UIAIA.	This	result	could	be	expected	based	on	what	was	discussed	earlier	

regarding	the	improved	angularity	VI	used	in	E‐UIAIA	as	well	as	the	sources	of	errors	during	

image	acquisition	process.	Further,	 the	separation	parameter	ሺScuሻ	values	computed	with						

E‐UIAIA	were	higher	 than	 those	 for	UIAIA	 in	case	of	both	angularity	and	surface	 texture,	

which	verifies	the	accuracy	of	the	new	system	to	efficiently	differentiate	between	crushed	

and	uncrushed	aggregate	particles.	One	way	to	show	the	variability	of	the	measurements	is	

through	using	 box	plots,	which	 visually	 display	 differences	 between	 samples	 ሺsee	 Figure	

3.13ሻ.			

	

	

	

	

	

	

	

	

	

Figure	3.13	Different	Components	of	a	Typical	Box	Plot	
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To	 further	 demonstrate	 the	 variability	 of	 angularity	 index	 and	 surface	 texture	

measurements	by	these	two	imaging	systems	at	different	trials,	the	box	plots	associated	with	

these	measurements	 are	 shown	 in	 Figure	 3.14.	 Note	 that	 the	 actual	 data	 points	 are	 also	

shown	on	the	left	side	of	each	box	plot.	Accordingly,	the	box	plots	are	visually	showing	how	

the	variability	is	reduced	and	the	associated	errors	are	decreasing	for	both	angularity	and	

surface	texture	measurements	from	E‐UIAIA	in	comparison	to	UIAIA.		

	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	

Figure	3.14	Box	Plots	for	Angularity	and	Surface	Texture	Measurements	for	Particles	with	
Bright	Colors	Obtained	by	UIAIA	and	E‐UIAIA	Systems	
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- Discussion	on	imaging	results	for	dark	color	particles		

The	imaging	results	show	that	the	standard	deviation	values	recorded	by	UIAIA	for	

both	angularity	index	and	surface	texture	index	are	significantly	higher	than	those	achieved	

with	E‐UIAIA.	The	computed	separation	parameters	ሺScuሻ	for	UIAIA	were	very	low	in	case	of	

angularity	and	even	negative	in	case	of	surface	texture	which	confirms	the	poor	performance	

of	 this	 system	 in	 acquiring	 and	 processing	 the	 images	 of	 dark	 colored	 particles.	 Close	

investigation	showed	that	a	high	noise	level	was	observed	in	the	binary	images	generated	by	

UIAIA	ሺsee	Figure	3.15ሻ.	Note	the	poor	performance	of	the	automatic	grayscale	thresholding	

method	 used	 in	 UIAIA	 which	 is	 not	 capable	 of	 isolating	 the	 dark	 particle	 from	 a	 black	

background.	The	out	of	range	average	surface	texture	values	recorded	by	UIAIA	are	clearly	

showing	this	shortcoming.	According	to	Pan	ሾ46ሿ,	 the	surface	texture	 indices	for	different	

types	of	aggregate	particles	are	generally	reported	in	the	range	of	less	than	6.		

	

	
	

	

	

	

Figure	3.15	Poor	Performance	of	Automatic	Grayscale	Thresholding	in	Processing	the	Image	
of	a	Dark	Aggregate	Particle	in	UIAIA	

	
	

	

Table	3.23	indicates	that	E‐UIAIA	could	successfully	characterize	both	uncrushed	and	

crushed	 dark	 aggregate	 particles	 and	 also	 differentiate	 these	 two	 particles	 with	 good	

separation	 parameters	 for	 both	 angularity	 and	 surface	 texture	 indices.	 To	 further	

demonstrate	the	variability	of	angularity	index	and	surface	texture	measurements	by	both	

UIAIA	and	EUIAIA	for	different	trials,	the	box	plots	associated	with	these	measurements	are	

shown	in	Figure	3.16.	Note	that	the	actual	data	points	are	also	shown	on	the	left	side	of	each	

box	plot	for	comparison.	The	box	plots	are	showing	how	the	variability	is	reduced	and	the	

associated	errors	are	decreasing	for	both	angularity	and	surface	texture	measurements	from	

E‐UIAIA	in	comparison	to	UIAIA	for	the	dark	particles.			
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Figure	3.16	Box	Plots	for	Angularity	and	Surface	Texture	Measurements	for	Particles	with	

Dark	Colors	by	UIAIA	&	E‐UIAIA	Systems	
	

3.4 Summary 

The	development	of	E‐UIAIA	 in	 terms	of	assembly	of	both	hardware	and	software	

components	was	described	in	this	chapter.	Moreover,	the	advantages	of	an	innovative	HSI	

color	 thresholding	 method	 for	 separating	 the	 images	 of	 both	 dark	 and	 bright	 colored	

aggregate	particles	from	a	blue	background	was	discussed.	The	new	E‐UIAIA	was	validated	

with	 different	 approaches	 including	 calibrating	 the	 system	with	 calibration	 balls	 having	

different	sizes	at	various	special	resolutions	as	well	as	comparing	the	shape	indices	results	

with	 UIAIA	 using	 a	 previously	 studied	 aggregate	 imaging	 database.	 Furthermore,	 the	
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performances	 of	 UIAIA	 and	 E‐UIAIA	 systems	 in	 differentiating	 between	 dark	 and	 bright	

colored	uncrushed	and	crushed	aggregate	particles	were	presented.	In	general,	less	than	1%	

difference	was	detected	between	two	systems	in	measurements	of	surface	texture	index,	flat	

and	 elongated	 ratio,	 size	 and	 volume	 for	 many	 different	 aggregate	 sources.	 Also,	 new	

angularity	index	and	surface	area	VIs	with	fixed	programming	errors	were	incorporated	into	

E‐UIAIA.	 Consequently,	 10‐20%	 decrease	 in	 angularity	 index	 measurements	 and	 more	

accurate	surface	area	results	with	E‐UIAIA	were	obtained	in	comparison	to	UIAIA.	As	a	result	

of	 improved	 hardware	 and	 software	 components	 designed	 in	 E‐UIAIA,	 the	 variability	 of	

shape	indices	in	terms	of	recorded	standard	deviation	values	decreased	significantly.	The	

applications	 of	 E‐UIAIA	 in	 capturing	 the	 changes	 in	 size	 and	 shape	 properties	 during	

degradation	of	aggregate	particles	used	 in	highway	pavement	and	railroad	ballast	will	be	

studied	in	the	next	two	chapters	of	this	dissertation.			
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PERFORMANCE OF E-UIAIA IN EVALUATING 

DEGRADATION OF RAILROAD BALLAST USING                  

LA-ABRASION TESTING1 

To	 evaluate	 degradation	 of	 aggregate	 materials	 for	 size	 and	 morphological	

properties,	E‐UIAIA	can	be	used	to	quantify	imaging	based	size	and	shape	indices	at	different	

stages	throughout	 the	performance	periods.	For	example,	 imaging	based	shape	 indices	of	

aggregate	particles	are	re‐quantified	after	 toughness/abrasion	 laboratory	testing	of	 these	

aggregate	samples	by	measuring	the	changes	in	particle	size	distribution	and	the	rate	and	

magnitude	of	shape	property.		This	chapter	is	divided	into	two	parts.	The	first	part	presents	

findings	 from	 a	 comprehensive	 LA‐Abrasion	 laboratory	 testing	 and	 image	 analyses	

performed	on	limestone	and	granite	type	railroad	ballast	materials.	The	material	weight	loss	

based	on	passing	No.12	sieve	as	the	LA‐Abrasion	degradation	criterion	is	also	related	to	the	

percentage	 of	 loss	 in	 angularity	 and	 surface	 texture	 of	 the	 particles.	 Based	 on	 the	

observations	 from	 the	 first	 part	 of	 this	 chapter	 and	 considering	 the	 ASTM	 C535	 testing	

procedure,	a	new	classification	method	is	proposed	later	on.	Accordingly,	fourteen	sources	

																																																													

	
1	 This	 chapter	 includes	 the	 results	 that	 are	 published	 in	 the	 following	 articles.	 The	 contribution	 of	 the																						
co‐authors	is	greatly	appreciated.			

	
1‐	Moaveni,	M.,	Qian,	Y.,	Boler,	H.,	and	Tutumluer,	E.,	“Investigation	of	Ballast	Degradation	and	Fouling	Trends	
Using	Image	Analysis”, Proceedings	of	the	Second	International	Conference	on	Railway	Technology:	Research,	
Development	and	Maintenance,	April‐2014,	Corsica,	France.	
	
2‐	 Qian,	 Y.,	 Boler,	 H.,	 Moaveni,	 M.,	 Tutumluer,	 E.,	 Hashash,	 Y.	 M.	 A.,	 Ghaboussi,	 J.,	 “Characterizing	 Ballast	
Degradation	through	Los	Angeles	Abrasion	Test	and	Image	Analysis”,	Published	in	Transportation	Research	
Record:	Journal	of	the	Transportation	Research	Board,	No.2448,	pp.	142‐151,	2014,	Washington	DC,	USA.	
	
3‐	Wnek,	M.	A.,	Tutumluer,	E.,	Moaveni,	M.,	Gehringer,	E.,	“‘Investigation	of	Aggregate	Properties	Influencing	
Railroad	Ballast	Performance’”,	Published	in	Transportation	Research	Record:	Journal	of	the	Transportation	
Research	Board,	No.2374,	pp.	180‐189,	2013,	Washington	DC,	USA.	
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of	railroad	ballast	materials	are	classified	using	the	imaging	based	shape	properties	obtained	

from	the	E‐UIAIA.						

4.1 LA-Abrasion Testing and Image Analyses on Granite and Limestone Ballast 

Materials  

To	 better	 understand	 ballast	 performance	 associated	 with	 field	 usage	 and	 life	 cycle	

degradation	due	to	particle	abrasion	and	breakage,	ballast	particle	size	and	shape	properties	

at	different	LA‐Abrasion	degradation	 levels	were	 identified	using	E‐UIAIA	and	 laboratory	

sieve	analysis	for	two	samples	of	100%	crushed	granite	and	limestone.	This	section	presents	

the	sample	preparation,	testing	procedure	and	imaging	results	for	these	two	types	of	ballast	

materials.		

4.1.1 Material Description, Laboratory Apparatus and Testing Procedure 

The	 particle	 size	 distributions	 of	 the	 new	 clean	 samples	 of	 limestone	 and	 granite	

ballast	materials	followed	the	AREMA	No.24	gradation	band	as	illustrated	in	Figure	4.1.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

														Figure	4.1	Particle	Size	Distributions	for	Limestone	and	Granite	Ballast	Materials	
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Twenty	two	pound	ሺ10	kilogramሻ	samples	of	each	virgin	limestone	and	granite	ballast	

materials	were	placed	in	the	LA‐Abrasion	drum	together	with	12	steel	balls	ሺsee	Figure	4.2ሻ.	

The	drum	was	set	to	rotate	on	the	average	50	turns	per	minute	and	for	each	run	the	drum	

rotated	125	times	for	limestone	and	250	times	for	granite	for	each	stage	of	the	LA‐Abrasion	

testing.	After	finishing	every	set	of	turns,	the	drum	was	allowed	to	stand	still	for	about	10	

minutes	to	let	dust	settle	down	before	the	tested	material	was	poured	out.	All	particles	above	

1	in.	ሺ25.4	mmሻ	sieve	were	also	brushed	to	collect	dust	and	fine	material	before	sieving.	The	

rest	 of	 the	 materials	 passing	 1.0	 in.	 ሺ25.4	 mmሻ	 sieve	 were	 carefully	 sieved	 using	 a	

DuraShake™	type	rotation	aggregate	sifter	so	that	loss	of	fine	materials	was	minimized.	In	

addition,	 aggregate	 particles	 larger	 than	 3/8	 in.	 ሺ9.5	 mmሻ	 sieve	 were	 hand	 collected	 to	

conduct	image	analysis	using	E‐UIAIA.	The	outlined	procedure	was	repeated	every	time	on	

each	sample	until	1500	turns	for	limestone	and	2125	turns	for	granite	were	reached.		

According	 to	 Selig	 et	 al.	 ሾ51ሿ,	 FI	 is	 the	 summation	 of	 the	 percentage	 by	weight	 of	

ballast	material	passing	the	No.4	ሺ4.75	mmሻ	sieve	and	the	percentage	of	material	passing	

No.200	ሺ0.075	mmሻ	sieve.	This	index	is	commonly	used	by	railroad	industry	to	assess	ballast	

fouling	conditions.	At	the	1500	final	drum	turns	for	limestone	and	2125	turns	for	granite,	a	

FI	value	of	40	was	reached	to	represent	a	heavily	fouled	ballast	condition	for	each	sample	of	

the	 limestone	 and	 granite	 materials	 from	 the	 LA‐Abrasion	 testing.	 Note	 that	 in‐service	

ballast	layers	having	such	a	FI	value	would	require	maintenance	activities	in	the	track.					

	

	

	

	

	

	

	

	

	

					Figure	4.2	LA‐Abrasion	Testing	Apparatus	and	Sample	with	Steel	Balls		
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The	AI,	STI	and	F&E	Ratio	indices	of	the	particles	were	identified	before	starting	the	

LA‐Abrasion	tests	and	after	each	run	of	the	individual	segment	of	the	LA‐Abrasion	testing.	

The	number	of	particles	scanned	at	each	LA‐Abrasion	segment	are	listed	in	Tables	4.1	and	

4.2	for	the	limestone	and	granite	samples,	respectively.		

	

				Table	4.1	Number	of	Limestone	Ballast	Particles	from	Each	Size	Scanned	with	E‐UIAIA	

Number of      
LA-Abrasion 

Turns 

Sieve Size  Total Number of 
Particles at each 

Drum Turns 
2 in. 1.5 in. 1 in. 0.75 in. 0.5 in. 0.375 in. 

50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm 

0 2 29 85 19 11 0 146 

125 1 21 85 32 66 58 263 

250 0 20 86 35 77 72 290 

375 0 18 79 44 78 71 290 

500 0 18 74 50 78 76 296 

625 0 18 74 46 78 81 297 

750 0 17 71 45 75 100 308 

875 0 17 71 45 75 79 287 

1000 0 15 70 45 67 81 278 

1125 0 15 70 44 68 66 263 

1250 0 13 69 42 63 69 256 

1375 0 13 68 42 55 69 247 

1500 0 12 68 41 51 59 231 

					

							Table	4.2	Number	of	Granite	Ballast	Particles	from	Each	Size	Scanned	with	E‐UIAIA	

Number of    
LA-Abrasion 

Turns 

Sieve Size  Total Number of 
Particles at each 

Drum Turns 
2 in. 1.5 in. 1 in. 0.75 in. 0.5 in. 0.375 in. 

50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm 

0 7 37 64 19 8 0 135 

250 3 29 65 44 65 51 257 

500 2 28 58 48 94 70 300 

750 2 28 58 46 102 66 302 

1000 2 28 51 50 94 72 297 

1250 2 27 49 49 90 69 286 

1500 2 27 43 52 82 70 276 

1750 2 27 37 52 77 57 252 

2000 2 26 35 53 65 58 239 

2125 2 25 37 49 55 67 235 
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Note	 that	 the	 same	 specimen	was	 always	 tested	 in	 the	 LA‐Abrasion	 drum,	which	

required	12	individual	runs	for	limestone	and	9	runs	for	granite	samples.	Tables	4.1	and	4.2	

show	that	for	some	of	the	passing	sieve	sizes,	e.g.,	0.5	in.	ሺ12.5	mmሻ,	the	number	of	particles	

generated	throughout	the	experiment	increased	first	and	then	decreased	later.	Additional	

particles	were	created	first	when	the	larger	sizes	were	broken	down	to	generate	particles	

and	then,	these	0.5	in.	ሺ12.5	mmሻ	sized	particles	were	broken	into	smaller	sizes	when	the	

number	of	drum	 turns	 further	 increased.	The	number	of	particles	 retained	on	 the	1.5	 in.	

ሺ37.5	mmሻ	 sieve	did	not	 change	 significantly	 since	 those	particles	did	not	break	and	not	

many	new	particles	were	created	from	larger	sizes,	e.g.,	particles	retained	on	the	2	in.	ሺ50	

mmሻ	sieve	size.	

4.1.2 LA-Abrasion and Sieve Analysis Test Results 

Figures	 4.3	 and	 4.4	 show	 the	 gradation	 curves	 and	 FI	 values	 for	 the	 new	 clean	

limestone	and	granite	specimens	as	well	as	those	degraded	ones	achieved	after	each	run	of	

the	LA‐Abrasion	testing	for	up	to	1,500	and	2,125	drum	turns,	respectively.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	Figure	4.3	Limestone	Gradation	Curves	at	Different	LA‐Abrasion	Drum	Turns			
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							Figure	4.4	Granite	Gradation	Curves	at	Different	LA‐Abrasion	Drum	Turns	
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Number	at	1000	drum	turns,	which	is	recommended	in	ASTM	C535,	is	a	good	indicator	of	

the	overall	resistance	of	the	material	to	degradation.	

Boler	et	al.	ሾ34ሿ	conducted	a	study	on	a	railroad	ballast	limestone	material	at	different	

numbers	of	turns	to	study	degradation	trends.	They	also	studied	degradation	at	100,	250,	

400,	550,	700,	and	1,000	drum	turns	and	found	that	aggregates	particles	became	somewhat	

well‐graded	after	400	drum	 turns	 in	 the	LA‐Abrasion	 testing	machine.	This	point	will	be	

further	discussed	in	this	section	from	the	perspective	of	change	in	imaging	based	particle	

shape	indices.					

By	 using	 equation	4.1,	 percent	 LA‐Abrasion	 at	 different	 degradation	 levels	 can	be	

newly	defined.	Note	that	according	to	ASTM	C535,	percent	LA‐Abrasion	at	1,000	drum	turns	

is	 called	 “LA‐Abrasion	 Number”.	 Accordingly,	 percent	 LA‐Abrasion	 value	 calculated	 at	

different	number	of	drum	turns	are	reported	in	Table	4.3.		

0

0

( ) 100i
i

W R
Percent LA Abrasion

W


   																																																																																																																			4.1	

where,		

i	ൌ	Number	of	drum	turns;		

W0	ൌ	Initial	dry	weight	of	the	sample	prior	to	testing;	

Ri	ൌ	Cumulative	weight	of	the	material	retained	on	No.12	ሺ1.70	mmሻ	sieve	at	i	number	of	

drum	turns.		

	

As	expected,	Table	4.3	shows	that	granite	 is	more	resistant	to	degradation	since	 it	

needed	 2,125	 drum	 turns	 to	 reach	 a	 percent	 LA‐Abrasion	 of	 about	 30	 while	 limestone	

reached	the	same	percent	LA‐Abrasion	after	only	1,500	drum	turns.	Note	that	LA‐Abrasion	

Numbers	for	limestone	and	granite	are	21.45%	and	16.04%	respectively	and	are	highlighted	

in	Table	4.3.	Gradation	curves,	fouling	index	and	percent	LA‐Abrasion	values	indeed	provide	

valuable	information	regarding	the	level	of	deterioration	and	resistance	of	ballast	aggregate	

to	degradation.	However,	the	effect	of	change	in	the	shape	of	the	particles	also	needs	to	be	

captured	to	better	understand	the	degradation	mechanism.		
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Table	4.3	Percent	LA‐Abrasion	and	Fouling	Index	Values	for	Limestone	and	Granite	Samples	
Computed	at	Different	Degradation	Levels	

	
Limestone Granite 

Number of    
LA-Abrasion 
Drum Turns 

Percent      
LA-Abrasion  

Fouling Index 
(%) 

Number of    
LA-Abrasion 
Drum Turns 

Percent     
LA-Abrasion  

Fouling Index 
(%) 

0 0 0 0 0 0 

125 3.2 6.29 250 4.75 7.34 

250 6.31 10.45 500 8.84 13.07 

375 9.02 14.21 750 12.56 18.35 

500 11.48 17.53 1000 16.04* 22.44 

625 13.92 20.22 1250 18.87 26.48 

750 17.48 24.37 1500 21.98 30.15 

875 19.42 27.28 1750 25.33 34.06 

1000 21.45* 30.28 2000 28.08 38.37 

1125 23.6 33.17 2125 29.35 40.15 

1250 25.38 35.70 

 1375 27.18 37.92 

1500 28.92 40.22 

   *: LA-Abrasion Number according to ASTM C535 

4.1.3 Imaging Based Particle Shape Property Results      

Figures	4.5	to	4.7	present	for	the	limestone	ballast	material	average	values	of	F&E	Ratio,	AI	

and	STI,	respectively.	Additionally,	Figures	4.8	to	4.10	present	for	the	granite	ballast	material	

average	values	of	F&E	Ratio,	AI	and	STI,	respectively.	The	following	trends	could	be	observed	

from	these	figures:		

	

1‐ For	a	certain	particle	size,	decreasing	trends	for	average	AI	and	STI	values	were	

observed	 at	 higher	 degradation	 levels.	 This	 confirms	 that	 the	 particles	 with	

identical	sizes	tend	to	get	smoother	and	more	rounded	during	LA	abrasion	testing.	

2‐ For	 a	 certain	 number	 of	 drum	 turns,	 the	 average	 AI	 and	 STI	 values	 generally	

increased	as	particle	sizes	decreased.	This	finding	could	be	explained	by	the	fact	

that	smaller	particles	created	from	the	breakage	of	larger	particles	initially	have	

more	crushed	faces	and	thus	they	are	more	angular	and	rougher	textured.	On	the	
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other	 hand,	 the	 larger	 particles	 that	 did	 not	 break	 often	 experienced	 abrasion	

only.		

3‐ The	 average	 AI	 and	 STI	 values	 for	 all	 particle	 sizes	 decreased	 at	 higher	

degradation	levels	through	LA‐Abrasion	testing.		

4‐ The	standard	deviation	levels	ሺerror	bars	in	the	bar	chartsሻ	were	proportional	to	

the	magnitudes	of	associated	shape	properties.	In	other	words,	at	higher	AI,	STI	

and	F&E	Ratio	values,	higher	standard	deviations	were	observed.		

5‐ The	F&E	Ratio	results	showed	that	LA‐Abrasion	testing	did	not	change	the	form	

of	the	particles	significantly.	

6‐ At	a	certain	degradation	level,	small	particles	of	limestone	gave	higher	AI	and	STI	

values	 in	comparison	 to	 small	particles	of	granite.	This	could	be	 related	 to	 the	

different	 ways	 that	 particles	 break	 and	 abrade	 due	 to	 different	 mineralogical	

properties	 of	 limestone	 and	 granite.	 In	 other	 words,	 new	 and	 fresh	 surfaces	

generated	 after	 breakage	 were	 sharper	 and	 rougher	 in	 the	 limestone	 sample	

compared	to	granite	sample.	

7‐ Comparing	 the	 F&E	 Ratio	 values	 at	 different	 degradation	 levels	 between	

limestone	 and	 granite	 samples	 showed	 less	 variation	 of	 F&E	 Ratio	 in	 case	 of	

granite	samples.	This	verifies	the	higher	breakage	susceptibility	of	limestone	in	

comparison	to	granite.
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Figure	4.5	Average	Angularity	Index	at	Different	Degradation	Levels	for	Limestone	Ballast	
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Figure	4.6	Average	Surface	Texture	Index	at	Different	Degradation	Levels	for	Limestone	Ballast	
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Figure	4.7	Average	F&E	Ratio	at	Different	Degradation	Levels	for	Limestone	Ballast	
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Figure	4.8	Average	Angularity	Index	at	Different	Degradation	Levels	for	Granite	Ballast	
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Figure	4.9	Average	Surface	Texture	Index	at	Different	Degradation	Levels	for	Granite	Ballast	
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Figure	4.10	Average	F&E	Ratio	at	Different	Degradation	Levels	for	Granite	Ballast	
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The	distributions	of	F&E	Ratio,	AI	and	STI	are	presented	for	granite	and	limestone	

samples	in	Figures	4.11	to	4.16,	respectively.	These	plots	are	different	from	the	bar	charts	

that	are	shown	in	Figures	4.5	to	4.10	because	they	include	individual	measurements	of	shape	

indices	from	particles.	The	shape	property	distribution	curves	clearly	show	the	variability	of	

shape	indices	captured	by	E‐UIAIA	at	each	degradation	level.		

