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ABSTRACT

This thesis proposes a distributed local Kalman consensus filter (DLKCF)
for large-scale multi-agent traffic density estimation. The switching mode
model (SMM) describes the traffic dynamics on a stretch of roadway, and
the model dynamics are linear within each mode. The error dynamics
of the proposed DLKCF is shown to be globally asymptotically stable
(GAS) when all freeway sections switch between observable modes. For
an unobservable section, the estimates given by the DLKCF are proved
to be ultimately bounded. We also show that under some frequently
encountered conditions, the error sum in an unobservable section con-
verges to a fixed value. Numerical experiments verify the asymptotic
stability of the DLKCF for observable modes, compare the DLKCF
to a Luenberger observer, illustrate the capability of the DLKCF on
promoting consensus among various local agents, and show a consid-
erable reduction of the runtime of the DLKCF compared to a cen-
tral KF. Supplementary source code is available to be downloaded at
https://github.com/yesun/DLKCFthesis.
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Chapter 1

Introduction

1.1 Motivation

The unprecedented growth of sensing and computational capabilities have advanced

the development of real-time traffic estimation techniques. For a transportation

network at the scale of a megacity, a centralized estimator that tracks the entire

state of the network may require large and expensive computing resources to meet

real-time constraints. An alternative is to partition large networks into local regions,

with each region estimated by a cheap commodity computer (e.g. an agent), thus

easing the computational burden. However, without coordination between adjacent

or overlapping partitions, estimates provided by different agents may disagree on

the estimates on the shared boundaries. This motivates the introduction of infor-

mation sharing among agents to compensate for the lack of a central estimator, thus

enhancing estimation consistency while also enabling computational scalability.

1.2 Related work

A number of sequential state estimation algorithms have been proposed to estimate

traffic conditions. The Switching Mode Model (SMM) (Sun et al., 2003, 2004; Munoz

et al., 2006) is a piecewise linear form of the Cell Transmission Model (CTM)
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(Daganzo, 1994, 1995; Lebacque, 1996), and is integrated into the Mixture Kalman

Filter in Sun et al. (2004) for ramp metering. A proof of the stability and a derivation

of an error conservation property of a Luenberger observer based on the SMM is

provided in Morarescu and Canudas de Wit (2011), which serves as an inspiration

for this work and is extended in Canudas de Wit et al. (2012) for more accurate mode

estimation. In Thai and Bayen (2013), the Interacting Multiple Model algorithm is

applied to the SMM with generalized modes. A robust mode selector is proposed

in Morbidi et al. (2014) to determine the most probable mode of the uncertain

graph-constrained SMM. A Gaussian approximation of the stochastic traffic model

Jabari and Liu (2012) is solved by the standard Kalman Filter (KF) in Jabari

and Liu (2013), which shows the stochastic observability of the proposed model by

the boundedness of covariance matrices. The Parallelized Particle Filters and the

Parallelized Gaussian Sum Particle Filter are designed in Mihaylova et al. (2012) for

computational scalability. Other treatments of traffic estimation include Wang and

Papageorgiou (2005); Mihaylova et al. (2007); Work et al. (2010); Chen and Rakha

(2012); Yuan et al. (2012). A recent overview of sequential estimation techniques

for scalar traffic models can be found in Blandin et al. (2012).

Research on collaborative information processing is driven by the broad appli-

cations of multi-agent systems (Lynch, 1997; Fax and Murray, 2004; Santoro, 2007;

Mesbahi and Egerstedt, 2010). The decentralized Kalman filter (Speyer, 1979; Rao

et al., 1993) requires a complete communication network with all-to-all links which

may not scale in large-scale systems. A scalable Distributed Kalman Filter (DKF)

is introduced in Olfati-Saber (2005), and the work of Khan and Moura (2008) par-

titions the large-scale systems into subsystems to reduce computation load, with

observation fusion applied on the shared states between subsystems to ensure con-

sensus. In the Kalman-Consensus Filter (KCF), consensus is achieved by com-

munication on the state estimates (Olfati-Saber, 2007). A formal analysis on the
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stability of the KCF can be found in Olfati-Saber (2007) for continuous systems,

and in Olfati-Saber (2009) for discrete-time systems.

1.3 Contributions and outline of the thesis

The main contribution of this thesis is the design and analysis of a Distributed Lo-

cal Kalman Consensus Filter (DLKCF) to estimate the traffic density on freeways,

with system dynamics chosen to be the SMM. The transportation network is parti-

tioned into local regions (sections) with overlapping areas on the boundaries. Each

agent provides a local estimate on its own region, and shares sensor data and state

estimates with its adjacent overlapping neighbors. Furthermore, consensus on the

overlapping areas is pursued to achieve agreement on the estimates of the common

state shared between neighbors. We provide a formal proof of the stability and

boundedness of the DLKCF under various observability scenarios, which has been

missing from many traffic estimation methods.

This work is organized as follows. Chapter 2 summarizes the CTM and the

SMM, and Chapter 3 introduces the DLKCF. In Section 4.1, we prove that the

DLKCF is globally asymptotically stable under the observable modes of the SMM.

For an unobservable section, we prove in Section 4.2.1 that the state estimates are

ultimately bounded, and Section 5.2 proves the convergence of the sum of the state

errors. Finally, numerical experiments are presented in Chapter 5, which verify the

proved results, and show the advantage of the DLKCF on promoting consensus on

the estimates between neighbors, reducing the estimation error under low quality

sensing/estimating units, as well as easing the computation load for each local agent.
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Chapter 2

Scalar macroscopic traffic

modeling

Macroscopic traffic modeling considers traffic flowing dynamics as a continuum of ve-

hicles, rather than modeling behaviors of individual vehicles on a stretch of roadway.

Macroscopic traffic models are originally motivated by constitutive hydrodynamics

models, where the fluid dynamics resembles properties of traffic flow. Scalar traffic

models classically consider the traffic state at a point x at time t to be fully rep-

resented by the vehicle density ρ(t, x), as opposed to non-scalar models which also

include additional state variables such as vehicle velocity, etc., to take into account

additional physical principles. To simplify the analysis, the discretized link models

describe the vehicle densities on a discretization grid of the spacial-temporal domain.

This chapter introduces CTM, one of the most common scalar discretized link traf-

fic models, as well as its piecewise linear form–SMM–which is later integrated into

our traffic estimation problem. Since this thesis studies traffic estimation based on

a scalar model, we omit details on non-scalar models and the reader is referred to

Payne (1971) and Whitham (1974) for more involved readings.
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2.1 Cell transmission model

The classical scalar model describing the evolution of traffic density ρ(t, x) on a road

network at location x and time t is the Lighthill-Whitham-Richards (LWR) Partial

Differential Equation (PDE) (Richards, 1956; Lighthill and Whitham, 1955), which

describes vehicle conservation:

∂tρ+ ∂xQ(ρ) = 0. (2.1)

The function Q(ρ) = ρv(ρ) is called the flux function, where v(ρ) is an empirical

velocity function used to close the model. The triangular flux function (Daganzo,

1995) used in this work is given by

Q(ρ) =

 ρvm if ρ ∈ [0, ρc]

ρcvm
ρm−ρ
ρm−ρc if ρ ∈ [ρc, ρm],

(2.2)

where vm denotes the freeflow speed and ρm denotes the maximum density. The

variable ρc is the critical density at which the maximum flux is realized. For the

triangular fundamental diagram, the flux function has different slopes in freeflow

(ρ ≤ ρc) and congestion (ρ > ρc). In freeflow, the slope is vm, and in congestion, it

is w = ρcvm
ρm−ρc .

