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Abstract

Parallel programming is hard. The industry leaders hope to convert the hard

problem of using parallelism into the easier problem of using a parallel library.

Yet, we know little about how programmers adopt these libraries in practice.

Without such knowledge, other programmers cannot educate themselves about

the state of the practice, library designers are unaware of API misusage, re-

searchers make wrong assumptions, and tool vendors do not support common

usage of library constructs.

We present the first study that analyzes the usage of parallel libraries in a

large scale experiment. We analyzed 655 open-source applications that adopted

Microsoft’s new parallel libraries – Task Parallel Library (TPL) and Parallel

Language Integrated Query (PLINQ) – comprising 17.6M lines of code written

in C#. These applications are developed by 1609 programmers. Using this

data, we answer 8 research questions and we uncover some interesting facts.

For example, (i) for two of the fundamental parallel constructs, in at least 10%

of the cases developers misuse them so that the code runs sequentially instead

of concurrently, (ii) developers make their parallel code unnecessarily complex,

(iii) applications of different size have different adoption trends. The library

designers confirmed that our findings are useful and will influence the future

development of the libraries.
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Chapter 1

Introduction

The computing hardware industry has resorted to multicore CPUs in order to

keep up with the previous prediction of Moore’s law. While the number of tran-

sistors will keep doubling, the multicore revolution puts pressure on software

developers to use parallelism if they want to benefit from future hardware im-

provements. At the time, this seemed like a huge gamble: will software develop-

ers embrace parallelism in their applications? A few years after the irreversible

conversion to multicore, we can finally answer such questions.

Parallel programming is hard. In the desktop computing, the dominant

paradigm is thread-based parallelism on shared-memory systems. Under this

paradigm, parallel programming is regarded as the art to balance conflicting

forces: making code thread-safe requires protecting accesses to shared variables

through synchronization, but this in turn reduces the scalability of parallel ap-

plications. Parallelism can also obfuscate the intent of the original sequential

code [6]. Despite books on parallel programming and API documentation of par-

allel constructs [2,10,14–17], parallel programming education is lagging behind.

Developers miss examples [35] of successful applications that use parallelism.

The industry leaders hope to convert the hard problem of using parallelism

into the easier problem of using a parallel library. Microsoft provides Task Par-

allel Library (TPL) [15], Parallel Language Integrated Query (PLINQ) [26], Col-

lections.Concurrent (CC) [3] and Threading [36] for .NET languages (e.g., C#).

Java developers uses java.util.concurrent package. Intel provides Thread-

ing Building Blocks (TBB) [37] for C++. Despite syntactic differences, these

libraries provide similar features such as scalable concurrent collections (e.g.,

ConcurrentDictionary), high-level parallel constructs (e.g., Parallel.For),

and lightweight tasks. Their runtime systems also provides automatic load bal-

ancing [40]. Despite the recent surge in the number of these libraries, we know

little about how practitioners adopt these libraries in practice.

We present the first empirical study that answers questions about paral-

lel library usage in-depth and on a large scale. We analyzed 655 open-source

applications that adopted Microsoft’s new TPL and PLINQ libraries. In this

corpus, we studied the usage of all four .NET parallel libraries (both old and

new). These applications are hosted on Github [8] and Microsoft’s CodePlex [4],

and they comprise 17.6M non-blank, non-comment lines of code written in C#
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by 1609 programmers. We implemented a semantic analysis that uses type

information to collect precise statistics about parallel constructs.

Using this data, we are able to answer several questions.

Q1: Are developers embracing multi-threading? Our data shows that 37%

of all open-source C# applications in the most active code repositories use multi-

threading. Out of these applications, 74% use multi-threading for concurrency

and 39% use it for parallelism.

Q2: How quickly do developers start using the new TPL & PLINQ libraries?

TPL and PLINQ have been released nearly 2 years ago (in April 2010). However,

we found significant differences between the times when developers start using

these libraries. We found that applications of different size have a different

adoption tipping point. We also found that more applications are becoming

parallel, and existing parallel applications are becoming more parallel.

Q3: Which parallel constructs do developers use most often? 10% of the

API methods account for 90% of the library usage, thus newcomers can focus

on learning a smaller subset of the parallel libraries.

Q4: How do developers protect accesses to shared variables? Locks are still

the most used synchronization construct, but developers use a wide variety of

alternatives.

Q5: Which parallel patterns do developers embrace? Out of the six widely-

used parallel patterns that we analyzed, loop parallelism is the most common.

Q6: Which advanced features do developers use? We found that developers

rarely use optional parameters such as customized task schedulers, aggregate

exception handling, controlling the level of parallelism, etc.

Q7: Do developers make their parallel code unnecessarily complex? We

found that developers sometimes use more powerful task constructs instead of

the equivalent but simpler task constructs, even though they never use the extra

power. Thus they make their code less readable and more verbose than it needs

to be.

Q8: Are there constructs that developers commonly misuse? We found

that for two of the fundamental parallel constructs, in at least 10% of the cases

developers misuse them: the code runs sequentially instead of concurrently.

Our study has several practical implications. First, it is a tremendous re-

source for educating developers. The most common way to learn a new library

is to study relevant examples of the API. Newcomers can start learning the

APIs that are most widely used (see Q1 and Q3), and we can point them to the

kinds of applications that are most likely to use the libraries (Q2). Newcomers

should avoid common misuses (Q8) and constructs that unnecessarily increase

the code complexity and the likelihood of errors (Q7). Our study also educates

developers by showing real-world examples of parallel patterns (Q5).

Second, designers of these libraries can learn how to make the APIs easier

to use (Q6). They can learn from observing which constructs do programmers
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embrace (Q3), and which ones are tedious to use or error-prone (Q8).

