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Abstract

This thesis studies the compilation and runtime techniques to improve the performance of dynamic

scripting languages using R programming language as a test case.

The R programming language is a convenient system for statistical computing. In this era of

big data, R is becoming increasingly popular as a powerful data analytics tool. But the performance

of R limits its usage in a broader context. The thesis introduces a classification of R programming

styles into Looping over data(Type I), Vector programming(Type II), and Glue codes(Type III),

and identified the most serious overhead of R is mostly manifested in Type I R codes. It pro-

poses techniques to improve the performance R. First, it uses interpreter level specialization to do

object allocation removal and path length reduction, and evaluates its effectiveness for GNU R

VM. The approach uses profiling to translate R byte-code into a specialized byte-code to improve

running speed, and uses data representation specialization to reduce the memory allocation and

usage. Secondly, it proposes a lightweight approach that reduces the interpretation overhead of R

through vectorization of the widely used Apply class of operations in R. The approach combines

data transformation and function vectorization to transform the looping-over-data execution into a

code with mostly vector operations, which can significantly speedup the execution of Apply op-

erations in R without any native code generation and still using only a single-thread of execution.

Thirdly, the Apply vectorization technique is integrated into SparkR, a widely used distributed R

computing system, and has successfully improved its performance. Furthermore, an R benchmark

suite has been developed. It includes a collection of different types of R applications, and a flexible

benchmarking environment for conducting performance research for R. All these techniques could

be applied to other dynamic scripting languages.
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The techniques proposed in the thesis use a pure interpretation approach (the system based on

the techniques does not generate native code) to improve the performance of R. The strategy has

the advantage of maintaining the portability and compatibility of the VM, simplify the implemen-

tation. It is also a very interesting problem to see the potential of an interpreter.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Dynamic Scripting Languages

Dynamic Scripting Languages are generally used to refer programming languages with features

like dynamic evaluation (without Ahead-Of-Time compilation), high level abstraction and con-

cepts, dynamic typing, and managed runtime. Examples of popular dynamic scripting languages

include JavaScript, Python, PHP, Ruby, Matlab, R, etc.. These languages are becoming more

important in the programming language spectrum recently years. About half of the top 10 most

popular programming languages in both the TIOBE programming community index[30] and the

IEEE Spectrum list[74] are dynamic scripting languages. Many dynamic scripting languages have

been widely adopted including JavaScript for web client interface, PHP and Ruby for web front-

end applications, Matlab for technical computing, R for statistic computing, and Python for a wide

range of applications.

However, there is still one major problem that inhibits the pervasive usage of dynamic script-

ing languages, the relatively low performance compared with their static language counterpart.

The shootout benchmark[4] report shows that an implementation of some common algorithms in

dynamic scripting languages is typically over 10x slower than the implementation in static lan-

guages. There are mainly two reasons for the low performance. First, the interpretation overhead

since most of the scripting languages are interpreted in a managed environment. Secondly, the

runtime overhead to dynamically manage the runtime resources used in the dynamic execution.

1



Many approaches have been proposed to reduce the two kinds of overheads in the past decades,

such as Just in Time Compilation (JIT) and Specialization. These techniques greatly improved the

performance of dynamic scripting languages although there are still many unsolved problems.

1.1.2 R Programming Language

Thanks to the advent of the age of big data, R[14] has become a rising star among the popular

dynamic scripting languages. R is a tremendously important language today. According to the NY

times [81]:

R is used by a growing number of data analysts inside corporations and academia.

It is becoming their lingua franca partly because data mining has entered a golden

age, whether being used to set ad prices, find new drugs more quickly or fine-tune

financial models. Companies as diverse as Google, Pfizer, Merck, Bank of America,

the InterContinental Hotels Group and Shell use it.

In other words, the reason for the growing importance of R is the emergence of big data. In the

case of business, this emergence is leading to a revolution that shifts the focus of information pro-

cessing from the back-office, where work was carried out by traditional data processing systems,

to the front-office where marketing, analytics, and business intelligence [59] are having a growing

impact on everyday operations.

One illustration of R’s popularity is that most of the competitors on Kaggle.com, the No.1

online website in solving business challenges through predictive analytics, use R as their tools to

solve the contest problems[7]. In fact, the number of R users in Kaggle.com is significantly higher

than the number of users of other languages, such as Matlab, SAS, SPSS or Stata, (see Figure 1.1).

R can be considered as the lingua franca for data analysis today, and is therefore of great

interest. Today, there are more than two million users of R, mainly from the field of data analysis,

a scientific discipline and industry that is rapidly expanding. According to [73]:

2



Figure 1.1: Software used in data analysis competitions in 2011[45]

Long gone are the days when R was regarded as a niche statistical computing tool

mainly used for research and teaching. Today, R is viewed as a critical component of

any data scientist’s toolbox, and has been adopted as a layer of the analytics infras-

tructure at many organizations

The popularity of R is mainly due to the productivity benefits it brings to data analysis. R

contributes to programmer productivity in several ways, including the following two: the avail-

ability of extensive data analysis packages that can be easily incorporated into an R script and the

interpreted environment that allows for interactive programming and easy debugging.

1.1.3 Performance Problems of R

The downside, and the justification for this thesis, is that R shares the limitations of many other

interactive and dynamically typed languages: it has a slow implementation1. Unfortunately the

performance of R is not properly understood. Some reported orders of magnitude slowdowns

of R compared to other languages. Figure 1.2 compares the performance of a set of common

1R language has only one official implementation GNU R. The performance of R in this thesis refers the perfor-
mance of GNU R
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algorithms [4] implemented in different languages. It shows that for the implementations of those

algorithms, R is more than two orders of magnitude slower than C and twenty times slower than

Python (also an interpreted scripting language). Not only is R slow, it also consumes a significant

amount of memory. All user data in R and most internal data structures used by the R runtime are

heap allocated and garbage collected. As reported in [61], R allocates several orders of magnitude

more data than C. Memory consumption is both a performance problem (as memory management

and data copying contribute to the runtime overhead) and a functional problem (as it limits the

amount of data that can be processed in memory by R codes). To cope with the performance and

memory issues of R, it is a common practice in the industry for data scientists to develop initial

data models in R then have software developers convert R codes into Java or C++ for production

runs.
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Figure 1.2: Slowdown of R on the shootout benchmarks relative to C and CPython.

In contrast, some users claimed that their R codes run as fast as any native code and are indeed

used in production. Both claims are partially true since the performance or R codes depends on

how the R codes are written.

R programs can be classified into three categories[84], Type I (looping over data), Type II

(vector programming), and Type III (glue codes). The evaluation shows that the significant perfor-

mance problems only appear in Type I R codes. The performance gap between R and C/Python

showed in Figure 1.2 are the result of the Type I programming. Type II codes are much more ef-

ficient compared with Type I. These codes mainly suffer the performance problems of losing data
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locality due to long vector computation. Finally, Type III codes’ performance is purely dependent

on the back-end implementation (in C and FORTRAN) of the R library, and it belongs to the static

language domain.

While many R users are forced to use the Type III style in production codes due to the heavy

overhead of Type I and II codes, according to [61], a significant portion of R codes still spend

most of the execution time in Type I and II codes. And it is a common practice that Type I

and Type II R codes are rewritten using other languages for production environment due to the

slowness and memory consumption of R codes. Clearly, there are great benefits in having a highly

efficient implementation of R for Type I and II codes so that R can be a productive programming

environment where glue codes and main computation can be implemented in a uniform fashion.

1.2 Contributions

This thesis studies the compilation and runtime techniques to improve the performance of dynamic

scripting languages. It makes the following contributions to tackle the poor performance problems

of R:

• Allocation removal and path length reduction via interpreter-level specialization

This thesis describes an optimized R byte-code interpreter, named ORBIT (Optimized R

Byte-code InterpreTer). ORBIT is an extension to the GNU R VM. It performs aggressive

removal of object and reduction of instruction path lengths in the GNU R VM via profile-

driven specialization techniques. The ORBIT VM is fully compatible with the R language

and is purely based on interpreted execution. It uses a specialization JIT and runtime that

focus on data representation specialization and operation specialization. For the benchmarks

of Type I R codes, the current ORBIT is able to achieve an average of 3.5X speedups over

the GNU R VM and outperforms on the average most other R optimization projects that are

currently available.
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• Vectorization of R Apply operations to reduce interpretation overhead

This thesis presents a lightweight approach that reduces the interpretation overhead of R

through the vectorization of the widely used Apply class of operations in R. The normal

implementation of Apply incurs in a large interpretation overhead resulting from itera-

tively applying the input function to each element of the input data. The proposed approach

combines data transformation and function vectorization to transform the looping-over-data

execution into a code with mostly vector operations, which can significantly speedup the

execution of Apply operations in R.

The vectorization transformation has been implemented as an R package that can be invoked

by the standard GNU R interpreter. As such, the vectorization transformation does not re-

quire any modification to the R interpreter itself. The package automatically vectorizes the

Apply class of operations. The evaluation shows that the transformed code can achieve up

to 22x speedup (and 7x on average) for a suite of data analytics benchmarks without any

native code generation and still using only a single-thread of execution.

• Improving distributed R computing systems with operation vectorization

New compiler transformations are presented that improves the performance of SparkR[82],

by extending the Apply vectorization technique just discussed into a two-level compiler

transformation. The outer level is used to distribute data and computation while the inner

level to reduce interpreter overhead. This transformation integrated with the SparkR inter-

faces. A two-level Reduce schema is also used to get the correct result. With these trans-

formations, the SparkR’s performance is doubled in the benchmark composed by a bunch of

distributed algorithms.

• Portable R benchmark suite and benchmarking environment

A suite of micro-benchmarks was developed as well as an R benchmarking environment.

One challenge we face in the study of strategies for improving R performance is the lack
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of a proper performance benchmarks for R. Another problem is that different R language

implementations have different interfaces which causes the comparison of different R opti-

mization techniques hard to conduct. Based on the classification R programs into Type I, II,

and III styles, a collection of different types of R applications was developed and standard-

ized. This collection is expected to facilitate researchers in this domain to locate the proper

optimization targets. Furthermore, a flexible R benchmarking environment is provided to

enable different R implementations to be measured with the benchmarks in the same man-

ner. The benchmarking environment can be extended by plugging in additional meters to

measure performance metrics such as Operation System data and hardware performance

counters. The benchmark suite and benchmarking environment can help researchers in this

domain easily get deep understanding of R’s behaviors.

1.3 Thesis Organization

The remainder of the thesis is structured into chapters as follows:

• Chapter 2: Discusses the high-level background of the implementation and common opti-

mizations for dynamic scripting languages. Then it describes the GNU R Virtual Machine

(VM) structure, analyzes the performance issues for better understanding the approaches

proposed in this thesis.

• Chapter 3: Describes the new interpreter level specialization techniques, including byte-

code specialization and object representation specialization, and the implementation of these

techniques in ORBIT VM.

• Chapter 4: Introduces the vectorization transformation of Apply operations in R, includ-

ing the transformation framework, operation and data transformation algorithms, and the

realization of the transformation in an R library.
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• Chapter 5: Describes the compiler transformations and runtime optimizations used in ap-

plying vectorization into the SparkR distributed computing system.

• Chapter 6: Introduces the R benchmark suites as well as the R benchmarking environment.

• Chapter 7: Discusses the related work in dynamic scripting language domain and optimiza-

tion work in R language area.

• Chapter 8: Concludes the thesis and proposes future work.
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Chapter 2

Background

This chapter discusses the topics that help understand the remainder of the thesis. First, it describes

the high level components that are required in implementing a dynamic scripting language. The

typical performance problems and the common optimization techniques are introduced then. Sec-

ondly it gives a brief introduction of the R language, and explains the the GNU R Virtual Machine

(VM) structure, analyzes the performance issues, and the optimizations used in GNU R VM.

2.1 Dynamic Scripting Language

2.1.1 Implementation of a Dynamic Scripting Language

Like static languages such as C and Java, the basic structure of implementation a dynamic scripting

language (DSL) is similar. The source code is translated into the executable control sequences that

the underlying hardware can understand and execute. This requires the compiler path (lexer, parser,

optimizer, etc.). A dynamic language also requires object descriptors to enable the identification

of different types of objects. Furthermore, the language implementation needs other components

to handle tasks such as code loading, interface with other languages, etc..

Furthermore, DSLs have many unique language features, which require special implementa-

tions. The following section describes a few common components used in realizing a DSL.

Interpreter In many usage scenarios, the source code of a DSL program is input dynamically,

which means an Ahead-Of-Time (AOT) compilation cannot be conducted. An interpreter is com-

monly used to handle this situation. The interpreter accepts the source code’s representation in the
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form of an Abstract Syntax Tree (AST) or byte-code program, and evaluates it.

There are two types of interpreters, AST interpreters and byte-code interpreters. An AST

interpreter will traverse the AST top-down to trigger the evaluation of the current node’s child

nodes, and merge the result bottom-up to get the final result. Like static languages, the AST of a

DSL can also be translated into a sequence of instructions, called byte-code. However, these byte-

code program will not be executed by the bare hardware processor, but by a software implemented

virtual machine(VM). The VM has implements the logic of each byte-code instruction, and it

interprets the byte-code one instruction at a time, modifies the VM runtime environment, and

finally gets the result in the memory or the VM stack.

Generic Object Representation Similar to static languages, dynamic scripting languages typ-

ically have many different types, such as boolean, integer, string, etc. However, many of these

languages have the feature that only values carrie the type, not the variable, which means a vari-

able can be bound to different values with different types at different time. Because the type of a

variable cannot be decided statically, a common implementation in dynamic scripting languages is

to use generic representation to describe a value object (typically a class with one field to describe

the type, and one field to store the real raw data). Because the size of the generic representation

cannot be decided statically either, objects are dynamically allocated in the heap by most imple-

mentations.

Furthermore, many dynamic languages contain extensible data types, for example a value in

JavaScript can contain arbitrary numbers of fields, and a value in R can be set with arbitrary

numbers of attributes. In order to represent these types, a map or a linked list structure is commonly

used to implement these types.

Dynamic Dispatch Because the variable in dynamic languages does not carry type, the opera-

tions on the variable cannot be decided statically. For example consider an add operation in the

JavaScript expression a+b. If a and b are both numbers, the addition will do number addition
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(64bit floating point addition). But if a and b are all strings, the addition will do string concatena-

tion. And if a is a string while b is a number, the addition operation will first promote the number

into a string, then do string concatenation. The operation of the addition is dynamically decided

according to the types of the input operands. The mechanism is similar to the implementation of

polymorphic operation in object-oriented programming, and is also called dynamic dispatch here.

Dynamic Variable Lookup A variable in a DSL may be or not be defined at a specific point in

the source code. So a common practice in the implementation is not to have static binding for a

variable. As a result, unlike static languages, where a variable can be located through a fixed index

offset, there is no fixed index to locate a variable in the corresponding context frame (a method’s

local frame or the global frame). The common implementation is using the variable’s name to do

a runtime lookup, and find the current bound location to get the value.

Dynamic Memory Management and Garbage Collection Because most of the objects and

resources are allocated dynamically, there are far fewer memory regions allocated statically in a

DSL. Most of the memory allocation requests are resolved as a heap allocation, and require the

language’s runtime to handle the allocation and de-allocation. In order to reduce the burden of the

programmer, Garbage Collection(GC) is typically used by a DSL, although this is not unique to

DSLs. Many static languages also have Garbage Collection, such as Java.

2.1.2 Performance Problems of Dynamic Scripting Languages

As described in Chapter 1, dynamic scripting languages have the benefit of providing interactive

programming environment, high level abstraction and high productivity. The major limitation for

pervasive of these languages is the low performance. According the data reported in the shootout

benchmark website[4], the speed performance gap between dynamic scripting languages and static

languages is typically 10x or higher. This is mainly due to their implementation as described in

Section 2.1.1.
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Interpretation Overhead The interpreter is indeed a software simulated processor to execute the

language’s instruction sequence. The byte-code interpreter is very similar to the hardware proces-

sor, which performs the tasks of fetching a byte-code, decoding the byte-code, loading operands,

performing the computation and storing the result back. Each step requires the execution of many

real native instructions, which are all overhead compared with a pre-compiled native binary from

a static language. The AST interpreter has even higher overhead since it has to traverse the AST

through all kinds of pointers. This kind of traversing is tedious and lack of locality.

Memory Management Overhead Because of the generic object representation, most of the ob-

ject types are expressed as a Boxed object. For example, a primitive integer is not just a 32bit

memory cell in the stack or heap, but a class object that contains the header (type and size at-

tributes) and the raw data. An additional pointer is required to refer the class object, and the object

is commonly allocated in the heap. All of these incur memory usage overhead as well as the need

to execute additional instructions to traverse the pointers and get the real type and value.

Dynamic Dispatch Overhead Due to the dynamic dispatch attribute, the logic to implement

the dynamic dispatch either contains a large control flow to check the types and invoke the cor-

responding routines, or a dispatch table lookup that still requires a table lookup and execution of

comparison operations. This not only increase the native instruction path length but also slow

down the hardware processor’s pipeline due to the complex control flows.

Variable Lookup Overhead Because there is no fixed index for a variable in a frame, a variable

lookup requires a dynamic search in the runtime environment. The lookup operation is imple-

mented either a hashmap search or a linear search. In either way, a string comparison is required,

which has to use many native instructions to get the result. Considering variable read and write are

the most frequent operations in the program, the overhead is very large.
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Memory Management Overhead This overhead comes from the heap allocation of nearly all

the dynamic resources as well as the garbage collection time for them.

2.1.3 Optimization Techniques for Dynamic Scripting Languages

There are many optimization techniques for dynamic scripting languages, starting from the early

research on Smalltalk[40] and SELF [33][32]. The most common used approaches in the modern

dynamic scripting languages are briefly described here.

Byte-Code Interpreter The easiest to build are the AST interpreters. However, due to the rea-

sons explained in the previous section, AST interpreters have very poor performance. One com-

mon optimization is to translate the program AST into a byte-code sequence, and let it be executed

in a byte-code interpreter. The interpretation logic of each byte-code instruction is relatively simple

and can be implemented efficiently. Furthermore the linear execution of the byte-code sequence

has better locality compared with the tree traversal in the AST interpreter. As a result, a byte-code

interpreter is typically much faster than an AST interpreter.

Threaded Code A simple byte-code interpreter uses a switch statement to do the byte-code

dispatch. This approach requires a large dispatch table and numerous comparisons, which cause

poor hardware processor pipeline performance. Threaded code[26] is used to optimize the dis-

patch. The basic idea is that each byte-code instruction has a field to store the interpretation

code’s address for the next byte-code instruction. After interpreting the current instruction, there

is no need to jump back to the big switch to do the dispatch, but directly jump to the next byte-

code instruction’s interpretation logic. Depends on where the next byte-code’s address is stored,

where the operands of an instruction are stored, and how the byte-code execution logic is invoked,

threaded code can be implemented as direct threading, in-direct threading, subroutine threading,

token threading, etc..
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Specialization Because of the dynamic type feature, the execution logic of one operation in a

dynamic scripting language typically consists all the combinations of routines to process different

types. The implementation has many type checks, branches, and unbox routines (to handle boxed

object representations). Specialization is a general term to describe the approach that capture the

behaviors of the real execution for a particular operand type combination with a special routine for

each combination. The special routine have much simpler logic, less checks. On the negative side,

they require a predicate to guard that the operands have the expected type. For example, if both

a and b in the a+b expression of Section 2.1.1 are integers, a special routine to do integer addi-

tion is provided for better performance. Specialization is commonly based on types and contexts,

where the types could be variable types or function types. As a result, specialization typically

requires type analysis or type inference. The implementation of specialization may contain oper-

ation side specialization (generating different instruction sequences), memory side specialization

(define special object representations).

Inline Cache Inline Cache was introduced to optimize the polymorphic procedures invocations

in Smalltalk[37]. It is also used to handle the dynamic dispatch in dynamic languages in a similar

fashion[48]. It is based on the observation that the object type for a dynamic dispatch is relatively

stable at a specific instruction location. So a cache could be allocated there to store last time’s

invocation target. In the next execution at the same location, if the check proves the type is not

changed, the execution can directly invoke last time’s target without the expensive dynamic lookup.

Besides the dynamic dispatch, inline cache can also be used to accelerate the access of a object

field in a dynamic shaped object. For example, accessing the field a of the variable var1 through

var1.b. The simple implementation of object var1 is a table or a map. Every field access

requires a heavy name based lookup, comparing each entry in the table or map. If it finds one

entry’s name is b, the value of that entry is returned. With the hidden class optimization support,

the field access can be transformed as a integer offset based lookup, and use inline cache to cache

last time’s offset.
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Hidden Class Hidden Class was firstly used in SELF implementation[33] to accelerate the dy-

namic object’s field access. If the language has the feature that one object can contain an arbitrary

number of fields, the simple implementation is to use a table or a map to represent the object.