In	Figures	4.11	and	4.14	the	gap	between	any	two	curves	implies	how	much	the	AI	

changed	between	different	numbers	of	drum	turns.	Clearly,	the	AI	decreases	at	a	slower	rate	

when	moving	away	from	the	original	curve.	Accordingly,	the	distribution	curves	tend	to	get	

closer	to	each	other	as	they	shift	towards	left,	representing	a	higher	number	of	drum	turns.	

Note	that	the	shift	between	the	first	two	AI	distribution	curves	is	wider	in	case	of	limestone	

ሺsee	Figure	4.11ሻ	as	opposed	to	granite	ሺsee	Figure	4.14ሻ.	This	confirms	how	limestone	is	

less	resistant	to	abrasion	particularly	at	the	first	stages	of	degradation.	At	1500	drum	turns	

for	limestone,	a	wider	shift	was	observed	in	the	AI	and	STI	distribution	curves;	see	Figures	

4.11	and	4.12,	respectively.	One	observation	is	that	relatively	larger	amounts	of	fine	particles	

are	accumulated	at	higher	degradation	levels.	Towards	the	end,	these	fine	particles	might	

have	remained	on	the	surfaces	of	the	particles	to	further	decrease	the	captured	AI	and	STI	

values.	Note	 that	different	 stages	observed	 in	 the	degradation	behavior	of	 limestone	and	

granite	samples	will	be	discussed	in	the	next	section	by	using	regression	based	statistical	

analysis.		

Similarly,	in	Figures	4.12	and	4.15,	the	gap	between	any	two	curves	is	an	indicator	of	

how	much	STI	changed	between	different	numbers	of	drum	turns.	In	general,	both	STI	and	

AI	distribution	curves	for	granite	are	more	uniform	in	comparison	to	those	of	the	limestone.	

As	expected,	comparing	the	STI	distribution	curves	for	the	limestone	and	granite	shows	that	

granite	is	more	resistant	to	polishing	at	higher	level	of	degradation	as	opposed	to	limestone.		

Figures	 4.13	 and	 4.16	 present	 the	 F&E	 Ratio	 distributions	 for	 the	 limestone	 and	

granite	 samples,	 respectively.	 Unlike	 the	 AI	 and	 STI	 trends,	 the	 F&E	 Ratio	 distributions	

change	from	the	initial	wider	range	values	to	much	narrower	range	values	with	increasing	

number	 of	 drum	 turns.	 This	 means	 that	 originally	 rounded	 particles	 generally	 tend	 to	
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converge	to	a	certain	shape	and	often	become	even	more	rounded;	this	is	when	most	of	the	

originally	flat	and	elongated	particles	are	broken	due	to	abrasion	and	breakage.		
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																							Figure	4.11	Distributions	of	Angularity	Index	for	all	of	Limestone	Particles	at	Different	Degradation	Levels	
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Figure	4.12	Distributions	of	Surface	Texture	Index	for	all	of	Limestone	Particles	at	Different	Degradation	Levels	
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								Figure	4.13	Distributions	of	F&E	Ratio	for	all	of	Limestone	Particles	at	Different	Degradation	Levels	
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Figure	4.14	Distributions	of	Angularity	Index	for	all	of	Granite	Particles	at	Different	Degradation	Levels	
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		Figure	4.15	Distribution	of	Surface	Texture	Index	for	all	of	Granite	Particles	at	Different	Degradation	Levels	
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							Figure	4.16	Distributions	of	F&E	Ratio	for	all	of	Granite	Particles	at	Different	Degradation	Levels	
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4.1.4 Development of Imaging Based Degradation Models  

In	 this	 section	 linear	 and	 nonlinear	 statistical	 regression	 methods	 were	 used	 to	

further	analyze	the	degradation	potentials	of	limestone	and	granite	samples	according	to	the	

changes	in	shape	indices	during	LA‐Abrasion	testing.	Figure	4.17	shows	the	linkage	between	

percent	LA‐Abrasion	value	ሺsee	Table	4.3ሻ	and	the	percent	 loss	 in	average	AI	at	different	

stages	 of	 degradation.	 Linear	 regression	 equations	 are	 also	 presented	 in	 Figure	 4.17.	 To	

indicate	strong	correlations,	 the	coefficient	of	determination	ሺR2ሻ	values	are	computed	as	

0.88	for	limestone	and	0.92	for	granite.					

	

	

	

	

	

	

	

	

		

	

	

	

	

	
Figure	4.17	Linkages	between	Percent	LA‐Abrasion	and	Loss	in	AI	for	Limestone	and	

Granite	at	different	Degradation	Levels	
	

Similarly,	Figure	4.18	presents	a	strong	correlation	between	the	loss	in	average	STI	

values	 and	 the	 percent	 LA‐Abrasion	 with	 a	 coefficient	 of	 determination	 R2	 of	 0.81	 for	

limestone	 and	 0.90	 for	 granite.	 Such	 trends	 confirm	 that	 there	 is	 a	 definite	 relationship	

between	the	imaging	based	shape	indices	and	the	results	from	LA‐Abrasion	testing,	which	is	

based	on	the	loss	in	mass	of	material	and	the	overall	reduction	in	AI	and	STI	of	the	aggregate	

particles.		

Loss in AI (%) = 0.7648(PLAA) + 13.482
(R² = 0.92, RMSE = 1.91, SEE = 1.91)

Loss in AI (%) = 0.5167 (PLAA) + 21.416
(R² = 0.88, RMSE = 1.72, SEE = 1.71)
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Figure	4.18	Linkages	between	Percent	LA‐Abrasion	and	Loss	in	STI	for	Limestone	and	
Granite	at	different	Degradation	Levels	

	
	
Average	AI	and	STI	results	 for	 limestone	and	granite	quantified	by	E‐UIAIA	before					

LA‐Abrasion	testing	and	also	at	different	degradation	levels	were	used	to	calibrate	a	three	

parameter	exponential	model	such	as	given	in	Equation	4.2.	Mahmoud	et	al.	 ሾ95ሿ	showed	

that	this	type	of	exponential	expression	was	superior	to	other	mathematical	models	in	terms	

of	describing	the	change	in	aggregate	shape	properties	during	degradation	process.			

	

( ) c NShape Index AI or STI a b e    																																																																																																				4.2	

	

where,	

a,	b,	c	ൌ	Model	parameters	related	to	initial,	final	and	rate	of	change	in	Shape	index;	

N	ൌ	Number	of	LA‐Abrasion	Turns.	

	

Coefficient	of	determination	ሺR2ሻ	and	Standard	Error	of	Estimates	ሺSEEሻ	were	used	

to	assess	the	accuracy	of	the	models	in	estimating	the	deterioration	trends	for	AI	and	STI	

Loss in STI (%) = 0.6808(PLAA) + 17.397
(R² = 0.90, RMSE = 2.176, SEE = 2.175)

Loss in STI (%) = 0.538 (PLAA) + 24.644
(R² = 0.81, RMSE = 2.354, SEE = 2.354)
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during	LA‐Abrasion	testing.	Figures	4.19	to	4.22	present	the	regression	analysis	results	and	

the	fitted	curves	with	their	corresponding	exponential	equations	to	estimate	the	AI	and	STI	

at	different	degradation	levels.	Note	that	13	data	points	for	limestone	and	10	data	points	for	

granite	 were	 available	 in	 this	 experiment	 to	 calibrate	 the	 full	 regression	 models.	 Since	

sample	 preparation	 and	 conducting	 several	 LA‐Abrasion	 tests	 on	 one	material	 is	 a	 time	

consuming	 and	 laborious	 process,	 it	 was	 decided	 to	 also	 evaluate	 the	 efficiency	 of	

exponential	models	using	just	3	data	points	including	shape	properties	obtained	before	and	

after	LA‐Abrasion	testing	at	500	and	1,000	turns.	The	fitted	exponential	models	using	three	

data	points	are	marked	with	dotted	line	for	comparison	purposes	with	the	full	regression	

models.			

	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	4.19	Three	Parameter	Exponential	Model	to	Estimate	Angularity	Index	at	
Different	LA‐Abrasion	Drum	Turns	for	Limestone	Ballast	
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Figure	4.20	Three	Parameter	Exponential	Model	to	Estimate	Surface	Texture	Index	at	
Different	LA‐Abrasion	Drum	Turns	for	Limestone	Ballast	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	

Figure	4.21	Three	Parameter	Exponential	Model	to	Estimate	Angularity	Index	at	
Different	LA‐Abrasion	Drum	Turns	for	Granite	Ballast	
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Figure	4.22	Three	Parameter	Exponential	Model	to	Estimate	Surface	Texture	Index	at	
Different	LA‐Abrasion	Drum	Turns	for	Granite	Ballast	
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with	 three	data	points	 can	be	considered	as	an	appropriate	approach	 to	characterize	 the	

deterioration	trends	of	aggregates	in	terms	of	AI	and	STI	indices	measured	by	E‐UIAIA.			

4.2 LA-Abrasion Testing Combined with Imaging Results for Classifying Railroad 
Ballast   

Fouteen	 sources	 of	 ballast	 are	 studied	 in	 this	 section.	 These	 ballast	 sources	 are	

currently	used	by	Western	freight	railroad	companies	and	were	obtained	from	quarries	all	

located	 west	 of	 the	 Mississippi	 river.	 The	 properties	 of	 these	 ballast	 sources	 including	

specific	gravity	and	rock	type	are	provided	in	Table	4.4	

	

Table	4.4	Properties	Including	Specific	Gravity	and	Rock	Classification	for		
Ballast	Aggregate	Sources	

	

Ballast ID Specific Gravity (GS) Rock Type 

Ballast I 2.51 Trap Rock 

Ballast II 2.41 Trap Rock 

Ballast III 2.82 Trap Rock 

Ballast IV 2.36 Trap Rock and Granitoid 

Ballast V 2.74 Trap Rock 

Ballast VI 2.94 Trap Rock 

Ballast VII 2.33 Quartzite 

Ballast VIII 2.46 Granitoid 

Ballast IX 2.60 Trap Rock 

Ballast X 2.32 Trap Rock 

Ballast XI 2.29 Granitoid 

Ballast XII 2.51 Trap Rock 

Ballast XIII 2.32 Granitoid 

Ballast XIV 2.60 Trap Rock 

	

4.2.1 Laboratory Sieve Analysis and Imaging Results before LA-Abrasion Testing   

The	 particle	 size	 distributions	 for	 these	 fourteen	 sources	 of	 ballast	 aggregate	

materials	were	determined	according	 to	ASTM	C136.	Each	ballast	 aggregate	was	 initially	
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weighed	at	dry	condition,	then	was	washed	over	a	No.200	ሺ0.075	mmሻ	sieve	and	dried	for	

24	hours	 in	the	oven.	Finally,	 the	dry	weight	of	 the	sample	was	determined	to	obtain	the	

amount	of	material	passing	the	No.200	ሺ0.075	mmሻ	sieve.	The	percentage	passing	amounts	

for	each	sieve	size	determined	for	all	ballast	sources	are	shown	in	Figure	4.23.	As	expected,	

the	 gradation	 curves	 confirmed	 that	 majority	 of	 the	 particle	 sizes	 in	 clean	 ballast	 were	

between	1	in.	ሺ25	mmሻ	and	2	in.	ሺ50	mmሻ.	This	information	was	used	later	to	identify	the	

required	 number	 of	 particles	 to	 scan	 from	 each	 size	 to	 obtain	 a	 representative	 imaging	

sample	from	each	source.	It	needs	to	be	noted	that	two	samples	from	each	ballast	source	

were	prepared	and	the	average	values	of	the	two	laboratory	sieve	analyses	were	reported.				

E‐UIAIA	was	used	to	quantify	the	shape	indices	of	these	ballast	sources.	Angularity	

index,	 surface	 texture	 index	 and	F&E	Ratio	 of	 the	particles	 are	presented	 in	 this	 section.	

These	indices	are	later	used	in	this	chapter	to	investigate	the	degradation	behavior	of	these	

ballast	 sources.	 Two	 samples	 were	 prepared	 from	 each	 ballast	 aggregate,	 with	

approximately	75	to	80	particles	per	sample	to	investigate	the	effect	of	random	sampling	on	

the	imaging	based	shape	indices.	The	number	of	particles	for	each	sieve	size	were	distributed	

proportional	to	the	gradation	of	each	ballast	source	and	are	presented	in	Table	4.5.	In	total	

more	than	2,000	particles	were	scanned	for	all	of	the	14	ballast	sources.	

Note	that	very	few	particles	with	sizes	less	than	3/4	in.	ሺ19	mmሻ	were	selected	for	

scanning	since	the	majority	of	the	particle	sizes	in	clean	ballast	were	between	1	in.	ሺ25	mmሻ	

and	2.5	in.	ሺ63	mmሻ.	The	average	imaging	results	for	AI,	STI	and	F&E	Ratio	for	all	the	particle	

sizes	from	two	random	independent	samples	related	to	each	source	of	ballast	are	presented	

in	Figures	4.24	to	4.26.	

According	 to	Figure	4.24,	 in	general	a	good	match	was	observed	 for	 the	AI	values	

between	sample	1	and	sample	2	from	each	ballast	source.	Ballast	XI	had	the	highest	AI	value	

while	Ballast	III	had	the	lowest	angularity	value.	Sample	2	in	ballast	V	and	sample	1	in	ballast	

XI	showed	relatively	larger	standard	deviations	in	AI	as	opposed	to	sample	1	in	ballast	XII	

which	showed	lower	standard	deviation.	Note	that	these	ballast	sources	are	all	fully	crushed	

particles	and	therefore,	the	AI	for	all	the	samples	was	above	330	which	is	comparable	with	

AI	values	for	a	crushed	particle	reported	in	Table	3.23.					
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Figure	4.23	Particle	Size	Distributions	for	Fourteen	Ballast	Sources	ሾ9ሿ		
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Table	4.5	Number	of	Particles	Scanned	with	E‐UIAIA	for	Each	Sieve	Size	
	

Sieve Size (in.) 2.5  2  1.5  1  3/4 1/2 3/8 No.4 Total 
Number of 
Particles Sieve Size (mm) 63 50 37.5 25.4 19 12.5 9.5 4.76 

Ballast I 0 2 23 36 11 4 1 1 78 

Ballast II 1 7 34 25 6 2 1 1 77 

Ballast III 1 14 19 22 11 9 1 1 78 

Ballast IV 0 3 25 36 10 2 1 1 78 

Ballast V 0 5 28 30 10 4 1 1 79 

Ballast VI 0 2 14 43 15 2 1 1 78 

Ballast VII 0 11 38 22 5 2 1 1 80 

Ballast VIII 2 16 47 11 1 1 1 1 80 

Ballast IX 0 7 38 27 3 1 1 1 78 

Ballast X 0 2 13 43 15 3 1 1 78 

Ballast XI 0 7 25 28 14 4 1 1 80 

Ballast XII 0 5 17 32 14 6 1 1 76 

Ballast XIII 0 2 8 34 21 10 1 1 77 

Ballast XIV 0 1 29 37 8 2 0 1 78 

	

Figure	4.25	shows	that	ballast	XIV	has	the	highest	STI	while	ballast	III	was	the	source	

with	the	lowest	STI.	Relatively	a	good	match	was	observed	between	STI	measurements	for	

sample	1	and	sample	2	from	each	ballast	source.	Sample	2	in	ballast	V	and	sample	1	in	ballast	

IX	had	the	highest	standard	deviation	values	while	sample	2	in	ballast	XI	showed	the	lowest	

standard	deviation.	As	was	mentioned	before,	the	particles	in	these	ballast	sources	are	fully	

crushed.	 Thus,	 the	 overall	 STI	 for	 all	 the	 sources	 was	 above	 1	 which	 verifies	 the	 STI	

measurements	by	E‐UIAIA	for	a	crushed	particle	reported	in	Table	3.23.				

Based	on	the	F&E	Ratio	results	shown	in	Figure	4.26,	ballast	XIV	showed	the	highest	

F&E	Ratio	while	Ballast	XI	had	the	lowest	F&E	Ratio.	In	most	of	the	ballast	sources	except	

ballast	IV,	ballast	VII,	ballast	IX	and	ballast	XIII	a	good	match	was	observed	in	terms	of	F&E	

Ratio	 between	 sample	 1	 and	 sample	 2.	 Additionally,	 ballast	 IV	 had	 the	 highest	 standard	

deviation	while	Ballast	VI	showed	the	lowest	standard	deviation	for	F&E	Ratio.	

		Note	 that	 effects	 of	 the	 shape	 properties	 of	 these	 ballast	 sources	 on	 laboratory	

performance	in	terms	of	shear	strength	were	also	studied	and	can	be	found	elsewhere	ሾ7ሿ.			
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Figure	4.24	Average	Angularity	Index	Values	for	Samples	1	and	2	of	14	Ballast	Sources		
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Figure	4.25	Average	Surface	Texture	Index	Values	for	Samples	1	and	2	of	14	Ballast	Sources	
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Figure	4.26	Average	F&E	Ratios	for	Samples	1	and	2	of	14	Ballast	Sources	
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4.2.2 Laboratory Sieve Analysis and Imaging Results after LA-Abrasion Testing   

LA‐Abrasion	laboratory	testing	was	performed	at	400	turns	and	1,000	turns	on	these	

ballast	sources	according	to	ASTM	C535	to	study	the	effect	of	degradation	determined	by	the	

changes	in	shape	properties.	The	following	steps	were	followed	for	the	sample	preparation	

and	testing:	

1‐ Prepare	11	lbs	ሺ5	kgሻ	of	1	in.	ሺ25	mmሻ	to	1.5	in.	ሺ37.5	mmሻ	and	11	lbs	ሺ5	kgሻ	of	1.5	

in.	ሺ37.5	mmሻ	to	2.0	in.	ሺ50	mmሻ	aggregate	samples	for	each	ballast	source;		

2‐ Wash	 all	 the	 material	 to	 remove	 the	 fines	 passing	 No.200	 ሺ0.075	 mmሻ	 sieve	

sticking	to	individual	particles;		

3‐ Dry	the	material	in	the	oven	for	24	hours;		

4‐ Place	prepared	materials	and	12	steel	balls	inside	the	LA‐Abrasion	drum;	

5‐ Start	 the	machine	and	allow	 it	 to	rotate	until	 it	 reaches	 the	desired	number	of	

revolutions	which	is	in	this	case	400	and	1,000;	

6‐ Remove	material	from	the	drum.	Locate	and	remove	the	12	steel	balls	from	the	

sample;	

7‐ Determine	the	weight	of	the	abraded	aggregate	sample	before	washing;	

8‐ Thoroughly	wash	material	over	No.200	ሺ0.075	mmሻ	sieve	to	ensure	all	material	

finer	than	the	No.200	ሺ0.075	mmሻ	sieve	were	washed	away	by	gently	screening	

the	material	on	top	of	the	sieve;	

9‐ Place	washed	material	in	the	oven	for	24	hours	to	dry;	

10‐ Remove	material	from	oven	and	perform	sieve	analysis	according	to	ASTM	C136.	

	

Note	 that	 ASTM	 C535	 recommends	 1,000	 turns	 to	 determine	 the	 LA‐Abrasion	

Number	 for	 ballast	 materials.	 Based	 on	 what	 was	 discussed	 before,	 500	 and	 1,000																							

LA‐Abrasion	 turns	were	 selected	 in	 section	4.1	 to	 capture	 the	 second	 and	 final	 stages	 of	

deterioration	curves.	Additionally,	previous	research	by	Boler	et	al.	ሾ31ሿ	recommended	400	

and	1,000	turns	as	good	break	points	to	represent	the	changes	in	shape	properties	during	

LA‐Abrasion	degradation.	Considering	the	 large	number	of	ballast	sources	studied,	 it	was	

decided	 to	 determine	 the	 percent	 LA‐Abrasion	 after	 400	 turns	 to	 efficiently	 capture	 the	
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initial	degradation	stage	in	each	ballast	source.	Table	4.6	shows	the	percent	LA‐Abrasion	for	

the	14	sources	of	ballast	at	400	and	1,000	turns.	ሺsee	Equation	4.1ሻ.		

	

												Table	4.6	Percent	LA‐Abrasion	after	400	and	1,000	Drum	Turns	

Ballast 
Source  

Number of LA-Abrasion Drum Turns 

400  1,000  

Ballast I 6.19 9.78 
Ballast II 8.55 16.44 
Ballast III 6.08 10.96 
Ballast IV 6.41 13.65 
Ballast V 4.02 8.80 

Ballast VI 5.33 10.49 
Ballast VII 5.95 15.20 
Ballast VIII 6.24 9.01 
Ballast IX 6.19 11.87 
Ballast X 8.09 15.45 
Ballast XI 8.90 18.48 
Ballast XII 6.71 10.44 
Ballast XIII 9.70 19.08 
Ballast XIV 7.10 12.67 

	

Note	that	for	each	set	of	LA‐Abrasion	testing	a	new	sample	was	prepared.	According	

to	 Table	 4.6,	 at	 400	 drum	 turns	 ballast	 XI	 and	 ballast	 XIII	 had	 the	 highest	 percent																										

LA‐Abrasion	while	ballast	V	and	ballast	VI	had	the	lowest	percent	LA‐Abrasion.	LA‐Abrasion	

test	results	at	1,000	turns	also	showed	that	ballast	XI	and	ballast	XIII	were	the	ballast	sources	

with	the	highest	susceptibility	to	degradation	while	ballast	V	and	ballast	VIII	had	the	lowest	

percent	 LA‐Abrasion.	 Note	 that	 ballast	 VI	 also	 did	 not	 show	 a	 significant	 amount	 of	

degradation	at	1,000	turns	in	comparison	to	the	other	ballast	sources.										

	After	each	LA‐Abrasion	 test,	all	of	 the	particles	above	No.4	ሺ4.75	mmሻ	sieve	were	

scanned	using	E‐UIAIA	to	identify	AI,	STI	and	F&E	Ratio	values.	The	average	values	for	shape	

indices	 obtained	 after	 400	 and	 1,000	 LA‐Abrasion	 turns	 were	 compared	 with	 their	

corresponding	 initial	 values	 before	 running	 LA‐Abrasion	 testing.	 Note	 that	 because	 only									

1.5	in.	ሺ37.5	mmሻ	and	1	in.	ሺ25	mmሻ	particles	were	used	in	LA‐Abrasion	testing,	the	imaging	

based	shape	properties	are	only	compared	to	the	shape	properties	of	 these	particle	sizes	

before	LA‐Abrasion	testing.	These	 imaging	results	and	comparisons	are	shown	in	Figures	

4.27	to	4.29.		
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Figure	4.27	indicates	that	AI	values	for	all	the	ballast	sources	except	ballast	VI	and	

ballast	 XII	 decreased	 at	 the	 higher	 level	 of	 degradation.	 As	 discussed	 in	 Chapter	 2,	 the	

mineralogical	properties	including	grain	sizes	and	shapes	of	each	rock	source	can	influence	

the	degradation	and	breakage	mechanisms.	By	referring	to	Table	4.4,	it	was	found	that	both	

ballast	VI	and	ballast	XII	were	trap	rock.	The	loss	in	AI	at	400	and	1,000	turns	of	LA‐Abrasion	

was	more	significant	in	ballast	III,	ballast	V	and	ballast	XI.	Later	in	this	chapter	these	two	

parameters	will	be	used	to	classify	ballast	sources	in	terms	of	their	resistance	to	breakage	

and	abrasion.		

Figure	4.28	showed	that	STI	values	of	the	ballast	sources	except	ballast	IV,	ballast	VI,	

ballast	VIII	and	ballast	XII	decreased	at	high	degradation	 levels.	Moreover,	STI	 for	ballast	

sources	II,	X	and	XIV	decreased	with	a	faster	rate	at	higher	degradation	levels	in	comparison	

to	 the	 rest	of	 the	ballast	 sources.	The	percentage	of	 loss	 in	STI	 can	be	 related	 to	percent											

LA‐Abrasion	 associated	 with	 each	 ballast	 source	 to	 evaluate	 the	 susceptibility	 of	 ballast	

breakage	and	polishing.					

As	shown	in	Figure	4.29,	the	F&E	Ratio	values	for	most	of	the	ballast	sources	except	

ballast	XIV	did	not	change	significantly	at	400	and	1,000	LA‐Abrasion	turns.	As	discussed	in	

section	4.1.3,	this	finding	confirmed	that	LA‐Abrasion	testing	do	not	extensively	affect	the	

form	of	the	particles.	

