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Abstract
In recent years, web applications have become pervasive. Their
backbone is JavaScript, the only programming language supported
by all major web browsers. Most browsers run on desktop or mobile
devices with parallel hardware. However, JavaScript is by design
sequential, and current web applications make little use of hardware
parallelism. Are web applications ready to exploit parallel hardware?

To answer this question we take a two-step approach. First, we
survey 174 web developers regarding the potential and challenges of
using parallelism. Then, we study the performance and computation
shape of a set of web applications that are representative for the
emerging web. To this end, we developed an automated profiling and
dependence analysis tool. Using the tool, we identify performance
bottlenecks and examine memory access patterns to determine
possible data parallelism.

Our findings indicate that emerging web applications do have
latent data parallelism, and JavaScript developers’ programming
style are not a significant impediment to exploiting this parallelism.

1. Introduction
Parallel hardware has become a reality of modern computing and
its use is no longer confined to high performance applications and
super computing. Even mobile phones now regularly feature multi-
core CPUs and programmable GPUs. SIMD (Single Instruction,
Multiple Data) extensions add further to the mix of exploitable
hardware parallelism. Creating the best possible experience on any
device therefore requires tapping into parallel hardware’s potential
to increase performance, save energy, or even both.

Most traditional platforms and languages have developed tools
and language extensions to help developers adapt their code to run
on modern parallel hardware. Yet, HTML5, an emerging web-based
application ecosystem that promises portability across devices and
form factors, and its implementation language JavaScript, seem
still to be stuck in the sequential past. While browser vendors have
invested heavily into the sequential performance of their JavaScript
engines and added some support for concurrency [11], support
for parallelism is still in its infancy. Parallel JavaScript [27] and
WebCL [12] are two proposals to extend JavaScript to support
parallel programming but neither is widely used. While this can be
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attributed to their prototypical implementation, the question remains:
Are web applications ready for parallelism?

Earlier work by Fortuna et al. [20] has found that typical
web applications have potential for achieving significant speedup
from concurrent execution. This is encouraging but most of the
potential they found stems from independent tasks rather than loops.
Therefore it would be hard to exploit it using massively data-parallel
hardware like GPUs or SIMD. Even more, Richards et al. [31]
have studied the runtime behavior of typical JavaScript applications
and found wide spread use of dynamic language features, which
hinder execution on restricted hardware like GPUs and SIMD
units. Both findings suggest that, while there is some potential for
task parallelism, the web is not a fertile ground for data parallel
programming.

While this conclusion might be true for the web of the past, our
hypothesis is that it does not apply to the emerging web of applica-
tions. With the shift of the web to an era of application centric usages
like, for example, image editing, augmented reality applications and
sophisticated gaming, the characteristics of executed code change,
too. As these usages are more compute intense, they also are more
likely to gain from data-parallel compute capabilities. Even more,
due to the increased focus on application logic over just rendering
content, we also expect other high-level code properties, like use of
dynamic language features, to change. Lastly, a new generation of
programmers might also bring different programming styles to the
table, e.g., due to influences from more declarative programming
patterns during their education.

Of course, measuring such a trend in its early phases is difficult.
Most production-quality web sites are still built in a legacy style and
new applications are only beginning to emerge. Analyzing currently-
popular web sites would bias our results towards what works well
on most platforms now, not the workloads that are missing precisely
because they would require more performance. Thus, in contrast to
earlier studies, we had no adequate top-100 list or similar to draw
from. Instead, we chose to measure the change where it starts: with
the shift in developers’ opinion.

We have asked 174 web developers about their coding practice
and about properties of the code they write. Furthermore, we have
asked them to predict what the emerging, compute intense appli-
cations of the future web will be. As a general trend, we found
that applications formerly at home on the desktop are predicted to
transition to the web. With the flattening of per-core performance
improvement, desktop applications have become increasingly paral-
lel in the last few years. We expect that their web counterparts will
also need to be parallel in order to be competitive.

To measure the first effects of that transition we, in a second
step, do a case study of 12 workloads. We selected the workloads
from the categories mentioned by the developers and analyzed them
for latent data parallelism. In particular, we were interested in the
presence of parallelizable loops and their approximate percentage
of execution time. We also looked at further code properties, like
use of dynamic language features and more declarative abstractions
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like map and reduce. Our findings differ from earlier work and
we found a surprisingly large quantity of compute intense loops of
which many were latently parallel.

This sanity check of developers’ opinions against real world
code has furthermore revealed an interesting trend: while developers
prefer abstract declarative code they still often opt for imperative
solutions in practice.

In short, this paper contributes a study on latent parallelism in
emerging web applications using:

• a survey of developer opinions on their coding practice and
trends in future web applications. We found that JavaScript de-
velopers generally embrace the functional nature of the language,
while generally avoiding some advanced features like polymor-
phic variables. They generally hold the view that more desktop
applications will migrate towards the web in the future.

• a tool for finding and analyzing latent data parallelism in
JavaScript loops.

• a case study of latent data parallelism in 12 emerging web
applications. We found that many of them do have latent data
parallelism.

• a discussion of the results of our survey and study and their
implications for various audiences: library and tool developers
and researchers, web browser engine developers, and JavaScript
developers.

The remainder of the paper is structured as follows. Section 1.1
gives a brief overview on the particulars of HTML5 and current
proposals for concurrency and parallelism. Next, section 2 discusses
the design and methodology of our survey, and presents key results.
We back up those results by findings from a set of case studies.
Section 3 describes the methodology for the case studies, including
the performance analysis tool. Section 4 presents the case studies
findings. We put the results in context and discuss their implications
in Section 5. Finally, Section 6 describes related work.

1.1 HTML5 and parallelism
HTML5 is the latest evolution in web technologies. It extends HTML
and related standards by a range of new features, including 3D ren-
dering, offline storage, device access and direct network communi-
cation, to name only few. With these additions, an HTML5 capable
web browser turns into a rich, cross-platform and cross-device ap-
plication platform [16]. At the heart of HTML5 applications lies
JavaScript, the only programming language supported by all modern
browsers. Aside from the name similarity, JavaScript has little in
common with Java. Instead, it is a dynamically typed language that
combines aspects of functional, imperative and object oriented lan-
guages. In contrast to Java, it does not support classes but relies on
prototype-based inheritance, similar to the Self [33] language. Orig-
inally designed for light scripting tasks, JavaScript uses a mostly
sequential, event based programming model.