Third, researchers and tool vendors can focus their efforts on the constructs

that are commonly used (Q3) or tedious or error-prone to use (Q8). For example,

the refactoring community can decide which refactorings to automate. The

testing and verification community can study the synchronization idioms that

programmers use (Q4).

Contributions

This paper makes the following contributions:

• To the best of our knowledge, this is the first empirical study to answer

questions about parallel library usage on a large-scale, using semantic

analysis.

• We present implications of our findings from the perspective of three dif-

ferent audiences: developers, library designers, and researchers.

• The tools and data are publicly available, as a tremendous education re-

source: http://LearnParallelism.NET

This thesis is an expanded and revised version of work previously published

by the author [20].
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Chapter 2

Background

2.1 Parallel programming in .NET

We first give a brief introduction to parallel programming in .NET framework.

The earlier versions provide the Threading library which contains many low-

level constructs for building concurrent applications. Thread is the primary

construct for encapsulating concurrent computation, and ThreadPool allows

one to reuse threads. Synchronization constructs include three types: locks,

signals, and non-blocking.

.NET 4.0 was enhanced with higher-level constructs. The new TPL li-

brary enables programmers to introduce task parallelism in their applications.

Parallel, Task, and TaskFactory classes are the most important constructs in

TPL.

Task is a lightweight thread-like entity that encapsulates an asynchronous

operation. Using tasks instead of threads has many benefits [15] - not only

are tasks more efficient, they also abstract away from the underlying hardware

and the OS specific thread scheduler. Task<> is a generic class where the

associated action returns a result; it essentially encapsulates the concept of a

“Future” computation. TaskFactory creates and schedules tasks. Here is a

fork/join task example from the passwordgenerator [31] application:

for (uint i = 0; i < tasks.Length; i++)

tasks[i] = tf.StartNew (() => GeneratePassword(length , forceNumbers , ...),

_cancellation.Token);

try{ Task.WaitAll(tasks , _cancellation.Token); } ...

The code creates and spawns several tasks stored in an array of tasks (the fork

step), and then waits for all tasks to complete (the join step).

Parallel class supports parallel loops with For and ForEach methods, and

structured fork-join tasks with Invoke method. The most basic parallel loop

requires invoking Parallel.For with three arguments. Here is a usage example

from the ravendb [33] application:

Parallel.For(0, 10, counter => {... ProcessTask(counter , database , table)} )

The first two arguments specify the iteration domain, and the third argument

is a C# lambda function called for each iteration. TPL also provides more

advanced variations of Parallel.For, useful in map/reduce computations.
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.NET also provides the CC library, which supports several thread-safe, scal-

able collections such as ConcurrentDictionary.

.NET 4.0 provides a fourth parallel library, the Parallel Language-Integrated

Query (PLINQ) library, which supports a declarative programming style.

PLINQ queries operate on IEnumarable objects by calling AsParallel(). Here

is an example from the AppVisum [27] application:

assembly.GetTypes ().AsParallel ()

.Where(t => t.IsSubclassOf(typeof(ControllerBase)))

.Select(t => new ...)

.ForAll(t => controllersCache.Add(t.Name , t.Type));

After the AsParallel, the data is partitioned to worker threads, and each

worker thread executes in parallel the following Where, Select, and ForAll.

2.2 Roslyn

The Microsoft Visual Studio team has recently released Roslyn [34], as a com-

munity technology preview, with the goal to expose the compiler-as-a-service

through APIs to other tools like code generation, analysis, and refactoring.

Roslyn has components such as Syntax, Symbol Table, and Binding and Flow

Analysis APIs.

The Syntax API allows one to parse the structure of a program. While a

C# file can be syntactically analyzed in isolation, we cannot ask questions such

as ”what is the type of this variable”. The type may be dependent on assembly

references, namespace imports, or other code files. To further improve the anal-

ysis, we use the Symbol and Binding APIs to get semantic information such as

type information, compiler options (e.g., targeting .NET 4.0). We used Syntax,

Symbol and Binding APIs to parse our corpus data and statically analyze the

usage of concurrent constructs.

Table 2.1: Corpus Data

Type Small
(1k-10k)

Medium
(10k-100k)

Large
(>100k)

Total

Applications compilable and
targetting .NET 4.0

6020 1553 205 7778

Multi-threaded Applications 1761 916 178 2855

Applications adopted new li-
braries (TPL, PLINQ)

412 203 40 655
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Figure 2.1: Number of applications that use Threading, TPL, PLINQ or CC
libraries.
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Chapter 3

Methodology

3.1 Corpus of Data

We analyze all open-source C# applications from two repositories, CodePlex [4]

and Github [8]. We chose these two repositories because according to a recent

study [19], most C# applications reside in these two repositories. Codeplex is

Microsoft’s code repository, and Github is now the most popular open source

software repository, surpassing Google Code and SourceForge.

From these repositories, we want to filter those applications that use TPL,

PLINQ, CC, and Threading libraries. For this, we implemented a tool, Col-

lector. Next we explain how Collector works.

Collector downloaded all C# applications that contain at least one com-

mit after April 2010, the release date of TPL and PLINQ. In the Git commu-

nity, developers often fork an application and start making changes in their own

copies. Sometimes, the main application might merge changes from the forked

applications, but many times the forked applications start evolving indepen-

dently. Collector ignores all forked applications. It also ignores the “toy

applications”, i.e., the ones that have less than 1000 non-comment, non-blank

lines of code (SLOC). We discard such applications because many are just ex-

perimentally written by developers who learn a new construct, and they do not

represent realistic usage of production code.

