
c© 2015 Matthew Amrein

SYSTEM-LEVEL TRACE SIGNAL SELECTION FOR POST-SILICON
DEBUG USING LINEAR PROGRAMMING

BY

MATTHEW AMREIN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Assistant Professor Shobha Vasudevan

ABSTRACT

Due to the increasing complexity of modern digital designs using NoC (network-

on-chip) communication, post-silicon validation has become an arduous task

that consumes much of the development time of the product. The process

of finding the root cause of bugs found in post-silicon validation has proven

to be much more difficult than in pre-silicon because of the lack of the ob-

servability of all signals on chip. Trace buffers are an often-used structure in

post-silicon debug that stores the state of a selected signal into an on-chip

buffer, where it can be offloaded for a debugger to observe. However, because

of area limitations for debug structures on chip and routing concerns, the sig-

nals that are selected to be traced must be a very small subset of all available

signals. Traditionally, these trace signals were chosen manually by system

designers who determined what signals may be needed for debug once the

design reaches post-silicon. However, because modern digital designs have

become very complex with many concurrent processes, this method is no

longer reliable as designers can no longer fully understand the complexities

that are involved within these designs. Recent work has concentrated on

automating the selection of low-level signals from a gate-level analysis. In

this work, we present the first automated system-level, message-based trace

selection where the guiding principle is functional coverage of system-level

messages. We use a linear programming formulation to find multiple so-

lutions that allow tracing of the high-frequency messages and then further

analyze these solutions using a message interval heuristic. This method pro-

duces traces that allow a debugger to observe when behavior has deviated

from the correct path of execution and localize this incorrect behavior for fur-

ther analysis. In addition, this method drastically reduces the time needed

to select signals, as we automate a currently manual process.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

First, I thank my friends and family for providing me with encouragement

while I moved through all phases of this work. I am not sure that this work

would be possible without this encouragement.

I thank Sandip Ray for his help in formulating this problem and sharing

his expertise in this area. Without his help, this work would never have been

conceived. I thank Sai Ma for sharing her views in the area of post-silicon

validation and for providing technical tools that allowed me to complete

experiments. Rui Jiang also helped in providing tools that I later used. I

thank Debjit Pal for his work in generating netlists and help in obtaining the

restoration-based trace selection.

Finally, I thank my advisor, Dr. Shobha Vasudevan. Without her, none

of this is possible. She provided me with the required connections, encour-

agement, and direction to complete this project. I am truly grateful for all

her help and expertise that she provided for this project.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . x

CHAPTER 1 INTRODUCTION . 1
1.1 IC Design Process . 1
1.2 Pre- and Post-silicon Validation 3
1.3 Validation Process . 5
1.4 Post-silicon DfD Structures 6
1.5 Motivation . 8
1.6 Contributions . 11

CHAPTER 2 PRELIMINARIES . 12
2.1 Overview . 12
2.2 Messages and Channels . 13
2.3 Trace Buffer Architecture . 15
2.4 Linear Programming . 18

CHAPTER 3 PROTOCOL BASED SIGNAL SELECTION 20
3.1 Textual Format and Protocol Specification 21
3.2 Count Unique Occurrences of Each Message 24
3.3 Find Subset of Messages for Each Channel 25
3.4 Linear Program Formulation 26
3.5 Find High Reward Solutions 27
3.6 Message Interval Heuristic . 27
3.7 Select Best Solution(s) . 30
3.8 Block-Specific Views . 30
3.9 Control View . 32

CHAPTER 4 IMPLEMENTATION, RESULTS, AND CONCLUSION 37
4.1 Implementation . 37
4.2 Algorithm Analysis . 39
4.3 Comparison to Gate-level Selection 44

v

4.4 Bug Case Studies and Localization 47
4.5 Conclusion and Future Work 59

APPENDIX A PROTOCOLS . 62
A.1 SoC Protocols . 62
A.2 FLASH Cache Coherence - Conditional 74
A.3 FLASH Cache Coherence - No Conditional 76

REFERENCES . 79

vi

LIST OF TABLES

3.1 Textual representation of protocols in Fig. 2.1 and Fig. 3.2 . . 24
3.2 Textual representation of upstream write family protocol . . . 24
3.3 Decomposition into single payload field messages 25

4.1 R2 values of linear fits in Fig. 4.2 39
4.2 Error detection comparison between system-level and restoration-

based methods. Note that neither method is able to detect
data corruption in the USB block. 45

4.3 Overview of bug case studies 58

vii

LIST OF FIGURES

1.1 Design flow of digital IC . 2
1.2 Scan chain . 7

2.1 Protocol for power-on of radio block from CPU request.
The vertical lines represent the three functional units and
the lines between them represent messages sent on the in-
terconnection network. Time progresses downward, hence
the downward slope of the message lines. 12

2.2 Reference of terms used . 13
2.3 Example message format . 14
2.4 Example of how each channel is individually traced 14
2.5 Trace buffer architecture for a 2-view, n-bit architecture . . . 16
2.6 Usage flow chart for system-level debugger using system-

level signal selection with views 17
2.7 An example of the trace that would be presented to a de-

bugger. The messages are in the form <CMD, DATA, ADDR>.
In this case, the value of each command field has been pre-
sented as a more descriptive command name. A value of
[] indicates a channel is not traces. A value of XX indi-
cates the channel is traces, but no value has been assigned
to this field for this particular message. 17

3.1 Step-by-step flow of global view and block view selection
method . 20

3.2 Protocol diagram for and upstream write. The symbols
with marked with “+” indicate synchronization points where
the all incoming messages must have arrived before contin-
uing. 22

3.3 Spacing example for a nine message sequence with four
messages covered. Red circles indicate message is observable. . 28

3.4 Algorithm for interval score heuristic 29
3.5 Coverage and interval solution comparisons 31
3.6 Message grouping algorithm 31
3.7 Step-by-step flow of control view selection method 33

viii

3.8 Protocol for power-on of radio block from CPU request
with decision point shown . 33

4.1 SystemC model . 37
4.2 Relationship between frequency coverage and distance from

optimal solution for the top 500 solutions at three different
trace buffer sizes . 40

4.3 Frequency coverage for different protocol sets 41
4.4 Interval score for different protocol sets 42
4.5 Temporal depth between gate-level based selection trace

signals and system-level message signals 46
4.6 Temporal depth between our trace signal selection and

system-level message signals 46

A.1 Upstream write . 63
A.2 Upstream read . 64
A.3 Downstream read . 65
A.4 Downstream write . 66
A.5 Upstream write (in MSI range) 67
A.6 Power-on unit . 68
A.7 Power-off unit . 69

ix

LIST OF ABBREVIATIONS

NoC Network on Chip

SoC System on Chip

DfD Design for Debug

FPGA Field Programmable Gate Array

RTL Register Transfer Language

IC Integrated Circuit

IP Intellectual Property

NI Network Interface

FC Frequency Coverage

x

CHAPTER 1

INTRODUCTION

In this thesis, we first present background information on the area of post-

silicon debug and the problems currently facing the area. Then, an overview

of current debug structures used and current research in trace signal selection

is presented. After that, we present our method and the results of our method

on a test system implemented in SystemC.

1.1 IC Design Process

Integrated circuits (ICs) are designed from an initial customer requirements

specification, which consists of high-level features and behavior the design

should contain and ensure. From these high level specifications, the design

is slowly refined into a final product. Figure 1.1 shows this design process.

From the initial back-of-the-envelope sketches/calculations done by sys-

tem architects, the design moves to estimation models, which likely consist

of various high-level and fast performance models to ensure the design re-

quirements are met. It is during this stage that much of the exploration of

the design is done, before it moves onto an abstract model that allows for

execution. This stage of design would typically be done in a system-level

design language such as SystemC [1] or SystemVerilog [2]. These languages

create non-cycle accurate models that can be used for further verification and

performance checking. After the abstract model phase, the model is imple-

mented in RTL and can be simulated, or run on other platforms. RTL will

typically be run on small FPGA boards for smaller portions of the design

or large emulation machines that combine many FPGA chips to run larger

portions or even whole designs together. Once the design reaches a certain

level of health, it will be laid out and fabricated on silicon, leading to a chip

that can be used for post-silicon validation. Validation happens at every

1

Customer Specifications

Back of Envelope Model

Estimation Model

Abstract Executabe Model
SystemC, SystemVerilog

Cycle Accurate Model
Verilog, VHDL

IC Layout

Silicon

C
os

t
of

 im
pl

em
en

ta
ti o

n

low

highlow

high

A
bs

tr
ac

tio
n

Le
ve

l

D
es

ig
n

op
po

rt
un

iti
es

Figure 1.1: Design flow of digital IC

step of the design process to help ensure that bugs are caught as early as

possible and to further refine the design. Once a bug is found at any stage

in the design process, the design is refined (at the necessary level) and then

validated once again. As the right-hand axis indicates, the further down the

design flow a design is, the more costly in terms of both time and money it is

to make changes. This is compounded by the left-hand axis, which indicates

that the design is easier to change early in the design flow. Both of these

factors lead to the need to eliminate bugs as early as possible to keep changes

easy to make and, in turn, keep costs down.

2

1.2 Pre- and Post-silicon Validation

As Moore’s law continues, integrated circuits become more complex and dif-

ficult to debug. Recent studies have shown that validation in modern IC

designs takes up to 70% of design time in current designs and is increasing

[3]. In order to design and test products in a timely manner, much effort

has been put into automated methods to test and check large digital designs.

Many of these efforts have been focused in pre-silicon validation, where access

to the entire design is available for checking. However, without a substantial

increase in the speed at which these tests can be run on FPGAs or emulation

machines, tests for functionality have been pushed to post-silicon where they

are faster to run. This, in addition to tests for electrical bugs, defined as

bugs that appear due to electrical reasons such as crosstalk or vdroop, has

made post-silicon validation the bottleneck in many designs [4, 5].

Pre-silicon validation can be defined as the process that is undertaken by

validation engineers to ensure the correctness of a design before the design is

fabricated into an actual silicon chip. Pre-silicon validation occurs at every

phase of design until fabrication, but for the purposes of this work, pre-

silicon validation will refer mainly to the validation that is done at the RTL

level on simulators, FPGAs, or emulators just before layout and fabrication.

Validating for electrical bugs in pre-silicon is limited, and therefore most of

pre-silicon validation is concerned with finding and fixing functional bugs,

defined as bugs in the specified behavior of the design or its implementation

in RTL.

Post-silicon validation, as the name suggests, refers to the process under-

taken by validation engineers to ensure the correctness of a design after the

design is fabricated. Post-silicon validation, as the last step in the validation

process, must be as exhaustive as possible, testing for both electrical bugs

and functional bugs. Both pre-silicon and post-silicon validation have their

own challenges and advantages that contribute to overall effort of validation:

• Execution Speed

Pre-silicon validation tests are run on simulators, emulators, or FPGAs

that implement the design’s RTL. Simulators are very slow and only

suitable for very small portions of the design. FPGAs are able to im-

plement portions of RTL for large designs or even the entire RTL of

smaller designs, and are much faster than simulation, up to 3 orders of

3

magnitude faster [6]. Emulators combine many FPGAs to implement

the entire (or near entire) RTL for large designs; however, the size of

the implementation comes at the cost of speed, as these machines typ-

ically run on the order of hundreds of kHz or several MHz compared

to hundreds of MHz for a single FPGA [7]. Post-silicon tests are run

at full speed on the actual silicon chip, usually on the order of GHz

for the whole design. The difference in speed allows more exhaustive

tests to be run in post-silicon that touch the entire design. The large

speed difference between emulation and post-silicon test means that a

test that takes 1 hour in post-silicon would take more than a month

to run a on full-chip emulation model. In addition to the execution

speed improvement, post-silicon validation usually has the advantage

of offering the ability to run full-chip tests on many prototypes at once.

Emulators are typically limited to many fewer available prototypes be-

cause of the costs associated with each emulator. From all of these

factors, we can conclude that post-silicon tests can cover a much larger

portion of the design than pre-silicon tests.

• Observability

Pre-silicon validation has the advantage of having a fully-observable

design, where every signal can be observed during execution. Limited

pin-out and other factors in post-silicon limit the observability of inter-

nal signals to a small portion of all signals. The limited observability in

post-silicon creates a challenge in both detecting bugs and debugging

them. Design-for-debug (DfD) structures on chip attempt to create as

much observability as possible, but are still limited by factors including

area and routing. Some DfD techniques to improve observability are

described later in this chapter.

• Iterations

Once a bug and its root cause are found, it will be fixed and the design

will change. In pre-silicon, these changes are relatively low cost as

it only involves changing RTL and the added time to revalidate that

portion of the design. However, in post-silicon, the costs of fixing a bug

are much higher. The process of fixing the bug can be more involved

than in pre-silicon if layout changes need to be made, but the main cost

is in the re-spin of the silicon. Once changes are made to the design,

4

it takes weeks or months to receive the next spin of the silicon, which

would then need to be validated again. In addition to the increased

time cost, the actual monetary cost of creating another spin is not

trivial.

1.3 Validation Process

According to [8], 35% of design time is spent in post-silicon debug. This is

a significant portion of time for any design and in a competitive market, the

difference in time to market (TTM) can be the difference between a successful

and an unsuccessful product. To understand why debug time is currently the

bottleneck in the entire TTM, we can refer to the four major steps in the

validation process [9, 10].

1. Finding a bug

Bugs must be both activated and detected to be found. Test plans for

a given design may rely on different coverage statistics to determine

when a design has been tested fully.

2. Localizing the bug

If a bug is found, the process of localizing it begins. Localizing refers

to narrowing the search for the bug to a smaller area of the design.

Localizing a bug can involve using debug tools and looking at traces,

using a variety of tests and checking the end result, using some fla-

vor of signature checking [11, 12], reducing fault latency in the initial

detection [13], and other methods [14, 15].

3. Finding the root cause

Finding the root cause of a bug is related to localizing the bug, but in

large systems, different techniques may be used to localize and find the

root cause.

4. Fixing the bug

Once the root cause of a bug is determined, potential fixes can be

proposed. In some cases, the fix may be trivial, but in other cases, a

fix could necessitate other changes in the design. Once a bug is fixed,

5

the design will need to be tested again to verify that the fix for one bug

did not cause more bugs.

Methods to reduce the time to find bugs have been well researched. Meth-

ods such as constrained random tests [16] and automated directed tests [17]

have been successful in improving the coverage and time spent both writing

and running tests. Also, research into coverage monitoring and test coverage

statistics have eased the decision of when validation is complete. Fixing a

bug once the root cause is known, while not always necessarily straightfor-

ward, does not consume a large portion of design time. Many times the fixes

are very small, equating to a few lines in RTL or routing a single wire in the

layout. Even for larger changes, the design process from the change (in either

RTL or layout) is well defined and follows standard design flow. However,

the process of debugging (both localizing and finding the root cause of a bug)

is a less developed area in research. This, combined with the observability

in post-silicon issues mentioned above, has contributed to the 35% figure for

post-silicon debug cited earlier.

1.4 Post-silicon DfD Structures

To combat the problem of low observability in post-silicon debug there are

a variety of well known DfD structures that are inserted into designs that

allow validation engineers to observe portions of the design and root cause

bugs.

1.4.1 Scan Chains

Scan chains are a DfD structure that are created by appending a 2:1 mux

to each flip-flop in a portion of the design. The idea behind a scan chain is

to halt the design, enable the scan chain, then run the clock to output the

values of a large set of flip-flops serially on a single output pin. An example

of a scan chain is shown in Fig. 1.2.

