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Abstract

This dissertation involves two topics in analytic number theory. The first topic focuses on

extensions of the Selberg-Delange Method, which are discussed in Chapters 2 and 3. The other

topic, which is discussed in Chapter 4, is a new identity for Multiple Zeta Values.

The Selberg-Delange method is a method that is widely use to determined the asymptotic be-

havior of the sum of arithmetic functions whose corresponding Dirichlet’s series can be written

in the term of the Riemann zeta function, ζ(s). In Chapter 2, we first provide a history and re-

cent developments of the Selberg-Delange method. Then, we provide a generalized version of the

Selberg-Delange method which can be applied to a larger class of arithmetic functions. We devote

Chapter 3 to the proofs of the results stated in Chapter 2.

In 1961, Matsuoka evaluated ζ(2) by means of evaluating the integral

∫ π/2

0
x2 cos2n(x)dx. The

last chapter of this dissertation generalize the idea of Matsuoka and obtains a new identity for

Multiple Zeta Values.
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Chapter 1

Introduction

In this dissertation, we consider the study of several topics from the field of analytic number

theory. Number theory is a field devoted to the study of the integers, especially prime numbers,

and objects made out of integers, such as rational numbers and algebraic integers. The term

analytic refers to the use of analytic tools, such as tools in real analysis, complex analysis, and,

in recent years, harmonic analysis. One may wonder how tools in the “continuous” world help

the study of objects in the “discrete” world. The first connection between these two worlds dates

back to the 18th century in the time of the great mathematician Leonhard Euler. In 1737, Euler

communicated a paper entitled “Variae observationes circa series infinitas” [16]. In the paper, he

observed that there is a connection between an infinite product which runs over the set of prime

numbers and an infinite sum that runs over the set of all natural numbers, which we quote.

Theorem 1.0.1 (Theorem 8). The expression formed from the sequence of prime numbers

2n · 3n · 5n · 7n · 11n · · ·
(2n − 1)(3n − 1)(5n − 1)(7n − 1)(11n − 1) · · ·

has the same value as the sum of the series

1 +
1

2n
+

1

3n
+

1

4n
+

1

5n
+

1

6n
+

1

7n
+ · · · . (1.0.1)

In this theorem, Euler was only concerned when n is a natural number. Approximately a century

later, the German mathematician, Bernhard Riemann, extended the study of this connection by

replacing n in (1.0.1) with a complex value s. The sum (1.0.1) is now know as the famous Riemann

Zeta Function,

ζ(s) =

∞∑
n=1

1

ns
(<(s) > 1).
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Riemann was able to establish several analytic properties of ζ(s). Most importantly, he showed

that ζ(s) can be extended as a meromorphic function to the entire complex plane with a simple

pole at s = 1 by using the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

This analytic continuation enabled French mathematician, Jacques Hadamard, and Belgian math-

ematician, Chales Jean de la Vallée Poussin, to independently complete the proof of the Prime

Number Theorem, which can be stated as follows.

Theorem 1.0.2 (Prime Number Theorem). Let π(x) denote the number of prime numbers not

exceeding x. Then the function π(x) is asymptotic to x
log x as x tends to infinity.

In other words the function π(x) behaves similarly to the function x
log x when x is sufficiently

large. Many mathematicians considers the proof of the Prime Number Theorem as the birth of the

analytic number theory.

Even after the Prime Number Theorem was proved, many mathematicians continued to study

analytic properties of ζ(s). The study brought light and elegance to many problems in the field,

in particular the problems on the asymptotic behavior of arithmetic functions and the sum of

arithmetic functions. One of the tools used in the study of the asymptotic behavior of arithmetic

functions is a method called the Selberg-Delange method, which is the first topic we will study in

this dissertation.

Before the discovery of the Selberg-Delange method, the main tool in the study of the asymptotic

behavior of the summatory function of arithmetic functions was Perron’s Formula, which can also

be viewed as a special case of an inverse Mellin’s transform.

Theorem 1.0.3 (Perron’s Formula). Let f(n) be an arithmetic function, and let F (s) =

∞∑
n=1

f(n)

ns

be the corresponding Dirichlet series. Assume that the Dirichlet series F (s) is absolutely convergent
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for <(s) > σa. Then

A(x) :=
∑
n<x

f(n) +
1

2
f(x) =

1

2πi

∫ c+i∞

c−i∞
F (s)

xs

s
ds

for c > σa and x > 0.

By using Perron’s Formula and analytic properties of ζ(s), especially the zero-free region of

ζ(s), we are able to estimate the summatory function of arithmetic functions which can be simply

expressed in term of ζ(s). For example, by using Perron’s Formula on the functions 1
ζ(s) , and ζ(s)2,

we can obtain estimations

M(x) : =
∑
n≤x

µ(n) = O
(
xe−c

√
log x

)
, (1.0.2)

D(x) : =
∑
n≤x

d(n) = x log x+ (2γ − 1)x+O(
√
x), (1.0.3)

where

µ(n) =


1, if n = 1,

(−1)k, if n = p1p2 · · · pk,

0, otherwise,

where p1, ..., pk are distinct prime numbers. The function d(n) is the number of divisors of n, γ is

Euler’s constant, and the notation g(x) = O(f(x)) means that there exists a positive constant M

such that |g(x)| ≤M |f(x)| for all x sufficiently large.

One limitation to the above method is that all the singularities of the corresponding Dirichlet

series must be at most poles. For example, the method fails to give an asymptotic of the summatory

function for the corresponding Dirichlet Series F (s) =
√
ζ(s)).

The Selberg-Delange Method, essentially developed by Atle Selberg [52] and Hubert Delange [9]

[11], is an extension of the method that is used to prove (1.0.2) and (1.0.3). The most important

part of the Selberg-Delange method is that the method enables one to work with a Dirichlet series

whose singularities are not poles. In particular, if the corresponding Dirichlet series admits a
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representation of the type

F (s) = H(s)ζ(s)z

for <(s) > 1, for a certain complex number z, and for an analytic function H(s) that satisfies a

certain rate of growth.

In recent years, several mathematicians such as Naimi and Smida [40], Lau and Wu [36], and

Ben Säıd and Nicolas [2], extended the methods in several directions and in various settings. In

the work of Lau and Wu, they adapted the method to give an estimate of summatory function sof

the form ∑
g(n)<x

f(n),

where g(n) is a positive real-valued multiplicative function under certain conditions, and the cor-

responding Dirichlet series admits a representation of the type

Fg(s) = Hg(s)ζ(θs)
κ
αs

for s ≥ 1
θ and some fixed parameters κ and α.

In Chapter 2 and Chapter 3 of this dissertation, we extend the work of Naimi and Smida, Lau

and Wu, and Ben Säıd and Nicolas to a class of summatory functions that have a corresponding

Dirichlet series representation of the type

Fg(s) = Hg(s)
∏
p∈P

(
1− χ(p)

pθs

)−hp(s)

for <(s) > 1
θ , a Dirichlet character χ, a set of prime numbers P under certain conditions, and

analytic functions Hg(s) and hp(s) under certain conditions of growth rate.

In Chapter 2, we first provide a more detailed history and the most recent developments of the

Selberg-Delange method. After that, we discuss in detail how we will generalize the method further.

Lastly, we close Chapter 2 with statements of the two generalizations of the method. Chapter 3 is
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devoted entirely to the proof of these two main theorems. Due to complexity of the two theorems,

we refrain from stating the full statements of these theorems at the present time.

In the same spirit as Chapter 2 and Chapter 3, the second topic of this dissertation is the

asymptotic behavior of arithmetic functions in residue classes. A general question in this area is as

follows: Given a positive integer N and integral-valued arithmetic function f(n), how often does

f(n) ≡ a (modN) for some integer a? Many mathematicians focus on a more specific question in

the area, namely: What are the necessary and sufficient conditions such that f(n) will fall into every

residue class modulo N equally often, or in more technical terms, f(n) is uniformly distributed

modulo N? In 1961, Uchiyama gave such a criterion.

Theorem 1.0.4 (Uchiyama). The sequence of the integral-valued arithmetic function {f(n)} is

uniformly distributed modulo N if and only if for r = 1, 2, ..., N − 1,

lim
x→∞

1

x

∑
n≤x

exp(2πif(n)r/N) = 0.

However, Uchimaya’s criterion is somewhat difficult to apply in practice. In 1969, Delange gave

a simpler criterions when f(n) is an integral-valued additive function, such as ω(n), the number of

distinct prime divisors of n [10]. This can be stated as follows.

Theorem 1.0.5 (Delange 1969). Let f be an integral-valued additive function, and let N be an

integer greater than 1. The sequence {f(n)} is uniformly distributed modulo N if and only if it

satisfies one of the following conditions:

(1)
∑
d-f(p)

1

p
diverges for every divisor d > 1 of N .

(2) 2f(2r)
d is an odd integer for every divisor d > 1 of N and every r ≥ 1.

At the end of Chapter 4, we extended the result of Delange to integral-valued additive functions

with argument in arithmetic progression.

Theorem 1.0.6. For every m, q, a ∈ N such that (m,ϕ(q)) = 1, and 0 < k < m, let f(n) be an
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integral-valued additive function such that kf(p) is not a multiple of m for all primes p. Then

#{n ≤ x : n ≡ a (mod q), f(n) ≡ k (modm)} =
x

qm
+ o(x).

Equivalently if kf(p) is not a multiple of m for all prime p, then the function f(qn+a) is uniformly

distributed modulo m.

Many arithmetic functions may not be uniformly distributed in all residue classes, but uniformly

distributed in the residue classes that are relatively prime to N . This phenomenon is known as

weakly uniform distribution modulo N . Many important number theoretical functions are weakly

uniformly distributed modulo N , for certain values of N . For example, J.P-Serre [53] gave necessary

and sufficient conditions on N such that the sequence of Ramanujan’s τ -function, τ(n) is weakly

uniformly distributed modulo N . Another example is the following theorem due to Delange.

Theorem 1.0.7. The sequence {d(n)}, where d(n) is the number of divisors of n, is weakly uni-

formly distributed modulo N if and only if the least prime not dividing N is a primitive root modulo

N .

Another important multiplicative function is the Euler-totient function ϕ(n), the number of

positive integers less than n that are relatively prime to n, which we will be the main focus of our

study in Chapter 4.

Theorem 1.0.8 (Narkiewicz). The sequence {ϕ(n)}n is weakly uniformly distributed modulo N if

and only if N is relatively prime to 6.

However, the method employed by Delange for d(n) and Narkiewicz for ϕ(n) does not give an

asymptotic of the number n such that d(n) (respectively ϕ(n)) ≡ a (modN). Moreover, how are

the values of ϕ(n) distributed if N is not relatively prime to 6?

In Chapter 4, we mainly study the above questions. First, we consider the case when N is a

power of 2. Since ϕ(n) is always even except when n = 1, 2, we can disregard all the odd residue

classes. We conducted a numerical experiment on how ϕ(n) is distributed modulo 2k. We find that

there is a strong correlation between the number of ϕ(n) congruent to a modulo 2k and the highest

power of 2 dividing a. This data led us to the proof of the following theorem.
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Theorem 1.0.9. Let k and r be positive integers and let b ≡ 2ra (mod 2k), where a is odd. Then

#{n : n < x,ϕ(n) ≡ b (mod 2k)} ∼ 3

2k
x(log log x)r−1

(r − 1)! log x

as x tends to infinity.

The third and final topic in this dissertation are identities for multiple zeta values. The multiple

zeta function is a generalization of ζ(s), which can be defined as follows.

Definition 1.0.10. Let s1, s2, . . . , sk be complex values such that <(s1) +<(s2) + · · ·+<(sm) > m

for all m ≤ k. We define the multiple zeta function by

ζ(s1, s2, . . . , sk) =
∑

n1>n2>···>nk>0

k∏
i=1

1

nsi
. (1.0.4)

Similar to ζ(s), multiple zeta functions have analytic continuations to Ck with possible simple

poles at sk = 1 and sj + · · · + sk = k − j + 2 − l for positive integers l and 1 ≤ j < k [67]. If

s1, s2, . . . , sk are all positive integers greater than 1, then (1.0.4) are called multiple zeta values.

The study of relation between multiple zeta values dates back to the the time of Euler [18, pp.

217− 267].

Theorem 1.0.11. If a, b > 1, then

ζ(a, b) + ζ(b, a) = ζ(a)ζ(b)− ζ(a+ b).

In particular,

ζ(a, a) =
1

2

(
ζ2(a)− ζ(2a)

)
.

Multiple zeta values also satisfy many other interesting relations. One example is the relation

ζ(2, 1) = ζ(3), which can be generalized in the following theorem.

Theorem 1.0.12 (Sum Theorem). Let n and k be natural numbers such that n > k. Then, for

n1, ...., nk ∈ N,

ζ(n) =
∑

n1+···+nk=n
n1>1

ζ(n1, n2, . . . , nk).
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This theorem was proved for the case k = 2 by Euler, for k = 3 by Hoffman and Moen [27],

and for the general case by Granville [22]. In Chapter 5, we derive a new identity for multiple zeta

values using a similar idea to that used to evaluate ζ(2) by Matsuoka [39]. In particular, we prove

the following theorem.

Theorem 1.0.13. For any positive integer m, we have

cm,0 +
m∑
l=1

cm,l l∑
i=1

∑
r1+···+ri=l

ζ(2r1, . . . , 2ri)

 = 0.

where

cm,l = (−1)l
π2(m−l)

22m

(2m)!

(2(m− l) + 1)!
.
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Chapter 2

Selberg-Delange Method

2.1 Origin of the Method

At the turn of the 19th century, when Jacques Hadamard and Charles Jean de la Vallée-Poussin

independently proved the Prime Number Theorem, Edmund Landau, a German mathematician,

published an influential book “Handbuch der Lehre von der Verteilung der Primzahlen” [35], also

know as “Landau’s Primzaheln,” for short. In “Primzahlen,” Landau discussed the techniques that

Hadamard and Vallée-Poussin used in their applications to the Prime Number Theorem. One of

the applications concerns the behavior of the cardinality of the set of the natural numbers which

have exactly v distinct prime factors, which can be stated as follows [35, p. 211].

Theorem 2.1.1. (Landau) Let ρk(x) be the number of integers ≤ x that are divisible by exactly k

distinct primes, each occurring in any multiplicity. Then

ρk(x) ∼ 1

(k − 1)!

x(log log x)k−1

log x
.

In this theorem, Landau established the asymptotic of ρk(x) for a fixed value of k. But, what

will happen if the value of k is growing as a function of x? A similar question also appeared in

Ramanujan’s Lost Notebook, which we quote. [45, p. 337].

Entry 1. ϕ(x) is the number of numbers (not exceeding x) whose number of prime divisors doesn’t

exceed k.

ϕ(x) ∼ x

log x

(
1 +

log log x

1!
+

(log log x)2

1!
+ · · ·+ (log log x)[k]

[k]!

)
.

This is true when k is infinite. Is this true when k is a function of x?

This question was first answered by L.G. Sathe in the series of papers [48], [49], [50], [51]. Sathe’s
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proof was rather complicated and very involved. Later in the same year, Atle Selberg [52] gave a

much simpler proof of the theorem.

Theorem 2.1.2. If k ∼ c log log x and c < 2, then

ρk(x) ∼ f(c)
∏
p

(
1 +

c

(p+ c)(p− 1)

)
x

log x

(log log x)k−1

(k − 1)!
,

where

f(c) =
1

Γ(c+ 1)

(∏
p

(
1− 1

p

)
e1/p

)c∏
p

((
1 +

k

p

)
e−k/p

)
.

Even though Selberg’s goal was to give an alternative approach to estimating ρk(x), his method

also applies to more general arithmetic functions, such as the sum of divisors function σ(n). The

main idea of Selberg was to create a Dirichlet series associated with the relevant arithmetical

function and study the behavior of the series around the pole s = 1. This idea was later extended

by Hubert Delange, [9] [11]. This method is now know as the Selberg-Delange Method, which is

the main focus of our study.

2.2 The Development of the Method

Throughout this chapter, we will adopt the following notation. Let s = σ + it be a complex

number with real part σ and imaginary part t. Let f(n) be a complex-valued function, not necessary

multiplicative, which we want to study, and f+(n) be a positive real-valued function. Finally denote

a Dirichlet series corresponding to f(n) as

F (s) =

∞∑
n=1

f(n)

ns
.

The core of Selberg’s method relies on the following theorem, which we paraphrase in order to fit

our future definitions.

Theorem 2.2.1. Let

F (s) = H(s, z)ζ(s)z,

10



where

H(s, z) =
∞∑
n=1

bz(n)

ns
(σ > 1),

and let
∞∑
n=1

|bz(n)| (log 2n)B+δ

n
(2.2.1)

be uniformly bounded for |z| ≤ B. Then

A(x) :=
∑
n≤x

f(n) =
H(1, z)

Γ(z)

x

(log x)1−z +O

(
x

(log x)2−z

)
(x→∞),

uniformly for |z| ≤ B, as x tend to infinity.

In addition, Selberg proved the following theorem.

Theorem 2.2.2. Under the assumptions of Theorem 2.2.1, let

az(n) =

∞∑
n=1

ck(n)zk, |z| ≤ A,

be an arithmetic function depending on a parameter z. Moreover, if the second derivative of H(1,z)
Γ(1+z)

is uniformly bounded for |z| ≤ A, we have

Ck(x) :=
∑
n≤x

ck(n) =
H
(

1, k−1
log log x

)
Γ
(

1 + k−1
log log x

) x(log log x)k−1

(k − 1)! log x
+O

(
x

log x

k2(log log x)k−3

(k)!

)
,

uniformly for k < (2− δ) log log x.

By letting f(n) = zω(n), where ω(n) is the number of distinct prime factors of n, and applying

Theorem 2.2.1 and Theorem 2.2.2, Selberg obtained Theorem 2.1.2.

Early applications of Selberg’s theorems were used mostly for classes of functions f(n) = zα(n),

where α(n) is an additive function. In 1971 Delange [11] extended the result to the class of functions

f(n) = χ(n)zα(n), where χ(n) is a Dirichlet character.

Before discussing the next development, we denote

Dc :=

{
s : σ ≥ 1− c

log(3 + |t|)

}
,

11



the regionon which we will focus. Due to complexity and various parameters, Gerald Tenenbaum

[57] has formulated the following terminology in order to apply Theorem 2.2.1 more effectively.

Definition 2.2.3. Let z ∈ C, c0 > 0, 0 ≤ δ < 1, and M > 0. We say that a Dirichlet series F (s)

has property P(z; c0, δ,M) if the following conditions hold.

(1) F (s) admits a representation of the type

F (s) = H(s, z)(ζ(s))z (2.2.2)

for σ ≥ 1.

(2) The function H(s, z) in equation (2.2.2) is a complex-valued analytic function on the region

Dc0, and satisfiies the inequality

|H(s, z)| ≤M(3 + |t|)δ. (2.2.3)

Definition 2.2.4. If the Dirichlet series F (s) has property P(z; c0, δ,M), then we say F (s) has

property P+(z, w; c0, δ,M) if there exists a positive real-valued function f+(n), such that |f(n)| ≤

f+(n) for all n ∈ N and F+(s) =

∞∑
n=1

f+(n)

ns
has property P(w; c0, δ,M).

Tenenbaum replaced the assumption on the convergence condition of the function (2.2.1) and

it’s derivatives by the analytic continuation of H(s, z). The new theorem can be stated as follows.

Theorem 2.2.5. Let F (s) be a Dirichlet series that has property P+(z, w; c0, δ,M). For x ≥

3, N ≥ 0, A > 0, and |z| , |w| ≤ A, we have

A(x) :=
∑
n≤x

f(n) =
x

(log x)1−z

(
N∑
k=0

λk(z)

(log x)k
+Oc0,δ,A (MRN (x))

)
,

with

λk :=
1

Γ(z − k)

∑
l+j=k

1

l!j!
γj(z)

dl

dsl
(H(1; z)) ,

where

γj(z) =
dj

dsj
(s−1((s− 1)ζ(s))z)

12



and

RN (x) = e−c1
√

log x +

(
c2N + 1

log x

)N+1

for some positive constants c1 and c2.

In 1996, M. Naimi and H. Smida [40] were able to replace the constant z in equation (2.2.2) by

an analytic complex-valued function satisfying a certain rate of growth. We can state their theorem

as follows.

