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ABSTRACT

Since the �rst radar measurement of the mesosphere above the Jicamarca Radio Obser-

vatory in the 1970s, advancement in computing has allowed for increasingly complex pro-

cessing on increasingly large sets of data. These advances have allowed for more accurate

processing techniques to be applied to more data than was possible in the past. Presented in

this thesis is an improved method of spectral processing using least-squares nonlinear curve

�tting techniques. Using a constrained generalized Gaussian model, the spectral parame-

ters are found for �ve years of data from Jicamarca's mesosphere-stratosphere-troposphere

(MST) radar campaigns. The Doppler velocity from the spectral parameters is then used

to estimate the zonal, meridional, and vertical wind velocities. The winds and spectral pa-

rameters will be uploaded to the CEDAR Archival Madrigal Database. Winds and spectral

data are also displayed at http://remote2.csl.illinois.edu/MSTISR/showmaps_2 utilizing

dynamic javascript tools.

This thesis also discusses the detection and �tting of two peaked spectra, known as dou-

ble Gaussians. An algorithm is described to detect when they occur, based on recognizing

when there is a separation of spectral data points above a threshold. Knowing the location

of the double peaked spectra allows for �tting them using a double Gaussian model, as well

as facilitating the analysis of their causes.
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CHAPTER 1

INTRODUCTION

In the over forty years since the �rst radar observation of the mesosphere above the

Jicamarca Radio Observatory (JRO), technology, especially computing, has improved im-

mensely. Not only has the processing power of computers increased dramatically, but the

ability to easily store and retrieve large amounts of data has also drastically improved. This

thesis shows more complex processing techniques applied to larger amounts of data than

was possible to do previously due to processing and data storage limitations, in particular

to processing of spectral parameters and wind estimation of mesospheric radar data taken

at JRO.

The �rst paper on radar observation of the mesosphere by Woodman and Guillen [1974]

stated �This computer is an old and very slow machine according to modern standards,

limiting observations to only one height at a time, even though we have used some e�cient

processing techniques ... These same techniques will allow us to process in real time all the

observable heights simultaneously when a third-generation computer already available in

the Observatory is connected to the system.� The e�cient processing techniques referred

to are using the autocorrelation function to determine the spectral moments. In Wood-

man [1985], even more complex methods were introduced, primarily spectral parameter

estimation using nonlinear curve �tting techniques. Woodman noted that a least squares

parameter estimation, such as the one used in this thesis, would probably be the best

approach. This least squares �tting was �rst applied to MST radar data in Yamamoto
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et al. [1988], where it was shown that using a Gaussian as a model for the spectral shape,

does indeed provide better results than the earlier spectral moment estimation techniques,

particularly in cases of low SNR. This technique remained largely unchanged until Sheth

et al. [2006], where a generalized Gaussian was applied to take into account the deviation of

the spectra from the standard Gaussian shape. Here, this work is continued and improved

upon by constraining the value of the Gaussian exponent, p, and �tting some of the spectra

with two Gaussian peaks. Additionally, the new �tting techniques are applied to a large set

of data, spanning over 50 days across several years and a new way to estimate the winds

is developed.

This thesis has six chapters:

Chapter 2 introduces the region of study, the equatorial mesosphere, and the accompa-

nying D-region of the ionosphere. It continues to describe how turbulence in the mesosphere

impacts radar backscatter and derives a model for the backscattered electric �eld of a radar

experiment. Finally, some important concepts related to the neutral dynamics of the region

are introduced.

Chapter 3 introduces features of the JRO radar used in mesospheric experiments and

important experiment parameters, such as the antenna pattern and pulse patterns.

Chapter 4 describes the spectral processing procedure and results of the Jicamarca meso-

spheric radar observations. The generalized Gaussian model of the mesospheric backscat-

ter spectra is developed and implemented, and the estimation results of Doppler velocity,

spectral width, and the general Gaussian parameter, p, are presented. This chapter also

includes the determination and spectral processing of the double Gaussians. It ends with

a discussion of the causes of double Gaussians.

In Chapter 5, the process for calculating the mesospheric winds from the Doppler ve-

locity obtained in Chapter 4 is developed, and the results are shown.

Finally in Chapter 6, conclusions are drawn and remaining work is discussed.

Appendix A describes the format and structure of the reduced data deposited in the
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Madrigal data base. Appendices B and C contain the python code for the double Gaussian

detection algorithm, spectra �tting, and wind estimation. Appendix D shows the �les

location on the server.
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CHAPTER 2

THE MESOSPHERE

Earth's atmosphere is strati�ed in to fours layers based on its temperature, as shown in

Figure 2.1. In the lowest layer, the troposphere, the temperature decreases with altitude.

Next is the stratosphere which stretches from the troposphere to an altitude of roughly 50

km, and is characterized by an increase in temperature. The temperature decreases with

altitude again in the mesosphere, which ends at the coldest region of the atmosphere, the

mesopause. In the highest layer, the thermosphere, the temperature increases again until

about 200 km where it �attens out. The mesosphere, located roughly 50 to 90 km above

the surface of earth is central to this thesis.

The atmosphere is also layered according to the density of ionized particles in what is

called the ionosphere, shown in Figure 2.1. During the the day, the mesosphere is ionized

by solar radiation to form the lowest region of the ionosphere, the D-region. Here, neutral

particles are more abundant than in any other part of the ionosphere. Meanwhile electrons

have a concentration of 108 − 109m−3 which is one hundred to two hundred times lower

than the typical max of the ionosphere, the F region peak. The neutral particles in the D-

region can be ionized in several ways [Hargreaves , 1992]. The Lyman-α spectral hydrogen

line ionizes NO, which is most abundant in the D-region. EUV radiation creates O+

2 ions

in the upper level of the mesosphere. In the lower levels the neutral water vapor can

undergo chemical reactions to create water cluster ions such as H3O+. Negative ions are

formed when free electrons collide with neutral particles. At night, due to the lack of solar
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(a) (b)

Figure 2.1 � Figure (a) shows the layers of the atmosphere according to temperature.
Figure (b) shows the layers of the ionosphere. These plots were created using the mass
spectrometer and incoherent scatter data (MSIS-E 90) model [Hedin, 1991] for the
temperatures, and the international reference ionosphere (IRI) model [Bilitza et al.,
2011] for the electron densities.

radiation, the ionized particles recombine and the D-region disappears. The ionization that

forms during the day is too weak to a�ect the many neutral particles, and consequently

does not a�ect the neutral dynamics of the region. Free electrons and neutralizing ions

are advected by neutral dynamics and behave as �passive scalars.� The ionization key

component of the mesosphere that allows for VHF radar detection of the region.

2.1 Turbulence in the Mesosphere

It is has been known for some time that VHF radar signals from the mesosphere are

greatly dependent on the presence of mesospheric turbulence [Röttger et al., 1979], and the

causes of this turbulence has been studied in detail [Gage and Green, 1978; Lehmacher and
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Kudeki , 2003; Lehmacher et al., 2007; Kudeki , 1988]. Much of the turbulence is thought

to be caused by dynamic instabilities created by large winds shears [Kelley , 2009], though

convective instabilities also play a role [Fritts and Rastogi , 1985].

Dynamic instabilities such as the Kelvin-Helmhotz instability (KHI) occur when the

Richardson number, de�ned as

Ri =
ω2
B

(dU
dz

)2 + (dV
dz

)2
, (2.1)

falls below 0.25, where ωB is the Brunt-Vaisala frequency, the oscillation frequency of an

air parcel in a strati�ed atmosphere, and the denominator is the vertical shear of horizontal

wind with U and V components in zonal (eastward) and meridional (northward) directions,

respectively. Mesospheric KHI [Lehmacher et al., 2007] produces scattering structures

which show up as braids and cat's eyes in VHF radar maps [Fukao et al., 1980].

Most importantly, the instabilities in the mesosphere lead to turbulent mixing of the

electron density gradients. The turbulence of the neutrals is transferred by collisions to the

ions, and the electrons closely follow the ions due to electrostatic forces and are shu�ed

around to create electron density gradients [Chandra et al., 2012]. This creates enhanced

electron density and refractive index �uctuations that cause VHF radar scattering as de-

scribed in Section 2.2.

2.2 Radar Detection of the Mesosphere

The �rst measurement of the mesosphere by a radar was made at JRO outside Lima,

Peru in 1970 [Woodman and Guillen, 1974]. The region is di�cult to measure as it is too

high for methods such as high altitude balloons, too low for satellites, and too weakly ionized

for small low power VHF radars. Rocket borne in-situ probing and meteor radars can be

used for spot measurements. Additionally VHF radars that have large power/aperture

products (have large antenna aperture and high transmitter power) can be used. Such
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radars are known as mesosphere-stratosphere-troposphere (MST) radars.

Enhanced electron density �uctuations in the mesosphere caused by turbulent mixing

allow MST radars to detect backscatter and the dynamics of the region. Following Kudeki

[2013], the free electrons in the mesosphere will oscillate when illuminated by an AC electric

�eld from the radar. This oscillation will radiate another AC electric �eld at the same

frequency in a process known as Thompson scattering. In Thompson scattering an electron

radiates like a Hertzian dipole, producing the scattered electric �eld as

ES = −re
r
Eie

−jkor, (2.2)

where the the incident electric �eld, Ei, is

Ei = Eoe
−jkor (2.3)

so that

Es = −re
r
Eoe

−j2kor. (2.4)

In these equations ko is the wave number of the transmitted wave, r is the distance from

the source (in this case the radar antenna), and classical electron radius,

re =
e2

4πε0mc2
≈ 2.8× 10−15 m. (2.5)

In the mesosphere there will be many scattering electrons in a volume of a size ∆V . If

∆V is taken to be much smaller than the radar range, over 60 kilometers, a plane wave

approximation can be invoked to model the total scattered �eld as a superposition

Es = −
N∆V∑

p=1

re
rp
Eope

−j2kprp ≈ −re
r
Eo

N∆V∑

p=1

ejk•rp(t), (2.6)
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where N is the average electron density, rp(t) is the trajectory of electrons within ∆V , and

k ≡ −2ko
r

r
≡ −2kor̂ = − 2π

λ/2
r̂, (2.7)

is known as the Bragg vector. Also, scattered �eld (2.6) from volume ∆V is known as the

Bragg scattered �eld.

The density distribution of electrons

ne(r, t) =
N∆V∑

p=1

δ(r− rp(t)) (2.8)

within the volume ∆V given in terms of individual electrons trajectories can be spatial

Fourier transformed as

ne(k, t) =

ˆ ∞
−∞

ne(r, t)e
jk•rdr =

ˆ ∞
−∞

N∆V∑

p=1

δ(r − rp(t))ejk•rdr =
N∆V∑

p=1

ejk•rp (2.9)

so that the Bragg scattered �eld from volume ∆V can be expressed as

Es ≈ −
re
r
Eone(k, t). (2.10)

This result can be used in a superposition method to model the radar scatter from bigger

scattering volumes than ∆V determined by antenna beam sizes. Note that the scattered

�eld, Es, is a scaled version of the �electron density Fourier amplitude� at the �Bragg scale.�

For plasmas in thermal equilibrium, statistical models of the spectra and variance of

ne(k, t) and hence Es can be developed as described the incoherent scatter theory (e.g.

Kudeki and Milla [2011]). However, in mesospheric scattering, the plasma is turbulent

and not in thermal equilibrium, and as a consequence there are no �rst principle spectral

models for Es.
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2.3 Mesospheric Neutral Dynamics

As mentioned before, the ionization of mesosphere does not a�ect the neutral dynamics

where the electrons and ions move together with the neutrals. When the Doppler velocity

is measured via radar what is e�ectively measured is the velocity of the neutrals and

consequently the wind velocity. Several geophysical phenomena can be observed in the mean

zonal (east to west) wind in the mesosphere. The quasi-biennial oscillation (QBO) refers

to irregular oscillation in the mean zonal wind between easterly and westerly. The period

varies, but has a mean of roughly 26 months. The semiannual oscillation (SAO) is similar to

the QBO, but with a six month period. The diurnal and semi-diurnal tides occur on day and

half-day cycles, respectively. Gravity waves that propagate up through the troposphere and

stratosphere can be observed in the Doppler velocity and in the wind almost continuously.

Further discussion of the causes of these oscillations and waves are beyond the scope of

this thesis; for more information see [Buriti et al., 2008; Venkateswara Rao et al., 2012; Li

et al., 2012; Hitchman et al., 1997; Lieberman et al., 1993].
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CHAPTER 3

THE MST-ISR EXPERIMENT

The Jicamarca Radio Observatory (JRO) is located at 76.87 W, 11.95 S, just east of

Lima, Peru. It was built in 1960 by the Central Radio Propagation Laboratory (CRPL) of

the Nation Bureau of Standards (NBS), later part of the National Oceanic and Atmospheric

Administration (NOAA), to study the equatorial ionosphere. Today, it is jointly operated

by Cornell University and Instituto Geofísico del Perú (IGP). The location of JRO is central

to its operation; it is located near the magnetic equator, where earth's magnetic �eld lines

are parallel to the ground. This is very important for the studies of magnetized plasmas in

the E and F regions of the ionosphere, which are probed in the �ISR part� of the MST-ISR

experiment and by many other experiments carried out at Jicamarca.