The	imaging	results	that	are	shown	in	Figures	4.27	to	4.29	are	based	on	the	average	

value	of	each	shape	index.	The	full	cumulative	distribution	plots	associated	with	each	shape	

property	at	different	degradation	levels	for	these	fourteen	ballast	sources	are	provided	in	

Appendix	C	of	this	dissertation.	These	plots	are	similar	to	those	presented	in	Figures	4.11	to	

4.16	in	which	individual	measurement	of	each	imaging	based	shape	property	is	captured.	

These	 plots	 also	 show	 that	 by	 increasing	 the	 number	 of	 LA‐Abrasion	 drum	 turns,	 the	

distribution	curves	of	AI	and	STI	shift	toward	the	left	which	confirms	their	decreasing	trends.		

4.2.3 Imaging Based Degradation Models 

Based	on	what	was	discussed	in	section	4.1.1,	nonlinear	regression	method	was	used	

to	calibrate	three	parameter	exponential	models	using	3	data	points	to	achieve	AI	and	STI	

deterioration	 patterns.	 The	 model	 parameters	 for	 all	 the	 fourteen	 ballast	 sources	 are	

summarized	in	Table	4.7.		



128	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	4.27	Average	Angularity	Index	Values	Before	and	After	LA‐Abrasion	Testing	for	14	Ballast	Sources	
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Figure	4.28	Average	Surface	Texture	Index	Values	Before	and	After	LA‐Abrasion	Testing	for	14	Ballast	Sources	
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Figure	4.29	Average	F&E	Ratios	Before	and	After	LA‐Abrasion	Testing	for	14	Ballast	Sources	
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Table	4.7	Model	Parameters	for	AI	and	STI	Exponential	Three	Parameter	Fitted	Curves	

Ballast ID 
AI Degradation Model  STI Degradation Models 

	 		
( )c NAI a b e    ( )c NSTI a b e    	

a b c a b c 
Ballast I 316.85 72.549 -0.004447 1.157 0.182 -0.002678 
Ballast II 277.882 84.55 -0.001615 1.029 0.325 -0.006933 
Ballast III 233.892 130.307 -0.002777 0.807 0.439 -0.000938 
Ballast IV 310.825 64.141 -0.005158 1.36 0.103 -0.288839 
Ballast V 268.772 118.461 -0.003667 0.931 0.432 -0.001701 
Ballast VI 318.5 87.166 -0.290742 1.499 0.17 -0.020236 
Ballast VII 260.278 96.055 -0.002343 0.919 0.307 -0.00162 
Ballast VIII 348.411 68.221 -0.001274 1.545 0.335 -14.13891 
Ballast IX 312.745 76.912 -0.004046 0.997 0.16 -0.001111 
Ballast X 298.66 84.206 -0.003062 1.044 0.558 -0.004704 
Ballast XI 269.499 99.566 -0.006901 1.249 0.277 -0.006521 
Ballast XII 322.9 105.1 -0.065076 1.46 0.39 -0.112095 
Ballast XIII 281.423 98.442 -0.003605 1.003 0.412 -0.00423 
Ballast XIV 315.624 81.508 -0.00538 1.265 0.854 -0.005254 

	

4.2.4 Classification of Ballast Sources by Imaging Results and LA-Abrasion Testing  

Considering	 the	LA‐Abrasion	and	 imaging	 results	obtained	by	E‐UIAIA,	 the	ballast	

sources	were	classified	into	different	zones	in	terms	of	their	resistance	to	breakage,	abrasion	

and	 polishing.	 The	 results	 of	 this	 classification	 are	 presented	 in	 Figures	 4.30	 and	 4.31.	

According	to	Figure	4.30,	it	was	observed	that	ballast	sources	I,	IV,	VI,	VIII	and	XIV	belong	to	

low	 breakage	 and	 low	 abrasion	 zone	 while	 ballast	 sources	 VII,	 XI	 and	 ballast	 XIII	 were	

classified	as	sources	with	high	breakage	and	high	abrasion	susceptibility.	Similarly,	Figure	

4.31	 shows	 that	 ballast	 I,	 III,	 IV,	 VI,	 VIII,	 IX	 and	 XII	 were	 classified	 as	 sources	with	 low	

breakage	 and	 low	 polishing	 tendency	while	 ballast	 sources	 VII,	 XI	 and	 XIII	 showed	 high	

breakage	and	high	polishing	susceptibility.	Note	that	according	to	Table	4.4,	the	mineralogy	

of	 the	majority	 of	 these	 fourteen	 ballast	 sources	 was	 identified	 as	 trap	 rock.	 Thus,	 it	 is	

interesting	 that	 the	 imaging	 based	 classification	 method	 could	 successfully	 differentiate	

ballast	sources	according	to	mineralogical	origins.	Those	that	were	not	trap	rock,	e.g.,	ballast	

sources	VII,	XI	and	XIII,	were	classified	into	separate	zones.	Figures	4.30	and	4.31	indicate	

that	imaging	results	combined	with	LA‐Abrasion	testing	can	be	used	to	better	characterize	

the	degradation	behavior	of	different	railroad	ballast	materials.		
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Figure	4.30	Angularity	Classification	of	Ballast	Sources	Considering	their	Resistance	to		
Breakage	and	Abrasion	

	

4.3 Summary  

In	this	chapter,	the	applicability	of	E‐UIAIA	in	identifying	the	key	shape	indices	for						

AI,	STI	and	F&E	Ratio	of	several	railroad	ballast	materials	was	investigated.	Additionally,	the	

E‐UIAIA	was	used	to	capture	the	degradation	patterns	in	terms	of	changes	in	particle	shapes	

caused	 by	 LA‐Abrasion	 testing.	 The	 findings	 presented	 in	 this	 chapter	 showed	 that	 the	
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captured	by	an	imaging‐based	approach.	These	imaging	based	shape	indices	combined	with	

LA‐Abrasion	 test	 results	 can	 be	 considered	 as	 an	 efficient	 alternative	 to	 measure	 the	

resistance	of	aggregate	sources	to	degradation.	Using	the	proposed	approach	described	in	

this	chapter,	the	aggregate	sources	were	classified	into	different	categories	based	on	their	

resistance	to	breakage,	abrasion	and	polishing.		
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Figure	4.31	Surface	Texture	Classification	of	Ballast	Sources	Considering	their	Resistance	to	

Breakage	and	Polishing	
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PERFORMANCE OF E-UIAIA IN EVALUATING 

DEGRADATION OF HIGHWAY AGGREGATES USING   

MICRO-DEVAL TESTING2   

5.1 Introduction 

Under	repeated	traffic	loading,	aggregate	particles	in	pavement	courses	are	routinely	

subjected	to	degradation	through	attrition,	impact,	grinding	and	polishing	type	mechanisms,	

which	result	in	altering	their	shape	and	size	properties.	The	objective	of	this	chapter	is	to	

demonstrate	 the	effectiveness	and	applicability	of	 implementing	 two	advanced	aggregate	

imaging	systems,	Enhanced	University	of	Illinois	Aggregate	Image	Analyzer	ሺE‐UIAIAሻ	and	

second	generation	of	Aggregate	Imaging	System	ሺAIMS‐IIሻ,	in	capturing	changes	in	shape	and	

size	properties	of	aggregate	particles	caused	by	the	breakage,	abrasion	and	polishing	actions.	

Micro‐Deval	 ሺMDሻ	 apparatus	 was	 used	 in	 the	 laboratory	 to	 evaluate	 such	 field	

degradation/polishing	resistance	of	eleven	aggregate	materials	with	different	mineralogical	

properties	 collected	 from	 throughout	 the	 state	 of	 Illinois	 and	 neighboring	 states.	 These	

aggregate	sources	were	commonly	used	in	pavement	construction	as	HMA	surface	friction	

courses.	

The	first	research	task	established	an	aggregate	database	to	include	the	initial	size	

and	shape	properties	of	aggregates.	Then,	the	magnitudes	and	rates	of	change	in	shape	and	

																																																													

	

2	This	chapter	includes	the	results	that	are	published	in	the	following	article.	The	contribution	of	the	co‐authors	
is	greatly	appreciated.			

	
1‐	Moaveni,	M.,	Mahmoud,	E.,	Ortiz,	E.	M.,	Tutumluer,	E.,	and	Beshears,	S.,	“Use	of	Advanced	Aggregate	Imaging	
Systems	to	Evaluate	Aggregate	Resistance	to	Breakage,	Abrasion,	and	Polishing”,	Published	in	Transportation	
Research	Record:	Journal	of	the	Transportation	Research	Board,	No.2401,	pp.	1‐10,	2014,	Washington	DC,	USA.	
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size	 properties	 caused	 by	 MD	 degradation	 were	 measured	 at	 different	 time	 intervals	

changing	from	15	to	210	minutes.	The	second	part	is	focused	on	a	statistical	evaluation	of	

the	 results	 to	 develop	 prediction	 models	 for	 describing	 the	 degradation	 behavior	 of	

individual	aggregate	sources	in	terms	of	loss	in	AI	and	STI.	Furthermore,	material	weight	loss	

at	different	MD	time	 intervals	are	also	correlated	with	the	percentage	of	change	in	shape	

properties	in	order	to	verify	the	applicability	of	imaging	based	methods	in	characterizing	the	

resistance	of	aggregates	to	degradation.	

5.2 Sample Preparation and Micro-Deval Testing Procedure  

The	aggregate	materials	were	selected	from	a	wide	range	of	mineralogical	properties	

and	sampled	from	various	quarries	in	different	geographical	regions	in	the	state	of	Illinois	

and	neighboring	states.	All	the	aggregate	materials	were	washed,	oven	dried	and	sieved	to	

obtain	the	particle	sizes	passing	the	½	in.	ሺ12.5	mmሻ	sieve	and	retained	on	the	3/8	in.	ሺ9.5	

mmሻ	 sieve.	 Table	 5.1	 lists	 the	 types,	 designations	 and	 specific	 gravities	 of	 all	 aggregate	

materials	tested.	

	

Table	5.1	Aggregate	Material	Types,	Designation	and	Geology	

Aggregate 
ID 

Aggregate 
Description 

Geology 
Specific 
Gravity* 

(Gs) 
FP1 Limestone Pennsylvanian/Bond/Millersvillle 2.695 

FP2 Limestone Mississippian/Salem 2.671 

FP3 Limestone Ordivician/Galena 2.629 

FP4 
Silurian Dolomite 
(reef formation) 

Silurian/Racine 2.681 

FP5 Silurian Dolomite Silurian/Racine/Joliet 2.628 

FP6 Crushed Gravel 
Henry Formation, Wisconsinin Glacial 

Till 
2.628 

FP7 Chert Gravel Maramec River Gravel, 99% Chert 2.500 

FP8 Steel Slag Steel Slag 3.448 

FP9 ACBF Slag Air-Cooled Blast Furnace Slag 2.403 

FP10 Quartzite 
Lower Proterozoic Quartzite 

(Baraboo Formation) 
2.604 

FP11 Sandstone Mississippian/Rosiclare Sandstone 2.636 

*Note: Specific gravity test was performed based on ASTM C127  
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Aggregate	resistance	to	degradation	was	measured	based	on	the	following	steps:	

	

1ሻ Initial	measurements	of	aggregate	shape	and	size	properties	–	Before	Micro‐Deval	

ሺBMDሻ;	

2ሻ Filling	the	MD	drum	with	750	grams	of	aggregate	materials;	

3ሻ Placing	5,000	grams	of	9.5	mm	diameter	steel	balls	and	2	liters	of	water	in	the	drum;	

4ሻ Subjecting	the	aggregate	samples	to	the	following	target	degradation	times:	15,	30,	

45,	60,	75,	90,	105,	180,	and	210	minutes;	

5ሻ Washing	the	sample	retaining	on	No.	16	ሺ1.19	mmሻ	sieve	size	and	removing	the	steel	

balls;	

6ሻ Oven	drying	sample	and	checking	gradation	using	sieves:	No.	16	ሺ1.19	mmሻ,	No.	8	

ሺ2.38	mmሻ,	No.	4	ሺ4.76	mmሻ,	3/8	in.	ሺ9.5	mmሻ,	½	in.	ሺ12.7	mmሻ;		

7ሻ Recording	aggregate	shape	properties	associated	with	each	degradation	time	for	the	

portion	retained	on	3/8	in.	ሺ9.5	mmሻ	–	After	Micro‐Deval	ሺAMDሻ.	

	

Multiple	 aggregate	 samples	 from	 each	 source	 were	 used	 at	 different	 degradation	

times	as	opposed	to	using	the	same	sample.	Previous	research	by	Mahmoud	et	al.	ሾ95ሿ	has	

shown	 the	 important	 effect	 of	 using	 single	 versus	 multiple	 aggregate	 samples.	 It	 was	

concluded	that	the	two	procedures	would	yield	similar	results.	Additionally,	using	multiple	

aggregate	 samples	 ensures	 that	 consistent	 conditions	 in	 terms	 of	 initial	 gradation	 and	

aggregate	weight	would	be	followed	for	each	set	of	MD	tests.	

5.3 Aggregate Image Acquisition and Processing    

AIMS‐II	and	E‐UIAIA	are	the	two	advanced	image	analysis	devices	used	in	this	chapter	

for	measuring	the	morphological	properties	of	aggregate	particles	at	different	MD	stages.								

E‐UIAIA	and	its	associated	aggregate	image	processing	modules	were	described	in	detail	in	

Chapters	 2	 and	 3	 of	 this	 dissertation.	 Additionally,	 a	 brief	 introduction	was	 provided	 in	

chapter	2	regarding	the	first	and	second	generations	of	AIMS.	The	software	component	of	
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AIMS‐II	includes	an	image	processing	algorithm	that	can	compute	the	AI,	STI,	and	F&E	Ratio	

as	 well	 as	 sphericity	 of	 aggregate	 particles.	 A	 short	 summary	 describing	 the	 calculation	

process	of	individual	shape	indices	computed	by	AIMS‐II	is	provided	here.	In	total,	more	than	

26,000	aggregate	particles	were	scanned	using	both	systems	to	compile	and	establish	the	

shape	property	database.	Table	5.2	lists	the	number	of	aggregate	particles	scanned	at	each	

stage	of	degradation	time.	Note	that	the	number	of	particles	decreases	with	an	increase	in	

the	 degradation	 time	 since	 only	 the	 particles	 retained	 on	 3/8	 in.	 ሺ9.5	mmሻ	 were	 image	

analyzed	after	each	MD	time.			

	

Table	5.2	Number	of	Aggregate	Particles	Scanned	after	Each	MD	Degradation	Time	

MD 
Time 
(min.) 

Aggregate ID 

FP1 FP2 FP3 FP4 FP5 FP6 FP7 FP8 FP9* FP10 FP11

0 362 396 361 358 566 559 433 275 478 429 415 

15 357 341 356 363 434 378 401 271 - 395 331 

30 330 306 323 329 341 272 409 266 374 367 289 

45 305 322 280 335 276 263 397 256 - 360 262 

60 289 281 255 312 209 221 392 261 - 348 235 

75 294 297 227 283 165 224 393 258 281 354 212 

90 264 244 225 286 158 214 383 237 - 375 183 

105 244 258 219 290 128 188 399 253 251 341 170 

180 201 204 189 246 61 128 393 219 169 325 138 

210 199 176 146 216 34 119 375 225 124 321 107 

Total 2845 2825 2581 3018 2372 2566 3975 2521 1677 3615 2342
*Note: Not enough material was available to run MD @ 15, 45, 60, and 90 minutes 

	

5.3.1 Aggregate Image Processing with AIMS-II 

AIMS‐II	device	consists	of	a	computer‐automated	system,	which	includes	a	circular	

measurement	tray.	It	is	equipped	with	top	and	back	lightings	as	well	as	an	auto‐focus	camera	

unit.	Aggregates	are	positioned	on	top	of	a	circular	tray	which	is	fixed	in	x	and	y	directions	

and	the	tray	rotates	to	bring	the	particles	inside	the	field	of	view	of	the	camera.	First,	the	

images	of	the	particles	are	captured	for	AI	measurement	and	also	the	location	of	the	particles	
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are	recorded.	During	the	second	rotation,	the	camera	returns	back	to	the	recorded	location	

of	each	aggregate	and	is	focused	on	the	centroid	of	the	particles	to	capture	the	texture	images	

at	higher	spatial	resolution	ሾ43,	44ሿ.		

	

ሺ1ሻ		Flat	and	Elongated	Ratio	ሺF&E	Ratioሻ	and	Sphericity	

Projections	of	a	particle	placed	on	the	lighting	table	are	captured	by	the	camera	in	

AIMS‐II	 and	 used	 to	 generate	 the	 binary	 image.	 Eigenvector	 analysis	 ሾ96ሿ	 on	 the	 binary	

images	identifies	the	major	and	minor	axes	of	the	particle.	The	third	dimension	or	depth	of	

particle	is	measured	by	determining	the	distance	between	the	camera’s	lens	and	surface	of	

particle	relative	the	original	location	of	the	camera.	The	image	processing	algorithm	sorts	

the	three	dimensions	and	identifies	the	maximum,	minimum	and	intermediate	particle	sizes.	

Sphericity	can	be	computed	using	Equation	5.1	ሾ97ሿ.	

	

3
2

s I

L

d d
Sphericity

d


 																																																																																																																																															5.1	

where,	

d	L	ൌ	Longest	dimension;	

d	I	ൌ	Intermediate	dimension;	

d	s	ൌ	Shortest	dimension.	

	

ሺ2ሻ		Angularity		

Gradient	 method	 is	 used	 as	 the	 image	 processing	 technique	 for	 angularity	

measurements.	The	gradient	method	starts	by	calculating	the	inclination	of	gradient	vectors	

on	 particle	 boundary	 points	 from	 the	 x‐axis	 ሺhorizontal	 axis	 in	 an	 imageሻ.	 The	 average	

change	in	the	inclination	of	the	gradient	vectors	is	considered	as	an	indicator	of	angularity	

and	can	be	calculated	using	Equation	5.2	ሾ97ሿ.	
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where	subscript	i	denotes	the	ith	point	on	the	boundary	of	a	particle	and	N		is	the	total	number	

of	points	on	the	boundary.	The	average	rather	than	the	summation	is	considered	in	Equation	

5.2	 so	 that	 the	 angularity	 calculation	 is	not	biased	by	particle	 size.	The	 step	 size	used	 in	

calculating	 gradients	 is	 3	 since	 it	 minimizes	 the	 effect	 of	 noise	 created	 during	 image	

acquisition	on	the	results	ሾ43ሿ.	

	

ሺ3ሻ		Surface	Texture		

Aggregate	surface	texture	is	measured	using	the	wavelet	technique.	Texture	details	

are	identified	in	the	horizontal,	vertical,	and	diagonal	directions	in	three	separate	images.	

Finally,	the	texture	index	at	the	desired	decomposition	level	is	considered	as	the	arithmetic	

mean	of	the	squared	values	of	the	wavelet	coefficients	for	all	three	directions.	Equation	5.3	

is	used	for	texture	analysis	ሾ43,	97ሿ.	

	

23

1 1
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i j

SurfaceTexture D x y
N  

    																																																																																																																		5.3	

where,	

N	ൌ	number	of	wavelet	decomposition	coefficients;	

i	ൌ	1,	2,	3	for	the	three	directions	of	texture;	

j	ൌ	wavelet	coefficient	index;	and	

D	ൌ	wavelet	coefficient.	

5.4 Imaging Based Shape Degradation Models and Regression Analysis 

Figures	 5.1	 through	 5.4	 present	 the	 average	 angularity	 and	 surface	 texture	

deterioration	 curves	 measured	 with	 both	 systems	 for	 all	 eleven	 aggregate	 materials	 at	

different	MD	degradation	times.	It	should	be	noted	that	AIMS‐II	measures	the	angularity	and	

surface	texture	in	the	scale	of	0	to	10,000	and	0	to	1,000,	respectively.	However,	angularity	

index	and	surface	texture	index	values	computed	with	E‐UIAIA	vary	within	the	ranges	of	0	

to	720	and	0	to	6,	respectively.	
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																				Figure	5.1	Angularity	Index	with	E‐UIAIA	at	Different	MD	Degradation	Times	
	

	

	

	

	

	

	

	

	

	

	

	

	

	
Figure	5.2	Angularity	Measurements	with	AIMS‐II	at	Different	MD	Degradation	Times	
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Figure	5.3	Surface	Texture	Index	with	E‐UIAIA	at	Different	MD	Degradation	Times	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	5.4	Surface	Texture	Measurements	with	AIMS‐II	at	Different	MD	Degradation	Times	
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Comparing	angularity	results	determined	from	the	two	imaging	systems	in	Figures	

5.1	and	5.2,	the	overall	trend	of	angularity	decreasing	with	longer	degradation	time	is	indeed	

confirmed	 for	all	 the	aggregate	 sources.	 In	general,	 the	decrease	 rate	 in	angularity	 slows	

down	after	105	minutes	degradation	time.	Both	systems	detected	FP6	ሺcrushed	gravelሻ	as	

the	 aggregate	 source	with	 lowest	 initial	 angularity.	However,	AIMS‐II	 reports	 FP8	 as	 the	

most	angular	sample	while	E‐UIAIA	results	show	that	FP1	has	the	highest	initial	angularity.	

Both	systems	detected	fluctuating	deterioration	curve	for	FP6.	This	can	be	related	to	initially	

low	angularity	for	this	gravel	source	and	increased	angularity	by	the	creation	of	sharp	edges	

and	corners	after	breakage	during	the	MD	process.	In	terms	of	angularity	decrease	rates,	FP5	

by	E‐UIAIA	and	FP9	by	AIMS‐II	are	the	two	aggregate	materials	that	showed	the	most	rapid	

decreases	from	0	to	210	minutes	of	degradation.			

Surface	 texture	deterioration	curves	determined	 from	 the	 two	 imaging	 systems	 in	

Figures	5.3	and	5.4	also	show	a	general	 initial	decreasing	trend	for	most	of	the	aggregate	

sources.	Overall,	the	rates	of	texture	loss	captured	with	both	AIMS‐II	and	E‐UIAIA	slow	down	

significantly	 after	 105	 minutes	 of	 degradation	 time.	 FP2	 detected	 by	 E‐UIAIA	 and	 FP1	

detected	by	AIMS‐II	 are	 the	 aggregate	 sources	with	 the	highest	 initial	 surface	 texture.	 In	

general,	more	fluctuation	is	observed	for	the	surface	texture	deterioration	curves	obtained	

from	E‐UIAIA.	This	can	be	related	to	the	higher	level	of	C.O.V	ሺwithin	laboratoryሻ	values	in	

texture	measurements	in	E‐UIAIA	in	comparison	to	AIMS‐II	ሾ44,	46ሿ.	According	to	AIMS‐II	

results,	FP8	and	FP9	as	steel	slag	aggregates	do	not	lose	texture	overtime	and	tend	to	keep	

their	initial	texture.	AIMS‐II	texture	measurements	more	closely	reflected	historical	data	on	

aggregate	 frictional	properties	obtained	by	Illinois	Department	of	Transportation	ሺIDOTሻ.	

Furthermore,	 FP7	 or	 chert	 gravel	was	 detected	 by	 E‐UIAIA	 as	 an	 aggregate	 source	with	

resistance	to	texture	loss.				

Figure	5.5	shows	the	F&E	Ratio	values	at	different	degradation	times	quantified	by					

E‐UIAIA.	It	can	be	observed	that	F&E	Ratio	values	for	all	the	sources	stayed	within	a	constant	

range	over	time	and	different	for	most	samples.	The	particle	sizes	are	limited	to	one	size	in	

this	study	since	the	portion	retained	on	the	3/8	in.	ሺ9.5	mmሻ	sieve	is	separated	and	scanned	

after	 each	MD	 time	 interval.	 Additionally,	 the	 abrasion	 and	 polishing	 rather	 than	 impact	
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forces	are	more	 intense	during	 the	MD	process	which	results	 in	 less	aggregate	breakage.	