After eliminating applications that do not compile due to the missing li-

braries, incorrect configurations, etc, we had 7778 applications targetting .NET

4.0. From these, we want to select the applications that truly use the parallel

libraries. For example, 648 applications imported the TPL library, but only 562

actually invoke functions from the TPL libraries. Thus, Collector removed

the applications that import but never invoke any parallel library construct.

Table 2.1 shows 2855 applications that truly use the parallel libraries.

Figure 2.1 shows that some applications use only one library, while other

applications use these four libraries together. The TPL or PLINQ applications

that also use Threading does not imply that these applications use threads.

Threading library also provides synchronization constructs, and they are used

in conjunct with TPL and PLINQ. The 2200 applications that only use the

Threading library use multi-threading with explicit threads and thread pools.
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We excluded applications that use the Threading library to only insert delays

and timers.

In the rest of the paper, we will focus on the applications that adopted the

new parallel libraries, TPL and PLINQ. In this corpus, we also study the usage

of Threading and CC. After all the filters, Collector retained 655 applica-

tions (shown within the gray area inside Fig. 2.1), comprising 17.6M SLOC,

produced by 1609 developers. The only exception is our research question Q1

(the adoption of multi-threading), where we take into account all applications

in Fig. 2.1.

We analyze all these 655 applications, without sampling, and these applica-

tions are from the most widely used C# repositories. This makes our findings

representative.

3.2 Analysis Infrastructure

We implemented another tool, Analyzer, that performs the static analysis and

gathers statistical usage data. We run Analyzer over each application from

our corpus data. For each of these applications, Analyzer inspects the version

from the main development trunk as of Jan 31st, 2012. The only exception is

Q2 (the trends in adoption), where we analyze monthly code snapshots.

We implemented a specific analysis for each question using Roslyn’s API.

Since two projects in an application can share the same source file, Analyzer

ensures that each source file is counted only once. Also, a .NET project can

import system libraries in source format, so Analyzer ignores any classes that

reside in the System namespace. This ensures that we are not studying the

usage patterns in Microsoft’s library code, but we study the usage only in the

applications’ code. When we discuss each empirical question, we present the

static analysis that we used in order to collect the results.
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Chapter 4

Results

4.1 Are developers embracing multi-threading?

As seen in Table 2.1, 37% of the 7778 applications use at least one of the four

parallel libraries, which means they use some form of multi-threading. When we

take into account only the category of large projects, 87% use multi-threading.

Why do programmers use multi-threading? Sometimes, multi-threaded code

is a functional requirement. For example, an operating system with a graphical

user interface must support concurrency in order to display more than one

window at a time. Sometimes it is more convenient to write multi-threaded code

even when it runs on a uniprocessor machine. For example, online transaction

processing, reactive, event-driven code is easier to express with threads. In such

scenarios developers use multi-threading for concurrency.

However, other times developers use multi-threading to improve a non-

functional requirement such as performance. For this, they use multiple threads

that run on multicore machine, thus they use multi-threading for parallelism.

Out of the applications that use multi-threading, 74% use it for concur-

rency and 39% use it for parallelism. Figure 4.1 shows the distribution. Some

applications using multi-threading for both concurrency and parallelism

Next we manually analyzed the top 50 applications that highly use paral-

lelism. We aim to find the killer applications for parallelism. We list their

domain and how many applications we found from each domain: developer

tools (7), data mining (7), multimedia (6), graphics (6), games (5), cloud com-

puting (5), finance (3), database (3), networking (3), social media (2), office

productivity (2), web server (1).

Program Analysis: To find whether an application uses multi-threading

for concurrency or for parallelism, Analyzer first tabulates the usage of the

multi-threading constructs (e.g., Thread, Task, Parallel.For, etc.) from each

library in each application. Some constructs are clearly intended for concur-

rency (e.g., FromAsync, TaskCompletionSource, UI event dispatching thread)

or for parallelism (e.g., Parallel.For, all PLINQ constructs). Other constructs

(e.g., Thread, Task) can be used for either concurrency or parallelism. A typ-

ical usage scenario is to spawn threads in the iterations of a for loop. If the

main thread waits for the child threads to finish, it means that the intent of
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the programmer is to have the threads execute at the same time, thus it is an

example of parallelism. If the main thread does not wait for the child threads, it

means that the intent is to have the threads be in progress, which is an example

of concurrency. Thus, Analyzer checks whether the spawned constructs are

waited or joined in the calling context.

Figure 4.1: Concurrency vs. Parallelism

Concurrency Parallelism
2099 1107

3511748 756

Union: 2855

�
�

�
�

Many applications have embraced multi-threading, however many of

them use it for concurrency rather than parallelism.

4.2 How quickly do developers start using the

new TPL & PLINQ libraries?

In the rest of the paper we move away from the applications that only use the

Threading library and will focus on the 655 applications that adopted the new

libraries (in the gray area in Fig. 2.1). Microsoft released the new libraries

along with .NET 4.0 in April 2010. We want to find out how long it takes for

developers to start using such libraries.

To analyze such adoption trends, from the set of 655 applications that even-

tually use TPL/PLINQ we select the subset of applications that exist in the

repository as of April 2010. This subset comprises of 54 applications. If we had

analyzed all TPL/PLINQ applications, regardless of their starting date, then

as time goes by, we would see an increased number of constructs due to adding

more applications.

For each of these 54 applications, we analyze monthly snapshots. In total,

we analyze 31.9MLOC, comprising 694 different versions.

Figure 4.2 shows the number of applications that use at least one construct

in each month. We split the 54 applications according to the size of their source

code (small, medium, large). This prevents the trends in the small applications

to obscure the trends in the larger applications (notice the different vertical

scale in Fig 4.2). The results show that more applications are using the libraries

as time goes by.