Theorem 2.2.6. Let F (s) =

∞∑
n=1

f(n)

ns
be a Dirichlet series that has property P(h(s); c0, δ,M), and

assume that for some 0 < α < 1

|h(s)| ≤M log(3 + |t|)α (t ∈ R)

and 1− c
log(3+|t|) ≤ σ ≤ 2.

Then there exists a polynomial Pk(x) with degree at most k such that, uniformly for N ≥ 1 and

x ≥ 3, ∑
n≤x

f(n) =
x

(log x)1−h(1)

(
N∑
k=0

Pk(log log x)

logk x
+O (RN )

)

with

RN = Me−c1
√

log x +M(c2N + 1)2N

(
log log x

log x

)N+1

for some constants c1 and c2 which depend only on c, α, δ and M .

Several years later Yuk-kam Lua and Jie Wu [36] gave another variation of Theorem 2.2.1. Their

main purpose was to obtain the asymptotic behavior of the general sum

∑
g(n)<x

f(n)

where both f(n) and g(n) are multiplicative functions. Their main theorem can be stated as

follows.

Theorem 2.2.7. Let Fg(s) =
∑∞

n=1
f(n)
g(n)s . Suppose that f : N → C and g : N → R+ are two

multiplicative functions such that for all primes p:

13



(1) |f(p)− κ| < c1

pη
, for η > 0, C1 ≥ 0 and |κ| < 1

η ,

(2) g(p) = αpθ or g(p) = αpθ + α′pθ
′
+ t(p), where

∣∣t(l)(u)
∣∣ ≤ (C2l + 1)luθ

′′−l for θ > 0,

C1 ≥ 0, α > 0, α′ 6= 0 and θ > θ′ > θ′′,

(3)
∞∑
ν=2

|f(pν)|
g(pν)1/θ̃

≤ C3

pψ
, where C3 > 0, ψ > 1, and θ̃ > θ.

Then for any positive integer N , we have

Ag(x) =
∑

g(n)<x

f(n) =
x

1
θ

(log x)1−κ/α1/θ

(
N∑
k=1

Pk(log log x)

(log x)k
+O (RN,λ(x))

)
,

where Pk(x) =

k∑
l=1

λk,lx
l and the coefficients λk,l are given by

λk,l :=
θ−κ/α

1
θ

l!

k∑
m=l

m∑
n=l

m−l∑
i=0

λ∗m,n,i,

where

λ∗m,n,i :=
(− logα)m(κ/α1/θ)n(− log θ)n−l−iak,lbn,m−n

(n− l − i)!i!Γi(κ/α1/θ − k)

where an is the n-th coefficient of the Laurent series expansion of the function

s−1Fg(s)(θs− 1)κ/α
s

at s = 1
θ , and where

bm,n :=
∑

n1+n2+···+nm=n

1

(n1 + 1)! · · · (nm + 1)!
.

The error term RN,λ(x) is given by

RN,λ(x) :=

(
(c1N + 1)

λ log log x+ c2

log x

)N+1

+ e
−c3 (log x)3/5

(log log x)1/5 ,

with 0 < λ < 1 and for some constants c1, c2, and c3.

In the same year, Fethi Ben Säıd and Jean-Louis Nicolas [2] introduced the use of a Dirichlet

character to obtain an asymptotic of certain arithmetic functions, with a restriction on the primes

14



dividing n are in certain sets of arithmetic progressions. Their theorem can be stated as follows.

Theorem 2.2.8. Let b be a positive integer, ξ be a Dirichlet character modulo b and J ⊂ (Z/kZ)∗.

Let g(n) be a multiplicative function such that g(n) > 0 and g(n) → ∞. Let aJ,ξ(n) (bJ,ξ(n),

respectively) be a complex-valued multiplicative function (respectively, real-valued). Suppose that

for all n ≥ 1, |aJ,ξ(n)| ≤ bJ,ξ(n) and the series

Fg,J,ξ(s) =
∞∑
n=1

aJ,ξ(n)

g(n)s

and

F+
g,J,ξ(s) =

∞∑
n=1

bJ,ξ(n)

g(n)s

are analytic on the half plane σ > 1. Also suppose that there exist three real constants B > 0,

0 < c < 1
2 , 0 ≤ δ < 1 and functions (fj(s))j∈J and f+(s), analytic on the domain Dc such that

max{|fj(s)| , f+(s)} ≤ B(log(3 + |t|)δ

for j ∈ J and s ∈ Dc. Also suppose that in a half-plane σ > 1 the series Fg,J,ξ(s) admits a

representation of the type

Fg,J,ξ(s) = Hg,J,ξ(s)
∏
j∈J

∏
p≡j (mod k)

(
1− ξ(p)

ps

)−fj(s)
,

where Hg,J,ξ(s) is analytic on Dc, and satisfies the inequality

|Hg,J,ξ(s)| ≤ B(3 + |t|)δ.

Similarly, in a half plane σ > 1 the series F+
g,J,ξ(s) admits a representation of the type

F+
g,J,ξ(s) = H+

g,J,ξ(s)ζ(s)f
+(s),

15



where H+
g,J,ξ(s) is analytic on Dc and satisfies the inequality

∣∣∣H+
g,J,ξ(s)

∣∣∣ ≤ B(3 + |t|)δ.

Let

f(s) =
1

ϕ(k)

∑
j∈J

fj(s).

Then for a non-principal character ξ,

Ag,J,ξ(x) :=
∑

g(n)<x

aJ,ξ(n) = O

(
x

log log x

(log x)2

)
,

and for a principal character ξ0

Ag,J,ξ0(x) =
x

(log x)1−f(1)

(
Hg,J,ξ0(1)CJ,k

Γ(f(1))
+O

(
log log x

log x

))
,

where the constant CJ,k is defined by

CJ,k =
∏
j∈J

 ∏
p≡j (mod k)

(
1− 1

p

)−fj(1)∏
p

(
1− 1

p

)−fj(1)/ϕ(k) ∏
p|b,p≡j (mod k)

(
1− 1

p

)fj(1)
 .

The proof of Theorem 2.2.8 relies on another result of Naimi and Smida which can be stated as

follows.

Theorem 2.2.9 (Theorem A, [2]). Let Fg(s) =
∞∑
n=1

f(n)

g(n)s
have property P+(h, h+, c, δ,M), where

h(s) and h+(s) are analytic on Dc and satisfy the inequality

max{|h(s)| ,
∣∣h+(s)

∣∣} ≤ log(3 + |t|)δ.

Also, let Ag(x) =
∑

n≥1,g(n)≤x

f(n). Then

Ag(x) = x(log x)h(1)−1

(
Hh(1)

Γ(h(1))
+O

(
log log x

log x

))
.
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We are unable to locate the paper of Naimi and Smida, so we will give a proof of a stronger

version of this theorem in the next chapter.

2.3 Modifications

In this section, we will combine the ideas of Lau and Wu [36], Naimi and Smida [40], and Ben

Säıd and Nicolas [2] with some of our modifications to obtain a more general version of Selberg’s

Theorem. We will use Definition 2.2.3, Definition 2.2.4, and Theorem 2.2.5 of Tenenbaum as the

base of our modifications. As usual, we let s = σ + it.

2.3.1 Modification on the Dirichlet Series

The first modification we make is on the summatory function A(x) =
∑
n<x

f(n). We define an

analogue,

Ag(x) :=
∑
n≥1

g(n)<x

f(n)

for some function g(n). Following Selberg’s idea, we need to create an associated Dirichlet series

for Ag(x), namely,

Fg(s) :=
∞∑
n=1

f(n)

g(n)s
.

It is evident that one must put conditions on Fg(s) and g(n). In Selberg’s proof, there is a part

where he applies Perron’s formula to the corresponding Dirchlet series. Thus, we need to find

conditions such that we are able to apply analogues of Perron’s formula. For this reason we need

Fg(s) and g(n) to satisfy the following conditions.

(1) The Dirichlet series Fg(s) have a finite abscissa of convergence.

(2) The function g(n) is a real-valued multiplicative function such that g : N→ [1,∞), and

g(n)→∞ (2.3.1)

as n tends to infinity.
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(3) The limit superior of the ratio

lim sup
n→∞

log n

log g(n)

exists and is non-negative.

In the paper of Ben Säıd and Nicolas [2], they only assume condition (2). We believe that this

condition is not sufficient to carry out the proof without assuming that the Dirichlet series is

absolutely convergent at some real number σ > 0.

2.3.2 Modification on the Representation of Fg(s)

The next modification we make is to the equation (2.2.2). We divide these modifications into

two stages. Later on, we will state a result corresponding to each stage. For the current discussion,

we assume that all functions have an analytic continuation and do not vanish on some region D.

We will discuss this region in more detail in the next subsection.

First Modification

In the first stage, similar to Lau and Wu [36], we introduce a parameter θ > 0. We replace

ζ(s) in equation (2.2.2) with ζ(θs). Next, similar to Naimi and Smida [40], we replace a complex

constant z by an analytic function h(s) such that

|h(s)| ≤M(log(3 + |t|))α

for some positive constant M and 0 ≤ α < 1 in the region D. With these modifications, the

analogue of equation (2.2.2) can be written as

Fg(s) = Hg(s, h; θ)ζ(θs)h(s) (2.3.2)

where Hg(s, h; θ) has an analytic continuation to region D and satisfies the inequality

Hg(s, h; θ) ≤M(3 + |t|)δ

for some 0 ≤ δ < 1 and M > 0 in the region D.
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Second Modification

In the second modification, we will modify the equation (2.3.2). We will first adopt the idea of

Ben Säıd and Nicolas [2] and generalize it further. In the paper of Ben Säıd and Nicolas, they

replaced ζ(s)z in the equation (2.2.2) by

∏
j∈J

∏
p≡j (mod k)

(
1− ξ(p)

ps

−hj(s)
)
, (2.3.3)

where J ⊆ (Z/kZ)×, χ is a Dirichlet character modulo q, and hj(s) are analytic functions satisfying

a certain rate of growth. In the light of Ben Säıd and Nicolas, we wish to generalize (2.3.3) to a

product on a certain set of primes P, more precisely

∏
p∈P

(
1− χ(p)

pθs

)−hp(s)

.

But some sets of prime numbers or some choices of hp(s) do not possess certain analytic properties

that we need. Thus, we need to put conditions on P and hp(s). For the conditions on P, first,

let χ be a Dirichlet character modulo q and let q̃ be a multiple of q. Let π(a, q̃, x) denote the

number of primes less than x and congruent to a modulo q̃. Next, let λ : (Z/q̃Z)× → [0, 1]. For all

η > 1
θ −

c
θ log 3 and for all a ∈ (Z/q̃Z)×,

# {p : p < x, p ∈ P, p ≡ a (mod q̃)} = λ(a)π(a, q̃, x) +O(xη). (2.3.4)

We will see later that the error term xη in (2.3.4) is the best possible. Next, for the condition

hp(s), we first introduce a function h(s) analytic in the region Dc,θ. Also for all s ∈ Dc,θ

max{|hp(s)| , |h(s)|} ≤M(log(3 + |t|))α

for 0 ≤ α < 1 and uniformly for all p ∈ P. Next, we define a region

KT := Kc,θ,T =

{
s : s ∈ D̄c,θ, σ ≤

2

θ
, |t| ≤ T

}
.
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For all η > 1
θ −

c
θ log 3 , ∑

p∈P
p<x

‖hp − h‖∞,K ≤ xη,

where

‖f‖∞,K = sup
s∈KT

|f(s)| .

In other words, on average the function hp(s) should behave similarly to λ(p)χ(p)h(s) on compact

set KT for all T .

2.3.3 Modification on the Analytic Region

The next modification is on the analytic region. The first necessary condition is that ζ(θs) needs

to have an analytic continuation to the region with an exception of a simple pole at s = 1
θ . We also

need ζ(θs) to not vanish in the region. Moreover, in order to compromise with equation (2.3.4), we

also need L(θs, ξ), where ξ is a Dirichlet character modulo q̃, to have an analytic continuation to the

region with an exception of a simple pole at s = 1
θ , and not vanish in the region. The analyticity of

ζ(θs) and L(θs, ξ) can be showed by their functional equations which were proved by Riemann [46]

and Hurwitz [29, pp 72-88], respectively. All that remains is to consider the zero-free regions of

ζ(θs) and L(θs, ξ). The first result along this line was first proved by de la Vellée Poussin [7]. In

1899, de la Vellée Poussin showed that there exists a constant c1 > 0 such that the Riemann Zeta

function ζ(s) does not vanish in the region

σ > 1− c1

log |t|

for sufficiently large t. This was improved by several people. First, Littlewood [37] showed that

there exists a constant c2 such that ζ(s) dose not vanish in the region

σ > 1− c2 log log |t|
log |t|

.
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Later Chudakov [4] extended the region to

σ > 1− c3

(log |t|)
3
4

+ε

for some constant c3 > 0. The most recent result was given by Korobov [31] and Vinogradov [61],

who independently showed that there exists a constant c4 > 0 such that ζ(s) does not vanish in

the region

σ > 1− c4

(log |t|)
2
3 (log log |t|)

1
3

for sufficiently large t. These results also hold for L(s, χ) for a fixed χ. For our purpose, we will

only use the classical zero-free region of de la Vallée Poussin. For θ > 0, we define a region Dc,θ to

be the classical zero-free region on of ζ(θs), more precisely,

Dc,θ :=

{
s : σ >

1

θ
− c

θ log(max{3, θ |t|})

}
. (2.3.5)

One may ask, how large is the constant c1 in the zero-free region of de la Vallée Poussin? de la Vallée

Poussin showed that one can take c1 = 1
34.82 . This result was recently improved by Kaidiri [30] to

c1 = 1
5.69663 . For our purposes, we will assume that c1 <

1
2 .

One of the consequences of working in the larger analytic and zero-free region is the improvement

on the error terms in the asymptotic formula for Ag(x). We define Err(x) to be an increasing

function such that

|π(x)− Li(x)| ≤MxErr(x)−1.

The function Err(x) depends on the zero-free region of ζ(s); in our case

Err(x) = ec5
√

log x

for some constant c5 > 0.

Remark: If one uses the region of Korobov and Vinogradov, then we can effect an improvement,

Err(x) = exp

(
(log x)3/5

(log log x)1/5

)
.

21



Moreover, under the assumption of the Riemann Hypothesis, von Koch [62] showed that

Err(x) =

√
x

log x
.

2.4 Statement of the Results

First, we will introduce a notation. For z0 ∈ C and any positive integer k, we define

1

Γk(z0)
:=

dk

dzk

(
1

Γ(z)

)∣∣∣∣
z=z0

=
k!

2πi

∮
γ

1

Γ(z)(z − z0)k+1
dz. (2.4.1)

We are now introduce definitions analogue to Definition 2.2.3 and Defintion 2.2.4.

Definition 2.4.1. Let 0 < c < 1
2 , θ > 0,M ≥ 0, 0 ≤ δ < 1, 0 ≤ α < 1, and κ ≥ 0, and let h(s) be

an analytic function in Dc,θ where

Dc,θ =

{
s : σ >

1

θ
− c

θ log(max{3, |θt|})

}
.

We say that a Dirichlet series Fg(s) =

∞∑
n=1

f(n)

g(n)s
with a finite abscissa of convergence has property

B(h; c, θ,M, δ, α, κ) if the following conditions hold.

(1) g(n) is a real-valued multiplicative function such that g : N → [1,∞), g(n) tends to infinity

as n tends to infinity, and

lim sup
n→∞

log n

log g(n)
= κ

for some constant κ ≥ 0.

(2) Fg(s) admits a representation of the type

Fg(s) = Hg(s, h; θ)ζ(θs)h(s)

for σ > 1
θ .

(3) The function Hg(s, h; θ) has analytic continuation to the region Dc,θ and satisfies the inequal-
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ity

|Hg(s, h; θ)| ≤M(3 + |t|)δ

for all s ∈ Dc,θ.

(4) The function h(s) is analytic in the region Dc,θ and satisfies the inequality

|h(s)| ≤M log(3 + |t|)α

for all s ∈ Dc,θ.

Definition 2.4.2. We say that a function Fg(s) =
∑∞

n=1
f(n)
g(n)s has property B+(h, h+; c, θ,M, δ, α, κ)

if Fg(s) have property B(h; c, θ,M, δ, α, κ) and there exists a positive real-valued function f+(n),

such that |f(n)| ≤ f+(n) for all n ∈ N and F+
g (s) =

∞∑
n=1

f+(n)

g(n)s
has property B(h+; c, θ,M, δ, α, κ).

Now, we are ready to state a stronger version of Theorem 2.2.9.

Theorem 2.4.3. Let 0 < c < 1
2 , θ > 0,M ≥ 0, 0 ≤ δ < 1, 0 ≤ α < 1, and κ ≥ 0, and let h(s) and

h+(s) be analytic functions in Dc,θ

where

Dc,θ =

{
s : σ >

1

θ
− c

θ log(max{3, |θt|})

}
.

Let a Dirichlet series Fg(s) =

∞∑
n=1

f(n)

g(n)s
have property B+(h, h+; c, θ,M, δ, α, κ). Also, let

A(s) := s−1Hg(s, h; θ)((θs− 1)ζ(θs))h(s).

Then, uniformly for N ≥ 1 and x ≥ 3, we have

Ag(x) :=
∑

g(n)<x

f(n) =
x

1
θ

(log x)1−h( 1
θ )

(
N∑
m=0

Pm(log log x)

(log x)m
+O (RN )

)
,

where

Pm(x) :=
m∑
j=0

m∑
n=j

em,n

θh(
1
θ )

n−j∑
i=0

(
n

i

)(
n− i
j

)
(log θ)n−i−j

(−1)j+i

Γi
(
h
(

1
θ

)
−m

)xj ,
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em,n :=
(−1)n

n!

m∑
k=n

A(m−k)
(

1
θ

)
ak,n

(m− k)!
,

ak,n :=
∑

k1+k2+···+kn=k
ki≥1

n∏
i=1

h(ki)
(

1
θ

)
ki!

,

and

RN :=

(
c1N + 1

log x
(c2 + log log x)

)N+1

+MErr(x)−c3

where

Err(x) = ec4
√

log x

for some positive constants c1, c2, c3 and c4 depend on c,M, δ, θ, and α.

In particular, for N = 1,

Ag(x) =
x

1
θ

(log x)1−h( 1
θ )

(
A
(

1
θ

)
θh(

1
θ )Γ

(
h
(

1
θ

)) +O

(
log log x

log x

))
. (2.4.2)

By letting θ = 1 in (2.4.2), we obtain Theorem 2.2.9.

Now, for the next theorem, we will introduce another definitions analogue to Definition 2.2.3 and

Defintion 2.2.4.

Definition 2.4.4. Let 0 < c < 1
2 , θ > 0,M ≥ 0, 0 ≤ δ < 1, 0 ≤ α < 1, and κ ≥ 0. Let P be a set

of prime numbers, χ be a Dirichlet character modulo q, q̃ be a positive integer divisible by q and

define a function λ : (Z/q̃Z)× → [0, 1]. And lastly, let h(s) and for all primes p ∈ P let hp(s) a

complex-valued functions analytic in the region Dc,θ where

Dc,θ =

{
s : σ >

1

θ
− c

θ log(max{3, |θt|})

}
.

We say that a Dirichlet series Fg(s) =

∞∑
n=1

f(n)

g(n)s
has property A(hp, h;P, χ, λ, q̃, c, θ,M, δ, α, κ) if

the following conditions hold.

(1) The function g(n) is a multiplicative function such that g : N→ [1,∞), g(n) tends to infinity

as n tends to infinity, and

lim sup
n→∞

log n

log g(n)
= κ

24



for some constant κ ≥ 0.

(2) Fg(s) admits a representation of the type

Fg(s) = Hg(s)
∏
p∈P

(
1− χ(p)

pθs

)−hp(s)

for σ > 1
θ .

(3) For all η > 1− c
log 3 and for each a ∈ (Z/q̃Z)×,

Pa,q̃(x) := # {p : p < x, p ∈ P, p ≡ a (mod q̃)} = λq̃(a)π(a, q̃, x) +O(xη)

where

π(a, q̃, x) = # {p : p < x, p ≡ a (mod q̃)} .

(4) The function Hg(s) has an analytic continuation to the region Dc,θ and satisfies the inequality

|Hg(s)| ≤M(3 + |t|)δ

for all s ∈ Dc,θ.