3.1 The Jicamarca Antenna

The JRO main antenna, known as the main array, is a large crossed dipole antenna

array. Shown in Figure 3.1, the array is approximately 288 x 288 m2 in area and is capable

of transmitting up to 1.5 MW of power at roughly 50 MHz. The main array is divided

into quarters (north, south, east and west), each quarter has sixteen modules, and each

module has 144 half-wavelength (3 meters) dipoles, for a total of 18432 total dipoles in

the array. The dipoles are part of a coaxial-collinear (COCO) structure, where the outer

conductor of one coaxial line of λ/2 length, acting as a radiating dipole, is connected to

10



Figure 3.1 � The main array in 1966; it looks much the same today.

the inner conductor of the adjacent λ/2 dipole of an identical coaxial con�guration. In this

way all λ/2 dipoles in to COCO structure radiate with �in phase� currents of the outer

conductors. Rows of dipoles are crossed at a 90° angle to give orthogonal pairs of dipoles;

the top dipoles are known as the up polarized dipoles and bottom dipoles are called the

down polarized dipoles.

Each of the modules of the main array can be phased independently to steer and shape

the antenna beam pattern. Additionally, within each module the up and down polarizations

can have di�erent phasing. Several di�erent MST-ISR experiments, between the years 2005

and 2014, are considered in this thesis. Three di�erent antenna phasing con�gurations have

been used in this time span which are shown in Figures 3.2, 3.3, and 3.4, along with the

resulting antenna beam patterns.

The 2005-2007 experiment beam pattern is more symmetric about the zenith of Jica-

marca. The east and west beams in the 2009 experiment were moved to be better aligned

11



(a) The antenna pattern for the 2005-2007 experi-
ments, the dashed red and black lines correspond to
the magnetic equator for the year 2006. ΘX and Θy

are direction cosines that are described in Section 5.2

(b) Antenna phasing for 2005-2007, the large squares
show all four of the quarters. Each of the smaller
squares corresponds to one of the 64 modules. The top
number in the for each modules corresponds to the up
polarization phasing (expressed in λ/4 units) while the
bottom number corresponds to the down polarization
phasing.

Figure 3.2 � The antenna pattern and phasing used in the 2005-2007 MST-ISR exper-
iments.
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(a) The two-way antenna beam pattern for each of the quadrants
for the 2009 MST-ISR experiment, the magnetic equator is shown
for January 2009.

(b) The antenna phasing for the 2009 MST-ISR experiment.

Figure 3.3 � The antenna pattern and phasing used in the 2009 MST-ISR experiment.
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(a) The two-way antenna beam pattern for each of the quad-
rants for the 2014 MST-ISR experiment, the magnetic equator
is shown for January 2014.

(b) The antenna phasing for the 2014 MST-ISR experiment.

Figure 3.4 � The antenna pattern and phasing used in the 2014 MST-ISR experiment.
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with the magnetic equator. In the 2014 experiment, the north beam was also moved to be

closer to the magnetic equator.

3.2 Transmission and Reception

A �ner range resolution is needed/desired for probing the mesosphere than the higher

regions of the ionosphere where altitudinal variations are more gradual. For this reason,

complementary coded pulses with short baud lengths, shown in Figure 3.5, were used for

mesospheric probing. These are 64 baud complementary coded pulses with a baud length

of one microsecond. In 2009, each one of the 64 baud complementary coded pulses shown

in Figure 3.5 were transmitted with a pattern of code A, code B, code -A, code -B, repeated

�ve times.

Figure 3.5 � The four MST complementary codes used in 2009.

In Chapter 2, the scattering electric �eld was derived as Equation (2.10). The receiving

antenna of the radar will e�ectively convert the scattered electric �eld into a voltage phasor

15



v(t) ≡ I(t) + jQ(t) = lEs(t) = −re
r
Eolne(k, t), (3.1)

where l is the e�ective length of the antenna in the direction of the scattering volume,

and I(t) and Q(t) are the in-phase and quadrature components of v(t) respectively. The

sequence of twenty complementary coded transmitter pulses are embedded in the electric

�eld amplitude Eo so that the received signal has a similar shape (a delayed replica) as the

transmitted signal. At the receiver, the pulses are sampled with a sampling period of one

microsecond, giving one sample per transmitted baud. The MST section of the received

and sampled signal is then decoded by matched �ltering. An analog matched �lter is given

as

h(t) = f ∗(−t), (3.2)

the complex conjugation and time reversal of the original pulse shape f(t). Matched

�ltering maximizes the SNR of the signal. Additionally when complementary coded pulses

are matched �ltered and then summed, ideally their sidelobes cancel out. This summing of

complementary coded pulses after matched �ltering is called coherent integration. In the

MST-ISR experiment, typically twenty complementary coded pulses are summed together

to get twenty coherent integrations.

Figure 3.6 shows the pulse con�gurations for the 2005-2007 experiments and for the 2014

experiment. The 2009 experiment's pulse con�guration is very similar to the �rst period

of the 2014 experiment. The pulse con�guration information can be used for determining

interpulse period (IPP) and the Doppler velocity range for each experiment. For example,

in the 2014 MST experiment the IPP is 135 ms. The Nyquist frequency of the voltage

sample time series is

fNyq =
1

2× IPP(sec)
, (3.3)
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(a) Pulse con�guration for the 2005-2007 MST-ISR experiments. T = 6000 km
c/2 = 40 ms the period

of the transmitted signal. The MST pulses are shorter for higher range resolution. From Akgiray

[2007].

20 MST Pulses

=20x202.5 km

=4050 km

16 ISR Pulses

=16x1012.5 km

=16200 km

20 MST Pulses

=20x202.5 km

=4050 km

80 EEJ Pulses

=80x202.k km

=16200 km

T T

...

(b) Pulse con�guration for the 2014 MST-ISR experiment with T = 135 ms. The sampling is the
same as above.

Figure 3.6 � Examples of MST-ISR pulse con�gurations.
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and using the relationship between Doppler velocity, Doppler frequency and Bragg wave-

length, the velocity range for the 2014 MST experiment is found by

vd =
±λB

2× IPP(sec)
= ±11.11

m
s
. (3.4)

The Bragg wavelength λB, half the wavelength λo = c/fo of the operating frequency fo =

49.98 MHz of the Jicamarca radar is approximately 3 meters. For all the experiments, the

radar range resolution is calculated as

δr =
cδt

2
= 0.15 km, (3.5)

where c is the speed of light in m/s, δt is the one microsecond baud length, and division

by two stems from the two-way travel distance of the radar pulse to the scattering volume.

3.3 Experiment Dates and Notes

Table 3.1 shows the dates and some key parameters of the MST part of the MST-ISR

experiment. All the experiments have the same range resolution, but 2009 and 2014 have a

longer IPP (km) and therefore a smaller usable velocity range. There are di�ering numbers

of available heights, but all cover the required range of 60 to 90 km.
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Table 3.1 � Key parameters of the MST experiments.

Day of Year 75 74,76, 105, 115-117,
164-168, 248-251,
346-348

354-356

Date March 16 March 15, March 17,
April 15, April 25-27,
June 13-17, September
5-8, December 12-14

December 20-22

Number of Heights 937 1137 937
Height Range (km) 10.95-151.35 9.6-180.0 10.95-151.35

IPP (s) 0.040
(a) Experiment dates for 2005. There are 22 days of data available.

Day of Year 93-96, 213-215, 248-250, 338-341
Date April 3-6, August 1-3, September 5-7, December 4-7

Number of Heights 1137
Height Range (km) 9.6-180.0

IPP (s) 0.040
(b) Experiment dates for 2006. There are 13 days of data available.

Day of Year 170-174
Date June 19-23

Number of Heights 1137
Height Range (km) 9.6-180.0

IPP (s) 0.040
(c) Experiment dates for 2007. There
are 4 days of data available.

Day of Year 17-27
Date January 17-27

Number of Heights 1057
Height Range (km) 9.6-168.0

IPP (s) 0.125
(d) Experiment dates for 2009. There are
10 days of data available.

Day of Year 7-10
Date January 7-10

Number of Heights 1350
Height Range (km) 0.0-202.5

IPP (s) 0.135
(e) Experiment dates for 2014. There are
4 days of data available.
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CHAPTER 4

ESTIMATION OF SPECTRAL

PARAMETERS

Chapter 3 discussed the reception, sampling, and coherent integration of MST radar

signal, and the procedures that produce collections of coherently integrated time-series at

the e�ective IPP. The absolute square of the discrete Fourier transform (obtained with

FFT) of a voltage time-series is a periodogram, a poor estimator of the power spectral

density of the scattered radar signal. Better estimators are obtained by averaging con-

secutive periodograms, a procedure known as incoherent integration. In this incoherent

integration procedure the sum of consecutive periodograms is divided by the product of

the periodogram length and the number of periodograms which have been summed. With

such a normalization a spectral sum (over its frequency bins) yields the expected value of

the scattered signal power. The spectral parameter estimation procedures to be described

in this chapter were implemented with one-minute integrated spectra derived from the

Jicamarca MST radar data.

4.1 Fitting

Unlike for ISR spectra, no �rst-principles statistical model exists for the computed

MST spectra. Early observers of the MST radar spectra used Gaussian shaped spectral

models [Woodman, 1985]. To determine the line of sight (LOS) Doppler velocity, spectral
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width, and spectral power, the early researchers made use of the relationship of the desired

parameters to the �rst three spectral moments,

mi =

N/2−1∑

q=−N/2

ωiqS(ωq), (4.1)

where i is zero, one, or two, N is the number of points in the FFT, ωq is the Doppler

frequency bin, and S(ωq) is the radar spectrum. Then the power can be found as

P = m0, (4.2)

the mean Doppler frequency as

Ω =
m1

m0

, (4.3)

and the mean Doppler velocity is a scaling of this frequency. Finally the spectral width, σ,

can be estimated from

σ2 =
m2

m0

−
(
m1

m0

)2

. (4.4)

These numbers provide good initial estimates and can be reasonably accurate for high SNR

cases, but in low SNR cases, �tting a curve to the spectra gives better estimates of these

values [Yamamoto et al., 1988].

4.1.1 The Spectrum Model

It is now known that the MST spectra often deviates from the standard Gaussian shape

[Sheth et al., 2006] so that the use of a generalized Gaussian such as

〈S(ω)〉 = A exp(−|ω − µ
σ
|p) +B (4.5)
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� here A is the amplitude, B the noise level, µ the Doppler velocity, and σ is related to

the spectral width � improves the accuracy of the �ts. In the generalized Gaussian, the

exponent, p, is not constrained to be two, which allows for di�erent spectral shapes than

the standard Gaussian. As shown in Figure 4.1, setting p as one leads to an exponential

shape while setting p to higher values leads to increasingly �atted topped (square-like)

spectral shapes.

Figure 4.1 � Generalized Gaussian shapes for various p values, with A set as 1.0, µ as
-5.0, σ is 4.0, and B set to be 0.2.

As in [Sheth et al., 2006], a generalized Gaussian shape

〈S(ω)〉 = B exp(A exp(−|ω − µ
σ
|p)) (4.6)

may also be used. It can �t the same shapes as the generalized Gaussian, but with di�erent

parameters.
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4.1.2 Linear and Logarithmic Mis�ts

There are two approaches to do the �tting, linear and logarithmic. In linear �tting, the

objective is to minimize the mis�t, or the square of the di�erence between the measured

spectrum and the model, taking into account variance, as in

χ2 =

N/2−1∑

q=−N/2

(Sq − 〈Sq〉)2

〈Sq〉2 /K
, (4.7)

where K is the incoherent integration length. In log �tting,

χ2 = K

N/2−1∑

q=−N/2

(lnSq − ln 〈Sq〉)2, (4.8)

the natural log of the spectrum and model are used.

These mis�t equations can be derived as follow [Kudeki , 2010]: let Sq be the radar

spectrum estimate created by integratingK independent periodograms as described earlier.

Note that spectral estimate Sq is in essence a random variable having an expectation 〈Sq〉

corresponding to the model spectrum, a standard deviation

δSq,rms =
〈Sq〉√
K
, (4.9)

and a joint Gaussian pdf

f({Sq}) =
∏

all q

√
K√

2π 〈Sq〉
exp
−(Sq − 〈Sq〉)2

2 〈Sq〉2 /K
, (4.10)

that can be attributed to the central limit theorem. The natural log of the Gaussian pdf

can be taken to give

− ln(f({Sq})) =
∑

q

K(Sq − 〈Sq〉)2

2 〈Sq〉2
+
∑

q

ln(

√
2π 〈Sq〉√
K

). (4.11)
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With a large K assumption, this is simpli�es to

− ln(f({Sq})) =
K

2

N/2−1∑

q=−N/2

(Sq − 〈Sq〉)2

〈Sq〉2
≡ 1

2
χ2, (4.12)

which is in e�ect Equation (4.7). Hence, the minimization of χ2 over the parameters of

the model, 〈Sq〉, amounts to the maximization of the likelihood f({Sq}) of all the Sq data

over the same set of parameters. This makes the minimization of mis�t, Equation (4.7),

to provide a maximum likelihood estimate of the input parameters of the spectral model

〈Sq〉.