Scan chains are useful for finding stuck-at bugs, where a given signal is

stuck at either a logic 0 or 1, because they allow the capture of a large set

of signals. The combinational logic between two signals in a scan chain is

6

Figure 1.2: Scan chain

known, so they can also be used to detect faulty gates. Scan chains are

also used in signature checking schemes and in manufacturing testing. If

it is possible to restart the design from the halted state, scan chains can

be used to see multiple cycles of a large set of flip flops. Unfortunately,

in modern designs it is often hard enough to halt a design in a consistent

manner because of issues such as multiple clock domains, let alone restart

execution after halting. For this reason, scan changes are not well suited to

gain temporal observability in a design. This is usually left to trace buffers.

1.4.2 Trace Buffers

Trace buffers are a DfD storage structure used to store the value of some

internal signal so that it can later be offloaded for a debugger to view. A

trace buffer can be thought of as a storage structure that can hold N bits. A

trace buffer is said to have both a width and length. We will call the number

of bits we are allowed to write simultaneously the width of the trace buffer.

The number of entries in the trace buffer would be the length, such that N =

width · length. Typically, a trace buffer will write a new entry every clock cy-

cle. The size of the trace buffer, N must be limited so that the area overhead

associated with adding a trace buffer does not become too large compared

to the size of the design. In addition, the width of the trace buffer is also

limited due to routing concerns and write speed considerations. Therefore,

we will always be limited in the width. The implementation of trace buffers

can vary from tracing when certain triggers activate to simply tracing at ev-

ery clock cycle. Compared to scan chains, trace buffers allow us to achieve

7

temporal observability in a design, but because of the aforementioned width

restrictions, trace buffers can only observe a small number of signals, so spa-

cial observability is sacrificed. Trace buffers are used extensively in industry

and usually combined with triggers and other functionalities to create em-

bedded logic analyzers (ELAs) [18, 19, 20]. As trace buffers allow a debugger

to capture many clock cycles, these are usually preferred for localizing bugs

when the location of the bug is still not well known. For further debugging,

scan chains or trace buffers at a lower abstraction level may be used.

1.5 Motivation

1.5.1 Current Approaches to Trace Signal Selection

As mentioned, trace buffers are limited in the number of signals that can

be simultaneously observed, which has led to the question of what signals

should be prioritized. Many previous works have focused on increasing the

observability of gate-level signals. One metric for determining how well a

selection of trace signals improves observability is a restoration ratio [21, 22,

23, 24, 25]. This metric is used by selecting a set of flip-flops from a gate-level

netlist specification, and then, by knowing the outputs and inputs of certain

gates, we can infer the values of other signals within the circuit. For example,

if we trace the output value of an AND gate to 1, then we can infer that both

inputs are also 1, which may allow us to infer other signals. However, this

metric fails to include the notion of an error or bug, so while we may be able

to infer a larger set of signals, we are not guaranteed to observe an error or

bug in the design with any greater capacity.

Other gate-level signal selection methods have used the notion of bugs or

errors in their metrics [26, 27, 28, 29, 30, 31]. Some of these techniques still

rely on restoration to observe these errors, while others do not. In either

case, the observability of errors is limited to a gate-level analysis in these

methods, which does not provide any information on the expected higher

level functionality of the circuit. As a result, these methods usually focus

on finding electrical bugs. These electrical bugs usually manifest themselves

as some deviation from the specified behavior of the design in the higher

abstraction levels, so to find these electrical bugs, we must first localize at

8

a higher level. In addition to localizing electrical bugs, localizing a bug to a

small portion of the design such that it can be replicated using pre-silicon is

a widely used method for finding functional bugs.

For complete and efficient validation, we must be able to localize bugs at a

higher level before using gate-level traces. High-level debug architectures are

used within a design to attempt to observe these bugs [8, 32, 9, 33, 34, 35,

36, 14, 37]. Many of these architectures introduce run-stop mechanisms that

increase the complexity and can be intrusive to the original design. Run-

stop mechanisms are also only helpful if the debugger knows what trigger

conditions to set to observe a bug. As is the case with many bugs, the

erroneous behavior that has occurred may not give any hint about the root

cause of a problem and an initial localization is needed so that further debug

can begin. This initial debug effort should show system operation at a high

level that is easy for the debugger to understand without much effort so

that this first-level localization can happen quickly and allow the debugger

to move into further localization. Also, the choice of where to place these

structures to allow them to trace signals that are important for localizing

bugs is currently an ad-hoc procedure where designers attempt to place these

structures within the design to the best of their knowledge. The increased

use of reusable IP blocks in modern SoC (System on a chip) designs has made

this choice easier for designers as bugs are less likely to appear within the

functionality of these areas; however, the communication between IPs has

become a riskier area because this changes with each design.

1.5.2 Message Passing Communication

In traditional SoCs, communication has been conducted along a bus or possi-

bly a small number of buses that are connected in some manner. To observe

the communication between masters and slaves, one has simply needed to ob-

serve the signals on the bus. However, because of the increasing number of

IPs used in modern high-end SoC designs and the lack of scalability of buses,

designs have been to networks-on-chip (NoCs) for IP communication. In this

configuration messages between IPs are packetized and sent along a network

of routers and switches until they reach their final destination. Groups of

packets along the network will form a message, which will give the receiving

9

IP information that it should react to. The communication between IPs is

not as easily observed as it is on a bus because there is no centralized com-

munication point. To observe all possible communication, one would need

to observe all incoming and outgoing channels at each IP. A channel is the

physical, traceable location where portions of each message can be observed

as they arrive or leave an IP. However, because communication is done in

predefined sequences of messages between functional units to perform a spe-

cific task we will call protocols, a small subset of all channels may be able

to observe a large portion of all expected communication. This subset would

be helpful to a debugger and should help observe the maximum amount of

bugs that appear in the communication across IPs. In order to know what

this subset is, we propose a method that uses protocol specifications to select

trace signals. These protocols are specified early in the design process and

determine the sequence of messages that should occur to complete a high-

level action, similar to a message sequence chart (MSC). MSCs have been

used in the past to verify communication protocols and therefore are a nat-

ural format from which to extract information when attempting to validate

protocols as well [38, 39, 40]. We define a textual format to specify MSCs

and analyze all protocols and find a subset of channels that allows maximum

observability of bugs. The goals of our selection method are:

1. Provide a selection of trace signals that can localize bugs (specific bugs

types will be defined later on) by observing the receipt and sending of

messages between IPs in an NoC-based digital design.

2. Constrain our trace signal selection to a fixed trace buffer width size.

We assume that the length of the buffer is unlimited, as methods exist

to either offload trace buffer data in real-time or store the trace buffer

data to main memory [41, 42]. While we assume a fixed-width buffer

size, compression methods exist that can effectively increase this size,

although guarantees on available sizes still need to be made. While

these compression techniques allow an overall decrease in trace size,

specialized architectures may be needed to utilize this compression to

increase the buffer width for our purposes.

10

1.6 Contributions

To reduce debug time, we propose a method that leverages system-level com-

munication information to create traces that allow for quick localization. Us-

ing system-level information allows debuggers to use behavioral specifications

as a means for debug and, because of increased IP (intellectual property) us-

age in modern day ICs, many bugs appear in the communication between

already well validated IP blocks. The contributions of this work are:

1. The first automated system-level trace selection method. Previous

work in the area of trace signal selection has been focused on gate-

level analysis of digital designs, which do not consider the high level

functionality of the design. Our method considers only the high-level

functionality from the messages passed between functional units within

an NoC.

2. A linear programming formulation of this problem. Currently, this

high-level, message-based trace signal selection is done manually by sys-

tem designers who must somehow determine what functionality needs

to be captured from all correct behaviors of their system. Even a

moderate sized SoC design will have many behaviors captured in the

messages sent between functional units than a system designer can un-

derstand to accurately select trace signals. Our linear programming

formulation highlights key properties that we have determined to be

beneficial to debug, and then selects trace signals to maximize these

properties.

Our high-level trace signal selection will allow debuggers to quickly localize

bugs in a system using the provided traces. Quickly localizing a bug to a

smaller portion of a design is one way to help reduce the overall time spent

debugging. Once a bug is localized to a smaller portion of a design, lower

level debug structures can be used to further localize and debug.

The effectiveness of our method and the shortcomings of current research

into this area will be shown using experimental results presented in Chapter

4. These experiments include analysis of our method using various inputs, a

comparison of message-level observability between our method and current

trace signal selection methods, and finally a bug case study that demonstrates

the ability to localize bugs to a small portion of the design using our traces.

11

CHAPTER 2

PRELIMINARIES

2.1 Overview

In digital systems with NoC-based communication, communication between

functional units is done in the form of packetized messages sent along the

network. Messages are sent within protocols, which we define as predefined

sequences of messages between functional units that perform specific tasks.

An example of a simple protocol is shown in Fig. 2.1. This protocol defines

the messages and the sequence in which they should occur in order to power

on the Radio functional unit. We define a functional unit as any design

component that receives and/or sends messages on the on-chip network. This

term may be used interchangeably with the term block throughout the rest

of this work for brevity. A reference list of the terms used in this work are

presented in Fig. 2.2.

CPU PWR Radio
Wake Radio Req

Wake

Awake

Radio Awake

Figure 2.1: Protocol for power-on of radio block from CPU request. The
vertical lines represent the three functional units and the lines between
them represent messages sent on the interconnection network. Time
progresses downward, hence the downward slope of the message lines.

12

functional unit - a module within a design that is able to send and receive
messages to and from other functional units. Also called IP or block.

message - a single unit of information sent from one functional unit to
another with header information and one or more payload fields. In this
thesis, payload fields are either command, address, or data.

protocol - a predefined sequence of messages between functional units that
perform a specific task

protocol family - a group of protocols that achieve the same function, but
have different initiators and/or targets

channel - the physical, traceable location where the payload fields of a
message pass through as they enter or leave a functional unit

view - a set of channels that are traced at the same time

conditionality - the probability that a message is sent in a given execution
of a protocol

frequency coverage - value between 0 and 1 that represents the percentage
of all messages that can be traced based on the frequency of occurrence

interval score - a weighted average of the average number of missing
messages between traced messages for a given selection of channels

decision point - where a functional unit makes a decision where to send the
next message

Figure 2.2: Reference of terms used

2.2 Messages and Channels

An example of a message with three possible payload fields of command,

address, and data is shown in Fig 2.3. The header information is used by

the network and contains and the source, destination, and other information

needed to route the message, while one, two, or all three of the other fields

are used by the receiving block. In this work, we assume the three payload

fields of command, address, and data, and we assume each field has a fixed

13

bit length and can be traced independently of the other fields. We define

the locations where a field either leaves or enters a block from the network

as a channel. For example, tracing the incoming channel of a block would

mean that the command field of every incoming message to the CPU block

is put into the trace buffer to later be offloaded and observed. Trace signal

selection for system level, protocol-based debug in these systems is achieved

by selecting a set of incoming and outgoing channels. An illustration of a

channel and its tracing is shown in Fig. 2.4.

Figure 2.3: Example message format

.

.

.

Trace Buffer

CPU

C bits

command command

address address

data data

Out CPU
<cmd>

a bits b bits

PWR

command command

address address

data data

In PWR
<addr>

Figure 2.4: Example of how each channel is individually traced

In the design of NoCs, each channel of a block would be managed by a

network interface (NI) that lies between the functional unit and the network.

Each NI would covert incoming packetized messages that flow across the

NoC into specific signals that the functional unit can understand, and, vice

versa, convert internal communication signals into packetized messages to

send across the NoC. In most cases, this involves some sort of translation

between packetized messages to a set of bus signals of a specific bus protocol.

14

One example may be the AHB bus protocol [43]. The NI may communicate

with the functional unit by asserting certain signals on the AHB interface. To

capture the incoming and outgoing messages to and from a specific functional

unit, a designer simply needs to trace the signals within the NI or a simple

extension can be added to the NI to make these signals visible. Tracing only

a portion of a payload field is very rarely useful, so in our work we focus on

tracing entire incoming or outgoing fields on messages. Each field is always a

predefined amount of bits. We have defined the lengths of those three fields

as follows: 8 bits for the command field and 32 bits for both the data and

address fields. The number of fields and length of each field can be changed

to accommodate different NoC architectures. For example, an NoC that

has separate high and low power fabrics can denote the difference between

these two fabrics by adding more field types. In our problem formulation, we

assume the interconnection network does not lose or corrupt messages as they

are sent from one functional unit to another. Separate debugging solutions

can be used to debug the interconnection network itself for the cases when

this is the root cause [14, 32, 44].

2.3 Trace Buffer Architecture

Currently, the process of selecting incoming and outgoing channels to trace

is a manual selection process undertaken by a system designer. A common

approach in trace signals is using a multiplexer to select between different

sets of trace signals [26, 45, 46, 28]. Other approaches do so dynamically, but

for this trace signal solution, we will use a multiplexer to allow the debugger

to choose between different sets of signals. A system designer or team of

system designers use their knowledge of the system’s protocols to select sets

of channels that can help debug in post-silicon. Each set of channels, or view,

can be selected together using the selection bits of multiplexers as shown in

Fig. 2.5. The example shown has only 2 views and n-bits, but typically a

system would include more views. The implementation presented later in

this thesis has a total of 8 views.

In this approach, each view would observe a different portion of the design

in such a way that each view will allow a debugger to focus on the messages

to and from a specific block within the design. An example of the debug

15

. . .sel sel sel sel

Chan1
View 1

Chan1
View 2

Chan2
View 1

Chan2
View 2

Chan3
View 1

Chan3
View 2

Chan n
 View 1

Chan n
View 2

.

.

.

Trace Buffer

Figure 2.5: Trace buffer architecture for a 2-view, n-bit architecture

procedure undertaken by a system debugger is shown in Fig. 2.6.

The trace presented to the debugger will include the block of the channel,

the value of the channel, and whether the message was outgoing or incoming.

An example of the trace given to the debugger assuming the protocol in Fig.

2.1 and the trace selection is 2.4 is shown in Fig. 2.7. This debug method-

ology is used as a first pass debug that can allow a system level debugger

to localize bugs to a single block or a portion of a single block to be further

analyzed using block-specific debug structures. However, because the width

of the trace buffer is usually less than the number of bits needed for all the

channels of even a single block, creating a selection that can allow a post

silicon debugger to observe erroneous behavior caused by bugs in the system

is an arduous task. The vast number of protocols that are defined in most

systems and the subtle communication patterns within those protocols mean

that a manual selection is not done in a systematic fashion and, therefore,

the quality of selection can be very poor as no definitive statements can be

made about its ability to aid in the debug at the system level. In addition,

a manual selection takes a considerable amount of time as the system de-

signer or team must carefully look over each and every protocol to attempt

to capture the important features. We present an automated, systematic, hi-

erarchical, block-level, selection method for these channels that can provide

16

Debug begins

Set global view

Run test and analyze trace

Will another view
help to localize
this bug further?

Select this view
Yes

System-level localization
is complete, use information

for root causing

No

Figure 2.6: Usage flow chart for system-level debugger using system-level
signal selection with views

high message frequency coverage and high message interval properties, both

of which will be described in detail later as desirable properties for the ability

to debug. Given a protocol specification and trace buffer width constraint,

this selection method will provide views on a global level and block-specific

level to aid system-level post-silicon debug.

Each view in our selection provides high message frequency coverage and

Out CPU = <Wake_Radio, [], []>

In PWR = <Wake_Radio, [], []>

In PWR = <Awake_Radio, [], []>

Figure 2.7: An example of the trace that would be presented to a debugger.
The messages are in the form <CMD, DATA, ADDR>. In this case, the value
of each command field has been presented as a more descriptive command
name. A value of [] indicates a channel is not traces. A value of XX
indicates the channel is traces, but no value has been assigned to this field
for this particular message.