According	to	AIMS‐II	size	measurements,	the	summation	of	percentage	of	particles	that	the	

ratio	of	their	longest	to	shortest	dimension	are	above	1:2	and	1:3	was	recorded	at	a	constant	

range	 between	 45%	 to	 75%	 for	 most	 of	 the	 aggregate	 sources	 after	 different	 MD	 time	

intervals.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

						Figure	5.5	F&E	Ratio	Measurements	with	E‐UIAIA	at	Different	MD	Degradation	Times	

	

Angularity	and	surface	texture	results	quantified	by	the	two	imaging	systems	were	

used	to	calibrate	a	three‐parameter	exponential	model	given	in	Equation	5.4.	Mahmoud	et	

al.	 ሾ95ሿ	 showed	 that	 this	 type	 of	 an	 exponential	 expression	 was	 superior	 to	 other	

mathematical	models	in	terms	of	describing	the	change	in	aggregate	shape	properties	under	

MD	degradation	process.			

( ) c tS h a p e p r o p e r t y t a b e    																																																																																																																																	5.4	

where,	

a,	b,	c	ൌ	Model	parameters	related	to	initial	and	final	values	as	well	as	rate	of	change	in	shape	

property;	

t	ൌ	Micro‐Deval	degradation	time	ሺminutesሻ.	
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Standard	Error	of	Estimates	ሺSEEሻ,	coefficient	of	determination	ሺR2ሻ,	and	Root	Mean	

Squared	of	Errors	 ሺRMSEሻ	were	 also	used	 to	 assess	 the	 accuracy	of	 the	 three‐parameter	

models	in	estimating	the	shape	property.	Tables	5.3	and	5.4	summarize	the	properties	of	the	

fitted	 models	 for	 the	 angularity	 loss	 for	 the	 two	 imaging	 systems	 E‐UIAIA	 and	 AIMS‐II,	

respectively.			

	

Table	5.3	Angularity	Loss	Three	parameters	Exponential	Model	–	E‐UIAIA	

Aggregate 
Fitting parameters Goodness of fit 

a b c SEE R2 RMSE 

FP1 321.5 258.8 0.0057 8.61 0.98 9.2 

FP2 329.9 208.4 0.0094 8.10 0.98 8.6 

FP3 253.7 237.6 0.0152 7.94 0.99 8.5 

FP4 278.9 286.4 0.0041 13.84 0.94 14.8 

FP5 255.2 223.9 0.0276 10.96 0.98 137.2 

FP6 371 -0.1 0.0265 14.47 0.28 15.5 

FP7 360.2 45.1 0.0446 6.85 0.84 7.3 

FP8 326.7 169.2 0.011 11.99 0.95 12.8 

FP9 328.5 172.5 0.057 21.69 0.93 25.1 

FP10 348.8 127.8 0.0169 5.61 0.98 6 

FP11 343.1 153.8 0.037 13.53 0.94 14.4 
	

	

Table	5.4	Angularity	Loss	Three‐parameter	Exponential	Model	–	AIMS‐II	

Aggregate 
Fitting parameters Goodness of fit 

a b c SEE R2 RMSE 

FP1 1492 1185 0.0174 72.73 0.968 77.7 

FP2 1433 1232 0.014 86.24 0.957 92.2 

FP3 1384 1189 0.0155 88.45 0.953 94.6 

FP4 1877 1053 0.0185 71.69 0.962 76.6 

FP5 1443 1331 0.0186 94.36 0.958 100.9 

FP6 1924 560.6 0.0529 78.06 0.856 83.4 

FP7 2618 274.4 0.0239 35.33 0.878 37.8 

FP8 2112 1144 0.0114 103.00 0.924 110.1 

FP9 1590 1635 0.0248 87.15 0.985 100.6 

FP10 2098 730 0.019 52.53 0.957 56.2 

FP11 1130 1323 0.0209 115.08 0.94 123 
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In	general,	 the	angularity	 loss	models	 for	both	systems	show	high	R2	values	 in	the	

range	of	85%	to	98%.	Interestingly,	the	prediction	model	with	the	lowest	R2	values	are	for	

the	FP6	aggregate	source	based	on	the	measurements	made	with	both	systems.	This	can	be	

related	to	the	higher	variability	of	particle	shape	or	more	breakage	at	different	stages	of	MD	

degradation	times.	Surface	texture	loss	model	parameters	are	presented	in	Table	5.5	and	5.6.	

	

Table	5.5	Surface	Texture	Loss	Three‐Parameter	Exponential	Model	–	E‐UIAIA	

	

	

	

Table	5.6	Surface	Texture	Loss	Three‐Parameter	Exponential	Model	–	AIMS‐II	

	

Aggregate 
Fitting parameters Goodness of fit 

a b c SEE R2 RMSE 

FP1 2.03 0.93 0.0285 0.092 0.92 0.098 

FP2 2.02 1.01 0.0154 0.092 0.93 0.098 

FP3 1.32 1.14 0.017 0.052 0.98 0.056 

FP4 2 0.73 0.014 0.049 0.96 0.052 

FP5 0.98 1.1 0.034 0.102 0.93 0.012 

FP6 1.46 1.6 e-145 -1.576 0.050 0.25 0.054 

FP7 1.152 0.148 0.054 0.035 0.66 0.038 

FP8 1.3 0.68 0.026 0.070 0.92 0.074 

FP9 1.5 0.8 0.0237 0.114 0.9 0.132 

FP10 1.72 0.73 0.022 0.064 0.94 0.069 

FP11 1.93 0.79 0.04 0.092 0.9 0.098 

Aggregate 
Fitting parameters Goodness of fit 

a b c SEE R2 RMSE 

FP1 120.8 137.6 0.0266 8.27 0.97 8.8 

FP2 151.1 162.1 0.0256 7.91 0.98 8.5 

FP3 93.27 92.7 0.0304 4.88 0.98 5.2 

FP4 97.16 65.95 0.0095 3.58 0.97 3.8 

FP5 53.34 14.83 0.0341 2.32 0.83 2.5 

FP6 164.7 64.5 0.0256 8.15 0.88 8.7 

FP7 204.1 -49.39 0.0866 6.77 0.86 7.2 

FP8 437.7 -16.49 -0.003 20.27 0.06 21.7 

FP9 659.1 29.18 0.9935 40.63 0.1 46.9 

FP10 436.8 161.8 0.0176 13.65 0.94 14.6 

FP11 353.8 -16.31 2.413 15.02 0.12 16.1 
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The	goodness	of	fit	indicators	for	the	two	imaging	systems	are	also	included	in	the	

tables.	The	surface	texture	loss	models	based	on	the	results	from	both	systems	show	good	

R2	 values.	 The	 E‐UIAIA	 prediction	model	 for	 FP6	 has	 the	 lowest	R2	 value	 of	 0.25	 due	 to	

changes	in	gravel	from	smooth	to	rough	texture	due	to	breakage	ሺsee	Table	5.5ሻ.		

In	addition,	the	models	for	FP8,	FP9	and	FP11	also	have	low	R2	values	according	to	

AIMS‐II	 results	 ሺsee	 Table	 5.6ሻ.	 It	 should	 be	 noted	 that	 FP8	 and	 FP9	 are	 steel	 slag	 type	

aggregate	 and	 did	 not	 show	 texture	 loss	 behavior	with	 AIMS‐II.	 One	 possible	 reason	 for	

disagreement	between	the	two	systems	regarding	the	texture	loss	behavior	for	these	two	

types	of	steel	slag	can	be	related	to	the	different	texture	definitions	and	methodologies	used	

for	image	processing.	

5.5 Aggregate Classification using Imaging and Micro-Deval Loss   

Figures	5.6	to	5.9	show	the	percent	changes	in	angularity	and	surface	texture	values	

measured	 with	 both	 systems	 against	 MD	 weight	 loss	 ሺpassing	 No.16	 sieveሻ	 after	 105	

minutes.	These	plots	can	be	used	to	distinguish	the	effect	of	abrasion	and	polishing	forces	as	

well	 as	 impact,	which	 result	 in	 the	 breakage	 of	 particles.	 The	 samples	 are	 classified	 into	

different	 categories	 in	 terms	 of	 level	 of	 resistance	 to	 abrasion,	 polishing	 and	 breakage.	

According	to	Figure	5.6	and	Figure	5.8,	AIMS‐II	and	E‐UIAIA	systems	have	categorized	FP3,	

FP5,	 FP9	 and	 FP11	 as	 the	 aggregate	 sources	 with	 high	 abrasion	 and	 high	 breakage	

characteristics.	Interestingly,	both	imaging	systems	suggest	FP6	with	high	breakage	and	low	

abrasion	tendency.	Moreover,	both	systems	agree	that	FP7,	FP8,	and	FP10	are	in	the	region	

of	low	abrasion	and	low	breakage.	The	rest	of	the	samples	are	in	the	low	breakage	zone	but	

at	different	abrasion	zones	associated	with	each	system.	

Based	 on	 Figure	 5.7	 and	 Figure	 5.9,	 AIMS‐II	 and	 E‐UIAIA	 have	 differentiated	 the	

aggregate	sources	 in	 terms	of	 their	polishing	and	breakage	 tendency	but	not	 in	 the	same	

regions.	Note	that	according	to	AIMS‐II,	the	aggregate	sources	including	FP7	and	FP11	not	

only	did	not	lose	texture	but	also	gained	texture	even	at	low	breakage	zones.	The	increase	in	

FP7	texture	is	due	to	the	removal	of	surficial	polished	layer	within	the	first	15	minutes	of	MD	

polishing	ሺsee	Figure	5.4ሻ	after	which	the	surface	texture	was	almost	constant.	
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	Figure	5.6	Change	in	Angularity	Index	versus	Micro‐Deval	Value	ሺE‐UIAIAሻ														

	

	

	

	

	

	

	

		

	

	

	

	

	

	

	Figure	5.7	Change	in	Surface	Texture	Index	versus	Micro‐Deval	Value	ሺE‐UIAIAሻ														
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Figure	5.8	Change	in	Angularity	versus	Micro‐Deval	Value	ሺAIMS‐IIሻ	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	5.9	Change	in	Surface	Texture	versus	Micro‐Deval	Value	ሺAIMS‐IIሻ	
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Note	that	FP11	is	a	sandstone	which	continuously	exposes	new	textured	surface	with	

polishing.	Confirming	with	the	surface	texture	deterioration	curves	in	Figure	5.4,	FP8	and	

FP9	do	not	loose	texture	in	both	high	and	low	breakage	zones.	

5.6 Summary  

In	 this	 chapter	 the	 feasibility	 and	 applicability	 of	 two	 advanced	 imaging	 systems,	

AIMS‐II	 and	 E‐UIAIA,	 to	 characterize	 the	 degradation	 behavior	 of	 aggregates	 from	 the	

perspective	of	change	in	shape	properties	was	investigated.	Both	imaging	systems	were	able	

to	successfully	identify	aggregate	shape	property	deterioration	curves	for	angularity	index,	

surface	texture	index	and	flat	and	elongated	ratio	with	longer	Micro‐Deval	ሺMDሻ	degradation	

time.	When	these	shape	property	losses	were	fitted	to	a	three	parameter	exponential	model,	

individual	 models	 developed	 for	 eleven	 aggregate	 materials	 achieved	 high	 values	 of	

coefficient	of	determination.	These	imaging	based	model	parameters	have	the	potential	to	

be	used	 for	predicting	 the	aggregate	shape	degradation	behavior	when	a	desired	 level	of	

angularity	or	surface	texture	is	required	for	field	application.		

The	MD	weight	loss	values	were	combined	with	the	imaging	based	shape	property	

results	 to	 evaluate	 the	 tendency	 to	 breakage,	 polishing	 and	 abrasion.	 The	 two	 systems	

similarly	classified	eleven	types	of	aggregates	into	four	categories	in	terms	of	resistance	to	

breakage	and	abrasion.	Considering	the	different	texture	definitions	and	image	processing	

methods	used	in	AIMS‐II	and	E‐UIAIA,	classification	for	resistance	to	breakage	and	polishing	

based	on	surface	texture	values	resulted	in	two	different	outcomes	each	associated	with	one	

imaging	system.	However,	both	systems	were	able	to	successfully	differentiate	between	the	

aggregate	 sources	 and	 categorize	 them	 into	 separate	 regions	 based	 on	 their	 tendency	 to	

polishing	and	breakage.	
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CHARACTERIZATION OF SHAPE AND ASPHALT COATING 

IN RECLAIMED ASPHALT PAVEMENT USING E-UIAIA3  

6.1 Introduction 

Considering	 limited	 sources	 of	 virgin	 aggregates	 and	 asphalt	 binder	 and	 the	 ever	

increasing	material	and	construction	costs,	the	utilization	of	Reclaimed	Asphalt	Pavement	

ሺRAPሻ	 as	 a	 recycled	 alternative	 in	 sustainable	 construction	 of	 highway	 pavements	 has	

increased	significantly	during	the	last	two	decades	ሾ98,	99,	100ሿ.	RAP	is	acquired	through	

milling	 and	 processing	 deteriorated	 asphalt	 pavement	 layers.	 RAP	 particles	 can	 be	

agglomerations	of	smaller	aggregates	and	binder	and	larger	aggregates	that	are	partially‐

coated	 with	 asphalt.	 RAP	 materials	 can	 be	 reused	 as	 recycled	 aggregates	 in	 unbound	

aggregate	base/subbase	 layers	 ሾ101ሿ;	new	pavement	 layers	 consist	of	hot	and	warm	mix	

asphalt	ሾ102ሿ	as	well	as	concrete	mixtures	ሾ103,	104,	105ሿ.	

The	common	methods	to	produce	RAP	include	hot	recycling	at	the	asphalt	plant,	hot	

in‐place	recycling,	cold	in‐place	recycling	and	full	depth	reclamation	ሾ106,	107,	108ሿ.	Milling	

machines	scratch	the	pavement	with	milling	teeth	mounted	on	a	drum	and	this	impact	tears	

and	crushes	the	pavement	layer	into	smaller	size	particles	which	creates	uncoated	surfaces	

around	 individual	 particles.	 RAP	materials	 extracted	 from	 the	 roadway	possess	 different	

properties	corresponding	to	the	source	and	type	of	virgin	aggregate,	binder	content	and	the	

Performance	Grade	ሺPGሻ	of	 the	binder.	RAP	aggregates	may	have	different	particle	shape	

																																																													

	

3	 This	 chapter	 includes	 the	 results	 from	 the	 following	article.	The	 contribution	of	 the	 co‐authors	 is	 greatly	
appreciated.	
		
1‐	 Moaveni,	 M.,	 Cetin,	 S.,	 Brand,	 A.	 S.,	 Dahal,	 S.,	 Roesler,	 J.	 R.,	 and	 Tutumluer,	 E.,	 “Machine	 Vision	 Based	
Characterization	 of	 Particle	 Shape	 and	 Asphalt	 Coating	 in	 Reclaimed	 Asphalt	 Pavement”,	 Under	 Review	 in	
Journal	of	Transportation	Geotechnics,	2015.	
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properties	and	asphalt	coating	percentages	also	depending	on	 the	crushing,	 fractionation	

and	pulverizing	processes.		

According	to	NCHRP	452	report	ሾ109ሿ,	the	binder	content	and	physical	properties	of	

RAP	aggregates	 including	 the	size	distribution	and	particle	shape,	 texture	and	angularity,	

need	to	be	determined	for	their	proper	use	in	the	desired	mixture	design.	These	factors	also	

control	 the	 performance	 of	 RAP	 in	 terms	 of	 stiffness,	 crack	 resistance,	 modulus	 and	

deformation	characteristics.	When	used	in	asphalt	pavements,	the	aged	binder	in	RAP	can	

cause	pavement	cracking	failure	because	of	the	increased	stiffness	and	viscosity	of	the	binder	

and	 decreased	 ductility	 ሾ98ሿ.	 This	 general	 expected	 increase	 in	 stiffness	 can	 lead	 to	

conservative	 design	 practices	 in	 terms	 of	 selection	 of	 costlier	 and	 softer	 asphalt	 binder	

grades	and/or	limiting	the	RAP	content	in	a	mixture	ሾ110ሿ.	When	RAP	contributes	with	a	

higher	percentage	of	asphalt	content	than	target	designed	value	in	the	mix,	it	causes	higher	

total	achieved	asphalt	content	 in	the	mixture.	Therefore,	 the	mixture	becomes	soft	and	 is	

prone	to	higher	plastic	deformation	ሾ99ሿ.	Conversely,	 if	RAP	contributes	less	asphalt	than	

expected	 to	 the	mixture,	 the	 final	mix	will	 have	 lower	 total	 asphalt	 content	 value	which	

eventually	makes	 the	 pavement	 susceptible	 to	 cracking,	 raveling	 and	moisture	 damages	

ሾ111ሿ.	 Incorporation	 of	 RAP	 into	 cement‐based	 materials	 alters	 the	 interface	 between	

cement	matrix	and	RAP	thereby	affecting	the	bonding	ሾ105ሿ.	However,	Huang	et	al.	 ሾ112,	

113ሿ	 state	 that	 this	 asphalt	 coated	 aggregate	 might	 be	 useful	 in	 resisting	 the	 crack	

propagation	along	the	interface	which	allows	more	energy	to	be	dissipated.	Recently,	this	

finding	has	been	confirmed	by	Brand	et	al.	ሾ103ሿ		

As	clearly	substantiated	through	the	reviewed	literature,	accurate	determination	of	

asphalt	coating	percentages	on	the	RAP	particles	is	both	needed	as	a	quality	indicator	and	at	

the	 same	 time,	 for	 the	 sustainable	 utilization	 of	 various	 RAP	 sources.	 Several	 standard	

methods	such	as	centrifuge,	vacuum	or	reflux	extractor	are	currently	used	to	measure	the	

asphalt	content	in	RAP	ሺASTM	D6847,	AASHTO	T164ሻ.	However,	these	techniques	are	time	

consuming,	require	expensive	equipment	and	the	solvents	or	chemicals	used	in	the	process	

can	be	hazardous	to	both	the	environment	and	the	operators	ሾ114ሿ.	Additionally,	the	asphalt	

content	 values	 in	RAP	may	 not	 necessarily	 be	 an	 accurate	 representation	 of	 the	 existing	
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asphalt	coating	and	film	thickness	on	individual	particles.	The	coating	on	RAP	particles	is	a	

function	 of	 asphalt	 absorption	 by	 aggregate,	 particle	 size	 and	 shape,	 methods	 of	

milling/crushing	 during	 RAP	 production	 and	 resistance	 of	 virgin	 aggregate	 to	 breakage	

and/or	degradation.	A	close	look	at	the	literature	shows	that	limited	research	exists	related	

to	 characterization	 of	 RAP	 particles	 in	 terms	 of	 particle	 shapes	 and	 the	 effect	 of	 asphalt	

coating	 on	 changing	 the	 shape	 properties.	 This	 can	 possibly	 be	 related	 to	 the	 lack	 of	 a	

standard	procedure	that	can	objectively	and	reliably	quantify	the	shape	properties	of	RAP	

particles	rapidly	and	accurately.		

This	 chapter	 describes	 the	 application	 of	 advanced	 image	 processing	methods	 to	

determine	asphalt	coating	percentage	on	RAP	particles	and	investigates	the	changes	in	RAP	

aggregate	 size	 and	 shape	 properties	 influenced	 by	 the	 asphalt	 coating.	 The	 Enhanced	

University	of	Illinois	Aggregate	Image	Analyzer	ሺE‐UIAIAሻ	and	its	improved	imaging‐based	

shape	and	size	indices,	including	Angularity	Index	ሺAIሻ,	Surface	Texture	Index	ሺSTIሻ,	Flat	and	

Elongated	Ratio	ሺF&E	Ratioሻ	and	Volume	ሺVሻ	are	applied	to	characterize	the	morphological	

properties	of	RAP	aggregates	from	six	sources	obtained	from	pavement	surface	courses	in	

northern	 Illinois.	 Binary	 images	 of	 RAP	materials	 generated	 by	 the	 E‐UIAIA	 are	 used	 to	

develop	an	innovative	computational	algorithm	to	estimate	the	amount	of	asphalt	coating	on	

each	RAP	particle.				

6.2 Objective and Scope 

The	primary	objective	of	the	research	described	in	this	chapter	is	developing	a	robust	

and	accurate	image	processing	algorithm	to	quantify	the	asphalt	coating	percentage	on	RAP	

particles.	 A	 combination	 of	 image	 processing	 and	 enhancement	 techniques,	 including	

histogram‐based	 image	 thresholding,	 binary	 image	 morphology	 and	 arithmetic	 image	

operation	are	used	 to	 segment	 the	asphalt	 coating	 from	 the	RAP	 images	 captured	by	 the										

E‐UIAIA.	The	E‐UIAIA	is	first	used	to	determine	the	imaging‐based	size	and	shape	indices	of	

RAP	 aggregates	 from	 six	 sources	 in	 order	 to	 evaluate	 the	 influence	 of	 asphalt	 coating	 in	

altering	these	morphological	properties.	The	imaging‐based	estimations	of	asphalt	coating	

are	then	linked	to	the	asphalt	contents	of	RAP	sources	determined	by	the	asphalt	extraction	

method.	Additionally,	the	total	fracture	energies	of	several	concrete	specimens	made	from	
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blending	of	 these	RAP	sources	and	virgin	aggregates	are	correlated	 to	 the	 imaging‐based	

asphalt	coating	measurements.	

6.3 Sample Preparation and RAP Image Acquisition  

Six	 different	 RAP	 sources	 were	 used,	 all	 of	 which	 were	 obtained	 from	 highway	

pavement	surface	courses	in	northern	Illinois.	The	pertinent	details	of	the	RAP	sources	and	

their	properties	are	summarized	in	Table	6.1.		

	

Table	6.1	Description	and	Properties	of	Six	Illinois	RAP	Sources	

 RAP 1      RAP 2 RAP 3  RAP 4  RAP 5  RAP 6     
Aggregate 

Source Type 
Dolomite 

Dolomite and Steel Furnace Slag 
(SFS) 

RAP 
Description 

Washed “clean” 
coarse 

fractionated 
RAP with few 

fines 

Fractionated RAP 
with higher fines 

content 

Fractionated RAP consisting of 
approximately one-third dolomite, 

one-third SFS, and one-third 
manufactured sand aggregates 

Initial Asphalt 
Content 

5.4% N/A N/A 5.6% 5.4% 5.4% 

Initial Asphalt 
Grade 

PG 70-22 N/A N/A PG 76-22 PG 76-22 PG 76-22 

RAP Asphalt 
Content 

2.1% 3.3% 3.8% 3.6% 3.8% 3.9% 

RAP Asphalt 
Grade 

PG 88-22 N/A N/A PG 76* PG 76* PG 82-22 

*Low temperature grade not determined  
 
 

These	RAP	sources	contained	either	dolomite	or	combination	of	dolomite	and	Steel	

Furnace	Slag	ሺSFSሻ	aggregates.	Additional	details	regarding	these	RAP	sources	can	be	found	

elsewhere	 ሾ103,	 104,	 105ሿ.	While	 centrifuge	 extraction	 is	more	 suitable	 and	 efficient	 for	

asphalt	content	determination,	a	rotary	evaporator	ሺASTM	D5404	and	ASTM	D6847ሻ	was	

used	 since	 it	 is	 more	 effective	 for	 asphalt	 extraction	 and	 binder	 characterization	 for	 its	

performance	grade.	The	Dynamic	Shear	Rheometer	ሺDSRሻ	was	used	for	the	high	temperature	

viscosity	 and	 elastic	 behavior	 of	 the	 binder	 ሺAASHTO	 T315ሻ	 while	 the	 Bending	 Beam	

Rheometer	ሺBBRሻ	test	was	used	to	measure	the	 low	temperature	stiffness	and	relaxation	

properties	of	the	binder	for	low	temperature	cracking	susceptibility	ሺAASHTO	T313ሻ.	Since	
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the	binder	was	already	aged	in	the	field,	neither	the	Rolling	Thin‐Film	Oven	ሺRTFOሻ	nor	the	

Pressure	Aging	Vessel	ሺPAVሻ	was	used	for	binder	aging.	

Table	6.2	lists	the	percent	passing	sieve	sizes	of	the	RAP	aggregates	from	six	sources.	