(5) The function hp(s) and h(s) are analytic in the region Dc,θ and satisfies the inequality

max{|h(s)| , |hp(s)|} ≤M log(3 + |t|)α1

for all s ∈ Dc,θ, for all p ∈ P.

(6) For all sufficiently large T , and for all η > 1
θ −

c
θ log 3 ,

∑
p∈P
p<x

‖hp − h‖∞,KT ≤ Cx
η,

where constant C depends on P and η and

KT := Kc,θ,T =

{
s : s ∈ D̄c,θ, σ ≤

2

θ
, |t| ≤ T

}
.
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and

‖f‖∞,K = sup
s∈KT

|f(s)| .

Definition 2.4.5. We say a function Fg(s) =

∞∑
n=1

f(n)

g(n)s
has property

A+(hp, h, h
+;P, χ, λ, q̃, c, θ,M, δ, α, κ) if Fg(s) has property A(hp, h;P, χ, λ, q̃, c, θ,M, δ, α, κ) and

there exists a positive real-valued function f+(n), such that |f(n)| ≤ f+(n) for all n ∈ N, with the

following properties holds.

(1) F+
g (s) =

∞∑
n=1

f+(n)

g(n)s
admits a representation of the type

F+
g (s) = H+

g (s)ζ(θs)h
+(s),

for σ > 1
θ .

(2) The function H+
g (s) has an analytic continuation to the region Dc,θ and satisfies the inequality

∣∣H+
g (s)

∣∣ ≤M(3 + |t|)δ

for all s ∈ Dc,θ.

(3) h+(s) is analytic in the region Dc,θ and satisfies the inequality

∣∣h+(s)
∣∣ ≤M log(3 + |t|)α.

for all s ∈ Dc,θ.

We are now ready to state our main result.

Theorem 2.4.6. Let Fg(s) =
∞∑
n=1

f(n)

g(n)s
have property A+(hp, h, h

+;P, χ, λ, q̃, c, θ,M, δ, α, κ). De-

fine

T (s) :=
∏
p∈P

(
1− χ(p)

pθs

)−hp(s)

ζ(θs)−λ̃h(s),

where

λ̃ =
∑

a∈(Z/q̃Z)×

λ(a)χ(a),
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and

A(s) := s−1Hg(s) ((θs− 1)ζ(θs))λ̃h(s) .

Then, for x ≥ 3 and N ≥ 0,

Ag(x) :=
∑

g(n)<x

f(n) =
x

1
θ

(log x)1−λ̃h( 1
θ )

(
N∑
m=0

Pm(log log x)

(log x)m
+O (RN )

)
(2.4.3)

where

Pm(x) :=
m∑
j=0

m∑
n=j

em,n

θλ̃h(
1
θ )

n−j∑
i=0

(
n

i

)(
n− i
j

)
(log θ)n−i−j

(−1)j+i

Γi

(
λ̃h
(

1
θ

)
−m

)xj , (2.4.4)

em,n =
(−1)n

n!

m∑
k=n

m−k∑
l=0

(
m− k
l

)
T (l)

(
1

θ

)
A(m−k−l) (1

θ

)
ak,n

(m− k)!
,

ak,n = λ̃n
∑

k1+k2+···+kn=k
ki≥1

n∏
i=1

h(ki)
(

1
θ

)
ki!

,

and

RN =

(
c1N + 1

log x
(c2 + log log x)

)N+1

+MErr(x)−c3 , (2.4.5)

where

Err(x) = ec4
√

log x

for some positive constants c1, c2, c3 and c4. For our convenience, we define 1
Γi(m) = 0 for integers

m ≤ 0 and all i.

In most known applications, hp(s) = z, where z is a complex number for all primes p. In this

setting, by choosing h(s) = z we can show that

ak,n =


1, n = 0,

0, otherwise.
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We can reduce from equation (2.4.3) to

Ag(x) =
x

1
θ

(log x)1−λ̃h( 1
θ )

(
N∑
m=0

βm(z)

(log x)m
+O (R∗N )

)
(2.4.6)

where

βm(z) :=
1

θzΓ
(
λ̃z −m

) m∑
k=0

m−k∑
l=0

(
m− k
l

)
T (l) (z)

A(m−k−l)(z)

(m− k)!
(2.4.7)

and

R∗N =

(
c1N + 1

log x

)N+1

+MErr(x)−c3 . (2.4.8)

In some applications, such as [20], interested in the secondary term of the asymptotic expansion

of Ag(s) of specific function f(s). By letting N = 1, (2.4.3) can be written as

Ag(x) =
x

1
θ

(log x)1−λ̃h( 1
θ )

A (1
θ

)
T
(

1
θ

)
Γ
(
λ̃h
(

1
θ

)) +
λ̃h′
(

1
θ

)
A
(

1
θ

)
T
(

1
θ

)
log(x)Γ1

(
λ̃h
(

1
θ

)
− 1
)

+
A
(

1
θ

)
T
(

1
θ

) (
λ̃h′
(

1
θ

)
log log x

θ + 1
)

+A′
(

1
θ

)
T
(

1
θ

)
+A

(
1
θ

)
T ′
(

1
θ

)
log(x)Γ

(
λ̃h
(

1
θ

)
− 1
) +O (R1)

 . (2.4.9)

Moreover, if h(s) = z is a complex constant, we can simplify (2.4.9) further to obtain

Ag(x) =
x

1
θ

(log x)1−λ̃z

A (1
θ

)
T
(

1
θ

)
Γ
(
λ̃z
) +

A
(

1
θ

)
T
(

1
θ

)
+A′

(
1
θ

)
T
(

1
θ

)
+A

(
1
θ

)
T ′
(

1
θ

)
log(x)Γ

(
λ̃z − 1

) +O (R1)

 .

(2.4.10)
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Chapter 3

Modification of the Selberg-Delange
Method

3.1 Preliminary Results for Theorem 2.4.3

In this section, we will give the proofs of several lemmas which are necessary to prove Theorem

2.4.3. The first lemma, which we are proving, is concerned about the existence of the abscissa of

absolute convergence of the Dirichlet series Fg(s).

Lemma 3.1.1. Let g(n) be a real-valued function such that g : N→ [1,∞), g(n) tends to infinity

as n tends to infinity, and

lim sup
n→∞

log n

log g(n)
= κ,

where κ is a non-negative real number. We also let Fg(s) =
∞∑
n=1

f(n)

g(n)s
have a finite abscissa of

convergence σc. Then the abscissa of absolute convergence, σa, exists and satisfies

σc ≤ σa ≤ σc + κ.

Proof. Fix g(n) as in the theorem and assume that Fg(s) =
∑∞

n=1
f(n)
g(n)s has a finite abscissa of

convergence σc. Let ε > 0. By definition of σc, the series

∞∑
n=1

f(n)

g(n)σc+ε

converges. It follows that

lim
n→∞

f(n)

g(n)σc+ε
= 0.
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Hence, there exists an Nε such that, for all n ≥ Nε,

∣∣∣∣ f(n)

g(n)σc+ε

∣∣∣∣ < 1. (3.1.1)

Next, since

lim sup
n→∞

log n

log g(n)
= κ,

for some κ ≥ 0, we see that for δ > 0, there exists Nδ such that for all n ≥ Nδ,

log n ≤ (κ+ δ) log g(n).

Exponentiating both sides, we find that

n ≤ g(n)κ+δ, (3.1.2)

for all n ≥ Nδ. Now let N = max{Nε, Nδ}. By (3.1.1) and (3.1.2), we see that, for n > N ,

∣∣∣∣ f(n)

g(n)σc+ε+κ+δ+ε(κ+δ)

∣∣∣∣ =
|f(n)|
g(n)σc+ε

· 1

g(n)(κ+δ)(1+ε)
<

1(
g(n)(κ+δ)

)(1+ε)
≤ 1

n1+ε
.

It follows that for σ ≥ σc + ε+ κ+ δ + ε(κ+ δ),

∞∑
n=1

|f(n)|
g(n)s

=
N∑
n=1

|f(n)|
g(n)s

+
∞∑
n=N

|f(n)|
g(n)s

≤
N∑
n=1

|f(n)|
g(n)s

+
∞∑
n=N

1

n1+ε
.

Hence
∞∑
n=1

f(n)

g(n)s

is absolutely convergence for σ ≥ σc + ε + κ + δ + ε(κ + δ). Since this is true for any ε > 0 and

δ > 0, then

σa ≤ σc + κ.

This completes the proof.

Another essential component of the proof is the behavior of Fg(s) when s ∈ Dc,θ.
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Lemma 3.1.2. Let Fg(s) =

∞∑
n=1

f(n)

g(n)s
have property B(h; c, θ,M, δ, α, κ) and let B > 1

θ . Then

|Fg(s)| ≤Mc,M,δ,θ,α,B(3 + |t|)
δ+1

2

for s ∈ Dc,θ, σ < B and
∣∣s− 1

θ

∣∣ > c
θ log 3 .

Proof. Let Fg(s) have property B(h; c, θ,M, δ, α, κ). Then there exists Hg(s, h; θ) such that

Fg(s) = Hg(s, h; θ)ζ(θs)h(s) (3.1.3)

and

|Hg(s, h; θ)| ≤M(3 + |t|)δ. (3.1.4)

Next, we need to obtain an upper bound for
∣∣ζ(θs)h(s)

∣∣. First, recall bounds of the Riemann Zeta

function [58, p. 49, Theorem 3.5]. Uniformly for 1− c
log(3+|t|) ≤ σ ≤ 2, and t > tc for some tc > 0

|ζ(s)| ≤ C1 log(3 + |t|),

where C1 is a positive constant depending on c. Since ζ(s) converges for σ ≥ 2, thus uniformly for

1− c
log(3+|t|) ≤ σ ≤ B, and t > tc,B

|ζ(s)| ≤ C2 log(3 + |t|),

where C1 is a positive constant depending on c and B. It follows that

|ζ(θs)| ≤ C3 log(3 + |t|), (3.1.5)

where C1 is a positive constant depending on c,B, and θ, uniformly for 1
θ −

c
θ log(3+|t|) ≤ σ ≤ B,

and t > tc,θ,B. Next, by property (4) of B(h; c, θ,M, δ, α, κ), we see that

|h(s)| ≤M (log(3 + |t|))α , (3.1.6)
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for 0 ≤ α < 1. By (3.1.5) and (3.1.6), for t > tc,θ,B,

∣∣∣ζ(θs)h(s)
∣∣∣ = |ζ(θs)||<h(s)| e−Arg(ζ(θs))|=h(s)|

≤ exp {|h(s)| (log(ζ(θs)) + π)}

≤ exp {M (log (3 + |t|))α (log log(3 + |t|) + log(C3) + π)}

≤ exp {C4 (log (3 + |t|))α log log(3 + |t|)} ,

where C1 is a positive constant depending on c,B, and θ. Since α < 1, then there exists tc,θ,α,B

such that for t > tc,θ,α,B,

C4 (log (3 + |t|))α log log(3 + |t|) ≤ 1− δ
2

log(3 + |t|).

Thus, for t > tc,θ,α,B,

∣∣∣ζ(θs)h(s)
∣∣∣ ≤ exp

{
1− δ

2
log(3 + |t|)

}
≤ (log(3 + |t|))

1−δ
2 . (3.1.7)

By combining (3.1.3), (3.1.4), and (3.1.7), for t > tc,θ,α,B, we obtain

|Fg(s)| = |Hg(s, h; θ)|
∣∣∣ζ(θs)h(s)

∣∣∣
≤M log(3 + |t|)δ (log(3 + |t|))

1−δ
2

≤M (log(3 + |t|))
1+δ

2 .

Hence, for t > 0,

|Fg(s)| ≤Mc,M,δ,θ,α,B(3 + |t|)
δ+1

2 ,

as desired. This completes the proof.

One crucial part of the proof of Theorem 2.4.3 is to establish an analogue of the effective form

of Perron’s formula. We now introduce an analogue of a normalized summatory function,

A?g(x) =
∑

n≥1,g(n)<x

f(n) +
1

2

∑
n≥1,g(n)=x

f(n)
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and the function

α(x) =


1, x > 1,

1
2 x = 1,

0, 0 < x < 1.

Lemma 3.1.3. For any positive c, T, and T ′, we have

∣∣∣∣α(x)− 1

2πi

∫ c+iT

c−iT ′
xs
ds

s

∣∣∣∣ ≤ xc

2π |log x|

(
1

T
+

1

T ′

)
(x 6= 1) (3.1.8)

and ∣∣∣∣α(1)− 1

2πi

∫ c+iT

c−iT
xs
ds

s

∣∣∣∣ ≤ c

T + c
(x = 1). (3.1.9)

The proof of this lemma can be found in Tenenbaum [57, p. 131] .

Theorem 3.1.4 (Analogue of Perron’s Formula). Let Fg(s) =
∞∑
n=1

f(n)

g(n)s
has abscissa of conver-

gence σc and abscissa of absolute convergence σa such that

σc ≤ σa ≤ σc + κ

for some κ ≥ 0. Let ξ > max{0, σc}. Assume that for σ ≥ ξ,

|Fg(s)| ≤Mtδ

for some 0 ≤ δ < 1 and positive constant M depending on ξ. Denote the set g(N) as the image of

the function g(n). Then

A?g(x) :=
∑

n≥1,g(n)<x

f(n) +
1

2

∑
n≥1,g(n)=x

f(n) =
1

2πi

∫ ξ+i∞

ξ−i∞
Fg(s)x

ss−1ds, (3.1.10)

where the integral is conditionally convergent for x ∈ R\g(N) and convergent in the sense of

Cauchy’s Principle Value for x ∈ g(N).

Proof. Fix Fg(s), σc, σa, κ, δ, and M as in the statement of the theorem. First, we will prove the

theorem for σ > σa. Suppose ξ > σa. Since Fg(s) is absolutely and uniformly convergent for
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σ ≥ σa + ε for a fixed ε > 0, we are able to interchange the sum and the integral of the right hand

side of the equation (3.1.10). We obtain

1

2πi

∫ ξ+iT

ξ−iT ′
Fg(s)

xs

s
ds =

1

2πi

∫ ξ+iT

ξ−iT ′

∞∑
n=1

f(n)

g(n)s
xs

s
ds =

1

2πi

∞∑
n=1

f(n)

∫ ξ+iT

ξ−iT ′

(
x

g(n)

)s ds
s
.

Then by (3.1.8), for x ∈ R+\g(N), we see that

∣∣∣∣A?g(x)− 1

2πi

∫ ξ+iT

ξ−iT ′
Fg(s)

xs

s
ds

∣∣∣∣ =

∣∣∣∣∣∣
∑

n≥1,g(n)<x

f(n)−
∞∑
n=1

f(n)
1

2πi

∫ ξ+iT

ξ−iT ′

(
x

g(n)

)s ds
s

∣∣∣∣∣∣
=

∣∣∣∣∣
∞∑
n=1

f(n)

(
α

(
x

g(n)

)
− 1

2πi

∫ ξ+iT

ξ−iT ′

(
x

g(n)

)s ds
s

)∣∣∣∣∣
≤
∞∑
n=1

|f(n)|
∣∣∣∣(α( x

g(n)

)
− 1

2πi

∫ ξ+iT

ξ−iT ′

(
x

g(n)

)s ds
s

)∣∣∣∣
≤
∞∑
n=1

|f(n)| xξ

2πg(n)ξ
∣∣∣log x

g(n)

∣∣∣
(

1

T
+

1

T ′

)

≤ xξ

2π

(
1

T
+

1

T ′

) ∞∑
n=1

|f(n)|

g(n)ξ
∣∣∣log x

g(n)

∣∣∣ . (3.1.11)

Now, since x ∈ R+\g(N), there exists a constant Cx,g > 0 such that

∣∣∣∣∣ 1

log x
g(n)

∣∣∣∣∣ ≤ Cx,g
for all n ≥ 1. Therefore, from equation (3.1.11),

∣∣∣∣A?g(x)− 1

2πi

∫ ξ+iT

ξ−iT ′
Fg(s)

xs

s
ds

∣∣∣∣ ≤ xξ

2π
Cx,g

(
1

T
+

1

T ′

) ∞∑
n=1

|f(n)|
g(n)ξ

.

for x ∈ R+\g(N). Next, since ξ > σa, the series
∞∑
n=1

|f(n)|
g(n)ξ

converges. Thus

∣∣∣∣A?g(x)− 1

2πi

∫ ξ+iT

ξ−iT ′
Fg(s)

xs

s
ds

∣∣∣∣ ≤M1x
ξ

(
1

T
+

1

T ′

)
(3.1.12)

for some constant M1 > 0. By letting T and T ′ tend to infinity independently, we complete the

proof the first assertion of the theorem for ξ > σa.
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For the second assertion, it is sufficient to take T = T ′. By proceeding in the same manner as in

the proof of the first assertion, and using (3.1.9) as the upper bound when g(n) = x, we can show

that

∣∣∣∣A?g(x)− 1

2πi

∫ ξ+iT

ξ−iT
Fg(s)

xs

s
ds

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
n≥1

g(n)≤x

f(n) +
1

2

∑
n≥1

g(n)=x

f(n)−
∞∑
n=1

f(n)
1

2πi

∫ ξ+iT

ξ−iT

(
x

g(n)

)s ds
s

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
∞∑
n=1

f(n)

(
α

(
x

g(n)

)
− 1

2πi

∫ ξ+iT

ξ−iT

(
x

g(n)

)s ds
s

)∣∣∣∣∣
≤

∑
n≥1

g(n)6=x

|f(n)|
∣∣∣∣(α( x

g(n)

)
− 1

2πi

∫ ξ+iT

ξ−iT

(
x

g(n)

)s ds
s

)∣∣∣∣+
+
∑
n≥1

g(n)=x

|f(n)|
∣∣∣∣(α (1)− 1

2πi

∫ ξ+iT

ξ−iT

(
x

g(n)

)s ds
s

)∣∣∣∣
≤

∑
n≥1

g(n)6=x

|f(n)| xξ

2πg(n)ξ
∣∣∣log x

g(n)

∣∣∣ 2

T
+
∑
n≥1

g(n)=x

|f(n)|
(

ξ

ξ + T

)
.

Next, note that since the domain of g(n) is the set of nature numbers and g(n) tends to infinity

as n tends to infinity, then for any x there are only finitely many values of n such that g(n) = x.

Thus, ∑
n≥1

g(n)=x

|f(n)|

is a finite sum. Therefore, by (3.1.12),

∣∣∣∣A?g(x)− 1

2πi

∫ ξ+iT

ξ−iT
Fg(s)

xs

s
ds

∣∣∣∣ ≤M1x
ξ 2

T
+M2

(
ξ

ξ + T

)

for some positive constants M1 and M ′2. Thus by letting T tend to infinity, we complete the proof

of the theorem for ξ > σa.

Now, suppose that σc < ξ ≤ σa. By Lemma 3.1.1, ξ + κ > σa. Consider a rectangular contour

integral

1

2πi

∫
R
Fg(s)

xs

s
ds,
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whereR is the positively oriented rectangle with vertices (ξ±iT ) and (ξ+κ±iT ). Since |Fg(s)| � tδ

for 0 ≤ δ < 1. Thus the contribution of a horizontal segment is

∣∣∣∣ 1

2πi

∫ ξ+κ±iT

ξ±iT
Fg(x)

xs

s
ds

∣∣∣∣� (T )δ
xξ+κ

T
�x

1

T ε
.

for some ε > 0, as T tends to infinity. Thus by the residue theorem,

1

2πi

∫ ξ+iT

ξ−iT
Fg(x)

xs

s
ds =

1

2πi

∫ ξ+κ+iT

ξ+κ−iT
Fg(x)

xs

s
ds+O

(
1

T ε

)
.

Letting T tends to infinity, we find that

1

2πi

∫ ξ+i∞

ξ−i∞
Fg(x)

xs

s
ds =

1

2πi

∫ ξ+κ+i∞

ξ+κ−i∞
Fg(x)

xs

s
ds.

Hence ∣∣∣∣A?g(x)− 1

2πi

∫ ξ+iT

ξ−iT
Fg(s)

xs

s
ds

∣∣∣∣ =

∣∣∣∣A?g(x)− 1

2πi

∫ ξ+κ+iT

ξ+κ−iT
Fg(s)

xs

s
ds

∣∣∣∣ .
Since ξ + κ > σa, by proceeding in the same way as in the proof for the case ξ > σa, the theorem

follows for the case σc < ξ ≤ σa.