Then the accessing a field would be is slow due to the need of table/map entry lookup. The fact

that a piece of code has a relatively stable field access that enable the optimization described next.

Consider a function with input argument arg, in which arg.a field is accessed first, and then

the arg.b. If there is a class (like a class in a static language) to define the type of the variable

arg, the field access can be changed to a fixed index lookup in the class instance. Hidden class

approach tries to abstract the class structure from the execution sequences. During the execution,

a tree of classes are generated. The parent to children linkage is typically based on the field access

sequence. Then the most precise class to describe a object is found, and the field access can be ac-

cessed using a fixed offset in the class structure, and can be further optimized with the combination

of Inline Cache.

JIT Just-In-Time compilation is commonly used in the optimization of dynamic scripting lan-

guages. Based on the feedback from the interpreter, for example the code execution frequency, the

type information traced or profiled, the code is then passed into a runtime compiler. The compiler

applies code optimizations and generates more efficient code sequences for the next time’s execu-

tion. The more efficient code sequence could be but not limited to native instructions. Other kinds

of representation is possible, for example, JIT AST code into byte-code. Depends on the scope of

the compiler transformation, JIT can be implemented as trace JIT (linear sequence of instructions,

across method boundary), method level JIT, code block JIT (for example, only a loop region).

Native Code Generation Native code generation is also called machine code generation. It

translates the code executed in the interpreter to native code sequence and runs it directly on the

bare processor. It removes the interpretation overhead. However, if other optimizations are not

applied during the native code generation, the runtime overhead is still there. Typically, native
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code generation is the last step of dynamic scripting language optimization. It has the advantage

of removing the interpretation overhead, but also has the limitation of architecture dependent.

2.2 R Programming Language

R language belongs to the dynamic scripting language domain. It is based on the S language [34]

from Bell Labs, and originally developed by Ross Ihaka and Robert Gentleman, where the name R

comes from. It is now developed and maintained by a small group of about twenty people around

the world, which is called R core team. It is traditionally used in statistics domain, and has been

becoming very popular recently years in data science and other domains.

[13] has describes the language in detail, and [61] gave a detail evaluation of the language from

a programming language design perspective. This section only describes some important features

and implementations of R regarding the thesis work.

2.2.1 Taxonomy of Different R Programs

R is not only a dynamic scripting language, but also a vector language. It has built-in vector,

matrix and high-dimension array support. It also has many native languages (C and FORTRAN)

implemented libraries wrapped as packages. Based on how programmer write R programs, there

are three distinct R programming styles. Figure 2.1 shows the examples. Each exhibits a different

performance trait and requires drastically different approaches to performance optimization:

• Type I: Looping over data. This programming style, as shown in Listing 2.1, is the most

natural programming style to most users but is also the worst performing among the three

programming styles. This comes mainly from the overhead of operating on individual vector

elements in R. The several orders of magnitude of performance gap shown in Figure 1.2

ensues from the fact that the codes in that figure are all of Type I.
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1 # ATT bench: creation of Toeplitz matrix
2 for (j in 1:500) {
3 for (k in 1:500) {
4 jk<-j - k;
5 b[k,j] <- abs(jk) + 1
6 }
7 }

Listing 2.1: Type I: Looping Over Data

1 # Riposte bench: age and gender are long vectors
2 males_over_40 <- function(age, gender) {
3 age >= 40 & gender == 1
4 }

Listing 2.2: Type II: Vector programming

1 # ATT bench: FFT over 2 Million random values
2 a <- rnorm(2000000);
3 b <- fft(a)

Listing 2.3: Type III: Glue codes

Figure 2.1: Three different R programming styles.

• Type II: Vector programming. In this programming style one writes R codes using vector

operations as shown in Listing 2.2. When operating mainly on short vectors, Type II codes

suffer similar performance problems as Type I codes (henceforce, Type I also refers short

vector Type II). When applied to long vectors, Type II codes are much better performing,

but may suffer from poor memory subsystem performance due to loss of temporal locality

in a long vector programming style.

• Type III: Glue codes. In this case R is used as a glue to call different native implemented

libraries. List 2.3 shows such an example, where rnorm() and fft() are native library

routines. The performance of Type III codes depends largely on the quality of native library

implementations.
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2.2.2 GNU R Implementation

There is only one official implementation of R language, the CRAN R project [14], and the R

language itself is defined by this implementation. A brief introduction of GNU R virtual machine

with its object representation is described below.

R Source Code R AST Parser 
Byte-code 
Compiler 

R Byte-code 
Pre-compiled 

packages 

AST Interpreter Byte-code Interpreter 

R Runtime Environment 
(Local frames, global frames, built-in function objects) 

Figure 2.2: The GNU R VM.

Figure 2.2 depicts the structure of the GNU R VM since version R-2.14.0 that includes a

parser, two interpreters, and a runtime system that implements the object model, basic operations,

and memory management of R.

AST Interpreter and Byte-code Interpreter

The R AST interpreter is the default interpreter used by the GNU R VM. This interpreter operates

on the Abstract Syntax Tree (AST) form of the input R program and is very slow. Figure 2.3 shows

the R AST interpreter’s performance comparing to C and CPython. The slowdown is even larger

than the number shown in Figure 1.2, where the R byte-code interpreter is used. Since R version

2.14.0, a stack-based R byte-code interpreter [77] was introduced as a better performing alternative

to the AST interpreter. To enable the byte-code interpreter, the user has to explicitly invoke an

interface to compile a region of R code into byte-codes for execution or set an environment variable

to achieve the same goal. Since the two interpreters use the same object model and share most of

the R runtime, it is possible to switch between the two interpreters at well-defined boundaries such

as function calls.
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Figure 2.3: Slowdown of R AST Interpreter of the shootout benchmarks relative to C and
CPython.

The byte-code interpreter has a simple ahead-of-time (AOT) compiler that translates ASTs

generated by the parser to byte-codes. For each function, the R byte-code compiler produces two

components, the symbol table and the byte-code. The symbol table records all the variable names,

constant values and expressions in the source code. The byte-code instruction uses the symbol

table to look for a value. Figure 2.4 shows an example byte-code sequence and the corresponding

symbol table. The detail R byte-code compiler and byte-code format can be found at [78]. The

AOT compiler also performs: simple peephole optimizations, inlining of internal functions, faster

local variable lookup based on predetermined integer offset, and specialization of scalar math

expressions. For Type I codes, the byte-code interpreter is several times faster than the AST

interpreter. Starting from R-2.14.0, many basic R packages are compiled into byte-codes during

installation and executed in the byte-code interpreter.

However, the compilation into byte-code is purely ahead of time, all the byte-codes are type

generic, which still requires dynamic type checking and dispatching. Furthermore, the byte-code

interpreter does not change the GNU R runtime implementation, and it still suffers the same issues

from the runtime as the AST interpreter.
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Idx Value 

1 ‘:’ 

2 1 

3 10000000 

4 1:10000000 

5 i 

6 for(i in …){…} 

7 r 

8 r+i 

9 … 

STMTS 
GETBUILTIN, 1 
PUSHCONSTARG, 2 
PUSHCONSTARG, 3 
CALLBUILTIN, 4 
STARTFOR, 6, 5, (22) 
GETVAR, 7 
GERVAR, 5 
ADD, 8 
SETVAR, 7 
POP 
STEPFOR, (13) 
ENDFOR 

Byte-Code Sequence 
PC 

1 
3 
5 
7 
9 

13 
15 
17 
19 
21 
22 
24 

... ... 

Symbol Table Source Code 

for(i in 1:10000000){    

  r <- r+i; 

} 

... 

R Byte-code Compiler 

Figure 2.4: R byte-code and symbol table representation.

SEXPREC VECTOR_SEXPREC 

sxpinfo_struct sxpinfo 
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SEXPREC* pre_node 
SEXPREC* next_node 
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R_len_t length 
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Figure 2.5: Internal representation of R objects.

R Object Model

The GNU R VM defines two basic meta object representations: SEXPREC (henceforth referred to

as Node object for short) and VECTOR SEXPREC (henceforth referred to as VECTOR or Vector

object for short). As shown in Figure 2.5, an object has an object header (SEXPREC HEADER)

and a body. The object header is same for both SEXPREC and VECTOR. The header contains

three pieces of information:

• sxpinfo that encodes the meta data of an object such as data type and object reference count

• attrib that records object attributes as a linked list
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• prev node and next node that link all R objects for the garbage collector

The VECTOR data structure is used to represent vector and matrix objects in R. The body of

the VECTOR records vector length information and the data stored in the vector. Scalar values are

represented as vectors of length one.

The SEXPREC data structure is used to represent all R data types not represented by VECTOR

such as linked-list and internal R VM data structures such as the local frame. The body of SEX-

PREC contains three pointers to SEXPREC or VECTOR objects: CAR, CDR, and TAG. Using the

three pointers, a linked-list can be easily implemented by SEXPREC in a LISP style.

Figure 2.6 shows a local frame represented as a linked list of entries where each entry contains

pointers to a local variable name, the object assigned to the local variable, and the next entry in the

the linked list. And an environment is composed by several local frames, where in each frame’s

head node, one pointer points to the local frame linked list, one points to its parent frame, and the

last one points to a hash table for fast object lookup.

Node 

Node Node Node 

Vector 
(string) 

Vector 
(double) 

Hashmap 
cache 

‘r’ 1000 

… 

… … 

Parent frame 

Current frame 

r <- 1000 

Figure 2.6: Local Frame Structure

Figure 2.7 presents the structure a matrix is expressed with the Node object and Vector object.

A matrix uses a VECTOR object as the base, and the attrib field in the base object’s header

points to a linked list, where a dim attribute binding is defined. The name of the binding is a

length-three string vector (“dim”), and the value of the binding is a length-two integer vector

([3,4]), which is used to define the first dimension and the second dimension sizes of the matrix.

Although the LISP like data structure is flexible and can represent arbitrary R objects, it also

causes serious performance issues. Thus, traversing the linked structure requires the execution of

numerous instructions. And the big header consumes much space even for simple type objects,
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Vector 
(double) 

Node 

Vector 
(string) 

Vector 
(integer) 

1:12 

… 
attrib 

‘dim’ 3,4 

matrix(1:12, 3, 4) 

Figure 2.7: Matrix Structure

such as simple scalars and vectors. Furthermore, the SEXPREC node object are heavily used

everywhere as the construction units for all other data type objects. As a result, the whole heap of

R runtime is composed by huge amount of small SEXPREC and VECTOR objects.

Memory Management

Memory Allocator The memory allocator of R VM pre-allocates pages of SEXPREC. A request

is satisfied just by getting one free node from a page. The memory allocator also pre-allocates some

small VECTOR objects in different page sizes to satisfy requests for small vectors. A large vector

allocation request is performed through the system malloc.

Garbage Collector R VM does automatic garbage collection (GC) with a stop-world multi-

generation based collector. The mark phase traverses all the objects through the link pointers in

the object headers. Dead objects are then compacted to free pages. Dead large vectors are freed

and returned to the operating system.

Copy-on-write Every named object in R is a value object (i.e., immutable). If a variable is

assigned to another variable, the behavior specified by the semantics of R is that the value of one

variable is copied and this copy is used as the value of the other variable. R implemented copy-

on-write to reduce the number of copy operations, Figure 2.8. There is a named tag in the object

header, with three possible values: 0, 1, and 2. Values 0 and 1 mean that only one variable points

to the object (value 1 is used to handle a special intermediate state1). By default the named value

1http://cran.r-project.org/doc/manuals/R-ints.html
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is 0. When the variable is assigned to another variable, which means more than one variable point

to the same underlying object, the object’s named tag is changed to 2.

VECTOR_SEXPREC 

named = 0 

a 

VECTOR_SEXPREC 

named = 2 

b a # copy 
b <- a 

# modify 
b[1] <- 100 

VECTOR_SEXPREC 

named = 0 b 

VECTOR_SEXPREC 

named = 2 a 

Figure 2.8: R Copy-on-Write Mechanism.

When an object is to be modified, the named tag is consulted. If the value is 2, the runtime

first copies the object, and then modifies the newly copied object. Because the runtime cannot

distinguish whether more than one variable point to the object, named remains 2 in the original

object.

2.2.3 Performance of Type I Codes in R

Type I R programs suffer from many performance problems that have in common with other dy-

namic scripting languages described in 2.1.2, including

• Dynamic type checking and dispatch Most of the byte-code instructions and the runtime

service functions are type generic. For example, the ADD instruction in Figure 2.4 is a

type generic operation. It can supports boolean add, integer add, real number add, complex

number add, and all the combinations of them. The implementations of this instruction have

many checks and branches.

• Generic data representation As described in Section 2.2.2, GNU R uses the generic ob-

ject representation, which requires complex traverse to get the real value and brings a big

pressure to the memory management system.

• Expensive name-based variable lookup The local frame is implemented as a linked list as

described in Section 2.2.2. Each variable lookup requires a linear search and many time
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consuming string comparisons.

• Generic calling convention R’s calling convention can support arbitrary numbers of argu-

ments passing. In order to support it, R uses heap-allocated variable-length argument list,

which requires heap allocation as well as linear linked-list traversal.

On the other hand, R also introduces some unique performance issues that are specific to its

semantics, such as

• Missing value NA number support Not Available, NA, is very useful in statistic computing.

But there is no NA implementation in the processor’s number system, such as IEEE 754

standard. GNU R uses INTEGER MIN to represent NA for integer, and uses a special NaN

(lower word is set to value 1954) to represent NA for double precision float. In order to

maintain the semantic of NA involed computation, special routines are always required in

all the mathematics operations, which causes long instruction path length, and inhibit SIMD

related optimizations.

• Out of bound handling There is no out of bound error. Accessing out of bound value just

returns a NA value, and assigning out of bound value expands the vector, filling the missing

value with NA.

• No reference, assign is copy, and pass-by-value in function calls In the language semantic,

even one element in a very long vector is modified, the whole vector is changed into a new

value. In real implementation, this feature is optimized by copy-on-write support introduced

in the previous section.

• Lazy evaluation R expression is by default a promise. And the promise is bound to the

environment where it is defined. In order to force a promise in the future, a new interpreting

context is created with the environment the promise bound to. Creating new interpretation

context and maintaining all the environments for futures both cause many overhead.

24



A Motivating Example

For Type I R codes, the performance problems ultimately manifest in the form of long instruction

path lengths and excessive memory consumption compared to other languages.

Metrics AST Interpreter Byte-code Interpreter
Machine Instructions 26,080M 3,270M
SEXPREC Object 20M 20
VECTOR Scalar 10M 10M
VECTOR Non-scalar 1 2

Table 2.1: Number of machine instructions executed and object allocated for the example in Fig-
ure 2.4.

Consider the example shown in Figure 2.4 which accumulates a value over a loop of 10 million

iterations. Table 2.1 shows the number of dynamic machine instructions executed and the number

of objects allocated for the loop using R-2.14.1 running on an Intel Xeon processor. On average,

each iteration of the accumulation loop takes over 2600 machine instructions if executed in the

AST interpreter or 300 machine instructions if executed in the byte-code interpreter. The number of

memory allocation requests is also high. For instance, the AST interpreter allocates two SEXPREC

objects and one VECTOR object for each iteration of the simple loop. The ephemeral objects also

give a large pressure to the garbage collection component later.

Two main causes of excessive memory allocations are identified in this code. There are two

variable bindings in each iteration, the loop variable i, and the new result r. Each binding creates

a new SEXPREC object to represent these variables in the local frame. The scalar VECTOR is

the result of the addition (the interpreter does not create a new VECTOR scalar object for the loop

index variable). Because all R objects are heap allocated, even a scalar result requires a new heap

object to hold it. The byte-code interpreter optimizes the local variables binding. But a scalar

vector is still required for the addition. Furthermore, a very large non-scalar vector “1:10000000”

is allocated to represent the loop space.
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Chapter 3

Optimizing R via Interpreter-level
Specialization

3.1 Overview

The previous chapter has discussed the performance issues of Type I R codes, and revealed that the

problem is mainly from the design and implementation of the GNU R VM. Many research work

have tried to improve R’s performance through building a brand new R virtual machine. However,

these approach all require design a new memory object model that causes these new VMs not

compatible with the GNU R implementation. The compatibility is the most importance concern

of improving R, because thousands of R libraries hosted on CRAN relies on the internal structure

of GNU R memory object model. If the techniques to improve R will break the compatibility, the

adoption of these techniques will be seriously inhibited.

In this chapter, a new interpreter-level specialization based approach will be described. The

approach aims at improving the performance of Type I codes, while maintaining the full compati-

bility with the GNU R VM. There have been many attempts in the past to improve performance of

other scripting languages, such as Python and Ruby, while maintaining the compatibility. These

attempts have had limited successes [31]. The approach proposed here offers a new approach to

tackling the problem that combines JIT compilation and runtime techniques in a unique way:

• Object allocation removal. Chapter 2 has discussed that excessive memory allocation is the

root cause of many performance problems of Type I R codes. As reported in [61], R allocates

several orders of magnitude more data than C does. This results in both heavy computation

overhead to allocate, access, and reclaim data and excessively large memory footprints. For

certain type of programs such as those that loop over vector elements, more than 95% of
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the allocated objects can be removed with optimizations. In order to significantly bridge the

performance gap between R and other languages, the approach need to remove most of the

object allocations in the GNU R VM not just some of them.

• Profile-directed specialization. Specialization is the process of converting generic opera-

tions and representations into more efficient forms based on context-sensitive information

such as the data type of a variable at a program point.

When dealing with overhead in the runtime of a generic language, such as R’s, the profile-

directed specialization is a more effective technique than using traditional data-flow based

approaches. This is because program properties obtained by the latter are often too impre-

cise to warrant the application of an optimization. For instance, traditional data-flow based

allocation removal techniques, such as escape analysis, often cannot achieve the target of re-

moving most allocation operations. Instead, the framework based on the proposed approach

relies heavily on specialization and shifts many tasks of a static compiler to the runtime. For

instance, the object representation specialization is simple yet more effective than traditional

approach of unboxing optimization based on escape analysis.

• Interpretation of optimized codes. The approach operates entirely within the interpreted

execution. The JIT compiles original type-generic byte-codes into new type-specific byte-

codes; and the R byte-code interpreter is extended to interpret these new specialized byte-

codes.

The approach focuses on interpretation for two reasons. First, not having generate native

codes in the initial prototype greatly simplifies the implementation without affecting the abil-

ity to focus on the objectives: allocation removal and specialization. Secondly, the approach

is a new solution space for scripting language runtime that delivers good performance while

preserving the simplicity, portability and interactiveness of an interpreted environment.

This approach has been implemented as ORBIT (Optimized R Byte-code InterpreTer), an

extension to the GNU R VM. On Type I codes, ORBIT achieved an average speedup of 3.5 over
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the GNU R byte-code interpreter and 13 over the GNU R AST interpreter, all without any native

code generation.

3.2 ORBIT Specialization Example

The key optimization technique used in ORBIT is specialization. Considering the generic ob-

ject representation of GNU R is one of the most important factor that impacts the performance,

ORBIT’s specialization expands not only operation side specialization, but also memory represen-

tation specialization. Figure 3.1 shows the high level idea.

R  Code 

R Object 
format 

Byte-code compiler ORBIT 

R  Byte-code 
Specialized 
Byte-Code 

Specialized 
Data format 

Figure 3.1: Specialization in ORBIT VM

A small specialization example is described here first to explain the key operations of the two

kinds of specialization, and the next section will describe each components in ORBIT VM.

foo <- function(a) { 
  b <- a + 1 
} 

Idx Value 

1 “a” 

2 1 

3 a+1 

4 b 

STMTS 
GETVAR, 1 
LDCONST, 2 
ADD, 3 
SETVAR, 4 
INVISIBLE 
RETURN 

R Opt Engine 

If “a” is real 
scalar 

STMTS 
GETREALUNBOX, 1 
LDCONSTREAL, 2 
REALADD 
SETUNBOXVAR, 4 
… 

Specialized byte-code 

Specialized data 
representation 

SEXPREC ptr 
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real scalar 

Stack 

Function source 

Symbol Table 

Byte-Code 
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1 
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5 
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SEXPREC ptr 
Stack SEXPREC ptr 

SEXPREC ptr 
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representation VECTOR 

VECTOR 
a 

1 

PC 
1 
3 
5 
7 
9 

10 

Generic Domain Specialized Domain 

Figure 3.2: An example of ORBIT specialization.
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Figure 3.2 shows a small example of specialization. As described in Section 2.2.2, the byte-

code instructions are type generic. For example, GETVAR looks up the variable a in the local

frame, and pushes the pointer to it into the stack. LDCONST first duplicates (creating a new

VECTOR) the value in the constant table, then pushes the pointer to the newly created vector into

the stack. The ADD checks the types of the two operands at the top of the stack, and dynamically

chooses the addition routine according to the type of the two operands. A new VECTOR is created

during the addition to hold the result, and the pointer to it is pushed into the stack.