To justify the form of the natural log mis�t expression, let

δSq = Sq − 〈Sq〉 (4.13)

such that

ln(Sq) = ln(〈Sq〉+ δSq) = ln(〈Sq〉) + ln(1 +
δSq
〈Sq〉

), (4.14)

which, for a large enough K, will reduce to

ln(Sq) ≈ ln(〈Sq〉) +
δSq
〈Sq〉

(4.15)

because with large K the error δSq is su�ciently small. Rearranging the terms leads to

ln(Sq)− ln(〈Sq〉) ≈
δSq
〈Sq〉

=
Sq
〈Sq〉

− 1 =
Sq − 〈Sq〉
〈Sq〉

, (4.16)

which appears in a squared form in Equation (4.7). It is then obvious that Equation (4.8)

follows from Equation (4.7) for a large enough K.

Both of the these χ2 minimization equations can be solved using nonlinear minimiza-

tion algorithms. The python code, Appendix B, uses a bounded version of SciPy's opti-

mize.leastsq function. This uses the Levenberg-Marquardt algorithm to solve a nonlinear
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least squares problems.

4.1.3 Evaluation of Best Model

To determine which of the models and minimization equations to use, all four possible

combinations were tested in a 2500 iteration loop for the nine di�erent spectral shapes

(of the type typically observed) speci�ed in Table 4.1. For each case, a spectrum, S, was

created. Then inside the loop, a noise-added spectrum was created as

Sna = S +
S√
K
N(0, 1), (4.17)

where N(0, 1) is the standard normal distribution, K was set as 20, near the typical number

of incoherent integrations. Then each of the four combinations of models and minimizations

were used to �t the noise added spectra, as shown in Figure 4.2. Each of the resulting �tted

spectra were saved from each iteration. Finally after all the iterations had completed, χ2

was computed using the true spectra as Sq and each �tted spectra as 〈Sq〉 and then averaged

over all 2500 iterations to determine which model and mis�t had the typical best �t. The

results of this are shown in Table 4.2. For every case, the �rst generalized Gaussian model

in Equation (4.5) had a lower χ2 than the second model given in Equation (4.6), making

the �rst model the better choice. The choice between the linear mis�t, Equation (4.7), and

the log mis�t, Equation (4.8), is slightly less obvious (not unexpected since they should be

identical in in�nite K limit). The linear mis�t had a slightly lower χ2 in two instances,

case one, with low p, and case six, with high SNR. However the log mis�t had a lower χ2

in the other seven instances, and signi�cantly lower χ2 in cases 7 and 8, with low SNR and

small σ, respectively. Consequently, the log �t was chosen.
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Table 4.1 � The nine test cases, with parameters given for model 1. Parameters for
model 2 were calculated to give the same spectral shape for each case.

Case B A µ σ p

1 0.2 0.7 -5 4.2 1
2 0.2 0.7 -5 4.2 1.5
3 0.2 0.7 -5 4.2 2
4 0.2 0.7 -5 4.2 2.5
5 0.2 0.7 -5 4.2 3
6 0.2 1.5 -5 4.2 2
7 0.2 0.4 -5 4.2 2
8 0.2 0.7 -5 2.2 2
9 0.2 0.7 -5 8.2 2

Figure 4.2 � All four combinations of models shown for case 1.

Table 4.2 � Model comparison for all nine cases.

Case1 χ2 Case 4 χ2 Case 7 χ2

Log Model 1 0.3231 Log Model 1 0.3236 Log Model 1 0.3151
Linear Model 1 0.3141 Linear Model 1 0.3693 Linear Model 1 0.4683
Log Model 2 0.3213 Log Model 2 0.3255 Log Model 2 0.3226

Linear Model 2 0.3213 Linear Model 2 0.3738 Linear Model 2 0.5060
Case 2 χ2 Case 5 χ2 Case 8 χ2

Log Model 1 0.3213 Log Model 1 0.3294 Log Model 1 0.3283
Linear Model 1 0.3531 Linear Model 1 0.3744 Linear Model 1 0.3659
Log Model 2 0.3118 Log Model 2 0.3307 Log Model 2 0.3392

Linear Model 2 0.3708 Linear Model 2 0.3729 Linear Model 2 0.4283
Case3 χ2 Case 6 χ2 Case 9 χ2

Log Model 1 0.3396 Log Model 1 0.3399 Log Model 1 0.3268
Linear Model 1 0.3653 Linear Model 1 0.3322 Linear Model 1 0.3341
Log Model 2 0.3414 Log Model 2 0.3398 Log Model 2 0.3265

Linear Model 2 0.3710 Linear Model 2 0.3363 Linear Model 2 0.3212
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4.1.4 Constraint on p

It was discovered that the estimated exponent in the generalized Gaussian, here on

referred to as p, varied wildly in value between consecutive heights. Values over 100 were

sometimes observed, while the value in the height above may be a much more reasonable

number, such as 2. Even with bounds applied, values between adjacent heights could

still vary greatly. This can be interpreted as instances of �over�tting� of noisy data, an

undesirable e�ect. To rectify this, p was changed from a single value to a second-order

linear equation giving the modi�ed spectra model

〈S(ω)〉 = A exp−|ω − µ
σ
|(p0+p1z+p2z2) +B, (4.18)

where z is a height index. Consequently sets of two or more contiguous heights with a

detectability of greater than four are grouped and �tted at the same time, so that they all

have the same p0, p1, and p2 and the center of the height indexes is rescaled to be zero. This

procedure amounts to a practical �regularization� strategy to avoid instances of over�tting.

4.2 Estimation of Measurement Error

The �tting procedure is expected to provide model parameters with estimation errors.

To determine the rms error levels, the procedure of Aster et al. [2005] is followed: First the
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Jacobian of the data model, Equation (4.18), is determined as

J =




1
〈S(ω1)〉

δ〈S(ω1)〉
δB

. . . 1
〈S(ωN )〉

δ〈S(ωN )〉
δB

1
〈S(ω1)〉

δ〈S(ω1)〉
δA

. . . 1
〈S(ωN )〉

δ〈S(ωN )〉
δA

1
〈S(ω1)〉

δ〈S(ω1)〉
δµ

. . . 1
〈S(ωN )〉

δ〈S(ωN )〉
δµ

1
〈S(ω1)〉

δ〈S(ω1)〉
δσ

. . . 1
〈S(ωN )〉

δ〈S(ωN )〉
δσ

1
〈S(ω1)〉

δ〈S(ω1)〉
δp0

. . . 1
〈S(ωN )〉

δ〈S(ωN )〉
δp0

1
〈S(ω1)〉

δ〈S(ω1)〉
δp1

. . . 1
〈S(ωN )〉

δ〈S(ωN )〉
δp1

1
〈S(ω1)〉

δ〈S(ω1)〉
δp2

. . . 1
〈S(ωN )〉

δ〈S(ωN )〉
δp2




. (4.19)

The inverse term, 1
〈S(ω)〉 , in the elements of J is a result of taking the logarithm of the

model when �tting. The errors of interest are found from the covariance matrix,

Cov(S) = (JJT )−1, (4.20)

as

δ 〈S(ω)〉 =
√

diag(Cov(S)). (4.21)

The result is a vector containing the measurement error pertaining to each of the calculated

parameters. Though SciPy's optimize.leastsq can create the same covariance matrix, it is

sometimes unreliable when processing large sets of data, particularly because to constrain p,

groups of heights are �tted together such that minimization over 50 parameters is possible.

If optimize.leastsq encounters a singular matrix, it will not output a covariance matrix.

Instead the covariance matrix can be calculated using the �tted parameters for each height.

The python code for implementing this is included in Appendix B.
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4.3 Fitting and Spectral Parameter Results

All the available data was �tted using the aforementioned procedure, plus �tting the

double Gaussians as explained in Section 4.4. Four examples of spectra are shown in Figure

4.3, with the parameters given at the bottom of the �gure. Two are of low SNR cases, and

the other two are of higher SNR cases for the years 2007 and 2009. Given that 2005-2007

data has the same velocity range, the spectra from these years look very similar. The 2009

data have a narrower velocity range and consequently higher velocity resolution, so the

spectra appear wider and show more noise. Figure 4.3 also shows the �tting routine is able

to �t most cases with low SNR fairly accurately. The minimum SNR �tted was -15 dB.

Additionally, to detect possible presence of signal, the noise variance of each spectra was

estimated. Only those spectra with a detectability of four (spectra containing at least one

point four times above the estimated noise variance) were �tted.

To view the trends over entire days and data, looking at individual spectra is of limited

use. It is more appropriate to look at plots with range on the y-axis, time on the x-axis,

and the particular parameter being observed on a color scale. Though there are over 50

days of data available, to show all the parameters across all four beams for all the days in

thesis would be of little value. For brevity, only one day is shown here.

First shown in Figure 4.4 is a range-time-velocity plot, also known as a velocity map for

all four beams on August 3rd, 2006. Velocity oscillations due to gravity waves are visible

in all four beams for most of the day, as the visible repeating vertical bands of color. The

gravity waves do not appear to greatly a�ect σ, shown in Figures 4.5. The map of σ shows

that there are patches of smaller σ and patches of larger σ.

The maps of p, shown in Figure 4.6, show how the spectral shapes deviate from the

standard Gaussian shape. Most of the time, the middle of the layers have p values near

or less than two. The higher values near the edges may be due to the low SNR at those

locations. The layers between 11:30 and 14:00 shows interesting nearly vertical striations.
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(a) (b)

(c) (d)

Figure 4.3 � Examples of typical low and high SNR spectra for the years 2007 and
2009. The �t parameters are given as: B, A, µ, σ, p. The normalized mis�t and SNR
are also shown.
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They appear to be nearly on the same frequency as the oscillations in velocity, but it is

di�cult to tell at �rst glance if the two are related.

Additional velocity maps for the other days processed may be viewed at

http://remote2.csl.illinois.edu/MSTISR/showmaps_2. The data may be downloaded from

http://cedar.openmadrigal.org/.

4.4 Double Gaussians

So far only spectra where only one Gaussian peak is observed in the data has been

discussed. However, there are times where two separate spectra peaks are observed in the

spectral data. In this case, if only one peak is used to try to �t the spectral data, one of

two things happen. First, one peak may be much smaller than other and only the large

peak is �tted as shown in Figure 4.7a. In the other case, one peak is �tted to both peaks,

as shown in Figure 4.7b. In the second case, the LOS Doppler velocity and spectral width

estimates are both greatly a�ected, showing the need to �t two Gaussians to the two peaks.

The model, Equation (4.18), is simply modi�ed to add another generalized Gaussian

peak giving

〈S(ω)〉 = A1 exp−|ω − µ1

σ1

|(p0+p1z+p2z2) + A2 exp−|ω − µ2

σ2

|(p3+p4z+p5z2) +B. (4.22)

Only one noise term is needed and both peaks have the linear constraint on p. For the two

examples shown before, the new results are shown in Figures 4.7c and 4.7d. Both cases

now have two Gaussian peaks for a better �t.

As shown by the spectra in Figures 4.3 not every spectra needs two Gaussians. In fact

�tting two Gaussians to every spectra can cause some strange spectra shapes and some

bad �ts. A detection algorithm is need to determine when/where to �t using the double

Gaussian model versus the single Gaussian model. The algorithm developed here searches
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(a)

(b)

(c)

(d)

Figure 4.4 � Velocity maps from August 3rd, 2006 for all four beams.
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(a)

(b)

(c)

(d)

Figure 4.5 � σ maps from August 3rd, 2006 for all four beams.
33



(a)

(b)

(c)

(d)

Figure 4.6 � p value maps from August 3rd, 2006 for all four beams.
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(a) A small peak that is not �tted is shown to
the left of main peak.

(b) One peak �tted to two Gaussians.

(c) Small peak �tted with a double Gaussian. (d) Both peaks are �tted with separate Gaus-
sians.

Figure 4.7 � Examples of �tted spectra with double Gaussians.
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for three conditions that may possibly indicate that a double Gaussian is present. The

�rst condition is having a pair of separated peaks, two sets of contiguous points above a

threshold, such as a detectability of four. The second condition is having a velocity skew

de�ned as when the estimated velocity from the moments as described in Section 4.1 is

signi�cantly di�erent from the velocity of the spectral peak. The third and �nal condition

is having one signi�cant multipoint peak and one single point peak. This is when there is

one set of contiguous points above the threshold and one separate single data point above

twice the threshold. The �ow chart of the algorithm is shown in Figure 4.8, and the python

code is located in Appendix B.

The algorithm in general works as follows: First it determines the maximum value and

the location (frequency bin) of the spectral peak. Then it creates a new list of spectral

samples by removing any samples that are either less than a detectability of four or are

lower than one-�fth of the spectral peak value. Next it separates that list into sublists of

contiguous points in the spectral data, so that main peak and any other secondary peaks are

in separate lists. Under the �rst and third conditions (separated peaks) discussed above,

the list containing the most signi�cant peak is removed, so that only lists containing any

potential secondary peaks remain. These lists are then checked to determine if a second

Gaussian is present. Under the second condition, the estimated velocity from moments is

simply checked against the velocity of the main peak. The second and third conditions are

not very robust in the sense that they can frequently lead to erroneously detected double

Gaussians. Therefore when a potential double Gaussian is detected under one of these two

conditions, it is �rst tentatively �tted using Equation (4.22) and the resulting �tted spectra

(spectral �t line) are again examined against the three conditions. If a double peak is still

detected in the �tted spectra, than the spectra are determined to be a double Gaussian.