Figure 4.3 shows the average number of constructs per application. Here

is an example of how we compute this number for the month of June 2010 for
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Figure 4.2: Number of (a) small-, (b) medium-, (c) large-size applications that
use TPL/PLINQ
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Figure 4.3: Average number of TPL/PLINQ constructs per application for (a)
small-, (b) medium-, (c) large-size applications.
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small applications. There are 24 constructs and 9 applications that use TPL

at this time, so the average usage per application is 24/9 = 2.6. In April 2010

the average usage for small and medium applications is not zero because these

applications were using the “developer preview release” of the libraries.

Looking at both Fig. 4.2 and 4.3, we can notice a very different adoption rate

among the three sizes of applications. If we look for the “tipping point” [9], i.e.,

the point in time when there is a major increase in the adoption rate (noticeable

by a steep gradient of the slope), we can notice very different trends. The small

applications are the early adopters of new libraries (2-3 months after the release),

medium applications adopt around 4-5 months, and large applications are late

adopters (8-9 months after the release).

Figures 4.2 and 4.3 show complementary data: the former shows that more

applications are becoming parallel, whereas the latter shows that each applica-

11



Figure 4.4: Average number of Threading constructs per application for (a)
small-, (b) medium-, (c) large-size applications.
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tion is becoming more parallel, i.e., it uses more parallel constructs.

Figure 4.4 shows the average number of Threading constructs per application

does not decrease over time. This makes sense because most of the synchroniza-

tion constructs are in the Threading library. Also, one can notice that compared

with the TPL/PLINQ average density, Threading density is higher; this makes

sense because the latter library has lower-level constructs.

Program Analysis: To find whether an application exists in April 2010,

Collector looks at the creation date of each application, as listed in Github or

Codeplex. After determining the set of 54 applications, our script checks out the

source code snapshot for each month from April 2010 to February 2012. Then,

for each snapshot, Analyzer collects usage details of TPL/PLINQ libraries. In

the next question (Q3) we provide more information on how Analyzer collects

usage details for one single snapshot.
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	Applications of different size adopt the new parallel libraries differently.

4.3 Which parallel constructs do developers

use most often?

Table 4.1 tabulates the constructs that developers used most often from the

TPL, Threading, PLINQ, and CC libraries. For example, lets drill down inside

the TPL library and see the usage of class Task. Its methods account for 23%

of all method call sites for the TPL library. One particular method, Start, has

243 call sites in 92 different applications. These call sites account for 18% of all

call sites for methods from Task class.

Among these 4 libraries, they define 138 classes containing 1651 methods
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Figure 4.5: Distribution of usage of parallel constructs. 10% of the constructs
are used 90% of the time.

(counting constructors and overloaded methods). In table 4.1 we show combined

usage for overloaded methods (e.g., we combine all 17 overloaded StartNew

methods into one single method). Analyzer collects usage details for each of

these methods. Due to the space limitations, we only tabulate the most used

classes and methods for each library. The companion website [39] presents a

complete fine-grained view.

The data shows that among the 1651 methods, some methods are used much

more frequently than othes. For example, we observed in Figure 4.5 that 10%

of the methods are used 90% of the times. 1114 methods are never used. While

similar trends are expected for any rich library APIs, it is important that we

find the widely used APIs so that developers can focus on these.

We now discuss some of the findings for each library.

TPL: As shown in Table 4.1, Parallel, Task, and TaskFactory are the

TPL classes most commonly used. When it comes to creating tasks, developers

prefer to use the factory method TaskFactory.StartNew rather than invoking

the task constructor. Task<> (i.e., the “Future” construct) is used nearly half

as many times as Task.

Threading: WaitHandle is an abstract class for synchronization primitives,

e.g., semaphore, mutex, so it is the second most popular class after Thread, the

main class of the library.

Concurrent Collection: ConcurrentDictionary, a thread-safe imple-

mentation of HashMap is the most widely used.

Program Analysis: To accurately detect usage of a particular method,

Analyzer needs type and binding information. Analyzer needs to know not

only the name of the method, but also the type of the receiver object and the

13



type of the arguments, and where does a method bind. This lets the analysis

differentiate between t.start() when t is an instance of Thread, and the cases

when t is an instance of a business class defined by the application. Because

Analyzer uses the Symbol and Binding services of Roslyn, our reported usage

numbers are 100% precise. Other empirical studies of library usage [1, 11, 38]

have only used syntactical analysis, which can limit the accuracy of the results.

�
�

�
�

Parallel library usage follows a power-law distribution: 10% of the API

methods account for 90% of the total usage.

4.4 How do developers protect accesses to

shared variables?

Table 4.2 shows the type of synchronization, the name of the library constructs,

how many times each construct was employed, and what is the usage frequency

in comparison with other constructs within the same type of synchronization.

Table 4.2 list all five kinds of synchronization constructs. lock and volatile

accesses are language features, Task.Wait is a method of TPL, implicit syn-

chronization constructs are from CC, and the rest of all is from Threading. To

compute the number of implicit synchronization constructs, we sum the number

of call sites for each API method that has implicit synchronization in its imple-

mentation. Notice that lock is by far the most dominant construct followed by

Volatile accesses.

Program Analysis: To count one usage of a lock, Analyzer tries to

match a pair of lock acquire and release operations. When one of the acquire

or release operations is used more often than the other, we take the minimum

number of these operations. Similarly, a pair of signal and wait operations count

as one occurrence.

Finding accesses to volatile variables takes most of the analysis running time.

Using the binding information, Analyzer looks up the definition of each ac-

cessed variable and field and checks whether it is volatile variable or field.

