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Abstract

Epitaxial hetero-structures have been turned to in recent years in an attempt to elim-

inate charge fluctuations in Josephson junction-based quantum bits. Amorphous

tunnel-barriers have large numbers of two-level fluctuators that can couple to the

quantum states in the device. Single-crystal tunnel-barriers on the other hand show

a reduced density of these two-level fluctuators. For my thesis research I studied the

hetero-epitaxy of aluminum oxide on niobium, and the use of these aluminum oxide

thin films as tunnel-barriers. Single-crystal Nb/Al2O3 and Nb/Al2O3/Nb multi-

layers were grown by molecular beam epitaxy and characterized using a variety of

materials analysis techniques. Atomically-flat niobium films grown on A-plane sap-

phire were used for the subsequent hetero-epitaxy of aluminum oxide. Depending

on the thermal treatment used during growth, these niobium films had two distinct

surface reconstructions. Using in situ RHEED I found that the growth of Al2O3

was highly dependent on the surface reconstruction of the underlying niobium film.

Alumina films on annealed Nb had a hexagonal lattice that was under an isotropic

tensile strain that relaxed with increasing film thickness. In contrast, alumina films

on unannealed Nb showed an asymmetric strain and a pseudo-hexagonal lattice

closely resembling that of the underlying niobium. Epitaxial niobium over-layers

also tiled these two alumina surfaces differently, with in-plane orientations sugges-

tive of irregular cation sublattices in the oxide film. It was also found using TEM

imaging that an atomically sharp interface existed between the aluminum oxide film

and the base niobium layer. However, mixing was seen to occur with the deposition

iii



of the over-layer, causing a deterioration of the alumina barrier. This mixing had a

profound effect on tunnel-junctions fabricated from these tri-layers. Devices showed

very poor qualities overall, with current-voltage characteristics indicative of a large

density of electrical pinholes. With these findings in mind, some potential solutions

are proposed.
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5× 5 µm2, and respective height scales are shown. . . . . . . . . . . . 44

5.5 This plot shows the misalignment of the Al2O3 over-layer with the
Nb film. The sample is rotated such that the RHEED beam is along
the Nb [1̄11] azimuth, and these are a series of line scans showing
the intensity of RHEED streaks, each scan showing results from a
different growth. The intensity profiles are normalized to the right-
hand 1st-order streak. The left-hand 1st-order streak is on average
36% less intense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6 Strain vs. thickness for epitaxial Al2O3 thin films deposited on an-
nealed Nb (110). The line shows the strain relaxation during depo-
sition for a single growth at 800 ◦C, while the various data points
show the strain measured along different Al2O3 azimuths near room
temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xiii



5.7 Comparison of surface lattices for Nb (110), NbO (111) and C-plane
sapphire, α-Al2O3 (0001). For the oxides only the cation sublattices
are shown, and all dimensions are given in units of angstroms. . . . . 47

5.8 This plot shows the alignment of the Al2O3 over-layer with the Nb
film. The sample is rotated such that RHEED is along the Nb
[1̄11] azimuth, and these are a series of line scans showing the in-
tensity of RHEED streaks, each scan showing results from a different
growth. The intensity profiles are normalized to the right-hand 1st-
order streak. The left-hand 1st-order streak shows a nearly equivalent
intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.9 Strain vs. thickness for epitaxial Al2O3 thin films deposited on unan-
nealed Nb (110). The different RHEED azimuths are distinguished
by the nearest Nb direction. The measured strain for all thicknesses is
asymmetric due to the anisotropic misfit with the underlying niobium. 50

5.10 RHEED images from epitaxial niobium films on single-crystal Nb/-
Al2O3 bi-layers. Both films were deposited at around 700 ◦C on ∼
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Chapter 1

Introduction

The present challenge of constructing solid-state quantum bits (qubits) with long

coherence times [1] has ignited new interest in Josephson junctions fabricated from

single-crystal materials. It has been found that critical-current 1/f noise cannot

fully account for the observed decoherence times in junctions-based qubits [2]. How-

ever, amorphous tunnel-barrier defects can give rise to two-level charge fluctuations

that destroy quantum coherence across the junction [3, 4]. In an effort to eliminate

these defects I sought to fabricate junctions from single-crystal Nb/Al2O3 hetero-

structures.

Niobium was chosen primarily for two reasons. First, it is a standard material

used in the fabrication of Josephson tunnel-junctions [5]. Second, and perhaps more

important, is the fact that the epitaxy of niobium on sapphire is well understood [6],

and the quality of epitaxial niobium films is extremely high [7]. On the other hand,

there have been very few studies of single-crystal Al2O3 films grown on refractory

metals – only recently was it shown to grow epitaxially on Nb, by both Dietrich et al.

[8] and myself [9]. At the outset of my thesis work, alumina epitaxy had been studied

on a small number materials similar to niobium – tantalum [10], molybdenum [11],

and tungsten [12] – but not on niobium itself.

In parallel with my work on epitaxial Nb/Al2O3 hetero-structures, Oh et al.

found that tunnel-junctions from epitaxial Re/Al2O3/Al tri-layers had a significantly

reduced density of two-level fluctuators [13]. The pairing of rhenium and aluminum

oxide had a few advantages over niobium. First is the very small misfit between
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the basal planes of rhenium and sapphire (∼ 0.4%). The second advantage is that

rhenium is less likely to oxidize, compared with other superconducting refractory

metals such as niobium [14]. The disadvantage, however, is that epitaxial Re films

develop domains due to basal-plane twinning, causing the surface to be rough on

the length scales of a typical tunnel-junction [15].

I report here on my findings concerning the hetero-epitaxy of Al2O3 on Nb

(110) films. The Al2O3 films were grown layer-by-layer with co-deposition of Al

and O at elevated substrate temperatures. Epitaxial bi-layers (Nb/Al2O3) and tri-

layers (Nb/Al2O3/Nb) were grown on sapphire by molecular beam epitaxy (MBE).

The materials were characterized by in situ reflection high-energy electron diffrac-

tion (RHEED) and x-ray photo-electron spectroscopy (XPS), and ex situ atomic

force microscopy (AFM), x-ray diffraction (XRD), and electrical transport. Tunnel-

junction devices were fabricated from these epitaxial hetero-structures, as well as

from epitaxial Nb/Al bi-layers.

In Chapter 2 I survey the experimental methodology, from epitaxial growth and

materials analysis to device fabrication and testing. A literature review follows in

Chapter 3 with a discussion of Al2O3, its various crystal structures and its epitaxy,

as well as previous attempts to use epitaxial materials in tunnel-junctions. I begin

the discussion of my experimental results in Chapter 4 with the epitaxy of niobium

on sapphire. Succeeding that is the analysis of epitaxial aluminum oxide films on

niobium (Chapter 5), including device results. In Chapter 6 I discuss the epitaxy

of aluminum metal on niobium, as well as the characteristics of tunnel-junctions

fabricated from Nb/Al bi-layers. Finally, in Chapter 7, I conclude my thesis with a

survey of the potential directions for future research.
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Chapter 2

Experimental Methods

2.1 Epitaxial Growth Techniques

For this study, single-crystal films and multi-layers were prepared by means of molec-

ular beam epitaxy (MBE). The MBE chamber was part of a larger ultra-high vacuum

(UHV) multi-chamber system in the University of Illinois EpiCenter. In this section

I will describe that system, as well as the methods used for growing epitaxial metal

and metal-oxide thin films.

2.1.1 Multi-Chamber Growth Facility

The EpiCenter housed a large, multi-chamber UHV system for growing and analyz-

ing single-crystal films and multi-layers. The entire system consisted of six MBE

chambers, an XPS chamber and an XRD chamber, all connected by 60 feet of UHV

transfer tubes. Each MBE chamber was tailored for a specific material type – the

two chambers that I used for my thesis work (systems E and F) were dedicated to

refractory metal deposition. A schematic of these chambers is shown in Figure 2.1.

The base pressure in the MBE systems was typically 5× 10−11 torr, while the XPS

chamber and transfer tubes were usually at around 10−9 torr.

For purposes of MBE, controlled metal evaporation can be achieved either

through heating by a resistive filament (effusion cell) or by e-beam bombardment

(e-gun). In an effusion cell, the source material sits in a slender crucible whose
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Figure 2.1: EpiCenter MBE Schematic

temperature can be measured and controlled via a thermocouple. Effusion cells can

typically operate up to temperatures near 2000 ◦C. For those materials requiring

a higher temperature for evaporation an e-gun may be used. In an e-gun, 10 kV

electrons are steered by electromagnets into the source material, which sits in a

water-cooled copper hearth. E-guns can reach temperatures of up to 3000 ◦C and

beyond. For the work presented here, an effusion cell was used for aluminum evap-

oration and an e-gun for niobium. While both systems E and F had e-guns, all the

niobium growths were done in system F and aluminum depositions in system E.

For the growth of simple oxides, system E was also equipped with an oxygen

gas injector. An ultra-high purity (UHP, 99.995%) O2 gas bottle was attached to a

valve manifold mounted near the chamber. The manifold included a series of on/off

and regulating valves that branched off in one direction to a dry roughing pump

and, in the other direction, to a precision leak valve mounted on the chamber. The
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roughing pump was utilized to reduce the gas pressure behind the leak valve. Inside

the vacuum system, a long aspect-ratio tube (12 in × 3
4

in diameter) directed the

gas flow toward the substrate. With the precision leak valve, the chamber pressure

could be controlled at the 10−9 torr level – for aluminum oxide deposition, pressures

of up to 5× 10−6 torr were used.

In addition to controlled atomic fluxes, MBE also requires substrate heating

and temperature control. In systems E and F, the substrate was heated from the

backside by a tantalum filament. The sample temperature could be read out by a

thermocouple or, more reliably, by an infrared pyrometer. In both MBE chambers

the thermocouple was situated a few millimeters from the substrate backside, re-

sulting in inconsistent temperature readings. Because of this, the more consistent

optical method was used instead. The maximum substrate temperature in both

systems, E and F, was about 1400 ◦C.

Other features of the MBE chambers included quartz crystal monitors (QCM)

to measure the atomic fluxes. Each system was also equipped with RHEED to

monitor the film growth during deposition (see Section 2.2.1 below). Quadrupole

mass spectrometers were employed to measure residual gasses and for leak checking.

Both chambers utilized liquid nitrogen cryo-panels for cooling and pumping needs.

2.1.2 Substrate Preparation

The substrate material for all of my investigations was sapphire (α-Al2O3), with one

side polished for epitaxy. The first step in preparing the substrate for growth was

the deposition by sputtering of a titanium backside coating, which was necessary for

radiative heating. The polished side of the substrate was then scrubbed with cotton

swabs dipped in trichloroethylene (TCE) to remove any grease or dirt. Further

cleaning was done by sonicating in baths of TCE, acetone, and isopropyl alcohol

(IPA) – in that order – for a few minutes each. Finally, the substrate was mounted
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on the sample holder and inserted into the load-lock.

Over the course of about four hours, the load-lock was pumped down by a turbo-

molecular pump and cryo-pump, in succession. A pressure of about 5 × 10−8 torr

was typically reached before moving the sample into the transfer tube and, from

there, into the MBE chamber. To further prepare the substrate for epitaxy it was

typically outgassed at 600 ◦C for about 10 hours, followed by a two hour anneal

at 1000 ◦C. From there, the sample was cooled to the appropriate temperature for

epitaxial growth.

2.2 Materials Analysis

For the analysis of materials I employed several different techniques. Among these

were reflection high-energy electron diffraction (RHEED), x-ray photoelectron spec-

troscopy (XPS), x-ray diffraction (XRD), and atomic force microscopy (AFM). Elec-

trical transport measurements down to 4 K were also utilized in characterizing films.

In this section I give a brief description of each technique, and give examples of what

can be learned from each type of analysis.

2.2.1 Reflection High-Energy Electron Diffraction

In RHEED, high-energy electrons (10 kV) are scattered at a grazing angle (∼ 1◦)

off the surface of a substrate or thin film. At this energy, the electron elastic mean

free path can vary from 10’s to 100’s of angstroms, depending on the material. The

grazing incidence angle then means that the electrons are scattered from only the

first monolayer or two. For this reason, RHEED is very sensitive to the roughness

of the film. RHEED is also ideal for monitoring the growth of thin films in situ –

during deposition or annealing, for example – because of the grazing incidence angle

and its non-destructive nature.
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For scattering off atomically-flat films, RHEED patterns reveal the reciprocal

spatial structure of the two-dimensional surface lattice. For grazing-angle diffrac-

tion, the Laue condition is simply ~k′‖ = ~k‖ + ~q, where ~k′ is the outgoing electron

momentum, ~k the incoming momentum, and ~q is a reciprocal space vector belonging

to the surface lattice of the crystal. Here “‖” indicates the component parallel to the

sample surface. Because the scattering is reduced to two-dimensions, the reciprocal

space points can be extended along the surface normal, forming reciprocal space

rods. The intersection of these rods with the Ewald sphere is what produces the

RHEED pattern.

This assumes that the film surface is actually flat. For rough surfaces, where

asperities extend out of the plane, electrons can pass though the crystal. In this

case one will sometimes observe transmission or 3D patterns instead of RHEED.