In order to do the specialization, ORBIT needs to know the type of a. The specialization

component in ORBIT starts with a runtime type profiling. Then, it uses the profiled type to do a

fast type inference. In this example, the type of the constant is known statically as real. If the type

of a is profiled as real, too, the compiler will generate specialized code assuming that the ADD

operates on real values. Furthermore, the compiler uses specialized data representation, unboxed

real scalar in this case, to represent the values. The right hand side of Figure 3.2 is the specialized

result. The compiler makes use of a new class of byte-code instructions and a new data format

for the specialization. The specialized byte-code does not require the dynamic type checking and

dispatching. The specialized data representation saves the copy of the constant value and the new

heap object to store the result.

However, the type of the variable a may not be real scalar the next time this code segment is

executed. To handle this, the compiler adds a guard check in the instruction GETREALUNBOX.

A guard failure translates the specialized data format into the original generic data representation,

and rolls back to the original type generic byte-code.

This simple example illustrates the main characteristics of the proposed approach, including

• Runtime type profiling and fast type inference

• Specialized byte-code and runtime function routines

• Specialized data representation

• Redundant memory allocation removal
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• Guards to handle incorrect type speculation

3.3 ORBIT Components

R Byte Code 
Compiler 

R Byte-code Interpreter 

Specialized Byte-Code 
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Runtime 
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R Opt Byte-Code Compiler 

Native Code 
Generation 

(future) 
Code Selection and Guard 

Failure Roll Back 

Runtime 
feedback Original 

Component 

New 
Component 

Byte-code 

Specialized 
byte-code 

Figure 3.3: The ORBIT VM.

Figure 3.3 shows the diagram of the architecture of ORBIT VM. It is an extension to the

GNU R interpreter. It does a lightweight type profiling the first time a function’s byte-code is

executed. The second time the function is executed, ORBIT compiles the original byte-codes into

specialized byte-codes with guards. Specialized byte-codes use the extended data representation

and are interpreted in a more efficient way. If a guard detects a type speculation failure, the

interpreter rolls back to the original data format and byte-code sequence, and uses the meet (union)

of the types as a new profile type.

3.3.1 Runtime Type Profiling

Although type inference can be done without runtime type profiling, pure static type inference is

complex and not sufficiently precise especially in the presence of dynamic attributes like those of

R. By only instrumenting a few instructions, ORBIT simplifies the type inference and get a more

precise result. The interpretation logic of a few instructions is modified to insert the profiling logic.

Table 3.1 lists these instructions.
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Table 3.1: Instrumented R Byte-code instructions in ORBIT

Category Instructions
Load GETVAR, DDVAL,GETVAR MISSOK, DDVAL MISSOK
Function Call CALL, CALLBUILTIN, CALLSPECIAL, ENDASSIGN
Vector Sub-elements Access DFLTSUBSET, DFLTC, DFLTSUBSET2, DOLLAR

The profiler first gets the type of the object on top of the interpreter stack after an instrumented

instruction is interpreted, and stores the type into a profiling table indexed with the interpreter’s PC.

The type information of a generic R object is stored in three places: the type in the header, attrib

also in the header to specify the number of dimensions (there is no dim attribute if the number

of dimensions is one, i.e. in the case of a vector), and length in the body section to specify the

vector length of VECTOR. The profiler checks all these attributes, and combines them into a type

(see next section) defined by ORBIT. If one instruction is profiled several times (in the same PC

location), the final type is the meet of all the types profiled. Because of the R object structure, the

type profiling is more complex than other dynamic languages. By carefully design the profiling

component, the overhead of profiling is typically less than 10%.

3.3.2 R Optimization Byte-code Compiler and Type Specialized Byte-code

After the profiling information is captured, R optimization byte-code compiler (henceforth referred

to as R Opt compiler) use the profiling information to translate the original type generic byte-code

into a type specialized byte-code.

The compiler has the following passes

• Decode Translate the binary chunk of the byte-codes into R Opt compiler’s internal byte-

code representation.

• Build CFG and stack Build the control flow graph, and analyze the stack shape before and

after each instruction.

• Type inference Analyze each object’s type, including objects in stack and variables defined

in the symbol table.
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• Optimizations A few optimization passes that do the real code specialization and byte-code

rewriting.

• Redundant clean Clean redundant instructions (Scalar Value Cache load/store, and invalida-

tion).

• PC Recalculation Calculate the new PC value for each byte-code instruction.

• Reset Jump PC Set the jump target values of the control flow related instructions.

• Encode Translate the R Opt compiler’s internal byte-code representation back into the binary

format of the R byte-codes.

The Decode, Build CFG and stack, PC Recalculation, Reset Jump PC and Encode passes fol-

low the standard algorithms described in [21]. The techniques used for other passes are described

following.

The type specialized byte-codes include about 140 byte-codes as supplemental to the original

R byte-code interpreter’s 90 type generic byte-codes. These byte-codes are formatted and encoded

in the same way as the original byte-codes. The R Opt compiler just performs byte-code replace-

ment. If the type is known, and an optimization is identified, the original type generic byte-code

is replaced by the type specialized byte-code. Otherwise, the original byte-code is remained. This

design leads to a fast transformation and the best possible compatibility to the original byte-code

interpreter. A detail list of the type specialized byte-codes could be found in the ORBIT source

code.

3.3.3 Type Inference

A new simple type lattice system of R is defined here for the type inference, shown in Figure 3.4.

All vector types have two components, base type (logical, integer, real, etc.) and the length.

The initial type information comes from the type profiling and the constant objects’ type. The

initial type of a stack operand generated by a profiled instructions is set to the profiled type. If
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Figure 3.4: The type system of ORBIT.

there is no profiling result (the path is not executed during the profiling run), the type is set to the

bottom type, generic R object. The initial type of a stack operand generated by a load constant

instruction is set to the type of the constant. All other types of stack operands and local frame

variables are set to the undefined (top) type.

The type inference algorithm used here is the standard data flow based algorithm. The algo-

rithm follows the byte-code interpretation order and uses each instruction’s semantics to compute

types until all the types are stable. Different to the traditional type inference, all the types that rely

on profiling are marked as speculated types. All the specialized instructions that use speculated

types contain a guard to do the check.

3.3.4 Object Representation Specialization

In order to efficiently represent a typed R object, specialized data structures are used in the ORBIT

VM, including 1) a specialized interpreter stack, and 2) the Unboxed Value Cache to hold values

in the current local frame.

Stack with Boxed and Unboxed Values

The original R vector type object is always represented as R’s VECTOR object, even if a scalar

object. In the specialized ORBIT runtime, scalar numbers (boolean, integer and real) are stored
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Figure 3.5: The VM stack and type stack in ORBIT.

as unboxed values, and are stored directly into the VM stack. As the VM stack can store both

object pointers and unboxed values, another data structure to track all the unboxed values in the

VM stack is required. It is called Type Stack, and is illustrated in Figure 3.5. Each element in the

type stack has two fields: the physical address of the unboxed value in the VM stack, and the type

of that value. Type specialized byte-code instructions operate on unboxed values in the VM stack

as well as update the records in the type stack.

The type stack is used for two purposes. First, during a garbage collection process, the marker

uses it to ignore unboxed values stored in the VM stack. Secondly, during a guard failure roll back,

the guard failure handler uses it to restore the VM stack to the type generic object representation.

Unboxed Value Cache

The values of local variables of GNU R VM are stored in the local frame (a linked list). Load and

store operations traverse the linked list, and read or modify the binding cells. When storing a new

variable, the interpreter must create and insert a new binding cell SEXPREC object. If the object

value can be represented as an unboxed value, ORBIT optimizes the load or the store by making

use of an Unboxed Value Cache that avoids the need to do a traversal of the frame linked list as

well as create a new binding cell object for store operation.

This cache is only used to store the values of local frame variables. Each cache entry is used

for one local frame variable. The index of the variable in the byte-code symbol table is used to

locate the cache entry. Each cache entry has three fields, the value to store the unboxed value, the
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type of the value, and the state of the cache entry. There are three cache entry states, INVALID,

VALID, MODIFIED, Figure 3.6. The initial state is INVALID. A scalar value LOAD instruction

checks the cache entry’s state. If it is INVALID, the instruction loads the original object, unboxes

and stores it into the value cache and sets the entry as VALID state. The instruction then pushes

the unboxed value on top of the VM stack. If the entry is VALID or MODIFIED, it directly pushes

the unboxed value on top of the VM stack. A store scalar value instruction directly modifies the

unboxed value in the cache entry and sets the entry state as MODIFIED.

INVALID VALID 

MODIFIED 

First time read var and unbox 

Write unboxed var 
Write back 

Read unboxed var 

Write 
unboxed var 

Read/write 
unboxed var 

Write back 

Figure 3.6: States of Unboxed Valued Cache

Because there are two places to store one value, the unboxed value cache and the local frame,

a write-back mechanism is used to do the synchronization. The write-back process creates a new

R generic object, and binds it back to the local frame. A write-back could be a global write-back

or a local value write-back. A global write-back happens when the control flow leaves the current

context, such as a non built-in function call. It writes back all the modified entries in the cache.

R’s semantic allows a callee to access the frames of the caller. The global write back ensures

the callee always accesses the latest value in the caller. A local value write-back is performed

before a non-specialized load variable instruction. This type of instructions still access the local

frame’s linked list, and the local write-back only redefines the variable accessed by the instruction.

Compared with the original local frame operations, scalar variable read and write only access the

unboxed values, and save numerous operations needed for traversing the linked list and creating

new R objects.
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3.3.5 Operation Specialization

As described in Section 3.3.2, ORBIT introduces many type specialized byte-codes. By using the

result of type inference, R Opt compiler translates the original generic instructions into the type

specialized instructions. These new instructions are interpreted more efficiently in the extended

interpreter. Furthermore, thanks to the object representation specialization, much of specialized

operation only needs to interact with the new data representation, which is faster and requires less

memory allocation.

Load and Store of scalar values Based on the type inference result, a scalar object’s load and

store instructions will be changed to the specialized load and store instructions. The new load

instruction just looks up the variable in the local frame (if not found, it looks up in the parent

frames), unboxes it and puts it into the Unboxed Value Cache and onto the top of the VM stack.

A load constant instruction puts the unboxed value onto the top of the VM stack. The new store

instruction only needs to update the value in the Unboxed Value Cache.

Mathematics Operations The mathematics operations instructions involving scalars and vec-

tors are transformed into type specialized math instructions. For scalar values, these new instruc-

tions are applied to unboxed values, and the result is also an unboxed value in the VM stack.

Mathematics operations involving vectors use the type information to do a direct dispatch, saving

runtime checks.

Conditional Control Flow Operations Most of the conditional control operations use scalar

values to determine the destination of the branch. These instructions are changed to specialized

conditional control flow instructions, that can use the unboxed value on the top of the VM stack to

control the branch.

Built-in Function Calls Some built-in functions only uses scalar values as arguments such as

the docolon (:) function which accepts the range limits as arguments. In the byte-code interpreter,
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docolon always creates a linked list to store the arguments. By leveraging the object representation

specialization, the docolon call is changed to a special byte-code, which will use a simplified

calling convention, and use the unboxed scalar values as arguments. Furthermore, if the result of

a docolon function is used only to specify the loop iteration space, ORBIT ignores the docolon

function call, and uses the unboxed start and end values directly in the loop.

For-loop The for-loop could benefit from the known type of the loop variable. If the loop vari-

able is a number vector, they are stored into the Unboxed Value Cache and the write-back to the

local frame is delayed until the end of the loop (or even further). If the loop index variable is

a result of docolon, e.g. for(i in 1:1000), a specialized for-loop byte-code sequence is

generated to directly use the lower and upper bounds for the loop.

SubSet and SubAssign SubSet and SubAssign are similar to the built-in function calls. The

default calling convention needs to create an argument list to store the value and the index. By

using the type information and unboxed values, new specialized byte-codes are introduced with

the new calling convention that uses the unboxed arguments.

3.3.6 Guard and Guard Failure Handling

All the specializations depend on the type information of the stack operands and local variables.

However, many types are inferred from the profiled type. This speculated type may be wrong in

subsequent executions of the code segment. Suppose the variable a in Figure 3.2 is an integer

vector in another function invocation, the specialized instruction GETREALUNBOX, REALADD,

and SETUNBOXVAR cannot accept the new a. A guard is used to handle this situation.

A GUARD has two operands, the expected type of the operand on top of the stack, and the

jump back PC value in the original byte-code sequence. Because all the type runtime checks are

only needed after a load or a function call or a subset instruction, a GUARD is appended after the

specialized instruction. The type of the operand on top of the stack is compared with the type
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specified in the GUARD instruction. If the types do not match, a guard failure is triggered.

During a guard failure handling, the VM stack will be restored to its generic form. All the

unboxed values in the VM stack will be boxed using the record in the type stack. The Unboxed

Value Cache will be globally written back. Finally, the interpreter will switch back to the original

generic byte-code sequence. And the new type of that object will be recorded in the profiling table

for future type inferences.

3.3.7 Other Optimizations

In order to reduce the overhead of ORBIT interpreter, except the specialization optimizations, a

few other byte-code level optimizations and runtime optimizations are used.

Super Byte-code It is similar to Superops described in GNU Smalltalk implementation [29]. A

few super byte-codes are defined by combining some commonly used sequences of byte-codes to

reduce the interpretation overhead. For example, GETVAR, UNBOXINT and GUARD are combined

into GETINTUNBOX in ORBIT.

Redundant Box and Unbox Removal Because all the byte-code rewriting transformations are

pee-hole optimizations, it’s possible a BOX instruction is followed by an UNBOX instruction, or

vice versa. This transformation just removes this kind of redundant.

Redundant Write-back Removal Write-back instructions are very heavy since a local variable

binding should be linear searched, and new R objects should be allocated. It’s important to min-

imize the number of write-backs. Because of the same reason of pee-hole optimization, some

write-back instructions may be redundant in the global scope. A global data flow algorithm is used

here to model the cache state of all the local variables. If a write-back instruction is presented as

the variable is still in VALID state in the unbox value cache, this write-back instruction will be

removed.
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Redundant GUARD Removal It is similar to Redundant Write-back Removal. Based on the

global data flow algorithm, if a GUARD has already been guarded by a previous GUARD, the later

GUARD will be removed.

Reuse No Reference Vector Storage GNU R uses NAMED tag in the object header to indicate

how many variables are bound to the value object, Section 2.2.2. But it does not specify how the

NAMED should be for an intermediate value object in the stack. Supposing an expression a+b+c,

the sub-expression a+b is first evaluated, and the result is stored on top of the stack, and then

c is loaded into the stack, and do the addition again. The GNU R will allocate a new vector to

store a+b, and then another new vector to store a+b+c. An simple runtime optimization is used in

ORBIT to check the NAMED value of the intermediate result on top of the stack for the specialized

byte-code that ORBIT introduced. If the NAMED value is 0 (for example the result of a+b), the

vector will be reused to store the next math computation’s result (here the result of a+b+c). The

simple optimization is very effective for long vector math operation, which is quite common in R

since it is a vector language.

3.4 Evaluation

The performance of ORBIT has been evaluated to show the effectiveness of the specialization

techniques used in ORBIT. The method is measuring the running time and the number of mem-

ory object allocations, and comparing these values towith their counterpart in the GNU R AST

interpreter and the byte-code interpreter.

3.4.1 Evaluation Environment and Methodology

The evaluation was performed on a machine with one Intel Xeon E31245 processor and 8G of

memory. The turbo boost of the CPU was disabled to fix the CPU frequency at 3.3GHz. The

Operating System is Fedora Core 16. GCC 4.6.3 was used to compile both the GNU-R interpreter
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and the ORBIT VM. All the R default packages were pre-compiled into byte-code as the default

installation configuration.

Because the current implementation of ORBIT targets Type I codes, the evaluation focuses on

comparing the running time and memory allocations between ORBIT and GNU R interpreters on

Type I codes. In order to measure the maximum performance improvement at the steady-state, the

evaluation measures the running time of ORBIT only when it runs into stable, not counting the

overhead of profiling and compiling. The overhead is separately discussed in Section 4.5.4. All

the execution times reported here are the average of five runs. The number of memory allocation

requests was collected inside ORBIT, which is instrumented to profile memory allocations.

3.4.2 Micro Benchmark

The first benchmark suite measured is a collection of micro benchmarks, which include CRT (Chi-

nese Reminder Problems), Fib (Fibonacci number), Primes (Finding prime numbers), Sum (Ac-

cumulation based on loop), GCD (Greatest Common Divisor). Although these benchmarks mostly

operate on scalars and vectors, they covers a variety of control constructs such as conditional

branches, loops, function invocations and recursion. They are common across R applications. The

R byte-code compiler[77] uses the similar benchmarks to measure performance improvements.
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Figure 3.7: Speedups on the scalar benchmarks.

Figure 3.7 shows the speedups of ORBIT over the AST interpreter and the byte-code inter-

preter. ORBIT is more than 20X faster than the AST interpreter. The R byte-code interpreter is
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very good at this type of benchmarks because it reduces a significant amount of the interpreting

overhead. With the additional optimization and focusing on memory allocation reduction, ORBIT

achieves an additional 3.56X speedup over the R byte-code interpreter.

Table 3.2: Percentage of memory allocation reduced for scalar.

Benchmark SEXPREC VECTOR scalar VECTOR non-scalar
CRT 76.06% 82.83% 97.58%
Fib 99.16% 99.99% 100%
Primes 98.21% 94.70% 50.00%
Sum 15.00% 99.99% 100%
GCD 99.99% 99.99% 25.00%

Table 3.2 shows the percentage of allocated memory in the byte-code interpreter that is re-

moved by ORBIT. For instance, ORBIT is able to remove between 80% to 99% of scalar objects

(labeled as VECTOR scalar in Table 3.2) allocated by the byte-code interpreter.

Table 3.3: Metrics of Optimized For-loop Accumulation

Metrics Byte-code Interpreter ORBIT
Machine instructions 339M 98M
GC time(ms) 25.94 0
SEXPREC object 20 17
VECTOR scalar 1,000,011 10
VECTOR non-scalar 1 0

Regarding the for-loop example, ORBIT further removed nearly all VECTOR scalar object

allocation compared to R byte-code interpreter, Table 2.1. With other optimizations, about 98

cycles required for one iteration.

3.4.3 The shootout Benchmarks

The shootout benchmarks are frequently used in computer science research to compare the

implementation of different languages and runtimes. The project reported in [61] uses it to study

the behavior of the GNU R implementation. Six of the eleven benchmarks were ported to R here.

The benchmarks use a variety of data structures including scalar, vector, matrix, list, which cover

most of the data structures in R. The ignored benchmarks are either related to multi-thread, which

R doesn’t support, or heavily operates on characters, which is not a typical usage of R.
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Figure 3.8: Speedups on the shootout benchmarks.

As shown in Figure 3.8, ORBIT achieves a significant speedup over the GNU R VM except

for binary-trees. The binary-trees benchmark is dominated by recursive function call

overheads thus its performance is heavily dependent on the efficiency of the calling convention.

Since the current implementation does not optimize user-level function calling convention, im-

provements on binary-trees are relatively low.

Table 3.4: Percentage of memory allocation reduced for shootout.

Benchmark SEXPREC VECTOR scalar VECTOR non-scalar
nbody 85.47% 86.82% 69.02%
fannkuch-redux 99.99% 99.30% 71.98%
spectral-norm 43.05% 91.46% 99.46%
mandelbrot 99.95% 99.99% 99.99%
pidigits 96.89% 98.37% 95.13%
binary-trees 36.32% 67.14% 0.00%

As shown in Table 3.4, ORBIT reduces significant number of memory allocation of the byte-

code interpreter, especially for VECTOR scalar objects. Table 3.5 shows detail metrics taken

during the execution of fannkuch-redux. Besides the reduction in the number of memory

allocations, GC time is also reduced by 95%.

3.4.4 Other Types of Benchmarks

ORBIT was also evaluated on the ATT benchmark [1], the Riposte benchmark [75] and the bench-

marks used in [52]. For Type I dominated codes in these benchmarks, ORBIT achieves good
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Table 3.5: Runtime measurements of fannkuch-redux

Metrics byte-code interpreter ORBIT
Machine instructions 1,526M 263M
GC time(ms) 12.06 0.57
SEXPREC object 2,477,740 239,468
VECTOR scalar 2,878,561 20,182
VECTOR non-scalar 854,588 81

speedups similar to what was reported for the scalar and the shootout benchmarks. But it only

gets small improvements (as low as 15% faster) on Type II codes and nearly no improvements

in Type III codes. This is expected as current implementations of ORBIT focuses exclusively on

Type I codes. Further optimizations for Type II codes are left for future work. And ORBIT does

not intend to address Type III code performance as compilation at R level will not help Type III

codes.