The equation (3.1.10) of the analogue of the Perron’s Formula is insufficient to prove Theorem

2.4.3. We need a more effective version of Theorem 3.1.4, which can be stated as follows.

Theorem 3.1.5. Let Fg(s) =

∞∑
n=1

f(n)

g(n)s
have abscissa of convergence σc and abscissa of absolute

convergence σa such that

σc ≤ σa ≤ σc + κ

for some κ ≥ 0. Assume that for σ ≥ ξ,

|Fg(s)| ≤Mtδ

for some 0 ≤ δ < 1 and positive constant M depending on ξ. Define

Ag(x) :=
∑
n≥1

g(n)<x

f(n).
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Then ∫ x

1
Ag(t)dt =

1

2πi

∫ ξ+i∞

ξ−i∞
Fg(s)x

s+1 ds

s(s+ 1)
. (3.1.13)

Proof. Let w ≥ 0 and x ∈ R+\g(N). First note that

Fg(s) =

∞∑
n=1

f(n)

g(n)s
=

∞∑
n=1

f(n)g(n)w

g(n)s+w
.

By Theorem 3.1.4 for s′ = s+ w, we see that

∑
n≥1

g(n)<x

f(n)g(n)w =
1

2πi

∫ ξ+i∞

ξ−i∞
Fg(s)

xs+w

(s+ w)
ds. (3.1.14)

Also note that ∑
n≥1

g(n)<x

f(n)xw =
1

2πi

∫ ξ+i∞

ξ−i∞
Fg(s)

xs+w

s
ds. (3.1.15)

Therefore by subtracting (3.1.14) from (3.1.15), we obtain

∑
n≥1

g(n)<x

f(n) (xw − g(n)w) =
1

2πi

∫ ξ+i∞

ξ−i∞
Fg(s)

xs+w

s
ds− 1

2πi

∫ ξ+i∞

ξ−i∞
Fg(s)

xs+w

(s+ w)
ds

=
1

2πi

∫ ξ+i∞

ξ−i∞
Fg(s)

xs+ww

s(s+ w)
ds. (3.1.16)

The equation (3.1.16) still holds if x ∈ g(N). Thus letting w = 1, we find that

∫ x

1
Ag(t)dt =

∑
n≥1

g(n)<x

f(n) (x− g(n)) =
1

2πi

∫ ξ+i∞

ξ−i∞
Fg(s)

xs+1

s(s+ 1)
ds.

This completes the proof.

Another important estimation we will need is an estimation of a truncated Hankel contour

integral. The Hankel contour H(a, r) is a path formed by joining the circle of radius r and center

at a, excluding the point s = a− r, and the segment (−∞, a− r] traced twice as shown in Figure

3.1.
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a a+ ra− r <(s)

=(s)

H

Figure 3.1: Hankel’s contour center at a with radius r

One important fact about a Hankel contour integral is its connection to Γ(z), which can be seen

in the following theorem.

Theorem 3.1.6 (Hankel’s Formula). For any complex number z and positive integer k, we have

1

Γk(z)
:=

dk

dzk

(
1

Γ(z)

)
=

(−1)k

2πi

∫
H(0,r)

s−zes(log s)kds.

The proof of the theorem can be find in [40, pp. 11 − 12]. Now, we define a truncated Hankel

contour H(a, r,X) to be the part of the contour H(a, r) where σ > −x. By using Theorem 3.1.6,

we obtain the following corollary.

Corollary 3.1.7. Let X > 1, and let k and m be non-negative integers such that k < m. For an

arbitrary complex number z, we have

(−1)k

2πi

∫
H(0,r,X)

sm−zes(log s)kds =
1

Γk(z −m)
+ Ek,m,z(X),
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where

|Ek,m,z| ≤
eπ|=(z)|

π

∫ ∞
X

ρm−<(z)e−ρ |log(ρ+ π)|k dρ.

Proof. By Thoerem 3.1.6, we see that

(−1)k

2πi

∫
H(0,r,X)

sm−zes(log s)kds+
(−1)k

2πi

∫
s=ρe±iπ

ρ≥X

sm−zes(log s)kds =
1

Γk(z −m)
.

Then for ρ > 1,

|Ek,m,z(X)| : =

∣∣∣∣∣∣(−1)k

2πi

∫
s=ρe±iπ

ρ≥X

sm−zes(log s)kds

∣∣∣∣∣∣
≤ 1

2π

∫
ρ≥|X|

∣∣sm−z∣∣ e|s| |log s|k |ds|

≤ 1

π

∫ ∞
X

ρm−<(z)eπ|=(z)|−ρ |log(ρ+ π)|k dρ.

This completes the proof.

Lastly before we prove Theorem 2.4.3, we need to establish a series expansion of Fg(s) near

s = 1
θ . We will break up this process into several lemmas. But, first we will prove a lemma that

we frequently use in our estimations.

Lemma 3.1.8. Suppose a function f(z) is analytic in an open disk γ of radius r and center at z0

and |f(z)| ≤ m for all z ∈ γ. Then for each positive integer k,

∣∣∣f (k)(z)
∣∣∣ ≤ k!mr

(r − |z − z0|)k+1

for all z in γ. In particular, if f(z) is also continuous on the boundary of γ then

∣∣∣f (k)(z0)
∣∣∣ ≤ k!r−k sup

s∈γ̄
|f(s)| .

Proof. The proof of the first assertion can be found in [43, p.167]. For the second assertion, fix f(z)

as in the statement of the theorem. Since f(z) is continuous on the boundary of γ, then by the

Maximum Modulus Principle, |f(z)| attains its maximum on the boundary of γ. Thus, by applying
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(3.1.8) at z = z0,

∣∣∣f (k)(z0)
∣∣∣ ≤ k!r

(r − |z0 − z0|)k+1
sup
s∈γ̄
|f(s)| = k!r−k sup

s∈γ̄
|f(s)| ,

as desired. This completes the proof.

Lemma 3.1.9. Let 0 ≤ c < 1
2 , θ > 0,M ≥ 0, 0 ≤ δ < 1, 0 ≤ α < 1, and κ ≥ 0. Let h(s) be a

complex-valued function and analytic in the region Dc,θ. Let Fg(s) have property B(h; c, θ,M, δ, α, κ).

Define

A(s) := s−1H(s, h; θ)((θs− 1)ζ(θs))h(s).

Then for integers N ≥ 1,

A(s) =
N∑
j=0

A(j)
(

1
θ

)
j!θj

(θs− 1)j +O

(
M

∣∣∣∣θs− 1

c

∣∣∣∣N+1
)
,

where

A(j)
(

1
θ

)
j!

=
1

2πi

∫
|s− 1

θ |= c
2θ

A(s)

(s− 1
θ )j+1

ds,

uniformly for
∣∣s− 1

θ

∣∣ < c
2θ and s ∈ Dc,θ.

Proof. Fix c,M, δ, α, κ, h(s), Fg(s) and A(s) as in the statement of Lemma 3.1.9. The function A(s)

is analytic in the region
∣∣s− 1

θ

∣∣ < c
2θ . Thus

A(s) =
∞∑
j=0

A(j)
(

1
θ

)
j!

(
s− 1

θ

)j
=
∞∑
j=0

A(j)
(

1
θ

)
j!θj

(θs− 1)j ,

where

A(j)
(

1
θ

)
j!

=
1

2πi

∫
|s− 1

θ |= c
2θ

A(s)

(s− 1
θ )j+1

ds.

Let γ be a disk of radius c
2θ and center 1

θ . Since A(s) is analytic in the region
∣∣s− 1

θ

∣∣ < c
θ log 3 , then

by Lemma 3.1.8, ∣∣∣∣A(j)

(
1

θ

)∣∣∣∣ ≤ j!( c2θ)−j sup
s∈γ̄
|A(s)| . (3.1.17)

Since (θs− 1)ζ(θs) has an analytic continuation to C, thus there exists an analytic function f1(s),
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such that for σ > 1
θ ,

(θs− 1)ζ(θs) = ef1(s).

Therefore, for
∣∣s− 1

θ

∣∣ < c
2θ ,

|A(s)| =
∣∣s−1

∣∣ |H(s, h; θ)|
∣∣∣((θs− 1)ζ(θs))h(s)

∣∣∣ ≤ 2(M(3 + |t|)e|h(s)||f1(s)| �M. (3.1.18)

Thus, by equations (3.1.17) and (3.1.18), for N ≥ 1,

A(s) =
N∑
j=0

A(j)
(

1
θ

)
j!θj

(θs− 1)j +
∞∑

j=N+1

A(j)
(

1
θ

)
j!θj

(θs− 1)j

=
N∑
j=0

A(j)
(

1
θ

)
j!θj

(θs− 1)j +O

(
M

∣∣∣∣(N + 1)!θN+1

cN+1

∣∣∣∣ ∣∣∣∣ (θs− 1)N+1

(N + 1)!θN+1

∣∣∣∣) .
=

N∑
j=0

A(j)
(

1
θ

)
j!θj

(θs− 1)j +O

(
M

∣∣∣∣(θs− 1)N+1

cN+1

∣∣∣∣) .
This completes the proof.

Lemma 3.1.10. Let h(s) be an analytic function on the region Dc,θ satisfying the inequality

|h(s)| ≤M(log t)α

for some constant M > 0 and 0 ≤ α < 1 in the region Dc,θ . For N ≥ 1 and s ∈ Dc,θ\(−∞, 1
θ ], we

have

(θs−1)−h(s) = (θs−1)−h( 1
θ

)

(
N∑
k=0

(
k∑

n=0

(−1)n

n!
(log(θs− 1))n

ak,n
θk

)
(θs− 1)k +O(RN )

)
, (3.1.19)

where

a0,n = 1,

ak,n =
∑

k1+···+kn=k
ki≥1

n∏
i=1

h(ki)
(

1
θ

)
ki!

,
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and

RN = (2M)N+1

∣∣∣∣θs− 1

c

∣∣∣∣N+1

|log(θs+ 1)|N+1 .

Proof. Fix h(s) as in the statement of the lemma. For any positive integer N , we can write the

left hand side of (3.1.19) as

(θs− 1)−h(s) = (θs− 1)−h(
1
θ )(θs− 1)−(h(s)−h( 1

θ ))

= (θs− 1)−h(
1
θ ) exp

(
−
(
h(s)− h

(
1

θ

))
log(θs− 1)

)
= (θs− 1)−h(

1
θ )

( ∞∑
n=0

(−1)nun

n!

)

= (θs− 1)−h(
1
θ )

(
N∑
n=0

(−1)nun

n!
+

∞∑
n=N+1

(−1)nun

n!

)

= (θs− 1)−h(
1
θ ) (SN +R∗N ) ,

where

SN :=

N∑
n=0

(−1)nun

n!
, (3.1.20)

R∗N :=
∞∑

n=N+1

(−1)nun

n!
, (3.1.21)

and

u :=

(
h(s)− h

(
1

θ

))
log(θs− 1). (3.1.22)

Since h(s) is analytic on the disk
∣∣s− 1

θ

∣∣ < c
2θ , we can write

h(s) =
∞∑
k=0

h(k)
(

1
θ

)
k!θk

(θs− 1)k.

Thus (3.1.22) can be written as

u = log(θs− 1)

∞∑
k=1

h(k)
(

1
θ

)
k!θk

(θs− 1)k. (3.1.23)
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Next, by raising (3.1.23) to the nth power, we see that

un = (log(θs− 1))n
( ∞∑
k=1

h(k)
(

1
θ

)
k!θk

(θs− 1)k

)n

= (log(θs− 1))n

 ∞∑
k=n

 ∑
k1+···+kn=k

ki≥1

n∏
i=1

h(ki)
(

1
θ

)
ki!

 1

θk
(θs− 1)k


= (log(θs− 1))n

( ∞∑
k=n

ak,n
1

θk
(θs− 1)k

)
(3.1.24)

with

ak,n =
∑

k1+···+kn=k
ki≥1

n∏
i=1

h(ki)
(

1
θ

)
ki!

. (3.1.25)

Thus, replacing un in (3.1.20) by (3.1.24), we find that

SN =

N∑
n=0

(−1)nun

n!

=

N∑
n=0

(−1)n

n!
(log(θs− 1))n

( ∞∑
k=n

ak,n
1

θk
(θs− 1)k

)

=
N∑
n=0

(−1)n

n!
(log(θs− 1))n

(
N∑
k=n

ak,n
1

θk
(θs− 1)k +

∞∑
k=N+1

ak,n
1

θk
(θs− 1)k

)

=

N∑
k=0

(
k∑

n=0

(−1)n

n!
(log(θs− 1))n ak,n

)
1

θk
(θs− 1)k

+
∞∑

k=N+1

(
N∑
n=0

(−1)n

n!
(log(θs− 1))n ak,n

)
1

θk
(θs− 1)k

=

N∑
k=0

(
k∑

n=0

(−1)n

n!
(log(θs− 1))n ak,n

)
1

θk
(θs− 1)k +KN

where

KN :=

∞∑
k=N+1

(
N∑
n=0

(−1)n

n!
(log(θs− 1))n ak,n

)
1

θk
(θs− 1)k.

Next, by Lemma 3.1.8 and property (4) of B(h; c, θ,M, δ, α, κ),

∣∣∣∣∣h(k)
(

1
θ

)
k!θk

∣∣∣∣∣ ≤ 1

θk
sup

|s− 1
θ |= c

2θ

|h(s)| (2θ)
k

ck
≤ c1M

(
1

c

)k
. (3.1.26)
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for some positive constant c1. Thus, applying (3.1.26) to (3.1.25), we deduced that

∣∣∣ak,n
θk

∣∣∣ =
∑

k1+···+kn=k
ki≥1

n∏
i=1

∣∣∣∣∣h(ki)
(

1
θ

)
ki!θki

∣∣∣∣∣ ≤ c2

∑
k1+···+kn=k

ki≥1

Mnc−k ≤ c2

(
k − 1

n− 1

)
Mnc−k ≤ c22k−1Mnc−k

(3.1.27)

for some positive constant c2. Hence, for
∣∣s− 1

θ

∣∣ < c
2θ ,

|KN | =

∣∣∣∣∣
∞∑

k=N+1

(
N∑
n=0

(−1)n

n!
(log(θs− 1))n

ak,n
θk

)
(θs− 1)k

∣∣∣∣∣
� |log(θs− 1)|N

∞∑
k=N+1

2k−1

∣∣∣∣θs− 1

c

∣∣∣∣k N∑
n=0

∣∣∣∣(−1)nMn

n!

∣∣∣∣
� 2N+1MN+1

∣∣∣∣θs− 1

c

∣∣∣∣N+1

|log(θs+ 1)|N+1 .

Therefore

SN =
N∑
k=0

(
k∑

n=0

(−1)n

n!
(log(θs− 1))n

ak,n
θk

)
(θs−1)k+O

(
(2M)N+1

∣∣∣∣θs− 1

c

∣∣∣∣N+1

|log(θs+ 1)|N+1

)
.

(3.1.28)

Lastly, we estimate R∗N . For
∣∣s− 1

θ

∣∣ < c
4θ ,

|R∗N | =

∣∣∣∣∣
∞∑

n=N+1

(−1)nun

n!

∣∣∣∣∣ ≤ |u|N+1

(N + 1)!

( ∞∑
n=0

|u|n

n!

)
.

By (3.1.26), we see that

|un| ≤ 2nMn

∣∣∣∣θs− 1

c

∣∣∣∣n log(θs− 1)n.

Therefore

|R∗N | ≤
2N+1MN+1 |θs− 1|N+1 (log(θs− 1))N+1

cN+1(N + 1)!

( ∞∑
n=0

|2M |n

n!cn
|(θs− 1) log(θs− 1)|n

)
.

Since |x log x| attains a local maximum value of 1
e when x = 1

e for 0 ≤ x ≤ 1, we have

|θs− 1| |log θs− 1| = |θs− 1| (log |θs− 1|+ π) ≤ 1

e
+
πc

2
.
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Thus,
∞∑
n=0

|2M |n

n!cn
|(θs− 1) log(θs− 1)|n ≤

∞∑
n=0

(2M)n

n!cn

∣∣∣∣1e +
πc

2

∣∣∣∣n = O(1).

Therefore

R∗N � (2M)N+1

∣∣∣∣θs− 1

c

∣∣∣∣N+1

|log(θs− 1)|N+1 . (3.1.29)

Combining the estimates (3.1.28) and (3.1.29) completes the proof.

Lemma 3.1.11. Let 0 ≤ c < 1
2 , θ > 0,M ≥ 0, 0 ≤ δ < 1, 0 ≤ α < 1, and κ ≥ 0. Let h(s) be a

complex-valued function and analytic in the region Dc,θ. Let Fg(s) have property B(h; c,M, θ, δ, α, κ).

For N ≥ 1,
∣∣s− 1

θ

∣∣ < c
2θ , and s ∈ Dc,θ\(−∞, 1

θ ] we have

Fg(s) = s(θs− 1)−h( 1
θ

)

(
N∑
m=0

Qm (log(θs− 1)) (θs− 1)m +O(RN )

)
,

where

Qm(x) =
m∑
n=0

(
m∑
k=n

A(m−k)
(

1
θ

)
ak,n

(m− k)!θm

)
(−1)nxn

n!
,

A(s) = s−1H(s, h; θ)((θs− 1)ζ(θs))h(s).

and

RN = (2M)N+1

∣∣∣∣θs− 1

c

∣∣∣∣N+1

|log(θs− 1)|N+1 .

Proof. Fix c, θ,M, δ, α, κ, h(s) and Fg(s) as in the statement of the theorem. By Lemma 3.1.10,

and property (2) of B(h; c,M, θ, δ, α, κ),

Fg(s) = H(s, h; θ)ζ(θs)h(s)

= sA(s)(θs− 1)−h(s)

= sA(s)

(
(θs− 1)−h( 1

θ
)

(
N∑
k=0

(
k∑

n=0

(−1)n

n!
(log(θs− 1))n

ak,n
θk

)
(θs− 1)k +O(RN )

))

= s(θs− 1)−h( 1
θ

)
(
SN +O(R′N )

)
.
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where

Sn := A(s)

(
N∑
k=0

(
k∑

n=0

(−1)n

n!
(log(θs− 1))n

ak,n
θk

)
(θs− 1)k

)
,

and

R′N := A(s)(2M)N+1

∣∣∣∣θs− 1

c

∣∣∣∣N+1

|log(θs+ 1)|N+1 .

Next, by Lemma 3.1.9 and rearranging the order of summation, we have

SN = A(s)

(
N∑
k=0

(
k∑

n=0

(−1)n

n!
(log(θs− 1))n

ak,n
θk

)
(θs− 1)k

)

=

 N∑
j=0

A(j)
(

1
θ

)
j!θj

(θs− 1)j +O

(∣∣∣∣θs− 1

c

∣∣∣∣N+1
)( N∑

k=0

(
k∑

n=0

(−1)n

n!
(log(θs− 1))n

ak,n
θk

)
(θs− 1)k

)

=
2N∑
m=0

(
m∑
k=0

(
A(m−k)

(
1
θ

)
(m− k)!θm−k

(
k∑

n=0

(−1)n

n!
(log(θs− 1))n

ak,n
θk

)))
(θs− 1)m +O

(∣∣∣∣θs− 1

c

∣∣∣∣N+1
)

=

2N∑
m=0

(
m∑
n=0

(
(−1)n

n!

m∑
k=n

A(m−k)
(

1
θ

)
ak,n

(m− k)!θm

)
(log(θs− 1))n

)
(θs− 1)m +O

(∣∣∣∣θs− 1

c

∣∣∣∣N+1
)

=
2N∑
m=0

Qm(log(θs− 1))(θs− 1)m +O

(∣∣∣∣θs− 1

c

∣∣∣∣N+1
)
,

where

Qm(x) :=

m∑
n=0

(
m∑
k=n

A(m−k)
(

1
θ

)
ak,n

(m− k)!θm

)
(−1)nxn

n!
.

Next, by (3.1.27) and (3.1.17),

|Qm(log(θs− 1))| �
m∑
n=0

m∑
k=n

(
Mck−m

)(
2k−1Mnc−k

) |log(θs− 1))|n

n!

� c−m2m +

m∑
n=1

m∑
k=n

2k−1Mn+1c−m
|log(θs− 1))|n

n!

� c−mM2m + c−m2mMm+1 |log(θs− 1)|m .