The CTM is a discretization of (2.1) and (2.2) using a Godunov scheme (Go-

dunov, 1959). Consider a discretization grid defined by a space step ∆x and a time

step ∆t. We let l index the cell defined by x ∈ [l∆x, (l + 1)∆x), and denote by ρlk

the density at time k∆t in cell l. The discretized version of the model described in

(2.1) becomes

ρlk+1 = ρlk +
∆t

∆x

(
q(ρl−1

k , ρlk)− q(ρlk, ρl+1
k )
)
, (2.3)

where q(ρl−1
k , ρlk) is the flux between cell l − 1 and l, which is determined by:

q(ρl−1
k , ρlk) = min{vmρl−1

k , w(ρm − ρlk), qm}, (2.4)

where qm is the maximum flow given by qm = vmρc.
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2.2 Switching mode model

In the SMM, the discretized LWR PDE (2.3) is written as a hybrid system whose

evolution equation switches among different linear modes, depending on the state

of the upstream and downstream cells.

2.2.1 Definition of modes and evolution equations

Consider discretizing a freeway section into n cells, and define the state vector of

the section to be ρk = (ρ1
k, · · · , ρnk)

T
. We make the following three assumptions for

traffic estimation with the SMM:

1. the densities of the upstream and downstream cells in each section are mea-

sured, since freeway sections are usually partitioned at locations with sensors;

2. there is at most one transition between freeflow and congestion within each

section, which is motivated by the fact that freeway sections are generally

short with no more than one queue building up or dissipating; and

3. the boundary density measurements are sufficiently accurate to distinguish

between four of the five modes described next, but they cannot determine the

location or direction of the shock (some comments on this assumption follow

on Chapter 3 below).

Given the second assumption above, a road section may switch between the

following five modes:

1. freeflow–freeflow (FF), in which all cells in the section are in freeflow;

2. congestion–congestion (CC), in which all cells in the section are in congestion;

3. congestion–freeflow (CF), in which the cells in the upstream part of the section

are congested, and the cells in the downstream part are in freeflow;
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4. freeflow–congestion 1 (FC1), in which the upstream part of the section is in

freeflow, the downstream part is in congestion, and the shock has positive

velocity or is stationary; and

5. freeflow–congestion 2 (FC2), in which the upstream part of the section is in

freeflow, the downstream part is in congestion, and the shock has negative

velocity.

Note the boundary sensors cannot distinguish between modes 4 and 5. In each

mode stated above, the traffic state ρk evolves with linear dynamics, forming a

hybrid system:

ρk+1 = Aσ(k),s(k)ρk +Bρ
σ(k),s(k)ρm +Bq

σ(k),s(k)qm, (2.5)

where ρm = (ρm, · · · , ρm)T ∈ Rn, qm = (qm, · · · , qm)T ∈ Rn, and Aσ(k),s(k), B
ρ
σ(k),s(k),

Bq
σ(k),s(k) ∈ Rn×n are matrices to be defined precisely later. The mode index

σ(k) ∈ S where S = {1, 2, 3, 4, 5} is the index set denoting the five modes, and

s(k) ∈ {0, 1, · · · , n} is the index introduced to precisely locate the transition be-

tween freeflow and congestion when it exists. We say s(k) = l when the transition

occurs between cell l and l + 1.

To explicitly define (2.5) in each mode, some notation is introduced. For all

p ∈ {1, 2, · · · , n− 1}, define Γp ∈ Rp×p and ∆p ∈ Rp×p by their (i, j)th entries as

Γp(i, j) =


1− vm∆t

∆x
if i = j

vm∆t
∆x

if i = j + 1

0 otherwise,

∆p(i, j) =


1− w∆t

∆x
if i = j

w∆t
∆x

if i = j − 1

0 otherwise.
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In the FF mode, the mode index σ = 1, and s(k) = 0. The explicit forms of

Aσ,s, B
ρ
σ,s, and Bq

σ,s are:

A1,0 =


1 01,n−1 vm∆t

∆x

0n−2,1

 Γn−1

 , Bρ
1,0 = Bq

1,0 = 0.

where 0i,j ∈ Ri×j which is zero everywhere, and 0 = 0n,n.

In the CC mode, the mode index σ = 2, and s(k) = n. The explicit forms of

Aσ,s, B
ρ
σ,s, and Bq

σ,s are:

A2,n =

 ∆n−1

 0n−2,1

w∆t
∆x


01,n−1 1

 , Bρ
2,n = Bq

2,n = 0.

In the CF mode, the mode index σ = 3, and the explicit forms of Aσ,s, B
ρ
σ,s, and

Bq
σ,s are:

A3,s =

 ∆s 0s,n−s

0n−s,s Γn−s

 , Bρ
3,s = 0 +

w∆t

∆x
Es,s,

Bq
3,s = 0− ∆t

∆x
Es,s+1 +

∆t

∆x
Es+1,s+1,

where Ei,j are matrices that are zero everywhere but the (i, j)th entry, which is one.

Note that s may take any value in {1, · · · , n− 1}, depending on the location of the

center of the expansion fan connecting the congested and freeflow states.

In the two FC modes, define Γ̂p and ∆̂p as follows:

Γ̂p =




1 01,p vm∆t

∆x

0p−1,1

 Γp

 if p ∈ {1, · · · , n− 1},

1 if p = 0,



2. Scalar macroscopic traffic modeling 9

and

∆̂p =



 ∆p

 01,p−1

w∆t
∆x


01,p 1

 if p ∈ {1, · · · , n− 1},

1 if p = 0.

When σ = 4 and s ∈ {1, · · · , n − 2}, or σ = 5 and s ∈ {2, · · · , n − 1}, the explicit

forms of Aσ,s, B
ρ
σ,s, and Bq

σ,s are:

Aσ,s =


Γ̂s̃−1 0s̃,1 0s̃,s̄(

01,s̃−1
vm∆t

∆x

)
1

(
w∆t
∆x

01,s̄−1

)
0s̄,s̃ 0s̄,1 ∆̂s̄−1

 ,

Bρ
σ,s =

 0s̃+1,s̃+1

 0s̃,1 0s̃,s̄−1

−w∆t
∆x

01,s̄−1


0s̄,s̃+1 0s̄,s̄

 , Bq
σ,s = 0,

where for σ = 4 we have s̃ = s and s̄ = n− s− 1, and for σ = 5 we have s̃ = s− 1

and s̄ = n− s.

When σ = 4 and s = n − 1, we have Aσ,s = diag
(

Γ̂n−2, 1
)

(i.e. with Γ̂n−2 and

1 on the diagonal) , and Aσ,s = diag
(

1, ∆̂n−2

)
when σ = 5 and s = 1. For both

cases, we have Bρ
σ,s = Bq

σ,s = 0.

2.2.2 Observability

The observability results of the SMM for individual modes are summarized in Table

2.1 (Munoz et al., 2006). It can be derived directly from standard linear system

techniques for each mode given the system model (2.5) and the observation equation

zk = Hkρk, (2.6)

where zk is the measurement vector, and Hk is the appropriate output matrix.
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Table 2.1: Observability of the SMM1,2 (Munoz et al., 2006)

Mode U D Shock velocity Observable with
1 F F no shock D measurement
2 C C no shock U measurement
3 C F no shock U and D measurements
4 F C positive or stationary unobservable
5 F C negative unobservable

1 F and C represent freeflow and congested, respectively.
2 U and D represent upstream and downstream, respectively.

Remark 1. In the SMM proposed in Sun et al. (2003); Munoz et al. (2006), an

additional assumption requires the precise inflow and outflow of the section as in-

puts of the system. Here we instead assign constant dynamics for the boundary

cells subject to some uncertainty. It is assumed that boundary measurements will be

available and will be integrated through the update equation within the filter. As a

result the system dynamics no longer depends on cell densities outside the section,

at the expense of a correct model at the boundary. This treatment is made since:

(i) measurements of boundary conditions cannot be treated as the true input of the

system without accounting for measurement errors, and (ii) for distributed compu-

tational platforms, independence of system dynamics for each section is desirable.