Additionally, this algorithm is used to determine the initial conditions of the amplitude

A, the Doppler velocity µ, and the generalized Gaussian width σ, for �tting. When there is

only a single Gaussian detected, the amplitude is estimated as 80 percent of the maximum
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Figure 4.8 � Flow chart for the double Gaussian �tting algorithm, starting after the
spectra have been made/loaded.

37



amplitude; initial amplitude is taken to be lower than the peak value to take into account

additive noise. The Doppler velocity is determined using the �rst moments as explained in

Section 4.1, but using a reduced vector containing only the points in the Gaussian above

the threshold (the points in the Gaussian peak). The σ is determined by multiplying

half the number of points above the threshold by the velocity resolution. When there are

two separate Gaussians, the amplitude, Doppler velocity, and width are found similarly to

when there is only one Gaussian. The amplitudes are 80 percent of the maximum of each

Gaussian peak, and the Doppler velocities are calculated using moments of the velocity

values of the sublists for each Gaussian, the σ is calculated using half the points in each

peak. In the case of skewed velocity caused by double Gaussians, the initial guess for

the amplitude of the main peak is 80 percent of the max, and the initial guess for the

velocity of the main peak is the location of the max. For the second Gaussian, the initial

amplitude is set as 60 percent of the max, and the initial velocity is set as the velocity

estimated by the moments. The initial σ for each is the di�erence in velocity between the

main peak and the calculated velocity. This method is fairly accurate for determining the

number of Gaussians and the initial estimates for the amplitude and velocity. However

it does not detect every double Gaussian, particularly those that are strongly overlapping

and occasionally erroneously determines that there are two Gaussians, when in fact there

is only one.

4.4.1 Location and Cause

Figures 4.9 and 4.10 depict range-time maps of the number of Gaussian spectral peaks

along with the corresponding LOS velocity maps for June 27, 2009 and June 21, 2007

respectively. When the spectrum is determined to have two peaks, the Doppler velocity shift

from the peak with the largest amplitude is used in velocity maps and wind estimations.

Both �gures show LOS velocity gradients in range, but the data from January 27, 2009

shows many more double Gaussians near the velocity gradients than 2007 data. Addi-

38



(a) Number of Gaussian peaks, blue designates single
Gaussians, while red designated double Gaussians for Jan-
uary 27th, 2009.

(b) Corresponding LOS doppler velocity map for January 27th,
2009.

Figure 4.9 � The number of Gaussian peaks and corresponding LOS doppler velocity
for January 27th, 2009.
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(a) Number of Gaussian peaks, blue designates single
Gaussians, while red designated double Gaussians for June
21st, 2007.

(b) Corresponding LOS doppler velocity map for June 21, 2007.

Figure 4.10 � The number of Gaussian peaks and corresponding LOS doppler velocity
for June 21, 2007.
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Table 4.3 � Percentage of �ts in a single day that are double Gaussians.

Year Beam Mean(%) Min(%) Max(%)
2014 East 1.57 0.98 1.96
2014 West 1.32 1.06 1.63
2014 South 1.16 0.64 1.68
2014 North 1.18 0.44 1.84
2009 East 1.33 0.86 2.43
2009 West 1.02 0.47 1.47
2009 South 1.14 0.73 1.88
2009 North 1.23 0.65 1.81
2007 East 0.95 0.51 1.62
2007 West 0.64 0.44 0.90
2007 South 0.53 0.34 0.70
2007 North 0.88 0.43 1.28
2006 East 0.87 0.35 2.15
2006 West 0.57 0.28 1.19
2006 South 0.58 0.17 0.91
2006 North 0.97 0.24 2.40
2005 East 0.83 0.12 1.93
2005 West 0.47 0.13 0.83
2005 South 0.53 0.17 1.20
2005 North 1.00 0.10 2.58

tionally the double Gaussians appear almost exclusively near the velocity gradients. This

demonstrates that many of the double Gaussians occur where there are large velocity gra-

dient but not every large velocity gradient causes double Gaussians. An interpretation of

these observations will be provided shortly.

In Table 4.3, the average, minimum, maximum percentage of double Gaussians for a

single day is compared for each beam for each year. The experiments in 2005-2007 had

the same beam pattern, while the 2009 and 2014 experiments both had di�erent beam

patterns. The table shows the beam pattern most likely plays a strong role in determining

the number of double Gaussians. Additionally in the 2005-2007 experiments, there are

signi�cantly more double Gaussians on the east and north beams than on the other two.

Additionally, looking at the velocity maps for 2005-2007, only the east and north beams
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RM RS

Figure 4.11 � Diagram of the main lobe (RM) and a sidelobe (RS) and scattering volume
moving parallel to both. The main lobe sees the horizontal wind vector pointing towards
it, while the sidelobe sees the horizontal wind vector pointing away. The sidelobe also
has a longer distance to travel to the same height, so the backscatter echoes from the
volume are delayed from the sidelobe compared to the main lobe.

show velocity gradients and only at the tops of layers. This can be explained by the

sidelobes in these two beams [Sheth, 2004].

Speci�cally, the north and south beams in the 2005-2007 experiments, as shown in

Figures 3.2 and 4.12a have relatively large sidelobes to the southwest of main beam pattern,

while the west and south beams do not have such sidelobes. Therefore what appears to be

velocity gradients in the east- and north-beam velocity maps may be due to delayed echoes

from beam sidelobes that appear at di�erent velocity. The velocity gradients observed are

actually artifacts from the sidelobes. A diagram of this is shown in Figure 4.11.

Expanding this conjecture to the 2009 and 2014 experiments, with their beam patterns

shown in Figures 4.12b and 4.12c respectively, it can be seen the same theory also applies.

Though there are only four days of data for 2014, the east and west beams have more

signi�cant sidelobes and have more double Gaussians than the north and south beams and

more double Gaussians on average in Table 4.3. In 2009, at �rst glance it is slightly less

clear what is happening. The north, east, and west beams have signi�cant sidelobes, but
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the west beam does not show as many double Gaussians as the other two most of the time.

This can be explained by the location of their sidelobes relative to the direction of the wind

velocity. The north and east beams have large sidelobes southeast of their respective main

lobes, while the west beams sidelobe is southwest of its main beam and perpendicular to

north and east beams sidelobes. Referring back to Figure 4.11, if the horizontal wind vector

is coaligned with the plane de�ned by the north and east beams main lobes and sidelobes

then there may be double Gaussians, but then the wind vector will be perpendicular to the

plane of the west beam's main lobe and sidelobe so that the Doppler velocities for the west

beam will overlap. In short, if the scattering volume is mainly causing double Gaussians

in the north and east beams, then will likely not cause many double Gaussians in the west

beam for the 2009 antenna con�guration. Using the wind estimates explained in Chapter

5, this is con�rmed. For January 27th, whose east beam is shown in Figure 4.9, the wind

direction, shown in Figure 5.5, was estimated to be typically south-west to west near 75

km where the double peaked spectra occur. Consequently there are more double Gaussians

in the east and north beams, 1.74% and 1.51% respectively, than in the west beam, 0.59%.

Back in Table 4.3, it is shown the most number of detected double Gaussians is less

than 3 percent of the total number of �ts for a day, making them fairly rare, despite the

sidelobes always being present. There are three main reasons for this: First, the sidelobes

are roughly nine dB down from the main lobes, so that many times the signal from the

sidelobes is too weak to be separated from the noise. Second, as explained in the preceding

paragraphs, the direction of the wind is important. If the wind vector is perpendicular

to plane of the main lobe and sidelobe the Doppler velocities from each will appear to be

the same and only one Gaussian will be observed. Third, as demonstrated in Figures 4.9

and 4.10, even if there is a Gaussian from the sidelobe at a di�erent Doppler velocity, the

Gaussian from the main lobe may disappear before the delayed Gaussian from the sidelobe

starts. This is largely dependent on the thickness of the layer.

43



(a) Two way beam pattern for the 2005-2007
experiments beam.

(b) Two way beam pattern for the 2009 exper-
iment.

(c) Two way beam pattern for the 2014 experi-
ment.

Figure 4.12
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CHAPTER 5

WIND ESTIMATION

In previous experiments ([Fukao et al., 1979], [Hitchman et al., 1997], [Lehmacher et al.,

2007]) the wind components were estimated purely from the LOS Doppler velocities and

the geometry of the beam pattern as

U =
µeast − µwest

2 sin(θ)
, (5.1)

and

V =
µnorth − µsouth

2 sin(θ)
, (5.2)

where θ is the zenith angle of the antenna. Two estimates were often created for the vertical

wind velocity,

W =
µeast + µwest

2 cos(θ)
(5.3)

or

W =
µnorth + µsouth

2 cos(θ)
. (5.4)

In the 2009 and 2014 experiments, the beam pattern has changed so that the four beams

are not equally distributed around the zenith in the cardinal directions (see Figure 4.12).

Thus, the above equations would not be accurate for these experiments. Therefore new

method of estimating the wind components that takes into account the beam directions
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and Jicamarca's positional geometry has been developed.

5.1 Determining Jicamarca Unit Vectors

The precise location of the Jicamarca antenna array will be speci�ed in an earth-

centered, earth-�xed (ECEF) coordinates, in terms of the World Geodetic System (WGS

84) ellipsoid speci�cations. As shown in Figure 5.1, the ECEF coordinate frame is centered

on earth's center of mass, the X-axis points through the prime meridian at the geographic

equator, the Z-axis points north along the earth's average axis of rotation, and the Y-axis

also points through the geographic equator, 90º east of the X-axis.

Z

X Y

φ′ φ

λ

N

[
X Y Z

]

H

Figure 5.1 � The WGS 84 ellipsoid and corresponding ECEF coordinate system are
shown. A point is placed at a general location, with corresponding north (N) and
zenith (H) vectors. The east vector (E) is directed into the page. λ is the geodetic
longitude. φ is the geodetic longitude, which crosses normal to the ellipse. φ′ is the
geocentric latitude, which is not commonly used. The ECEF coordinates of a location
are commonly determined using GPS.

In this coordinate system the Jicamarca main array is located at [1417.539, -6078.202,

-1311.862] as measured in kilometers. The local east unit vector can be determined from
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the ECEF coordinates as

Ê =

[
−Y, X, 0

]

√
X2 + Y 2

, (5.5)

since east is tangent to any point on the the globe toward the earth's rotation. The true

zenith (local up) unit vector at Jicamarca is determined by

Ĥ =

[
cos (φ) cos (λ) , cos (φ) sin (λ) , sin (φ)

]
, (5.6)

where φ and λ are the geodetic latitude and longitude of the Jicamarca main array, 11.95º S

and 76.87º W respectively taking into account the non-spherical shape of the earth. Then

the local north unit vector is simply

N̂ = Ĥ × Ê. (5.7)

At Jicamarca there is are another set of unit vectors x̂ and ŷ, that are de�ned by the

x− and y−axes of the square array. Additionally the the third direction, ẑ, is along the

�on-axis� beam of the antenna. The on axis unit vector is calculated from the declination,

δ, measured in degrees, and hour angle, τ , measured in minutes, of the antenna beam along

with the longitude as

ẑ = [cos (δ) cos (τ + λ) , cos (δ) sin (τ + λ) , cos (δ)] . (5.8)

For Jicamarca, the on axis declination is -12.88º, the hour angle is -4.6167 minutes, and

λ is 76.87º as indicated above. The x-axis is roughly pointing in the south-east direction

and is along the main JRO building, while the y-axis perpendicular to it, away from the

building as shown in Figure 5.2. At Jicamarca, the plane of the array is tilted with the

47



axis of rotation along x̂, leading to

x̂ =
Ĥ × ẑ∥∥∥Ĥ × ẑ

∥∥∥
, (5.9)

The y unit vector is

ŷ = ẑ × x̂. (5.10)

5.2 Antenna Beam Directions

The vector wind in the mesosphere can be calculated from three or four LOS velocities

measured at a particular time interval and height range. Each channel of the MST radar

data corresponds to a single beam from the radar experiment. The four beams each have

a di�erent pointing direction, which are needed in determining the wind's direction.

Table 5.1 � The antenna beam pointing directions for the 2009 experiment.

Beam Θx Θy

East 0.03229 0.01217

West -0.03957 0.01267

North 0.01107 0.04833

South -0.00482 -0.05114

The bean pointing directions given in Table 5.1 are described using �direction cosines�

Θx =
x√

x2 + y2 + z2
, (5.11)

Θy =
x√

x2 + y2 + z2
, (5.12)
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and

Θz =
√

1−
(
Θ2
x + Θ2

y

)
, (5.13)

where (x, y, z) denotes the coordinates of beam boresight speci�ed in the local coordinates

system depicted in Figure 5.2. The direction cosines in Table 5.1 were determined by the

beam pattern of the Jicamarca array, shown in Figure 4.12.

y

N

S

EW

z

x

Figure 5.2 � The local JRO coordinate system, the compass directions are approximate.