Thus

2N∑
m=N+1

Qm(log(θs− 1))(θs− 1)m �
2N∑

m=N+1

(
c−mM2m + c−m2mMm+1 |log(θs− 1)|m

)
|θs− 1|m

46



�M

∣∣∣∣2(θs− 1)

c

∣∣∣∣N+1

+MN+1

∣∣∣∣2(θs− 1)

c

∣∣∣∣N+1

|log(θs− 1)|N+1 .

Hence

SN =

N∑
m=0

Qm(log(θs− 1))(θs− 1)m +O

(
MN+1

∣∣∣∣2(θs− 1)

c

∣∣∣∣N+1

|log(θs− 1)|N+1

)
. (3.1.30)

Next, note that, for
∣∣s− 1

θ

∣∣ < c
4θ ,

A(s) = 1 +O

(∣∣∣∣θs− 1

c

∣∣∣∣) .
Thus

R′′N � 2N+1

∣∣∣∣θs− 1

c

∣∣∣∣N+1

|log(θs− 1)|N+1 . (3.1.31)

Therefore, by combining (3.1.30) and (3.1.31), we complete the proof.

3.2 Proof of Theorem 2.4.3

The proof of the theorem is along the same lines as the general argument of Selberg. In our

proof, we assume that ci is a positive real constant for all i.

Proof. Let θ > 0,M ≥ 0, 0 ≤ δ < 1, 0 ≤ α < 1, and κ ≥ 0. Let c be a positive constant such that

ζ(s) has no zeroes in the region

σ ≥ 1− c

log(max{3, |t|})

for |t| > 0. Let h(s) and h+(s) be complex-valued functions analytic in the region Dc,θ. Let

Fg(s) =

∞∑
n=1

f(n)

g(n)s
have property B+(h, h+; c,M, θ, δ, α, κ). By Theorem 3.1.5,

∫ x

0
Ag(t)dt =

1

2πi

∫ η+i∞

η−i∞
Fg(s)x

s+1 ds

s(s+ 1)
,
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where η = 1
θ + 1

log x , and

Ag(x) =
∑

g(n)<x
n≥1

f(n).

Let T > 1 be a parameter which we will determine later. Since δ < 1, by Lemma 3.1.2,

1

2πi

∫ η+i∞

η+iT
Fg(s)x

s+1 ds

s(s+ 1)
≤
∫ ∞
T

Mx
1+ 1

θ
+ 1

log x (3 + t)
δ+1

2
dt

t2
�Mx1+ 1

θT
δ−1

2 .

Similarly, we obtain the same estimate for the integral along the half line (η−i∞, η−iT ]. Therefore

∫ x

0
Ag(t)dt =

1

2πi

∫ η+iT

η−iT
Fg(s)x

s+1 ds

s(s+ 1)
+O

(
Mx1+ 1

θT
δ−1

2

)
.

Next, we claim that

∫ x

0
Ag(t)dt =

1

2πi

∫
H( 1

θ
, c
2θ log x

, c
2θ log 3

− 1
θ

)
Fg(s)x

s+1 ds

s(s+ 1)
+O

(
Mx1+ 1

θErr(x)−1
)
, (3.2.1)

where Err(x) := ec1
√

log x. Consider the contour H, which is formed by joining the following paths

with positive orientation as in Figure 1.2:

L1: a vertical segment [η − iT, η + iT ];

L2: a horizontal segment
[

1
θ −

c
2θ log(θT ) + iT, η + iT

]
;

L3: a curve described by σ3(t) = 1
θ −

c
2θ log(θt) for 3

θ ≤ t ≤ T ;

L4: a truncated Hankel’s contour with radius r = c
2 log x , centered 1

θ , and σ ≥ 1
θ −

c
2θ log(3) ;

L5: a curve described by σ5(t) = 1
θ −

c
2θ log(|θt|) for −T ≤ t ≤ −3

θ ;

L6: a horizontal segment
[

1
θ −

c
2θ log(θT ) − iT, η − iT

]
;

L7: a vertical segment
[

1
θ −

c
2θ log(3) ,

1
θ −

c
2θ log(3) + 3

θ i
]
;

L8: a vertical segment
[

1
θ −

c
2θ log(3) −

3
θ i,

1
θ −

c
2θ log(3)

]
.
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1
θ

η

iT

−iT

i3
θ

−i3
θ

<(s)

=(s)

L1

L2

L3

L4

L5

L6

Figure 3.2: Contour H

Since the region enclosed by H does not contain any pole of Fg(s), then by the Residue Theorem,

we deduce that

1

2πi

∫
H
Fg(s)x

s+1 ds

s(s+ 1)
= 0.

We now estimate the integral over each piece of the contour. By Theorem 3.1.2, for 0 ≤ δ < 1,

∣∣∣∣ 1

2πi

∫
L2

Fg(s)x
s+1 ds

s(s+ 1)

∣∣∣∣�M

∫ η

1
θ
− c

2θ log(θT )

(3 + T )
δ+1

2
x1+σ

|σ + iT | |1 + σ + iT |
dσ

�Mx1+ 1
θ

(3 + T )
δ+1

2

T 2

�Mx1+ 1
θT−

3−δ
2 .

Next, we estimate the integral over the arc L3. We find that

∣∣∣∣ 1

2πi

∫
L3

Fg(s)x
s+1 ds

s(s+ 1)

∣∣∣∣�M

∫ T

0
(3 + t)

δ+1
2

x1+σ3(t)

|σ3(t) + it| |1 + σ3(t) + it|
dσ
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�Mx
1+ 1

θ
− c

2θ log(θT )

∫ T

0

(3 + t)
δ+1

2

(t+ 1)2
dt

�Mx
1+ 1

θ
− c

2θ log(θT ) .

Lastly, we estimate the integral over the vertical segment L7, and find that

∣∣∣∣ 1

2πi

∫
L7

Fg(s)x
s+1 ds

s(s+ 1)

∣∣∣∣�M

∫ 3
θ

0
(3 + t)

δ+1
2

x
1+ 1

θ
− c

2θ log 3∣∣∣1θ − c
2θ log 3 + it

∣∣∣ ∣∣∣1 + 1
θ −

c
2θ log 3 + it

∣∣∣dσ
�Mx

1+ 1
θ
− c

2θ log(θT ) .

The estimates on L5, L6 and L8 are similar to these on L3, L2 and L7. Hence

∫
L4

Fg(s)x
s+1 ds

s(s+ 1)
= −

∫
L1

Fg(s)x
s+1 ds

s(s+ 1)
+O

(
Mx

1+ 1
θ
− c

2θ log(θT ) +Mx1+ 1
θT−

3−δ
2

)
.

By taking T = Err(x)c2 , we obtain (3.2.1).

For convenience, we denote

Φ(x) :=
1

2πi

∫
H1

Fg(s)x
s+1 ds

s(s+ 1)

where

H1 = H
(

1

θ
,

c

2θ log x
,

c

2θ log 3
− 1

θ

)
.

Next, we will study the behavior of Φ(x). First note that Φ(x) is an infinitely differentiable function

of x for real-valued x > 0. Thus, we have

Φ′(x) =
1

2πi

∫
H1

Fg(s)x
sds

s
, Φ′′(x) =

1

2πi

∫
H1

Fg(s)x
s−1ds.

First, we will show that

Φ′′(x)�Mx
1
θ
−1(log x)|<(h( 1

θ
))|.

For s ∈ Dc,θ\(−∞, 1
θ ] and

∣∣s− 1
θ

∣∣ < c
2θ , by the Weierstrass Factorization Theorem [5, p. 170] there
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exists an entire function α(s) such that

Fg(s)(θs− 1)h(
1
θ ) = Hg(s, h; θ)eh(s)α(s)(θs− 1)−(h(s)−h( 1

θ )).

Moreover, by Lemma 3.1.10,

(θs− 1)−(h(s)−h( 1
θ )) = O(1).

Therefore, by properties (3) and (4) of B(h; c, θ,M, δ, α, κ), we see that for s ∈ Dc,θ\(−∞, 1
θ )

Fg(s)(θs− 1)h(
1
θ ) �M.

Thus

∣∣Φ′′(x)
∣∣�M

1

2πi

∫
H1

∣∣∣(θs− 1)h(
1
θ )
∣∣∣ ∣∣xs−1

∣∣ ds
�M

∫ c
2θ log(3)

r
ρ−<(h( 1

θ ))e(
1−ρ
θ
−1) log xdρ+Mθ

∫ π

−π
r−|<(h( 1

θ ))|+1x( rθ+ 1
θ
−1)dt,

where r = c
2 log x . Thus letting ρ = uθ

log x , we obtain the estimate

∣∣Φ′′(x)
∣∣�Mx

1
θ
−1(log x)|<(h( 1

θ
))|−1

∫ c
2 log 3

log x

c
2

u−|<(h( 1
θ

))|e−udu+Mθx
1
θ
−1(log x)|<(h( 1

θ
))|

�Mx
1
θ
−1(log x)|<(h( 1

θ
))|. (3.2.2)

Now, we will give an estimation of Φ′(x). By Lemma 3.1.11,

Φ′(x) =
1

2πi

∫
H1

Fg(s)

s
xsds = ΣN +RN ,

where

Σ1 :=
1

2πi

∫
H1

N∑
m=0

m∑
n=0

(
m∑
k=n

A(m−k)
(

1
θ

)
ak,n

(m− k)!θm

)
(−1)n(log(θs− 1))n

n!
(θs− 1)m−h(

1
θ )xsds

and

RN =
1

2πi

∫
H1

2N+1

∣∣∣∣θs− 1

c

∣∣∣∣N+1

|log(θs− 1)|N+1 xsds.
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First, we will focus on Σ1. By rearranging the sum, we have

Σ1 =
N∑
m=0

m∑
n=0

em,n
θm

1

2πi

∫
H1

xs (log(θs− 1))n (θs− 1)m−h(
1
θ ) ds,

where

em,n =
(−1)n

n!

m∑
k=n

A(m−k)
(

1
θ

)
ak,n

(m− k)!
. (3.2.3)

Next, letting u =
(
s− 1

θ

)
log x, we have

Σ1 =
N∑
m=0

m∑
n=0

em,n
θm

1

2πi

∫
H0

xu log x+ 1
θ

(
log

(
θu

log x

))n( θu

log x

)m−h( 1
θ ) du

log x

=
x

1
θ

(log x)1−h( 1
θ )

N∑
m=0

m∑
n=0

em,n

(log x)mθh(
1
θ )

1

2πi

∫
H0

eu
(

log (u) + log

(
θ

log x

))n
um−h(

1
θ )du,

where

H0 = H
(

0,
c

2θ
,

c

2θ log 3
log x

)
.

Applying the binomial theorem and Corollary 3.1.7 gives us

Σ1 =
x

1
θ

(log x)1−h( 1
θ )

N∑
m=0

m∑
n=0

em,nθ
−h( 1

θ )

(log x)m
1

2πi

∫
H0

eu
n∑
i=0

(
n

i

)
(log u)i

(
log

(
θ

log x

))n−i
um−h(

1
θ )du

=
x

1
θ

(log x)1−h( 1
θ )

N∑
m=0

m∑
n=0

em,nθ
−h( 1

θ )

(log x)m

n∑
i=0

(
n

i

)(
log

(
θ

log x

))k−i 1

2πi

∫
H0

eu (log u)i um−h(
1
θ )du

=
x

1
θ

(log x)1−h( 1
θ )

N∑
m=0

m∑
n=0

em,nθ
−h( 1

θ )

(log x)m

n∑
i=0

(
n

i

)(
log

(
θ

log x

))n−i
×

×

(
(−1)i

Γi
(
h
(

1
θ

)
−m

) + Ei,m,h( 1
θ )

(X)

)

=
x

1
θ

(log x)1−h( 1
θ )

N∑
m=0

m∑
n=0

em,n

(log x)mθh(
1
θ )

n∑
i=0

(
n

i

) n−i∑
j=0

(
n− i
j

)
(log θ)n−i−j(−1)j (log log x)j ×

×

(
(−1)i

Γi
(
h
(

1
θ

)
−m

) + Ei,m,h( 1
θ )

(X)

)
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with X := c
2θ log x. Thus, the contribution of

(−1)i

Γi
(
h
(

1
θ

)
−m

) to Σ1 is

x
1
θ

(log x)1−h( 1
θ )

N∑
m=0

Pm(log log x)

(log x)m
, (3.2.4)

where

Pm(x) =
m∑
n=0

em,n

θh(
1
θ )

n∑
i=0

(
n

i

) n−i∑
j=0

(
n− i
j

)
(log θ)n−i−j(−1)j

(−1)i

Γi
(
h
(

1
θ

)
−m

)xj
=

m∑
n=0

em,n

θh(
1
θ )

n∑
j=0

n−j∑
i=0

(
n

i

)(
n− i
j

)
(log θ)n−i−j

(−1)j+i

Γi
(
h
(

1
θ

)
−m

)xj
=

m∑
j=0

m∑
n=j

em,n

θh(
1
θ )

n−j∑
i=0

(
n

i

)(
n− i
j

)
(log θ)n−i−j

(−1)j+i

Γi
(
h
(

1
θ

)
−m

)xj .

Next, the contribution of Ei,m,h( 1
θ )

to Σ1 is

Σ2 :=
x

1
θ

(log x)1−h( 1
θ )

N∑
m=0

m∑
n=0

em,n

(log x)mθh(
1
θ )

n∑
i=0

(
n

i

)
log

(
θ

log x

)
Ei,m,h( 1

θ )

� x
1
θ

(log x)1−h( 1
θ )

N∑
m=0

m∑
n=0

|em,n|
(log x)mθh(

1
θ )

∣∣∣∣∣
n∑
i=0

(
n

i

)
log

(
θ

log x

)∫ ∞
X

ρm−<h(
1
θ )e−ρ |log(ρ) + π|i dρ

∣∣∣∣∣
� x

1
θ

(log x)1−h( 1
θ )

N∑
m=0

m∑
n=0

|em,n|
(log x)mθh(

1
θ )

∫ ∞
X

ρm−<h(
1
θ )e−ρ |2 log(ρ) + 2 log log x|n dρ.

By combining (3.2.3), (3.1.17), and (3.1.27), we have

|em,n| �
1

n!

m∑
k=n

M
θm−k

cm−k

(
2k−1Mnθk

ck

)
� Mn+1θm

n!cm
.

Thus,

Σ2 �
x

1
θ

(log x)1−h( 1
θ )

N∑
m=0

1

(log x)mθh(
1
θ )−m

m∑
n=0

Mn+1

n!cm

∫ ∞
X

ρm−<h(
1
θ )e−ρ |2 log(ρ) + 2 log log x|n dρ

�M
x

1
θ

(log x)1−h( 1
θ )

N∑
m=0

1

(c log x)mθh(
1
θ )−m

∫ ∞
X

ρm−<h(
1
θ )e−ρeM |2 log(ρ)+2 log log x|dρ

53



�M
x

1
θ

(log x)1−h( 1
θ )

N∑
m=0

(log x)2M

(c log x)mθh(
1
θ )−m

∫ ∞
X

ρm−<h(
1
θ )+2Me−ρdρ.

Next, note that

∫ ∞
X

ρm−<h(
1
θ )+2Me−ρdρ� e−X/2

∫ ∞
X

ρm+|h( 1
θ )|+2Me−ρ/2dρ

� e−X/22m
∫ ∞
X/2

ρm+|h( 1
θ )|+2Me−ρ/2dρ

� e−X/22mΓ

(
m+

∣∣∣∣h(1

θ

)∣∣∣∣+ 2M + 1

)
� e−X/22m(m+ 1)!

(∣∣∣∣h(1

θ

)∣∣∣∣+ 2M + 1

)m
.

Since X = c
2θ log 3 log x, we find that

Σ2 �M
x

1
θ

(log x)1−h( 1
θ )

N∑
m=0

(log x)2M

(c log x)m
e−X/2(m+ 1)!

(
2

∣∣∣∣h(1

θ

)∣∣∣∣+ 4M + 2

)m
�M

x
1
θ

(log x)1−h( 1
θ )
e−X/4

N∑
m=0

(
2
∣∣h (1

θ

)∣∣+ 4M + 2

c log x

)m
(m+ 1)!

�M
x

1
θ

(log x)1−h( 1
θ )
e−X/4

(N + 1)!

(log x)N

N∑
m=0

c4(X)N−m
(m+ 1)!

(N + 1)!

�M
x

1
θ

(log x)1−h( 1
θ )
e−X/8

(
1

log x

)N+1

(N + 1)!

�M
x

1
θ

(log x)1−h( 1
θ )

(
c3N + 1

log x

)N+1

. (3.2.5)

By combining (3.2.4) and (3.2.5), we have

Σ1 =
x

1
θ

(log x)1−h( 1
θ )

(
N∑
m=0

Pm(log log x)

(log x)m
+O

((
c3N + 1

log x

)N+1
))

. (3.2.6)

Now, we will turn our attention to RN . First note that |log(θs− 1)| ≤ log log x + c4 for s ∈ H1.

By letting u =
(

1
θ − s

)
log x, we have

|RN | =
1

2πi

∫
H1

2N+1 |θs− 1|−h(
1
θ )
∣∣∣∣θs− 1

c

∣∣∣∣N+1

|log(θs− 1)|N+1 |xs| ds.
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�
∫ c

2θ log 3
log x

c
2θ

2N+1

∣∣∣∣ θulog x

∣∣∣∣N+1−h( 1
θ )
|log log x+ c4|N+1 x

1
θ e−u

du

log x
+

+

∫ π

−π
2N+1

∣∣∣∣ θc

2 log x

∣∣∣∣N+1−h( 1
θ )
|log log x+ c4|N+1 x

1
θ e−

c
4θ

dt

log x

� x
1
θ (log log x+ c4)N+1

(log x)N+2−h( 1
θ )

(∫ c
2θ log 3

log x

c
2θ

uN+1−h( 1
θ )e−udu+ c5

)

� x
1
θ (log log x+ c4)N+1

(log x)N+2−h( 1
θ )

Γ

(
N + 2− h

(
1

θ

))

� x
1
θ (log log x+ c4)N+1

(log x)N+2−h( 1
θ )

(c6N + 1)N+1 . (3.2.7)

Therefore by combining the estimates (3.2.6) and (3.2.7), we obtain

Φ′(x) =
x

1
θ

(log x)1−h( 1
θ )

(
N∑
m=0

Pm(log log x)

(log x)m
+O

((
c5N + 1

log x
(c4 + log log x)

)N+1
))

.

In order to complete the proof, we need to show that Φ′(x) is a good approximation for Ag(x). Let

ε be a positive real number such that ε < x
2 . By (3.2.1), we have

∫ x+ε

x
Ag(t)dt = Φ(x+ ε)− Φ(x) +O

(
Mx1+ 1

θErr(x)−c1
)
.

Since Φ(x) is twice differentiable for x ≥ 3, by Taylor’s formula we have

Φ(x+ ε)− Φ(x) = εΦ′(x) + ε2
∫ 1

0
(1− t)Φ′′(x+ εt)dt.

Appealing to (3.2.2) gives us

Φ(x+ ε)− Φ(x) = εΦ′(x) +O
(
ε2Mx

1
θ
−1(log x)|<(h( 1

θ
))|
)
.

Hence

∫ x+ε

x
Ag(t)dt = εΦ′(x) +O

(
ε2Mx

1
θ
−1(log x)|<(h( 1

θ
))|
)

+O
(
Mx1+ 1

θErr(x)−c1
)
. (3.2.8)
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Next, note that ∫ x+ε

x
Ag(t)dt = εAg(x) +

∫ x+ε

x
(Ag(t)−Ag(x)) dt. (3.2.9)

Next, by combining (3.2.8) and (3.2.9), we obtain

εAg(x)−εΦ′(x) =

∫ x+ε

x
(Ag(t)−Ag(x)) dt+O

(
ε2Mx

1
θ
−1(log x)|<(h( 1

θ
))|
)

+O
(
Mx1+ 1

θErr(x)−c1
)
.

By dividing both sides by ε, we obtain the estimate,

Ag(x)−Φ′(x)� 1

ε

∫ x+ε

x
|Ag(t)−Ag(x)| dt+O

(
εMx

1
θ
−1(log x)|<(h( 1

θ
))|
)

+O

(
1

ε
Mx1+ 1

θErr(x)−c1
)
.

(3.2.10)

Since Fg(s) has property B+ (h, h+; c,M, θ, δ, α), there exists a positive real-valued function f+(n)

such that |f(n)| ≤ f+(n) for all n and F+
g (s) =

∞∑
n=1

f+(n)

g(n)s
has property B (h+; c,M, θ, δ, α, κ).

