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ABSTRACT

The critical current in a Josephson junction is known to exhibit a 1/fα low frequency noise.

Implemented as a superconducting qubit, this low frequency noise can lead to decoherence.

While the 1/f noise has been known to arise from an ensemble of two level systems connected

to the tunnel barrier, the precise microscopic nature of these TLSs remain a mystery.

In this thesis we will present measurements of the 1/fα low frequency noise in the critical

current and tunneling resistance of Al-AlOx-Al Josephson junctions. Measurements in a wide

range of resistively shunted and unshunted junctions confirm the equality of critical current and

tunneling resistance noise. That is the critical current fluctuation corresponds to fluctuations

of the tunneling resistance. In not too small Al-AlOx-Al junctions we have found that the

fractional power spectral density scales linearly with temperature, described by the formula:

SIc/I
2
c ≡ SR/R

2 ≈ 1× 10−13(T (K)/A (µm2))1/f Hz−1.

We confirmed that the 1/fα power spectrum is the result of a large number of two level

systems modulating the tunneling resistance. At small junction areas and low temperatures,

the number of thermally active TLSs is insufficient to integrate out a featureless 1/f spectral

shape. By analyzing the spectral variance in small junction areas, we deduced a TLS density

of approximately, n ≈ 2.53 per µm2 per Kelvin spread in the TLS energy per factor e in the

TLS lifetimes, or σ0 = 69.7 µm−2K−1, consistent with the density of tunneling TLSs found

in glassy insulators, as well as the density deduced from coherent TLSs interacting at qubit

frequencies. This density combined with the magnitude of the 1/f power spectral density in

large area junctions, gives an average TLS effective area, ⟨δA2⟩ ≈ (0.3 nm2)2.

In ultra small tunnel junctions, A ≈ 0.008 µm2, we have studied the time-domain dynamics
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of isolated TLSs. We have found a TLS whose dynamics is described by the quantum tunneling

between the two localized wells, and a one-phonon absorption/emission switching rate. From

the quantum limiting rate and the WKB approximation, we estimated that the TLS has a

mass and tunneling distance product, m1/2d ≈ 1.5× 10−23
√
kg.m, consistent with an atomic

mass tunneling through crystal lattice distances, d ∼ 1 Å. At higher temperatures TLSs have

been found that obey a simple thermal activation dynamics.

By analyzing the TLS response to an external electric field, we have deduced that the TLS

electric dipole is in the order of, P ∼ 1 eÅ ∼ 5 D, consistent with the TLS having the charge

of one electron tunneling through a disorder potential of distances ∼ 1 Å.
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CHAPTER 1

INTRODUCTION

Superconducting quantum bits have developed into a promising quantum computing architec-

ture. The absence of dissipation associated with superconductivity provides a natural platform

for the manipulation of fragile quantum states, and their compatibility with microfabrication

techniques provide a path towards scalability.

The superconducting qubit can interact strongly through the electromagnetic environment,

a feature that allows for strong multi-qubit coupling accessible [9], but also makes controlling

unwanted interactions difficult [80]. One of the challenges for superconducting qubits is there-

fore the minimization of decoherence [48]. The quantum state encoded into a qubit has to be

preserved long enough for practical gate operations and multi-qubit coupling to take place.

Unfortunately the qubit resides in a solid-state environment that contains a variety of defects,

thus presenting numerous pathways for decoherence [48, 86].

Recent progress in superconducting qubits have resulted in longer coherence times [47]. How

far this improvement can continue depends crucially on understanding the various decoherence

mechanisms and developing strategies to mitigate them. One such decoherence source, and the

topic of this thesis, is critical current fluctuations. The critical current of a Josephson junction

is known to exhibit a low-frequency 1/fα (α ∼ 1) spectrum [67], which is generally understood

to arise from a collection of TLSs in the tunnel barrier [74, 17]. Despite decades of research, the

precise microscopic origin of these TLSs and the accompanying coupling mechanism remain

relatively unknown.

1
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1.1 Thesis organization

We will first discuss the background device physics of the Josephson junction and supercon-

ducting qubits, which will form the bulk of chapter 1. These will be invaluable in discussing

critical current noise in the context of qubit decoherence.

In chapter 2 we will discuss how critical current factors into qubit decoherence. We will also

describe the state of the field in critical current noise and discuss some of the motivations for

the experiments in this thesis.

In chapter 3 we will introduce the well established foundations of 1/f noise, and a description

of the tunneling TLS model which may be important to describe defects at low temperatures.

Chapters 4 and 5 will discuss device fabrication and measurement methods.

The experiments, results, and analysis presented in this thesis are contained in chapters 6

and 7. In chapter 6 we will cover our measurements of the 1/f noise in Al-AlOx-Al junctions.

The second half of chapter 6 will discuss our observation of the breakdown of Gaussianity,

thus the emergence of isolated two level systems. Chapter 7 will detail our measurements and

analysis of individual TLSs in the time-domain.

Finally, we conclude the thesis with a brief discussion and some preliminary results of our

experiments into the strain response of the TLSs and their dynamics in a highly disordered

tunnel barrier (chapter 8). We will summarize and highlight our key findings in Chapter 9,

which will conclude this thesis.

1.2 The Josephson Junction

The Josephson junction is central to many superconducting quantum circuits. In superconduc-

tors the electrons at the Fermi energy pair up with opposite momentum states (k,−k) forming

a Cooper pair. A microscopic theory explaining the condensation of the Fermi electrons into a

Cooper pair condensate is given by the BCS theory [7]. The central idea is that an electron can

locally polarize the crystal by attracting the positively charged ions, which in turn provides
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an attractive force for the second electron. If this attractive electron-phonon interaction is

sufficiently strong to offset against the Coulomb repulsion, then the net attractive potential

results in the pairing of the electrons.

The resulting superconducting order can be described by a macroscopic order parameter

ψ(r) = ψ0(r)e
iφ(r). If two superconducting regions are brought into contact through a weak

link such as a thin insulating barrier, the exponentially decaying tail of the wavefunction from

(I) can overlap into (II), and a phase difference ∆φ = φI − φII can exist across the junction

and a supercurrent can flow through the junction. Intuitively this can be understood as the

quantum mechanical tunneling of Cooper pairs. The supercurrent through the junction is

given by the first Josephson relation, also called the current-phase relation:

Is(ϕ) = I0 sinϕ, (1.1)

where Is is the supercurrent through the junction, I0 is the critical current, and ϕ = ∆φ −

2π/Φ0

∫
A · ds is the gauge-invariant phase difference across the junction. More generally,

stemming from the fact the wavefunction must be 2π periodic, the current-phase relation is

given by the Fourier series:

Is(ϕ) =

∞∑
n=1

Ic,n sin (nϕ) (1.2)

For the conventional superconductor-insulator-superconductor (SIS) tunnel junction, experi-

ments have shown that the n = 1 term is the dominant contribution, thus the current-phase

relation for SIS junctions take on the simple form of equation 1.1.

The second Josephson relation provides the relationship between the time evolution of the

gauge-invariant phase ϕ to a voltage difference across the junction:

dϕ

dt
=

2eV

~
, (1.3)

which leads to the ac-Josephson effect where a constant voltage V0 across the junction leads
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to a time evolution of the phase, ϕ(t) = ϕ(0) + 2eV0t/~, and resulting in an ac supercurrent:

Is = I0 sin (2πfJ t+ ϕ0) , (1.4)

where fJ is the Josephson frequency given by:

fJ =
2eV0
h

=
V0
Φ0

≈ 0.48 GHz/µV (1.5)

The energy stored in the Josephson element can be obtained by considering the work done by

an external battery in taking the junction from zero voltage to some voltage V . Using both

the junction current-phase relation and the second Josephson relation:

E =

∫ τ

0
IV dt =

~I0
2e

∫ τ

0
sinϕ

dϕ

dt
dt = EJ (1− cosϕ) , (1.6)

where EJ = ~I0/2e is the Josephson energy. In the SIS junction an intrinsic capacitance is

created by the geometry of the two electrodes separated by the thin insulating dielectric. This

self-capacitance can often be approximated by a parallel plate geometry, CJ = ϵA/d, leading

to a charging energy, Ec = e2/2CJ . The competition between the Josephson energy and the

junction charging energy is often characterized by the ratio EJ/EC , which is one of the basic

parameters when designing a qubit system.

Another property of the junction is its non-linear Josephson inductance, an important effect

in all of the qubit systems and especially utilized in the fluxonium qubit to achieve a super-

inductance [42]. From the definition of self-inductance, V = L dI/dt, we can use the Josephson

relations to arrive at:

LJ =
Φ0

2πI0 cosϕ
(1.7)

The importance of the Josephson inductance can be intuitively understood by considering the

qubit as a quantized LC oscillator. The quantized LC oscillator has a harmonic potential,

which results in regular ~ω energy spacings of the excitation spectrum. The non-linearity of
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the Josephson inductance gives the required anharmonicity to isolate an effective two level

system to form the qubit.

1.2.1 The Ambegaokar-Baratoff Relation

Ambegaokar and Baratoff [1] derived a relationship between the critical current Ic and the

normal state resistance Rn:

IcRn =
π∆

2e
tanh

(
∆

2kBT

)
, (1.8)

and in the limit T → 0:

Ic(0)Rn =
π∆(0)

2e
(1.9)

Intuitively this can be understood by noting that the normal state resistance Rn parameterizes

the tunneling probability, which is identical in the cases of Cooper pair and normal electron

tunneling. More importantly in our discussion of noise processes, this relationship provides

a link between critical current and resistive fluctuations. Additionally it is also useful as a

practical tool to perform a quick estimate of the junction critical current based on its room

temperature tunneling resistance.

1.2.2 The RCSJ Model

The circuit dynamics of the Josephson junction can be analyzed in the resistively and capaci-

tively shunted junction (RCSJ) model. In this model the equation of motion for the Josephson

junction is:

I = I0 sinϕ+
V

R
+ C

dV

dt
, (1.10)

and in terms of the gauge-invariant phase ϕ:

I = I0 sinϕ+
1

R

~
2e

dϕ

dt
+ C

~
2e

d2ϕ

dt2
(1.11)
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Figure 1.1: RCSJ potential energy at three different bias points, I/I0. At zero bias, the
phase is trapped in a local minimum. At I/I0 = 1, the tilting of the washboard turns the
local minima into inflection points, thus allowing the phase to roll and the junction enters its
voltage state, dϕ/dt = 2eV/~.

We can also define a dimensionless time variable τ = ωpt, with ωp = (2eIo/~C)1/2, so that the

equation of motion can be re-written as:

I/I0 = sinϕ+ β−1/2
c

dϕ

dτ
+
d2ϕ

dτ2
, (1.12)

where,

βc =
2πR2CI0

Φ0
, (1.13)

is the Stewart-McCumber parameter.

An intuitive insight can be gained by noting that the equation of motion of the phase

particle, equation 1.12, is the equation of motion of a particle with mass, (Φ0/2π)
2C, moving

in a potential U = −(Φ0I0/2π) cosϕ − (Φ0I/2π)ϕ, with a drag force (Φ0/2π)
2(1/R) dϕ/dt

representing the shunting resistance. Figure 1.1 plots this tilted washboard potential.

In the regime where βc < 1, the junction is said to be overdamped and the IV is non-

hysteretic. In the limit βc ≪ 1 and at T = 0 K, the IV characteristic is given by:
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Figure 1.2: IV characteristics of an overdamped (resistively shunted) Josephson junction.

V =


0 I < I0

R(I2 − I20 )
1/2 I ≥ I0

(1.14)

In the regime βc ≥ 1 the junction is underdamped and the IV characteristic displays a

hysteresis corresponding to the inertia of the phase particle. The bias current I acts to tilt

the washboard potential and at I = I0 the potential has been tilted so far as to make the

local minima mere inflections, which then allows the phase particle to run freely, putting the

junction in the voltage state. In the retrapping branch, the inertia of the phase particle allows

it to escape the potential minima until the bias current has been sufficiently lowered to fully

re-trap the phase particle.

1.3 The dc-SQUID

The dc-Superconducting Quantum Interference Device (SQUID) is formed by two Josephson

junctions connected through a superconducting loop. The supercurrent through a SQUID

inherits a Φ0 periodic structure due to the fluxoid quantization in superconductors. This

periodicity in magnetic flux makes the SQUID a very sensitive flux-to-voltage amplifier (trans-
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Figure 1.3: (A) Circuit diagram of a SQUID. (B) Modulation of the SQUID’s critical current
Isq as a function of the magnetic flux Φ/Φ0, 2I0 is the maximum critical current.

ducer). In a SQUID with symmetric junctions of critical current I0, the total supercurrent Isq

is given by:

Isq = I0 (sin δ1 + sin δ2) = 2I0 sin

(
δ1 + δ2

2

)
cos

(
δ1 − δ2

2

)
(1.15)

The phase quantization condition for a SQUID is:

2π
Φ

Φ0
= δ2 − δ1, (1.16)

The total flux in the SQUID is the sum of the externally applied flux Φx and the flux generated

by the circulating current Iq in the SQUID loop inductance L:

Φ = Φx + LIq (1.17)

If the loop inductance is small, such that the maximum flux contribution due to the circulating

current is much smaller than the flux quantum, 2LI0/Φ0 ≪ 1, then the SQUID supercurrent

takes on the form:

Isq =

∣∣∣∣2I0 cos(πΦx

Φ0

)∣∣∣∣ sin(δ2 + δ1
2

)
(1.18)
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The SQUID screening parameter βL = 2I0L/Φ0, is important when designing a SQUID. For

βL ≪ 1 the SQUID supercurrent ISQc modulates from its maximum 2I0 to 0. The modulation

depth decreases as βL is increased. When βL > 1, more than one value of the circulating

current is possible to satisfy the fluxoid quantization condition, leading to magnetic hysteresis.

1.4 Superconducting quantum bits

1.4.1 Model two level system

The simplest representation of the qubit is that of the hamiltonian of a pseudospin-1/2 system.

H =
1

2

(
ϵzσ̂z + ϵxσ̂x

)
(1.19)

Labeling the eigenstates of the qubit |0⟩ and |1⟩, the generic state of the qubit takes on the

form:

|ψ⟩ = α|0⟩+ β|1⟩, (1.20)

with |α|2 + |β|2 = 1. All the possible states of a qubit map out the surface of a sphere,

commonly referred to as the Bloch sphere.

1.4.2 Superconducting flux qubit

The three energy terms relevant in the superconducting flux qubit are the charging energy, the

Josephson energy, and the energy stored in the loop inductance by the circulating current:

H =
1

2
CJV

2 +
1

2
LqI

2
q − EJ cosϕ (1.21)

We can recast the Hamiltonian slightly in terms of some more physically accessible variables:

the total flux is Φ = Φx + Φq, where Φx is the externally applied flux, and Φq is the flux due
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Figure 1.4: (Black line) Degenerate double well potential of a flux qubit biased at Φx = Φ0/2.
(Red line) Tilted double well potential away from the degeneracy point. EJ controls the
height of the tunneling barrier. The magnetic flux bias controls ϵ which is the energy
difference between the left/right wells.

to the circulating current given by Φq = LqIq. Using the flux quantization condition:

2π
Φ

Φ0
= ϕ, (1.22)

and denoting the single electron charging energy, EC = e2/2CJ , then the Hamiltonian can be

re-expressed as:

H = 4Ec

(
Q

2e

)2

+
(Φ− Φx)

2

2Lq
− EJ cos

(
2π

Φ

Φ0

)
, (1.23)

By analogy to mechanical systems, the charging energy term can be seen as the kinetic energy,

while the last two terms form the potential energy. At an external flux bias Φx = Φ0/2 the

flux qubit is biased at a special point called the degeneracy point. At this flux bias point, the

quadratic inductive potential is at a minimum at the same point where the Josephson energy

is at a maximum. This condition creates a double well potential as illustrated in figure 1.4.

The classic double well potential is formed where the potential barrier height is related to

the Josephson energy EJ , which determines the tunnel coupling ∆0 between the left and right

wells. The energy asymmetry ϵ is controlled by the external flux bias Φx. The double-well
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potential is degenerate, ϵ = 0, when Φx = Φ0/2. The qubit energy is given by:

E01 =
√

∆2
0 + ϵ2 (1.24)

In the localized left/right well basis, the qubit eigenstates |0⟩ and |1⟩ at the degeneracy point

are the symmetric and anti-symmetric combinations:

|0⟩ = |L⟩+ |R⟩√
2

(1.25)

|1⟩ = |L⟩ − |R⟩√
2

, (1.26)

separated by an energy E01 = ∆0 where ∆0 is the tunnel coupling strength controlled by the

height of the barrier, which is in turn dependent on the critical current Ic of the Josephson junc-

tion forming the qubit. Hence fluctuations in the critical current will manifest as fluctuations

in the qubit frequency, f01 = E01/h

1.4.3 Phase qubit

An earlier superconducting qubit architecture is the current-biased phase qubit. It makes use

of the tilted-washboard potential of the Josephson junction (figure 1.1), where the current bias

is tuned so that the local potential well contains three bound states used to realize the logical

qubit states and a readout state. Consequently the qubit is highly sensitive to noise coupled

in through this external current biasing line. A modern incarnation of the phase qubit places

the Josephson junction in a superconducting loop, so that the current bias can be achieved

through an external magnetic flux bias. Nevertheless, the Hamiltonian of the current biased

phase qubit still serves as a prototypical example of how the Hamiltonian of the Josephson

junction system can be engineered to realize a quantum bit.

The potential energy in the current biased phase qubit is essentially the current biased/tilted
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washboard potential, hence has the Hamiltonian:

H =
Q2

2CJ
−Ej cosϕ−

(
Φ0I

2π

)
ϕ (1.27)

For current biases I ≈ I0, the potential well confining the phase particle is shallow, and it is

possible to choose the correct bias parameters such that there are only three discrete states in

the local minima. The first two states |0⟩ and |1⟩ form the logical qubit states, while the third

|3⟩ serves as a read-out state. Since the local minima arises due to the cosine dependence of the

Josephson energy (EJ = EJ0 cosϕ), fluctuations in the Josephson energy lead to perturbations

in the qubit states and eigenenergies.

The Hamiltonian of the flux biased phase qubit is identical to that of the flux qubit, the

differences in operation comes from the choice of circuit parameters. As such the potential

energy for the phase qubit is identical to figure 1.4. In the phase qubit the double well potential

is extremely tilted to one side, such that one of the localized potential well is so shallow that it

only supports about 3 discrete energy levels. The opposite well is now deep enough to contain

many energy states that it can be treated as essentially a continuum of energy states that

will serve as the readout states. Again in this architecture the Josephson energy EJ is the

term that gives rise to the localizing potential, thus fluctuations in I0 can perturb the qubit

frequency.

1.5 Fluctuations

Due to some fundamental physical processes, a physical quantity x (t) can fluctuate around its

mean value ⟨x⟩. For example, Brownian motion is the fluctuation on the spatial coordinates

r (t) of particles suspended in a liquid. In the case of Brownian motion, the cause of this

fluctuation turns out to be the thermal motion of the molecules comprising the liquid. To

be able to deduce the physical processes responsible for fluctuations, it is imperative that we

understand how we can describe these fluctuations.
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We can assign a probability density function, w(x, t) to a physical variable x (t). The prob-

ability that at time t the variable x takes on the value in the range of x0 ≤ x ≤ x1, is given

by:

P (x0 ≤ x ≤ x1, t) =

∫ x1

x0

w(x, t) dx (1.28)

The variable x(t) is said to be stationary if the probability density function independent of

time, so that: w(x, t) = w(x). The mean and mean square values are defined in the usual way:

⟨x⟩ =
∫ +∞

−∞
x w(x) dx, (1.29)

⟨x2⟩ =
∫ +∞

−∞
x2 w(x) dx, (1.30)

We define fluctuations in the variable x(t) to be deviations from the mean:

δx(t) = x(t)− ⟨x⟩, (1.31)

and the variance σ2 is defined as the mean value of the fluctuation squared:

σ2 = ⟨δx2⟩ = ⟨(x− ⟨x⟩)2⟩ = ⟨x2⟩ − ⟨x⟩2 (1.32)

An important class of fluctuations is when the physical quantity x(t) takes on values that

are distributed according to the normal (Gaussian) distribution:

w(x) =
1√
2πσ2

exp

(
−(δx)2

2σ2

)
(1.33)

An extreme case of non-Gaussian distribution, one that is central to this thesis, is the case of

a random telegraph signal, or a two level system. In this case the variable x(t), usually either

voltage V (t) or the resistance R(t), takes on only two discrete values x1 and x2, instead of the

continuous range of values required for the Gaussian distribution. However the superposition

of many (N ≫ 1) and independent two level systems can sum to fluctuations that are normally
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(Gaussian) distributed, a manifestation of the central limit theorem.

To describe how the fluctuations δx(t) evolve in time, we invoke the correlation function:

ψ(τ) = ⟨δx(t+ τ)δx(t)⟩ =
∫ +∞

−∞
δx(t+ τ) δx(t) dt (1.34)

The correlator ψ(τ) measures how similar the signal x(t) is to itself at a time offset τ (autocor-

relator), it therefore reveals the time evolution of the fluctuations. In our analysis it is often

useful to analyze the spectral content of the fluctuations. The Wiener-Khintchine theorem

links the Fourier transform of the autocorrelator to the power spectral density, Sx(f), of the

signal x(t):

Sx(f) =

∫
ψ(τ) e−2πifτ dτ (1.35)

A random process is said to be Gaussian if its statistics is fully described by its power spectral

density, therefore equivalently its 2-point correlation functions ψ(t1, t2). That is any higher

order n-point correlation functions do not contain information that is not already in the 2-point

correlations.

The spectral information contained in the power spectral density can reveal important char-

acteristics of the fundamental physical processes that drive the fluctuations under study. One

canonical example is the thermal noise of electrons in a resistor, commonly referred to as the

Johnson-Nyquist noise. The thermal excitations of electrons in a resistor give rise to finite

voltage fluctuations, even at zero voltage bias. While the instantaneous voltage fluctuates

from zero, the average voltage is of course zero. The power spectral density of the thermal

voltage fluctuations is a constant (white noise), given by:

SV = 4kBTR, (1.36)

or in terms of current noise:

SI =
4kBT

R
, (1.37)
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where kB is the Boltzmann constant.



CHAPTER 2

THE CRITICAL CURRENT NOISE PROBLEM IN
QUANTUM BITS

2.1 Qubit Coherence

Figure 2.1: The Bloch sphere. The qubit state |ψ⟩ is represented by the Bloch vector M,
with components Mz and Mxy is the vector component in the xy-plane.

A qubit can be described by the Hamiltonian of a spin-12 particle in a magnetic field:

H =
1

2
E01σ̂z, (2.1)

with the energy eigenstates |0⟩ and |1⟩, and E01 is the qubit energy. The general qubit state

is then the superposition, |ψ⟩ = α|0⟩+ β|1⟩, with the normalization |α|2 + |β|2 = 1.

The qubit state vector |ψ⟩ can be thought of as mapping the surface of a sphere of unit

16
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radius, called the Bloch sphere (figure 2.1). Each possible state of the qubit corresponds to

a point on the surface of the Bloch sphere, represented by the Bloch vector M. The time

evolution (Schrödinger equation) of the Bloch vector turns out to be the precession about the

ẑ-axis with frequency ω01 = E01/~. To manipulate the qubit, microwave pulses are applied in

the x̂ (or ŷ) axis which will act to rotate the Bloch vector.

2.1.1 T1 - energy relaxation

If the qubit is able to exchange energy with an external bath of oscillators, then the information

encoded in the qubit is no longer preserved. In energy relaxation processes typically the qubit

loses its energy and decays into the ground state (it can also be excited and gain energy from

the environment, in either case the energy stored in the qubit is no longer controlled, thus the

information encoded is essentially lost). A qubit prepared in the excited state |1⟩ will decay

into the ground state |0⟩ over a characteristic energy relaxation time T1, where the probability

P1(t) for finding the qubit in the excited state is given by:

P1(t) = e−t/τ1 (2.2)

2.1.2 T ∗
2 free induction decay

In free induction decay, the qubit interaction with the external bath does not involve energy

exchange. Instead the interaction results in fluctuations in the qubit frequency, which can be

thought of as a spectral broadening δω01 of the qubit frequency ω01. At some time t the qubit

should gain a phase ϕ(t) = ω01t, but in the presence of a random fluctuation δω01, the phase

of the qubit is given by ϕ(t) = ω01t + δϕ(t), where δϕ(t) =
∫ t
0 δω01(t) dt is the random phase

fluctuation.