The	majority	of	the	particles	from	these	sources	were	between	1/4	in.	ሺ6.35	mmሻ	and	1/2	

in.	ሺ12.5	mmሻ	in	size.	Therefore,	approximately	55	to	60	particles	between	these	two	sizes	

were	randomly	selected	from	each	RAP	source	to	be	used	in	image	acquisition	stage	ሺsee	

Figure	6.1ሻ.	Preliminary	visual	inspection	of	the	particles,	shown	in	Figure	6.1,	revealed	that	

in	RAP	5	and	6	sources	the	asphalt	coating	coverages	were	in	general	higher	when	compared	

to	 RAP	 1	 and	 2	 sources.	 This	 observation	will	 be	 verified	 later	 in	 this	 chapter	 using	 the	

developed	imaging	based	approach.	

	

Table	6.2	Particle	Size	Distributions	of	RAP	Aggregates	from	Six	Sources	

 

Sieve Size  
Percent Passing (%)  

RAP 1 RAP 2 RAP 3 RAP 4 RAP 5 RAP 6 
1 in. (25mm) 100.0 100.0 100.0 100.0 100.0 100.0 

3/4 in. (19mm) 99.9 100.0 100.0 100.0 100.0 100.0 

5/8 in. (16mm) N/A N/A 100.0 100.0 99.9 100.0 
1/2 in. (12.5mm) 78.4 99.3 65.0 99.9 97.9 99.3 
3/8 in. (9.5mm) 37.9 86.3 25.2 83.7 83.4 88.3 

1/4 in. (6.35mm) N/A N/A 14.5 38.3 39.8 60.2 
No.4 (4.75mm) 3.6 21.9 8.3 13.3 14.5 39.6 
No.8 (2.36mm) 1.6 5.5 3.0 3.9 6.9 12.2 

No.16 (1.18mm) 1.1 2.8 1.5 2.8 6.1 6.5 
No.30 (0.6mm) 0.8 1.9 1.0 2.5 5.7 5.2 
No.50 (0.3mm) 0.6 1.3 0.7 2.2 4.4 4.2 

No.100 (0.15mm) 0.3 0.7 0.3 1.7 2.7 2.3 
No.200 (0.075mm) 0.1 0.3 0.1 0.8 0.6 0.4 

	

Initially,	the	top	camera	in	E‐UIAIA	was	used	to	capture	three	images	associated	with	

three	different	faces	of	RAP	particles	Before	Asphalt	Extraction	ሺBAEሻ.	The	advanced	color	

thresholding	scheme	that	was	fully	described	in	chapter	3	was	utilized	to	generate	the	binary	

images	of	the	aggregate	particles.	Using	the	blue	background,	different	types	of	aggregates	

with	various	natural	colors	can	be	scanned	and	analyzed	with	this	system.	
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Figure	6.1	Particles	from	Six	Sources	of	RAP	Selected	for	Image	Acquisition	

	

Considering	the	size	range	of	the	RAP	particles	evaluated	in	this	study,	the	E‐UIAIA	

was	calibrated	at	 the	spatial	 resolution	of	330	pixels	per	 inch	ሺppiሻ	 to	acquire	color	RGB	

images	with	Portable	Network	Graphic	ሺPNGሻ	format.	To	study	the	effect	of	asphalt	coating	
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on	the	size	and	shape	properties	of	RAP	aggregate	particles,	the	asphalt	binder	was	removed	

with	methylene	chloride	from	the	particles	that	had	been	already	scanned	and	examined.	

Finally,	 the	 image	 acquisition	 process	 was	 repeated	 on	 the	 RAP	 particles	 After	 Asphalt	

Extraction	ሺAAEሻ	to	record	the	changes	in	the	imaging	based	shape	indices.	

6.4 Description of Image Processing Procedure 

As	mentioned	in	chapter	3,	one	of	the	common	challenges	in	segmenting	an	image	

into	 foreground	 and	 background	 is	 the	 determination	 of	 a	 proper	 threshold	 value.	 This	

happens	when	the	background	and	the	object	have	very	similar	pixel	intensity	values,	which	

results	 in	 unimodal	 or	 multimodal	 shapes	 of	 image	 histograms	 ሾ115ሿ.	 Color	 plane	

decomposition	into	Hue	ሺHሻ,	Saturation	ሺSሻ	and	Intensity	ሺIሻ	channels	is	used	in	E‐UIAIA	to	

find	the	image	representation	with	best	contrast	to	facilitate	the	image	thresholding.	

After	achieving	the	binary	images	of	RAP,	the	imaging‐based	size	and	shape	indices	

of	the	particles,	including	the	average	AI,	STI,	F&E	Ratio	and	total	volume,	before	and	after	

asphalt	 extraction,	 were	 computed	 using	 their	 corresponding	 binary	 image	 processing	

modules	incorporated	in	the	E‐UIAIA.	

6.4.1 Image Processing Algorithm for Estimating Asphalt Coating in RAP 

To	segment	the	asphalt	coating	on	RAP	particles,	a	post	image	processing	algorithm	

was	developed	in	this	chapter	using	the	image	processing	toolkit	available	in	MATLAB	ሾ116ሿ.	

This	algorithm	initially	calculates	the	mean	of	the	corresponding	grayscale	version	of	each	

RAP	image	and	applies	it	as	a	threshold	value	to	detect	the	bright	areas	in	the	RAP	image	

which	is	an	indicator	of	“uncoated”	regions	of	the	particles.	By	subtracting	this	thresholded	

image	from	the	binary	image	generated	by	the	E‐UIAIA	and	reducing	the	noises	with	binary	

morphological	operators	particularly	“dilation”	and	“closing”	ሾ93ሿ,	 the	coated	areas	of	the	

RAP	particles	are	segmented.	Finally,	the	ratio	of	the	coated	surface	area	divided	by	the	total	

surface	area	of	RAP	particle	is	then	reported	as	the	surface	coating	percentage.	Figure	6.2	

illustrates	 this	 procedure	 with	 an	 example	 of	 a	 RAP	 particle	 to	 demonstrate	 the	

methodology.	ሺsee	Appendix	D	for	further	detailsሻ	
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Figure	6.2	Flowchart	of	Algorithm	Including	MATLAB	Commands	and	Numerical	Output	
Values	at	Each	Processing	Step	for	Measuring	Asphalt	Coating	on	a	RAP	Particle	
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One	of	 the	original	aggregate	sources	making	up	RAP	4,	5	and	6	sources,	was	SFS,	

which	 is	 typically	 darker	 in	 color	 than	 dolomite	 or	 limestone	 aggregates.	 Therefore,	

detecting	the	dark	binder	on	these	darker	SFS	RAP	particles,	where	there	is	not	necessarily	

sufficient	 contrast	 between	 the	 foreground	 and	 background,	 can	 be	 very	 challenging.	

Therefore,	 an	 experiment	was	 conducted	 to	 evaluate	 the	 accuracy	 and	 robustness	 of	 the	

developed	 algorithm	 in	 terms	 of	 differentiating	 the	 asphalt	 binder	 from	 aggregates	with	

different	natural	colors.	As	shown	in	Figure	6.3,	several	square	shapes	were	prepared	with	

certain	known	areas	ሺ25%	for	the	first	three	squares	and	75%	for	the	last	oneሻ	painted	with	

darker	color	while	assigning	different	gray	shades	to	the	remaining	areas	inside	the	squares.	

This	method	was	used	to	validate	the	proposed	method	for	segmentation	and	estimating	the	

areas	 of	 the	 darker	 regions	 in	 the	 images.	 Figure	 6.3	 summarizes	 the	 results	 of	 this	

experiment	as	well	as	the	image	histograms	corresponding	to	each	image.	The	pixel	intensity	

distribution	plots	show	how	the	histograms	change	from	a	bi‐modal	shape	in	case	of	a	high	

contrast	image	to	a	uni‐modal	shape	for	a	poor	contrast	image.	Accordingly,	the	error	of	the	

algorithm	in	terms	of	the	level	of	noise	in	the	binary	images	increased	as	the	contrast	level	

between	the	dark	and	bright	zones	in	the	image	decreased.	Aged	asphalt	binder	might	not	

be	as	dark	or	reflective	as	the	fresh	asphalt	binder	and	for	some	sources	of	RAP	the	color	of	

the	 aggregate	 can	 be	 even	 darker	 than	 the	 color	 of	 aged	 asphalt	 binder.	 Therefore,	 a	

preliminary	visual	inspection	of	the	original	aggregate	source	color	of	the	RAP	material	is	

recommended	 prior	 to	 applying	 the	 proposed	 processing	 method.	 Nevertheless,	 the	

outcome	of	this	experiment	showed	that	the	developed	algorithm	could	estimate	the	areas	

of	darker	zones	in	all	four	images	of	square	shapes	with	less	than	10%	error.	

6.5 Imaging Results and Discussion  

The	average	asphalt	coating	in	percent	and	the	imaging‐based	size	and	shape	indices	

for	the	RAP	aggregates	from	six	sources	are	summarized	in	Figures	6.4	to	6.10	for	the	before	

ሺBAEሻ	and	after	asphalt	extraction	ሺAAEሻ	cases.	The	comparisons	of	the	shape	properties	

BAE	and	AAE	results	show	that	the	asphalt	coating	caused	an	increase	in	the	AI	and	STI	of	

the	particles	and	this	effect	on	STI	is	more	pronounced	than	on	AI.		
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*The arrows show each mode captured in image histogram.  

**The red rectangles in images show the target darker zone. 
	

Figure	6.3	Performance	of	the	Algorithm	for	Detecting	the	Darker	Zones	‐	Different	Cases	
Studied	with	Different	Contrast	Levels	

	

This	 finding	 might	 be	 related	 to	 the	 shapes	 and	 thicknesses	 of	 agglomerations	 that	 are	

attached	 to	 RAP	 particles,	 which	 can	 create	 random	 sharper	 edges	 and	 rougher	 surface	

texture.	The	 creation	of	 the	RAP	particles	 through	milling	of	 the	 asphalt	pavement	 likely	

contributed	 to	 the	 increased	 STI	 and	 AI.	 According	 to	 Figures	 6.4	 and	 6.5,	 the	 recorded	

average	AI	varies	from	407	to	444	and	the	average	STI	varies	from	1.2	to	1.9	for	the	RAP	

particles	from	six	sources	BAE.	These	ranges	more	or	less	match	the	typical	AI	and	STI	values		



160	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

		Figure	6.4	Average	Angularity	Index	Before	and	After	Asphalt	Extraction	

	

	

	

	

	

	

	

	

	

	

	

	

	

				Figure	6.5	Average	Surface	Texture	Index	Before	and	After	Asphalt	Extraction	
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																					Figure	6.6	Average	F&E	Ratio	Before	and	After	Asphalt	Extraction	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

																							Figure	6.7	Average	Particle	Sizes	Before	and	After	Asphalt	Extraction		
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											Figure	6.8	Average	Surface	Area	Before	and	After	Asphalt	Extraction		

	

	

	

	

	

	

	

	

	

	

	

	

	

									Figure	6.9	Total	Volume	of	Particles	Before	and	After	Asphalt	Extraction	
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																													Figure	6.10	Average	Asphalt	Coating	Percentages	for	RAP	Sources			

	

reported	 by	 Pan	 ሾ46ሿ	 for	 crushed	 limestone	 aggregates.	 The	 imaging	 results	 for	 the	 six	

sources	of	RAP	determined	between	56%	and	89%	of	the	RAP	particles	coated	with	asphalt.	

RAP	5	and	6	sources	had	higher	asphalt	coating	percentages	in	comparison	to	RAP	1	and	2	

sources,	which	was	supported	by	the	visual	inspection	of	RAP	sources	in	Figure	6.1.	

The	 F&E	 Ratios	 of	 particles	 before	 and	 after	 asphalt	 extraction	 indicate	 that	 the	

asphalt	 coating	 did	 not	 significantly	 alter	 the	 shape	 of	 the	 particles.	 This	 confirms	 that	

aggregate	did	not	degrade	and	break	down	and	the	overall	 flatness	and	elongation	of	the	

aggregate	particles	was	not	affected	by	the	presence	of	the	asphalt.	However,	 the	asphalt	

coating	did	increase	the	total	volume	of	the	particles.	The	magnitude	of	this	increase	is	more	

or	less	related	to	the	asphalt	content	and	agglomerations	on	the	RAP	particles.	As	expected,	

the	RAP	particle	sizes	decreased	after	the	asphalt	binder	was	extracted	from	the	surfaces	of	

the	particles.	
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A	correlation	was	found	to	exist	between	the	asphalt	content	of	the	RAP	sources	and	

the	percent	RAP	coated	as	shown	in	Figure	6.11.	RAP	sources	with	about	4%	asphalt	content	

may	have	resulted	in	high	coating	percentages	ሺ~75‐100%ሻ	for	the	RAP	sources	identified	

in	this	study.	However,	depending	on	the	asphalt	binder	content	and	type,	the	source	and	

type	of	the	virgin	aggregate	and	the	milling	and	crushing	process,	the	thickness	and	content	

of	asphalt	coating	retained	on	a	given	RAP	particle	would	vary.	These	factors	may	cause	the	

trend	in	Figure	6.11	to	be	different	for	another	RAP	source	or	milling	process.	Additionally,	

the	relationship	established	between	the	surface	coating	and	the	asphalt	content	might	not	

stay	linear	for	another	RAP	source	or	milling	process.			

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	6.11	Relationship	between	the	Measured	RAP	Asphalt	Content	and	Estimated	
Imaging‐based	Average	Asphalt	Coating	

	

6.5.1 Concrete Properties  

Several	research	studies	have	been	recently	conducted	using	these	RAP	aggregates	

from	six	sources	as	a	partial	replacement	of	coarse	aggregates	in	concrete	ሾ103,	104,	105ሿ.	It	

was	 initially	hypothesized	that	percent	of	 the	RAP	particle	 that	 is	coated	would	correlate	

better	 to	several	hardened	concrete	properties	 than	the	RAP	asphalt	content.	Note	 that	a	

RAP AC (%) = 0.0551 (Asphalt Coating) ‐ 0.6288
(R² = 0.7691 , RMSE = 0.365 , SEE = 0.421)
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strong	correlation	was	not	found	between	the	percent	coating	of	the	RAP	and	the	concrete	

strength	 and	modulus	 properties.	 The	 presence	 of	 the	 SFS	 aggregates	 in	RAP	4,	 5	 and	 6	

sources	was	found	to	affect	the	concrete	properties	particularly	the	concrete	elastic	modulus	

when	compared	to	dolomite	RAP	ሺi.e.	RAP	1,	2	and	3	sourcesሻ	ሾ104ሿ.		

A	strong	correlation	was	found	to	exist	between	percent	RAP	coated	and	total	fracture	

energy	of	 the	 concrete	 ሾ117ሿ	 as	 seen	 in	Figure	6.12.	The	percent	RAP	 coated	 for	 a	 given	

source	was	multiplied	by	the	percent	RAP	content	in	the	concrete	mixture,	which	was	20%	

to	50%	by	weight.	A	weaker	linear	correlation	was	found	to	exist	between	the	total	fracture	

energy	and	the	normalized	asphalt	content	of	the	RAP,	which	suggests	that	the	percent	RAP	

coating	is	a	more	critical	parameter.	Additional	details	on	the	concrete	fracture	properties	

can	be	 referenced	 elsewhere	 ሾ103,	 105ሿ.	These	 concrete	mixtures	had	 total	 cementitious	

contents	 of	 610‐630	 lb/yd3	 ሺ362‐374	 kg/m3ሻ	 and	 a	 water‐to‐cementitious	 ratio	 of	 0.37,	

yielding	 total	 fracture	 energies	 of	 86	 N/m	 ሺ20%	 RAP	 1	 sourceሻ,	 106	 N/m	 ሺ35%	 RAP	 1	

sourceሻ,	 114	N/m	 ሺ50%	RAP	 1	 sourceሻ	 and	 119	N/m	 ሺ45%	RAP	 3	 sourceሻ.	 The	 asphalt	

coating	on	the	RAP	particle	has	been	suggested	to	arrest	crack	propagation	in	cementitious	

materials	 ሾ112,	 113ሿ,	 which	 has	 been	 used	 to	 explain	 the	 fracture	 property	 findings	 for	

concrete	 with	 coarse	 RAP	 as	 the	 asphalt	 acts	 to	 dissipate	 energy.	 Therefore,	 it	 is	 not	

surprising	that	the	percent	coating	of	the	RAP	correlates	well	to	the	total	 fracture	energy	

ሾ103,	105,	118ሿ.	As	more	of	the	RAP	particles	are	coated	with	asphalt,	the	fracture	energy	

may	increase	but	not	without	reducing	the	strength	of	the	concrete.			

6.6 Summary  

The	 Enhanced	 University	 of	 Illinois	 Aggregate	 Image	 Analyzer	 ሺE‐UIAIAሻ	 and	 its									

imaging‐based	 morphological	 indices	 were	 used	 in	 this	 chapter	 to	 characterize	 the	

Reclaimed	Asphalt	 Pavement	 ሺRAPሻ	 aggregate	 size	 and	 shape	 properties.	 In	 addition,	 an	

innovative	binary	image	processing	algorithm	was	developed	to	estimate	the	asphalt	coating	

percentages	on	individual	RAP	particles.	In	total,	around	400	particles	from	six	sources	of	

RAP	obtained	from	pavement	surface	courses	were	studied	to	determine	the	average	percent	

asphalt	coating	and	its	effect	on	the	imaging‐based	particle	size	and	shape	properties	before	
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and	after	asphalt	extraction.	The	imaging	results	showed	that	there	are	some	influences	of	

asphalt	coating	on	the	RAP	particles	in	altering	the	size	and	shape	properties.		

	

	

	

	

	

	

	

	

	

	

	

Figure	6.12	Total	Fracture	Energy	of	Concrete	with	Dolomite	RAP	Compared	to	the	Percent	
Coating	of	the	RAP	and	to	the	RAP	Asphalt	Content	ሺBoth	Normalized	by	the	RAP	Content	of	

the	Concrete,	which	was	20%	to	50%ሻ	
	

The	 described	 image	 processing	 methodology	 was	 validated	 based	 on	 the	 good	

results	of	the	developed	segmentation	method	on	four	case	studies	using	variable	contrast	

to	detect	the	darker	zones	with	predefined	areas	in	images	of	square	shapes.	A	correlation	

could	be	achieved	between	the	estimated	asphalt	coating	percentages	and	the	RAP	asphalt	

content	values,	which	further	verified	the	accuracy	of	the	imaging	approach.	The	developed	

method	was	also	applied	to	examine	linkages	of	percent	coated	RAP	particles	and	concrete	

fracture	energy	 from	various	concrete	mixtures	with	different	percentages	of	coarse	RAP	

replacement.	 The	 analysis	 showed	 that	 a	 strong	 linear	 relationship	 existed	 between	 the	

average	coated	percentage	of	RAP	particles	normalized	by	the	RAP	content	and	the	concrete	

fracture	energy.								

The	summary	 findings	of	 this	chapter	present	an	objective	and	fast	alternative	 for	

state	DOTs	and	practitioners	to	quantify	the	asphalt	coating	percentages	as	well	as	the	size	

and	shape	properties	of	RAP	materials	used	in	highway	construction.		

RAP Coated (%) = 0.6534(TFE) ‐ 46.487
(R² = 0.9401 , RMSE = 2.904 , SEE = 2.905)

RAP AC (%) = 0.0341(TFE) ‐ 2.6513
(R² = 0.7926 , RMSE = 0.307 , SEE = 0.307)
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IMAGE PROCESSING METHODS FOR EVALUATING 

AGGREGATE SHAPE PROPERTIES IN THE FIELD4    

7.1 Introduction 

Imaging	technology	has	been	shown	in	this	dissertation	to	provide	an	objective	and	

accurate	measurement	of	aggregate	particle	size	and	shape	properties	in	a	rapid,	reliable	and	

automated	fashion.	However,	this	approach	still	has	some	difficulties	including	the	need	to	

sample	aggregate	particles	 in	 job	sites/quarries	and	shipping	to	 laboratory	to	image	scan	

and	process	one	at	a	time	particles	which	makes	the	procedure	tedious	and	time	consuming.	

Consequently,	there	is	a	need	to	bring	these	advances	in	aggregate	imaging	to	project	sites	

and	quarries	for	field	implementation.		

To	 analyze	 aggregate	 particle	 shape	 properties,	 one	 alternative	 is	 to	 apply	 digital	

image	segmentation	techniques	to	the	2D	field‐captured	color	images	of	aggregate	samples.	

In	computer	vision,	segmentation	is	the	process	of	partitioning	a	digital	image	into	multiple	

sets/classes	of	pixels	ሺ“superpixels”ሻ.	Each	segmented	set/class	should	correspond	to	a	well‐

defined	object	or	a	coherent	region	in	the	image.	The	segmentation	results	are	commonly	

used	to	recognize	regions	and	objects	of	interest	in	the	scene.	This	aids	in	subsequent	image	

analysis	 or	 annotation	 ሾ119ሿ.	 There	 are	many	 approaches	 for	 image	 segmentation	 ሾ120ሿ;	

they	are	either	completely	automatic	or	are	based,	to	different	degrees,	on	user	interaction.	

																																																													

	

4	 This	 chapter	 includes	 the	 results	 from	 the	 following	article.	The	 contribution	of	 the	 co‐authors	 is	 greatly	
appreciated.	
		
1‐	Moaveni,	M.,	Wang,	 S.,	 Hart,	 J.	 M.,	 Tutumluer,	 E.,	 Ahuja,	 N.	 “Aggregate	 Size	 and	 Shape	 Evaluation	 Using	
Segmentation	Techniques	and	Aggregate	Image	Processing	Algorithms”,	Published	in	Transportation	Research	
Record:	Journal	of	Transportation	Research	Board,	No.2335,	pp.	50‐59,	2013,	Washington	DC,	USA.	
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Image	 segmentation	 techniques	 that	 combine	 a	 Markov	 Random	 Field	 ሺMRFሻ	

approach	for	modeling,	graph	cut	for	optimization	and	user	interaction	for	enforcing	hard	

constraints	are	known	to	be	effective	alternatives	in	many	computer	vision	problems	ሾ121,	

122ሿ.	 Straightforward	 incorporation	 of	 user	 input	 into	 the	 formulation	 of	 segmentation	

problem	is	an	important	property	that	improves	the	performance	of	this	approach.	In	this	

chapter,	this	methodology	will	be	customized,	validated	and	implemented	to	demonstrate	

image	acquisition	and	processing	for	extraction	and	analyses	of	individual	aggregate	particle	

size	and	shape	properties	from	2D	field	images.	The	images	of	multi‐aggregate	samples	will	

be	captured	using	a	Digital	Single	Lens	Reflex	ሺDSLRሻ	camera.	Note	that	in	order	to	develop	

and	implement	refined	aggregate	material	classes	based	on	both	aggregate	gradation	and	

shape,	there	is	a	need	to	quantify	aggregate	shape	properties	in	the	field	at	gravel	pits,	rock	

quarries	and	construction	sites	by	means	of	rapid,	automated	and	accurate	measurements.	

Instead	of	being	limited	to	capturing	and	processing	images	of	aggregate	particles	one	by	

one	 in	 the	 laboratory,	 this	 process	 can	 be	 replaced	 with	 a	 machine	 vision	 based	 faster	

process	which	will	yield	estimates	of	the	shape	property	of	a	number	of	aggregate	particles	

all	 together	 directly	 from	 color	 images.	 This	 chapter	will	 also	 describe	 two	 case	 studies	

involving	collected	field	images	of	railroad	ballast	samples	as	well	as	 large	size	aggregate	

subgrade	materials	to	demonstrate	the	effectiveness	of	the	field	imaging	and	segmentation	

approach.	 The	 extracted	 aggregate	 images	 are	 subsequently	 analyzed	 for	 size	 and	 shape	

properties	through	the	use	of	binary	image	processing	algorithms	that	are	currently	used	in	

E‐UIAIA.		