Note that all results and proofs in this work hold for either formulation.
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Chapter 3

Distributed local Kalman

consensus filter

Given a dynamic system with a collection of state measurements up to the current

time, the filtering problem aims at computing the optimal estimate of the current

state. This consists of iteratively updating the state estimate once a new measure-

ment becomes available, yielding a so-called sequential estimation scheme. The KF

is one of the most well-known sequential estimation algorithm which relies on the

Bayes’ rule to compute the conditional distribution of the state given the available

measurements, and the minimum mean square error (MMSE) optimality criterion

to obtain the optimal estimate. In this chapter, we review the KF and provide an

explicit expression of the proposed DLKCF.

3.1 Kalman filter

In this section, we briefly review the KF and introduce notation needed later in the

proposed filter. Consider a linear time-varying model

ρk+1 = Akρk + wk, ρk ∈ Rn, (3.1)
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where wk ∼ N (0, Qk). Sensor measurements zk are modeled by the following linear

observation equation

zk = Hkρk + vk, zk ∈ Rm, (3.2)

where Hk and vk ∼ N (0, Rk) are the observation matrix and measurement noise,

respectively.

Given the sensor data up to time k denoted by Zk = {z0, · · · , zk}, the prior

estimate and posterior estimate of the state can be expressed as ρk|k−1 = E[ρk|Zk−1]

and ρk|k = E[ρk|Zk], respectively. Let ηk|k−1 = ρk|k−1 − ρk and ηk|k = ρk|k − ρk

denote the prior and posterior estimation errors. The state error covariance matrices

associated with ρk|k−1 and ρk|k are given by Γk|k−1 = E[ηk|k−1η
T
k|k−1|Zk−1] and Γk|k =

E[ηk|kη
T
k|k|Zk]. The KF sequentially computes ρk|k from ρk−1|k−1 as follows:

Forecast:

 ρk|k−1 = Ak−1ρk−1|k−1

Γk|k−1 = Ak−1Γk−1|k−1A
T
k−1 +Qk−1,

Analysis:


ρk|k = ρk|k−1 +Kk(zk −Hkρk|k−1)

Γk|k = Γk|k−1 −KkHkΓk|k−1

Kk = Γk|k−1H
T
k (Rk +HkΓk|k−1H

T
k )−1,

where Kk is the Kalman gain, and zk −Hkρk|k−1 is the innovation. In the KF, the

forecast step updates the mean and error covariance of the estimate through the

system model given in (3.1), and the analysis step refines the estimate based on the

latest obtained measurements.

3.2 Distributed local Kalman consensus filter

The DLKCF is a localized version of the KCF, which itself is an extension of the

KF for multi-agent estimation (Olfati-Saber, 2007, 2009). Consider a network with

an ad hoc undirected communication topology between agents given by the graph
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G = (V , E), where V and E are the vertex and edge sets, respectively. For agent i

the output equation is given by

zd
i,k = Hd

i,kρk + vd
i,k, z

d
i,k ∈ Rmi ,

where the superscript d stands for distributed, and vd
i,k ∼ N

(
0, Rd

i,k

)
. Let Ni =

{j : (i, j) ∈ E} be the set of neighboring agents of agent i on graph G, and define

Ji = Ni
⋃
{i}. In the KCF, through communication each agent possesses columnized

measurement vector zi,k = colj∈Ji
(
zd
j,k

)
and a corresponding columnized output ma-

trix Hi,k = colj∈Ji
(
Hd
j,k

)
, as well as a block diagonal measurement error covariance

matrix Ri,k = diagj∈Ji
(
Rd
j,k

)
. A consensus term is computed based on the dispar-

ities of the prior estimates among neighbors and is applied to the analysis step to

promote agreement on estimates among neighboring agents.

For the KCF stated above, each agent estimates all the state variables of ρk.

However, for estimation on large-scale transportation systems, this is neither com-

putationally efficient nor practically necessary. Consequently, a localized version of

the KCF, namely the DLKCF, is introduced. The DLKCF partitions the state into

local overlapping subsets, and each agent estimates a single subset of the state.

The freeway network is partitioned into N local sections, with overlapping re-

gions established to allow communication between neighboring agents to exchange

messages on measurements and state estimates. From the SMM in section 2.2, the

system dynamics of the ith section is given by

ρi,k+1 = Ai,kρk +Bρ
i,kρm +Bq

i,kqm, ρi,k ∈ Rni . (3.3)

Note that in (3.3) and for the remainder of the thesis the subscripts for A, Bρ, and

Bq are slightly different from what was used in (2.5) with σ(k) and s(k). Since both

σ(k) and s(k) are dependent on k, we let subscript k combine their effects, and add

an subscript i ∈ I = {1, 2, · · · , N} to denote the section index. We denote the

dimension of the overlapping region between section i and section j as ni,j. For the
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freeway network, the neighborhood of section i is defined as

Ni =


{i+ 1} if i = 1

{i− 1, i+ 1} if i 6= 1, and i 6= N

{i− 1} if i = N.

For j ∈ Ni, define matrix operator Îi,j as

Îi,j =


(
Ini,j

0ni,j ,ni−ni,j

)
if j = i− 1(

0ni,j ,ni−ni,j
Ini,j

)
if j = i+ 1,

(3.4)

where Ini,j
∈ Rni,j is the identity matrix, and the operation Îi,jρi,k selects the part

of agent i’s state that overlaps with agent j.

Formally the forecast and analysis steps of the DLKCF for the ith agent are

written as  ρi,k|k−1 = Ai,k−1ρi,k−1|k−1

Γi,k|k−1 = Ai,k−1Γi,k−1|k−1A
T
i,k−1 +Qi,k−1,

(3.5)



ρi,k|k = ρi,k|k−1 +Ki,k

(
zi,k −Hi,kρi,k|k−1

)
+
∑

j∈Ni
Cj
i,k

(
Îj,iρj,k|k−1 − Îi,jρi,k|k−1

)
Γi,k|k = Γi,k|k−1 −Ki,kHi,kΓi,k|k−1

Ki,k = Γi,k|k−1H
T
i,k(Ri,k +Hi,kΓi,k|k−1H

T
i,k)
−1,

(3.6)

where Cj
i,k is the consensus gain of agent i associated with neighbor j at time step k,

and for simplicity we drop the last two terms in (3.3) independent of the state. Our

choice for the consensus gain for the observable modes is inspired by the work of

Olfati-Saber (2009), and the consensus term is dropped for the unobservable modes.

Hence the choice of the consensus gain reads:

Cj
i,k =

 γk−1Fi,kGi,kÎ
T
i,j σ(k) ∈ {1, 2, 3}

0 σ(k) ∈ {4, 5},
(3.7)
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where

Fi,k =I −Ki,kHi,k,

Gi,k =Ai,k−1Γi,k−1|k−1A
T
i,k−1 +Qi,k−1 (3.8)

+ Γi,k|k−1Si,kΓi,k|k−1,

where Si,k = HT
i,kR

−1
i,kHi,k is the information matrix, and γk is a sufficiently small

scaling factor, whose explicit form will be given in Chapter 4 to ensure stability of

the filter.

Remark 2. The assumption in (3.1) that wk ∼ N (0, Qk), independent of ρk, results

in an approximation to the real traffic model, whose side effect would be enlarged

with an inaccurate estimate of the model (i.e. the matrix Ai,k). In the DLKCF,

based on assumption ( iii) of the SMM, the matrix Ai,k can ultimately be correctly

reconstructed by the local agent in observable modes. For unobservable modes, the

agent needs to apply an estimate Âi,k of Ai,k based on state estimate ρi,k|k to run

the filter. When assumption ( iii) of the SMM is released, the performance of the

filter would be improved under a constrained-CTM (Canudas de Wit et al., 2012)

which aims at reducing the estimation error due to the measurement and model

uncertainties.
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Chapter 4

Stability of the DLKCF for traffic

estimation

In this chapter, we show that for a network where all sections switch among ob-

servable modes, the error dynamics is globally asymptotically stable (GAS). For an

unobservable section, we show that despite the lack of knowledge on the precise form

of the state equations due to the unknown shock location and direction, the estimate

of the state is physically meaningful. Furthermore, under some frequently satisfied

conditions specified later, the one-step change in the estimated total number of

vehicles in the unobservable section converges to the true one-step change.