More recently, different solutions have been proposed to add
concurrency and parallelism to JavaScript. Web workers [11] bring
memory-safe threads to the HTML5 eco-system. They implement
the actor model [14], i.e., threads follow a share-nothing policy
and communicate only via messages. Designed for long running
background tasks, web workers also are typically rather heavy
weight. In the context of parallel computing, two APIs have been
proposed: WebCL and Parallel JavaScript.

WebCL [12] adds an interface for the C-like OpenCL [8] lan-
guage to the HTML5 platform. By building on OpenCL, WebCL
allows developers to make use of both CPUs and GPUs, albeit at
the cost of a radically different programming model. OpenCL is
closely related to C with its imperative programming model, re-
liance on pointers and explicit memory management. This gives

the programmer full control of the underlying hardware but limits
WebCL to C-like data structures and prevents a deeper integration
with JavaScript’s object model and heap management.

Parallel JavaScript (aka River Trail) [26, 27] stays closer to the
existing JavaScript language. It adds a high-level data-parallel API
built around operations like map and reduce. This removes much
control over the hardware from the programmer but gives more
control to the runtime and enables a deeper integration, including
the use of JavaScript’s object model and heap management.

Both WebCL and Parallel JavaScript enable execution of com-
mon JavaScript code on CPU and GPU. Due to hardware limitations,
only a restricted subset of JavaScript is supported on GPUs.

2. JavaScript in practice : a survey
Previous work in characterizing usage of JavaScript [31] in practice
has focussed on analyzing the most popular websites or analyzing
benchmark suites. Our goal in this work is to understand both how
JavaScript developers use the language and what they perceive
as important trends. Their practice and opinions indicate whether
parallelism is needed in JavaScript, and, if it is, which is the best
way to achieve it.

We formulated a questionnaire consisting of 20 questions. The
questions broadly fall into four categories: trends in web appli-
cations, programming style, preferred tools and frameworks, and
perceived performance bottlenecks. There are both multiple choice
and open-ended questions Several of the multiple-choice questions
were followed by an open-ended question asking the developer to
explain his choice.

We publicized this questionnaire using social media. We re-
quested a few influential developers in the JavaScript community
to tweet a link to this questionnaire. We also posted a link to this
questionnaire to the JavaScript section of reddit, a popular social
news website.

We received a total of 174 distinct responses to the questionnaire.
To ensure that we obtain a representative sample of JavaScript devel-
opers, we intentionally did not target the developers of any particular
company, but rather publicized the survey broadly. Also, from our
demographics questions we learned that our respondents use a wide
variety of libraries, IDEs, and compile-to-JavaScript languages, thus
we believe our population is representative. We summarize our find-
ings below, but the detailed question and answer reports are available
publicly at http://cos.github.io/js-ceres.

2.1 Future trends in web applications
A principal goal of our study was to understand what JavaScript
developers think the most popular web applications of the future
will be. Previous works on characterizing real-world JavaScript
applications have drawn on two sources: benchmark suites such as
Sun Spider, Kraken and the V8 suite, and scripts served by the most
popular websites [1]. Richards et al. [31] conclude that the popular
benchmark suites are poor representations of real-world JavaScript
programs along several metrics. We argue that the programs taken
from the most popular websites are also ill-suited to our goal of
understanding the future of web applications.

Firstly, the programs from the popular websites are required
to support a diverse set of browsers and hardware which restricts
both the functionality that they implement as well as the user
experience they deliver. Many JavaScript and HTML5 features are,
as of this work, still under consideration of the standards bodies.
This means that browsers are not required to support them and
moreover different browsers may support different subsets of the
proposals. Mainstream web applications that must work on a variety
of browsers therefore may not utilize these features.

Secondly, being usable across diverse platforms also means that
websites have to be conservative about the client hardware. For
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Figure 1. Future web application categories, as identified by re-
spondents

this reason, features or user experiences that require a significant
computational horsepower are uncommon. For these reasons we
hypothesize that popular websites are typically not early adopters of
emerging language and API features.

Our survey asked the developers: “In your opinion, what new
kinds of applications will trend on the web over the next 5 years?”.
We hand-coded their answers using qualitative thematic coding
[18]. We developed a set of codes that we validated by achieving an
inter-rater agreement of over 80% for 20% of the data. Two coders,
the second and the third authors, developed the categories which
were not known a-priori. For measuring the agreement we used the
Jaccard coefficient.

Figure 1 shows the resulting application categories. Many of the
respondents mentioned web-based commercial-quality 3D games
such as those available on modern desktop class machines or
consoles. Client hardware found on even small form factor devices
such as phones and tablets is rapidly becoming more powerful.
In addition, APIs such as Canvas [5], Pointer lock [9] and touch
enabling APIs [6] are being standardized and many recent versions
of major browsers already support them. In particular, the Canvas
element allows for fine-grained control over drawing and is a key
enabler for cross-platform graphics in the browser without any third-
party plugins. The performance of drawing operations on Canvas
objects has also received considerable attention and has improved
dramatically over browser generations. The WebGL API [13] allows
executing shaders on client GPUs - a feature that has traditionally
only been available to native games. Finally, the cross-platform
portability and access-anywhere model of web applications means
that these games can reach a wider audience. This leads us to
expect HTML5 game engines to rapidly evolve from simple 2D
views, primitive physics and gameplay to 3D or isometric 3D views,
realistic physics [3] and game AI.

Games have traditionally been important drivers of evolution in
consumer hardware. Modern native game engines make extensive
use of parallel hardware to deliver quality gameplay experiences. For
example, they use the increasingly sophisticated GPUs for realistic
rendering and physics computations, they use multiple cores and
vector instructions extensively for task level and SIMD parallelism.
However, these platform capabilities are not available to web-based
games engines today as browser engines do not expose parallel
hardware to JavaScript programs (with the exception of shader
programs written in WebGL). We argue that this restriction implies
that web-based game applications will deliver lower quality user
experiences unless there are programming models that appropriately
expose the full spectrum of hardware parallelism to web applications
in a fashion that preserves safety and programmability.