Because the electrons pass through the crystal, reciprocal space is no longer pop-

ulated by rods. Instead, one must consider the full three-dimensional reciprocal

space, and the intersection of those points with the Ewald sphere. The contrast

between RHEED images and those patterns produced by electron transmission is

quite striking. Because RHEED is so sensitive to the nature of the crystal surface

it is an ideal in situ analysis tool.

2.2.2 X-ray Photoelectron Spectroscopy

XPS – also known as electron spectroscopy for chemical analysis (ESCA) – is a

widely used technique for the investigation of solid surface chemistry. Analysis is

carried out by irradiating a surface with mono-energetic x-rays and measuring the

kinetic energies of emitted electrons. X-ray lines typically used for XPS are Mg-Kα

(1253.6 eV) and Al-Kα (1486.6 eV). The emitted electrons are also of two varieties

– photoelectrons and Auger electrons. The physical process for each type is shown

in Figure 2.2. Photoelectrons absorb the incoming photon energy and are ejected
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Figure 2.2: The two processes that occur upon x-ray irradiation of a surface. Pho-
toelectrons are ejected from core-level states in the atoms. When an electron from
an upper-level decays to fill the vacancy it gives its energy to a neighboring electron.
In this secondary process an Auger electron is ejected.

from the atom. The photoelectron’s kinetic energy, KE, can be related back to it’s

binding energy, BE, by the following relation: BE = hν −KE−Φs, where hν is the

photon energy and Φs is the spectrometer work function. Each element has its own

unique BE-spectrum, one that can change depending on the atomic valency.

The Auger electron, on the other hand, is emitted due to a secondary process,

one where the excess energy of a relaxing outer-electron is given to a neighboring

electron. This additional energy can be enough to eject the electron from the atom.

Unlike the photoelectron though, the kinetic energy of the Auger electron is insen-

sitive to the energy of the incoming photon. It is for this reason that Auger electron

spectroscopy (AES) typically employs incident electrons instead of x-rays. (One can

also achieve a much higher incident flux with electrons.) Because of their secondary

nature though, the Auger electrons are often neglected during XPS analysis.

The sensitivity of XPS is limited to the near-surface region of the sample. While

the photon-induced ionization may occur to depths on the order of a micron, only

those electrons emitted near the surface may escape the material without energy

loss. This is because the inelastic mean free path of a typical photoelectron is on
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the order of 10 Å. So only electrons emitted from the first few tens of angstroms can

escape without any energy loss. Those that do lose energy to inelastic scattering

but are still emitted simply contribute to the background. The inelastic mean free

path depends both on the electron energy and the specific material.

2.2.3 Atomic Force Microscopy

AFM is a type of scanning probe microscope that employs a flexible cantilever with

a sharp tip to scan the surface of a sample. Deflection of the cantilever due to

sample-tip interaction is measured by reflecting a laser off the cantilever and into

a photodiode array. The laser deflection signal is used as feedback to control the

sample-tip relative position through a set of piezoelectric crystals. The positioning

of the tip relative to the sample is then mapped to the surface topology. The in-

struments in the Center for Microanalysis of Materials (CMM) can readily achieve

sub-nanometer resolution along the surface normal and nanometer resolution later-

ally.

An AFM can be operated in two basic modes: contact mode and tapping mode.

In contact mode, the tip is literally dragged across the sample of the surface and

the photodiodes measure a static deflection. In tapping mode, the cantilever is

driven near resonance and the tip makes intermittent contact with the surface. In

both cases, the piezoelectric crystals control the tip-to-sample distance such that

the static deflection (contact mode) or tip amplitude (tapping mode) is constant.

2.2.4 X-ray Diffraction

The XRD instruments employed in this work were the two Philips X’pert systems

in the CMM. The standard diffractometer uses Cu Kα x-rays (λ = 1.5406 Å) and

a parallel plate detector to obtain an angular resolution of about 0.03◦. The high-
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resolution diffractometer uses Cu Kα1 x-rays and a three-bounce analyzer crystal

on the detector to obtain 12 arc-sec resolution (∼ 0.003◦).

The orientation of the sample in the X’pert systems is shown in Figure 2.3. The

incoming x-rays make an angle ω with the surface of the sample. The detector is

then placed at an angle 2θ with respect to the incoming x-rays. The sample can

be tilted an angle ψ with respect to the x-ray plane, and rotated an angle φ about

the surface normal. The 2θ and ω goniometers are both high-resolution (∼ 0.0001◦)

while ψ and φ have fairly low precision (∼ 0.01◦).

For fixed angles ψ and φ, the XRD instrument can access a semicircular plane

of reciprocal space (see Figure 2.3). The semicircle graphically represents the limits

of ω (0–90◦) and 2θ (ω–180◦). The outer radius is where 2θ = 180◦, or alterna-

tively λ/2d = 1, where d is the planar spacing in real space. The left and right

grayed semicircles represent regions of reciprocal space where ω > 90◦ and ω < 0◦,

respectively.

The work presented in this thesis involves a number of different types of XRD

measurements, summarized here:

Radial Scan – Also referred to as a longitudinal or 2θ-ω scan, a radial scan

involves varying both 2θ and ω, with ω set to θ minus a constant offset. Such a

scan moves along the radius of the semicircular plane in reciprocal space. When the

offset is zero, the radius scanned is along the surface normal, and only the specular

Bragg peaks are measured. This is the most common measurement performed on

thin films. For highly crystalline films, radial scans can show not only reciprocal

space points arising from the lattice, but also modulations due to the finite thickness

of the film.

Rocking Curve – For a rocking curve or transverse scan, only ω is varied. For

this reason, the scan moves along an arc of constant radius, perpendicular to a

radial scan. Rocking curves are typically short range scans intended to measure
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Figure 2.3: Top: Diagram of the XRD setup. Cu Kα x-rays are incident upon the
surface at an angle ω with respect to the surface, while the detector is positioned at
an angle 2θ with respect to the incoming x-rays. The sample may be tilted an angle
ψ and rotated about its normal an angle φ. The grayed semicircle indicates the plane
in reciprocal space accessible by the instrument. Bottom: As an illustrative example,
I show the reciprocal space map for A-plane sapphire, α-Al2O3 (112̄0), along the
M-axis azimuth – [11̄00]. The C-axis – [0001] – is perpendicular to the plane, which
results in the hexagonal arrangement of lattice points. In the bottom picture the
grayed semicircles indicate regions of reciprocal space that are inaccessible due to
limitations on the angle ω.
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the width of the reciprocal space point of interest. Because they scan the Bragg

peaks in a transverse direction, rocking curves are not susceptible to film thickness

modulations. The full width at half maximum, ∆ω – sometimes referred to as the

mosaicity – is often quoted as a measure of structural coherence.

Pole Scan – A pole scan is done by holding 2θ and ω fixed (ω = θ) and varying

ψ and φ. ψ is varied from 0–90◦, and at each increment φ is scanned from 0–360◦.

The information sought from such a measurement is typically just the in-plane

orientation of the film. For a cubic (110) surface, for example, a pole scan with 2θ

set to correspond to the (110) Bragg peak will find all the non-specular {110} peaks

– (101), (011), (101̄), and (011̄). The φ-Scan is a subset of the pole scan – variation

of φ for a single value of ψ.

Reciprocal Space Map – A reciprocal space maps surveys a small area in the

semicircular plane shown in Figure 2.3. Often, one is interested in mapping non-

specular Bragg peaks, but instead of using the low-precision ψ and φ goniometers,

only 2θ and ω are varied instead. Reciprocal space maps are a series of radial scans

done over a small range of offset angles.

2.2.5 Electrical Transport

The electrical transport properties of epitaxial niobium films were examined using

a 4.2 K dipper-probe. The probe allowed for four-terminal resistance vs. temper-

ature measurements. From the traces one could extract the following quantities:

the superconducting transition temperature, Tc, the width of the superconducting

transition, ∆Tc, the residual resistivity measured at 10 K, ρ10K, and the residual re-

sistance ratio, RRR = ρ295K/ρ10K, where ρ295K is the room temperature resistivity.

Higher quality films – with fewer impurities and lower densities of crystal defects

like dislocations and grain boundaries – will tend to yield larger values for Tc and

RRR, and smaller values for ρ10K and ∆Tc.
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Figure 2.4: The device fabrication process starting with (0) a whole-wafer tri-layer.
The steps are (1) device isolation, (2) mesa mill with self-aligned SiO2 lift-off, and
(3) metallization. A picture of a device is shown at right.

2.3 Fabrication and Testing of Tunnel-Junctions

Our ultimate interest was in fabricating high-quality Josephson junctions for their

potential use in solid state qubits. In this section I briefly outline the fabrication

process, and describe the testing apparatus.

2.3.1 Device Processing

Device fabrication was a three-step process, shown in Figure 2.4, each of which

employed standard optical photolithography techniques for defining areas on the

sample. Starting with whole-wafer Nb/Al2O3/Nb tri-layers, the first step was the

device isolation step. The device regions of the sample were electrically isolated

from the contact-pad regions by etching through the tri-layer down to the sapphire

substrate. The niobium layers were removed with SF6-based reactive ion etching

(RIE), and the alumina barrier was removed by argon ion milling.

The second step was the mesa mill step. Here, the junction area was defined by

etching the top niobium away to form a small mesa – 10 × 10 µm2 or 30 × 30 µm2
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– which served as the counter-electrode of the junction. After niobium etching, I

used a self-aligned process to lift-off a layer of SiO2, which served as the wire-up

dielectric. The SiO2 was typically & 1000 Å and was deposited by rf sputtering.

Finally, the metallization step was used to make contact to the top and bottom

electrodes of the junction. The in situ niobium was first milled to remove the native

surface oxide – approximately 50 Å was milled – followed by the deposition of an

ex situ niobium layer by dc sputtering. Contact to the counter-electrode was made

through the mesa, while contact to the base-electrode was made through a large

area (∼ 10 mm2) junction.

2.3.2 Device Testing

Devices were tested in a helium transfer-dewar dipper probe designed to operate

down to 4.2 K. The temperature was read out using a standard diode thermometer.

The current source I used was a custom-built unit that used battery-powered op-

amps to convert an ac voltage input to a low-noise current output. This ac voltage

was supplied either via a DAQ board or another signal generator at a frequency of

1 Hz. The voltage across the devices was read out using pre-amps and the DAQ

board analog inputs that could be sampled at a rate of up to 333 kHz. For the

current measurement, the voltage across a 1 Ω series resistor was read out. To

further reduce noise effects, 50 Ω series resistors were inserted at the 4.2 K stage on

each of the current and voltage leads. Because the custom-built current source had

a working range of ± 7 mA, those devices with larger critical currents were tested

using a Keithley low-noise current source and nano-voltmeter.
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Chapter 3

Literature Review

3.1 Epitaxy of Aluminum Oxide

Over the years, many attempts have been made to grow single-crystal Al2O3 films.

Alumina has a wide range of uses: as a catalyst for metal particles, as a corrosion-

resistant barrier, as an abrasive, and as an insulator in electronic devices. The

growth of epitaxial Al2O3 has been attempted on a number of different substrates.

Because my studies involve the growth of alumina on Nb (110), I will focus my review

on similar bcc metals. First, I will discuss the Al2O3 crystal structure and the array

of different alumina polymorphs. Because each of these polymorphs involves the

stacking of close-packed oxygen planes, I will also review the growth of fcc (111) or

hcp (0001) on bcc (110) surfaces.

3.1.1 Aluminum Oxide Crystal Structures

Aluminum oxide (Al2O3, alumina) is a well-known and well-studied material. It’s

simple formula, however, veils a complex and variable crystal structure. The ther-

modynamically stable form of alumina – referred to as sapphire and indicated by

the Greek letter α – takes the corundum structure, which can be described by either

a rhombohedral or hexagonal crystal lattice. Pauling was the first to describe the

sapphire structure in detail [16]. Refinements to the lattice structure were later

made by Kronberg [17] and Newnham [18], although Lee and Lagerlof give the most
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Figure 3.1: The corundum structure of α-Al2O3 or sapphire. Left: The aluminum
cation sublattice of the morphological unit cell. Open circles indicate the vacant
octahedral sites. Note that the structural unit cell has twice the length along the
c-axis as the morphological one. Right: The basal plane of sapphire, with both
the cation and anion lattices shown. Large circles are used here to indicate oxygen
anion positions. Figures taken from Ref. [17].

complete description [19].

The morphological unit cell of the corundum structure is shown in Figure 3.1

(taken from Ref. [17]). Oxygen anions form close-packed planes that are stacked in

an hcp arrangement – ABAB . . . – and the aluminum cations fill 2/3 of the octahe-

dral interstitials. The vacancies left over form an ordered sublattice that defines the

unit cell of the crystal. The full stacking sequence is AC1BC2AC3BC1AC2BC3 . . .,

where the index (1,2,3) indicates the distinct vacancy locations in the Al basal plane.

This stacking yields a structural unit cell six layers in height (along the c-axis), twice

the height as the morphological unit cell shown in Figure 3.1. The lattice constants

for the α-Al2O3 structural unit cell at room temperature are a = 4.7592 Å and

c = 12.9916 Å [20].

