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Abstract

Branch-and-bound (B&B) algorithms, and extensions such as branch-and-price (B&P) are powerful tools

for optimization. These algorithms are used in a wide variety of settings, and thus it is beneficial to develop

new techniques to improve the performance of B&B algorithms that are independent of the specific problem

being studied. This dissertation describes three such techniques.

First, new results for the cyclic best-first search (CBFS) strategy are presented. This strategy groups

subproblems into a list of contours which it repeatedly cycles through. The strategy selects one subproblem

to explore from each contour on every pass through the list. Theoretical results are proven showing the gener-

ality of the CBFS strategy, and bounds are given on the number of subproblems the strategy explores. More-

over, an analysis of various contour definitions is performed to ascertain the factors that drive its performance.

In addition, two general-purpose methods are described for B&P algorithms that enable standard integer

branching rules to be used while limiting the computation time required to solve the constrained pricing

problem (i.e., the pricing problem which respects the branching decisions at the current subproblem). The

first method uses a data structure called a zero-suppressed binary decision diagram (ZDD) to solve

the pricing problem and keep track of previous branching decisions. Bounds are proved on the size of a ZDD

for the maximum-weight maximal independent set problem, which is used to solve the pricing problem in a

B&P algorithm for the graph coloring problem.

The last method described in this dissertation restructures the search tree in a B&P setting using a

wide branching strategy so as to minimize the number of times the constrained pricing problem must be

solved. This restructuring is motivated by the Wide Branching Theorem, which guarantees the existence of

a smallest search tree for a fixed set of pruning rules. A delayed branching technique is described that

limits the branching factor of the search tree, and forgetful branching is applied to further reduce the

number of times the constrained pricing problem needs to be solved in the tree.

Computational results are presented for all methods on various optimization problems (mixed integer

programming, graph coloring, the generalized assignment problem, and the simple assembly line balancing

problem). Finally, future research directions are presented.
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Chapter 1

Introduction

The branch-and-bound (B&B) framework is a fundamental and widely-used methodology for producing

exact solutions to NP-hard optimization problems. The technique, which was first proposed by Land and

Doig (1960), is often referred to as an algorithm; however, it is perhaps more appropriate to say that

B&B encapsulates a family of algorithms that all share a common core solution procedure. This procedure

implicitly enumerates all possible solutions to the problem under consideration, by storing partial solutions

called subproblems in a tree structure. Unexplored nodes in the tree generate children by partitioning the

solution space into smaller regions that can be solved recursively (i.e., branching), and rules are used to

prune off regions of the search space that are provably suboptimal (i.e., bounding). Once the entire tree has

been explored, the best solution found in the search is returned. A early overview of the core B&B algorithm

was provided by Lawler and Wood (1966); the solution procedure is also covered in the excellent texts by

Nemhauser and Wolsey (1988), Bertsimas and Tsitsiklis (1997), and Papadimitriou and Steiglitz (1998).

One reason for the popularity of B&B methods is due to the generality of the solution procedure: B&B-

based algorithms can be used to solve many different types of optimization problems in areas of practical

interest, including scheduling problems (e.g., airline crew scheduling (Barnhart et al., 2003), sports scheduling

(Easton et al., 2003), hospital staff scheduling (Beliën and Demeulemeester, 2008; Gendreau et al., 2007)),

graph problems (e.g., coloring problems (Mehrotra and Trick, 1996), partitioning problems (Clausen, 1999),

clustering problems (Fukunaga and Narendra, 1975)), network design and network flow (e.g., facility location

(Görtz and Klose, 2012), vehicle routing (Fukasawa et al., 2006), multicommodity flow (Barnhart et al.,

2000)), and many others. B&B algorithms are also applied to problems of theoretical importance, including

mixed integer programming (Nemhauser and Wolsey, 1988) and non-linear programming (Tawarmalani and

Sahinidis, 2004).

An additional reason for the success of B&B-based approaches is due to the simplicity of the method.

B&B is easy to explain and implement; moreover, it is easily extensible. This fact allows lessons learned in

one problem domain to be easily transferred to other settings. Its simplicity also ensures that mistakes in

the algorithm or implementation are less common and easier to detect.
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Many problem-specific enhancements to B&B methods have been developed that have resulted in dra-

matic improvements in computation time and solution quality. While problem-specific algorithmic enhance-

ments are in many cases critical to the success of a B&B algorithm, new general-purpose enhancements to

the framework can yield similar performance gains in many settings at once. Therefore, this dissertation

proposes three new general-purpose enhancements for B&B algorithms that can be applied to a wide class

of problems while maintaining the simplicity of the approach.

Chapter 3 describes the first of these extensions, called cyclic best-first search (CBFS). This extension

is a new search strategy that can be used with B&B which attempts to balance the diversification and

intensification properties of the search process more effectively than other standard search strategies such as

depth-first search (DFS) and best-first search (BFS). The eponymous characteristic of the CBFS strategy

is its cycling behavior: CBFS groups subproblems together into sets called contours, and repeatedly cycles

through these contours, selecting one subproblem from each contour to explore on each pass through the

search tree. By constructing the contours appropriately, the search strategy can delay exploration of some

subproblems and encourage exploration of others, similarly to the way a tabu list operates in local search

algorithms. This strategy provides algorithm designers with greater control over how subproblems are

explored, and can lead to significant improvements in performance in some settings.

The remaining two extensions described in this dissertation are applied in the context of branch-and-

price (B&P); B&P is an extension of B&B which operates in a setting where the number of branching

variables is exponential in the input size of the problem. The entire set of branching variables cannot in

general be stored in available memory; thus, only a subset of the branching variables is stored at any given

time. B&P algorithms combine a conventional B&B search over this restricted pool of variables together

with an auxiliary problem referred to as the pricing problem, which is used to introduce new variables

into the pool as necessary.

Problem formulations with an exponential number of decision variables are often used to improve the

value of the lower bounds used to prune in the search process, as well as to break symmetry that may be

present in simpler formulations. However, the pricing problem (which needs to be solved exactly at least

once at every subproblem in the search tree) is usually NP-hard as well. Thus B&P algorithms need to

balance the computational savings gained by better pruning with the increased computation time needed to

repeatedly solve the pricing problem.

A secondary challenge that arises when solving an exponentially-sized formulation with B&P is the

necessity of the pricing problem to respect previous branching decisions. In particular, when the pricing

problem is solved to introduce new variables into the variable pool, the produced variables must not violate
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any of the branching decisions at the current subproblem. However, communicating these branching decisions

to the pricing problem generally significantly increases the difficulty of finding a solution, which in turn

increases the overall computation time. The pricing problem with additional side constraints reflecting the

branching decisions at the current subproblem is called the constrained pricing problem.

A final complication due to the large number of variables present in B&P settings is that the resulting

search trees are often extremely unbalanced. If the algorithm gets unlucky, it may spend much computation

time exploring the deeper regions of the search tree before finding optimal or near-optimal solutions, when

instead it could have found an optimal solution much more quickly if it had explored the shallower side of the

tree first. For example, given a binary mixed integer programming problem with a large number of covering

constraints (of the form
∑
aiyi ≥ b), a single branching decision setting yi = 1 may satisfy a large number

of constraints simultaneously, whereas a branching decision setting yi = 0 may not change the structure of

the IP very much. Thus, a comparatively small number of the former type of assignments will be performed

before either a feasible solution is found or the path is pruned. On the other hand, a large number of the

latter type of assignments will need to be made before the corresponding path can be pruned.

Chapter 4 presents an extension to B&P algorithms that attempts to address these issues. This extension

uses a data structure called a zero-suppressed binary decision diagram (ZDD) to encode solutions to

the pricing problem; this data structure requires some additional up-front computation time, but then can

be queried and updated efficiently to solve the constrained pricing problem as the search progresses. The use

of this data structure enables bounds to be computed more quickly in a B&P context, and thus pruning to

occur more quickly. This extension also uses the CBFS strategy to counteract the effects of an unbalanced

search tree.

A second B&P extension, called wide branching, is presented in Chapter 5. Instead of trying to improve

the solution times of the pricing problem, this extension instead modifies the the branching strategy used by

the algorithm so as to limit the number of times the constrained pricing problem must be solved, using an

operation called path compression. The path compression operation collapses long chains in the search

tree into a single subproblem, and forgetful branching is applied to remove branching constraints that

conflict with the pricing problem. A delayed branching technique is applied to limit the branching factor

of the search tree. This new branching strategy has the added benefit of restructuring the search tree so

that it is not as unbalanced.

Finally, in Chapter 6, future research directions for these methods are discussed.
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Chapter 2

The Branch-and-Bound Algorithm

At the most general level, a branch-and-bound algorithm is used to solve some optimization problem P =

(X, f), where X (called the search space) is a finite set of valid solutions to the problem, and f : X → R

is the objective function. The algorithm’s goal is to find an optimal solution x∗ ∈ arg minx∈X f(x).

To solve P, B&B iteratively builds a search tree T of subproblems, that is, subsets of the search

space. Additionally, a feasible solution x̂ ∈ X (called the incumbent solution) is maintained. At each

iteration, the algorithm selects a new subproblem to explore from a list S of unexplored subproblems;

if a solution x̂′ ∈ S (called a candidate incumbent) can be found with a better objective value than x̂

(i.e., f(x̂′) < f(x̂)), the incumbent solution is updated. On the other hand, if it can be proven that no

solution in S has a better objective value than x̂ (i.e., ∀ x ∈ S, f(x) ≥ f(x̂)), the subproblem is pruned (or

fathomed), and the subproblem is terminal. Otherwise, child subproblems are generated by partitioning

S into an exhaustive (but not necessarily mutually exclusive) set of subproblems S1, S2, . . . , Sr, which are

then inserted into T . Once no unexplored subproblems remain, the best incumbent solution is returned;

since subproblems are only fathomed if they contain no solution better than x̂, the solution returned by the

algorithm must be x∗ ≡ x̂. Pseudocode for the generic B&B procedure is given in Algorithm 2.1.

Algorithm 2.1: Branch-and-Bound(X, f)

1 Set S = {X} and initialize x̂
2 while S 6= ∅ :
3 Select a subproblem S ∈ S to explore
4 if a solution x̂′ ∈ {x ∈ S | f(x) < f(x̂)} can be found : Set x̂ = x̂′

5 if S cannot be pruned :
6 Partition S into S1, S2, . . . , Sr
7 Insert S1, S2, . . . , Sr into S

8 Remove S from S

9 Return x̂

With respect to this pseudocode, the search strategy affects the order in which nodes are selected for

exploration in Line 3 of Algorithm 2.1; the branching strategy affects the way the subproblem is partitioned

and the number of produced children (Line 6, Algorithm 2.1); and the pruning rules used in Line 5 of
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Algorithm 2.1 determine whether or not S can be fathomed. Usually, an initial incumbent solution is found

(Line 1, Algorithm 2.1) via a heuristic procedure (see, for example, Malaguti et al., 2011).

Note that the set X (and all subproblems) is generally given implicitly; that is, given an element x,

membership in a particular subproblem can be checked efficiently, and a partition of any subproblem can

be computed efficiently without knowing all the members of X. Then, the complexity of B&B algorithms

is related to two factors: the branching factor r of the tree, which is the maximum number of children

generated at any node in the tree, and the depth d of the tree, which is the longest path from the root of T

to a leaf. Thus, any B&B algorithm operates in O(Mrd) worst-case running time, where M is a bound on

the length of time needed to explore a subproblem; however, the presence of pruning rules can substantially

improve the algorithm performance.

2.1 Relationships Between Algorithm Components

There are two important phases of any B&B algorithm: the first is the search phase, in which the algorithm

has not yet found an optimal solution x∗. The second is the verification phase, in which the incumbent

solution is optimal, but there are still unexplored subproblems in the tree that cannot be pruned. Note that

an incumbent solution cannot be proven optimal until no unexplored subproblems remain; also note that the

delineation between the search phase and the verification phase is unknown until the algorithm terminates.

In a slight abuse of terminology, a problem P is said to be solved if the B&B algorithm has completed the

verification phase. In this case, the algorithm is said to have produced a certificate of optimality.

The three algorithmic components (search strategy, branching strategy, and pruning rules) each play a

distinct role in B&B algorithms with respect to these two phases of operation (see Figure 2.1). In particular,

the choice of search strategy primarily impacts the search phase. To see this, suppose the pruning rules and

branching strategy are fixed, and only depend on the value of the incumbent solution (e.g., they compare

a subproblem’s lower bound to the incumbent value). In this setting, any search strategy must explore the

same remaining set of subproblems once an optimal solution is found.

Moreover, observe that the choice of pruning rules primarily impacts the verification phase, since pruning

rules are often relatively weak before an optimal (or near-optimal) solution is known (using the above

example, if the incumbent solution has a poor objective value early in the search process the lower bounds

will not be able to prune effectively, even if they are very tight). However, the choice of branching strategy

has significant impacts on both the search phase and the verification phase: by branching appropriately at

subproblems, the strategy can guide the algorithm towards optimal solutions, and limiting the branching
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Branch-and-bound

Pruning
Rules

Branching
Strategy

Search
Strategy

Phase 1:
Search

Phase 2:
Verification

Heuristic
Solution

Certificate of
Optimality

Binary Branching
Wide Branching

DFS
BrFS
BFS
CBFS

Lower Bounds
Dominance Rules
Cutting Planes
Column Generation
Constraint Program-
ming

Figure 2.1: A diagram of the three main B&B components. The search strategy and the pruning rules pri-
marily impact the search phase and verification phase, respectively, whereas the branching strategy impacts
both.

decisions made during verification prevents unnecessary work from being performed to produce a certificate

of optimality.

There are two important reasons to improve performance of the B&B algorithm during the search phase.

First, if the algorithm terminates before producing a certificate of optimality, the incumbent solution can still

be returned as a heuristic solution, which may be sufficient in some problems. An example of this behavior

can be seen in Fischetti and Lodi (2003), which introduces new constraints in a mixed integer programming

framework to attempt to reach a feasible solution quickly.

Secondly, finding an optimal solution earlier in the search phase has a direct impact on the size of the

search tree (and thus the time necessary to verify optimality), since no further nodes with bounds greater

than the optimum value need be explored. Intuitively, this is the rationale behind the result of Dechter and

Pearl (1985) showing that best-first search explores the fewest number of subproblems of any search strategy.

Figure 2.2 shows the internal relationships between the different types of pruning rules, branching strate-

gies, and search strategies. In this figure, solid lines indicate a generalization relationship. For instance, as
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Cutting
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Column
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Constraint
Programming
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Wide
Branching

DFS BrFS BFS

CBFS

Search
Strategy

Branching
Strategy

Figure 2.2: A diagram of relationships between various B&B algorithm components.

discussed in Section 2.4.4, many constraint programming techniques generalize cutting planes and dominance

relations. Furthermore, the CBFS search strategy is a generalization of DFS, BrFS, and BFS (see Chapter 3).

Column generation techniques, while not strictly a generalization of other techniques, are closely connected

to lower bounding and cutting plane techniques (in essence, column generation adds cutting planes to the

dual optimization problem to improve the computed lower bound); B&P algorithms combine a B&B search

with column generation (see Section 2.5).

Figure 2.2 also shows the relationships between the pruning rules, the branching strategy, and the search

strategy used by an algorithm. In particular, the choice of pruning rules often impacts or limits the choices

that can be made in the other two areas. For example, as discussed in Section 2.5, if column generation is

used to improve lower bounds, the choice of branching strategies that can be used is limited. Moreover, if

dominance relations are used, this may cause BrFS to become a desirable search strategy, since it has the

property of never exploring a dominated subproblem. Finally, the choice of branching strategy can itself

impact the choice of search strategy. For instance, if the branching strategy chosen produces a particularly

unbalanced tree, the CBFS strategy can balance the search process, or variants of DFS can limit the depth

explored at any stage in the algorithm.
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2.2 Search Strategies

The search strategy in a B&B algorithm determines the order in which unexplored subproblems in T are

selected for exploration. The choice of search strategy has potentially significant consequences for the amount

of computation time required for the B&B procedure, as well as the amount of memory used. In some cases,

for very large or challenging problems, it may be necessary to choose a search strategy that requires low

memory usage; however, for problems in which memory is not a concern, other search strategies exist which

may find an optimal solution very quickly, and thus explore potentially fewer subproblems. A comparison of

some search strategies is given in Ibaraki (1976). In this section, a discussion of common search strategies,

along with their strengths and weaknesses is given. Figure 2.3 shows a small search tree, and the order in

which nodes are explored for several different search strategies.
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Figure 2.3: Subproblem exploration order for different search strategies. The dashed subproblem is optimal,
numbers inside nodes are subproblem lower bounds, and numbers outside the nodes indicate exploration
order. The algorithm starts with an incumbent solution of value 10. BFS uses the lower bound as the
measure-of-best, with ties broken arbitrarily.
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2.2.1 Depth-First Search

The depth-first search (DFS) strategy (sometimes called depth-first search with backtracking, or last-in,

first-out search; see Nemhauser and Wolsey, 1988, Section 11.4) is a search strategy used in many different

graph algorithms in addition to B&B (Golomb and Baumert, 1965; Tarjan, 1972). It can be implemented by

maintaining the list of unexplored subproblems S as a stack. The algorithm removes the top item from the

stack to choose the next subproblem to explore, and when children are generated as a result of branching,

they are inserted on the top of S . Thus, the next subproblem that is explored is the most recently generated

subproblem.

However, a slight modification to this algorithm can be made to produce a substantial savings in memory

usage. In particular, if the children of a subproblem can be ordered in some way, then DFS does not need

to store the entire list of unexplored subproblems (which can grow quite large) over the course of the

algorithm. Instead, the search strategy only stores the path from the root of T to the current subproblem;

at each subproblem along this path, it also stores the index of the last-explored child subproblem. At the

current subproblem, the next unexplored child is selected for exploration. If no unexplored children remain,

the algorithm backtracks to the closest ancestor node with unexplored children.

In addition to its low memory requirements, another advantage of DFS arises when solving integer

programming problems (Section 2.6.1) that use the LP relaxations as lower bounds. Since most branching

decisions in this setting do not change the structure of the LP relaxation significantly, the LP solver can often

reuse information from the parent LP solution as a starting point for the child LP solution. This procedure

is called warm starting, and is used in many commercial LP solvers (Atamtürk and Savelsbergh, 2005).

Two problems arise with the use of the DFS strategy. The first problem is that näıve implementations

of DFS do not use any information about problem structure or bounds, which means the search process can

spend large amounts of exploration time in poor regions of the search space. A related phenomenon, called

thrashing, occurs when different regions of the search space all fail for the same or similar reasons (Kumar,

1992). For instance, perhaps the presence of a single branching constraint always leads to infeasibility, but

the algorithm must explore many more subproblems before the infeasibility is detected.

A different problem arises when the search tree is extremely unbalanced. In other words, if some optimal

solutions are close to the root, but there exist long paths in T that do not lead to an optimal solution,

DFS can (unluckily) choose many long, bad paths before it explores a path leading to an optimal solution.

However, this computation time often could be avoided via pruning rules if the search strategy instead chose

to explore a short optimal path first. In fact, this behavior of DFS was first noticed on problems where the

search tree had unbounded depth (Slate and Atkin, 1983), but the same problem exists in trees with a few

9



extremely long paths.

A host of variants to the depth-first search strategy exist that attempt to overcome these limitations.

One common variant is the iterative deepening DFS algorithm (Korf, 1985), which imposes a limit on the

depth of subproblems explored by DFS; if the search process is not able to prove optimality using this depth

limit, the depth is increased and the search is restarted from the root. This ensures that the search does

not spend unneeded time exploring extremely long paths in the search tree while retaining the low memory

overhead of regular DFS.

Another algorithm called interleaved depth-first search by Meseguer (1997) tries to overcome thrash-

ing behavior by performing depth-first search from multiple locations in the search tree at once. This strategy

can be performed by sequentially selecting exactly one subproblem to explore from each different DFS path

in the search tree before returning to the first search path. This algorithm can improve performance over

standard DFS with a relatively limited increase in memory usage (a single stack needs to be maintained for

each search path).

A third variant of DFS is depth-first search with complete branching, which tries to exploit problem

structure by selecting the next child subproblem to explore as the one with the best computed lower bound

(Scholl and Klein, 1999). This method explores the search tree more intelligently, at the expense of increased

memory usage, since all child subproblems must be generated when a subproblem is explored. However, if

the tree has a relatively small branching factor, this increased memory usage is not likely to be significant.

2.2.2 Breadth-First Search

Breadth-first search (BrFS) is the opposite of DFS in that it is implemented with a first-in, first-out, or

queue, data structure. BrFS explores all subproblems that are a fixed distance from the root before exploring

any deeper subproblems. The BrFS strategy has the advantage of always finding an optimal solution that

is closest to the root of the tree, thus operating well on unbalanced search trees. However, since complete

solutions are usually at larger depths, BrFS is generally unable to exploit pruning rules that compare against

the current incumbent solution. For this reason, the memory requirements for BrFS are often quite high,

and it is generally not used in a B&B context. Two exceptions are in the presence of dominance relations

(Section 2.4.2), which can prune effectively even in the absence of a good incumbent solution, and if a good

incumbent solution can be found effectively by some other means, for example with a good heuristic search

(Sewell and Jacobson, 2012). It is also worth noting that in the absence of pruning rules, the iterative

deepening DFS strategy explores the same sequence of nodes as BrFS with substantially lower memory

requirements.
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2.2.3 Best-First Search

In settings where sufficient memory is available to store the entire unexplored search tree, the best-first

search (BFS) strategy is often used. This strategy makes use of a heuristic measure-of-best function

µ : 2X → R, which computes a value µ(S) for every unexplored subproblem, and selects as the next

subproblem to explore the one minimizing µ. If µ(S) ≤ minx∈S f(x) for all S (that is, the measure-

of-best function never overestimates the best solution in a subproblem), the measure-of-best function is

admissible. In the presence of an admissible µ, BFS is also called the A∗ algorithm (Dechter and Pearl,

1985), or sometimes best-bound search. BFS can easily be implemented by storing the list of subproblems

in a heap data structure, using the value of µ as the key (Cormen et al., 2009).

There are many choices for the measure-of-best function; one common choice is a lower bound on the

value of the best solution in the subproblem. If the lower bound is strongly correlated with the subproblem

objective values, this measure-of-best will encourage exploration of subproblems with better solutions. How-

ever, in practice, lower bounds may not be a good proxy for the objective function value. For example, in

integer programming problems which use the LP relaxation as a lower bound, a small lower bound may just

indicate that the structure of the problem allows the LP to “cheat” in ways that the IP cannot. To overcome

this, other candidate measure-of-best functions are heuristics which estimate the quality of a solution, such

as in Sewell and Jacobson (2012). Additionally, Shi and Ólafsson (2000) use a probabilistic function called

the promising index to estimate the quality of a solution, and commercial solvers such as CPLEX use a

heuristic function to estimate the objective value of a particular subproblem (IBM Corp., 2014).

Best-first search offers a number of significant advantages over DFS; because it is not tied to exploring

one specific branch of the tree before any other, it is often able to find good solutions earlier in the search

process. In fact, this notion has been formalized in a theorem by Dechter and Pearl (1985) that states

that, assuming an admissible µ with no ties and no dominance relations, BFS explores the fewest number

of subproblems of any search strategy that has access to the same heuristic function and other information.

However, as observed in Sewell and Jacobson (2012), BFS does still have one potential drawback—if there

exist many subproblems in T for which µ(S) = f(x∗), depending on the tie-breaking rule used, BFS may

spend much time in middle regions of the search tree and never explore an optimal solution (see Figure 2.3c,

in which nodes 3, 4, and 5 are explored before the optimal solution is found). In this situation, BFS may be

slower than some other strategy. To overcome this, many BFS implementations employ diving heuristics

or other heuristic methods to drive a subproblem towards a new incumbent solution that can aid in pruning

(Bixby et al., 2000; Achterberg et al., 2008).
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2.3 Branching Strategies

The choice of branching strategy determines how children are generated from a subproblem. Branching

strategies can be categorized into two groups: binary branching strategies and non-binary, or wide, branch-

ing strategies. Additionally, due to the prevalence of integer programming problems, there is a plethora of

literature devoted to branching strategies in integer programming. These will be discussed separately at the

end of the section.

2.3.1 Binary Branching

Binary branching strategies focus on subdividing a subproblem S into two mutually-exclusive, smaller sub-

problems. For example, in the knapsack problem, which seeks a maximum-cost selection of items to fit inside

a storage bin with fixed capacity, a binary branching strategy for a subproblem S selects some unassigned

item and creates two branches, one in which the item is included in the knapsack, and one in which the

item is excluded from the knapsack (Kolesar, 1967). Most binary branching strategies are variants of this

idea. The standard integer branching scheme for integer programming in Section 2.6.1 is another binary

branching scheme.

In some cases, the mechanism for performing the partitioning is more complicated. For the graph coloring

problem (Section 2.6.2), Mehrotra and Trick (1996) use a branching rule that either adds edges or contracts

vertices of G in order to force a pair of non-adjacent vertices to either share same color or use different colors.

Similarly, in the branch-and-price solver for the generalized assignment problem (Section 2.6.3, (Savelsbergh,

1997)), branching is performed by either including or excluding all schedules that assign a particular task

to a worker.

2.3.2 Wide Branching

In contrast to binary branching are wide branching strategies, which focus on selecting one element from a

set of different options. For example, in B&B algorithms to compute maximum cliques or independent sets

in a graph, a set of unused vertices is maintained for each subproblem, and each unused vertex generates

a child with that vertex added to the child’s set (Babel, 1994; Held et al., 2012). Wide branching methods

allow for potentially large reductions in the size of the search tree. In the above example, a binary branching

strategy would have to consider each unused vertex individually, creating a long sequence of subproblems.

This long sequence can be bypassed with the wide branching technique (see Figure 2.4).

One important setting in which a wide branching strategy has been used successfully is with special
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ordered sets (SOS), introduced by Beale and Tomlin (1970) and Beale and Forrest (1976). There are two

types of special ordered sets, denoted by SOS1 and SOS2. An SOS1 is a set of elements for which at most

one element can be used in a solution, and an SOS2 is a set of elements for which at most two adjacent

elements can be used in a solution. SOS2 are useful for modeling piecewise linear approximations of nonlinear

optimization problems (de Farias, Jr. et al., 2000; D’Ambrosio and Lodi, 2011). Wide branching strategies

can be used in B&B to handle problems with SOS variables; for example, when an SOS1 is selected for

branching, the strategy creates one branch for each element in the set. The subproblem for this set uses the

chosen element and excludes all others. Finally, the branching strategy creates one subproblem which uses

no elements from the set. This strategy can be generalized to handle SOS2, as well.

...

y1 = 0

y1, y2 = 0

y1, y2, . . . , yk−1 = 0

y1 = 1

y1 = 0
y2 = 1

y1, y2 = 0
y3 = 1

y1, y2, . . . , yk−1 = 0
yk = 1

y1, y2, . . . , yk = 0

(a) Binary branching

y1 = 1 y2 = 1 y3 = 1 yk = 1

. . .

(b) Wide branching

Figure 2.4: Binary branching versus wide branching. Given a set of k elements from which one must
be selected, binary branching must explicitly reject elements 1, 2, . . . , j − 1 before creating a branch that
considers element j. Conversely, wide branching can consider each of them immediately.