4.1 Asymptotic stability of error dynamics in ob-

servable modes

We define the prior and posterior estimation errors for section i as ηi,k|k−1 = ρi,k|k−1−

ρi,k and ηi,k|k = ρi,k|k − ρi,k, and define the neighbor disagreement as

uji,k = Îj,iηj,k|k−1 − Îi,jηi,k|k−1. (4.1)

The global estimation error ηk|k is reconstructed by ηk|k = col(η1,k|k, · · · , ηN,k|k), and

the estimation error in section i evolves as follows (without model and measurement
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noise):

ηi,k|k = Fi,kAi,k−1ηi,k−1|k−1 +
∑
j∈Ni

Cj
i,ku

j
i,k. (4.2)

We consider the following common Lyapunov function candidate which reads:

V (k, ηk|k) =
N∑
i=1

ηTi,k|kΓ
−1
i,k|kηi,k|k, (4.3)

and compute its one-step change δV (k, ηk|k) by applying (4.2) as follows:

δV (k, ηk|k) = V (k + 1, ηk+1|k+1)− V (k, ηk|k)

=
∑N

i=1 η
T
i,k|k

(
ATi,kF

T
i,k+1Γ−1

i,k+1|k+1Fi,k+1Ai,k − Γ−1
i,k|k

)
ηi,k|k

+2
∑N

i=1

(
ηTi,k+1|kF

T
i,k+1Γ−1

i,k+1|k+1

∑
j∈Ni

Cj
i,k+1u

j
i,k+1

)
+
∑N

i=1

(∑
j∈Ni

Cj
i,k+1u

j
i,k+1

)T
Γ−1
i,k+1|k+1

(∑
j∈Ni

Cj
i,k+1u

j
i,k+1

)
.

(4.4)

To ensure the asymptotic stability of the error dynamics holds globally, the common

Lyapunov function (4.3) needs to be radically unbounded1, which means that the

error covariance matrix Γi,k|k needs to be upper bounded for all i and k. This holds

by the following lemma.

Lemma 1 (Boundedness of the estimation error covariance matrix in the KF for

an arbitrary switching sequence in observable modes (Boker and Lunze, 2002)). If

the hybrid system (3.3) switches among observable modes for all i and k, the error

covariance matrix Γi,k|k given in (3.6) is upper bounded for all i and k, independent

of the switching sequence.

The next lemma provides a result on the Laplacian of an undirected graph,

which is important for treatment of the consensus term in the stability proof of the

DLKCF.

1Recall that a function V (·, η) is radically unbounded if it satisfies V (·, η)→∞ as ‖η‖ → ∞
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Lemma 2 (Quadratic property of the Laplacian of an undirected graph (Godsil and

Royle, 2001; Olfati-Saber et al., 2007)). The following holds for the n-dimensional

Laplacian L̄ of any undirected graph G = (V , E) with N vertices, irrespective of its

connectivity:

N∑
i=1

∑
j∈Ni

ξi(ξj − ξi) = −1

2

∑
(i,j)∈E

‖ξj − ξi‖2 = −ξT L̄ξ,

where ξ = col(ξ1, · · · , ξN) with ξi ∈ Rn the element corresponding to the ith vertex

of V, and L̄ = In ⊗ L with L the graph Laplacian of G.

The GAS result for the DLKCF in observable modes is presented next.

Proposition 1 (Stability of the DLKCF for observable modes). Consider the DLKCF

in (3.5) and (3.6) with the consensus gain in (3.7)–(3.8). Suppose Qi,k is positive

definite for all i and k, and all sections switch among the observable modes of the

SMM. Then, the error dynamics of ηk|k is GAS for sufficiently small γk, with con-

sensus reached on the overlapping regions between neighbors.

Proof. To conclude the GAS property of the error dynamics, we need to show

δV (k, ηk|k) is negative when ηk|k 6= 0. To determine the sign of δV (k, ηk|k), we

first analyse the signs of the three terms in (4.4) independently and then combine

them together.

Step 1. Negative definiteness of the first term in δV

The proof for the first term follows closely from Lemma 3 in Olfati-Saber (2009),

where the matrix inversion lemma is applied to show the negative definiteness of

one-step change of the Lyapunov function candidate. Each element in the first term
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in δV can be equivalently written as

ηTi,k|k

(
ATi,kF

T
i,k+1Γ−1

i,k+1|k+1Fi,k+1Ai,k − Γ−1
i,k|k

)
ηi,k|k

=ηTi,k|k

(
ATi,kG

−1
i,kAi,k − Γ−1

i,k|k

)
ηi,k|k

=− ηTi,k|k
(

Γ−1
i,k|k − A

T
i,k(Ai,kΓi,k|kA

T
i,k +Wk)

−1Ai,k

)
ηi,k|k

=− ηTi,k|kΛi,kηi,k|k,

where the first equation is obtained by Γi,k+1|k+1 = Fi,k+1Gi,k+1F
T
i,k+1, and (recall

that we assume Qi,k > 0)

Wk = Qi,k + Γi,k+1|kSiΓi,k+1|k > 0

Λi,k = Γ−1
i,k|k − A

T
i,k(Ai,kΓi,k|kA

T
i,k +Wk)

−1Ai,k

Multiplying Λi,k from left and right by Γi,k|k gives

Γi,k|kΛi,kΓi,k|k = Γi,k|k − Γi,k|kA
T
i,k(Ai,kΓi,k|kA

T
i,k +Wk)

−1Ai,kΓi,k|k

= (Γ−1
i,k|k + ATi,kW

−1
k Ai,k)

−1

Multiplying the last equation from left and right by Γ−1
i,k|k, we obtain

Λi,k = Γ−1
i,k|k(Γ

−1
i,k|k + ATi,kW

−1
k Ai,k)

−1Γ−1
i,k|k

which is a symmetric and positive definite matrix. Thus the first term can be

equivalently written as

n∑
i=1

−ηTi,k|kΛi,kηi,k|k = −ηTk|kΛkηk|k,

where Λk = diag(Λ1,k, ...,Λn,k), and we conclude the first term is negative definite.

Step 2. Negative semidefiniteness of the second term in δV

Using the quadratic property of the Laplacian in Lemma 2, we can render the

second term of δV negative semidefinite by the consensus gain chosen in (3.7)–(3.8).
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We introduce a new undirected graph Ĝ = (V̂ , Ê) representing the topology of the

overlapping regions with V̂k = {ξ̂î,k : î ∈ Î} for Î = {1, · · · , 2N − 2}, and

ξ̂î,k =

 Îi,jηi,k|k−1 with i = î+1
2

, j = i+ 1, if î odd

Îj,iηj,k|k−1 with i = î
2
, j = i+ 1, if î even,

Nî =

 {̂i+ 1} if î odd

{̂i− 1} if î even.