17

high message interval properties, so it is likely that each trace will provide

information, in the form of missing or incorrect messages, to help localize

the bug. Once this information is observed, a debugger can use this in-

formation and the known channel selection of each view to choose another

view to localize the bug further. Each block-specific view also provides high

message frequency coverage and high message interval properties, but these

properties are on a constrained set of messages (the messages to and from

the block), so the effect is a trace that captures more information specific

to that block, leading to a finer-grained debug effort. In addition to global

and block-specific views, we create a control view that allows protocols with

large numbers of decision points to be isolated in a similar manner as we do

with each block. The result of our method is an automated trace selection

that not only releases system designers from the considerable amount of time

needed to select signals, but also selects signals of a higher quality.

2.4 Linear Programming

In order to select the optimal channel selection based on some defined metrics,

linear programming is used. Linear programming is a method by which

some optimization, either a maximization or minimization, is achieved by

creating a mathematical model that is comprised of linear inequalities and

some function that is to be maximized or minimized. In other words, linear

programming is a method to find a maximal or minimal optimization of some

outcome given some constraints. A linear program in its canonical form is

shown in Eq. 2.1.

maximize: cTx

subject to: Ax ≤ b

and x ≥ 0

(2.1)

This linear program finds a vector x that maximizes the objective function,

cTx. A is a matrix of coefficients and b is a vector. The two inequalities are

constraints that the solution must satisfy.

Linear programming has many applications [47] and as a result, there are

a multitude of both open source and commercial linear program solvers that

can efficiently solve linear programs [48, 49, 50, 51]. In this work, the open

18

source GLPK Linear Program Solver is used [48].

19

CHAPTER 3

PROTOCOL BASED SIGNAL SELECTION

An overview of our selection method is shown in Fig. 3.1. The following

sections will describe each step in detail.

Define textual format
and create protocol

specification

Count unique occurrences
 (reward) of each message

for all protocols

For each channel, find subset
of messages that will be traced

Linear program formulation
that maximizes reward

Find high reward solutions

Correlate every high reward
solution to every protocol
to sort by interval heuristic

Select best solution(s) based
on reward to interval

heuristic ratio

Figure 3.1: Step-by-step flow of global view and block view selection
method

20

3.1 Textual Format and Protocol Specification

To aid the specification of protocols, we define a family of protocols. A

family of protocols may contain similar messages to perform a general task,

but have a different initiator and target block. The example in Fig. 2.1

may belong to the protocol family that defines the power-on of all units. In

this case, the initiator is the CPU and the target is the Radio. As another

example in Fig. 3.2 shows, an upstream memory write from the GFX block to

the USB block may be contained within the family of protocols that defines

upstream memory writes, but for this specific protocol, the GFX block is

the initiator and the USB block is the target. Thinking of protocols in this

manner makes them easier to specify and use as an input into the trace

signal selection problem. Instead of trying to identify all possible protocols

that may occur to complete a certain task, we can group them into families

and specify initiators and targets.

The goal for our trace signal selection at this level of abstraction is to

quickly localize any observed bugs in our design to a small set of possible

problem functional units. Once a bug can be localized to only a small subset

of all the functional units in a design, more specific debug tools can be used

to further root cause the problem if needed. In some cases, the goal may

be to identify the possible stimulus that can be used to recreate the bug

in pre-silicon from our trace signal selection information. In either case,

analyzing all the protocols to select our signals can help trace selection for

the localization of specific bug types.

We define three common bug types from the system level that our trace

selection method will attempt to capture: halting bugs, data bugs, and con-

trol bugs. A halting bug is any bug that causes a protocol to fail to complete.

A halting bug can be caused by a variety of internal issues including a func-

tional block simply failing to send a message, to an incorrect field on a sent

message, or the setting the incorrect recipient on a message, which may cause

the recipient to ignore the message and halt the protocol. A data bug is a

bug that passes along incorrect values in any field during the execution of a

protocol. This can be caused by any incorrect handling of data at any point

in the protocol. A control bug is when a functional block sends a message

to an incorrect block which may cause unspecified final behavior. From the

above definitions, one can observe that a single bug may belong to multiple

21

types. For example, a bug that halts a protocol by sending a message to an

incorrect block could be defined as both a halting bug and control bug. In

either case, if we attempt to capture traces that show either a control bug

or halting bug, we will be able to localize this bug to some extent. We will

keep these bug types in mind as we continue through the explanation of our

signal selection method.

taskfork Wr

task

Hit?

+

+
Yes

No

task

Hit? Yes:data

 No
task

CPU SA GFX USB

U
p

st
re

am
 W

ri
te

Reply(hit)

Figure 3.2: Protocol diagram for and upstream write. The symbols with
marked with “+” indicate synchronization points where the all incoming
messages must have arrived before continuing.

To select trace signals based on protocol specifications, we need some

method to specify protocols in a format that can be analyzed. Protocols

are often defined in diagrams such as the ones shown in Fig. 2.1 and Fig.

3.2.

These diagrams give certain information on the flow of the protocol: the

timing sequence, the information sent on each message, the sender and re-

ceiver of each message, and any possible conditional messages. We have

developed a textual format to capture all this information, as shown below:

22

mi =< si, di, ri, ti, wi >

where,

si = sender of message

di = payload field of message

ri = recipient of message

ti = sequence time of message

wi = conditionality of message

Each message is defined as a tuple with up to five elements. The first and

third element are the sender and receiver of the message, respectively. The

second element is the payload field(s) that the information of the message is

contained in. This must contain at least one data field, but can contain up to

all the data fields that are defined. The sequence time element specifies where

this message occurs in the sequence of the protocol. Multiple messages can

have the same sequence time if they are being sent concurrently. The final

element is the conditionality of message. This element is any number between

0 and 1 and is used to represent conditional messages as the probability that

the message will be sent. If a single message in the execution of a protocol

is only sent 50% of the time, then the weight for that message would be 0.5.

If this element is ignored, it is assumed that the weight is 1.

The format (examples shown in Table 3.1) gives the design engineer speci-

fying the input some flexibility in the importance of certain messages and the

sequence of messages. This is intended as a way to guide the final selection

if the engineer wants to emphasize certain properties of the protocol. For

example, the design engineer may choose to model all conditional messages

with a higher conditionality than they actually appear with in execution in

order to guide the selection to treat these messages with a higher priority.

This would sacrifice the observability of the common case (when the condi-

tional message is not sent), but would provide more observability for the case

when the message is sent. In addition, the engineer can change conditional-

ity on entire protocols to emphasize either the common case or attempt to

emphasize the less common cases.

While the textual format allows some flexibility, in order to understand the

important payload fields in each message, the engineer creating this speci-

fication must have some knowledge of the format of the information being

transmitted. For example, in Fig. 2.1, the first message is described as a

23

Table 3.1: Textual representation of protocols in Fig. 2.1 and Fig. 3.2

Fig. 2.1 Fig. 3.2

<CPU, <cmd>, PWR, 1> <GFX, <cmd><addr>, SSA, 1>
<PWR, <cmd>, Radio, 2> <SSA, <cmd><addr>, CPU, 2>
<Radio, <cmd>, PWR, 3> <GFX, <data>, SSA, 2>
<PWR, <cmd>, CPU, 4> <CPU, <cmd>, SSA, 3>

<CPU, <data>, SSA, 4, 0.5>
<SSA, <cmd><addr><data>, D-Unit, 5>

Table 3.2: Textual representation of upstream write family protocol

Upstream Write

Initiators: GFX, Audio
Targets: PWR, Audio, GFX, USB, UART
<I, <cmd><addr>, SSA, 1>
<SSA, <cmd><addr>, CPU, 2>
<I, <data>, SSA, 2>
<CPU, <cmd>, SSA, 3>
<CPU, <data>, SSA, 4, 0.5>
<SSA, <cmd><addr><data>, T, 5>
end

“Wake Radio Request,” but to convert this protocol to our textual format,

we must know that a wake request is defined by the command field. In

other systems, this message may take the use both command and data fields,

where the block to wake is determined by the data field. We assume that

these inner-workings of the protocol are available to the designer at this stage

in the design process.

As mentioned on page 21, this representation also allows for protocol fam-

ilies to be defined to help enumerate all protocols for a given general task.

An example of an upstream write family definition is shown in Table 3.2.

Initiators and targets are defined and a separate protocol will be created for

each initiator-target pair (excluding the cases when Initiator and Target are

the same). The characters “I” and “T” identify the initiator and target,

respectively.

3.2 Count Unique Occurrences of Each Message

Incorrect data can be sent on any field at at any time, so in order to ensure

that all data bugs can be captured in our trace selection, we would need to

24

Table 3.3: Decomposition into single payload field messages

Original Decomposed

<GFX, <cmd><addr>, SSA, 1> <GFX, <cmd>, SSA, 1>
<GFX, <addr>, SSA, 1>

<SSA, <cmd><addr>, CPU, 2> <SSA, <cmd>, CPU, 2>
<SSA, <addr>, CPU, 2>

<GFX, <data>, SSA, 2> <GFX, <data>, SSA, 2>
<CPU, <cmd>, SSA, 3> <CPU, <cmd>, SSA, 3>
<CPU, <data>, SSA, 4, 0.5> <CPU, <data>, SSA, 4, 0.5>
<SSA, <cmd><addr><data>, USB, 5> <SSA, <cmd>, USB, 5>

<SSA, <addr>, USB, 5>
<SSA, <data>, USB, 5>

end end

observe all sent and received payload fields in our set of protocols. Because

of limited trace buffer space, observing all payload fields is not possible in

most designs and therefore an optimization may take place to observe the

maximum number of messages. To formulate this optimization problem, we

need to enumerate the occurrences of each message in all protocol descrip-

tions as described above. First, we enumerate all protocols by taking each

protocol family definition and creating the entire protocol family. Then, we

decompose all messages defined in our input format into messages with only

a single data field for easier analysis. An example of this decomposition is

shown in Table 3.3. After doing this, we add up the conditionality of each

message occurrence, such that each tuple in the form <sender, payload

field, receiver> occurs only once, with a reward, which is the sum of the

conditionality.

3.3 Find Subset of Messages for Each Channel

Each channel covers a subset of all the decomposed messages. To find this

subset we enumerate all channels as a tuple in the form <sender, payload

field, 0> for outgoing channels and <0, payload field, receiver> for

incoming fields. Each channel also has a cost associated with it, which is the

length of the data field.

The function e(qi,mj) defines whether a given channel, qi, covers a mes-

sage, mj. If either the sender or receiver of a message, along with the payload

25

field, matches the channel, then the message can be observed. We can then

say that a set of channels Q covers a message if at least one channel within

it covers a message. These are formally defined in Eq. 3.1.

e(pi,mj) =

1, if di = dj and (ri = rj or si = sj)

0, otherwise

f(Q,mj) =

1, if for at least one qi ∈ Q, e(qi,mj) = 1

0, otherwise

(3.1)

3.4 Linear Program Formulation

We define the frequency coverage (FC) of a set of channels to be observed,

Q in Eq. 3.2.

FC =

∑
∀mj∈M

f(Q,mj) · rj∑
∀mi∈M

ri
(3.2)

In this definition, ri is the reward of message i. Frequency coverage should

be a value between 0 and 1, where 1 indicates all messages are covered and

0 indicated none are covered. Imposing a cost on each channel creates the

budgeted maximum coverage problem, where the goal is to maximize fre-

quency coverage under a certain cost constraint C, the width of the trace

buffer. This is formulated into a linear programming problem as shown in

Eq. 3.3.

maximize :
∑
∀mi∈M

riyi (maximize frequency coverage)

subject to:
∑
∀qi∈Q

c(qi)xi ≤ C (cost constraint)∑
∀qi∈Q

xi ≤ yj ∀mj ∈M

0 ≤ yi ≤ 1

xi ∈ {0, 1}

(3.3)

Defined in this manner, we can see that this problem is the same as the

budgeted maximum coverage problem [52], which can be solved using linear

26

programming. The function c(qi) defines the cost for channel qi. The y

and x variables are simply indicator variables where yi = 1 corresponds to

message mi being covered and xi = 1 corresponds to channel qi being selected.

The second constraint equation sets all y variables (to 0 or 1) based on the

selection of x variables. The solution for the problem is the selection of x

variables.

3.5 Find High Reward Solutions

The linear program formulated above was solved using the GNU Linear Pro-

gramming Kit (GLPK) [48]. The optimal solution was found and saved,

along with the reward value. Then, the optimal solution was removed from

the possible set of solutions by adding an additional constraint to the linear

program. Another solution is found and also recorded. It is removed from

the set of possible solutions by adding another constraint. This process is

repeated until all solutions with reward values within 95% of the optimal

solutions are found and recorded. The parsing to all solutions within 5% of

the optimal reward value is intuitively based on the fact that as frequency

coverage increases, interval scores (introduced in the next section) should de-

crease because as more messages are observed, we are likely to decrease the

average interval between observed messages. In Chapter 4 we will show that

it is very likely that the final solution is within this parsed set of solutions.

3.6 Message Interval Heuristic

For halting bugs, in addition to observing as many messages as possible, a

debugger may also want to observe messages in sequence on a regular basis

in order to observe when a possible divergence of the correct protocol has

occurred. For example, if a protocol contains nine messages, each one di-

rectly after the other, observing only the first four messages would not be

valuable to observe a divergence from the protocol in the second half of the

execution. However, observing the first, third, fifth, seventh, and ninth mes-

sage would allow us more flexibility to observe when the execution diverges

with some small error latency. This is shown in Fig. 3.3. In addition to the

27

spacing, observing the first and last message of each protocol is important so

that a debugger knows when each protocol has started and ended, so extra

consideration will be taken for these two messages.

(a) Non-ideal spacing (b) Ideal spacing

Figure 3.3: Spacing example for a nine message sequence with four
messages covered. Red circles indicate message is observable.

Assuming equal frequency coverage for two channel selections, the solu-

tion with a more ideal spacing should be chosen. To obtain a heuristic for

comparing the interval spacing in different solutions, the iterative algorithm

shown in Fig. 3.4 was used.

This iterative algorithm is run on each protocol after all covered messages

are determined from the channel set, Q. The value returned from this func-

tion will be averaged over all protocols and called the interval score. The

interval score does not give the exact average interval size missed over all

protocols, but rather a weighted average. Determining the start and end of a

given protocol is important, so the first and last sequence times are weighted

twice as much as others. Also, sequence times that only contain conditional

messages should be weighted lower, so the weights of all messages in a se-

quence time are added, up to a maximum of 1. As an example, the interval

score for the channel selection in Fig. 3.3a would be 5. There is one large

interval, and the penalty for each missed sequence time is 1, except for the

last sequence, where the penalty is 2. The interval score for Fig. 3.3b would

be 1, as there are 4 intervals, each one with a penalty of 1.

28

T is a set of the covered sequence times in a protocol
tf is the final sequence time in algorithm

1: procedure Average-Interval(T , tf)
2: int count = 0
3: int num = 0
4: for i = 1..tf do
5: if i == 1 && i /∈ T then . Missing initiating message(s)
6: int count + +
7: weight = 0
8: for all messages, mj with tj == 1 do
9: weight + = 2 ∗ wj

10: end for
11: if weight > 2 then
12: weight = 2
13: end if
14: int num+ = weight
15: else if ti /∈ T then . There is a missing sequence time
16: weight = 0
17: for all messages, mj, with tj == i do
18: weight + = wj

19: end for
20: if weight > 1 then
21: weight = 1
22: end if
23: int count = int count + wi

24: int num = int num + ti − ti−1

25: else if i == tf && tf /∈ T then . Missing ending message(s)
26: int count + +
27: weight = 0
28: for all messages, mj with tj == tf do
29: weight + = 2 ∗ wj

30: end for
31: if weight > 2 then
32: weight = 2
33: end if
34: int num + = weight
35: end if
36: end for
37: return int num/int count
38: end procedure

Figure 3.4: Algorithm for interval score heuristic

29

3.7 Select Best Solution(s)

With metrics to determine frequency coverage and interval observation in-

tervals, the iterative algorithm shown in Fig. 3.5 is used to produce either

one unique solution or a set of equal solutions for the user to choose from.