7.2 Development of Field Collected Aggregate Image Processing  

7.2.1 Introduction to Graph Theory  

Graphs	are	mathematical	structures	used	to	represent	relations	between	different	objects.	A	

graph	 consists	 of	 “vertices”	 or	 “nodes”	 and	 lines	 that	 are	 called	 “edges”	 or	 “links”	which	

connect	 the	vertices	 to	each	other.	 If	a	 link	connects	two	nodes,	 they	are	called	“adjacent	

nodes”.	Also,	the	two	nodes	connected	by	a	link	are	called	“end	nodes”.	The	size	of	a	graph	is	

the	number	of	its	edges.	A	graph	may	be	directed	which	means	the	edges	have	an	arrow	and	
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only	can	go	in	one	direction.	A	graph	can	be	valued	or	non‐valued.	In	a	valued	graph,	there	

are	numbers	attached	to	the	lines	that	indicate	the	strength,	intensity	or	quantity	of	the	tie	

between	 the	 two	 desired	 nodes.	 As	 an	 example,	 Figure	 7.1	 shows	 a	 valued	 and	 non‐

directional	 graph	with	5	nodes	and	5	 links.	 In	 this	 simple	graph,	 each	node	 represents	a	

country	 and	 the	 values	written	 close	 to	 each	 edge	 shows	 the	 amount	 of	 trade,	 in	 trillion	

dollars,	between	two	adjacent	countries	ሾ123ሿ.											

	

	

	

	

	

	

	

Figure	7.1	Representation	of	Trades,	in	Trillion	Dollars,	between	Countries	using	a	
Graph	with	5	Nodes	and	5	Links	ሾ124ሿ		

7.2.2 Image Representation Using Graph Theory   

In	image	processing	using	graphs,	each	digital	image	can	be	represented	as	an	undirected	

graph.	Basically,	 every	 pixel	 in	 the	 image	 can	be	 viewed	by	 a	 corresponding	node	 in	 the	

graph.	 The	 edges	 in	 the	 graph	 can	 be	 assumed	 between	 the	 nodes	 with	 weights	

corresponding	to	how	similar	two	adjacent	pixels	are	in	terms	of	a	given	feature	or	distance	

between	them.	Representing	image	processing	problems	with	graphs	makes	it	possible	to	

take	advantage	of	the	available	comprehensive	literature	related	to	optimization	algorithms	

in	graph	theory	to	produce	highly	efficient	solutions	for	vision	problems	ሾ89,	125ሿ.		

Figure	7.2	shows	a	valued	graph	with	16	nodes	and	24	 links	representing	a	4	ൈ	4	

pixels	image.	The	edges	in	this	graph	connects	neighboring	pixels	and	possess	weights	that	

indicate	the	pixel	similarities	in	terms	of	gray	intensity.	Therefore,	neighboring	pixels	with	

much	 closer	 gray	 values	will	 get	higher	weights	 values	 on	 their	 associated	 edges.	 In	 this	

example,	 the	 weights	 are	 distributed	 between	 0	 and	 20	 only	 for	 the	 purposes	 of	

demonstrating	the	concept.	For	example,	if	a	link	in	the	graph	connects	a	white	and	a	black	
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node	ሺrepresenting	a	white	and	a	black	pixelሻ,	the	weight	value	assigned	to	that	link	will	be	

0.	On	the	other	hand,	if	a	link	connects	two	black	nodes	or	two	white	nodes	the	weight	value	

assigned	to	this	link	will	be	20.	Therefore,	all	the	other	links	that	connect	each	two	adjacent	

nodes	with	different	level	of	gray	shades	would	get	a	weight	value	between	0	and	20.	Further	

details	about	computing	weights	between	pixels	will	be	discussed	later	in	this	chapter.	

	

	

	

	

	

	

	

	

Figure	7.2	Representation	of	a	4ൈ4	Grayscale	Image	with	a	Valued	Graph	with		
16	Nodes	and	24	links	ሾ126ሿ	

7.2.3 Minimum Cut and Maximum Flow Approach in Graph Cut 

In	a	given	a	graph	like	G	ൌ	ሼV,	E,	Wሽ,	V	and	E	denotes	the	nodes	and	edges	respectively.	

Also,	W	is	the	matrix	of	weights	associated	with	each	edge.	A	cut	on	this	graph	separates	V	

into	two	subsets	like	K	and	L	such	that:	K	∪	L	ൌ	V	and	K	∩	L	ൌ	∅.	

In	graph	theory,	a	very	commonly‐used	graph	cut	technique	is	called	“minimum	cut	

and	 maximum	 flow”.	 In	 image	 segmentation	 problems	 where	 the	 goal	 is	 separating	 the	

foreground	and	background,	often	two	additional	nodes	called	terminal	nodes	or	source	ሺsሻ	

and	sink	ሺtሻ	nodes	are	added	to	the	graph	model	of	the	image	ሾ89ሿ.	

Minimum	s/t	cut	problem	can	be	solved	by	finding	a	maximum	flow	from	the	source	

ሺsሻ	to	the	sink	ሺtሻ.	Generally	speaking,	"maximum	flow	is	the	maximum	amount	of	water	that	

can	be	sent	from	the	source	to	the	sink	by	interpreting	graph	edges	as	directed	pipes	with	

capacities	equal	to	edge	weights.	The	theorem	of	Ford	and	Fulkerson	states	that	a	maximum	

flow	from	source	ሺsሻ	to	sink	ሺtሻ	saturates	a	set	of	edges	in	the	graph	dividing	the	nodes	into	

two	disjoint	portions	ሼS,	Tሽ	corresponding	to	a	minimum	cut.	Thus,	min‐cut	and	max‐flow	
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problems	are	equivalent”	ሾ127ሿ.	This	theorem	is	illustrated	in	a	step	by	step	example	shown	

in	Figure	7.3.	In	this	example,	a	network	is	represented	by	a	graph	with	8	nodes	and	10	links	

and	we	are	looking	for	maximum	flow	and	min	cut	from	source	to	sink.	The	first	number	

written	next	to	each	link	is	flow	and	the	second	number	is	the	capacity	of	the	link.				

	

Figure	7.3	Description	of	Maximum	Flow	and	Minimum	Cut	Problem	in	a	Graph	ሾ128ሿ	

	

	

	

	

Step 1. Network with zero flow	 Step 2. Find “sabct” path from s to t Step 3. Send flow along “sabct” path

	

	

	

	

	

Step 4. Find “sdbct” path from s to t  Step 5. Send flow along “sdbct” path Step 6. Find “sdeft” path from s to t 

	

	

	

	

	

	

Step 7. Send flow along “sdeft” path	
Step 8. No more path exists. Label 
all nodes that can be reached via 

non-saturated edges as “belonging 
to source” – These are nodes a, d, e

Step 9. Label all remaining nodes as 
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Further	 information	 about	 optimization	 algorithms	 including	 Ford	 and	 Fulkerson	

method	for	finding	the	minimum	cut	in	graphs	can	be	found	elsewhere	ሾ128ሿ.		

7.2.4 Markov Random Field Image Modeling  

The	 Markov	 Random	 Field	 ሺMRFሻ	 technique	 is	 widely	 used	 for	 pixel	 labeling	

problems	in	computer	vision.	When	only	two	labels	exist,	they	are	labeled	as	“foreground”	

and	 “background”.	 Pixels	 that	 belong	 to	 the	 foreground	 ሺobjectሻ	 are	 usually	 labeled	 as	 1	

while	pixels	that	belong	to	background	are	labeled	as	0.		

The	specific	algorithm	used	in	this	chapter	begins	with	the	user	drawing	strokes	on	

the	 images	 to	 select	 a	 small	 number	 of	 pixels	 for	 each	 label.	 In	 other	 words,	 the	 user	

interaction	is	needed	to	initially	inspect	the	image	and	select	a	group	of	pixels	belonging	to	

background	or	 foreground.	 The	MRF	 is	 then	 invoked	 in	 order	 to	 learn	 and	 associate	 the	

foreground	with	a	probability	distribution	of	its	pixel	intensity.	According	to	Equation	7.1,	a	

Gaussian	 probability	 distribution	 function	 is	 used	 to	 model	 the	 intensity	 probability	

distribution	 of	 the	 selected	 pixels.	 A	 similar	 process	 is	 performed	 for	 the	 sampled	

background	pixels.	Then,	given	a	new	pixel	in	the	image,	the	probabilities	of	the	underlying	

intensity	in	each	of	the	two	probability	models	are	evaluated.	
2
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where,		

pk	ሺx|µ,σሻ	ൌ	The	probability	that	the	intensity	of	a	desired	pixel	belonging	to	background	for	

k	ൌ0	or	foreground	for	kൌ1;		

µ	ൌ	Mean	of	the	distribution	associated	with	background	or	foreground;		

σ	ൌ	Standard	deviation	of	the	distribution	associated	with	background	or	foreground.				

	

The	weights,	therefore,	at	a	pixel	x,	are	two	probability	values	P0	ሺxሻ	and	P1	ሺxሻ	and	

are	further	discussed	in	detail	in	reference	ሾ122ሿ.	The	algorithm	continues	by	associating	the	

image	with	a	graph.	An	illustration	of	such	graph	that	corresponds	to	an	arbitrary	3	ൈ	3	pixels	

image	is	given	in	Figure	7.4.	Each	pixel	in	Figure	7.4ሺaሻ	corresponds	to	a	node	ሺpixel	nodeሻ	
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in	the	graph	shown	in	Figure	7.4ሺbሻ.	In	addition	to	pixel	node,	the	graph	contains	a	pair	of	

nodes	corresponding	to	the	background	and	the	foreground/object	labels.	They	are	marked	

as	node	S	and	T.	The	horizontal	edges	ሺn‐linkሻ	connect	neighboring	pixels	while	the	vertical	

edges	ሺt‐linkሻ	connect	each	pixel	node	to	the	label	nodes.	In	Figure	7.4,	the	weight	of	an	edge	

is	shown	in	proportion	to	the	thickness	of	the	link.	Only	neighboring	pixels	are	connected;	

the	 weight	 of	 the	 edge,	 however,	 varies.	 In	 Figure	 7.4,	 the	 user	 identifies	 pixel	 v	 as	 a	

background	pixel.	Therefore,	pixel	v	is	connected	to	the	background	by	a	very	thick	edge.	

Similarly,	pixel	p	is	marked	by	the	user	belonging	to	the	object.	In	the	absence	of	such	user	

input	e.g.	pixel	q,	the	terminal	weights	between	this	pixel	and	the	foreground	is	 f
qW while	its	

terminal	weights	with	background	is b
qW .	These	weights	can	be	calculated	based	on	Equation	

7.2	and	7.3	respectively.	
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		The	inspection	of	edges	between	label	nodes	and	pixel	nodes	in	Figure	7.4	shows	

that	pixel	q	is	more	probable	to	be	background	while	pixels	w	and	r	are	more	likely	to	belong	

to	the	object.	The	segmentation	is	then	done	via	a	graph‐cut	optimization	technique.	Note	

that	edge	weight	between	two	arbitrary	adjacent	pixels	such	as	q	and	r	is	dependent	on	the	

intensity	as	well	as	distance	between	these	two	pixels	ሺsee	Equation	7.4ሻ.	
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(a) 3 X 3 image with user marking 

B (background) and O (object)
(d) Segmentation result (binary image) 

 

 

 

 

 

 

 

 

(b) Graph representation for the image in 
part (a) 

(c) The min cut on the graph 

	

Figure	7.4	Illustration	of	the	Graph‐Cut	Algorithm	and	MRF	method	
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   																																																																																																														7.4	

where,	

q
rW ൌ	Edge	weight	between	pixel	q	and	r;			

R	ሺq,	rሻ	ൌ	The	distance	between	pixel	q	and	r;	

ሺq‐rሻ	ൌ	The	difference	between	the	intensity	of	two	adjacent	pixels;	

σR	 ,	 σw	 ൌ	 Segmentation	 tuning	 parameters	 ሺcomputed	 and	 converged	 through	 iterative	

procedureሻ	ሾ89ሿ.					
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								In	general,	the	algorithm	tends	to	cut	the	edges	with	small	weight	while	preserving	edges	

with	 large	 weight.	 The	 result	 is	 shown	 in	 Figure	 7.4ሺcሻ	 by	 the	 dotted	 line	 and	 the	

corresponding	segmentation	result	is	shown	in	Figure	7.4ሺdሻ	in	which	the	black	pixels	are	

the	background	and	the	white	pixels	are	the	object.	Usually,	the	optimal	graph	cut	is	robust	

to	contamination	of	the	image	by	noise.	

Naturally,	the	selection	of	this	algorithm	is	guided	by	considering	several	factors,	such	

as	 the	 color	 of	 the	 pixels	 in	 the	 aggregate	 images,	 to	 distinguish	 between	 foreground	

ሺparticlesሻ	and	background.	The	color	of	the	foreground	is	to	some	extent	uniform	and	at	the	

same	time	distinct	from	the	background.	Additionally,	enforcing	neighborhood	constraints	

ensures	that	the	foreground	particles	are	solid	and	their	shape	is	not	sensitive	to	acquisition	

noise.	The	user	interface	used	in	this	paper	is	given	in	reference	ሾ129ሿ.	

7.2.5 Binary Image Extraction Algorithm  

Once	the	image	is	segmented	into	foreground	and	background	regions,	the	connected	

components	of	the	foreground	need	to	be	determined.	Each	such	connected	component	is	a	

single	particle	or	a	small	cluster	of	particles.	The	algorithm	examines	each	row	in	the	image	

one	by	one	and	finds	the	intervals	of	foreground	pixels	and	cluster	intervals	from	adjacent	

rows.	Each	cluster	is	hence	a	connected	component	thus	corresponds	to	a	single	particle.	An	

illustration	of	 the	process	 is	depicted	 in	Figure	7.5.	The	related	MATLAB	code	 for	binary	

image	extraction	algorithm	can	be	found	in	Appendix	E	of	this	dissertation.	

In	Figure	7.5,	 aggregate	particles	with	different	natural	 colors	were	placed	on	 the	

same	blue	belt	used	in	E‐UIAIA	and	their	images	were	captured.	A	Canon	EOS	Rebel	T1i	DSLR	

camera	 with	 15.1‐megapixel	 resolution,	 Complementary	 Metal–Oxide–Semiconductor	

ሺCMOSሻ	sensor	technology	and	18‐55	mm	lens	was	used.	Note	that	these	particles	were	also	

used	 in	 Chapter	 3	 to	 evaluate	 the	 automatic	 color	 thresholding	 scheme	 developed	 for																

E‐UIAIA.	 In	 Figure	7.5,	 the	performance	of	 the	 segmentation	 results	 is	 only	 evaluated	by	

visual	inspection	of	the	quality	and	the	level	of	noise	in	the	binary	images	associated	with	

the	particle	color.	This	figure	confirms	the	successful	performance	of	the	described	graph	cut	

image	segmentation	method	and	the	binary	particle	extraction	algorithm	to	detect	aggregate	

particles	with	different	natural	colors.		
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Figure	7.5	Illustration	of	Segmentation	Technique	for	Particle	Detection	and		
Binary	Image	Generation	

	

7.2.6 Validation of the Proposed Image Segmentation Algorithm   

The	validation	study	described	in	this	section,	only	highlights	the	effect	of	using	two	

different	 image	 segmentation	 approaches	 including	 graph	 cut	 segmentation	 versus	

histogram	based	thresholding	on	the	final	numerical	values	of	the	imaging	based	shape	and	

size	properties.	Thus,	E‐UIAIA	was	used	for	image	acquisition	to	eliminate	the	other	sources	

of	errors	that	are	caused	by	the	method	of	image	capturing	in	field.	These	sources	of	errors	

include	 digitization	 error	 associated	 with	 using	 CCD	 versus	 DSLR	 camera	 type	 sensor	

technology,	 achieved	 spatial	 resolution	 in	 the	 field	 and	 the	 use	 of	 different	 type	 of	 blue	
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background	such	as	a	blue	cardboard	or	a	blue	plastic	sheet.	Color	images	for	the	top	views	

of	calibration	balls	and	aggregate	particles	were	captured	individually	as	well	as	 in	pairs.	

These	images	are	shown	in	Figure	7.6.	Note	that	these	images	have	been	captured	at	200	

pixels	per	inch	ሺppiሻ	spatial	resolution	to	ensure	that	there	is	enough	room	in	the	frame	for	

both	calibration	ball	and	aggregate	particle.			

	

Images of aggregate particle and calibration ball in separate frames	
	

	

	

	

	

Aggregate No.1 Aggregate No.2 Aggregate No.3 
	

	

	

	

	

0.75 in. calibration ball 1 in. calibration ball 2 in. calibration ball 
Images of aggregate particle and calibration in the same frame 

	

	

	

	

	

Aggregate No.1 and 
0.75 in. calibration ball 

Aggregate No.2 and     
1 in. calibration ball 

Aggregate No.3 and     
2 in. calibration ball 

	
Figure	7.6	RGB	Images	of	the	Top	Views	of	Calibration	Balls	and	Aggregate	Particles	

Captured	Individually	and	in	Pairs	
	

The	images	containing	only	one	particle	or	one	calibration	ball	were	segmented	using	

histogram	based	thresholding	method	used	in	E‐UIAIA	and	described	in	Chapter	3.	However,	

the	images	containing	both	aggregate	particle	and	a	calibration	ball	together	were	processed	
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using	 the	 graph	 cut	 segmentation	 and	 particle	 extraction	 method.	 The	 resulting	 binary	

images	using	these	two	methods	are	shown	in	Figure	7.7.			

	

Binary image of aggregate particle and calibration ball in separate 
frames - Histogram based segmentation method used in E-UIAIA	

	

	

	

	

	

Aggregate No.1 Aggregate No.2 Aggregate No.3 
	

	

	

	

	

0.75 in. calibration ball 1 in. calibration ball 2 in. calibration ball 
Binary images of aggregate particle and calibration in the same frame – 

Graph cut segmentation method 
	

	

	

	

	

Aggregate No.1 and 
0.75 in. calibration ball 

Aggregate No.2 and     
1 in. calibration ball 

Aggregate No.3 and     
2 in. calibration ball 

	

Figure	7.7	Segmented	Binary	Images	of	Calibration	Balls	and	Aggregate	Particles	
Using	Histogram	Based	and	Graph	Cut	Segmentation	Methods	

	

Following	both	of	the	segmentation	methods,	the	resulting	binary	images	of	particles	

and	calibration	balls	were	used	 to	compute	 the	shape	and	size	properties	using	 “analyze	

image	interface”	function	available	in	E‐UIAIA	ሺdescribed	in	details	in	Chapter	3ሻ.	Note	that	

only	one	2D	top	view	image	for	each	particle	was	captured	and	processed	in	this	study	to	

represent	the	field	imaging	process.	Therefore,	only	size,	angularity	index,	surface	texture	
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index	and	flat	and	elongated	ratio	for	each	particle	was	computed.	The	results	of	shape	and	

size	indices	associated	with	each	segmentation	method	are	presented	in	Figures	7.8	to	7.11.		

According	 to	 Figure	 7.8,	 both	 segmentation	methods	 could	measure	 the	 expected	

angularity	 index	 values	 close	 to	 zero	 for	 calibration	 balls	 of	 different	 sizes.	 Additionally,	

angularity	index	values	associated	with	aggregate	particles	matched	very	well	using	the	two	

different	segmentation	methods.	Note	that	the	numerical	angularity	values	are	provided	for	

comparison	purposes	on	 top	of	each	bar	chart.	The	differences	between	the	results	were	

expected	due	to	using	two	different	segmentation	approaches.	 In	other	words,	 few	pixels	

might	be	categorized	as	background	in	one	segmentation	method	while	the	exact	same	pixels	

may	be	segmented	as	part	of	 the	foreground	 in	another	method.	Nevertheless,	Figure	7.8	

confirms	 that	 binary	 images	 resulting	 from	 graph	 cut	 segmentation	 are	 not	 significantly	

different	from	those	binary	images	resulted	from	histogram	based	segmentation.	

According	 to	 Figure	 7.9,	 both	 of	 the	 segmentation	 methods	 could	 quantity	 the	

expected	 maximum	 dimension	 for	 calibration	 balls	 with	 different	 sizes.	 Additionally,	

maximum	 dimensions	 of	 aggregate	 particles	 measured,	 matched	 closely	 using	 the	 two	

different	 segmentation	 methods.	 Based	 on	 what	 was	 discussed	 in	 Chapter	 2,	 E‐UIAIA	

measures	the	maximum,	minimum	and	the	intermediate	dimensions	associated	with	three	

views	of	each	particle.	However,	since	only	2D	top	views	of	the	particles	were	captured	in	

the	 field,	 the	 intermediate	 and	 minimum	 dimensions	 were	 identical.	 Consequently,	 the	

maximum	dimension	was	considered	as	the	only	indicator	of	the	particles	sizes	in	Figure	7.9.	

The	 same	 approach	 for	measuring	 the	 particle	 size	will	 be	 used	 later	 in	 this	 chapter	 to	

evaluate	the	sizes	of	the	aggregate	particles	collected	from	the	field.						

Based	on	Figure	7.10,	both	of	the	segmentation	methods	could	measure	the	expected	

flat	and	elongated	ratio	close	to	one	for	calibration	balls	with	different	sizes.	Additionally,	

flat	and	elongated	ratios	of	the	aggregate	particles	were	similar	as	predicted	from	the	two	

different	segmentation	methods.	
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Figure	7.8	Angularity	Index	Values	Quantified	for	Calibration	Balls	and	Aggregate	
Particles	Using	Histogram	Based	and	Graph	Cut	Segmentation	Methods	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	7.9	Maximum	Dimensions	Quantified	for	Calibration	Balls	and	Aggregate	
Particles	Using	Histogram	Based	and	Graph	Cut	Segmentation	Methods	
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Figure	7.10	Flat	and	Elongated	Ratios	Quantified	for	Calibration	Balls	and	Aggregate	
Particles	Using	Histogram	Based	and	Graph	Cut	Segmentation	Methods	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	7.11	Surface	Texture	Index	Values	Quantified	for	Calibration	Balls	and	Aggregate	
Particles	Using	Histogram	Based	and	Graph	Cut	Segmentation	Methods	
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Figure	7.11	shows	that	the	measured	surface	texture	indices	for	the	calibration	balls	

using	 the	 two	 segmentation	 methods	 are	 between	 0.1	 and	 0.2.	 Referring	 to	 the	 surface	

texture	index	results	for	calibration	balls	in	Chapter	2,	the	presented	results	in	Figure	7.11	

match	 reasonably	well	with	 the	expected	values.	According	 to	Figure	7.11,	differences	 in	

texture	index	values	were	recorded	as	a	result	of	using	two	different	segmentation	methods	

for	the	aggregate	particles	and	calibration	balls.	This	can	be	explained	by	the	fact	that	surface	

texture	index	is	computed	based	on	applying	cycles	of	erosion	and	dilation	on	a	binary	image.	

Therefore,	errors	associated	with	each	segmentation	method	can	affect	the	surface	texture	

index	results.	Nevertheless,	Figure	7.11	still	shows	a	good	match	for	the	recorded	surface	

texture	index	results	associated	with	using	two	different	segmentation	methods.			

7.3 Aggregate Image Acquisition Procedure with DSLR Camera in the Field 

This	 section	 describes	 the	 procedure	 developed	 to	 capture	 images	 of	 aggregate	

particles	in	the	field	and	perform	the	corresponding	image	processing	techniques.	Aggregate	

imaging	kit	was	prepared	for	use	in	the	field	to	capture	the	images	of	aggregates	in	job	sites	

and	quarries	ሺsee	Figure	7.12ሻ.		

	

	

	

	

	

	

	

	

	

	

	

Figure	7.12	Aggregate	Imaging	Kit	Including	DSLR	Camera,	Accessories,	Tripod	and	
Image	Calibration	Tools	
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Key	elements	in	capturing	the	images	of	aggregate	particles	under	ambient	conditions	

include	appropriate	contrast	between	the	background	and	the	edge	of	the	particles,	proper	

exposure	to	avoid	having	any	areas	in	the	image	that	are	overexposed,	a	specified	resolution	

ሺpixels	per	inchሻ	and	elimination	of	any	shadows	caused	by	the	sun	or	the	camera’s	flash.	

These	 are	 seemed	 to	 be	 necessary	 conditions	 to	 successfully	 perform	 the	 segmentation	

procedure	described.	A	Canon	EOS	Rebel	T1i	camera	with	15.1‐megapixel	resolution	with	

CMOS	sensor	technology	and	18‐55	mm	lens	was	used.		

Camera	settings	 to	achieve	proper	aggregate	 images	are	summarized	 in	Table	7.1.	

Note	that	positioning	the	camera	at	28	in.	ሺ711.2	mmሻ	from	the	object	and	adjusting	the	focal	

length	 at	 18	 mm	 ensures	 that	 the	 images	 are	 captured	 with	 215	 pixel	 per	 inch	 spatial	

resolution.		

