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Abstract

Label-based switching schemes, such as MPLS, have been known to be an ef-

fective mechanism in overcoming many challenges in core networks. Software-

defined networking, while a much more recent development, is seen to have

the potential to revolutionize networking. But some network researchers,

even within the SDN community, believe, for SDN to flourish, it must adopt

a more structured model with an intelligent edge and a fast but simple label

switched core. This is an excellent use case for MPLS on OpenFlow. But,

while there have been other implementations of MPLS in OpenFlow, they

abandon the spirit OpenFlow by requiring sophisticated hardware. This the-

sis discusses our hybrid-OpenFlow implementation of MPLS that requires

only commodity hardware in the core network. We accomplish this by com-

piling the MPLS labels that would have been encountered along a path

through the network into a single label, which is stored in the packets’ des-

tination MAC address field.
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Chapter 1

Introduction

Although SDN is widely seen as a significant step forward towards a com-

pletely re-envisioned paradigm for modern packet-switched networks, cur-

rent incarnations – most notably, OpenFlow – appear to fall short on these

promises. This should not be regarded as a particularly controversial state-

ment, as several early OpenFlow contributors, Casado, et al, acknowledged

as much in 2012 [1]. Rule matching in SDN compatible switches is very mem-

ory intensive compared to current core network technologies which make it

costly to adapt. On other hand, it does not provide sufficient flexibility to the

network. SDN unnecessarily couples the host requirements to the network

core behavior. All flows are identified in the whole network by parameters

of the header set by the host.

In [1], the authors describe the network engineering design principle that

all serious “networking logic” should exist only at the edge of the network

(i.e., points of ingress and egress), while the core of the network should

be kept as simple as possible. One highly effective way to achieve this is

through label-based switching. We believe that this is a golden opportunity

for MPLS, or some other of label-based switching, to make its mark on the

future of SDN. And while some implementations exist, they require more

advanced, and even optional, features of OpenFlow that may not be widely

available across multiple vendors.

In this thesis, we present a hybrid-OpenFlow implementation of MPLS,

built on top of a simple layer-2 label mapping technique. Because the labels

do not require any modifications to packet structure, it can be deployed using

only commodity switches in the core network.

Main contributions of this work are:

1. Implement label switching on commodity SDN hardware using L2 ad-

dressing as labels
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2. Mapped multiple dynamic labels to static labels in real time

3. Implement MPLS supplementary protocols such as LDP, RSVP-TE

The rest of this thesis is structured as follows: Chapter 2 discusses work

related to ours, Chapter 3 describes our method for implementing MPLS and

general label switching in OpenFlow, Chapter 4 discusses our evaluations,

and we conclude with Chapter 5.

2



Chapter 2

Related Works

2.1 Software-Defined Networking

In traditional networks, the logic that decides how packets should be for-

warded through the network and the mechanism that is responsible for ac-

tually forwarding the packets are tightly coupled; these two constructs are

typically referred to as the control-plane and the data-plane (or forwarding-

plane), respectively. Additionally, the whole network structure is highly de-

centralized; the configuration of one device can be entirely independent of

all others. These characteristics are the result of a natural evolution of net-

working technologies; they make the network resilient to failure, and provide

certain performance guarantees. In practice, however, these qualities make

large networks exceedingly difficult to manage, debug, and reconfigure.

Software-defined networking, or SDN, seeks to resolve these challenges

by completely re-thinking network management. At its core, SDN has two

defining characteristics: (1) the decoupling of data- and control-planes, and

(2) centralized control of the entire network. From these two features emerges

a third: programmability. By exposing centralized view and control over an

entire network infrastructure, new functionality can be added as needed.

The key element in a software-defined network is called the SDN controller,

which is also sometimes called the network operating system (NOS). SDN

discovers and updates a global abstract network view to facilitate the central

control logic. SDN terminology can be described bottom-up as: Forward-

ing Devices, Data Plane, Southbound Interface, Control Plane, Northbound

Interface, and Management Plane[2].

In software-defined networking, the network OS controls the entire network

state centrally via forwarding plane. Compared to traditional network, SDN

enables the network operators to define the functionality after the network
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is deployed. New features can be added in software without modifying the

switches. SDN enables new approaches to state management and new uses of

packet headers [3]. An intensive research has been conducted on SDN. Com-

monly, mappings between virtual abstractions and physical implementations

are one-to-many, e.g. a single switch abstraction is implemented using a dis-

tributed set of physical devices. [4] shows that the traditional per-packet con-

sistency is not enough for one-to-many mapping correctness and introduces

new research directions: (a) developing more advanced mapping techniques

or (b) restricting the API of SDN to provide safe-to-map abstractions only.