A number of crystallographic orientations for sapphire are indicated in Fig-
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ure 3.1. When employed as a single-crystal substrate for hetero-epitaxy, one of four

surfaces is typically used, each of which has come to be identified by letter as often

as by Miller indices. The four orientations are: A-plane, (112̄0); C-plane, (0001);

M-plane, (11̄00); and R-plane, (11̄02).

In addition to the α form, there exist several metastable or transitional alu-

mina structures. While α-Al2O3 has only octahedrally-coordinated aluminum anions

(AlO), the common thread among all the transitional polymorphs is the existence

of tetrahedrally-coordinated aluminum anions (AlT ). The various crystal structures

can be divided into two broad categories: those with a face-centered cubic (fcc)

stacking of close-packed oxygen anions and those with a hexagonal close-packed

(hcp) arrangement. Within each category, distinct structures are determined by the

distribution of cations. α-Al2O3 has a trigonal form with the oxygen planes in an

hcp arrangement and with AlO only. The metastable forms with hcp packing are

κ (orthorhombic) and χ (hexagonal). Polymorphs based on fcc packing include γ

and η (cubic), θ (monoclinic), and δ (tetragonal). All of these alumina forms are

stable at room temperature, with structure transition temperatures ranging from

600-1100 ◦C [21].

3.1.2 Epitaxy of fcc (111) or hcp (001) on bcc (110)

It has been known for some time that, for the epitaxial growth of an fcc (or hcp)

metal on a bcc (110) surface, two in-plane orientations are possible. In almost all

cases, fcc metals will grow in the (111) direction, since for bcc metals the (110)

surface most resembles close-packing. The in-plane orientation can be of two va-

rieties, depending on the relative size of the atomic radii. One is the Nishiyama–

Wassermann relationship (NW), fcc [11̄0] ‖ bcc [001] [23, 24]. The second is the

Kurdjumov–Sachs relationship (KS), fcc [11̄0] ‖ bcc [11̄1] or [1̄11] [25]. Both orien-

tations are shown in Figure 3.2 (taken from Ref. [22])
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Figure 3.2: For the epitaxy of fcc (111) (or hcp (001)) on bcc (110), two in-plane
orientational relationships are preferred: Nishiyama–Wassermann (NW) or Kurdju-
mov–Sachs (KS). Figure taken from Ref. [22].

A great number of different fcc/bcc metal combinations have been studied over

the years, and the orientational relationships observed these metal pairs, with few

exceptions, can be predicted based strictly on the ratio of the atomic radii. Rigid-

lattice models have been used by a number of authors to determine the energetics

associated with different relative orientations of the two lattices [26, 27, 28, 29].

Free-energy minima are observed in these calculations, which indicate the preferred

relationship (KS or NW) based strictly on atomic radii ratios.

3.1.3 Al2O3 On bcc (110) Metal Surfaces

The first reported growth of epitaxial Al2O3 on a bcc (110) surface was done by

the Goodman group. They grew ultrathin alumina films on both single-crystal Ta

and Mo substrates. Chen et al. grew epitaxial Al2O3 on Ta (110) substrates by

evaporating aluminum metal at a rate of about 0.03 Å/s in an O2 background of

5× 10−7 torr at a substrate temperature of 900 K [10]. Both the tantalum surface

and the Al2O3 films (5–40 Å) were studied with low-energy electron diffraction

(LEED). For alumina on Ta (110) a KS relationship was observed, with samples

showing either single domain growth or double domain growth. Based on LEED
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measurements, it was determined that the alumina was strained about 9% with

respect to bulk Al2O3. Due to a lack of information regarding the Al sub-lattice,

no definitive crystal structure could be determined. The observed crystal lattice

was pseudo-hexagonal and showed a 4.2◦ rotation with respect to the underlying Ta

surface.

Following the work on tantalum, Wu et al. grew thin Al2O3 films on Mo (110)

surfaces [11]. The growth method was very different: While the aluminum and

oxygen fluxes were roughly equivalent, the substrate was held at room tempera-

ture during deposition. The films were then annealed up to 1200 K in the oxygen

background to improve the alumina crystallinity. While there is no mention of the

orientational relationship, they did use LEED to observe the same pseudo-hexagonal

surface lattice that was seen for alumina epitaxy on tantalum. For the films on Mo,

Wu et al. also used high-resolution electron energy-loss spectroscopy (HREELS) to

observe surface optical phonon losses consistent with aluminum oxide thin films. It

is also pointed out by Goodman that, due to the substantial misfit between oxide

and substrate, strain relief mechanisms for alumina on Mo and Ta are likely to

include dislocations and domain-wall structures [30].

Günster et al. grew aluminum oxide thin films on W (110) substrates by coad-

sorbing Al and oxygen [12]. The tungsten substrate was held at 725 K during the

deposition. The aluminum flux was such that 13 Å of alumina growth took one

hour – roughly 4×10−3 Å/s. In other terms, the Al flux was about 0.1 ML/minute,

compared with the O2 flux of 5 L/min (1 L ≈ 1×10−6 torr-s). Using AES and ultra-

violet photoelectron spectroscopy (UPS), they find that the aluminum supplied to

the substrate is completely oxidized. For growths done at room temperature, how-

ever, they observe both metallic Al and Al3+ ions. They also use LEED to observe

a pseudo-hexagonal alumina lattice, similar to what was seen for Al2O3 epitaxy on

Ta (110) [10]. Finally, Günster et al. report excellent adhesion between aluminum
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oxide films and the W (110) substrate, with the films showing thermal stability up

to temperatures around 1200 K.

Dietrich et al. recently reported on the growth of epitaxial Al2O3 on Nb (110)

films [8]. Niobium films were first deposited by sputtering onto a C-plane sapphire

substrate at ∼ 950 ◦C, followed by annealing to 1200 ◦C [31]. The quality of the

Nb epitaxy was determined by XRD, scanning tunneling microscopy (STM) and

transport measurements. The Al2O3 over-layer was formed by evaporating Al at

about 0.2 Å/s in an O2 background of 10−6 mbar at room temperature. The film

was then annealed 1000 ◦C in oxygen to achieve crystallization. Oxidation of the

aluminum was measured by XPS, and LEED on a 12 Å film showed hexagonal

symmetry characteristic of basal plane alumina. However, tunneling microscopy

revealed small islands about 4 nm in size, and tunneling spectroscopy found localized

defect states at about ±1 eV. No orientational relationship between the niobium and

alumina layers was determined.

Finally, Dedkov et al. grew crystalline Al2O3 layers on the Fe (110) surface by

oxidizing ultrathin aluminum films [32]. A 7 Å-thick film was first deposited on

the iron surface, showing sharp LEED spots. The metal film was then oxidized

by exposing it to 105 L at room temperature. Crystallization of the oxide was

achieved by annealing at 250 ◦C for at least 15 min. At this point, LEED images

showed a hexagonal surface lattice that was expanded about 4% with respect to bulk

sapphire. AES spectra also showed complete oxidation of the aluminum film. The

same experiment done with 20 Å-thick Al layers showed no ordered LEED patterns,

and AES revealed an incomplete oxidation.
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3.2 Epitaxial Hetero-Structures in

Tunnel-Junctions

Relatively few attempts at fabricating Josephson tunnel-junctions from epitaxial

multi-layers have been reported in the literature. Early experiments aimed simply

to duplicate the Gurvitch process [5] using epitaxial Nb/Al bi-layers instead of poly-

crystalline ones. More recently, the quest for long coherence times in junction-based

qubits has driven a renewed interest in all-epitaxial tri-layers. I review here some of

the work that has been done to date.

3.2.1 Tunnel-Barriers from Oxidized Epitaxial Aluminum

Braginski et al. were the first to use epitaxial Nb/Al bi-layers in their Josephson

junction fabrication process [33]. Nb (110) films were grown on α-Al2O3 (112̄0) sub-

strates by e-beam evaporation at 800 ◦C. Aluminum was deposited by evaporation

at room temperature at a rate of about 0.5 Å/s for a total thickness of 30–50 Å.

Diffraction and transport measurements indicated that both layers were of high

crystalline quality. Oxidation of the Al surface was done by exposing the bi-layer

to 100 mtorr of O2 for 10–60 min. After oxidation, XPS showed an oxide layer

thickness of about 20 Å. For the counter-electrode, PbBi was deposited at room

temperature ex situ.

Tunnel-junctions fabricated in this manner were characterized by their nor-

mal state conductance, Gn, and zero-bias conductance, G0, and by the ratio Q =

I(4 mV)/I(2 mV). While devices fabricated from sputtered, poly-crystalline Nb/Al

layers had Q > 60, those with epitaxial Nb/Al had Q = 3, as shown in Figure 3.3

(from Ref. [33]). Of the four different aluminum morphologies studied by Braginski

et al., the epitaxial one showed the poorest device qualities. They infer from their

device analysis that the epitaxial Al is nonuniform, and speculate that the high sur-
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Figure 3.3: Dependence of quasi-particle tunneling characteristics on base-electrode
growth method. From Braginski et al. [33].

face mobility of Al atoms on the clean and crystalline niobium surface may promote

island growth in the over-layer. They also suggest that Nb diffusion along oxide grain

boundaries might be an additional cause of the observed sub-gap conductances.

Kirk et al. followed this work with their own attempt to form tunnel-barriers

from epitaxial Al films [34]. Their approach differed from that of Braginski et al. in

a few ways: First, Kirk et al. sputtered their films instead of evaporating. The

advantage of sputtering is that the high kinetic energy of the deposited atoms tends

to smooth the film and help to form a continuous layer. Second, they employed a

liquid nitrogen cooled sample holder to cool the sample during Al growth, reducing
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Figure 3.4: Dependence of Vm on growth conditions and substrate choice. From
Kirk et al. [34].

the aluminum mobility on the niobium surface and, with it, the possibility of island

nucleation. Finally, two different sapphire substrate orientations were used for their

samples – A-plane and R-plane. Niobium grew epitaxially on both surfaces at about

750 ◦C. However, aluminum grew epitaxially only on those samples with A-plane

substrates. Al metal was deposited at a rate of about 0.3 Å/s for a total thickness of

40–50 Å, with the substrate temperature at either +20 or -40 ◦C. Crystallinity of the

films was measured by x-ray diffraction. The tunnel barrier was formed by oxidizing

the Al at an O2 pressure of about 40 mtorr for 10 min. Finally, the counter-electrode

was sputtered – first a thin Al capping layer, then Nb.

Kirk et al. used two parameters to characterize their tunnel-junctions: the critical

current density, Jc, and the standard quantity Vm = IcRsg, where Ic is the critical

current and Rsg is the sub-gap resistance, typically measured at 2 mV for niobium-
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based devices. For their devices, Jc ranged from 4000–9000 A/cm2 and Vm varied

between 20 and 50 mV at 4.2 K. Generally speaking, those devices with a higher Jc

also had a lower Vm. Two other trends were also apparent: First, lower aluminum

deposition temperatures yielded higher quality junctions. Second, comparing the

qualities of devices on A-plane and R-plane sapphire showed no obvious advantage

for epitaxial Al. These findings are summarized by the data shown in Figure 3.4.

3.2.2 Tunnel-Barriers from Epitaxial Aluminum Oxide

Recently Oh et al. demonstrated the feasibility of epitaxial Al2O3 films as tunnel-

barriers for Josephson junctions [35]. As a base-electrode they used rhenium, which

grows on C-plane sapphire in the (0001) orientation at 850 ◦C. Rhenium is well

lattice-matched with basal-plane sapphire (∼ 0.4% misfit) and has a superconduct-

ing critical temperature around 2 K. Aluminum metal was evaporated at room

temperature onto the Re (0001) surface at a rate of about 0.03 Å/s in an O2 back-

ground of 1× 10−6 torr. This served to form an amorphous AlOx layer about 20 Å

thick. Single-crystal Al2O3 was then formed by annealing the oxide film to 800 ◦C

in 4 × 10−6 torr of O2 gas. The counter-electrode employed in these tri-layers is

sputtered poly-crystalline Al. The epitaxy of the base Re layer and the alumina

barrier were verified with RHEED.

Current-voltage (I–V ) characteristics for tunnel-junctions fabricated from epi-

taxial Re/Al2O3-based hetero-structures were measured at 80 mK. (See Figure 3.5)

Devices were also characterized by a quality factor, Q, similar to that used by Bra-

ginski et al. [33]. Because of their use of different metals for the base- and counter-

electrodes however, Oh et al. used the definition Q = I(0.70 mV)/I(0.35 mV) and

found a value of 1200 for their devices. When implemented into a qubit architecture,

these epitaxial barriers also showed a reduced density of two-level fluctuators, when

compared with conventional junctions with amorphous AlOx barriers [13]. This
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Figure 3.5: Left: I-V characteristics of a tunnel-junction employing epitaxial
Re/Al2O3 layers plotted on both linear (a) and logarithmic (b) scales. (From
Ref. [35]) Right: Spectroscopy scan for a qubit utilizing epitaxial Re/Al2O3 showing
a reduced number of two-level fluctuators. (From Ref. [13])

finding, demonstrated by the qubit spectra shown in Figure 3.5, confirmed the view

that many had [3, 4]: that defects in the tunnel-barrier were largely responsible for

the observed decoherence in qubits.

It is clear from the literature that neither the epitaxy of aluminum oxide nor the

use of epitaxial alumina films in Josephson junctions has received much attention.