	
																					Table	7.1	Developed	Camera	Settings	for	Field	Imaging	

 
DSLR Camera Setting Parameter Value 

Distance form camera lens to object 28 inches 

Shutter speed 1/30 sec 

Aperture f/4 

Light sensitivity ISO-100 

The focal length of the lens 18 mm 

	
A	step	by	step	guideline	was	prepared	for	aggregate	image	acquisition	in	the	field	as	follows:	

	

1. Obtain	aggregate	particles	from	sampling	location;	

2. Spread	particles	out	on	blue	screen‐like	cardboard	or	plastic	sheet;		

3. Make	sure	particles	do	not	touch	or	overlap	each	other	by	providing	enough	

spacing	between	the	particles;	

4. Add	calibration	ball	into	scene	for	determination	of	spatial	resolution;	

5. Adjust	zoom	lens	to	capture	scene	at	predetermined	spatial	resolution	of	215	

pixels	per	inch	ሺppiሻ	following	the	settings	listed	in	Table	7.1;	

6. Mount	camera	on	tripod	and	use	level	to	“flatten”	camera	view	with	respect	to	

ground;	
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7. Adjust	aperture	setting	for	minimal	lens	distortion;	

8. Provide	adequate	light	ሺsun,	lights,	flash,	etc.ሻ	to	properly	illuminate	particles;	

9. Prevent	 lighting	 from	 casting	 shadows	 on	 particle	 or	 from	 particles	

themselves;	

10. Adjust	focus	ሺmanual	or	autoሻ;	

11. Use	triple	exposure	setting	or	“bracketing”	option	to	capture	three	images,	at	

one	step	above/below	current	setting;	

12. Obtain	new	sample	of	aggregate	from	next	sampling	location;	

13. Repeat	imaging	procedure.	

	

The	final	camera	setup	for	aggregate	field	imaging	is	shown	in	Figure	7.13.			

	

	

 

 

 

 

 

 

 

 

 
Figure	7.13	Camera	Setup	for	Aggregate	Imaging	with	Blue	Background	in	an	Outdoor	Setting	

ሺLeft:	Front	View	of	Camera	and	Tripod,	Right:	Top	View	Camera	Screenሻ	
 

7.4 Case Study I – Railroad Ballast Field Imaging  

Each	year,	a	large	portion	of	the	US	freight	railroad	operating	budget	to	sustain	the	

railway	track	system	goes	into	maintenance	and	renewal	of	mineral	aggregates	used	as	track	

ballast.	These	large	sized	aggregates;	with	a	maximum	size	of	3	in.	ሺ76	mmሻ,	are	used	as	the	

ballast	layer	in	the	track	substructure,	which	distributes	the	train	load	to	the	subgrade	soil	
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and	also	provides	drainage	for	the	track	with	 its	uniform	gradation.	Unlike	subbase/base	

layers	 in	 pavement	 structures,	 ballast	 aggregates	 tend	 to	 break	 down,	 powder	 and	

deteriorate	 under	many	 repeated	 wheel	 loadings	 from	 heavy	 freight	 trains.	 This	 ballast	

degradation	not	only	reduces	particle	sizes	but	also	changes	the	physical	shape	properties	

of	aggregate	particles,	resulting	in	accumulation	of	finer	material	causing	ballast	fouling.	The	

intensity	of	the	ballast	degradation	is	a	function	of	aggregate	source	properties,	load	levels	

as	 well	 as	 track	 geometry	 and	 environmental	 conditions.	 Fast	 and	 reliable	 field	 ballast	

assessment	methods	using	machine	vision	and	image	processing	techniques	are	needed	to	

monitor	changes	in	ballast	properties.	

To	 evaluate	 the	 performance	 of	 the	 field	 imaging	 and	 segmentation	 methods	

described	in	this	chapter,	aggregate	samples	were	collected	at	different	ballast	depths	from	

a	 mainline	 freight	 railroad	 in	 Mississippi.	 Figure	 7.14ሺaሻ	 shows	 the	 aggregate	 samples	

collected	at	the	surface	ሺ0	in.ሻ	as	well	as	8	in.	ሺ203	mmሻ	and	16	in.	ሺ406	mmሻ	ballast	depths.	

Figure	7.14ሺbሻ	 is	a	photo	of	the	sampling	track	 location	showing	clean	ballast	on	top	and	

gradually	fouling	ballast	with	depth.	

	

 

 

 

 

 

 

 

 

 

 

Figure	7.14ሺaሻ	Aggregate	Collected	at	 the	
Surface	or	0	in.	ሺLeftሻ,	8	in.	ሺMiddleሻ,	and	
16	in.	ሺRightሻ	Ballast	Depths	

Figure	 7.14ሺbሻ	 Aggregate	 Sampling	 Track	
Location	along	a	Mainline	Freight	Railroad	in	
Mississippi	ሺ2	in.	White	Calibration	Ballሻ

	

The	shape	properties	of	the	ballast	aggregate	particles	were	measured	using	the	field	

imaging/segmentation	and	the	laboratory	E‐UIAIA	methods	described	in	this	dissertation	to	
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investigate	 the	 effects	 of	 train	 loading	 and	 the	 resulting	 ballast	 deterioration	 levels	with	

depth.	Table	7.2	summarizes	the	results	of	the	morphological	analyses	with	imaging	based	

shape	 indices	 determined	 using	 both	 the	 E‐UIAIA	 and	 the	 field	 imaging/graph	 cut	

segmentation	 techniques.	 It	should	be	noted	that	215	pixel	per	 inch	ሺppiሻ	resolution	was	

used	 in	 scanning	 the	 aggregates	 by	 both	methods.	 From	 Table	 7.2,	 a	 comparison	 of	 the	

maximum	aggregate	dimensions	and	F&E	ratios	proves	that	both	the	field	imaging/graph	

cut	 segmentation	 and	 the	 laboratory	 E‐UIAIA	 methods	 agree	 quite	 well	 in	 determining	

aggregate	 particle	 sizes.	 Furthermore,	 good	 level	 of	 repeatability	 is	 observed	 with	 both	

methods	 from	 a	 comparison	 of	 trials	 1	 and	 2	 and	 the	 standard	 deviation	 values.	 The	

angularity	 index	 values	 determined	 by	 the	 field	 imaging/graph	 cut	 segmentation	 are	

consistently	lower	than	those	computed	in	the	laboratory	from	the	E‐UIAIA	image	scanning	

and	histogram	based	processing	method.	On	the	other	hand,	the	surface	texture	index	values	

are	 determined	 slightly	 higher	 using	 the	 field	 imaging/graph	 cut	 segmentation	 method.	

Since	the	camera	sensor	technologies,	natural	lighting	conditions	as	well	as	blue	background	

color	 shades	 vary	 considerably	 between	 two	 methods,	 it	 is	 conceivable	 that	 the	 pixel	

intensities	 of	 the	 captured	 aggregate	 images	 are	 not	 quite	 similar	 although	 the	 pixel	

calibrations	are	the	same.	In	other	words,	digitization	error	can	be	considered	as	a	factor	for	

not	 achieving	 identical	binary	 images	by	 the	 two	methods.	Nevertheless,	 considering	 the	

ranges	of	angularity	index	and	surface	texture	index	values	and	the	similar	magnitudes	of	

standard	 deviations,	 the	 results	 from	 the	 two	 methods	 are	 closely	 matching	 and	 quite	

acceptable	for	practical	field	applications.	

It	 is	 interesting	 to	 note	 that	 both	 methods	 could	 successfully	 detect	 the	 gradual	

demise	in	the	aggregate	size	with	ballast	depth	due	to	degradation	and	particle	breakdown	

under	repeated	train	loading.	This	is	with	the	understanding	that	old	ballast,	which	is	more	

degraded	and	broken	down,	is	found	in	deeper	sublayers.	The	particles	sampled	from	the							

8	in.	ሺ203	mmሻ	depth	have	slightly	higher	F&E	ratios	as	determined	by	the	two	methods.		
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Table	7.2	Ballast	Aggregate	Shape	Indices	Computed	from	E‐UIAIA	in	the	Laboratory	and	
Field	Imaging/Segmentation	

 
  E-UIAIA – CCD Camera and Histogram Based Segmentation 

  Trial 1 

  
Angularity Index 

(degrees) 
Max Dimension (in.) F&E Ratio 

Surface Texture 
Index 

Depth 
(in.) 

No. of 
Particles 

Average 
Std. 
Dev. 

Average 
Std. 
Dev. 

Average
Std. 
Dev. 

Average 
Std. 
Dev.

0 34 420 112 2.19 0.55 1.37 0.16 1.44 0.63 

8 54 438 116 1.29 0.37 1.42 0.20 1.8 0.64 

16 42 432 108 0.96 0.33 1.38 0.24 1.91 0.56 

  E-UIAIA - CCD Camera and Histogram Based Segmentation 

  Trial 2 

  
Angularity Index 

(degrees) 
Max Dimension (in.) F&E Ratio 

Surface Texture 
Index 

Depth 
(in.) 

No. of 
Particles 

Average 
Std. 
Dev. 

Average 
Std. 
Dev. 

Average
Std. 
Dev. 

Average 
Std. 
Dev.

0 34 421 125 2.2 0.54 1.3 0.15 1.43 0.55 

8 54 459 120 1.28 0.35 1.43 0.18 1.79 0.66 

16 42 468 114 0.97 0.32 1.39 0.25 2.05 0.68 

  DSLR Camera and Graph Cut Segmentation 

  Trial 1 

  
Angularity Index 

(degrees) 
Max Dimension (in.) F&E Ratio 

Surface Texture 
Index 

Depth 
(in.) 

No. of 
Particles 

Average 
Std. 
Dev. 

Average 
Std. 
Dev. 

Average
Std. 
Dev. 

Average 
Std. 
Dev.

0 34 385 77 2.22 0.6 1.32 0.16 2.03 0.39 

8 54 417 108 1.41 0.38 1.4 0.27 2.88 0.82 

16 42 435 119 1.07 0.39 1.35 0.19 3.54 1.06 

  DSLR Camera and Graph Cut Segmentation 

  Trial 2 

  
Angularity Index 

(degrees 
Max Dimension (in.) F&E Ratio 

Surface Texture 
Index 

Depth 
(in.) 

No. of 
Particles 

Average 
Std. 
Dev. 

Average 
Std. 
Dev. 

Average
Std. 
Dev. 

Average 
Std. 
Dev.

0 34 379 81.4 2.21 0.56 1.31 0.13 2.06 0.4 

8 54 402 105 1.4 0.39 1.44 0.3 2.9 0.9 

16 42 441 97 1.03 0.36 1.32 0.19 3.63 1.09 

	

The	 F&E	 ratios	 also	match	 closely	 between	 the	 two	methods	with	 the	 same	 pixel	

resolution	 used.	 For	 both	methods,	 the	measured	 angularity	 and	 surface	 texture	 indices	

indicate	somewhat	increasing	trends	with	ballast	depth,	which	can	be	explained	with	the	size	
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reduction	and	breakage	of	older	ballast	under	train	loading.	Interestingly,	as	the	aggregate	

size	gets	smaller	with	depth,	these	more	recently	crushed	particles	at	greater	depths	possess	

higher	angularities	and	rougher	surfaces.		

7.5 Case Study II – Large Size Aggregate Subgrade Field Imaging    

Aggregate	 Subgrade	 is	 a	 term	 used	 in	 the	 Illinois	 Department	 of	 Transportation	

ሺIDOTሻ	Standard	Specifications	for	road	and	bridge	Construction	ሾ130ሿ	linked	to	furnishing,	

transporting	and	placing	granular	materials	 for	subgrade	 improvement	and	subbase.	The	

aggregate	subgrade	materials	can	be	virgin	aggregates,	recycled	materials	such	as	crushed	

concrete	and	Reclaimed	Asphalt	Pavement	ሺRAPሻ	or	combinations	of	both.	They	are	often	

used	 for	 subgrade	 replacement	 and	 construction	 of	 granular	 subbase	 layers	 over	 soft,	

unstable	 Illinois	 subgrade	 soils	 for	 building	 pavement	 construction	 working	 platforms,	

which	eventually	become	part	of	the	pavement	structure.		

Recently,	as	part	of	ICT	R27‐124	research	project,	the	field	performances	of	different	

aggregate	subgrade	materials	including	sources	of	large	size	crushed	concrete	and	primary	

crusher	 run	 aggregate	 were	 studied	 through	 accelerated	 testing	 of	 full‐scale	 pavement	

sections	at	the	University	of	Illinois.	According	to	Table	7.3,	due	to	expected	large	sizes	of	

particles	 in	 these	 two	 aggregate	 sources,	 their	 size	 and	 shape	 properties	 could	 not	 be	

established	through	regular	laboratory	sieve	analysis.	Therefore,	the	aggregate	field	image	

acquisition	and	segmentation	method	described	in	this	chapter	was	utilized	to	characterize	

the	size	and	shape	properties	of	the	large	particles	retained	on	3	in.	ሺ76	mmሻ	sieve.		

Five‐gallon	buckets	were	used	for	aggregate	sampling	from	each	source	of	aggregate.	

In	 each	 bucket,	 the	 particles	 with	 sizes	 above	 3	 in.	 ሺ76	 mmሻ	 were	 separated	 using	 the																			

3	in.	ሺ76	mmሻ	sieve.	Following	the	procedure	described	in	section	7.3,	the	2D	top	view	images	

of	particles	were	captured	on	a	blue	cardboard	ሺsee	Figure	7.15ሻ.		
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Table	7.3	Expected	Sieve	Size	Ranges	and	Aggregate	Types	for	Large	Size		
Aggregate	Sources		

	

	

	

	

	

			

	

	

	

	

	

	

Figure	7.15	Left:	Separating	Large	Particles	with	Sizes	above	3	in.	ሺ76	mmሻ		
Right:	Image	Acquisition	in	the	Field	with	DSLR	Camera	and	Blue	Background		

	
	

The	 captured	 color	 images	 of	 large	 size	 particles	 from	 CS01	 and	 CS02	 aggregate	

sources	are	presented	in	Figure	7.16.	These	color	images	were	processed	using	the	graph	cut	

image	segmentation	and	binary	image	extraction	that	was	discussed	in	section	7.2.	Note	that	

in	Figure	7.16,	a	number	is	assigned	to	each	particle.	These	numbers	will	be	later	used	in	this	

section	to	track	the	particles	and	link	them	to	their	associated	imaging	based	size	and	shape	

properties.		

The	shape	and	size	properties	related	to	CS01	and	CS02	large	size	aggregate	sources	

are	listed	in	Table	7.4.	In	this	table,	the	imaging	based	maximum	dimensions	of	the	particles	

obtained	 from	 the	 segmentation	 method	 are	 listed	 to	 indicate	 the	 large	 sizes	 of	 these	

aggregate	sources.	Additionally,	it	can	be	seen	that	the	average	angularity	index	and	surface	

Aggregate ID Aggregate Type Expected Sieve Size Range 

CS01 Large Size Crushed Concrete 6 in. (152 mm) -  No.200 (0.075 mm) 

CS02 Primary Crusher Run Aggregate 6 in. (152 mm) – No.200 (0.075 mm) 
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texture	index	associated	with	CS01	are	close	to	their	corresponding	values	for	CS02.	This	

finding	can	be	explained	by	the	fact	that	both	CS01	and	CS02	are	crushed	aggregate	sources;	

therefore,	their	angularity	and	surface	texture	indices	should	be	more	or	less	similar	to	each	

other.		

	

Field images of 12 particles with sizes above 3 in. (76 mm) from CS01 Source	*

	
	
	
	
	
	
	
	
	
	
	
	

Field images of 16 particles with sizes above 3 in. (76 mm) from CS02 Source	*

	
	
	
	
	

	
*	1 in. (25.4 mm) calibration ball is shown in the images			
	

Figure	7.16	Color	Images	Related	to	Top	Views	of	Calibration	Ball	and	Large	Size	
Aggregates	from	CS01	and	CS02	Sources	
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Table	7.4	Imaging	Based	Shape	and	Size	Properties	for	CS01	and	CS02	Large	Size		
Aggregate	Sources	 

	
Shape Properties for CS01 Large Size Aggregates 

Particle No. 
Angularity 

Index (degrees) 
Max Dimension (in.) F&E Ratio 

Surface 
Texture Index 

1 490 5.26 1.40 1.61 

2 530 4.52 1.35 2.34 

3 510 5.09 1.31 1.83 

4 410 5.14 1.25 1.49 

5 510 5.22 1.22 1.68 

6 210 4.05 1.33 1.62 

7 290 4.10 1.07 1.44 

8 640 4.61 1.29 204 

9 310 3.40 1.14 1.77 

10 510 5.47 1.39 2.88 

11 420 4.66 1.28 1.47 

12 470 5.44 1.07 1.49 

Average 441 4.74 1.25 1.80 

Shape Properties for CS02 Large Size Aggregates 

Particle No. 
Angularity 

Index (degrees) 
Max Dimension (in.) F&E Ratio 

Surface 
Texture Index 

1 510 5.15 1.48 2.35 

2 340 5.40 1.29 1.75 

3 440 7.19 2.33 2.21 

4 450 4.15 1.08 1.65 

5 450 5.00 1.08 2.01 

6 570 5.03 1.53 2.20 

7 380 5.30 1.37 1.38 

8 250 5.49 1.46 1.36 

9 440 6.11 1.15 1.39 

10 420 3.71 1.11 2.48 

11 490 5.61 1.58 2.03 

12 390 5.35 1.41 2.01 

13 350 5.27 1.08 1.54 

14 520 4.87 1.27 1.54 

15 290 5.18 1.1 1.39 

16 320 5.08 1.52 1.79 

Average 413 5.24 1.36 1.81 
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7.6 Summary  

Aggregate	image	processing	using	graph	cut	segmentation	technique	was	described	

and	 used	 in	 this	 chapter	 to	 analyze	 the	 2D	 images	 of	 aggregate	 samples	 captured	 by	 a	

commonly	used	DSLR	camera	in	the	field	for	extraction	and	analyses	of	individual	aggregate	

particle	size	and	shape	properties.	The	segmented	individual	particle	images	were	fed	into	

the	 validated	 E‐UIAIA	 image	 processing	 algorithms	 to	 compute	 particle	 size	 and	 shape	

properties	 using	 the	 imaging	 based	 indices	 of	 Flat	 and	 Elongated	 Ratio	 ሺF&E	 Ratioሻ,	

Angularity	Index	ሺAIሻ,	and	Surface	Texture	Index	ሺSTIሻ.		

The	 performances	 of	 the	 field	 imaging	 and	 segmentation	 methodologies	 were	

evaluated	by	means	of	two	case	studies	involving	field	images	of	large	size	aggregate	sources	

as	well	as	railroad	ballast	samples	collected	from	various	ballast	depths	in	a	mainline	freight	

railroad	 track.	 The	 results	 of	 ballast	 aggregate	 size	 and	morphological	 analyses,	 i.e.,	 the	

computed	imaging	based	size	and	shape	indices,	using	both	the	laboratory	E‐UIAIA	and	the	

field	 imaging/segmentation	methods	matched	quite	 closely.	Further,	both	methods	 could	

successfully	detect	the	gradual	decrease	in	the	aggregate	size	due	to	higher	degradation	and	

particle	breakdown	with	ballast	depth	as	evidenced	by	higher	AI	and	STI	values	measured	

at	greater	depths.	In	addition,	the	described	field	image	acquisition	and	processing	method	

was	able	to	successfully	detect	the	size	and	shape	properties	of	large	size	aggregate	sources.						

	These	 promising	 preliminary	 results	 therefore	 indicate	 that	 the	 methodology	

described	in	this	chapter	can	be	considered	in	the	field	to	rapidly	and	reliably	capture	several	

aggregate	particles	in	a	single	image	so	that	individual	particle	size	and	shape	properties	can	

be	analyzed.	Additionally,	both	spatial	property	variability	and	property	changes	with	layer	

depth	and	usage,	i.e.,	property	degradation	in	time,	can	be	evaluated	under	service	loading.	
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CONCLUSIONS AND RECOMMENDATIONS 

The	research	study	presented	in	this	dissertation	introduced	innovative	color	image	

acquisition	and	segmentation	techniques	to	identify	size	and	shape	properties	of	aggregate	

materials	both	in	the	laboratory	and	in	the	field.	The	development	of	new	design	as	well	as	

the	 manufacturing,	 calibration	 and	 validation	 of	 an	 Enhanced‐University	 of	 Illinois	

Aggregate	 Image	 Analyzer	 ሺE‐UIAIAሻ	with	many	 improvements	 over	 the	 first	 generation	

device	was	the	first	objective	of	this	research.	This	also	included	the	development	of	a	binary	

image	processing	algorithm	to	estimate	the	percent	asphalt	coating	on	Reclaimed	Asphalt	

Pavement	ሺRAPሻ	aggregate	particles.	The	second	objective	of	this	study	was	to	demonstrate	

the	newly	developed	E‐UIAIA	for	its	effectiveness	and	improved	aggregate	image	processing	

modules	to	characterize	the	morphological	properties	of	different	sources	of	aggregates	with	

different	natural	colors	and	at	different	degradation	levels	from	beginning	to	the	end	of	their	

performance	periods.	These	 aggregate	 sources	were	 used	 in	 the	 construction	 of	 railroad	

ballast	in	track	systems	and	various	layers	in	flexible	pavements.	The	second	objective	was	

also	included	the	development	of	an	imaging	based	aggregate	classification	methodology	to	

better	quantify	the	resistance	of	aggregate	sources	to	degradation.	The	third	objective	of	this	

research	 was	 on	 the	 development,	 validation	 and	 implementation	 of	 a	 customized	 field	

aggregate	image	acquisition/processing	technique	which	can	be	used	to	characterize	shape	

and	size	properties	of	aggregate	particles	in	the	job	sites	and	quarries.			

8.1 Summary of Research Activities   

The	research	activities	described	in	this	study	can	be	divided	into	four	major	phases	

which	focused	on	addressing	the	main	objectives	of	this	dissertation.	In	phase	I,	the	different	

software	and	hardware	components	of	the	new	E‐UIAIA	were	designed	and	manufactured.	

An	 important	 task	 in	 this	 phase	 included	 the	 development	 of	 an	 advanced	 color	 image	
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thresholding	algorithm	to	successfully	acquire	and	segment	 images	of	aggregate	particles	

even	 with	 dark	 natural	 colors	 when	 they	 are	 placed	 on	 a	 blue	 background.	 An	 image	

calibration	 interface	was	also	developed	and	 tested	 for	precise	measurements	of	particle	

sizes	and	shapes.	The	accuracy	of	the	improved	modules	for	computing	the	imaging	based	

indices,	i.e.,	angularity	index,	surface	texture	index,	flat	and	elongated	ratio,	surface	area	and	

volume	were	validated	using	an	available	aggregate	imaging	database.	The	influence	of	the	

new	image	acquisition/thresholding	technique	on	the	variability	of	shape	indices	obtained	

for	the	same	aggregate	particles	scanned	with	both	the	original	and	enhanced	versions	of	

UIAIA	was	also	investigated.								

In	phase	II	of	this	research,	E‐UIAIA	was	used	to	fully	capture	the	rate	and	magnitudes	

of	changes	in	shape	indices	of	aggregate	samples	degraded	in	the	laboratory	using	commonly	

used	testing	procedures.	The	results	from	standard	laboratory	aggregate	degradation	tests	

including	LA‐Abrasion	and	Micro‐Deval	aggregate	degradation	tests	were	combined	with	an	

evaluation	of	the	imaging	based	shape	indices	of	the	particles	at	different	degradation	levels.	

The	described	imaging	based	approach	for	evaluating	degradation	potentials	of	aggregates	

was	 used	 then	 to	 classify	 aggregate	 sources	 according	 to	 their	 resistance	 to	 abrasion,	

polishing	and	breakage.		

In	phase	III,	a	post‐processing	aggregate	image	analyzer	module	was	developed	and	

validated	using	the	image	processing	toolbox	available	in	MATLAB.	This	module	was	used	to	

estimate	percent	asphalt	coating	on	the	individual	particles	obtained	from	different	sources	

of	RAP	aggregates.	E‐UIAIA	was	used	to	capture	the	images	of	RAP	particles	and	generate	

their	corresponding	binary	images.	Using	the	binary	images	and	the	developed	module,	the	

average	percentages	of	asphalt	coating	on	the	RAP	particles	were	estimated	and	correlated	

to	asphalt	content	values	obtained	by	a	laboratory	asphalt	extraction	method.	Additionally,	

the	 fracture	energies	of	Portland	cement	concrete	samples	made	from	these	RAP	sources	

were	also	correlated	to	the	imaging	based	percentages	of	asphalt	coating	on	the	particles.										