Two potential problems arise with wide branching strategies. The first is that such strategies usually do

not create mutually-exclusive branches, so it is possible to arrive at the same subproblem from several dif-

ferent paths. It is generally easy to work around this problem using a lexicographic ordering rule (Geoffrion,

1969), memory-based dominance rules (Sewell et al., 2012; Sewell and Jacobson, 2012), or nogood recording

(See Section 2.4 for more details on nogoods and dominance).

A second problem arises if the number of branches that can be created at a particular subproblem is very

large. In this case, the algorithm could get stuck generating children at a particular subproblem and never

move on to explore new regions of the search space. Moreover, if the number of generated children is very

large at every subproblem, the size of the search tree will grow much more rapidly. There are two potential
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ways around this issue; the first sets an arbitrary cap on the number of children that can be generated at

a subproblem. If the branching factor ever exceeds this limit, any additional children are just discarded.

This technique, used in the simple assembly line balancing solver of Sewell and Jacobson (2012), can prove

optimality if the branching factor is never exceeded; otherwise, it performs as a heuristic. The other method

uses a delayed branching technique, described in Section 5.1.2, in which the algorithm delays generation

of the remaining children in the hopes that when it returns to the node, better bounds may have been

computed that allow it to prune children more effectively.

Finally, a hybrid approach between binary branching and wide branching, called orbital branching,

creates a large number of children when a subproblem is explored, but uses a group-theoretic concept of an

orbit to prune off all but two of them. This technique is most useful for problems which demonstrate a high

degree of symmetry (Ostrowski et al., 2011).

2.3.3 Branching in Integer Programs

Given that many optimization problems can be modeled using integer programming (Section 2.6.1), sub-

stantial effort has been devoted to branching strategies for integer programming problems. The branching

strategy is generally divided into two phases: selecting a variable or set of variables to branch on, and creat-

ing child subproblems by imposing bounds on these variables to force them away from fractional values. The

choice of branching variable can significantly impact the performance of the algorithm, and many different

techniques exist to choose good branching variables.

One commonly-used, easy-to-implement rule is called the most fractional rule, which selects the variable

yi whose fractional part is closest to 0.5 as the branching variable. However, as shown by Achterberg

et al. (2005), this branching rule is no better than selecting a branching variable at random in terms of

computational time required and number of subproblems explored. Therefore, a number of more advanced

techniques have been proposed in the literature to improve the performance of B&B integer programming

solvers. The opposite branching rule, the least fractional rule selects yi such that its fractional part is

furthest from 0.5; this rule is less commonly used and is often outperformed by other methods (see, for

example, Ortega and Wolsey (2003)).

Another approach is to branch on variables that induce the most change in the objective function (Lin-

deroth and Savelsbergh, 1999). There are two methods of doing this; the first, called strong branching,

computes the LP relaxation objective value of the children of a subproblem S for each candidate branch-

ing variable, and then selects the variable that induces the most change in the objective. However, this is

computationally expensive, so an alternate method called pseudocost branching (Benichou et al., 1971)
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is often used which attempts to predict the per-unit change of the objective function for each candidate

branching variable, based on past experience in the tree.

One problem that arises with pseudocost branching, however, is how to initialize the pseudocosts at

the beginning of the algorithm, since no information is available about past behavior. To address this, a

method called hybrid strong/pseudocost branching can be used, which employs strong branching at

upper levels of the search tree to initialize the pseudocosts, and then uses pseudocosts in lower regions of

the tree once more information is available. An alternate method, called reliability branching proposed

by Achterberg et al. (2005), uses strong branching for any variables whose pseudocosts have been deemed

unreliable—that is, for which there is not enough historical information in the branching process to compute

pseudocosts for the variable.

Recent research by Pryor and Chinneck (2011) has explored the use of branching rules that try to find fea-

sible integer solutions to the problem quickly. They achieve this by branching on variables that induce change

in the largest number of variables in the problem (as opposed to the largest change in objective value, as with

pseudocost branching). The somewhat surprising result in their paper shows that branching on variables

with the smallest probability of satisfying constraints in the LP often leads to integer feasibility more quickly,

because this will require a large number of other variables in the LP to change to satisfy the constraints.

Another recent branching method developed by Fischetti and Monaci (2011) is called backdoor branch-

ing. This technique solves an auxiliary integer program to determine a small set of variables that should be

branched on before any others; this auxiliary program is a set covering problem which computes a back-

door—that is, a set of variables which, if branched upon early in the search process, yield a small search tree.

Finally, Gilpin and Sandholm (2011) use information-theoretic results to guide the search process by

branching so as to remove uncertainty from subproblems in the search tree. Subproblems close to the

root in the search tree have a large amount of uncertainty, since few variables have been fixed; terminal

subproblems have no uncertainty, since all variables have assumed integer values. To do this, they treat the

values of fractional variables as probabilities, and compute the entropy (i.e., the amount of uncertainty)

for each candidate branching variable, selecting the one with the least entropy to branch upon. A related

technique by Karzan et al. (2009) uses machine learning techniques to train a B&B algorithm to choose

branches that lead to small search trees.
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2.4 Pruning and dominance rules

A critical aspect of B&B search is the choice of pruning rules used to exclude regions of the search space

from exploration. Note that for a fixed branching strategy, any node that cannot be pruned by the pruning

rules must be explored by any search strategy, even if an optimal solution is known before the search begins.

The only way to reduce the size of the search tree in this case is to use better pruning rules. There are many

different classes of pruning rules, but they are usually problem-specific and must be derived anew for each

different problem type under consideration. Again because of its prevalence, many pruning rules are focused

on integer programming problems.

2.4.1 Lower Bounds

The most common way to prune is to produce a lower bound on the objective function value at each

subproblem, and use this to prune subproblems whose lower bound is no better than the incumbent’s

solution value. Lower bounds are computed by relaxing various aspects of the problem. For example, in

the simple assembly line balancing problem (Section 2.6.4) and its variants, one common relaxation is to

compute the optimal solution value ignoring the precedence constraints (Vilà and Pereira, 2014; Sewell and

Jacobson, 2012). In general, as many different lower bounds can be computed as necessary; some lower

bound computations may be easy to compute, whereas others may be more computationally intensive. Thus

a common practice is to attempt to prune using the easy lower bounds first, and then move on to the more

complex, but tighter, lower bounds if the easy methods are unsuccessful.

If the problem can be formulated as an integer program, the optimal value of the LP relaxation is

an extremely common lower bound choice. The quality of the LP relaxation value is measured by the

integrality gap of the formulation, that is, the ratio between the best integer solution and the best LP

relaxation value across all problem instances. However, there may be many different ways to formulate the

problem using integer programming, and some of these problems may have tighter integrality gaps than

others. Thus, one technique for improving lower bounds is to derive a new formulation with a tighter

integrality gap (Arora et al., 2002). The branch-and-cut and branch-and-price algorithms described in

Sections 2.4.3 and 2.5 are common methods for exploiting integer programming formulations with tighter

bounds. A related approach for polynomial programming problems called the reformulation-linearization

technique (RLT) transforms a mathematical program with polynomial objective function and constraints

into a linear program, and uses the resulting LP bound to prune in B&B algorithm to find global optimal

solutions to the polynomial program (Sherali and Tuncbilek, 1992).

Another method for deriving lower bounds on integer programming problems is through duality. Though
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there is no strong duality theorem for integer programming, one can still arrive at a notion of weak duality.

Given an integer program min{f(y) | Ay ≤ b, y ∈ Z}, the Lagrangian relaxation problem is P(λ) =

min{f(y) + λ(b − Ay) | y ∈ Z}, where λ is a non-positive vector of real-valued weights called Lagrange

multipliers. The optimal solution value for the Lagrangian relaxation is always bounded above by the

value of the optimal solution to the original problem. Thus, the best bound possible may be computed

as the solution to the Lagrangian dual problem, maxλ≤0 P(λ). The Lagrangian dual problem can be

solved using subgradient optimization, a modification of Newton’s method for piecewise linear concave

functions (Bertsimas and Tsitsiklis, 1997). Integer programming duality methods have been used in Vilà

and Pereira (2014); Desrosiers et al. (2013); Gendron et al. (2013), and Phan (2012), among others.

2.4.2 Dominance Relations

In contrast to lower bounding rules, dominance relations allow subproblems to be pruned if they can be shown

to be dominated by some other subproblem—in other words, if subproblem S1 dominates subproblem S2,

this means that for any solution that is contained S2, there exists a complete solution in S1 that is at least as

good. Thus, it suffices to just explore S1. Dominance relations, first studied by Kohler and Steiglitz (1974),

are closely related to the Bellman equations from dynamic programming (Bellman, 1954). Note that, as

shown by Ibaraki (1977), it is not always true that using dominance relations will improve the quality of the

search process; however, there are many cases in which dominance relations will improve the search.

There are two primary types of dominance relations, memory-based and non-memory-based. Memory-

based dominance rules compare unexplored subproblems to other problems previously generated and stored

in the tree (Sewell et al., 2012). As the name implies, memory-based dominance rules require the entire

search tree to be stored for the duration of the algorithm, instead of just the unexplored subproblems.

However, this may allow for additional pruning to be performed that would be otherwise impossible.

Non-memory-based dominance relations do not require the dominating state to have been previously

generated in the search process—instead, non-memory-based dominance rules are able to imply the existence

of a dominating subproblem, regardless of whether it has been explored or generated. Such rules have the

advantage that they do not require additional memory to store the generated search tree, but they may not

be able to prune the same subset of problems that memory-based dominance rules can.

In B&B algorithms that employ dominance, the BrFS strategy has the useful property that it never

explores a dominated subproblem, as long as the dominance relations are formulated in such a way so that

subproblems are only compared if they are within the same level of T (see, for example, Nazareth et al.

(1999); Sewell and Jacobson (2012)).
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Note that care must be taken when implementing dominance rules to avoid mutual dominance relations.

In particular, depending on the structure of the dominance rules employed, cycles of dominating subproblems

S1, S2, . . . , Sk could exist where Si+1 dominates Si, and S1 dominates Sk (Demeulemeester et al., 2000).

In such cases, at least one subproblem in the dominance cycle must not be pruned; often, this can be

accomplished using some lexicographic ordering rule.

2.4.3 Cutting Planes

The discussion in this section is restricted to problems that can be formulated as integer programs. A

significant advance in the theory of linear and integer programming was developed by Gomory (1958), who

introduced the idea of cutting planes. A cutting plane is a constraint that can be added to an integer

program to tighten the feasible region without removing any integer solutions. This fundamental idea was

applied to B&B by Padberg and Rinaldi (1991) to develop an algorithm called branch-and-cut. In this

algorithm, new cutting planes (sometimes called valid inequalities) are added to the LP relaxation at

every subproblem in the search tree (note that a valid inequality is a global constraint—it must apply at

the LP relaxation of the root subproblem). The algorithm of Padberg and Rinaldi (1991) is specific to the

well-known traveling salesman problem, but in Balas et al. (1996a) a generalization of branch-and-cut for

binary integer programs is presented.

There are a number of different types of valid inequalities; an overview is given in Cornuéjols (2008).

The initial cutting planes described by Gomory are called Gomory cuts, and are based on the structure of

the simplex tableau. These cuts were shown to be of both practical and theoretical interest by Balas et al.

(1996b). Some other types of valid inequalities are Chvátal-Gomory cuts (Letchford and Lodi, 2002),

disjunctive cuts (Balas, 1979), and lift-and-project cuts (Lovász and Schrijver, 1991; Balas et al., 1993).

Of these, lift-and-project cuts provide an extremely general method to add valid inequalities, and thus are

used in many different branch-and-cut algorithms (Balas and Perregaard, 2003). Lift-and-project operates

by lifting the LP relaxation into a higher-dimensional space by adding additional variables, finding valid

inequalities in this higher-dimensional space, and then projecting the valid inequalities back into the original

space by deleting the extra variables.

Another method of generating valid inequalities is through decomposition methods such as Benders’

decomposition (Benders, 1962; Geoffrion, 1972). A decomposition method splits apart a problem into

a master problem and one or more slave problems (sometimes referred to as “subproblems”, but this

terminology is avoided herein to avoid confusion with the search tree subproblems). For example, in Benders’

decomposition, a set of complicating variables in the integer program are identified which drive the
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intractability of the problem. The non-complicating variables are then projected out of the integer program.

The master problem therefore seeks a solution to the new integer program, and the slave problem either

determines that the master problem is feasible for the original integer program or produces a constraint

that it violates. An algorithm to solve such a slave problem is also known as a separation oracle, because

it separates feasible solutions from infeasible ones. These Benders’ cuts can then be added in to the

master problem. Hernández-Pérez and Salazar-González (2004) give an example of using Benders’ cuts in a

branch-and-cut context to solve the traveling salesman problem with both pickups and deliveries.

One interesting question with regards to this method of pruning involves the interplay between cutting

plane generation and branching. In many cases, the set of generated cuts is too large to allow all of them to

be added, and it is often computationally expensive to generate new cuts, so at some point cutting planes

are no longer generated and branching occurs. However, the question of when to stop generating cutting

planes and start branching is an important problem when implementing a branch-and-cut algorithm (Jünger

et al., 1995; Mitchell, 2002).

2.4.4 Constraint Programming

Recently, interest has increased in using constraint programming techniques for solving optimization prob-

lems. Constraint programming is a subfield of artificial intelligence that has been very successful in solving

logic problems such as SAT. Constraint programming has many potential applications to B&B algorithms,

and many other applications in optimization. For a complete discussion of the field of constraint program-

ming and applications in AI and OR, see Rossi et al. (2006). Also, a comparison of constraint programming

and operations research techniques, along with an application of constraint programming to the fixed-charge

network flow problem can be found in Kim and Hooker (2002).

Two primary ideas behind many constraint programming techniques for B&B algorithms are constraint

propagation and nogood learning (van Beek, 2006). Constraint propagation rules exploit the repeated

application of logical inference rules in an attempt to derive contradictions that allow a subproblem to be

pruned. On the other hand, a nogood is a structural property of the problem that has been proven to

not lead to a feasible or optimal solution by complete exploration of some subtrees. Nogoods are generally

learned over the course of the algorithm, and enable the search to check the validity of subproblems under

consideration. Constraint programming techniques in B&B share many commonalities with other pruning

techniques such as cutting planes and dominance relations. However, as pointed out by Caseau and Laburthe

(1996), one significant difference is that constraint programming techniques are usually local techniques that

tighten bounds at a particular subproblem, unlike the global pruning rules introduced by dominance or valid
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inequalities.

An example of constraint propagation rules is given in Fahle (2002); in this paper, a technique called

domain filtering is used to solve the maximum clique problem in a B&B context. Here, two results are

proven showing when it is impossible for vertices in a graph to participate in a maximum clique, and these

results are iteratively applied (or propagated) at each subproblem in T . If the propagation reduces this list

of candidate vertices to the empty set, the subproblem is fathomed.

Constraint propagation techniques often have close relations to lower bounding techniques. Fahle (2002)

show that their domain filtering rule subsumes seven out of eight common lower bounds for the maximum

clique problem. Moreover, Li et al. (2005) use a similar constraint propagation rule to aid in the computation

of lower bounds that can be used for pruning in a Max-SAT solver (the Max-SAT problem seeks an assignment

that satisfies the maximum number of clauses in a Boolean formula).

Conversely, nogoods are more closely related to dominance relations and cutting planes. For instance,

Sandholm and Shields (2006) learn a sequence of nogoods (in this case, invalid assignments to sets of

variables) that can be added as cuts to the integer program. These nogoods are derived by constraint

propagation based on the branching decisions. Additionally, Fischetti and Salvagnin (2010) use nogood

recording to develop dominance-like relations for a B&B solver for generic mixed-integer programming

problems. Their solver uses an auxiliary integer programming problem to identify dominated subproblems;

if a dominated subproblem is identified, it is stored as a nogood so that the auxiliary integer program for

that subproblem does not need to be re-solved in the future.

2.5 Branch-and-Price

While B&B is useful in a wide variety of settings, a number of additional issues must be taken into con-

sideration when the problem is very large. In this section, an extension of B&B called branch-and-price is

discussed, which is applicable when the problem under consideration is formulated as an integer program

with an exponential number of decision variables. However, since B&P is just an extension of B&B, the three

core components (search strategy, branching strategy, and pruning rules) are still applicable in this setting.

In a sense, B&P can be thought of as the dual algorithm to branch-and-cut (Section 2.4.3). Here, instead

of adding new constraints to the (primal) master problem, a separation oracle for the dual of the master

problem is used to add new constraints to the dual. This procedure is known as column generation,

since new constraints in the dual of the master problem correspond to new variables (or constraint matrix

columns) in the primal master problem. The column generation approach was first described in Dantzig

20



and Wolfe (1960), together with a decomposition method called Dantzig-Wolfe decomposition. Detailed

descriptions of B&P algorithms are given in Barnhart et al. (1998) and Lübbecke and Desrosiers (2005), and

pseudocode is presented in Algorithm 2.2.

The Dantzig-Wolfe decomposition method transforms an integer program into a new program where the

variables correspond to the extreme points of the original IP. Since any solution to the original IP can be

written as a convex combination of its extreme points, no information is lost. Moreover, in practice the

reformulated program often yields much tighter bounds and less symmetry than the original. The principal

drawback arises from the fact that the original IP has an exponential number of extreme points, which

means that the number of variables (or columns) for the reformulated problem is too large to all be stored

simultaneously. Therefore, to solve the LP relaxation and get a valid lower bound, column generation

must be used.

In particular, if C is the (exponentially-sized) set of variables for the reformulated problem, a smaller

problem called the restricted master problem (RMP) is solved over a subset C ′ of the columns. Then,

one or more slave problems (or pricing problems) are solved to identify new variables with the potential

to improve the value of the LP relaxation, which can then be added to C ′. The pricing problem is usually

a weighted combinatorial optimization problem. The weights for the pricing problem are related to the

optimal dual price vector π of the RMP, and the pricing problem identifies new variables (or columns) for

inclusion in C ′ by searching for C ∈ C \C ′ with negative reduced cost. Note that in most cases, the pricing

problem itself is NP-hard.

Algorithm 2.2: Branch-and-Price(X, f)

1 Set S = {X}
2 Initialize x̂ and the initial RMP pool C ′

3 while S 6= ∅ :
4 Select a subproblem S ∈ S to explore
5 if a solution x̂′ ∈ {x ∈ S | f(x) < f(x̂)} can be found : Set x̂ = x̂′

6 if S cannot be pruned :
7 Partition S into S1, S2, . . . , Sr
8 for each Si ∈ {S1, S2, . . . , Sr} :
9 〈〈 Column generation loop 〉〉

10 while ∃ C ∈ C \ C ′ with negative reduced cost at Si : Add C to C ′

11 Compute a lower bound at Si using added columns

12 Insert S1, S2, . . . , Sr into S

13 Remove S from S

14 Return x̂

Additional complexity arises when attempting to incorporate column generation with a B&B algorithm,

because typical branching rules usually interfere with the structure of the pricing problem. In other words,
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once some branching decisions have been fixed, new negative-reduced-cost variables must be found that

respect the branching decisions. This problem, known as the constrained pricing problem, is closely related to

the kth-shortest-path problem. Moreover, when using standard integer branching rules (see Section 2.6.1)

in B&P algorithms, there is often an asymmetry in the branching rule. For example, if the integer program

contains a large number of covering constraints (of the form
∑
aiyi ≥ b), fixing a variable yi = 1 has the

potential to satisfy a large number of constraints, whereas fixing a variable yi = 0 may have minimal impacts

on the problem structure. This can lead to extremely unbalanced search trees, which in turn can impact the

performance of the algorithm.

Therefore, to avoid interfering with the pricing problem structure and to attempt to create a more

balanced search tree, most B&P algorithms use alternative branching strategies that do not disrupt the

structure of the pricing problem. The branching strategy for graph coloring (Mehrotra and Trick, 1996)

or for the generalized assignment problem (Savelsbergh, 1997) (see Section 2.3.2) are two such examples.

Another general-purpose branching strategy for B&P algorithms involves branching on the original (non-

decomposed) problem variables (Vanderbeck, 2011).

Due to the intractability of the pricing problem in many IP models, significant research has also gone into

ways to solve the pricing problem. Gualandi and Malucelli (2012) use constraint programming techniques

(Section 2.4.4) to more efficiently solve the pricing problem in a graph coloring B&P solver, and Easton

et al. (2003) use a similar approach for a sports timetabling problem.

Finally, a new field of research is emerging in branch-and-cut-and-price algorithms, which use sep-

aration oracles to produce new constraints for both the primal and dual master problems. These methods

suffer from many of the same problems as B&P algorithms, since now the pricing problem must respect

both the branching decisions and the additional cutting planes added to the problem. However, de Aragão

and Uchoa (2003) developed a new method called robust branch-and-cut-and-price (robust BCP) which

further reformulates the master problem to eliminate the interference of cuts and branching decisions with

the pricing problem. This method has been used with success in a number of vehicle routing and other

graph problems (Fukasawa et al., 2006; Uchoa et al., 2008).

2.6 Problems of Interest

B&B methods are quite general, and thus the best way to gauge their performance in practice is to implement

them for problems that are of practical or real-world interest. The techniques proposed in this dissertation

are tested and validated against four different problems, which are described in the remainder of this section.
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2.6.1 Mixed Integer Programming

The mixed integer programming problem is a very general NP-complete problem that can describe many

different optimization problems using a set of algebraic constraints. Specifically, let y be a vector of variables,

some of which are constrained to integer values. Also, let A be a real-valued matrix called the constraint

matrix, and b be a real-valued vector of constraint bounds. Then the search space for an integer program-

ming instance is defined by the system of equations Ay ≤ b, with objective function f(y) = c′y, where c is

a real-valued vector and ′ denotes the transpose operator.

In this setting, bounds are commonly produced by solving the LP relaxation of the problem, where the

integrality constraints on y are relaxed. Branching decisions are imposed by adding additional constraints

to the problem to shrink the feasible region without removing any optimal integral solutions. For example,

the standard integer branching rule (sometimes called 0− 1 branching if y is a vector of binary variables)

selects a variable yi with fractional value β in the LP relaxation and creates two new branches, one with

yi ≤ bβc (called a null assignment), and one with yi ≥ dβe (called a positive assignment). If no

fractional variables yi exist, a new candidate incumbent has been found.

Many different optimization problems can be formulated as mixed integer programs, and the LP relax-

ation often provides tight bounds in practice. Thus, a number of B&B techniques have been developed specif-

ically for this setting. Moreover, many very efficient software packages (both commercial and freeware) exist

for solving integer programs using B&B techniques, including CPLEX (IBM Corp., 2014), SYMPHONY

(Ladanyi et al., 2014), Gurobi (Gurobi Optimization, Inc., 2014), LINDO (LINDO Systems, Inc., 2014),

SCIP (Konrad-Zuse-Zentrum für Informationstechnik Berlin, 2014), and Xpress-MP (Fair Isaac Corporation

(FICO), 2014).

There is a well-known database of mixed integer programming problem instances called MIPLIB 2010

(Koch et al., 2011); this database contains a very large number of instances that span a range of difficulties,

and which are divided into different subsets to provide a consistent set of instances that can be used for testing

purposes. There are two instance subsets of interest: first is the set of benchmark problems, which contains

87 instances, all of which can be solved in under an hour of computation time by at least one commercial

or open-source MIP solver. The second instance subset considered is the set of challenge problems, which

contain 164 MIP problems which cannot be solved in 2 hours of computation time by any commercial or

open-source MIP solver.
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2.6.2 Graph Coloring

The graph coloring problem is an important problem in many areas of operations research; in addition

to being of theoretical interest, it appears as a subproblem in many practical settings, including resource

allocation, processor scheduling, and others (Pardalos et al., 1998). Despite this, it remains a very challenging

problem to solve exactly in most practical applications, and it is NP-hard to approximate within n1−ε

(Zuckerman, 2006).

The following notation will be useful when discussing graph coloring problems: given an undirected

graph G = (V,E) and vertices u, v ∈ V , u and v are adjacent (non-adjacent), denoted u ↔ v (u 6↔ v),

if (u, v) ∈ (6∈)E. Further, given a set U ⊆ V , the induced subgraph of G with respect to U , denoted

G[U ], is the subgraph of G defined on the vertex set U with all edges of G having both endpoints in U .

The neighbor set of U ⊆ V , denoted N(U), is the set of vertices adjacent to vertices in U , and the closed

neighbor set N [U ] is N(U)∪U (if U contains a single vertex u, the set notation is dropped, e.g. N(u)). The

degree d(u) of a vertex u is |N(u)|, and ∆(G) is the largest degree over all vertices in G.

The objective of the graph coloring problem is to find a minimum proper coloring of V (i.e., a coloring

in which no adjacent vertices share a color). The chromatic number χ of G is the minimum number of

colors required in any proper coloring. Given a partial assignment of colors to vertices, the the degree-of-

saturation function dsat : V → N0 counts how many differently-colored neighbors a vertex has.

There is a close relationship between the graph coloring problem and the independent set problem; an

independent set C ⊆ V is a set of vertices such that G[C] has no edges, and C is a maximal independent

set if there exists no vertex v ∈ V \ C such that C + v is an independent set. Observe that by definition,

any group of vertices with a common color is an independent set, and therefore, any proper coloring of G is

a partition of the vertices into independent sets. Finally, say that for any set of vertices U , a node v ∈ V is

dominated by U if v ∈ N [U ]; note that for any maximal independent set C, N [C] = V .

A standard IP formulation for the graph coloring problem creates binary variables yvj for each vertex

v ∈ V and each color j ∈ {1, 2, . . . , χ}, where χ is any upper bound on the chromatic number. Additional

binary variables qj are introduced for each j ∈ {1, 2, . . . , χ}. In this formulation, setting yvj = 1 assigns

color j to vertex v, and setting qj = 1 indicates that color j is assigned to some vertex in the graph. Using

these variables, the following IP encodes the graph coloring problem:
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minimize

χ∑
j=1

qj

subject to

χ∑
j=1

yvj = 1 ∀ v ∈ V

yuj + yvj ≤ qj ∀ (u, v) ∈ E, j ∈ {1, 2, . . . , χ}

yvj , qj ∈ {0, 1} ∀ v ∈ V, j ∈ {1, 2, . . . , χ}.

(2.1)

Here, the first set of constraints ensures that every vertex receives exactly one color, and the second set

of constraints ensures that adjacent vertices are assigned different colors. However, as noted by Mehrotra

and Trick (1996), this formulation has two weaknesses: first, it contains many symmetric solutions which

arise by permuting the colors used in a solution. These symmetries lead to many redundant subtrees in

a branch-and-bound search algorithm, which cannot be easily detected and substantially slow the search

process. Secondly, the linear programming bound of (2.1) is often quite weak, which does not allow for

much pruning to occur in the search tree. Therefore, Mehrotra and Trick (1996) propose the following

integer program with an exponential number of variables:

minimize
∑
C∈C

yC

subject to
∑
C:v∈C

yC ≥ 1 ∀ v ∈ V

yC ∈ {0, 1} ∀ C ∈ C .

(2.2)

In this formulation, C is the family of maximal independent sets in G; since any proper coloring can be

viewed as a partition of V into independent sets, this is equivalent to searching for the smallest coloring.

The binary variables yC indicate whether the maximal independent set C is used in the coloring, and the

constraints ensure that each vertex in the graph appears in some color class. This formulation eliminates

the symmetry inherent in (2.1), as well as producing much tighter bounds for many instances.