[5] develops a distributed architecture that provides a global network view

to applications on physically distributed servers with high availability and

scale-out. [6] extends SDN architecture to enable application aware SDN

data plane by examining information beyond layer 2-4 headers.

2.1.1 OpenFlow

The most notable example of such an API is OpenFlow [7]. Initially, Open-

Flow aspired only to academia; it was originally proposed as a way to enable

experiments in production networks without causing the threat of outages to

critical networks. Upon its release, however, its potential recognized almost

immediately and has gained significant interest from both academia and in-

dustry. For example, Google uses OpenFlow to manage traffic within and

between data centers [8].

OpenFlow itself is actually a flow-level switch management protocol. The

OpenFlow specification defines an API that, at its most basic, allows for

switches to ask an external controller how to handle packets, and for the

controller to respond with instructions. These instructions are in the form

of “flow rules”, which consist of two parts: a flow description and a set of

actions. A flow description is essentially a 12-tuple of header fields from

L2-L4, any of which can be wildcards. The actions of a flow rule describe

what the switch should do when it receives a packet matching that rule’s

description; this is typically specifying out which port the switch should

send the packet, though there is a wide variety of possible actions.
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2.2 Label Switching

QoS (Quality of Service) entails providing better services to selected traffic,

without disrupting other flows [9]. The central idea behind QoS is to provide

differentiated services based on application needs. However, IP itself does

not provide any sort of QoS capability as it always routes through the short-

est path to the destination. Multilayer switching overcomes this limitation

by providing ISPs more fine-grained control over network traffic within the

core network. The fundamental building blocks for any multilayer switching

solution are the separation of the control and data planes, and the label-

swapping forwarding algorithm [10]. The former entails that multilayer label

switching solutions comprise of two functional units - the control unit and

the forwarding unit. The control unit uses some standard routing algorithm

to update entries in a forwarding table, while the forwarding unit itself is

used to make routing decisions in a packet. Label-swapping forwarding al-

gorithms use labels, where a label is short, fixed-length value carried in the

packets header to identify a Forwarding Equivalence Class (FEC) [10]. An

FEC encapsulates a set of packets that should be routed along the same

path, regardless of what their final destination may be. The algorithm re-

quires that packets are classified into labels at the edges of the node, as

the labels are then used within the core to route packets [11]. MPLS is a

standard presented by the IEFT that seeks to standardize a label switching

protocol while incorporating features from various proprietary vendors [10].

MPLS provides flexibility to the ISP in determining which path is taken by

a packet. One of the significant advantages of MPLS is that it empowers

ISPs to deliberately engineer the flow of traffic within the network at a more

fine-grained level - resulting in a network that is more efficiently operated,

supports more predictable service, and can offer the flexibility required to

meet constantly changing customer expectations. [10]

2.3 Label Switching with OpenFlow

Although SDN has been considered as a significant step forward in some

aspects, several of the early OpenFlow evangelists, point out several severe

limitations in [1]. On top of all, SDN does not fulfill the promise of simplified

5



hardware. Rule matching in SDN compatible switches is very memory inten-

sive (TCAM) compared to other core network technologies such as MPLS. On

other hand, it does not provide sufficient flexibility to the network. Adding

a functionality to OpenFlow needs to be implemented in all network devices

including core, distributed, and access switches which is not the case with

commodity networks. One of the possible reasons for this problem is that

SDN unnecessarily couples the host requirements to the network core behav-

ior. All flows are identified in the whole network by parameters of the header

set by the host.

2.3.1 MPLS Extensions for OpenFlow

Many attempts from academia have been made to combine SDN with MPLS.

Work by Kempf, et al [12], extends canonical OpenFlow 1.0 architecture by

adding MPLS actions in virtual port table consisting of push mpls, pop mpls,

swap mpls, decrement ttl, copy bits. [13] extends GMPLS, a MPLS suc-

cessor in optical circuit switched domain, and implements an extended Open-

Flow controller. The edge packet switches that interconnect the optical cir-

cuit switched domain to the packet switched domains are equipped with

tunable WDM interfaces and are connected to an add/drop port of the

ingress/egress nodes of the optical domain.