Thus, there exists Ψ(x) such that

∫ x

0
A+
g (t)dt = Ψ(x) +O

(
Mx1+ 1

θErr(x)−c1
)

and

Ψ′′(x)�Mx
1
θ
−1(log x)|<(h( 1

θ
))|,

where

A+
g (x) :=

∑
g(n)≤x

f+(n).

Next, note that

|Ag(t)−Ag(x)| ≤ A+
g (t)−A+

g (x).

Therefore

∫ x+ε

x
|Ag(t)−Ag(x)| dt ≤

∫ x+ε

x
A+
g (t)−A+

g (x)dt

≤
∫ x+ε

x
A+
g (t)dt−

∫ x

x−ε
A+
g (t)dt

≤ Ψ(x+ ε) + Ψ(x− ε)− 2Ψ(x) +O
(
Mx1+ 1

θErr(x)−c6
)
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� ε2 sup
x−ε<y<x+ε

∣∣Ψ′′(x)
∣∣+Mx1+ 1

θErr(x)−c6

� ε2Mx
1
θ
−1(log x)|<(h+( 1

θ
))| +Mx1+ 1

θErr(x)−c7 . (3.2.11)

By combining (3.2.10) and (3.2.11), we have

Ag(x)− Φ′(x)� εMx
1
θ
−1(log x)|<(h( 1

θ
))| + 1

ε
Mx1+ 1

θErr(x)−c8 .

Finally, let ε = xErr(x)−c9 . We have

Ag(x)− Φ′(x)�Mx
1
θErr(x)−c10 .

This completes the proof of Theorem 2.4.3.

3.3 Preliminary Results for Theorem 2.4.6

3.3.1 Analytic Continuation of U(s)

One of the essential parts of the proof of Theorem 2.4.6 is the analytic continuation of

U(s) :=
∏
p∈P

(
1− χ(p)

pθs

)−1

ζ(θs)−λ̃

to the region Dc,θ, where Dc,θ is defined in 2.3.5.

Theorem 3.3.1. Let χ be a Dirichlet character modulo q and let q̃ be a positive integer such that

q | q̃. Let θ > 0 and let c be a positive constant such that L(θs, ξ) does not vanish in the region

Dc,θ for all Dirichlet characters ξ modulo q̃. Let λ : (Z/q̃Z)× → [0, 1]. Let P be a set of primes

such that for any η > 1− c
log 3

|# {p : p < x, p ∈ P, p ≡ a (mod q̃)} − λ(a)π(a, q, x)| < xη (3.3.1)
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for all a ∈ (Z/q̃Z)× and all sufficiently large x. Then the function

U(s) :=
∏
p∈P

(
1− χ(p)

pθs

)−1

ζ(θs)−λ̃,

where

λ̃ =
1

ϕ(q̃)

∑
a∈(Z/q̃Z)×

χ(a)λ(a),

has an analytic continuation and does not vanish in the region Dc,θ.

Before we embark on the proof of Theorem 3.3.1, a comment is in order. One may wonder

whether the statement of the theorem still holds with a weaker assumption on the bound on the

right side of inequality (3.3.1). As we will see later, if one does not change anything else in the

statement of the theorem, except for the bound on the right side of (3.3.1), then having a bound

of the form O(xη) for some 0 ≤ η < 1 is necessary.

Proof. Fix c, θ, χ, q, q̃ and a function λ as in the statement of the theorem. Next, fix a set of primes

P such that for any η > 1− c
log 3 ,

|Pa,q̃(x)− λ(a)π(a, q, x)| < xη

for each a ∈ (Z/q̃Z)× and all x sufficiently large, where

Pa,q̃(x) := {p : p < x, p ∈ P, p ≡ a (mod q̃)} .

We need to show that the function defined for σ > 1
θ by

U(s) :=
∏
p∈P

(
1− χ(p)

pθs

)−1

ζ(θs)−λ̃

has an analytic continuation to the region Dc,θ, and does not vanish in this region. In order to

prove this, it is sufficient to show that for any real number 1
θ −

c
θ log 3 < σ1 <

1
θ , the function U(s)
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has an analytic continuation and does not vanish in the region

Rc,θ,σ1 := {s ∈ Dc,θ : σ > σ1} .

Fix σ1. Next fix an η such that

1− c

log 3
< η < θσ1.

With η fixed, we now proceed to first study the function

G(s) =
∏
p∈P

(
1− χ(p)

pθs

)−1 ∏
a∈(Z/q̃Z)×

Ga(s)
−λ(a)χ(a),

where

Ga(s) =
∏

p≡a (mod q̃)

(
1− 1

pθs

)−1

. (3.3.2)

For σ > 1
θ , we see that

logG(s) = −
∑
p∈P

log

(
1− χ(p)

pθs

)
−

∑
a∈(Z/q̃Z)×

λ(a)χ(a) log (Ga(s))

= −
∑

a∈(Z/q̃Z)×

∑
p∈P

p≡a (mod q̃)

log

(
1− χ(p)

pθs

)
+

∑
a∈(Z/q̃Z)×

λ(a)χ(a)
∑

p≡a (mod q̃)

log

(
1− 1

pθs

)

=
∑

a∈(Z/q̃Z)×

χ(a)
∑
p∈P

p≡a (mod q̃)

∞∑
k=1

χ(ak−1)

kpkθs
−

∑
a∈(Z/q̃Z)×

λ(a)χ(a)
∑

p≡a (mod q̃)

∞∑
k=1

1

kpkθs

= K1(s) +K2(s), (3.3.3)

where

K1(s) =
∑

a∈(Z/q̃Z)×

χ(a)

 ∑
p∈P

p≡a (mod q̃)

1

pθs
− λ(a)

∑
p≡a (mod q̃)

1

pθs


and

K2(s) =
∑

a∈(Z/q̃Z)×

χ(a)

 ∑
p∈P

p≡a (mod q̃)

∞∑
k=2

χ(ak−1)

kpkθs
− λ(a)

∑
p≡a (mod q̃)

∞∑
k=2

1

kpkθs

 .
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The multiple sums which define K2(s) are absolutely convergent for σ > 1
2θ . Therefore K2(s) has

an analytic continuation to the half-plane σ > 1
2θ . Now, consider

K1,a(s, x) =
∑
p∈P

p≡a (mod q̃)
p<x

1

pθs
− λ(a)

∑
p≡a (mod q̃)

p<x

1

pθs
. (3.3.4)

By applying Abel’s summation,

K1,a(s, x) =
Pa,q̃(x)− λ(a)π(a, q, x)

xθs
+ θs

∫ x

1

Pa,q̃(u)− λ(a)π(a, q, u)

uθs+1
du

=
Pa,q̃(x)− λ(a)π(a, q, x)

xθs
+ θs

∫ ∞
1

Pa,q̃(u)− λ(a)π(a, q, u)

uθs+1
du

− θs
∫ ∞
x

Pa,q̃(u)− λ(a)π(a, q, u)

uθs+1
du

= θs

∫ ∞
1

Pa,q̃(u)− λ(a)π(a, q, u)

uθs+1
du+O

(
xη−θσ

)
+O

(
θ |s|

∫ ∞
x

uη−θσ−1du

)
,

as x tends to infinity. All the integrals are absolutely convergent for σ > η
θ . Thus

∑
a∈(Z/q̃Z)×

χ(a)

(
K1,a(s, x) + θs

∫ ∞
x

Pa,q̃(u)− λ(a)π(a, q, u)

uθs+1
du− Pa,q̃(x)− λ(a)π(a, q, x)

xθs

)
(3.3.5)

provides an analytic continuation of K1(s) to the half-plane σ > η
θ . Therefore

logG(s) = K1(s) +K2(s)

has an analytic continuation to the half-plane σ > η
θ . It follows that the function

G(s) = eK1(s)+K2(s)

has an analytic continuation and does not vanish in the region Rc,θ,σ1 . Since this holds for any

σ1 >
1
θ −

c
θ log 3 , it follows that G(s) has an analytic continuation and does not vanish in the open

half plane σ > 1
θ −

c
θ log 3 .

Next, in order to obtain the analytic continuation and zero-free region for U(s), it is sufficient
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to do this for the ratio U(s)
G(s) . First recall, for any a ∈ (Z/q̃Z)×,

Ga(s) :=
∏

p≡a (mod q̃)

(
1− 1

pθs

)−1

.

Thus, for σ > 1
θ and a Dirichlet character ξ modulo q̃,

log(Ga(s)) = −
∑

p≡a (mod q̃)

log

(
1− 1

pθs

)

= − 1

ϕ(q̃)

∑
ξ (mod q̃)

ξ̄(a)
∑
p

ξ(p) log

(
1− 1

pθs

)

=
1

ϕ(q̃)

∑
ξ (mod q̃)

ξ̄(a)
∑
p

∞∑
k=1

ξ(p)

kpkθs

=
1

ϕ(q̃)

∑
ξ (mod q̃)

ξ̄(a)

(∑
p

∞∑
k=1

ξ(pk)

kpkθs
+ ξ̄(a)

∑
p

∞∑
k=2

ξ(p)− ξ(pk)
kpkθs

)

= Ha(s, θ, ξ) +H∗a(s, θ, ξ), (3.3.6)

where

Ha(s, θ, ξ) =
1

ϕ(q̃)

∑
ξ (mod q̃)

ξ̄(a)
∑
p

∞∑
k=1

ξ(pk)

kpkθs
,

and

H∗a(s, θ, ξ) =
1

ϕ(q̃)

∑
ξ (mod q̃)

ξ̄(a)
∑
p

∞∑
k=2

ξ(p)− ξ(pk)
kpkθs

.

The function H∗a(s, θ, ξ) is absolutely convergent for σ > 1
2θ and defines an analytic function on

the half plane σ > 1
2θ . Now, note that for σ > 1

θ ,

Ha(s, θ, ξ) =
1

ϕ(q̃)

∑
ξ (mod q̃)

ξ̄(a) log
∏
p

(
1− ξ(p)

pθs

)−1

=
1

ϕ(q̃)

∑
ξ (mod q̃)

ξ̄(a) logL(θs, ξ). (3.3.7)

Therefore, by (3.3.6) and (3.3.7), we see that

Ga(s) = eH
∗
a(s,θ,ξ)

∏
ξ (mod q̃)

L(θs, ξ)
ξ̄(a)
ϕ(q̃) .
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Now, for ξ = ξ0 and σ > 1
θ ,

L(θs, ξ0) =
∏
p

(
1− ξ0(p)

pθs

)−1

=
∏
p|q̃

(
1− 1

pθs

)∏
p

(
1− 1

pθs

)−1

=
∏
p|q̃

(
1− 1

pθs

)
ζ(θs).

Thus for σ > 1
θ ,

Ga(s) = eH
∗
a(s,θ,ξ)

∏
p|q̃

(
1− 1

pθs

) 1
ϕ(q̃)

ζ(θs)
1

ϕ(q̃)

∏
ξ (mod q̃)
ξ 6=ξ0

L(θs, ξ)
ξ̄(a)
ϕ(q̃) = Ma(s)ζ(θs)

1
ϕ(q̃) ,

where

Ma(s) = eH
∗
a(s,θ,ξ)

∏
p|q̃

(
1− 1

pθs

) 1
ϕ(q̃) ∏

ξ (mod q̃)
ξ 6=ξ0

L(θs, ξ)
ξ̄(a)
ϕ(q̃) .

Thus

∏
a∈(Z/q̃Z)×

Ga(s)
−λ(a)χ(a) =

∏
a∈(Z/q̃Z)×

(
Ma(s)ζ(θs)

1
ϕ(q̃)

)−λ(a)χ(a)
= ζ(θs)−λ

∏
a∈(Z/q̃Z)×

Ma(s)
−λ(a)χ(a),

(3.3.8)

where

λ̃ =
1

ϕ(q̃)

∑
a∈(Z/q̃Z)×

χ(a)λ(a).

Since the Dirichlet L-functions L(θs, ξ) for non-principal characters ξ do not vanish and have

analytic continuations to the region Dc,θ, it follows that the product

∏
a∈(Z/q̃Z)×

Ma(s)
−λ(a)χ(a)

has an analytic continuation and does not vanish in the region Dc,θ. Now, by (3.3.8),

U(s) =
∏
p∈P

(
1− χ(p)

pθs

)−1

ζ(θs)−λ

=

∏
p∈P

(
1− χ(p)

pθs

)−1 ∏
a∈(Z/q̃Z)×

Ga(s)
−λ(a)χ(a)

 ∏
a∈(Z/q̃Z)×

Ma(s)
λ(a)χ(a)
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= G(s)
∏

a∈(Z/q̃Z)×

Ma(s)
λ(a)χ(a) (3.3.9)

Therefore U(s) has an analytic continuation and does not vanish in the region Dc,θ as desired.

Next, we prove a converse of a simplified version of Theorem 3.3.1, which does not involve a

Dirichlet Character χ. The general question we address is the following. For which increasing

functions β : [1,∞)→ [1,∞) does the following claim hold, and for which does functions the claim

does not hold?

Claim. Let c, θ > 0. Let 0 ≤ λ ≤ 1 and let P be a set of primes such that the function defined for

σ > 1
θ by

FP(s) =
∏
p∈P

(
1− 1

pθs

)−1

ζ(θs)−λ

has an analytic continuation and does not vanish in the region Dc,θ. Then for any sequence of

primes P̃ satisfying

#
(((
P\P̃

)
∪
(
P̃\P

))
∩ [1, x]

)
≤ β(x)

for all x ≥ 1, the function defined for σ > 1
θ by

FP̃(s) =
∏
p∈P̃

(
1− 1

pθs

)−1

ζ(θs)−λ

has an analytic continuation to Dc,θ and does not vanish in the region.

From the proof of Theorem 3.3.1 above, it follows that the claim holds for any function β which

satisfies the following condition: For any η > 1− c
log 3 , we have

β(x) ≤ xη (3.3.10)

for all x sufficiently large. We now prove a converse, namely that in order for the claim to hold

it is necessary for β to satisfy inequalities of the form (3.3.10). That is to say, if β has a larger

order of magnitude than the one allowed by (3.3.10), then there exists a set of primes P̃ satisfying

(3.3.1) for which the corresponding function FP̃ either vanishes in the region Dc,θ or does not have

an analytic continuation to the region. To be precise, we will prove the following theorem.
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Theorem 3.3.2. Let c, θ > 0. Let λ ≥ 0 and let P be a set of primes such that the function defined

for σ > 1
θ by

FP(s) :=
∏
p∈P

(
1− 1

pθs

)−1

ζ(θs)−λ

has an analytic continuation and does not vanish in the region Dc,θ. Let P̃ be a set of primes

containing P such that the function defined for σ > 1
θ by

FP̃(s) :=
∏
p∈P̃

(
1− 1

pθs

)−1

ζ(θs)−λ

has an analytic continuation to Dc,θ. Then, for any η > 1− c
log 3 , we have

#
((
P̃\P

)
∩ [1, x]

)
≤ xη

for all x sufficiently large.

This not only shows that a bound of the form β(x) = O (xη), with η < 1, is necessary in order

for the above associated claim to hold, but moreover, the constant 1− c
log 3 is the best possible.

Proof. Fix c, θ, λ,P and P̃, as in the statement of the theorem. Thus the functions FP(s) and

FP̃(s) have analytic continuations to Dc,θ, and FP(s) does not vanish in this region. Define, for

σ > 1
θ ,

F (s) :=
FP̃(s)

FP(s)
,

so for σ > 1
θ ,

F (s) =
∏

p∈P̃\P

(
1− 1

pθs

)−1

,

and by our assumption, F (s) has an analytic continuation to the region Dc,θ. Next, fix an η such

that 1− c
log 3 < η < 1. We need to show that

P∗(x) = #
((
P̃\P

)
∩ [1, x]

)
≤Mxη

for some constant M > 0 and for x sufficiently large.

In order to do this, we first show that F (s) has an analytic continuation to the region σ > σ1

64



for any 1
θ −

c
θ log 3 < σ1 <

η
θ . Thus let rc,θ be a real number such that 2−η

θ < rc,θ <
1
θ + c

θ log 3 . Next,

let γ be a circle centered at 2
θ with radius rc,θ. Then, by Lemma 3.1.8,

∣∣∣∣∣F (m)
(

2
θ

)
m!

∣∣∣∣∣ ≤ sup
z∈γ
|F (z)| r−mc,θ = c1r

−m
c,θ (3.3.11)

for some positive constant c1. Next, for s > 1
θ , F (s) can be expressed as a Dirichlet series

F (s) =
∞∑
n=1

an
nθs

,

where an = 1 if n = 1 or if all prime factors of n are in P̃\P; otherwise an = 0. It is crucial in our

proof that the coefficients an are non-negative. Moreover, F (s) is absolutely convergent for s > 1
θ .

Hence

F (m)(s)

m!
=

1

m!

∞∑
n=1

an(−θ)m(log n)m

nθs
(3.3.12)

for s > 1
θ . Now, let s0 = 2

θ + it for some t ∈ R. By (3.3.11) and (3.3.12),

∣∣∣∣∣F (m)(s0)

m!

∣∣∣∣∣ ≤ 1

m!

∞∑
n=1

∣∣∣∣an(−θ)m(log n)m

nθs

∣∣∣∣ =
1

m!

∞∑
n=1

anθ
m(log n)m

n2
=

∣∣∣∣∣F (m)
(

2
θ

)
m!

∣∣∣∣∣ ≤ c1r
−m
c,θ . (3.3.13)

The function F (s) has a Laurent series expansion as s = s0,

F (s) =

∞∑
n=1

F (n)(s0)

n!
(s− s0)n,

with radius of convergence Rt. Thus

1

Rt
= lim sup

n→∞

∣∣∣∣∣F (n)(s0)

n!

∣∣∣∣∣
1
n

≤ lim sup
n→∞

∣∣∣c2r
−n
c,θ

∣∣∣ 1
n

=
1

rc,θ
.

Hence Rt ≥ rc,θ. Since these are true for any t ∈ R, we have shown that F (s) has an analytic

continuation to the half-plane σ > 2
θ − rc,θ =: σ1. Thus F (s) has an analytic continuation for

σ ≥ η
θ > σ1.
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Our next step is to apply Perron’s formula to F (s) and obtain a good estimation for

A(x) :=
∑
n<x

an,

where an = 1 if n = 1 or if all prime factors of n are in P̃\P; otherwise an = 0.

First, we want to show that

∫ 2
θ

+i∞

2
θ
−i∞

F (s)
xθs

s
ds =

∫ η
θ

+i∞

η
θ
−i∞

F (s)
xθs

s
ds. (3.3.14)

So, consider a positively oriented rectangular contour, Γ, with vertices (ηθ ± iT ) and (2
θ ± iT ) for

some T > 1. Since F (s) is analytic in the region σ ≥ η, by the residue theorem,

1

2πi

∫
Γ
F (s)

xs

s
ds = 0.

Thus, (3.3.14) follows if we can show that the integral over the two horizontal segments approachs

0 as T tends to infinity. First we will obtain an estimate for F (s) for σ ≥ η
θ . By (3.3.13), for

η
θ ≤ σ0 ≤ 2

θ ,

|F (σ0 + iT )| ≤
∞∑
n=1

∣∣∣∣∣F (n)
(

2
θ + iT

)
n!

∣∣∣∣∣
∣∣∣∣σ0 + iT −

(
2

θ
+ iT

)∣∣∣∣n ≤ ∞∑
n=1

c1

∣∣∣∣∣σ0 − 2
θ

rc,θ

∣∣∣∣∣
n

.

Since
∣∣σ0 − 2

θ

∣∣ < rc,θ, then

|F (s)| ≤ c3 (3.3.15)

for some constant c3 > 0 and for all σ ≥ η
θ . It follows that

∣∣∣∣∣
∫ η

θ
+iT

2
θ

+iT
F (s)

xθs

s
ds

∣∣∣∣∣ ≤
∫ 2

θ
+iT

η
θ

+iT
|F (s)|

∣∣xθs∣∣
|s|

ds ≤
∫ 2

θ

η
θ

c3x
θu√(η

θ

)2
+ T 2

du ≤ c4x
2

T

for some positive constant c4. A similar estimate holds for the integral over the horizontal segment

[ηθ + iT, 2
θ + iT ]. Thus by letting T tend to infinity, (3.3.14) follows.