The problem with this random phase accumulation (dephasing) is that in a qubit measure-

ment the state vector can only be reconstructed after the averaging of many projective mea-

surements (∼ 103). The xy-component of the Bloch vector is given by Mxy(t) = eiϕ(t)Mxy(0),
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therefore the result of the averaging at time t contains the averaging over the random fluc-

tuation of the environment,
⟨
Mxy(t)

⟩
∝
⟨
eiδϕ(t)

⟩
, which results in an exponential decay enve-

lope [48]:

⟨eiδϕ(t)⟩ = e−t/T ∗
2 , (2.3)

where T ∗
2 is the characteristic timescale for qubit dephasing, called the free induction decay

time.

An important result well known from NMR is that the dephasing rate 1/T ∗
2 is the sum of

the contributions from energy relaxation (energy loss is ultimately a dephasing event) and the

sum of the pure dephasing rate from others sources [12]:

1

T ∗
2

=
1

2T1
+
∑
n

1

τϕ,n
(2.4)

2.2 Dephasing from critical current noise

The details of how fluctuations in the junction critical current appear as the spectral broadening

of the qubit frequency ω01 depends on the particular superconducting qubit architecture. In

the simplest form, the superconducting qubit can be thought of as a quantum LC circuit with

frequency ω01 = 1/
√
LC, where in the case of a transmon [37, 29, 61] the inductance is provided

by the Josephson inductance LJ . The qubit frequency is thus:

ω01 =
1√
LJC

=
√

8EJEC (2.5)

The spectral broadening due to Ic fluctuation is thus: dω01/dIc = (~/2e)
√

2Ec/EJ . To quan-

tify the different Ic sensitivity in the various superconducting qubit architectures, the dimen-

sionless factor Λ = (Ic/ω01)|dω01/dIc| was introduced by Van Harlingen et. al. [67]. For
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example the transmon sensitivity to critical current fluctuation is then given by:

Λ =
Ic
ω01

∣∣∣∣∣dω01

dIc

∣∣∣∣∣ = 1

2
(2.6)

For other SC qubit architectures the sensitivity Λ in general cannot be found analytically,

necessitating a numerical solution. For example in the flux qubit the Josephson energy EJ

determines the tunnel coupling strength ∆0 between the left and right circulating current

states, where at degeneracy, ω01 ≈ ∆0/~. The calculation in Van Harlingen et. al. [67] gives

Λ ≈ 12.3 for the 3-JJ flux qubit architecture.

2.3 State of the field and open questions in critical current noise

The problem of critical current noise used to be discussed in terms of its contribution to the

pure dephasing of a qubit. The focus was the quantification of the 1/f noise magnitude at

temperatures typical of the operating point for qubits, and the effect of this 1/f noise on

the timescale for qubit dephasing. Ultimately measurements of the critical current noise at

T ≈ 50 mK (typical qubit operating temperatures) proved difficult as most measurements

of the critical current noise involves some finite dissipation (chapter 5.2). With a wealth of

pre-existing measurements in the temperature range T ≈ 1.4 − 4.2 K [60, 67, 77], a number

of experiments [18, 53] surfaced that focused on the functional form of the temperature de-

pendence, which would then be used to infer the 1/f noise magnitude for the typical qubit

operation.

One point of contention is the form of the temperature dependence for the power spectral

density. There appeared to be evidence for two very different conclusions, a handful of experi-

ments [77, 14, 67] observed and concluded a T 2 dependence, while another set of experiments

concluded a linear T -dependence [53, 18]. The T 2 observing experiments were mostly from

older experiments in the 1980s and 1990s which were available at the time of the survey of

Van Harlingen et. al. [67], that found the critical current noise power spectral density to have
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a nearly universal value described by:

SIc
I2c

= 1.44× 10−10

(
1

f

)(
1

A/µm2

)(
T

4.2 K

)2

Hz−1 (2.7)

The observation of the T 2 dependence was the most striking, as at low temperatures (T ∼ 1 K)

the noise power is expected to vary linearly in T , similar to that found in the low temperature

specific heat capacity of glasses [51, 82]. At low temperatures the thermally activated rates

of the TLSs should freeze-out, and the TLS dynamics are governed by the quantum tunneling

through the double-well potential of the TLS [51]. This leaves only a linear T -factor coming

from the thermodynamic selection of those TLSs with energies E . kT (section 3.2). Yet, the

T 2 dependence is not without precedent, the charge noise in single electron transistors (SETs)

have previously been measured to have a T 2 dependence [6], and the noise power from thermally

activated TLSs in the classic Dutta-Horn model is expected to have a T 2 dependence, although

the assumption of thermally activated rates at low temperatures (T ∼ 1 K) is problematic [74].

The T - and T 2-dependence discrepancy led to the development of the Kondo-like traps

theory, primarily by Ioffe and Faoro [19, 20, 21], and Wilhelm [3]. These theories pointed out

that measurements producing a T 2-dependence have been carried out when the metal electrodes

are kept superconducting [14, 78], and observed a much higher noise magnitude (at T = 4.2 K).

While the observation of a linear T -dependence was obtained on experiments measuring the

tunneling resistance with the metal electrodes in the normal state [18], and the critical current

noise was deduced assuming the equivalency of critical-current noise and tunneling resistance

noise, SIc/I
2
c ≡ SR/R

2. This equivalency is justified via the Ambegaokar-Baratoff relationship,

I0Rn = π∆/2e, but only when provided that there is no additional noise mechanism. Some

electronic traps at the metal-dielectric interface can have a strong on-site repulsion that allows

only single occupancy of the trap. It was then proposed that the interaction of these traps with

the conduction electrons in the metal electrodes lead to the well known Kondo physics, where

the trapped electron interact with the conduction electrons to form a spin zero singlet ground

state, |ψg⟩ = (|↑↓⟩+ |↓↑⟩)/
√
2, characterized by an energy scale TK (the Kondo temperature).
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When superconductivity develops in the metal electrodes, a superconducting ground state is

formed with characteristic energy ∆, the superconducting energy gap. It was proposed that for

these traps at the metal-dielectric interface, the competition between the Kondo interaction

and superconductivity leads to the formation of additional localized trap states [3, 19, 20, 21],

that can account for the T 2-dependence and the increased noise magnitude.

Critically however there exist contradictions on the available experimental data that would

cast doubt on the necessity of a Kondo-traps theory. Rogers and Buhrman [54] reported

in 1983 of measurements of the critical current noise in a shunted Nb-PbBi edge junction,

and measurements of the tunneling resistance in the same junction by measuring above the

superconducting energy gap. Their result supported the equivalency SIc/I
2
c = SR/R

2 which

at the very least implies that the Kondo-traps contribution was negligible. More recently

the measurements of Pottorf et. al. [53] of the critical current noise in shunted Nb/AlOx/Nb

junctions showed a linear T -dependence, with a magnitude consistent with other measurements

of the tunneling resistance noise [18]. This result implies that the critical-current and tunneling

resistance noise equivalency holds, SIc/I
2
c ≡ SR/R

2. Furthermore Pottorf et. al. [53] performed

measurements of the tunneling resistance noise in their unshunted Nb/AlOx/Nb junctions and

observed the same linear T -dependence and noise magnitude as in their measurements of the

critical current noise, supporting the SIc and SR equivalency.

This contradictory state of the available experimental data led to our motivation for the

measurements of the critical current and resistance noise in Al/AlOx/Al junctions (first half of

chapter 6). It should be added that our own measurements agreed with the linear T -dependence

and confirms the equivalency of SIc and SR.

2.3.1 Ic noise in zero-voltage and finite-voltage state

Another detail of critical current noise is the question of whether or not the fluctuations are

identical in both the zero-voltage and finite-voltage states. In measurements of the critical

current using the SQUID potentiometry method (section 5.2), the junction is biased out into
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a non-zero voltage state, typically V ≈ 1 − 5 µV. Qubit operations on the other leaves the

junctions in the zero-voltage state, which raised the question of whether or not 1/f noise

measurements in the finite voltage state are applicable to qubits. This question mirrors that

from 1/f noise in resistors some four decades ago, over the question of whether or not the

1/f noise is an equilibrium fluctuation [74]. In that case Voss and Clarke [71] measured the

resistance fluctuation at zero applied current by measuring fluctuations in the Johnson noise

of a resistor. It was found that the resistance fluctuation at zero applied current is equal to

that at finite currents.

The 1/f noise in tunnel junctions was also found to be an equilibrium fluctuation. Mück et.

al. [44] measured the Ic noise in the zero voltage state by performing a dispersive readout of a

rf-SQUID with a Nb-trilayer junction. The measured critical current noise was approximately

SIc/I
2
c = 6.8 × 10−11 Hz−1, which is consistent with the old universal value SIc/I

2
c ≈ 3.6 ×

10−11 Hz−1 (at T = 4.2 K) (equation 2.7).

More recent measurements by Murch et. al. [45] measured the critical current fluctua-

tions in Al double angle junctions embedded in lumped-element microwave resonators. In this

measurement the Josephson inductance LJ(Ic) = Φ0/2πIc contributes to the resonator total

inductance L(Ic) = L0 + LJ(Ic), where L0 is the lumped element inductance of the resonator.

The resonant frequency of the resonator is then dependent on the critical current of the junc-

tion: ω0(Ic) = 1/
√
L(Ic)C, where C is the lumped-element capacitance forming the resonator.

Fluctuations in the resonant frequency is therefore related to fluctuations in the critical current

of the junction via: Sω/ω
2
0 = (p2/4)SIc/I

2
c , where p = LJ0/L is the participation ratio of the

Josephson inductance to the total resonator inductance. Interestingly their measurements at

T = 50 mK were not able to measure the low frequency noise due to the junctions, above the

level of the background noise. This places a limit of SIc/I
2
c < 1 × 10−16 Hz−1 for the critical

current noise at 50 mK, which is at least a factor of 400 lower than the value predicted by the

old universal formula (equation 2.7)

There is potentially a contradiction between the results of Mück et.al. [44] and Murch et.
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al. [45]. While Mück et. al. supported the equivalency of the zero-voltage and finite-voltage

noise, the results of Murch. et. al. taken in isolation can be interpreted as a contradiction to

that equivalency. The results of our own experiments in chapter 6 provides the final link to

resolve this contradiction.

2.3.2 Nature of the fluctuator: electronic or atomic?

It has been known that the origin of the 1/f critical current noise is an ensemble of two level

systems (TLSs) that modulate the transmissivity of the tunnel barrier [73, 72, 58]. What

remains unresolved is a definite identification of the microscopic origin of the TLSs, though it

is accepted that they are either fluctuating electrons or atoms.

The experiments of Wakai et. al. [72, 73] on PbInAu-In2O3-Pb junctions concluded that

the fluctuator is the trapping and un-trapping of electrons at the junction metal-dielectric

interfaces. Similar experiments by Rogers and Buhrman [56, 58] on Nb-Nb2O5-PbBi concluded

that the TLS is a fluctuating atomic dipole. It may be important to resolve the microscopic

nature of the TLSs, as different microscopic sources may suggest vastly different strategies for

eliminating these TLSs.

More recent experiments, most notably in phase qubits [43], the energy spectroscopy of

qubits typically contains a density of parasitic avoided level crossings caused by the coherent

interaction with two level defects. It is not immediately clear if the two level systems coupling

at qubit frequencies represent the same ensemble that produce the low frequency 1/f noise.

But if they did, then it casts doubt on the electronic trapping model of Wakai et. al. [72], where

the fluctuator is modelled as the trapping/emptying of an electronic trap by the tunneling of

electrons from the degenerate metal electrodes. A TLS model involving the tunneling to a

degenerate fermi sea, like a metallic electrode, is incompatible with the observation that the

two level systems are coherent. Coherent dynamics is most readily obtained in a localized TLS

model, such as the double-well potential model (tunneling TLS). Note that this includes the

possibility for the fluctuator to be an electron, although we will argue that an atom fits the data
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better. In fact Lisenfeld et. al [39] directly measured the coherence properties of a TLS coupled

to a phase qubit, and measured a coherent TLS with T1 ≈ 400 ns and T2 ≈ 800 ns ≈ 2T1,

which in fact exceeded the coherence times of the phase qubit used to measure the TLSs

(T qubit
1 ≈ 100 ns).



CHAPTER 3

THEORETICAL DESCRIPTION OF 1/F NOISE AND
TWO LEVEL SYSTEMS

3.1 1/f noise

The subject of low frequency 1/f noise has had a rich and extensive history. It turns out that

the fluctuations in a wide range of physical systems can have a power spectral density that

varies as 1/fα, with the exponent typically α ∼ 0.8 − 1.2 [74]. For example carrier density

fluctuations can lead to a 1/f resistance noise in MOSFETs [84], resistance fluctuations in

CuMn thin films due to spin fluctuations [30], and magnetic flux noise in SQUIDs [63]. In non

solid-state systems, Voss and Clarke [70] have showed that even the “loudness” (amplitude

fluctuations) in speech and music can have a 1/f power spectrum, and even the historical

levels of the Nile river from the year 662 − 1469 has been shown to produce a 1/f power

spectrum [41].

It was realized that a 1/fα spectrum can be constructed from the sum of Lorentzian power

spectra with a widely distributed characteristic frequencies [83]. Each Lorentzian contributes

a power spectral density given by:

Si(ω) ∝
τi

1 + ω2τ2i
, (3.1)

with a characteristic lifetime τi. The total noise power due to a distribution of these Lorentzians

is then:

S(ω) ∝
∫

τ

1 + ω2τ2
D(τ) dτ (3.2)

Consequently if the characteristic times are distributed as, D(τ) ∝ 1/τ , then the total noise

25
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power density is 1/f , S(ω) ∝ 1/ω.

3.2 The Dutta-Horn Model

Figure 3.1: Thermally activated double-well two level system. A particle in the well can
make a transition to the other well if there is sufficient thermal energy to overcome the
potential barrier Ui.

In the Dutta-Horn model, the source of the Lorentzian is modeled as a thermally activated

fluctuator in a double-well potential. The TLS can be described in terms of the average of

the potential barrier in the left/right wells, U = (U1 + U2)/2, and the energy difference of the

left/right wells (asymmetry) ∆, (figure 3.1). In this way the transition rates out of the wells

are given by:

ω1 = ω0 exp

(
−U +∆/2

kT

)
(3.3)

ω2 = ω0 exp

(
−U −∆/2

kT

)
(3.4)

The TLS corner frequency is then given by:

ωc = ω1 + ω2 = ω∗
0 exp

(
− U

kT

)
cosh

(
∆

2kT

)
, (3.5)

where ω∗
0 = 2ω0, and as long as ∆ < 2kT , then we recover the Arrhenius thermally activated
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rate for ωc:

1/τ = ωc ≈ ω∗
0 exp (−U/kT ) (3.6)

In a physical system there will be a distribution of these TLSs with respect to the energies

U and ∆, where the typical starting assumption is the uniform (flat )joint distribution:

P (U,∆) dUd∆ = P0 dUd∆, (3.7)

however only those TLSs with ∆ . 2kT will have enough variance to contribute to the total

noise power.

If we label the TLS’s probability to be in the left/right well as pL and pR respectively, then:

pL + pR = 1 and pR/pL = exp (−∆/kT ). If for example the TLS couples into the junction’s

tunneling resistance so that it changes by an amount δR between the TLS in the left/right

wells, then the variance due to the TLS can be calculated as: σ2R = ⟨R2⟩ − ⟨R⟩2 = δR2pRpL =

δR2sech2 (∆/2kT ) /4. The Lorentzian spectral density contributed due to the i-th TLS is

therefore weighted by this thermodynamic factor [74, 38]:

Si(ω) = (δR)2sech2(∆/2kT )
τi

1 + ω2τ2i
(3.8)

Thus only those TLSs with ∆ . 2kT will have enough variance to contribute to the total noise

power. The TLS distribution in the energy U can then be expressed as:

P (U) =

∫ +∞

−∞
P (U,∆)sech2(∆/2kT ) d∆ ≈ 4kTP0, (3.9)

where the integral is essentially selecting only those TLSs that will thermodynamically con-

tribute to the total noise power spectral density. Consequently the TLS lifetime distribution

in the Dutta-Horn model is:

P (τ) dτ ≈ 4(kT )2P0
dτ

τ
, (3.10)
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where the additional factor of kT comes from the Dutta-Horn activated kinetics. The integrated

power spectral density for the ensemble of TLSs is then:

S(ω) ∝
∫

τ

1 + ω2τ2
4P0(kT )

2

τ
dτ (3.11)

S(ω) ∝ 4P0(kT )
2

(
1

ω

)
, (3.12)

which gives a 1/f power spectral density that varies with T 2. One T -factor comes from

the Dutta-Horn activated kinetics, and the second T -factor comes from the sech2(∆/2kT )

thermodynamic factor.

In fact for the generic 1/fα noise with 0.8 < α < 1.4, it is only required that the density of

states P (E) is slowly varying compared to kBT . Dutta and Horn [17] noted that for thermally

activated processes the total power spectral density is obtained from the integral:

S(ω, T ) ∝
∫

τ0 exp(E/kT )

1 + ω2τ20 exp(2E/kT )
P (E) dE (3.13)

If the integration is carried out after Taylor expanding P (E), then retaining only the first

term, the power spectral density is approximately:

S(ω, T ) ∝ kBT

ω
P (Ẽ), (3.14)

where here only the Dutta-Horn activated kinetic T -factor has been explicitly shown, and

Ẽ = −kBT ln(ωτ0) is the value of E where the distribution P (E) is peaked at. A consequence

of P (E) to be only slowly varying, is that the shape of the power spectral density is a more

complicated function of ω and T , summarized by the relationship [17]:

α(ω, T ) = 1− 1

ln(ωτ0)

[
∂ lnS(ω, T )

∂ lnT
− 1

]
, (3.15)

where α(ω, T ) is the slope (exponent) of the 1/fα power spectrum defined locally at frequency
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ω and temperature T .

3.2.1 Tunneling TLSs

Figure 3.2: (A) Potential diagram of the tunneling TLS model. (B) Absorption/emission of
a phonon modifies the TLS asymmetry energy ∆.

One concern with the thermal activation model is that at low temperatures there might not

be enough thermal energy to drive the TLS transitions. However, for temperatures kT < U , the

tunnel coupling between the two localized well states may become important. This tunneling

TLS model was first proposed by Anderson, Halperin, and Varma [2], and independently by

Phillips [50], in order to explain the anomalous thermal conductivity and heat capacity of

insulating glasses. Subsequently it was realized that these tunneling TLSs can also give rise to

a wide distribution of lifetimes τ , thus a 1/f power spectral density [81].

Figure 3.2 shows a schematic of the double-well potential annotated with the relevant energy

scales in the tunneling regime. In insulating glasses TLS state transitions are driven by the

absoprtion/emission of phonons, which couple to the TLS asymmetry energy ∆, (figure 3.2B).

In metallic systems the transitions can also be driven by coupling to the electrons. As will be

discussed in chapter 7, TLSs embedded in the dielectric of a tunnel junction may be driven by
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both the phonon and electron excitations.

In the localized basis, |L⟩ and |R⟩, the model Hamiltonian for the tunneling TLS is:

Ĥ =
1

2
(∆σ̂z +∆0σ̂x) , (3.16)

Where ∆ is the energy difference between the left and right wells, and ∆0 is the tunnel coupling

strength between the two wells. ∆0 can be estimated via the WKB approximation:

∆0 = ~ω0 exp

(
−2d

√
2mU

~2

)
, (3.17)

where ω0 is the attempt frequency of the particle in the potential well, m is the tunneling

particle effective mass, U is the barrier height, and d is the tunneling distance.

By defining:

tan ξ =
∆0

∆
, (3.18)

The TLS hamiltonian (equation 3.16) takes the form:

H =
1

2

√
∆2 +∆2

0

cos ξ sin ξ

sin ξ − cos ξ

 (3.19)

The TLS energy is then given by:

E =
√

∆2 +∆2
0, (3.20)

and the eigenstates |ψ1⟩ and |ψ2⟩ of the TLS are:

|ψ1⟩ = cos
ξ

2
|L⟩+ sin

ξ

2
|R⟩ (3.21)

|ψ2⟩ = sin
ξ

2
|L⟩ − cos

ξ

2
|R⟩ (3.22)

At degeneracy, ∆ = 0 so that ξ = π/2, then the eigenstates are the usual symmetric/anti-
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symmetric combinations:

|ψ1,2⟩ =
1√
2

(
|L⟩ ± |R⟩

)
, (3.23)

In the limit where the tunnel coupling is small ∆0 ≪ ∆ (ξ ≈ 0), the TLS Hamiltonian is

diagonal in the local representation, and the eigenstates are the localized states: |ψ1⟩ = |L⟩

and |ψ2⟩ = |R⟩.

In bulk (3D) dielectrics the TLS relaxation rate due to interaction with the strain field

(phonons) can be shown to be [51]:

Γge =

(∑
α

γ2α
v5α

)(
E∆2

0

2πρ~4

)
1

exp (E/kBT )− 1
(3.24)

Γeg =

(∑
α

γ2α
v5α

)(
E∆2

0

2πρ~4

)
1

1− exp (−E/kBT )
, (3.25)

where γα and vα are the elastic dipole and velocity of sound for the α polarization, and ρ is

the mass density. The effective rate is then:

τ−1(E,∆0) = Γ = Γge + Γeg =

(∑
α

γ2α
v5α

)(
E∆2

0

2πρ~4

)
coth

(
E

2kBT

)
(3.26)

In a typical physical system the TLSs are assumed to be uniformly distributed in the asymmetry

energy ∆ and the WKB tunneling parameter λ. Since ∆0 ∝ e−λ, the joint TLS distribution is

then:

P (∆, λ) d∆ dλ = P0 d∆ dλ (3.27)

P (∆,∆0) d∆ d∆0 =
P0

∆0
d∆ d∆0 (3.28)

The total power spectral density due to fluctuating tunneling TLSs can then be calculated

from the integral:

S(ω) ∝
∫

τ(∆,∆0)

1 + ω2τ2(∆,∆0)
P (∆,∆0) d∆ d∆0 (3.29)
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Note that in the tunneling TLS model, the T -dependence from the Dutta-Horn activated

kinetic factor drops out, leaving only the T -dependence from the thermodynamic factor. The

temperature dependence of the quantum tunneling rate is weak, thus the total noise scales

linearly in temperature.

It can be shown that the tunneling TLS relaxation rate and the distribution in equation 3.28

lead to the P ∝ 1/τ wide distribution of TLS lifetimes required to integrate out to a 1/f power

spectral density [81]. Figure 3.3 shows a simulated distribution of tunneling TLS lifetimes τ ,

given the presumed distribution (equation 3.28). It shows clearly the wide distribution of

lifetimes as P ∝ 1/τ , which yields a 1/f power spectral density.

Figure 3.3: Simulated distribution of the tunneling TLS lifetimes. The tunneling TLS model
results in a distribution P (τ) ∝ 1/τ , which gives rise to 1/ω noise



CHAPTER 4

DEVICE FABRICATION

4.1 Al shadow evaporated junctions

Figure 4.1: SEM images of the double angle evaporated aluminum Josephson junctions.

Our Al/AlOx/Al junctions were fabricated in the conventional double-angle shadow evap-

oration method. In contrast to the Nb-trilayer process, the Al double angle junctions have

the advantage of requiring only one lithography step to fully define the junction. It is this

simplicity that has made the double-angle evaporation method a popular standard in the su-

perconducting devices community.

The junctions are defined via standard e-beam lithography at a 30 kV accelerating voltage.