I believe that this is changing now due to the interest in solid state qubits. While

the devices fabricated from epitaxial Re/Al2O3 layers are promising, developing our

knowledge of alumina hetero-epitaxy is an important step toward understanding

their impact in tunnel-junction-based quantum bits.
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Chapter 4

Epitaxial Niobium on Sapphire

The hetero-epitaxy of niobium on sapphire has been well studied over the past few

decades, as evidenced by the recent review by Wildes et al. [36]. In this chapter I

discuss my own findings regarding niobium epitaxy on sapphire, with references to

related original literature where appropriate. Before that, I discuss a unique aspect

of the Nb-Al2O3 system: the three-dimensional growth relationship.

4.1 Three-Dimensional Relationship for Nb on

α-Al2O3

The first experiments involving the hetero-epitaxy of niobium on sapphire were

geared toward the growth of Nb-Cu [37] and Nb-Ta [38] superlattices. In both cases,

A-plane sapphire – α-Al2O3 (112̄0) – was used as the substrate, yielding Nb (110)

base layers. However, Durbin et al. demonstrated that epitaxial Nb-Ta superlattices

could be formed on a number of common sapphire orientations [6]. Their findings

revealed a three-dimensional relationship between the α-Al2O3 substrate and the

Nb over-layer:

Al2O3 [112̄0] ‖ Nb [110] and Al2O3 [0001] ‖ Nb [1̄11]

This relationship is illustrated in Figure 4.1 (taken from Ref. [36]). While Durbin’s

discovery was achieved via XRD studies, later reports involving RHEED [39], and
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Figure 4.1: The three-dimensional relationship governing the epitaxy of niobium on
sapphire, with the four most common substrate orientations shown. Figure taken
from Ref. [36].

electron microscopy [40] confirmed this unique relationship between Nb and α-

Al2O3.

Using high-resolution transmission electron microscopy (HRTEM) to image the

Nb/sapphire interface, Gutekunst et al. developed a building principle to explain the

origins of this 3D relationship [41]. On the oxygen-terminated sapphire surface, they

argue, niobium atoms in the first monolayer arrange themselves so as to continue the

Al sublattice across the interface. The atoms in the second niobium layer are not so

strictly bound to Al sublattice positions, but even their positions approximate Al

ones. This building principle can be attributed to overall similarities between the

Nb unit cell and the Al sublattice in α-Al2O3. It also explains why twinned films

have never been observed in the Nb/sapphire system.

However, there is one exception to the three-dimensional relationship that has

been found. Under some conditions, Nb (110) will grow on C-plane sapphire with

domains oriented in three different in-plane orientations: Nb [001] ‖ α-Al2O3 [1̄100],

[01̄10] and [101̄0]. These domains are situated at 120◦ with respect to each other,

reproducing the hexagonal symmetry of the Al2O3 substrate. This type of film

structure has been observed only under the following conditions: evaporation above

1000 ◦C [42], post-growth annealing up to 1500 ◦C [43], and niobium sputtering

near 850 ◦C [31].
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4.2 Nb Epitaxy on A-plane Sapphire

4.2.1 Growth and Annealing Procedures

The niobium films employed for the subsequent growth of aluminum oxide were

all deposited in System F at a substrate temperature in the range 750–800 ◦C.

High-purity Nb (99.99%) was evaporated at a rate of 0.3–0.5 Å/s. The chamber

base pressure – with the substrate at growth temperature and the liquid nitrogen

shrouds cold – was typically in the mid-10−11 torr range. With the niobium e-

gun source hot enough for evaporation, the chamber pressure was usually in the

upper-10−9 torr range. Nb layers used for Al2O3 epitaxy were either 1000 or 2000 Å

thick.

RHEED measurements of the as-grown Nb (110) surface showed well-defined

1st-order streaks and Kikuchi lines. The specular spot was typically elongated

to some degree in the vertical direction, indicating a surface fluctuation of a few

hundred nanometers lateral size. Figure 4.2 shows images from RHEED along the

[1̄11], [11̄1], and [001] azimuths. Diffraction patterns along the [1̄11] azimuth would

usually show 1/3-order streaks, while similar intermediate streaks were very faint

along the [11̄1] direction, if visible at all. 1/2-order streaks were typically observed

along the [001] and [1̄10] direction.

These RHEED patterns were recognized by Sürgers and Löhneysen as arising

from a reconstruction due to the surface segregation or adsorption of oxygen during

film growth [44]. The surface lattice structure they derived from such a recon-

struction is shown in Figure 4.2. They also found that the only procedure to lift

the reconstruction was to grow at temperatures below 450 ◦C, where epitaxy led

to island growth. Haas et al. had earlier used LEED to observe the same surface

reconstruction on clean Nb (110) crystals exposed to small doses of O2 at room

temperature [45].
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Figure 4.2: RHEED images and surface lattices for as-grown Nb (110) on sapphire.
The reconstruction seen in the RHEED patterns is due to surface segregation or
adsorption of oxygen during growth. The corresponding reciprocal and real space
lattices are shown in the bottom diagrams, both of which were taken from Ref. [44].

Many of the niobium films that I grew were also annealed immediately after

deposition and RHEED measurements were performed. Annealing took place at

temperatures ranging from 1300–1370 ◦C for a duration of one hour. The substrate

temperature was ramped up from growth temperature over the course of 15 min.

After annealing, the substrate heater power was turned off over a period of 2 min

and the sample was allowed to cool. During the annealing procedure, the chamber

pressure typically peaked at about 10−9 torr at the end of the annealing period.

With the substrate at these high temperatures, the residual gases in the chamber

were predominantly nitrogen and carbon dioxide.

Annealed Nb (110) films showed RHEED patterns that were strikingly different

from those viewed after deposition. Nowhere was this more evident than for RHEED

along the [1̄11] azimuth, as seen in the diffraction pattern in Figure 4.3. Before
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Figure 4.3: On the left is RHEED along the [1̄11] azimuth for an annealed Nb (110)
film. The asymmetric rings replicate what has been observed by LEED imaging
– data from Ondrecjek et al. [46] is shown on the right. While the LEED work
revealed two variants, in my films I typically observe only one.

annealing, RHEED showed 1/3-order streaks for this orientation. After annealing

however, the diffraction pattern showed 1/4-order streaks with asymmetric spot-

rings clearly visible. It should be noted that this RHEED pattern was never observed

along the [11̄1] azimuth.

The observed diffraction images agreed well with LEED results obtained by a

number of authors. Pantel et al. found this surface reconstruction by exposing

niobium single-crystals to small doses of oxygen gas (∼ 20 L) at room temperature

[47]. Crystallization of the surface was achieved by annealing, and they found the

reconstruction stable up to temperatures of 1500 ◦C. Ondrecjek et al. also observed

these LEED patterns for Nb (110) thin films and bulk crystals annealed in UHV

[46]. Using an Auger surface probe, they noted that the reconstruction was due

to uncontrolled O adsorption over time; and whereas I saw only one variant in

RHEED, both Pantel et al. [47] and Ondrejcek et al. [46] observe two variants of the

surface reconstruction. (See Fig. 4.3.) I speculate that this is due to vastly different

thermal treatments. For the LEED investigations, Ondrejcek et al. cycled their

samples above 1700 K numerous times in an attempt to relax the crystal lattices.

Arfaoui et al. have also observed these same LEED patterns for annealed Nb

(110) crystals [48, 49]. For their work, they annealed niobium single-crystals in
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UHV to temperatures between 1500–2000 K. They used XPS and STM measure-

ments to argue that the Nb (110) surface is tiled with NbOx≈1 nanocrystals upon

annealing. NbO takes the NaCl structure – interlaced fcc lattices with basis vec-

tors bNa = (0,0,0) and bCl = (1
2
,1
2
,1
2
) – except in NbO both the (0,0,0) and (1

2
, 1

2
, 1

2
)

atoms are absent. Arfaoui et al. find that these NbOx≈1 nanocrystals assume a KS

orientational relationship with NbO (111) ‖ Nb (110) and an in-plane orientation

NbO [11̄0] ‖ Nb [1̄11].

4.2.2 Determination of Optimal Growth Parameters

For the epitaxy of metals, Flynn found a general rule concerning the optimal growth

temperature [50]. Citing the common characteristics of most metals, he arrived at

approximate expressions for both the bulk diffusion, Db(T ), and surface diffusion,

Ds(T ), as a function of temperature:

Db(T ) ' 10−1/210−7Tm/T cm2/s

Ds(T ) ' 10−310−3Tm/2T cm2/s

To limit bulk diffusion, one should deposit at lower substrate temperatures, while

higher temperatures are called for to increase surface diffusion. Using reasonable

assumptions for other growth parameters – the atomic flux rate and growth duration,

for example – Flynn arrived at an upper limit for Db (10−19 cm2/s) and a lower limit

for Ds (10−7 cm2/s). These two limits suggest a narrow temperature range for ideal

metal epitaxy at T ∼ 3Tm/8. For niobium (Tm ≈ 2480◦C) this points toward a

growth temperature of about 760 ◦C.

While Flynn’s “3/8-rule” provided a good starting point, it was necessary to find

the appropriate growth parameters to yield the type of Nb films needed for tunnel-

junction devices. The most important aspect of the niobium film was its flatness –

a rough surface would lead to a poorly defined interface between the niobium and
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Figure 4.4: The rms roughness of Nb (110) films grown on A-plane sapphire as a
function of annealing temperature, as determined by ex situ AFM. Films grown
around 750–800 ◦C have roughnesses approaching 2 Å rms. Intermediate annealing
temperatures results in faceting and step-edge bunching, while high temperature
annealing produces wide terraces with parallel monatomic step-edges. The films
used for this figure ranged in thickness from 1000–3000 Å.

any kind of over-layer. To determine the optimum growth procedure for yielding

atomically-flat films I grew several Nb films at temperatures ranging from 750–

950 ◦C. Some films were then annealed up to temperatures exceeding 1300 ◦C. Ex

situ AFM was used to determine the rms roughness of the niobium surface, and in

Figure 4.4 I plot the measured film roughness versus the film annealing temperature.

Figure 4.4 should not be construed as representing the complete set of niobium

films grown. Quite the opposite, most films showed significantly higher roughness

than what is presented. Rather, Figure 4.4 was the standard by which all niobium

films were judged. Rougher films were often viewed as an indication of contamina-

tion, either in the chamber – a vacuum leak, for example – or in the source material –

contamination or oxidation, for example. Once films with sufficient flatness could be

grown, then the niobium was ready for subsequent aluminum oxide hetero-epitaxy.

In Figure 4.5 I show AFM images for three different annealing temperatures. For

films grown at temperatures around 750–800 ◦C and not annealed, the surface shows

height fluctuations that span distances of several hundred nanometers – a sort of
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Figure 4.5: AFM images from Nb (110) films after various stages of annealing. At
left is an unannealed film grown at 780 ◦C. The middle image is from a film annealed
to 990 ◦C, while the rightmost film was annealed to 1255 ◦C. All images are 5 µm
× 5 µm, with the height scale shown at right.

“rolling hills” landscape. The rms roughness of an unannealed film was as small as

2 Å. Films annealed at intermediate temperatures (900–1100 ◦C) show facets and

step-edge bunching. The highest annealed films show large terraces and roughly

parallel mono-layer step-edges about 2 Å in height. This agrees well with Nb (110)

planar spacing – a/
√

2 = 2.338 Å. For samples annealed above 1250 ◦C, faceting

is minimized as the step-edges align according to the substrate miscut. Surface

roughness is typically less than 2 Å rms.

Flynn et al. have observed such surfaces in annealed films previously using low-

energy electron microscopy (LEEM) [51, 52]. They showed that, due to the low en-

ergy nature of bcc {110} surfaces the facets developed during moderate-temperature

anneals ran perpendicular to off-axis 〈110〉 directions. At higher temperatures,

they saw these facets dissipate into parallel monatomic step-edges. It was these

atomically-smooth niobium surfaces that I sought for the hetero-epitaxy of Al2O3.

4.2.3 Further Analysis of Nb (110) Thin Films

Although the growth of niobium was geared toward providing atomically flat surfaces

on which to grow aluminum oxide, the crystalline qualities of our films were also

measured by means other than RHEED and AFM. XRD measurements on niobium
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Figure 4.6: XRD scans for a 2000 Å thick Nb (110) film on A-plane sapphire.
Top: Radial scan of specular Bragg peaks showed the single-crystal nature of the
film and substrate. Middle: Close-up view of Nb (110) Bragg peak, with film-
thickness oscillations indicating the structural coherence of the film. Bottom: Nb
(110) rocking curve, with a narrow peak indicative of high-quality epitaxy.

(110) films confirmed their single-crystal nature. As shown in Figure 4.6, radial

scans showed only the Nb (110) and α-Al2O3 (112̄0) Bragg peaks. Intensity fringes

in the Nb (110) peak indicated a sharp interface and surface as well as a structural

coherence that extended over the entire film thickness. Rocking curves typically had

a FWHM of about 0.03◦.