The goal is to find a solution with a balance of high frequency coverage and

low interval score. The general trend, as will be shown later, is that higher

frequency coverage should lead to lower interval scores, but this is not always

the case, so we must attempt to balance both frequency coverage and inter-

val score when looking for a final solution. For an ideal solution, the ratio

I/(1 + FC) is as small as possible, where I is the interval score and FC is

the frequency coverage. In the case that this ratio is equal, the solution with

a higher frequency coverage is chosen.

The output is either one unique solution or a set of equal solutions. Given

an input of the entire set of protocols for a design, we will call the solution(s)

from this algorithm the “global view”. This will be the base view used by a

debugger and should allow for the most general observability. We will define

other views later.

3.8 Block-Specific Views

After localizing a bug to a smaller set of blocks using the global view, most

debuggers would like to look at each of these possible root cause blocks

separately to determine the exact root cause. We achieve this functionality

by creating a separate view for each block in the design. Each block will

have its own set of protocols defined, found from the original set of system

protocols. Figure 3.6 shows a high-level view of how this done.

Each message in a protocol is added to two lists of messages: one list for the

sender and one for the receiver. This is done for all messages in a protocol.

Once the end of the protocol is reached, these lists have their sequence times

reordered such that they represent the order in that set of messages only.

For example, if a list for a specific block had messages with sequence times

of 3, 3, 6, and 8, they would be reordered to 1, 1, 2, and 3, respectively.

Each list is output to a group view file for each block. Once all protocols

are iterated over, all view files will be complete and the original frequency

30

cov(Si) is the frequency coverage of solution Si

int(Si) is the interval score of solution Si

Sopt is the optimal frequency coverage solution.

1: procedure Solution Comparisons(T , tf)
2: Use linear programming method to produce a set of solutions S that

have reward values ≥ 95% of the optimal solution’s reward value
3: solncov = cov(Sopt)
4: solnint = int(Sopt)
5: Push Sopt onto soln array
6: for ∀Si ∈ S do
7: if int(Si)

1+cov(Si)
< sol int

1+soln cov
then

8: soln cov = cov(Si)
9: soln int = int(Si)

10: Clear soln array
11: Push Si onto soln array
12: else if int(Si)

1+cov(Si)
== sol int

1+soln cov
&& cov(Si) > soln cov then

13: soln cov = cov(Si)
14: soln int = int(Si)
15: Clear soln array
16: Push Si onto soln array
17: else if int(Si)

1+cov(Si)
== sol int

1+soln cov
&& cov(Si) == soln cov then

18: Push Si onto soln array
19: end if
20: end for
21: return soln array
22: end procedure

Figure 3.5: Coverage and interval solution comparisons

1: P is the entire set of system protocols
2: procedure Protocol-Grouping(P)
3: for ∀pi ∈ P do . for all protocols
4: for ∀mi ∈ pi do . for all message in protocol
5: Push mi onto msg list[si]
6: Push mi onto msg list[ri]
7: end for
8: Reorder time sequence in all message lists
9: Output all message lists to correct block view file

10: end for
11: end procedure

Figure 3.6: Message grouping algorithm

31

coverage-interval algorithm will be done on each block-specific view file to

generate a trace signal selection view for that block. Intuitively, this method

attempts to capture all communication with each block in the most efficient

manner (most efficient use of trace signals) possible.

3.9 Control View

In addition to data and halting bugs, some functional units may have bugs

that cause messages to be sent to the wrong destination or messages that

may accidentally be sent to more destinations than are correct. We will call

these types of bugs control bugs. While it may be possible to observe where

messages have been sent using the above frequency coverage and message

interval solution, this requires observing both the sender and all possible re-

ceivers. Because a message can be sent to a large set of destinations, it is

not feasible to observe all receivers. Therefore, we attempt to create another

view that will attempt to observe control bugs by tracing a combination of

outgoing channels along with the destination (within the header of the mes-

sage) for each message and incoming channels. Our method of selection for

this set will a) determine what channels have the most “decision” messages

sent across them and b) how we may observe the maximal number of deci-

sions. An overview of the method for selecting our control view is shown in

Fig. 3.7.

3.9.1 Decision Points

A decision point within a protocol is where a functional unit makes a decision

where to send the next message. Up until the decision, every execution of

this protocol family will be the same. We use our previous example of a

simple power-on protocol to show a decision point in Fig. 3.8. It is at this

point that the protocol will differ from other executions of the protocol within

the power-on protocol family. For example, another power-on execution may

send a wake message to a block other than the Radio block. The decision was

made within this execution to send this message to the Radio block. In the

upstream write protocol shown in Fig. 3.2, there are two decisions points:

one where the SSA block sends the final data, and another when the CPU

32

Define textual format
and create protocol

specification

Find all local and external
decision points

Determine advantage that each
incoming channel adds to

each external decision point

Linear Program formulation
that maximizes decisions

observed

Figure 3.7: Step-by-step flow of control view selection method

sends its conditional hit data.

CPU PWR Radio
Wake Radio Req

Wake

Awake

Radio Awake

Decision

Figure 3.8: Protocol for power-on of radio block from CPU request with
decision point shown

We can further place decision points into two different categories: external

and local decisions. External decisions are those decisions that determine

where to send a message based entirely on the previous information passed

to it during the protocol. Local decisions are those decisions that determine

where to send a message based on a local state at that functional unit. The

33

two examples earlier in this chapter have external decisions; the PWR block

sends its message (the wake message) based on the message sent to it by the

CPU (the wake request) in the power-on protocol. In the upstream write

protocol, the address that the SSA is sent from the initiator determines

where the final data is sent to. An example of a local decision could be

when a block selects one recipient of the next message randomly from a

set of possible recipients. A case where a block selects from multiple sets

of recipients based on the prior information it receives in the protocol, but

randomly chooses one recipient from each, would classify as both a local and

external decision.

To understand whether an external decision is correct in a trace, the de-

bugger would need to know what information was sent to the block during

the protocol, as this determines the decision. Therefore, observing an exter-

nal decision point is only helpful if some or all of the incoming channels of

that block are also observed. Local decisions do not depend on prior external

information and therefore do not need incoming channels to also be observed.

3.9.2 Find Decision Points

The first step is the same as the previous method for the global and block

view selection, so we move onto the second step. To select a set of channels

for control bugs, we first must find all external and local decisions. To find all

local decisions, we find all conditional messages (those with a conditionality

< 1) at a specific sequence time, and determine the different recipients at

that point. The messages with a conditionality less than 1 represent the

probability of selecting one recipient out of a set of recipients. For example, at

some point in a protocol, a functional unit may decide between two recipients

randomly. Each of these messages would be defined in our format as having

a conditionality of 0.5.

For external decisions, we enumerate all protocol families and then, within

each protocol family, find all messages where the sender, data fields, and

sequence time values match, but the recipient differs. This means that the

sender can send to different recipients, but it is based on the protocol execu-

tion up to that point. All of these points in each family are added up to get

the number of decisions on each outgoing channel.

34

3.9.3 Determine Advantage of Each Incoming Channel

Now, we need to determine the value that tracing each incoming channel adds

to each external decision point. Observing an external decision point is only

useful if we have information that was sent to the block that is making the

external decision prior to that decision. We say that each incoming channel

adds an advantage to each external decision. Now that each external decision

point is known, each protocol execution where an external decision is made is

analyzed. The overall number of incoming messages into the decision-making

block before any decision is determined. Then, the number of decisions made

overall at this decision point is determined. Each incoming message then

gets an advantage equal to the number of decisions divided by the number

of messages. As an example, take the following protocol family:

Targets: GFX, Audio, USB, PWR, UART

<CPU, <cmd><addr><data>, SSA, 1>

<SSA, <cmd><addr><data>, T, 2>

end

There are a total of 5 executions (one for each target) and therefore 5 deci-

sions made on the command, address, and data fields of SSA. The number of

messages is determined after the protocol is decomposed, so the total number

of messages before the decision is 3*5=15. Therefore, each incoming mes-

sage that can be traced adds an advantage of 5/15=0.3333 for this decision

point. Observing all 15 messages would give us an advantage of 15*0.333=5

for this decision point, or, the number of decisions. Therefore, if we observe

any one incoming channel (either command, address, or data), its advantage

is 1.667 for this decision point. We see in this example how for each decision

point, we need to observe all incoming messages to gain the full advantage of

observing this decision. If only 10 of the incoming messages were observed

(by tracing two of the incoming channels), we would not gain the full advan-

tage of observing this decision point, so the value would only be 10*0.3333

= 3.333 instead of 5.

After the value of each incoming channel for each decision point is deter-

mined, we combine the total number of decisions for each outgoing channel

and the advantage each incoming channel adds to that outgoing channel.

For example, if the outgoing command channel of the CPU has 40 external

35

decisions decided on it, the incoming command channel may add an advan-

tage of 10, the incoming data channel may add an advantage of 10, and the

incoming address channel may add an advantage of 20. The advantage of all

incoming channels will add up to the number of external decisions on that

outgoing channel.

3.9.4 Formulate Linear Programming Problem

Now that each outgoing channel has advantage values that are determined

by what incoming channels are selected, we can formulate another linear

programming problem to solve for our set of channels to trace as shown in

Eq. 3.4. Note that we must add the tracing width of the recipient field

in our trace for any external decision outgoing channel traced. We assume

this to be 8 bits. Just as before, we will output all solutions within 5% of

the optimal solution. In this case, it is to allow the designer to select from

a set of roughly equal solutions. The designer should choose channels that

may not be well represented in the other views so that all the views together

cover as many bugs as possible. Future work may involve automating this

by including other previously selected views in the selection of a new view.

maximize:

n∑
i=1

di · dli +

i=m, k=n∑
i=1, k=1

wi,k · ai,k (maximize decisions)

subject to:

n∑
i=1

cdi · di +

m∑
i=1

cmi · xi ≤ C (cost constraint)

∀(i ∈ (1..m), k ∈ (1..n)) (xi + dk) · 0.5 ≥ ai,k (sets indicator matrix a)

(ai,k, xi, dk) ∈ {0, 1}

where:

n is the number of outgoing decision channels

m is the number of incoming channels

wi,k is the advantage of each incoming channel i on outgoing decision channel k

dlk is the local decisions on outgoing decision channel k

n is the number of outgoing decision channels

cdk is the cost of outgoing decision point

C is the width of trace buffer

cmi is the cost of incoming channel i

xi is the indicator variable of incoming channel i

dk is the indicator variable of outgoing decision point k

ai,k is the indicator variable for incoming channel i and outgoing decision channel k

(3.4)

36

CHAPTER 4

IMPLEMENTATION, RESULTS, AND
CONCLUSION

4.1 Implementation

The main test platform for our trace signal selection method is a SystemC-

TLM [53] model that consists of a small SoC and implements a set of proto-

cols that would typically be seen in modern SoC designs. A block diagram

of the model is shown in Fig. 4.1.

Figure 4.1: SystemC model

This system consists of 7 total blocks: A CPU, a graphics (GFX) block,

an audio block, a serial UART controller, an MMC/USB controller, a power

controller (PWR), and a system agent (SA). The CPU block also contains

the main memory. Much of the communication in this system goes through

the system agent block, which is responsible for maintaining system status

37

and routing messages to correct places. All blocks have internal memory

that is mapped to an address range that can be read by anyone and written

to by certain blocks. The CPU is able to send reads and writes. These are

called downstream reads and writes, as they are downstream from the CPU

and do not require a check within the CPU cache. The GFX and Audio

blocks are allowed to both read and write as well, but these are upstream

reads and writes, and all data must be checked within the CPU cache. The

PWR block is responsible for powering on all blocks and the USB and UART

blocks can only initiate upstream reads, but cannot write. All blocks may

issue a machine service interrupt (MSI) at any time. All of the protocols

implemented in this system are shown in Appendix A. The CPU, GFX, and

Audio blocks act as master/slave components that both initialize and respond

to transactions. The USB, UART, and PWR blocks act primarily as slave

blocks that respond to any transactions involving them, but cannot initiate

transactions. The SA routes messages and keeps track of what components

are powered on. If any components are powered off, it will power them on

before a message is sent to them by sending a request to the PWR block.

For the purposes of this work, a transaction and protocol are the same: a

series of messages that complete some system-level function.

The system was implemented using the standard blocking interface in-

cluded in the TLM standard. Extensions were added to the standard generic

payload to allow for the needed communication fields. As transactions are

often split in modern bus-based interconnect designs [43], and certainly in

NoC interconnections by use of an ID or tag, the use of a blocking interface

assumes that our messages can be reordered on a transaction basis before

being presented to the debugger. A straightforward approach to this may

be to record the IDs and some global time vector of each traced message

and then reorder the traces off-chip or simply present the IDs to the debug-

ger, but this introduces a storage overhead in the already constrained trace

buffer. Other methods to order the messages on a transaction basis or to

reduce the overhead that storing IDs would cause can be formulated and

will be the focus of future work. One example is a dynamic tracing method

that only traces messages as they arrive or leave an NI instead of at every

clock cycle, which would be similar to already proposed trigger architectures

[54, 33]. This could allow space for IDs to be stored.

The results section is outlined as follows: algorithm analysis experiments,

38

comparison to gate-level selection experiments, and finally bug case studies

with localization results.

4.2 Algorithm Analysis

To understand how our method provides solutions and how decisions made

during protocol specification can affect the output, two experiments were

performed.

4.2.1 Pruning Analysis

The first experiment done is a study of the relationship between frequency

coverage and distance from the optimal solution for solutions generated by

GLPK, shown in Fig. 4.2. The R2 values of the linear fits in Fig. 4.2

are shown in Table 4.1. The optimal solution was found for each set of

solutions using the frequency coverage to interval score ratio. The distance

of each solution is defined as Iopt
1+FCopt

− I
1+FC

, where Iopt and FCopt are the

interval score and frequency coverage of the optimal solution and I and FC

are the interval score and frequency coverage of the current solution. This

experiment’s purpose is to demonstrate that our pruning of all solutions to

those within 5% of the optimal solution does not remove, or very rarely

removes, solutions that would be chosen at the end of our algorithm.

Table 4.1: R2 values of linear fits in Fig. 4.2

Solution Set R2 Value for linear fit line
24 bit 0.6732
32 bit 0.2094
72 bit 0.00857
144 bit 0.1310

These results show that over a large range of frequency solutions, the

optimal solution is likely to be near the top of the solution range. There is

a trend towards a direct relationship between frequency and distance from

the optimal solution for all but one of the trace buffer sizes, and in that

case the fit is very poor. The stronger fits were seen for the sets that had

a larger range of frequency values. The optimal solution in each solution

39

Figure 4.2: Relationship between frequency coverage and distance from
optimal solution for the top 500 solutions at three different trace buffer sizes

set can be identified as the point(s) along the x-axis. A qualitative analysis

suggests that these points also always seem to have a frequency coverage near

the top of the range of all solutions in that set. The 144 bit trace selection

has many points along the x-axis because there were many solutions with an

interval score of 0. However, in this case, the solutions with highest frequency

coverages are always selected. This shows that the pruning of all coverage

solutions to the top 5% is unlikely to remove any solutions that would be

selected after doing interval score calculations and comparisons. For more

certain accuracy, a larger percentage of the top solutions could be used at

the cost of run time.