We used PMMA and MMA copolymer for our bi-layer resist stack. To maximize the undercut

in the MMA layer, we typically pre-sensitize the MMA layer in a commercial EEPROM eraser

unit, which is essentially a box with a timer controlled UV-lamp. The development was

33
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performed in a 1:3 MIBK:IPA solution at room temperature.

The Al evaporation was performed in an ultra-high vacuum electron-beam evaporation cham-

ber. The system is load-locked and can achieve a base pressure of Pbase ≈ 3×10−10 Torr. Prior

to Al deposition the substrate is cleaned via a gentle Ar ion-milling to remove residual con-

taminants. The typical Al evaporation rate is, ≈ 2− 3 Å/s.

Our standard process recipe is to define the Al-AlOx-Al junctions with 40 nm of Al as the

base electrode, followed by the tunnel barrier oxidation, and a 80 nm top electrode, for a total

junction stack thickness of 120 nm. At the end of the top electrode evaporation, we typically

flood the chamber to ∼ 2 Torr of pure O2 gas to cap the outer Al surfaces with a controlled

native oxide.

4.1.1 Resistive shunt design

The resistive shunts were fabricated out of thin films of Palladium. The resistor lithography and

deposition were done prior to the junction. We used e-beam lithography to define the resistor,

and electron-beam evaporated palladium thin films, typically to a thickness t ≈ 60 nm. An

in-situ Ar ion-mill was performed immediately prior to the Al deposition, in order to ensure a

good ohmic contact between the resistor and junction layers.

On each Pd evaporation we included a 4-terminal hall-bar test structure in parallel with

the process chip. The test structure sits on the evaporation stage alongside the process chip,

but on a separate substrate. The test structures were defined by a mechanical mask. This

test structure allowed us to calibrate the sheet resistances of the Pd resistor layer on each

evaporation run, allowing us to account for process variations. The Pd sheet resistance at

T = 4.2 K is typically about 40% of the its value at room temperature.

In the overdamped RSJ most of the power is dissipated in the shunt resistors as long as

Vj < 2∆. It is therefore important to design the shunting resistors to minimize the effects of

electron heating. The basic principle is to create shunt resistors as thick and large as possible

as to maximize the contact surface area to the substrate. In our resistively shunted junction
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designs, we fabricated our shunting resistors with large cooling fins.

The hot electron effect in metals have been described by Wellstood [76, 68]. A uniform

power, P , dissipated in a metallic thin film can raise the electron temperature Te above the

phonon temperature Tp of the thin film. The relationship is given by [76]:

Te =

(
P

ΣV
+ T 5

p

)1/5

(4.1)

Figure 4.2: Optical microscope image showing the Pd resistive shunt design with large
cooling fins.

In our typical measurement the junction is biased to approximately Vj ≈ 1− 5 µV, meaning

the power dissipated in the shunts is approximately 1−25 pW/Rs. Figure 4.2 shows an optical

microscope picture of our AlOx junction geometry. The lighter metallic traces are aluminum,

while the darker gold colored metal traces are the palladium resistor and cooling fins. Note

the size of the cooling fins, A ≈ (300 µm)2, is the same size as the bonding pads.

4.2 SQUID Fabrication

As part of the IARPA collaboration we have performed low frequency noise measurements in

SQUIDs to characterize the 1/fα low frequency magnetic flux noise. The SQUID measurements
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were mainly performed by the group of John Clarke at the University of California, Berkeley,

with SQUIDs fabricated by our group as an extension of this thesis work [4].

While this thesis will not cover the details of the work on SQUIDs performed in this IARPA

collaboration, I will briefly cover the processes used to fabricate the SQUIDs.

Figure 4.3: Optical microscope image of one side of the SQUID arrays. (A) Field view. (B)
Higher magnification view.

We call this SQUID architecture the hybrid-SQUID design. The architecture was designed

to allow the testing of a variety of metal growth and surface treatments of the SQUID loop

superconductor, while the Josephson junctions are kept the same and made out of reliable

double-angle evaporated Al junctions.

First the base layer is patterned. This is either a subtractive etch-down process in the case of

epitaxially grown loop layer (such as epitaxial Nb or Al), or a simple lift-off process. Next the

shunting resistors are defined via electron beam lithography, followed by a Pd electron beam

evaporation and lift-off. We typically insert a 4-terminal test structure alongside the process

chips in order to calibrate the sheet resistance of the shunt resistor layer. The resistance probe

structures allow for small deviations of the sheet resistance to be adjusted in the subsequent

layers to yield the designed resistance, as well as to provide quality control to our process flow.

The loop design was standardized to allow for one-to-one comparison between different
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experiments. The loop design had dimensions D = 4 µm,W = 3 µm, giving a loop inductance,

L ≈ 6.3 pH. The screening parameter is approximately βL = Isqc L/Φ0 ≈ 0.05 for the design

target Isqc = 15 µA. Each of the junctions are designed to have an area A = 1.5 × 0.5 µm2,

with Jc = 10 µA/µm2 so that Isqc = 15 µA.

Figure 4.3A is an optical microscope image showing a field view of the flux noise SQUID

array. The SQUID loops and parts of the wiring traces appear slightly darker than the brighter

sections of the Al junction and contact overlap sections. Figure 4.3B shows a higher magnifi-

cation view showing the details of the SQUID architecture. The palladium resistor is clearly

contrasted by the much darker color against the SQUID loop and junction layers.

4.3 Flux Qubit Fabrication

Figure 4.4: Optical microscope image of the lumped-element resonator layer. The qubit loop
and junctions are to the right of the image. The qubit loop shares a trace with the resonator
inductor. The current density determines the degree of flux coupling between the qubit and
the resonator.

In the same spirit as the hybrid-SQUIDs used to test magnetic flux noise, we have fabri-

cated hybrid flux qubits embedded in a lumped-element resonator. In the hybrid flux qubits

the resonator and the qubit loop were fabricated from epitaxially grown Nb, while the qubit

junctions were fabricated on a separate layer out of conventional aluminum double-angle evap-

orated junctions. Electrical contact between the junction and the base epitaxial layer was
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ensured by performing a short ion mill prior to the junction deposition.

The following qubit measurements were performed by Jeffrey Birenbaum of John Clarke’s

group in UC Berkeley. In this section I will show some data to summarize our hybrid flux

qubit effort.

The energy splitting of the flux qubit states is, E01 =
√
∆2 − ϵ2, where at degeneracy

E01 = ~ω01 = ∆. The fabrication parameters will determine the strength of the level splitting

∆, where a useful analytical approximation for the qubit energy splitting ∆ is given by [27]:

∆ ≈ 4

√
EJEc (2α− 1)

α
exp

√EJ(2α+ 1)

αEc

(
cos−1 1

2α
−
√
4α2 − 1

) (4.2)

Equation 4.2 above summarizes the difficulty in targeting fabrication parameters to yield

a desired qubit frequency at degeneracy. Three of the major fabrication design parameters,

the Josephson energy EJ , charging energy Ec, and the α-junction ratio α enters through the

exponential term. Thus small variations in the fabrication can yield vastly different qubit

characteristics.

We were never able to obtain hybrid flux qubits with good coherence properties. A typical

energy spectroscopy of the hybrid qubit is given in figure 4.5. A large spectral broadening is

already obvious from the energy spectroscopy and is typical of the results obtained from the

hybrid architecture. Consequently the free-induction decay time, T ∗
2 , were usually very short

making time-domain spectroscopy extremely difficult. Some possible problems in the hybrid

architecture were: 1. Parasitic fourth junction. 2. Effect of ion-milling prior to junction

deposition. 3. Very low Nb quality in the area of the inductor constriction which is shared

with the qubit loop.

In contrast, our control device - all double-angle aluminum flux qubit - showed much higher

coherence properties, typical of the best flux qubits at that time. Figure 4.6 shows an energy

spectroscopy of a control all Al flux qubit, fabricated using the same process and instruments as

those used in fabricating the hybrid flux qubits (with the exception of the all Al architecture).
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Figure 4.7 shows a typical time-domain spectroscopy of the control all Al flux qubit, T1 ≈ 2.6 µs

and T ∗
2 ≈ 1.4 µs.

Figure 4.5: Qubit spectroscopy of an epitaxial Nb hybrid flux qubit. Broad spectroscopic
linewidth is apparent and reflected in the extremely short T ∗

2 .

Figure 4.6: Qubit spectroscopy of sample 5-ALA.
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Figure 4.7: (A) T1 energy relaxation spectroscopy. Dashed-line is an exponential decay time
with T1 ≈ 2.6 µs. (B) Ramsey T ∗

2 spectroscopy. The Ramsey fringes are fitted to a decaying
exponential enveloped (dashed-lines) with T ∗

2 ≈ 1.4 µs.



CHAPTER 5

EXPERIMENTAL METHODS

5.1 dc-SQUID Amplifier

Figure 5.1: dc-SQUID sensor in a Nb-enclosure mounted on the 1K plate of the Oxford He-3
system.

We used a commercial SQUID sensor package purchased from Robin Cantor’s STAR Cryo-

electronics. The SQUID chip itself is embedded in a hermetically sealed carrier and installed

inside a cylindrical Nb shielding enclosure. The SQUID used to perform the experiments in this

thesis had an input coupling of 0.13 µA/Φ0 and a flux locked loop voltage feedback response

of 0.847 VFB/Φ0 at the RFB = 100 kΩ feedback resistor setting.

5.1.1 Flux-locked loop

The basic physics of the SQUID has been covered in section 1.3, in this section we will briefly

cover how the SQUID transfer function is linearized to operate it as an amplifier. We run our

dc-SQUID amplifier in the flux-locked loop (FLL) mode, figure 5.3 shows the circuit schematic

of the FLL operation. When the SQUID is biased into the voltage state, its voltage-flux

41
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Figure 5.2: Voltage-Flux transfer function of a SQUID.

transfer function inherits the sinusoidal Φ0 periodic structure of the critical current as shown

in figure 5.2. The Voltage-Flux transfer coefficient is a maximum when the SQUID is biased

near Φ ≈ Φ0/4. Small changes in flux δΦ about this operating point then translates to an

approximately linear voltage change δV of the SQUID. In order to keep the SQUID operating

linearly at this operating point even for large δΦ, a flux-locked loop feedback circuit can be

used. The FLL circuit feeds back a flux bias δΦfb = (Vfb/Rfb)Mf which acts to cancel out the

signal δΦ coupled into the SQUID loop, thus keeping the SQUID’s operating point unmoved

and remaining in the linear operating regime.

The SQUID is dc-current biased with a current Ib to some voltage state Vsq. Since the

SQUID impedance is low, the voltage readout is achieved by modulating the SQUID voltage

(fmod = 256 kHz in our electronics) and impedance matching the SQUID through a cold

1 : 20 transformer. At the room-temperature amplification chain, the signal is demodulated

and passed through an integrator with an integrator capacitor, Cint. The signal is then fed

back into the SQUID through a feedback resistor Rfb, appearing as a flux feedback signal

δΦfb, through a mutual inductance Mf . The product, RfbCint, defines the integration time

constant. The input coil of the SQUID couples an input current signal, Isq, through the mutual

inductance Mi, so that Isq is related to the flux feedback voltage Vfb as:
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Figure 5.3: Flux-locked loop circuit schematic for the operation of a dc-SQUID.

Vfb =

(
Mi

Mf

)
IsqRfb (5.1)

The parameters for the SQUID used in this thesis is given in the table below:

1/Mi 0.13 µA/Φ0

1/Mf 8.47 µA/Φ0

5.2 SQUID potentiometry circuit

To measure the critical current fluctuations of a Josephson junction, we used the SQUID

as a low input impedance current amplifier in series with the test junction. The circuit is

drawn in figure 5.4A. To make use of the SQUID potentiometry circuit we resistively shunt

the Josephson junctions, typically βc ≈ 0.3, to avoid hysteresis. For critical current noise

measurements, we bias the junctions to a very small voltage state, typically 1 − 5 µV, such

that the junction current is just above the critical current, IJ ≈ IC . Also the standard resistor

Rstd in the circuit is chosen so that Rstd ≪ RD, where RD is the dynamic resistance of the
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Figure 5.4: (A) Circuit schematic of the SQUID potentiometry circuit. (B) Illustration of the
effect of δIc fluctuations in the overdamped RCSJ model.

junction defined by:

RD =
∂VJ
∂IJ

(5.2)

Under the above circuit parameters and biasing conditions, the relationship between the

critical current noise power spectral density and the noise power spectral density of the current

Isq detected through the SQUID is simply:

SIsq = SIc (5.3)

The above result follows from a simple circuit consideration. The equipotential condition

dictates that:

VJ = IsqRstd, (5.4)

and the current conservation forces:

Ib = IJ + Istd (5.5)
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We are interested in finding an expression for the fluctuation in Isq with respect to fluctua-

tions in Ic of the junction, so from equation 5.4 above:

dIsq
dIc

=
1

Rstd

dVJ
dIc

=
1

Rstd

[
∂VJ
∂IJ

dIJ
dIc

+
∂IJ
∂Ic

]
(5.6)

From the current conservation condition, and using the fact that the bias current Ib is a

constant, we have dIJ/dIc = −dIsq/dIc, which implies:

dIsq
dIc

=
∂VJ/∂Ic
Rstd +RD

, (5.7)

We may use the ideal RSJ IV characteristics to simplify the above expression, from VJ =

R
√
I2J − I2c , we can show that:

∂VJ
∂Ic

=
−IcR√
I2J − I2c

= −
(
Ic
IJ

)
RD (5.8)

It follows then the noise spectral densities SIsq and SIc are related as:

SIsq =
R2

D

(Rstd +RD)
2

(
Ic
IJ

)2

SIc (5.9)

At the chosen circuit parameters, Rstd ≪ RD, and IJ ≈ Ic, then we can see that this reduces

to SIsq = SIc . For the standard resistors we thermally evaporated a thin film of Au/Cu alloy

on 10× 10 mm2 sapphire substrates, followed by a Au evaporation to form the bonding pads.

The Au bonding pads were not necessary but facilitates faster and more reliable wire bonds.

The Au/Cu thin film resistor can be mechanically trimmed to adjust for the desired resistance,

Rstd, which is typically ≈ 1 Ω

How SQUID potentiometry measures changes in the critical current can be visualized as in

figure 5.4. The voltage across an overdamped Josephson junction biased just above its critical

current is very sensitive to the junction’s critical current. To detect changes in the voltage
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δVj using a SQUID, we turn the voltage signal δVj into a current signal Isq by the use of a

standard resistor Rstd. For small values of Rstd the current gain is large and ideally suited for

SQUID amplification.

5.2.1 Extraction of junction IV
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Figure 5.5: Measurement of Al-junctions at T = 320 mK. (A) SQUID response vs Ib. (B)
Raw data converted into the junction IV parameters, Ij and Vj . In this case the bias range
was not large enough, so that only the RCSJ IV range around the switching region was
explored.

The use of the circuit in figure 5.4A permits the extraction of the junction IV characteristics

after some mathematical transformation of the measured variables. The potentiometry circuit

is biased by a known input current Ib, and the measurement output is the SQUID feedback

voltage which is directly related to the current in the SQUID branch, Isq. The junction current

is then simply IJ = Ib − Isq. The junction voltage is VJ = IsqRstd, which requires a knowledge

of the value of the standard resistor, Rstd, and can be immediately calibrated by performing a

Johnson-Nyquist noise spectroscopy at zero bias current.

At zero-bias current the junction loop total resistance is given by the sum of the standard

resistor and other parasitic resistances such as the wirebond contact resistance and the copper
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lines of the printed circuit boards. Typically however the standard resistor, Rstd, is the dom-

inant contribution, such that the Johnson-Nyquist noise seen by the SQUID at zero junction

bias is given by:

SI =
4kBT

Rstd
+ c, (5.10)

5.3 External biasing noise and temperature fluctuations

One difficulty in measuring small noise signals is the necessity to differentiate between trivial

noise sources and the actual noise signal. Two common problems are the injection of current

noise present through the biasing circuitry and temperature fluctuations due to poor cryostat

stability. Low levels of 1/f low frequency noise are especially difficult to measure as they often

necessitate long measurements, requiring system stability over 100s of seconds (f ≈ 0.01 Hz).

In this work, external biasing noise is minimized by using an isolated battery to avoid the

1/f noise present in solid state amplifiers, especially in the active semiconductor amplifiers that

are typically used in current source circuits. We used large capacity (8 Ahcapacity) Pb-acid

batteries in series with a large biasing resistor R, as our current bias source which is typically

in the range Ib = 10−100 µA. We typically find a detectable battery drift in the first 1−2 hrs

after a re-charge, followed by a long period of stability. The battery would start to drift again

once it has been discharged far enough, which is typically after approximately 1 month in our

typical experiment run.

Temperature fluctuations of the cryostat can have an excess low frequency component and

mimic a 1/fα-like spectral density due to fluctuations in the temperature PID control loop.

Often these instabilities appear as drifts which manifest as a 1/f2 power spectral component,

therefore high values of α may (but not necessarily) indicate temperature instability. In the

case of pressure oscillations in the 1 K plate pumping lines, the temperature instability appear

as long period oscillations. In collaboration with Steven Anton at UC Berkeley, we have
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investigated the manifestation of temperature induced fluctuations in the junction critical

current [5]. The junction critical current is a temperature dependent quantity, given by the

Ambegaokar-Baratoff relation:

Ic(T )Rn =
π∆(T )

2e
tanh

(
∆(T )

2kBT

)
(5.11)

We find that the following approximate analytical form for ∆(T ) is a good fit to our actual

junctions [66]:

∆(T )

∆0
= tanh

(
Tc
T

∆

∆0

)
(5.12)

Unfortunately equation 5.12 above is transcendental in ∆(T )/∆0, hence we cannot explicitly

solve for ∆(T )/∆0, however we can gain powerful insights from a numerical solution. The

circles in figure 5.6A show the measured critical current of an Al/AlOx/Al shunted junction at

several temperature points, and fitted to the approximate theoretical temperature dependence

(equations 5.11 and 5.12). The figure has been plotted in dimensionless units ic = Ic/I0 and

τ = T/Tc, the normalization for the measured data are I0 = 2.34 µA and Tc = 1.27 K. The

green triangles are data point from a second junction with normalization factors I0 = 10.8 µA

and Tc = 1.27 K. From the temperature dependence of the junction critical currents, we

see that the AlOx junctions we fabricated follow the ideal SIS behavior. Figure 5.6B is a

numerical differentiation of the theoretical dependence in figure 5.6A, showing the sensitivity

of the critical current to temperature, dic/dτ . For the theoretical curves we have used the BCS

result ∆0 = 1.764 kBTc.

For T >≈ 0.3 Tc, dic/dτ ̸= 0 and one must be careful to exclude thermal fluctuations from

measurements of the junction critical current. The temperature induced critical current noise,

ST
Ic
, can be related to the noise power spectral density of the temperature instability (ST ):

ST
Ic

I2c
=

(
dic
dτ

)2 ST
T 2

(5.13)
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Figure 5.6: (A) Ic vs Temperature. In dimensionless units ic = Ic/I0 and τ = T/Tc. (B) The
dimensionless sensitivity dic/dτ vs τ .

Note that the dimensionless transfer coefficient dic/dτ can be significant as plotted in figure

5.6B. That is, bath temperature variation is of no concern in Nb junctions due to its high

Tc ≈ 9.2 K, implying dic/dτ ≈ 0 for temperatures T <≈ 3 K. On the other hand measurements

involving Al junctions are susceptible to bath temperature fluctuations due to the low Tc of

Al. This necessitates a good control of the temperature in order to minimize ST , and/or as

we shall discuss in the next section, a method that removes this sensitivity. Fortunately the

problems of external noise and bath temperature fluctuations polluting the noise signal to

be measured are not unique to the case of Josephson junctions. A wealth of knowledge has

been accumulated from experiments looking at low frequency noise in metallic thin films. In

particular, Scofield [62] has reviewed in 1987 a measurement circuit utilizing an ac-bridge with

a center-tapped four probe geometry in order to measure the low frequency resistance noise

in metal films, while rejecting contact noise and bath temperature fluctuations. In this same

spirit, we adapted our SQUID potentiometry circuit into a version of the bridge circuit in order

to exploit similar protection against external noise.



EXPERIMENTAL METHODS 50

5.4 Bridge SQUID potentiometry circuit

Figure 5.7: Electrical schematic of the SQUID bridge circuit.

Motivated by the center-tapped four probe resistance bridge circuit [62], we adapted a similar

geometry to work with the dc-SQUID amplifier. Instead of the high-impedance amplifiers used

in the traditional bridge circuits to measure voltage fluctuations, we used the dc-SQUID as a

low-impedance and ultra low-noise current amplifier to measure current fluctuations. In place

of the center tapped four-probe resistance structure, we fabricated on a single chip two matched

resistively shunted Josephson junctions to be placed in each arm of the bridge circuit. Figure

5.8 shows a SEM image of junctions used in the bridge circuit. The two matched junctions in

essence act to replicate the role of the center-tapped resistor. The circuit is also essentially the

RSJ equivalent of the bridge circuit we used to measure resistance fluctuations in unshunted

junctions at voltages above the superconducting gap [18] (section 5.7). The matched junctions

are fabricated in the same lithographic step and are only spatially separated by 15 µm. The

close spatial proximity reduces spatial variations in the fabrication process, thereby achieving

high degree of matching. The bridge circuit is sensitive to the uncorrelated critical current

fluctuations of the two Josephson junctions, while at the same time insensitive to correlated

external noise sources such as the bias current noise and bath temperature fluctuations.
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Figure 5.8: SEM image of the on-chip and matched Josephson junctions for the SQUID
bridge measurement.

The electrical schematic of this SQUID bridge circuit is shown in figure 5.7. We used

potentiometers at room temperature to perform coarse and fine adjustment of the bias currents

Ib1 and Ib2. In the zeroth order operation of the circuit, we current bias the two junctions such

that they are at equal potential, Vj1 = Vj2. The equipotential operating point is indicated by

zero current flowing through the standard resistor, Istd = 0, which can be precisely monitored

by tracking the dc-SQUID response to the biasing currents. While we most often use the

equipotential operating point, Istd = 0, especially when the two junctions are well matched, we

have also operated the circuit with small voltage offsets, ∆V = Vj1 − Vj2 = IsqRstd. Though

rarely operated in this way due to the added complexity in tuning the circuit, non-zero voltage

offsets can be used to compensate small junction Ic mismatches, to regain the equality of

the junction voltage sensitivity with respect to temperature fluctuations, dVj1/dT = dVj2/dT .

This procedure can be used to maximize the rejection of the correlated bath temperature

fluctuations.

In the zero-voltage state the only resistance in the loop is Rstd, therefore the value of Rstd

can be calibrated via Johnson-Nyquist spectroscopy (section 5.5). The standard resistor is

chosen such that the dynamic resistance Rd of the junctions at the measurement biasing point

is much larger than the standard resistor Rstd. This is chosen to maximize the sensitivity of

the SQUID to Ic fluctuations in the junctions. In practice we have implemented the circuit
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Figure 5.9: dc-SQUID response to a bath temperature step. The dc-SQUID signal and
fridge cold finger thermometer are simultaneously sampled. The temperature of the He-3
fridge was increased in an abrupt step by ∆T ≈ 220 µK. The effect of this temperature step
is not discernible in the dc-SQUID response.

with Rstd ≈ 0.3− 0.5 Ω.

Similar to the single JJ SQUID potentiometry circuit, it is possible to obtain the full IV

characteristics of each of the two junctions. For example the full IV characteristics of J1

can be obtained by ramping the bias current Ib1, while the current bias Ib2 is set to null out

the current flowing through J2 to keep J2 in the zero voltage state. This is done by setting

Ib2 = −Isq, which forces Ij2 = 0 from current conservation. With this biasing procedure the

current and voltage through J1 can be obtained in a similar manner as in section 5.2.1. The

junction current is, Ij1 = Ib1 − Isq, and the voltage, Vj1 = IsqRstd.

It is also possible to obtain the IV characteristics very near to the voltage state transition

by following a simpler procedure where Ib2 is kept at zero (for the IV of J1, and vice versa).