3.4.5 Profiling and Compilation Overhead

The overhead of ORBIT comes from two sources. The first one is runtime type profiling. Because

ORBIT only profiles a part of the instructions (Section 3.3.1), the profiling overhead is dependent

on the percentage of these instructions. Based on the measurement, the overhead is less than

10% in most cases. For example, the overhead of the shootout benchmarks is less than 8%.

Considering the huge potential of the speedup, this overhead is acceptable.

The second overhead is the JIT time. It is only related to the size of the benchmark codes

(including the benchmark itself and all the package codes it invokes). The JIT time in ORBIT is

very small, ranging from 2-5 ms for the scalar benchmarks, and 10-30 ms for the shootout

benchmark. ORBIT’s JIT is fast compared to other JITs (e.g., Java) because it focuses on spe-

cialization not on data-flow analysis and does not generate native codes. The JIT time could be

ignored since the running time of the benchmarks in the byte-code interpreter ranges from seconds

to minutes.
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3.5 Discussions

This section has described ORBIT, an extension to the GNU R VM, to improve R performance via

interpreter-level profile-driven specialization. Without native code generation, ORBIT achieves up

to 3.5x speedup over the byte-code interpreter on a set of Type I R codes.

Although the techniques described in this section was only implemented and evaluated in the

R’s context, the interpreter level specialization approach can be straightforwardly applied to other

dynamic scripting languages. As described before, interpreter level specialization only introduces

additional byte-codes to the original compiler/interpreter. If the byte-code encoding space is not

a problem, adding additional byte-code is relatively simple. Most importantly, these new byte-

codes can co-exist with the original byte-codes, which simplifies the developing and performance

evaluation.

Another important feature of the interpreter level specialization is simple. Many of the dy-

namic scripting languages are maintained by the open source community, and a simple solution is

important for the adoption and maintenance.
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Chapter 4

Vectorization of Apply to Reduce
Interpretation Overhead

4.1 Overview

The conventional approach to reduce scripting languages’ overhead is to either build a new more

efficient interpreter or apply Just-In-Time (JIT) compilation techniques. For example, the inter-

preter level specialization described in Chapter 3 is a combination of these two approaches. How-

ever, either approach requires a significant engineering effort, thus imposes a high barrier for

adoption. Sometimes, a non-intrusive approach is required to reduce the interpreter’s overhead in

case there is limitation to change a scripting language’s virtual machine.

Chapter 2 classified R programs into three categories, Type I (looping over data), Type II

(vector programming), and Type III (glue codes), and showed the major performance problem

only appears in Type I R code. But if R program extensively uses vector programming (Type II),

the performance gap between R and C is much smaller than the gap in the Type I case. The reason

is that many R vector operations are implemented in native C functions, and as the computation is

shifted from the interpreter to native C built-in functions, the overhead due to interpretation (which

is the most significant source of overhead in Type I codes) is significantly reduced. Figure 4.1

shows the performance of two shootout benchmarks [4] written in the Type II vector programming

style. As shown in Figure 4.1, R is much faster than Python, and is less than 10 times slower than

the equivalent C implementation. This is a good result considering that in these evaluations the R

programs are still interpreted while the C codes are compiled.

Because writing vector codes is much less intuitive than writing scalar codes for most program-

mers, one possible approach to reduce the interpretation overhead is through automatic vectoriza-
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Figure 4.1: Slowdown of R on two shootout benchmarks relative to C and CPython.

tion, translating Type I code into Type II code. However, automatic vectorization of arbitrary codes

is very difficult, even for static language programs. A recent evaluation shows that “despite all the

work done in vectorization in the last 40 years, 45-71% of the loops in the synthetic benchmark

and only a few loops from the real applications are vectorized by the compilers we evaluated”[58].

Considering the dynamic features in R, this type of vectorization is even harder.

Yet it does not mean that there is no opportunity to reduce interpretation overhead through

vectorization. In this chapter, one common and widely used type of operations in R, the Apply

class of operations, is studied. The Apply operations are similar to the Map function in Map-

Reduce framework, but have more features and are more flexible. With the popularity of the Map-

Reduce programming model, many data analytics problems have been successfully rewritten with

the Map-Reduce model [35]. The data analysis programs using Apply operations will become

more common, because this type of operations can be easily parallelized. The program paradigm is

also the foundation of many R based big data analytics framework, such as Rabid[56], SparkR[82],

and RHadoop [68].

Although the Apply class of operations is simple, the execution of these operations in R is

typically very slow due to the large interpretation overhead from iteratively applying the input

function to each element of the input data. For example, R code lapply(L, f) maps the input

data L to the output data with function f . If there are one million data elements in L, the function f

will be interpreted one million times, which introduces huge interpretation overhead. In essence, R
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codes written in the Apply operation style are executed as Type I codes and suffer from significant

overhead from interpretation.

An lightweight approach is proposed in this chapter that reduces the interpretation overhead

through the vectorization of the Apply class of operations in a single thread of execution. The

basic idea is to convert Apply operations (Type I codes) into a sequence of R vector operations

(Type II codes). This approach combines two transformations

• Function Vectorization Transform the function used by Apply operations into a function

that accepts vectors as input. The original function takes one single element at a time. After

the transformation, the vectorized function can process a vector input, and generate a vector

result.

• Data Transformation If necessary, transform the input data (which could be a list of a

structure) into the vector form, so that the vectorized function can directly access the input

data items in a dense storage form.

After the transformation, the original looping-over-data execution will be replaced by a direct

vector function invocation. The vector operations in the vectorized function can take advantage of

the built-in vector functions of R, and have much less interpretation overhead in execution.

The rest of this chapter is organized as follows. The Apply class of operations, the interpreta-

tion overhead and the vectorization’s potential is discussed in Section 4.2. Section 4.3 explains the

vectorization algorithm. Section 4.4 outlines the realization of the vectorization transformation in

R. Section 4.5 presents the empirical results. Finally, the current implementation status, the limi-

tations of this approach, and the application of this approach to other dynamic scripting languages

are discussed in 4.6.
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4.2 Motivation

4.2.1 R Apply Class of Operations and Its Applications

The Apply class of operations in R include several built-in functions. In its simplest form, the

most common used lapply function accepts a list, L = {e1, e2, . . . , en}, and a function f . The

value of lapply(L, f) is the list {f(a1), f(a2), . . . , f(an)}. In this context, f is called Single

Object function. Other functions in the Apply family include apply which accepts a matrix or

multi-dimensional array and returns a dense vector instead of a list, eapply which operates on a

environment, and by, mapply, rapply, sapply, and tapply whose semantics can be found

in any R manual. Table 4.1 is a summary of these functions.

Table 4.1: Apply Family Operations in R

Name Description
apply Apply Functions Over Array Margins
by Apply a Function to a Data Frame Split by Factors
eapply Apply a Function Over Values in an Environment
lapply Apply a Function over a List or Vector
mapply Apply a Function to Multiple List or Vector Arguments
rapply Recursively Apply a Function to a List
sapply A wrapper of lapply to return a vector or matrix
tapply Apply a Function Over a Ragged Array

Many computations can be naturally written using the Apply class of operations including,

for example, all the machine learning kernels in [35]. The use of lapply is illustrated in Listing

4.1, which shows an R version of the gradient descent Linear Regression.

Applications implemented in terms of Apply can be accelerated using R packages, such as

SNOW[79], SNOWFall[54] and Foreach, which contain parallel implementations of Apply class

of operations. The Apply programming paradigm is also the foundation of R based big data

analytics frameworks, such as Rabid[56], SparkR[82], and RHadoop[68], all of which provide

distributed memory parallel implementations of Apply.
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1 grad.func <- function(yx) {
2 y <- yx[1]
3 x <- c(1, yx[2]) #Add 1 to est interception
4 error <- sum(x * theta) - y
5 delta <- error * x
6 return(delta)
7 }
8
9 yx <- ... #A list, each element is a [y x] vector

10 for(iter in 1:niter) {
11 delta <- lapply(yx, grad.func)
12 theta <- theta - alpha * Reduce(’+’, delta) / length(yx)
13 }

Listing 4.1: Linear Regression with lapply

4.2.2 Performance Issue of Apply Class of Operations

The underlying interpretation of lapply is illustrated in Listing 4.2. Other functions of Apply

class have the similar interpretation form. This looping-over-data form incurs in huge interpreta-

tion overhead, and is very slow. Because the functions of Apply class are widely used, GNU R

implements them as C functions. However, the interpretation is still used in each invocation of f .

Thus, if the input L has one million elements, f will be interpreted one million times.

1 lapply <- function(L, f) {
2 len <- length(L)
3 Lout <- alloc_veclist(len)
4 for(i in 1:len) { Lout[[i]] <- f(L[[i]]) }
5 return(Lout)
6 }

Listing 4.2: Pseduo code of lapply

4.2.3 Vector Programming and Apply Operation

The Apply class of operations is a general form of array operation. Assume, for example, a vector

a with one million elements. To add one to each of the elements, the result can be calculated by

either lapply(a, function(x){x+1}), or a+1. Although the results are the same in both
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cases1, the underlying interpretation mechanisms are totally different. The former will iterate over

each element of a, and invoke the function function(x){x+1} as many times as the length of

a. In the later case, the interpreter will only invoke one add operation, which is a built-in function

implemented in C. As a result, the Apply form requires over one second to execute, while the

a+1 form only needs a few milliseconds.

In the above example, rewriting the Apply operation to an array operation is simple, but

rewriting arbitrary operations in terms of Apply could be very complex. For example, rewriting

the vector code for grad.func in Listing 4.1 is not as straight forward as the above simple

example. It is much easier to write a scalar function that only works on one element of the input,

especially the single input element is a complex data structure, such as vector, matrix or a structure

composed by vector, matrix and lists. The proposed vectorization method is used to fill the gap.

So that it is possible to take advantage of the programmability of single object functions and at the

same time benefit from the performance of array computations.

4.3 Algorithm

4.3.1 Vectorization Transformation

The concept of Apply vectorization is expressed as

Lout← Apply(L, f)⇒ Lout← ~f(L) (4.1)

where L, f and Lout have the same meaning as in Section 4.2. f is called Single Object

Function. ~f is a new function, in the form of a Vector Function, that can process all the elements

of L and return {f(a1), f(a2), . . . , f(an)}. In this way, the original loop shown in Listing 4.2 is

transformed into a single function invocation.

Figure 4.2 shows the changes of the interpretation logic after Apply vectorization. Before the

1The result data representations are different in R
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Figure 4.2: Function Vectorization Transformation

transformation, the loop over all the input data can be considered as an outermost loop. Thus, if f is

inlined into Listing 4.2, the statements in f would be the loop body of the loop in Listing 4.2. After

the vectorization, the loop is moved from the outermost to the innermost (inside each statement

of ~f ) so that the function ~f is only executed once. In the ideal case, each single statement of ~f is

an R’s vector built-in function, then ~f is only interpreted once, and the interpretation overhead is

dramatically reduced.

Although the concept of Apply vectorization is simple, and this SPMD type vectorization

does not require data dependence analysis and all its complexity and inaccuracies, automatic vec-

torization of the function is not a trivial task in a dynamic scripting language, like R. There are

several difficulties

• Vector language as input The single object function could directly operate on vector objects

(vector, matrix, higher dimensional array) or other complex composite data types with built-

in vector operations. The vectorization here should handle vectorizing vector operations

correctly and efficiently.

• High level functional language features The function and operation are first-class objects,

that could take the form of user written R code, library defined functions, user written native

code, built-in (implemented through native libraries) functions, or arbitrary combinations of

these. Vectorization must support all the possibilities, which is much more complex than the

vectorization of a conventional language (such as C).
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• Dynamic language The function, operation and data are all resolved dynamically. The vec-

torization here must dynamically generate correct code to support the mixture of the vector-

ized execution context and the single object execution context.

This section describes the automatic algorithm that translates the original Apply operation

into a vector function invocation. It will first describe a basic algorithm under some simplifications.

Then a the full algorithm will be explained afterwards.

4.3.2 Basic Algorithm

The basic algorithm’s goal is to get the vectorized function ~f of the single object function f that

satisfies Equation 4.1.

In order to simplify the discussion, Three assumptions are set here (1) The input data is already

a well stored array, so that there is no need to convert the input data into an array as would be the

more general case where the input data is a list; (2) The control flow inside f does not depend

on the function’s formal parameters; (3) f is normalized so that all assignments are of the form

v3 ← op(v1, v2).

The algorithm changes the operations and variables inside f . Some variables in f will be

changed from representing a single object to representing a vector of objects. They are defined

as EXPANDED variables. Because R is a vector language, the single object in the single object

function can be a scalar, a vector, or even a matrix. The end result is that the expanded version

of the single object becomes a vector, a matrix, or a three dimensional array. Then variables still

representing a single object are defined as UNEXPANDED variables. Algorithm 1 illustrates the

process of vectorizing the simple class of functions just described.

If the basic vectorization algorithm is applied to the grad.func function in Listing 4.1, yx

will be marked as EXPANDED at the beginning, then y, x, error, and delta will be marked as

EXPANDED because they are in the use-def chain of yx. Regarding the operation side, if the input

data yx is {[y1, x1], [y2, x2], . . . , [yn, xn]}, yx[1] should return the first item of each elements in
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Data: The single-object function f in apply(L, f)
Mark formal parameters of f as EXPANDED;
while There is a change do

foreach v3 ← op(v1, v2) where either v1 or v2 is EXPANDED do
Rewrite op to a new ~op that satisfy;
if v1 and v2 are both EXPANDED then

~op will do element-wise operation, and assign the result to v3. Mark v3 as
EXPANDED

end
if Only one of v1 or v2 is EXPANDED, say v1 then

~op will use the UNEXPANDED v2 to operate with each element in v1, and assign
the result to v3. Mark v3 as EXPANDED

end
end

end
foreach Access to an EXPANDED variable do

Rewrite it with array access operation;
end
foreach return(v) statement do

if v is UNEXPANDED then
Rewrite return so that it expands v (by replication to the same length as the input)

end
end

Algorithm 1: Basic function vectorization algorithm

yx, which is [y1, y2, . . . yn]. yx[2] should perform in the similar way. The vectorized c operation

should combine the UNEXPANDED 1 with each element in the EXPANDED yx[2], and return an

Expanded result. The other vectorized operations *, -, sum should perform in the same way.

The function can return the result delta directly, since it is already an EXPANDED variable.

Following the basic algorithm, the only changes are those shift of the computation to simple

operations and accesses, following the structure defined in Figure 4.2.

If all operations in the original function f are flattened, the vectorization transformation of

Apply operations can be seen as loop distribution, Figure 4.3. Because all input formal arguments

dependent variables have been expanded, the loop distribution is a legal transformation. If one

statement in f is another loop, besides the loop distribution, a loop interchange is also required

to move the Apply level loop into the innermost. Because all the data dependence can only

appear in that statement’s loop, and there are no dependences across iterations of the Apply level
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Figure 4.3: Loop Distribution in Vectorization Transformation

loop, the loop dependence vector can only be [=, <]. Then the loop interchange is also a legal

transformation. After Apply(f, L) is re-wrote to ~f(L), the original behaviors are maintained.

Although the basic algorithm is correct, the operation transformation can be complex. The be-

haviors of the corresponding vector operations in ~f for each operation in the single object function

f should be defined. For example, define how to handle EXPANDED v.s. UNEXPANDED variables.

And the basic algorithm does not support control divergences (that does not support control flows

that depend on EXPANDED variables). The full vectorization algorithm discussed next will address

all the limitations.

4.3.3 Full Algorithm

Figure 4.4 illustrates the three tasks in the full vectorization algorithm. (1) Data Object Transfor-

mation, which permutes input data so that the vectorized function can get direct access to the data

item (in vector form and stored in consecutive space) if the input data is not already an array; (2)

Function Vectorization, which generates the vector version of the single object function; (3) Caller

Site Rewriting, which rewrites the Apply function call into a direct vector function invocations,

and perform other optimizations to reduce the overhead. The original Apply(L, f)’s context is

named as the single object context, and the transformed vector function’s context is named as the

vector context.
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Figure 4.4: Three Tasks in the Full Vectorization Algorithm

Data Representation and Transformation

Data Representation is the shape(structure) of the input and output data. Below D and L describe

how each dimension of a data object is stored. D means dense storage, L means list storage,

Q means either D or L. Then the Data Representation of any data objects from a scalar (zero

dimension) to a multi-dimensional structure can be described. Table 4.2 lists some examples.

Table 4.2: Data Representation of Different Types

Scalar [ ]
1-D Vector [D1]; List [L1]
2-D Matrix [D1 ×D2]; List of Vector [L1 ×D2];

List of List [L1 × L2]
Higher Dimensions Array [D1 ×D2 × . . .×Dn];

List [L1 × L2 × . . .× Ln]

Based on the notation, two data transformation operations, PERM DOWN and PERM UP, are

defined. PERM DOWN moves the first dimension of the data to the innermost position, and if the

first dimension is stored in the list format (L), it will be converted into dense form (D). The

transformation is expressed as [Q1 ×Q2 × . . .×Qn]⇒ [Q2 × . . .×Qn ×D1]

Once the data is transformed with PERM DOWN, the data access in the vectorized function ~f can

get direct access to the vector data without a gather operation. Figure 4.5 shows three examples,

all of which can still use simple operations, even the original expressions to access the input data

as a vector.

The PERM UP does the reverse transformation. It moves the innermost dimension to the outer-

most position. This data transformation is typically used to turn the vector function’s return value

back to the original shape.
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a a b c z … b c z … f1 <- function(x) { 
  x 
} 

f2 <- function(x) { 
  x[1]  
} 

a b 

… 

c d … a y 
c 

y z x[,1] 

name = 

value = 

a 

1 

name = 

value = 

z 

26 

name = 

value = 1 26 

… 
… 

a z … f3 <- function(v) { 
  v.name  
} 

Case I: List of Scalars 

Case II: List of Vectors 

Case III: List of Structures 

d 
z b 

No change 

No change 

Access the 
vector directly 

Data access operation 

Figure 4.5: Data Access after PERM DOWN Transformation

With these two transformations, each data object has two representations, the DOWN shape and

the UP shape. The single object context always uses the UP representation, and the vector context

always uses the DOWN representation. These two transformations are extremely powerful in pro-

cessing nested Apply vectorization. In each Apply vectorization, the data can be transformed

by applying PERM DOWN to move the data’s outermost dimension to the innermost place to match

the movement of the computation loop from the outermost to the innermost.

A REP EXPAND operation is defined here, too. It appends another vector dimension to the

data object by replicating its value along the last dimension. For example REP EXPAND of a

scalar will generate a 1-D vector, [ ] ⇒ [D]. REP EXPAND of a 1-D list or of a vector will

generate a 2-D data structure, [Q1] ⇒ [Q1 × D2]. REP EXPAND to a higher dimensional data

structure behaves similarly. REP EXPAND is used in support of the vectorization of operations.

Suppose there is an expression a ⊕ b in the single object function f , and in the transformation

of f into ~f , a is marked as EXPANDED (i.e. a is a vector) ~a. If the vector operation ~⊕ requires

both operands to be EXPANDED, REP EXPAND can be used to fix this limitation by generating

expression ~a~⊕REP EXPAND(b).

In the above notation, the interface change of the function vectorization from the single object

function to the vector function can be represented as f(v : [Q1 × . . .×Qn])⇒ ~f(~v : [Q1 × . . .×
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Qn ×Dn+1]).

Function Vectorization

The goal of function transformation is to transform the single object function f into the corre-

sponding vector version

f(v : [< . . . >])body ⇒ ~f(~v : [< . . . > ×D]) ~body (4.2)

A new operation VEC FUN is defined here to do the function vectorization, where ~f ←

VEC FUN(f). There are three situations that VEC FUN operates with

• Direct replacement If the function f is an elemental function, such as most of the math

functions in R, the transformation just returns f . Elemental functions are those that can

operate on a single object or on a vector of objects. If the vector version of f is another

function g, such as cbind() is to c() in R, just replace f with g.

• Generic replacement If f is a built-in function that cannot be vectorized, or f is too complex

to be analyzed, a generic vector version of f is created:

~f(~v : [< . . . > ×D]){PERM DOWN(Apply(f, PERM UP(~v)))}

The generic function just uses Apply to simulate the vector execution. Because ~f ’s input

data has been transformed with PERM DOWN, ~v must be PERM UPed so that the Apply

operation can iterate over the right data. And the result must be PERM DOWNed again to

comply with the vector function’s output data shape. This fall-back mechanism makes sure

that the vectorization algorithm can support arbitrary code.