4.2.2 Protocol Specification Sensitivity

Next, a study is done on the final frequency-interval score solutions for three

different sets of protocols. The first protocol set, SoC, is the one used and im-

40

plemented in our SystemC model. The next two are the same directory based

cache coherence scheme [55], but differ in the use of conditional messages in

their specification. The protocol specifications are listed in Appendix A. The

cache coherence scheme specification is for a 6 CPU system with 3 home di-

rectories. A cache coherence scheme was chosen as another set of protocols

to use because its traffic patterns are different from communication in an

SoC system. Cache coherence involves a large number of broadcast and con-

ditional messages to homogeneous functional units compared to the SoC-like

communication that is typically more point-to-point and differs more based

on the initiating functional unit.

The difference between the two cache coherence specifications is that while

the conditional specification uses conditional messages to specify both the in-

validations sent from the home directories to the caches during write misses

and the data sent from the owner cache in read misses, the non-conditional

specification does not use conditional messages at all. The focus of the spec-

ification without conditional messages would be to capture all messages with

the same priority, while the conditional specification will likely trace signals

into and from the home directories more often, as the messages they receive

are weighted more highly.

Figure 4.3: Frequency coverage for different protocol sets

Figures 4.3 and 4.4 show the results. We can see that for the SoC protocols,

once the frequency coverage increases to a certain point, it increases further

in steps that are about 32 bits apart. This tells us that once 32 bits of trace

buffer are used, almost all low cost (8 bit command channels), high reward

(many messages) channels have been selected and that adding more 8 bit

41

Figure 4.4: Interval score for different protocol sets

command channels is almost negligible to the overall frequency coverage.

Larger increases in frequency coverage can only be gained by adding one of

the 32 bit channels. The interval score trend is to decrease or stay constant

unless there is a frequency coverage increase. Notice that all the increases

in interval score correspond with an increase in frequency coverage. This

shows that our final selection method is sacrificing some interval score for an

increase in frequency coverage, just as is expected.

For the coherence protocols, we notice that there is a similar pattern in

the frequency as the trace buffer size increases, but it is less pronounced.

The coherence protocols have more broadcast messages, so as even the lesser

used channels are added, they will show up in many of the executions of

the protocol and increase the frequency coverage by some amount. The

interval score in both coherence protocols also bottoms out at a value and

never changes after that value. This is also due to the broadcast nature

of the protocols. Some of the middle messages in the protocol are low value

broadcast messages and, because they are towards the middle of the protocol,

the interval penalty is not high. Therefore, the algorithm decides to omit

these intervals entirely and adds messages from other intervals.

The graphs above could be valuable to a designer if deciding on a trace

buffer size. As we can observe, there is no need to increase the buffer size

past 160 bits for the SoC protocols for this view. Also, the difference between

a buffer size of 128 and 136 is nonexistent for this view. This, combined with

the results from other views, can guide a selection of trace buffer size.

One important result to report is the different solutions given for the con-

42

ditional and non-conditional cache coherence protocols. For the conditional

set, the selection, for a trace buffer size of 176 bits, is the following. Note

that there were multiple solutions, but the only difference was the outgoing

ADDR channel selection. For other solutions, a different home directory was

chosen.

HOME3,cmd,0

HOME3,addr,0

HOME2,cmd,0

HOME1,cmd,0

0,addr,HOME3

0,addr,HOME2

0,addr,HOME1

0,cmd,HOME3

0,cmd,HOME2

0,cmd,HOME1

And the result for the non-conditional set for the same trace buffer size is

as follows. Note that there were multiple solutions, but all were variations

on this selection. For example, instead of selecting the channel (0,cmd,P1),

another solution would select another processor instead of P1.

HOME3,cmd,0

HOME3,addr,0

HOME2,cmd,0

HOME2,addr,0

0,cmd,P1

HOME1,cmd,0

HOME1,addr,0

P6,cmd,0

P5,cmd,0

P4,cmd,0

P3,cmd,0

P2,cmd,0

P1,cmd,0

From these two selections, we see how the use, or lack, of conditional mes-

sages has guided this selection. For the conditional selection, only incoming

and outgoing channels of the home directories were chosen. This is because

43

all messages that involve a processor that is not the initiator are conditional

and therefore have a lower weight. In the case where no conditional mes-

sages were used, home directory channels were clearly still targeted, but not

as much as in the conditional case because the weight of all messages was

equal. For other trace signal sizes, however, the selection was the same for

both protocol sets. So the user can guide the selection for this set of pro-

tocols, but only to a certain extent, and the selection may vary little with

varying details of the specification. The selection for the control view was

the same in both cases.

4.3 Comparison to Gate-level Selection

A comparison is done between the popular gate-level, restoration-based trace

signal selection method presented in [22] and the system-level selection pre-

sented here. In order to create a trace selection for the gate-level method, a

USB controller block RTL design was used and a network interface was added

that asserts high-level signals to implement the high-level behavior from the

USB block in the SystemC TLM model. This was synthesized into a gate

level netlist using Design Compiler [56] for use with the restoration-based

method. To compare these two methods, we use a 72 bit trace buffer width

and produce signal selection with both methods. We present the number

of erroneous messages observed for certain bugs within the USB block. An

erroneous message is a message within the correct specified execution of a

protocol that is either not present, has incorrect data, or is sent to the wrong

place. Observing an erroneous message means that either a message is on

a traced channel but is not seen, incorrect data is directly observed, or a

message is sent and is not observed to be received at a traced channel. The

restoration-based selection only includes a single signal selection, so for the

system-level trace, we will limit message count to only a single view with the

highest number of observed erroneous messages. Results are shown in Table

4.2. Because the restoration based method does not include any notion of

higher level functionality, it does not observe any of these messages.

We cannot detect the data bug in Table 4.2 because we lack the ability to

see the data fields in our selected view. However, as will be shown later, if

some other method is used to detect this type of bug, we can still effectively

44

Table 4.2: Error detection comparison between system-level and
restoration-based methods. Note that neither method is able to detect data
corruption in the USB block.

Bug Type Bug Stimulus # erroneous
messages in
our selection

erroneous
messages in
restoration
selection

Data USB corrupts
data after
downstream
write

Downstream
write-read pair
to USB

0 0

Control USB sends
data to incor-
rect block on
downstream
read

Downstream
write-read pair
to USB

1 0

Halting USB does not
send PN USB
message after
wake message
from PWR
block

One down-
stream read to
USB block

1 0

Control USB sends read
request to in-
correct block

One USB read 1 0

debug it using our selection.

For closer analysis of the inability of the restoration-based method to cap-

ture high-level functionality in the form of the message signals within the NI,

Fig. 4.5 is presented. This figure shows the temporal depth between each

message signal and the selected signals for the gate-level method for a 104

bit trace buffer width. For comparison, we present Fig. 4.6, which shows

the heat map that corresponds to our direct selection of these system-level

message signals. Temporal depth is the number of flip-flops between the two

signals. For example, a signal that is within the combinational logic in the

output stage of a flip-flop would have a temporal depth of 0 from that flip-

flop. In general, a low temporal depth between two signals means that these

two signals are highly related both spatially and functionally within a design.

Note that in this implementation, the address channel was only 11 bits, so

the top 21 bits of both address channels were removed from the graph.

The main observation about the two heat maps is that the gate-level se-

lection method is unable to create any predictable relation to the high-level

message signals. Dark blue (temporal depth of 0) portions do exist, but only

45

Figure 4.5: Temporal depth between gate-level based selection trace signals
and system-level message signals

Figure 4.6: Temporal depth between our trace signal selection and
system-level message signals

for a few select channels. Any depth beyond 0 would be unreliable in captur-

ing the high-level message signal because of the large amount of logic between

the two signals. Even a temporal depth of 0 indicates not that the high-level

message signal can be captured in the selected signal, but rather that it is

more likely to be captured. The direct selection predictably produces a more

regular pattern between the selected signals and message signals and can be

46

used to reliably capture this information.

4.4 Bug Case Studies and Localization

To understand how the traces selected aid in debug and the extent to which

each bug can be localized, we now present a case study of different bugs that

are debugged using signals selected with our trace signal selection method.

Localization results are also presented. The input into the signal selection

was the set of SoC protocols mentioned above. A trace width size of 72

bits was chosen. This is the number of bits needed to capture only one

complete set of one incoming or outgoing channel (command, address, and

data) and trace buffer widths in modern systems would be limited to around

this relative size. Each incoming and outgoing channel was instrumented

within the SystemC code with a function to look up when each incoming

or outgoing message should be traced in the selected view, and if so, it was

printed with the correct values to act as a trace.

4.4.1 Halting Bugs

We implement three different halting bugs. Each bug’s root cause is a func-

tional unit not responding in any manner to some stimulus message.

First, let us do a general case of the Audio not responding to any messages

of any type. The input to get the trace was a series of downstream reads and

writes to various functional units with initially no functional units powered

on. The Audio block does not respond to any messages. The following global

view trace was observed. Traces are in the format <cmd, data, addr>. Note

that a value of XX in the trace denotes that while that field is being traced,

this message did not have valid information on that field. For example, the

third message shown below is a PN Audio message, which does not contain

any information on the address field. Also, a value of [] denotes that this

field is not being traced.

Out CPU = <MEM_W, [], []>

In SA = <MEM_W, [], []>

Out SA = <PN_Audio, [], XX>

Out CPU = <MEM_R, [], []>

47

In SA = <MEM_R, [], []>

Out SA = <REQR, [], XX>

In CPU = <REQR, [], []>

Out CPU = <REPR, [], []>

In SA = <REPR, [], []>

Out SA = <PN_Audio, [], XX>

Out CPU = <MEM_W, [], []>

This trace shows that for both the write and read, no response was received

after the SA sent the power-on message. This can be a problem with either

the PWR block not forwarding the power-on message or the Audio block

not responding once it is forwarded. We know that the Audio block view

includes the outgoing command channel of the PWR block, so we use this

view to attempt to confirm the message forwarding to the Audio block.

In SA = <MEM_W, [], []>

Out SA = <PN_Audio, [], []>

Out PWR = <PN_Audio, [], []>

In Audio = <PN_Audio, [], []>

In SA = <MEM_R, [], []>

Out SA = <REQR, [], []>

In SA = <REPR, [], []>

Out SA = <PN_Audio, [], []>

Out PWR = <PN_Audio, [], []>

In Audio = <PN_Audio, [], []>

Here we see that the Audio block is to fault for this error. We can localize

this bug to the entire Audio block because we cannot confirm any correct

behavior, so we must examine the entire design. This took 2 runs.

Now, let us specialize this error such that the Audio block only fails to

respond to downstream writes. The following is the global trace of this

error.

Out CPU = <MEM_W, [], []>

In SA = <MEM_W, [], []>

Out SA = <PN_Audio, [], XX>

Out PWR = <PN_Audio, [], []>

Out PWR = <PN_Audio, [], []>

In SA = <PN_Audio, [], []>

48

Out SA = <MEM_W, [], 0x200>

Out CPU = <MEM_R, [], []>

In SA = <MEM_R, [], []>

Out SA = <REQR, [], XX>

In CPU = <REQR, [], []>

Out CPU = <REPR, [], []>

In SA = <REPR, [], []>

Out SA = <MEM_R, [], 0x200>

In SA = <XX, [], []>

Out SA = <XX, [], 0x200>

In CPU = <XX, [], []>

Out SA = <RESR, [], XX>

In CPU = <RESR, [], []>

CPU read 0xaa at addr 0x200

Here, we see that the PWR block sends its response that the Audio block

is powered on, so the SA block sends a MEM W message. This write is

programmed to write 0x55 to address 0x200, but we cannot confirm that

this write is indeed the same one that is writing 0x55 or that it is reaching

the Audio block. We do another run with the control view to attempt to see

where this message is being sent to.

In SA = <MEM_W, [], []>

SA sent = <PN_Audio, XX, []> to PWR

In PWR = <PN_Audio, [], []>

In PWR = <PN_Audio, [], []>

In SA = <PN_Audio, [], []>

SA sent = <MEM_W, 0x55, []> to Audio

In SA = <MEM_R, [], []>

SA sent = <REQR, XX, []> to CPU

In SA = <REPR, [], []>

SA sent = <MEM_R, XX, []> to Audio

In SA = <XX, [], []>

SA sent = <XX, 0xaa, []> to CPU

SA sent = <RESR, XX, []> to CPU

CPU read 0xaa at addr 0x200

Here, we see that the message is sent to the Audio block with data of 0x55.

This means the root cause is in the Audio block, either with how the write

49

is being handled or some data corruption once there is a read from the same

location. In either case, this problem has been localized to the handling of

the MEM W and/or MEM R in the Audio block. This took 2 runs.

Now, let us explore another halting-type bug. This bug is on the condi-

tional hit data that may be sent during an upstream read/write. It fails to be

sent and would cause an upstream read/write to never complete. The input

for this is a series of upstream writes from the GFX block to the USB. The

bug can be confirmed by checking the values written. In this case, certain

addresses, one of them being 0x30A, are not reading what they should have

been written. We start out with a global view trace.

In SA = <MEM_W, [], []>

Out SA = <MEM_W, [], 0x309>

In CPU = <MEM_W, [], []>

Out CPU = <MISS_W, [], []>

In SA = <MISS_W, [], []>

Out SA = <MEM_W, [], 0x309>

In SA = <MEM_W, [], []>

Out SA = <MEM_W, [], 0x30a>

In CPU = <MEM_W, [], []>

Out CPU = <HIT_W, [], []>

In SA = <HIT_W, [], []>

In SA = <MEM_W, [], []>

Out SA = <MEM_W, [], 0x30b>

In CPU = <MEM_W, [], []>

Out CPU = <MISS_W, [], []>

In SA = <MISS_W, [], []>

Out SA = <MEM_W, [], 0x30b>

This shows that the write to 0x30A was a hit, but no data is ever sent from

the CPU to the SA block so that it can be forwarded along. Even though

the data field is not traced, the incoming command channel of the SA block

is, so we would see some message on that incoming channel. In this case, we

know the issue is with how the CPU is handling MEM W commands with a

hit. This localization only took one run.

50

4.4.2 Data Bugs

We now introduce 4 different data bugs. These bugs introduce data corrup-

tion either as a data field is forwarded or while it is being stored in memory

at a block. In all cases, the bug is already known and does not need to be

detected, only localized. This is different from the study done above. Our

first bug is data corruption as a downstream read is being completed. The

SA block will somehow corrupt the data before it is forwarded, causing the

wrong value to be read at the CPU. The following is the trace from the

portion that initiates a read from the Audio block after a write of 0x55 has

completed just before.

Out CPU = <MEM_R, [], []>

In SA = <MEM_R, [], []>

Out SA = <REQR, [], XX>

In CPU = <REQR, [], []>

Out CPU = <REPR, [], []>

In SA = <REPR, [], []>

Out SA = <MEM_R, [], 0x200>

In SA = <XX, [], []>

Out SA = <XX, [], XX>

In CPU = <XX, [], []>

Out SA = <RESR, [], XX>

In CPU = <RESR, [], []>

CPU read 0xac at addr 0x200

The wrong value is read, but from the trace, there seems to be no error in

either the read or write (the write is not shown for brevity). At this point,

we are not even sure if the read is being sent to the correct block, so let us

try again, but with the Audio block view.