In this manner the IV characteristics in the voltage range Vj1 = 0 to Vj1 = Ic2Rstd can be

mapped out. For Vj1 > Ic2Rstd, J2 is driven into the voltage state and the extraction of Vj1

is no longer straightforward. Figure 5.10 shows an example of the IV curves at T = 315 mK

obtained in this manner. The region around the voltage state transition is clearly mapped, a

sharp turn-on at approximately Vj ≈ 20 µV is related to the turn-on of the second junction.
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Figure 5.10: IV characteristics of two junctions in the SQUID bridge circuit at T = 315 mK.
(red solid line) IV curve of JJ1, Ic ≈ 39.7 µA. (black solid line) IV curve of JJ2,
Ic ≈ 39.9 µA. The two junctions are matched to within 99.5% (inset) Zoomed-in view around
the voltage-state transition region.

The inset of figure 5.10 is a zoomed-in view showing the high degree of Ic matching across the

two junctions, IJ1c ≈ 39.7 µA and IJJ2c ≈ 39.9 µA, giving α ≈ 0.995 (99.5% matching).

5.4.1 Non-zero finite bias

Here the full RSJ behavior of the junctions need to be taken into account. This is where we get

sensitivity to critical-current fluctuations. We assume that the junctions follow RSJ behavior:

Vj = Rs

√
I2j − I2c (5.14)

The dynamic resistance RD is given by:

RD =
∂Vj
∂Ij

=
IjR√
I2j − I2c

(5.15)
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A related quantity is the partial derivative ∂Vj/∂Ic, which is given by:

∂Vj
∂Ic

= − IcR√
I2j − I2c

= −RD

(
Ic
Ij

)
(5.16)

In the bridge circuit let us label I1 and I2 to be the current flowing through the junctions.

Such that:

I1 = IA + Isq (5.17)

I2 = IB − Isq, (5.18)

where IA and IB are the constant bias currents in junctions 1 and 2 respectively. Next, the

voltage equality condition holds that:

V2 − V1 = IsqRstd (5.19)

Without loss of generality, let us first assume that JJ1 is fluctuation-less. That is SIc,1 = 0.

We will solve the signal sensitivity to fluctuations in Ic2:

Rstd
dIsq
dIc2

=
dV2
dIc2

− dV1
dIc2

(5.20)

Now, taking care to take the full derivative:

dV2
dIc2

=
∂V2
∂Ic2

+
∂V2
∂I2

dI2
dIc2

(5.21)

= −RD2

(
Ic2
I2

)
+RD2

dI2
dIc2

(5.22)

Likewise the full derivative for the second term dV1/dIc2 can be evaluated as follows:

dV1
dIc2

=
∂V1
∂I1

dI1
dIc2

+
∂V1
∂Ic1

dIc1
dIc2

(5.23)

= RD1
dI1
dIc2

(5.24)
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Putting these two terms together, this time observing that the current conservation condition

imposes the condition, dI2 = −dIsq and dI1 = dIsq:

Rstd
dIsq
dIc2

= −RD2
Ic2
I2

−RD2
dIsq
dIc2

−RD1
dIsq
dIc2

(5.25)

(Rstd +RD1 +RD2)
dIsq
dIc2

= −RD2

(
Ic2
I2

)
(5.26)

dIsq
dIc2

= − RD2

Rstd +RD1 +RD2

(
Ic2
I2

)
(5.27)

We find that the noise power due to fluctuations in Ic2 is given by:

Ssq
Ic2

=
R2

D2

(Rstd +RD1 +RD2)2

(
Ic2
I2

)2

SIc2 (5.28)

By symmetry the noise power due to fluctuations in Ic1 is given by:

Ssq
Ic1

=
R2

D1

(Rstd +RD1 +RD2)2

(
Ic1
I1

)2

SIc1 (5.29)

We note that since the critical-current noise in the two junctions are uncorrelated, then their

noise power adds to give the total noise power density. So that the total noise power density

at the SQUID is:

Ssq
I =

R2
D1

(Rstd +RD1 +RD2)2

(
Ic1
I1

)2

SIc1 +
R2

D2

(Rstd +RD1 +RD2)2

(
Ic2
I2

)2

SIc2 (5.30)

The above equation simplifies greatly if we now take into account that the two junctions

are very well matched such that RD = RD1 = RD2, and we operate the circuit in the regime

Ic1/I1 = Ic2/I2 ≈ 1. Furthermore we design the circuit such that Rstd << RD. Figuring all of

these factors:

Ssq
I =

1

4
(SIc1 + SIc2) (5.31)

Defining the average critical-current noise power to be, SIc = 1
2(SIc1 + SIc2), we have our
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final relationship:

Ssq
I =

1

2
SIc (5.32)

The signal visibility at the SQUID is only half of the full critical-current noise power.

Compare this with the sensitivity of the non-bridge 1-JJ SQUID potentiometry circuit which

is Ssq
I = SIc . However this small reduction in sensitivity is greatly offset by the common-mode

noise rejection offered by the bridge configuration. The immunity to common-mode noise is

critical in rejecting spurious temperature instabilities of the fridge, and allows us to isolate the

fundamental critical-current noise of the Josephson junctions.

5.4.2 Common-mode rejection

Making the standard simplification for the operating circuit:

dIsq
dIc1

=
1

2
(5.33)

dIsq
dIc2

= −1

2
(5.34)

dIsq
dT

=
dIsq
dIc1

dIc1
dT

+
dIsq
dIc2

dIc2
dT

(5.35)

dIsq
dT

=
1

2

(
dIc1
dT

− dIc2
dT

)
(5.36)

The Ambegaokar-Baratoff relationship provides a functional form of the temperature depen-

dence:

Ic =
π∆(T )

2eRn
tanh

(
∆(T )

2kBT

)
(5.37)

Since both junctions are metallized at the same step, it is reasonable to assume that super-

conducting energy gap ∆(T ), which depends only on the superconductor quality, are identical

across both junctions. The temperature dependence is therefore parameterized in the normal-

state resistance of the junctions which may differ due to local oxidation variations. Suppose
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the two junctions are matched so that:

Ic1(T )

Ic2(T )
=
Rn2

Rn1
= α (5.38)

Then,

dIc1
dT

= α
dIc2
dT

(5.39)

So that the common-mode signal seen at the SQUID is given by:

dIsq
dT

=
1

2
(1− α)

dIc
dT

(5.40)

ST
I,sq =

1

4
(1− α)2(dIc/dT )

2ST (5.41)

Compare this to the un-attenuated (non-bridge) signal sensitivity to temperature fluctua-

tions, ST,∗
I,sq = (dIc/dT )

2ST , the common-mode attenuation is given by:

η =
1

4
(1− α)2 (5.42)

For junctions with 99% matching, we have an attenuation of over η ≈ 4×104. Note that this

achieves the required attenuation of spurious temperature-noise even at 1 K (T/Tc = 0.77).

5.5 Johnson-Nyquist noise calibration of Rstd

Precise value of the standard resistor Rstd can be obtained by performing a Johnson-Nyquist

noise spectrometry. At zero bias, Ib = 0, the junctions are in the superconducting state and

the white noise component at high frequencies, typically in the range f = 10− 10 kHz, is then

dominate by the thermal Johnson-Nyquist noise of the standard resistor:

SI =
4kBT

Rstd
+ Sbgnd

I (5.43)
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Figure 5.11: Johnson noise spectroscopy of the white noise background at high frequencies.
The dark dashed line is a fit to SI = 4kBT/Rstd + c, where the slope can be used to extract
the value of the standard resistor. (inset) Example of the power spectral density at high
frequencies, showing a white spectrum dominated by the thermal noise of Rstd

Where in general there can be a constant white background noise term Sbgnd
I , which will

flatten the temperature dependence at low temperatures. Therefore an accurate noise spec-

troscopy will have to be taken at several different temperature points at fitted to equation 5.43,

where the slope is then related to Rstd. However for small values of Rstd, the Johnson-Nyquist

noise is large enough to overwhelm this background noise, as seen in figure 5.11. In this trace

the fitting yields Rstd ≈ 1.4 Ω, and the limiting background noise term is small compared to

the Johnson-Nyquist term.

5.6 Calibration of the measurement SQUID background noise

As part of the measurement qualification work, we have characterized the background low

frequency noise of the measurement SQUID. State of the art SQUIDs are known to have a

background magnetic flux noise in the few µΦ0s/
√
Hz. Characterization of our measurement

SQUID’s background noise can be performed at zero bias current, where the noise seen by the
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Figure 5.12: Power spectral density of the background noise, including the measurement
SQUID’s low frequency flux noise and the amplification chain. The dashed red line is a fit to
SΦ = A/fα + C, with A ≈ (7.46 µΦ0)

2, α = 1, and C = 9.76× 10−10 Φ2
0

SQUID is given by:

SΦ =
A

fα
+ C (5.44)

Where C is the white noise contribution due to the standard resistor Rstd being present in

the loop. The first term reflects the background low frequency noise present in our SQUID

and measurement chain. Figure 5.12 plots the low frequency spectra of the SQUID and the

amplification chain. We find that we can best fit the background low frequency to α ≈ 1 and

A ≈ (7.46 µΦ0)
2.

5.7 Resistance fluctuation measurement setup

For measurements of the tunneling resistance noise SRn/R
2
n we have used several different

circuits. For measurements of large area junctions where the noise is well described by the a

featureless 1/f spectrum, we have used the bridge circuit as shown in figure 5.13A, adapted
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Figure 5.13: (A) Resistance wheatstone bridge circuit. (B) Single JJ cross-correlated
resistance measurement setup.

from Eroms. et. al. [18]. In our implementation, we have always picked two junctions with

the same area and transmissivity. The bridge circuit can be operated with either ac- or dc-

excitation. With ac current bias we used a lock-in amplifier to demodulate the signal. To

improve our noise signal’s visibility well above the background low frequency noise of the

amplifiers, we typically amplify the signal using two or more amplifiers. We then compute the

cross power spectral density (CPSD) of the two amplifier signals. The junction voltage is a

correlated quantity across the amplifiers, while the amplifier’s voltage noise are uncorrelated.

By shifting the measurement frequency to a higher frequency, fac, we can avoid picking up

the low-frequency noise of the amplifier itself.

5.8 Time Capture

We used a National Instruments PCIe-6251 data acquisition card to digitize and sample the

voltage signal. The DAQ card used did not have the capability to perform true simultaneous

sampling, however it is capable of sampling up to 1.25 MS/s across all sampled channels.
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Figure 5.14: Circuit schematic of the signal digitization end. The SR640 is used as an
anti-aliasing low pass filter, and provides the final gain before being digitized by a National
Instruments PCIe-6251 DAQ card.

Therefore for our typical two channel cross correlation measurement we have a theoretical

maximum sampling frequency of 625 kHz for each channel. However our system bandwidth,

set by filtering and line impedances of the He3 fridge, is limited to around 10 kHz, therefore

the sampling of the two channels is practically simultaneous (figure 5.15A).

We used a Stanford Research Systems SR640 programmable filter to perform a low-pass anti-

aliasing filtering prior to sampling. The filter cut off frequency is determined by the bandwidth

of the signal of interest, and the sampling frequency is set to at least twice the filter cut off

frequency per the Nyquist-Shannon sampling theorem. In figure 5.15 the signal was sampled

at fs = 400 Hz and a low-pass cutoff frequency at fc = 185 Hz was used. Figure 5.15B shows

the computed cross power spectral density of the sampled signals in fig. 5.15A, where a sharp

dip at f = 185 Hz is an artifact of the anti-aliasing low-pass filter cutoff.

The power spectral density (PSD) or the cross power spectral density (CPSD) of the digitally

sampled time series were computed using standard MATLAB libraries.



EXPERIMENTAL METHODS 62

Figure 5.15: (A) Two independent channel sampling of two amplifier outputs. Uncorrelated
noise between the two channels are the amplifier’s intrinsic noise and can be rejected to
improve the signal-to-noise ratio. (B) Cross-spectral density of the two time traces. (red
dash) Fit to 1/fα. Example traces from an Al/AlOx/Al tunnel junction at T = 45 K biased
at Vb = 0.5 mV.



CHAPTER 6

CRITICAL CURRENT NOISE IN AL-ALOX-AL
JUNCTIONS

6.1 Introduction

In this chapter we will present our measurements of the critical current noise SIc/I
2
c and

tunneling resistance noise SR/R
2 in Al-AlOx-Al junctions. The measurements were done in

both resistively shunted and unshunted junctions. For the shunted junctions we will present

measurements of SIc/I
2
c for T < Tc and SR/R

2 for T > Tc. We have made only measurements

of SR/R
2 in our unshunted junctions, but traversed a wider range of temperatures and junction

areas.

At the start of this project it was suggested that the critical current noise in Josephson

junctions follows a universal formula [67]:

SIc
I2c

= 1.44× 10−10

(
1

f

)(
1

A/µm2

)(
T

4.2 K

)2

Hz−1 (6.1)

However some more recent measurements seem to violate this proposed universal formula [18,

53], most notably with a linear T -dependence instead of the T 2 of the universal formula. A

more detailed background review and a discussion on the state of the field is given in chapter 2.

On the face of this contradictory body of experimental evidence, our motivation was therefore

to better understand the properties of the low frequency 1/f critical current noise in Al-AlOx-

Al junctions, the junction architecture that has emerged to be widely implemented in various

quantum coherent circuits. Other junction architectures, most notably the epitaxial trilayer

junction architectures of Nb-AlOx-Nb [11] and Re-AlOx-Re [36], have been explored but have

63
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yet provided the improvements to justify the added fabrication complexity over the simplicity

of the double-angle evaporated Al-AlOx-Al junctions.

As will be detailed in this chapter, our measurements of the 1/f noise in Al-AlOx-Al junc-

tions are consistent with other measurements by Eroms et. al. [18] and Pottorf et. al. [53].

In particular the measurements of Pottorf et. al. [53] and our own (section 6.4.4) in Nb-

AlOx-Nb junctions observed similar noise properties with other measurements in Al-AlOx-Al

junctions. This consistency suggests that the noise is a property of the common element, the

amorphous diffused AlOx tunneling dielectric. Therefore we find that the 1/f noise magnitude

and temperature dependence for tunnel junctions with a diffused amorphous AlOx barrier is

well predicted by the formula:

SR
R2

≡ SIc
I2c

≈ 1× 10−13

(
T

A/µm2

)(
1

f

)
Hz−1, (6.2)

where T is the temperature and A is the junction area in units of µm2.

From investigating the area dependence of the low frequency noise we have found an area and

temperature (AT ) threshold at which non-Gaussian effects become pronounced due to small

number of activated TLSs, in other words a threshold for the breakdown of Gaussianity in

the low frequency noise. This non-Gaussianity threshold and the magnitude of the 1/f power

spectral density give an estimated TLS density of, σ0 ≈ 4× 1013 m−2K−1 ≈ 40 µm−2K−1.

6.2 Noise due to independent uncorrelated fluctuators

The SIc ∝ 1/A and SIc ∝ I2c dependence of the critical current noise is consistent and follows

from the assumption of independent uncorrelated fluctuators that modulate the tunneling

probability. In this model, each fluctuator contributes to a fractional change in the critical

current, δIc/Ic, which defines an effective fractional area of the fluctuator, δA/A = δIc/Ic,

such that δA = (δIc/Ic)A, where A is the total area of the junction.

The partial noise power density due to a single fluctuator, k, is then given by, SIc,k =
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I2c (δA/A)
2. The assumption that the fluctuators are uncorrelated means that the total noise

power density is the sum of the individual partial noise power density contributions, SIc =∑
k SIc,k =

∑
k(δA/A)

2I2c = (NTLSA)(δA/A)
2I2c , which gives:

SIc ∝ I2c /A (6.3)

Because of the ∝ I2c /A dependence, it is convenient to characterize the noise power spectral

density in terms of the fractional power spectral density SIc/I
2
c and normalizing them to an

area A = 1 µm2. This procedure effectively normalizes the extrinsic properties of the junctions

(Ic and A), and allows the intrinsic properties of the 1/f low frequency noise to be compared

between two junctions with dissimilar critical currents and areas.

6.3 Critical-current noise in shunted Al-AlOx-Al junctions

6.3.1 Experimental setup

The resistively shunted Al-AlOx-Al Josephson junctions were fabricated using the double-angle

shadow evaporation technique, the junction electrodes and barrier oxidation are completed in

one step without breaking vacuum. The evaporation was performed in a chamber with a base

pressure of ≈ 3 × 10−10 Torr. The shunt resistors, Rs, were fabricated by the electron-beam

evaporation of Pd to a thickness, t ≈ 60 nm. The resistor’s sheet resistance was calibrated using

auxiliary calibration structures processed in parallel with the junctions on each evaporation

run. The typical low temperature (T ≈ 4.2 K) sheet resistance is Rs ≈ 1.3 Ω/sq. The

shunt resistors are patterned with large, 300× 300 µm2, cooling fins to minimize hot-electron

effects [68]. More details of the fabrication procedures are given in chapter 4

Measurements of the critical current noise, SIc/I
2
c were performed in the SQUID bridge

circuit. Figure 6.1A shows the circuit schematic of the SQUID bridge potentiometry technique.

A detailed discussion on the circuit operation is given in chapter 5.4. The SQUID bridge circuit
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Figure 6.1: (A) Circuit schematic of the SQUID bridge circuit (see section 5.4 for operational
details). (B) Example of the computed power spectral density. (circles) SIc/I

2
c area

normalized to 1 µm2 for sample S3, Ib/Ic ≈ 1.005. (red dash-dot) Fit to SIc/I
2
c = A/f +B.

Data is shown for four of the samples measured, S1, S2, S3, and S4. (grey dashed line) The
background low frequency noise characteristics of the measuring SQUID.

uses a dc-SQUID sensor to monitor the current fluctuations in the Josephson junctions placed

on the two opposite sides of the bridge circuit. A small standard resistor, Rstd ≈ 0.5 Ω, is placed

in series with the SQUID pickup loop. The two shunted junctions in the bridge are matched

and fabricated on-chip in the same lithography step. Potentiometers at room-temperature are

used to adjust the currents through the junctions, while the dc-SQUID monitored the voltage

imbalance, which is typically kept at zero. The current noise detected at the SQUID input is

related to the critical current noise of the junctions by:

Ssq
I =

1

2
SIc , (6.4)

a more detailed analysis is given in chapter 5.4. The reduction by a factor of two in the noise

power sensitivity compared to the standard SQUID potentiometry technique is compensated by

the large attenuation of common-mode noise sources, such as spurious temperature fluctuations

and external biasing noise.
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Following the analysis in chapter 5.4, the power attenuation factor of common-mode noise

sources is given by: η = 1
4 (1− α)2, where α is the matching ratio of the junction critical

currents, α = min(Ic1, Ic2)/max(Ic1, Ic2). In our on-chip matched junctions we are able to

match the critical currents to within 1%, allowing for a high attenuation of small temperature

fluctuations ∼ 100s µK.

The system background noise was determined by monitoring the SQUID output while keep-

ing the junctions in the superconducting state (zero bias). The grey dashed line in figure

6.1B shows the system background noise, which has a base 1/f equivalent flux noise of

S
1/2
Φ (1 Hz) ∼ 6 µΦo/

√
Hz, consistent with the calibration data of the SQUID sensor. The

background 1/f noise is subtracted from the measured data and the remainder is attributed

to fluctuations in the junctions. The grey circles in figure 6.1B are data representative of the

critical current measurements. In this case the data were taken from sample S3 at T ≈ 315 mK

with a current bias Ib/Ic ≈ 1.005. The red dash-dot line shows a fitting curve to the form

SIc/I
2
c = A/fα + B, where α ≈ 1, A gives the power spectral density at 1 Hz, and B is the

Johnson noise background related to the shunting resistor.

6.3.2 Measurements of SIc/I
2
c in the superconducting state

We present here data from four of the samples measured, labelled as samples S1, S2, S3, and

S4 with the following parameters:

Sample ID I0 (µA) Area (µm2)

S1 11 1.1

S2 10 0.3

S3 40 1.2

S4 2.9 0.15

Figure 6.2A shows the area dependence of the fractional critical current power spectral

density (SIc/I
2
c ) at 1 Hz. In this graph the fractional PSD has not been area normalized
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Figure 6.2: (A) Area dependence of the critical current fractional noise power spectral
density, SIc/I

2
c . The gray dash-dot line is a fit to ∝ 1/A dependence. (B) Summary of the

fractional noise PSD SIc/I
2
c at 1 Hz and area normalized to 1 µm2. The gray dash-dot line is

a fit to a linear T-dependence.

to A = 1 µm2 to explicitly observe the area dependence. The inverse area scaling (1/A) of

the fractional power spectral density is consistent with noise resulting from an ensemble of

uncorrelated fluctuators. More importantly the observation of a 1/A dependence implies that

the measured signal comes from fluctuations intrinsic to the junction, and not from fluctuations

induced by bath temperature instabilities. The temperature induced fluctuation is independent

of the junction area, given by (chapter 5.4):

ST
Ic

I2c
=

(
dic
dτ

)2 ST
T 2

= κ(T )
ST
T 2
, (6.5)

where ST
Ic
/I2c is the fractional critical current noise PSD induced by temperature fluctua-

tions having a PSD ST /T
2, and dic/dτ is a dimensionless sensitivity factor described by the

Ambegaokar-Baratoff relationship (figure 5.6). On the other hand the noise originating from

an ensemble of uncorrelated fluctuator modulating the junction Ic is expected to scale as

SIc/I
2
c ∝ 1/A.
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The measured critical current noise from all the samples are plotted in figure 6.2B. In this

plot the fractional PSD SIc/I
2
c have been normalized to A = 1 µm2, in order to compare the

intrinsic noise properties independent of the parameters of the junctions. The fractional PSD

are observed to increase linearly with temperature, with the average T -dependence given by

SIc/I
2
c ≈ 1.3× 10−13 (T/1 K) Hz−1 (figure 6.2B, grey dash-dot line).

6.3.3 Measurement extension into the normal state, SR/R
2

Figure 6.3: (A) I2b bias dependence of the raw SQUID input current noise, Ssq
I for sample S3

at T = 1.6 K. Dashed line is a fit to Ssq
I = AI2b . (B) Noise power spectral density for sample

S3 at T = 1.6 K and Ib = 75 µA. (Gray dashed-line) Fit to SR/R
2 = A/f +B, where A and

B are the fitting parameters. (inset) Electrical schematic of the SQUID bridge circuit where
the Josephson junctions now act as a tunneling resistance in parallel with the shunt
resistance.

Resistively shunted junctions are well suited for measuring critical current fluctuations in

the superconducting state, while the parallel shunting resistance makes them less suited for the

measurement of the tunneling resistance noise. Despite the presence of the shunting resistor we

find that it is still possible to extract the tunneling resistance noise, if the effect of the shunting

resistance is taken into account. We note that the tunneling resistance noise can be measured



CRITICAL CURRENT NOISE IN AL-ALOX -AL JUNCTIONS 70

by measuring at voltages higher than the superconducting gap, V > 2∆, or by measuring above

the critical temperature of the superconductor T > Tc, additionally an external magnetic field

can be applied to suppress both Tc and ∆. In this section we performed measurements of the

tunneling resistance noise by measuring at temperatures above the Tc of our aluminum at zero

field, (Tc ≈ 1.3 K). Note that Rogers and Buhrman [54] have performed a similar measurement

in resistively shunted Nb-PbBi edge junctions.

We performed measurements of the tunneling resistance noise in the SQUID-bridge samples

S3 and S4. Recall that the SQUID-bridge circuit detects voltage fluctuations across the two

junctions under test. In this case, for a resistive fluctuation δR, the resulting voltage fluctuation

depends on the magnitude of the bias current Ib, δV = IbδR. The current signal coupling into

the SQUID input coil is then, δIsq ∝ δV/Rstd = IbδR/Rstd. Thus we were able to compensate

the small effective resistance fluctuation δR by using relatively large biasing currents Ib (when

compared to the bias currents used in measuring in the superconducting state). We find that

hot-electron effects are of no concern considering the significantly higher bath temperatures

involved in measuring in the normal state, T ≈ 2 − 12 K. We verify that the junctions are

in temperature equilibrium by confirming that the noise signal scales quadratically with the

biasing current, SIsq ∝ I2b , as shown in figure 6.3A.