• Body vectorization If the body of f can be analyzed,the following algorithm is used to trans-

form f into ~f .
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The vectorization of f requires the formal parameter rewriting, which changes the original

parameter’s type into the EXPANDED type by appending one additional dimension, and the body

transformation, which enables the new body process the EXPANDED input correctly. The body

transformation has four passes: variable type inference, loop transformation, branch transforma-

tion, and code rewriting.

Variable Type Inference The goal is to decide each variable’s shape, EXPANDED or UNEX-

PANDED. Assuming a gated SSA representation [63], if a variable is on the left hand side of any

assignment (including assignments from gated PHI functions) in the use-def chain starting at the

function’s formal argument input list, it is EXPANDED. Otherwise, the variable is UNEXPANDED,

which means the variable is the same as the variable in the single object function. Algorithm 2

shows the algorithm.

Data: SSA form based function body
Result: All variables’ shape type
Set f ’s arguments’ types as EXPANDED;
Set all other variables’ types in the body as UNEXPANDED;
while Type changes do

foreach v3 ← op(v1, v2) do
shape(v3)← shape(v1) t shape(v2)

end
foreach v3 ← φ(v1, v2) with gated condition c do

shape(v3)← shape(v1) t shape(v2) t shape(c)
end

end
Algorithm 2: Variable Type Inference

Loop Transformation It processes the loop statements that might have control divergences in

the function body. These loops can be identified by examining the condition expression that ter-

minates the loop. If the expression contains a variable whose type is EXPANDED, the loop must

be processed. One possible approach to transform this kind of loop is rewriting the loop body that

each statement in the body is controlled by a mask expression as discussed in [53]. But it requires

modifications to the interpreter to support predicated execution and introduces wasted computation
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due to the masked operation. Here the fall-back mechanism described in the generic replacement

is used to simulate the vector loop body with sequential loop over the original loop body. A syn-

thesized loop is generated. The original loop is put into the synthesized loop, and is interpreted

asif it had not been vectorized.

The synthesized loop is generated as follows. First all EXPANDED variables in the loop are cat-

egorized into the two groups: (1) Variables read in the loop but not defined in the loop: {v1, . . . vn};

(2) Variables written in the loop and live after the loop: {u1, . . . um}. The vectorized loop body

takes the form shown in Listing 4.3.

1 for(idx = 1 .. vector_len) {
2 v1 <- vec_v1[idx], ... , vn <- vec_vn[idx]
3 original loop
4 vec_u1[idx] <- u1, ... , um <- vec_um[idx]
5 }

Listing 4.3: Generic Loop Body Transformation

Branch Transformation This pass transforms control divergence branches. Specifically, it

transforms if statements with conditional expressions containing EXPANDED variables into data

dependence linear statements. the algorithm follows the approach in [22]. Given an if state-

ment with EXPANDED condition c. All the EXPANDED variables will be located in the true and

false blocks that are written in the blocks but still live after the if branch. These variables are

the operands of the φ nodes in the if statement’s post-dom basic block. Then, a flattened basic

block is generated, containing in the order: the pre-dom block, true block, false block, and post-

dom block. Finally, the post-dom’s φ nodes is replaced with Select statement (ifelse in R),

u3 ← φ(u1, u2)⇒ u3 ← select(c, u1, u2).

Code Rewriting The final pass performs the code rewriting to replace all operands related to

EXPANDED variables to the corresponding vectorized operands. This pass checks each state-

ment r ← op(v1, . . . , vn). If any operand in the right hand side is EXPANDED, it replaces op

with VEC FUN(op), and replaces each UNEXPANDED variable, say vi, on the right hand side
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with REP EXPAND(vi). This rule is also applied to φ node, which means a φ node’s operand

could be REP EXPAND(vi). In the final phi node remove step, if one operand of the φ node is

REP EXPAND(vi), where vi is from the basic block B,the statement vi ← REP EXPAND(vi) is

inserted at the end of B.

Figure 4.6 shows the full vectorization steps of a simple function.

tmp <- foo(a, 1) 

if ( cond ) 

res1 <- 100 res2 <- tmp 

res3 <- phi(res1, res2) 

function foo(a) 

After shape type inference After code rewriting After Phi removing 

tmp <- VEC_FUN(foo)(a,  

         REP_EXPAND(1)) 

if ( cond ) 

res1 <- 100 res2 <- tmp 

res3 <- phi(REP_EXPAND(res1), 

           res2) 

function foo(a) 

tmp <- VEC_FUN(foo)(a,  

         REP_EXPAND(1)) 

if ( cond ) 

res <- 100 

res <- REP_EXPAND(res) 
res <- tmp 

function foo(a) 

Expanded shape 
variables: 
a, tmp, res2, res3 

function foo(a) { 

  tmp <- bar(a, 1) 

  if(cond) { 

    res <- 100 

  } else { 

    res <- tmp 

  } 

} 

Scalar function 

Figure 4.6: Function Vectorization Transformation Example

Caller Site Rewriting

With the single object function f(v : [< . . . >]) and the corresponding vectorized function ~f(~v :

[< . . . > ×D]), the Apply function call Apply(f, data : [L× < . . . >]) has the same behaviors

as the direct vector function invocation PERM UP(~f(PERM DOWN(data : [L× < . . . >])))

The caller site rewriting performs a local code transform to replace all Apply function calls

Apply(f, data) with the vector function invocations PERM UP(VEC FUN(f)

(PERM DOWN(data))). For a dynamic scripting language like R, the body of f is not known at

the compiler time, and the compiler just replaces f with VEC FUN(f). In the real execution, the

VEC FUN will do a dynamic function transformation.

After the code rewriting, the vector function invocation has much less interpretation overhead

compared to the original Apply function call. However, the new code also introduces overhead

from PERM DOWN and PERM UP data permutation. One important task of the caller site rewriting
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is to do code optimization to reduce the data transformation overhead. First, the generated code

in the caller site may contain PERM UP(PERM DOWN(v)) or PERM DOWN(PERM UP(v)).

These connected reverse transformations can be removed easily. Second, as described in Section

4.3.3, each data object has two representations, the UP and the DOWN. A runtime memorization

could be built to record the internal link between the two representations. In the first time either

PERM DOWN or PERM UP is invoked, the runtime will record the linkage. If either UP or the

DOWN data object is modified, the linkage must be broken. When PERM DOWN or PERM UP

is called again, the runtime will check whether the internal link is still valid. If it is, the data

transformation function could directly return the corresponding data representation without the

heavy data permutation. This optimization is very effective to iterative data analysis algorithms.

4.4 Implementation in R

The vectorization algorithm has been implemented an R package. Since it is written in R, the

implementation is interpreted and installation does not involve compilation.

4.4.1 Runtime Functions

Data Transformation Functions

The three data transformation functions PERM DOWN, PERM UP, and REP EXPAND are all im-

plemented in a recursive style so that they can support arbitrary nested data structures. The first

two functions only take one input argument, the data, and return the DOWN or UP representations

accordingly. REP EXPAND must know how many times to expand the input data. So the function

takes two input arguments: the UNEXPANDED data object, and an EXPANDED variable, whose

shape will be used to compute the result (i.e to expand the UNEXPANDED parameter). The second

argument is typically the first formal parameter of the function that is being vectorized.

Listing 4.4 shows the core PERM DOWN. The implementation of PERM UP and REP EXPAND
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have a similar structure.

1 PERM_DOWN <- function(l) {
2 e1 <- l[[1]] # the first element in the list
3 if(is.list(e1)) { #e1 is a list structure
4 sov <- list() #result, structure of vector
5 for(i in 1:length(e1)) { #transform sub-item
6 sov[[i]] <- PERM_DOWN(lapply(l, function(e){e[[i]]}))
7 }
8 sov
9 } else { # e1 is a vector or an array

10 tmp <- simplify2array(l)
11 if(is.null(dim(tmp))) {
12 tmp # a simple vector case
13 } else { # do permutation
14 ndims <- length(dim(tmp))
15 aperm(tmp, c(ndims, 1:(ndims-1)))
16 }
17 }
18 }

Listing 4.4: Implementation of PERM DOWN

Vectorization Functions

VEC FUN has been implemented as described in Section 4.3.3. When it is invoked at run time with

an input R function, it parses the function, creates its AST, and applies the following transforma-

tions

Data Access Operations Because the actual parameter of the function has been transformed

with PERM DOWN operation, most data accesses maintain their original form or are changed slightly.

To describe the transformation to memory accesses, consider a variable x in the original function

f , that is marked as EXPANDED in ~f , there are three basic classes of accesses involving x:

• x: the operation in ~f will remain x, return the whole EXPANDED variable.

• x[a]: where x is a vector in the original function. In the vectorized function, x will be a

matrix, and we should use x[, a] to access the ath column. The reason why we must access

by columns is that R uses column-major storage.
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• x$label: in this case x is a structure (list) in the original function. In the vectorized function,

x is a structure of a vector, and x$label does not need to be changed to access the EXPANDED

value.

More complex data access operations can be decomposed into the above cases.

Direct Replacement of operations R has many operations with a higher dimensional counter-

part that is to be invoked when the operands are expanded. It is by using these higher dimensional

operations that the proposed system reduces the overhead. Whenever VEC FUN finds one of these

operations in the original function, it replaces the operation with its higher dimension equivalent

as shown in Table 4.3.

Table 4.3: R Functions Supporting Direct Replacement

Low Dim High Dim Notes
+,-,*,/, ∧ +,-,*,/, ∧ They support vector by default
sum rowSums Sum along the row sides
mean meanSums Mean along the row sides
length nrow Length in the row side
c cbind Column binds
unlist Simplify2array Transform list of vectors into matrix
which.max col.max Find the positions of each row’s maximal value

Generic Replacement If the VEC FUN routine cannot analyze or transform an operation (a na-

tive implemented function that is not in Table 4.3, or a very complex R implemented function),

it generates a generic expressions using Apply to simulate the vector execution as described in

Section 4.3.3.

Recursive Transformation In many cases, the operation in a function body will be transformed

by making a recursive call to VEC FUN. For example, op will be changed into VEC FUN(op). It

will invoke the vectorization routine at run time to get the vectorized operation function of op.
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4.4.2 Caller Site Interface

The vectorization package provides two translation APIs, va compile and va vecfun. The

former takes an R expression as input, and the later accepts a function. Both of them will go

through the input object’s AST, and do caller side code rewriting, translating Apply class of

function calls to direct vector function invocations. Listing 4.5 shows the compiled code of Listing

4.1 by va compile.

1 yx <- ... #A list, each item is a [y x] vector
2 for(iter in 1:niter) {
3 delta <- PERM_UP(
4 VEC_FUN(grad.func)(PERM_DOWN(yx))
5 )
6 theta <- theta - alpha * Reduce(’+’, delta) / length(yx)
7 }

Listing 4.5: Code Generated from va compile

And List 4.6 is the vectorized grad.func function generated from the expression

VEC FUN(grad.func).

1 grad.func <- function(yx) {
2 y <- yx[,1]
3 x <- cbind(REP_EXPAND(1, yx), yx[,2])
4 error <- rowSums(x * REP_EXPAND(theta, x)) - y
5 delta <- error * x
6 return(delta)
7 }

Listing 4.6: Vectorized grad.func Function

4.4.3 Optimizations

The code in List 4.5 and List 4.6 have not been optimized. There are many redundant computa-

tions. Several optimizations have been applied to remove these redundancies.
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Remove redundant data transformation

This kind of redundancy is mainly from the iterative part in a program. For example,

PERM DOWN(yx) in Line 4 of Listing 4.5 will be invoked in each of the loop iteration. But yx is

loop invariant. LICM (Loop Invariant Code Motion) can be used here to remove the redundancy.

In the implementation, the runtime memorization technique described in Section 4.3.3 is used.

List 4.7 is the optimized code. Because R has neither a map data structure nor references, a

hidden variable approach is used to do the memorization. The variable .va.yx is the DOWN

shape representation of yx, and .vasrc.yx records where the DOWN variable is from. If the

function requires a DOWN variable, the code first checks whether a DOWN variable exists (Line

4), then checks whether the source variable has not been changed (Line 5) with identical

function. If both conditions are satisfied, the DOWN variable will be directly returned, otherwise

the PERM DOWN is invoked to do the data transformation, and set the linkage.

1 yx <- ...
2 for(i in 1:50) {
3 .va.delta <- VEC_FUN(grad.func)
4 ({if(!exists(".va.yx", inherits = FALSE)
5 || !identical(.vasrc.yx, yx)) {
6 .va.yx <- PERM_DOWN(yx)
7 .vasrc.yx <- yx
8 }
9 .va.yx

10 })
11 delayedAssign("delta", PERM_UP(.va.delta))
12 theta <- theta - alpha * va_reduceSum(.va.delta) / length(yx)
13 }

Listing 4.7: Optimized Code from va compile

R’s copy-on-write mechanism makes sure any modifications to the source object break the run-

time linkage. In the previous example, both yx and .vasrc.yx point to the same memory object

after the runtime linkage is created. If yx is modified, the copy-on-write mechanism will create a

new memory object for yx. Then the identical function will return false in the checking.

The runtime linkage approach can also be used to the function vectorization.

VEC FUN(grad.func) of Line 4 in Listing 4.5 is also loop invariant, and the same approach is
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used to save redundant VEC FUN function calls.

Another optimization to remove redundant data transformation is in Line 11 with R’s

delayedAssign function. The direct vector function invocation returns a DOWN shape variable

.va.delta. Line 11 creates a promise of delta. If there is no usage of delta, the promise

will never be forced, and the PERM UP function call is saved.

Remove redundant data replication

The REP EXPAND in x * REP EXPAND(theta, x) from Line 4 Listing 4.6 may be redun-

dant because * supports implicit value replication 2. Static compiling and runtime check are used

to remove the redundant data replication. If the operation supports implicit data replication(all R

functions supports a scalar’s implicit replication), the vector compiler will do a static type check

to see whether an UNEXPANDED variable is a scalar. If it is, the REP EXPAND can be removed

statically. Dynamic type checking inside REP EXPAND is also inserted. If REP EXPAND finds out

the input UNEXPANDED variable is a scalar, the function will directly return that variable.

Optimize Reduce Function Call

R’s Reduce function call is interpreted in the similar style of Apply class of operations through a

looping-over-data style, which also has large interpretation overhead. If the reduction’s operator is

+, sum or colSums are used to replace Reduce. These two functions are implemented by native

library, and have much less interpretation overhead. One limitation is that sum and colSums

can only take dense vector object as input. However, many input data of Reduce come from the

result of Apply function calls in the Map-Reduce framework. After vectorization, the result of

the vector function invocation is a dense vector representation (DOWN shape). and it can be used

by sum or colSums without calling PERM UP. Line 12 of Listing 4.7 is the optimized code. The

va reduceSum is the runtime function that checks the input data’s type and call either sum or

colSums or the original Reduce.

2The REP EXPAND in Listing 4.6 cannot be removed because theta is a length two vector
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4.5 Evaluation

The performance of the vectorization compiler is evaluated in this section by comparing the run-

ning time of the vectorized code with the time of the original code using Apply class of functions.

4.5.1 Benchmarks

Table 4.4: Benchmarks and configurations

Name Descriptions Configurations Base Input Size
ICA Independent Component Analysis Un-mixing 2 signals 1M samples
k-Means K-Means clustering of one dimensional points 10 clusters 1M points
K-Means-nD K-Means clustering of n dimensional points 3D points, 10 clusters 1M points
LogitReg Logistic Regression of one variable Scalar sample 1M samples
LogitReg-n Logistic Regression of n variables Length 10 vector sample 1M samples
LR Linear Regression of one variable Scalar sample 1M samples
LR-n Linear Regression of n variables Length 10 vector sample 1M samples
NN Nearest Neighbor 10K training samples(3D point), 10 categories 10K testing samples
kNN k Nearest Neighbor 10K training(3D point), 10 categories, k=5 10K testing samples
LR-OST Ordinary Least Squares method of one variable Scalar sample 1M samples
LR-OST-n Ordinary Least Squares method of n variables Length 10 vector sample 1M samples
Monte Carlo Monte Carlo Pi Calculation Each sample is a 2D variable 1M samples
PCA Principle Component Analysis Length 10 vector sample 1M samples

The benchmarks in the evaluation are kernels of data analytics and machine learning algo-

rithms collected from [56], [82] and [35]. hese benchmarks are slightly modified so that they use

the Apply class of functions and run as a single R process. Table 4.4 lists the kernels and the con-

figurations used in the evaluation. The first seven kernels use iterative algorithms and the last six

use direct methods. The number of iterations for iterative algorithms are fixed so that the running

time is not dependent on the data value. The benchmark kernels include both the single-variable

configuration and multi-variable configuration for some algorithms, for example LR and LR-n, to

make a more extensive evaluation. In fact, if only the single-variable configurations is included,

the performance speedup would be very good, but the result would be biased. Regarding the imple-

mentation, the single-variable configuration and multi-variable configuration are different. Some

special routines are used to optimize the single variable’s case, and its base performance is slightly

better than the multi-variable implementation when restricted to a single variable.
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4.5.2 Evaluation Environment and Methodology

The evaluation was performed on a machine with an Intel E5-2670 processor, 64G memory, Linux

CentOS 6.3, and GNU-R 3.1.2. All the R packages including our vectorization compiler were

pre-compiled into byte-code as the default installation configuration.

The running time for iterative benchmarks are one iteration’s computation time, and measured

as the average time between iteration 6 to iteration 15, when the application runs into a steady

state. As a result, the time of the vectorized code does not contain the initial (in iteration 1)

data permutation time. The running time for direct algorithms are the end-to-end running time,

which includes the data permutation overhead in the vectorized code case. We will report the data

permutation’s overhead for both the iterative benchmarks and direct benchmarks. Table 4.4 only

lists the base input size. The input size of 4x and 16x were also evaluated. For example, 4M and

16 M samples as input for ICA.

4.5.3 Vectorization Speedup

Figure 4.7 and 4.8 show the speedup number of the kernels with Apply operation vectorization

versus the default built-in Apply function call. Our approach can achieve up to 35x, with an

average 15x’s speedup for iterative benchmarks and 5x for direct benchmarks. The high speedup

is mainly from the machine instruction reduction. For example, the machine instruction of the

vectorized LR is only 1/40 of the original version in the base input case. But the vectorized

version has a higher CPI (1.13 to 0.85) from a higher cache miss rate due to the lack of data

locality. The final 29.7x speedup is the combination of these two effects. Other benchmarks have

similar hardware performance counter metrics.

The vectorization approach is not sensitive to input size. With the increase of the input size, the

speedup number even becomes higher as a result of lower CPI due to long sequence of consistent

operations, and no worse cache miss rate.

The speedup number of different benchmarks varies a lot, depending on different factors such
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Figure 4.7: Speedup of Apply operation vectorization (Iterative benchmarks)
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Figure 4.8: Speedup of Apply operation vectorization (Direct benchmarks)

as the algorithms used (iterative or direct), the overhead of data transformations, the coverage of

the vectorized operations, and the degree of vector programming in the original code. We will

discuss these factors in the following sections.

4.5.4 Overhead of Data Transformation

The data transformation is a necessary step for the vectorized function to access the data in a vector

form (Section 4.3.3). However, this kind of data permutation is very expensive, especially when

the input data’s size is large. In general, the data transformation overhead arises from PERM DOWN

and PERM UP. Because the output of the vectorized function is either consumed by the following

vectorized function or by a reduce function, the overhead from PERM UP is very small. So we

only discuss here the input data transformation’s time. We normalize this time in terms of the

running time defined before (one iteration’s time for iterative benchmarks and all the time for

direct benchmarks)

Table 4.5 shows overhead of iterative benchmarks, which is very large in most cases. The
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Table 4.5: Data transformation overhead (Iterative benchmarks)

Benchmark Base Input 4x Input 16x Input
ICA 358.8% 387.1% 425.6%
k-Means 46.2% 57.9% 69.0%
k-Means-nD 50.5% 54.9% 58.8%
LogitReg 824.6% 941.4% 995.4%
LogitReg-n 465.4% 616.6% 733.3%
LR 1064.6% 1217.8% 1271.1%
LR-n 526.8% 688.8% 762.3%

computation time of many benchmarks after vectorization is small, and the data transformation’s

overhead is relatively large. But it’s not a big problem for iterative algorithms, since the overhead

will be amortized by all the iterations. Considering the 1271% overhead of LR, if there are 100

iterations, each iteration only increases 12.7% running time in average, and end-to-end speedup

number is still very high.