5.3 Estimation of UVW

Consider a radar scattering volume centered at (x, y, z) in the mesosphere, detected

with a radar beam with the direction cosines Θx, Θy, and Θz. Let the wind vector at the

same location be denoted as

ū = UÊ + V N̂ +WĤ, (5.14)
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where U is zonal the component of the wind, V is the meridional component, and W is the

vertical component while unit vectors Ê, Ĥ, and N̂ are given by Equations (5.5), (5.6), and

(5.7) respectively. Using the direction cosines of the antenna beam boresight and Jicamarca

unit vectors, the beam vector

b̂ = Θxx̂+ Θyŷ + Θz ẑ, (5.15)

gives the direction of a beam in ECEF coordinates. Then, the LOS velocity estimate

provided by Doppler spectral analysis is

v = ū • b̂ (5.16)

for each beam. The k-th beam scalar LOS velocity can be expressed as

vk = αkU + βkV + γkW, (5.17)

where

αk = Θxx̂ • Ê + Θyŷ • Ê + Θz ẑ • Ê, (5.18)

βk = Θxx̂ • N̂ + Θyŷ • N̂ + Θz ẑ • N̂ , (5.19)

and

γk = Θxx̂ • Ĥ + Θyŷ • Ĥ + Θz ẑ • Ĥ. (5.20)
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Then the k-th terms can be combined into column vectors to solve a system of equations

for the three unknowns using




α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

α4 β4 γ4







U

V

W




=




v1

v2

v3

v4



. (5.21)

When there are four LOS velocities, as shown, a pseudoinverse or generalized inverse is

needed to compute a least-squares solution of the system of equations [Penrose and Todd ,

1956] to solve for (U, V,W ). Sometimes there are only three LOS velocities available, then

a simple matrix inverse can be utilized. When only one or two LOS velocities are available

(typically due to sidelobe signals at the top of layers � see discussion in Chapter 4) wind

estimation is not possible.

The python code for this procedure can be found in Appendix (C).

5.4 Propagation of Measurement Error

The measurement error, determined in Section 4.2, of the LOS Doppler velocity must

be carried through for the zonal, meridional, and vertical wind calculations. According to

Wikström and Wedin [2002], since the matrix in Equation 5.21 is assumed to unperturbed,

and only the velocities have some error to be propagated, one only needs to replace the ve-

locity with its measurement error and then carry out the calculation as before. In equation

form, this appears as
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


α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

α4 β4 γ4







δU

δV

δW




=




δv1

δv2

δv3

δv4



. (5.22)

Only if error in the estimation of the beam direction is to be considered, does this process

become more complex.

5.5 Results

Figures 5.3 and 5.4 show the zonal, meridional, and vertical wind maps for two di�erent

days in 2006. Figure 5.5 shows the same for January 27th, 2009. The zonal and meridional

winds are stronger than the vertical winds. In the zonal wind, the lower mesosphere tends

to be in opposite direction of the upper mesosphere. This is most clearly shown in Figure

5.4. Unsurprisingly, the oscillations in the Doppler velocity also appears in all the wind

directions.

The mean zonal and meridional winds at 71, 75, and 79 km, and mean zonal winds for

60 to 90 km for the data from 2005-2007, 2009, and 2014 are shown in Figures 5.6, 5.7,

5.8, respectively. Each data point is a single day. It is di�cult to discern whether or not

the semi-annual oscillation (SAO) is visible in the zonal winds for 2005-2007. The mean

vertical wind stays rather constant near to zero for most of the data. The mean meridional

wind is similar to mean zonal wind in velocity range, while the mean zonal wind stays

much closer to zero.

Contamination from the sidelobes in the form of velocity gradients as discussed in

Section 4.4, can sometimes a�ect the wind estimation. For example, the velocity gradients

from the north and east beams in Figure 4.4 cause a slight wind shear feature in the zonal

wind of Figure 5.3 from 10:00 to 13:00 above 75 km. This is clearly an artifact and not a true
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shear. These artifacts in the winds can occur when the scattering from the sidelobes causes

double Gaussians. If the sidelobe peak is stronger than the main lobe peak occurring at

the same time and received height, it will cause a artifact in the LOS velocity, even though

signal from the main lobe is still present. The artifacts could be detected by looking for a

change in sign of the wind velocity near the top of layers for a single minute.

However, most such cases of double Gaussians and velocity gradients do not a�ect the

zonal and meridional wind estimation. Typically only two beams have sidelobes that can

cause velocity artifacts at a particular time and received height. These velocity artifacts

from the sidelobes have a longer radar range and thus appear at an increased height com-

pared to scattering from the main lobe. Since there is no scattering volume at that altitude,

the remaining two beams will yield less than the three LOS velocities necessary to estimate

wind for the given height.
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Figure 5.3 � The wind map for August 3, 2006, all three directions are shown.
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Figure 5.4 � The wind map for December 7, 2006, all three directions are shown.
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Figure 5.5 � The wind map for January 27, 2009, all three directions are shown.
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Figure 5.6 � The mean winds for the years 2005-2007, the mean zonal meridional winds
are averaged over the speci�ed heights. The mean vertical wind is averaged over all
heights in the mesosphere.
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Figure 5.7 � The mean winds for 2009, the mean zonal meridional winds are averaged
over the speci�ed heights. The mean vertical wind is averaged over all heights in the
mesosphere.
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Figure 5.8 � The mean winds for 2014, the mean zonal meridional winds are averaged
over the speci�ed heights. The mean vertical wind is averaged over all heights in the
mesosphere.
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CHAPTER 6

CONCLUSION

To �nd the spectral parameters of the Jicamarca mesospheric radar data, this thesis

built upon the generalized Gaussian spectra model introduced by Sheth et al. [2006]. In

Chapter 4, a linear constraint on the generalized Gaussian parameter exponent, p, was

introduced to limit the large variations observed in the parameter. Also an algorithm was

created to �nd double Gaussians allowing a Gaussian model with two peaks to be used.

The new model, including the occasional double Gaussian, was applied to a large data set

that spans 5 years and over 50 days of data. By analyzing this data, the causes of the

double Gaussians were investigated at the end of Chapter 4. It was found that double

Gaussians are caused by contamination from sidelobes when there is a high enough SNR so

that the signal is stronger than noise, the wind direction is such that there is a di�erence

in the Doppler velocities in the main lobe and sidelobe, and the layer is thick enough that

returns from the sidelobes are received at the same time as those from the main lobe. In

Chapter 5, a new method was developed to calculate the zonal, meridional, and vertical

wind components that can be applied to di�erent antenna con�gurations. Using the data

from the 2005-2007 experiments, the mean zonal wind was calculated and semi-annual

oscillation was shown. Additionally, the double Gaussians from Chapter 4 were shown to

sometimes cause winds shear artifacts.

The spectral parameters found in this thesis, in addition to using Doppler velocity to

estimate wind, can be used in the analysis of the causes of the radar backscatter. The
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spectral width along with returned signal power can be studied to determine whether

the radar echo was caused by partial re�ected or randomly scattered �elds [Fukao et al.,

1980; Sheth et al., 2006]. Partial re�ections are typically caused by time-invariant density

structures leading to a narrow spectral width, while turbulent scattered �elds are caused by

large deviations in the electron density gradients and lead to broader spectral widths and

higher signal power. The resulting spectral parameters and wind estimates obtained with

the methods described here will be uploaded to the CEDAR Archival Madrigal Database

for the use of other researchers and scientists.

Future work on the mesospheric part of the MST-ISR experiments may include the

analysis of spectral width and signal power correlations, as well as analysis of the ISR data.

Additionally, as mentioned in Chapter 4, the algorithm to detect the double Gaussians can

be improved as it often mistakes two overlapping Gaussians as one single Gaussian. Also, as

future MST-ISR campaigns are completed, there will be more data to process and analyze.
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APPENDIX A

MADRIGAL DATA STRUCTURE

A.1 Creating a Madrigal File

To upload data to Cedar's Madrigal database, the data needs to be formatted in a

speci�c way. A python API is available and was provided on a CentOS virtual machine.

Table A.1 � Important speci�cations for creating a Madrigal experiment.

Abbreviation Speci�cation
kinst Instrument Identi�er For Jicamarca ISR: kinst=10

modexp ID of the mode experiment Not needed
kindat ID of the data processing Code range for Jicamarca:

1001-2000: Algorithms that primarily
produces basic parameters

11001- 12000: Algorithms that primarily
produce derived parameters

parcode Parameter Code Example: Neutral Winds East: 'vne' or
1410

Error parameter codes are the negative of
the parameter code: -1410

Cedar supplies an examples and details on creating �les at

http://cedar.openmadrigal.org/ad_createFiles.html.

The code below is loads the wind estimation data in a formatted �le for uploading to

Madrigal, important parameters are referenced in Table A.1

impor t os , os . path
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impor t t ime
from t ime impor t gmtime
from c a l e n d a r impor t timegm
impor t t y p e s
impor t da te t ime
impor t numpy as numpy

from g lob impor t g lob1

impor t madr i g a l . metadata
impor t madr i g a l . c eda r

p r i n t ' Import  Done '

de f f i n d_w ind_f i l e ( yyyy ,mm, dd ) :
nyea r=i n t ( yyyy )
b a s e f o l d e r = ' /mnt/ remote2 /y%.4d/ '%(nyea r )
#ba s e f o l d e r = '/ r da t a / r ada r /MSTISR/MST_Maps/y%.4d/ '%( nyea r )
fnam=yyyy+' . '+mm+' . '+dd+' .* '
s e a r ch_pa t t e rn = 'windmap_1min_ '+fnam
f l i s t = g lob1 ( b a s e f o l d e r , s e a r ch_pa t t e rn )
p r i n t f l i s t
# When t e s t i n g out o f the s e r v e r :
f l i s t . s o r t ( )
r e t u r n b a s e f o l d e r , f l i s t

de f read_wind ( yyyy ,mm, dd ) :
mapdir , map f i l e = f i n d_w ind_f i l e ( yyyy ,mm, dd )
r f i l e = numpy . l o ad ( mapdir + map f i l e [ 0 ] )
f i n f = r f i l e [ ' f i n f ' ] [ 0 ]
UVW = r f i l e [ 'WindsUVW ' ]
acqt ime_arr= r f i l e [ ' acqt ime_arr ' ]
d_UVW=r f i l e [ ' de lta_Winds ' ]
r e t u r n f i n f , UVW, d_UVW, acqt ime_arr

de f Save_Data_Madrigal_Winds ( yyyy ,mm, dd ) :
k i n s t = 10 # in s t r umen t i d e n t i f i e r o f M i l l s t o n e H i l l ISR
modexp = None # id o f mode o f expe r imen t
k i n d a t = 1602# id o f k i nd o f data p r o c e s s i n g
#nrow = 6 # a l l data r e c o r d s have 5 2D rows
f i n f ,UVW, d_UVW, acqt ime_arr= read_wind ( yyyy ,mm, dd )
l i=numpy . where ( f i n f . h range==60.)
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u i=numpy . where ( f i n f . h range==90.)
t r y :

r a n g e i=range ( l i , u i )
excep t :

r a n g e i=range (330 ,540)
l i =330

nrow = l e n ( r a n g e i ) # a l l data r e c o r d s have n 2D rows
p r i n t nrow
p r i n t numpy . s i z e ( acqt ime_arr )

s t a r tLT=gmtime ( acqt ime_arr [ 0 ] )
s t a r tT ime = date t ime . da t e t ime ( s t a r tLT . tm_year , s t a r tLT . tm_mon

, s t a r tLT . tm_mday , s t a r tLT . tm_hour , s t a r tLT . tm_min ,
s t a r tLT . tm_sec , 0)

recTime = date t ime . t im e d e l t a (0 , 60 )
endTime = s ta r tT ime + recTime

newF i l e = ' /home/ geodatos /MSTdata/ j r o '+t ime . s t r f t i m e ( '%Y%m%d '
, f i n f . LTarr0 )+' .001 '

# c r e a t e a new Madr i ga l f i l e
cedarObj = mad r i g a l . c eda r . Mad r i g a l C e d a r F i l e ( newF i l e , True )

f o r i i n range ( numpy . s i z e ( acqt ime_arr ) ) :
s t a r tLT=gmtime ( acqt ime_arr [ i ] )
s t a r tT ime = date t ime . da t e t ime ( s t a r tLT . tm_year , s t a r tLT .

tm_mon , s t a r tLT . tm_mday , s t a r tLT . tm_hour , s t a r tLT .
tm_min , s t a r tLT . tm_sec , 0)

recTime = date t ime . t im e d e l t a (0 , 60 )
endTime = s ta r tT ime + recTime

dataRec = mad r i g a l . c eda r . Madr iga lDataRecord ( k i n s t ,
k i nda t ,
s t a r tT ime .

year ,
s t a r tT ime .

month ,
s t a r tT ime . day

,
s t a r tT ime .

hour ,
s t a r tT ime .

minute ,
s t a r tT ime .
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second ,
s t a r tT ime .

m ic ro second
/10000 ,

endTime . year ,
endTime . month

,
endTime . day ,
endTime . hour ,
endTime .

minute ,
endTime .

second ,
endTime .