2.3.2 Fabric Networks

The notion of a “fabric network” is one possible solution to the current limi-

tations of SDN [1]. This work adopts the idea of label switching concept and

separates addressing and controlling the core network from access network.

Ingress / egress edge switches s idea not only reduced the required memory in

core switches by simplifying forwarding rules, but let edge and core networks

involved separately. For example, migration from IPv4 to IPv6 can be done

on edge network, without requiring any hardware or software updates in core

network.
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2.3.3 Layer-2 Labels

One of the biggest challenges with fabric networks is compatibility with cur-

rent generation of hardwares, controllers, and protocols . It need dramatic

changes to the OpenFlow, switches, and SDN controllers. In a meanwhile

some projects such as [14] or [15] try to implement part of the fabric network

using existing technologies.

Shadow MACs [14], a project done at IBM, uses layer-2 (L2) addressing

to implement the fabric network. In this project, they exploit the fact that

commodity switches has larger memory and more efficient implementation

for L2 address matching than OpenFlow header matching. Therefore, the

fabric network labels are saved as L2 destination addresses. Current switches

are able to automatically match this address with L2 memory upon packet

arrivals. This, if executed properly, L2 label switching can, in effect, achieve

some of the desired out comes of fabric networks. This makes the idea of

repurposing the L2 destination field for switching labels very appealing.

One limitation of this work is only one label can be assign to a packet,

unlike MPLS in which multiple stacked labels can be used in a packet. The

work in [15] address this problem by verifying that all paths has an assigned

label, and possibly merge some labels in case of having more labels than

available memory on switches.
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Chapter 3

Method for Implementing MPLS-like Label
Switching in SDN

As mentioned above, our goal is to bring the same capability as MPLS to

SDNs running commodity hardware. To achieve this goal we need to map

several concepts to the SDN.

3.1 Architecture

Similar to MPLS architecture, the proposed method works on a core network.

Access to this network is through the edge switches, which tag incoming pack-

ets with a label, and remove the label from outgoing packets. Core switches

in the core network use the label solely for switching. The architecture is

shown in Figure 3.1.

When a packet reaches an edge switch that does not have a matching flow

rule, the switch requests instructions from the controller. The controller will

then determine the path that this packet, and other matching packets, should

take through the network; the controller also creates a corresponding label

and then installs the label in the switches along the packet’s path.

3.2 Layer-2 Labels

One challenge for a label switching implementation is determining how the

label will be tagged onto packets. There are only so many places a label can

be added to a packet. But, regardless, there are some options that, at first

glance, seem to be natural choices. First of all, why not simply use actual

MPLS labels? Initially, MPLS labels seem to be a good option, especially

given that the ability to use MPLS labels has been part of the OpenFlow

specification since version 1.1 [16]. However, this is feature is purely optional.

Thus, we cannot reliably count on switches – especially commodity switches
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– to be able to manipulate MPLS tags, even those implementing OpenFlow

1.1. This is also the case for VLAN tags.

Another option, which we do in fact use, is to store the switching la-

bel in the packet’s destination MAC address field, as was also done in the

Shadow MACs project [14]. While, initially, this may seem less intuitive, it

turns out to be quite a convenient choice for several reasons. First, most

commodity switches feature ASICs, or some other highly optimized mecha-

nism, for matching packets on the destination MAC field, meaning that it is

an extremely fast operation. Most switches have a hardware look-up table

for MAC addresses. These MAC tables tend to be significantly larger than

TCAM memory, which is used for routing tables, or OpenFlow rules. The

second reason for using the destination MAC address field is that, since all

forwarding decisions are determined solely by the switching label, layer-2 ad-

dressing in not used in the core network. Therefore, the destination MAC

address field is a natural choice for store the switching label.

However, this choice does have some limitations. While, perfectly useful

for a general label switching scheme, the specified functionality of MPLS can

be directly replicated. In particular, MPLS allows for an arbitrary number of

labels to be pushed onto a packet’s “label stack”. To overcome this problem,

we introduce the concept of “Label Mapping”. The idea is to convert all

labels that will be assigned to a particular packet into a static label. This

static label will be used later by our method. This process is described in

Section 3.4.

3.3 Forwarding

Labels are used to direct a packet through a specific path. This path is

implemented as sets of forwarding entries installed in core switches, and a

few OpenFlow rules on the edge switches.