Table 4.6: Data transformation overhead (Direct benchmarks, Base Input)

Benchmark Overhead% Speedup w/o OH End2end Speedup
NN 0.3% 21.4 21.3
kNN 59.7% 27.2 11.0
LR-OST 70.9% 17.0 4.9
LR-OST-n 33.3% 3.8 2.5
Monte Carlo 72.7% 4.6 1.3
PCA 40.2% 4.2 2.5

Table 4.6 shows data transformation overhead of direct benchmarks with base input size. The

overhead is also very high in most cases as expected. It’s a problem for direct algorithms since

the overhead cannot be amortized. A much higher speedup number could be achieved without the

overhead, , shown in the Speedup w/o OH column.

There are two reasons that the data transformation overhead of Nearest Neighbor is very small.

First, the data set is relatively small, only two 10K 3D points, and the data transformation can be

performed in the higher level cache. Second, the computation of Nearest Neighbor is complex.

However, in the k-NN case, some functions in the single object function has no corresponding

vector version. The vector computation has several fall-backs to generic transformation cases,

which introduce heavy back-and-force data permutation.
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4.5.5 Vectorization of Nested Apply Functions

Some the kernels in Table 4.4 contain nested Apply function invocations. For example, k-Means

and Nearest Neighbor both have two Apply operations nested. The outer Apply of k-Means

loops over all the points, and calculates each point’s distances to all the centers, while the inner

Apply loops over all the centers, and calculates one point’s distance to each center. The outer

Apply of Nearest Neighbor loops over all the testing points, and calculates each point’s distances

to all the training points, and do the classification. And the inner Apply loops over all the training

points, and calculate one testing point’s distance to each training point. The vectorization could be

applied to the outer loop, the inner loop or both.
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Figure 4.9: Speedup of different levels’ Apply vectorization

The vectorization in static languages typically happens in the inner loop for better performance.

However, it’s impossible to decide which Apply call is the outer or inner in R, because all the

functions are resolved dynamically. In the experiments conducted in previous subsection, vector-

ization happens when the compiler meets the first Apply function call. The performance of this

schema(outer only) by comparing it with other two schemas (inner only and both). Figure 4.9

shows the result.

In k-Means, the inner Apply only loops over 10 cluster centers, and the inner only schema has

limited performance improvement. Vectorization of both Applys achieves the best performance,

but the outer only schema still gets most of the benefit. The inner part and the outer part of Nearest
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Neighbor both have 10K iterations, and the outer only and inner only have similar speedup. If

both levels are vectorized, the data object will be expanded into a 10k by 10k sized object, which

causes large memory requirements, and has less speedup. Based on these observations, the outer

only schema seems to be good enough for the benchmarks. A better schema would take the input

data’s length into consideration to decide when to vectorize dynamically.

4.5.6 Vector Programming in the Applications

Another factor that impacts the speedup of the proposed vectorization is the usage of vector pro-

gramming in the original single object function. For example, Figure 4.7 shows that LR-n has

smaller speedup than LR. The reason is that each sample in the input data of LR-n contains 10

variables, and it is represented as a length 10 vector in the code. The single object gradient de-

scent function uses vector programming to calculate the error and update the theta. This is a

Type II R program, which has relatively low interpretation overhead. The proposed vectorization

algorithm can handle the single object function with vector programming well. Because the base

case has less interpretation overhead, the vectorization achieved relatively low additional speedup.

Figure 4.10 shows the speedup number by varying the n values of LR-n, LogitReg-n, k-Means-nD

and LR-OLS-n. As discussed before, the smaller the n value, the base function is more likely a

Type I R code, and has large interpretation overhead. Then, the proposed approach can achieve

better speedup. On the other hand, the larger the n value, the smaller speedup of the vectorization

approach can achieve due to the relatively efficient of the base case.

4.5.7 Tiling in Vectorization

One negative effect of Apply operation vectorization is that it increases the memory footprint. The

Apply operation must be applied to relatively long input data lists or arrays so that the overhead

can be offset by reducing interpretation overhead. In the vectorized function, each single vector

computation operates on long operands, and store the intermediate result into another long vector.
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Figure 4.10: Speedup of different vector lengths (Base Input)

These sequences of long vector operations hinder data locality. And the long intermediate results

also consumes more memory.

The next experiment configured the Linear Regression example with different tiled sizes, and

measured the performance impacts. The smaller tiled size, the more synthetic loops are required

to implement the vectorized function, and the overhead increases accordingly. For example, if

the tiling size is 1000, and the input data’s length is 1 million, there are 1000 invocations of the

vectorized function in each algorithm iteration of the Linear Regression example.
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Figure 4.11: Speedup of Different Tiling Sizes (Base Input)

Figure 4.11 shows the speedup number of different tiled sizes in the vectorized function to

the original base case. A good tiled size can achieve much higher performance improvement

compared to the no tiling case. The smaller tiling size suffers large interpretation overhead. The

data collected from the hardware performance counter showed that the smaller tiled size case

executes more native instruction, and has a much higher instruction cache miss rate (R has very
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large instruction footprint, there is nearly no native instructions reuse for different loop iteration’s

interpretation routines). The larger tiled size suffers large data cache miss rate. The hardware

performance counter reveals the larger tiling size case has much higher cache miss rate (up to 10x

more) due to loss of data locality.

In order to get the best performance speedup, a optimal tiling size is required, which is quite

hard in real practice. A better way is to do native level vector code fusion [75]. After the proposed

vectorization, the function contains long vector based computations, which are very suitable to

apply native level code fusion.

4.5.8 Built-in Vector Function’s Support

One of the most important factors that impacts the performance of vectorization is the vector com-

puting support from R’s built-in functions. If all the operations in the vectorized function are in

Table 4.3, a higher speedup could be expected, which explains the high speedup in Linear Regres-

sion. However, many functions do not have the corresponding higher dimensional functions. For

example, in the early phase of the research, the vector version of which.min is not found in R.

which.min is used in k-Means to locate the closest center of one data point. It accepts a vector,

and returns a scalar. The vectorized function of which.min should take a matrix in, search the

index of the min value in each row, and return a vector out. There is no such a built-in function

in R. Then the vectorization compiler had to use the generic replacement transformation that uses

Apply to go through each row of the input matrix to simulate the vector execution. Because

the function is a time consuming part in k-Means, the initial speedup of the vectorized k-Means

is not high. After a detail search, the vector version of which.min(v) can be expressed by

col.max(-v), and additional 30% speedup is gained. Howver, there is still no vector version of

crossproduct function in R, which limits the speedup of LR-OST and PCA.
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4.6 Discussions

4.6.1 Pure R Based Implementation

The current implementation of the proposed vectorization is purely based on R. The reason is to

make the maximal possible compatibility. Based on the design decision, all the runtime functions

in the package are implemented in R code, and there is no additional native implemented functions

introduced as the vector version of some commonly used R computation functions. The advantage

of the approach is (1) compatibility and simple, no need any modifications to GNU R VM; (2)

Easy to install, the installation does not involve native level C or FORTRAN compilation. But the

obvious disadvantage is the performance limitation.

If the design decision is changed. Suppose, the interpreter of GNU R can be changed, then a

predicated execution mode could be introduced into the GNU R interpreter, With the interpreter

support, there is no need to use a synthesized loop to handle the loop transformation, and there is no

need to use control branch linearization, (both described in Section 4.3.3). And the interpretation

of these constructs could be much faster.

Another less intrusive way is to provide the native implemented vector version of commonly

used R functions. For example, the vector version of crossproduct. It only requires native

compilation during the package installation, and no need to change the GNU R VM. A better

performance is expected with more engineering efforts, which is not the scope of this thesis.

4.6.2 Combine Vectorization with Parallelization

As the code is transformed into long vector computation (Type II R codes), it exposes more oppor-

tunities to explore the parallelism in different levels. First, it is much easier to use the processor’s

SIMD unit if the operation is already a vector operation. Secondly, thread level parallelism can be

introduced to get better performance. Thirdly, the approach can be integrated into R cloud comput-

ing frameworks, such as Rabid and SparkR to explore the distributed parallelism. The integration
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can help reduce the interpretation overhead of each single node in these frameworks, and achieve

a good performance improvement for the whole system.

The three levels’ parallelism is orthogonal to the proposed approach, and a better performance

can be expected with any combinations. Chapter 5 will describe the combination of this proposed

approach with SparkR in a distributed environment.

4.6.3 Different to Conventional Automatic Vectorization

This approach differs significantly from conventional automatic vectorization. First, the transfor-

mation does not need to determine whether the operation can be parallelized because parallelism

is implied in the semantics of Apply operations. Secondly, the speedup of the transformation

shown in this chapter does not come from exploiting parallel hardware resources (such as multi-

threading, SIMD, or GPU), but from reducing the interpretation overhead of Type I codes. So the

speedups manifest even in a single-thread of execution. In the mean time, new challenges appear

as the approach tries to vectorize a vector language in a dynamic scripting language context.

4.6.4 Limitations

The lightweight approach proposed in this section can get very good performance comparing with

the original sequential Apply operation. However, it still has some limitations in applying this

method.

• No side effects of the single object function Although it is an implicit requirement for Apply

function call, some single object functions used by Apply still has side effects in real prac-

tice. It’s quite hard to identify these side effects in a dynamic scripting language context.

But if the proposed approach is used to transform this kind of Apply calls, the semantics of

the original statement is changed.

• Homogeneous data structure of each element in the input list The PERM DOWN requires each

element of the input list of Apply has the homogeneous structure, so that the output DOWN
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shape object can be constructed. In some rare cases, this condition is not satisfied, and the

PERM DOWN cannot be performed correctly. In R, this limitation can be solved by filling NA

to make the data homogeneous. But this filling will introduce additional data transformation

overhead.

• Possible Large Memory Usage In many usage scenarios, the vectorization technology pro-

posed here will reduce the memory usage. The reason is that the original data is transformed

into a more dense vector storage. Because R’s list data structure is composed by the small

SEXPREC objects (Section 2.2.2), the transformed vector storage uses much less memory.

However, in some cases, vectorization will create large intermediate vector object. For ex-

ample, the original distance calculation in k-NN will generate a distance vector (or list) for

one test sample to all the train samples, and the distance vector (or list) will be consumed

and dead after the minimal distance is found. Then it will be garbage-collected. However,

after the vectorization transformation, the vector distance computation will generate a dis-

tance matrix that contains all test samples’ distances to all the train samples. Although the

matrix will be garbage collected finally, it may use a large memory space in the intermediate

stage if the number of the testing samples and the number of train samples are large.

• Possible Slower Running Speed As described in the evaluation section, the proposed ap-

proach requires the built-in low overhead vector functions. If there is no built-in vector

function support, or the vector function coverage is low, the transformed vector version may

run slower than the original sequential version. However, this can be decided at the compi-

lation time. If such a situation is met, the transformation can be ignored, and still use the

original sequential execution.

4.6.5 Extended to Other Dynamic Scripting Languages

The technique of this section can be easily extended to vectorize Map operations in other inter-

preted dynamic scripting languages. With the popularity of the Map-Reduce framework, many
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dynamic scripting languages are featured with Map style operations. Besides R’s Apply class

of operations, Python has built-in map functions and list comprehensions syntax 3, JavaScript’s

Array data type supports map and foreach operation, and Matlab has a number of similar

functions (arrayfun, cellfun, et al.) that can be used with anonymous functions to perform

map operations.

The proposed approach can be applied to other dynamic scripting languages in three ways

• Direct Application If the target language has built-in vector computation support, such as

Matlab, this approach can be applied directly, and a similar performance improvement could

be expected.

• Add Vector Extension If the target language has no built-in vector support, but can be ex-

tended to add vector support, such as NumPy[6] to Python, this approach can still be applied.

• Expand the Vectorizable Constructs The current algorithm can only be applied to language

constructs with the semantic MAP. However, if a loop in a dynamic scripting language with

each loop instance is independent and has no side effect, this transformation can still be

very useful to reduce the interpretation overhead. A dynamic scripting language may be

extended with some annotations introduced (similar to OpenMP) to expose these loops and

use the proposed approach to vectorize them.

3Example code: squares = [x**2 for x in range(10)]
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Chapter 5

R Vectorization in Distributed R
Computing Framework

5.1 Introduction

Chapter 3 and Chapter 4 have described two approaches to improve R’s performance through

interpreter level specialization and operation vectorization. These two techniques successfully

improved the single R instance’s performance. However, because of the information explosion,

it’s impossible for a single R instance to process the real BIG data. For example, the Airline

on-time performance data set from DataExpo 2009 [2] contains 120M records stored in 12 GB

raw data. It’s very hard for a typical R instance to process all the data quickly, even not consider

whether a single R instance can load all the data into the memory.

Master 

Slave 

Slave 

Slave 

… 

Task 
Data 

Figure 5.1: Parallel Computing of R in Master-Slave Model

Parallelism is the only solution to help R scale out to process the real BIG data. There are many

different levels of parallelism in R. Due to the thread-unsafe implementation of GNU R, there is

no thread concept introduced. In a shared memory machine with parallel hardware processes,

79



process level parallelism has been used to process R’s data in parallel. SNOW [79] is based this

model, which provides the parallel version of lapply. The master R instance receives the data

and the single object function from the user, and launches several slave R instances to distribute

the computation. This mechanism is a stand Master-Slave parallel model, shown in Figure 5.1.

Because the implicit parallelism of lapply, it fits very well with SNOW. SNOW and its extension

SNOWFall[54] supports this type of parallelism to distributed memory machines using socket

communication or MPI. In this model, there is one R instance working as a master, and this master

R instance will be responsible for distributing both the R task and the data to all the slave R

instances.

Distributed Data Storage 

Console 

Worker 
… 

Task 

Data 

Distributed Runtime System 

Worker Worker 

Task Task Task 

Figure 5.2: Parallel Computing of R based on Distributed Runtime System

One limitation of the Master-Slave system is the master node must take all the data in. It’s

highly possible the master node will become the bottleneck, for example, the case that the master

node cannot read all the data into its memory.

Recently, there is a new trend to scale R into a distributed environment via integrating R with

an as-is distributed computing framework, and leverage the distributed framework’s capability to

do task and data scheduling. The structure of this kind of distributed R system is illustrated in

Figure 5.2. This model can scale up to processing much larger data set than the Master-Slave

model, because both the task and data are managed by the runtime system. The console node is
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not the bottle neck any more. SparkR[82], RHadoop[68], Rabid[56], RHIPE[42] are all following

this model. Although different systems have different architectures and implementations, the un-

derlying computing models of them are all based on Map-Reduce. As a result, all of them provide

lapply or similar interfaces.

Both the SNOW style Master-Slave parallelism model and the distributed Map-Reduce style

model use the lapply interface as the basic building block to provide a global lapply. Then

the runtime system schedules the computation to each individual process or node. In the finest

granularity of each R instance, R’s default lapply is used to perform this level’s computation. As

described in Chapter 4, lapply is interpreted as Type-I R code, and it suffers large interpretation

overhead. Although the high level system leverages the parallelism in different levels to accelerate

the data processing, the single node’s computation is still very slow, which leaves a large room for

improvement. In this chapter, the vectorization techniques described in Chapter 4 will be applied

into these frameworks to improve their performance. SparkR will be used as an example to show

how Apply vectorization is integrated in to accelerate the computation. But this approach is not

limited to SparkR, and it can be applied to other R parallel frameworks, too.

The rest of this chapter is organized as follows. SparkR is briefly introduced in Section 5.2,

as well as its APIs and a simple example. Section 5.3 explains the integration implementation of

the vectorization into SparkR. Section 5.4 presents the empirical evaluation results. Finally, the

related issues and possible improvements to SparkR are discussed in Section 5.5.

5.2 SparkR Background

SparkR is an open-source project that integrate GNU R with Apache Spark[12]. It provides a

light-weight front-end to use Apache Spark’s distributed computation power from R.
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5.2.1 Basic Structure

The architecture of SparkR follows the structure described in Figure 5.2. The runtime system of

SparkR uses Apache Spark, and the data storage could use HDFS[72], in memory, or other dis-

tributed storage systems. Spark uses RDD (Resilient Distributed Dataset) to express the large data

object stored in the underlying storage layer, and exposes APIs to manipulate the RDD. SparkR

exposes RDD to the R user by defining RDD as an R S4 type object. It also provides R APIs to

manipulate the R RDD object.
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Figure 5.3: SparkR Architecture and Object Storage

Because lapply is the basic building block of SparkR, the RDD is internally an R distributed

list object. Each partition of an R RDD object in one single R instance’s memory is indeed a

normal R list object. Figure 5.3 show SparkR’s architecture. YX is an R RDD object. The RDD

object in the console is just a handler (reference) of this distributed object, and the real data is

expressed as Java byte-array (serialized R object), and distributed in the Spark Executors across

the whole system. In each R computation operation, the Java byte-array is de-serialized back into

an R instance, and the corresponding R operations are invoked to process the object.
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5.2.2 SparkR APIs

SparkR provides a bunch of APIs to create, transform, and aggregate R RDD object. The full

list of the APIs could be found at [15]. Among them, the most important API is lapply, which

overrides R base package’s lapply for processing RDD data type. Another important API is

reduce, which is similar to R base package’s Reduce, but it is used with RDD data type. With

SparkR’s API, user can simply transform the original sequential lapply based application into

a distributed application that can process large amount of data set. Listing 5.1 shows the Linear

Regression example in SparkR.

1 grad.func <- function(yx) {
2 y <- yx[1]
3 x <- c(1, yx[2]) #Add 1 to est interception
4 error <- sum(x * theta) - y
5 delta <- error * x
6 return(delta)
7 }
8
9 sc <- ... #A Spark context

10 YX <- ... #A RDD list in the sc context. Each element is a [y x] vector
11 alpha <- ... # Control the changes in each iteration
12 for(iter in 1:niter) {
13 delta <- lapply(YX, grad.func)
14 theta <- theta - alpha * reduce(delta, ’+’)
15 }

Listing 5.1: Linear Regression with lapply in SparkR

Compared to the standalone R’s Linear Regression example, Listing 4.1, there are only a few

changes, including YX is now an RDD object, and Reduce is changed to reduce with some

parameter order changes. After the application is launched, SparkR will create the distributed YX

object, and it will also distribute the function grad.func and the console’s data theta to all

the workers. The runtime also handles the reduction from the workers to the console. This model

greatly simplifies the programmer’s effort for distributed computing. The programmer now only

needs to think about the algorithm, and no need to worry about how to schedule data and the task.
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5.2.3 Performance Problems

SparkR is still in the very early development phase, and one big problem is that it runs very slow.

In some workloads, SparkR in a cluster is even slower than a single node standalone sequential R.

Although SparkR can process large data set, but if the processing speed is too slow, the adoption

of SparkR is still hampered.

There are at four sources that cause the slow performance. (1) The slow processing speed of

GNU R itself; (2) The data exchange between Spark Java executor and R instance in the worker;

(3) The R instance launching overhead for each SparkR blocking operation; and (4) The slow

lapply interpretation mechanism in each worker. The first problem also exists in single node’s

GNU R, and can be solved by an efficient R implementation, for example ORBIT introduced in

Chapter 3. The second problem can be solved by an efficient R-Java interaction mechanism and

fast serialization/de-serialization implementations. The third problem can be solved by reusing R

instance approach. And the SparkR project is working on solving the second and third problems.

The last problem is exactly the one described in Chapter 4.

In order to solve the slow interpretation speed problem of lapply, SparkR provides an addi-

tional API, called lapplyPartition. Similar to lapply, this API still accepts two parame-

ters, the data, which is now a chunk of data (typically the whole portion of an RDD in a worker),

and the mapper function, which is a function to process the whole data chunk. The API itself will

not run faster. But if the programmer organizes the chunk of data into a vector storage, and pro-

vides a vector function to process the vector data, the lapplyPartition will only be invoked

once for one worker, and the underlying invocation is a vector function over a vector data, the

interpretation overhead will be much smaller than the original lapply based case.

However, in order to use lapplyPartition, the programmer needs to think about how to

organize data, and how to write the vector function, which is tedious and complex. Furthermore,

the algorithm should also be changed compared with the original lapply based implementation.

For example, if the YX in Listing 5.1 is changed to vector partition storage, and the grad.func
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is changed to a vector function, the lapply then could be changed into lapplyPartition.

But the reduce operation should be also changed, because the reduce’s input now is not a list of

elements, whose reduce semantic is clear, but a few vector values. The programmer should take

care of the new reduction semantics in the worker, or across workers, or both.

All of these changes bring large burden to the programmer, and an automatic solution is desired

to handle these transformation, and improve SparkR’s performance.