Participants not an issue not an issue so, so... so, so... is a 
bottleneck

is a 
bottleneck

resource loading 13 8% 64 40% 85 52%
DOM manipulation 23 13% 65 38% 83 49%
Canvas (images) 37 24% 72 46% 46 30%
WebGL interaction 37 25% 72 48% 41 27%
number crunching 65 39% 65 39% 35 21%
styling (CSS) 62 38% 77 47% 25 15%

bo
ttl

en
ec

k

resource loading
DOM manipulation
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Figure 2. Performance bottlenecks importance as scaled by respon-
dents

20% of the respondents have mentioned peer-to-peer and social
applications, supporting that the current trend towards a more social
web will continue.

Almost 20% of the respondents only mentioned desktop-like
applications. While this is not a category per se, we have included
this response to highlight this general trend. The other common
responses to this question are related to audio and video processing,
data visualization, data analysis and rich productivity suites, voice
and gesture recognition, and augmented reality.

Overall, the answers indicate that a majority of our respondents
expect future applications to be more computationally intensive,
real-time, and interactive.

2.2 Performance bottlenecks in current web applications
With the increasing richness and functionality embedded into web
applications, especially real-time interactive applications, under-
standing typical performance bottlenecks are important considera-
tions for developers as well as engine implementors. For example,
the rapid evolution of many aspects of JIT engines in major browsers
is being driven by understanding bottlenecks in commonly used pro-
grams or benchmark suites.

Our survey asked the respondents to categorize each of several
components as ”not an issue”, ”so, so...”, or ”is a bottleneck”. The
aggregated responses are shown in Figure 2.

Confirming the common complaint in the JavaScript commu-
nity, 53% and 48% of respondents mentioned that resource loading
and DOM manipulation (e.g., inserting or deleting elements), re-
spectively, are a bottleneck. Large resources typically are images,
videos and scripts that are either loaded before or during execu-
tion of a JavaScript program. 29% of respondents identified Canvas
operations as a bottleneck.

21% of respondents consider that number crunching/math com-
putation is a bottleneck. While the percent may seem low compared
to the opinion on other operations, we see it as significant in the con-
text of current popular web sites, which usually do not execute any
computationally-intensive algorithms. Another 40% of respondents
do not dismiss number crunching/math computation as an issue.

The performance bottleneck classification question was followed
by an open-ended question asking for any bottleneck we might
have missed. There were 17 responses to this question. Five of them
highlighted various aspects of layout and styling, and two mentioned
the fallbacks for old browsers. The others mentioned diverse aspects
like lack of tail recursion, garbage collection, runtime optimization,
low level audio APIs, compression, and local storage.

2.3 Programming style
The programming style preferred by developers offers some insights
into what parallel programming model they may consider to be more
“natural” to use. For example, a key pattern in (pure) functional style
programming is functions that operate on immutable data-structures
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Figure 3. Programming style preference scale from Functional (1)
to Imperative (5)

and are effectively stateless. This pattern is important in the context
of parallel execution as immutable shared state simplifies value
synchronization and has been used effectively in several parallel
programming models [10, 22, 26]. On the other hand, programmers
who like writing imperative style code may prefer task or thread-
level parallel primitives with explicit synchronization on mutable
state such as in languages such as C/C++ or Java.

Our survey asked developers which selection of language fea-
tures they used frequently and which ones they did not. The results
are summarized below.

Functional vs Imperative style While JavaScript uses the block
structured syntax found in imperative languages like C/C++, Java
and Python, it also supports many features commonly found in
functional programming languages. For example JavaScript supports
first class functions and closures.

The question is asked in order to qualitatively understand the
style preferred by the respondents. We asked programmer to rate
their preference on a scale of 1-5 with 1 being a strongly functional
style and 5 being a strongly imperative style. The results are sum-
marized in Figure 3. 31% of respondents replied they preferred to
write code in a strongly functional style and 5% said they preferred a
more imperative style. 52% of respondents also answered the “Why”
follow-up question. Of these, a majority of the respondents who
answered ”1” (i.e., they strongly preferred a functional style) at the
preference question mentioned that they found functional code to
be more concise, readable, or understandable.

A few of the respondents who answered that they preferred
a more imperative style pointed to performance issues as one of
the reasons for their choice. An important consideration is the
lack of tail call optimization in JavaScript which makes expressing
iteration as recursion inefficient. Indeed ECMAScript 6, the next
version of the JavaScript language standard includes support for
tail call optimization to accommodate programming styles that are
qualitatively more functional in nature.

Finally, a few of the respondents leaning towards more functional
code, and a majority of those leaning towards imperative code,
mentioned their background in a particular programming style as
the reason for their choice.

High-level Array operators vs for-loops JavaScript Arrays have
builtin operators such as map, forEach, and every. For example,
the map method takes as argument a callback function, invokes it
for each element in the Array in order and constructs a new Array
out of the results of the callback. In addition to the pure JavaScript
method, frameworks such as Prototype also include methods such
as map on their own data types.

This question attempts to understand whether, why and when
developers prefer to use these operators instead of iterating over
the elements of the Array using a loop. Developers’ preference
can help determine the best way to make parallelism available.
If developers prefer explicit loops, parallelism could be exposed
through a loop annotation (akin to the parallel OpenMP pragma).
If developers prefer operators, parallelism can be exposed though a
special collection API, like the Parallel JavaScript proposal [27].
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Figure 4. Preference scale for variables: from Monomorphic (1) to
Polymorphic (5)

Of the respondents who answered this question, 74% said they
preferred using the builtin operators. The principle reason given
in the open-ended answer was that with the high-level operators,
programmer intent was easier to convey and understand leading
to better readability. Several respondents also mentioned the com-
posability benefits of using the operators instead of explicit loops.
Another common justification was that the callback functions sup-
plied to the operators provided a scope for variables that is missing
from explicit loops.