Now, we turn our attention to the summatory function A(x). Since an is non-negative for all n
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and ap = 1 for p ∈ P̃\P, then

P∗(x) ≤ A(x)

Then by applying Perron’s formula and combining (3.3.14) and (3.3.15), we obtain

P∗(x) ≤ A(x) =
1

2πi

∫ 2
θ

+i∞

2
θ
−i∞

F (s)

θs
xθsds =

1

2πi

∫ η
θ

+i∞

η
θ
−i∞

F (s)

θs
xθsds ≤ c3x

η 1

2πi

∫ η
θ

+i∞

η
θ
−i∞

ds

θs
≤ c5x

η

for some constant c5 > 0 as desired.

We are now ready to prove the converse to Theorem 3.3.1.

Theorem 3.3.3. Let c, θ > 0. Let λ ≥ 0 and let χ be a Dirichlet character modulo q. Let P be a

set of primes such that the function defined for σ > 1
θ by

FP(s) :=
∏
p∈P

(
1− χ(p)

pθs

)−1

ζ(θs)−λ

has an analytic continuation and does not vanish in the region Dc,θ for some complex number λ.

Let P̃ be a set of primes containing P such that the function defined for σ > 1
θ by

FP̃(s) :=
∏
p∈P̃

(
1− χ(p)

pθs

)−1

ζ(θs)−λ

has an analytic continuation to Dc,θ, and such that for all p ∈ P̃\P, χ(p) = 1. Then, for any

η > 1− c
log 3 , we have

#
((
P̃\P

)
∩ [1, x]

)
≤ xη

for all x sufficiently large.

Proof. Fix c, θ, λ,P and P̃, as in the statement of the theorem. Thus the functions FP(s) and

FP̃(s) have analytic continuations to Dc,θ, and FP(s) does not vanish in this region. Define, for

σ > 1
θ ,

F (s) :=
FP̃(s)

FP(s)
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so for σ > 1
θ ,

F (s) =
∏

p∈P̃\P

(
1− χ(p)

pθs

)−1

=
∏

p∈P̃\P

(
1− 1

pθs

)−1

and by our assumption, F (s) has an analytic continuation to the region Dc,θ. The remainder of

the proof proceeds in the same manner as the proof of Theorem 3.3.2.

3.3.2 The Distribution of Values of U(s)

Theorem 3.3.4. Let χ be a Dirichlet character modulo q and let q̃ be a positive integer such that

q | q̃. Let θ > 0 and let c be a positive constant such that L(θs, ξ) does not vanish in the region

Dc,θ for all Dirichlet characters ξ modulo q̃. Define λ : (Z/q̃Z)× → [0, 1]. Let P be a set of primes

such that for any η > 1− c
log 3

|# {p : p < x, p ∈ P, p ≡ a (mod q̃)} − λ(a)π(a, q, x)| < xη (3.3.16)

for all a ∈ (Z/q̃Z)× and all sufficiently large x. Define

U(s) :=
∏
p∈P

(
1− χ(p)

pθs

)−1

ζ(θs)−λ̃,

where

λ̃ =
1

ϕ(q̃)

∑
a∈(Z/q̃Z)×

χ(a)λ(a).

Then, for |t| > 3
θ and all s ∈ Dc,θ,

|U(s)| ≤ c1(log(3 + |t|))A (3.3.17)

for some positive constants c1 and A.

Proof. In this proof, we will refer to several calculations we did in Theorem 3.3.1. By equation

(3.3.9), we see that, for σ > 1
θ ,

U(s) = G(s)
∏

a∈(Z/q̃Z)×

Ma(s)
λ(a)χ(a),
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where

G(s) =
∏
p∈P

(
1− χ(p)

pθs

)−1 ∏
a∈(Z/q̃Z)×

Ga(s)
−λ(a)χ(a),

Ga(s) =
∏

p≡a (mod q̃)

(
1− 1

pθs

)−1

,

Ma(s) = eH
∗
a(s,θ,ξ)

∏
p|q̃

(
1− 1

pθs

) 1
ϕ(q̃) ∏

ξ (mod q̃)
ξ 6=ξ0

L(θs, ξ)
ξ̄(a)
ϕ(q̃) ,

and

H∗a(s, θ, ξ) =
1

ϕ(q̃)

∑
ξ (mod q̃)

ξ̄(a)
∑
p

∞∑
k=2

ξ(p)− ξ(pk)
kpkθs

.

First, we will determine an upper bound for the function |G(s)|. By equation (3.3.3), for σ > 1
θ ,

logG(s) = K1(s) +K2(s),

where

K1(s) =
∑

a∈(Z/q̃Z)×

χ(a)
∑

p≡a (mod q̃)

IP(p)− λ(a)

pθs
,

and

K2(s) =
∑

a∈(Z/q̃Z)×

χ(a)
∑

p≡a (mod q̃)

∞∑
k=2

χ(ak−1)IP(p)− λ(a)

kpkθs
,

where IP is the characteristic function on the set P. For K1(s), suppose that σ ≥ 2
θ . Since

0 ≤ λ(a) ≤ 1, then

|K1(s)| ≤
∑

a∈(Z/q̃Z)×

|χ(a)|
∑

p≡a (mod q̃)

|IP(p)− λ(a)|
pθσ

∑
a∈(Z/q̃Z)×

∑
p≡a (mod q̃)

1

p2
≤M1

for some positive constant M1. Now, suppose σ < 2
θ . By equation (3.3.5), for x > 1,

K1(s) =
∑

a∈(Z/q̃Z)×

χ(a) (J1(a, s, x) + J2(a, s, x) + J3(a, s, x)) , (3.3.18)
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where

J1(a, s, x) :=
∑

p≡a (mod q̃)
p<x

IP(p)− λ(a)

pθs
,

J2(a, s, x) := −Pa,q̃(x)− λ(a)π(a, q, x)

xθs
,

and

J3(a, s, x) := θs

∫ ∞
x

Pa,q̃(u)− λ(a)π(a, q, u)

uθs+1
du

is an analytic continuation of K1(s) to the region Dc,θ.

First note that, for s ∈ Dc,θ and |t| ≥ 3
θ , then −θσ < −1 + c

log|θt| . It follows that, for s ∈ Dc,θ

and |t| ≥ 3
θ ,

|J1(a, s, x)| ≤
∑

p≡a (mod q̃)
p<x

|IP(p)− λ(a)|
pθσ

≤
∑
p<x

1

pθσ
≤
∑
p<x

e
c log p
log|θt|

p
.

By setting x = |θt|
1

1−η , we deduce that

∣∣∣J1(a, s, |θt|
1

1−η )
∣∣∣ ≤ ∑

p<|θt|
1

1−η

e
c log|θt|

(1−η) log|θt|

p
�

∑
p<|θt|

1
1−η

1

p
� log log

(
|θt|

1
1−η
)
� log log(3 + |t|)

(3.3.19)

for s ∈ Dc,θ and |t| > 3
θ . Next, by (3.3.16), we see that, for σ > max{ηθ ,

1
θ −

c
θ log 3}, s ∈ Dc,θ and

|t| > 3
θ ,

|J2(a, s, x)| ≤ |Pa,q̃(x)− λ(a)π(a, q, x)|
xθσ

� xη−θσ � x
η−1+ c

log |θt| .

Again, by letting x = |θt|
1

1−η , we deduce that

∣∣∣J2(a, s, |θt|
1

1−η )
∣∣∣� |θt| 1

1−η

(
η−1+ c

log |θt|

)
� |θt|−1 e

c log |θt|
(1−η) log(|θt|) � 1

|t|
(3.3.20)

for s ∈ Dc,θ and |t| > 3
θ .
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Lastly, we estimate J3(a, s, x). Since σ < 2
θ , for |t| > 3

θ ,

|s| ≤

√(
2

θ

)2

+ t2 ≤ 2 |t| .

It follows that, for σ > max{ηθ ,
1
θ −

c
θ log 3}, s ∈ Dc,θ and |t| > 3

θ ,

|J3(a, s, x)| ≤ |θs|
∫ ∞
x

|Pa,q̃(u)− λ(a)π(a, q, u)|
uθσ+1

du

� |θs|
∫ ∞
x

uη−θσ−1du� |θt|
θσ − η

xη−θσ � |θt|xη−1+ c
log|θt| .

Letting x = |θt|
1

1−η , we see that

∣∣∣J3(a, s, |θt|
1

1−η )
∣∣∣� |θt| |θt| 1

1−η

(
η−1+ c

log |θt|

)
� |θt| |θt|−1 |θt|

c
(1−η) log|θt| � 1 (3.3.21)

for s ∈ Dc,θ and |t| > 3
θ .

Therefore, by combining (3.3.19), (3.3.20), and (3.3.21), we deduce that

K1(s) ≤ C1 log log(3 + |t|),

for some positive constant C1 for all s ∈ Dc,θ and |t| > 3
θ . Next, we will show that K2(s) = O(1).

For σ ≥ σ1 >
1
2θ ,

|K2(s)| ≤
∑

a∈(Z/q̃Z)×

∑
p≡a (mod q̃)

∞∑
k=2

∣∣∣∣χ(ak−1)IP(p)− λ(a)

kpkθs

∣∣∣∣
≤

∑
a∈(Z/q̃Z)×

∑
p

∞∑
k=2

2

kpkθσ

≤ ϕ(q̃)
∑
p

1

p2θσ

(
pθσ

pθσ − 1

)

≤ ϕ(q̃)

√
2√

2− 1

∑
p

1

p2θσ

≤ ϕ(q̃)(2 +
√

2)ζ(2σθ) ≤ ϕ(q̃)(2 +
√

2)ζ(2σ1θ).
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Thus, by choosing σ1 <
1
θ −

c
θ log 3 , we deduce that

|K2(s)| ≤ C2

for some positive constant C2 and for all s ∈ Dc,θ . Therefore

|logG(s)| ≤ C1 log log |t|+ C2.

Thus for |t| > 3
θ and s ∈ Dc,θ,

|G(s)| = e|logG(s)| ≤ eC1 log log|t|+C2 ≤ C3(log |t|)C1 (3.3.22)

for some positive constant C3.

Next, we will begin estimating Ma(s). Recall that

Ma(s) = eH
∗
a(s,θ,ξ)

∏
p|q̃

(
1− 1

pθs

) 1
ϕ(q̃) ∏

ξ (mod q̃)
ξ 6=ξ0

L(θs, ξ)
ξ̄(a)
ϕ(q̃) ,

where

H∗a(s, θ, ξ) =
1

ϕ(q̃)

∑
ξ (mod q̃)

ξ̄(a)
∑
p

∞∑
k=2

ξ(p)− ξ(pk)
kpkθs

.

First, we estimate H∗a(s, θ, ξ). For σ > σ2 >
1
2θ , we see that

|H∗a(s, θ, ξ)| =

∣∣∣∣∣∣ 1

ϕ(q̃)

∑
ξ (mod q̃)

ξ̄(a)
∑
p

∞∑
k=2

ξ(p)− ξ(pk)
kpkθs

∣∣∣∣∣∣
≤
∑
p

∞∑
k=2

∣∣∣∣ξ(p)− ξ(pk)kpkθs

∣∣∣∣
≤
∑
p

∞∑
k=2

2

kpkθσ

≤
∑
p

1

p2θσ

(
pθσ

pθσ − 1

)

≤
√

2√
2− 1

∑
p

1

p2θσ
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≤ (2 +
√

2)ζ(2σθ) ≤ ζ(2σ2θ).

Thus, by choosing σ2 <
1
θ −

c
θ log 3 , we deduce that

|H∗a(s, θ, ξ)| ≤ C4

for some positive constant C4 for all s ∈ Dc,θ . Next, by [2, Lemma 3 ], for a non-principal Dirichlet

character ξ, s ∈ Dc,θ and |t| > 3
θ ,

|L(θs, ξ)| ≤ C5 log |θt|

for some positive constant C5 depending on q̃. It follows that, for s ∈ Dc,θ and any a ∈ (Z/q̃Z)×,

|Ma(s)| = e|H
∗
a(s,θ,ξ)|

∏
p|q̃

∣∣∣∣1− 1

pθs

∣∣∣∣ 1
ϕ(q̃) ∏

ξ (mod q̃)
ξ 6=ξ0

∣∣∣∣L(θs, ξ)
ξ̄(a)
ϕ(q̃)

∣∣∣∣� ∏
ξ (mod q̃)
ξ 6=ξ0

|C5 log |t||
∣∣∣ ξ̄(a)
ϕ(q̃)

∣∣∣
.

Thus, for every a ∈ (Z/q̃Z)×, s ∈ Dc,θ and |t| > 3
θ ,

|Ma(s)| ≤ C7(log |t|)C6

for some positive constants C6 and C7. Lastly, by combining (3.3.22) and (3.3.2), we see that, for

s ∈ Dc,θ and |t| > 3
θ ,

|U(s)| = |G(s)|
∏

a∈(Z/q̃Z)×

∣∣∣Ma(s)
λ(a)χ(a)

∣∣∣� log |T |
∏

a∈(Z/q̃Z)×

C7(log(|t|)C6|λ(a)χ(a)| � (log |t|)A

for some positive constant A. Hence, for s ∈ Dc,θ,

|U(s)| ≤MF (log(3 + |t|))A

as desired.
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3.4 Proof of Theorem 2.4.6

Proof. Fix Fg(s), T (s), A(s), c, θ,M, δ, α, κ,P, χ, q̃, λ, hp(s), h(s) and η as stated in the theorem. Let

Fg(s) have property A+(hp, h, h
+;P, χ, λ, q̃, c, θ,M, δ, α, κ). Define

λ̃ :=
1

ϕ(q̃)

∑
a∈Z/q̃Z

χ(a)λ(a).

We want to show that Fg(s) has property B+(λ̃h, h+; c, θ,MF ,
δ+1

2 , α, κ). First, we will show that

Fg(s) has property B(λ̃h; c, θ,MF ,
δ+1

2 , α, κ). First, condition (1) of property B(λ̃h; c, θ,MF ,
δ+1

2 , α, κ)

follows directly from condition (1) of A(hp, h, ;P, χ, λ, q̃, c, θ,M, δ, α, κ). Next, we will show that

Fg(s) satisfies condition (2) of property B(λ̃h; c, θ,MF ,
δ+1

2 , α, κ). By property (2) of

A(hp, h, ;P, χ, λ, q̃, c, θ,M, δ, α, κ),

Fg(s) = H(s)
∏
p∈P

(
1− χ(p)

pθs

)−hp(s)

,

where H(s) is an analytic function on the region Dc,θ satisfing the inequality

|H(s)| ≤M(log(3 + |t|))δ

for all s ∈ Dc,θ. Thus, for σ > 1
θ ,

Fg(s) = H(s)

∏
p∈P

(
1− χ(p)

pθs

)−hp(s)

ζ(θs)−λ̃h(s)

 ζ(θs)λ̃h(s) = H̃(s)ζ(θs)h̃(s), (3.4.1)

where

H̃(s) = H(s)

∏
p∈P

(
1− χ(p)

pθs

)−hp(s)

ζ(θs)−λ̃h(s)

 = H(s)T (s),

and

h̃(s) = λ̃h(s).

This proves condition (2) of B(λ̃h; c, θ,MF ,
δ+1

2 , α, κ).
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Next, we will show that Fg(s) satisfies condition (4) of B(λ̃h; c, θ,MF ,
δ+1

2 , α, κ). By property

(5) of A(hp, h, ;P, χ, λ, q̃, c, θ,M, δ, α, κ), for all s ∈ Dc,θ,

∣∣∣h̃(s)
∣∣∣ =

∣∣∣λ̃h(s)
∣∣∣ ≤ ∣∣∣λ̃∣∣∣ |h(s)| ≤ c2(log(3 + |t|))α

for 0 ≤ α < 1 for some positive constant c1. It remains to show that Fg(s) satisfies condition (3)

of B(λ̃h; c, θ,MF ,
δ+1

2 , α, κ). More precisely, we need to show that

H̃(s) = H(s)T (s)

has an analytic continuation to the region Dc,θ and satisfies the inequality

∣∣∣H̃(s)
∣∣∣ ≤ c2(3 + |t|)

δ+1
2

for some positive constant c2. First, we will focus on the analytic continuation and upper bound

for T (s). Consider, for σ > 1
θ ,

T (s) =
∏
p∈P

(
1− χ(p)

pθs

)−hp(s)

ζ(θs)−λ̃h(s) = T1(s)T2(s),

where

T1(s) :=

∏
p∈P

(
1− χ(p)

pθs

)−1

ζ(θs)−λ̃

h(s)

,

and

T2(s) :=
∏
p∈P

(
1− χ(p)

pθs

)h(s)−hp(s)

.

By Theorem 3.3.1, the function

U(s) :=
∏
p∈P

(
1− χ(p)

pθs

)−1

ζ(θs)−λ̃

has an analytic continuation and does not vanish in the region Dc,θ. Thus, by property (5) of
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A(hp, h, ;P, χ, λ, q̃, c, θ,M, δ, α, κ), h(s) is analytic in the region Dc,θ. Hence

T1(s) = U(s)h(s)

has an analytic continuation to the region Dc,θ. Next, we calculate an upper bound of T1(s). By

Theorem 3.3.4, there exist positive constants c3 and c4 such that

|U(s)| ≤ c3(log(3 + |t|))c4 .

It follows that

log |U(s)| ≤ log(c3(log(3 + |t|))c4) = log(c3) + c4 log(log(3 + |t|)) ≤ c5 log log(3 + |t|)

for some positive constant c5. Moreover, by property (5) of A(hp, h, ;P, χ, λ, q̃, c, θ,M, δ, α, κ),

|h(s)| ≤M(log(3 + |t|))α.

Therefore,

|T1(s)| ≤ |U(s)||h(s)| eπ|h(s)| ≤ exp{|h(s)| (log |U(s)|+ π)}

≤ exp{M log(3 + |t|)α(c5 log log(3 + |t|) + π)}

≤ exp{c6(log(3 + |t|))α′}

for some positive constant c6 and α < α′ < 1. Since α′ < 1, it follows that for all sufficiently large

t,

c6 log(3 + |t|)α′ ≤ 1− δ
4

log(3 + |t|).

Therefore

|T1(s)| ≤ c7(3 + |t|)
1−δ

4 (3.4.2)

for some positive constant c7.
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Next, we turn our attention to T2(s). First, taking the logarithm of T2(s), we see that, for σ > 1
θ ,

log T2(s) =
∑
p∈P

(h(s)− hp(s)) log

(
1− χ(p)

pθs

)

=
∑
p∈P

(hp(s)− h(s))
∞∑
k=1

χ(pk)

kpkθs

= J1(s) + J2(s),

where

J1(s) :=
∑
p∈P

(hp(s)− h(s))
χ(p)

pθs
,

and

J2(s) :=
∑
p∈P

(hp(s)− h(s))

∞∑
k=2

χ(pk)

kpkθs
.

The function J2(s) converges for σ > 1
2θ . Moreover, by property (5) ofA(hp, h, ;P, χ, λ, q̃, c, θ,M, δ, α, κ),

for σ ≥ 1
θ −

c
θ log 3 ,

|J2(s)| ≤
∑
p∈P
|hp(s)− h(s)|

∞∑
k=2

∣∣∣∣χ(pk)

kpkθs

∣∣∣∣
≤
∑
p∈P

(|hp(s)|+ |h(s)|)
∞∑
k=2

1

kpkθσ

≤ 2M(log(3 + |t|))α
∑
p

1

p2θσ

≤ 2M(log(3 + |t|))α
√

2√
2− 1

∑
p

1

p2θσ

≤ 2M(log(3 + |t|))α(2 +
√

2)ζ(2σθ)

≤ c9(log(3 + |t|))α (3.4.3)

for some positive constant c9. Next, we will estimate J1(s). First, we define a function

B(x) :=
∑
p∈P
p<x

(hp(s)− h(s))χ(p).

77



Also, for T > 0, we define

KT := Kc,θ,T =

{
s : s ∈ D̄c,θ, σ ≤

2

θ
, |t| ≤ T

}
.

Then by property (6) of A(hp, h, ;P, χ, λ, q̃, c, θ,M, δ, α, κ), for T > 0 and for all η > 1− c
log 3 ,

|B(x)| ≤
∑
p∈P
p<x

|hp(s)− h(s)| ≤
∑
p∈P
p<x

‖hp(s)− h(s)‖∞,KT ≤ c8x
η, (3.4.4)

for some constant c8 depending on P, c, θ, and η. Let

J1(s, x) :=
∑
p∈P
p<x

(hp(s)− h(s))
χ(p)

pθs
.

