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ABSTRACT

In a recent work it has been shown that importance sampling can be avoided
in particle filter through an innovation structure inspired by traditional nonlinear
filtering combined with optimal control and mean-field game formalisms. The
resulting algorithm is referred to as feedback particle filter (FPF)

The purpose of this thesis is to provide a comparative study of the feedback
particle filter (FPF) with the extended Kalman filter (EKF) for a scalar filtering
problem which has linear signal dynamics and nonlinear observation dynamics.
Different parameters of the signal model and observation model will be varied
and performance of the two filtering techniques FPF, EKF will be compared.
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CHAPTER 1

INTRODUCTION

Filtering is an area which originated from the simple problems of tracking and
signal processing but the underlying principle is very general and is ubiquitous in
modern day applied problems such as global positioning systems (GPS), robotics
and climate prediction, where increasingly stochastic processes are being used to
model complex dynamic phenomenon.

A filtering problem usually consists of estimating an unknown dynamic state of
a stochastic system based on a set of noisy observations of the same. This basic
problem is encountered in many fields including but not limited to target tracking,
satellite navigation, statistics and economics.

The performance of a filter is often determined by the accuracy of the hidden
state estimate it provides. The quality of estimate provided by a filter is a key
factor in deciding whether a particular filter can be utilized for a particular prob-
lem or not. Oftentimes, comparison studies are conducted for various filtering
techniques to find the right filter for a particular class of filtering problem.

1.1 Filtering Problem

In this thesis, the following nonlinear filtering problem is considered:

dXt

dt
= a(Xt)+Bt , (1.1a)

Yt = h(Xt)+Wt , (1.1b)

where Xt ∈ Rd is the state at time t, Yt ∈ Rm is the observation on the state, a( ·)
and h( ·) are C1 functions, and {Bt}, {Wt} are mutually independent white noise
processes of appropriate dimension.
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The mathematical objective of the filtering problem is to approximate the pos-
terior distribution of Xt given the history of observations, Zt := σ(Zs : s≤ t). The
posterior denoted by p∗ is defined, so that for any measurable set A⊂ Rd ,∫

x∈A
p∗(x, t) dx = Prob{Xt ∈ A |Zt}. (1.2)

The optimal solution for the above filtering problem is given by the Kalman
filter in the case that a( ·) and h( ·)are linear functions. If a( ·) and h( ·) are
nonlinear functions then a nonlinear filtering algorithm is required. Earlier when
the computation power is limited, the implementation of solution to this general
nonlinear filtering problem by numerical approximations of such infinite dimen-
sional stochastic evolution equations seemed impractical. Therefore, algorithms
which used linear approximations to the signal-observation dynamics were stud-
ied leading to the development of the extended Kalman filter (EKF). In an ex-
tended Kalman filter, the solution to the nonlinear filtering problem is obtained
by linearizing the functions a( ·) and h( ·) about the current state estimate and co-
variance and then applying the kalman algorithm to this linearized problem [?].
Another common approach to solve a nonlinear filtering problem is to use a par-
ticle filter. In particular we will be dealing with a new formulation of the particle
filter for nonlinear filtering, the feedback particle filter (FPF) in [7, 6], which seek
to utilize the concept of innovation error based feedback.

1.2 Contribution of Thesis

In this thesis, two nonlinear filtering techniques are evaluated and the perfor-
mance is compared based on the criteria of state estimate accuracy for various
cases.

The remainder of the thesis is organized as follows: chapter 2 provides back-
ground on the extended Kalman filter and the feedback particle filter and also
describes the metrics which are be used to compare the performance. Chapter
3 introduces a scalar filtering problem, provides a list of parameters which are
varied to compare the performance of the filtering methods and presents the cor-
responding results.
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CHAPTER 2

BACKGROUND ON EKF AND FPF

This chapter provides an introduction to the algorithms used for the feedback
particle filter and the extended Kalman filter. The outline of the remainder of this
chapter is as follows: in section 2.1 the algorithm for the feedback particle filter
is introduced, section 2.2 provides an introduction to the extended Kalman filter,
and section 2.3 then describes the comparison metrics

2.1 Feedback Particle Filter

In [7, 6], the algorithm for the feedback particle filter (FPF) was introduced.
FPF is a new formulation of the particle filter based on concepts from optimal
control, and mean-field game theory. This is a novel algorithm for nonlinear filter
and employs the principle of invoation error-base feedback structure for the con-
trol like in the case of EKF. The FPF is applicable to a general class of nonlinear
filtering problems with non-Gaussian posterior distributions. The EKF, as such, is
unable to handle these non-Gaussian distributions.