�
�

�
�

While locks are still very popular, developers use a wide variety of

other synchronization constructs.
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4.5 Which parallel patterns do developers

embrace?

Using the classification from the .NET Parallel Programming book [2], we ana-

lyzed the usage of six parallel patterns. Table 4.3 tabulates the usage of these

patterns. The second column reports the popularity of task vs. data parallelism.

The third column provides the names of patterns within each category, and the

fourth column gives a brief explanation of the pattern. Last two columns show

the number of individual instances of patterns, and the popularity percentage

within its category.

Program Analysis: To automatically detect these patterns, we developed

heuristics. We also randomly sampled from the inferred patterns to ensure that

the reported patterns are inferred correctly. Because these patterns have several

syntactical variations, it is very hard to detect all instances of patterns. Thus,

the numbers that we report may be under-estimated, but not over-estimated.

For instance, to detect fork/join tasks pattern, Analyzer tries to match

pairs of statements that create tasks and statements that wait for tasks com-

pletion. Our heuristic is to match such pairs intra-procedurally, not inter-

procedurally. Although this heuristic correctly labels many cases, it fails to

label a pattern that creates tasks in one method and waits for completion in

another method.

Second, to detect data parallelism, Analyzer collects Parallel.For,

Parallel.ForEach and AsParallel method calls. Since these method calls are

perfect examples of data parallelism, we do not need to use heuristics. Loops

that iterate over collections and launch a task to process each element are also

counted by Analyzer as data parallelism.

Next we describe how Analyzer finds aggregation patterns. In a paral-

lel aggregation pattern, the parallel loop uses unshared, local variables, that

are combined at the end to compute the final result. Analyzer searches for

Parallel.ForEach and Parallel.For method calls that use a ThreadLocal

object as a parameter. This is the parameter that encapsulates the unshared

variable. As for PLINQ’s code, Analyzer checks whether the AsParallel

method calls are followed by Sum, Aggregate, Min, etc. methods.

Finally, we illustrate how Analyzer detects tasks that dynamically spawn

other tasks, e.g., in a recursive divide-and-conquer algorithm. Starting from

a task’s body, it analyzes the method invocations inside. If one of these in-

vocations calls recursively the method which encapsulates the starting task,

Analyzer labels it a dynamic task pattern.

�



�
	Regular data parallelism is the most used parallel pattern in practice.
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4.6 Which advanced features do developers

use?

Now we focus on the most important parallel classes, Parallel and Task. Their

methods take optional arguments related to performance and exception han-

dling. Since these optional arguments distinguish TPL from other parallel li-

braries (e.g., TBB or Java’s ForkJoinTask), we wonder if developers use them.

Parallel Class: Parallel class has Invoke, For, and ForEach meth-

ods. These methods can take an optional argument, ParallelOptions. With

ParallelOptions, one can insert a cancellation token, limit the maximum con-

currency, and specify a custom task scheduler. Of 852 method calls of Parallel

class, only 3% use ParallelOptions.

84% of ParallelOptions are used for specifying MaxDegreeOfParallelism;

26% are used for inserting CancellationToken; and only 2% are used for cus-

tom task scheduler. Surprisingly, 80% of ParallelOptions are only used for

MaxDegreeOfParallelism. 40% of MaxDegreeOfParallelism specify the num-

ber of maximum threads as a constant, and the average value is 5.1. 60% specify

the maximum concurrency as the number of cores.

Similarly, For and ForEach methods calls can take an optional

ParallelLoopState which enables iterations to signal events (e.g., interrupt)

to other iterations. Of 852 calls, only 3% use ParallelLoopState.

Task Class: When creating tasks, a developer can specify the ex-

ecution order or the granularity of the task with an optional argument

TaskCreationOptions. However, only 12% of task creation method calls use

TaskCreationOptions. 30% of TaskCreationOptions is LongRunning which

indicates a coarse-grained operation.

Another advanced feature, TaskContinuationOptions, specifies the behav-

ior for a task that is created as a continuation of another task. 28% of the

continuation tasks use TaskContinuationOptions. Figure 4.6 tabulates the

distribution of various continuation options.

Furthermore, 13% of task creation method calls take CancellationToken as

a parameter, which propagates notification that operations should be canceled.

Program Analysis: Because TaskCreationOptions and

TaskContinuosOperations are enums, Analyzer also visits field accesses.

�
�

�
�

The advanced features and optional arguments are rarely used in

practice.
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Figure 4.6: Distribution of Task Continuation Options

0%	   5%	   10%	   15%	   20%	   25%	   30%	   35%	   40%	   45%	  

	  NotOnRanToComple6on	  
	  Long	  Running	  
	  NotOnFaulted	  

	  OnlyOnCancelled	  
	  NotOnCancelled	  

	  ExecuteSynchronously	  
	  None	  

	  OnlyOnRanToComple6on	  
	  OnlyOnFaulted	  

AFachedToParent	  

4.7 Do developers make their parallel code

unnecessarily complex?

TPL provides some high-level constructs that allow developers to implement

parallel code more concisely. These constructs decrease the number of lines of

code and makes the parallel code easier to read, thus improving code quality.

Consider the example below, taken from backgrounded [28] application. It

illustrates fork-join task parallelism.