However, since there are potentially an exponential number of maximal independent sets in G, it is

generally infeasible to keep all variables in memory. Thus, to solve the LP relaxation of (2.2), column

generation techniques must be employed. The pricing problem for the graph coloring problem as formulated

in (2.2) is a maximum-weight maximal independent set problem, where the weights on the vertices are given

by the values of the optimal dual variables of the RMP. If a maximal independent set C with weight larger

than 1 is found, then variable yC has negative reduced cost, which means that yC is a candidate to improve

the solution value of the RMP and C can be added to C ′.
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The formulation presented in (2.2) is used in most state-of-the-art exact solvers for the graph coloring

problem. These solvers often use a branching rule called edge branching to avoid destruction of the pricing

problem. Edge branching selects two non-adjacent, uncolored vertices in G and creates two branches, one in

which the vertices are linked by an edge, and one in which they are merged together (Mehrotra and Trick,

1996). In contrast, standard 0 − 1 branching (called vertex branching by Malaguti et al., 2011) selects

one maximal independent set to either use or discard at each branching decision.

There is a substantial body of literature on the graph coloring problems that covers both exact and

heuristic methods for the problem. For reference, see Galinier and Hertz (2006), who provide a comparison

of twenty different heuristic methods that have been applied to graph coloring, or Malaguti and Toth (2010),

who describe a number of heuristic and exact approaches to graph coloring.

A large assortment of graph coloring problem instances is available in the DIMACS graph coloring

challenge (Johnson and Trick, 1996; Trick, 2005). This database contains 206 different graph instances

ranging from easily-solved instances, to problems which are difficult for solvers but which were constructed

to have a particular chromatic number, to problems for which the chromatic number is unknown.

2.6.3 Generalized Assignment

The generalized assignment problem is an NP-complete optimization problem that deals with the assignment

of a set of jobs or tasks J = {1, 2, . . . , n} to a set of workers W = {1, 2, . . . ,m}. Assigning job j to worker i

incurs a cost cij ; moreover, performing this assignment uses up an amount wij of the ith worker’s capacity

ξi. The objective of the problem is to find an assignment of tasks to workers that satisfies all of the worker

capacities and minimizes the total cost. If cmax is an upper bound on the cost of assigning tasks to workers,

by performing the transformation c′ij = 1+ cmax− cij , the problem can be instead viewed as a maximization

problem where workers receive a profit or reward for completing a task (Martello and Toth, 1990).

The generalized assignment problem can be formulated as an integer program as follows:

minimize
∑

i∈W,j∈J
cijyij

subject to
∑
i∈W

yij = 1 ∀ j ∈ J

∑
j∈J

wijyij ≤ ξi ∀ i ∈W

yij ∈ {0, 1} ∀ i ∈W, j ∈ J.

(2.3)

Here, the binary variables yij indicate that worker i has been assigned task j. The first set of constraints
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ensures that every task is assigned to exactly one worker; the second set ensures that every worker does

not exceed his capacity requirements. As with the graph coloring problem, this IP formulation produces

relatively weak bounds and can have a lot of symmetry, so Dantzig-Wolfe reformulation is applied to produce

the following IP with an exponential number of variables:

minimize
∑
i∈W

∑
C∈Ci

c(C)yC

subject to
∑
i∈W

∑
C:j∈C,C∈Ci

yC = 1 ∀ j ∈ J

∑
C∈Ci

yC ≤ 1 ∀ i ∈W

yC ∈ {0, 1} ∀ i ∈W,C ∈ Ci.

(2.4)

In this reformulation, each set C is a complete assignment of tasks to a particular worker; the cost of

such an assignment c(C) is simply the sum of the costs of assigning each task in C to that worker. Note

in particular the existence of n independent pools of columns, denoted C1,C2, . . . ,Cn. Thus, when applying

column generation, there are n distinct pricing problems that must be solved in order to find negative-

reduced-cost columns. Each of the n pricing problems for the generalized assignment problem are weighted

knapsack problems, where the weights of tasks are taken as the optimal dual weights for the first set of

constraints in (2.4). Then the reduced cost for the schedule assignment is computed by subtracting the

optimal dual price for the ith worker from the cost of the assignment returned by the pricing problem. The

first B&P algorithm to solve the generalized assignment problem was that of Savelsbergh (1997).

An additional complication arises when attempting to use B&P methods for a generalized assignment

problem: notably, in practice the dual prices for the LP relaxation of (2.4) tend to oscillate between very

large (positive) and very small (negative) values. Because the weights in the pricing problem are derived from

the dual prices, this means that the column generation procedure can demonstrate very slow convergence.

To counteract this, Pigatti et al. (2005) use a stabilized column generation procedure which imposes bounds

on the dual prices that are gradually relaxed as column generation progresses.

A database of generalized assignment problem instances is available through the OR Library (Beasley,

2012). This database contains 133 different problem instances, ranging from instances with 5 workers and

15 jobs up to instances with 80 workers and 1600 jobs. Many of the smaller instances in this database are

trivial for modern solvers; however, the larger instances still pose some challenge.
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2.6.4 Simple Assembly Line Balancing

The assembly line balancing problem is a well-studied problem with many applications, including the au-

tomotive industry, consumer electronics, and household items (Baybars, 1986; Sarker and Pan, 2001). This

problem has many variants with different objectives and side constraints; see Battäıa and Dolgui (2013)

for a recent survey of problem formulations and solution techniques. One of the most basic assembly line

balancing problems is the Simple Assembly Line Balancing Problem (SALBP). In this problem, a set of jobs

J = {1, 2, . . . , n} is given that must be accomplished by a set of m workers or stations. In many applications,

stations are designed to complete specific tasks; however, the SALBP relaxes this assumption so that all

stations are considered identical. Each task requires a certain amount of time tj (called the processing

time) to complete, and each station has a specified fixed amount of time ξ (called the cycle time) that it

can spend completing tasks.

Additionally, a directed acyclic graph D, called the precedence graph, is given with vertex set J and

arc set E. An arc (i, j) ∈ E indicates that task i must be completed before task j. A task i is a predecessor

(alternately, successor) of j if there is a path from i to j (alternately, from j to i) in G; if this path has

length 1, i is a direct predecessor or successor. The set of direct predecessors (successors) of j is denoted

Πj (Φj), and the set of predecessors (successors) of j is Π∗j (Φ∗j ).

The objective of SALBP is to find the minimum number of stations needed to complete all tasks, subject

to the cycle time at each station and all relations given in the precedence graph. Given a set of tasks σm

assigned to the mth station, define the idle time Im as the amount of time the station is not working; that

is, Im = ξ −∑j∈σm tj . For a complete assignment of tasks to stations, the total idle time I is the sum

of the idle times at each station. Note that SALBP is NP-complete, since relaxing the precedence graph

constraints yields a bin-packing problem.

A recent problem generator called SALBPGen (Otto et al., 2013) can be used to generate SALBP instances

with a wide range of different structures and difficulties. These structures are described briefly below: firstly,

the generator can create problem instances with a large number of bottleneck tasks and chains. A

bottleneck task j has high in- and out-degree in D; furthermore, it is the only direct successor for at least

two tasks in Πj , and it is the only direct predecessor for at least two tasks in Φj . A chain of tasks, on the

other hand, is a set of tasks Ch ⊆ J with |Ch| ≥ 2 such that Ch forms a path in D and |Πj | = |Φj | = 1 for

each j ∈ Ch.

Another important property that can be controlled by SALBPGen is the order strength; this value,

denoted by OS, is computed as |E(D+)|/
(
n
2

)
, where E(D+) is the arc set of D+, the transitive closure

of D. That is, D+ is the graph with vertex set J where arc (i, j) indicates that task i is a (not necessarily
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direct) predecessor of task j. As stated in Scholl and Klein (1999), “Small values of OS indicate that the

precedence constraints are not very restrictive such that many sequences of tasks are feasible.” There are

some indications that middle values of OS are harder than low or high order strength values.

Finally, SALBPGen can control the distribution of task times for each generated instance. Task times are

randomly generated according to some pre-specified probability distribution. The problem database contains

instances with task times that have been generated according to three different distributions, described below:

• Short task time distribution - task times are drawn from a normal distribution with the mean centered

around small times

• Bimodal task time distribution - task times are drawn from a combination of two normal distributions

with means centered around small and large times

• Centralized task time distribution - task times are drawn from a normal distribution with a mean task

time of ξ/2

The first two task time distributions emulate properties seen in real-world instances of the assembly line

balancing problem; the latter is designed to produce challenging instances.

The SALBPGen generator was used to generate a large database of SALBP instances that can be used for

testing. The database contains instances with n = 20, 50, 100, and 1000 tasks (called small, medium, large,

and very large, respectively). There are 525 instances of each problem size, which have been generated with

varying order strengths and distribution of task times. A third of the problems (called BN instances) have

been generated with bottleneck nodes having minimum degree eight (or minimum degree four in the small

instances). A third (called CH instances) have been generated with 40% of the nodes in chains, and a third

of the instances (called MIX instances) have no such requirements on the structure of the precedence graph.

Finally, for each problem instance in the medium dataset, there are 9 additional permuted instances, which

share a common precedence graph and set of task times, but have randomly assigned the task times to tasks.

Thus, there are a total of 6825 instances in the dataset.
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Chapter 3

Cyclic Best-First Search

As described in Section 2.2 the search strategy for a B&B algorithm (sometimes called the node selection

strategy) determines the order in which subproblems are explored, in order to create new subproblems via

branching. In this chapter, properties of a recent search strategy called cyclic best-first search (CBFS) are

analyzed. The CBFS strategy is a generalization of other common search strategies, and can be thought of

as an extension of the BFS strategy. Originally called distributed best-first search by Kao et al. (2009), CBFS

has been used effectively in several different scheduling problems (Sewell et al., 2012; Vilà and Pereira, 2014).

The fundamental improvement of the CBFS strategy comes from the use of contours (or collections of

subproblems) together with a measure-of-best function to guide the search process. The strategy groups

“comparable” subproblems together, selecting new subproblems to explore by only comparing the value of the

measure-of-best function µ within a contour, and repeatedly cycling through the set of contours. The use of

contours gives algorithm designers two degrees of freedom when implementing a B&B procedure: what defini-

tion of µ to use, and what contour definition to use. The CBFS strategy is used to improve the diversification

behavior of B&B in order to allow the algorithm to more quickly find an optimal solution to the problem.

Such cycling behavior has been used in a number of other applications in the literature as well. A heuristic

algorithm by Choi et al. (2006) shares the cyclic best-first search name with the algorithm described herein;

however, the behavior is somewhat different. In particular, the algorithm of Choi et al. (2006) uses a local

cycling mechanism that enables intelligent backtracking in a heuristic branching algorithm, whereas this

paper describes a global cycling mechanism that allows B&B to select subproblems for exploration from

vastly different regions of the search tree. In the remainder of this dissertation, the term CBFS is used to

refer to the latter search strategy, not the algorithm of Choi et al. (2006).

Another related algorithm by Shi and Ólafsson (2000) employs a B&B-like probabilistic heuristic for

optimization problems called nested partitioning. The NP II variant of this algorithm uses a cycling

mechanism similar to that of CBFS for the purpose of search diversification. Shi and Ólafsson (2000) prove

that their heuristic algorithm converges almost-surely to a global optimal solution using this cycling behavior;

however, this chapter describes a cycling strategy in the context of a (deterministic) exact algorithm. Finally,
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the local branching algorithm of Fischetti and Lodi (2003) uses variable fixing methods (in contrast to

cycling) to improve the diversification behavior of B&B solvers for mixed integer programs.

A third related algorithm to CBFS is called restrict-and-relax (Guzelsoy et al., 2013). The restrict-

and-relax method allows the B&B algorithm to relax previously-made branching decisions. In this manner,

the algorithm can move either up or down through the levels of the search tree, in a similar manner to the

way that CBFS moves through the list of contours. The objective in this approach is to maintain a relatively

small LP relaxation by fixing additional variables, while simultaneously relaxing branching decisions made

on other variables to limit the size of the search space.

However, the CBFS strategy has a number of features not captured by these other algorithms. It turns

out that the cycling mechanism of CBFS provides a large amount of fluidity to the strategy. In particular, it

is shown that for any search strategy, there exists a contour definition for CBFS allowing it to simulate the

other strategy’s node exploration order, and thus CBFS provides a unifying framework for search strategies in

B&B algorithms. CBFS also has practical benefit for algorithm designers; for example, using an appropriate

contour definition can serve as a tie-breaker mechanism for µ, grouping subproblems with the same measure-

of-best into different contours. This tie-breaking mechanism can more quickly drive the search to an optimal

solution, increasing the amount of pruning that can be performed and reducing the tree size and search time.

Thus, the primary contribution of this chapter is threefold: first, several key results that govern the behavior

of the cyclic best-first search strategy are proved; secondly, heuristic properties of the contour definition are

discussed that demonstrate how contours can influence the search process; and thirdly, computational results

are presented for both mixed integer programming problems and the simple assembly line balancing problem

that show the effectiveness of the CBFS strategy.

The remainder of this chapter is organized as follows: Section 3.1 introduces the CBFS strategy and

discusses some benefits and drawbacks of the method. In Section 3.2, properties of the contour definition are

proved and a proof showing that CBFS is a complete generalization of other search strategies is presented.

Section 3.3 discusses heuristic methods for determining the best contour definition, and Section 3.4 provides

some computational results on mixed integer programming problems and the simple assembly line balancing

problem. Finally, Section 3.5 offers some concluding remarks and future research directions.

3.1 The Cyclic Best-First Search Strategy

The CBFS strategy can be viewed as a hybrid algorithm between DFS and BFS, whereby terminal subprob-

lems are generated early in the search process (similarly to DFS), and a ranking function is used to aid in
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the subproblem selection process (similarly to BFS). The CBFS strategy attempts to balance the diversity

of the search (that is, the amount of time spent exploring different regions of the search space) with the

intensity of the search (that is, the amount of time spent exploring similar regions of the search space in

order to improve the incumbent) (Glover, 1990).

Formally, CBFS maintains a set K = {. . . ,K−3,K−2,K−1,K0,K1,K2,K3, . . .} of contours, or col-

lections of unexplored subproblems, that are indexed by a contour labeling function κ : 2X → Z.

Additionally, CBFS uses a measure-of-best heuristic µ, which may or may not be admissible. As shown

in Algorithm 3.1, the CBFS strategy keeps track of a list I of non-empty contour indices, together with

a current contour index i; at each iteration, the strategy selects the best subproblem S with respect to µ

from contour Ki (Line 3, Algorithm 3.1). When child subproblems are generated, they are inserted into

their appropriate contours according to the labeling function (Lines 7-9, Algorithm 3.1). Contour indices

are inserted to maintain a monotonically increasing order for I (Line 9, Algorithm 3.1). Before a new

subproblem is selected for exploration, the contour index is updated (Lines 12-13, Algorithm 3.1).

Algorithm 3.1: Branch-and-Bound with Cyclic Best-First Search

1 Set i = κ(X), I = {i}, Ki = {X}, and initialize x̂
2 while I 6= ∅ :
3 Let S ∈ arg minS′∈Ki µ(S′)
4 if a solution x̂′ ∈ {x ∈ S | f(x) < f(x̂)} can be found : Set x̂ = x̂′

5 if S cannot be pruned :
6 Partition S into S1, S2, . . . , Sr
7 for each j ∈ 1, 2, . . . , r :
8 Insert Sj into contour Kκ(Sj)

9 if κ(Sj) 6∈ I : Insert κ(Sj) into I

10 Remove S from Ki

11 if Ki = ∅ : Set I = I − {i}
12 if ∃ k ∈ I s.t. k > i : Set i = min{k | k ∈ I and k > i}
13 else: Set i = min{k | k ∈ I }
14 Return x̂

The contour index update mechanism ensures that the search process repeatedly cycles through all non-

empty contours (hence the cyclic in CBFS). In particular, if there exists a non-empty contour with index

greater than i, then i is set to the least index of such a contour. Otherwise, i is set to the least index over

all non-empty contours.

As an example, consider the depth labeling function κd, which maps a subproblem to its depth in

the search tree (see Figure 3.1a). Another example labeling function is the positive assignment labeling

function κp; for this labeling the children of each subproblem are ordered, the contour label of the current

subproblem is incremented for the “left” child subproblem, but is not incremented for the “right” child
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subproblem (Figure 3.1b).

Examples of CBFS behavior for κd and κp on the search tree in Figure 3.1 are shown in Figure 3.2,

as well as a comparison to the behavior of BFS on the same search tree. Observe that, despite the same

measure-of-best function, the order of the explored subproblems is quite different for each of the three search

strategies. In particular, note how the contour definition serves as a tie-breaking mechanism for subproblems

with the same measure-of-best value. Also note that the contour definition can force the search to explore

subproblems with a (comparatively) poor value for µ by placing those subproblems as the only element in

their contours. For example, both BFS and CBFS with κd explore the right-most branch of the search tree

first, because this branch has the best µ value. On the other hand, CBFS with κp explores the left-most

branch of the search tree first, due to the structure of the contours.

Further analysis of the CBFS strategy provides motivation for the term “contour”, which is borrowed

from the field of topography. There, the term contour or level set indicates a set of points for which

some function takes the same value. Here, the term is used to indicate a collection of subproblems which

should be considered equivalent or comparable with respect to µ, since the strategy never compares two

subproblems residing in different contours. The meaning of “comparable” with respect to B&B is almost

certainly problem- or instance-specific, and the possible choices for the labeling function κ are infinite. As

will be shown, the choice of κ is a dominant factor in the performance of the strategy.

3.1.1 Implementing CBFS

CBFS can be easily implemented using two standard data structures, an ordered map and several heaps.

The ordered map data structure maps contour labels to the contours themselves. If a contour label is not

present in the map, the contour is assumed to be empty. Furthermore, the ordered map can be traversed in

order of increasing contour label. Such an ordered map can be implemented using a red-black tree; insertion,

deletion, and look-up in the tree can be performed in O(log |supp(K )|) time, where supp(K ) is the support

of K , that is, the complete set of non-empty contours ever generated in the algorithm. Additionally, a single

traversal of the ordered map can be done in O(|supp(K )|) amortized time (Cormen et al., 2009).

Moreover, each non-empty contour Ki can be implemented using a heap data structure, which stores

a collection of elements in a nearly complete binary tree structure which obeys the heap property: each

element in the tree is smaller than all its children. The use of the heap allows for O(log |Ki|) insertion of new

subproblems into the contour, and the subproblem minimizing the measure-of-best heuristic can likewise be

found and removed from the contour in O(log |Ki|) time, where |Ki| is the maximum size of the ith contour

over the course of the algorithm (Cormen et al., 2009).
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Figure 3.1: Examples of two different contour labeling functions for the same B&B tree. Contour labels
are given in the center of each node, and darker node shades indicate “deeper” contours. The value of the
measure-of-best function µ is also given for each subproblem.
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(a) The depth labeling function κd; the contour label of a subproblem is equal to its distance
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(a) Best-first search
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(b) Cyclic best-first search with κd
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(c) Cyclic best-first search with κp

Figure 3.2: A comparison of the behavior of CBFS with two different labeling functions to the behavior of
BFS on the search tree shown in Figure 3.1. Values of µ are in the center of each node, and search order is
outside.

3.1.2 Benefits and Drawbacks of CBFS

Depending on the choice of labeling function, the CBFS strategy has the potential for two improvements

over other search strategies.

1. Early determination of high-quality incumbents: due to the cyclic nature of the strategy, it is likely

that many diverse terminal subproblems will be explored much earlier in the search process than

either DFS or BFS. By exploring more terminal subproblems, the strategy increases the likelihood

that a good incumbent solution is found early in the search. This often provides a substantial boost in

performance, as a better incumbent solution can be used to prune more subproblems higher in the tree.

2. Ability to distinguish between similar subproblems: suppose that for some problem instance, the search

tree has many subproblems such that µ(S) equals the (global) optimal value. Such problem instances

arise, for example, in cases where there are a small number of discrete possible values that f(x) can

assume. This phenomenon is common in many scheduling problems, for instance. In this case, BFS
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has no capability to break ties between subproblems and may spend a large amount of time in middle

levels of the search tree without ever generating a complete solution. In contrast, CBFS is forced to

lower levels of the search tree, where it may find a terminal (optimal) subproblem that can be used to

prune away the other similar subproblems in the middle levels.

However, these improvements come at a cost; unlike DFS, CBFS requires significantly more memory

overhead, since it must store all of the subproblems in all of the non-empty contours, whereas DFS only

needs to store a single path through the search tree at a time. Additionally, if the measure-of-best function is

very tight (meaning in general it provides an accurate reflection of the direction of improvement), CBFS may

spend more time than BFS exploring unnecessary regions of the search space. Finally, the operations needed

to search and maintain the ordered map impose some overhead over other search strategies. However, if the

contour labeling function is chosen correctly, the amount of pruning achieved has the potential to outweigh

these sacrifices in space and time complexity. Furthermore, as the following result shows, under some

reasonable assumptions, BFS outperforms CBFS by at most a factor of |supp(K )|; this result is similar in

spirit to (and makes use of) the result of Dechter and Pearl (1985) showing that the A∗ algorithm explores

the fewest number of subproblems in a B&B algorithm.

Theorem 3.1. Let µ be an admissible measure-of-best for a B&B algorithm that does not use dominance

relations, and assume that there does not exist any pair of subproblems S, S′ for which µ(S) = µ(S′).

Furthermore, assume that there is exactly one optimal solution in X. Then, for a fixed labeling function κ,

let S1, S2, . . . , Sm be the sequence of subproblems explored by BFS using µ. Then CBFS generates children

at no more than m|supp(K )| subproblems.

Proof. Let Sopt be the terminal subproblem yielding the optimal solution. Note that by Dechter and Pearl

(1985), CBFS explores Sopt no earlier than BFS (in terms of number of iterations). Further, note that once

CBFS explores Sopt, there may be a large number of unexplored subproblems in T that were never explored

by BFS. It must be the case that for every such subproblem S, µ(S) ≥ f(x∗), because otherwise they would

have been explored by BFS. Therefore, once CBFS finds Sopt, each such subproblem can be pruned without

generating children, and moreover, any subproblem at which CBFS generates children must also be explored

by BFS.

The proof proceeds by showing that on every pass through the collection of non-empty contours before

CBFS finds Sopt, CBFS explores (and possibly generates children at) at least one subproblem that is explored

by BFS. Since there are at most |supp(K )| non-empty contours at any point in the algorithm, and CBFS

explores exactly one subproblem from each non-empty contour on each pass, this will prove the desired result.
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To see this, consider some pass through the collection of non-empty contours where CBFS does not

explore any subproblem in S1, S2, . . . , Sm; in other words, at every non-empty contour Ki, CBFS selects

some subproblem to explore that BFS never explores. There are two reasons why this can happen: 1) Ki

currently contains no subproblems explored by BFS, or 2) the subproblem explored by CBFS in Ki has a

better measure-of-best across Ki than any subproblems explored by BFS in Ki.

Consider the second case above; in particular, let S′ ∈ Ki be a subproblem for which CBFS generates

children but is not explored by BFS, and suppose that at the time CBFS explores S′ there exists a subprob-

lem Sj ∈ Ki that is explored by BFS. Then, by definition and the fact that there are no ties in µ, it must

be the case that µ(S′) < µ(Sj). Moreover, since BFS does not explore S′, there must be some terminal

subproblem Ŝ explored by BFS such that f(Ŝ) ≤ µ(S′) (where f(Ŝ) is the value of the incumbent solution

found at Ŝ by BFS).

This implies that f(Ŝ) < µ(Sj), which in particular means that Sj is not an ancestor of Ŝ (if Sj is an an-

cestor of Ŝ, the best solution in Ŝ is also in Sj , which violates the admissibility of µ). Therefore, in the jth iter-

ation of BFS, there exists an unexplored ancestor of Ŝ which has a smaller measure-of-best than Sj (again by

the admissibility of µ). Thus, BFS should not have explored Sj in the jth iteration, which is a contradiction.

Therefore, in the pass in which CBFS explores no subproblems explored by BFS, every non-empty con-

tour must contain no subproblems explored by BFS. However, this is impossible, since CBFS has not found

Sopt, which means that some ancestor of Sopt is unexplored. �

Note that some care was taken in the above proof to differentiate between exploring a subproblem and

generating children at a subproblem. The result relates the number of subproblems at which CBFS generates

children to the number of subproblems BFS explores—this is necessary, because it could be the case that

when CBFS finds Sopt, it has generated a large number of children that BFS never explores, perhaps due to

the chosen branching rule. Thus, upon finding Sopt, CBFS must go through a “clean-up” phase to remove

all of these subproblems from the tree. However, in general, such a clean-up phase requires relatively little

extra computational effort.

3.2 Properties of the Labeling Function

In this section, properties of the labeling function are explored in greater detail. Before proceeding, one

important property is required:

Definition 3.1. A B&B algorithm is said to be memoryless if the children, bounds, and incumbent solution

produced at a subproblem S depend only on S and not the past history of the algorithm.
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Due to possible degeneracy in the LP relaxation solution, the presence of algorithmic enhancements such

as cutting planes, and computational numerical instabilities, many commercial integer programming solvers

are not memoryless. In particular, given subproblems S1 and S2, the lower bounds and generated children

at S2 can depend on whether S1 has been explored or not. However, other B&B algorithms that do not

rely on linear programming methods may satisfy the memorylessness requirement. All results in this section

assume a memoryless solver.

3.2.1 The Simulation Labeling Function

The first result in the section establishes the generality of the CBFS strategy by providing a contour labeling

function κ that enables CBFS to simulate the behavior of any other search strategy.

Definition 3.2. For a search strategy A , define A (j) to be the subproblem explored by A in the jth B&B

iteration. For a specific search strategy such as CBFS, the notation CBFS(j) is used. The inverse function

A −1(S) is defined to be the B&B iteration in which subproblem S is explored.

It is assumed that search strategies explore each subproblem exactly once, so that A −1 is well-defined.

Some search strategies, such as iterative deepening, explore a subproblem multiple times; for the purposes of

the following result, the inverse function is defined to be the first time that a subproblem is explored. In such

cases, CBFS does not explore the exact sequence of subproblems as A , but instead explores subproblems in

the order that they are first explored by A .

Theorem 3.2. Using the simulation labeling function defined as κsim(S) = A −1(S), CBFS will explore

the same sequence of subproblems as A .

Proof. Consider the sequence of subproblems A (1),A (2), . . . ,A (m) explored by search strategy A . Note

that A (1) = CBFS(1) = X, and that the current contour index i for CBFS is initially 1. Next assume that

CBFS and A have explored the same initial sequence of j − 1 subproblems, and at the (j − 1)st iteration

the contour index i is equal to j − 1, for 2 ≤ j ≤ m. A (j) must be a child of some subproblem A (j′) with

j′ < j, which has been previously explored by CBFS. Therefore, A (j) has been generated by CBFS and

is the sole subproblem in contour j, by definition of κsim. Since j is the next smallest non-empty contour

index larger than i, CBFS(j) = A (j) and i = j, so the result holds by induction. �

It may not always be possible to calculate κsim exactly for an arbitrary search strategy; however, for the

three most common search strategies (BFS, BrFS, and DFS), a surrogate labeling function can be used to

produce the same results.
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Theorem 3.3. Using κBFS(S) = 0, CBFS will emulate BFS.