2.1.1 Feedback Particle Filter Algorithm

Feedback particle filter (FPF) is defined by a family of stochastic systems,
which evolve under the optimal control law. Hence FPF is a system of N con-
trolled particles. The state of the filter is {X i

t : 1 ≤ i ≤ N}: The value X i
t ∈ Rd

is the state for the ith particle at time t. The dynamics of the ith particle have the
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following gain feedback form,

dX i
t

dt
= a(X i

t )+ Ḃi
t + Kt Ii

t︸︷︷︸
(control)

(2.1)

where {Ḃi
t} are mutually independent white noise processes with covariance ma-

trix Q, and Ii
t is a modified version of the innovation process that appears in the

nonlinear filter,
Ii
t := Yt−

1
2
(h(X i

t )+ ĥ), (2.2)

where ĥ := E[h(X i
t )|Zt ]. In a numerical implementation, this is approximated to

ĥ≈ N−1
∑

N
i=1 h(X i

t ) =: ĥ(N).

The gain function K is found as the solution to an Euler-Lagrange boundary
value problem (E-L BVP): for j = 1,2, . . . ,m, the function φ j is a solution to the
second-order partial differential equation,

∇ · (p(x, t)∇φ j(x, t)) =−(h j(x)− ĥ j)p(x, t),∫
Rd

φ j(x, t)p(x, t)dx = 0,
(2.3)

where p denotes the conditional distribution of X i
t given Zt . In terms of these

solutions, the gain function is given by,

[K]l j(x, t) =
m

∑
s=1

(R−1)s j
∂φs

∂xl
(x, t) . (2.4)

Denoting [Dφ ] := [∇φ1, . . . ,∇φm], where ∇φ j is a column vector for j∈{1, . . . ,m},
the gain function is succinctly expressed as a matrix product,

K= [Dφ ]R−1.

It is shown in [7, 5] that the FPF is consistent with the nonlinear filter, given
consistent initializations p(·,0) = p∗(·,0). Consequently, if the initial conditions
{X i

0}N
i=1 are drawn from the initial distribution p∗(·,0) of X0, then, as N→ ∞, the

empirical distribution of the particle system approximates the posterior distribu-
tion p∗(·, t) for each t.

The main computational burden of the algorithm is the computation/approximation
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of the gain function at each time t. In this thesis, the gain is computed using the
so-called Galerkin approximation [5] described in the following section.

2.1.2 Galerkin Approximation

The gain function needs to be computed at each time. For a fixed time t and
j ∈ {1, . . . ,m}, a vector-valued function ∇φ j(x, t) is said to be a weak solution of
the BVP (2.3) if

E
[
∇φ j ·∇ψ

]
= E[(h j− ĥ j)ψ] (2.5)

holds for all ψ ∈H1(R; p) where E[·] :=
∫
Rd ·p(x, t)dx and H1 is a certain Hilbert

space (see [5]). The existence-uniqueness result for the weak solution of (2.5) also
appears in [5].

Since there are m uncoupled BVPs, without loss of generality, we assume
scalar-valued observation in this section, with m = 1, so that K= ∇φ . The time t

is fixed. The explicit dependence on time is suppressed for notational ease (That
is, p(x, t) is denoted as p(x), φ(x, t) as φ(x) etc.).

Using (2.5), the gain function K= ∇φ is a weak solution if

E[K ·∇ψ] = E[(h− ĥ)ψ], ∀ ψ ∈ H1(Rd; p). (2.6)

The gain function is approximated as,

K=
L

∑
l=1

κlχl(x),

where {χl(x)}L
l=1 are basis functions. For each l = 1, . . . ,L, χl(x) is a gradient

function; That is, χl(x) = ∇ζl(x) for some function ζl(x) ∈ H1
0 (Rd; p).

The test functions are denoted as {ψk(x)}L
k=1 and S := span{ψ1(x),ψ2(x), . . . ,ψL(x)}⊂

H1(Rd; p).