The in-plane orientation of the niobium film with respect to the sapphire sub-

strate could be determined in a number of ways. RHEED evidence alone showed

the alignment of the Nb [1̄11] and α-Al2O3 [0001] directions. XRD pole scans for

both substrate and film peaks could also be done. A more elegant picture, however,
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Figure 4.7: A reciprocal space map of niobium on A-plane sapphire. The top image
shows the expected locations of all points in the instrument-accessible reciprocal
space with α-Al2O3 [11̄00] in the x-ray plane. The bottom picture shows the map-
ping of the Nb (211) and α-Al2O3 (303̄0) Bragg peaks.

is a reciprocal space map. For Nb (110) on A-plane sapphire, not only is Nb [1̄11]

‖ α-Al2O3 [0001], but also Nb [1̄12̄] ‖ α-Al2O3 [11̄00], consistent with the three-

dimensional relationship described above and shown in Figure 4.1. This in-plane

alignment places the Nb (211) and sapphire (303̄0) Bragg peaks very near to one

another in reciprocal space. Figure 4.7 shows a map of reciprocal space near these

two points. The mapping agrees very well with the expected positions of the two

Bragg peaks. In addition, the finite-thickness fringes that appeared in the radial

scan of the Nb (110) peak (Fig. 4.6) were also clearly visible in the Nb (211) peak.

The Nb (211) peak, and other off-specular Bragg peaks, were also used to deter-

mine the strain of the niobium films. In Table 4.1 I show results from the measure-
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Nb Thickness (Å) Bragg Peak 2θ d (Å) a (Å)
1000 (A) (220) 82.6540◦ 1.16646 3.29925

(310) 95.1606◦ 1.04342 3.29960
(400) 138.0509◦ 0.82494 3.29976
(211) 69.7461◦ 1.34721 3.29997
(222) 107.9052◦ 0.95269 3.30022
(321) 121.7153◦ 0.88192 3.29984

2000 (A) (220) 82.4511◦ 1.16882 3.30592
(310) 94.9791◦ 1.04494 3.30439
(400) 137.6734◦ 0.82599 3.30396
(211) 69.6461◦ 1.34890 3.30412

1000 (U) (220) 82.7681◦ 1.16517 3.29561
(400) 137.5701◦ 0.82630 3.30520
(321) 121.4918◦ 0.88290 3.30353
(222) 107.7068◦ 0.95392 3.30447

Table 4.1: Determination of the lattice strain for Nb (110) films grown on A-plane
sapphire, both annealed (A) and unannealed (U). Using the measured 2θ values,
both the planar spacing, d, and lattice constant, a, were determined. Compared
with bulk niobium (a = 3.3066 Å) the 1000 Å film is strained about 0.2% while the
2000 Å film shows only 0.06% strain. The unannealed film shows an out-of-plane
compressive strain and an in-plane tensile strain, both at about the 0.3% level.

ment of strain in three films – a 1000 Å film and a 2000 Å one, both annealed to about

1340 ◦C, and an unannealed 1000 Å film. In addition to the specular (220) peak,

several off-specular peaks were measured using the high-resolution diffractometer

(∆θ ≈ 0.003◦). The measurements show that, on average, the annealed 1000 Å

film is strained about 0.2% while the 2000 Å film shows only 0.06% strain. The

unannealed film shows compressive strain of about 0.3% along the [110] direction,

and tensile strain at about the same level in the plane of the film.

Transport measurements were also routinely performed, both on whole sample

films and on fabricated devices. Early experiments on 3000 Å niobium films showed

that films grown near 800 ◦C had RRR above 100 and Tc above 9.4 K. (See Figure

4.8.) Residual resistivity, ρ10K, approached 0.1 µΩ-cm. These values are comparable

with other reports of transport properties in epitaxial Nb films [53, 54]. Annealed

niobium films typically showed a higher residual resistivity and lower Tc and RRR
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Figure 4.8: Left: A plot of the resistivity of a 3000 Å Nb film on A-plane sapphire.
The observed T 3 behavior between 10 K and about 50 K agrees well with earlier
work by Webb [56] using large-RRR bulk niobium crystals. Right: RRR and Tc

for several 3000 Å films plotted versus annealing temperature. Reduction of both
quantities at higher temperatures is likely due to oxygen adsorption.

than unannealed ones. Knowing that annealing leads to improved structural and

morphological properties, this seems counterintuitive. The most likely explanation

was an increased concentration of oxygen in the bulk of the film. I have already

discussed how oxygen transforms the Nb (110) surface upon annealing (see Sec-

tion 4.2.1). In 1963 De Sorbo found that a small amount of oxygen dissolved in

bulk niobium can have substantial effects on its transport properties [55]. Specifi-

cally, he found that below the solubility limit for oxygen in niobium (∼ 3.83 at.%)

Tc decreased and ρ10K increased approximately linearly with oxygen percentage –

0.93 K/at.% and 5.2 µΩ-cm/at.%, respectively. For my films this translates to about

0.3 at.% O2 adsorbed over the temperature range 780–1250 ◦C.

The resistivity of 3000 Å Nb (110) films at low temperatures shows power-law

behavior, as seen in Figure 4.8. Between 10 K and about 50 K, the resistivity goes

like T 3. This result agrees with the earlier work of Webb [56]. Using bulk crystals
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with RRR greater than 104 he observed the same T 3 behavior.

4.3 Summary

For the subsequent hetero-epitaxy of aluminum oxide thin films I sought a flat

Nb (110) surface on which to grow. I found that both annealed and unannealed

niobium films had an optimum rms roughnesses of about 2 Å or less. The transport

characteristics were also found to vary with temperature, which is likely due to the

adsorption of oxygen. Diffraction measurements were also performed on the niobium

films – in situ RHEED imaging of the surface reconstruction agreed well with what

has been reported in the literature, and XRD confirmed the single-crystal nature

of the film, showing narrow line widths and low levels of residual strain. These

low strain values are important because they support the use of niobium RHEED

patterns to calibrate the RHEED system. With a calibrated RHEED system it

becomes possible to determine the surface lattice spacing of a film in situ. This is

precisely what I did for thin Al2O3 films grown on Nb (110) surfaces, the topic of

the succeeding chapter.
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Chapter 5

Epitaxial Aluminum Oxide on
Niobium Thin Films

I have studied the hetero-epitaxy of Al2O3 on both annealed and unannealed Nb

(110) films. Because of the differing surface reconstructions, the procedures for

alumina growth were slightly different for the two cases. In this chapter I discuss the

growth of aluminum oxide on both surfaces, and show current-voltage characteristics

for tunnel-junctions fabricated from both.

5.1 Al2O3 Hetero-Epitaxy on Annealed Nb (110)

5.1.1 Growth Procedures

As was mentioned in Chapter 2, the niobium films for samples described in this thesis

were all grown in System F, while alumina films were grown in System E. After Nb

deposition, the samples were allowed to cool to below 200 ◦C before transferring

them from F to E. The transfer took only a few minutes, limiting the exposure of

the niobium surface to residual gases in the tube. Once in System E, the substrate

was warmed back up to growth temperature. RHEED measurements on the niobium

surface showed no changes from those done in System F.

For annealed Nb (110) surfaces, the Al2O3 was typically deposited at a substrate

temperature near 800 ◦C. Aluminum metal (99.9995%) was evaporated at about

0.1 Å/s, which required a cell temperature of 1020 ◦C. With the Al cell at growth

temperature, and with a mask covering the substrate, the Al shutter was opened.
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Figure 5.1: A comparison of RHEED from Al2O3 films grown on annealed Nb (110)
at 700 ◦C (left) and 830◦C (right). Both the streak width and the diffuse background
show improved crystallinity at the higher temperature. To further illustrate the
comparison, line-scans of both images are shown in the graph at right.

At this point the Al flux was measured with the QCM. The chamber pressure with

the Al source on was typically 1 × 10−9 torr. At this point, ultra-high purity O2

(99.995%) was bled into the chamber through the precision leak valve and injector

tube, bringing the chamber pressure up to 0.5–5×10−6 torr. At the lower end of

this pressure range I estimate that the O2 flux is about 1000 times greater than that

of Al.[57] Deposition began when the substrate mask was removed to expose the

sample.

The alumina growth was stopped by closing the Al shutter. However, a variety

of different oxidation treatments were attempted to ensure proper stoichiometry in

the film. In the simplest case, the O2 flux was left on for 5 min while the sample sat

at the growth temperature. For the most extensive oxygen dosage, in addition to

the 5 min at growth temperature the sample was also cooled to 200 ◦C over 30 min

before the O2 was turned off. An intermediate case, where the sample was quickly

cooled by turning the substrate heater off after 5 min, was also tried. The Al2O3

films grown and studied for this thesis ranged in thickness from 15 to 125 Å.

The growth temperature of 800 ◦C was chosen by comparing RHEED patterns

from growths over a range of temperatures. Figure 5.1 shows two RHEED images,

one from a growth done at 700 ◦C, the other done at 830 ◦C. The lower-temperature

growth has broader streaks and shows more diffuse electron scattering, while the
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higher-temperature growth shows sharper streaks in a darker background. To il-

lustrate this more clearly, I also show in Figure 5.1 a line-scan of each image. The

difference in streak widths and background intensity is clearly seen in the plot.

Sharper RHEED streaks are desirable because they indicate a qualitatively bet-

ter crystal structure. This is because the streak width is directly proportional to the

width of the reciprocal space rod. The alumina films shown in Figure 5.1 have nor-

malized streak widths, (∆q)/q, of 0.18 and 0.24 for growth at 830 ◦C and 700 ◦C,

respectively. For this reason, growths of epitaxial alumina on annealed niobium

were carried out near 800 ◦C. These data suggest that higher temperature is better.

However, growths were not carried out higher than 830 ◦C, in the hope of avoiding

niobium oxidation or Nb-Al mixing at the interface.

5.1.2 Materials Analysis

Chemical analysis of Al2O3 films was carried out in the adjacent XPS system. The

challenge with doing XPS on an insulator such as alumina is that it tends to charge.

The effect this has is to shift the binding energies toward higher values – photoelec-

trons have a slightly reduced kinetic energy due to the positively charged surface

of the sample. Charging can also broaden the peaks associated with elements of

the insulating layer, as the photoelectrons originate a different depths and there-

fore cross different potentials upon exiting the sample. Despite these shortcomings,

measurements of the Al3+ 2p, O2+ 1s and Nb 3d levels suggest that the Al is com-

pletely oxidized with no measurable oxidation of the underlying Nb. In Figure 5.2 I

show the scans from a 20 Å Al2O3 grown on annealed Nb (110). Both the Al3+ 2p

and O2+ 1s peaks can be fit with a single curve, while two curves suffice to fit

the Nb 3d peaks. The observed energy difference between the O2+ 1s and Al3+ 2p

levels is 457.1 eV, in good agreement with what has been reported for sapphire

(456.6 eV) [58]. The Nb 3d level shows no side-bands that would indicate oxide
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Figure 5.2: XPS scans from an epitaxial Al2O3 thin film on niobium. All peaks
are fit as described in the text, with the aluminum completely oxidized and the
niobium fully metallic. The small shoulder on the Nb 3d5/2 peak may indicate
partial oxidation at the interface with the alumina over-layer.

formation. However, I point out that the Nb 3d5/2 peak shows a small hump that

may indicate interfacial oxidation. This issue was not extensively investigated.

RHEED of the Al2O3 thin films on annealed Nb (110) revealed a hexagonal

symmetry in the surface lattice, indicating basal-plane growth. However, no ordering

of the Al sublattice was ever observed in the RHEED patterns. Because all of the

alumina polymorphs involve the stacking of close-packed oxygen planes, no definitive

crystal structure could be inferred. By convention only though, I will use hexagonal

Miller indices corresponding to the α-Al2O3 lattice to describe crystal orientations

in my films.

Diffraction images from various stages of deposition are shown in Figure 5.3.

Immediately after the oxide deposition begins, the Nb diffraction pattern and spec-

ular spot disappear. After about 2 ML (4 Å) the Al2O3 diffraction pattern becomes
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Figure 5.3: RHEED from various stages of Al2O3 hetero-epitaxy on annealed Nb
(110). Initially the film shows a 2D RHEED pattern, but beyond about 50 Å the
diffraction image evolves to one that shows transmission spots. This indicates a
shift from layer-by-layer growth to island growth.

visible. At a thickness of 25 Å, RHEED shows an elongated specular spot and well-

defined first-order streaks. Up to about 50 Å, the Al2O3 growth is layer-by-layer

(Frank-van der Merwe mode). Beyond this thickness, the 2D streaks evolve into 3D

spots, indicating the growth of islands (Stranski-Krastanov mode).

Ex situ AFM confirmed this evolution of the alumina surface morphology, as

shown in Figure 5.4. Scans of a 20 Å-thick film showed an atomically flat surface with

large terraces several 100 nm in width, and monolayer step-edges (c/6 = 2.165 Å)

aligned according to the substrate miscut. Overall, the films shows an rms roughness

of about 2 Å. On the other hand, the surface of a 100 Å-thick film consisted of

islands. These islands were, on average, about 1000 Å wide and 50 Å in height.

This morphology agreed well with the interpretation of Al2O3 RHEED – evidence

for islands in the diffraction images appeared after about 50 Å of deposition.