Phase	 IV	of	 this	 research	had	 the	 research	 scope	 to	practically	bring	 the	available	

aggregate	imaging	technology	to	the	field	job	sites	and	aggregate	quarries.	A	binary	image	

extraction	 algorithm	 was	 developed	 to	 work	 with	 the	 graph	 cut	 image	 segmentation	
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approach.	The	proposed	methodology	was	demonstrated	to	successfully	process	size	and	

shape	properties	of	aggregate	particles	from	high	resolution	2D	digital	images	captured	in	

the	 field.	The	developed	aggregate	 field	 imaging	procedure	was	evaluated	using	two	case	

studies.	 In	 the	 first	 case	 study,	 the	 shape	 and	 size	 properties	 of	 railroad	 ballast	 samples	

collected	from	different	depths	of	ballast	layer	of	in‐service	track	were	identified.	The	second	

case	study	involved	morphological	characterization	of	large	size	aggregate	sources	used	as	

aggregate	 subgrade	 materials	 in	 working	 platform	 and	 low	 volume	 flexible	 pavement	

construction.		

8.2 Summary of Contributions and Research Findings 

- The	 findings	 from	Chapter	 3	 showed	 that	 the	 use	 of	 three	 high	 resolution	 CCD	 color	

cameras	equipped	with	lenses	having	variable	focal	lengths	improved	the	quality	of	the	

images	for	various	aggregate	sizes	and	shapes	captured	with	E‐UIAIA.	Therefore,	using	

the	 newly	 developed	 image	 acquisition	 and	 calibration	 interfaces,	 the	 images	 of	

aggregate	 particles	 for	 up	 to	 3	 in.	 ሺ76	mmሻ	 railroad	 ballast	 aggregate	 sizes	 could	 be	

successfully	quantified	for	size	and	shape	indices.		The	final	position	of	four	LED	lights	

controlled	with	dimmers	resulted	in	images	with	the	least	amount	of	shadows	around	

each	particle.	Additionally,	 the	 improved	design	of	E‐UIAIA	made	 it	 smaller,	portable,	

more	efficient	and	easier	to	operate	compared	with	the	original	UIAIA	device.		

- According	 to	 findings	 from	 Chapter	 3,	 the	 developed	 fully	 automated	 color	 image	

thresholding	 algorithm	 could	 segment	 the	 images	 of	 aggregate	 particles	 from	 a	 blue	

background.	Two	innovative	Look	Up	Tables	ሺLUTሻ	were	developed	to	enhance	the	Hue	

ሺHሻ	and	Saturation	ሺSሻ	representations	of	color	images.	The	corresponding	binary	image	

for	each	aggregate	particle	was	successfully	generated	by	applying	a	histogram	based	

clustering	 threshold	 on	 the	 product	 of	 enhanced	 Saturation	 and	 Hue	 channels.	 The	

developed	 segmentation	method	 showed	 excellent	 performance	 in	 generating	 binary	

images	 of	 aggregate	 particles	 with	 different	 sizes	 and	 natural	 colors.	 The	 color	

thresholding	 algorithm	was	 also	 added	 to	 software	 image	 acquisition	 and	 calibration	

interfaces	 to	 assist	 the	 operator	 with	 automated	 and	 real	 time	 assessment	 of	 the	

segmentation	results.		
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- As	 explained	 in	 detail	 in	 Chapter	 3,	 the	 different	 binary	 image	 processing	 modules	

available	in	the	original	UIAIA	device	were	debugged,	updated	and	merged	into	a	single	

module.	 This	 new	module	 equipped	 with	 a	 user	 friendly	 interface	 was	 then	 used	 to	

simultaneously	 compute	 the	 size	 and	 shape	 indices	 for	 angularity,	 surface	 texture,	

volume	 and	 surface	 area	 from	 the	 three	 orthogonal	 views	 of	 an	 individual	 aggregate	

particle.	Moreover,	validation	studies	performed	on	E‐UIAIA	indicated	that	this	imaging	

system	 could	 successfully	 identify	 the	 particle	 size	 and	 shape	 properties	 of	 several	

aggregate	 sources,	 e.g.,	 differentiating	 between	 light	 and	 dark	 colored	 crushed	 and	

uncrushed	aggregate	particles.		

- According	to	findings	from	Chapters	4	and	5,	an	imaging	based	approach	was	successfully	

established	 for	 aggregate	 morphology	 degradation	 analysis.	 In	 this	 method,	 the	

percentages	 of	 changes	 in	 shape	 indices	 of	 aggregate	 particles	 were	 measured	 with												

E‐UIAIA	at	different	degradation	levels	and	compared	to	LA‐Abrasion	and	Micro‐Deval	

testing	 results.	Using	 this	method,	 fourteen	sources	of	 railroad	ballast	aggregates	and	

eleven	sources	of	crushed	aggregate	sources	used	in	pavement	surface	friction	courses	

were	classified	into	different	groups	based	on	their	resistance	to	abrasion,	polishing	and	

breakage.	This	method	holds	the	potential	to	be	included	in	standards	for	material	testing	

and	specifications	for	improved	characterization	of	degradation	properties	of	different	

aggregate	sources.		

- Based	on	findings	from	Chapter	6,	an	algorithm	for	computing	the	percentages	of	asphalt	

coating	 on	 RAP	 aggregates	 was	 developed.	 Arithmetic	 image	 operations	 and	 image	

thresholding	techniques	were	utilized	to	segment	the	areas	of	the	RAP	particles	coated	

with	 asphalt	 binder.	 This	 validated	 algorithm	 showed	 satisfactory	 performance	 in	

estimating	the	percentages	of	asphalt	coating	when	applied	to	six	different	RAP	aggregate	

sources.	Furthermore,	E‐UIAIA	was	used	to	successfully	capture	how	the	asphalt	coating	

on	 the	 surface	 could	 alter	 the	 morphological	 properties	 of	 aggregate	 particles.	 The	

imaging	 based	 percentages	 of	 asphalt	 coating	 were	 adequately	 correlated	 with	 the	

asphalt	content	values	achieved	using	asphalt	extraction	methods.		
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- According	to	findings	from	Chapter	7,	a	field	image	acquisition	and	processing	procedure	

was	developed	to	quantify	imaging	based	size	and	shape	indices	of	aggregate	particles	in	

quarries	 and	 construction	 sites.	 This	 advanced	 image	 analysis	 and	 segmentation	

procedure	combined	a	Markov	Random	Field	ሺMRFሻ	approach	for	image	modeling,	graph	

cut	for	optimization	and	user	interaction	for	enforcing	hard	constraints,	and	was	capable	

of	detecting	and	extracting	the	images	of	several	aggregate	particles	captured	in	a	single	

frame	using	a	Digital	Single	Lens	Reflex	ሺDSLRሻ	camera.	The	developed	aggregate	field	

imaging	procedure	showed	promising	results	in	quantifying	the	particle	sizes	as	well	as	

angularity	 and	 surface	 texture	 indices	 of	 railroad	 ballast	 samples	 collected	 from	 in‐

service	railroad	track.	Similarly,	 the	procedure	was	capable	of	successfully	 identifying	

the	size	and	shape	properties	used	in	pavement	working	platform	construction.			

8.3 Conclusions 

	Based	on	the	findings	from	this	dissertation	the	following	conclusions	can	be	made:	

- 	Advanced	 image	enhancements	applied	with	customized	Look	Up	Tables	on	Hue	and	

Saturations	 channels	 of	 aggregate	 images	 could	 improve	 image	 thresholding	 results	

using	 clustering	 method	 in	 the	 newly	 developed	 E‐UIAIA.	 This	 image	 processing	

approach	 showed	 excellent	 performance	 in	 segmentation	 of	 aggregates	 images	 with	

different	colors	placed	on	a	blue	background.								

- Imaging	based	shape	 indices	of	aggregate	particles	evaluated	at	different	degradation	

levels	 from	Micro‐Deval	and	LA‐Abrasion	 testing	were	shown	 to	provide	an	adequate	

quantification	of	degradation	potentials	of	aggregate	sources	 in	 terms	of	resistance	to	

abrasion,	polishing	and	breakage.			

- Three‐parameter	 statistical	 models	 successfully	 developed	 in	 this	 study	 could	

adequately	capture	 changes	 in	 imaging	based	size	and	shape	 indices,	 i.e.,	degradation	

potentials	of	aggregate	particles	in	terms	of	abrasion,	polishing	and	breakage.							

- E‐UIAIA	could	successfully	process	the	size	and	shape	indices	of	RAP	aggregate	materials.	

By	 applying	 the	 developed	 advanced	 image	 processing	 techniques,	 i.e.,	 digital	 image	

arithmetic	 operations,	 thresholding	 and	 noise	 reduction	 with	 binary	 morphology	
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analysis,	percentages	of	asphalt	 coatings	on	different	RAP	aggregate	 sources	could	be	

adequately	estimated.			

- The	 laboratory	developments	 in	 image	acquisition	and	 image	processing	of	aggregate	

particles	 using	 E‐UIAIA	 could	 be	 successfully	 implemented	 in	 field	 practices.	 The	

combination	 of	 advanced	 2D	 image	 acquisition	 with	 DSLR	 camera	 and	 image	

segmentation	 with	 graph	 cut	 techniques	 produced	 comparable	 results	 to	 laboratory	

quantification	of	imaging	based	size	and	shape	indices	of	individual	particles	and	their	

aggregate	morphology	degradation	patterns.						

8.4 Research Limitations and Recommendations for Future Research  

As	discussed	in	Chapter	3,	calibrating	the	cameras	used	in	E‐UIAIA	at	a	target	spatial	

resolution	requires	manual	zooming	and	focusing	of	the	lenses.	This	process	can	be	tedious	

and	time	consuming	because	the	camera	lenses	used	in	E‐UIAIA	do	not	have	the	auto‐zoom	

and	auto‐focus	feature.	Therefore,	no	controller	was	implemented	in	the	front	panel	of	the	

image	acquisition	interface	to	digitally	adjust	the	zoom	and	focus	levels.	Using	auto‐zoom	

and	auto‐focus	 lenses	provide	the	opportunity	 for	 faster	calibration	of	E‐UIAIA	as	well	as	

capturing	the	images	of	a	single	aggregate	particle	at	different	spatial	resolutions.	Therefore,	

multi‐resolution	analysis	ሾ131ሿ	on	the	aggregate	images	can	be	performed	which	potentially	

could	result	in	the	development	of	new	and	more	efficient	particle	shape	indices.						

Although	aggregate	image	acquisition	and	processing	stages	are	fully	automated	in			

E‐UIAIA,	placing	the	aggregate	particles	on	the	conveyor	belt	is	still	manual	and	needs	an	

operator.	 Therefore,	 designing	 and	 manufacturing	 an	 aggregate	 feeder	 system	 is	 highly	

recommended	especially	for	commercialization	purposes	of	E‐UIAIA.		

E‐UIAIA	 uses	 three	 cameras	 to	 capture	 three	 orthogonal	 views	 of	 an	 aggregate	

particle.	However,	 this	 system	 is	 still	 considered	a	 semi‐3D	aggregate	 image	analyzer.	 In	

other	words,	2D	binary	image	processing	techniques	are	used	on	each	orthogonal	view	and	

ultimately	the	analysis	results	from	three	views	will	be	averaged	to	give	the	final	particle	

index.	Nevertheless,	3D	image	reconstruction	and	processing	methods	have	the	potential	to	

be	utilized	for	representation	of	a	3D	model	of	the	aggregate	particles	using	their	associated	



199	

	

	

three	 orthogonal	 views.	 These	 reconstructed	3D	digital	 particles	 can	be	 used	 in	Discrete	

Element	Modeling	ሺDEMሻ	programs	to	better	consider	the	effect	of	particle	shapes.	

Considering	the	findings	that	were	presented	in	Chapters	4	and	5,	for	each	laboratory	

degradation	test	such	as	Micro‐Deval	and	LA‐Abrasion,	a	comprehensive	repeatability	and	

variability	study	 is	recommended	to	 identify	 the	 type	of	statistical	distribution	as	well	as	

establishing	the	range	and	standard	deviation	for	change	in	each	individual	shape	property.	

These	 will	 assist	 in	 accurately	 determining	 the	 threshold	 limits	 with	 desired	 level	 of	

reliability	in	recognizing	low,	medium	and	high	regions	in	terms	of	resistance	to	abrasion	

polishing	and	breakage	for	the	available	and	commonly	used	aggregate	material	sources	in	

each	region.	The	field	performance	of	aggregates	used	in	bound/unbound	layers	in	terms	of	

strength,	roughness,	skid	resistance	and	permanent	deformation	is	required	to	be	monitored	

over	 time	 to	 correlate	with	 changes	 in	 particle	 shape	 properties	 obtained	with	 different	

imaging	results	or	laboratory	degradation	testing.		

Imaging	 based	 methodology	 for	 efficient	 and	 objective	 estimation	 of	 the	 asphalt	

coating	on	RAP	particles	described	in	Chapter	6	has	the	potential	to	be	further	improved.	

This	approach	can	be	considered	as	an	automated	and	machine	vision	based	alternative	to	

the	 current	AASHTO	T195,	 “Standard	Method	of	 Test	 for	Determining	Degree	of	 Particle	

Coating	of	Bituminous‐Aggregate	Mixtures”,	which	is	a	subjective	method	and	mainly	based	

on	visual	inspection	of	the	aggregate	particles.	Additionally,	machine	vision	technology	and	

image	processing	methods	 can	be	utilized	 to	 evaluate	 the	pavement	 surface	 condition	 in	

terms	of	levels	of	stripping	or	the	loss	of	bond	between	aggregates	and	asphalt	binder.				

Future	research	related	to	morphological	evaluation	of	aggregates	in	the	field	can	be	

directed	 towards	 establishing	 more	 validation	 cases	 involving	 statistical	 analyses	 with	

different	ranges	of	size	and	shape	property	indices	for	different	types	of	aggregate	using	both	

the	 field	 image	 acquisition/segmentation	 and	 laboratory	 E‐UIAIA	methods.	 Additionally,	

field	degradation	 trends	of	 aggregate	materials	 at	different	 traffic	 levels	 can	be	 captured	

during	 their	service	 life	using	 field	 imaging	 technology.	Such	system	would	automatically	

quantify	the	aggregate	degradation	trends	and	holds	the	potential	to	replace	the	prevailing	

subjective	visual	 inspection	and	 time	 consuming	 sampling	 and	mechanical	 sieve	 analysis	
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practices.	Ultimately,	 computer	vision	and	 image	processing	 techniques	can	be	combined	

with	machine	 learning	 algorithms	 to	develop	degradation	 indices	 such	 as	 Imaging	Based	

Fouling	Index	ሺIBFIሻ	to	represent	different	railroad	ballast	degradation	 levels	and	fouling	

conditions	in	the	field.	

Fitting	 well	 with	 sustainable	 engineering	 practices,	 further	 improvement	 and	

implementation	of	 field	aggregate	 imaging	could	provide	mining	 industries	and	state	and	

local	 transportation	 agencies	 with	 technologies	 for	 improved	 material	 specifications,	

aggregate	 quality	 control/quality	 assurance	 ሺQC/QAሻ,	 optimized	 aggregate	

selection/utilization	 and	 associated	 significant	 economic	 benefits.	 The	 field	 aggregate	

imaging	 technology	 has	 the	 potential	 to	 be	 used	 by	 aggregate	 producers	 and/or	 state	

highway	agencies	 for	 implementation	in	rock	quarries	and	gravel	mines	supplying	all	 the	

approved	aggregate	materials	to	highway	agency	projects	throughout	that	country.	
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APPENDIX A 

WIRING DIAGRAM FOR E-UIAIA 
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Figure	A.1	Wiring	Diagram	for	E‐UIAIA		
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APPENDIX B 

LABVIEW VIs FOR COMPUTING AGGREGATE SHAPE 

PROPERTIES IN E-UIAIA 
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Figure	B.1	Threshold	Color	Image	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 
 
 

Figure	B.2	Hue	and	Saturation	Look	Up	Table	
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Figure	B.3	Central	Module	to	Analyze	Images	and	Compute	Particle	Shape	Properties	
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APPENDIX C 

DISTRIBUTION CURVES FOR SHAPE PROPERTIES OF 

RAILROAD BALLAST BEFORE AND AFTER LA-ABRASION 

TESTING 
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Figure	C.1	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	I		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	C.2	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	I		
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Figure	C.3	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	II		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	C.4	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	II		
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											Figure	C.5	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	III		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	C.6	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	III		
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Figure	C.7	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	IV	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	C.8	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	IV		
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								Figure	C.9	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	V	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	C.10	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	V		
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																Figure	C.11	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	VI	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

															Figure	C.12	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	VI		
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Figure	C.13	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	VII	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	Figure	C.14	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	VII	
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Figure	C.15	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	VIII	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	C.16	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	VIII	
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							Figure	C.17	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	IX	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

					Figure	C.18	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	IX	
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Figure	C.19	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	X	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	C.20	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	X	
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Figure	C.21	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	XI	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	C.22	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	XI	
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															Figure	C.23	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	XII	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	C.24	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	XII	
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Figure	C.25	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	XIII	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	C.26	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	XIII	
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Figure	C.27	Angularity	Index	at	Different	Degradation	Levels	for	Ballast	XIV	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	C.26	Surface	Texture	Index	at	Different	Degradation	Levels	for	Ballast	XIV	
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APPENDIX D 

MATLAB CODE FOR COMPUTING ASPHALT COATING ON 

RECLAIMED ASPHALT PAVEMENT (RAP) AGGREGATE 

PARTICLES 
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I = imread('img.png'); 
figure,imshow(I); 
img=rgb2gray(I); 
t = mean2(img) * 0.01; %User interaction 
e=im2bw(img,t); 
figure,imshow(e) 
  
  
se = strel('disk',2); 
bw=imdilate(e,se); 
figure,imshow(bw) 
bwx=imclose(bw,se); 
figure,imshow(bwx) 
K=bwareaopen(bwx,150); %User interaction 
figure,imshow(K) 
bw1=imcomplement(K); 
figure,imshow(bw1) 
  
  
m=imread('timg.png'); 
Lg=logical(m); %m is the tresholded image from E-UIAIA 
x=Lg-K; 
figure,imshow(x) 
se = strel('disk',2); 
x=imclose(x,se); 
figure,imshow(x) 
x2=imcomplement(x); 
figure,imshow(x2) 
  
  
  
f2=bwlabel(x); 
A1=regionprops(f2,'Area'); 
grain_areas1 = [A1.Area]; 
toparea1=sum(grain_areas1(:)); 
  
f3=bwlabel(x2); 
A2=regionprops(f3,'Area'); 
grain_areas2 = [A2.Area]; 
toparea2=sum(grain_areas2(:)); 
  
if  toparea1>toparea2 
    A = toparea2; 
    wholearea = bwarea(m); 
FRAPUNCOATED=((wholearea-A)/wholearea)*100   
     
else  
    A = toparea1; 
    wholearea = bwarea(m); 
FRAPCOATED=(A/wholearea)*100       
end 
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APPENDIX E 

MATLAB CODE FOR BINARY AGGREGATE IMAGE 

EXTRACTION IN THE FIELD  
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img = imread('img.jpg'); 
figure; imshow(img); 
[RN, CN, CH] = size(img); 
if CH == 3  
    img = rgb2gray(img); 
end 
figure; imshow(img); 
rockID = zeros(RN,CN); 
BW = im2bw(img, 0.05); 
figure; imshow(BW); 
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% create intervals 
filter = [-1 1]; 
intervals2 = {}; 
EG = []; 
for i = 1:RN 
    EG(i,:) = conv(double(BW(i,:)),filter,'same'); 
    lows = find(EG(i,:)==-1); 
    highs = find(EG(i,:)==1); 
    if size(lows,2)== 0 lows = 0; end 
    if size(highs,2)== 0 highs = 0; end 
    intervals2 = [intervals2; lows' highs']; 
end 
%% 
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
overlapID = {}; 
intervals = intervals2; 
rockIdx = 0; 
rockID = zeros(RN,CN); 
  
for i = 1:RN 
    % no intervals, a black line 
    if (intervals{i}(1) == [0,0]) 
        continue; 
    elseif rockIdx == 0 %initialization, first non-zero line 
%         rockIdx = rockIdx + 1; 
            currentLine = []; 
            currentLine = intervals{i}; 
            for j = 1:size(currentLine,1)  
            % for the segms in the first line, each segm gets an ID 
                rockIdx = rockIdx + 1; 
                rockID(i,currentLine(j,1)+1:currentLine(j,2)) = rockIdx;  
            end 
        else      % look for the overlapping interval and get its rockID 
            lastLine = intervals{i-1,1}; 
            currentLine = intervals{i,1}; 
             
            neighID = 0; 
            for j = 1:size(currentLine,1) 
                neighN = 0; 
                AA = currentLine(j,1); 
                BB = currentLine(j,2); 
                mergeInt = []; 
                if neighID ~= 0 %start from previous overlapping 
                    k = neighID;  
                else  
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                    k = 1; 
                end 
                while(k <= size(lastLine,1)) 
                    CC = lastLine(k,1); 
                    DD = lastLine(k,2); 
                    if neighN == 0 && (BB < CC || AA > DD) 
                        k = k+1;  
                        continue;  %no overlap   
                             
                    elseif neighN == 0 && ~(BB < CC || AA > DD) %find the 
first overlap interval 
                            interID = rockID(i-1,lastLine(k,2)); 
                            rockID(i,currentLine(j,1)+1:currentLine(j,2)) = 
interID; 
                            neighID = k; 
                            neighN = neighN + 1; 
                            k = k + 1;                                
                            mergeInt = [mergeInt interID]; 
                    elseif neighN ~= 0 && (BB < CC || AA > DD) %no additional 
overlap 
                        break; 
                    elseif neighN ~= 0 && ~(BB < CC || AA > DD) %need to 
merge 
                         neighN = neighN + 1; 
                         neighID = k; 
                         interID = rockID(i-1,lastLine(k,2)); 
                         rockID(rockID == interID)= 
rockID(i,currentLine(j,2)); 
                         k = k + 1; 
                         mergeInt = [mergeInt interID]; 
                    end 
                end 
                if neighN == 0 %didn't find any interval 
                    rockIdx = rockIdx + 1; 
                    rockID(i,currentLine(j,1)+1:currentLine(j,2)) = rockIdx;  
                    mergeInt = [mergeInt rockIdx]; 
                end 
                if ~isempty(mergeInt) 
                    overlapID = [overlapID; mergeInt]; 
                end 
            end    
    end 
end 
% Mask out the single rock according to the rockID 
realrockID = []; 
rockBW = {}; 
rockIMG = {}; 
nRocks = max(max(rockID)); 
for i = 1:nRocks 
    rockMask = BW; 
    sz = size(find(rockID == i),1); 
    if sz > 100  
        realrockID = [realrockID; i sz];  
    end 
end 
figure; imshow(rockID,[]); 
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[Y,I] = sort(realrockID(:,2),'descend'); 
srtRockID = realrockID(I,:); 
%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
stat = []; 
for i = 1:size(srtRockID,1) 
        rockMask = BW; 
        currentID = srtRockID(i,1); 
        rockMask(find(rockID ~= currentID)) = 0; 
        [rows,cols] = find(rockID == currentID); 
        A = max(min(rows)- 1, 1); 
        B = min(max(rows)+ 1, RN); 
        H = max(rows) - min(rows)+ 1; 
        C = max(min(cols)- 1, 1); 
        D = min(max(cols)+ 1, CN); 
        L = max(cols)- min(cols) + 1; 
        singleMask = rockMask(A:B,C:D); 
        rockimg = double(img(A:B,C:D)).*double(singleMask); 
        singRock = double(img).*double(rockMask); 
        imwrite(singleMask,['img_m',int2str(i),'.jpg']); 
        imwrite(uint8(rockimg),['img_r',int2str(i),'.jpg']); 
        stat = [stat; i L H]; 
end 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	