Suppose ni,j = n̂ for all i ∈ I and for all j ∈ Ni, then ξ̂î,k ∈ Rn̂ for all î. Let L̂

be the n̂ dimensional Laplacian of Ĝ. Denote ξ̂k = col(ξ̂1,k, · · · , ξ̂2N−2,k) = Ĥηk|k−1,

where Ĥ = Diag(Ĥ1, · · · , Ĥn) with the ith block on the diagonal

Ĥi =


Îi,i+1 if i = 1

Îi,i−1 if i = n(
ÎTi,i−1 Î

T
i,i+1

)T
otherwise,

and let Ak = diag(A1,k, · · · , AN,k). Then by substituting the consensus gain (3.7)

and the neighbor disagreement (4.1) into the second term of δV , and rewriting it in

terms of the new graph Ĝ, we obtain:

2
N∑
i=1

(
ηTi,k+1|kF

T
i,k+1Γ−1

i,k+1|k+1

∑
j∈Ni

Cj
i,k+1u

j
i,k+1

)

=− 2γkη
T
k|kA

T
k Ĥ

T L̂ĤAkηk|k ≤ 0.

Thus it is concluded that the second term in δV is negative semidefinite.

Step 3. Positive definiteness of the third term in δV

Given the choice of consensus gain in (3.7)–(3.8), the third term in δV can be

written as

N∑
i=1

(∑
j∈Ni

Cj
i,k+1u

j
i,k+1

)T

Γ−1
i,k+1|k+1

(∑
j∈Ni

Cj
i,k+1u

j
i,k+1

)

=γ2
k

N∑
i=1

(∑
j∈Ni

ÎTi,ju
j
i,k+1

)T

GT
i,k+1

(∑
j∈Ni

ÎTi,ju
j
i,k+1

)
.
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We columnize uji,k over all neighbors j ∈ Ni within each section i and over all sections

i ∈ I, and denote it as uk:

uk = coli∈I
(
colj∈Ni

(
uji,k
))

= L̃ηk|k−1 = L̃Ak−1ηk−1|k−1,

where L̃ can be defined as a partitioned matrix with the (̂i, i)th block L̃î,i given by

L̃î,i =



−Îi,i+1 if î is odd, and i = 1
2
(̂i+ 1)

Îi,i−1 if î is odd, and i = 1
2
(̂i+ 1) + 1

Îi,i+1 if î is even, and i = î
2

−Îi,i−1 if î is even, and i = î
2

+ 1

0 otherwise,

where î ∈ Î and i ∈ I. Denoting Gk = diag(G1,k, · · · , GN,k), the third term in δV

is equivalent to

γ2
k

N∑
i=1

(∑
j∈Ni

ÎTi,ju
j
i,k+1

)T

GT
i,k+1

(∑
j∈Ni

ÎTi,ju
j
i,k+1

)

=γ2
kη

T
k|kA

T
k L̃

T ĤGk+1Ĥ
T L̃Akηk|k > 0,

and it is positive definite since Gk+1 is positive definite.

Step 4. The negative definiteness of δV (k, ηk|k)

Provided Steps 1, 2, and 3, δV can be written as

δV (k, ηk|k) =− ηTk|k
(

Λk − γ2
kA

T
k L̃

T ĤGk+1Ĥ
T L̃Ak

)
ηk|k

− 2γkη
T
k|kA

T
k Ĥ

T L̂ĤAkηk|k.

Therefore by choosing γk sufficiently small we can render δV (k, ηk|k) < 0 for all

k ≥ 0 and for all ηk|k 6= 0. To be more precise, we need γk < γ∗k where γ∗k is defined

by

γ∗k =

 λmin (Λk)

λmax

(
ATk L̃

T ĤGk+1ĤT L̃Ak

)
 1

2

, (4.5)
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where λmin and λmax are the minimum and maximum eigenvalues of a matrix, respec-

tively. Thus from Theorem 4.9 in Khalil (2002) we conclude that δV (k, ηk|k) < 0 for

all k ≥ 0 and for all ηk|k 6= 0, and therefore ηk|k = 0 is GAS for the error dynamics

of the DLKCF. Consequently, all estimators reach a consensus on the overlapping

regions between neighbors.

Proposition 1 gives a formal analysis of the error dynamics of the DLKCF on

a freeway segment where all the local sections switch among observable modes of

the SMM (i.e., modes FF, CC, and CF), and shows its GAS property. This implies

that the consensus term will not destabilize the filter, as long as the measurements

available to each local agent are enough to reconstruct the traffic condition of its

associated local region given the system model. In general, the KF is unstable

under unobservable systems (see Burridge and Hall, 1987). Fortunately, the intrinsic

property of the traffic model (i.e., the conservation of vehicles) serves as a crucial

ingredient to stabilize the filter, and the next section explores the estimation error

properties of the DLKCF under the unobservable modes of the SMM (i.e., modes

FC1 and FC2).

4.2 Ultimate boundedness of estimate and prop-

erty of estimation error in unobservable modes

Challenges for estimating the unobservable sections stem from the dependence of the

system dynamics of the SMM on the state to be estimated (i.e. shock location and

shock velocity), thus non-observability of the system will lead to unknown system

dynamics. Moreover, with only upstream and downstream measurements, it can be

shown that the unobservable modes are also undetectable.

In this section we first establish that the estimates of all the cells in an unobserv-

able section are ultimately bounded inside [−ε, ρm + ε] for all ε > 0, provided that
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the upstream and downstream measurements are available. This property ensures

that the estimates given by the DLKCF for unobservable modes are always physi-

cally meaningful to within ε. The conservation of the total error in the section (i.e.

the sum of the estimation errors of all the cells in an unobservable section is con-

stant) is proved in Morarescu and Canudas de Wit (2011) for a Luenberger observer

when the output feedback is turned off in unobservable modes. In this section we

prove a similar property in the KF framework accounting for the non-zero gain in

the information update term.

4.2.1 Ultimate boundedness of the estimation error

First we present a lemma stating the boundedness of Kalman gain Kk, which is

necessary for the boundedness of the estimates.

Lemma 3 (Boundedness of the Kalman gain for an undetectable system (Burridge

and Hall, 1987)). If the system (3.1)-(3.2) is undetectable, and all the undetectable

modes are of unit modulus, then Kk is uniformly bounded from above for all k ≥ 0.

The Kalman observability canonical form of (2.5)-(2.6) shows that the eigenval-

ues of the observable subspace (i.e. the boundary cells) are one, and the unobserv-

able subsystem has eigenvalues less than or equal to one (with the eigenvalue one

corresponding to the shock location), which satisfies the assumptions of Lemma 3.

We now establish the ultimate boundedness of the estimates, and for the remainder

of Section 4.2 the section index i is dropped for notational simplicity.

Proposition 2 (Ultimate boundedness of the DLKCF for an unobservable section).

Consider an unobservable section in a road network with dimension n. For all ε > 0,

a finite time T (ε) exists such that ρlk|k ∈ [−ε, ρm + ε] for all k > T (ε) and for all

l ∈ {1, · · · , n}, independent of the initial estimate.
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Proof. The proof is by induction. For all ε > 0, since the upstream cell is in the

observable subspace, we have ρ1
k|k → ρ1

k, where ρ1
k ≥ 0. Hence a finite time T1(ε)

exists such that ρ1
k|k > −

ε
n

for all k > T1(ε).