Proof. Since every subproblem appears in the same contour, CBFS and BFS will make identical choices,

assuming they use the same measure-of-best function µ. �

Theorem 3.4. Let Sj be the jth subproblem generated by BrFS; then, using κBrFS(Sj) = j, CBFS will

emulate BrFS.

Proof. BrFS is typically implemented using a first-in, first-out queue (Cormen et al., 2009). By definition

of a queue, then BrFS(j) = Sj , so by Theorem 3.2 CBFS will simulate BrFS with this labeling function. �

Theorem 3.5. Consider a subproblem S with children S1, S2, . . . , Sr, and let ∆j , j ∈ {1, 2, . . . , r} be an

upper bound on the number of subproblems contained in the subtree rooted at Sj. Define

κDFS(Sj) = κDFS(S) +

j−1∑
k=0

∆k.

Using this labeling function, CBFS will emulate DFS.

Proof. For any subproblem S with children S1, S2, . . . , Sr, the DFS strategy explores all subproblems con-

tained in the subtree rooted at Sj before exploring any children in subsequent subtrees. Using κDFS , no

children in subsequent subtrees appear in earlier contours than children of Sj , proving the result. �

In the last case, bounds ∆j can be computed if upper bounds on the branching factor and subtree depth

are known. For example, given a binary branching strategy and a finite number of branching choices, then

∆j = 2k, where k is the number of remaining branching choices at Sj .

3.2.2 The Optimal Labeling Function

This section discusses the existence of an “optimal” contour labeling function for a particular problem

instance. Intuitively, the best B&B algorithm will be one in which the first terminal subproblem is optimal.

This enables the maximum amount of pruning to be performed, which in turn produces the smallest search

tree and the fastest computation time. The following theorem establishes the existence of an (problem-

instance specific) labeling function that enables CBFS to find an optimal solution before any other search

strategy:

Theorem 3.6. Fix a branching strategy and pruning rules for a B&B algorithm. Then, there exists a labeling

function for CBFS which finds an optimal solution at least as quickly as any other search strategy A .
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Proof. The statement is a natural corollary of Theorem 3.2 by letting A be a search strategy that finds

an optimal solution as quickly as possible among all search strategies. However, an alternate proof of this

theorem is presented for the purposes of discussing the computational complexity of finding the “best”

contour ordering.

Assume that P has at least one feasible solution, and consider a shortest path from the root of the B&B

tree to any optimal solution under the chosen branching strategy, say S1, S2, . . . , Sk, where S1 = X and Sk

is terminal. Define the labeling function

κopt(S) =

 i if S = Si, i ∈ {1, 2, . . . , k}

k + 1 otherwise

Such a labeling function ensures that each subproblem on the shortest path to an optimal solution is placed

in its own contour and that the algorithm explores these subproblems before any other subproblem. Since

the branching strategy, pruning rules, and LP relaxation solution method are all memoryless and fixed, no

search strategy A can find an optimal solution more quickly than CBFS with this labeling function. �

Note that the above result is purely an existence result, since to actually compute κopt, not only must

an optimal solution be known, but it must be possible to prove that no other shorter path exists. This is

usually a more challenging problem than just solving the optimization problem to begin with.

For example, suppose a B&B solver is being used to solve the satisfiability (SAT) problem, in which a

satisfying assignment to a boolean formula φ(y1, y2, . . . , yn) is sought. Further suppose that subproblems at

the ith level of the search tree branch by fixing variable yi to either true or false. Then, explicitly computing

κopt for this problem is equivalent to finding the smallest value k and an assignment of values to y1, y2, . . . , yk

such that φ is true irrespective of the remaining variables. Or, formally, this is equivalent to solving

min
k
∃ y1, y2, . . . , yk ∀ yk+1, yk+2, . . . , yn φ(y).

The decision version of this problem, which provides a fixed value for k and asks if a satisfying assignment

to y1, y2, . . . , yk exists for φ, is known as the 2-quantified boolean formula (2QBF) problem, which is Σp2-

complete. Σp2 is the computational complexity class of languages which can be verified in polynomial time,

given access to an NP oracle (that is, a procedure that solves some NP-complete problem, e.g. 3SAT, in

constant time); equivalently, Σp2 is the complexity class NPNP. It is generally believed that Σp2 encompasses

a more difficult class of languages than NP does, but this conjecture—a generalization of P 6= NP—has not

been proven. For a more detailed discussion of QBF problems and Σp2, see Ranjan et al. (2004).

40



3.3 Finding Good Labeling Functions

From the perspective of designing faster algorithms in practice, the results from Theorems 3.2-3.6 are not

particularly useful. In addition to the high computational complexity of finding a good labeling function

discussed at the end of Section 3.2.2, none of the results in these theorems take advantage of the defining

characteristic of CBFS—namely, cycling. Both κsim and κopt perform exactly one pass through the various

contours before the algorithm terminates or before all remaining subproblems are placed in a single contour.

Therefore, the natural question is “What heuristic labeling functions lead to good performance for B&B

algorithms in practice?”

3.3.1 Relative Properties of the Labeling Function

It is important to note that the behavior of a B&B algorithm with CBFS is independent of the absolute

values of the labels produced by κ. In particular, note that global scaling of the labeling function does not

change the behavior of the algorithm. In other words, for β ∈ Z+ and some labeling function κ, the new

labeling function κ′(S) = βκ(S) will generate exactly the same search tree, since the β factor just inserts

more empty contours in between each consecutive pair of non-empty contours. More generally, it can be

observed that the labeling function only impacts the algorithm based on the relative contour orderings it

produces. An example of this can be seen by comparing κDFS to κsim—both produce the same relative

ordering, even though different absolute contour labels are assigned to each subproblem.

Therefore, this section focuses on the relative behavior of the search strategy with respect to the labeling

function. Consider a subproblem S that is explored and generates two children, S1 and S2. How do different

contour labels for S1 and S2 change the behavior of the algorithm? The following definition will be important:

Definition 3.3. A subproblem S is considered for exploration if it is present in contour Ki when CBFS

selects a subproblem to explore from Ki.

Just because a subproblem is considered for exploration at some iteration of the algorithm does not

mean that it will actually be explored at that point. In fact, a very large number of iterations could occur

between when a subproblem is first considered for exploration and when it is finally explored. The important

point here is that a subproblem will never be explored in any iteration in which it was not considered for

exploration. If two subproblems are placed in the same contour, at most one of them will be explored on

this pass through the list of contours (Figure 3.3a).

With regards to the three subproblems S, S1, and S2 mentioned above, first suppose that κ(S) < κ(S1) <

κ(S2); in this case, S1 will be considered for exploration before S2 (Figure 3.3b). It does not mean that S1
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actually will be explored before S2, because there may be many other subproblems in Kκ(S1) with better µ

values. However, also observe that both S1 and S2 will be considered for exploration before CBFS returns

to the top of the non-empty contour list.

On the other hand, suppose that κ(S1) < κ(S) < κ(S2) (Figure 3.3c). In this case, S1 will not even

be considered for exploration until CBFS has reached the bottom of the non-empty contour list. In other

words, by putting S1 in a higher contour than S, the labeling function introduces a (potentially large) delay

before S1 has the potential to be explored. This may be beneficial if the algorithm is able to find a new

incumbent solution that can be used to prune S1. Moreover, unlike before, subproblem S2 will be considered

for exploration before S1, despite the fact that κ(S1) < κ(S2) in both cases.

In the extreme case, when κ(S2) = κ(S), subproblem S2 is not considered for exploration until CBFS has

explored some subproblem from every other non-empty contour (Figure 3.3d). This introduces the longest

possible delay between when S2 is generated and when it is first considered for exploration. Thus, the

contours act similarly to a tabu list for local search, by introducing a delay between when a subproblem is

generated and when it can be explored.

3.3.2 Heuristic Labeling Function

Based on the discussion in Section 3.3.1, a heuristic labeling function for integer linear programming using

the standard integer branching rule (see Section 2.6.1) is presented. This heuristic is a generalization of the

depth labeling function and the positive assignment labeling function (Section 3.2). For a subproblem S,

define S+ and S− to be the number of positive or null assignments made at branching decisions leading to

S, respectively. Then, let p and n be user-specified weights, and consider the following labeling function:

κp,n(S) = pS+ + nS− (3.1)

Assume that the weights p and n are rational; then the first observation is that by the scaling argument

of Section 3.3.1, these weights can be restricted to integer values. Secondly, note that the relative settings

of p and n directly yield different orderings for children of a subproblem as considered in Figure 3.3. For

example, given two children Sp and Sn of a subproblem S, where Sp is formed by a positive assignment

from S and Sn is formed by a null assignment, observe that if p = n > 0, this leads to the configuration in

Figure 3.3a. Likewise, if p < 0 and n > 0, this leads to the configuration shown in Figure 3.3c.

Moreover, observe that this labeling function can be used to implement a number of different previously-

used labeling functions. For instance, if p = n = 0, then the resulting search strategy is simply BFS.

Assigning p = n = 1 yields the depth-based contours shown in Figure 3.2b, and p = 1, n = 0 yields the
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Figure 3.3: Relative contour labels for subproblems. In this example, subproblems are grouped into four con-
tours, and subproblem S has just been explored. The differences in search strategy behavior are considered
for different relative contour labels for the two children S1 and S2 of S.

(a) κ(S) < κ(S1) = κ(S2); S1 and S2 are placed in the same contour, and thus are considered for
exploration at the same time, but only one subproblem will be selected for exploration from this
contour on this pass through the contour set. The explored subproblem from this contour might not
be either of S1 or S2.

(b) κ(S) < κ(S1) < κ(S2); S1 is considered for exploration before S2, but both will be considered for
exploration before the algorithm returns to the top of the contour set.

(c) κ(S1) < κ(S) < κ(S2); S2 is considered for exploration before S1. Moreover, subproblem S1 will not
even be considered for exploration until a subproblem from every contour with label greater than κ(S)
has been explored.

(d) κ(S1) < κ(S2) = κ(S); S1 is considered for exploration before S2. Neither subproblem will be consid-
ered for exploration until a subproblem from every contour greater than κ(S) has been explored, and
S2 will not be considered for exploration until a subproblem from every other contour is explored.
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positive assignment contour function shown in Figure 3.2c.

The idea behind this heuristic labeling function is that for some problems, performing positive assign-

ments are more likely to lead to good candidate incumbents than performing null assignments, or vice versa.

Setting the weights appropriately allows the algorithm designer to use domain knowledge or experience to

control how child subproblems are arranged in contours. Note that even more complicated labeling functions

are possible. For example, the labeling function could take into account the variables that are selected for

branching, in the spirit of pseudocosts or strong branching.

3.4 Computational Results

3.4.1 Mixed Integer Programming

To demonstrate the behavior of contours on algorithm performance, an extensive suite of tests was run on

problems from MIPLIB 2010 (Section 2.6.1). The implementation of CBFS was written using callbacks

with CPLEX 12.5, and was written in C++. The performance of CPLEX without CBFS was compared to

CPLEX using CBFS and 12 different combinations of values for p and n (shown in Table 3.1). Tests were

run against all 87 benchmark instances in the MIPLIB 2010 benchmark dataset. Additionally, tests were

run against 160 of the problems in the MIPLIB 2010 challenge dataset; four problems were excluded due to

memory limitations.

(0, 0) (1, 1) (1, 0) (0, 1)
(1,-1) (-1,1) (3, 1) (1, 3)
(1,-3) (-1,3) (3,-1) (-3,1)

Table 3.1: The twelve combinations of parameter values used for CBFS. Note that (0, 0) is simply BFS,
and (1, 1) is the depth contour function.

In order to provide the most fair comparison, CPLEX’s parallel search and dynamic search options were

disabled for all trials. A time limit of one hour was imposed for all computational tests. Each test was

run on a single core of an Intel Core i7-930 2.8 GHz quad core desktop computer; four tests were run

simultaneously to reduce the total testing time. For each instance, thirteen different trials were performed.

The first used the default branching strategy used by CPLEX; the remaining twelve used CBFS with κp,n as

the labeling function, with weights taken from Table 3.1. Data were collected for all trials to determine the

total number of nodes explored in the branch-and-bound tree, the iteration in which the optimal solution

was first identified, and the total computational time needed to solve the instance.
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Figure 3.4: Comparison of tree size for the 62 MIPLIB benchmark instances solved using at least one search
strategy, and not solved at the root node. Each data point is the ratio between the size of the smallest tree
explored by CPX/BFS, and the smallest tree size explored by any CBFS variant. The values are shown on
a log scale; each axis tick indicates an order-of-magnitude change in performance. Hashed bars represent
instances that were only solved by some CBFS variant or CPX/BFS, but not both.

Benchmark Instance Tests

It was observed that in most cases the presence of callbacks negatively impacted the performance of the

algorithm, even if the default CPLEX search strategy was used; this is due to some internal restructuring

and clean-up that CPLEX performs when callbacks are present that does not need to be performed without

callbacks (Achterberg, 2009). For example, running CPLEX on some problem instances without callbacks

enabled allowed the solver to find a very good (or optimal) solution at the root node of the B&B tree.

However, enabling callbacks for those same instances sometimes prohibited the solver from finding any

incumbent solution within the 1-hour time limit, even without using CBFS or BFS. Thus, in order to isolate

the impacts of CBFS on the algorithm performance on the benchmark instances, CPLEX was run with

callbacks enabled for all trials; for trials that did not use CBFS, the default subproblem selection strategy

was employed. In the remainder of this section, CPX refers to the CPLEX solver with callbacks enabled

and the default subproblem selection strategy.

With these modifications, CPX was able to verify optimality for 64 instances in the benchmark dataset,

and CBFS with κ0,0 (henceforth called BFS) was able to verify optimality for 1 additional instance. Five of
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Figure 3.5: Comparison of computational running time on a log scale for the 62 benchmark instances solved
by at least one search strategy (see Figure 3.4). Hashed bars indicate instances that were solved only by a
CBFS variant or by CPX/BFS. The length of hashed bars is computed as a ratio between the time taken
by the best strategy and 3600 seconds.

these instances were solved at the root of the B&B tree. When CBFS with one of the 11 remaining labeling

functions was used, the solver was able to verify optimality for 2 more instances that could not be solved

by either CPX or BFS. However, there were 5 instances which could be solved by CPX or BFS, but not by

CBFS with any other labeling function. Thus, there are a total of 67 instances in the benchmark dataset

which could be solved by CPLEX using at least one of the 13 different search strategies, and 20 instances

which could not be solved within one hour of computation time using any search strategy.

Of these 62 instances which were not solved at the root node of the B&B tree, at least one of the 11

CBFS variants outperformed CPX or BFS (with respect to the number of subproblems contained in the

search tree) in 30 cases. On average, the best search tree explored by some CBFS variant for these instances

was 42% smaller than the best search tree explored by CPX or BFS, and in one case, the size of the search

tree for CBFS was an order of magnitude smaller than for CPX or BFS. For the remaining 32 instances,

CPX or BFS explored a smaller search tree than CBFS, with an average improvement of 31%, and 1 instance

which produced a tree an order of magnitude smaller with CPX than with any CBFS variant. These data

are summarized in Figure 3.4, which shows the ratio of the best tree size for CPX or BFS to the best tree

size across all CBFS variants.
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Figure 3.6: Comparison of the number of iterations to the best incumbent solution found for the MIPLIB
benchmark instances, shown on a log plot. Hashed bars indicate instances which only CBFS or CPX/BFS
found an incumbent solution, but not both.

A similar comparison was made with respect to computational running time. Here, CBFS outperforms

CPX and BFS on 26 instances, one of which is by at least an order of magnitude. The average improvement

in running time of CBFS over CPX or BFS is 35%; conversely, CPX or BFS outperforms all CBFS variants

in 36 cases, with an average improvement of 33%, and two instances which are solved at least an order of

magnitude more quickly than any CBFS variant. These data are plotted in Figure 3.5.

Figure 3.6 presents data on the number of iterations until the solver found the optimal solution (or in the

case of the 20 unsolved instances, until the best incumbent was found). Here, at least one of the 11 CBFS

variants found the best incumbent in fewer iterations than either CPX or BFS in 48 instances, and for 8 of

these instances CPX and BFS were unable to find any incumbent solution within the time limit. In 7 cases,

CBFS was able to find an incumbent at least an order of magnitude more quickly than CPX or BFS, and

the average improvement in the number of iterations to the best solution was 55%. On the other hand, CPX

or BFS found the best incumbent solution in fewer iterations than any CBFS variant for 27 instances. In 5

cases, no CBFS variant was able to find an incumbent solution, and in 6 cases the improvement is at least

an order of magnitude. The average improvement in number of iterations to best for CPX and BFS was

63%. Detailed statistics on the comparison between CPX, BFS, and CBFS with the 11 different labeling
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functions are shown in Table A.1.

Finally, to get a sense for which search strategies performed the best and worst overall, a tally was

performed for each search strategy of the number of times it was the best with respect to iterations to best

solution, total tree size, and total computation time. Results of this tally are shown in Table 3.2. The entries

in each column indicates how many times that search strategy performed the best or worst with respect to

the three metrics; the first two rows in each section compares across all search strategies, and the second

two exclude CPX and BFS from the comparison.

Table 3.2: A tally of the number of times each search strategy performed the best in terms of iterations
to best incumbent, total tree size, and computational running time, for the MIPLIB benchmark instances.
The first two rows in each section compare to CPX and BFS; the second two only consider the best and
worst CBFS labeling functions.

CPX BFS 1, 1 1, 0 0, 1 3, 1 1, 3 1, -1 -1, 1 1, -3 -1, 3 -3, 1 3, -1
Iterations to best incumbent

best 27 3 4 8 4 10 5 7 8 8 4 4 5
worst 4 11 8 6 3 6 5 3 8 3 3 4 6

best (CBFS only) 8 12 6 15 5 11 10 8 4 5 5
worst (CBFS only) 11 8 5 7 6 3 9 6 3 4 7

Total tree size
best 23 9 1 7 2 4 1 7 2 4 0 1 1

worst 4 9 4 5 1 7 4 3 4 3 6 1 5
best (CBFS only) 7 9 5 6 1 11 8 4 1 4 1

worst (CBFS only) 6 8 3 7 5 5 5 4 8 3 5
Total computation time

best 24 12 2 6 2 4 2 4 1 2 0 2 1
worst 4 12 20 13 12 15 15 7 8 11 12 8 11

best (CBFS only) 9 7 4 9 3 8 4 3 3 6 1
worst (CBFS only) 20 13 14 16 16 8 8 11 12 9 12

Challenge Instances

An additional set of trials were performed on 160 instances in the MIPLIB challenge dataset. For these

problems, CPLEX was run without callbacks enabled (but still with dynamic search disabled). Of these 160

instances, exactly 1 instance could be solved to optimality using any search strategy, and both CPLEX and

CBFS were able to solve this problem. For this instance, CBFS was able to solve the problem with a search

tree that was about half the size of the one needed by CPLEX, but the total computational running time

required by CBFS was slightly larger.

Of the remaining 159 instances, some CBFS variant outperformed CPLEX and BFS in 58 instances,

CPLEX or BFS outperformed all CBFS variants in 49 instances, and CBFS and CPLEX/BFS found in-

cumbents with equal value for 32 instances. There were 20 instances for which no search strategy found

an incumbent solution. In 6 out of the 58 cases that CBFS found a better incumbent, CPLEX and BFS

failed to even find an incumbent. For the remainder, the average gap in solution value between CBFS and

CPLEX or BFS was 9.3%, the minimum gap was 0.0025%, and the maximum gap was 180%. On the other
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hand, the average gap in incumbent value for the 49 instance for which CPLEX/BFS outperform all CBFS

variants was 19%, with a minimum gap of 0.0019% and a maximum gap of 630%.

For the 32 instances for which CBFS and CPLEX/BFS found the same incumbent value, in 7 cases the

best solution was found at the root node of the B&B tree. For the remaining 25 instances, some CBFS

variant found the best incumbent in fewer iterations than either CPLEX or BFS in 17 cases. In three of

these cases, CBFS found the best incumbent at least an order of magnitude sooner than either CPLEX or

BFS, and in one case a CBFS variant found the best incumbent nearly 3 orders of magnitude sooner. For

the 8 instances in which CPLEX/BFS found the best incumbent in fewer iterations than any CBFS variant,

only one was an order of magnitude improvement.

Analysis of Results

The computational results presented show that in many cases, using the CBFS search strategy will result

in better performance when compared to the default search strategy used by CPLEX or to BFS. However,

the data in Table 3.2 provide no clear indication of a contour labeling function which consistently outper-

forms the others. Labeling functions that favor positive assignments (for example, κ1,0 and κ1,−1) perform

slightly better than others on this data set, but the trend is not especially strong. This suggests that good

contour labeling functions may be instance-dependent. Thus, one focus of future research will be to identify

characteristics of problem instances that lead to good labeling functions.

The presented computational results also validate the performance of CBFS as a heuristic; in particular,

CBFS is able to find better incumbent solutions than either CPLEX or BFS in a majority of problem

instances, as seen in Figure 3.6 and the tests performed on the MIPLIB challenge instances. However, this

benefit is not so pronounced when considering total tree size or computational time. This suggests that

while CBFS is able to find good incumbent solutions early, it may spend more time later in the search

process exploring unnecessary regions of the search tree. Better contour labeling functions may improve this

behavior; alternately, algorithms could use a hybrid search strategy that uses CBFS early in the process,

and switch to BFS later in the search.

3.4.2 Application to the Simple Assembly Line Balancing Problem

A B&B solver using CBFS was developed and applied to instances of the simple assembly-line balancing

problem (Section 2.6.4). The measure-of-best function used for this solver is a (non-admissible) heuristic

function:

µ(S) = I/m− 0.02 · |U |,
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where a subproblem S in the B&B tree is defined as S = {U, σ1, σ2, . . . , σm} and U ⊆ J is the set of

unassigned jobs for the subproblem. Recall that σi ⊆ J \ U, i ∈ {1, 2, . . . ,m} is the sets of tasks assigned

to station i. This measure-of-best function attempts to weight subproblems with a higher priority if they

are more likely to lead to an optimal solution. In particular, the I/m term encourages the exploration of

subproblems which have relatively low idle time per station. The remaining term acts as a tie-breaking

function that encourages the exploration of subproblems with large numbers of remaining tasks, since these

tasks are likely to be smaller and easier to schedule. The value of the parameter can be empirically chosen,

and was selected to match the value in Sewell and Jacobson (2012).

As in Sewell and Jacobson (2012), the branching rule for the B&B solver is a wide branching rule called

station-oriented branching; this method computes a number of possible full loads for the next available

station. In particular, station σi is fully loaded if there are no tasks with satisfied precedence constraints

that can be added to σi and satisfy the cycle time constraint at σi. A depth-first search mechanism is used to

generate children at the current subproblem, in the following manner: each task which has all its precedence

constraints satisfied at the current subproblem is considered for addition to the next station σm+1. For each

such task j, depth-first search is used to enumerate all possible full loads for the next station such that it

contains task j. Once a full load has been generated for σm+1, a new subproblem is generated and either

pruned or inserted into the search tree. If the number of possible full loads at the current subproblem exceeds

10 000, no additional children are generated at that subproblem, and the algorithm proceeds heuristically.

For this problem, the depth contour labeling function κd is used to drive the behavior of the search

strategy. The station-oriented branching rule tends to generate a reasonably-balanced search tree, and there

is no obvious reason to favor one particular full load to σm+1 over another, so in this setting the depth

labeling function is the most natural.

Pruning rules for SALBP

The B&B solver for SALBP computes four different lower bounds and four dominance rules to prune the

search tree. The lower bound rules are defined below (recall that tj is the length of time needed to complete

task j, and ξ is the cycle time for all machines; for a more detailed explanation of LB1, LB2, and LB3, see

Scholl and Becker (2006) and Scholl and Klein (1997)):

LB1 =
⌈∑

j∈J tj/ξ
⌉
, LB2 = |{j ∈ J | t > ξ/2}|+

⌈
|{j∈T | tj=ξ/2}|

2

⌉
, LB3 =

⌈∑
j∈J wj

⌉
,
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where

wj =



1 if tj > 2ξ/3

2/3 if tj = 2ξ/3

1/2 if ξ/3 < tj < 2ξ/3

1/3 if tj = ξ/3.

At each subproblem in the branch-and-bound tree, the three lower bounds LB1, LB2, and LB3 are

computed; if the maximum of these three values is greater than or equal to the value of the incumbent

solution, then the subproblem can be pruned. On the other hand, if the three lower bounds above do not

allow the subproblem to be pruned, a fourth lower bound, called BPLB (or bin-packing lower bound) is

used to solve SALBP with the precedence constraints relaxed. As the bin-packing problem itself is NP-hard,

a separate branch-and-bound solver is used to find good solutions for BPLB; if no good solutions can be

found within 1 second of computation time, then the BPLB solver is terminated so that more progress can

be made in the primary search tree.

Additionally, four different dominance rules are used to attempt to prune subproblems (see Sewell and

Jacobson (2012) for more details):

• The Maximal Load Rule - If a subproblem contains a station load σi and an unassigned task j such

that σi∪{j} does not violate the cycle time c or the precedence constraints, then that subproblem can

be pruned.

• The Extended Jackson Rule - For a given subproblem, if the set of tasks assigned to the last station

contains some task j, and there exists a task i such that (i, j) is not an edge of the precedence graph

D, ti ≥ tj , Φj ⊆ Φ∗i , and task i can replace task j without violating the cycle time at the station or

the precedence constraints, then the subproblem can be pruned.

• The No-Successors Rule - If the set of tasks assigned to the last station in a partial solution at some

subproblem has no successors, and there exists an unassigned task which has at least one successor,

then the current subproblem can be pruned.

• The Memory-based Dominance Rule - For this rule, it is necessary to store every subproblem that has

been identified in the branch-and-bound tree in a hash table so that the rule can be checked efficiently.

The rule states that if there exists a previously-identified subproblem in the search tree that has

assigned all of the tasks as the current subproblem, and uses the same number or fewer stations, then

the current subproblem can be pruned.
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Whenever multiple dominance rules are used, it is important to ensure that there is no mutual dominance

that could prevent the optimal solution from being found. First note that the memory-based dominance rule

is only ever applied to two subproblems that are already in the search tree, and it only deletes subproblems

with a strictly worse solution. Therefore, it is impossible for the memory-based rule to ever prune an optimal

solution. Furthermore, no rule above ever yields a non-maximally-loaded station, so the first rule will never

conflict.

The only remaining possible conflict is between the extended Jackson rule (EJR) and the no-successors

rule (NSR). The following lemma establishes that these two rules can be used in concert.

Lemma 3.1. Let S1 and S2 be two subproblems in the search tree for an instance of SALBP. If S2 dominates

S1 via the EJR, and S2 is dominated by the NSR, then S1 is also dominated by the NSR.

Proof. Suppose not. Let S1 = (U, σ1, σ2, . . . , σm−1, σm) and S2 = (U ′, σ1, σ2, . . . , σm−1, S
′
m) (since S1 and

S2 are related by the EJR, it must be the case that they each have m assigned stations, and the first m− 1

are identical). Then, there must exist j ∈ σm and i ∈ U such that Φj ⊆ Φ∗i and σ′m = (σm − {j}) ∪ {i}. By

the NSR, Φ∗i = ∅, which implies that Φj = ∅ as well. All other tasks in σ′m are identical to tasks in σm,

which means that σm has no successors and can also be pruned by the NSR. �

Consider a set of subproblems in the search space that are all dominated by either the EJR or the

NSR, and suppose that all optimal solutions to SALBP are descendants of some subproblem in this set.