To implement forwarding tables on core switches we considered two differ-

ent approaches:

1. MAC Address Table: In this method, each forwarding rule is added

to the switch’s MAC address table as a static ARP entry. This entry

contains the value of the label, and the destination port number on the

switch.
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2. TCAM: In this method, each forwarding rule is added to TCAM mem-

ory as a OpenFlow entry. This entry has the label value as the l2 des-

tination and wildcard for other fields. Also the corresponding action of

the rule is to send the packet to a specified port on the switch.

While both methods behave similarly, there are some differences between

them, with each having benefits and drawbacks. As our implementation is

meant to be used in an OpenFlow environment, TCAM would appear to

not only be the obvious choice, but the only choice. This is because typical

OpenFlow switch implementations only use TCAM for storing rules; and

even if a “rogue” implementation were to leverage the MAC table, there is

no mechanism in the OpenFlow standard to give a controller the option to

use it. 1

However, using the MAC table offers enough benefits that it is worth

at least exploring. As discussed above, all switches have highly optimized

abilities to match a packet’s destination MAC address against the entries in

the MAC table. But, while this may even be faster than accessing data in

TCAM, it will not be orders-of-magnitude faster. What really makes the

MAC table such an attractive option is that it is dramatically less expensive,

in terms of both up-front costs, as well as long-term power consumption.

Using the MAC table also comes with its own set of drawbacks. First

and foremost, as we discussed above, there is no ability for an OpenFlow

controller to manipulate a switch’s MAC table out-of-the-box, meaning we

would be required to find a way to side-load labels into the switches’ MAC

tables. The second drawback is the lack of support for partial wildcard look-

ups. While not an issue for our purposes, this does preclude some potentially

useful strategies found in other recent work [15].

After weighing the issues, we ultimately decided to pursue the MAC ta-

ble option for core fabric switches. We felt that this option most closely

aligns with our goal for supporting as much commodity hardware as possible,

as it would allow for far more label-matching rules on significantly cheaper

switches with smaller TCAMs. However, as we will discuss in Section 4.2.1,

this may not be as significant as we first initially expected.

1As an aside, from the perspective of OpenFlow designers, this is perfectly sensible.
TCAM allows for constant-time look-ups of arbitrary data, including wildcards. It is
precisely what one needs in order to give OpenFlow the flexibility and generality that it
requires.
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3.4 Label Updating

Unlike MPLS, the proposed method will not need to have “Label Distribution

Protocol” or “Resource Reservation Protocol with Traffic Engineering” to

automatically setup labels. Since SDN has a global view of the network, a

new label can be assigned to a new path in the controller. After that the

necessary forwarding rules will be installed on the switches via the controller.

3.5 Label Mapping

MPLS forwarding occurs with the use of MPLS labels, which are organized

into a stack. There are two significant differences between IP and MPLS

based routing schemes.

1. IP based routing occurs using IP address based lookup, while MPLS

based routing occurs based on a stack of labels. The top label is used to

determine the next hop using the Lable Forwarding Information Base.

The LFIB is fundamentally a forwarding table that uses a label to

determine the next hop.

2. MPLS based routing also supports label operations on the stack of

labels.

When packets are received at the ingress router, the ingress router can

append a stack of labels to the packet. These labels are then used to engineer

the flow of packets through the network. At every node, the label at the top of

the stack is observed, and certain operations are performed on the stack. The

fundamental operations permitted are push, pop and swap. These operations

are illustrated in Figure 3.3. Then, the top of the stack (after all operations

have been performed) is observed and used to find the next hop to which the

packet is forwarded. At the egress, the labels are all popped and the packet

is forwarded using IP again.

The problem with this approach of stacking labels is that it is not sup-

ported in SDN. In SDN, stacked labels are not supported and routing deci-

sions are made by a single lookup in a forwarding table. To solve for this

incompatibility, we propose a compatibility mechanism in the control plane
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Figure 3.3: An illustration of the different label operations supported by
MPLS nodes.

that takes in a description of the MPLS rules, creates an internal represen-

tation of the network graph and processes it so that in the end, every path

through the graph is identified by a single label, and not a stack of labels.

We term the graph processing aspect of this as a Label Flattening Operation.

We propose an algorithm based on Depth First Search (DFS). DFS is a

well-known algorithm in graph theory for path discovery and tree generation.

Label Matching can be generated online based on DFS after user request.