5.3 Integration R Vectorization to SparkR

The Apply vectorization technique described in Chapter 4 is used to improve the performance

of the standalone R instance’s performance in executing Apply class of operations. Because

the main performance problem of the lapply in SparkR exists in each worker’s R instance, the

Apply vectorization technique could be adopted into the SparkR context to improve SparkR’s

performance. In the original single node context, the transformation is changed from looping-

over-data lapply into a direct vector function invocation. But in the SparkR’s context, the

transformation goal is changing the distributed lapply call over a RDD list into a distributed

lapplyPartition which invoke a vector function over each partitioned data in each cluster.

Similar to the single node’s vectorization, there are also three transformation tasks

• Function Vectorization Transform the original single object function into a vector function

that can work on a chunk of vector data in one worker. The vectorized function will be fed

into lapplyPartition.

• Data Transformation Transform the distributed RDD list into another RDD object, in which

each chunk is stored as the vector format. The vector chunk can be directly processed by the

vectorized function above.

• Caller Site Rewriting Change the original application code containing lapply into the new

code containing lapplyPartition, and perform optimizations to reduce the overhead.
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5.3.1 Function Vectorization

The function vectorization in this context is exactly the same as the function vectorization in Sec-

tion 4.3.3. The same algorithm and the same API VEC FUN is used here.

5.3.2 Data Transformation

The data transformation transforms the whole RDD from the original list storage into the vector

storage. The original list RDD in SparkR is already partitioned, and each R worker instance owns

one partition, shown as the upper part of Figure 5.4. After the data transformation, the data should

be expressed as the lower part of Figure 5.4.
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Figure 5.4: RDD Data Vectorization

The individual partition’s data transformation (e.g. Partition 1 in Figure 5.4) is exactly the

same as the data transformation in Section 4.3.3. The algorithms there and the APIs including

PERM DOWN, PERM UP and REP EXPAND work in the same way. However, from the global RDD

view, these functions should be applied to all the partitions. The SparkR’s lapplyPartition

is used here to perform this task. For example, in order to transform the YX object from a list RDD

into a vector RDD, an expression lapplyPartition(YX, PERM DOWN) is generated. The

other two transformations, PERM UP and REP EXPAND, work in the similar way.
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5.3.3 Caller Site Rewriting

The caller site rewriting in Section 4.3.3 transforms the lapply function call into a direct function

invocation. The transformation in SparkR’s context is slightly different. It translates the lapply

code into a lapplyPartition call. For example the original expression of lapply(data,

foo) will be changed as the code in Listing 5.2.

1 lapplyPartition(
2 lapplyPartition(
3 lapplyPartition(listData, PERM_DOWN),
4 VEC_FUN(foo)
5 ),
6 PERM_UP
7 )

Listing 5.2: Expression generated from lapply(data,foo)

The lapplyPartition of Line 3 transforms the data from the list partition data to the vec-

tor partition data. The lapplyPartition of Line 2 invoke the real function with the vectorized

function VEC FUN(foo). The lapplyPartition of Line 1 transform the vector partition

data back to the original list partition to maintain the original program behavior. When the trans-

formed code is launched, the SparkR’s runtime will be responsible for scheduling each partition to

the corresponding work and getting the right result back.

5.3.4 Other Transformations

Reduce Rewrite In many applications, the result of lapply is fed into the following reduce

function call. In the standalone single node R’s context of Chapter 4, the following reduce

function invocation is also transformed into a more efficient reduce call. This technique can be

applied to the distributed context here, too. But because the reduce will go through the whole

RDD object, a direct function replacement is impossible. A two level reduce mechanism is used. In

the single R instance level in each worker, a more efficient reduce function (for example, colSums

to sum) is used to do the reduce over the DOWN shape result from lapplyPartition. After
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that, the original reduce function is used to perform the cluster level reduce with the original

reduce operator. With the two level reduce mechanism, the lapplyPartition of Line 1 in

Listing 5.2 could be saved.

lapply for Non RDD object call The code transformation proposed in this section is a pure

compiler based static transformation. The lapply overrides the R base package’s lapply,

which means the lapply can receive either an RDD object or a normal R object. And this

type information cannot be checked in the code rewriting phase. The current implementation of

the vectorization transformation dynamically checks whether the SparkR package is loaded. If

loaded, the lapply will be transformed into lapplyPartition style. Furthermore, a new

lapplyPartition is also defined in the base package, which performs the direct function

invocation. With this runtime change support, even the lapply receives a non-RDD object in the

SparkR context, the generated lapplyPartition code can still get the right result.

5.3.5 Optimizations

All the optimizations described in Section 4.3.3 can be applied to the SparkR’s context.

• Runtime Memorization Each RDD object has the UP and DOWN data representation. A

runtime memorization mechanism based on hidden variables are used to do the runtime

linkage to save the redundant data transformation.

• Delayed Evaluation The delayedAssign mechanism of R is used to delay or even remove the

data transformation from the DOWN shape back to the UP shape if the UP shape object is

not used afterwards.

• Remove Redundant Data Replication It is the same as the redundant data replication re-

moving mechanism mentioned in Section 4.3.3, and only works in each single worker’s R

context.
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• Optimize Reduce Function Call Similar to the reduce function call optimization in Section

4.3.3, some specific reduce operation, such as sum can be replaced by an efficient high

dimension function call, like colSums. This optimization can only be applied at each

single worker’s R context, because the cross cluster’s reduce must be performed one by one.

Another optimization here is using the cache mechanism of Spark to cache the transformed

DOWN shape object in the memory of each worker’s Spark executor. This will save a lot of

memory serialization/de-serialization and data communication overhead.

5.3.6 Code Transformation Example - Linear Regression

With all the code transformation described in the previous section, the Linear Regression example

in Listing 5.1 is transformed as the code in Listing 5.3.

Line 15 to 21 of Listing 5.3 is the runtime memorization optimization. The cache in line 17

is the Spark object cache optimization. Line 22 will be invoked at each worker’s R instance to do

function vectorization transformation, which will generate the same code as Listing 4.6. Line 24

is the delayedAssign optimization. Line 26 to 30 is the two level reduce in SparkR, and line 27

to 28 is the reduce optimization in each single R instance level. With all this transformation and

optimization, the code in Listing 5.3 runs much faster than the original code in Listing 5.1.

5.4 Evaluation

The performance of the SparkR with the vectorization integration was evaluated by comparing the

running time of the vectorized code to the time of the original SparkR execution.

5.4.1 Benchmarks

The benchmarks in the evaluation are kernels of data analytics and machine learning algorithms

similar to those used in Chapter 4. Because both Spark and SparkR are mainly target solving
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1 grad.func <- function(yx) {
2 y <- yx[1]
3 x <- c(1, yx[2]) #Add 1 to est interception
4 error <- sum(x * theta) - y
5 delta <- error * x
6 return(delta)
7 }
8
9 sc <- ... #A Spark context

10 YX <- ... #A RDD list in the sc context. Each element is a [y x] vector
11 alpha <- ... # Control the changes in each iteration
12
13 for(iter in 1:niter) {
14 .va.delta <- lapplyPartition(
15 { if(!exists(".va.YX", inherits = FALSE)
16 || !identical(.vasrc.YX, YX)) {
17 .va.YX <- cache(lapplyPartition(YX, PERM_DOWN))
18 .vasrc.YX <- YX
19 }
20 .va.YX
21 },
22 VEC_FUN(grad.func) )
23
24 delayedAssign("delta", lapplyPartition(.va.YX, PERM_UP))
25
26 theta <- theta - alpha * reduce(
27 lapplyPartition(.va.delta,
28 function(vData){list(colSums(vData))},
29 ’+’)
30 }

Listing 5.3: Transformed Linear Regression with lapply in SparkR

iterative problems, all the iterative benchmarks in Chapter 4 are used in this evaluation. The

benchmark collection also includes k-NN problem, which is a direct algorithm based benchmark.

It is used to show the effectiveness of the vectorization can also be applied to direct algorithm in

SparkR’s context. The implementation of these application is almost the same as the code used in

Chapter 4 except some minor changes to create SparkR context and use SparkR’s API.

Table 5.1 lists the kernels and the configurations used in the evaluation. Because the goal

of SparkR is solving Big Data problem, the input sizes to these benchmarks vary in the evalua-

tion, starting from 1 millions samples for all iterative algorithms, and increasing up to 16 million

samples. The input of k-NN starts from 10k testing samples, and increases up to 160k samples.
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Table 5.1: Benchmarks and Configurations

Name Descriptions Configurations
LR Linear Regression of n variables Each sample 10 dimensions
LogitReg Logistic Regression of n variables Each sample 10 dimensions
ICA Independent Component Analysis Un-mixing 2 signals
K-Means Clustering of n dimensional points 3D points, 10 clusters
k-NN k Nearest Neighbor 3D points, 10k training, 10 categories, k=5

5.4.2 Evaluation Environment

The evaluation was performed on the campus cluster [10] of University of Illinois at Urbana-

Champaign. The detail hardware and software configuration can be found at the website of the

campus cluster. The Golub cluster was used in all the following measurement. The head node is

equipped with one Intel E5-2660 2.2GHz 8-Core processor and 128GB memory. Each computing

node is equipped with one E5-2670 2.6GHz 8-Core processor and 64GB or 128GB memory1. The

software configuration is listed in Table 5.2.

Table 5.2: Software configuration in SparkR evaluation

Name Version
OS Cent OS 6, 2.6.32-504.8.1.el6.x86 64
Java Sun Java 1.8.0 31-b13 64bit
Scala 2.11.4
Spark 1.1.0 pre binary built
R 3.1.2
SparkR Github head build v2271030

Up to eight computing nodes were used in the evaluation. Because each node has a 8-core

processor, each Spark executor can launch eight R instances in one computing node and there are

total 64 R instances in the evaluation at the maximal scale.

5.4.3 Evaluation Methodology

There are two variables changed in the evaluation, the input data size, and the number of computing

nodes (workers) used in SparkR. The input data size will vary from 1 million to 16 millions for the

1The resource scheduler of the campus cluster chooses the available 64GB or 128GB machines at the request time.
But the application use less than 64GB memory
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iterative algorithms and 10k to 160k for k-NN, and the number of computing nodes will vary from

1 worker (8 R instances) to 8 workers (64 R instances) in the evaluation.

For iterative algorithm based benchmarks, the computation time is defined as one iteration’s

computation time. In the test, the time is calculated by the average time of iteration 6 to iteration

15, when the system runs in a stable stage. Because of the runtime memorization optimization,

different to the evaluation in Chapter 4, one iteration’s computation time except the first iteration

doesn’t contain the input data’s transformation time. Because the input data’s transformation time

could be amortized by the iterations, this method to calculate the time is reasonable. The k-NN’s

computation time is the total time of the computation, which includes the data transformation time.

For a direct method, data transformation time cannot be amortized, so the overhead is incorporated

in the evaluation.

The following subsection will report the speedup number of the SparkR with vectorization

versus the original SparkR, as well as the absolute running time in different input sizes.

5.4.4 Vectorization Speedup

Figure 5.5 shows the speedup number of the SparkR with vectorization integration to the original

SparkR. The vectorization can improve the performance in almost all the cases, and can achieve

over 10x speedup in many cases. The speedup number are impacted by the workload, the input

size, and the number of workers.

First, the more complex the computation of the workload, the higher the speedup. Although

all these algorithms can achieve very good speedup in single node’s standalone R (Section 4.5),

the final speedup number in SparkR is not only impacted by the algorithms’ computation time, but

also by the SparkR’s scheduling overhead.
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Figure 5.5: Speedup of vectorization in SparkR
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For example, k-Means and k-NN has the most complex computation. Both k-Means and k-

NN have a lot of distance computation, and finding minimal location operations, which require

huge amount of computation power. The vectorization can greatly save these operations. And

the SparkR’s scheduling overhead is relatively small compared with the computation time. As a

result, these two benchmarks can still get good speedup numbers. However, LR and ICA has small

computation in each iteration, and the SparkR’s scheduling overhead is relatively large in these

cases, which explains the low final speedup numbers.

Secondly, the larger the input size, the higher the speedup. If the number of the workers is

fixed, the speedup number increases as the input size increases. This is still caused by the SparkR’s

scheduling overhead. In a simple model, SparkR’s scheduling overhead is a constant. The larger

the input size, the larger the computation, and the relatively smaller the overhead. So the speedup

number is higher.

Thirdly, the more workers, the lower the speedup. If the input size is fixed, as the number of the

workers increases, the speedup number drops. The reason is the same as above. As the number of

worker increases, each R instance in SparkR gets smaller portion of computation, and each worker

has a relatively larger overhead. So the speedup number drops.

Although SparkR is a distributed system, it still follows the basic rules of parallel computing

systems. It can be analyzed with these parallel models, such as Amdahl’s law or Isoefficiency[41].

5.4.5 Comparing with Manually Transformed Vector Code

Because SparkR provides the API lapplyPartition, user can use the API directly with

a vector functions and vectorized RDD object. The Logistical Regression example in SparkR

project is written in this way. Here the performance of the automatic vectorized LogitReg (with

lapply invocation) is compared with the manually written vector version of LogitReg (with

lapplyPartition invocation), and the speedup number is shown in Figure 5.6.
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Figure 5.6: Speedup of the vectorized LogitReg to the manually written vector LogitReg

The automatic vectorization technique proposed in this section can achieve the similar perfor-

mance as the manually written vector version, only with a small gap (maximal 10%). One reason

for the gap is the manually written version uses matrix-matrix multiplication to perform a sum

and a reduction combination, while the generated code from automatic vectorization uses one ma-

trix element wise multiplication and a reduce operation to get the same effect. But matrix-matrix

multiplication can only be performed in a single R instance, and there are still cross R instance

reductions. Because the effect, when the number of R workers increases, the gap is reduced, since

both the manually written version and the automatic generated version have more cross-nodes

reductions, which have relatively larger overhead.

5.4.6 Comparing with Single Node Standalone R

The performance of the benchmarks used in SparkR evaluation was also measured in the stan-

dalone R with the same hardware environment. This subsection reports the performance of these

benchmarks with SparkR and with a standalone R. The standalone R only uses one single thread,

where each SparkR’s worker can launch 8 R instances to run in parallel. However, because of the

Intel Turboboost feature in the processor of the testing environment, the standalone R may runs

at a CPU frequency upto 3.3GHz, while the R instance in SparkR can only runs at 2.6GHz. Due

to the resource control limitations, the Turboboost cannot be disabled in the testing environment.

The absolute number reported in this section may be biased, but the trend should be valid.
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Speedup to Standalone R

Figure 5.7 shows the speedup number of SparkR without vectorization to the standalone R without

vectorization. SparkR can achieve speedup in all cases except the k-Means. Because one worker

in SparkR has 8 R instances, one worker can achieve over 1 speedup in many cases. The k-

Means’ performance is relatively low in SparkR. SparkR only get little speedup, or even slowed

down the computation if the input size is relatively small. The reason may be from the reduce by

key implementation in SparkR, which is out the scope of this thesis. For all the other cases, the

parallelism improved the overall performance, and in k-NN’s case the speedup received up to 43x

with total 64 R instances.

Figure 5.8 shows the speedup number of SparkR with vectorization integration to the stan-

dalone R with vectorization. The speedup number is much smaller compared to the case without

vectorization. The reason is that after vectorization, the computation is greatly reduced, and the

overhead of SparkR is relatively much larger in this case. So the speedup to standalone R drops.

But because each R instance’s computation is reduced, the whole system can process more data.

According to the basic parallel computing rules, if the input size increases, SparkR with vectoriza-

tion should be able to get relatively good speedup.

Running time of Different Problems Size

Figure 5.9 reports the absolute running time of all the benchmarks in standalone R and SparkR

(with different workers). The running time for iterative algorithms are one iteration time and all

computation time for k-NN, which are defined earlier in this section. The absolute running time

gives a better view to explain the high or low speedup number. k-Means and k-NN has very

long computation time, which explains both the SparkR and the vectorization in SparkR can help

achieve good speedup. Others have relatively small computation. Without the vectorization, the

computation time is still relatively large, then SparkR can reduce the total running time compared

with the standalone R. With the vectorization, these benchmarks only spend a few seconds in
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one iteration, which is in the same scale of the SparkR’s scheduling overhead, and SparkR with

vectorization sometimes even run slower than standalone R with vectorization.

5.5 Discussion

As discussed in Section 5.4, Apply vectorization can effectively improve the performance of

SparkR in many cases. The speedup number could be higher if the input size is large or there are

few workers (where each worker can receive more input data). However, all the speedup number

reported here are much smaller than the number reported in Chapter 4. The main reason is the

overhead introduced by the parallel system.

Based on the analysis of SparkR’s implementation, two important source of the overhead have

been identified.

• Data exchange between Spark executor and R instance Because Spark framework is based

on Java, and R is a standalone application, there must be some data exchange between the

Spark executor and the R instance in each worker, as shown in Figure 5.3. The current

data exchange mechanism in SparkR is based on object serialization through disk. Spark

executor only stores R objects as binary-array. If the data object should be passed from the

Spark executor to the R instance, the object is first written in to the disk as files, then R

instance reads the files and do object de-serialization. There are two disk operations, Java

write and R read, and one object de-serialization, which are all high overhead operations.

The communication from R instance to Spark executor has the same amount of work.

• Launching R instance for each R blocking operation The current implementation of SparkR

uses a new R instance for each R operation scheduled to the worker. This is a typical design

for most of the distributed frameworks, such as Hadoop[9]. Spark uses lazy evaluation to

fuse a few R operations into a single large R operation, and only evaluates it if the operation

will cause blocking to others. For example, a few piped lapply will be fused together,
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until a Reduce is reached. However, for iterative algorithms, each iteration will have one

fused operation at least, and Spark executor will create a new R instance for it. For a new R

instance, it must first communicate with the Java Spark executor to get the data, and com-

municate with the Java Spark executor to store the data for the next round’s iteration. These

communication have very large overhead as described before. The R instance launching

operation itself also brings large overhead.

There are many possible ways to reduce the two overhead mentioned above, for example de-

signing an effective Java/R interaction mechanism through memory, implementing a better object

serialization for R, or implementing R instance reuse across different R operations. All these tech-

niques are out of the scope of this thesis. But in order to improve the whole system’s performance,

these optimizations must be incorporated, otherwise the vectorization’s benefit is greatly reduced

in SparkR.
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Figure 5.7: Speedup of SparkR to standalone R
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Figure 5.8: Speedup of vectorized SparkR to vectorized standalone R
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Figure 5.9: Absolute running time(second) of standalone R and SparkR
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Chapter 6

R Benchmark Suite

6.1 Introduction

This thesis has discussed some techniques to improve dynamic scripting languages, specifically

R language’s performance. For all performance improvement related research, a good set of

benchmarks is required to identify the performance problems and measure the effectiveness of

different optimization methods. Many benchmarks available in system level and static languages’

research, such as the SPEC benchmark collections[16], the LINPACK benchmark for HPC, the

DaCapo benchmark[28] for Java, as well as in dynamic scripting languages area, such as V8

benchmark[18], SunSpider[17] and JSBench[5] for JavaScript.

However, there is no proper benchmarks for R. Different research teams working on R’s per-

formance improvement use their own small collections of R benchmarks. There are two problems.

It’s not clear whether these benchmarks are representative. and it’s hard to compare the result of

different research techniques in a common set of benchmarks.This problem is an obstacle not only

to the research of this thesis but also to other researchers in R research domain.

Besides the problem of no proper benchmarks, another problem is lacking of benchmarking

environment to automatically measure the performance of different benchmarks. The naive way to

measure the performance is through R’s system.time() interface, which reports the running

time of the input expression. Other R packages, such as rbenchmark, microbenchmark, provide

additional interfaces to repeatedly run the input function and do simple data analysis. However, all

these require user’s explicit invocation. All the measurement are inside R process, and can only

report the execution time. Furthermore, some research R VMs are not compatible with GNU R,
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and cannot use these benchmark packages.

The R benchmark suite work described in this chapter are trying to solve the two problems.

First, a bunch of R micro-kernels and real application problems are collected, and standardized.

They are organized according to the taxonomy system defined in this thesis (Type I, II, and III,

see Section 2.2.1). Second, a flexible R benchmarking framework was design and implemented.

It can automatically measure the performance not only GNU R but also all available research R

VMs with the benchmark collections mentioned. With the extensible design, it can not only report

the time, but also report the software and hardware performance metrics from OS and hardware

performance counters.

The rest of this chapter is organized as follows. Section 6.2 describes the benchmark collec-

tions. The design and implementation of the benchmarking framework are explained in Section

6.3. The current status of the benchmark suite is briefly discussed in Section 6.4.

6.2 Benchmark Collections

A good benchmark collections should have the following features, representative to the real ap-

plication, good coverage, self contained and easy to be measured. The benchmark collection de-

scribed here are the collection of micro kernels, real applications and R version implementations

of other benchmarks. Table 6.1 is a short list of these benchmarks.