Suppose ρl−1
k|k > −

(l−1)ε
n

. For all l ∈ {2, · · · , n}, if ρlk|k < −
(l−1)ε
n

, we obtain from

(2.4) that

q
(
ρl−1
k|k , ρ

l
k|k

)
= vmρ

l−1
k|k > −vm

(l − 1)ε

n
, (4.6)

q
(
ρlk|k, ρ

l+1
k|k

)
≤ vmρ

l
k|k. (4.7)

Combining (4.6) and (4.7) with (2.3), and adding an information update term from

the analysis step yields

ρlk+1|k+1 > ρlk|k +
vm∆t

∆x

∣∣∣∣ρlk|k +
(l − 1)ε

n

∣∣∣∣− c ‖ ηok|k ‖∞, (4.8)

where c > 0 is a finite scalar whose existence is guaranteed by the boundedness of

Kalman gain, and we denote ηok|k =
(
η1
k|k, η

n
k|k

)T
as the posterior estimation error

of the upstream and downstream cells, which form an observable subspace, hence

‖ ηok|k ‖∞→ 0 as k →∞. Thus from (4.8) we conclude that a class K2 function α(·)

and a continuous positive definite function W (| · |) on R exist such that

ρlk+1|k+1 − ρlk|k >W
(∣∣∣∣ρlk|k +

(l − 1)ε

n

∣∣∣∣) ,
∀
∣∣∣∣ρlk|k +

(l − 1)ε

n

∣∣∣∣ ≥ α
(
‖ ηok|k ‖∞

)
,

which indicates that the one-step change of the estimates is always positive, and the

change rate is large enough so that a finite time Tl(ε) exists such that ρlk|k > −
lε
n

for all k > Tl(ε) (see Khalil, 2002, Theorems 4.18 and 4.19). By induction we

conclude that if ρn−1
k|k > − (n−1)ε

n
, a finite time Tn(ε) exists such that ρnk|k > −ε

for all k > Tn(ε). Letting T (ε) = maxl{Tl(ε)} = Tn(ε), we obtain ρlk|k > −ε for

2Recall that a continuous function α : [0, a)→ [0,∞) is said to belong to class K if it is strictly
increasing and α(0) = 0.
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all k > T (ε) and l ∈ {1, 2, · · · , n}. This proves the ultimate lower bound of the

estimates.

The proof for an ultimate upper bound is similar, with a variation that the

induction is conducted from n to 1.

The essence of ultimate boundedness is that it rules out the possibility that the

estimation error is destabilized in the analysis step, and the proof also shows the

importance for having observable boundary states. Hence it is not ideal to drop the

output feedback as in the Luenberger observer (Morarescu and Canudas de Wit,

2011), where the preservation of an ultimate bound [−ε, ρm + ε] may fail due to the

absence of output feedback loop and the pure reliance on the boundary conditions.

This point is explored in more detail in Chapter 5.

4.2.2 Convergence of the sum of estimation errors across all

the cells in an unobservable section

Despite the lack of ultimate boundedness, the advantage of an open-loop observer is

that it ensures conservation of the sum of the estimation errors in an unobservable

section. In this section we show that a similar property holds for the DLKCF

under most conditions, and when it is not, it is sacrificed to preserve the ultimate

boundedness of the estimates to within [−ε, ρm + ε].

First we define three submodes in FC (i.e., FC1
⋃

FC2), which is important in

specifying the condition under which the yet derived estimation error property holds.

Note that the following definitions are applicable to both the true and the estimated

state, and the submode for the true and the estimated state in an unobservable

section may be different: (i) Submode 1, where the shock is located between cell

n− 1 and n, and has positive velocity (i.e. the section is about to switch from FC1

to FF); (ii) Submode 2, where the shock is located between cell 1 and 2, and has
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negative velocity (i.e. the section is about to switch from FC2 to CC); and (iii)

Submode 3, the state is neither in submode 1 nor in submode 2 (i.e. the section

remains in FC1 or FC2).

We denote the sum of estimation errors across all the cells in an unobserv-

able section as Sum(ηk|k) =
∑n

l=1 η
l
k|k. The property of estimation error we claim

reads: Sum(ηk|k) will converge to a fixed value (instead of being fixed as stated in an

open-loop Luenberger observer), when both the true and the estimated states are in

submode 3. Under the specified condition, the flux between cell 1 and 2 is computed

by the sending capacity of cell 1, and the flux between cell n− 1 and n is computed

by the receiving capacity of cell n.

Proposition 3 (Error property of the DLKCF for an unobservable section). Con-

sider an unobservable section in a road network, and suppose both the true and the

estimated states are in submode 3. Then Sum(ηk|k)→ Sum(η) as k →∞.

Proof. When the estimated and the true models may not match, the error dynamics

is constructed as (recall that the consensus term is dropped in the unobservable

mode)

ηk+1|k+1 = Fk

(
Âkηk|k +

(
Âk − Ak

)
ρk +

(
B̂ρ
k −B

ρ
k

)
ρm

)
, (4.9)

where Âk is introduced in Remark 2. Define projection P1 : Rn×n 7→ Rn−2×n−2

that cuts the first and last rows and columns of a matrix, and define projection

P2 : Rn 7→ Rn−2 that cuts the first and last elements of a vector. When both the

true and the estimated states are in submode 3, the estimated and true solutions

of the boundary cells evolve with the same dynamics. Then applying P2 to the left

and right hand sides in (4.9) yields

P2(ηk+1|k+1) = P1(Âk)P2(ηk|k) +
(
P1(Âk)− P1(Ak)

)
P2(ρk)

+
(
P1(B̂ρ

k)− P1(Bρ
k)
)
P2(ρm) + εk,

(4.10)
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where εk =
(
ε2k, · · · , εn−1

k

)T
, and

εlk =


(
−kl,1 + vm∆t

∆x

)
η1
k|k − kl,2ηnk|k if l = 2

−kl,1η1
k|k +

(
w∆t
∆x
− kl,2

)
ηnk|k if l = n− 1

−kl,1η1
k|k − kl,2ηnk|k otherwise,

with ki,j representing the (i, j)th entry of Kk+1. Adding all the state variables of the

left and right hand sides of (4.10) yields

∑n−1
l=2 (ηlk+1|k+1) =

∑n−1
l=2 (ηlk|k)−

∑n−1
l=2

(
kl,1η

1
k|k + kl,2η

n
k|k

)
+vm∆t

∆x
η1
k|k + w∆t

∆x
ηnk|k,

(4.11)

where the first term of the right hand side in (4.11) is derived in Morarescu and

Canudas de Wit (2011), and the remaining terms are derived by direct calcula-

tion. Note that η1
k|k and ηnk|k are the estimation errors of the observable subspace

with linear time-invariant dynamics and (uniformly) complete observability, so they

decay exponentially fast (see Jazwinski, 1970, Theorems 7.4 and 7.5). Moreover,

the Kalman gain Kk is bounded, hence
∑n−1

l=2 (ηlk|k) converges, and consequently

Sum(ηk|k) converges.

Admittedly, there is no guarantee that the submode assumption in Proposition 3

will always hold. Even worse, eventually it should fail unless the queue never grows

outside the section or never dissipates. However, by examining the cases when the

assumption fails we find some nice properties of the DLKCF. Consider the case

when the estimated state is in submode 2, but the true state is in submode 3. If

we insist on conserving the sum of the errors, the vehicles in the upstream cells

will eventually be over-saturated (resulting in estimates larger than ρm). While in

the DLKCF, the estimated inflow of each cell is computed based on its receiving

capacity, thus no cell is forced to accept vehicles beyond its capacity to ensure error

conservation. We will show experimental results for this in Chapter 5.
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Chapter 5

Numerical experiments

In this chapter, we assess the performance of the DLKCF under different scenar-

ios. We first show the estimation results of the DLKCF for a Riemann problem

(LeVeque, 2002), and validate the GAS of error dynamics under observable modes

when properly accounting for the modeling errors on the boundaries. Then under

a more complex experiment, we show that in unobservable sections the estimates

given by the DLKCF are ultimately bounded inside [−ε, ρm + ε], while the esti-

mates of a Luenberger observer may take physically unreasonable values. We also

illustrate the relationship between the sum of the errors and the submodes of the

true and the estimated states. Next we evaluate the DLKCF by comparing it with

the performance when dropping the consensus term and individual local KFs with-

out inter-agent communication, and show that the DLKCF has less disagreement

on estimates among neighbors, less overall estimation error, and more robustness

to low quality sensors or agents. Finally we close our discussion by analysing the

computational complexity of the DLKCF, and show a considerable reduction of its

runtime per agent compared to a central KF to perform the same estimation task.
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Figure 5.1: The network and true solution setup of the experiment to estimate an
expansion fan.

a) Freeway network setup and the communication topology between estimation
agents (capital A in circles) and sensors (red dots), with blue lines standing for con-
nections between agents, and red lines representing connections between agent and
sensors. The network is simplified into a one-dimensional straight line, discretized
by cells (small rectangles) and localized by sections (blocks). Sensor locations are
represented by red cells; b) True solution of a Riemann problem (expansion fan).