Then, it must be the case that some subproblem S1 in the set is pruned by the EJR and not the NSR, and

furthermore, the subproblem S2 that dominates S1 must also be in the set. In particular, there must exist a

pair S1 and S2 for which S1 is dominated only by the EJR and S2 is dominated only by the NSR (otherwise,

all subproblems in the set would be prunable by only a single dominance rule, and both the EJR and NSR

have been proven correct independently). However, Lemma 3.1 implies that no such pair can exist. This

proves the following corollary:

Corollary 3.1. The EJR and NSR are compatible dominance rules for SALBP.

Backtracking Rules

For instances that are particularly large, or for which each station can hold relatively few tasks, it is not

practical to store the entire list of assigned and unassigned tasks, as well as the complete list of stations

used in a partial solution at some subproblem in the search tree. In these settings, a backtracking method is

incorporated that attempts to minimize memory usage within the branch-and-bound tree. This backtracking

method was not incorporated in the algorithm described in Sewell and Jacobson (2012).
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In this mode of operation, a subproblem in the branch-and-bound tree is represented by S = {p, σm},

where p is a pointer to the subproblem’s parent, and σm is a list of tasks assigned to the current station. Since

all subproblems must be stored in the tree for the memory-based dominance rule to be used, the complete

partial solution represented by subproblem S can be reconstructed by following the parent pointers from S

to the root of the search tree. Furthermore, the idle time and the hash value used to store the subproblem

in the hash table for the memory-based dominance rule can be computed by tracing the parent pointers,

and thus do not need to be stored at each subproblem.

The advantage of this method is that it substantially reduces the amount of memory used at a particular

subproblem; this is most beneficial when the number of tasks assigned to any particular station is small

compared to the total number of tasks. The principle disadvantage of this method is that it increases

the computational time needed to process a subproblem. However, for the medium-sized instances in the

database, it was observed that this method only increased the computation time needed to solve instances

by about 30%.

SALBPGen Results

The B&B algorithm (in the sequel called BBR, or branch, bound, and remember—so named for the use

of the memory-based dominance rule) for SALBP was implemented in C++, and run on all instances in the

database generated by Otto et al. (2013) (see Section 2.6.4) using a single core of an Intel Core i7-930 2.8

GHz quad-core processor, with 12 GB of available memory. All running times reported are given in CPU

seconds, and do not include the time needed to initialize the memory for the branch-and-bound tree, which

is performed at the beginning of the algorithm. Each test was run with a time limit of one hour; the small,

medium, and large instances each had a limit on the size of the search tree of 60 000 000 nodes, and the

very large instances had an imposed limit of 80 000 000 search tree nodes, since the use of the backtracking

code allows for more subproblems to be stored. The backtracking code was used for the very large problem

instances; however, the bin-packing lower bound was disabled, due to its relative ineffectiveness and the

large computation time for these problems. The results in this section are compared against the best results

found by Salome, the best-performing previous algorithm for this problem (Scholl and Klein, 1997). Salome

was run with relatively short time limits (20s, 50s, 70s, and 100s for the small, medium, large, and very

large instances, respectively).

Table 3.3 summarizes the results for the runs against all problem instances. As shown, the BBR algorithm

is able to solve all of the small- and medium-sized instances in the database, and all but 12 of the large

instances. Finally, it is able to solve 350 of the very large instances. Additionally, Salome did not solve
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any problem instances that were unsolved by BBR. Moreover, for the large instances, the BBR algorithm was

able to improve upon the best-known upper bound in ten cases, leaving only two unsolved large instances

which could not be solved to optimality or improved. Similarly, the BBR algorithm was able to improve the

best-known upper bound for 149 very large instances, and it matches the best upper bound in five instances.

However, for 21 of the very large instances, the solution found by BBR was worse than the solution found by

Salome.

Table 3.3: Number of solved problem instances overall.

Size Salome Solved BBR Solved BBR Improved BBR Matched BBR Worse
Small 521 525 0 0 0

Medium 4404 5250 0 0 0
Large 355 513 10 2 0

Very Large 186 350 149 5 21

A further analysis of the instances unsolved by BBR was performed, and the results are presented in

Table 3.4. These results show that instances with lower order strength are often more challenging for BBR

(45% have order strength of approximately 0.2, and 87% have order strength of less than 0.6); the graph

structure has a less-clear relationship to instance difficulty. However, the most telling indicator of problem

difficulty is the task time distribution: all 187 unsolved instances have a central distribution of task times.

Table 3.4: Problem statistics for the unsolved instances by BBR.

Structure Order Strength Peak location
Size Bottleneck Chain None 0.2 0.6 0.9 bottom central bimodal

Large 7 4 1 10 2 0 0 12 0
Very large 50 50 75 75 75 25 0 175 0

3.5 Conclusion

The CBFS strategy is a relatively new search strategy that can be used with B&B algorithms to achieve

better performance in many cases. In this chapter, the generality of the search strategy was established

for the first time, showing that for any search strategy A , a contour definition exists for CBFS that allows

it to explore the same sequence of subproblems as A . Moreover, a bound was proved on the number of

subproblems for which CBFS generates children that shows in the worst case CBFS performs within a

factor of |supp(K )| of the performance of BFS. Finally, some properties of the contour labeling function

are considered showing how it can be used to encourage or delay exploration of particular subproblems in a

heuristic fashion.
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Computational results are presented that show the effectiveness of a CBFS strategy for many instances

in the MIPLIB 2010 mixed integer programming problem database. These performance gains appear to be

instance-dependent; more work needs to be done to determine how the contour labeling function interacts

with the problem instances so that better labeling functions can be developed. Moreover, it is believed that if

the CBFS strategy were incorporated directly into CPLEX instead of through callbacks, better performance

would result. Additional computational results are presented for the simple assembly line balancing problem,

which, combined with the results from the MIPLIB challenge set, show the capabilities of CBFS for finding

good incumbent solutions early in the search process for very large or very challenging problems.
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Chapter 4

Solving the Pricing Problem using
ZDDs

The CBFS strategy described in the preceding chapter is a general-purpose search strategy that can be

used with many types of branching search processes. In contrast, the methods presented in this chapter

and in Chapter 5 are specific to branch-and-price algorithms (described in Section 2.5). These two chapters

describe general-purpose methods to overcome the challenges inherent in a B&B algorithm that uses column

generation along with the standard integer branching rule. Specifically, recall that in order to solve the LP

relaxation at a subproblem in a search tree using column generation and the standard integer branching rule,

all branching decisions leading to that subproblem must also be imposed on the pricing problem, creating

the constrained pricing problem. Moreover, in many cases due to the large number of problem variables and

the asymmetry in positive versus null assignments, the resulting search tree can be quite unbalanced.

No algorithm in the literature has described a way to perform B&P without using techniques like alter-

native branching rules (Section 2.3.1) or the robust BCP method (Section 2.5), which come at the expense

of ease of implementation and less-direct (global) solution methods. Alternate branching rules do not allow

variables to be directly fixed to values, but rely on problem structure to implicitly fix variables. Similarly,

the robust branch-and-cut-and-price methods require the solution of a larger LP at each subproblem, and

again use implicit methods to fix variables.

Therefore, this chapter establishes an efficient method for solving the pricing problem in a generic B&P

algorithm that is directly compatible with the standard integer branching scheme. The fundamental idea is

to use a data structure called a zero-suppressed binary decision diagram (ZDD) to compactly store all

valid solutions to the pricing problem. A linear-time algorithm is presented which adds restrictions to the

ZDD to prohibit previously-generated columns from being produced a second time, allowing the constrained

pricing problem to be solved at every iteration of column generation. This is combined with a contour

labeling function for CBFS which reduces the imbalance in the search tree and biases the search towards

complete solutions that are closer to the root of the tree. Computational results are presented for the graph

coloring problem and the generalized assignment problem showing nearly order-of-magnitude improvements

in solution time for some instances when using these two ideas, together with a proof of optimality for several
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previously unsolved instances.

The remainder of this chapter is organized as follows: Section 4.1 defines the ZDD data structure and

shows how it can be used to solve the pricing problem in a B&P algorithm. Section 4.2 then presents the

ZDD restriction algorithm, which is used to modify the ZDD in place so as to produce solutions to the

constrained pricing problem. Next, Section 4.3 presents two different algorithms for building a ZDD for

the graph coloring pricing problem, and proves a bound on the size of such a ZDD. Section 4.4 presents

computational results for the graph coloring problem and the generalized assignment problem. Finally,

Section 4.5 outlines several future research directions for this technique.

4.1 Zero-Suppressed Binary Decision Diagrams

A zero-suppressed binary decision diagram (Minato, 1993) is an extension of the binary decision diagram

(BDD) data structure proposed by Lee (1959) and Akers (1978). A BDD is a directed acyclic graph (DAG)

that compactly encodes a binary function. Previously, BDDs have been used in circuit design and verification,

as well as a number of formal logic applications (Bryant, 1992). More recently, BDDs have been used in

a number of different optimization applications: Bergman et al. (2012) explore different variable orderings

for BDDs used to characterize the independent sets of a graph, and Hadžić and Hooker (2008) add weights

to the edges of a BDD to perform post-optimality analysis in a discrete optimization setting. Finally, Cire

et al. (2012) and Bergman et al. (2013) describe how to use BDDs to compute upper and lower bounds to

prune subproblems in a B&B algorithm.

Despite their success in these related areas, BDDs and ZDDs have not appeared in conjunction with

B&P in the literature before. Behle and Eisenbrand (2007) give a method for using BDDs to enumerate

vertices and facets of 0/1 polyhedra (which can be viewed as solving the pricing problem for a problem which

has been reformulated via Dantzig-Wolfe decomposition), but they do not extend this result to the B&P

setting. Additionally, Behle (2007) uses BDDs to generate valid inequalities in a branch-and-cut algorithm

to perform row generation instead of column generation.

However, the use of decision diagrams together with B&P algorithms can provide substantial benefits to

algorithm performance. This is because decision diagrams yield a way to compactly store all the columns

even for an exponentially-sized integer program. Note that column generation techniques must still be

used to solve the RMP, because the columns encoded in the ZDD cannot be operated on directly by the LP

solver. Nonetheless, since the LP solver has (implicit) access to all columns, the pricing problem can be solved

exactly at every iteration of column generation, which may improve the convergence of the column generation
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procedure. In contrast, most B&P solvers terminate the pricing problem solver as soon as a column with

“sufficiently negative” reduced cost is found, due to the difficulty of solving the pricing problem. Moreover,

as shown in Section 4.2, the set of valid pricing problem solutions can be modified in place, allowing B&P

algorithms using ZDDs to employ standard integer branching methods.

A ZDD is a modified version of a BDD that removes some nodes from the data structure to reduce its

size. ZDDs are most useful when the binary function it encodes is “sparse” in the sense that there are

relatively few valid solutions to the function compared to the number of invalid solutions. Minato (1993)

observed that many combinatorial optimization problems have the sparsity characteristic; thus, ZDDs are

likely to be more useful in a B&P setting than ordinary BDDs.

Formally, a ZDD Z is defined as follows. Let E be an ordered set of n elements (e1, e2, . . . , en); then Z

is a DAG satisfying the following properties:

1. There are two special nodes in Z (denoted 1 and 0), called the true node and false node, respectively.

Additionally, there is exactly one “highest” node in the topological ordering of Z, called the root of

Z, and denoted zroot.

2. Every node z ∈ Z − {1,0} has two outgoing edges, a high edge and a low edge, which point to the

high child and low child, respectively. The high (low) child of z is denoted hi(z) (lo(z)). The true

and false nodes have no outgoing edges. The indegree of z, denoted δ−(z), is the number of incoming

edges to z; thus, δ−(zroot) = 0.

3. Every node z ∈ Z−{1,0} is associated with some element ei ∈ E ; the index of the associated element

for z is given by var(z), that is, var(z) = i. By convention, var(1) = var(0) = n + 1. Finally, if

var(z) = i, then var(hi(z)) > i and var(lo(z)) > i.

4. No z ∈ Z has hi(z) = 0 (this property, called the zero-suppressed property, is not satisfied by

ordinary BDDs).

Any set C ⊆ E induces a path PC from the root of Z to either 1 or 0, in the following manner: starting

at the root of Z, if z is the current node on the path, the next node along the path is hi(z) if evar(z) ∈ C, and

lo(z) otherwise. The output of Z on C, denoted Z(C), is the last node along this path, which must be either

1 or 0. If Z(C) = 1(0), then Z accepts (rejects) C. Note that it is not required for var(z2) = var(z1) + 1

when z2 is a child of z1; in the case when var(z2) > var(z1) + 1, the edge is called a long edge, and when an

induced path PC includes such an edge, if {evar(z1)+1, evar(z1)+2, . . . , evar(z2)−1} ∩ C 6= ∅, then Z rejects C.

Finally, a ZDD characterizes a family of sets C ⊆ 2E (denoted ZC ) if Z accepts all sets in C , and rejects

all sets not in C (see Figure 4.1).
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Moreover, given a node z ∈ ZC , a valid path is a path from z to 1 in Z; such a path corresponds to

a subset C̄ of C ∈ C on the elements {evar(z), evar(z)+1, . . . , ek} where ej ∈ C̄ if and only if ej is the tail

of a high edge on the valid path. In this case, z yields C, denoted z ` C. Finally, define `i(ZC ) = {z ∈

ZC | var(z) = i} to be the ith level of ZC .

e1

e2

e3

e4

1 0

(a) The unique small-
est ZDD characterizing
C for the given variable
ordering.

e1

e2

e3

e4

1 0

(b) The induced path
corresponding to the
set C = {e3, e4}.

e1

e2

e3

e4

1 0

(c) The induced path
corresponding to the
set C = {e3}.

e1

e2

e3

e4

1 0

(d) The ZDD does not
accept C = {e1, e2, e4}
since the long edge
skips e4, but e4 ∈ C.

Figure 4.1: Let E = (e1, e2, e3, e4), and C = {∅, {e1, e2}, {e3, e4}, {e1, e2, e3, e4}} (Example from Ander-
sen, 1997). Solid lines represent high edges, and dashed lines represent low edges; all edges are directed
downwards. Grey nodes indicate whether ZC accepts C.

For an arbitrary family C and an arbitrary vertex ordering, the size of ZC (that is, the number of nodes

and edges in the graph, denoted |ZC |) may be exponential in n. However, Bryant (1986) shows that for

any fixed variable ordering, every boolean function has a unique smallest BDD characterizing it. This result

extends to ZDDs by observing that membership in C can be defined as a boolean function. One way to

construct the unique smallest ZDD characterizing C is to first construct the BDD for C ’s indicator function,

and then iteratively delete nodes whose high edge points to 0, connecting the low edge to the node’s parent.

Alternately, there exists a recursive algorithm to construct ZC directly (Knuth, 2008).

Note that the choice of ordering on the elements of E is important; Bryant (1986) shows examples where

different variable orderings yield BDDs of dramatically different sizes for the same function. In fact, it is

NP-hard to determine the variable ordering for any arbitrary boolean function that will yield the smallest

BDD (Bollig and Wegener, 1996). These results apply for ZDDs as well; nevertheless, the use of heuristic

variable orderings often results in tractably-sized ZDDs in practical applications.

To see how ZDDs can be used to solve the unconstrained pricing problem in a B&P algorithm, let C

be the family of solutions to the pricing problem. Then, using the technique of Hadžić and Hooker (2008),
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assign weights to the edges of ZC and compute the longest path or shortest path in ZC from the root to

1, depending on whether the pricing problem is a maximization or minimization problem. Specifically, let

(π1, π2, . . . , πn) be a weight vector for the elements of E ; set the weight of edge (z1, z2) ∈ ZC to πvar(z) if

z2 = hi(z1), and 0 otherwise. Then, finding the longest or shortest path with respect to {π} from the root

of ZC to 1 can be found in O(|ZC |) time using dynamic programming (Sedgewick and Wayne, 2011). The

resulting path corresponds to the optimal solution to the pricing problem (see Figure 4.2).

e1

e2

e3

e4

1 0

−1

−1

2

1

Figure 4.2: The ZDD from Figure 4.1a with weights given by the objective function
max [−e1 − e2 + 2e3 + e4]; the bold path corresponds to the maximum-weight valid set, that is {e3, e4}.
Weights not shown are 0.

4.2 The ZDD Restriction Algorithm

In order to use standard integer branching methods in a B&P algorithm it is necessary to solve the constrained

pricing problem. Recall that this problem seeks a new variable of minimum reduced cost that respects all

branching decisions made at the subproblem. Note that it is sufficient to generate a new variable that

does not appear in the pool C ′ for the RMP; to see this, observe that if any variable in C ′ has negative

reduced cost, then the current solution to the RMP is not optimal. Therefore, in this section, an algorithm

is presented to add restrictions to a ZDD characterizing the pricing problem so that any time a new column

is generated and added to C ′, it can be immediately restricted from ever being generated as a solution to

the pricing problem again. In this way, the ZDD will actually solve the constrained pricing problem at each

iteration of the algorithm.

Let C be the family of valid solutions to the pricing problem, where each C ∈ C is a subset of

E = (e1, e2, . . . , en), and let ZC be the ZDD characterizing C . The restriction algorithm for ZDDs, called

RestrictSet, takes as input a set C ∈ C , and builds a new ZDD ZC− that accepts C− = C \ {C}. The
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key feature of the ZDD restriction algorithm that makes it effective in practice is that it operates in O(n)

time, and it increases the size of ZC by at most n nodes and 2n edges (and often by much less).

Intuitively, the RestrictSet algorithm identifies the path PC in ZC corresponding to the set C, and

updates this path so that it ends at the false node instead of the true node. However, if there exists C ′ 6= C

such that PC and PC′ overlap, this update could also restrict C ′. Therefore, RestrictSet duplicates the

portion of PC that could overlap with some other root-to-1 path, and sets the endpoint of the duplicate

path to 0. This ensures that no additional sets are restricted by the algorithm. The first node on PC with

indegree greater than one is the first node with some potential overlap; thus it, and all subsequent nodes,

are duplicated.

Pseudocode for the RestrictSet algorithm is given in Algorithm 4.1; this algorithm makes use of a

function called ZC .insert(i, z`, zh), which takes as input an index i ∈ {1, 2, . . . , n} and pointers to two

pre-existing nodes z`, zh ∈ ZC . The function inserts a new node into ZC associated with element ei, with

low edge pointing to z` and high edge pointing to zh, and returns a pointer to the newly-inserted node.

It also updates the indegrees of the high and low children. ZC .insert can be implemented in (average)

constant time (see Andersen, 1997 for details). The function 1C : E → {0, 1} is an indicator function for C,

i.e. 1C(ei) = 1 if and only if ei ∈ C.

The following theorem establishes the correctness of the RestrictSet algorithm and proves the claims

made previously about its time and space complexity behavior; an example of the RestrictSet applied to

the ZDD in Figure 4.1a is given in Figure 4.3.

Theorem 4.1. Given a ZDD ZC describing a family of subsets C of an ordered set E with n elements,

together with a set C ∈ C , the RestrictSet algorithm modifies ZC in O(n) time to produce a new ZDD

called ZC− characterizing C− = C \ {C}. Furthermore, |ZC− | ≤ |ZC |+ 3n.

Proof. First, note that RestrictSet visits each node along PC at most twice, and PC has at most n nodes.

Furthermore, the algorithm performs a constant amount of work for each visited node. Thus the running

time of RestrictSet is O(n). Also, since node parent is at most the root of ZC , at most n nodes are added

to ZC to form ZC− , and each new node has two outgoing edges.

To prove that ZC− has the desired properties, let z′1, z
′
2, . . . , z

′
k be the nodes added to ZC in Lines 18-19

(Algorithm 4.1), in increasing order of depth. Consider some set C ′ ⊆ E ; if C ′ = C, the path from the root

of ZC− to the bottom of the ZDD is the same as the path from the root of ZC up to the parent node. By

construction, the next node visited in ZC− is z′1 (Lines 21 and 22, Algorithm 4.1). Then, the remainder of

the path in ZC− follows the added nodes; at each z′i, the high and low children are constructed to agree with

the values of C. Finally, the last node along this path is 0 (Line 15, Algorithm 4.1), so ZC−(C ′) = 0.
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Algorithm 4.1: RestrictSet(ZC , C)

input: A ZDD ZC and a set C ∈ C
output: A modified ZDD ZC− such that C− = C \ {C}

1 〈〈 Find the first node on PC with indegree higher than 1 〉〉
2 current = zroot; parent = −1
3 while δ−(current) < 2 and current 6∈ {1,0} :
4 i = var(current)
5 parent = current

6 if 1C(ei) == 1 : current = hi(current)
7 else: current = lo(current)

8 〈〈 Make copies of all remaining nodes on PC and point to 0 〉〉
9 list = ()

10 while current 6∈ {1,0} :
11 i = var(current)
12 list.append(current)
13 if 1C(ei) == 1 : current = hi(current)
14 else: current = lo(current)

15 new = 0
16 〈〈 Insert the duplicated nodes into ZC 〉〉
17 for each z ∈ list (in reverse order) :
18 if 1C(evar(z)) == 1 : new = ZC .insert(var(z), lo(z), new)
19 else: new = ZC .insert(var(z), new,hi(z))

20 〈〈 Point the correct edge of the parent node to the root of the duplicated path 〉〉
21 if 1C(evar(parent)) == 1 : hi(parent) = new

22 else: lo(parent) = new

23 return ZC

Furthermore, if C ′ 6= C, then consider the first index j where the characteristic vectors of C and C ′ differ;

if j ≤ var(parent), then the modifications to ZC− have no effect on whether C ′ is accepted, since the only

nodes added to ZC− appear at depths greater than the parent node. However, if j > var(parent), the path

will follow along the newly added nodes z′1, z
′
2, . . . , z

′
i, where var(z′i) = j. At this point, C and C ′ differ, and

by construction, the path returns to the original node in ZC and never returns to the newly-added nodes.

Therefore, ZC−(C ′) = ZC (C ′), as desired. �

To reduce the size of ZC− , a check can be performed to see if the high and low edges of newly-inserted

nodes both point to 0; in this case, the node is suppressed (see Figure 4.3c). Finally, note that the ZDD

produced by the RestrictSet is no longer necessarily minimal with respect to C−. In particular, in the

worst case, if all 2n subsets of E are restricted, the size of the ZDD can grow by O(n2n) nodes. However, in

this case, the resultant ZDD is Z∅, which can be described with only two nodes. In the event that the ZDD

becomes too large, a reduction algorithm can be periodically called that searches for duplicate nodes in ZC

that can be merged.

Using the RestrictSet procedure, a B&P algorithm can be developed that uses traditional integer
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1 0

parent

z1

z2

(a) The path PC is in bold; the
path is split at the first node
with indegree larger than 1. The
parent node is its immediate
predecessor on the path.

e1

e2

e3

e4

1 0

parent

e3

e4

z′1

z′2

z1

z2

(b) Copies of nodes z1 and z2 are
created, and the high edge from
parent points to this new path.
The new path points to 0, thus
restricting the set C.

e1

e2

e3

e4

1 0

(c) The new ZDD ZC− ; since
both high and low edges of z′2
point to 0, it can be suppressed.
z′1 is also suppressed to satisfy
the zero-suppressed property.

Figure 4.3: The result of applying the RestrictSet algorithm to ZC from Figure 4.1a with C =
{e1, e2, e3, e4}. The final ZDD accepts C− = {∅, {e1, e2}, {e3, e4}}.

branching. This B&P algorithm first builds a ZDD characterizing all valid solutions to the pricing problem;

in the worst case, this may take exponential time, but dynamic programming or memoization techniques

can be used to speed up the construction. The ZDD is then used to produce new variables at every iteration

of column generation, which correspond to solutions of the constrained pricing problem. Once a new set (or

variable) has been generated, RestrictSet is called to prohibit that column from being generated again at

a later time. The ZDD is therefore guaranteed to produce the optimal solution to the pricing problem at

each stage, and since in most cases n � |ZC |, the increase in size of the ZDD over the course of the B&P

search is small. Hence, the time needed to solve the pricing problem does not significantly increase over the

course of the algorithm. Pseudocode for the resulting B&P search is given in Algorithm 4.2.

4.3 Constructing the Maximal Independent Set ZDD

In this section, specific properties of a ZDD characterizing the family of maximal independent sets of an

undirected graph G are analyzed. As discussed in Section 2.6.2, the maximal independent set problem is

the pricing problem for the graph coloring problem. Thus, a ZDD characterizing all such sets can be used to

build a B&P solver for graph coloring, as described in Section 4.2. In this setting, the vertex set V plays the
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Algorithm 4.2: B&P+ZDD(X, f)

1 Set S = {X}
2 Construct ZC , where C is the set of valid columns
3 Initialize x̂ and the initial RMP pool C ′

4 for each C ∈ C ′ : ZC = RestrictSet(ZC , C)

5 while S 6= ∅ :
6 Select a subproblem S ∈ S to explore
7 if a solution x̂′ ∈ {x ∈ S | f(x) < f(x̂)} can be found : Set x̂ = x̂′

8 if S cannot be pruned :
9 Partition S into S1, S2, . . . , Sr

10 for each Si ∈ {S1, S2, . . . , Sr} :
11 〈〈 Column generation loop; use ZC to search for C 〉〉
12 while ∃ C ∈ C \ C ′ with negative reduced cost at Si :
13 RestrictSet(ZC , C)
14 Add C to C ′

15 Compute a lower bound at Si using added columns

16 Insert S1, S2, . . . , Sr into S

17 Remove S from S

18 Return x̂

role of E , and the family C is the family of all maximal independent sets of G. In a slight abuse of notation,

say that a vertex v ∈ V is dominated by a valid path from z corresponding to a (not-necessarily-maximal)

independent set C̄ if v ∈ N [C̄] (recall that a vertex in G is dominated by a set C if v ∈ N [C]).

4.3.1 Recursive ZDD Construction

A natural recursive algorithm following the general approach given in Knuth (2008) can be used to construct

the ZDD characterizing the maximal independent sets of G. This algorithm stores each node z ∈ ZC in a

hash table which can be searched in constant time. If there exists a node z ∈ ZC with the same associated

vertex, high child, and low child as some node z′, z and z′ can be merged, with the parent of z′ adjusted to

point to z. In this case, z and z′ are equivalent, denoted z ∼= z′. Pseudocode for this algorithm is given in

Algorithm 4.3.

The algorithm takes as input a set of k undominated vertices U , and a current index i ≤ k + 1, and it

behaves as follows: first, two base cases are checked (Lines 1 and 2, Algorithm 4.3). In the first case, some

vertex in {u1, u2, . . . , ui−1} is not adjacent to any vertex in {ui, ui+1, . . . , uk}. In this case, there is no way to

construct a maximal independent set with the remaining vertices. Alternately, if there are no undominated

vertices, the set is maximal by definition. If neither base case is met, two branches are constructed. The high

branch is constructed by removing the current vertex ui and all its neighbors from the set of undominated

vertices, and advancing the current index to the next undominated vertex in U (if no such vertex exists,
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the current index is set to an “off-the-end” value of k + 1). Similarly, the low branch is constructed by

advancing the current index to the next undominated vertex in U , if one exists. Once the high and low

children have been computed (recursively constructing them if necessary), Line 7, Algorithm 4.3 enforces

the zero-suppressed condition; Line 9, Algorithm 4.3 checks for the existence of a node with the same label,

high child, and low child, and Line 10, Algorithm 4.3 inserts a new node into the ZDD if it does not exist. To

construct the complete maximal independent set for a graph G, MakeIndSetZDD (V , 1) is called. An example

graph is shown in Figure 4.4, and the steps showing the application of MakeIndSetZDD to this example are

given in Figure 4.5.