Several respondents who said they favored explicit loops cited
the performance gap as an important reason for their choice. A few
others mentioned that they preferred initially using the high-level
operators, profiling their program to see if any bottlenecks were due
to use of these constructs and replacing them with loops.

2.4 Parallelism-inhibiting language use
Use of global variables Global variables are common in JavaScript
programs, despite being considered bad programming practice. They
also make parallelization mode difficult and error-prone as they can
generate race conditions. We asked developers the open-ended ques-
tion “What would be a scenario where using global variables helps?”
and got 105 responses. This question attempts to understand if and
how our respondents use them. 33 of the respondents mentioned
emulating a form of namespace or module system. Another com-
mon usage pattern mentioned was to communicate values between
different scripts on the same page during execution and between
the server and client on page load. Several respondents answered
that they use global singleton for important data structures that are
accessed in several parts of the program.

In our case study (Sections 3 and 4), we have encountered few
instances of problematic use of global variables.

Polymorphism JavaScript is dynamically typed and both functions
and variables can be polymorphic. A polymorphic variable can
change its type during execution, e.g., we can assign a string to a
variable that has so far pointed to an integer. While the flexibility can
be useful in certain cases, it can also hamper compiler optimizations
that depend on the variable’s type.

Richards et al. [31] analyzed a large corpus of real-world
JavaScript programs taken from the 100 most popular websites
on the internet according to Alexa. They found that 81% of the call
sites in these programs were monomorphic. Further, over 90% of
functions were non-variadic i.e., their arity was fixed.

Our survey asked the respondents to rate their JavaScript pro-
grams on a scale of 1-5 with 1 presenting programs with purely
monomorphic variables and 5 being programs that make extensive
use of variable polymorphism. A summary of the responses is shown
in Figure 4. About 58% of the respondents (98 out of 168) said the
programs they write are purely monomorphic for variables. In con-
trast just 1% (2 out of 168) answered that their code made extensive
use of variable polymorphism.

These results are similar to the findings of Richards et al. [31]
and indicate that a majority of JavaScript code is written in a de
facto statically-typed fashion which means that modern JIT engines
may be able to infer these types effectively and produce performant
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code. This is especially important for execution on parallel hardware
platforms such as GPUs where type dynamism is difficult to support
efficiently. Even in a multi-core setting, supporting type dynamism
requires thread-safe runtime structures and algorithms for handling
querying and updating types at runtime. Therefore the extent of data
and function polymorphism in JavaScript programs significantly in-
fluences the space of programming models that can be implemented
in browser engines.

3. Case study methodology
The case study brings more insight into the programming style and
issues prevalent in the computationally-intensive parts of emerging
web applications. The survey gave us a general idea of web devel-
opers’ preferences, and of emerging trends. We now drill down,
confirm some of the survey’s findings, and take a step forward to
answer the following research questions:

Q 1: How much latent data parallelism is available?

Q 2: What are the issues that may impede parallelization?

We first selected 12 web applications (shown in Table 1) by
searching for the most mature implementations of the various
trends identified by the survey respondents. The application set
is heterogenous, it covers all the identified trend categories except
the meta-category “desktop-like” and “Peer-to-Peer and Social”.
Each application is either a direct exponent of a trend (e.g., D3.js
for Visualization) or a component for applications in a trend (e.g.,
Tear-able Cloth is a demo of cloth simulation, an important feature
for realistic 3D games).

For each web application, we determine whether it is compu-
tationally intensive. If it is, we study the expensive computations
using a combination of automated analysis and manual inspection.
Thus, for each application:

1. We measure the processor time spent by the application (using
the Gecko profiler [7]), and the time spent specifically in loops
(using very lightweight instrumentation of JavaScript code).

2. We profile the application again using slightly heavier instru-
mentation that gives us statistical information about the runtime
and trip count, i.e., number of iterations, of each loop in the pro-
gram. Using this information, we identify the computationally-
intensive loops.

3. We inspect each computationally intensive loop to determine
whether it can be run in parallel and what could hamper or pre-
vent parallelization. To ease the process, we run the web appli-
cation again, this time instrumented to give detailed information
about memory access patterns.

4. We interpret and summarize the results.

In order to identify the computationally-intensive loops and
understand their behavior, we have developed JS-CERES, a profiling
and runtime dependence analysis tool. It is implemented as a proxy
server sitting between the browser and the web server. The proxy
instruments JavaScript code on its way from the web server to the
browser. On finishing the analysis, the browser sends the results back
to the proxy, which then uploads them to github.com in a human-
readable format. Our tool has on overlap in purpose to Jalangi [32],
a general-purpose framework for writing dynamic analyses for
JavaScript. Jalangi was not publicized at the time we developed
JS-CERES. Furthermore, as we will see further, our specialized tool
has a staged profiling and dependence analysis approach aiming to
minimize the performance impact on the measured execution.

Fig. 5 illustrates the JS-CERES analysis process. It involves the
following steps:

web server

browser

github.com

1: request

proxy

1: request 1: response

2: instrument

3: instrumented
response

4: exercise
app 

5: results

6: results

7: interpret
results

Figure 5. JS-CERES instrumentation and reporting process

1. The browser requests a document from the web server, passing
through the proxy. The web server generates the requested
document and sends it back, and the proxy intercepts it.

2. If the document is either HTML or JavaScript, the proxy trans-
forms any encountered JavaScript code, adding instrumentation
for profiling and dependence analysis.

3. The proxy sends the instrumented document back to the browser,
fulfilling the request.

4. The user interacts with the web application to exercise any
computationally-intensive code. As the application runs, the
instrumentation gathers and summarizes the results.

5. The user asks the web application to send back the results
by clicking a special button overlaid on top of the interface
by the instrumentation engine. In response, the browser sends
the results of the analysis to the web server. The request is
intercepted by the proxy.

6. The proxy analyzes the results and transforms them to a human
readable format. It then pairs the results to the original docu-
ments, and saves them by committing to a local git repository.
Finally, the proxy pushes the results to github.com.

7. We analyze the results. github.com is used as it provides both
version tracking and a convenient way to link result reports to
source code.