At T > Tc the resistively shunted junction is simply a parallel network of two resistances,

the junction tunneling resistance Rn and the shunting resistance Rs. The equivalent RSJ

resistance is then:

Req =
RnRs

Rn +Rs
, (6.6)

Fluctuations in Rn are reflected as fluctuations in Req according to the sensitivity:

dReq

dRn
=

(
Rs

Rn +Rs

)2

(6.7)

Fluctuations of the tunneling resistance δRn as reflected in the equivalent resistance δReq is

heavily attenuated depending on the relative values of Rn and Rs. Nevertheless we found that
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in some of our samples the values of Rs and Rn still allowed for enough sensitivity to detect

the fluctuations in Rn.

The circuit analysis is identical to the case where the junctions are superconducting as

detailed in section 5.4. The inset in figure 6.3B shows the schematic of the SQUID bridge

circuit with the junctions explicitly represented as a resistor. In this case, we may explicitly

recast the sensitivity of the SQUID current Isq with respect to fluctuations in the normal state

resistance of the tunnel junction:

dIsq
dRn

=
Ib1
RΣ

dReq

dRn
, (6.8)

where RΣ is the total resistance in the SQUID loop.

The fractional power spectral density of the SQUID input current is then related to the

fractional power spectral density of the tunneling resistance as:

SRn

R2
n

=
1

2

(
RΣ

Rn

)2 1

(dReq/dRn)
2

SIsq
I2b

(6.9)

To perform the measurement we current bias the junctions so that they are biased at the

same potential. Since the two junctions have been highly matched, this equipotential condition

is achieved when the two biasing currents are approximately equal, Ib1 ≈ Ib2. Following

from the equipotential biasing condition, the quiescent current through the SQUID is zero,

Isq = (V1 − V2)/Rstd ≈ 0, so that we are measuring fluctuations in the SQUID current about

the point Isq = 0.

Figure 6.3B shows a typical measurement of the normal state resistance in shunted junctions.

In this case the gray dots are data from sample S3 taken at T = 1.6 K at a bias current

Ib = 75 µA. The red dash-dot line shows a fit to the usual 1/f form, SR/R
2 = A/f +B.

Figure 6.4 summarizes both measurements of SIc/I
2
c for S1 to S4, and SR/R

2 for S3 and

S4. In the normal state SRn/R
2
n is found to vary linearly with temperature similar to the

dependence in SIc/I
2
c , and with a power spectral density consistent with the equivalence

SIc/I
2
c ≡ SRn/R

2
n as expected from the Ambegaokar-Baratoff relation. The dashed lines
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Figure 6.4: Temperature dependence of SIc/I
2
c and SR/R

2. Data point at T < 1.3 K are
measurements of SIc/I

2
c from samples S1 to S4, the data points at T > 1.3 K are

measurements of SR/R
2 for samples S3 and S4. The dashed lines are the average and

upper/lower bounds of the resistance noise SR/R
2 measured in unshunted junctions, shown

here for comparison purposes.

in figure 6.4 are the average, lower, and upper bounds of the resistance noise measured in un-

shunted junctions, shown here for comparison purposes. Measurements of unshunted junctions

will be discussed in the next section. We conclude that the noise magnitude and temperature

dependence of SIc/I
2
c and SR/R

2 are consistent with each other, and reinforces the picture

that critical current fluctuations arise from fluctuations of the tunneling resistance.

The data do not support the existence of excess critical current noise above the contribution

from the tunneling resistance noise. Therefore we did not observe the additional contribution

as proposed in Kondo-traps theories [19, 3].
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6.4 Tunneling resistance noise, SR/R2, in unshunted Al-AlOx-Al
junctions

6.4.1 Experimental setup

Figure 6.5: Electronic circuit for the measurement of SR/R
2 in unshunted tunnel junctions.

Figure 6.5 shows schematics of the circuits used to measure the resistance noise SR/R
2

in the unshunted tunnel junctions. A more detailed discussion on the circuit operation is

given in chapter 5.7. The resistance noise in unshunted junctions have been measured using

several variants of the measurement circuit represented in figure 6.5, although all of the circuits

perform in essentially the identical manner, by current biasing the junction and amplifying the

junction voltage.

The resistance bridge in figure 6.5A is identical to that used in Eroms et. al. [18] and

detailed in Scofield [62] specifically for measuring the low frequency noise in resistors. For

measurements in the ac-bridge geometry we fabricated two matched junctions with nominally

identical tunneling resistancesR and areas A. So that measurements in the bridge configuration

represent an average of the two junctions having identical R and A. While the parameter

matching of the junctions is not strictly necessary, the interpretation and comparison of the

data is a little more complicated. The junctions are ac-biased to avoid the low frequency
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noise of the voltage amplifiers. We used two lock-in amplifiers to demodulate and amplify the

voltage signals, and compute the cross power spectral density (CPSD) to further reject the

uncorrelated noise from the amplifiers. The modulation frequency is dictated by the sample

and line impedances, but is typically in the range 1− 3 kHz. Measurements below the critical

temperature Tc of Al were done by suppressing the superconductivity with an applied magnetic

field, B⊥ > 100 mT.

While the ac-bridge technique allows for much more sensitive measurements of the low

frequency noise, we find that in some samples with large low frequency noise (the smaller

junction areas), it is sufficient to perform a single-JJ measurement as in figure 6.5B. An added

benefit is that a matching junction is not required, simplifying the measurement and increasing

throughput. We still ac-biased the junction to avoid the low frequency noise of the amplifier,

and compute the CPSD. We have also used a dc-biasing scheme when looking at two level

systems and when the bias voltage dependence of the TLS dynamics is relevant. In the case

of time-domain analysis we averaged the time series traces of the two amplifiers instead of

computing their CPSD.

6.4.2 Temperature dependence of the resistance noise, SR/R
2

Figure 6.6A shows the temperature dependence of the resistance noise SRn/R
2
n in a range of

unshunted junctions, containing a range of junction areas A and resistances R. In the plot

the fractional PSD has been area normalized to A = 1 µm2 to allow for the comparison of a

range of junction areas. In figure 6.6A only those junctions with areas large enough to produce

featureless 1/fα, α ≈ 0.8 − 1.2 have been included. These are the junctions for which the

inverse area scaling holds (SR/R
2 ∝ 1/A), plotted in figure 6.9 and will be discussed in detail

in section 6.5

The typical power spectral densities are given in figure 6.6B for T = 1.4 K and figure 6.6C

for T = 189 K. The red line shows a fit to the 1/f functional form: SR/R
2 = A/fα+B, where

the fitting parameter A is used to extract the power spectral density at 1 Hz.
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Figure 6.6: Measurement summary of tunneling resistance noise SRn/R
2
n in unshunted

double-angle evaporated Al/AlOx/Al junctions.

The three dashed lines in figure 6.6A represent the average magnitude of the power spectral

density, and its upper/lower bounds. We find that the average noise magnitude over all of the

junctions is well described by the line:

Sav
R

R2
= 1× 10−13

(
T/K

A/µm2

)
1

f
Hz−1, (6.10)

while the upper and lower bounds differ by a factor of two from this value. Part of the spread

can be explained by the uncertainty in the junction sizes. We conclude that the tunneling

resistance noise in unshunted junctions is consistent with the critical current and resistance
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noise measured in shunted junctions (plotted in figure 6.4). The data from both shunted and

unshunted junctions confirm the equivalence of critical current and resistance noise:

SIc
I2c

≡ SR
R2

(6.11)

6.4.3 SR/R
2 scaling at high temperatures

We observed that at a relatively high temperature, T ≈ 150− 200 K, the SR/R
2 ∝ T depen-

dence is violated and the spectral density becomes a much stronger function of the temperature.

This effect has also been observed in Eroms et. al. [18] and Julin et. al. [31], but has never

been analyzed and discussed.

Figure 6.7A plots the temperature dependence of SR/R
2 for two different Al-AlOx-Al junc-

tions, in the range T ≈ 1 K to room temperature. Figure 6.7B plots the corresponding 1/fα

exponent as a function of temperature. Note that in the range where the power spectral den-

sity is linear in T , α(T ) is approximately, α ≈ 1. The region of hyper linear temperature

dependence is accompanied by a similar increase in α.

In the Dutta-Horn model the assumption of a uniform TLS energy distribution results in a

S(ω) ∝ 1/ωα power spectrum with α = 1. In fact in most experiments the generic 1/ωα noise

refers to a range of the exponent, typically α ≈ 0.8− 1.4. In this case, the Dutta-Horn model

actually only requires the TLS distribution P (E) to be slowly varying compared to kBT . This

leads to a relationship linking the exponent α to the temperature dependence of the power

spectral density [17, 16]:

α(ω, T ) = 1− 1

ln (ωτ0)

[
∂ lnS(ω, T )

∂ lnT
− 1

]
, (6.12)

where 1/τ0 ∼ 1014 s−1, is the attempt frequency. The black line in figure 6.7 plots the shape

of α(T ) (at ω = 2π s−1) predicted by the Dutta-Horn relation above, given the temperature

dependence of the power spectral density in figure 6.7A.
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Figure 6.7: (A) Tunneling resistance noise SRn/R
2
n(1 Hz) including the dependence at higher

temperatures. A steep increase of the low frequency noise at T ≈ 150− 200 K. The dashed
lines are the average and lower/upper bounds from measurements of the tunneling resistance
noise. (B) Temperature dependence of the 1/fα exponent. The solid black line is the value of
α(T ) predicted by the Dutta-Horn model. (C) Red dots are the TLS energy distribution
given the data in part A. The gray dashed line is a Gaussian energy distribution peaked at
Ep ≈ 0.97 eV and 2σ ≈ 0.2 eV, typically seen in Bi, Ag, and Cu films [16].
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Note that at the high temperature range, T ∼ 100 K it is quite likely that the junction’s low

frequency noise is well described by the Dutta-Horn model, which assumes thermally activated

TLSs.

In the case where we have relaxed the requirement that the TLS energy distribution is

strictly flat, then the power spectral density is given by the more general expression [17]:

S(ω, T ) ∝ kT

ω
P (Ẽ), (6.13)

where Ẽ = −kT ln(ωτ0), and only the Dutta-Horn kT factor has been explicitly shown. This

means that the detailed dependence of the power spectral density on the frequency ω and

temperature T , can reveal the energy distribution of the TLSs that cause the fluctuations.

Note that the frequency range probed in the typical experiment is often limited to a few

decades at most, and that the frequency only logarithmically samples the TLS energy space,

thus the temperature dependence of the power spectral density gives us the most insight in

this case.

In figure 6.7C, the red dots are the TLS energy distribution P (E) calculated from the data

in figure 6.7A. We observed an increased defect density P (E), which gives clues to, and could

be consistent with it being the tail of a peaked distribution of TLSs. The energy range in the

data is obviously insufficient to positively conclude the existence, yet alone the location of a

distribution peak, although it could be argued that it is unphysical for the distribution P (E)

to diverge, thus there has to be a peak somewhere. For comparison purposes, the gray dashed

line is a Gaussian TLS energy distribution peaked at Ep ≈ 0.97 eV with 2σ ≈ 0.2 eV, typically

seen in Bi, Ag, and Cu films [16, 17]. Future measurements of Al-AlOx-Al tunnel resistance

noise should include measurements at higher temperatures to see if there is a similar peaked

TLS energy distribution.

As found by Dutta and Horn [16], the energy scale Ep ∼ 1 eV is in the order of the atomic

cohesive energies, ∼ 1 eV/atom. So that if the data on the noise in Al-AlOx-Al junctions can

support the existence of a peaked TLS distribution around Ep ∼ 1 eV, then this could be
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another indicator that the low frequency noise is caused by an atomic defect fluctuating in a

disordered crystal lattice background. At low temperatures, T ∼ 1 K, thermal activation is

unlikely and the tunneling dynamics will become important in governing the properties of the

low frequency noise, however the physical origin of the disorder does not have to be different

from that at high temperatures.

6.4.4 Resistance noise in Nb-AlOx-Nb trilayer junctions

Figure 6.8: (A) Tunneling resistance noise SR/R
2 in Nb-AlOx-Nb trilayer junctions. (Red

dots) J1, A = 0.85 µm2. (Blue triangles) J2, A = 0.62 µm2. (Dashed line) is the line
SR/R

2 = (3× 10−13)T Hz−1. (B) Representative power spectral densities of the tunneling
resistance noise at several temperatures.

In addition to the in-house fabricated Al-AlOx-Al junctions we have measured a selection of

Nb-AlOx-Nb trilayer junctions fabricated the group of Will Oliver at MIT Lincoln Laboratory.

The measurements were done at a voltage bias of V = 4 mV, above the superconducting energy

gap of niobium, V > 2∆ ≈ 2.8 meV. We measured the junctions in the single-JJ configuration
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of figure 6.5B. The power spectral densities at T = 7, 15, and 20 K are given in figure 6.8B.

The temperature dependence of the area normalized noise power spectral density, SR/R
2,

is plotted in figure 6.8A. The red dots are measurements from Nb-J1 with A = 0.85 µm2 and

blue triangles are data from Nb-J2 with A = 0.62 µm2. The black dotted line approximates

the measured temperature dependence, given by:

SR
R2

≈ 3× 10−13

(
T/K

A/µm2

)
1

f
Hz−1 (6.14)

While the measured noise in these Nb-junctions are on the higher end of the value previously

measured in a wide range of Al-AlOx-Al junctions (SR/R
2 ≈ 1 × 10−13 Hz−1 at 1 Hz, 1 K,

and 1 µm2), it is still consistent within the data scatter. Combined with the measurements

of Pottorf et. al. [53] which yielded an average value of the low frequency noise in Nb-AlOx-

Nb junctions consistent with our measurements in Al-AlOx-Al, we conjecture that the noise

property is inherent to the AlOx tunnel barrier and is independent of the properties of the

metal electrodes.

6.5 Breakdown of Gaussianity

6.5.1 Area scaling breakdown

Figure 6.9 plots the measured tunneling resistance power spectral density (SR/R
2) at 1 Hz

and T = 2 K, as a function of the junction area. At large junction areas (A > 0.1 µm2) the

power spectral density is proportional to 1/A: SR/R
2 ∝ 1/A. At just under A . 0.08 µm2,

the 1/A scaling breaks down, reflecting a threshold at which the number of activated TLSs is

no longer sufficient to integrate out a featureless 1/fα power spectral density. More impor-

tantly this threshold is tied to and can be used to the deduce the TLS density, which we will

numerically simulate in section 6.6.2, and has been treated analytically by Garfunkel, Restle,

and Weissman [22].
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Figure 6.9: Area scaling of the tunneling resistance noise SR/R
2. The power spectral density

has not been area normalized.

At large junction areas where the power spectral density has a 1/f dependence, the informa-

tion contained in the power spectral density is fully described by specifying only the spectral

density magnitude at a single frequency, of which f = 1 Hz is a typical convenient choice. The

breakdown of the scaling as plotted in figure 6.9 is a reflection of the noise properties from

having very few activated TLSs, and the inadequacy of using the spectral density at a single

frequency when the power spectral density is no longer a featureless 1/fα.

6.5.2 Temperature dependence on the threshold of Gaussianity

In previous experiments fluctuators were often observed to have an anomalously large fractional

resistance δR/R, on top of a background 1/fα noise [55, 57, 14]. An immediate question is

to wonder if these fluctuators are representative of the ensemble that forms the 1/fα power

spectrum, or do they represent a different noise mechanism?

In figure 6.10 we have plotted the temperature dependence of the power spectral density at

f = 1 Hz, for a small junction A ≈ 0.008 µm2, and a large junction A ≈ 0.28 µm2 for reference.

The black line plots the predicted noise line given by equation 6.2. The resistance fluctuation
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Figure 6.10: The noise spectral density at f = 1 Hz plotted as a function of temperature for
two junctions. (Dark-red triangles) Larger junction with area A ≈ 0.28 µm2, the noise scaling
follows the predicted universal 1/f temperature dependence. (Blue circles) The smaller
junction with area A ≈ 0.008 µm2, at high temperatures the power spectral density at 1 Hz is
seen to agree with the predicted universal line, however at lower temperatures the noise
power spectral content drops out significantly.

of the large area junction is well described by a 1/fα power spectral density and follows the

expected temperature dependence, SR/R
2 ∝ T .

For the small junction in figure 6.10 the power spectral density at low temperatures is

characterized by only a few isolated Lorentzians. This loss of Gaussianity results in the loss

of the generic 1/fα behavior described by S ∝ T/A (equation 6.2). Instead, in order to fully

describe the temperature evolution of the PSD we are required to know the specific instances

of the randomly distributed TLSs. We observed that at high temperatures the power spectral

density is well predicted by the universal line, however it diminishes rapidly as the temperature

is lowered following a more complicated temperature evolution. This strongly suggests that

the Lorentzians observed at low temperatures are the remainder of the ensemble that form the

1/f noise at higher temperatures, and that they are not unrelated TLS species that became

activated.

Figure 6.11A plots the temperature evolution of the fractional power spectral density for the
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Figure 6.11: The tunneling resistance noise power spectral density, SR/R
2 for (A) A small

A ≈ 0.008 µm2 junction. (B) Large junction A ≈ 0.28 µm2

small junction with A ≈ 0.008 µm2. The temperature evolution of the power spectral density

is much more complex in comparison to the temperature evolution of the large junction given

in figure 6.11B with A ≈ 0.28 µm2. An even more complex temperature evolution can be

seen in the power spectral density of a different junction, also with A ≈ 0.008 µm2, shown in

figure 7.2.

The large (A ≈ 0.28 µm2), junction has a featureless 1/fα power spectral density for the

temperature ranges shown, and the temperature evolution is predictable following a linear T -

dependence, SR/R
2 ∝ T . More importantly the linear T -dependence does not depend on the
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frequency ω. On the other hand the small junction temperature dependence follows a much

more complex ∂S(ω, T )/∂T evolution that explicitly depends on the frequency ω.

6.5.3 TLS activation and deactivation

Figure 6.12: (A-B) Freezing out of an active TLS. The freeze-out event occurred
spontaneously while in the middle of a long (2hr+) time trace at a constant voltage bias,
Vb = 3 mV, T = 6 K. (C) Effective three-well potential with a third isolated ground state
creating a rare switching event with effective rate Γ2.

We have also occasionally observed the freezing out of TLSs that leaves the junction with

very low residual noise. Figure 6.12A shows a time trace at T = 6 K at a bias voltage

Vb = 3 mV. Early in the trace the junction’s tunneling resistance is characterized by an

activated two level system (figure 6.12A). However later at some time t ≈ 2000 s, the fluctuator

spontaneously disappears (figure 6.12B), which occurred during a single time capture event,

with the temperature and voltage bias kept constant.

We conjecture that this freeze-out event reflects the fact that the fluctuators are actually

located within a much more complex potential energy landscape that is only effectively a local



CRITICAL CURRENT NOISE IN AL-ALOX -AL JUNCTIONS 85

Figure 6.13: Freezing out of an active TLS. The freezing out even occurred spontaneously
while in the middle of a long (2hr+) time trace at a constant voltage bias.

double-well potential. There may exist a third (or more) localized potential well separated by

a large potential barrier, such that a tunneling event into this third ground state is rare. One

such conjecture is sketched in figure 6.12C. Note that Garfunkel and Weissmann [22, 23] have

observed similar non-two-state behavior in the atomic motion in amorphous C-Cu and Si-Au

Figure 6.13 shows the power spectral density of the tunneling resistance (SRn/R
2
n). The

red dots show the PSD of the active fluctuator, note that the dashed gray line plots out the

universal noise line predicted for this particular junction which accurately predicted the power

spectral density at the corner frequency of the TLS. The gray dots are the power spectral

density with the fluctuator frozen-out. Note that the result is that the noise is at least one

order of magnitude lower than that predicted by the universal noise formula.

6.6 Defect density estimation

The TLS density can be estimated from two independent sources: 1. The 1/f noise power

magnitude in large junctions, and 2. The deviations from featureless 1/f power spectral density

in smaller junctions. As will be shown, the 1/f noise power magnitude depends on both the

TLS density σ0 and the effective strengths δA. However the ’bumpiness’ of the power spectrum
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depends only on the TLS density, thus combining these two information sources we are able

to give an estimate for both the TLS density and the effective strengths.

6.6.1 Defect density from 1/fα noise

The spectrum due to a single TLS with a variance σ2 is given by [38, 40]:

Si = 4σ2
τi

1 + ω2τ2i
(6.15)

In the tunneling TLS model, the variance of the TLS is σ2 = (1/4)(δR)2sech2(E/2kT ),

where E =
√

∆2 +∆2
0 is the energy level splitting, and δR is the signal difference between the

two TLS configurations (section 3.2). The total noise power can thus be evaluated through

the integral:

S(ω) = (δR)2
∫

τ(∆,∆0)

1 + ω2τ2(∆,∆0)
sech2(E/2kT ) AP (∆,∆0) d∆ d∆0, (6.16)

where the joint TLS distribution P (∆,∆0) is assumed to be uniformly distributed in the

asymmetry energies ∆ and the tunneling parameter λ, (∆0 = ~ω0e
−λ) [81]:

P (∆, λ) d∆ dλ = P0 d∆ dλ, (6.17)

P (∆,∆0) d∆ d∆0 =
P0

∆0
d∆ d∆0, (6.18)

and the one-phonon relaxation rate in the tunneling TLS model is given by [49, 51, 81]:

Γ =
1

τ
=

(∑
α

γ2α
v5α

)(
E∆2

0

2πρ~4

)
coth

(
E

2kBT

)
, (6.19)

where E =
√
∆2 +∆2

0. The TLS distribution can also be expressed in terms of more useful
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quantities, E and τ , which has the form [13]:

P (E, τ) =
P0

2τ

1√
1− τmin(E)/τ

, (6.20)

where τmin(E) is the minimum relaxation time at energy E = ∆0 corresponding to the degen-

erate TLS double-well configuration, at the given energy E. The total noise power can thus

be estimated [13]:

S(ω) ≈ (δI)2AP0

2

∫ ∞

0
dE sech2(E/2kT )

∫ ∞

0

dτ

1 + ω2τ2
(6.21)

≈ π

2
(δI)2AP0kT

1

ω
(6.22)

S(f) ≈ 1

4
(δI)2AP0kT

1

f
, (6.23)

where the factor
√

1− τmin(E)/τ has been ignored because τmin/τ ≪ 1 in the relevant integra-

tion region, following Constantin and Yu [13]. Note also that this leaves the TLS distribution

with the approximate form P (τ) ∝ 1/τ which is the required form to produce a 1/ω spectrum.

The one kT factor comes from the sech2(E/2kT ) integration, which selects the TLS energies

with thermodynamically allowed transitions.

Using the definition of the TLS distribution in equation 6.20, the TLS density, n, per µm2

in the junction area, per Kelvin spread in the TLS energy E per factor e in the TLS rates τ ,

is given by:

n =
P0

2

∫ 1K

0
dE

∫ eτ0

τ0

dτ

τ
=
P0

2
, (6.24)

here the relationship P0 ≡ 2n is a result of the definition of the distribution, P (E, τ) ≈ P0/2τ .

We have retained this definition to be consistent with the notation in the literature of glassy

insulators [51, 49, 13]. It is sometimes useful to integrate out the distribution over the TLS

lifetimes τ to obtain the TLS density over all TLS lifetimes:

σ0 =
P0

2

∫ τmax

τmin

dτ

τ
= (12 ln 10)n (6.25)
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where we have used the notation n to mean the TLS density per µm2 in the junction area, per

Kelvin spread in the TLS energy E, per factor e in the TLS rates τ , and σ0 denotes the TLS

density n integrated over the range of TLS lifetimes, {τmin, τmax}. Here we have used 12 decades

of TLS lifetimes as the integration limits, which covers the frequency cutoffs: f = 1 mHz to

f = 1 GHz. It is unclear what the appropriate frequency cutoffs should be, because in a

typical measurement the upper frequency cutoff is typically obscured by the Johnson-Nyquist

noise floor or by the noise floor of the instrumentation. While the lower cutoff is typically

limited by the constraint of a finite experiment duration. However the logarithmic dependence

in equation 6.25 makes it a very weak function of the choice of cutoff frequencies.