In SA = <MEM_R, [], []>

Out SA = <REQR, [], []>

In SA = <REPR, [], []>

Out SA = <MEM_R, [], []>

In Audio = <MEM_R, [], []>

Out Audio = <XX, 0x55, []>

In SA = <XX, [], []>

Out SA = <XX, [], []>

51

Out SA = <RESR, [], []>

CPU read 0xac at addr 0x200

Again, no error is shown from this trace, but we do know that the Audio

block is receiving the request. We do see that the Audio block sends the

expected correct data, 0x55, to the SA block however. Therefore, the bug

must be in either the CPU or SA block. We know that the control view

captures all outgoing data field message from the SA, so we use this view to

try to capture the data transfer between CPU and SA.

In SA = <MEM_R, [], []>

SA sent = <REQR, XX, []> to CPU

In SA = <REPR, [], []>

SA sent = <MEM_R, XX, []> to Audio

In SA = <XX, [], []>

SA sent = <XX, 0xac, []> to CPU

SA sent = <RESR, 0x0, []> to CPU

CPU read 0xac at addr 0x200

In this view we observe that the SA block is sending the incorrect data

value of 0xAC to the CPU. From previous traces, we know that the Audio

block sent the correct data, so we can localize this bug to the handling of a

downstream MEM R message in the SA block. This debug took 3 runs to

localize. If the corruption occurred in the memory of Audio block instead of

in the forwarding at the SA block, this bug would also be captured in the

second trace. Note that while our control view includes the outgoing data

channel of the SA block, the goal of the control view is to observe possible

control bugs. The fact that our control view has included the data field is

helpful for this data bug, but we should note that the control view likely will

not help in finding data bugs. Because many messages in SoC protocols are

concerned with routing commands to the correct blocks and less focused on

sending the actual data, data is usually sent less often and therefore does

not show up in many of our views. To combat this, a designer could either

create a set of protocols of only the data messages and then get a selection

on these, similar to how block-specific views are created, or manually add a

data view. In the case above, we would not be able to localize this bug to

the SA block without this control view channel being observed because we

are not able to observe the data going out of the SA block or into the CPU.

52

Now, let us examine the case where the data is corrupted in the memory of

the Audio block between a write and read. The input is the same as before.

First, a section of the global view is shown.

Out CPU = <MEM_R, [], []>

In SSA = <MEM_R, [], []>

Out SSA = <REQR, [], XX>

In CPU = <REQR, [], []>

Out CPU = <REPR, [], []>

In SSA = <REPR, [], []>

Out SSA = <MEM_R, [], 0x200>

In SSA = <XX, [], []>

Out SSA = <XX, [], 0x200>

In CPU = <XX, [], []>

Out SSA = <RESR, [], XX>

In CPU = <RESR, [], []>

CPU read 0xac at addr 0x200

This looks the same as the previous case, so let us use the Audio block

view again to get a closer look.

In SSA = <MEM_R, [], []>

Out SSA = <REQR, [], []>

In SSA = <REPR, [], []>

Out SSA = <MEM_R, [], []>

In Audio = <MEM_R, [], []>

Out Audio = <XX, 0xac, []>

In SSA = <XX, [], []>

Out SSA = <XX, [], []>

Out SSA = <RESR, [], []>

CPU read 0xac at addr 0x200

Here we observe that the data from the Audio block is incorrect this time.

This bug can be in the handling of a write or read in the Audio block. It

took us 2 runs to localize the issue.

Corruption can also occur in fields other than the data field. In this next

bug, we introduce a bug in the command field when an upstream write occurs.

Instead of sending a write to a block, the SA sends a read. The following

trace is from a series of writes from the Audio block to the USB block. First,

a trace is done with the global view.

53

In SA = <MEM_W, [], []>

Out SA = <MEM_W, [], 0x301>

In CPU = <MEM_W, [], []>

Out CPU = <MISS_W, [], []>

In SA = <MISS_W, [], []>

Out SA = <PN_USB, [], XX>

Out PWR = <PN_USB, [], []>

Out PWR = <PN_USB, [], []>

In SA = <PN_USB, [], []>

Out SA = <MEM_W, [], 0x301>

In SA = <MEM_W, [], []>

Out SA = <MEM_W, [], 0x302>

In CPU = <MEM_W, [], []>

Out CPU = <MISS_W, [], []>

In SA = <MISS_W, [], []>

Out SA = <MEM_R, [], 0x302>

In SA = <XX, [], []>

In SA = <MEM_W, [], []>

Out SA = <MEM_W, [], 0x303>

The first write powers on the USB block and we see no errors in the first

write. However, beginning in the second write we observe that the SA block

receives a MISS W message from the CPU, but instead of sending a MEM W

to the block being written to, it sends a MEM R message. The block that

this message was sent to (USB) responds with the read data to the SA, but

this data is ignored by the SA and the next write begins. We see that this bug

can also be classified as a halting bug because it halts the upstream memory

write protocol once the MEM R message is sent incorrectly. However, the

root cause is a data bug on the command field. This can be observed in this

first run, and localized to the handling of a MISS W message within the SA

block.

Let us implement another incorrect command field bug. This time, the

PWR block sends an incorrect power-on message when powering on the GFX

block. The input is a series of downstream writes and reads to different blocks

with all blocks initially off. The bug is detected by the lack of read response

to the CPU after a read instruction was issued. A section of the global view

trace is shown below.

54

Out CPU = <MEM_W, [], []>

In SSA = <MEM_W, [], []>

Out SSA = <PN_GFX, [], XX>

Out PWR = <PN_Audio, [], []>

Out CPU = <MEM_R, [], []>

In SSA = <MEM_R, [], []>

Out SSA = <REQR, [], XX>

In CPU = <REQR, [], []>

Out CPU = <REPR, [], []>

In SSA = <REPR, [], []>

Out SSA = <PN_GFX, [], XX>

Out PWR = <PN_Audio, [], []>

Here, we see that the SSA block attempts to send a PN GFX message to

the PWR block to forward, but the PWR block sends a PN Audio message,

ending the transaction.

4.4.3 Control Bugs

Now to test our trace selection’s ability to observe control bugs, we introduce

multiple control bugs. The first bug will be the SA block sending an upstream

read to the wrong location. This bug could be found by end result checking

of reads following writes. Our trace is of the write and the read to address

location 0x300, the USB block.

In SSA = <MEM_W, [], []>

Out SSA = <MEM_W, [], 0x300>

In CPU = <MEM_W, [], []>

Out CPU = <MISS_W, [], []>

In SSA = <MISS_W, [], []>

Out SSA = <PN_USB, [], XX>

Out PWR = <PN_USB, [], []>

Out PWR = <PN_USB, [], []>

In SSA = <PN_USB, [], []>

Out SSA = <MEM_W, [], 0x300>

In SSA = <MEM_R, [], []>

Out SSA = <MEM_R, [], 0x300>

In CPU = <MEM_R, [], []>

55

Out CPU = <MISS_R, [], []>

In SSA = <MISS_R, [], []>

Out SSA = <MEM_R, [], 0x300>

Out SSA = <PN_UART, [], XX>

From these traces, we do not see any issues with the write and read from

the Audio block to the USB block, however there is this PN UART message

once our memory read is sent out, which does not seem correct because once

our read finishes, an upstream write should begin. We will concern ourselves

with this after finding the cause of our incorrect data. We know that this

read returns the wrong value from an end result check, so we use the USB

block view to get a closer look.

In SSA = <MEM_W, [], []>

Out SSA = <MEM_W, [], []>

In SSA = <MISS_W, [], []>

Out SSA = <PN_USB, [], []>

In PWR = <PN_USB, 0x3, []>

Out PWR = <PN_USB, [], []>

In USB = <PN_USB, 0x3, []>

Out USB = <PN_USB, [], []>

In PWR = <PN_USB, 0x3, []>

Out PWR = <PN_USB, [], []>

In SSA = <PN_USB, [], []>

Out SSA = <MEM_W, [], []>

In USB = <MEM_W, 0x3, []>

In SSA = <MEM_R, [], []>

Out SSA = <MEM_R, [], []>

In SSA = <MISS_R, [], []>

Out SSA = <MEM_R, [], []>

Out SSA = <PN_UART, [], []>

Here we observe that the SA block sends a MEM R message, but it is not

received by the USB block. Also, the PN UART message is still present. We

now use the control view to see where that MEM R message was sent.

In SSA = <MEM_W, [], []>

SSA sent = <MEM_W, 0x3, []> to CPU

In SSA = <MISS_W, [], []>

56

SSA sent = <PN_USB, 0x3, []> to PWR

In PWR = <PN_USB, [], []>

In PWR = <PN_USB, [], []>

In SSA = <PN_USB, [], []>

SSA sent = <MEM_W, 0x3, []> to USB

In SSA = <MEM_R, [], []>

SSA sent = <MEM_R, XX, []> to CPU

In SSA = <MISS_R, [], []>

SSA sent = <MEM_R, XX, []> to GFX

SSA sent = <PN_UART, XX, []> to UART

Here we see that the MEM R was sent to the GFX unit, which is very

likely the cause of the incorrect data. We have localized this bug to the

handling of either MEM R or MISS R messages within the SA block. Also,

we observe that the PN UART message is sent to the UART block, which is

an incorrect behavior for the SA block. All PN messages should be forwarded

to the PWR block. Also, there is no reason the SA block should have sent

this message. This is also localized to handling of MEM R and/or MISS R

messages within the SA block. Clearly, there is some bug within the SA

block causing this incorrect behavior. After examining the code for the SA

block, we found the cause of this behavior, which was an incorrect address

range check on the memory read. If a memory read for the address range

that corresponds to the USB block was sent to the SSA, it would incorrectly

send a PN UART message along with the correct PN USB if the respective

blocks were currently powered off. In addition to the fact that this message

should not be sent, it was also sent to the wrong place. This bug was not

intended to be tested, but it demonstrates that the trace signal selection is

applicable for finding bugs that may realistically occur while developing a

system.

Table 4.3 shows the amount of the design that must be examined to find

the root cause of each bug from the above case study. The localization is

reported as the percentage of SystemC lines that must be examined to find

the root cause. This table shows that while many bugs can be localized to

less than 5% of the design, the bugs within the SA block usually cannot be

localized to this extent because of the large amount of logic needed to handle

each message type. In the SA block, the handling of a MEM R message uses

120 lines of SystemC code. The handling of same message by the Audio

57

block, for example, is around 14 lines. These show the differences within

the behavior of the blocks. Therefore, even though the bug was localized

to handling of a single message type within one block, the amount of the

overall design that must be examined may be different. In either case, all

bugs implemented here were localized to within 12.39% of the total design in

the worst case, and, on average, were localized to less than 5% of the design.

Table 4.3: Overview of bug case studies

Bug % of
Design

Run Localization
Detail

No response from Au-
dio block

4.597 1st PWR or Audio block
4.264 2nd Audio Block

No response for down-
stream writes from
Audio block

12.66 1st SA or Audio Block
1.599 2nd Audio Block

Hit data not sent from
CPU

1.200 1st CPU block

SA corrupts down-
stream read data

100 1st No erroneous message seen
19.25 2nd CPU or SA block
7.795 3rd SA block

Audio corrupts down-
stream read data

100 1st No erroneous message seen
1.599 2nd Audio block

SA sends read instead
of write for upstream
write

6.396 1st SA block

PWR sends wrong
command

0.3331 1st PWR block

SA forwards read re-
quest to wrong block

100 1st No erroneous message
12.39 2nd SA block
9.793 3rd SA block

Erroneous PN UART
message sent

16.59 1st SA block
16.59 2nd SA block
12.39 3rd SA block

58

4.5 Conclusion and Future Work

4.5.1 Conclusion

The results of the experiments above demonstrate that our selection method

does the following:

1. Provides accurate results with the given pruning used (within 5% of

the optimal frequency coverage solution)

2. Provides the engineer specifying the protocols some degree of guidance

in the final solution

3. Provides the first automated selection of trace signals that capture

system-level behavior

4. Is effective at localizing bugs using a realistic trace buffer width relative

to the overall design size.

Results in Section 4.2.1 indicate that a pruning to 5% of the optimal fre-

quency coverage value will likely include the best solution once both the fre-

quency and interval score are considered. This is because our experiments in-

dicate an inverse relationship between frequency coverage and interval score.

The accuracy of the results could be improved by increasing the amount of

solutions pruned to, but it is detrimental to run time.

Our experiments in Section 4.2.2 show that our method, while automated,

still allows some guidance from the user by the use of the conditionality values

within the protocol specification and highlight how the frequency coverage

and interval score values can be affected. Even though guidance is possible,

our results indicate that the differences are small, which also indicates that

our method is not overly reliant on the input, such that any reasonable

interpretation of the protocol specification will produce similar results.

In Section 4.3, a comparison to a popular gate-level trace selection was

performed. The results indicate what was intuitively speculated: gate-level

methods do not have any information available about system-level function-

ality of the circuit they are analyzing and, therefore, do capture system-level

behavior.

Section 4.4 proves that our trace signal selection is able to localize all

implemented bugs to within 12.4% of the design in the worst case. Our

59

results prove that this automated trace signal selection is able to provide

a quick selection of trace signals that, as a result of the usage of a linear

programming formulation, provide enough quality to localize our set of bugs

to a small percentage of the design. Once a bug has been localized to this

extent, either other post-silicon DfD structures or targeted pre-silicon tests

can be used to find the root cause of the bug.

In addition to the already mentioned achievements of our method, it also

provide other advantages. First, our method is virtually non-intrusive to the

design, as we simply need to route and trace signals. Other debug structures

and methods require augmentations to the working design to provide debug-

ging services, while our method does not [34, 35, 14]. Also, our selection can

occur very early in the IC design flow because we only require a protocol

specification, allowing for plenty of design time to route and add the needed

structures. Gate-level selection methods require a netlist, which means that

they require a full RTL implementation that occurs much later in the design

process. In addition to choosing a set of trace signals for a given trace buffer

width, our method can also be used to find the minimum trace buffer width

needed to observe all messages. In some cases, this width may be much less

than the width needed to trace all channels within a design and may be an

attractive solution to post-silicon debugging. Finally, our tool can also be

helpful to designers as a way to understand message patterns in the specified

protocols. This may lead a designer to change their design, which can be

done, because all of this is done early in the design process.

4.5.2 Future Work

Future work on our specific solution to the problem of system-level trace sig-

nal selection could focus on the implementation in systems with split transac-

tions, as mentioned in Section 4.1. For our purposes, we equate transactions

to protocols. In a real system, a block may be receiving messages that are a

part of many different protocols concurrently. Each block is able to handle

this because the header of each message it receives would include an ID that

is unique to that transaction/protocol. Therefore, raw, untouched traces

of the incoming and outgoing channels would include interleaved messages

from many protocol/transactions, making debug more difficult. One way to

60

alleviate this is to simply record the IDs and then reorder each trace before

it is presented to the debugger, but this uses valuable trace buffer space.

Other methods may include real-time reordering of traces or compression

techniques to reduce the overhead of storing IDs.

In addition to implementation-related future work, automation in the lo-

calization process may be possible. Once traces are obtained and offloaded,

they may be able to be compared to the specified protocols to automatically

detect erroneous behavior. It may be possible to both detect and localize

bugs using this method. In addition to offloading traces prior to compari-

son, a real-time comparison module that has the ability to detect differences

between the execution traces and correct behavior during execution is a pos-

sibility. An initial thought about a real-time comparison module is that the

overall area overhead may be too large, so this would have to be implemented

in an area-efficient manner.