JS-CERES has three instrumentation modes: lightweight profiling,
loop profiling, and dependence. Each mode is meant to aid one of the
aforementioned steps taken when analyzing each web application.
The three modes are separated in order to minimize the bias in the
results due to the instrumentation overhead.

3.1 Lightweight profiling
In this mode, the tool only measures two scalar values: the total
time from the start of the application, and the total runtime spent
in all the loops in the program. JS-CERES adds before and after
each loop code that increments and, respectively, decrements a
counter that represents the number of open loops in the program.
When encountering a loop and the counter is 0, a separate variable
remembers a timestamp. When exiting a loop brings the counter
to 0, the difference between the current timestamp and the last
remembered timestamp is added to a global variable that holds the
total time spent in loops. The timestamps are taken using the new
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Table 1. Case study - web applications
Name/URL Category/Description

HAAR.js / github.com/foo123/HAAR.js User recognition / face recognition (Viola-Jones)
Tear-able Cloth / lonely-pixel.com/lab/cloth Games / cloth physics simulation (Verlet integration)
CamanJS / camanjs.com Audio and Video / image manipulation library
fluidSim / nerget.com/fluidSim Games / fluid dynamics simulation (Navier-Stokes)
Harmony / mrdoob.com/projects/harmony Audio and Video / Drawing application
Ace / ace.c9.io Productivity / code editor used by the Cloud9 IDE
MyScript / webdemo.visionobjects.com User recognition / handwriting recognition application
Raytracing / gist.github.com/jwagner/422755 Games / real-time raytracing demo
Normal Mapping / http://29a.ch/experiments Games / normal mapping
sigma.js / sigmajs.org Visualization / GEXF rendering
processing.js / processingjs.org Visualization / interactive spiral visual effect
D3.js / d3js.org Visualization / interactive azimuthal projection map

JavaScript high resolution timer [4]. We observed that this setup has
no discernible impact on the runtime of the apps we analyzed.

We couple this instrumentation mode with using the Gecko
profiler [7] within Firefox to also measure the amount of time
the processor is active. We were surprised to find that the active
time reported by Gecko is often lower than the time spent in
loops measured by JS-CERES. We believe there are two main
reasons for this anomaly. First, the Gecko profiler is only sampling
the computation. As the sampling occurs at function level (for
performance reasons), a long running computation within a single
function may be seen as inactive time. Second, if there is any
blocking code within the loop or the OS or Firefox decides to
suspend the thread, JS-CERES continues to count the time as part of
the loop. We tried to minimize this effect by not having any other
expensive processes active on the machine when profiling.

We run the experiments on a quad-core Intel Core i7 at 2.6 GHz
(3720QM) with 16 GB of RAM. Running the same experiments
on a less performant platform (e.g., mobile) would likely further
increase the effect of performance bottlenecks.

3.2 Loop profiling
In this mode, JS-CERES instruments the program to compute, for
each syntactic loop: the number of times it is encountered, the total,
average, and variance of its running time, and the total, average, and
variance of its trip count. To compute this information, JS-CERES
adds the following instrumentation:

• each syntactic loop is represented by an object in a global map
• before each loop, a trip counter is set to 0 and a timestamp is

recorded
• before each iteration, the trip counter is incremented
• after each loop, the trip count and the loop’s running time

are added to the running totals, and variance is updated using
Welford’s online algorithm [36].

This instrumentation mode has only minimal discernible impact
on the running time of the applications.

3.3 Dependence analysis
In this mode, JS-CERES instruments the program to gather informa-
tion about the memory access patterns within specific loops. As this
type of instrumentation has a very high overhead, JS-CERES allows
the programmer to focus on a specific loop. The tool then reports all
problematic memory accesses that happen, at runtime, within the
focused loop. The following memory access types are reported, as
they can break a dependency when parallelizing the loop:

a) writes to variables that are declared outside the context of the
current loop iteration. As JavaScript variables have function
scope, it includes all variables that are syntactically inside the
loop. As expected, it excludes variables from functions called

1 f u n c t i o n s t e p ( ) {
2 computeForces ( ) ;
3
4 var com = new P a r t i c l e ( ) ;
5
6 f o r ( var i =0 ; i<b o d i e s . l e n g t h ; i ++) {
7 var p = b o d i e s [ i ] ;
8
9 / / up da t e v e l o c i t y

10 p . vX += p . fX / p .m ∗ dT ;
11 p . vY += p . fY / p .m ∗ dT ;
12
13 / / up da t e p o s i t i o n
14 p . x += p . vX ∗ dT ;
15 p . y += p . vY ∗ dT ;
16
17 / / up da t e c e n t e r o f mass
18 com .m = com .m + p .m;
19 com . x = ( com . x ∗ . . .
20 com . y = ( com . y ∗ . . .
21 }
22 re turn com ;
23 }
24 whi le ( t rue ) {
25 var com = s t e p ( ) ;
26 d i s p l a y ( bod i e s , com ) ;
27 }

Figure 6. Example - N-body simulation step

from within the loop. The writes generate output dependencies
(write-after-write) [15] between different iterations.

b) writes to fields of objects that are initialized outside the context
of the current loop iteration. The accesses generate output
dependencies between iterations, and may be involved in anti-
dependencies (write-after-read).

c) reads of fields which have been initialized in the loop, but in
a different iteration. The accesses generate flow dependencies
(read-after-write).

We exemplify the problematic access types with a snippet of an
N-body simulation that also computes a live version of the center of
mass of the entire system (Fig. 6). At each step, the force applied to
each object is updated depending on the forces of the other objects.
Then, the velocity and position of each point are updated depending
on the resulting force applied to it. For brevity, we only focus on the
second part of the computation.

JS-CERES displays all the aforementioned types of warnings
for the for loop at line 6. Each warning report contains a list of
triples representing the loop nest. Each triple characterizes a loop in
the nest, with the outermost loop being first in the list. Each triple
is composed of a loop identifier, followed by two boolean flags.
The first flag indicates whether, for the variable in question, there
is a dependency between different runtime instances of the loop.
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The second flag indicates a dependency between different runtime
iterations of the loop.

warning for the write to variable p on line 7 The variable’s
declaration is syntactically enclosed in loop’s block, but JavaScript
only has function scoping. So, the variable behaves as if it has been
declared at the beginning of the step function. In this case it means
all the for loop iterations will share the same p variable. JS-CERES
also reports which loops share the variable, and how.