It follows that the number of thermally active TLSs, N∗
TLS is given by:

N∗
TLS =

∫
P (E, τ) d(E, τ) =

P0

2

∫ ∞

0
sech2(E/2kT ) dE

∫ τmax

τmin

dτ

τ
= (12 ln 10)P0kT (6.26)

Finally, using the relationship δI = (δA/A)I, where δA is a parameter describing the cou-

pling strength between the TLS and the junction’s critical current, the fractional noise PSD

can be estimated as:

SIc
I2c

≈ 1

4
(δA)2 P0

kT

A

1

f
, (6.27)

where here the TLS strength (δA)2 represents the averaged value ⟨(δA)2⟩ of some underlying

distribution. While the detail of the distribution is not important in this 1/f ensemble averaged

case, we will assume a Gaussian distribution later in our simulation of the TLSs.

Comparing to our inferred universal noise formula for the 1/f noise in Al/AlOx/Al junction

(equation 6.2):

SIc
I2c

= 1× 10−13 (T/K)

(A/µm2)

1

f
Hz−1, (6.28)

we obtain an estimate of the TLS density and strengths:

⟨(δA)2⟩P0 ≈ 4× 10−13, (6.29)
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where P0 ≡ 2n is twice the TLS density per µm2 in junction area, per factor e in TLS rate,

per 1 K in TLS energy spread, and ⟨(δA)2⟩ is given in units of (µm2)2.

As will be detailed in the next section, we are able to obtain an estimate for the density

P0 ≡ 2n from the breakdown of the featureless 1/f spectral shape due to a finite TLS ensemble

size. The estimated TLS density is:

n ≈ 2.53 µm−2K−1e−1, (6.30)

Using this estimated density, we deduce a value for the average TLS strength:

⟨δA2⟩ ≈ (0.30 nm2)2, (6.31)

that is a root-mean-square value, δARMS ≈ 0.30 nm2.

6.6.2 The few TLSs limit

Analytical result for the analysis of the spectral variance

We have detailed in previous sections the experimental observation that at small junction areas

and low temperatures, the relatively few activated TLSs fail to integrate out a featureless 1/f

spectral shape. Instead the power spectral density is characterized by several overlapping

Lorentzians giving rise to a ’bumpy’ 1/f -like spectral shape. Weissman et. al. [22, 23] showed

that the TLS density can be deduced by quantifying the variations in the spectral shape. In

this section we will show the TLS density estimation following the analytical result of Weissman

et. al. [22, 23], as well as the results from directly simulating the TLS ensembles.

For noise processes connected to the 1/f power spectral density, it is often convenient to

evaluate the quantity ωS(ω), where S(ω) is the noise power spectral density of the system

and ω is the angular frequency. For a pure 1/f noise, S(ω) = A/ω, therefore the quantity

ωS((ω) = A, is a constant and appears as a horizontal line in plots as a function of the
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frequency ω.

More generally for spectral shapes S(ω) that deviate from the pure 1/ω, we can compute

the averaged quantity ⟨ωS⟩, which represents a fit to a pure 1/ω spectral shape. The spectral

variation from this average can thus be defined by the quantity:

ωδS = ωS(ω)− ⟨ωS⟩, (6.32)

and the spectral variance ⟨(ωδS)2⟩ can thus be calculated as:

⟨(ωδS)2⟩ = ⟨(ωS)2⟩ − ⟨ωS⟩2 (6.33)

Weissman et. al. [22, 23] showed that the fractional spectral variance is related to the TLS

density as:

⟨(ωδS)2⟩
⟨ωS⟩2

=
1

π2n
, (6.34)

where n is the TLS density per factor e in rate per kT in energy per junction area A. At

large TLS densities, the spectral variance is small and the power spectrum approaches that of

a featureless 1/ω spectrum.

Note that the averaging ⟨ ⟩ is strictly over the entire range of TLS lifetimes τ , which typi-

cally spans about 12 decades in frequency. However in our typical experiment the observable

range typically spans only about 2 to 3 decades in frequency, which inevitably leads to some

estimation errors. Therefore in our estimation we averaged the results from spectra taken at

several different temperatures in order to average out some of the effects of a narrow observa-

tion bandwidth. The averaging was also performed so that each frequency octave is weighted

equally (logarithmic), as opposed to equal weighting per frequency window (linear).

We have calculated the spectral variations from a small junction shown in figure 7.2, and

averaged over spectra taken at several different temperatures. Using the analytical result in

equation 6.34, we find an averaged TLS density, n ≈ 2.0 per µm2 in the junction area, per

Kelvin in the TLS energy E, per factor e in the TLS rate τ , or σ0 ≈ 55.2 µm−2 K−1.
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Figure 6.14: Simulated discrete distribution of TLS lifetimes τi for sample sizes: (A)
N = 106. (B) N = 103. (C) N = 200. (D) N = 50. The blue solid line is the continuous
distribution function P (τ) ∝ 1/τ .

Simulated TLS ensembles

We now seek to directly simulate the TLS ensembles in order to verify the analytical result of

equation 6.34 and replicate the data on the observed 1/A area scaling breakdown in the small

junction limit (section 6.5). The data plotted in figure 6.9 shows an on-set of the 1/A area

scaling breakdown in the approximate region A ≈ 0.04 − 0.08 µm2 at T ≈ 2 K. We will now

show by simulating the TLS ensembles, that the deduced TLS density is consistent with this

threshold for the breakdown of the 1/A scaling.

The TLS ensemble is simulated by summing the Lorentzian contribution of each TLS:

SI(f) =
∑
n

(δIn)
2sech2(En/2kT )

τn
1 + 4π2f2τ2n

, (6.35)

where the TLSs are distributed in energy En and lifetime τn according to the distribution:

P (E, τ) = P0/2τ . The amplitudes δIn depends on the area of the junction, δIn = (δAn/A)I,

so that the fractional noise SI/I
2 can be expressed as:

SI
I2

=
1

2πA2

∑
n

(δAn)
2sech2(En/2kT )

fc,n
f2c,n + f2

, (6.36)
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where δAn is the characteristic area of the TLS which we will approximate to have a Gaussian

distribution, A is the junction area, and fc,n is the corner frequency, fc = 1/2πτ , of the

n−th TLS. We can then simulate an ensemble of TLSs having a collection of lifetimes {τn}

distributed as P (τ) ≈ P0/2τ and construct the ensemble total power spectral density through

the summation in equation 6.36.

For the simulation it is assumed that the TLS lifetimes are distributed over 12 decades

in {τmin, τmax}, and a TLS energy range {0, 6kT}. For TLSs with energies E > 6kT , the

thermodynamic factor is sech2(E/2kT ) < 0.01, therefore those TLSs with E > 6kT contributes

very little to the total noise and can be left out from the simulation. In fact the integration[∫ 6kT
0 sech2(E/2kT ) dE

]
/
[∫∞

0 sech2(E/2kT ) dE
]
≈ 0.995, thus simulating only those TLSs

with E < 6kT gives at most a 0.5% error.

The number of TLSs with, 0 < E < 6kT and τmin < τ < τmax is given by: NTLS =

(12 ln 10)(6T )An, where n is the TLS density per µm2 per Kelvin spread in E per factor e

in τ . In the simulation each of these TLSs are then assigned a lifetime τ distributed as in

figure 6.14 and an energy E uniformly distributed over {0, 6kT}. The fractional quantity

in NTLS is taken to be the probability of having an active TLS. For example an ensemble

with NTLS = 100.78 is taken to have 100 active TLSs with a 0.78 probability of having an

additional active TLS. Similarly, a small ensemble with NTLS = 0.1 is interpreted as having a

0.1 probability of having an active TLS (0.9 probability of having none).

Figure 6.14 shows a histogram of the TLS lifetimes τn for a simulated collection of N TLSs.

The solid blue line is the continuous probability distribution function, P (τ) ∝ 1/τ . In figure

6.14A, in the limit of large N the discrete probability density approaches that of the continuous

case. Figures 6.14B, C, and D shows an instance of the {τn} discrete distribution for a finite

sample size N = 1000, 200, and 50, respectively.

The fluctuator strengths δAn describes the coupling of the fluctuator to the junction tun-

neling resistance. The most likely mechanism is that the fluctuator couples through its dipole

moment P to produce fluctuations in the tunneling potential of the AlOx dielectric, following
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the fluctuating dipole theory of Yu et. al. [13]. Consequently δA is randomly distributed ac-

cording to a distribution of the dipole strengths |P| and orientations θ. The most reasonable

approximation is to distribute δA to a central Gaussian distribution with a variance σ2δA. The

second-moment of the central Gaussian distribution gives, ⟨(δA)2⟩ = σ2δA.

Figure 6.15 shows an example of the simulated total ensemble power spectral density for

several junction areas. The PSDs were calculated at T = 2 K, with a TLS density of n =

2.53 µm−2K−1e−1 (σ0 ≈ 69.7 µm−2K−1), and a Gaussian distribution of δA with σδA =

0.3 nm2. For large area junctions the ensemble power spectral density is well described by a

featureless 1/fα spectrum with α ≈ 1. The appearance of Lorentzian bumps and evolution

towards the power spectrum of only a few Lorentzians are clearly seen as the junction area is

made smaller.

In figure 6.16 the power spectral density at f = 1 Hz is plotted as a function of the junction

area A at T = 2 K, n = 2.53 µm−2K−1e−1, and a Gaussian distribution of the TLS strengths

δA with σδA = 0.3 nm2. The blue circles and dark yellow triangles in figure 6.16 represent two

separate trial runs. For large area junctions the simulation reproduces the expected S ∝ 1/A

area dependence. Somewhere in the approximate region of A ≈ 0.04−0.08 µm2, the 1/A scaling

breaks down due to the insufficient number of TLSs failing to sum out to a 1/fα spectrum.

As a guide, the red dashed line plots out the line SR/R
2 ∝ 1/A. This simulated area scaling

breakdown, with the onset in the approximate region, A ≈ 0.04− 0.08 µm2, is consistent with

the experimental observation shown in figure 6.9.

Figure 6.17 shows examples of the simulated power spectral densities for several junction

areas, A = 0.05, 0.5, 5, and 50 µm2. The simulation was performed at T = 2 K, n =

2.53 µm−2K−1e−1, and a central Gaussian distributed fluctuator strengths δA with σδA =

0.3 nm2. The simulated power spectral densities are plotted in terms of fSR(f)/R
2 as a

function of f . In this plot a pure 1/f power spectral density appears as a horizontal line. The

left and right panels in figure 6.17 represent two separate trial runs with identical simulation

parameters. The black lines are the simulated power spectral densities, while the dashed red
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Figure 6.15: Simulated noise power spectral density SR/R
2 , for an ensemble of TLSs with

density n = 2.53 µm−2K−1e−1 at T = 2 K, shown for several different junction areas
A = 50, 5, 2, 1, 0.5, 0.1, 0.05, & 0.01 µm2. The ensemble averaged PSD is a featureless
1/fα noise with α ≈ 1 at ’large’ junction areas, but decompose into distinct Lorentzians in
the small area limit.

lines are the averaged value ⟨fSR(f)/R2⟩, which represents the fit to a pure 1/f spectral shape.

Note that at large junction areas (many TLSs), the simulated spectral shape is well described

by a pure 1/f spectral shape. At smaller junction areas (few TLSs), the variation from the

pure 1/f spectral shape is more pronounced, as well as a more pronounced sample-to-sample

variation.

Figure 6.18 shows the simulated fractional PSD variance, ⟨(ωδS)2⟩/⟨ωS⟩2, as a function of

the TLS density n per kT spread in E per factor e in the lifetimes τ . As long as the TLS

density is not too small, we recover a relationship close to the analytical result of equation 6.34:

⟨(ωδS)2⟩
⟨ωS⟩2

≈ 1.3

π2n
, (6.37)

which differs from the analytical result by a factor of 1.3. Each simulated data point in

figure 6.18 is a result of N = 500 averaging. The tapering at low TLS densities correspond to
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Figure 6.16: Area scaling of the simulated power spectral density at f = 1 Hz, simulated at
T = 2 K, n = 2.53 µm−2K−1e−1. The result is consistent with experimental data in figure
6.9, which shows a breakdown in the ∝ 1/A area scaling in the vicinity of
A ≈ 0.04− 0.08 µm2. The red dashed line shows a S ∝ 1/A scaling.

Figure 6.17: The simulated power spectral density at T = 2 K, n = 2.53 µm−2K−1e−1,
σδA = 0.3 nm2, and shown for several junction areas, A = 0.05, 0.5, 5, and 50 µm2. The
black lines plot the simulated fractional power spectral densities, fSR(f)/R

2, while the
dashed red lines plot the averaged value ⟨fSR(f)/R2⟩, representing a fit to a pure 1/f power
spectral shape. The left and right panels are two different simulation runs with identical
parameters, (A) Simulation Run A (B) Simulation Run B.
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Figure 6.18: The simulated PSD fractional variance, ⟨(ωδS)2⟩/⟨ωS⟩2, as a function of the
TLS density n per kT spread in E per factor e in the lifetimes τ .

the threshold where there is less than one thermally active TLS per octave in frequency, which

corresponds to n ≈ 0.7.

Using the result of the simulation, we deduce a slightly higher value of the TLS density, n ≈

2.53 µm−2K−1e−1, or σ0 ≈ 69.7 µm−2K−1. In figure 6.16 it has been shown that a Gaussian

distribution of the fluctuator strength δA with a variance σ2δA ≈ (0.3 nm2)2 reproduces the

correct 1/f noise power magnitude, SR/R
2 ≈ 1 × 10−13 Hz−1 for a junction area 1 µm2 at

T = 1 K.

6.7 Implication of the TLS density

6.7.1 Comparison of n to other systems

Glassy insulators

The tunneling two level system model was originally proposed to explain the anomalous low

temperature heat capacity of glassy insulators [2, 50]. It was found that at low temperatures the
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heat capacity in glassy insulators vary linearly with temperature as opposed to the expected

C ∝ T 3 from the Debye specific heat. It was found that the anomalous low temperature

specific heat in these amorphous solids can be explained by a distribution of tunneling two level

systems, P (E, τ) ≈ P0/2τ , with P0 ≈ 1× 1045 J−1m−3 [10, 51]. In comparison, our estimated

TLS density from junction noise, assuming a dielectric thickness t ≈ 1 nm, corresponds to

P0 ≈ 3.7× 1044 J−1m−3, consistent with the value from the anomalous specific heat in glasses.

Avoided level crossings at the qubit frequency

Avoided level crossings have been observed in the energy spectroscopy of various qubit sys-

tems [43, 65, 46, 52], these are due to the coherent coupling of the qubit to spurious two level

systems at the qubit frequency.

Analysis of the density of these avoided level crossings yielded a TLS density, σ ≈ 0.5 µm−2GHz−1

≈ 10.4 µm−2K−1 [43, 65], which is consistent with our estimated density of TLSs from the

low frequency noise in tunnel junctions, σ0 ≈ 69.7 µm−2K−1, to about a factor of 6. The

consistency of these two TLS densities reinforce the idea that the TLSs coupling coherently

at the qubit frequency and the TLSs causing low frequency noise in the tunnel junction are in

fact the same TLS species.

TLS losses in superconducting resonators and SiNx dielectrics

In superconducting resonators, TLSs in the amorphous dielectrics are known to cause losses

and even excess low frequency noise. One main source of TLS losses is the amorphous dielectric

in the parallel-plate capacitor structure [43]. However even in resonators without the parallel-

plate capacitor geometry, it has been shown that TLSs in the amorphous native oxide of the

metal surfaces contribute to the loss [85].

Losses in superconducting resonators are often characterized through the resonator quality

factor Q ,which is related to the loss tangent through, tan δ = 1/Q. The intrinsic loss tangent

due to TLS losses is given by: tan δ0 = πP0p
2/(3ϵ), where P0 is the TLS density, p is the TLS
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electric dipole moment, and ϵ is the permittivity of the dielectric. In the standard resonator Q

measurement, the TLS density P0 cannot be deconvoluted from the dipole strength p. However

Khalil et. al. [35] using a voltage-biased resonator geometry, was able to deduce for a SiNx

dielectric, a TLS dipole moment of p ≈ 7.9 D and a TLS density P0 ≈ 4.9 × 1043 J−1m−3.

Again, this density is comparable to our estimated density from the low frequency noise in

tunnel junctions (P0 ≈ 3.7×1044 J−1m−3). The slightly lower P0 estimate of Khalil et. al. [35]

may be due to differences between the SiNx and AlOx dielectrics, but it may also be due to

their slightly higher estimate of the TLS dipole moment.

6.7.2 Implication for qubit dephasing due to critical current noise

Our deduced TLS density, σ0 ≈ 69.7 µm−2K−1 ≈ 3.7 × 1044 J−1m−3, is consistent with the

TLS density observed from the anomalous heat capacity of insulating glasses [10, 51]. This

implies that our preparation of diffused amorphous AlOx is quite ordinary. It suggests that

the preparation of fully crystalline tunnel barriers can reduce the number of these TLS defects,

but what kind of improvements can we expect from a further reduction of the TLS density?

We have discussed that the typical qubit is operated well below the threshold for 1/f noise.

That is qubit dephasing due to low frequency critical current noise is highly unlikely, although

there remains a finite probability for encountering isolated activated TLSs. In current qubit

architectures the typical junction areas are, A ≈ 0.03 µm2 [8, 80], and using our deduced

density, contains not more than ∼ 0.1 TLSs per GHz in qubit frequency space. That is the

TLS density is likely too sparse to affect qubit operation, with the exception of perhaps in

large N-qubit systems. But at the moment it seems that the problem of spurious TLS coupling

common in large area junction (A ≈ 70 µm2) phase qubits [43] can be effectively mitigated by

using much smaller junctions.

It would seem that the area where these TLS defects remain a performance bottleneck, is in

limiting the quality factor of the superconducting resonators. This is simply due to the much

larger surface areas spanned by the resonators, and that it is not possible to simply reduce the
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area of the resonators.



CHAPTER 7

TIME DOMAIN DYNAMICS

7.1 Experimental setup

Figure 7.1: (A) Circuit schematic. Two amplifiers are used, the time series capture are then
averaged to decrease amplifier noise contribution. (B) SEM image of the Al/AlOx/Al
junctions measured.

We fabricated conventional double angle shadow evaporated Al/AlOx/Al junctions (section

4.1 with an ultra-small area. SEM image of the junction taken after the completion of mea-

surements shows junction dimensions, A ≈ 90 nm × 60 nm. The aluminum is electron beam

evaporated in an ultra high vacuum chamber with base pressure, P ≈ 3 × 10−10 Torr. The

junction barrier is oxidized in an Ar/O2 mixture, to give a tunneling resistance R ≈ 40 kΩ.

The junctions are dc current biased using a battery and a biasing resistor (RB ≈ 400 kΩ).

Note that at our lowest biasing point, VB = 3 mV, the typical dc bias current is, IB ≈ 75 nA.

The junction voltage is read out using two Ithaco low-noise voltage preamplifiers, then

passed through an anti-aliasing low pass filter and a final gain stage where the dc offset is

100
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removed to allow for a large gain prior to signal sampling. The amplified signal is then digitally

sampled, with the choice of sampling frequency dictated by the bandwidth of the fluctuator

being tracked. The presence of active fluctuators modulates the tunneling conductance, thus

the junction voltage.

7.2 Power Spectral Density

Figure 7.2: Tunneling resistance noise power spectral density at several temperature points.

As expected for ultra small tunnel junctions, the tunneling resistance noise power spectral

density is dominated by several distinct fluctuators. Figure 7.2 shows the temperature evolution

of the tunneling noise PSD from T = 65 K to T = 6 K. Note that in figure 7.2 the temperature

is varied by approximately a factor of 10 and the noise power spectral density at f = 1 Hz falls

off by more than a factor of 1000, which is much faster than the SRn/R
2
n ∝ 1/T dependence

expected in the featureless 1/f -noise regime.

After cooling down to base we found that the junction tunneling resistance is characterized by

one fluctuator in our measurement bandwidth, f < 10 kHz, and trackable in the temperature

range: T ≈ 6− 13.5 K. Figure 7.3 shows time traces dominated by the fluctuator at T = 9 K

and for several bias voltages, Vb = 12, 21, and 24 mV.
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Figure 7.3: Time series capture of junction JJ45 at three different bias points, Vb = 12, 21,
and 24 mV, all at T = 9 K.

7.3 Time domain analysis

A random telegraph noise is the switching between two discrete levels y1 and y2, δy = |y2 − y1|.

The time intervals spent in the two states {y1, y2} are characterized by their respective charac-

teristic lifetimes τ1 and τ2. In the frequency domain a fluctuator generates a Lorentzian power

spectral density, S(ω) ∝ τeff/(ω
2τ2eff + 1), where τeff is the effective characteristic time is

combination of the characteristic times τ1 and τ2 given by:

1

τeff
=

1

τ1
+

1

τ2
(7.1)

Because both timescales τ1 and τ2 are reduced to an effective timescale τeff , TLS analysis in

the frequency domain alone cannot paint a complete picture of the TLS dynamics. In the time

domain if there is only one active fluctuator or if other active TLSs have characteristic times
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Figure 7.4: (A) Example time trace of the random telegraph noise. From the time capture, a
histogram of the lifetimes τ1 in the up-state and τ2 in the down-state can be reconstructed.
(B) Histogram of all the time the TLS spends in the up and down states. The dashed lines
are fit to an exponential decay, y = Ce−τ/τi , reflecting the probability distribution of the
lifetimes.

τi that are sufficiently spaced apart, then it’s possible to track the bistable voltage signal and

reconstruct the lifetimes τ1 and τ2 of the fluctuator. Figure 7.4A shows a time trace snippet

of the fluctuator at T = 9 K and Vb = 30 mV. We perform time domain analysis of the TLS

by identifying all the switching events contained in a time trace, and extracting the lifetimes

spent in the high-resistance state, τ1 and the low-resistance state, τ2. We can then bin the

extracted lifetimes to create a histogram as shown in figure 7.4B, where the dashed lines are

fits to y ∝ e−τ/τi from which the characteristic timescale τi can be extracted.

Figure 7.5 shows the extracted TLS lifetime histograms at T = 9 K at several different biasing

points, Vb = 15, 18, 21, and 24 mV. The change in the slope of the exponential distribution is

immediately apparent, indicating a strong voltage dependence in the TLS lifetimes.

7.3.1 Theoretical background: Two-state Markovian processes

The two level fluctuation can be modelled as a two-state Markovian process. The switching

process has no memory, so that the probability of a transition in a time interval t and t+∆t
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Figure 7.5: Histogram of the TLS lifetimes at T = 9 K for several different voltage bias
points, Vb = 15, 18, 21, 24 mV. (A) High resistance state, τ1. (B) Low resistance state, τ2.
The dashed lines are fits to the exponential probability distribution ∝ e−τ/τi

depends only on the interval length ∆t and not on t.

Labeling the transition probability from state-1 to state-2 as P1(t), then 1 − P1(t) is the

probability that the transition 1 → 2 did not occur at time t. Labeling P∆
1 as the probability

of making the transition 1 → 2 in the time interval t and t+∆t, then:

dP1(t)

dt
∆t = (1− P1(t))P

∆
1 (t) (7.2)

And the probability for a transition within a time interval ∆t at time t:

P∆
1 (t,∆t) = C∆t (7.3)

By combining the above two equations, we get the transition probability:

P1(t) = 1− e−t/τ1 , (7.4)

where τ1 is the characteristic lifetime in state-1. The probability of transition between a time
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interval ∆t is then:

dP1

dt
∆t =

1

τ1
e−t/τ1∆t (7.5)

Thus the lifetime τ1 probability density is exponentially distributed:

P1(τ) =
1

τ1
e−τ/τ1 , (7.6)

and similarly for the characteristic lifetime τ2 in state-2: P2(t) = 1/τ2 exp(−t/τ2).