Running DFS from source switch on MPLS label switching can generate an

acyclic destination tree, in which each path is uniquely defined by a path

label. The path label can be an aggregation of all the MPLS labels along the

path.

Initially, the source broadcast path discover message of its own ID to all

its neighbours. Upon receiving the message, the node goes through all its

outgoing edges with corresponding label match and actions. The action

can be add, remove or swap. For add and swap action, the node appends

the corresponding MPLS label at the end of its discover message (initially

sender’s ID), and forwards the new message to corresponding edge. For

remove action, the node appends a remove label and forwards the message

to corresponding edge. DFS algorithm guarantees the outcome path is loop-

free and also the most efficient based on some user defined measurements.

The generated path label is unique. Start from the source, any two paths

that have the same path label must have the same source ID, since the source
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ID appends at the beginning of path label. Note that each label uniquely

defines an outgoing edge from the source, thus any path begins with the

label must go through the same edge. Then, consider any node along the

path, any path between the node and the source has unique label. Likewise,

any path label between the node and the destination is unique. Because the

appending operation is commutative, we can show the uniqueness based on

induction above.

MPLS paths can have a loop, in which the packet is sent to the same node,

but with different states. For example, a package can be sent to a node for

processing and then be sent back. In DFS algorithm, each path stores visited

nodes to generate loop-free paths. To support loops in the MPLS path, the

discover message contains an additional vector of state variables, containing

the state of all visited nodes, set to inactive by in default. The processing

nodes can change the state variables into active, such that the path can go

back to those visited nodes.

Algorithm 1 Algorithm that flattens the MPLS network graph so that every
path in the network is defined by a single label, instead of a stack of labels.

1: procedure FlattenLabelStack(G, LabelStack, StartingNode)
2: CurrentNode = StartingNode
3: NewLabel = NewUniqueLabel()
4: while LabelStack is not empty do
5: LabelStack = CurrentNode.performLabelActions(LabelStack)
6: NextHop = CurrentNode.lookupLBIF(LabelStack.top())
7: CurrentNode.updateLBIF(NewLabel, NextHop)
8: CurrentNode = NextHop

The pseudocode for our proposed algorithm given in Algorithm 1. The

procedure FlattenLabelStack takes the label stack and the ingress router

responsible for appending it on a message, and maps the label stack to a

new singular label. The algorithm then traverses the graph using the label

stack and the predefined MPLS rules to trace the unique path identified by

the label stack. As it traces the unique path, the algorithm also updates the

Label Forwarding Information Base with the new label so that by the end,

the new label and the label stack will route through the same path in the

core network.

The runtime of our proposed solution depends on the number of unique

label stacks assigned by the ingress routers U and the total number of nodes
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in the system N . For now, one major restriction in our algorithm is that the

MPLS graph is assumed not to have cycles. In other words, it is assumed

that a packet will never visit the same node again. Therefore, the runtime

to flatten a label will, in the worst case, take O(n). Given that we have

to flatten U label stacks, the total runtime is O(UN). However, this rule

is unrealistic and often packets are routed to the same node, albeit with a

different label stack. Therefore, future iterations of our algorithm will seek

to generalize the algorithm to handle such cycles in the node.

The algorithm can be best illustrated by an example. For a simple graph

comprising of 6 nodes, the results of the algorithm processing can be seen.

Note, the nodes shapped as double circles are ingress and egress nodes, while

the rest are nodes in the core network. The ingress nodes are responsible for

assigning labels, while the labels are all popped in the egress nodes and the

packet is forwarded based on IP beyond them. The original graph is shown in

Figure 3.4. At every node, the original graph excepts a stack of labels x : xs,

where x is the top label in the stack and xs are the tail elements. Based

on the top label, the node performs a combination of the predefined actions

on the label stack. In this particular example, the node 4 performs a pop

operation, thereby removing the top label in the stack. Once the operations

are performed, the node uses the top label in the new stack to determine the

next hop switch.

The new graph is illustrated in Figure 3.5. In this graph, the ingress router

assigns only a single label to each packet. There is no stacking of labels and

no need for label operations at each node. Rather, the packet is routed

throughout the core, from the ingress to the egress, using only the single

label that was assigned to it by the ingress router.
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Figure 3.4: The original network graph. Here, routing is based on the top
of the stack label and stack operations like push, pop and swap can be
performed at every node.