5.1 GAS under Observable Modes

We first present an experiment where the initial condition of the entire network

is piecewise constant, and the true solution is approximated using the Godunov

scheme (2.3). We show that the negative effect of assigning constant boundary

dynamics in our SMM can be attenuated by imposing larger modeling errors on the

corresponding boundaries.

The network setup and the communication topology is illustrated in Fig. 5.1a.

The network is a stretch of highway divided into 100 cells and 5 sections. For the

DLKCF, each section has 28 cells, with the left and right 10 cells overlapping with

its left and right neighbors, respectively.

We apply normalized parameters for the triangular fundamental diagram, and
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Figure 5.2: Estimation of an expansion fan.

a) State estimates by the DLKCF; b) Evolution of the common Lyapunov function
without (solid line) and with (dashed line) increases on the standard deviations of
model noise on the boundary cells.

analyse the behaviour of the DLKCF when the true solution is an expansion fan (see

Fig. 5.1b). Parameter not detailed here (same for the remainder of the numerical

experiments) can be found in the README documentation for the supplementary

source code (Sun and Work, 2014).

The estimation of the expansion fan given by the DLKCF is illustrated in Fig.

5.2a. Note that in order to validate the GAS of estimation error, measurement

noise is turned off for this experiment to check the convergence of the estimation

error (in mean) to zero. The evolution of the common Lyapunov function (4.3) is

plotted in Fig. 5.2b, with the solid line denoting the common Lyapunov function

for the estimate in Fig. 5.2a, and with the dashed line denoting an estimate when

the standard deviation of model noise is increased to 0.3 at the boundary cells

with constant dynamics (compared to 0.03 at the interior cells). It is shown that

by increasing the standard deviation of model noise on the boundary we yield a

monotonically decreasing common Lyapunov function.
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Figure 5.3: The network and true solution setup to compare the ultimate bounded-
ness and the error property of the estimates given by the DLKCF and a Luenberger
observer.

(a) Freeway network setup and communication topology for the DLKCF (in this
setup the sensor locations coincide with the shaded overlapping regions); (b) True
solution set to be a combination of an expansion fan and a shock propagating up-
stream, with a sinusoidal upstream boundary condition.

5.2 Ultimate bound and error property

In this section, we compare the performance of the DLKCF and a Luenberger ob-

server (Sun et al., 2003; Morarescu and Canudas de Wit, 2011) to illustrate the

discussions in Section 4.2. The network setup and the communication topology for

the DLKCF is shown in Fig. 5.3a. The network is a stretch of highway divided

into 136 cells and 15 sections. Both the DLKCF and the Luenberger observer have

10 cells in each section, with the left and right boundary cells overlapping with its

left and right neighbors, respectively. The true solution is set to be a combination

of an expansion fan and a shock propagating upstream, with a sinusoidal upstream

boundary condition (Fig. 5.3b).

The estimates given by the DLKCF and the Luenberger observer are illustrated

in Fig. 5.4, where the black and white areas depict estimates that are larger than
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Figure 5.4: Comparison of the state estimates given by the DLKCF and a Luenberger
observer.

(a) State estimates given by the DLKCF; (b) State estimates given by a Luenberger
observer. The black areas represent estimates greater than the jam density, and the
white areas represent estimates smaller than zero.

ρm and less than zero, respectively. Note that to rule out the possibility that the

nonphysical estimates are caused by a randomly generated large measurement error,

and to validate the expected estimation error property, measurement noise is turned

off for this experiment. The black area (see Fig. 5.4b) appears because the estimated

shock propagates to the upstream boundary before the true shock, and the estimator

is forced to accept an inflow greater than the receiving capacity of its upstream

boundary cell. Nevertheless, if the boundary conditions are sufficiently accurate,

and a warm-up period is introduced to eliminate the estimation error when the

section first arrives at a FC mode, then the chance a Luenberger observer could

suffer from this can be considerably reduced. The white area is generated in the

FF mode by the refinement in the analysis step, which is relatively large since the

section has been unobservable for a long period of time.

Fig. 5.5 presents the relationship between the sum of the estimation errors

and the submodes in section 0 and 14, where the estimates given by the Luenberger
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observer occasionally show nonphysical values. It is illustrated that when the section

is in FC, the sum of error provided by the Luenberger observer is always fixed,

while it is more flexible for the DLKCF. When the estimated state is in submode

2 but the true solution remains in submode 3, the DLKCF will drop vehicles at

the upstream boundary, thus resulting in a decrease in the sum of the estimation

errors, and the decrease stops when the true state finally arrives in submode 2. The

case is similar when the DLKCF needs to add more vehicles at the downstream

boundary to avoid estimates of negative densities. Finally note that by truncating

the nonphysical estimates to within the desired bound, the Luenberger observer

can also achieve reasonable estimates at the expense of error conservation, which

is similar to the case of the DLKCF where the error property proved in Section is

sacrificed to preserve ultimate boundedness of the estimates.

5.3 Effect of inter-agent communication

In this section, we show the effect of the distributed algorithm on producing accurate

estimates, and the critical role the consensus term plays in reducing the disagreement

between agents. The network setup is given in Fig. 5.6, with the true solution being

the same as in Section 5.2 (see Fig. 5.3b).

Disagreement and estimation errors can be generated for various reasons, and in

this experiment we consider the combining effects of the following two causes: (i)

low quality sensors, with some of the sensors having large measurement errors; (ii)

low quality agents, with some agents assuming incorrect (too small) noise models

for the low quality sensors.

Table 5.1 explores the effects of the above two causes on the disagreement and

error of estimates for individual local KFs, the Distributed Local Kalman Filter

(DLKF) which denotes the DLKCF without a consensus term, and the DLKCF.
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Figure 5.5: The relationship between the sum of the errors across an unobservable
section and its submodes.

The sum of the errors for the DLKCF and the Luenberger observer (left axis), and
the submodes of the true state and the estimated state given by the DLKCF (right
axis). The index 0 on the right axis means that the section is in one of the observable
modes, and 1, 2, 3 correspond to the unobservable submodes 1, 2, and 3 defined in
Section 5.2. To better distinguish between the submode plots for the true state and
the estimated state given by the DLKCF, the submode indices are slightly perturbed
by −0.05 and 0.05, respectively. The submode plot for the estimated state given
by the Luenberger observer is not shown here since the sum of the errors is always
constant as long as the section is unobservable, independent of the submode.
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Figure 5.6: The network setup to validate the effect of inter-agent communication.

(a) Freeway network setup and communication topology for the DLKCF; (b) Free-
way network setup and communication topology for the individual local KFs.
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Table 5.1: Disagreement and error of estimate1

Low quality Disagreement (×10−1) Error (×10−1)
sensors agents Idv. KF DLKF DLKCF Idv. KF DLKF DLKCF
False – 0.014 0.585 0.354 1.133 1.133 1.106
True False 0.148 0.558 0.310 1.461 1.470 1.453
True True 1.631 1.648 1.085 2.856 1.555 1.531

1 Idv. is the abbreviation for individual.

Starting from the downstream sensor of the first section, we put a low quality

sensor (with the measurement error standard deviation of 0.3, compared to 0.03

for all other sensors) once every three sensors, and we assume that agents indexed

by even numbers cannot recognize the low quality sensors they are connected to

(thus still applying 0.03 as the measurement error standard deviation for the low

quality sensors). We also apply perturbations of 10-20 percent on the parameters

in the traffic model (i.e. ρm, ρc, and vm) in the estimators for different agents. The

disagreement u of the estimate is computed by u =
(

1
kmax

∑kmax

k=1 uk

) 1
2
, where kmax

is the total number of time steps, and uk = 1
N−1

∑N−1
i=1

‖ui+1
i,k ‖

2
2

ni,i+1
with ui+1

i,k defined

in (4.1). The average estimation error is given by η =
(

1
kmax

∑kmax

k=1 ηk

) 1
2
, where

ηk = 1
N

∑N
i=1

‖ηi,k|k‖22
ni

.