In this case, JS-CERES characterizes the access with the following
“→”-separated list of triples:

while(line 24) ok ok→ for[line 6] ok dependence

The while and for represent specific syntactic loops. “ok” is
interpreted as “each instance/iteration of this loop has its own
private version of this variable”. “dependence” is interpreted
as “all instances/iterations of this loop share the same variable”.
If all instances share the same variable, all iterations will also
share the same variable. Thus, “dependence ok” is not a valid
characterization.

For the while loop in our example, each instance and, further-
more, each iteration has a private version of p. Thus, the access is
characterized as “ok ok”.

From the for loop’s perspective, each instance has its own private
version of p (the first “ok”), but all iterations share the same version
(“dependence”) due to function scoping. Thus, the same access
is characterized as “ok dependence”, denoting the output inter-
iteration dependence on p.

warnings for the writes to properties vX, vY, x, y of p, and x, y,
m of com The accesses are considered problematic as p and com

are shared between the loop’s iterations. Like the write to p, these
accesses are also characterized as:

while(line 24) ok ok→ for(line 6) ok dependence

If the body of the loop would be extracted into a separate function, or
the loop would be expressed as an forEach operation, the accesses
to the properties, i.e. fields, of p would be characterized as:

while(line 24) ok ok→ for(line 6) ok ok

They would not be considered problematic, and would not be
reported. The warning on com would stand.

warnings for the reads of properties x, y, m of com These reads
are also characterized as:

while(line 24) ok ok→ for(line 6) ok dependence

but the interpretation is slightly different. The “dependence” indi-
cates that the read value has been written in a different iteration of
the loop. As the loop is sequential, it means that there is a flow, i.e.
true, dependence between the loop iterations.

Instrumentation For computing the three types of warnings, JS-
CERES instruments the original program to maintain, at each point
during execution, a characterization with respect to the open, i.e.,
currently iterating, loops. The characterization is maintained as a
stack. When encountering a loop at runtime, the instrumentation
pushes to the stack a triple containing:

• the a loop unique identifier (represents the syntactic loop)
• the current value of a counter of how many times the entire loop

has been seen so far (maintained in a global map from loop
identifier to counters)

• 0, representing the current iteration of the loop

Every time a loop is encountered, the counter in the aforemen-
tioned global map is incremented before pushing the triple to the

Table 2. Case study - running time.
Running time (s)

Name Total Active In Loops

HAAR.js 8 2 0.44
Tear-able Cloth 14 7 9
CamanJS 40 23 17
fluidSim 22 17 12
Harmony 41 0.36 0.28
Ace 30 0.4 0.4
MyScript 12 0.33 0.15
Realtime Raytracing 62 19 26
Normal Mapping 25 6 4
sigma.js 32 9 8
processing.js 21 12 2
D3.js 18 5 4

stack. Also, recursive function calls may make the stack grow in-
definitely. JS-CERES detects this, raises a warning, and discards the
analysis results for the affected loop nest.

At the beginning of each loop iteration, the current iteration part
of the triple is incremented in place.

Furthermore, each object creation site in the program (by any
means, new, function, Object.create) is instrumented to wrap
the created object in a Proxy [2, 34]. The proxy is used to save a
characterization-stamp of the object instantiation moment, i.e. the
current value of the stack when the object is instantiated.

Finally, each variable or property read or write in the program
is instrumented to check for problematic accesses. On writing
a property, a diff is computed between the current stack and
the characterization-stamp of the property’s object. If they are
the same, the access is not considered problematic. If they are
different, all values that are the same are reduced to “ok”, and
all differing values are reduced to “dependence”, thus obtaining
the aforementioned list of triples. Also, a snapshot of the above
stack is remembered for the particular written property name. On
encountering a property read, a diff is computed between the current
stack and the snapshot of the field. If they are different, we have
discovered a flow dependence, and a warning is raised.

4. Case study results
We now discuss the results in the context of the original research
questions.

4.1 How much latent data parallelism is available?
First, we approximate an upper bound for latent data parallelism
by using the runtime spent in loops as a proxy. The results of the
experiment (described in Sec. 3.1) are summarized in Table 2. The
second column shows the total time each application is active, i.e.
the time before starting the application and the time results are
gathered. The third column shows the amount of time the CPU
was active, as reported by the Gecko profiler. The last column
shows the total amount of time spent in loops, are measured by
JS-CERES’s instrumentation. The fact the total amount of active
time is sometimes lower than the time spent in loops is an artifact
of our methodology (see Sec. 3.1). Still, we believe the overall
conclusion stands: at least half of the applications can be considered
computationally intensive (i.e. the CPU is active for a large portion
of their running time) and, for most of these, a large part of the
computation occurs in loops. Not all loops are parallelizable, but the
fact that looping is a significant part of the computation puts a high
upper bound to the amount of latent data parallelism.

Next, we identify the most computationally-intensive loop nests
(a group of loops that nested within a single top-level loop) in each of
the applications and check whether their computation is inherently
data-parallel. This doesn’t necessarily mean the parallelism can

7 2014/12/20



be exploited in the near future as there are still technological
challenges with current web browser technology (e.g. the DOM
is not concurrent). It does, however, improve the previous (Table 2)
approximation of latent-parallelism upper bound.

For each application, we inspect the top loop nests that, together,
make up at least two thirds of the application’s time spent in loops.
Altogether, we inspect 22 loop nests across the 12 subject web
applications. Table 3 shows a summary of our findings. Each row
represents an inspected loop nest. The runtime part of the table
shows the percentage of the total looping time spent in the particular
loop nest, the number of times the loop nest has been encountered
at runtime (instances), and the average and standard deviation for
the trip count of the outer loop of the nest (across all instances of
the said loop nest). In a few cases the parallelizable loop is not the
outer loop of a nest. In these cases we consider the loop nest formed
without some of the outer layers, and report the results for this inner
loop nest instead.