Figure 3.5: The modified network graph. Here, routing is based on a single
label and no stack operations are supported.
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Chapter 4

Evaluations

In this section, we describe how we evaluated both our implementation as

well as the underlying concepts.

4.1 Dataset

To evaluate our implementation, we wished to examine how it affected actual

production data center traffic. In order to do this, we used a set of packet

traces made available by Benson, et al., from their study of network traffic

characteristics in production data centers [17]. 1 The raw data that they

gathered is available at [18]. The specific packet traces we used came from

both the UNI1 and UNI2 datasets.

The packet capture has traffic from 500 servers, as well as several thousand

external hosts. All packets were captured from a single span port.

4.1.1 Flow Data

Flow Collection

While they provide a various forms of fascinating data, we were most inter-

ested in observing flow-level behavior. That is, we look specific “conversa-

tions” between network hosts/ports.

While basic flows were not readily available, we were able to extract that in-

formation from the packet capture file. To do this, we wrote a Python script,

using Scapy [19]. For every packet, we extracted the specific information we

1This is a very popular dataset when needing to simulate data center network traffic.
As of late-April, 2015, their publication has over 500 citations on Google Scholar.
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needed (i.e., timestamp, source MAC/IP/port, destination MAC/IP/port,

TCP or UDP, and packet size), and compiled these into CSV files.

Isolation of Local Traffic

One particular challenge we had was that there were nearly 8,000 unique IP

addresses represented in the dataset, but we were only able to simulate ap-

proximately 1,000-2,000 hosts. To resolve this, we chose to focus specifically

on local-only traffic. However, there was no information indicating which IP

addresses were internal and which were not, nor did we have access to any

subnetting information.

So, to identify the local traffic, we considered that the vast majority of

non-local traffic entering the network would come for a relatively few number

of gateways. After analyzing the flow data we had extracted, we found this

intuition to be accurate: Two MAC addresses on the network were associated

with 6,723 of the 7,876 IP addresses on the network. By eliminating the flows

to or from these IP addresses, our simulation needed to only consider a much

more manageable 1,153 hosts.

While it is not specifically addressed by the authors, we presume that

the discrepancy between the number of servers known to be present on the

network (500) and the number of local hosts we identified (1,153) are due to

virtual machines being hosted on the physical servers.

4.1.2 Topology

The switching topology, as shown in Figure 4.1, was made available with the

packet traces. We used this topology information to reconstruct a mininet

network of virtual switches.

Information about how hosts were connected to the network, and thus

the full host topology, were not made available. We worked around this

by randomly assigning hosts to edge switches. The full network topology,

including hosts, is shown in Figure 4.2.
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Figure 4.2: Full topology, including network hosts.
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4.2 Experiments

4.2.1 Rule Distribution Requirements

Our initial experiments were designed to understand how label-matching

rules would be distributed throughout the network, and how the maximum

size of the flow table will affect the operation of the network.

Simulator Design

To conduct this experiment, we implemented a very simple simulator that

allows us to keep track of the location of all packets, as well as the statistics

on each switch, at any given moment over the course of the simulation.

Our simulator takes, as input a list, of “packets”, in the form

(timestamp, label), and a list of rules, with the form

(label→ switch1, switch2, ..., switchn), indicating the path that packet with

a given label would take through the network.

The simulator then steps through the “execution” of the network in config-

urable time units. These units correspond how long a switch takes to process

and forward a packet. At each time unit, if a new packet’s timestamp has

been reached, it is placed at its initial switch, according to its label. If the

switch has a rule associated with the packet’s label, it will be allowed to move

forward to its next switch on the next time step. However, if the switch does

not have a matching rule, and additional latency is introduced before the

packet is able to move forward; this simulates the required for the switch to

request the rule from the controller, and for the controller to respond.

In order to make the simulation more realistic, we enforce a hard limit on

the number of flow rules that can be installed on a switch at any given time.

When a flow rule must be added to an already full flow table, some eviction

policy must be enacted. For this experiment, we simply evicted a random

rule.

After all packets have made their way from source to destination, the

simulator reports how many packets each switch processed, and how many

of them required a request to the controller.
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Experimental Design

We ran this experiment with a subset of our data that amounted to 966,000

packets with 404 unique labels over a 110-second timespan. The rule list

was generated using an LDP-based scheme. The simulator was run over 100

iterations with the maximum number of rules allowed to be in a switch’s flow

table as the only variable. When a switch’s flow table was filled, we used a

random eviction policy to make room for the next flow rule.