Then, by applying Abel’s Summation formula, we see that, for σ > 1
θ ,

J1(s, x) =
B(x)

xθs
+ θs

∫ x

1

B(u)

uθs+1
du.

By (3.4.4), we see that for x > 1,

|J1(s, x)| ≤ |B(x)|
xθσ

+ |θs|
∫ x

1

|B(u)|
uθσ+1

du ≤ c8x
η−θσ + c8 |θs|

∫ x

1
uη−θσ−1du. (3.4.5)

As x tends to infinity, the right hand side of (3.4.5) converges when σ > η
θ . It follows that

J1(s, x)− B(x)

xθs
+ θs

∫ ∞
x

B(u)

uθs+1
du (3.4.6)

is an analytic continuation of J(s) to the region Dc,θ. We now determine an upper bound for J1(s).

For σ ≥ 2
θ , we see that

|J1(s)| ≤
∑
p∈P
|hp(s)− h(s)| 1

p2
≤ 2M(log(3 + |t|))α

∑
p∈P
≤ 1

p2
c10(log(3 + |t|))α

for some positive constant c10. So assume that σ < 2
θ . Next note that, for s ∈ Dc,θ and |t| ≥ 3

θ ,
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then −θσ < −1 + c
log|θt| . It follows that, for s ∈ Dc,θ and |t| ≥ 3

θ ,

|J1(s, x)| ≤
∑
p∈P
p<x

|hp(s)− h(s)| 1

pθσ
≤ 2M(log(3 + |t|))α

∑
p<x

1

pθσ
≤ 2M(log(3 + |t|))α

∑
p<x

e
c log p
log|θt|

p
.

By setting x = |θt|
1

1−η , we deduce that, for s ∈ Dc,θ and |t| > 3
θ ,

∣∣∣J1(s, |θt|
1

1−η )
∣∣∣ ≤ 2M(log(3 + |t|))α

∑
p<|θt|

1
1−η

e
c log|θt|

(1−η) log|θt|

p

�M(log(3 + |t|))α
∑

p<|θt|
1

1−η

1

p

�M(log(3 + |t|))α log log
(
|θt|

1
1−η
)

�M(log(3 + |t|))α log log(3 + |t|)

�M(log(3 + |t|))α′′ (3.4.7)

for some α < α′′ < 1. Next, by (3.4.6), we see that, for s ∈ Dc,θ, σ < 2
θ and |t| ≥ 3

θ ,

∣∣∣∣−B(x)

xθs
+ θs

∫ ∞
x

B(u)

uθs+1
du

∣∣∣∣ ≤ ∣∣∣∣B(x)

xθs

∣∣∣∣+

∣∣∣∣θs∫ ∞
x

B(u)

uθs+1
du

∣∣∣∣
� xη−θσ + |θs|

∫ ∞
x

uη−θσ−1du

� xη−θσ +
|θt|

θσ − η
xη−θσ

� x
η−1+ c

log|θt| + |θt|xη−1+ c
log|θt| .

Again, by letting x = |θt|
1

1−η , we deduce that

∣∣∣∣−B(x)

xθs
+ θs

∫ ∞
x

B(u)

uθs+1
du

∣∣∣∣� |θt|−1+ c
(1−η) log|θt| + |θs| |θt|−1+ c

(1−η) log|θt| � 1

|θt|
+ 1� 1. (3.4.8)

Therefore, by (3.4.7) and (3.4.8), we obtain, for s ∈ Dc,θ,

|J1(s)| ≤ c12(log(3 + |t|))α′′ (3.4.9)

79



for some positive constant c12 and α < α′′ < 1. Then, by (3.4.9), (3.4.3) and 0 ≤ α < α′′ < 1, we

see that, for sufficiently large t,

|log(T2(s))| ≤ |J1(s)|+ |J2(s)| ≤ c12(log(3 + |t|))α′′ + c9(log(3 + |t|))α < 1− δ
4

log(3 + |t|).

It follows that

|T2(s)| � exp{|log(T1(s))|} � e
1−δ

4
log(3+|t|) � (3 + |t|)

1−δ
4 . (3.4.10)

Thus, for s ∈ Dc,θ,

|T (s)| = |T1(s)| |T2(s)| � (3 + |t|)
1−δ

4 (3 + |t|)
1−δ

4 � (3 + |t|)
1−δ

2 .

Now, since |H(s)| ≤M(3 + |t|)δ for all s ∈ Dc,θ, we obtain

∣∣∣H̃(s)
∣∣∣ = |H(s)| |T (s)| �M(3 + |t|)δ(3 + |t|)

1−δ
2 (3 + |t|)

1+δ
2 .

By choosing MF > M sufficiently large, we obtain

∣∣∣H̃(s)
∣∣∣ ≤MF (3 + |t|)

1+δ
2

and ∣∣∣h̃(s)
∣∣∣ ≤MF (log(3 + |t|))α

for all s ∈ Dc,θ. These complete the proof of condition (2) of B(λ̃h; c, θ,MF ,
δ+1

2 , α, κ). Therefore

Fg(s) has property B(λ̃h; c, θ,MF ,
δ+1

2 , α, κ). Lastly, we need to show that Fg(s) satisfies the

remaining conditions of B+(λ̃h, h+; c, θ,MF ,
δ+1

2 , α, κ). Conditions (1) and (3) of

B(λ̃h, h+; c, θ,MF ,
δ+1

2 , α, κ) follow directly from conditions (1) and (3) of

A+(hp, h, h
+;P, χ, λ, q̃, c, θ,M, δ, α, κ). It remains to show condition (2) of

B(λ̃h, h+; c, θ,MF ,
δ+1

2 , α, κ). Since δ < 1+δ
2 and MF > M , by condition (2) of

A+(hp, h, h
+;P, χ, λ, q̃, c, θ,M, δ, α, κ), we obtain

∣∣H+(s)
∣∣ ≤M(3 + |t|)δ ≤MF (3 + |t|)

δ+1
2 .
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Thus, Fg(s) has property B+(λ̃h, h+; c, θ,MF ,
δ+1

2 , α, κ). Therefore, by applying Theorem 2.4.3,

we obtain, for x ≥ 3 and N ≥ 0,

Ag(x) :=
∑

g(n)<x

f(n) =
x

1
θ

(log x)1−h̃( 1
θ )

(
N∑
m=0

Pm(log log x)

(log x)m
+O (RN )

)

=
x

1
θ

(log x)1−λ̃h( 1
θ )

(
N∑
m=0

Pm(log log x)

(log x)m
+O (RN )

)
,

where

Pm(x) :=

m∑
j=0

m∑
n=j

n−j∑
i=0

em,n

θh̃(
1
θ )

(
n

i

)(
n− i
j

)
(−1)i+j(log θ)n−i−j

Γi

(
h̃
(

1
θ

)
−m

) xj

=

m∑
j=0

m∑
n=j

n−j∑
i=0

em,n

θλ̃h(
1
θ )

(
n

i

)(
n− i
j

)
(−1)i+j(log θ)n−i−j

Γi

(
λ̃h
(

1
θ

)
−m

) xj ,

em,n =
(−1)n

n!

m∑
k=n

(
T
(

1
θ

)
A
(

1
θ

))(m−k)
ak,n

(m− k)!

=
(−1)n

n!

m∑
k=n

m−k∑
l=0

(
m− k
l

)
T (l)

(
1

θ

)
A(m−k−l) (1

θ

)
ak,n

(m− k)!
,

ak,n = λ̃n
∑

k1+k2+···+kn=k
ki≥1

n∏
i=1

h(ki)
(

1
θ

)
ki!

,

and

RN =

(
c13N + 1

log x
(c14 + log log x)

)N+1

+MErr(x)−c15 , (3.4.11)

where

Err(x) = ec16
√

log x

for some constants c13, c14, c15 and c16. This completes the proof.
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Chapter 4

Partial Multiple Zeta Values
Identities

4.1 History of Special Values of the Riemann Zeta Function

The problem of evaluating particular values of the zeta function has a long history. It first

appeared in 1644, when Pietro Mengoli proposed the problem of evaluating

∞∑
n=1

1

n2
, which is now

known as the Basel problem. The Basel problem was first solved by Euler who used the infinite

product representation of sinx to show that

∞∑
n=1

1

n2
=
π2

6
. Moreover, Euler [17, p.185] showed

∞∑
n=1

1

n26
=

224

27!
(76977927π26) =

1315862π26

11094481976030578125
,

which is the largest even integer he able to computed. However, Euler’s method failed to calculate

the values for positive odd integers, which is still an open problem. In the past century, many

mathematicians have found different proofs to obtain the solution to the Basel problem. These

proofs were found by E.L Stark [56], F. Holme [28], D.P. Giesy [21], I. Papdimitriou [44], T.

Apostol [1], A. Yaglom and I. Yaglom [65], B. R.Choe [3], G.F. Simmon [54], R. Kortram [32], J.

Hofbauer [25], J.D. Harper [24], and D. Ritelli [47]. However, we will be focusing on the proof given

by Y. Matuoka [39].

Y. Matsuoka proved the Basel problem by using the integral

∫ π/2

0
x2 cos2n(x)dx and showing that

n∏
k=1

2k

n∏
k=1

(2k − 1)

∫ π/2

0
x2 cos2n(x)dx =

π

4

(
π2

6
−

n∑
i=1

1

i2

)
.
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Thus as n tends to infinity, this yields the solution of the Basel problem. In 2010, Kenneth Stolarsky

asked for a similar result for ζ(4). However, we find that the result can not be generalized to ζ(4)

directly, but it is connected to a similar object which is called a multiple zeta function.

4.2 Multiple Zeta Functions

The first type of multiple zeta function appeared in the 1742 letter of Goldbach to Euler in an

attempt to evaluate the double sum

Sp,q =
∞∑
k=1

1

kq

k∑
j=1

1

kp
, (q ≥ 2, p, q ∈ N)

in terms of special values of the Riemann Zeta function at positive integers. This double sum is

now know as a double Euler sum.

Definition 4.2.1. Let s1, s2, . . . , sk be complex values such that <(s1) +<(s2) + · · ·+<(si) > i for

all i ≤ k. We define the multiple zeta function

ζ(s1, s2, . . . , sk) =
∑

n1>n2>···>nk>0

k∏
i=1

1

nsi
.

When s1, . . . , sk are integers, then ζ(ν̄) is often called a multiple zeta value or k-fold Euler sum.

One primary goal is to obtain an identity for multiple zeta values. We refer the reader to the work

of D. Zagier [66], A. Granville [22], C. Markett [38], V. Drinfeld [14], H. Tsumura [59], and M.

Hoffman [26]. One useful identity proved by Euler is the Euler reflection formula which can be

stated as follows. [18, pp. 217 - 267]

Proposition 4.2.2. If a, b > 1, then

ζ(a, b) + ζ(b, a) = ζ(a)ζ(b)− ζ(a+ b).

In particular,

ζ(a, a) =
1

2

(
ζ2(a)− ζ(2a)

)
. (4.2.1)

Now, we will define the partial zeta function.
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Definition 4.2.3. Let ν̄ = (s1, . . . , sk) be a k-tuple of complex values such that <(s1) + <(s2) +

· · ·+ <(si) > i for all i ≤ k. For N > k, we define a partial zeta function of order N ,

ζN (ν̄) =
∑

N≥n1>n2>···>nk>0

k∏
i=1

1

nsi
.

4.3 Main Result

First, for convenience, we introduce the following definition.

Definition 4.3.1. For positive integers m and n, we define

J(m,n) =

∫ π/2
0 x2m cos2n xdx∫ π/2

0 cos2n x dx
.

Observe that J(0, n) = 1. Now, we are ready to state our theorem.

Theorem 4.3.2. For any positive integers m and n, we have

J(m,n) =

∫ π/2
0 x2m cos2n xdx∫ π/2

0 cos2n x dx
= cm,0 +

m∑
l=1

cm,l l∑
i=1

∑
r1+···+ri=l

ζn(2r1, . . . , 2ri)


where

cm,l = (−1)l
π2(m−l)

22m

(2m)!

(2(m− l) + 1)!
.

Moreover, by letting n tend to infinity, we obtain the identity

cm,0 +
m∑
l=1

cm,l l∑
i=1

∑
r1+···+ri=l

ζ(2r1, . . . , 2ri)

 = 0.

Proof. First, we will use integration by parts to find a recurrence relation of J(m,n). To that end,

I(m,n) :=

∫ π/2

0
x2m cos2n(x)dx

=
x2m+1

2m+ 1
cos2n(x)

∣∣∣∣
π
2

0

−
∫ π/2

0

x2m+1

2m+ 1

(
2n cos2n−1(x) sin(x)

)
dx

= − 2n

2m+ 1

∫ π/2

0
x2m+1 cos2n−1(x) sin(x)dx
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= − 2n

2m+ 1

(
x2m+2

2m+ 2
cos2n−1(x) sin(x)

∣∣∣∣
π
2

0

−
∫ π/2

0

x2m+2

2m+ 2

(
(2n− 1) cos2n−2(x) sin2(x) + cos2n(x)

)
dx

)

=
2n

2m+ 1

(∫ π/2

0

x2m+2

2m+ 2

(
(2n− 1) cos2n−2(x)(1− cos2 x)

)
+ cos2n(x)

)
dx

=
2n

(2m+ 1)(2m+ 2)

(
(2n− 1)

∫ π/2

0
x2m+2 cos2n−2(x)dx− 2n

∫ π/2

0
x2m+2 cos2n(x)dx

)

=
2n(2n− 1)

(2m+ 1)(2m+ 2)
I(m+ 1, n− 1)− 4n2

(2m+ 1)(2m+ 2)
I(m+ 1, n) (4.3.1)

Also consider the following reduction formula

∫ π/2

0
cos2n(x)dx =

2n− 1

2n

∫ π/2

0
cos2n−2(x) dx. (4.3.2)

Thus, by using (4.3.1) and (4.3.2), we deduce that

J(m,n) =
I(m,n)∫ π/2

0 cos2n(x)dx

=
2n(2n− 1)

(2m+ 1)(2m+ 2)

I(m+ 1, n− 1)∫ π/2
0 cos2n(x)dx

− 4n2

(2m+ 1)(2m+ 2)

I(m+ 1, n)∫ π/2
0 cos2n(x)dx

=
4n2

(2m+ 1)(2m+ 2)
J(m+ 1, n− 1)− 4n2

(2m+ 1)(2m+ 2)
J(m+ 1, n)

= − 4n2

(2m+ 1)(2m+ 2)
(J(m+ 1, n)− J(m+ 1, n− 1)) .

It follows that

J(m+ 1, n)− J(m+ 1, n− 1) = −(2m+ 1)(2m+ 2)

4n2
J(m,n).

Thus

J(m+ 1, n)− J(m+ 1, 0) = −(2m+ 1)(2m+ 2)
n∑
k=1

1

4k2
J(m, k).

Hence

J(m+ 1, n) =
1

2m+ 3

(π
2

)2m+2
− (2m+ 1)(2m+ 2)

n∑
k=1

1

4k2
J(m, k). (4.3.3)
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Now, we have the recurrence relations. We will prove the formula by induction on m. Clearly,

J(1, n) =
1

3

(π
2

)2
− 1

2

n∑
k=1

1

k2
= c1,0 + c1,1ζn(2).

Now, assume that

J(m,n) = cm,0 +
m∑
l=1

cm,l l∑
i=1

∑
r1+···+ri=l

ζn(2r1, . . . , 2ri)

 .

Then by (4.3.3), we deduce

J(m+ 1, n) =
1

2m+ 3

(π
2

)2m+2
− (2m+ 1)(2m+ 2)

n∑
k=1

1

4k2
J(m, k)

=
1

2m+ 3

(π
2

)2m+2

− (2m+ 1)(2m+ 2)

n∑
k=1

1

4k2

cm,0 +

m∑
l=1

cm,l l∑
i=1

∑
r1+···+ri=l

ζn(2r1, . . . , 2ri)


= cm+1,0 − (2m+ 1)(2m+ 2)

n∑
k=1

1

4k2

cm,0 +
m∑
l=1

cm,l

l∑
i=1

∑
r1+···+ri=l

ζn(2r1, . . . , 2ri)

 .

(4.3.4)

Now, we have

−(2m+ 1)(2m+ 2)

4
cm,l = −(2m+ 1)(2m+ 2)

4

(
(−1)l

π2(m−l)

22m

(2m)!

(2(m− l) + 1)!

)

= (−1)l+1π
2((m+1)−(l+1)

22m+2)

(
(2m+ 2)!

(2((m+ 1)− (l + 1)) + 1)!

)
= cm+1,l+1. (4.3.5)

Moreover,

n∑
k=1

1

k2

l∑
i=1

∑
r1+···+ri=l

ζk(2r1, . . . , 2ri) =
n∑
k=1

1

k2

l∑
i=1

∑
r1+···+ri=l

∑
k≥k1>···>ki≥1

1

k2r1
1 · · · k2ri

i

=
l∑

i=1

∑
r1+···+ri=l

n∑
k=1

∑
k≥k1>···>ki≥1

1

k2k2r1
1 · · · k2ri

i
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=
l∑

i=1

∑
r1+···+ri=l

(ζn(2, 2r1, · · · , 2ri) + ζn(2r1 + 2, · · · , 2ri))

=
l+1∑
i=1

∑
r1+···+ri=l+1

ζn(2r1, · · · , 2ri). (4.3.6)

Lastly, by combining (4.3.4), (4.3.5), and (4.3.6), we see that

J(m+ 1, n) = cm+1,0 − (2m+ 1)(2m+ 2)

n∑
k=1

1

4k2

(
cm,0 +

m∑
l=1

(
cm,l

l∑
i=1

∑
r1+···+ri

ζn(2r1, . . . , 2ri)

))

= cm+1,0 − cm+1,l+1ζn(2) +

m∑
l=1

cm+1,l+1

n∑
k=1

1

k2

l∑
i=1

∑
r1+···+ri

ζn(2r1, . . . , 2ri)

= cm+1,0 − cm+1,l+1ζn(2) +
m∑
l=1

cm+1,l+1

l+1∑
i=1

∑
r1+···+ri=l+1

ζn(2r1, . . . , 2ri)

= cm+1,0 − cm+1,l+1ζn(2) +

m+1∑
l=2

cm+1,l

l∑
i=1

∑
r1+···+ri=l

ζn(2r1, . . . , 2ri)

= cm+1,0 +
m+1∑
l=1

cm+1,l

l∑
i=1

∑
r1+···+ri=l

ζn(2r1, · · · , 2ri),

as desired. It remain to show that J(m,n) tends to 0 as n tends to infinity. By definition, we find

that

0 ≤ J(m,n) =

∫ π/2
0 x2m cos2n(x)dx∫ π/2

0 cos2n(x)dx

≤
(π

2

)2m
∫ π/2

0 sin2(x) cos2n(x)dx∫ π/2
0 cos2n(x)dx

=
(π

2

)2m
(∫ π/2

0 cos2n(x)dx∫ π/2
0 cos2n(x)dx

−
∫ π/2

0 cos2n+2(x)dx∫ π/2
0 cos2n(x)dx

)

=
(π

2

)2m
(

1− 2n+ 1

2n+ 2

)

Thus by the Squeeze Theorem, lim
n→∞

J(m,n) = 0.

In order to answer K. Stolarsky ’s question regarding the values of ζ(4), we give the following

corollary.
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Corollary 4.3.3. We have

ζ(4) =
π2

3
ζ(2)− ζ2(2)− π4

60
=
π4

90
.

Proof. In Theorem 4.3.2, by letting m = 2 we find that

J(2, n) =
π4

5 · 24
− 4π2

24
ζn(2) +

4!

24
(ζn(2, 2) + ζn(4)) .

By letting n tends to infinity, we obtain

0 =
π4

80
− π2

4
ζ(2) +

3

2
(ζ(2, 2) + ζ(4)) .

By the identity (4.2.1), we find that

ζ(2, 2) + ζ(4) =
1

2
ζ2(2) +

1

2
ζ(4).

Therefore,

0 =
π4

80
− π2

4
ζ(2) +

3

4
ζ2(2) +

3

4
ζ(4).

Hence

ζ(4) = −π
4

60
+
π2

3
ζ(2)− ζ2(2) =

π4

90

as desired.
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