m ic ro second
/10000 ,

( ' g d l a t r ' , '
g d l o n r ' ) ,

( ' range '
,1410 ,
1420 ,
1430 ,
−1410 ,
−1420 ,−1430)
,

nrow )
# se t 1d v a l u e s
dataRec . set1D ( ' g d l a t r ' , −11.95)
dataRec . set1D ( ' gd l o n r ' , −76.87)
f o r h i n range ( nrow ) :

dataRec . set2D ( ' range ' , h , f i n f . h range [ h+ l i ] )
t r y :

dataRec . set2D (1410 , h , UVW[ i , 0 , h+ l i ] )
excep t :

dataRec . set2D (1410 , h , ' m i s s i n g ' )
t r y :

dataRec . set2D (1420 , h , UVW[ i , 1 , h+ l i ] )
excep t :

dataRec . set2D (1420 , h , ' m i s s i n g ' )
t r y :

dataRec . set2D (1430 , h , UVW[ i , 2 , h+ l i ] )
excep t :

dataRec . set2D (1430 , h , ' m i s s i n g ' )
i f not (d_UVW[ i , 0 , h+ l i ] <0.01) and not ( numpy . i s n a n (
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d_UVW[ i , 0 , h+ l i ] ) ) :
dataRec . set2D (−1410 , h , d_UVW[ i , 0 , h+ l i ] )

e l s e :
dataRec . set2D (−1410 , h , ' m i s s i n g ' )

i f not (d_UVW[ i , 1 , h+ l i ] <0.01) and not ( numpy . i s n a n (
d_UVW[ i , 1 , h+ l i ] ) ) :
dataRec . set2D (−1420 , h , d_UVW[ i , 1 , h+ l i ] )

e l s e :
dataRec . set2D (−1420 , h , ' m i s s i n g ' )

i f not (d_UVW[ i , 2 , h+ l i ] <0.01) and not ( numpy . i s n a n (
d_UVW[ i , 2 , h+ l i ] ) ) :
dataRec . set2D (−1430 , h , d_UVW[ i , 2 , h+ l i ] )

e l s e :
dataRec . set2D (−1430 , h , ' m i s s i n g ' )

# append new data r e c o r d
cedarObj . append ( dataRec )

# wr i t e new f i l e
cedarObj . w r i t e ( )

# next , use the ceda r . Ca ta l ogHeade rC r ea to r c l a s s to add
c a t a l o g and heade r

catHeadObj = mad r i g a l . c eda r . Ca ta l ogHeade rC r ea to r ( n ewF i l e )
catHeadObj . c r e a t eCa t a l o g ( p r i n c i p l e I n v e s t i g a t o r="Erhan Kudeki ,

 Ge ra l d  Lehmacher " , s c iRemarks="Test  data  on l y  − do not  
use " )

catHeadObj . c r e a t eHeade r ( a n a l y s t=" J e n n i f e r  Smith" , comments=" 
" )

catHeadObj . c r e a t eCa t a l o g ( expPurpose=" C o l l e c t i o n  o f  
a tmosphe r i c  and i o n o s p h e r i c  b a c k s c a t t e r  w i th  the  J i camarca
 Radio  Obse r va to r y  to  s tudy  winds ,  t u r b u l e n c e  i n  
mesosphere ,  plasma i n s t a b i l i t i e s  i n  the  e l e c t r o j e t  r eg i on ,
 plasma d r i f t s  and i n s t a b i l i t i e s  i n  the  150−km reg i on ,  and
 i n c o h e r e n t  b a c k s c a t t e r  and i n s t a b i l i t i e s  i n  the  F r e g i o n  
s imu l t a n e o u s l y  " )

catHeadObj . c r e a t eCa t a l o g ( expMode=" I n t e r l e a v e d  64−baud 
complementary  code  (MST) ,  3−baud Barke r  code  ( ISR ) ,  and 
uncoded p u l s e s  (EEJ ) .    For  d e t a i l s  s e e :  \n Akg i ray ,  A .   M
.  S .  Thes i s ,  2007 .  U n i v e r s i t y  o f  I l l i n o i s ,  Urbana−
Champaign \n Smith ,  J . ,   M.  S .  Thes i s ,  2014 .  U n i v e r s i t y  o f
 I l l i n o i s ,  Urbana−Champaign" )

catHeadObj . c r e a t eCa t a l o g ( c o r r e l a t i v e E x p=" Ionosonde " )
catHeadObj . w r i t e ( )
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p r i n t ' done '
r e t u r n

Save_Data_Madrigal_Winds ( ' 2009 ' , ' 01 ' , ' 26 ' )

A.1.1 Creating a New Parameter Code

If an existing parameter code does not properly describe the parameter to be saved,

a new parameter code can be added to the parcods.tab �le. Existing parameters can be

found in http://cedar.openmadrigal.org/cedarFormat.pdf and in the parcods.tab �le. Each

new parameter will need to have a unique integer identi�cation number and mnemonic.

A.2 Creating an Experiment in Madrigal

From a �le or directory of �les, create an experiment with only one command from

the command line as: /usr/local/www/cgi-bin/madrigal/createExpWithDir.py

--madPath=/home/geodatos/MSTdata --expTitle="MST Winds" --permission=0

--fileDesc="".

For more information see: http://cedar.openmadrigal.org/ad_createExp.html.

An experiment will be created at: /usr/local/madrigal/experiments/ .

Then, to view the data on the web, run: UpdateMaster.

A.2.1 Adding a New Experiment

If the experiment had not been created in Madrigal before, the �le expPlot.txt will need

to be edited to create the new experiment. There is an example on how to do this on the

top of the �le.
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A.3 Adding and Replacing Files an in Experiment

Files can be added to the experiment using addFileToExp.py and �les already in the

experiment can be changed/replaced using updateFileInExp.py. For more information see:

http://cedar.openmadrigal.org/ad_createExp.html#addFileToExp.
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APPENDIX B

FITTING AND DOUBLE GAUSSIAN

DETECTION CODE

The following code contains de�nitions that are used by the main �tting function.
It uses the following standard python modules: numpy, pylab, sys, os, scipy, time,
and calendar. There are two nonstandard modules, leastsqbound, which is available at
https://github.com/jjhelmus/leastsqbound-scipy, and the uncertainties package
(http://pythonhosted.org/uncertainties/).

impor t t ime
impor t c a l e n d a r
from py l ab impor t *

impor t py l ab as py
impor t numpy
impor t sys , os
from s c i p y . o p t im i z e impor t l e a s t s q
from l e a s t s qbound impor t l e a s t s qbound
impor t u n c e r t a i n t i e s as u
from u n c e r t a i n t i e s impor t unumpy

de f p e v a l ( x , p ) :#the G e n e r a l i z e d Gaus s i an model
r e t u r n p [ 1 ] * py . exp(−abs ( ( x−p [ 2 ] ) /p [ 3 ] ) **p [ 4 ] )+p [ 0 ]

de f doub_peval ( x , p ) :# the G e n e r a l i z e d Gaus s i an model f o r two
Gaus s i an
r e t u r n p [ 1 ] * py . exp(−abs ( ( x−p [ 3 ] ) /( p [ 5 ] ) ) **( p [ 7 ] ) )+p [ 2 ] * py .

exp(−abs ( ( x−p [ 4 ] ) /( p [ 6 ] ) ) **( p [ 8 ] ) )+p [ 0 ]

de f both_combined (p , x , n , nGauss ) :#combines models f o r group
f i t t i n g
l =0
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pev=py . z e r o s ( [ n , 6 4 ] )
f o r j i n range (0 , n ) :#each h e i g h t to be f i t t e d

gpow=p[−3]+p [−2]*( j−n /2 . 0 )+p [−1]*( j−n /2 . 0 ) **2
i f nGauss [ j ]==1:#one peak

i f py . any ( py . g r e a t e r_equa l ( nGauss , 2 ) ) :
gpow2=p[−6]+p [−5]*( j−n /2 . 0 )+p [−4]*( j−n /2 . 0 ) **2

v=p [ l +2]
i f ' v l ' i n l o c a l s ( ) :

i f abs ( v−v l )>=abs ( v−v r ) :
gpow_s=gpow

e l s e :
gpow_s=gpow2

e l s e :
gpow_s=gpow

pg=[p [ l ] , p [ l +1] , v , p [ l +3] , gpow_s ]#i n i t i a l gue s s
pev [ j , : ]= pe v a l ( x , pg )
l+=4

i f nGauss [ j ]==2:#two peaks
gpow2=p[−6]+p [−5]*( j−n /2 . 0 )+p [−4]*( j−n /2 . 0 ) **2
v l=p [ l +3]
v r=p [ l +4]
i f ' v ' i n l o c a l s ( ) :

i f abs ( v−v l )>=abs ( v−v r ) : #pr e c e d i n g g au s s i a n on
the l e f t
gpowl=gpow
gpowr=gpow2

e l s e :
gpowl=gpow2
gpowr=gpow

e l s e :
gpowl=gpow
gpowr=gpow2

pg=[p [ l ] , p [ l +1] , p [ l +2] , v l , vr , p [ l +5] , p [ l +6] , gpowl ,
gpowr ]#i n i t a i a l gue s s

pev [ j , : ]= doub_peval ( x , pg )#peva l
l+=7

pev=py . r e shape ( pev , n*64)
r e t u r n pev

de f r e s i d u a l s_ l o g (p , y , x , n , nGauss ) : #f o r g roups o f s i n g l e and
doub l e Gau s s i an s
e r r=py . l o g ( py . a r r a y ( y ) )−py . l o g ( py . a r r a y ( both_combined (p , x , n ,

nGauss ) ) )
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r e t u r n e r r

de f re s idua l s_log_DGs (p , y , x ) : #f o r s i n g l e doub l e Gaus s i an
e r r=py . l o g ( py . a r r a y ( y ) )−py . l o g ( py . a r r a y ( doub_peval ( x , p ) ) )
r e t u r n e r r

de f makeJacobian (p , x , l , n ) :#c r e a t e s the Jacob i an
gpow=p[−3]+p [−2]*( l−n /2 . 0 )+p [−1]*( l−n /2 . 0 ) **2
JN=py . ones ( py . shape ( x ) )
JA=py . exp(−abs ( ( x−p [ 2 ] ) /p [ 3 ] ) **gpow )
Jv=p [ 1 ] * JA*gpow* abs ( ( x−p [ 2 ] ) /p [ 3 ] ) **gpow*1/( x−p [ 2 ] )
Jw=p [ 1 ] * JA*gpow*( abs ( x−p [ 2 ] ) /p [ 3 ] ) **gpow*(1/p [ 3 ] )
Jp=−p [ 1 ] * JA*( abs ( x−p [ 2 ] ) /p [ 3 ] ) **gpow* l o g ( abs ( x−p [ 2 ] ) /p [ 3 ] )
Jp1=−(l−n /2 . 0 ) *p [ 1 ] * JA*( abs ( x−p [ 2 ] ) /p [ 3 ] ) **gpow* l o g ( abs ( x−p

[ 2 ] ) /p [ 3 ] )
Jp2=−(l−n /2 . 0 ) **2 .* p [ 1 ] * JA*( abs ( x−p [ 2 ] ) /p [ 3 ] ) **gpow* l o g ( abs ( x
−p [ 2 ] ) /p [ 3 ] )

J=py . a r r a y ( [ JN , JA , Jv , Jw , Jp , Jp1 , Jp2 ] ) *1/( p [ 1 ] * JA+p [ 0 ] )
r e t u r n J

de f Ca l cE r r o r (p , x , h , n ) :#c a l c u l a t e s e r r o r u s i n g Jacob i an
Jac=makeJacobian (p , x , h , n )
JT=Jac . t r a n s p o s e ( )
i f not ( any ( i s n a n (JT) ) ) :

cov=p inv ( dot ( Jac , JT) )#c a l c u l a t e c o v a r i a n c e mat r i x
e l s e :

cov=(empty ( [ 7 , 7 ] ) ) *NaN
r e t u r n py . s q r t ( py . d i ag ( cov ) )

de f d e t e rm i n e I n i t i a l G u e s s ( x , y , n o i s e f ,N) :#dete rm ine i n i t i a l s igma
f o r s i n g l e peak
v t=sum( x *( y ) ) /sum( y )
std_=py . s q r t ( abs ( sum( x **2*( y−n o i s e f ) ) /sum( y−n o i s e f )−v t **2) )
s tdn=Es tNo i s eS td ( y−n o i s e f ,N)
i f py . sum( py . g r e a t e r ( y−n o i s e f , 4 . 0 * s tdn ) ) <5:#f o r narrow peaks

std_=3.0
i f std_ <0.8:#check l owe r bound

std_=0.81
i f std_>x .max ( ) :#check upper bound

std_=x .max ( )−3
r e t u r n std_

de f Ca l cSpec t r a lW id th ( x , fp , E r r ) :#c a l c u l a t e s p e c t r a l w idth and
e r r o r p r opaga t i on
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A=u . u f l o a t ( fp [ 1 ] , E r r [ 1 ] )
V=u . u f l o a t ( fp [ 2 ] , E r r [ 2 ] )
S=u . u f l o a t ( fp [ 3 ] , E r r [ 3 ] )
P=u . u f l o a t ( fp [ 4 ] , E r r [ 4 ] )
xu=unumpy . u a r r a y ( x , ones ( s i z e ( x ) ) )
f i t _ e r r=A*unumpy . exp(−abs ( ( xu−V) /S) **P)
Pow=sum( f i t _ e r r )
sw2=1/Pow*sum ( ( xu−V) **2* f i t _ e r r )
sw=sum(unumpy . s q r t ( sw2 ) )
r e t u r n sw . nomina l_value , sw . std_dev