Algorithm 4.3: MakeIndSetZDD(U, i)

input: A set U = {u1, u2, . . . , uk} of undominated vertices such that uj < uj+1 with respect to the
vertex ordering on V , and a “current index” i

output: The root node of a ZDD characterizing all the maximal independent sets in G[U ] that can
be formed with vertices in {ui, ui+1, . . . , uk}

1 if G[U ] has a vertex with no neighbor in {ui, ui+1, . . . , uk} : return 0
2 if U == ∅ : return 1

3 UH = U \N [ui] 〈〈 Use vertex ui; remove it and its neighbors from U 〉〉
4 h = min{j | j > i and uj ∈ UH} or |UH |+ 1 if no j exists
5 zh = MakeIndSetZDD(UH , h)
6 zl = MakeIndSetZDD(U, i+ 1)

7 if zh == 0 : return zl
8 〈〈 Look up element in reverse hash table 〉〉
9 if ∃ z ∈ ZC s.t. var(z) = i, lo(z) = zl, and hi(z) = zh : return z

10 else: insert a new node z′ into ZC , and return z′

v1

v2

v3

v4v5

Figure 4.4: An example graph with a vertex ordering.

Note that MakeIndSetZDD does not actually maintain the vertices that are used in a current independent

set C during the ZDD construction. It is sufficient to maintain a list of vertices that are left undominated

by some independent set, since many independent sets may yield the same set of undominated vertices.

The theoretical running time of Algorithm 4.3 is O(n|ZC |), where ZC is the size of the ZDD produced

if the merge step (Line 9, Algorithm 4.3) is not present. A crude upper bound on ZC is 2n; the results
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Figure 4.5: A visualization of the steps taken by MakeIndSetZDD to build ZC for the example graph given
in Figure 4.4. Grey nodes and edges have been visited by a recursive call, but are not yet stored in the ZDD.
Black nodes and edges have been stored in the ZDD’s lookup table. Bold elements have been inserted in
the most recent step of the algorithm; nodes are indexed in order of insertion. The set listed to the right of
each node is the set U for that recursive call; the notation [n] denotes the set {1, 2, . . . , n}.
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(a) Two recursive calls are made;
using vertices v1 and v3 leaves U
empty, so 1 is returned. No nodes
have been inserted into the ZDD at
this point.
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{3, 4}
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z1

(b) If v1 is used and v3 is not used,
v4 must be used. Node z1 is the first
node inserted in the ZDD.
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(c) Both children of z2, the high
branch of the root, have been com-
puted, so z2 is inserted into the
ZDD.
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v4 {4}{3, 4}
z1

z2

z

(d) If v1 is not used in an indepen-
dent set, and v2 is, v4 must also be
used to ensure maximality. Node z
is computed as the high child, but is
not inserted because it is a duplicate
of node z1.
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(e) If v3 is the first vertex used in
an independent set, v5 must also be
used to ensure maximality.
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(f) Some vertex in {v1, v2, v3} must
be used in any maximal independent
set of G, so lo(z4) = 0. All branches
are now complete and the algorithm
terminates.
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in Section 4.3.3 will improve this bound slightly, and in many practical cases ZC is much smaller. In

comparison, the independent-set enumeration algorithm of Bron and Kerbosch (1973) runs in O(3n/3) worst-

case time (Tomita et al., 2006). The advantage gained by MakeIndSetZDD is the ability to store all maximal

independent sets for reuse, which cannot be done by a simple enumeration algorithm.

4.3.2 Dynamic Programming ZDD Construction

An alternative construction algorithm for ZC based on dynamic programming can also be formulated. To

describe this algorithm, necessary and sufficient conditions for nodes in ZC are shown that do not rely on

a hash table to detect equivalent nodes. In particular, this condition allows for a non-recursive top-down

construction of the smallest ZC for some graph G and a fixed variable ordering. The resulting equivalence

conditions are similar to those in Theorem 1 from Bergman et al. (2012), but are somewhat more complicated

due to the maximality requirement for sets in C . Specifically, the independent set BDD described in Bergman

et al. (2012) stores a single set of vertices E, called the eligible set, at every node in the BDD; it is shown

that two nodes in the BDD are equivalent if they have the same eligible set (to avoid confusion with the

edge set of the graph, this dissertation denotes the eligibility set by L). This idea is extended for the

maximal independent set ZDD; here, however, two sets are needed, the totally dominated set and the

reduced eligibility set. The main result is to show that two nodes in ZC are equivalent if and only if their

totally dominated sets and reduced eligibility sets are identical. First, a few definitions are needed. For the

remainder of this section, let z ∈ ZC with var(z) = i.

Definition 4.1. Consider an independent set C̄ ⊆ {vi, vi+1, . . . , vn} such that z ` C̄. The i-dominated

set for C̄, denoted Γi(C̄), is N(C̄) ∩ {v1, v2, . . . , vi−1}, that is, the neighbors of C̄ smaller than vi.

Definition 4.2. The totally dominated set of vertices at z, denoted τz, is the subset of {v1, v2, . . . , vi−1}

such that every valid path from z dominates all vertices in τz. In other words,

τz =
⋂

C̄:z `C̄

Γi(C̄).

For example, in Figure 4.5f, τz1 = {v3}, τz2 = {v2}, and τz3 = {v1, v2, v4}. Note that, given some

root-to-z path, it is not necessary for τz to actually be undominated at z; the definition of totally dominated

only requires that all valid paths starting from z dominate v. However, any undominated nodes along such

a root-to-z path must belong to τz.

Additionally, note that for nodes z, z′ ∈ ZC , if there exists a vertex v ∈ τz′ and v 6∈ τz, then v is

undominated by at least one valid path from z, but is dominated by all valid paths from z′. This proves the
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following lemma:

Lemma 4.1. Any two equivalent nodes z, z′ ∈ ZC must satisfy τz = τz′ .

The next definitions describe the other set needed to determine node equivalence in ZC .

Definition 4.3. Define an eligibility set at z to be Lz ⊆ {vi, vi+1, . . . , vn}, where vj ∈ Lz if vj ≥ vi is

available for inclusion in an independent set, given some root-to-z path.

Note that the eligibility set at z is not necessarily unique. Depending on the path taken from the root to z,

some vertices could be undominated at z, but not usable in any valid path from z. Such a vertex is called

an eligible impostor. For example, suppose that there exists a vertex v ∈ Lz such that N(v) = Lz \ v.

Additionally, suppose that at z, some vertex u ∈ τz with u 6↔ v has not been dominated. Then, any path

from z that uses v cannot dominate u, and thus cannot be a valid path. In this case, v is an eligible impostor.

The reduced eligibility set at z removes all such impostors.

Definition 4.4. The reduced eligibility set at z, denoted Lz, is the set of vertices which are used by at

least one valid path from z. Equivalently, Lz = Lz \ R, where R is the set of eligible impostors with respect

to some path from the root of ZC to z.

The following theorem gives a necessary and sufficient condition for when two nodes of a maximal

independent set ZDD are equivalent and can be merged:

Theorem 4.2. Nodes z, z′ ∈ ZC are equivalent if and only if τz = τz′ and Lz = Lz′ .

Proof. (⇒) Suppose z′ ∼= z; the requirement that τz = τz′ is established by Lemma 4.1. Furthermore, every

valid path from z must exactly correspond to a valid path from z′, which means that every vertex used on

a valid path from z must be eligible at z′, and vice versa. The only eligible vertices present at z that do

not need to be present at z′ are those vertices which are used in no valid paths from z—that is, the eligible

impostors. Thus, it must be the case that Lz = Lz′ .

(⇐) Suppose τz = τz′ and Lz = Lz′ for z, z′ ∈ ZC . It suffices to show that valid paths from z are in

bijection with valid paths from z′. Note that in any root-to-z path, the undominated vertices at z are a

subset of τz, and similarly for z′. Therefore, since τz = τz′ , any valid path from z (z′) to 1 must dominate all

undominated vertices at z (z′). Additionally, since Lz = Lz′ , all valid paths from z are also valid paths from

z′, and vice versa. Thus, there is a bijection between valid paths from z and valid paths from z′, proving

the result. �

Theorem 4.2 provides a method for building ZC for a particular graph by computing τz and Lz for every

node in the graph. Pseudocode for algorithms to compute τz and Lz at a node z is given in Algorithms 4.4
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Algorithm 4.4: ComputeTotalDomination(U, i)

input: A set of undominated vertices U = {u1, u2, . . . , uk}, and an index i
output: The totally dominated set given U and i

1 〈〈 The only nodes that could be in τz are the neighbors of eligible vertices 〉〉
2 Lz = {ui, ui+1, . . . , uk}
3 τz =

(⋃k
i N(ui)

)
\ Lz

4 for each v ∈ τz :
5 Search for an independent set with vertices from Lz \N(v) dominating all of Lz
6 if such a set exists : remove v from τz
7 return τz

and 4.5, respectively. The first algorithm is motivated by the observation that if a vertex v is totally

dominated at z, no maximal independent set can be found using vertices in Lz \N(v). Thus, Algorithm 4.4

searches for such an independent set for each v, and removes v from τz if one can be found. The second

algorithm operates similarly; it takes as input a list of undominated vertices at z, and checks each of them

to see if they are contained in some maximal independent set from z. If no such set is found, the vertex is

marked as an eligible impostor. Both of these algorithms use depth-first search to find independent sets.

Note that a few enhancements to Algorithm 4.4 can be made; namely, all of {u1, u2, . . . , ui−1} must be

dominated in a valid path from z, and thus, do not have to be checked in Line 4. Additionally, if the reduced

eligibility set Lz is known at the start, it can be used in place of Lz. Finally, note that multiple vertices

can be checked at once—in particular, if an independent set is found in one iteration of the loop that leaves

multiple vertices from τz undominated, all of them can be removed from τz and not considered further. The

worst-case running times for Algorithms 4.4 and 4.5 are O(k2k), but these bounds are often quite weak.

Algorithm 4.5: ComputeReducedEligibility(U, i)

input: A set of undominated vertices U = {u1, u2, . . . , uk}, and an index i
output: The reduced eligibility set given U and i

1 Lz = {ui, ui+1, . . . , uk}
2 Lz = ∅
3 for each uj ∈ {ui, ui+1, . . . , uk} :
4 Search for an independent set dominating U using uj and vertices from Lz \N [uj ]

5 if such a set exists : add uj to Lz
6 return Lz

The maximal independent set ZDD can now be constructed. Whenever a node z is inserted into ZC ,

store τz and Lz for that node. Then, when a new node is being considered for insertion, compute the totally

dominated set and the reduced eligibility set for the node, and compare it to all nodes at the current level in

the ZDD. If one is found that satisfies the equivalence conditions, merge the new node into the current node.

Algorithm 4.6 gives a top-down construction routine for ZC ; in this algorithm, Uz is the set of undominated
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vertices at a node z.

To store the totally dominated sets and reduced eligibility sets, note that for any node z, all vi ∈ τz have

i < var(z) and all vi ∈ Lz satisfy i ≥ var(z). Therefore, τz and Lz can be stored in a single boolean array,

where all true entries in the array with index less than var(z) are members of τz, and similarly for Lz.

Algorithm 4.6: MakeIndSetZDD+DP(G = (V,E))

output: The root node of ZC

1 Insert the root of ZC into `1(ZC ), with Uroot = V
2 for each i ∈ {1, 2, . . . , n} :
3 for each z ∈ `i(ZC ) :
4 UH = Uz \N [vi]
5 h = min{j | j > i and vj ∈ UH}
6 Lz′ = ComputeReducedEligibility(UH , h)
7 τz′ = ComputeTotalDomination(UH , h)

8 if ∃ node in `h(ZC ) with τz = τz′ and Lz = Lz′ : merge z and z′

9 else: insert z′ into `h(ZC )

10 UL = U
11 l = min{j | j > i and vj ∈ UL}
12 Lz′ = ComputeReducedEligibility(UL, l)
13 τz′ = ComputeTotalDomination(UL, l)

14 if ∃ node in `l(ZC ) with τz = τz′ and Lz = Lz′ : merge z and z′

15 else: insert z′ into `l(ZC )

16 return the root of ZC

Algorithm 4.6 is a top-down construction, in the sense that a node is inserted into ZC before either of

its children. A bottom-up construction can also be used, in which both the high and low child of a node are

inserted into the ZDD before the parent is inserted. The bottom-up construction is a natural modification

of Algorithm 4.3, where a check is inserted after Line 2 to see if the current node can be merged with any

other node at the current level.

Note that for such a construction, the totally dominated set and reduced eligibility set at a node can be

computed recursively and stored with each node z ∈ ZC , as follows (where var(z) = i):

τz =
(
(N(vi) ∩ {1, . . . , vi−1}) ∪ τhi(z)

)
∩ τlo(z),

where τ0 = {1, 2, . . . , vn} and τ1 = ∅. Additionally, Lz can be computed by

Lz = {vi} ∪ Lhi(z) ∪ Llo(z)

where L1 = L0 = ∅. The first condition follows since any totally dominated vertex at z must be dominated

by all paths from hi(z) and from lo(z); the second follows because a vertex at z is in Lz if it is used at z, or
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at hi(z), or at lo(z). Computing these sets in this manner requires constant time. The bottom-up variant

of Algorithm 4.6 using these recursive conditions is called the merging algorithm.

4.3.3 Variable Ordering Heuristics

In this section, several different heuristic ordering rules are explored for the maximal independent set ZDD:

• Random Order: Vertices are randomly permuted and used to construct the ZDD. Several different

permutations can be tried, and the one yielding the smallest ZDD can be used.

• Degree Ordering: Vertices are ordered by increasing or decreasing degree sequence of G.

• Degeneracy Ordering: Vertices are ordered by increasing or decreasing induced degree se-

quence. In other words, the ith vertex in the ordering vi has the highest or lowest degree in

G[V \ {v1, v2, . . . , vi−1}].

• Clique Cover Ordering: This rule computes a covering of G by maximal cliques; the cliques are

sorted by size, and the vertices within each clique are ordered arbitrarily.

• Maximal Path Decomposition Ordering: This rule computes a set of paths P1, P2, . . . , Pk such

that Pi is maximal in G[V \⋃i−1
j=1 Pj ]. The vertices are then ordered as

v1
1 , v

1
2 , . . . , v

1
|V (P1)|, v

2
1 , v

2
2 , . . . , v

2
|V (P2)|, . . . v

k
1 , v

k
2 , . . . , v

k
|V (Pk)|,

where vji is the ith vertex along the path Pj , and |V (Pj)| is the length of path Pj .

Eppstein and Strash (2011) use the degeneracy ordering in their algorithm for finding maximal cliques.

Moreover, Bergman et al. (2012) describe the maximal path decomposition rule for the independent set

BDD, and prove that the width of the ith level of a BDD using this ordering is bounded by the (i + 1)st

Fibonacci number Fi+1. The proof of this result does not directly translate to the maximal independent set

case; however, a slightly tighter bound can be proven in this setting:

Theorem 4.3. The width of the ith level of ZC is bounded by Fi when the vertices of G are ordered according

to a maximal path decomposition.

Proof. Let P1, P2, . . . , Pk be a maximal path decomposition of G; without loss of generality, assume that

G is connected with at least 3 vertices, so |P1| ≥ 3. Let v1, v2, . . . , vn be the vertices of G in the order

induced by the path decomposition. Finally, let wi(ZC ) be the number of nodes in `i(ZC ). To prove that

wi(ZC ) ≤ Fi, induction on i is used.
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Note that `1(ZC ) has one node, the root. `2(ZC ) also contains one node since v1 ↔ v2. If v1 6↔ v3 and

v2 6↔ v3, `3(ZC ) contains at most 3 nodes (if v1 or v2 must be in every maximal independent set of G, then

w3(ZC ) < 3). In general, fix i ∈ {1, 2, . . . , n}, and assume that for any connected graph G with at least 3

vertices, and any ordering of V (G) induced by a maximal path decomposition, wj(ZC ) ≤ Fj for all j < i.

It suffices to show that wi(ZC ) ≤ Fi.

To see that this is the case, consider two cases: first, vi is not the first vertex in some path in the

decomposition. In this case, vi−1 ↔ vi, so the only edges that can exist between `i−1(ZC ) and `i(ZC ) are

low edges. Thus, there are at most wi−1(ZC ) nodes in `i(ZC ) with parents in `i−1(ZC ). Additionally, there

can be at most wi−2(ZC ) high edges from `i−2(ZC ) to `i(ZC ). If there are no edges from `k(ZC ) to `i(ZC )

for k < i − 2, and there are no low edges from `i−2(ZC ), the result follows from the inductive hypothesis.

On the other hand, suppose such an edge exists; call such an edge a bad edge. Since the bad edge skips

`i−1(ZC ), there must exist k < i− 1 such that vk ↔ vi−1. Delete all such edges in G; this increases the size

of `i−1(ZC ) by at least one, so by the inductive hypothesis, wi−1(ZC ) ≤ Fi−1 − 1 for the unmodified graph.

By the same reasoning, if there are k bad edges, wi−1(ZC ) ≤ Fi−1−k. Therefore, the total number of nodes

at level i is wi(ZC ) ≤ Fi−1 − k + Fi−2 + k = Fi, as desired.

In the second case, vi is the first vertex along some path in the decomposition. In this case, all low edges

from nodes in `i−1(ZC ) go to 0, because vi−1 has no neighbor in {vi, vi+1, . . . , vn}. A similar argument as

in the first case then follows to show that wi(ZC ) ≤ Fi. �

Note that Theorem 4.3 is entirely a structural result—it makes no use of the equivalence conditions

presented in Section 4.3.2. Therefore, there is the opportunity for this result to be significantly tighter, if

many nodes in the ZDD are equivalent and can be merged. Furthermore, Theorem 4.3 implies that when

using the maximal path decomposition ordering, the worst-case running time of Algorithm 4.3 is improved

to O(nϕn), where ϕ = (1+
√

5)/2, since
∑n
i=1 Fi = Fn+2−1, and Fi is bounded by O(ϕn) (Weisstein, 2013).

4.4 Computational Results

4.4.1 Graph Coloring

A B&P algorithm for the graph coloring problem (see Section 2.6.2) was implemented using a ZDD to

solve the pricing problem, together with the CBFS strategy for subproblem exploration, and computational

experiments were run on a subset of the instances from the DIMACS graph coloring challenge. This section

describes some implementation details for this program, called B&P+ZDD, as well as discussing the results of

these experiments and a comparison to the best algorithms in the literature.
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Initialization and Preprocessing

To reduce the size of problem instances, B&P+ZDD uses a standard preprocessing technique: a search is done

to find a large clique Q in the graph, and any vertex v ∈ V with degree less than |Q| is removed. Since a

valid coloring for G must use at least |Q| colors, at least one color exists in any proper coloring that is not

assigned to any neighbor of v; thus, any proper coloring of G−v can be extended to G without increasing the

number of colors used (Méndez-Dı́az and Zabala, 2006). A B&B search is employed in a heuristic manner

to find an initial large clique. The clique Q can also be used to prove optimality—if a proper coloring of G

is found that uses exactly |Q| colors, this coloring must be optimal.

To initialize B&P+ZDD, a starting pool of independent sets needs to be generated. A modified version of

the initialization procedure described in Malaguti (2008) is used for this purpose. Their algorithm employs a

2-phase approach to find good initial solutions. In the first phase, a genetic algorithm combined with a local

search rule searches for valid k-colorings of the graph for some input parameter k. If a valid k-coloring is

found, then the procedure is iteratively called with successively smaller values of k until a user-specified time

limit is reached. The second phase takes the best solution found in phase 1 and applies a covering heuristic

to improve the solution further. B&P+ZDD uses a similar procedure to generate its initial pool of independent

sets for the RMP, which only runs the first phase of the algorithm described by Malaguti (2008).

Any column generated by the initialization routine can be added to the initial pool C ′ for the RMP.

However, the initialization procedure often generates a large number of sets; thus, it is necessary to reduce

the size of the initial pool. To this end, the RMP is solved once with only the sets used by the best available

coloring to get initial dual prices. Only the generated sets with a price above 0.8 are included in C ′. This

rule includes all sets with negative or close-to-negative reduced cost in C ′, since these sets are more likely

to improve upon the LP solution to the RMP in early stages of the search.

Cyclic Best-First Search

As described in Section 2.5, when using standard integer branching in a B&P setting, the structure of

the search tree can become extremely unbalanced. In particular, long chains of assignments that make no

progress towards a solution exist, which (if explored) can dramatically increase the search time. Moreover, in

many cases these long chains appear more promising than shorter chains which progress towards a solution.

Note specifically that setting a variable yC in (2.2) to 1 has the potential to satisfy many constraints, whereas

if some variable yC is set to zero, it does not change the structure of the integer program much. Furthermore,

it was observed empirically that an assignment of the form yC = 0 did not cause the LP relaxation to change

substantially in most cases. Both of these facts lead to the aforementioned unbalanced search tree.
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To combat this effect, the CBFS strategy described in Chapter 3 is used together with a contour definition

that encourages the exploration of positive-assignment branches first. In particular, the positive assignment

labeling function from Chapter 3, which assigns a subproblem to contour Kp if and only if there have been p

branching decisions made of the form yC = 1, was used for B&P+ZDD. Using this contour definition significantly

restructures the order in which subproblems are selected for exploration, and counters the unbalanced search

tree produced by the branching strategy (see Figure 3.2c).

ZDD Construction Details

Comparisons were done with both the recursive ZDD construction algorithm (Algorithm 4.3) and the merging

ZDD construction algorithm described in Section 4.3 on a subset of the instances from the DIMACS graph

coloring database to determine which one was more effective. The recursive construction algorithm was given

a limit of 100 000 000 ZDD nodes; the merging algorithm had a node limit that changed with the size of the

graph (since a larger graph requires a larger totally dominated and reduced eligibility set). Each algorithm

used the maximal path decomposition ordering from Section 4.3.3. The results obtained from these tests

are shown in Table A.2.

There are 50 instances for which ZC could be constructed (or the node limits hit) within the time limit by

one of the algorithms. Of these 50, the recursive algorithm significantly outperformed the merging algorithm

in 28 cases. Conversely, the merging algorithm outperformed the recursive algorithm in 17 cases. Of the

remaining 7 instances which failed to complete within the time limit by either algorithm, the recursive

algorithm was able to construct a larger partial ZDD in 4 cases, and the merging algorithm was able to

construct a larger partial ZDD in 3 cases.

This difference in performance can be explained by the fact that for some instances, the recursive al-

gorithm needs to make many identical recursive calls to determine node equivalence in the ZDD. In these

cases, memoizing the totally dominated set and reduced eligibility set allows the algorithm to short-cut these

recursive calls. However, because computing Tz and Lz is itself computationally challenging, the recursive

algorithm will outperform the merging algorithm for instances which do not require many identical recursive

calls. Comparing the total number of maximal independent sets in the graph to the size of the ZDD yields

an approximate measure of how much compression occurs in the ZDD—ZDDs that are small relative to the

total number of maximal independent sets are able to perform many merges, whereas ZDDs that are larger

than the total number of independent sets do not have as many similar paths that can be merged together.

Based on these results, it was decided to use the recursive construction algorithm for B&P+ZDD, since it seems

to perform slightly better than the merging algorithm for most problems.
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Additionally, a study of the vertex orderings discussed in Section 4.3.3 was performed (using only the

recursive construction algorithm). For each instance, a clique cover was computed by iteratively applying a

B&B algorithm to search for maximal cliques, until all vertices are contained in some clique. At each iteration,

the B&B algorithm terminated after exploring 2∆(G) states, and the best clique found was returned. Results

from these tests are shown in Table A.3

For these tests, the maximal path decomposition ordering produced the minimally-sized ZDD in 17 cases.

The clique cover ordering produced the smallest ZDD in 11 instances, and the degree list ordering and the

reverse degeneracy ordering gave the smallest ZDD for 5 instances each. This difference in size appears to

be related to the ease of finding large cliques in G; for instance, in the DSJ graphs and the queen graphs,

large cliques can be easily found. In these cases, the clique cover ordering generally performs best. However,

in instances that do not contain large cliques (such as the triangle-free myciel graphs), the maximal path

ordering performs better. Since many of the hard graph coloring instances tend to contain no large cliques,

the maximal path ordering was chosen for use by B&P+ZDD.

Results from the DIMACS Database

B&P+ZDD was implemented in C++ and used CPLEX 12.5 with default settings to solve the RMP; all

computational experiments described in this section were performed on a desktop machine with an Intel

Core i7-930 2.8GHz quad-core processor and 12 GB of available memory. The B&P algorithm utilized

only a single processor core; however, CPLEX operates in parallel by default. All times reported here are

aggregated over all cores. For the sake of comparison with the results obtained with the MMT algorithm,

the dfmax benchmark program was run on the r500.5 instance provided by Trick (2005). The computer used

for these experiments took 6.60s CPU time to solve this benchmark instance.

Comparisons were made against three different B&P algorithms available in the literature: first, Malaguti

et al. (2011) give an exact algorithm for the graph coloring problem that uses an improved initialization

heuristic, together with extensive computational results. These results were performed using standard 0− 1

branching instead of edge branching. Secondly, Gualandi and Malucelli (2012) describe a B&P solver for

graph coloring that uses constraint programming techniques to solve the pricing problem; their implementa-

tion uses the edge branching rule. Finally, Held et al. (2012) provide a method for computing a numerically

safe lower bound for graph coloring, which they embed inside a B&P solver. Using this algorithm, they

are able to prove new lower bounds for a number of unsolved instances. Comparisons were also performed

against the wide branching solver described in Chapter 5.

Experiments were run on 40 instances from the DIMACS instance database (Trick, 2005). Experiments
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were not run on easy instances (those for which the lower bound at the root is sufficient to prove optimality),

since these instances do not demonstrate the effectiveness of the ZDD data structure for solving the pricing

problem in the presence of branching constraints. The remaining instances were chosen to span a range of

difficulty, including ones that are easily solved to optimality by all algorithms in the literature, and others

for which no algorithm has yet been able to verify optimality. In addition, experiments were run on 7

additional instances taken from Gualandi and Malucelli (2012). Raw data from these experiments are given

in Table A.4.

A time limit of 10 hours was imposed for all experiments, and the ZDD size was limited to 100 000 000

nodes. The initialization procedure from Section 4.4.1 was run for 100 seconds for each instance to generate

an initial pool; this did not contribute to the 10-hour time limit. Of the 40 instances tested, most were

extremely difficult, and could not be solved by any algorithm within the 10-hour time limit.

B&P+ZDD was able to find and verify optimality for 15 of the 47 instances tested. On average, B&P+ZDD

solves problems four times faster than the best previous algorithm in the literature, and in four cases, the

improvement in speed is at least an order of magnitude. Additionally, B&P+ZDD is able to verify optimality

for three new instances (1-FullIns_4, r1000.5, and flat_300_0) that have not been solved previously by

B&P algorithms in the literature (however, in the case of r1000.5, the ZDD construction took longer than

10 hours). One other instance, DSJC250.9, has only been solved by the B&P solver of Held et al. (2012);

their algorithm found a solution in 8685 (adjusted) CPU seconds.