In addition to the evolving nature of the alumina surface, RHEED also shows

that the epitaxial Al2O3 film is slightly misaligned with the Nb surface. Using the

RHEED pattern from the niobium surface and, specifically, the Kikuchi lines, the

sample was precisely aligned with the RHEED beam along the Nb [1̄11] azimuth.

With the sample oriented in such a way, the RHEED from the alumina over-layer was

slightly misaligned. This was evidenced by the asymmetry in the RHEED pattern,

as shown in Figure 5.5. Compared with the right-hand 1st-order streak, the left-

hand streak showed an intensity that was, on average, about 35% smaller. That the
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Figure 5.4: A comparison of AFM scans on Al2O3 thin films on annealed Nb (110).
Left: A 20 Å-thick film, showing large terraces and monolayer step-edges. Right: A
100 Å-thick film comprised of islands that are, on average, about 1000 Å wide and
50 Å in height. Both images are 5× 5 µm2, and respective height scales are shown.

alumina RHEED appears slightly misaligned indicates a possible NW orientational

relationship between the niobium surface and the oxide over-layer. With RHEED

evidence alone, however, this finding is far from definitive.

The third piece of information that can be extracted from RHEED is the strain

of the surface lattice. As was mentioned in Chapter 4, the niobium RHEED can

be used as a ruler, due to its unstrained nature. Using images from more than

20 samples I found a System E RHEED coefficient, β of 616 ± 4 Å-pixels. β was

determined using Nb RHEED from just before Al2O3 deposition (at 800 ◦C) and

the bulk niobium lattice constant (a = 3.3066 Å at 25 ◦C). Because of thermal

expansion, this value of β is probably too small by about 0.5% – both Nb and

Al2O3 have expansion coefficients around 7–8×10−6 K−1 [59, 60, 61]. For the strain

measurements reported here, however, I used β = 616 ± 4 Å-pixels. The variation

in β is largely due to the ability to move the RHEED beam around on the sample.

The sample-to-RHEED screen distance is about 32 cm, so moving the electron beam

± 3 mm constitutes a 1% error in any measure of k-spacing. During the growth of

an Al2O3 film, however, the beam and sample were left fixed and the film strain as
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Figure 5.5: This plot shows the misalignment of the Al2O3 over-layer with the Nb
film. The sample is rotated such that the RHEED beam is along the Nb [1̄11] az-
imuth, and these are a series of line scans showing the intensity of RHEED streaks,
each scan showing results from a different growth. The intensity profiles are normal-
ized to the right-hand 1st-order streak. The left-hand 1st-order streak is on average
36% less intense.

a function of film thickness could be measured with a higher precision.

As the transformation from 2D to 3D alumina growth was occurring, the mea-

sured spacing between RHEED streaks/spots increased, indicating a shrinking of

the Al2O3 surface lattice. The Al2O3 film experiences a tensile strain due to lattice

misfit that relaxes with increasing thickness, as shown in Figure 5.6. The strain-

thickness curve was determined from RHEED along the [1̄100] azimuth during Al2O3

deposition near 800 ◦C. With respect to C-plane sapphire (a = 4.759 Å), the tensile

strain was nearly 10% initially and by 20 Å had fallen to about 8%. After 100 Å of

deposition, the Al2O3 exhibited a tensile strain of around 3%.

After deposition and cooling in O2, Al2O3 films of various thicknesses show fur-

ther lattice relaxation (Figure 5.6). On average, RHEED measurements near room

temperature show a strain reduction of about 1% when compared to measurements

just after Al deposition. Thermal contraction accounts for a significant portion of

the strain change during cooling. Due to the limited precision of the measurement

technique, the presence of other strain-relief mechanisms could not be determined.

As Goodman points out [30], misfits as large as the ones found in the Nb/Al2O3
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Figure 5.6: Strain vs. thickness for epitaxial Al2O3 thin films deposited on annealed
Nb (110). The line shows the strain relaxation during deposition for a single growth
at 800 ◦C, while the various data points show the strain measured along different
Al2O3 azimuths near room temperature.

system are likely to generate dislocations and domain wall structures. However,

neither of these features were ever observed in 20 Å alumina films.

Not only is there a large strain in the Al2O3 film, but the strain is also isotropic

– RHEED patterns along the {1̄100} azimuths reveal relatively small variations.

The strain for each azimuth is determined by averaging opposite directions – eg.

[1̄100] and [11̄00] – to reduce systematic errors. The measured tensile strain for

the three principal Al2O3 azimuths is shown in Figure 5.6. One might expect an

anisotropic strain due to the asymmetric misfit of the Al2O3 (0001) lattice with the

Nb (110) lattice. However, the surface of the niobium is tiled with NbO (111) due

to the reconstruction. Epitaxial aluminum oxide on annealed Nb (110) grows under

isotropic tensile strain because of this NbO (111) surface net.

I show in Figure 5.7 the surface lattices for bulk Nb (110) and NbO (111), as

well as that for C-plane sapphire, α-Al2O3 (0001). For both of the oxides, only the

cation sublattice is shown, for the sake of clarity. If the aluminum oxide film initially

grows clamped to the niobium surface then the measured strain would simply equal

the lattice misfit. The misfit between Nb (110) and Al2O3 is very asymmetric: along

the Nb [001] or α-Al2O3 [1̄100] direction it is quite large (20.3%), while along the
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Figure 5.7: Comparison of surface lattices for Nb (110), NbO (111) and C-plane
sapphire, α-Al2O3 (0001). For the oxides only the cation sublattices are shown, and
all dimensions are given in units of angstroms.

Nb [1̄10] or α-Al2O3 [112̄0] it is much smaller, with the alumina lattice slightly

bigger (-1.7%). However, the niobium lattice has no influence on the hetero-epitaxy

of Al2O3.

Instead, aluminum oxide on annealed niobium grows pseudomorphically on the

NbO (111) surface layer. The fcc-based structure yields a hexagonal surface net in

the (111) orientation, providing for an isotropic misfit of 8.4%. This number agrees

quite well with the strain values measured for ultra-thin alumina films on annealed

niobium; 15 Å films showed about 7.5–8.0% strain. In the absence of this NbO (111)

surface net though – for Al2O3 films on unannealed Nb (110) – I find the strain to

be very asymmetric.
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5.2 Al2O3 Hetero-Epitaxy on Unannealed Nb

(110)

5.2.1 Growth Procedures

The growth procedure for Al2O3 on unannealed niobium films was slightly different

than that for growth on annealed niobium, primarily out of a concern for oxidizing

the underlying metal. Annealed niobium, with its surface reconstruction, would

seem likely to resist further oxidation better than unannealed niobium. For that

reason, alumina was deposited on unannealed Nb (110) at a slightly lower substrate

temperature, around 750 ◦C. In addition to the lower temperature, the deposition

was also initiated with a lower oxygen background pressure of 5× 10−8 torr. Once

the substrate mask had been pulled back and the growth had begun, the O2 pressure

was then raised to 5×10−6 torr. Al2O3 films grown on unannealed Nb (110) ranged

in thickness from 20–36 Å.

5.2.2 Materials Analysis

As with Al2O3 hetero-epitaxy on annealed Nb (110), RHEED was employed to

determine the alignment of the alumina over-layer on unannealed niobium. In a

similar fashion, the sample was aligned with aid of the Kikuchi lines such that the

RHEED was oriented along the Nb [1̄11] azimuth. In contrast with the results

from growth on annealed niobium, the Al2O3 film grows aligned with the Nb [1̄11]

direction. A set of line scans, similar to those in Figure 5.5, are shown for alumina

hetero-epitaxy on unannealed Nb (110) in Figure 5.8. Again, the intensities of the

scans are normalized to the right-hand 1st-order streak. The left-hand streak shows

a minimal decrease in intensity – on average it is only about 3% smaller. The

alignment of the alumina film with the Nb (110) lattice is suggestive of the KS
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Figure 5.8: This plot shows the alignment of the Al2O3 over-layer with the Nb
film. The sample is rotated such that RHEED is along the Nb [1̄11] azimuth, and
these are a series of line scans showing the intensity of RHEED streaks, each scan
showing results from a different growth. The intensity profiles are normalized to the
right-hand 1st-order streak. The left-hand 1st-order streak shows a nearly equivalent
intensity.

orientational relationship – similar to that found on Ta [10] – though no absolute

determination can be made on this evidence alone.

As suggested in the previous section, strain measurements for aluminum oxide

hetero-epitaxy on unannealed Nb were also quite different from those on annealed

Nb. In this case the strain is very asymmetric, as shown in Figure 5.9, indicating a

pseudo-hexagonal surface lattice. In Figure 5.9 I denote the Al2O3 azimuths by their

nearest-to-parallel Nb directions. RHEED along what was originally the Nb [001]

direction shows a strain that starts small (1.5% at 20 Å), increases to a maximum

of about 5% at 26 Å and then slowly relaxes. On the other hand, strain levels along

the Nb {1̄11} azimuths starts high (9% at 20 Å) and decreases monotonically. As

the thickness of the Al2O3 film increases, the strain anisotropy also decreases.

As was mentioned in the previous section, Al2O3 hetero-epitaxy on unannealed

niobium should be subject to a 20.3% misfit along the Nb [001] or α-Al2O3 [1̄100]

directions and a -1.7% misfit along the Nb [1̄10] or α-Al2O3 [112̄0] directions. The

latter misfit is accessible by doing RHEED measurements along the Nb [001] az-

imuth. RHEED along the Nb [1̄11] corresponds with the (211) planar spacing, which
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Figure 5.9: Strain vs. thickness for epitaxial Al2O3 thin films deposited on unan-
nealed Nb (110). The different RHEED azimuths are distinguished by the nearest
Nb direction. The measured strain for all thicknesses is asymmetric due to the
anisotropic misfit with the underlying niobium.

is about 13.4% larger than the planar spacing in C-plane sapphire. Extrapolating

from a minimum film thickness of 20 Å my measurements agree qualitatively with

the theoretical misfits. So while Al2O3 films on annealed niobium show a hexagonal

surface lattice, those on unannealed niobium have what can best be described as a

pseudo-hexagonal lattice that arises in order to accommodate the asymmetric misfit

with the under-layer.

5.3 Epitaxial Niobium Over-Layers

A majority of Nb/Al2O3 bi-layers were coated with a niobium over-layer for the

purpose of making tunnel-junctions. For that deposition, the sample was transferred

back to System F. Most samples were finished with a top niobium layer grown

at room temperature – done in an effort to reduce possibility of reactions at the

alumina/Nb interface. In a few cases however, that Nb over-layer was epitaxial, for

which the substrate was warmed back up to about 700 ◦C. Otherwise, the growth

conditions for the top niobium layer were identical to those for the base layer.

Under these conditions (growth at 700 ◦) niobium growth on C-plane sapphire

would yield (111)-oriented films according to the three-dimensional relationship
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Figure 5.10: RHEED images from epitaxial niobium films on single-crystal Nb/-
Al2O3 bi-layers. Both films were deposited at around 700 ◦C on ∼ 25 Å-thick
alumina films grown on annealed (left) and unannealed (right) Nb (110) surfaces.
While samples with unannealed base layers showed familiar Nb (110) RHEED, those
with annealed base layers showed transmission patterns, indicative of island growth.

(Fig. 4.1) [6, 40]. However, for samples with both annealed and unannealed base

layers, the RHEED patterns looked decidedly like (110) surface diffraction. A com-

parison of the RHEED in each case is shown in Figure 5.10 – for each sample the

alumina layer was about 25 Å thick. For those samples with unannealed base-layer

niobium (and pseudo-hexagonal aluminum oxide) the top niobium film appears to

have grown as if the alumina layer was not there. Sharp 1st-order streaks, Kikuchi

lines, intermediate streaks indicative of the as-grown surface reconstruction – all

the same features were present in these patterns that were there for the base layer

(see Fig. 4.2). On the other hand, samples with annealed base-layer niobium and

hexagonal alumina showed top-niobium epitaxy that grew in islands. This much was

clear from the transmission images. The patterns were still indicative of Nb (110)

growth, just not layer-by-layer epitaxy.

Ex situ XRD analysis confirms the surface orientation of the top layer niobium
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Figure 5.11: Radial XRD scan of an all-epitaxial Nb/Al2O3/Nb tri-layer. Both the
base and top niobium layers grow single-crystal in the (110) orientation.

– same (110) orientation as the base layer. Radial scans (see Figure 5.11) show only

the Nb (110) and (220) reflections. The Nb (222) Bragg peak, if present, would

appear in the scan at 2θ = 108◦.

A number of epitaxial tri-layers were also examined by doing a φ-scan to deter-

mine in-plane orientations. Three representative φ-scans are shown in Figure 5.12.

For the case where the base niobium film is unannealed and the alumina interme-

diate layer is pseudo-hexagonal, the top niobium film grows with only one in-plane

orientation, in alignment with the base niobium. Again, the crystal lattice of the

base layer appears to have been carried through the thin alumina film. The four

Bragg peaks do have two components each though: a narrow one attributed to the

bottom niobium layer and a broad one for the top. The widths of these compo-

nents are ∆φb ≈ 0.4◦ and ∆φt ≈ 1.6◦ for the bottom and top layers, respectively.

This indicates a poorer crystallinity in the niobium over-layer likely due both the

intermediate Al2O3 layer and the lower growth temperature.