de f sub_de tec tGaus s i an s ( x , y , n o i s e f ,N) :#de t e c t s
s i g=y−n o i s e f #sub t r a c t n o i s e
peak=s i g . max ( ) #peak l e v e l
peak_index=s i g . argmax ( ) #peak l o c a t i o n
A, A2=py .NaN, py .NaN
v , v2=py .NaN, py .NaN
std , s td2=py .NaN, py .NaN
stdn=Es tNo i s eS td ( s i g ,N) #es t ima t e n o i s e s t anda rd d e v i a t i o n
i f s tdn !=0:

t h r e s h o l d 1=max (4 . 5* stdn , 0 . 2 * peak )
e l s e :

t h r e s h o l d 1 =0.1* peak
nGauss=1
SNR = 10*py . l og10 ( py . mean ( y ) / n o i s e f −1)
spcn=s i g /peak
b=sum( py . a b s o l u t e ( [ q − spcn [ c − 1 ] f o r c , q i n enumerate (

spcn ) ] [ 1 : ] ) )
f l a g=None
A=0.8* peak
v=sum( x*y ) /sum( y )
i f peak>4* s tdn and b<10:

l i s t 1 = py . nonze ro ( range (0 ,N) *py . r i n t ( s i g >t h r e s h o l d 1 ) ) [ 0 ]
#cut out data be low t h r e s h o l d

i f peak_index==0:
l i s t 1=py . i n s e r t ( l i s t 1 , 0 , 0 )

group_1=py . a r r a y_ s p l i t ( l i s t 1 , py . where ( py . d i f f ( l i s t 1 , )> 2)
[0 ]+1)#s p l i t i n s u b l i s t

len_g=[]
i f py . shape ( group_1 ) [0] >1 and SNR>−4:

f o r i i n range (0 , py . shape ( group_1 ) [ 0 ] ) :
group_1 [ i ]= l i s t ( group_1 [ i ] )
len_g+=[py . s i z e ( group_1 [ i ] ) ]

q = [ q f o r q i n group_1 i f peak_index i n q ] [ 0 ]
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main_gauss ian=group_1 [ group_1 . i nd e x ( q ) ]
v=sum( x [ main_gauss ian ] * ( s i g [ main_gauss ian ] ) ) /sum( s i g [

main_gauss ian ] )
group_1 . remove ( main_gauss ian )#remove main peak
len_g . remove ( py . s i z e ( main_gauss ian ) )
s t d=py . s i z e ( main_gauss ian ) /2 .0* x . max ( ) /(N/2 . 0 )
temp=s i g
temp [ main_gauss ian ]=0
i f py . any ( py . g r e a t e r_equa l ( len_g , 4 ) ) :

nGauss=2
A2=0.8* temp .max ( )
i nd=py . argmax ( len_g )
v2=sum( x [ group_1 [ i nd ] ] * ( s i g [ group_1 [ i nd ] ] ) ) /sum(

s i g [ group_1 [ i nd ] ] )
s td2=py . s i z e ( s i g [ group_1 [ i nd ] ] ) /2 .0* x . max ( ) /(N

/2 . 0 )
e l i f abs ( x [ peak_index ]−v )>=x .max ( ) /5 .0 and py . s i z e (

main_gauss ian )>=5:#skew−
nGauss=2
v2=v
v=x [ peak_index ]
A2=0.6*A
f l a g=1
s td2=(x [ peak_index ]−v )
s t d=std2

e l i f temp .max ( )>8* s tdn :
nGauss=2
A2=0.8* temp .max ( )
i nd=py . argmax ( len_g )
v2=sum( x [ group_1 [ i nd ] ] * ( s i g [ group_1 [ i nd ] ] ) ) /sum(

s i g [ group_1 [ i nd ] ] )
s td2=2
f l a g=1

e l s e :
nGauss=1.0

e l i f py . s i z e ( group_1 [ 0 ] ) >=2: #one peak
nGauss=1
group_1 [0]= l i s t ( group_1 [ 0 ] )
v=sum( x [ group_1 [ 0 ] ] * ( s i g [ group_1 [ 0 ] ] ) ) /sum( s i g [

group_1 [ 0 ] ] )
s t d=py . s i z e ( group_1 [ 0 ] ) /2* x . max ( ) /(N/2 . 0 )
i f abs ( x [ peak_index ]−v )>=x .max ( ) /5 .0 and py . s i z e (

group_1 [ 0 ] ) >=5:
nGuass=2
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v2=v
v=x [ peak_index ]
A2=0.6*A
std2=(x [ peak_index ]−v )
s t d=std2
f l a g=1

e l s e : #one s k i n n y l a r g e peak
nGauss=1
s td=2
v=x [ peak_index ]

e l s e :
nGauss=1

r e t u r n nGauss ,A , v , A2 , v2 , std , std2 , f l a g

de f d e t e c tGau s s i a n s ( x , y , n o i s e f ,N) :
nGuass=1
A, Ar , A2=py .NaN, py .NaN, py .NaN
v , vr , v2=py .NaN, py .NaN, py .NaN
std , s t d r , s td2=py .NaN, py .NaN, py .NaN
nGauss ,A , v , A2 , v2 , std , std2 , f l a g=sub_detec tGaus s i an s ( x , y , n o i s e f

,N)
i f not ( py . i s n a n ( v2 ) ) :#when t h e r e a r e two g a u s s i a n s

i f v<=v2 :
v r=v2
Ar=A2
s t d r=s td2

e l s e :
v r=v
v=v2
Ar=A
A=A2
s t d r=s td
s td=std2

i f nGauss==2 and f l a g !=None :
#s t d l , s t d r=Doub I n i t i a l G u e s s ( x , y , n o i s e f ,N)
p0=[ n o i s e f ,A , Ar , v , vr , s td , s t d r , 1 . 8 , 1 . 8 ]
p_f i t=l e a s t s q ( res idua l s_log_DGs , p0 , a r g s=(y , x ) )
nGauss , A2 , v2 , Ar2 , vr2 , std2 , s td r2 , f l a g=sub_detec tGaus s i an s (

x , doub_peval ( x , p_f i t [ 0 ] ) , p_f i t [ 0 ] [ 0 ] ,N)
r e t u r n nGauss ,A , v , Ar , vr , s td , s t d r

de f Es tNo i s eS td ( spc_noise ,N) :#Est imate n o i s e s t anda rd d e v i a t i o n
c =[]
l n=min ( spc_no i se )
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f o r k i n range (0 ,N) :
i f spc_no i se [ k]>abs ( l n ) :

c+=[k ]
spc_noise_s=py . d e l e t e ( spc_noise , c )
s tdd=py . s t d ( spc_noise_s )
r e t u r n s tdd

de f CheckNo i s eLeve l ( no i s e , spc ) :#checks the n o i s e l e v e l i s
a c c u r a t e
no ise_c=mean ( spc )
i f noise_c >( n o i s e +100) :

r e t u r n no ise_c
e l s e :

r e t u r n n o i s e

The following is the main �tting function that calls all the preceding de�nitions, some
of the code for loading and saving data is not shown. Comments are placed to show where
data is loaded and saved.

de f save_fits_and_vel_map ( yyyy ,mm, dd ) :#main f i t t i n g code

#Not Shown : l o a d i n g 1−min i n t e g r a t e d s p e c t r a f i l e ( f i n f , spc , n o i s e
)

x = f i n f . v e l_a r r
p l s q s=a r r a y ( z e r o s ( [ f i n f . num_chan , f i n f . num_hei , f i n f . nFFT ] ) )
#p l s q s 1=a r r a y ( z e r o s ( [ f i n f . num_chan , f i n f . num_hei , f i n f . nFFT ] ) )
f i t p a r am s=(empty ( [ f i n f . num_chan , f i n f . num_hei , 5 ] ) ) *NaN
fitparams_2ndG=py . a r r a y ( py . z e r o s ( [ f i n f . num_chan , f i n f . num_hei

, 5 ] ) ) *NaN
dp=(empty ( [ f i n f . num_chan , f i n f . num_hei , 7 ] ) ) *NaN

ch i s q=a r r a y ( z e r o s ( [ f i n f . num_chan , f i n f . num_hei ] ) ) *NaN
sw id th=a r r a y ( z e r o s ( [ f i n f . num_chan , f i n f . num_hei ] ) *NaN)
de l_sw idth=a r r a y ( z e r o s ( [ f i n f . num_chan , f i n f . num_hei ] ) *NaN)
f i t_ n o i s e=a r r a y ( z e r o s ( [ f i n f . num_chan , f i n f . num_hei ] ) *NaN)

npeaks=py . a r r a y ( py . z e r o s ( [ f i n f . num_chan , f i n f . num_hei ] ) ) *NaN
A=py . a r r a y ( py . z e r o s ( [ f i n f . num_chan , f i n f . num_hei ] ) )
v=py . a r r a y ( py . z e r o s ( [ f i n f . num_chan , f i n f . num_hei ] ) )
s t d=py . a r r a y ( py . z e r o s ( [ f i n f . num_chan , f i n f . num_hei ] ) )
Ar=py . a r r a y ( py . z e r o s ( [ f i n f . num_chan , f i n f . num_hei ] ) )
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v r=py . a r r a y ( py . z e r o s ( [ f i n f . num_chan , f i n f . num_hei ] ) )
s t d r=py . a r r a y ( py . z e r o s ( [ f i n f . num_chan , f i n f . num_hei ] ) )
l i=py . f i n d ( f i n f . h range==60.)
u i=py . f i n d ( f i n f . h range==90.)
t r y :

r a n g e i=range ( l i , u i )
excep t :

r a n g e i=range (335 ,538)
u i =538

warn ing s . f i l t e r w a r n i n g s ( " i g n o r e " )

f o r ch i n range ( f i n f . num_chan) :
f i t_ h e i g h t s =[ ]
argument=spc . mean (2 ) [ ch ] / n o i s e [ ch ]−1
i f py . any ( argument<=0) :

b=py . f i n d ( argument<=0)
argument [ b]=py .NaN

SNR = py . around (10* py . l og10 ( argument ) , d e c ima l s =3)
no i s e 1=CheckNo i s eLeve l ( n o i s e [ ch ] , spc [ ch , 3 3 5 : 3 3 7 , : ] )
n o i s e f=no i s e [ ch ] / ( f i n f . nFFT* f i n f . num_intg )
f o r j i n r a n g e i :

spc_no i se=spc [ ch , j , : ] − no i s e 1
s tdd=Es tNo i s eS td ( spc_noise , f i n f . nFFT)
i f ( spc_no i se . max ( )>4* s tdd and SNR[ j ]>−15) : #do

f i t t i n g s
f i t_ h e i g h t s+=[ j ]
#npeaks [ ch , j ] ,A [ ch , j ] , v [ ch , j ]= d e t e c tGau s s i a n s ( x ,

spc [ ch , j , : ] , no i s e1 , 3 , f i n f . nFFT)

group_he ight s = py . a r r a y_ s p l i t ( py . a r r a y ( f i t_ h e i g h t s ) , py .
where ( py . d i f f ( py . a r r a y ( f i t_ h e i g h t s ) , ) !=1) [0 ]+1)#
s e p e r a t e s a r r a y i n t o s e q u e n t i a l g roups

num_g=py . s i z e ( g roup_he ight s )
nb=( n o i s e f −0.3 , n o i s e f +0.4)
wb=(0.1 , x . max ( ) )
vb=(x . min ( ) , x . max ( ) )
pb=(0 ,8)
i f num_g<100 and num_g != 0 :

i f py . s i z e ( py . shape ( g roup_he ight s ) ) != 1 :
num_g=1

f o r k i n range (0 ,num_g+100) : # f o r each group
i f k>=num_g :

break

n=py . s i z e ( g roup_he ight s [ k ] ) #number o f
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c o n s e c a t i v e h e i g h t s
i f n>20 and n<70 and not ( py . any ( py .

g r e a t e r_equa l ( g roup_he ight s [ k ] , u i −5) ) ) :
num_g+=1
group_he ight s . ex tend ( a r r a y ( [ g roup_he ight s [ k

] [ 1 4 : ] ] ) )
g roup_he ight s [ k]= group_he ight s [ k ] [ 0 : 1 4 ]
n=py . s i z e ( g roup_he ight s [ k ] )

i f n != 1 and n<70 and not ( py . any ( py .
g r e a t e r_equa l ( g roup_he ight s [ k ] , u i −5) ) ) : #check
tha t i t i s l o n g e r than one
p0=[]
bounds =[ ]
y_datac=z e r o s ( [ n , f i n f . nFFT ] )
f o r h i n range (0 , n ) : #f o r each h e i g h t

h i=group_he ight s [ k ] [ h ]
y_data=spc [ ch , h i , : ] / ( f i n f . nFFT* f i n f .

num_intg )
y_datac [ h , : ]= y_data
npeaks [ ch , h i ] ,A [ ch , h i ] , v [ ch , h i ] , Ar [ ch , h i