It was observed that modifying the initial pool size can dramatically improve the running time of B&P+ZDD;

for example, running the initialization procedure for 6100 seconds (the default initialization time limit in

Malaguti et al. (2011)) allows B&P+ZDD to solve DSJC125.5 in 31 seconds. Similarly, running the initialization

procedure for only 3 seconds allows B&P+ZDD to solve queen9_9 in 2.3 seconds. (this is explained by noting

that a large initial pool can slow down the LP solver for the RMP).

Data were collected regarding the average length of time needed to solve the pricing problem for each

instance, as well as the growth in size of the ZDD over the course of the algorithm. The average growth in

size of a ZDD for any problem was 14%, with a standard deviation of 27%. In one case, the size of the ZDD

nearly doubled, at 93% growth; however, even in this case, the length of time needed to solve the pricing

problem was not impacted substantially. In most cases when the ZDD could be fully constructed, the length

of time needed to solve one iteration of the pricing problem was under a second.

Finally, there are five instances which were solved substantially faster by the MMT graph coloring solver

than by B&P+ZDD; however, four of these instances were solved at the root node by the MMT solver due to

a better initialization procedure, and so do not provide a useful comparison against B&P+ZDD. This leaves
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only one instance (queen11_11) for which some other algorithm substantially outperforms B&P+ZDD; for this

instance, the lower bound is equal to the optimal objective value, which means the search can be terminated

as soon as an optimal solution is found.

4.4.2 Computational Results for the Generalized Assignment Problem

A ZDD-based B&P solver was also implemented for the generalized assignment problem (see Section 2.6.3),

and experiments were run against instances from the OR-Library collection. Comparisons were performed

against the stabilized B&P algorithm of Pigatti et al. (2005) and the cut-and-branch algorithm of Avella

et al. (2010) to determine the effectiveness of the ZDD approach for this problem.

Since the pricing problems for GAP are knapsack problems, the B&P solver first constructs a separate

ZDD ZiC for each worker, corresponding to the family of valid schedules that can be assigned to the ith

worker in the problem. The ZDD construction algorithm is a modification of the dynamic-programming-

based merging algorithm given in Behle (2008), which keeps track of a lower and upper bounds for each node

in the ZDD, as well as the current slack, defined as the remaining worker capacity after some assignments

have been made. Behle (2008) proves that two nodes z, z′ in a knapsack ZDD can be merged if the slack

at z′ is between the lower and upper bounds stored at z′ (the result was originally proved for BDDs, but it

translates easily to ZDDs as well). A maximum-weight assignment for each of the n workers can then be

produced by the ZDD, which in turn yields negative-reduced-cost assignments or a proof of optimality for

the RMP.

To handle the oscillation of the dual prices discussed in Section 2.6.3, Pigatti et al. (2005) present a

stabilized B&P algorithm which imposes bounds on the dual prices; these bounds are slowly relaxed as

column generation progresses. It was found that using this method dramatically improves the convergence

of the column generation procedure, so it was incorporated into the ZDD-based B&P solver.

When compared to the B&P solver of Pigatti et al. (2005), the ZDD-based solver performed favorably.

Instances were usually solved more quickly than in Pigatti et al. (2005), and in a few cases the improve-

ment was an order of magnitude. These results validate the performance gains that can be obtained using

ZDDs in conjunction with B&P. However, the cut-and-branch algorithm of Avella et al. (2010) significantly

outperformed the ZDD-based solver in almost every case. It is believed that this is primarily due to the

slow convergence of the column generation procedure for the generalized assignment problem. Interestingly,

preliminary experiments indicated that using standard 0− 1 branching for the ZDD-based GAP solver de-

creased the convergence rate of the column generation procedure at subproblems in the search tree, though

each individual iteration of column generation was substantially faster. However, further experiments must
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be run to quantify and explain these results more thoroughly.

4.5 Conclusions

This chapter presents a framework for using standard integer branching in conjunction with B&P algorithms;

this framework solves the pricing problem using a zero-suppressed binary decision diagram that is constructed

during a preprocessing phase. When new columns are generated, they are restricted from generation by the

ZDD a second time; this allows the constrained pricing problem to be solved exactly at every iteration of the

algorithm. Using this technique combined with the positive assignment contour labeling function for CBFS,

used to counterbalance the resulting lopsided search tree, the standard integer branching scheme can be

used in conjunction with a B&P algorithm. This approach yields a faster and more direct solution method

in many cases.

Computational results were presented showing that a B&P algorithm implementation for the graph

coloring problem outperforms other B&P graph coloring solvers in the literature, in five cases by one or

more orders of magnitude. Computational results for the generalized assignment problem also appear to

support this result; however, B&P is not an effective algorithm for this problem, primarily due to convergence

difficulties during column generation.

Since ZDDs are a generic method to solve the pricing problem, they can be used in conjunction with

other B&P methods, even if these methods do not require the solution of the constrained pricing problem

(for instance, the robust B&P-and-cut algorithm of de Aragão and Uchoa, 2003). In these settings, the ZDD

does not need to have restrictions imposed via RestrictSet when a new variable is generated; however,

they may still provide benefits, since the ZDD is able to produce a variable of most negative reduced cost

at every iteration of column generation.

78



Chapter 5

A Wide Branching Strategy for
Branch-and-Price

In this chapter, an alternate approach towards using integer branching rules in a B&P setting is presented.

This approach uses a wide branching rule (Section 2.3.2) as opposed to a binary branching rule. By combining

this rule with a novel delayed branching technique, the algorithm search tree is restructured so as to hopefully

minimize the number of times the constrained pricing problem must be solved. Moreover, the wide branching

method rebalances the search tree so that all subproblems are closer to the root of the tree. The fundamental

observation driving this strategy is that the fragility in the pricing problem is asymmetric: often, while

performing a null assignment to a variable requires the constrained pricing problem to be solved, performing

a positive assignment to the variable does not.

Some similar work has been done in this area previously; Elhedhli et al. (2011) present a B&P algorithm

for the bin packing problem with conflicts that creates multiple branches at each subproblem in the search

tree; this is a similar method to the wide branching approach presented in this paper, however, it still applies

specialized branching rules to maintain the structure of the pricing problem. In the approach presented

herein, such rules are not necessary. Similarly, Lodi et al. (2011) discusses a method called interdiction

branching which branches on multiple variables at once in a generic integer programming setting.

The remainder of this chapter is organized as follows: Section 5.1 gives a theoretical motivation for

the wide branching strategy, and describes its application to the graph coloring problem. In Section 5.2,

additional implementation details are discussed that improve the performance of the wide branching solver,

and Section 5.3 presents a computational comparison of an implementation of B&P with wide branching to

other methods in the literature for solving the graph coloring problem. Finally, Section 5.4 provides some

concluding remarks and directions for future research.

5.1 The Wide Branching Strategy

This section motivates the wide branching strategy by demonstrating how some restructuring operations

transform a fully explored B&P tree T into a related search tree T̂ that requires the solution of the constrained
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pricing problem at fewer subproblems than T . A description of the restructuring operations (called path

compression and forgetful branching) are presented here, along with theoretical results bounding the

number of subproblems in the restructured search tree. Finally, the section concludes with a discussion of

the wide branching strategy applied to the graph coloring problem.

In the remainder of this chapter, let P be a combinatorial optimization problem with a binary integer

programming formulation, and let y1, y2, . . . , yn be binary variables in the IP formulation for P. For a

subproblem S in a B&P search tree T for P, the partial assignment at subproblem S is given by
(
S1, S0

)
,

where S1 and S0 are the (disjoint) sets of variables that have been fixed to one and zero at S, respectively.

5.1.1 Path Compression and Forgetful Branching

Consider a B&P search tree T for P that uses the deep branching strategy. As observed in Section 2.5, long

paths can exist in T in which every branching decision is a null assignment; a path in T whose branching

decisions have at least two null assignments and no positive assignments is called an uncompressed path.

By removing uncompressed paths from T , the length of time needed to explore T can be reduced. To

see this, consider an uncompressed path in T with length k+ 1. To fully explore this path and all its direct

children, column generation must be performed at 2k+ 1 subproblems, and the constrained pricing problem

must be solved at 2k − 1 subproblems (see Figure 5.1a). However, observe that the amount of work done

along this path can be reduced via the path compression operation. This operation takes a long chain

of null assignments in T and collapses it to a single subproblem. After path compression, the root of the

path has k+ 1 children, and the constrained pricing problem is only solved at k subproblems instead of the

original 2k − 1 (Figure 5.1b).

To further reduce the number of subproblems requiring the use of the constrained pricing problem, any

null assignments posted at children in which a positive assignment has been made can also be dropped. This

operation is called forgetful branching, and allows these children to be treated as direct children of the

root of the path, each formed by performing a single positive assignment (see Figure 5.1c).

While forgetful branching reduces the number of children of S1 that require the use of the constrained

pricing problem, there are a few drawbacks to this strategy. First, the forgotten null assignments can slow the

search process due to the relaxation of the LP solution (however, note that the forgetful branching process

still produces a finite search tree, since at least one additional positive assignment is made at each child

with dropped null assignments). Secondly, forgetful branching can create many redundant subproblems in

the search tree. For instance, setting yi = 1 and then yj = 1 is equivalent to setting yj = 1 and then yi = 1.

These two paths both lead to the same partial solution which is represented by two distinct subproblems in
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y1 = 1

y1 = 0
y2 = 1

y1, y2 = 0
y3 = 1
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(a) Subproblems S1, S2, . . . , Sk+1 form an uncompressed path in this search tree; the constrained pricing problem
must be solved at all grey subproblems.

S1 Sk+1

S ′1 S ′2 S ′3 S ′k

y1, y2, . . . , yk = 0

y1 = 1 y2 = 1 y3 = 1 yk = 1

. . .

y1 = 0 y1, y2 = 0 y1, y2, . . . , yk−1 = 0

(b) Compressing the path connects subproblems
S′
2, S

′
3, . . . , S

′
k and Sk+1 to the root; note that subprob-

lems S2, S3, . . . , Sk are dropped, removing the need to
solve the constrained pricing problem at them.

S1 Sk+1

S ′
1 Ŝ ′

2 Ŝ ′
3 Ŝ ′

k

y1, y2, . . . , yk = 0

y1 = 1 y2 = 1 y3 = 1 yk = 1

. . .

(c) Dropping the null assignments at subproblems
S′
2, S

′
3, . . . , S

′
k forms new subproblems Ŝ′

2, Ŝ′
3, . . . , Ŝ′

k

that do not require the solution to the constrained pric-
ing problem to compute their bounds. Note that the
bounds may decrease unless the ULBE condition is sat-
isfied.

Figure 5.1: Using path compression and forgetful branching can reduce the number of times the constrained
pricing problem is solved.

the tree. However, if the algorithm keeps track of all generated subproblems, simple dominance rules can

prevent identical subproblems from being explored multiple times.

By iteratively applying the path compression and forgetful branching operations to a B&P search tree

T , a new search tree T̂ can be created which requires the solution of the constrained pricing problem at

fewer subproblems in the tree. This result is proved formally in the Wide Branching Theorem, below. Note,

however, that the Wide Branching Theorem applies only in a very idealized setting. First, it requires the a

priori knowledge of a complete tree T in order to construct the smaller tree T̂ . Secondly, the conditions that

guarantee a reduction in the total number of subproblems are unlikely to hold in most practical cases. In

practice, however, the computational savings that result from having to make fewer calls to the constrained

pricing problem solver often outweigh the (potentially) increased search tree size.
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It is assumed in what follows that if a variable yi is given a positive assignment at a subproblem S in T , a

branch is also created at S making a null assignment to yi. In order to prove the Wide Branching Theorem,

it is necessary to make an additional, stronger assumption about the structure of the problem being solved;

intuitively, this assumption ensures that if a subproblem is pruned before the path compression and forgetful

branching operations are applied, it can still be pruned afterwards. While this assumption is unlikely to be

realistic in most settings, it is necessary to ensure that the reformulated tree does not grow in size.

Definition 5.1. Let (S1, S0) be a partial assignment of values to variables at a subproblem S, let fLP (S)∗

be the optimal solution value to the LP relaxation at S, and let fLP (S∅)∗ be the optimal LP solution to the

partial assignment (S1,∅), that is, the partial assignment to P which matches all positive assignments of S,

but has no null assignments. If for every pair of partial assignments S and S∅, dfLP (S)∗e = dfLP (S∅)∗e,

then the problem P is said to satisfy the unconstrained lower bound equality (ULBE) condition.

The ULBE condition ensures that the restructuring operations do not increase the size of the search tree

by removing some restrictions that have been posted at a particular subproblem. Since the LP relaxation

may become weaker when a constraint imposing a null assignment (yi = 0) at a subproblem is removed, if

the ULBE condition is not satisfied, it could be the case that the lower bound shrinks and no longer allows a

subproblem to be pruned after restructuring. Thus, it is necessary to forbid this from occurring. In settings

where the ULBE condition holds, the following theorem implies that any search tree can be reduced to a

form with no uncompressed paths by repeatedly collapsing them:

Theorem 5.1 (The Wide Branching Theorem). Let P be a binary minimization problem with an integer

optimal solution satisfying the ULBE condition. Given a B&P tree T for P that contains an uncompressed

path P , there exists a B&P tree T̂ that has strictly fewer subproblems by collapsing P into a single vertex.

Proof. As in Figure 5.1, let P = S1S2 . . . Sk+1 be a longest uncompressed path in T such that Si (i ∈

1, 2, . . . , k) has two child branches that fix variable yi to either 0 or 1 in the LP relaxation, and Sk+1 has no

children (note that for notational convenience, the variables are indexed as they appear on the path, not as

they are given in the problem formulation). Let S′i be the subproblem in T hanging from P where a positive

assignment has been made to yi (see Figure 5.1a). To create T̂ , duplicate all branching decisions made in T

except at subproblem S1; at this point, create branches Ŝ′1, Ŝ′2, . . . , Ŝ′k with a positive assignment made to

yi at branch Ŝ′i. Finally, create a single subproblem Sk+1 that performs a null assignment for y1, y2, . . . , yk

(see Figure 5.1b). Since there are no children at subproblem Sk+1 in T , it must be the case that Sk+1 is

pruned in T̂ .

Furthermore, by the ULBE condition, note that the lower bound at S′i equals the lower bound at Ŝ′i,
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which means that subproblem Ŝ′i is pruned in T̂ if and only if S′i is pruned in T . To complete exploration of

T̂ , at each Ŝ′i, exactly duplicate the branching decisions made in the subtree rooted at S′i in T ; again by the

ULBE condition, note that subproblems in these subtrees are pruned in T̂ if and only if the corresponding

subproblems are pruned in T .

Therefore, since no new subproblems are introduced into the B&P tree, and the path P has been com-

pressed into a single subproblem Sk+1, the number of subproblems in T̂ that require the solution of the

constrained pricing problem are strictly fewer than in T . �

7

7

7

11 10

7

7

9 10

10

7

8

11 8

7

10 10

12 11

A

B

C

D H

I

K

L

M

OG F

J N

E
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path compression and forgetful branching operations;
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ments, and thus the bounds at these subproblems could
change unless the ULBE condition is satisfied.

Figure 5.2: Repeated path compressions produce a minimal B&P tree

Repeated application of Theorem 5.1 produces a search tree containing no uncompressed paths (see

Figure 5.2). Applying forgetful branching after each path compression operation (as in Figure 5.1) causes

the number of subproblems requiring the solution of the constrained pricing problem to decrease. Thus,

the B&P algorithm that obeys the branching decisions in T̂ will solve P more quickly than the one that

generates T .

Note that the ULBE condition is unlikely to hold at every subproblem in the search tree. In fact,

it only needs to hold at subproblems which are pruned in T , but this is still unlikely to occur in practice.

Consequently, this means that the number of subproblems in the search tree may increase after restructuring.

However, the hope is that the time needed to explore the additional subproblems is substantially less than

the time needed to solve the additional constrained pricing problems in T .
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5.1.2 Wide Branching and Graph Coloring

The wide branching strategy for graph coloring attempts to replicate the branching decisions made in a tree

containing no uncompressed paths. To do this, note that the path compression operation can be applied in

an online fashion (that is, without knowing the full tree T ) so long as the variables in the path are known

along with their branching order. However, as this is not the case in most practical settings, a heuristic rule

is used to guess a potential set of variables prior to path compression. One natural such rule is to create

a branch for every fractional variable in the solution to the RMP at the subproblem. However, this will

generally create a large number of branches; most of these will not lead to an optimal solution, but still

require column generation to compute their lower bound.

Therefore, a different branching rule must be used; most rules currently in the literature are based either

on information from the LP relaxation or on information about the problem structure (e.g., what vertices

have an integral coloring). However, intuitively, both components appear to play a role in the branching

choices made along an uncompressed path, so the following rule for the graph coloring problem is used which

attempts to combine the two sources of information available at the current subproblem S in the search tree:

1. An independent set C1 is chosen with the most fractional value (closest to 0.5) in the LP relaxation

at subproblem S.

2. A vertex v = arg maxu∈C1
dsat(u) is selected with the highest degree of saturation in C1 (that is, v has

the most (integral) differently-colored neighbors among all vertices in C1).

3. For each of the k independent sets C1, C2, . . . , Ck which contain v and have yCi > 0, i ∈ {1, 2, . . . , k},

create one child of S that performs a positive assignment to yCi . Additionally create one child of S

that gives a null assignment to all sets C1, C2, . . . , Ck, as well as any null assignments generated at

a previous stage (see the discussion of delayed branching, below). This last subproblem is called the

delayed subproblem, and is denoted S̄.

The branching strategy above attempts to emulate the path compression and forgetful branching process

by guessing columns C1, C2, . . . , Ck which compose some uncompressed path rooted at S. However, it may

be the case that the entire uncompressed path could not be guessed by the above branching rule. In this

case, S̄ will not be pruned; instead of immediately guessing more subproblems that might lie along this

uncompressed path, the search delays exploration of the remainder of the path until later. This process is

known as delayed branching.

Later, when the algorithm returns to S̄, it attempts to guess more subproblems along the uncompressed

path rooted at S; in particular, to avoid repetition of previously-generated states, each of yC1 , yC2 , . . . , yCk
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Figure 5.3: An example of the delayed branching process. yC1
, yC2

, and yC3
are guessed as members of an

uncompressed path rooted at S. A subproblem S̄ restricts these sets from being generated, but S̄ cannot
be pruned. Later, yC4

and yC5
are generated at S̄, and do not inherit the null assignments at S̄, and a

subproblem ¯̄S is generated with sets yC1
, yC2

, . . . , yC5
restricted.

must not be generated as children of S̄, so these variables are imposed as null assignments at S̄. Suppose that

some new independent sets C̄1, C̄2, . . . , C̄k̄ are generated as children of S̄; since each of these subproblems are

on an uncompressed path rooted at S, by the forgetful branching technique, they drop the null assignments

posted at S̄. Finally, a subproblem ¯̄S (the new delayed subproblem) is added. If ¯̄S is the end of an

uncompressed path rooted at S, no further children need to be generated. However, if ¯̄S is not the end of

such a path, new subproblems must be guessed that do not use C1, C2, . . . , Ck or C̄1, C̄2, . . . , C̄k̄. In other

words, when children of a delayed subproblem are generated, all independent sets branched on at previous

delayed subproblems must be restricted to zero (see Figure 5.3).

Finally, note that a slightly tighter bound at the delayed subproblems can be achieved as follows: let

subproblem S̄ be the delayed subproblem for S, and let subproblem S′ be a child of S̄. At the delayed

subproblem of S′ (that is, S̄′), the children of S and S′ both can be restricted at S̄′. In other words, the

forgetful branching rule is applied at all children of S except for its delayed subproblem. This does not affect

algorithm performance, since the constrained pricing problem must be solved at S̄′ regardless. For example,

in Figure 5.3, the null assignments posted at subproblem S̄ can be propagated to the delayed subproblems

for S′4 and S′5. If a positive assignment and a null assignment conflict in this case, the positive assignment

takes precedence.

In the worst case, only two sets C1 and C2 are generated at each subproblem in the search tree (since C1

is chosen to be a fractionally-used independent set, there must be at least one other such set covering the

chosen vertex v). However, by carefully choosing the branching rule, better performance may be obtained.

One immediate improvement is apparent: the wide branching strategy generates a tree that is much more

balanced; by trying to perform path compression, it eliminates long chains of null assignments, where no

progress towards a solution has been made. This allows for large regions of the search space to be pruned

higher in the tree.
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Note that one disadvantage to the online wide branching strategy is that in order to fully explore the

search tree, the RMP must potentially be solved at many more subproblems if the branching rule generates

many additional children that do not lead to an optimal solution. Since column generation must be performed

every time the RMP is solved, this could potentially lead to slower solution times. Thus, the wide branching

strategy will be most effective when the constrained pricing problem is substantially more difficult to solve

than the unconstrained problem. This observation is verified in the computational results.

5.2 Implementation Details

A version of the wide branching rule was developed for a graph coloring B&P solver called B&P+Wide.

This implementation incorporates a number of additional features that demonstrate practical improvements

in running time (though they do not change the theoretical complexity of the algorithm, which is still

exponential). Pseudocode for B&P+Wide is given in Algorithm 5.1.

Algorithm 5.1: B&P+Wide(X, f)

1 Set S = {X}
2 Initialize x̂ and the initial RMP pool C ′

3 while S 6= ∅ :
4 Select a subproblem S ∈ S to explore
5 if a solution x̂′ ∈ {x ∈ S | f(x) < f(x̂)} can be found : Set x̂ = x̂′

6 if S cannot be pruned :
7 Generate sets C1, C2, . . . , Ck via the wide branching rule
8 for each Ci ∈ {C1, C2, . . . , Ck} :
9 Create a child S′i of S with yCi = 1

10 〈〈 Column generation loop 〉〉
11 while ∃ C ∈ C \ C ′ with negative reduced cost : Add C to C ′

12 Compute a lower bound at Si using added columns

13 〈〈 Delayed branching: R is the set of other restrictions that should be imposed at S̄ 〉〉
14 Create a subproblem S̄ with {yC1

= 0, yC2
= 0, . . . , yCk = 0} ∪R

15 Insert S1, S2, . . . , Sr, S̄ into S

16 Remove S from S

17 return x̂

5.2.1 Solving the Pricing Problem

Two different methods are used by B&P+Wide to solve the pricing problem: a fast heuristic solver called

HeurPrice and a slower exact solver called ExactPrice. To generate new columns, the heuristic search

method is called first, provided that the following conditions are met: (i) the most recent call to the exact

solver took longer than 0.1s to complete, and (ii) the last column generated by either solver had a weight
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larger than 1.02. The rationale behind condition (ii) is that there is generally no gain to calling the heuristic

solver if the price of the best independent set is close to one because the heuristic is usually unable to find it.

The Heuristic Pricing Problem Solver

The heuristic search method, called HeurPrice, is an extension of the tabu search heuristic by Grosso et al.

(2008) that can find maximum-weighted independent sets instead of just maximum independent sets. This

algorithm maintains a partial independent set C̄, as well as a tabu list R of vertices that cannot be added

to C̄. At each iteration of the algorithm, one of three types of local search moves is performed, either an

improvement move, a weighted swap move, or an unweighted swap move. Note that Malaguti et al.

(2011) also use a heuristic method based on the algorithm by Grosso et al. (2008); however, their version

differs slightly from the one presented here. In particular, their heuristic method only considers improvement

or swap moves with one or two participating vertices (called a 1−1 exchange or a 2−1 exchange), whereas

HeurPrice performs local search moves that can have an arbitrary number of participating vertices.

An improvement move can be made if there exists a vertex u 6∈ C̄ ∪R such that π(u) >
∑
v∈N(u)∩C̄ π(v).

In this case, u is added to C̄, and all its neighbors are removed from C̄. A weighted swap move, on the other

hand, can be made if there exists a vertex u 6∈ C̄∪R such that π(u) =
∑
v∈N(u)∩C̄ π(v). In this case, again u

is added to C̄ and all u’s neighbors are removed from C̄. An unweighted swap move is precisely the same as

in the unweighted algorithm by Grosso et al. (2008): if there is a vertex u 6∈ C̄ ∪R such that |N(u)∩ C̄| = 1,

u and its neighbor in C̄ are swapped. In each case, all of u’s neighbors in R are added to the tabu list R to

prevent cycling. Finally, if none of these moves can be performed but C̄ is not maximal, the set is completed

in a greedy fashion. On the other hand, if C̄ is maximal, a partial random restart is performed: a vertex

u ∈ V is selected, and the independent set constructed in the next phase of the algorithm is initialized with

u ∪ (C̄ −N(u)). When such a restart occurs, the tabu list R is cleared.

At each iteration, HeurPrice performs one of the above search moves (if possible) until a dynamically

determined iteration limit is reached. This iteration limit is based on how successful previous calls to

HeurPrice have been: if the independent set returned by HeurPrice has price less than one (that is, if it

does not improve the current solution to the RMP), the number of iterations taken during the next invocation

of HeurPrice is doubled. On the other hand, if the independent set returned by HeurPrice does improve

the value of the RMP, the number of iterations taken during the next call to HeurPrice is set to the average

number of iterations over all calls to HeurPrice. The iteration limit is constrained to the range [1000, 10000]

(so it will never run for longer than 10000 iterations, for instance). If the value of the current solution found

by HeurPrice ever exceeds 1.1, the routine aborts early and returns that solution.
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The Exact Pricing Problem Solver

The exact pricing problem solver (called ExactPrice) is based on the fast branch-and-bound maximum-

weighted independent set solver presented in Held et al. (2012). ExactPrice has been modified so that

it also solves the constrained pricing problem by maintaining a current list of forbidden independent sets.

When ExactPrice reaches a terminal state, it compares the current solution to each of the forbidden sets,

in addition to computing its reduced cost. If the independent set is not forbidden and has negative reduced

cost, the solver updates its incumbent; otherwise, it continues exploration. If no unrestricted solutions can

be found with negative reduced cost, the solution to the RMP is optimal.

While this method allows the constrained pricing problem to be solved, the two pruning rules described

in Held et al. (2012) must be disabled in ExactPrice when such restrictions are present. These pruning

rules take advantage of structure in the unconstrained pricing problem to narrow the space that must be

explored. For example, one such rule computes the surplus at available vertices in the graph, where the

surplus of v is defined as π(v) −∑u∈N(v) π(u), that is, the marginal gain achieved by taking v instead of

all of its neighbors. If no restrictions are present, v can be automatically added to the current solution if

it has positive surplus, since an independent set using v will strictly dominate any set that does not use v;

however, in the presence of restrictions, it is likely that the independent sets containing v have already been

found and restricted, so independent sets using neighbors of v must also be considered. The other pruning

rule, the clique cover rule, must also be disabled for a similar reason. In addition, the branching rules used

by ExactPrice in the unconstrained case may prune subproblems that should not be pruned in the presence

of constraints, so a similar modification is made in this case.

However, one improvement can be made to the ExactPrice algorithm even in the constrained pricing

problem setting. This improvement stores a list of no-goods – that is, sets of vertices that are not allowed

to appear in any valid independent set with negative reduced cost. As the ExactPrice algorithm explores

the search space, when the subtree at a subproblem has been exhausted, the currently-used vertices at that

subproblem are appended to the no-good list. In the future, any subproblem whose independent set structure

contains vertices in some no-good may be pruned, since that region has been explored previously.