With an annealed niobium base layer and a hexagonal alumina film, the top

niobium layer shows three domains rotated 120◦ with respect to each other. The

dominant domain is slightly misaligned with the base layer (about 2.2◦) and com-

prises nearly 90% of the top niobium layer. The origin of the 2.2◦ is unknown,

especially considering that the two orientational relationships (NW and KS) involve
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Figure 5.12: φ-scans of off-specular Nb {110} Bragg peaks for epitaxial Nb/Al2O3/-
Nb tri-layers. The plots demonstrate the difference between unannealed (top) and
annealed (middle) base niobium layers – in each of these cases the Al2O3 film was
about 25 Å thick. For comparison, the bottom scan is from an epitaxial tri-layer
with 90 Å-thick Al2O3.

an angle of 5.26◦ between substrate and over-layer. Intensity peaks corresponding

to the bottom niobium layer (∆φb ≈ 0.3◦) again show better crystallinity than those

for the top (∆φt ≈ 1.4◦).

The existence of a dominant domain is also intriguing, and points toward an

asymmetric or otherwise irregular cation lattice in the Al2O3 film. RHEED tells us

only that the oxygen anion lattice is hexagonal, at least to the level of precision of

our RHEED system. And recalling the building principle of Gutekunst et al. [41]

– that niobium on sapphire grows in a manner dictated by the Al sublattice –

the preferential growth of the niobium top layer with an in-plane direction slightly

misaligned with the base layer is suggestive of an asymmetric cation sublattice. An

asymmetric cation lattice in the Al2O3 film may be caused by the tensile strain,

or simply due to it taking the form of an alumina polymorph. It may also be the

53

paul
Rectangle



case that the Al sublattice is disordered, in which case the building principles are

probably irrelevant.

The third φ-scan shown in Figure 5.12 is for a sample where the base niobium

layer was unannealed and the Al2O3 film thickness was 90 Å, considerably thicker

than the other samples. In fact, by 90 Å the alumina layer would have started

to grow in island-mode and one would expect the surface lattice to be hexagonal,

regardless of the thermal treatment of the underlayer. (Even by 36 Å Al2O3 films on

unannealed niobium were showing nearly isotropic strain – see Fig. 5.9) On alumina

this thick though, the top niobium layer grew with three equally populated domains,

one of which was perfectly aligned with the base niobium film.

If one assumes that niobium hetero-epitaxy on thin (and strained) Al2O3 films

proceeds as has been observed for growth on C-plane sapphire – that is with Nb

[001] ‖ α-Al2O3 [1̄100], [01̄10] and [101̄0] – then tri-layers with thick alumina have

the Al2O3 film NW-oriented. While this seems like a reasonable assumption, for

the other cases – those tri-layers with ∼ 25 Å alumina – the evidence points toward

more unique behavior.

Finally, I present here some TEM work done by the Zuo group on one of my

Nb/Al2O3/Nb tri-layers. The image shown in Figure 5.13 is taken from a sam-

ple with an unannealed base niobium layer, a 20 Å-thick oxide film, and a poly-

crystalline niobium over-layer deposited at room temperature. The interface be-

tween the oxide and the base layer is atomically sharp and defect free. However,

the niobium over-layer appears to have dissolved regions of the alumina film. 20 Å

of basal-plane Al2O3 corresponds to about 9 mono-layers, and in this image a max-

imum of 6 can be seen, and in some regions only 2 are visible. This mixing at the

interface between the alumina and niobium over-layer was completely unexpected,

especially considering that the top niobium was deposited at room temperature. To

the best of my knowledge this has never been observed in niobium films on sap-
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Figure 5.13: A TEM image for a Nb/Al2O3/Nb tri-layer. This particular sample had
an unannealed base layer and a poly-crystalline top layer grown at room tempera-
ture. While the alumina interface with the base layer appears defect-free, regions
of the oxide layer appear to have been dissolved by the niobium over-layer.

phire, so in the tri-layers mixing may be due to some property of the alumina film.

Regardless of the cause, the dissolving of the barrier had a devastating effect on

tunnel-junctions fabricated from these tri-layers.

5.4 Epitaxial Alumina as a Barrier in

Tunnel-Junctions

Josephson tunnel-junction devices fabricated from epitaxial bi-layers and tri-layers

were consistently very poor in quality – so poor that it might not even be accurate

to refer to them as such. I show in Figure 5.14 a number of I-V characteristics

that are typical of the entire data set. Devices with oxide layers 20 Å thick usually

had critical currents greater 20 mA, and currents of 100 mA were often incapable

of reaching the niobium gap voltage (∼ 3 mV). Even when the gap voltage was

reached, there was no signature in the I-V curve.

Devices with annealed niobium base layers showed a moderate thickness depen-
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Figure 5.14: Current-voltage characteristics for a number of tunnel-junctions fabri-
cated from epitaxial Nb/Al2O3. Included here are devices with both annealed and
unannealed base-layer Nb, both epitaxial and poly-crystalline top-layer Nb, and
oxide thicknesses ranging from 20–54 Å.

dence, with Ic dropping by a decade about every 15 Å. Those with unannealed

niobium showed a much weaker dependence with only half a decade dropped over

roughly 30 Å. Despite the overall poor device quality this is an interesting contrast

to consider. At this point, it is unclear whether this difference is due to the presence

of the NbO surface layer, or caused by differences in strain.

However, it does seem reasonable to attribute the poor device performance to the

mixing observed at the interface between the oxide barrier and over-layer niobium.

Such mixing could create electrical “pinholes” – nanometer-size regions with a signif-

icantly lower tunneling barrier height than the rest of the junction. In communica-

tions with Seongshik Oh I have learned that, despite the success with Re/Al2O3/Al

tri-layers [13], tunnel-junctions fabricated from Re/Al2O3/Re tri-layers were very

“leaky” – perhaps rhenium was mixing with the oxide layer just as I’ve observed

with niobium.
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5.5 Summary

In summary, single-crystal Nb/Al2O3 and Nb/Al2O3/Nb multi-layers were grown

by MBE. Various methods of materials analysis suggest these layers were all high-

quality. The alumina films showed good stoichiometry with no oxidation of the

niobium base layer. And a transition in the Al2O3 epitaxy from layer-by-layer

growth to island growth was observed to occur at a film thickness of about 50 Å.

The principal finding though is that epitaxial growth of Al2O3 on Nb (110) is

highly dependent on the niobium surface reconstruction. Alumina films on annealed

Nb grow misaligned with the Nb [1̄11] direction, are isotropically strained, show a

hexagonal surface lattice, and give rise to multi-domain epitaxial Nb over-layers. In

contrast, those on unannealed Nb grow aligned with the [1̄11] direction, show an

asymmetric strain and a pseudo-hexagonal lattice, and yield single-crystal Nb over-

layers that mimic the base layer. Epitaxial niobium over-layers on thick alumina

showed a still different behavior that was suggestive of a NW type orientational

relationship.

Another important finding came from TEM work done on a Nb/Al2O3/Nb tri-

layer. Images revealed an atomically sharp interface between the oxide and base

layer, but mixing was seen to occur with the deposition of the over-layer. This

mixing undoubtedly had a substantial effect on tunnel-junctions fabricated from

these tri-layers. While devices did show very poor qualities, the employment of an

aluminum counter-electrode may go a long way toward solving this issue. And by

eliminating any barrier deterioration by the over-layer, one may ultimately be able

to study the effects of alumina strain in Josephson junction devices.
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Chapter 6

Tunnel Junctions from Epitaxial
Nb/Al Bi-Layers

In 3.2.1 I reviewed previous attempts to fabricate Josephson tunnel-junctions from

epitaxial Nb/Al bi-layers. Only in the case of sputtered films was success found [34].

Here I report on my own work involving the fabrication of tunnel-junctions from

epitaxial Nb/Al bi-layers grown by MBE. I discuss both the materials properties

and device characteristics.

6.1 Al Hetero-Epitaxy on Nb (110)

Aluminum, with its fcc crystal structure, can be expected to grow in the (111) di-

rection on Nb (110). The ratio of lattice parameters – afcc/abcc = 1.227 – places this

pair between calculated energy minima for the KS and NW orientational relation-

ships [26, 27, 28, 29]. Experimentally, only the NW orientation has been reported

[62, 63]. In this section I describe my own work on Al hetero-epitaxy on Nb (110)

films.

6.1.1 Growth Procedures

Epitaxial aluminum metal over-layers were deposited at room temperature on unan-

nealed Nb (110) films. Evaporation rates for Al varied from 1-3 Å/s, which required

a cell temperature of up to 1200 ◦C. The chamber pressure during deposition was

typically around 1× 10−9 torr. The thickness of the aluminum films grown for this

work varied from 60–520 Å.
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Figure 6.1: RHEED images from Al (111) films grown on unannealed Nb (110).
The films shown here are 65 Å (left) and 470 Å (right) thick.

The formation of an aluminum oxide layer – for the purposes of making tunnel-

barriers – was achieved in one of two ways. The first involved simply exposing the

aluminum film to O2 in the load-lock, similar to the Gurvitch process [5]. Oxygen

gas was fed to the load-lock from the same UHP O2 manifold used to inject gas

into the growth chamber. The sample was allowed to sit for one hour in an O2

atmosphere of either 10 or 100 torr. The thickness of the oxide in this case is

limited by a combination of exposure and diffusion.

The second process involved the co-deposition of Al and O2 in the MBE chamber.

After the growth of an aluminum layer – sufficiently thick for complete niobium

coverage – an AlOx film was formed by evaporating Al at a rate of about 0.1 Å/s at

room temperature in an O2 background of 5× 10−6 torr. The stoichiometry of the

as-grown oxide was limited by thermodynamics. To improve the stoichiometry – I

suspected an oxygen-deficient film – the sample was exposed to O2 in the load-lock,

as described above. To complete the tri-layer, a niobium top layer was deposited

at room temperature under otherwise similar conditions to the base-layer niobium

growth.
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Figure 6.2: AFM scans of Al (111) films that were 65 Å (left) and 200 Å (right)
thick. The trenches seen in the thin film go all the way through to the underlying
niobium. Thicker continuous films were required for making tunnel-junctions.

6.1.2 Materials Analysis

In situ RHEED shows the progression of the Al surface during deposition. In

Figure 6.1 I show RHEED patterns for films at both ends of the explored thickness

range. Thinner films (. 100 Å) showed superimposed RHEED and transmission

patterns, indicating a mixed morphology of flat regions and islands. Beyond about

100 Å the transmission spots would disappear and the diffraction images would show

nice RHEED streaks indicative of a flat surface.

Ex situ AFM measurements confirmed this morphology distinction between films

of different thicknesses. As shown in Figure 6.2, a 65 Å film had meandering trenches

that penetrated through the entire aluminum thickness. Aside from these trenches

and a scattering of asperities, the surface over large areas was fairly flat. (Because

of the similar growth conditions and film thickness, I suspect that it was this lack

of niobium coverage that caused the devices of Braginski et al. to be of such poor

quality [33].) On the other hand, a 200 Å film showed no such trenches or pinholes.

It was this flat aluminum surface that was required for making tunnel-junctions.

Finally, XRD analysis was performed on Nb/Al bi-layers – a radial scan of one

such sample is shown in Figure 6.3. Despite their proximity to one another, both
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Figure 6.3: Radial XRD scan of an epitaxial Nb/Al bi-layer grown on A-plane
sapphire. For this sample the Nb layer was 1000 Å thick and the Al layer 500 Å
thick.

..

Figure 6.4: φ-scans for a Nb/Al bi-layer showing the non-specular Nb {110} and Al
{111} Bragg peaks. The scans indicate both a NW orientational relationship and
twinning in the Al film.

the Nb (220) and Al (222) Bragg peaks could be resolved using the high-resolution

diffractometer. No other specular Bragg peaks were observed, confirming that the

Al film was indeed single-crystal. This scan is very similar to the one observed by

Kirk et al. [34] for Nb/Al bi-layers grown by sputtering.

φ-scans are shown in Figure 6.4 – included are the non-specular Nb {110} and

Al {111} Bragg peaks. These scans confirm the NW-type orientational relationship

between the fcc Al and bcc Nb. They also indicate twinning in the aluminum film

which arises due to the two fcc (111) stacking variants: ABC . . . and ACB . . .
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Figure 6.5: Current-voltage characteristics for two devices, one with 215 Å Al (left)
and one with 470 Å Al. Devices shown here are 10× 10 µm2.

6.2 Josephson Junctions with Oxidized Epitaxial

Al Barriers

My study of Josephson tunnel-junctions fabricated from epitaxial Nb/Al bi-layers

was a fairly brief one. The devices I describe here served not only a scientific

purpose but a practical one as well – they verified the reliability of both the fabrica-

tion process and the testing setup. In scientific terms, my results have significance

because they represent the first case of tunnel-junctions fabricated using a Gurvitch-

style process [5] from epitaxial Nb/Al bi-layers grown by MBE. Additionally, the

current-voltage (I–V ) characteristics of the junctions show remarkable agreement

with theory, despite the fact that thicker Al layers (≥ 200 Å) were used. Included in

this data set are samples with variable Al thickness, O2 exposure, and co-deposited

AlOx thickness.