The code on the bottom is the equivalent of the code on the top. It is much

simpler to read because it uses Parallel.Invoke, a higher-level construct.

var runDaemons = new Task(RunDaemonJobs , .. token);

.....

var runScheduledJobs = new Task(RunScheduledJobs , .. token);

var tasks = new[] {runDaemons , ..., runScheduledJobs };

Array.ForEach(tasks , x => x.Start());

Task.WaitAll(tasks);




Parallel.Invoke(new ParallelOptions(CancellationToken =.. token),

RunDaemonJobs , ..., RunScheduledJobs);

Analyzer found that in 63 out of 268 regular fork/join task parallelism, the

programmers could have used Parallel.Invoke, which would have reduced the

complexity of the parallel code.

for (int i = 1; i <= threadCount; i++)

{

var copy = i;

var taskHandle = Task.Factory.StartNew (() => DoInefficientInsert(server.

Database.Configuration.ServerUrl , copy));

tasks.Add(taskHandle);

}

Task.WaitAll(tasks);




Parallel.For(1,threadCount , (i)=> DoInefficientInsert(server.Database.

Configuration.ServerUrl , i));
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Analyzer found 189 for/foreach loops that launch tasks inside. Launch-

ing tasks inside a for loop is not only increasing the number of lines of code, but

is also error-prone. In the code example above from ravendb [33], the program-

mer needs to make sure the iteration variable i is local to each task, otherwise

the reading/writing accesses would exhibit data-races. 55 out of 189 cases could

have used Parallel.For or Parallel.ForEach.

There might be many other patterns of accidental complexity. We focused

on two of them based on our own observations and discussions with the library

designers.

Program Analysis: To detect tasks that could have used the

Parallel.Invoke, Analyzer filters those tasks that are created and are

also waited upon immediately.c More precisely, Analyzer checks that the

main thread does not execute other statements between the statements that

create and wait for tasks. It also checks that there are no dependencies

among the created tasks, e.g., tasks are not linked with continuations like

ContinueWith. In addition, Analyzer also discards the fork-join tasks that use

TaskCreationOptions since Parallel.Invoke does not provide such a feature.

�
�

�
�

Despite the fact that parallel programs are already complex, developers

make them even more complex than they need to be.

4.8 Are there constructs that developers

commonly misuse?

Parallel.Invoke(params action) is a construct that executes in parallel the

actions passed as arguments. It is a fork-join with blocking semantics: the

main thread will wait until all actions specified as arguments have finished. Our

analysis found that 11% of all usages of Parallel.Invoke take one action pa-

rameter in different applications. Consider the example from the gpxviewer [30]

application:

Parallel.Invoke (() => i.ImportGPX(null , GPXFile));

Notice that in this case there is only one single action to be performed,

and the main thread will block until this action has finished. In this case, the

parallelism has no effect: the code executes sequentially, ImportGPX followed

by the main thread. Developers might erroneously believe that ImportGPX will

execute in parallel with the main thread, when in fact it doesn’t.

When we look at PLINQ code, the AsParallel method converts an

Enumerable into an ParallelEnumerable collection. Any method called on

such a parallel enumeration will execute in parallel. We found 27 cases in 19

applications (representing 12% of all AsParallel usages) where developers mis-
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use a parallel enumeration as the iteration source of a sequential for or foreach

loop. Consider the example from the profit [32] application:

foreach (var module in Modules.AsParallel ())

module.Refresh ();

Notice that despite AsParallel being placed at the end of the Modules

collection, there is no operation performed on the “parallel” Modules. The

foreach proceeds sequentially. Developers might erroneously believe that the

code runs in parallel, when in fact it runs sequentially.

Program Analysis: To answer misusage questions, Analyzer encodes the

erroneous usage patterns. For example, it searches for calls to Parallel.Invoke

with one single argument, where the argument is an Action object (e.g., a

method name or a lambda expression). For the PLINQ misusage, Analyzer

searches for expressions where AsParallel is the last subexpression. We then

manually analyze whether it is present in for or foreach loop whose iteration

does not create any threads.�
�

�
�

Misuse of parallel constructs can lead to code with parallel syntax but

sequential execution.
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Table 4.1: Usage of TPL, Threading, PLINQ, and CC classes and their
methods. The third column shows the percentage of usages of a class in
comparison with usages of all classes from the library. The fourth column lists
the main parallel methods in the parallel class. The fifth column shows the
number of call sites for each method. The sixth column shows the percentage
of usage of a method from one parallel class. The last column shows how
many applications use this method.

Library Class Name % Method Name # % #

TPL

TaskFactory 30
StartNew 1256 72 286

FromAsync 121 7 32

Task 23

ContinueWith 372 28 122

Wait 273 20 110

Start 243 18 92

Constructor 225 17 82

WaitAll 172 13 91

Parallel 14

For 450 53 102

ForEach 365 43 133

Invoke 37 4 23

Task<TResult> 11
ContinueWith 536 86 113

Constructor 85 14 40

Threading

Thread 17

Start 985 32 212

Constructor 937 30 206

Join 382 12 101

Abort 294 10 82

WaitHandle 11
WaitOne 1585 81 206

Close 176 9 46

Interlocked 10
CompareExchange 580 34 95

CompareExchange 518 31 126

ThreadPool 5 QueueUserWorkItem 814 90 125

PLINQ ParallelEnumerable 100

AsParallel 221 24 150

Select 136 15 46

Where 62 7 30

ForAll 61 7 29

CC

ConcurrentDictionary 72
Constructor 883 32 140

TryGetValue 458 17 83

ConcurrentQueue 13
Enqueue 194 38 63

Constructor 178 35 70

BlockingCollection 7
Add 85 30 25

Constructor 78 28 25
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Table 4.2: Usage of Synchronization Constructs

Type % in Types Name # % in Type # Apps

Locking 39

lock (language feature) 6643 89 361

ReaderWriterLockSlim 258 3 68

Monitor - Enter/Exit 245 3 66

Mutex 94 1 46

Semaphore 75 1 23

ReaderWriterLock 65 1 24

SpinLock 31 0.4 11

SemaphoreSlim 20 0.3 10

Non-Blocking 26

Volatile Accesses 3212 65 152

Interlocked Methods 1696 34 126

Thread.MemoryBarrier 50 1 15

Implicit 21 CC Operations 4021 100 283

Signaling 9

ManualResetEvent 671 38 150

AutoResetEvent 647 37 102

Monitor - Wait/Pulse 168 10 31

ManualResetEventSlim 167 10 37

CountdownEvent 58 3 9

Barrier 33 2 6

Blocking 5

Thread.Join 382 38 101

Thread.Sleep 350 35 132

Task.Wait 273 27 110

Table 4.3: Usage of Parallelism Patterns.