Given a random telegraph signal v(t), we can then create a histogram of the lifetimes in

state-1 and state-2 and calculate the characteristic times as given by equation 7.6. Figure 7.4B

shows an example histogram that shows excellent agreement with the expected exponential

distribution for a TLS.

7.4 TLS A: A quantum tunneling TLS

7.4.1 Temperature Dependence

Figure 7.6A shows the temperature dependence of the transition rates of TLS A at Vb = 3 mV.

τ1 = 1/Γ1 is the characteristic lifetime of the junction in the low resistance state, and τ2 = 1/Γ2

is the characteristic lifetime of the junction in the high resistance state. In this particular case

the TLS energy bias ∆ never changes sign, and it happens that τ1 > τ2 for all voltage biases

probed in the experiment. That is state-1 of the TLS characterized by τ1 remains the lower

energy (ground) state of the TLS at all bias points. Note that in general it is possible that the

interaction with an external field (ie. electric or elastic) may potentially alter the TLS bias ∆,

thus the sense of which state is the ground state.

Figure 7.6B depicts a schematic of the TLS potential energy. U1 and U2 are the potential

barrier height out of the left, |L⟩, and right, |R⟩, wells respectively. The localized states |L⟩

and |R⟩ have an energy difference ∆ and a tunnel coupling strength ∆0. The TLS is said

to be degenerate if ∆ = 0. TLS transitions can occur through thermal activation over the
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Figure 7.6: (A) Temperature dependence of the transition rates Γi = 1/τi for TLS A.
Vb = 3 mV. The dashed lines are fits to the sum of thermal activation and quantum-limited
tunneling rates. At high temperatures the thermal activation rate dominates, while at lower
temperatures the rate is limited by quantum-tunneling. (B) Schematic two-level system
potential energy.

potential barrier with a transition rate Γth, or via a quantum mechanical tunneling process

with transition rate, Γtun.

In figure 7.6A we find that the TLS transition rates are well described by the sum of a

Boltzmann thermally activated rate Γth
i and a one-phonon tunneling rate Γph

i . So that the

total transition rate is given by:

Γi = Γth
i + Γph

i , (7.7)

where i ∈ {1, 2} to denote the rates out of the left and right wells.

At high temperatures the transitions occur due to thermal energy fluctuations driving the

fluctuator above the potential barriers U1 and U2. At lower temperatures the thermal activation

rates decay exponentially, and the TLS transitions are then limited by quantum mechanical

tunneling through the barrier, along with the absorption/emission of a phonon.

The thermally activated rate is given by the usual Maxwell-Boltzmann factor:

Γth
i = Γ0 exp (−Ui/kT ) , (7.8)
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We find that for TLS A, ∆ ≫ ∆0, so that the energy eigenstates can be approximately

given by the localized basis states |L⟩ and |R⟩. The TLS energy is thus E =
√

∆2 +∆2
0 ≈ ∆.

The TLS can make a transition by absorbing/emitting a phonon of energy ≈ ∆ which can be

thought of as momentarily making the TLS degenerate, allowing a quantum tunneling event

with rate ∆0/~. Thus the one-phonon transition rates are given by:

Γtun
1 = ω0e

−λnBE(E) =
ω0e

−λ

exp(E/kT )− 1
(7.9)

Γtun
2 = ω0e

−λ (1 + nBE(E)) =
ω0e

−λ

1− exp(−E/kT )
, (7.10)

where ω0 is the attempt frequency on the order of the Debye frequency, λ = 2d
√

2mU/~2 is the

WKB exponent to approximate the quantum tunneling probability out of localized wells, and

nBE is the Bose-Einstein distribution function to describe the phonon occupation probability.

In figure 7.6 the solid circles and triangles are the data points, while the dash and dot-

dash lines are the two-component rate fits. In the high-T limit the thermally activated rate

dominates and well fitted to an attempt frequency ω0 ≈ 2.5 × 1011 s−1, which is close to the

typical Debye frequency. The potential barriers fits are U1 ≈ 26.9 meV and U2 ≈ 24.8 meV,

corresponding to an asymmetry energy ∆E = U1 − U2 ≈ 2.1 meV.

At T ≈ 10 K we observed a transition from thermal activation to a tunneling TLS behavior.

Note that in the limit T → 0, ∆E/kBT ≫ 1, and the Bose-Einstein factor in the relaxation

rate Γ2 drops out, leaving only the quantum tunneling rate [64, 56]:

Γph
2 ≈ ω0 exp

(
−2d

√
2mU

~2

)
≈ 1 s−1 (7.11)

We can use the WKB approximation and the fitted parameters to deduce the value of the

mass-distance product m1/2d. Note that since the tunneling probability depends on both the

tunneling species mass m and the tunneling distance d, it is not possible through this method

to deduce the value of each quantity separately. The best we can do is to deduce the product,
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m1/2d. We find that the TLS is best fitted to:

m1/2d ≈ 1.5× 10−23
√

kg.m, (7.12)

which is consistent with the tunneling species being an atomic mass, m ∼ 10−27−1026 kg, and

tunneling distances, d ∼ 1 Å, the order of crystal lattice distances. For example if the tunneling

species is an oxygen mass (m ≈ 2.7 × 10−26 kg), then tunneling distance is, d ≈ 0.9 Å. If we

instead assume the tunneling species to have an electronic mass, the tunneling distance must

be in the order of 160 Å, while not physically impossible the value is too large for the physical

system as it is incompatible with the measured dipole moment of the TLS (to be discussed).

Figure 7.7: The switching ratio, R = τ1/τ2, as a function of 1/T . Measured at Vb = 3 mV.

The ratio of the switching times, R = τ1/τ2, gives a very useful thermodynamic handle on

the TLS switching dynamics. In the Boltzmann thermally activated regime,the ratio is given

by:

R =
τ1
τ2

=
τ0 exp (U1/kBT )

τ0 exp (U1/kBT )
= exp (∆E/kBT ) (7.13)

That is a TLS whose switching dynamics follow equation 7.13 above is in thermodynamic

equilibrium with the bath. Deviations from this exponential dependence typically indicate

non-equilibrium conditions such as self-heating. Similarly the switching ratio in the quantum-



TIME DOMAIN DYNAMICS 109

limited case follows the exact same exponential dependence:

R =
τ1
τ2

=
exp (∆/kBT )− 1

1− exp (−∆/kBT )
= exp (∆/kBT ) (7.14)

In general the TLS left, |1⟩, and right, |2⟩, wells can have more than one microstates or

degeneracies N1 and N2 respectively. In this case the expression of the switching rate ratio

needs to be adjusted to take into account of the added entropy [73, 72]:

R =
τ1
τ2

=
N1

N2
exp (∆/kBT ) (7.15)

Figure 7.7 shows the switching ratio, R = τ1/τ2, plotted as a function of the inverse tem-

perature 1/T . Note that data points in both the thermally activated and quantum tun-

neling limited regimes have been included in the plot. The gray dashed line is a fit to

ln(τ1/τ2) = C + (∆E/kB)
1
T . We find that the switching ratios in both switching regimes

follow the expected exponential dependence, implying that the TLS is in thermodynamic equi-

librium over the temperature range probed above (down to T = 4 K at Vb = 3 mV). The

extracted ∆E (Vb = 3 mV) ≈ 2 meV is consistent with the value obtained from fitting the

thermally activated switching rates above. The intercept C = ln(N1/N2) ≈ 0 implies that the

TLS left and right wells have similar degeneracies, N1 ≈ N2. Note that this is in stark contrast

to that found in earlier experiments in PbInAu/In2O3/Pb edge junctions [73, 72], where a large

entropy difference was found which in that case is consistent with the picture of an electron

tunneling from the continuum (large entropy) into an electronic trap state (small entropy).

In contrast the small entropy difference in the present experiment supports the picture of a

particle tunneling from one potential well to another almost identical well, such as in the case

of atomic defects in an amorphous dielectric.



TIME DOMAIN DYNAMICS 110

Figure 7.8: (A) Voltage dependence of the lifetimes τ1 and τ2 at T = 6 K. Blue dashed line is
a one-phonon rate fit to the ground state lifetime. Red dashed line is a one-phonon rate fit to
the excited state lifetime. At large voltage bias the TLS is driven out of equilibrium, which
shows up as a sharp decay in the TLS lifetimes. (B) Voltage dependence of the switching
ratio R = τ1/τ2 shown for several temperatures, T = 4, 6, and 8 K, (purple triangles, blue
circles, and red squares, respectively).
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7.4.2 Static electric field response

The junction can be approximated as a parallel plate capacitor, such that the electric field in

the dielectric is simply, |E| = V/t, where t ≈ 1 nm is the thickness of the tunneling dielectric.

The interaction of the TLS dipole moment with this electric field leads to a correction in the

TLS energy:

∆ = ∆(0) +E ·P = ∆(0) + |E||P| cos θ, (7.16)

where ∆(0) is the asymmetry energy at Vb = 0, E is the electric field across the junction

dielectric, and P is the TLS dipole which makes an angle θ relative to the electric field.

Figure 7.8A plots the lifetimes τ1 and τ2 at T = 6 K as a function of the applied electric field

(voltage bias). The voltage dependence shows two different behaviors, corresponding to the

low and high bias voltage regimes. At high voltage biases, Vb & 20 meV, we observed the onset

of a non-equilibrium process, which will be described later in section 7.4.3. In this section we

will describe the TLS dynamics at low voltage biases where the TLS remains in equilibrium.

The TLS lifetime in the excited state, τ2 is relatively insensitive to the external field. This

is consistent with the TLS transition being driven by phonon emission and tunneling to the

ground state, given by equation 7.10. In the limit ∆/kT ≫ 1:

τ2 ≈
~
∆0

(
1− exp

(
− ∆

kT

))
≈ τq, (7.17)

where τq = ~/∆0. The red dashed line in figure 7.8 represents a fit to this one-phonon rate.

In comparison the TLS lifetime in the ground state, τ1, shows an exponential dependence

on the applied bias, which is expected from the one-phonon rate (equation 7.9):

ln (τ1/τq) ≈
∆(0)

kT
+ γ

Vb
kT

, (7.18)

where τq = ~/∆0, ∆(0) is the TLS asymmetry energy at zero external field, kT is the thermal

energy, and the slope γ is related to the electric dipole moment of the TLS. A fit to equation



TIME DOMAIN DYNAMICS 112

7.18 above is shown as the blue dashed line in figure 7.8A.

The physical parameters ∆(0) and the TLS dipole moment |P| can be more readily extracted

from fitting the ratio of the switching times τ1/τ2. By looking at τ1/τ2 we eliminate the

dependence on the parameter τq. Figure 7.8B plots the switching rate ratio, R = τ1/τ2 =

exp (∆(Vb)/kT ), as a function of the applied electric field (voltage bias). At low voltage biases

the TLS remains in equilibrium with the bath temperature and the dependence is given by:

τ1/τ2 = exp

(
∆(Vb)

kT

)
= exp

(
∆(0) + γVb

kT

)
(7.19)

ln(τ1/τ2) =
∆(0)

kT
+
( γ

kT

)
Vb (7.20)

where the slope γ gives the TLS dipole moment projected along the electric field’s axis:

γ = |P| cos θ/t (7.21)

The dashed lines in figure 7.8B are linear fits to ln(τ1/τ2) according to equation 7.20 above.

One feature to note is that the slope γ is monotonic across positive and negative voltage

biases, this behavior is consistent with the simplest interpretation of the dipole-electric field

interaction continuously tipping the TLS asymmetry energy ∆. The fitting parameters ∆(0)

and γ are consistent across the temperature range probed, T = 4 − 9 K, giving the averaged

values ∆(0) = 1.95 meV and the slope γ ≈ 26 µeV/mVb, giving the aligned dipole moment

strength:

P cos θ ≈ 0.26 eÅ (7.22)

Note that it is not possible in the present experiment to reconstruct the dipole angle θ. But

to gain a better estimation for the value of the bare dipole moment, P , we could average out

the θ dependence:

⟨P ⟩θ =
1

π

∫ π/2

−π/2
P cos θ dθ = P

(
2

π

)
, (7.23)
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so that the bare dipole moment can be estimated as:

P ≈ 0.26 eÅ/(2/π) ≈ 0.41 eÅ, (7.24)

the value of which reinforces the picture of a fluctuator with charge e tunneling through crystal

lattice distances (∼ 1 Å).

7.4.3 Non-equilibrium effects

Empirical description

Figure 7.9: (A) Voltage dependence of the TLS lifetimes fitted to a one-phonon rate and a
second empirical exponential lifetime, ∝ exp(−γVb). (B) TLS lifetimes ratio τ1/τ2 and the
fitting lines, T = 6, 8 K.

We can empirically describe the behavior of the TLS lifetimes as the sum of two rates, the

one-phonon scattering rate Γph
i and a second rate Γ∗

i that has an approximately exponential

dependence with respect to the voltage bias. At low voltage biases, the transition rate is

dominated by the one-phonon rate, and the second rate dominates the high voltage bias regime

due to its exponential dependence:

Γi = Γph
i + Γ∗

i , (7.25)
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where Γ∗
i is approximately:

Γ∗
i ≈ Ai exp (Bi|Vb|) (7.26)

Figure 7.9A plots the TLS lifetimes at T = 6, and 8 K, the dashed and solid lines are the

fits to the two rate model. It is still not entirely clear what is the physical mechanism for this

second exponential rate.

Self-heating model

Figure 7.10: Calculated effective electron temperature, following Kautz et. al. [32]. (A)
Effective temperature due to self-heating for several different bath temperatures,
Tbath = 4− 10 K. (B) A more detailed plot on the self-heating correction to the electronic
temperature for T = 6 K. The self-heating correction is less than ∆T ≈ 220 mK at
Vb ≈ 35 mV.

One obvious candidate for an exponential dependence is electronic self heating. The tem-

perature of the TLS enters into the transition rates through the thermodynamic factors of

exp (E/kT ). However it should be stated at the outset that we have found self heating to be

insufficient to account for how far the TLS is driven out of equilibrium.

We can estimate the extent of the electronic self-heating following the results of Kautz et.

al. [32] from investigating the self-heating effect in Al single electron transistors (SETs). We

also need to make the approximation that the TLS temperature T is approximately equal to

the electronic temperature in the metallic leads [33, 34]. In SETs the metal island is isolated
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from the thermallized left and right leads by the presence of the tunnel barriers. Consequently

thermal conduction through the leads is small and it is known that the island temperature is

determined by the electron-phonon heat transfer efficiency to the lattice [32]. The effective

temperature is given by [32, 59, 76]:

T 5
e = T 5

p +
P

ΣV
, (7.27)

where Te is the effective electron temperature, Tp is the lattice temperature, P is the power

dissipated, Σ ≈ 0.2 nW K−5µm−3 is the electron-phonon coupling parameter for Al, and V is

the SET island volume. Note that it was found that the electron temperature in the island

depends on the volume of the island and not the junction size [32]. This is likely due to the

fact that the dimensions of the junctions typically used in SETs are shorter than the electron

inelastic scattering length, lin ∼ 0.5− 1 µm [25]. Therefore the SET island size represents the

limiting volume for the electron-phonon interaction in equation 7.27.

In our single junction geometry the thermalization volume is not as restrictive as the SET

island. Unlike in SETs, in the case of a single junction the thermal conduction through the

left and right leads are not restricted by the tunnel barrier, consequently the thermalization

volume should extend much further through the left and right metal electrodes. Thus the SET

island volume (V ≈ 0.1 µm3) used in Kautz et. al. [32] should represent an upper bound for

the self-heating effect in a single junction. Note that the junction sizes used in Al SETs are

typically even smaller than our junction presently. A worst case scenario for self-heating is to

assume that the power is dissipated within a volume covering the junction area, 60× 90 nm2

with a metal thickness t ≈ 120 nm.

Figure 7.10 plots the self-heating correction (equation 7.27) assuming V = 0.1 µm3 is a

reasonable parameter to use for our single junction. As expected, the self-heating correction

is small and only noticeable for T = 4− 5 K.

In section 7.4.1 we have deduced the parameters for the two component TLS transition rates

corresponding to the sum of the one-phonon relaxation and thermally activated rates. In figure
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Figure 7.11: Self-heating model of the TLS lifetimes. The TLS transition rate is the sum of
the one-phonon and thermally activated rates. The effective temperature at each bias points
is calculated using the electron-phonon model, with Σ = 0.2 nW K−5µm−3 and (dotted line)
the SET volume used in Kautz [32], (solid lines) the physical junction dimension. (A-B) The
TLS lifetimes and ratio at T = 6 K (C-D) The TLS lifetimes at T = 8 K.

7.11 we computed that model with the addition of a self-heating correction under an applied

voltage bias. Figure 7.11(A-B) shows the fitted rates and the lifetime ratio at T = 6 K, figure

7.11(C-D) shows the fitted rates and lifetime ratio at T = 8K. The dotted lines represent the

fit calculated assuming the self-heating correction used in Kautz et. al. [32]. The solid lines

are the fit assuming the worst case scenario that the electron-phonon thermalization occurs

within the volume of metal forming the junction area (≈ 60 × 90 × 120 nm3). In either case

the degree of self heating is not sufficient to account for the degree to which the TLS is being

driven out of equilibrium, this is most evident in the poor fitting of the lifetime ratios τ1/τ2.

It is not surprising that the self-heating model cannot account for the non-equilibrium process
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observed. To see this, consider that the TLS lifetime ratio τ1/τ2 = exp (∆/kT ) depends only

on the difference in the energy of the two states and on the temperature T , thus it summarizes

the thermodynamic information on the TLS. This is in contrast to the individual transition

rates which depend on both the thermodynamic and dynamical variables such as the tunneling

probability and attempt frequency.

We can thus obtain the effective temperature T ∗ of the TLS by inverting the switching ratio

τ1/τ2 = exp (∆/kT ∗):

T ∗ =
∆(Vb)

k ln (τ1/τ2)
=

∆(0) + γVb
k ln (τ1/τ2)

(7.28)

Figure 7.12: Effective temperature, T ∗ at bath temperature T = 8 K of the TLS deduced
from the switching ratio τ1/τ2 = exp (∆E/kBT

∗).

If the TLS is in thermal equilibrium with the lattice then the effective temperature T ∗ will

be equal to the lattice temperature Tp. However if the TLS is driven out of equilibrium, then

the TLS may see an increased effective temperature, defined by equation 7.28. Figure 7.12

plots the effective temperature T ∗ of the TLS as a function of the voltage bias. The red circles

are the TLS effective temperature for a bath temperature of Tp = 8 K, and the blue triangles

represent Tp = 6 K. At low voltage biases the TLS is in equilibrium with the bath, T ∗ = Tp.

The TLS is then driven out of equilibrium in the vicinity Vb . 20 mV and Vb & 12 mV.
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More importantly the effective temperature T ∗ increases exponentially, that T ∗ ∼ 60 K at

Vb ≈ 33 mV and even reaching T ∗ ∼ 100 K at Vb ≈ −33 mV. It is somewhat un-physical

to imagine a self-heating process that can account for that amount of ’heating’. In fact we

observed a transition to thermally activated rates in the region T ≈ 10 K, that if the TLS is

being heated, then by T ≈ 22 K the characteristic TLS lifetime, 1/τ = 1/τ1+1/τ2, would have

been τ ≈ 1 µs, well outside the bandwidth of our measurement. Instead at a TLS effective

temperature, T ∗ ≈ 22 K, we in fact observed the TLS to have a characteristic lifetime τ ≈ 0.1 s.

That is roughly five orders of magnitude off from the assumption that the TLS is thermally

driven, and a strong indication that the TLS is being driven by a process other than electronic

Joule heating.

Inelastic electron scattering

An alternative explanation is that the TLS is being driven out of equilibrium due to its inter-

action with the tunneling electrons. In fact it is known that the TLS-electron interaction in

metallic glasses lead to TLS relaxation times that are orders of magnitude shorter compared

to TLSs in insulating glasses [24, 69].

The tunneling electrons can scatter off the TLS, losing or gaining an energy ∆ in the process

and driving the TLS transition. The transition rates can be calculated in a method similar to

the calculation of one-electron scattering rates for metallic glasses [51, 69], with the addition

that in tunnel junctions, an energy difference eVb is maintained across the two electrodes. The

TLS transition rate from the ground to excited state can then be calculated via Fermi’s golden

rule [69, 33]:

Γge =
2π

~

∣∣∣⟨e|H ′|g⟩
∣∣∣2fϵ(1− fϵ′)δ(ϵ

′ − (ϵ−∆+ eVB)), (7.29)

Where the δ-function is defined to enforce the conservation of energy condition, and fϵ is the

Fermi-Dirac distribution:

fϵ = f(ϵ) =
1

1 + exp(ϵ/kT )
(7.30)
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The ground-to-excited state transition rate is then given by:

Γge ∝
∫ ∫

dϵ dϵ′
1

1 + exp (ϵ/kT )

(
1− 1

1 + exp (ϵ′/kT )

)
δ
(
ϵ′ − (ϵ−∆+ Vb)

)
(7.31)

Γge =
M

e2R

eVb −∆

1− exp
(
− (eVb −∆)/kT

) (7.32)

Similarly the transition from the excited to ground state occurs through an electron scattering

process where the electron gains an energy ∆. The corresponding rate is then:

Γin
eg =

M

e2R

eVb +∆

1− exp
(
− (eVb +∆)/kT

) , (7.33)

where M is a proportionality constant related to the scattering cross-section for the electron-

TLS interaction, and R is the tunneling resistance. The ratio of the inelastic scattering rates

is given by:

τ1
τ2

=
eVb +∆

eVb −∆

1− exp
(
− eVb−∆

kT

)
1− exp

(
− eVb+∆

kT

) (7.34)

Note that for small voltage biases, Vb ≪ ∆, we recover the switching ratio for a TLS in

thermal equilibrium: τ1/τ2 ≈ exp (∆/kT ). However in the limit Vb − ∆ ≫ kT , we see that

the TLS switching ratio falls, τ1/τ2 → 1. This is precisely the behavior observed in the data.

The application of a voltage bias drives the TLS to very high effective temperatures T ∗ as

evidenced in the switching ratio, τ1/τ2 → 1, without requiring the TLS to be thermally driven.

While the one-electron scattering process qualitatively describes how the TLS can be driven

out of equilibrium without actual heating, it fails to recover the Vb exponential dependence

observed in the data. The one-electron scattering rate is linear in the voltage bias Vb, a far too

weak dependence to be able to describe the data. One possible way to recover an exponential-

Vb dependence through inelastic electron scattering, is the inclusion of higher order scattering

processes. Since :

ex =
∑
n

xn

n!
, (7.35)
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it is possible to approximate an exponential dependence by including the higher order xn terms,

which correspond to the n-electron scattering process.

As a toy model, we consider a process where two electrons scatter off the TLS where each

electron loses/gains an energy ∆/2. An n-electron process then involves each electron los-

ing/gaining an energy ∆/n. Also we are interested in the large bias regime, where Vb−∆ ≫ kT ,

such that the Fermi-Dirac distribution is approximately:

f(ϵ) =

 1 ϵ > 0

0 ϵ < 0

Figure 7.13: Effective temperature, T ∗ at bath temperature T = 8 K of the TLS deduced
from the switching ratio τ1/τ2 = exp (∆E/kBT

∗).
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The two electron process is then given by:

Γ2 ∝
∫ ∫

dϵ1dϵ2 f(ϵ1)
(
1− f(ϵ1 + Vb −∆/2)

)
f(ϵ2)

(
1− f(ϵ+ Vb −∆/2)

)
(7.36)

Γ2 ∝ (eVb −∆/2)2 (7.37)

The n-electron process is then:

Γ1 ≈
A1

~

(
eVb −∆

)
(7.38)

Γ2 ≈
A2

~2

(
eVb −

∆

2

)2

(7.39)

Γn ≈ An

~n

(
eVb −

∆

n

)n

(7.40)

Where the total rate will be:

Γ =
∑
n

Γn (7.41)

Figure 7.13 shows the inelastic electron scattering fits, including higher order processes. As

a toy model the order-n inelastic electron scattering process can be used to fit the observed

data. It remains to be seen however, if there can be a physically consistent complete theory.