Because superconductivity in the aluminum layer is induced by the proximity

effect, devices with different Al thicknesses show contrasting behavior. In Figure 6.5

I show the I–V characteristics of two devices measured at 4.2 K, one with 215 Å of

Al and the other with 470 Å. For both samples, the aluminum layer was exposed to
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Figure 6.6: Fraunhofer patterns for devices with 15 Å (left) and 20 Å (right) of
co-deposited AlOx. These devices measure 30× 30 µm2.

10 torr of O2 for one hour (3.6×107 L). The device with 215 Å Al shows a lower sub-

gap resistance at 1.5 mV (∼ 38 Ω) than the device with 470 Å (∼ 24 Ω). The thinner

Al also gives rise to a narrower gap-width, 0.5 eV, compared with 1.0 eV for the

thicker Al layer. Outside of the sub-gap structure there is little that distinguishes

the two devices. The critical currents, Ic, and normal-state resistances, Rn, are

comparable – 0.37 mA and 3.4 Ω (215 Å Al) versus 0.29 mA and 2.9 Ω (470 Å Al).

Devices where the Al was given 10 times the O2 exposure showed no significant

differences with these devices.

Aside from two samples with thicker aluminum, all the devices had Al layers

about 200 Å thick. Among these there were three different barriers studied: (1)

oxidation of Al metal done only in the load-lock; (2) 15 Å of co-deposited AlOx plus

load-lock oxidation; and (3) 20 Å of co-deposited AlOx plus load-lock oxidation. In

each case, the measured Ic was about 50% of the theoretical maximum, I(2∆)π/4.

However, the critical current density, Jc, varied from 350 A/cm2 for process (1), to

160 and 25 A/cm2 for processes (2) and (3), respectively.

I examined the dependence of some of these junctions on applied magnetic field.

In all cases the field was applied parallel to the junction (in the plane of the barrier)

and perpendicular to one of the square edges. I–V characteristics were measured

at 4.2 K and in Figure 6.6 I show the dependence of Ic on the applied field, H.
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Each device has an aluminum layer about 200 Å thick, and both have AlOx layers

grown in situ via co-deposition. The devices shown are both 30 × 30 µm2. The

field-dependence of Ic takes the familiar Fraunhofer form predicted by Josephson

[64]. Gurvitch et al. observed a similar field-dependence for Nb/Al-oxide-Al/Nb

junctions 20 µm in size [5]. The periodicity in the field, ∆H, can be related to the

flux quantum, Φ0 = hc/2e = 2.07× 10−7 G cm2, through the equation:

Φ0 = ∆HL(2λ+ d).

Here, L is the width of the device edge through which the field passes, d is the

barrier thickness, and 2λ is the sum of penetration depths in the bottom and top

electrodes, including any finite thickness effects. Because of it’s small size with

respect to the penetration depths, d (∼ 20 Å) can be neglected here. For ∆H ≈ 7 G

and L = 30 µm, 2λ ≈ 990 Å. This value is comparable to that found by Maxfield

et al. for the penetration depth in bulk niobium, λ = 470 Å [65]. However, Broom

et al. [66] and Cucolo et al. [67] both report penetration depths in niobium tunnel-

junctions in the range 800–1000 Å. I would also point out that I observe a larger ∆H

for 30 µm junctions than Gurvitch et al. do for 20 µm devices [5]. For those devices

they report a ∆H of about 5.5 G, which gives a value for 2λ of about 1900 Å.

The value 2λ can also be determined via measurement of resonant modes in the

sub-gap tunneling structure. Because of the device geometry – two superconducting

planes separated by an insulating layer – tunnel-junctions can behave like open-

ended resonators. Nonlinear interactions between the resonant modes of the cavity

and the ac Josephson effect can give rise to a dc current through the junction. This

interaction is enhanced by spatial modulation of the Josephson current through the

application of an external magnetic field. These modes appear at finite bias, in the

sub-gap region of the I–V curve, with zero differential resistance. In Figure 6.7 I
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Figure 6.7: Fiske modes for applied fields up to 16 G. Devices shown here are the
same as those shown in Figure 6.6.

show I–V characteristics demonstrating these modes for applied fields ranging from

0–16 G. These modes were first observed by Fiske and Coon in Sn/Sn and Sn/Pb

tunnel-junctions[68, 69], and are thus commonly referred to as Fiske modes. The

theory of these steps was first described by Eck et al. [70] and Kulik [71].

The devices shown in Figure 6.7 are the same as those shown in Figure 6.6 –

one has 15 Å co-deposited AlOx and the other 20 Å. What’s immediately clear from

the I–V plots is the effect that junction transparency has on the amplitude of the

Fiske modes. For the thicker-barrier device only the 1st-order Fiske mode is visible,

and just barely so. On the other hand, the 15 Å device shows Fiske modes out to

3rd-order. Also evident in Figure 6.7 is the decreasing amplitude near the half-gap

voltage and a decreasing spacing between modes. Both of these features can be

attributed to high-frequency effects [69].

The voltages, Vn, at which Fiske modes occur are related to the quantity 2λ.

Electromagnetic waves have a phase velocity, vph, between the superconducting

electrodes of

vph = c

√
d

εr(2λ+ d)
,
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where εr is the dielectric constant of the insulating layer. The wavelength of a

standing wave is simply 2L/n, and the frequency, f , corresponds to a Josephson

frequency,

f =
2eVn

h
.

The characteristic voltages, Vn, of the Fiske resonances can then be expressed as

Vn =
nhvph

4eL
=
nhc

4eL

√
d

εr(2λ+ d)
.

For the 15 Å device, the 1st- and 2nd-order Fiske steps occur at multiples of 0.27 mV.

This voltage step agrees quite well with what Gijsbertson et al. [72] and Sugiyama et

al. [73] report for similar-sized Nb/AlOx/Nb junctions. V1 = 0.27 mV gives a Joseph-

son frequency of 130 GHz and a phase velocity, vph = 0.026c. Letting L = 30 µm,

d = 15 Å, and εr ≈ 10, the resulting value for 2λ is approximately 2200 Å. While

this is roughly twice as large as the 2λ value found from the Fraunhofer pattern, it

does agree well with what’s been reported in the literature [66, 67, 5]. I suspect that

this discrepancy is likely due to field screening from the semi-infinite base electrode

due to the Meissner effect. A lower applied field would correspond to a larger value

for 2λ as derived from the critical-current field dependence.

The amplitudes of the Fiske modes are also predicted to be field dependent, as

shown by Kulik [71]. The field dependence is described by the function F 2
n(H/∆H),

where again ∆H is the field periodicity of the Fraunhofer pattern, and the function

Fn(x) is given by

Fn(x) =
2

π

x

|x2 − (n/2)2|
×


| cos(πx)| n = 1, 3, 5, . . .

| sin(πx)| n = 2, 4, 6, . . .

The function F 2
n(x) gives the maximum intensity for the first three Fiske modes at
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Figure 6.8: Ic versus applied field, as well as the amplitudes of the first three Fiske
modes, Fn, as a function of H for the 3. The theoretical maxima of the Fiske modes
are indicated by the arrows, and found to agree quite well with the data.

0.68, 1.13, and 1.59 times ∆H, respectively. In Figure 6.8 I show the amplitudes of

the Fiske resonances, along with Ic. The positions of the Fiske-mode maxima agree

quite well with my data. Gijsbertson et al. [72] also found good agreement between

the amplitudes of observed Fiske resonances and the theory of Kulik [71]. They

were able to isolate individual modes and fit several oscillations to the functions Fn.

Not only do I find good agreement with theory in regards to the field dependence

of the Fiske modes, but also in the voltage dependence of the sub-gap current.

Because measurements are made at a finite temperature (T = 4.2 K) there exist

thermally excited quasi-particles in both superconducting electrodes. At voltages

smaller than the energy gap sum, ∆1 + ∆2, these thermal excitations will give rise

to a finite current across the junction. While in general terms this current can only

be found by integrating over the densities of states on either side of the junction,

for the special case where ∆1 = ∆2 = ∆ and kBT � ∆, the sub-gap current, Isg,

can be well approximated by [74]:

Isg =
2Gn

e
e−∆/kBT (eV + ∆)

√
2∆

eV + 2∆
sinh

(
eV

2kBT

)
K0

(
eV

2kBT

)
(6.1)

67

paul
Rectangle



..

Figure 6.9: Sub-gap current for a 30 × 30 µm2 junction with 15 Å of co-deposited
AlOx. The black curve is a fit to Eqn. 6.1, with fitting parameters described in the
text.

where Gn is the normal-state conductance and K0 is the zeroth-order modified Bessel

function. For the device with 15 Å of co-deposited AlOx I show the fit to Equation

6.1 in Figure 6.9. With Gn fixed to its measured value of 1.3 S, I found ∆ = 1.2 eV,

which corresponds well with the steep current increase at about 2.4 eV. The agree-

ment with theory is quite remarkable considering that the condition, ∆1 = ∆2, is

surely not satisfied due to the 200 Å of Al metal on one side of the junction. It also

suggests that the measured characteristics of my devices is limited by temperature

and not by materials.

6.3 Summary

I have grown epitaxial Nb/Al bi-layers on A-plane sapphire substrates. Al (111) was

found to grow in the Nishiyama-Wassermann orientation on the Nb (110) surface,

in accordance with previous findings. Both RHEED and AFM indicated an initial

island-growth mode that persisted until enough aluminum was deposited to com-

pletely wet the niobium surface. XRD measurements confirmed the single-crystal
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nature of the bi-layers, and also revealed the orientational relationship and Al twin-

ning.

For the first time, epitaxial Nb/Al bi-layers grown by MBE were employed in

the fabrication of Josephson tunnel-junctions. Aluminum oxide tunnel-barriers were

formed in a variety of ways on Al films that ranged in thickness from 200–470 Å.

I-V characteristics showed a dependence on both the Al thickness and the method

of oxide formation. Applied magnetic fields were shown to have the expected effect

on Ic and Fiske modes were observed. Even though there was some disagreement

in the measured penetration depth, the Fiske resonances exhibited maxima in the

same locations predicted by theory. Finally, I found that the sub-gap current in

my devices agrees well with theory, suggesting that the measured device charac-

teristics are limited by the presence of thermally excited quasi-particles and not

by materials. The device results have added significance because of the fabrication

technique – epitaxial bi-layers and multi-layers allow for tunneling and proximity

effect experiments to be carried out in the clean limit.
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Chapter 7

Directions for Future Research

I see a number of potential directions for future research involving epitaxial alu-

minum oxide, both in materials research and in device fabrication. I also think the

device results from oxidized epitaxial aluminum layers suggest some promising new

experiments. Some ideas are presented here.

First, there has been a lot of work done concerning the accommodation of misfit

in hetero-epitaxial thin films and multi-layers. The vast majority of experimental

studies have been done with semiconductors though – strain and plastic deforma-

tion are of great concern to anyone making electronic devices – with none performed

on epitaxial oxide films on refractory metals. Because we are trying to make both

structurally and electrically perfect tri-layers, misfit strain and the possible gener-

ation of dislocations is important to understand. The new high-resolution TEM in

the CMM may be a great tool for observing dislocations in thin Al2O3 films and

developing that understanding.

Second, we can take some cues from the work of Oh et al. Using aluminum metal

as the counter-electrode may eliminate the degradation of the oxide barrier. It may

also be sufficient to coat the oxide with only 50 Å or so of aluminum to protect the

barrier, and then deposit more niobium. In the end though it may be that the oxide,

with its misfit-induced strain, is still electrically “leaky”. Deposition of the barrier

at room temperature followed by crystallization at higher temperatures might result

in an unstrained layer, with any misfit dislocations confined to the interface with the

base niobium. The most straightforward way to eliminate dislocations though is to
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simply eliminate the misfit altogether by choosing compatible materials. Alumina

growth on Nb (111) nearly accomplishes this – the misfit there is a uniform 2%.

Third, a more extensive study of epitaxial aluminum metal layers in tunnel-

junctions might be interesting. Examination of device characteristics as a function

of aluminum thickness could give insight into proximity effects in the clean limit.

Changes in the growth parameters may also allow for the deposition of thinner

continuous aluminum films. It would also be worthwhile to explore higher applied

fields, and vary the oxidation levels to produce barriers of different transparencies.

Devices with more transparent barriers could also be expected to show stronger

Fiske resonances as well. A related experiment might involve replacing the first 100

Å or so of epitaxial aluminum with a isomorphic material such as gold or nickel.

Finally, all of these experiments – both those reported on and those proposed –

could be repeated using chromium instead of aluminum. The primary interest there,

of course, is in the antiferromagnetic properties of chromium and its oxide, Cr2O3

(chromia), and their interaction with superconducting niobium. Chromia takes the

same corundum structure as alumina, and its hetero-epitaxy would provide a com-

plementary data set with which to compare and contrast. Unlike alumina though,

chromia is a semiconductor, but could still serve as a barrier for tunneling exper-

iments. And because chromium metal grows epitaxially on niobium, thin metallic

layers could be deposited and then oxidized, just as with aluminum. Chromium

metal itself could be used in a superconductor–normal metal–superconductor (SNS)

junction. Then different orientations of the chromium layer could be grown by

choosing the appropriate substrate, and the orientation of the spin-density wave

and its effects on tunneling could be studied.
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