Main Pattern % Pattern
Name

Brief explaination # %

Data
68

Regular parallel loops with For, ForEach,
and PLINQ

954 92

Parallelism Aggregation parallel dependent loops (map reduce
algorithms)

82 8

Task
32

Regular regular fork&join tasks 268 56

Futures task dependency on results 155 32

Parallelism Pipeline assembly line parallelism with
BlockingCollection

41 8

Dynamic dynamically created tasks 18 4
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Chapter 5

Implications

There are several implications of our study. We organize them based on the

community for which they are relevant.

5.1 Developers

Q1 (adoption): Becoming proficient with a new programming model requires

a long-term commitment. Developers without parallel programming experience

might ask themselves: should we learn how to use parallel libraries, or should

we avoid them because they are a passing fad. Our data shows that 37% of all

applications use the multi-threaded paradigm, so many developers will not be

able to completely avoid multi-threaded programming. Sooner or later, most

programmers will have to become familiar with this model.

Q2 (trends in adoption): Learning how to use effectively a library requires

studying examples of the library API in real code. Where can developers find

such examples? Our data shows that smaller applications are the early adopters

of the parallel libraries. In addition, these applications have a much higher den-

sity of parallel constructs per thousand of SLOC. Looking in Fig 4.3, we can

divide the average number of parallel constructs by 1K, 10K, 100K for small,

medium, and large applications respectively. The average density is 5h, 1.2h,

and .6h respectively. When taking into account the effort to understand un-

known code, developers are better off looking for examples in small applications.

Q3 (usage): We notice a power-law distribution: 10% of the API methods

are responsible for 90% of all usages. If we look at the classes, 15% of classes are

responsible for 85% of all usages. This is good news for developers who are just

learning parallel libraries: they can focus on learning a relatively small subset

of the library APIs and still be able to master a large number of parallelism

scenarios.

5.2 Library Designers

Q3 (usage): Surprisingly lower usage numbers like the ones for PLINQ can

highlight the APIs that need better documentation and more advertisement on

mailing lists, developer forums, etc.
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Q4 (synchronization): Designers of concurrent data structures and synchro-

nization constructs are always asking themselves on what to focus. Table 4.2

shows that developers are more likely to use the faster synchronization con-

structs. For example, ReaderWriterLockSlim is used four times more often

than the slower ReaderWriterLock.

Q6 (advanced features): Library designers pay special attention to making

the APIs easier to use. This involves making the syntax for the common case

more concise. We observed in Figure 4.6 that programmers prefer to create new

tasks attached to the parent task (40% are AttachedToParent). So, library de-

signers could make this the default behavior for nested tasks. Similarly, 80% of

times when developers used ParallelOptions they only specify one single op-

tion, MaxDegreeOfParallelism. Library designers may make this an argument

to Parallel class methods instead of encapsulating it in ParallelOptions.

Additionally, 60% of the times developers overwrite

MaxDegreeOfParallelism; they make it equal with the number of pro-

cessors found at runtime. This means that developers are not happy about the

degree of parallelism chosen by .NET. TPL architects should consider making

the number of processors the default value for the max degree of parallelism.

Stephen Toub, who is one of the main architects of TPL, confirmed our

suggestion.

Q8 (misusage): Library designers can also remove the constructs that are

error-prone. We found that developers are not aware that Parallel.Invoke is

a blocking operation, so they invoke it with one single action parameter (which

results in executing the code sequentially). Library designers may consider

removing Parallel.Invoke version that takes only one action parameter.

5.3 Researchers

Q1 (adoption): Since we list the domains and the applications that use par-

allelism most heavily, the researchers can use them to create benchmarks for

parallel programming.

Researcher can focus on making faster synchronization constructs. However,

they still use lock statements. They may focus on some constructs can be used

instead of locks with the same easiness of use

Q4 (synchronization): Researchers that work on ensuring correctness (e.g.,

data-race detection) should notice from Table 4.2 that developers use a wide

variety of synchronization constructs. Thus, data-race detectors should also

model these other synchronization constructs.

.NET parallel libraries provide more than 20 synchronization constructs di-

vided into 5 different categories. It is difficult for developers to select the most

appropriate one. Each construct has tradeoffs, depending on the context where

it is used. This is an opportunity for developing intelligent tools that suggest
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which constructs developers should use in a particular context.

Q7 (complexity): Researchers in the refactoring community can get a wealth

of information from the usage patterns. For example, developers should use

higher-level constructs to manage the complexity of the parallel code: 24% of

fork-join tasks can be converted to Parallel.Invoke, which reduces many lines

of code. Refactorings that allow programmers to improve the readability of their

parallel code have never been automated before, but are invaluable.
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Chapter 6

Threats to Validity

Construct: Are we asking the right questions? We are interested to asses the

state of the practice w.r.t. usage of parallel libraries, so we think our questions

provide a unique insight and value for different stakeholders: potential users of

the library, designers of the library, researchers.