Finally, if ExactPrice ever finds an independent set with price larger than 1.05, the solver immediately

terminates and returns this solution. While this mechanism may slow down column generation conver-

gence, in practice it is necessary because solving the pricing problem to optimality at every stage becomes

prohibitively slow (though it must be solved to optimality in the last iteration).
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5.2.2 Exploration Strategy

The cyclic best-first search (CBFS) strategy is used to select new subproblems for exploration, along with

the depth contour rule described in Section 3.1. In addition to the other benefits of the CBFS strategy, in the

wide branching context, CBFS yields a natural re-exploration rule for subproblems that have been re-inserted

to the search tree by delayed branching. Specifically, the next time the contour containing a previously-

visited subproblem is visited, if the re-inserted subproblem’s bound is still the best in the contour, it is chosen

for re-exploration (recall that when a subproblem is selected for re-exploration, all previously-generated sets

are restricted; performing these restrictions may cause the LP solution value to increase, and possibly allow

the subproblem to be pruned).

5.2.3 Dominance Checks

The nature of the wide branching strategy is such that two distinct branches of the search may be identical.

In particular, if C1 and C2 are two independent sets under consideration, one branch could select C1 first

and then C2, while a second branch could select them in the alternate order. However, the order in which

these sets are selected has no impact on the solution; thus, to reduce unnecessary work in the search tree,

B&P+Wide employs dominance checks to prevent this situation. Specifically, if the partial colorings given

by two distinct subproblems in the search tree color the same set of vertices, and one uses at most the

same number of colors as the other, the latter subproblem is pruned from exploration, because any complete

solutions generated from it will also be explored by the other branch.

To check for dominance at a subproblem, B&P+Wide maintains a global hash table of previously-explored

subproblems; any time a new subproblem S1 ∈ T is generated, a lookup is performed in the hash table to

determine if another subproblem S2 ∈ T has been previously identified that covers the same set of vertices

with fewer colors. The hash function used simply sums together the indices of vertices covered by sets indexed

by variables in S1
1 (the set of positive assignments at S1); since this function is not necessarily robust to

collisions, a secondary check must be performed to determine if the dominance condition is actually satisfied.

However, the amount of time spent searching this hash table is generally small in comparison to the total

running time of the algorithm.

5.2.4 Additional Improvements

A standard technique is used to generate multiple columns in between each iteration of column generation

(see, e.g., Farley (1990)). After a new column is generated, the vertex weights of G are updated according

to Equation (5.1), and the pricing problem is re-solved with the new weights. This enables multiple columns

89



to be generated with negative, or close-to-negative, reduced cost before the LP relaxation needs to be solved

again. B&P+Wide generates up to five new columns using this method before re-solving the LP relaxation.

π′(u) =

 π(u)/π(C) if u ∈ C

π(u) o.w.
(5.1)

Additionally, as the search process progresses, the length of time needed to generate new columns from

the constrained pricing problem can increase dramatically. To maximize the amount of computation time

that B&P+Wide spends exploring new regions of the search tree, instead of getting stuck searching for a

particularly difficult-to-find independent set, a time limit is imposed that aborts the delayed branching

procedure if it runs for more than five seconds. In this case, the subproblem’s old lower bound is re-used,

and CBFS drives the search process to a different area of the tree, with the hope that the next time the

subproblem is re-explored, additional columns will have been added that can either prove optimality of the

RMP or guide the pricing problem search more effectively.

5.3 Computational Experiments

B&P+Wide was implemented and tested on a subset of the graphs from the DIMACS implementation challenge

testbed (see Section 2.6.2); for the sake of comparison, the deep branching strategy was also implemented

(referred to as B&P+Deep). All computational experiments were performed using an Intel Core i7-930 2.8GHz

quad-core processor with 12 GB of available memory. The B&P algorithm was implemented in C++ and

used CPLEX 12.3 to solve the RMP. The B&P algorithm utilized only a single core of the processor;

however, CPLEX operates in parallel by default. All times reported are aggregated over all cores. The same

initialization and preprocessing measures described in Section 4.4.1 were used in B&P+Wide and B&P+Deep.

All improvements described in Section 5.2 were used in both the wide and deep versions of the B&P solver,

with the exception of the dominance rules, which don’t have an easily-implemented counterpart in B&P+Deep.

This implementation uses depth-first search because of its low memory requirements. Additionally, to enable

a fair comparison between the two strategies, B&P+Deep does not modify the graph structure using the edge

branching rule. This also allows for a comparison against the results presented in Malaguti et al. (2011), as

the most complete computational results reported in their paper use variable branching (they also report

some limited tests with the edge branching rule, and do not see a significant difference in running times

for this rule). The algorithm used in their paper is referred to herein as the MMT algorithm, and the

initialization procedure used by B&P+Wide and B&P+Deep is called InitMMT.
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For the sake of comparison with the results obtained with the MMT algorithm, the dfmax benchmark

program was run on the r500.5 instance provided by Trick (2005). The systems used for these experiments

took 6.60s user time to solve this benchmark instance, which is only slightly faster than the results obtained

by Malaguti et al. (2011) (7s user time). Thus, the times reported by Malaguti et al. (2011) are treated

as roughly equivalent to B&P+Wide and B&P+Deep. The complete set of computational data obtained from

these experiments is given in Table A.5.

In an attempt to narrow the source of the improvements, a smaller set of tests was also run with deep

branching with CBFS and deep branching with BFS. These search strategies performed slightly worse than

DFS on the selected set of problems; furthermore, many B&P algorithms use DFS due to its low memory

requirements; therefore the reported results here are from deep branching with DFS. Additionally, a limited

set of tests was done that branched on the variable closest to 1.0 instead of 0.5, similarly to some rules

proposed by Mitra (1973). In this setting, using the “closest to 1.0” rule performed slightly worse than the

“closest to 0.5” rule. Finally, no comparison was done using CPLEX as the pricing problem solver, as it was

observed by Held et al. (2012) and in preliminary experiments that it was substantially slower than the fast

branch-and-bound solver described in Section 5.2.1.

Of the fourteen instances tested for which an optimal solution can be verified by at least one solver

(excluding myciel3, which is too easy to provide any meaningful information), seven are solved faster by

B&P+Wide than by the MMT algorithm. These problems are DSJC125.5, DSJC125.9, DSJR500.1c, queen9_9,

queen10_10, myciel4, and myciel5. In almost every instance, B&P+Wide is able to solve the problem at least

an order of magnitude faster than the MMT algorithm; furthermore, in each case the initial solutions found

by InitMMT are equal to or worse than the initial solutions found by the MMT algorithm—in other words,

despite starting with an inferior initial solution, B&P+Wide is substantially faster at finding and verifying

the optimal solution than the MMT algorithm. Additionally, note that for one of these problems, myciel5,

B&P+Wide is able to verify optimality of the solution, whereas the MMT algorithm could not establish

optimality within the 10-hour time limit.

There are six problem instances that are solved faster by the MMT algorithm than B&P+Wide; in addition,

for many problems that do not terminate within the 10-hour time limit, the MMT algorithm is able to find

a better solution than B&P+Wide. However, for every problem considered, the initial solution found by

the MMT algorithm is at least as good as the initial solution found by InitMMT; therefore, it should be

expected that B&P+Wide would require additional time to find solutions with smaller chromatic numbers.

Furthermore, in many cases the initial solution found by the MMT algorithm equals the MMT lower bound,

which allows the MMT algorithm to terminate without needing to branch. Thus, these problem instances
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are not particularly useful in determining the effectiveness of the wide branching rule. If the initial solutions

produced by the MMT algorithm were fed into B&P+Wide, the algorithm is expected to perform better (recall

that the MMT algorithm employs a 2-phase initialization procedure, whereas InitMMT only implements the

first phase).

Since a number of algorithmic components differ between B&P+Wide and the MMT algorithm, a com-

parison was also done between B&P+Wide and B&P+Deep. For this comparison, problems were run with the

same initial solution and the same initial random seed. Of the 9 problem instances solved to optimality

by B&P+Wide, all except queen11_11 were also solved by B&P+Deep. In addition, DSJC250.9 was solved to

optimality by B&P+Deep but not B&P+Wide. Malaguti et al. (2011) report that DSJC250.9 has an unknown

chromatic number, but Held et al. (2012) state that their solver was able to prove optimality for this prob-

lem in 11094 seconds (they proved this value by improving the value of the lower bound to 72, whereas

B&P+Deep used a lower bound of 71 and exhausted the search space). Of the eight instances solved by both

B&P+Wide and B&P+Deep, five (DSJR500.5, queen9_9, queen10_10, myciel4, and myciel5) are solved faster

by B&P+Wide than B&P+Deep, and in one case the improvement is an order of magnitude. The remaining

three problems are solved faster by B&P+Deep.

A comparison was also done with the recent results reported by Gualandi and Malucelli (2012); this

paper employs three different methods for solving the graph coloring problem. The first two, CP-UB and

CP-LB, employ constraint programming techniques to solve the graph coloring problem directly (without

using B&P). The third method, called CG-CP, uses constraint programming to solve the pricing problem

in a B&P algorithm. For comparison, they report a running time of 8.74s on the r500.5 instance; thus it is

estimated that the machine used for B&P+Wide is about 25% faster than for Gualandi and Malucelli (2012).

The CP-UB and CP-LB algorithms perform very well on a subset of the problems considered herein (most

notably, myciel4, myciel5, and myciel6, which can all be solved in under 175 seconds). However, queen9_9

is only solved in 113 seconds, which is about 85 seconds when differences in machine speed are taken into

account. A fairer comparison with B&P+Wide considers their B&P implementation; in this setting, B&P+Wide

runs significantly (at least an order of magnitude) faster than CG-CP in all but one case.

Finally, for one problem, latin_square_10, note that both B&P+Wide and B&P+Deep are able to improve

the upper bound for the problem, compared to the best solution found by the MMT algorithm, though

B&P+Wide is able to find a better solution than B&P+Deep.
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5.3.1 Analysis of Wide versus Deep Branching

To understand why B&P+Deep outperforms B&P+Wide on certain problems, and in order to gain a more

detailed understanding of how the deep and wide versions of the branch-and-bound solver perform, more

fine-grained statistics were collected for each of these problems. Some interesting observations from these

statistics are summarized below; raw data are included in Tables A.6 and A.7.

Firstly, since the principal advantage of wide branching is to allow the unconstrained pricing problem

to be solved more often, data were collected on the total number of columns generated over the course of

the algorithm. To allow for a comparison across different running times, the number of columns generated

was divided by the total length of time taken by the algorithm to determine the average number of columns

generated per second of running time. These values were then averaged across all tested instances. Problems

that ran out of memory before the time limit was hit were terminated by the operating system before detailed

statistics could be collected.

On average, B&P+Wide was able to generate 5.0 columns per second of CPU time, whereas B&P+Deep

was only able to generate 3.8 columns per second of computation time. However, problems that could be

solved in under 2s of computation time tended to generate a disproportionately large number of columns

per second, and some problems generated very few columns due to difficulty. When these problem instances

were removed, B&P+Wide generated on average 2.7 columns per second of computation time, whereas the

deep solver was only able to generate 1.0 columns per second. These data provide empirical evidence that,

by making positive assignments to variables along every branch, and only solving the constrained pricing

problem during the delayed branching procedure, wide branching is able to generate more columns in the

same amount of computation time than deep branching. This is a desirable property because it suggests

that the RMP can be solved more quickly, and thus that more subproblems can be identified in the search

space.

Furthermore, this analysis demonstrates why the deep branching strategy is more effective than the wide

branching strategy in some cases. For the 4 problems that B&P+Deep solved more quickly than B&P+Wide

(including DSJC250.9, which B&P+Wide was unable to solve), the number of columns generated per second

is about the same or greater for B&P+Deep. For the problems which B&P+Wide solves more quickly than

B&P+Deep, the number of columns generated per second by B&P+Wide is an order of magnitude greater than

by B&P+Deep. This implies that the specific branching rule for B&P+Wide described in Section 5.1.2 is not

effectively emulating the behavior of the ideal search tree guaranteed by the Wide Branching Theorem in

all cases, and thus is performing worse than expected.

Finally, to gain insight into the behavior of B&P+Wide as it explores the search space, statistics on the
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maximum and average branching factors were collected. The maximum branching factor varied significantly

by problem instance, with the lowest value of 3, and the largest value of 113, with an average maximum

branching factor of 19.6. However, in most cases, the maximum branching factor occurred at the root of

the search tree, and decreased substantially at child subproblems. Across all problem instances, the average

branching factor was 13.1, and for problems which explored more than one subproblem, the average branching

factor was 10.3, indicating that as the search with the wide branching rule progresses, the branching factor

at subproblems is substantially reduced.

5.4 Conclusion

This chapter describes an implementation of a wide branching strategy for B&P algorithms, and computa-

tional results are discussed for the graph coloring problem. The Wide Branching Theorem is proved, which

shows how to take a fully-explored search tree T and transform it into a smaller tree that requires fewer calls

to the constrained pricing problem solver. While the Wide Branching Theorem cannot be directly applied

to B&P algorithms, a heuristic rule is provided that attempts to duplicate the results of this theorem in an

online fashion. This rule has been shown to be competitive with the state-of-the-art graph coloring solvers

in terms of computational running time.

In particular, computational results show that wide branching for graph coloring is able to generate sub-

stantially more columns than the deep branching solver, which implies that it is able to identify and possibly

prune more of the search space in the same amount of time. For most problems in which wide branching was

able to prove optimality, the solution was reached substantially faster than the times reported by Malaguti

et al. (2011), one of the best algorithms available in the literature. Additionally, the wide branching strategy

outperforms a comparable implementation of B&P with deep branching for many problems.

Additional work needs to be done to determine a better wide branching rule for the graph coloring

problem that yields better performance for the instances in which B&P+Deep performs better than B&P+Wide.

An analysis of how the LP changes as branching decisions are made in deep branching may lead to better

heuristics and branching rules that more closely emulate the ideal tree described by the Wide Branching

Theorem. It is also beneficial to perform a computational analysis for a large number of different problems

to determine how frequently the ULBE condition holds for various instances.
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Chapter 6

Conclusion

In this dissertation, three new ideas are presented that can be used with branch-and-bound or branch-and-

price algorithms to obtain faster and more effective algorithms in practice. The first of these methods uses

a recent search strategy called cyclic best-first search (CBFS). It is shown that this strategy is the most

general search strategy that can be defined, in the sense that CBFS can emulate any other search strategy

by constructing an appropriate contour definition. Bounds are also proven relating CBFS and BFS, and the

relative ordering of subproblems that is obtained by different contour labeling functions is studied.

The second method described in this dissertation is an extension to branch-and-price algorithms that

uses a data structure called a zero-suppressed binary decision diagram (ZDD). This data structure is used

to characterize all of the valid inputs to a pricing problem in a B&P framework, and the RestrictSet

algorithm is presented to allow the ZDD to solve the constrained pricing problem at subproblems in the

search tree. The use of ZDDs together with the CBFS strategy gives a straightforward way to use standard

integer branching in a B&P setting, while avoiding the difficulty of the constrained pricing problem or the

issues occurring when dealing with unbalanced search trees. Computational results are presented showing

the effectiveness of this approach.

Finally, this dissertation describes the wide branching algorithm, which is an alternative framework

for solving problems using B&P. In this method, instead of trying to speed up the solution times for the

constrained pricing problem, the search tree is restructured using a wide branching method instead of a

binary branching method, with the goal of reducing the number of times the constrained pricing problem

needs to be solved. A delayed branching method is proposed to limit the branching factor at nodes in the

search tree, and forgetful branching is used to drop branching constraints that lead to hard instances of the

pricing problem.

The research in this dissertation opens up a number of future research directions that show promise.

Firstly, while the CBFS strategy has been quite successful in a large number of different settings, the

reasons behind its performance on any particular problem instance are often difficult to understand. In

some cases, such as for the graph coloring B&P algorithm, it is relatively clear why a particular contour

95



labeling function performs well. In other cases, most notably on the library of mixed-integer programming

problems, there is no clear relationship between problem structure and choice of labeling function. In fact,

the labeling function that performs best in these cases appears to be highly dependent on the specific

instance under consideration! Therefore, one significant direction for future research will be to obtain a

better understanding of what labeling functions should be used for what problems.

One approach towards answering this question would use machine learning techniques in conjunction

with B&B to learn contour labeling functions that work well for particular problem instances or classes of

problems. Such a task is non-trivial, as it is unclear exactly how a learning algorithm could be trained, and

how to avoid over-fitting the search strategy to a particular problem instance. Another approach here would

be to use meta-optimization techniques to develop a contour labeling function for a problem; for instance,

when a new subproblem is generated, an auxiliary MIP could be solved to determine the contour label

for that subproblem, in the spirit of the local branching (Fischetti and Lodi, 2003) or backdoor branching

(Fischetti and Monaci, 2011) algorithms.

Another approach towards answering this question would explore the relationship between the label-

ing function and the measure-of-best. By choosing an appropriate labeling function, CBFS can sometimes

override the choice of a subproblem with a good value of µ in favor of a less-desirable subproblem. Un-

derstanding the interplay between these two axes of flexibility available to algorithm designers may provide

insights into the performance of CBFS. In particular, are there any potential gains that can be made using a

non-admissible or probabilistic µ (as in Shi and Ólafsson (2000) or Dür and Stix (2005)) with CBFS? Some

interesting preliminary work has been done using a “measure-of-worst” function, which always explores the

subproblem in the current contour with the worst value of µ, or even selecting a subproblem from the current

contour at random.

A second open question raised by this dissertation is how ZDDs can more effectively be applied to B&P

algorithms, particularly in cases where the full ZDD characterizing the pricing problem cannot be stored in

memory. One potentially promising approach here involves the use of approximate ZDDs, described in

Bergman et al. (2013). An approximate ZDD is a width-constrained ZDD that does not eliminate any valid

solutions to the pricing problem, but may accept some invalid solutions. Given an approximate ZDD for a

pricing problem, a post-generation step is required during column generation which checks the validity of

the produced column, and queries the ZDD again if the column was found to be invalid.

This approach is somewhat challenging, as it is often difficult to determine how to build an approximate

ZDD that does not discard any valid solutions to the pricing problem. An alternate approach instead

identifies a set of “complicating” variables in the pricing problem, in the sense that their removal results
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in a drastically smaller decision diagram. If a small set of complicating variables can be identified ahead

of time, a brute-force algorithm could be applied at every iteration of column generation to identify the

best assignment to these variables, and the ZDD could then be used to identify the best assignment to the

remaining variables. As before, machine learning or meta-optimization techniques may be helpful in the

identification of such a set.

A final open question raised by the discussion of wide branching with B&P algorithms is how branching

affects algorithm performance. In particular, as observed in Chapter 5, the choice of branching rule can have

significant impacts on algorithm performance, even when the search strategy and pruning rules are fixed.

For example, suppose that for subproblems S1, S2, . . . , Sk, it is possible to prune S2, S3, . . . , Sk immediately

if S1 is explored first, but otherwise the remaining subproblems must be explored. Then, naturally the

branching rule that generates S1 before any of the other subproblems will lead to faster performance. This

effect is exacerbated in a B&P setting, where column generation must be performed at every subproblem

before exploration or pruning can occur.

However, it is not known how to tailor the branching rules used to achieve the best algorithm performance;

the heuristic rule for B&P+Wide combines knowledge from the LP structure and the graph structure together

to moderate effect, but this rule does not generalize easily. It is likely that answering this question will rely

on domain-specific or problem-instance-specific knowledge; however, answering it may provide significant

benefits for some classes of problems.
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Appendix A

Data Tables

This appendix provides the raw data for the computational experiments performed in Chapters 3-5. The

following table presents a list of column headings and their meanings used in Tables A.1-A.7.

Table A.1 - CBFS results for MIPLIB benchmark problems
min(CPX,BFS) The best performance by either CPX or BFS

maxκp,n The worst performance over all 11 CBFS variants
minκp,n The best performance over all 11 CBFS variants

meanκp,n The average performance over all 11 CBFS variants
arg minκp,n The best-performing contour labeling function parameters

Tables A.2 and A.3 - Comparison of ZDD construction algorithms and vertex orderings
n,m The number of vertices and edges in the instance
|C | The number of maximal independent sets in the instance, if known

ZC size The number of nodes in the maximal independent set ZDD for the instance
CPU time The total time to construct ZC for the instance, in CPU seconds

Table A.4 - B&P+ZDD results for DIMACS instances
n,m The number of vertices and edges in the instance
χ The chromatic number of the instance, if known

LB,UB Lower and upper bounds on χ produced by B&P+ZDD

Time (ZC ) CPU time needed for B&P+ZDD to build the ZDD
Time (B&P) CPU time needed for B&P+ZDD to find and verify the chromatic number

exp/id Number of subproblems explored and identified by B&P+ZDD

ZC size (start,end) The number of nodes in the ZDD at the beginning and end of the algorithm
% change The change in size of the ZDD over the course of the algorithm

MMT The CPU time taken by the MMT algorithm adjusted by the output of dfmax
Wide The CPU time taken by the wide branching solver (Chapter 5)

CG-CP The CPU time by CP-B&P (Gualandi and Malucelli, 2012) adjusted by dfmax

Tables A.5-A.7 - Results from B&P+Wide and B&P+Deep on DIMACS instances
n,m The number of vertices and edges in the instance
χ The chromatic number of the instance, if known

LB,UB Lower and upper bounds on χ produced by B&P+ZDD

Time CPU time taken
TTB CPU time to the best coloring

exp/id Number of subproblems explored and identified by B&P+ZDD

|0| Number of times constrained pricing problem solved
|cols| Total number of columns generated
|cols0| Number of columns generated from the constrained pricing problem

cols/sec Number of columns generated per CPU seconds
maxbr The maximum branching factor at any subproblem
avgbr The average branching factor over all subproblems
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Table A.2: A comparison of the recursive ZDD construction algorithm (Algorithm 4.3) and the bottom-up
variant of Algorithm 4.6 for a subset of the DIMACS graph coloring database. Grey cells indicate the faster
algorithm, or the algorithm that generated more nodes if both took more than 2 hours. Instances for which
the algorithms were unable to construct the ZDD in the two-hour time limit report the number of nodes
inserted at termination in columns 5 and 7.

Recursive alg. Merging alg.
Instance n m |C | ZC size CPU time ZC size CPU time
DSJC125.5 125 3891 43268 48328 0.61 48328 14.55
DSJC125.9 125 6961 524 623 0.01 623 0.02
DSJC250.5 250 15668 1470363 1476916 34.50 >1153590 >2hrs
DSJC250.9 250 27897 2580 2893 0.04 2893 0.36
DSJC500.5 500 62624 91664597 83467418 3818.16 >1057125 >2hrs
DSJC500.9 500 112437 14560 15397 0.39 15397 7.03
DSJC1000.5 1000 249826 ? >108 6937.39 >716976 >2hrs
DSJC1000.9 1000 449449 100389 102909 5.77 102909 184.60
DSJR500.1 500 3555 ? >72383 >2hrs >592268 >2hrs
DSJR500.1c 500 121275 643 2443 0.15 2443 0.46
DSJR500.5 500 58862 38551855 1809872 711.83 >1057125 >2hrs
queen8_8 64 728 10188 9951 0.08 9951 1.35
queen8_12 96 1368 334806 221524 3.42 221524 476.55
queen9_9 81 1056 57600 50746 0.60 50746 32.44
queen10_10 100 2940 376692 295493 5.27 295493 1078.65
queen11_11 121 3960 2640422 1870782 42.95 >778484 >2hrs
queen12_12 144 5192 19469324 12443637 368.98 >777125 >2hrs
queen13_13 169 6656 151978440 88885235 3351.61 >709664 >2hrs
queen14_14 196 8372 ? >108 3795.47 >673151 >2hrs
queen15_15 225 10360 ? >108 3740.66 >664525 >2hrs
queen16_16 256 12640 ? >108 3972.67 >564070 >2hrs
myciel3 11 23 16 29 0 29 0.00
myciel4 20 71 79 152 0 152 0.00
myciel5 47 236 857 1429 0 1429 0.04
myciel6 95 755 49049 40191 0.99 40191 18.96
myciel7 191 2360 75511755 7191878 2635.97 >317430 >2hrs
1-Insertions_4 67 232 56641 85122 0.93 85122 155.42
3-Insertions_3 56 110 228439 81050 2.46 81050 146.24
4-Insertions_3 79 156 37833929 5518516 430.29 >522455 >2hrs
1-FullIns_4 93 593 129042 137761 8.78 137761 881.28
2-FullIns_3 52 201 15966 7975 0.25 7975 3.26
3-FullIns_3 80 346 1454750 363408 55.76 >251538 >2hrs
4-FullIns_3 114 541 ? >4527300 >2hrs >250095 >2hrs
5-FullIns_3 154 792 ? >6042790 >2hrs >212485 >2hrs
fpsol2.i.1 496 11654 1.67 ×1014 >521 >2hrs 3969 1.59
fpsol2.i.2 451 8691 8.49 ×1018 >174 >2hrs 16923 8.51
fpsol2.i.3 425 8688 7.43 ×1018 >375 >2hrs 17405 8.73
latin_square_10 900 307350 30240 52742 35.93 52742 134.38
school1 385 19 ? >608862 >2hrs >93887 >2hrs
school1_nsh 352 14612 ? >2148287 >2hrs >473049 >2hrs
mulsol.i.1 197 3925 98404 644 1.37 664 0.04
mulsol.i.2 188 3885 2669597327 >1650 >2hrs 2021 0.15
mulsol.i.3 184 3916 2669597327 >1663 >2hrs 2029 0.16
mulsol.i.4 185 3946 4650922127 >1665 >2hrs 2033 0.15
mulsol.i.5 185 3973 3330038927 >1828 >2hrs 2196 0.17
miles250 128 774 ? >275 >2hrs >7552 >2hrs
miles500 128 2340 ? >53123 >2hrs >85851 >2hrs
miles750 128 4226 33208742 6112 111.8 6112 1.39
miles1000 128 6342 775281 8520 4.64 8520 1.80
miles1500 128 10396 7802 1695 0.06 1695 0.07
anna 138 986 ? >9316 >2hrs 23296 4.52
david 87 812 44149508 6901 174.35 6901 2.53
jean 80 508 1251960 1360 2.33 1360 0.06
huck 74 602 7272300 283 15.25 27 0.01
zeroin.i.1 211 4100 79170 731 0.66 731 0.05
zeroin.i.2 211 3541 18189098 1114 138.59 1114 0.11
zeroin.i.3 206 3540 12912650 1112 111.29 1112 0.12
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H. Hernández-Pérez and J. Salazar-González. A branch-and-cut algorithm for a traveling salesman problem
with pickup and delivery. Discrete Applied Mathematics, 145(1):126–139, Dec 2004.

T. Ibaraki. Theoretical comparisons of search strategies in branch-and-bound algorithms. International
Journal of Computer & Information Sciences, 5(4):315–344, Dec 1976.

T. Ibaraki. The power of dominance relations in branch-and-bound algorithms. Journal of the ACM, 24(2):
264–279, Apr 1977.

IBM Corp. IBM ILOG CPLEX Optimization Studio V12.5, 2014.

D. S. Johnson and M. A. Trick. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation
Challenge, October 11-13, 1993. American Mathematical Society, Jan 1996.
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