About three fourths of the inspected loop nests have some
intrinsic parallelism, i.e. do not have dependencies that we think
could not be broken. Also, in most cases, the trip count and
granularity is high enough for some form of data-parallelism to
be potentially useful. Still, exploiting this parallelism may not be
easy. In many cases it would require a combination of code changes
and browsers with efficient parallel data structures and concurrent
DOM and Canvas implementations.

4.2 What are the issues that may impede parallelization?
We found that JavaScript poses the traditional issues to paralleliza-
tion, while also raising new ones that stem from its evolving, dy-
namic, and web-centric nature. In addition to discovering available
parallelism and matching the parallel computation to the hardware,
a JavaScript programmer also needs to get around concurrent up-
dates to the non-concurrent DOM, concurrent reads and writes of
global memory, and polymorphic variables. Columns 5-8 in Table 3
summarize these issues and how often we encountered them in the
inspected loops.

Control-flow divergence Control-flow is diverging when the exe-
cution takes different paths depending on a dynamically evaluated
predicate. Such behavior is usually generated by branching state-
ments and loops with data-dependent number of iterations.

Control-flow divergence can make different threads execute
different instructions, so it is an issue when trying to run parallel
code on SIMD architectures. Several techniques have been proposed
to allow control-flow divergence while minimizing the performance
impact [17, 19, 21, 25, 29, 30, 37, 38]. Still, the overhead is still
much higher than that exhibited on CPUs.

Column 5 shows an assessment of the amount of control-flow
divergence. We found several cases where the computation would,
algorithmically, be very hard to adapt for SIMD parallelism:

• The second loop in HAAR.js does, at each iteration, a recursive
search through a tree which makes the iterations uneven.

• The loops in Ace only execute roughly one iteration on average.
The first loop executes a rendering method until there are no
more cascading changes.

• The Raytracing algorithm contains variable depth recursion.
• For MyScript, the only client-side expensive loop executes only

a few iterations, computing the length of line segments.
• Some loops (in sigma.js and processing.js) execute very few

iterations.

In most other cases (labeled as “little”) the iterations contain
branching statements but their effect is local and they only contain
a few instructions. Thus, we expect they can be transformed to

versions that use instructions guarded by predicates or select

instructions instead of branches without a major performance impact.
Finally, a few nests contain recursive functions or inner loops with
variable data-dependent bounds. These loop nests may will pose
additional challenges when attempting SIMD parallelization.

DOM accesses Column 6 shows that half of the loop nests access
the DOM. This is problematic as, although there is some research in
this area [28, 35], no major browser currently supports concurrent
accesses to the DOM.

Accesses to shared memory Code within loops may access shared
(i.e., not local to the loop) memory locations. These accesses may
generate dependencies between loop iterations (see Sec.3.3). These
dependencies need to be broken in some way in order to correctly
parallelize the loop. Column 7 shows our assessment of how hard it
would be for a programmer to break those dependencies for each
loop nest. We made this assessment by manually inspecting access
patterns within each loop nests with the help of our dependence
analysis tool. The dependence analysis tool was particularly helpful
in identifying flow dependencies but it also failed to scale to some
of the case studies.

Most loop nests make complex accesses to variables from global
memory, and all loops at least read global memory. The good news
is that in more than two thirds of the loop nests the write accesses
have a well-defined pattern that allows parallelism.

Polymorphic variables In the survey, we have asked programmers
about their use of polymorphic variables (see Sec. 2.4). We now con-
firm the results in the context of the computationally-intensive loops
in the case study by manually inspecting the code for polymorphic
variable accesses. We consider a variable polymorphic if the prop-
erty accesses or method invocations made through dereferencing
this variable assume objects of different types. E.g., we consider a
variable polymorphic if at one point in the program it is a number,
while at another point it is invoked as a function. We do not consider
a variable polymorphic if it changes between defined, undefined,
and null. Our manual inspection did not reveal any polymorphic
variables within the computationally-intensive loops.

Finally, column 8 of Table 3 shows our estimate of how easy it
would be to parallelize the loop nests, by considering both how easy
it would be to break dependencies and current browser limitations
(i.e. non-concurrent DOM and Canvas). Considering Amdahl’s law,
the upper bound for speedup is greater than 3× for 5 of the 12
applications when only counting easy to parallelize loops. On the
other end of the spectrum we think it would be hard or very hard to
obtain any significant speedup for 5 of the 12 applications.

5. Implications
Our study has several practical implications. We organize them
based on the community for which they are relevant.

5.1 Library developers and researchers
Using the survey data from Section 2.3, the preference for iterating
through functional-style operators is perhaps intuitively unsurprising
given that JavaScript as a whole is a high-level language with higher
order functions, and extensive usage of closures in practice. What
is more surprising is that programmers often prefer these high-
level operators even at the cost of some performance. This means
that any proposed parallel programming model should present a
sufficiently high-level interface that abstracts away concurrency and
synchronization issues, hardware features and scheduling. Thus,
libraries can take a functional approach to exposing data parallelism
(like RiverTrail did) instead of an annotative one (e.g., OpenMP
pragma directives).
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Table 3. Case study - detailed inspection of loop nests
runtime control flow DOM breaking parallelization

name % instructions trips/instruction divergence access dependencies difficulty

HAAR.js 38 10 31±23 little no easy easy
36 50k 15±15 yes no easy medium

Tear. Cloth 80 1077 1581 little no medium medium

CamanJS
72 536 90k little no easy easy
15 16 90k±300 little no easy easy

7 12 360k little no easy easy
fluidSim 90 40k 168±147 none no easy easy

Harmony
33 207 50 none yes easy very hard
32 498 50 none yes easy very hard
15 123 5±3 none yes easy very hard

Ace 42 125 1±0.1 yes yes very hard very hard
22 123 1±0.2 yes yes very hard very hard

MyScript 70 511 4±2 yes yes very hard very hard
Raytracing 98 772 120 yes no very easy easy
Norm. Map. 99 64 65k little no very easy easy
sigma.js 68 2070 191±27 little yes very hard very hard

22 638 196±21 yes yes very hard very hard
processing.js 25 54.6k 4±37 no no easy medium

22 54.6k 4±37 no no easy medium
16 54.5k 2 yes yes medium very hard
13 54.6k 4±37 no no easy medium

D3.js 99 51 156±57 yes yes hard hard

Looking at the case study data from Table 3, the non-concurrent
DOM is a bottleneck to exploiting data parallelism, but not the
biggest issue. Most of the loop nests that were not parallelizable due
to DOM operations were not that compute-intensive to begin with.