Internal: Is there something inherent to how we collect and analyze the

usage that could skew the accuracy of our results? Microsoft’s Roslyn, on which

we built our program analysis, is now in the Community Technology Preview

and has known issues (we also discovered and reported new bugs). For some

AST nodes, we did not get semantic information. We printed these nodes, and

they are not parallel constructs, thus they do not affect the accuracy.

Second, the study is only focusing on static usage of parallel constructs, but

one use of a construct (i.e., a call site) could correspond to a large percentage

of execution time, making it a very parallel program. Likewise, the opposite

could be true. However, we are interested in the developer’s view of writing,

understanding, maintaining, evolving the code, not on the performance tools’

view of the code (i.e., how much of the total running time is spent in multi-

threaded code). For our purpose, a static usage is much more appropriate.

Third, do the large applications shadow the usage of constructs in the smaller

applications? Tables 4.1 and 4.2 provide the total tally of constructs across all

applications and there is a possibility that most usages come from a few large

applications. To eliminate this concern, the last column in the two tables list

the number of applications that use each kind of construct. Due to lack of space,

we do not present the mean, max, min, standard deviation in the paper, but

they are available on the companion website [39].

Fourth, static analysis offers limited insight in the performance of parallel

applications. While the real purpose of using parallel libraries is to improve

performance, we can not estimate this based solely on static analysis.

External: Are the results generalizable to other programming languages,

libraries, and applications? First, despite the fact that our corpus contains only

open-source applications, the 655 applications span a wide range from tools,

IDEs, games, databases, image processing, video encoding/decoding, search en-

gines, web systems, etc., to third party libraries. They are developed by different

teams with 1609 contributors from a large and varied community. Still, we can-
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not be sure whether this usage is representative for proprietary applications.

While we answer the questions for the C# ecosystem, we expect they can

cross the boundary from C# to Java and C++. For example, we expect such

empirical studies that reveal pain-points and common errors in using parallel

library APIs to be useful to the TBB/C++ and j.u.c./Java designers since

these libraries provide very similar abstractions. Furthermore, C# with .NET is

used on wide range of platforms – desktop, server, mobile, and web applications.

Reliability: Can others replicate our study? A detailed description of our

results with fine-grained reports and analysis tools are available online [39].
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Chapter 7

Related Work

There are several empirical studies [1, 11, 13, 38] on the usage of libraries or

programing language features. These studies rely only on syntactic analysis. To

best of our knowledge, ours is the first large-scale study that uses both syntactic

and semantic analysis, thus increasing the accuracy of the usage statistics.

Robillard and DeLine [35] study what makes large APIs hard to learn and

conclude that one of the important factors is the lack of usage examples. Our

current study provides lots of usage examples from real code which can hopefully

educate newcomers to the parallel library.

Monperrus et al. [18] study the API documentation of several libraries and

propose a set of 23 guidelines for writing effective API documentation.

Grechanik et al. [?] answers 32 questions by analyzing 2,080 randomly cho-

sen Java applications from Sourceforge. They look at structural features of

applications rather than semantic characteristics, including the number of argu-

ments in methods, whether classes are inherited from any classes, the number

of overridden methods, etc. However, our study focuses on the usage of specific

libraries and does not use only lexical analysis of source code.

Dig et al. [7] and Pankratius et al. [24] analyzed concurrency-related trans-

formations in a few Java applications. Our current study does not look at the

evolution of concurrent applications, but at how developers use parallel libraries.

Pankratius [23] proposes to evaluate the usability of parallel language con-

structs by extending the Eclipse IDE to record usage patterns and then infer

correlations using data mining techniques.

Other empirical studies on the practice of multicore programming [5] focused

on identifying the contented resources (e.g., shared cache) that adversely impact

the parallel performance. Our fourth research question identifies a wide variety

of synchronization constructs that impact performance.

In the same spirit like our paper, Parnin et al. [25] study the adoption

patterns of Java generics in open-source applications. While some of our research

questions specifically address adoption patterns (Q1 and Q2), the remaining

questions provide an extensive exploration into the practice of using parallel

libraries.

Others [12] have studied the correlation between usage of the MPI parallel

library and productivity of the developers.
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The closest work to ours is done by Weslley et al. [38] on the usage of con-

current programming constructs in Java. They study around 2,000 applications

and give some coarse-grain usage results like the number of synchronized blocks

and the number of classes extending Thread. In contrast, our study looks at

every parallel construct in the parallel libraries, and we also look at how these

constructs form patterns and structures. Although they analyze the usage of

very few constructs, their results are not accurate due to missing type infor-

mation because they only perform lexical analysis. Also, their count of the

constructs’ usage can be misleading. For example, they measure the usage of

java.util.concurrent by counting statements that import the library. In

our study, there are many applications that import TPL but never invoke any

construct. For example, there is an application, DotNetWebToolkit [29], that

imports TPL 111 times but invokes TPL just once.

We have also studied asynchronous programming in the large-scale [21, 22]

after this study.
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Chapter 8

Conclusion

Parallelism is not a passing fad; it is here for the foreseeable future. To encourage

more programmers to embrace parallelism, we must understand how parallel

libraries are currently used. Our empirical study on the usage of modern parallel

libraries reveals that programmers are already embracing the new programming

models. Our study provides tremendous education value for developers who

can educate themselves on how to correctly use the new parallel constructs. It

also provides insights into the state of the practice in using these constructs,

i.e., which constructs developers find tedious and error-prone. Armed with this

information, library designers and researchers can develop effective tools and

techniques to better match the current practice and transform it.

More studies are needed if we want to fully understand the state of the

practice, and we hope that our study inspires follow-up studies.
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