] , v r [ ch , h i ] , s t d [ ch , h i ] , s t d r [ ch , h i ]=
d e t e c tGau s s i a n s ( x , y_data , n o i s e f , f i n f .
nFFT)

i f npeaks [ ch , h i ]==1:
i f i s n a n ( s t d [ ch , h i ] ) :

std_=d e t e rm i n e I n i t i a l G u e s s ( x ,
y_data , n o i s e f , f i n f . nFFT)

e l s e :
std_=s td [ ch , h i ]

p0 . append ( n o i s e f )
p0 . append (A[ ch , h i ] )
p0 . append ( v [ ch , h i ] )
p0 . append ( std_ )
Ab=(0.01 , 10 .0*A[ ch , h i ] )
bounds . append ( nb )
bounds . append (Ab)
bounds . append ( vb )
bounds . append (wb)

i f npeaks [ ch , h i ]==2:
bounds . append ( nb )
p0 . append ( n o i s e f )
p0 . append (A[ ch , h i ] )
p0 . append ( Ar [ ch , h i ] )
p0 . append ( v [ ch , h i ] )
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p0 . append ( v r [ ch , h i ] )
Abl =(0.01 , 10 .0*A[ ch , h i ] )
Abr =(0.01 , 10 .0*Ar [ ch , h i ] )
bounds . append ( Abl )
bounds . append ( Abr )
bounds . append ( vb )
bounds . append ( vb )
#s t d l , s t d r=Doub I n i t i a l G u e s s ( x , y_data ,

n o i s e f , f i n f . nFFT)
p0 . append ( s t d [ ch , h i ] )
p0 . append ( s t d r [ ch , h i ] )
bounds . append (wb)
bounds . append (wb)

i f py . any ( npeaks [ ch , l i s t ( g roup_he ight s [ k ] )
]>=2) :
p0 . append (2 )
bounds . append ( pb )
p0 . append ( 0 . 1 )
bounds . append ((−5.0 ,10) )
p0 . append ( 0 . 0 1 )
bounds . append ((−2.0 ,10) )

p0 . append (2 )
bounds . append ( pb )
p0 . append ( 0 . 0 1 )
bounds . append ((−5.0 ,10) )
p0 . append ( 0 . 0 1 )
bounds . append ((−2.0 ,10) )
ydatac=py . r e shape ( y_datac , n* f i n f . nFFT)

p l s q= l e a s t s qbound ( r e s i d u a l s_ l o g , p0 , a r g s=(
ydatac , x , n , npeaks [ ch , l i s t ( g roup_he ight s [ k
] ) ] ) , bounds=bounds )

f i t _ l i n e s=both_combined ( p l s q [ 0 ] , x , n , npeaks [ ch
, l i s t ( g roup_he ight s [ k ] ) ] )

f i t _ l i n e s=py . r e shape ( f i t _ l i n e s , [ n , f i n f . nFFT ] )
r e s_e r r=r e s i d u a l s_ l o g ( p l s q [ 0 ] , ydatac , x , n ,

npeaks [ ch , l i s t ( g roup_he ight s [ k ] ) ] )
r e s_e r r=py . r e shape ( r e s_er r , [ n , f i n f . nFFT ] )
l=0
f o r h i n range (0 , n ) :

a=group_he ight s [ k ] [ h ]
gpow=p l s q [0] [−3]+ p l s q [ 0 ] [ −2 ]* ( h−n /2 . 0 )+

p l s q [ 0 ] [ −1 ]* ( h−n /2 . 0 ) **2 .0
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t r y :
gpow2=p l s q [0] [−6]+ p l s q [ 0 ] [ −5 ]* ( h−n

/2 . 0 )+p l s q [ 0 ] [ −4 ]* ( h−n /2 . 0 ) **2 .0
excep t :

gpow2=NaN
i f npeaks [ ch , a ]==1:

v_s=p l s q [ 0 ] [ l +2]
i f ' v_dl ' i n l o c a l s ( ) :

i f abs ( v_s−v_dl )>=abs ( v_s−v_dr ) :
gpow_s=gpow
p_f i t =[ p l s q [ 0 ] [ l ] , p l s q [ 0 ] [ l

+1] , v_s , p l s q [ 0 ] [ l +3] , p l s q
[ 0 ] [ −3 ] , p l s q [ 0 ] [ −2 ] , p l s q
[ 0 ] [ − 1 ] ]

e l s e :
gpow_s=gpow2
p_f i t =[ p l s q [ 0 ] [ l ] , p l s q [ 0 ] [ l

+1] , v_s , p l s q [ 0 ] [ l +3] , p l s q
[ 0 ] [ −6 ] , p l s q [ 0 ] [ −5 ] , p l s q
[ 0 ] [ − 4 ] ]

e l s e :
gpow_s=gpow
p_f i t =[ p l s q [ 0 ] [ l ] , p l s q [ 0 ] [ l +1] ,

v_s , p l s q [ 0 ] [ l +3] , p l s q [ 0 ] [ −3 ] ,
p l s q [ 0 ] [ −2 ] , p l s q [ 0 ] [ − 1 ] ]

f i t p a r am s [ ch , a , : ] = [ p l s q [ 0 ] [ l ] , p l s q
[ 0 ] [ l +1] , v_s , p l s q [ 0 ] [ l +3] , gpow_s ]

l+=4
i f npeaks [ ch , a ]==2:

v_dl=p l s q [ 0 ] [ l +3]
v_dr=p l s q [ 0 ] [ l +4]
A_dl=p l s q [ 0 ] [ l +1]
A_dr=p l s q [ 0 ] [ l +2]
i f ' v_s ' i n l o c a l s ( ) :

i f abs ( v_s−v_dl )>=abs ( v_s−v_dr ) :
#pr e c e d i n g g au s s i a n on the
l e f t
gpowl=gpow
pl1 , p l2 , p l 3=p l s q [ 0 ] [ −3 ] , p l s q

[ 0 ] [ −2 ] , p l s q [ 0 ] [ −1 ]
gpowr=gpow2
pr1 , pr2 , pr3=p l s q [ 0 ] [ −6 ] , p l s q

[ 0 ] [ −5 ] , p l s q [ 0 ] [ −4 ]
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e l s e :
gpowl=gpow2
pl1 , p l2 , p l 3=p l s q [ 0 ] [ −6 ] , p l s q

[ 0 ] [ −5 ] , p l s q [ 0 ] [ −4 ]
gpowr=gpow
pr1 , pr2 , pr3=p l s q [ 0 ] [ −3 ] , p l s q

[ 0 ] [ −2 ] , p l s q [ 0 ] [ −1 ]
e l s e :

gpowl=gpow
pl1 , p l2 , p l 3=p l s q [ 0 ] [ −3 ] , p l s q

[ 0 ] [ −2 ] , p l s q [ 0 ] [ −1 ]
gpowr=gpow2
pr1 , pr2 , pr3=p l s q [ 0 ] [ −6 ] , p l s q

[ 0 ] [ −5 ] , p l s q [ 0 ] [ −4 ]
i f A_dl>=A_dr :

f i t p a r am s [ ch , a , : ] = [ p l s q [ 0 ] [ l ] ,
A_dl , v_dl , p l s q [ 0 ] [ l +5] , gpowl ]

p_f i t =[ p l s q [ 0 ] [ l ] , A_dl , v_dl , p l s q
[ 0 ] [ l +5] , p l1 , p l2 , p l 3 ]

f i tparams_2ndG [ ch , a , : ] = [ p l s q [ 0 ] [ l
] , A_dr , v_dr , p l s q [ 0 ] [ l +6] , gpowr
]

e l s e :
f i t p a r am s [ ch , a , : ] = [ p l s q [ 0 ] [ l ] ,

A_dr , v_dr , p l s q [ 0 ] [ l +6] , gpowr ]
p_f i t =[ p l s q [ 0 ] [ l ] , A_dr , v_dr , p l s q

[ 0 ] [ l +5] , pr1 , pr2 , pr3 ]
f i tparams_2ndG [ ch , a , : ] = [ p l s q [ 0 ] [ l

] , A_dl , v_dl , p l s q [ 0 ] [ l +5] , gpowl
]

l+=7
i f not ( py . any ( py . i s n a n ( p_f i t ) ) ) :

dp [ ch , a , : ]= Ca l cE r r o r ( p_f i t , x , h , n )
#de l v [ ch , a]=dp [ a , : ] [ 2 ]

p l s q s [ ch , a , : ]= f i t _ l i n e s [ h ] * ( f i n f . nFFT*
f i n f . num_intg )

i f not ( py . any ( py . i s n a n ( dp [ ch , a , : ] ) ) ) :
sw id th [ ch , a ] , de l_sw idth [ ch , a]=

Ca l cSpec t r a lW id th ( x , p_f i t , dp [ ch , a
, : ] )

c h i s q [ ch , a]=py . around ( f i n f . num_intg /( f i n f
. nFFT−py . s i z e ( f i t p a r am s [ ch , a , : ] ) −1.0)*
py . norm ( r e s_e r r [ h ] ) **2 , d e c ima l s =3)

f i t_ n o i s e [ ch , g roup_he ight s [ k ] [ 0 : n ] ]=mean (
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f i t p a r am s [ ch , g roup_he ight s [ k ] [ 0 : n ] , 0 ] ) *(
f i n f . nFFT* f i n f . num_intg )

i f ' v_dl ' i n l o c a l s ( ) :
d e l v_dl

#Not Shown : f o rma t t i n g and s a v i n g pa ramete r s to f i l e
r e t u r n

All of the previous python code could easily be included into a module and called using:
save_�ts_and_vel_map('yyyy','mm','dd').
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APPENDIX C

WIND ESTIMATION CODE

The following code contains the wind estimation code and associated de�nitions. It
uses the following standard python modules: numpy, pylab, and time. There is only one
nonstandard module, radarpack, which is used to load the Jicamarca unit vectors. This
code could easily be included into a module and called using:

Calc_Winds('yyyy','mm','dd').

import matp lo t l i b
import pylab as py
import time
from radarpack import radarbeam as rb

def beam_direct ions ( ) : #load the beam d i r e c t i o n s

#Direc t ion Cosines

#North−−channel 3

Tx_N=−0.0078125
Ty_N=0.029296875
#East−−channel 0

Tx_E=0.01171875
Ty_E=0.056640625
#West−−channel 1

Tx_W=−0.05859375
Ty_W=−0.02734375
#South−−channel 2

Tx_S=0.041015625
Ty_S=−0.041015625

Tx=py . array ( [Tx_E,Tx_W,Tx_S,Tx_N] )#Theta X

Ty=py . array ( [Ty_E,Ty_W,Ty_S,Ty_N] )#Theta Y

Tz=py . sq r t (1−(Tx**2+Ty**2) )# Theta Z

j r o=rb . radar spec s ( l o c a t i o n="JRO" )
A=py . array ( [ j r o . east0 , j r o . north0 , j r o . z en i th0 ] )# JRO ENU uni t
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v e c t o r s

B=ze ro s ( [ 4 , 3 ] )
for k in range (0 , 4 ) :

B[ k , : ]= dot (A, (Tx [ k ]* j r o . ux+Ty [ k ]* j r o . uy+Tz [ k ]* j r o . uo ) )#
ENU dot beam vec to r

return B

def Calc_Winds ( yyyy ,mm, dd) : #main func t i on to c a l c u l a t e the wind

B=beam_direct ions ( )

f i n f , acqtime_arr , ve l , e r r o r= read_vel ( yyyy ,mm, dd)#read the

v e l o c i t y from a f i l e

del_vel=e r r o r [ : , : , : , 2 ] #v e l o c i t y measurement error

nm, nch , nh=shape ( ve l ) #number o f minutes , number o f channels ,

number o f h e i g h t s

UVW=array ( empty ( [nm, 3 , nh ] ) *NaN) #i n i t i a l i z e winds array

delta_UVW=array ( empty ( [nm, 3 , nh ] ) *NaN)#i n i t i a l i z e measurement

error array

for m in range (0 ,nm) : #for each minute

for h in range (335 ,538) : #for each h e i g h t

num_of_vel=nansum( ve l [m, : , h ] / ve l [m, : , h ] ) #determine

number o f v e l o c i t i e s

i f num_of_vel==3:
v_ch=f i nd ( ( ve l [m, : , h ] / ve l [m, : , h ] )==1) #f ind the 3

d i r e c t i o n s

UVW[m, : , h]=py . dot (py . inv (B[ v_ch ] ) , v e l [m, v_ch , h ] )
delta_UVW[m, : , h]=py . dot (py . inv (B[ v_ch ] ) , de l_vel [m

, v_ch , h ] )
i f num_of_vel==4:

UVW[m, : , h]=py . dot (py . pinv (B) , v e l [m, : , h ] )
delta_UVW[m, : , h]=py . dot (py . pinv (B) , de l_vel [m, : , h

] )

b a s e f o l d e r = ' / rdata / radar /MSTISR/MST_Maps/y%.4d/ '%( i n t ( yyyy )
)

outfname = 'windmap_1min_ '+time . s t r f t ime ( '%Y.%m.%d.%H.%M.%S ' ,
f i n f . LTarr0 )

print ' sav ing :  '+outfname
numpy . savez_compressed ( ba s e f o l d e r+outfname , f i n f =[ f i n f ] ,
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WindsUVW=UVW, delta_Winds=delta_UVW, acqtime_arr=acqtime_arr
)

return
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APPENDIX D

FILE LOCATION

The �les in Figure D.1 are located on the server, remote2, in research folder of the radar
account (radar@remote2:~/research).

Figure D.1 � The �le tree showing the �les and their location.

The �les for processing are located in the notebooks folder and the �les for the web
page are located in the MST folder with javascript �les located in the htmlutils folder.
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