Table 5.1 indicates the sensitivity of individual local KFs to the existence of

low quality sensors and agents, with the disagreement and error considerably in-

creasing as low quality sensing and estimating units are added in the system, and

Fig. 5.7 plots the corresponding estimates given by the individual local KFs and the

DLKCF. The sensors and the low quality agents for the two estimators are identical.

However, for individual local KFs the low performance agents can never identify the

low quality sensors they are connected to, while in the DLKCF some of the low

performance agents apply the right measurement error covariance matrices through

communication with neighbors. Consequently, it is shown in Fig. 5.7a that the es-

timates given by the independent low performance agents with low quality sensors
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Figure 5.7: Estimation with low quality sensors and agents.

(a) State estimates given by individual local KFs; (b) State estimates given by the
DLKCF.

are poor. Comparatively, the estimates given by the DLKCF is much better due

to the strong connection among agents through overlapping regions and inter-agent

communications (see also Fig. 5.6a).

Fig. 5.8 illustrates the evolution of disagreements uk and errors ηk for the indi-

vidual local KFs, the DLKF, and the DLKCF. It is shown that the disagreement

and error for individual local KFs is large and fluctuates compared to the DLKF

and DLKCF. Fig. 5.8b illustrates that the DLKF is significant in reducing the es-

timation error. Notice that at some time periods the disagreement of the DLKCF

may increase to the level comparable to the individual local KFs, since it is not

guaranteed that all the low quality sensors can be identified through inter-agent

communication. Despite this, it is shown that the disagreement of the DLKF is

reduced through the consensus term in the DLKCF. In general, the effect of the

consensus term is more apparent if the disagreement before applying a consensus

term is relatively large.
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Figure 5.8: Disagreement and error for the DLKCF, the DLKF, and individual local
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5.4 Computational complexity

In this section, we close the loop by returning to the point that motivates this work–

reducing the computational load of the estimators. We analyse the computational

complexity of the DLKCF, and compare its runtime with a central KF where a

central estimator estimates the entire network.

Recall that the multiplication of two matrices in Rn×n is regarded as an O(n3)

operation, and the multiplication of a matrix in Rn×n and a vector in Rn is an

O(n2) operation. Thus a standard KF with state in Rn has an O(n3) computational

complexity at each estimation step.

For the ith local agent of the DLKCF, the computational complexity of con-

ducting the forecast step, as well as updating the posterior error covariance in the

analysis step, is O(n3
i ) at each estimation step. As for computing the posterior es-

timate, the computational complexity is dominated by the required operations to

obtain the consensus term (i.e., to compute the γ∗k). Recall from (4.5) that the value

of γ∗k is obtained by computing the minimum and maximum eigenvalues of particular

matrices whose dimensions are closely related to the structure of the network. For



5. Numerical experiments 38

Table 5.2: Runtime comparison of the central KF and the DLKCF (per agent) to
complete 2000 estimation steps

Central KF DLKCF
n runtime tc (sec) n nl n̂ runtime td (sec)
100 104 100 28 10 19.4
210 512 210 50 10 68.6
460 4400 460 100 10 336

simplicity we assume ni = nl for all i, where the subscript “l” stands for “local”,

then we have Ak, Gk ∈ RNnl×Nnl , and L̃, Ĥ ∈ R2(N−1)n̂×Nnl (recall that n̂ is the di-

mension of the overlapping areas). If we apply eigenvalue searching methods which

are able to ensure rapid convergence within a few iterations (e.g., the Rayleigh Quo-

tient Iteration (see Heath, 2002, Section 4.3), etc.), obtaining the consensus term

requires an O(N3n2
l n̂) operation. Thus the computational complexity of the DLKCF

for the ith local agent is dominated by O(N3n2
i n̂+ n3

i ) at each estimation step, and

here we apply the subscript i back for consistency1. Note that the sparsity of the

matrices Ak, L̃ and Ĥ, which will potentially reduce the computational load, is not

considered in this analysis.

Table 5.2 reports the runtime for each agent of the DLKCF and the central KF

to complete 2000 estimation steps tracking a shockwave on a stretch of freeway,

which we denote as td and tc, respectively. The state dimensions n for the DLKCF

and the central KF are the same. For the DLKCF, the number of local sections N

and the number of overlapping cells between neighbors n̂ remain unchanged as n

increases, and we let ni = nl for all i. It is shown in Table 5.2 that compared to the

central KF, the runtime of the DLKCF is considerably reduced, and td ≈ t
2
3
c . This is

due to the fact that if we let n ≈ Nnl, then at each estimation step the central KF

requires O(N3n3
l ) operations, and the required operations for the DLKCF per agent

1If we further assume that N � nl (i.e., the total number of the local sections is much smaller
than the dimension of the local sections), the computational complexity of the DLKCF for the ith

local agent is dominated by O(n2i n̂+ n3i ).
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is approximately O(N3n2
l n̂), assuming the complexity for computing the consensus

term dominates the local KF. Further if we consider N � nl and n̂ � nl, and

the sparsity of the matrices Ak, L̃ and Ĥ encountered in the computation of the

consensus term, we obtain O(N3n2
l n̂) ≈ O(N2n2

l ), which yields td ≈ t
2
3
c .
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Chapter 6

Conclusions and future work

In this work, a distributed local Kalman consensus filter is designed, analysed and

validated for large-scale multi-agent traffic estimation. The DLKCF is applied to

the switching mode model to monitor traffic on a road network partitioned into

local sections, with overlapping regions between neighbors introduced to allow for

information exchange on measurements and estimates. We prove that the error

dynamics of the DLKCF is globally asymptotically stable when all sections switch

among observable modes of the SMM. For an unobservable section, we show that the

estimates are ultimately bounded, thus ensuring physically meaningful estimates.

We also prove that under most conditions, the sum of the estimation errors of all the

cells in the unobservable section converges to a fixed value. Numerical experiments

verify the GAS of the error dynamics under observable modes, compare the DLKCF

to a Luenberger observer when unobservable sections exist, illustrate the effect of

the DLKCF on promoting agreement among different agents as well as reducing the

overall estimation error, and shows a considerable reduction on the runtime of the

DLKCF compared to a central KF.

Several other related problems are open for future exploration. Currently, the

scaling factor γk in the consensus term is globally shared among all the local sec-

tions, indicating that the computation of γk requires incorporating the structure of

the entire road network, which is computationally expensive. The DLKCF will be
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significantly improved if scaling factors γi,k can be locally obtained based only on

the structure of the ith section and its neighbors.

In this work, the consensus term is turned off in the unobservable section, since

we do not want them to attempt to correct their neighbors when their own esti-

mates are poor, and since the ultimate boundedness of the estimates is shown to

exist without the consensus term. It would be interesting to see if we can find

consensus structures that can help the unobservable sections achieve better esti-

mates by communicating with observable neighbors, while preserving the stability

or boundedness of the estimation error.

Another potential future work is to assess the DLKCF in a field experiment. One

of the major challenges is to generalize all the results to the case where junctions exist

to link several stretches of roadways. Despite this, undoubtedly it would be worth

either deriving the network extension and doing a field assessment, and possibly

comparing with other filters.
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