Results

The results from this experiment were pleasantly surprising. We found that,

as expected, a smaller flow table resulted in high-levels of “churn”: the table

would quickly fill, and, as rules that had been evicted to make room were

eventually required again, the number of “flow misses” grew very high. This

is particularly true of higher-volume switches. For example, Table 4.1, which

displays the number of flow misses at each switch for selected iterations of

the experiment. Consider Switch 2, which represents one of the core switches

in the topology, as seen in Figure 4.1, and every packet in the simulation is

forwarded by it.2 Since Switch 2 is responsible for every packet that crosses

the network, it has by far the highest churn rate.

What is surprising, however, is how few entries were actually required to

dramatically decrease the number of flow misses. This is demonstrated in

Table 4.1, but more effectively in Figure 4.3, which displays the average hit

rate (i.e., 1 −miss rate) for every class of device for each iteration. 3 The

edge switches and gateways achieve a nearly 100% hit rate with only a few

flow entries. Even Switch 2 achieves a nearly 100% hit rate at around 50 flow

entries.

This is a promising sign for the long-term viability of our solution. It also,

perhaps, casts doubt on our initial reasoning for choosing to implement label

matching in the MAC tables of core switches, instead of the more traditional

TCAM, as was discussed in Section 3.3.

2It should be noted that Switch 3 represents the other core switch, but due to the simple
nature of the algorithm that set paths through the network, no packets ever traverse it.

3Switch 3 is excluded from the core switch calculation, as it is effectively not in the
network.
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Switch
ID

Flow Table Size (number of entries)
5 15 25 35 45 55 65 75

0 125756 36 36 36 36 36 36 36
1 10 11 11 11 11 11 11 11
2 646061 307660 157911 81297 36446 7169 97 97
3 0 0 0 0 0 0 0 0
4 1 1 1 1 1 1 1 1
5 4 4 4 4 4 4 4 4
6 24377 20 20 20 20 20 20 20
7 54666 18 18 18 18 18 18 18
8 4 4 4 4 4 4 4 4
9 1846 7 7 7 7 7 7 7
10 17 17 17 17 17 17 17 17
11 2 2 2 2 2 2 2 2
12 6 6 6 6 6 6 6 6
13 10633 13 13 13 13 13 13 13
14 3 3 3 3 3 3 3 3
15 3 3 3 3 3 3 3 3
16 16993 13 13 13 13 13 13 13
17 5602 11 11 11 11 11 11 11
18 2 2 2 2 2 2 2 2
19 15217 15 15 15 15 15 15 15
20 7 7 7 7 7 7 7 7
21 4373 9 9 9 9 9 9 9

Average 39373 13385 6875 3544 1595 322 15 16

Table 4.1: This table shows the number of total flow misses at each switch,
given the size of the flow table.

4.2.2 Number of Rules

Another set of experiments that we conducted were designed to determine

how many rules were present in the network, as a function of the number of

hosts visible to the network. This experiment was conducted in mininet with

a the full dataset being used.

Figure 4.4 depicts the results when the rules are generated using the LDP

scheme, and Figure 4.5 depicts the results when the rules are generated using

RSVP-TE. In both cases, what we find is that the number of rules in both

the core and gateway switches remain constant, while the number of rules in

the edge switches grow linearly with the number of hosts.4

4Note: The x-axes of both graphs are on a log10 scale.
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Chapter 5

Conclusion

This thesis has described out implementation of MPLS functionality in an

OpenFlow controlled network, capable of running in on simple commodity

hardware. We accomplish this by mapping the MPLS labels that would be

pushed into packets down to a single static label that is stored in the packet’s

destination MAC address field remains unaltered as the packet travels be-

tween edges of the network.

We were inspired to pursue this goal by the Fabric paper by Casado, et

al [1]. While not fully achieving the design that they outlined, our work

demonstrates a basic framework for achieving similar designs without requir-

ing a complete up-ending of the existing technology.

The results from our evaluations are very promising, demonstrating that

we are able to efficiently forward large amounts of traffic through the core

network with only modest hardware, in terms of available functionality. In

fact, we saw such a diminishing amount of flow churn with only a marginal

increase in available flow rules, that we may be forced to rethink one of our

basic assumptions: TCAM would be too expensive to be used efficiently in

the core network. We have seen, however, that even a relatively modest

number of available flow entries were able to achieve a near 100% hit rate.
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