The complexity of global memory accesses seen in the case
studies implies that library developers will need to provide easy ways
of making arbitrary variables available to the parallel kernels. Ideally,
the memory management would be part of the JIT compilation.

5.2 Builders of web browser engines
Runtime polymorphic variables typically have some performance
cost since the JavaScript JIT engine must resolve the type of such
variables by leaving the fast JIT-ed code path and entering the
browser runtime. Modern browser engines implement sophisticated
type inferencing [24] and speculation to reduce these overheads.
On the other hand our survey indicates that many developers
write programs that are predominantly monomorphic with respect
to variables (see Fig. 4). Our case studies of compute-intensive
JavaScript programs also support this observation. This suggests
that compute-intensive programs would benefit from aggressive type
speculation and other mechanisms that provide a fast path for code
that is completely monomorphic and can be statically analyzed. This
is especially important in the context of parallelism since running
polymorphic code in parallel usually requires browser runtimes be
made thread safe.

Our survey indicates that many developers prefer using high-
level operators such as map or foreach instead of explicit loops.
Firstly this suggests that browser engines need to have efficient
implementations of these operators. Secondly, many of these higher
level constructs such as map, reduce etc., are particularly suited for
specifying parallelism as they capture the underlying parallelism-
enabling structure of the computation. This approach is taken by
Parallel Javascript [27].

5.3 Tool developers and researchers
Our experience analyzing the case study applications shows that
a standard profiler is insufficient for identifying parallelism oppor-
tunities as it does not provide any information about the loops. A
profiler with integrated loop information retrieval can help - along

the lines of our prototype or, more advanced, the modeling tools in
mature IDEs like Microsoft Visual Studio (for C#) or Intel Parallel
Studio (for C++).

If parallelized, most of the loop nests we analyzed would have
races. Most of these races would be fixable but the user would
need to be aware of them and devise a strategy around them. As
speculative parallelization gains ground for JavaScript, it means that
it does not only need to abort when it fails to run a loop in parallel,
but also have ways to report to the developer the reason for aborting.
Furthermore, once the detailed reason for aborting is identified, the
developer would need to transform the code significantly to solve
the issue, part of which may be automated.

Our case studies show that all loops that are compute-intensive
are written in a imperative style. Refactoring tools [23] that can
transform imperative iteration into functional style could make these
loops amenable to parallelism via libraries with parallel operators
such as RiverTrail[27].

5.4 JavaScript developers
As the workloads for emerging web application trends indicate
parallelism would be useful, and considering the WebCL [12] and
Parallel JavaScript [27] proposals, JavaScript developers should
expect to have access to parallel constructs in the next few years.

In this context, a clean design and implementation (e.g., avoiding
global variables) not only helps with maintainability, but reduces
number of hard-to-find parallelism-inhibiting dependencies.

Also, it may be that developers should trust their instincts: if
they like functional code more (as the data in Fig. 3 indicates), they
may be better of writing it, despite fears of loss of performance.
JavaScript engines tend to adapt quickly to the usage scenarios that
are frequent in practice. And they may get parallelism as an added
bonus in the future.

5.5 Educators
While our survey shows that developers are not adverse to functional-
style operators for iteration in principle, the case study applications
contain very few loops that use functional operators. This may
suggest that, while developers understand and like the concept, they
are using explicit for loops out of habit. Early-on education about
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alternate ways of iteration may help. The other possible reason
for this anomaly is that developers are wary that functional-style
operators are slower than explicit loops.

6. Related work
We are aware of two related studies in the context of JavaScript.
Fortuna et al. [20] study a set of widely used web-sites and come to
the conclusion that current web workloads offer significant potential
for parallelization, with projected speedups ranging from a factor
of 2.19 to 45.46 and averaging around a factor of 8.91. While this
suggest that there is use for parallelism, the authors also found
that the majority of speedups stem from parallel execution of
independent tasks rather than independent loop iterations. This
suggests that the web would benefit less from data parallelism
oriented approaches like WebCL and Parallel JavaScript and that a
lightweigth task-based approach might be more appropriate.

Another study on JavaScript [31], looking at its dynamic behav-
ior, comes to the conclusion that web-sites indeed make significant
use of dynamic features: Many websites use eval to generate code on
the fly, object properties change throughout their lifetime, including
properties being deleted or their types changing, and a significant
number of call sites are polymorphic. Such dynamic behavior not
only makes static analysis of JavaScript hard but also renders execu-
tion on more restricted parallel hardware like SIMD extensions or
even GPUs challenging. Thus, it gives another reason to believe that
data parallelism and the web do not pair well.

However, as mentioned earlier, both studies focus on websites
that mostly use a page-centric approach and have only low compute
density. While these are valid studies to understand the status quo,
they are not well suited to judge behavior of new and emerging
application-centric web usages, which is the focus of this work.

7. Conclusion
With the proliferation of desktop and especially mobile operating
systems, the web is increasingly seen as a cross-platform solution for
delivering applications. In our survey, when asked about emerging
trends in web applications, JavaScript developers mostly identified
kinds of applications that, not long ago, were only available as native
desktop applications.

But this transitioning comes with a challenge: native desktop
applications had to resort to multi and many-core parallelism for
performance. Should the web follow suit? If so, how hard will it be?

To answer these questions we conducted a survey among
JavaScript developers asking them about their use of JavaScript
language-features that may impede parallelism. Furthermore, we
did a case study looking at the computationally-intensive loop nests
in 12 web applications. While JavaScript is highly dynamic, we
found that developers seldom use language features that impede
parallelism. An important current limitation is that browsers have
non-concurrent implementations of basic data structures (e.g., the
DOM). Much of the compute-intensive code we inspected is written
in a style typical of non-dynamic imperative languages. This means
that many of the lessons learned by the programming community
while parallelizing desktop applications will translate to the web.
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