Table 6.1: Benchmark Collections in R Benchmark Suites

Name Short Description Type
Shootout R version ofComputer Language Benchmarks Game Type I, II
R-benchmark-25 Also calledATT benchmark, Math computations Type I, III
Scalar Micro benchmarks Type I
Mathkernel Math kernels Type I, II and III
Riposte Vector dominated benchmark Type II
Algorithms Data Analytics problems Type I and III
Misc Some random collections Type I, II and III

• Shootout It is the R implementation of the shootout benchmark[4]. The original implemen-

tations are from the ORBIT research work described in Chapter 3, and FastR[52][51]. The
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code mainly uses the Type I style. But some applications also have Type II implementation

to get better performance.

• R-benchmark-25 It is also named as ATT benchmark[1]. It contains 15 micro math kernels

in three groups (Matrix calculation, Matrix functions and Programmation). The code either

uses Type I or uses Type III direct native function invocations. It has been refactorized here

so that each math kernels can be measured individually.

• Scalar It is a collection of micro benchmarks, which include CRT (Chinese Reminder Prob-

lems), Fib (Fibonacci number), Primes (Finding prime numbers), Sum (Accumulation

based on loop), GCD (Greatest Common Divisor). It was used in the ORBIT research in

Chapter 3.

• Mathkernel It includes some basic math kernels such as Matrix-matrix multiply, Vector add,

etc. It has Type I, Type II and Type III implementations for each math problem so that the

researcher can compare them in the same context.

• Riposte It was used in Riposte [75] , and contains several vector computing dominated

benchmarks.

• Algorithms It contains data analytics problems, such as Linear Regression, Logistical Re-

gression, k-Means, k-NN, etc.. It was used in Apply vectorization research described in

Chapter 4 and Chapter 5. it was also used in Rabid[56] and SparkR [82]. The collection also

contains the Type III implementations, which directly invoke the R’s built-in functions, such

as lm() for Linear Regression, and kmeans() for k-Means.

• Misc It contains random collections of some real R applications, such as 2D Random Walk.

The classification of R codes into Type I, II, and III in Section 2.2.1 is the first step to classify

the understanding of R performance, so all these benchmarks in the collection are labeled with

Type I, II, III to get a good coverage of all different types of R programs. These applications have
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been standardized to follow the interface defined in Section 6.3, so that the benchmark driver can

launch them and measure them with different benchmarking approaches.

6.3 Benchmarking Environment

As described in the introduction section, another problem for studying R’s performance is the lack

of R benchmark environment. Currently, the way to do performance measurement is calling R’s

system.time() interface, or using some similar interfaces in other R packages. User may write

R script to automate the process, but some research R VMs have different command line invocation

interfaces. In order to measure the performance, user should customize the script invocation for

each R VM. It’s very tedious to compare the performance of all the R VMs in a fair and stand

way. Furthermore, the as-is measurement can only provide the time information. Sometimes, it’s

very useful to capture the OS level’s metrics (such as page fault rates), or processor level’s metrics

(such as instruction cache miss rate or data cache miss rate). There is no such support at all.

R bench 
Driver 

 
 
 
 
 

GNU R 
GNU R 

Harness 

ORBIT 
Harness 

FastR 
Harness 

Generic 
Harness 

… 

ORBIT 

FastR 

… 

Applications in 
R Benchmark 

Collection 

Meter 1 

Meter 2 

Meter n 

… 
setup(args) { ... } 

run(data) { … } 

… 

Figure 6.1: Benchmarking Environment

In order to solve these problems, a flexible R benchmarking framework was designed and

implemented. Figure 6.1 shows the architecture. All the grey box components are part of the

chapter’s work. There are three layers in the framework, the benchmark interfaces (right), the

harness (middle), and the driver (left).
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6.3.1 Application Interface

The applications in R Benchmark Collections follows the code skeleton in Listing 6.1. The

setup() function is optional. It parses the command line’s arguments, and generate the input

data. It makes sure the application is self contained. The run() function is the main measurement

target, which will be invoked in the performance benchmarking. The code in Line 10 to 13 are

helper code. With this helper code, the application can be executed by a standalone R without the

benchmark driver. For example, using command line command Rscript example.R to run

the benchmark example.R. The benchmark driver will define the variable harness argc. If

no such variable (in standalone execution mode), the run() can still be invoked with the input

data from setup().

1 setup <- function(cmdline_args){
2 ... # generate input with cmdline_args
3 }
4
5 run <- function(input) {
6 ... # application logic with input
7 }
8
9

10 if (!exists(’harness_argc’)) {
11 input <- setup(commandArgs(TRUE))
12 run(input)
13 }

Listing 6.1: Interfaces for an Application in R Benchmark Collection

6.3.2 Benchmark Driver

The benchmark driver is used to control the benchmarking for different R VMs. It will first launch

the R process, then invoke the setup() method to get the benchmarking input, and invoke the

run() method with the generated data from setup(). If the benchmarking only wants to know

the the execution time of run(), the benchmark driver only needs to insert the time measurement

around the run() function. However, some system level metrics cannot be easily measured, such

106



as the hardware performance counter. In many cases, the measurement can only be performed in

the whole R process’ level. As a result, the value captured contains not only the run() method

execution, but also the R process launching and quiting, and the setup() execution, as shown

in the upper part of Figure 6.2. The benchmark driver here used the delta approach, shown in

Figure 6.2. It will invoke the application twice with different times of executing run(), and the

difference of the two runs only contains the execution of run(). User can control how many

iterations as the warm-up phase, and how many iterations as the steady measurement phase.

First Run 

Second Run 

Delta 

R Process 
Initialization 

setup(…) run(…) run(…) 
R Process 

Ending 

R Process 
Initialization 

setup(…) run(…) run(…) run(…) run(…) 
R Process 

Ending 

run(…) run(…) 

Warm up 

Figure 6.2: The Delta Approach in the Benchmarking

Many meters can be plugged into the driver, including the time, OS level counters and hardware

performance counters (through Linux perf tool). Because of the delta measurement approach,

new meters can be added into the benchmark driver without modifying the applications in the

benchmark collections.

6.3.3 Benchmark Harness

The benchmark harness acts as an adapter to transform the control commands from the benchmark

driver to the real R VM. Because different R VMs have different command-line invocation param-

eters, there are different harnesses. The harness also perform other environment preparing work

and patch work. For example, ORBIT requires an internal interface be invoked to start the profiling

and JIT optimization, the harness of ORBIT will turn on it before the invocation of run().
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There are many harnesses developed in the R benchmark suites, which can cover all the avail-

able R VMs in industry and academia. A list of the R VMs will be described in Chapter 7.

6.4 Discussion

The R benchmark suite work has been launched as an open-source effort, and can be found at [11].

Although this work is an engineering oriented effort, it is very important for the research work

described in previous chapters. The work simplifies and formalizes the performance measurement

work so the the techniques proposed in this thesis can be measured more precisely, and compared

with related work fairly.

Furthermore, the benchmarking framework is very flexible. It is implemented in Python, and

can measure not only R application, but also any shell invocable applications, such as Python script,

C application, etc. It can be easily extended to benchmarking other dynamic scripting languages.
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Chapter 7

Related Work

7.1 Optimizing R Language

7.1.1 The Landscape of Existing R Projects

Improving the performance of R is the focus of many research projects. Figure 7.1 summarizes all

the major projects on improving R performance through JIT- or Virtual Machine (VM)-level opti-

mizations today. These project are classified according to the R programming styles they target(x-

axis) and the compatibility with the GNU R VM (y-axis). Since there is no formal specification of

R, the GNU R VM is considered the de facto specification of the language. Such a phenomenon is

quite common in scripting languages (JavaScript being one exception) and is sometimes known as

“language specification by implementation”.

The projects shown at the top half of Figure 7.1 all build their own R VMs with indepen-

dently designed object models and external interfaces (if supported) that are incompatible with the

GNU R VM. The compatibility here is defined as following the memory object model of GNU

R (Section 2.2.2), and provides the same interfaces that GNU R exposes. The projects shown at

the bottom of Figure 7.1, on the other hand, are compatible to GNU R VM, which means they are

extensions/variations to GNU R implementation.

7.1.2 Building new R Virtual Machines

Building a new R VM and restricting the language are popular approaches because much of the

overhead of R comes from either the GNU R VM implementation (e.g., the object model or stack
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Figure 7.1: Landscape of R optimization projects.

frame design) or language semantics (e.g., lazy evaluation or Value Object, no reference). By

developing a brand new R VM and excluding some of the rarely used but expensive language

features, one can significantly boost the performance of certain Type I and II codes.

Several Research projects belongs to this category implement their brand new R VMs in Java,

such as Renjin [8], fastR [52] [51], and TruffleR [46]. Renjin [8] implemented an R AST interpreter

on top of JVM. The AST interpreter is a mimic to the GNU R interpreter, and tries to follow the

semantics and behaviors of GNU R. It also applied code fusion and lazy evaluation optimizations

for efficient processing Type II vector code. FastR [51] used the self optimizing AST interpreter

approach from Truffle [86], and built a new JVM based R interpreter. It also applied data and

code specialization optimizations. TruffleR is the next generation of FastR. It uses the same self

optimizing AST interpreter approach from Truffle, and applied additional optimizations such as

partial evaluation. It integrated with Graal[86] for native code JIT to get better performance.

Riposte [75] targets long vector R code (Type II). It achieved high speedup for long vector code

through optimizations including trace JIT, vector code fusion, lazy evaluation, SIMD, and parallel

execution. The latest version [76] implemented vector length specialization for short vector code.
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Rapydo [44] is another experiment R VM based on the PyPy framework. It relies on the PyPy

trace JIT engine and native code generation to achieve high performance. But it only supports a

small portion of R semantics.

Rllvm [55] translates dialect of a subset of R constructs with type annotation into LLVM IR,

and uses LLVM’s optimizations and code generation to get executable native routines. However,

it only supports few R operations.

Challenge for this kind of approaches is that R incompatible VMs cannot easily support Type

III codes, which heavily depend on the internals of the GNU R VM. That means the thousands

of packages available from public R repositories, such as CRAN (the resource hub for the R user

community) [67] and Bioconductor [3], may not be able to run on these new R VMs. As a result,

it’s hard for these approaches gain high adoption in the R user community.

7.1.3 Extensions/Variations to the GNU R

The projects shown at the bottom of Figure 7.1, on the other hand, are compatible extensions to the

GNU R VM. Most performance-conscious CRAN package developers provide highly optimized

external packages for Type III R codes. In contrasts, it is a lot more challenging to optimize Type

I and II codes while preserving compatibility with the GNU R VM.

The R bytecode interpreter from the R core team [77] extended GNU R VM with a simple

ahead-of-time compiler, a byte-code interpreter, and some compiler time and runtime optimiza-

tions, such as constant folding and index based variable lookup. It greatly improved R’s speed

compared with the default AST interpreter in scalar dominated code (Type I). And this interpreter

was officially incorporated into GNU R VM since R-2.14.0.

Revolution Analytics [24] and TIBCO [50] are two commercial offerings of R that target

mainly on Type III codes by optimizing native external packages of R. For example, Revolution

Analytics R replaced the open source Math libraries in GNU R with Intel MKL library to get high

performance in Type III code execution. It also rewrote some internal math routines to boost the

performance for some Type II codes.
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pqR [62] added many small improvements to GNU R, such as data sequence data type, more

precise reference counting, parallel execution of vector computation. These optimizations im-

proved GNU R’s performance on some applications.

CXXR [70] is a special project that tries to rewrite GNU R with C++. The initial goal is code

cleaning and refactoring to GNU R to provide a good code base for future development. Recently,

it expands the effort to implement optimizations for better performance.

The techniques proposed in this thesis also belong to this category. ORBIT VM uses profiling

driven approach to translate the R byte-code into a specialized byte-code to improve the running

speed, and used data representation specialization to reduce the memory usage. The Apply vec-

torization translates Type I R code into Type II R code to reduce interpretation overhead. There is

no similar approach in related work. Furthermore, the approach does not modify GNU R imple-

mentation. The implementation is pure R based, and it can be used in not only GNU R, but also

other R VMs.

7.2 Optimization in Dynamic Languages

Many techniques have been used in optimizing dynamic languages. Section 2.1.3 has described

most of them. Here is a short list of the academic literature in this domain.

7.2.1 Interpreter

The classical way to build an interpreter for dynamic scripting languages is implementing an AST

interpreter. But a simple AST interpreter’s performance is very poor. Byte-code compiler and

interpreter is used in Smalltalk[40] for efficient executing the program logic, and henceforth most

scripting languages use byte-code interpreter. Later, many other optimizations have been proposed

and applied to improve byte-code interpreter, including Threaded code[26][66], SuperOps[29],

etc.. There are also some parallel efforts to improve the performance of AST interpreter, such as

Truffle[86], who uses self-optimization approaches to specialize the AST with profiling informa-
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tion.

7.2.2 Runtime Optimization

Specialization SELF[33, 32] is an early pioneer of using specialization optimizations. Many

types of specializations are widely used now, such as Type Specialization MaJIC [23] for Matlab,

[43] for JavaScript; Function Argument Specialization [71] for JavaScript; Interpretation Special-

ization [85] for Lua; Vector Length Specialization[76] for R.

Inline Cache and Hidden Class It was introduced to optimize the polymorphic procedures in-

vocations in Smalltalk[37]. Later this technique has been widely used in optimizing any poly-

morphic resource accesses that have an indexable resource location, for example, accessing the

object’s field. Hidden Class was firstly used in SELF implementation[33] to accelerate the dy-

namic object’s field access. Combined with Inline Cache, V8 JavaScript engine [19] successfully

accelerated the object property access.

7.2.3 JIT Native Code Generation

Generating native code through JIT is a common approach to improve the performance of dynamic

languages. Many research and commercial VMs for dynamic scripting languages uses native code

JIT, such as Python[69, 31], JavaScript [39], LuaJIT [64], PHP HHVM[20].

7.2.4 Ahead-of-time (AOT) Compilation

Another approach to improve the performance of dynamic language is to do Ahead-of-time (AOT)

compilation of a dynamic language into a low level static language, for example PHP phpc [27],

HipHop[87], Matlab FALCON [36].
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7.3 Performance Improvement through Vectorization

7.3.1 Function Vectorization

Chapter 4 introduced the approach that transforms a single object function used by the Apply

class of operations into the corresponding vector version. It belongs to the function vectorization

domain. [53] used the term Whole-function Vectorization to describe the transformation of a single

object function to a vector function that accepts vector input and processes the data in a pure vector

way. The paper proposed the algorithm to vectorize Open-CL kernels, and run them on CPU SIMD

units or GPU.

Intel ispc compiler [65] used the similar approach to vectorize the innermost ispc parallel

functions. [57] vectorized multiple map operations to take advantage of the Xeon Phi’s wide SIMD

unit. River Trail[47] extends JavaScript by adding new parallel array, and providing map, filter,

reduce style operations. It vectorizes the function used by map operations for parallel execution in

SIMD and GPU.

The concept of function vectorization in the above work is similar to the approach of Chapter

4. But the above work all target conventional static languages, where the data types and the op-

erations in the single object function are relatively simple. This thesis’ work supports all kinds of

complex data types in R, which requires the data transformation that ensures the vectorized func-

tion accesses the data in a vector form, and transforms arbitrary operations with different schemes.

7.3.2 Vectorization in Scripting Language

Code vectorization for static languages have been studied and successfully used in commercial

compilers for decades. [58] gave a detail survey and evaluation of the state-of-art automatic vec-

torization techniques in commercial compilers. In the dynamic scripting languages domain, [60]

used automatic vectorization to translate scalar loop code of Matlab into vector code. But the ma-

jor challenge of loop vectorization is data dependence analysis, which is very complex even for a
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static language. The dynamic features of scripting languages make the problem even harder. As a

result, vectorization of arbitrary code in the scripting language domain is not common.

7.4 Parallel and Distributed R Processing System

A single R instance has the problem of slow running speedup and memory limitation. Parallel

computing is widely used with R to help it process BIG Data. [38] lists R packages, applications

and runtime systems that leverage parallelism to improve R’s capability.

7.4.1 Parallel R System

SNOW [79] provides the parallel version of lapply that distributes the data and computing to

multiple R instances in the same machine or different machines via socket or MPI communications.

multicore package[80] of CRAN uses the similar model in a shared memory machine, but provides

more comprehensive interfaces. These two are all belong to the Master-Slave model described in

Section 5.1. They have been merged together, and become the official parallel package in R.

ScaleR [25] is a commercial product that also follows the Master-Slave model. It uses Parallel

External Memory Algorithms (PEMAs) to provide the feature to process large data set that cannot

be fit into one machine’s memory one time. It provides parallel algorithms of basic statistics

computing and statistical modeling algorithms for the large data set, and offload them to multiple

processes and process them in parallel.

7.4.2 Distributed R System

Another type of the parallel R system acts like the distributed runtime system described in Sec-

tion 5.1. Rabid defines the distributed List type and Table type, and provides APIs like lapply

and aggregate to work on the distributed objects. It integrates GNU R or Renjin with Apache

Spark[12], and can solve very large data analytics problem with the simple interfaces. SparkR[82]
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is a similar system that provides a light-weight front-end to use Apache Spark’s distributed com-

putation power from R.

RHadoop [68] provides the front-end of Apache Hadoop [9], and offers the Map-Reduce style

interfaces to use the distributed R key-value pair object. RHIPE[42] is a similar system to expose

the Map-Reduce computing of Hadoop to R. It also defines new operation model like Divide and

Recombine.

Presto [83] defines the Distributed Array data type of R to express dense or sparse matrices in

a distributed environment, and provides APIs to perform distributed matrix math operations. HP

Distributed R [49] extended Presto and provides more comprehensive data types and operations.
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Chapter 8

Conclusions

8.1 Summary

This thesis has studied the techniques to improve the performance of dynamic scripting languages.

Different to previous work in improving dynamic scripting languages or R language, which may

require huge amount of engineering work in the whole virtual machine system, this thesis has pro-

posed some techniques that focus on interpreter level optimization, which are simple and portable

approaches.

The strategy taken is a unique point in the space of possible R VM research work. First, it

maintains the full compatibility with the GNU R VM. The approach approach is an extension to

the GNU R VM, and does not change the R VM’s internal data structure. It is worth pointing

out that the compatibility requirement is not unique to R. Most scripting languages today, such as

Python, Ruby, and Matlab, lack a formal language specification and has one dominant reference

implementation that many legacy codes depend on. The performance improvement work must

try to be compatible with the dominant implementation. Improving the performance of dynamic

scripting language without scarifying compatibility is still an open question and has high research

value.

Second the operates entirely within the interpreted execution. In ORBIT, the JIT compiler con-

verts original R byte-code into more optimized forms that will in turn be interpreted. In Apply

vectorization, the original code containing Apply class of operations are transformed to direct

vector function invocations, which will be interpreted, too. Different to most of the existing ap-

proaches for optimizing dynamic scripting languages, these approaches do not generate native
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code, but instead expands it with new specialized operations and transformations.

In summary, contributions of this thesis include:

• ORBIT Virtual Machine that uses profiling driven approach to translate R byte-code into a

specialized byte-code to improve the running speed, and used data representation special-

ization to reduce the memory usage. It improved GNU R’s performance without sacrificing

the compatibility.

• Apply Vectorization applies data permutation and function vectorization to translates R

apply class of operations from Type I codes to Type II codes. It greatly reduced the inter-

pretation overhead without the need of VM changes or native code generation.

• Integration of Apply Vectorization and SparkR effectively improved the performance of

SparkR. And this technique can be applied to other distributed R computing frameworks

• R Benchmark Suite provided a collection of R applications, and a extensible benchmarking

environment that can analyze all kinds of R VMs to measure the performance and identify

the performance bottleneck.

8.2 Future Work

This thesis applies the strategy of interpreter level specialization and practiced it in GNU R. It

leaves much room for improvement.

Other specialization techniques could be applied, such as calling convention specialization for

GNU R’s heavy function call overhead. Furthermore the byte-code interpreter could be improved

with techniques like register based byte-code interpreter. More object specialization should be

introduced, like hashmap for local variable lookup, stack slots for passing argument lists, etc.

The performance of Apply vectorization is limited by the fall-back mechanism from no built-

in vector function support and control divergence. Providing more vector functions for commonly

used R operations and modifying the interpreter to support predicated execution can improve the
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technique’s performance. The performance can also be improved with more interpreter modifica-

tions, such as SIMD and parallel implementation of the vector operations.

The vectorization in SparkR achieved less performance gain compared with the single node’s

vectorization. In order to achieve the similar performance boost, system level refactoring in the

distributed R system is required, including an efficient cross process communication mechanism,

and re-use R instance mechanism for iterative algorithm based applications.
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