Barrier thinning or lowering

An alternative for the exponential Vb dependence is a tunnel barrier thinning or lowering

process. This was first suggested by Rogers and Buhrman for a TLS seen in their Nb-Nb2O5-

PbBi tunnel junctions [56, 58]. In Rogers et. al. the TLS was only trackable in the frequency

space, thus only the effective rate 1/τ = 1/τ1 + 1/τ2 was analyzed. Similar to our data, they

observed a TLS transition rate that varies exponentially with the applied bias. This effect was

attributed to a barrier thinning effect that couples to the transition rate exponentially through
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the WKB tunneling probability, giving the TLS tunnel splitting the form:

∆0 = ~ω0 exp

[
− 2d(1− γeVb)

√
2mU

~2

]
, (7.42)

where γ is a proportionality factor describing how much the barrier is thinned per applied

voltage bias Vb. Additionally Rogers. et. al. argued that the voltage dependence is likely to

come from a barrier thinning effect rather than a barrier lowering (ie. couples more to d rather

than to the U). This is because the exponential dependence was not seen in the thermally

activated regime where the rates are sensitive to the barrier height U , but not the well distance

d.

While the barrier thinning conjecture might seem able to explain the exponential Vb-dependence

seen in the TLS transition rates, it cannot account for the dependence seen in the ratio of the

transition rates, τ1/τ2. Since for our TLS, ∆ ≫ ∆0, the TLS energy is E =
√

∆2 +∆2
0 ≈ ∆,

which means the thermodynamic information is contained in the factors of exp (∆/kT ), inde-

pendent of the tunnel coupling ∆0. This means that variation in the tunnel coupling ∆0 does

not affect the ratio τ1/τ2, contrary to our observed data. Even if ∆0 ∼ ∆, the TLS dynamics

will likely follow that of an incoherent tunneling TLS, in which case the relevant TLS energy

is E = ∆ and not that found for coherent tunneling TLSs, E =
√

∆2 +∆2
0.

Unfortunately the data set in Rogers et. al. [56] lacked a full analysis in the time-domain,

instead only the effective rate 1/τ = 1/τ1 + 1/τ2 was tracked through spectral analysis. The

missing data on the voltage dependence of the ratio τ1/τ2 would likely have ruled out barrier

thinning as a viable mechanism, or at the very least provided the extra information to see if

barrier thinning remains plausible for their data.

7.5 TLS B: Thermally activated TLS

Figure 7.14 plots the time capture of a second trackable TLS, which is labeled as TLS B. In

contrast to TLS A, TLS B is activated at much higher temperatures (T ≈ 60 K) and its tunnel
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Figure 7.14: TLS B time traces shown for several different temperatures. (A) T = 60 K. (B)
T = 62.5 K. (C) T = 65 K. (D) T = 67 K, all taken at Vb = 50 mV. The lifetimes τ1 and τ2
strictly refer to the lifetimes in the higher and lower resistance states respectively.

coupling appears to be very small that there was no apparent crossover to a quantum-limited

switching behavior. Figure 7.16A plots the lifetimes τ1 and τ2 for TLS B as a function of

temperature. Here τ1 refers to the TLS lifetime in the higher resistance state and τ2 refers to

the lifetime in the lower resistance state (figure 7.14B).

Numerical fits of the thermally activated rates reveal that the potential barrier heights are

U1 ≈ 151.6 and U2 ≈ 146.1 meV (∆E(Vb = 50 mV) ≈ 5.5 meV), which are relatively large

compared to TLS A and explains why the tunnel coupling is small. From the numerical fit

we also extracted the attempt frequency, ω0 ≈ 1 × 1012 Hz, in the order of the typical Debye

frequencies.

The difference in the governing dynamics between TLS B and TLS A are due to the differ-

ences in the potential barrier parameters, and do not necessarily require that the TLSs have

an entirely different microscopic origin. In fact the behavior of TLS B is entirely consistent

with the picture of a fluctuating atomic dipole, just as in the case of TLS A.

Figure 7.17A shows the switching rates τ1 and τ2 at T = 60 K as a function of the applied
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Figure 7.15: TLS B switching histograms for Vb = 50 mV shown for several temperature
points.

Figure 7.16: (A) Maxwell-Boltzmann over the barrier thermal activation rates, Vb = 50 mV.
Both TLS lifetimes τ1 and τ2 are well fitted (dashed-lines) to the thermal rate,
τi ∝ exp (Ui/kBT ). (B) Potential energy diagram of the TLS.
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Figure 7.17: (A) The switching rates τ1 (high resistance) and τ2 (low resistance) as a
function of the applied electric field. (B) The switching ratio R = τ1/τ2 as a function of the
applied field. The effect of the TLS dipole interaction with an external E-field as a tilting of
the double-well potential well. The well tilt energy correction is simply the dipole interaction
energy, δE = −p ·E.

electric field, E = Vb/t, t ≈ 1 nm. The electric field dependence of τ1 and τ2 are monotonic

with the opposite signs for the two switching times. This behavior is consistent with the

interpretation of the TLS having an electric dipole moment, p, interacting with the applied

electric field. The resulting interaction energy, δE = −p · E, tilts the double well potential

of the TLS and can even be sufficient to swap the lower energy state, τ1 > τ2, or τ1 < τ2.

Note that this behavior is markedly different to that found in Wakai et. al. [73, 72], where

the voltage bias dependence of both switching times have the same sign. In Wakai et. al.

the random telegraph signal was attributed to the filling and emptying of an electronic trap

located within the tunnel barrier. The trap is filled by an electron tunneling from one of the

electrode, and is emptied by tunneling to the opposite electrode.

A more detailed examination of the individual switching times in figure 7.17A reveal that

the two lifetimes are not symmetrically affected by the applied field (ie. equal magnitudes &

opposite signs). For τ1 the dipole correction to the asymmetry energy is 16.4 µeV/mVb, while

for τ2 the correction is 41.7 µeV/mVb. The difference in the energy correction does have a
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natural physical interpretation in that the effective double well potential of the TLS is not

exactly symmetric. That is the center of the dipole moment and the maximum of the potential

barrier are shifted in coordinate space with respect to each other.

At zero applied field the double well potential of the TLS is tilted with some asymmetry

energy, ∆E(Vb = 0). The dipole energy acts to flip the TLS double well asymmetry, such that

at approximately Vb ≈ −23.7 mV the double well potential is degenerate and the ratio is given

by, τ1/τ2 = 1.

Similar to TLS A, the slope in figure 7.17B contains the information on the aligned dipole

moment strength of the TLS:

kBT ln

(
τ1
τ2

)
= ∆E0 +

(
P cos θ

t

)
Vb, (7.43)

which gives the aligned dipole moment strength: |P| cos θ ≈ 0.6 eÅ (using t ≈ 1 nm), which

is consistent with the picture of an effective electronic charge e tunneling over a lattice distance

of order 1 Å. Similarly, we can also integrate out the θ dependence (equation 7.23) to get a

rough estimate for the dipole moment, ⟨P ⟩θ ≈ 0.94 eÅ

7.6 Mechanisms for the modulation of the tunnel barrier due to TLS
defects

In the electron trap model proposed by Wakai et. al. [72], the Coulomb repulsion of an

occupied trap state blocks the tunneling around a characteristic area δA, leading to the required

modulation of the tunneling resistance δR = (δA/A)R.

In the dipole picture, Yu et. al.[13] demonstrated that the dipole potential Vdip associated

with a TLS can modify the tunnel barrier potential U0. The tunneling probability is thus:

|T |2 ∝
∫ L

0
dz

√
2m

~2
(U0 ∓ eVdip) (7.44)

The dipole angle θ and the location of the dipoles within the tunnel barrier are randomly
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distributed leading to distribution of the effective strength δR/R of each dipoles. This is

consistent with our observation of a range of δR values in the fluctuators we observed. It was

found that the averaged value and the typical TLS densities could ultimately account for the

magnitude of the critical current noise in Al/AlOx/Al junctions.

7.7 Dipole selection for coherent tunneling TLSs

In the tunneling TLS model the eigenstates are given by the symmetric and anti-symmetric

linear combinations of the local basis states |L⟩ and |R⟩,

|ψ1⟩ = cos
ξ

2
|L⟩+ sin

ξ

2
|R⟩ (7.45)

|ψ2⟩ = sin
ξ

2
|L⟩ − cos

ξ

2
|R⟩, (7.46)

where tan ξ = ∆0/∆. And the dipole moment in the left and right well local states are:

p0 = q

∫
xϕ∗1ϕ1 dx = −q

∫
xϕ∗2ϕ2 dx (7.47)

In the tunneling eigenstates, ψ1 and ψ2, the dipole can be calculated:

p1 = q

∫
xψ∗

1ψ1 dx ≈ p0 cos
2 ξ

2
− p0 sin

2 ξ

2
(7.48)

= p0 cos ξ (7.49)

= p0
∆

E
(7.50)

Similarly the dipole in the excited state ψ2 is given by:

p2 = q

∫
xψ∗

2ψ2 dx = −p1 = −p0
∆

E
(7.51)

An important consequence is that if the coupling to the critical current is through the
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fluctuation of the dipole moment p, then only the TLSs with non-zero bias (∆ ̸= 0) can

contribute to the critical current fluctuation. Furthermore, the dominant dipoles are those

with ∆ ≫ ∆0, note that most of the TLSs will satisfy this condition since the TLSs are

uniform in ∆ but is logarithmic in ∆0: P (∆,∆0) d∆d∆0 = P0/∆0 d∆d∆0.



CHAPTER 8

FUTURE WORK AND PRELIMINARY RESULTS

8.1 Introduction

In this chapter we will describe preliminary results from two experiments that could form the

basis for further work in measurements of critical current noise.

8.2 Piezoelectric response

In chapter 7 we have investigated the TLS electric dipole coupling to an external static electric

field. The dipole coupling modifies the energy of the TLS in each localized well by an amount,

ϵ = −P · E, so that the result of its interaction with an external E-field is a modification of

the TLS asymmetry energy by an amount, δ∆ = 2P ·E. The aligned electric dipole moment,

P̃ = P · Ê, of the TLS can thus be defined as:

P̃ =
1

2

∂∆

∂|E|
(8.1)

Similarly, since the TLS also interacts with the phonon strain field, S, we can define an

elastic dipole moment γ given by:

γ =
1

2

∂∆

∂|S|
(8.2)

We have fabricated an Al-AlOx-Al junction identical to that measured in chapter 7, but on

a 200 µm2 thick STO substrate. The backside of the STO substrate was coated with 200 nm

of gold to form the backgate. To tune the strain in the STO substrate, a backgate voltage Vg

129
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is applied between the backgate and one of the junction electrodes.

SrTiO3 (STO) was chosen as the piezoelectric substrate due to its giant piezoelectric effect

at low temperatures. In conventional piezoelectric materials, such as PZT (PbZrxTi1−xO3) or

lithium niobates (LiNbO3), the piezoelectric constant tends to diminish at low temperatures.

STO however exhibits the inverse behavior where it is a weak piezoelectric at high temperatures

but exhibits a giant piezoelectric effect at low temperatures [28].

Unfortunately we have measured only one of such device, while the junction was character-

ized by a few isolated Lorentzians, the random telegraph signal in the time domain was not

sufficiently separated and large enough to submit to a time domain analysis. However we may

still provide some analysis of the strain response in the frequency space.

8.2.1 Measurement overview

Figure 8.1: Resistance noise at T = 5 K, taken at Vb = 6 mV with for a range of backgate
voltages Vg = 48− 62 V. The traces start with the darker colors at Vg = 48 V and the
lightest color at Vg = 62 V.
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The strain response due to an applied electric field is given by:

Sij = dkijEk, (8.3)

where for our STO substrate, we find from Grupp and Goldman [28], dxxz ≈ 1 × 10−9 m/V.

Since our substrate is 200 µm thick, the applied strain per backgate voltage Vg is:

δSxx
δV

= 5× 10−6 V −1
g (8.4)

Figure 8.1 plots the junction tunneling resistance power spectral density for a range of

backgate voltages from Vg = 48 V to Vg = 62 V, taken at T = 5 K and Vb = 6 mV. We

note two TLSs: TLS-1 with a very low characteristic frequency fc ∼ 0.8 Hz, and TLS-2 with

fc ∼ 20−90 Hz which is clearly seen to move as a function of Vg. It is more difficult to quantify

the behavior of TLS-1 since its corner frequency unfortunately lies towards the lower cutoff

of our measurement bandwidth. However it would appear that the variance of the random

telegraph signal due to TLS-1 is strongly affected by the strain, however the corner frequency

cannot be precisely located.

Figure 8.2 shows a detailed view for Vg = 48 and 48.1 V. We find that TLS-2 can be fitted

with fc(Vg = 48V) ≈ 25 Hz and fc(Vg = 48.1V) ≈ 90 Hz. A change in δVg = 0.1 V in the

backgate corresponds to a δS ≈ 0.5×10−6 in the substrate strain. Unfortunately TLS-2 moves

out of the measurement bandwidth at Vg ≥ 48.125 V, and we do not have higher bandwidth

data to be able to track this TLS.

The behavior of TLS-2 is as expected for a TLS modified by an elastic dipole coupling.

The specific details of the TLS corner frequency depends on the TLS dynamics, whether it is

thermally activated, or quantum tunneling limited. However, in general the corner frequency

will be a function of the TLS asymmetry energy ∆, which is modified by the TLS elastic dipole

moment interaction. This behavior is clearly seen in figure 8.2.
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Figure 8.2: Detailed view of the power spectral density for Vg = 48, and 48.1 V. T = 5 K
and Vb = 6 mV.

8.2.2 Piezoelectric response at T = 8 K

One particular TLS was identified at T = 8 K, probed with a voltage bias Vb = 6 mV.

Figure 8.3 plots the power spectral density showing the TLS Lorentzian at a few selected

backgate voltages. This particular TLS has a corner frequency fc ≈ 2 Hz, and as a function of

applied strain we see an obvious response in the TLS variance and a much weaker dependence

in its corner frequency. Figure 8.4A plots the strain response of the TLS variance, and 8.4B

plots the strain response of the TLS corner frequency fc.

For a tunneling TLS with energy splitting E =
√

∆2 +∆2
0, the power spectral density is

given by the Lorentzian [74, 38]:

SV (f) =
δV 2

2π
sech2(E/2kT )

fc
f2c + f2

, (8.5)

where δV = (δR/R)V is the change in the junction voltage between the two TLS configurations.

The variance response as a function of the applied strain implies that the TLS energy splitting
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Figure 8.3: Power spectral density at several backgate voltages, T = 8 K, Vb = 6 mV. One
particular TLS is seen to respond to the applied strain, with fc ≈ 2 Hz.

Figure 8.4: (A) Response of the TLS variance, δV 2sech2(E/2kT ) to the applied strain. (B)
Response of the TLS corner frequency to the applied strain.
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E is modified by the application of the substrate strain. In particular the cusp feature at

Vg ≈ 45.5 V is reminiscent of a TLS being swept through its energy
(
E =

√
∆2(Vg) + ∆2

0

)
degeneracy point, by the continuous tilting of its asymmetry ∆. Although the strong slope

asymmetry between either side of the cusp suggests a more complex behavior, or possibly

related to a non-uniform strain-voltage response of the STO piezoelectric substrate.

On the other hand, the TLS corner frequency is seen to have a much weaker response to

the applied strain. The corner frequency has a somewhat increasing monotonic trend as the

backgate voltage is increased. However the change in the corner frequency through the range

of backgate voltages do not exceed ∆fc ∼ 0.5 Hz.

Unfortunately the extraction of the TLS elastic dipole moment requires a much more precise

understanding on the exact TLS-strain response, which is currently still lacking.

8.2.3 Conclusions

Clearly a better understanding of the TLS strain response requires a lot more measurements to

traverse a fuller parameter space. However these initial results point to an interesting method

to probe at the dynamics of the TLSs. Already we can clearly point out that the TLS dynamics

are highly affected by the crystal strain. Critically, the way these TLSs couple to the strain

field may provide an important evidence to see whether or not they are correctly described by

the model of an atomic fluctuator localized in a double-well potential.

We note that Grabovskij et. al. [26] have performed a similar strain tuning experiment in the

TLSs coupled to a phase qubit at the qubit frequency. In that experiment they have observed

that the energy, E =
√

∆2 +∆2
0, of the TLSs are modified by the applied strain.
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8.3 TLSs in an engineered tunnel barrier

Figure 8.5: (A) IV characteristics of sample e527, a Nb-AlOx-Nb junction with co-deposited
tunnel barrier. (B) A cartoon representation of a strongly disordered amorphous AlOx

dielectric. The tunneling characteristics maybe dominated by a small area of extremely thin
barrier, with strong local disorder.

In this section we present initial noise measurements on AlOx tunnel barriers that have

been fabricated using methods other than the standard ambient temperature oxygen diffusion.

These devices were Nb-AlOx-Nb trilayer junctions, grown by the group of James Eckstein at

the University of Illinois at Urbana-Champaign.

In one of their Nb-trilayer architectures [79, 75], the base electrode is a single crystal Nb

epitaxially grown on a sapphire substrate, followed by the deposition of a single crystal Al

buffer layer. The AlOx tunnel barrier is then grown by the deposition of Al in a flux of

oxygen atoms fed into the system through a gas injection port [79]. The co-deposited AlOx

tunnel barrier typically receives an additional oxygen diffusion step to complete the oxidation,

performed at 30 Torr of UHP oxygen for 60 minutes. A top poly-crystalline Nb electrode is

then deposited to complete the Nb-trilayer stack.

In one of the samples, sample e527, the trilayer stack was purposefully designed to not

include a buffer Al layer, instead it had the AlOx tunnel barrier co-deposited directly on the
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Figure 8.6: Time traces for T = 20, 25, 27, 30 K. At T = 30 K a second TLS with a larger
δA/A sets in.

base crystalline Nb electrode. The tunnel barrier is then completed in the standard process

with an oxygen diffusion at 30 Torr and 60 minutes at ambient room temperature.

We found that in this particular sample, the tunneling resistance exhibited a strong random

telegraph signal. This was unexpected since the junction area was approximately, A ≈ 4 ×

4 µm2, which we anticipated to have many activated TLSs giving rise to a featureless 1/fα

power spectrum. On top of that, the signal due to a single fluctuator, δR/R = δA/A ∼ 3×10−8,

should have been extremely small given the large junction size.

Figure 8.5A plots the IV transport characteristics at T = 1.8 K. The barrier non-uniformity

is apparent in the elevated sub-gap leakage current. We conjecture that this could be due to a

strong disorder in the amorphous AlOx tunneling, where some localized regions of the dielectric

can have an effectively thinner tunneling barrier, which then dominates the conduction through

the junction.

The tunneling resistance of the junction exhibited a strong random telegraph noise, in this
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Figure 8.7: Time traces for T = 30, 32, 35, 37, 39, 41, and42 K, showing the thermal activation
of TLS B. TLS A is still visible for some time after TLS B moves into the measurement
bandwidth .

Figure 8.8: Temperature dependence of the switching times for TLS-B, showing thermally
activated dynamics. (inset) The TLS lifetime ratio, ln(τ1/τ2), and an extrapolated line to
high temperatures.
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case we were able to resolve two distinct TLSs that have characteristic frequencies spaced far

enough from each other to permit their observation. TLS-A is visible in the measurement

bandwidth in the temperature range T ≈ 10− 30 K, while TLS-B sets in at around T = 30 K

and dominates the noise spectrum at higher temperatures. A time trace showing the activation

of TLS-A is shown in figure 8.6. The activation of TLS-B is given in figure 8.7.

TLS-A has a fractional area, δA/A ≈ 1.2×10−3, while TLS-B is larger at δA/A ≈ 2.9×10−3.

While it’s not surprising that the TLSs have differing fractional areas, it is extremely unusual

in that they both seem to have extremely large effective areas.

For TLS-B we have performed a time domain analysis, identical to the procedure discussed

in chapter 7. It was found that TLS-B is governed by a simple thermal activation dynamics,

as shown in figure 8.8. The inset in figure 8.8 shows the natural logarithm of the switching

lifetime ratio ln(τ1/τ2) as a function of 1/T . Despite the scatter in the data and the limited

range, extrapolation to high temperatures (1/T → 0) is consistent with the ratio τ1/τ2 → 1.

This is consistent with the localized double-well representation of the TLS.

Ultimately e527 was not explored enough to fully understand why these TLSs were visible

in such a large junction. However this sample did point out the possibility of investigating

the 1/fα low frequency noise and the dynamics of the TLSs, as a function of the barrier

disorder. The ability to co-deposit the tunnel dielectric and vary its density and stoichiometric

composition may prove invaluable in understanding these TLSs.

One crucial lesson is perhaps the value of the ability to increase the amount of disorder

in the amorphous barrier. We suggest that the oxygen diffusion exposure (pressure × time)

following the co-deposition of the tunnel barrier can be systematically varied to study the

noise properties. If the junction can also be made small, A ∼ 0.1 µm2, then the TLS dynamics

may even be more easily accessible. Importantly, a systematic study of the TLS dynamics as a

function of the barrier disorder may provide a connection to microscopic theories of TLSs. One

such theory was proposed by DuBois et. al. [15], which attributed the TLSs to a delocalized

oxygen in the amorphous AlOx, and is highly sensitive to the level of disorder.



CHAPTER 9

CONCLUSIONS

Our measurements of the 1/fα noise in Al/AlOx/Al junctions support the linear T -dependence

and noise magnitude as previously measured in Eroms. et. al. [18] and Pottorf et. al. [53].

Crucially, we have been able to observe the breakdown of the Gaussian averaging of these TLS

ensemble by investigating the noise scaling as a function of the junction area and temperature.

In particular, by investigating small junction areas, A ∼ 0.005−0.1 µm2, we have been able to

observe the deviation from a featureless 1/fα spectral shape, by the appearance of pronounced

Lorentzians. By quantifying the spectral variance, ⟨(ωδS)2⟩/⟨ωS⟩2, we were able to deduce

the TLS defect density, n:

n ≈ 2.53 µm2K−1e−1 → σ0 ∼ 69.7 µm−2K−1 (9.1)

This TLS density is curiously consistent with that obtained from heat capacity/thermal con-

ductivity/ultrasound absorption experiments which first suggested the existence of two level

systems in glassy insulators [51, 82]. In addition this density is also similar to that deduced

from counting the density of spurious avoided level crossings in qubit energy spectroscopy [65].

The consistency of the TLS density obtained across vastly different experiments is a strong

indication that the defects seen from critical current noise, avoided level crossings at the qubit

frequency, and even resonator losses originate from the same ensemble (source), namely the

amorphous native oxides (AlOx, NbOx, ...) which is the dielectric consistently encountered

in superconducting quantum circuits. Combining this estimated density with the measured

1/f power spectral density in large junctions, we are able to deduce the average fluctuator
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strength, ⟨δA2⟩ ≈ (0.3 nm2)2.

In ultra-small junctions, we have been able to isolate a single fluctuator and studied the

dynamics of the TLS transitions. The observed tunneling rates of the individual TLS support

the conjecture that the fluctuating species is an atomic mass tunneling over distances of order,

∼ 1 Å. The electric dipole moment obtained from the TLS response to an external static

electric field is estimated to be in the order of, ∼ 0.5−1 eÅ ≈ 2−5 D. While we conclude that

the fluctuating species is likely to be an atomic species (as opposed to electrons), the precision

of our estimate is not sufficient to single out the most probable atomic mass.

At the beginning of this project the question of critical current noise in qubits equated to

asking: what is the magnitude of the 1/f noise, and is it or will it ever be large enough to

limit qubit coherence? Our experiments have shown that the junctions and temperature in

the typical qubit operation is well below the threshold for the breakdown of 1/f noise. On the

other hand, our results suggest that the same TLSs that caused 1/f critical current noise are

the same TLS species that currently limit resonator losses in qubit operation.

In approaching a modern problem in the form of decoherence in superconducting qubits,

we have re-entered a field that was started over four decades ago with the first observation of

anomalous heat capacity in insulating glasses [82].
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