61

APPENDIX A

PROTOCOLS

Shown in this appendix are the protocols used in our experiments. These are

presented in both text and the flow diagrams provided in Figs. A.1 - A.7.

A.1 SoC Protocols

//Upstream Memory Write (Dirty snoop)

Initiators: GFX, Audio

Targets: PWR, Audio, GFX, USB, UART

<I, <cmd><addr><data>, SA, 1> //initial request

<SA, <cmd><addr>, CPU, 2> //forward to cpu

<CPU, <cmd>, SA, 3> //hit response

<CPU, <data>, SA, 4, .5> //conditional data on hit

<SA, <cmd><addr><data>, T, 5> //commit write to target

end

//Upstream Memory write; target and CPU powered down

Initiators: GFX, Audio

Targets: PWR, Audio, GFX, USB, UART

<I, <cmd><addr><data>, SA, 1> //initial request

<SA, <cmd>, PWR, 2> //power up if CPU off

<PWR, <cmd>, CPU, 3> //PWR up CPU

<CPU, <cmd>, PWR, 4> //CPU is on

<PWR, <cmd>, SA, 5> //SA knows CPU is on

<SA, <cmd><addr>, CPU, 6> //forward to cpu

<CPU, <cmd>, SA, 7> //hit response

<CPU, <data>, SA, 8, .5> //conditional data on hit

<SA, <cmd>, PWR, 9> //power up if Target off

<PWR, <cmd>, T, 10> //PWR up Target

<T, <cmd>, PWR, 11> //Target is on

62

taskfork Wr

task

Hit?

+

+
Yes

No

task

Hit? Yes:data

 No
task

CPU SA GFX USB

U
p

st
re

am
 W

ri
te

Reply(hit)

Figure A.1: Upstream write

63

tasktask Rd

task

Hit?

+

+
Yes

No

task

Hit? Yes:data

 No

task Data

CPU SA GFX USB

U
ps

tr
ea

m
 R

e
ad

fork

taskData

Rd

Reply(hit)

task task
Data

Figure A.2: Upstream read

64

task

task

task

+

task

+

CPU SA GFX

D
o

w
n

st
re

a
m

 R
e

ad

task
Rd

Rd

Data

 Req

Reply

Data

Resp

Figure A.3: Downstream read

65

task

task

CPU SA GFX

D
o

w
n

st
re

am
 W

ri
te

task
Wr

Wr

Figure A.4: Downstream write

66

task

task

task

CPU SA GFX

U
ps

tr
ea

m
 W

rit
e

(i
n

 M
S

I r
a

n
ge

)

task
Wr

 MSI

MSIRply

Figure A.5: Upstream write (in MSI range)

67

task

task

CPU SA GFX

P
o

w
e

r-
o

n
un

it

task
PwrOn GFX

PwrOn GFX

PWR

task

task

PwrOn

PwrOn

task

PwrOn

Figure A.6: Power-on unit

68

task

task

CPU SA GFX

P
ow

er
-o

ff
un

it

task
PwrOff GFX

PwrOff GFX

PWR

task

PwrOff

Figure A.7: Power-off unit

69

<PWR, <cmd>, SA, 12> //SA knows Target is on

<SA, <cmd><addr><data>, T, 13> //commit write to target

end

//Upstream Memory write; only target powered down

Initiators: GFX, Audio

Targets: PWR, Audio, GFX, USB, UART

<I, <cmd><addr><data>, SA, 1> //initial request

<SA, <cmd><addr>, CPU, 2> //forward to cpu

<CPU, <cmd>, SA, 3> //hit response

<CPU, <data>, SA, 4, .5> //conditional data on hit

<SA, <cmd>, PWR, 5> //power up if Target off

<PWR, <cmd>, T, 6> //PWR up Target

<T, <cmd>, PWR, 7> //Target is on

<PWR, <cmd>, SA, 8> //SA knows Target is on

<SA, <cmd><addr><data>, T, 9> //commit write to target

end

//Upstream Memory write; only CPU powered down

Initiators: GFX, Audio

Targets: PWR, Audio, GFX, USB, UART

<I, <cmd><addr>, SA, 1> //initial request

<SA, <cmd>, PWR, 2> //power up if CPU off

<PWR, <cmd>, CPU, 3> //PWR up CPU

<CPU, <cmd>, PWR, 4> //CPU is on

<PWR, <cmd>, SA, 5> //SA knows CPU is on

<SA, <cmd><addr>, CPU, 6> //forward to cpu

<I, <data>, SA, 6> //initial data

<CPU, <cmd>, SA, 7> //hit response

<CPU, <data>, SA, 8, .5> //conditional data on hit

<SA, <cmd><addr><data>, T, 9> //commit write to target

end

//Upstream Memory Read (Dirty snoop)

Initiators: GFX, PWR, Audio, USB, UART

Targets: PWR, Audio, GFX, USB, UART

<I, <cmd><addr>, SA, 1> //initial message

<SA, <cmd><addr>, T, 2> //forward to target

70

<SA, <cmd><addr>, CPU, 2> //forward to CPU

<T, <data>, SA, 3> //D-Unit response to SA

<CPU, <cmd>, SA, 3> //CPU hit response to SA

<CPU, <data>, SA, 4, .5>

<SA, <data>, I, 5>

<SA, <data>, T, 6, .5>

end

//Upstream Memory Read (Dirty snoop); Both CPU and target powered off

Initiators: GFX, PWR, Audio, USB, UART

Targets: PWR, Audio, GFX, USB, UART

<I, <cmd><addr>, SA, 1> //initial message

<SA, <cmd>, PWR, 2> //power up if CPU off

<PWR, <cmd>, CPU, 3> //PWR up CPU

<CPU, <cmd>, PWR, 4> //CPU is on

<PWR, <cmd>, SA, 5> //SA knows CPU is on

<SA, <cmd>, PWR, 6> //power up if Target off

<PWR, <cmd>, T, 7> //PWR up Target

<T, <cmd>, PWR, 8> //Target is on

<PWR, <cmd>, SA, 9> //SA knows Target is on

<SA, <cmd><addr>, T, 10> //forward to target

<SA, <cmd><addr>, CPU, 10> //forward to CPU

<T, <data>, SA, 11> //Target response to SA

<CPU, <cmd>, SA, 11> //CPU hit response to SA

<CPU, <data>, SA, 12, .5>

<SA, <data>, I, 13>

<SA, <data>, T, 14, .5>

end

//Upstream Memory Read (Dirty snoop);target powered off

Initiators: GFX, PWR, Audio, USB, UART

Targets: PWR, Audio, GFX, USB, UART

<I, <cmd><addr>, SA, 1> //initial message

<SA, <cmd><addr>, CPU, 2> //forward to CPU

<SA, <cmd>, PWR, 2> //power up if Target off

<CPU, <cmd>, SA, 3> //CPU hit response to SA

<PWR, <cmd>, T, 3> //PWR up Target

<CPU, <data>, SA, 4, .5> //conditional hit data from CPU

71

<T, <cmd>, PWR, 4> //Target is on

<PWR, <cmd>, SA, 5> //SA knows Target is on

<SA, <cmd><addr>, T, 6> //forward to target

<T, <data>, SA, 7> //Target response to SA

<SA, <data>, I, 8>

<SA, <data>, T, 9, .5>

end

//Upstream Memory Read (Dirty snoop); CPU powered off

Initiators: GFX, PWR, Audio, USB, UART

Targets: PWR, Audio, GFX, USB, UART

<I, <cmd><addr>, SA, 1> //initial message

<SA, <cmd><addr>, T, 2> //forward to target

<SA, <cmd>, PWR, 2> //power up if CPU off

<T, <data>, SA, 3> //Target response to SA

<PWR, <cmd>, CPU, 3> //PWR up CPU

<CPU, <cmd>, PWR, 4> //CPU is on

<PWR, <cmd>, SA, 5> //SA knows CPU is on

<SA, <cmd><addr>, CPU, 6> //forward to CPU

<CPU, <cmd>, SA, 7> //CPU hit response to SA

<CPU, <data>, SA, 8, .5>

<SA, <data>, I, 9>

<SA, <data>, T, 10, .5>

end

//MIMO Downstream Memory Read:

Targets: GFX, Audio, USB, PWR, UART

<CPU, <cmd><addr>, SA, 1>

<SA, <cmd><addr>, T, 2>

<SA, <cmd>, CPU, 2>

<CPU, <cmd>, SA, 3>

<T, <data>, SA, 3>

<SA, <data>, CPU, 4>

<SA, <cmd>, CPU, 4>

end

//MIMO Downstream Memory Read: target powered down

Targets: GFX, Audio, USB, PWR, UART

72

<CPU, <cmd><addr>, SA, 1>

<SA, <cmd>, PWR, 2> //power up if Target off

<PWR, <cmd>, T, 3> //PWR up Target

<T, <cmd>, PWR, 4> //Target is on

<SA, <cmd><addr>, T, 5>

<SA, <cmd>, CPU, 5>

<CPU, <cmd>, SA, 6>

<T, <data>, SA, 6>

<SA, <data>, CPU, 7>

<SA, <cmd>, CPU, 7>

end

//Upstream Interrupt:

Initiators: GFX, Audio

<I, <cmd><addr>, SA, 1>

<SA, <cmd><addr>, CPU, 2>

<CPU, <cmd>, SA, 3>

end

//Upstream Interrupt, CPU is powered-down:

Initiators: GFX, Audio, USB, UART

<I, <cmd><addr>, SA, 1>

<SA, <cmd>, PWR, 2>

<PWR, <cmd>, CPU, 3>

<CPU, <cmd>, PWR, 4>

<PWR, <cmd>, SA, 5>

<SA, <cmd><addr>, CPU, 6>

<CPU, <cmd>, SA, 7>

end

//Power on unit:

//Initiators: CPU, GFX, USB, UART, Audio

//Targets: CPU, GFX, USB, UART, Audio

//<I, <cmd><data>, SA, 1>

//<SA, <cmd>, PWR, 2>

//<PWR, <cmd>, T, 3>

//<T, <cmd>, PWR, 4>

//<PWR, <cmd>, SA, 5>

73

//<SA, <cmd><data>, I, 6>

//end

//Power off unit:

Initiators: CPU

Targets: CPU, GFX, USB, UART, Audio

<I, <cmd>, SA, 1>

<SA, <cmd>, PWR, 2>

<PWR, <cmd>, T, 3>

end

//MIMO Downstream Memory Write:

Targets: GFX, Audio, USB, PWR, UART

<CPU, <cmd><addr><data>, SA, 1>

<SA, <cmd><addr><data>, T, 2>

end

//MIMO Downstream Memory Write: target powered down

Targets: GFX, Audio, USB, PWR, UART

<CPU, <cmd><addr>, SA, 1>

<SA, <cmd>, PWR, 2> //power up if Target off

<PWR, <cmd>, T, 3> //PWR up Target

<T, <cmd>, PWR, 4> //Target is on

<SA, <cmd><addr><data>, T, 5>

end

A.2 FLASH Cache Coherence - Conditional

//Read Miss, not dirty

Initiators: P1, P2, P3, P4, P5, P6

Targets: HOME1, HOME2, HOME3

<I, <cmd><addr>, T, 1> //get GET message to home

<T, <data>, I, 2, .167> //send data back if not dirty

end

//Read Miss, dirty

Initiators: P1, P2, P3, P4, P5, P6

74

Targets: HOME1, HOME2, HOME3

<I, <cmd><addr>, T, 1> //get GET message to home

<T, <cmd><addr>, P1, 2, .167> //forward GET to owner

<T, <cmd><addr>, P2, 2, .167> //forward GET to owner

<T, <cmd><addr>, P3, 2, .167> //forward GET to owner

<T, <cmd><addr>, P4, 2, .167> //forward GET to owner

<T, <cmd><addr>, P5, 2, .167> //forward GET to owner

<T, <cmd><addr>, P6, 2, .167> //forward GET to owner

<P1, <data>, I, 3, .167> //owner sends data to initiator and ack to home

<P1, <cmd><addr>, T, 3, .167>

<P2, <data>, I, 3, .167>

<P2, <cmd><addr>, T, 3, .167>

<P3, <data>, I, 3, .167>

<P3, <cmd><addr>, T, 3, .167>

<P4, <data>, I, 3, .167>

<P4, <cmd><addr>, T, 3, .167>

<P5, <data>, I, 3, .167>

<P5, <cmd><addr>, T, 3, .167>

<P6, <data>, I, 3, .167>

<P6, <cmd><addr>, T, 3, .167>

end

//Write Miss, not dirty

Initiators: P1, P2, P3, P4, P5, P6

Targets: HOME1, HOME2, HOME3

<I, <cmd><addr>, T, 1> //get GETX message to home

<T, <cmd><addr>, P1, 2, .167> //send invals

<T, <cmd><addr>, P2, 2, .167>

<T, <cmd><addr>, P3, 2, .167>

<T, <cmd><addr>, P4, 2, .167>

<T, <cmd><addr>, P5, 2, .167>

<T, <cmd><addr>, P6, 2, .167>

<T, <cmd><addr>, I, 3> //send PUTX back if not dirty

<P1, <cmd>, T, 3, .167> //send INV ack back if not dirty and invalidated

<P2, <cmd>, T, 3, .167>

<P3, <cmd>, T, 3, .167>

<P4, <cmd>, T, 3, .167>

75

<P5, <cmd>, T, 3, .167>

<P6, <cmd>, T, 3, .167>

end

//Write Miss, dirty

Initiators: P1, P2, P3, P4, P5, P6

Targets: HOME1, HOME2, HOME3

<I, <cmd><addr>, T, 1> //get GETX message to home

<T, <cmd><addr>, P1, 2, .167> //send invals and forward GETX to owner

<T, <cmd><addr>, P2, 2, .167>

<T, <cmd><addr>, P3, 2, .167>

<T, <cmd><addr>, P4, 2, .167>

<T, <cmd><addr>, P5, 2, .167>

<T, <cmd><addr>, P6, 2, .167>

<P1, <cmd><addr>, T, 3, .167> //send FAck back to home if dirty owner

<P2, <cmd><addr>, T, 3, .167>

<P3, <cmd><addr>, T, 3, .167>

<P4, <cmd><addr>, T, 3, .167>

<P5, <cmd><addr>, T, 3, .167>

<P6, <cmd><addr>, T, 3, .167>

<P1, <cmd><addr>, I, 3, .167> //send putx back to requester if dirty owner

<P2, <cmd><addr>, I, 3, .167>

<P3, <cmd><addr>, I, 3, .167>

<P4, <cmd><addr>, I, 3, .167>

<P5, <cmd><addr>, I, 3, .167>

<P6, <cmd><addr>, I, 3, .167>

end

A.3 FLASH Cache Coherence - No Conditional

//Read Miss, not dirty

Initiators: P1, P2, P3, P4, P5, P6

Targets: HOME1, HOME2, HOME3

<I, <cmd><addr>, T, 1> //get GET message to home

<T, <data>, I, 2> //send data back if not dirty

end

76

//Read Miss, dirty

Initiators: P1, P2, P3, P4, P5, P6

Targets: HOME1, HOME2, HOME3

<I, <cmd><addr>, T, 1> //get GET message to home

<T, <cmd><addr>, P1, 2> //forward GET to owner

<T, <cmd><addr>, P2, 2> //forward GET to owner

<T, <cmd><addr>, P3, 2> //forward GET to owner

<T, <cmd><addr>, P4, 2> //forward GET to owner

<T, <cmd><addr>, P5, 2> //forward GET to owner

<T, <cmd><addr>, P6, 2> //forward GET to owner

<P1, <data>, I, 3> //owner sends data to initiator and ack to home

<P1, <cmd><addr>, T, 3>

<P2, <data>, I, 3>

<P2, <cmd><addr>, T, 3>

<P3, <data>, I, 3>

<P3, <cmd><addr>, T, 3>

<P4, <data>, I, 3>

<P4, <cmd><addr>, T, 3>

<P5, <data>, I, 3>

<P5, <cmd><addr>, T, 3>

<P6, <data>, I, 3>

<P6, <cmd><addr>, T, 3>

end

//Write Miss, not dirty

Initiators: P1, P2, P3, P4, P5, P6

Targets: HOME1, HOME2, HOME3

<I, <cmd><addr>, T, 1> //get GETX message to home

<T, <cmd><addr>, P1, 2> //send invals

<T, <cmd><addr>, P2, 2>

<T, <cmd><addr>, P3, 2>

<T, <cmd><addr>, P4, 2>

<T, <cmd><addr>, P5, 2>

<T, <cmd><addr>, P6, 2>

<T, <cmd><addr>, I, 3> //send PUTX back if not dirty

<P1, <cmd>, T, 3> //send INV ack back if not dirty and invalidated

77

<P2, <cmd>, T, 3>

<P3, <cmd>, T, 3>

<P4, <cmd>, T, 3>

<P5, <cmd>, T, 3>

<P6, <cmd>, T, 3>

end

//Write Miss, dirty

Initiators: P1, P2, P3, P4, P5, P6

Targets: HOME1, HOME2, HOME3

<I, <cmd><addr>, T, 1> //get GETX message to home

<T, <cmd><addr>, P1, 2> //send invals and forward GETX to owner

<T, <cmd><addr>, P2, 2>

<T, <cmd><addr>, P3, 2>

<T, <cmd><addr>, P4, 2>

<T, <cmd><addr>, P5, 2>

<T, <cmd><addr>, P6, 2>

<P1, <cmd><addr>, T, 3> //send FAck back to home if dirty owner

<P2, <cmd><addr>, T, 3>

<P3, <cmd><addr>, T, 3>

<P4, <cmd><addr>, T, 3>

<P5, <cmd><addr>, T, 3>

<P6, <cmd><addr>, T, 3>

<P1, <cmd><addr>, I, 3> //send putx back to requester if dirty owner

<P2, <cmd><addr>, I, 3>

<P3, <cmd><addr>, I, 3>

<P4, <cmd><addr>, I, 3>

<P5, <cmd><addr>, I, 3>

<P6, <cmd><addr>, I, 3>

end

78

REFERENCES

[1] 1666-2011 IEEE Standard for System C Language, IEEE Std. [Online].
Available: http://standards.ieee.org/getieee/1666/download/1666-
2011.pdf

[2] 1800-2012 IEEE Standard for System Verilog, IEEE Std. [Online]. Avail-
able: http://standards.ieee.org/getieee/1800/download/1800-2012.pdf

[3] H. Foster, “Why the Design Productivity Gap Never Happened,”
in Computer-Aided Design (ICCAD), 2013 IEEE/ACM International
Conference on, Nov. 2013, pp. 581–584.

[4] S. Mitra, S. Seshia, and N. Nicolici, “Post-silicon Validation Opportuni-
ties, Challenges and Recent Advances,” in Design Automation Confer-
ence (DAC), 2010 47th ACM/IEEE, June 2010, pp. 12–17.

[5] J. Keshava, N. Hakim, and C. Prudvi, “Post-silicon Validation
Challenges: How EDA and Academia Can Help,” in Pro-
ceedings of the 47th Design Automation Conference, ser. DAC
’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1837274.1837278, pp. 3–7.

[6] P. Wolkotte, J. Rutgers, P. Hölzenspies, M. Westmijze, R. Blumink,
and G. Smit, “An Automated Design-flow for FPGA-based Sequential
Simulation,” in ProRISC 2008, 19th Annual Workshop on Circuits,
Systems and Signal Processing, no. 2008/1. Veldhoven, the Netherlands:
Technologiestichting STW, November 2008. [Online]. Available:
http://doc.utwente.nl/65230/, pp. 126–132.

[7] G. Schelle, J. Collins, E. Schuchman, P. Wang, X. Zou, G. Chinya,
R. Plate, T. Mattner, F. Olbrich, P. Hammarlund, R. Singhal,
J. Brayton, S. Steibl, and H. Wang, “Intel Nehalem Processor
Core Made FPGA Synthesizable,” in Proceedings of the 18th Annual
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’10. New York, NY, USA: ACM, 2010. [Online].
Available: http://doi.acm.org/10.1145/1723112.1723116, pp. 3–12.

79

[8] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller, “A Reconfigurable Design-for-Debug Infrastructure for SoCs,”
in Design Automation Conference, 2006 43rd ACM/IEEE, 2006, pp. 7–
12.

[9] B. Vermeulen and K. Goossens, Debugging Systems-on-Chip. Springer
International Publishing, 2014.

[10] D. Josephson, “The Good, the Bad, and the Ugly of Silicon Debug,” in
Design Automation Conference, 2006 43rd ACM/IEEE, 2006, pp. 3–6.

[11] S.-B. Park and S. Mitra, “IFRA: Instruction Footprint Recording and
Analysis for Post-silicon Bug Localization in Processors,” in Design Au-
tomation Conference, 2008. DAC 2008. 45th ACM/IEEE, June 2008,
pp. 373–378.

[12] S.-B. Park, A. Bracy, H. Wang, and S. Mitra, “BLoG: Post-silicon
Bug Localization in Processors Using Bug Localization Graphs,”
in Proceedings of the 47th Design Automation Conference, ser.
DAC ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1837274.1837367, pp. 368–373.

[13] T. Hong, Y. Li, S.-B. Park, D. Mui, D. Lin, Z. Kaleq, N. Hakim,
H. Naeimi, D. Gardner, and S. Mitra, “QED: Quick Error Detection
Tests for Effective Post-silicon Validation,” in Test Conference (ITC),
2010 IEEE International, Nov. 2010, pp. 1–10.

[14] C. Ciordas, K. Goossens, T. Basten, A. Radulescu, and A. Boon, “Trans-
action Monitoring in Networks on Chip: The On-Chip Run-Time Per-
spective,” in Industrial Embedded Systems, 2006. IES ’06. International
Symposium on, Oct. 2006, pp. 1–10.

[15] I. Wagner and V. Bertacco, “Reversi: Post-silicon Validation System
for Modern Microprocessors,” in Computer Design, 2008. ICCD 2008.
IEEE International Conference on, Oct. 2008, pp. 307–314.

[16] N. Kitchen and A. Kuehlmann, “Stimulus Generation for Constrained
Random Simulation,” in Proceedings of the 2007 IEEE/ACM
International Conference on Computer-aided Design, ser. ICCAD
’07. Piscataway, NJ, USA: IEEE Press, 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1326073.1326127 pp. 258–265.

[17] P. Mishra and N. Dutt, “Functional Coverage Driven Test Generation
for Validation of Pipelined Processors,” in Design, Automation and Test
in Europe, 2005. Proceedings, vol. 2, March 2005, pp. 678–683.

[18] CoreSight Debug and Trace, ARM Ltd, March 2015. [Online]. Available:
http://www.arm.com/products/system-ip/debug-trace/

80

[19] Design Debugging Using the SignalTap II Embedded Logic Analyzer,
Altera Inc., March 2015. [Online]. Available: http://www.altera.com

[20] “EJTAG Trace Control Block Specification,” MIPS Technologies Inc.
[Online]. Available: http://www.mips.com.

[21] K. Han, J.-S. Yang, and J. Abraham, “Dynamic Trace Signal Selection
for Post-Silicon Validation,” in VLSI Design and 2013 12th Interna-
tional Conference on Embedded Systems (VLSID), 2013 26th Interna-
tional Conference on, Jan. 2013, pp. 302–307.

[22] K. Basu and P. Mishra, “Efficient Trace Signal Selection for Post Sili-
con Validation and Debug,” in VLSI Design (VLSI Design), 2011 24th
International Conference on, Jan. 2011, pp. 352–357.

[23] X. Liu and Q. Xu, “On Signal Selection for Visibility Enhancement in
Trace-Based Post-Silicon Validation,” Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, vol. 31, no. 8, pp.
1263–1274, Aug. 2012.

[24] K. Basu and P. Mishra, “RATS: Restoration-Aware Trace Signal Selec-
tion for Post-Silicon Validation,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 21, no. 4, pp. 605–613, April 2013.

[25] D. Chatterjee, C. McCarter, and V. Bertacco, “Simulation-based Signal
Selection for State Restoration in Silicon Debug,” in Computer-Aided
Design (ICCAD), 2011 IEEE/ACM International Conference on, Nov.
2011, pp. 595–601.

[26] K. Basu, P. Mishra, P. Patra, A. Nahir, and A. Adir, “Dynamic Selection
of Trace Signals for Post-Silicon Debug,” in Microprocessor Test and
Verification (MTV), 2013 14th International Workshop on, Dec. 2013,
pp. 62–67.

[27] K. Rahmani and P. Mishra, “Efficient Signal Selection Using Fine-
grained Combination of Scan and Trace Buffers,” in VLSI Design and
2013 12th International Conference on Embedded Systems (VLSID),
2013 26th International Conference on, Jan. 2013, pp. 308–313.

[28] X. Liu and Q. Xu, “On Multiplexed Signal Tracing for Post-Silicon
Validation,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 32, no. 5, pp. 748–759, May 2013.

[29] X. Liu and Q. Xu, “On Signal Tracing for Debugging Speedpath-Related
Electrical Errors in Post-Silicon Validation,” in Test Symposium (ATS),
2010 19th IEEE Asian, Dec. 2010, pp. 243–248.

81

[30] Y. Lee, T. Matsumoto, and M. Fujita, “On-chip Dynamic Signal Se-
quence Slicing for Efficient Post-silicon Debugging,” in Design Automa-
tion Conference (ASP-DAC), 2011 16th Asia and South Pacific, Jan.
2011, pp. 719–724.

[31] H. Shojaei and A. Davoodi, “Trace Signal Selection to Enhance Tim-
ing and Logic Visibility in Post-silicon Validation,” in Computer-Aided
Design (ICCAD), 2010 IEEE/ACM International Conference on, Nov.
2010, pp. 168–172.

[32] B. Vermeulen, K. Goossens, R. van Steeden, and M. Bennebroek,
“Communication-Centric SoC Debug Using Transactions,” in Test Sym-
posium, 2007. ETS ’07. 12th IEEE European, May 2007, pp. 69–76.

[33] H. Ko, A. Kinsman, and N. Nicolici, “Design-for-Debug Architecture
for Distributed Embedded Logic Analysis,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 19, no. 8, pp. 1380–1393,
Aug. 2011.

[34] R. Abdel-Khalek and V. Bertacco, “DiAMOND:Distributed Alteration
of Messages for On-chip Network Debug,” in Networks-on-Chip (NoCS),
2014 Eighth IEEE/ACM International Symposium on, Sept. 2014, pp.
127–134.

[35] X. Liu and Q. Xu, “Interconnection Fabric Design for Tracing Signals in
Post-silicon Validation,” in Design Automation Conference, 2009. DAC
’09. 46th ACM/IEEE, July 2009, pp. 352–357.

[36] E. Singerman, Y. Abarbanel, and S. Baartmans, “Transaction Based
Pre-to-post silicon Validation,” in Design Automation Conference
(DAC), 2011 48th ACM/EDAC/IEEE, June 2011, pp. 564–568.

[37] K. Goossens, B. Vermeulen, R. van Steeden, and M. Bennebroek,
“Transaction-Based Communication-Centric Debug,” in Networks-on-
Chip, 2007. NOCS 2007. First International Symposium on, May 2007,
pp. 95–106.

[38] H. Vranken, T. Garcia, S. Mauw, and L. Feils, “IC Design Validation
Using Message Sequence Charts,” in Euromicro Conference, 2000. Pro-
ceedings of the 26th, vol. 1, 2000, pp. 122–127.

[39] A. Bunker, G. Gopalakrishnan, and K. Slind, “Live Sequence Charts
Applied to Hardware Requirements Specification and Verification:
A VCI Bus Interface Model,” Int. J. Softw. Tools Technol.
Transf., vol. 7, no. 4, pp. 341–350, Aug. 2005. [Online]. Available:
http://dx.doi.org/10.1007/s10009-004-0145-x

82

[40] R. Kumar and E. G. Mercer, “Verifying Communication Protocols
Using Live Sequence Chart Specifications,” Electronic Notes in
Theoretical Computer Science, vol. 250, no. 2, pp. 33 – 48, 2009,
proceedings of the Eighth International Workshop on Automated
Verification of Critical Systems (AVoCS 2008). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1571066109003417

[41] M. Barnum, L. Lambrecht, and T. Ozguner, “Method and
Apparatus for Guaranteeing Memory Bandwidth for Trace Data,”
Sept. 2007, US Patent App. 11/347,415. [Online]. Available:
https://www.google.com/patents/US20070220361

[42] B. Mihajlović and Z. Zilić, “Real-time Address Trace Compression
for Emulated and Real System-on-chip Processor Core Debug-
ging,” in Proceedings of the 21st Edition of the Great Lakes
Symposium on Great Lakes Symposium on VLSI, ser. GLSVLSI
’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1973009.1973075, pp. 331–336.

[43] AMBA Documentation, ARM, March 2015. [Online]. Available:
http://infocenter.arm.com/

[44] H. Yi, S. Park, and S. Kundu, “On-Chip Support for NoC-Based SoC
Debugging,” Circuits and Systems I: Regular Papers, IEEE Transac-
tions on, vol. 57, no. 7, pp. 1608–1617, July 2010.

[45] M. Li and A. Davoodi, “Multi-mode Trace Signal Selection for Post-
silicon Debug,” in Design Automation Conference (ASP-DAC), 2014
19th Asia and South Pacific, Jan. 2014, pp. 640–645.

[46] S. Prabhakar and M. Hsiao, “Multiplexed Trace Signal Selection Using
Non-trivial Implication-based Correlation,” in Quality Electronic Design
(ISQED), 2010 11th International Symposium on, March 2010, pp. 697–
704.

[47] J. K. Strayer, Linear Programming and Its Applications. Springer,
1989.

[48] GLPK (GNU Linear Programming Kit), March 2015. [Online].
Available: https://www.gnu.org/software/glpk/

[49] AMPL, AMPL Optimization Inc., March 2015. [Online]. Available:
http://www.ampl.com

[50] CPLEX, IBM, March 2015. [Online]. Available: http://www-
03.ibm.com/software/products/en/ibmilogcpleoptistud/

83

[51] MATLAB, The MathWorks, Inc., March 2015. [Online]. Available:
https://www.mathworks.com/products/matlab/

[52] S. Khuller, A. Moss, and J. S. Naor, “The Budgeted
Maximum Coverage Problem,” Information Processing Letters,
vol. 70, no. 1, pp. 39 – 45, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020019099000319

[53] TLM-2.0. OSCI TLM-2.0 Language Reference Manual, 2009. [Online].
Available: http://www.systemc.org

[54] S.-Y. Chen, M.-Y. Hsiao, W.-B. Jone, and T.-F. Chen, “A Configurable
Bus-tracer for Rrror Reproduction in Post-silicon Validation,” in VLSI
Design, Automation, and Test (VLSI-DAT), 2013 International Sympo-
sium on, April 2013, pp. 1–4.

[55] A. Durand, “Modeling Cache Coherence Protocol - A Case Study with
FLASH,” in Workshop on Abstract State Machines, 1998, pp. 111–126.

[56] Design Compiler, Synopsys, March 2015. [Online]. Available:
www.synopsys.com

84