The finite-dimensional approximation of the BVP (2.6) is to choose constants
{κl}L

l=1 such that

L

∑
l=1

κlE[χl ·∇ψ] = E[(h− ĥ)ψ], ∀ ψ ∈ S. (2.7)
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Denoting [A]kl =E[χl ·∇ψk], bk =E[(h− ĥ)ψk], κ =(κ1,κ2, . . . ,κL)
T , the finite-

dimensional approximation (2.7) is expressed as a linear matrix equation:

Aκ = b.

The matrix A and vector b are easily approximated by using only the particles:

[A]kl = E[χl ·∇ψk]≈
1
N

N

∑
i=1

χl(X i
t ) ·∇ψk(X i

t ), (2.8)

bk = E[(h− ĥ)ψk]≈
1
N

N

∑
i=1

(h(X i
t )− ĥ)ψk(X i

t ), (2.9)

where recall ĥ≈ 1
N ∑

N
i=1 h(X i

t ).

2.1.3 Constant Gain Approximation

Suppose χl = el , the canonical coordinate vector with value 1 for the lth coor-
diate and zero otherwise. The test functions are the coordinate functions ψk(x) =

xk for k = 1,2, . . . ,d. Denoting ψ(x) = (ψ1,ψ2, . . . ,ψd)
T = x,

κ = E[K] = E[(h− ĥ)ψ] =
∫
(h(x)− ĥ)ψ(x)p(x)dx

≈ 1
N

N

∑
i=1

(h(X i
t )− ĥ)X i

t . (2.10)

This formula yields the constant-gain approximation of the gain function.

It is interesting to note that for the linear-Gaussian case, this constant approx-
imation for the gain function yields the same result as the Kalman gain. Also
In [3, 4, 2], it has been showed that the FPF-based implementations retain the
innovation error-based feedback structure even for the nonlinear problem.

2.2 Extended Kalman Filter

Extended Kalman filter (EKF) is an extension of the Kalman filter algorithm,
that linearizes about the current state estimate and covariance. The algorithm is
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used to obtain an approximate solution to the nonlinear filtering problem. The
EKF approximates the posterior distribution by a Gaussian distribution, parame-
terized by its mean X̂t and the covariance matrix Pt .

To perform the update step, the EKF uses linearizations of the signal model a(·)
and the observation model h(·), evaluated at the mean X̂t . The respective Jacobian
matrices are denoted by A := ∂a

∂x (X̂t) and H := ∂h
∂x (X̂t).

The EKF algorithm is given by,

dX̂t

dt
= a(X̂t)+Kt

(
Yt−h(X̂t)

)
, (2.11)

dPt

dt
= APt +PtAT +Q−KtHPt . (2.12)

where the Kalman gain
Kt = Pt HT R−1. (2.13)

Under the assumptions that the signal and the observation models are linear and
the posterior distribution is Gaussian, the Kalman filter is the optimal solution.
For non-Gaussian and strongly nonlinear problems, the EKF algorithm is known
to perform poorly, and can suffer from divergence issues; cf., [1].

2.3 Comparison metrics

The performance of the filters is evaluated based on the following two metrics:

1. Mean squared error in Xt

error in Xt =

∫ t
0(X̂t−Xt)

2dt∫ t
0 X2

t dt
(2.14)

2. Mean squared error in ht

error in ht =

∫ t
0(ĥt−ht)

2dt∫ t
0 h2

t dt
(2.15)
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CHAPTER 3

COMPARISON STUDIES

In this chapter we will consider the simplest possible filtering filtering problem
which has linear signal dynamics and nonlinear observation dynamics. Different
parameters of the signal and observation model will be varied and performance of
the two filtering techniques, FPF and EKF is compared based on the two compar-
ison metrics (2.14), (2.15) defined in the previous section. The outline of this
chapter is as follows: Section 3.1 introduces the state dynamics and observation
dynamics of the filtering problem. Section 3.2 describes different instances of the
EKF and FPF which will be compared. Section 3.3 introduces the various pa-
rameters of the signal and observation model which will be varied to compare the
performance of the filters and their corresponding results

3.1 Filtering problem

A. Signal model

The state of the signal process Xt evolves according to,

dXt

dt
= a+Bt (3.1)

{Bt} is a white noise process characterized by covariance σb.

The signal model is initialized according to the parameter values defined in
Table 3.1
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Table 3.1: Signal model initialization

Parameter Initial value (X0) a σb

Value 0 2π 0.1

B. Observation model

The observation model is given by

Yt = h(Xt)+Wt , (3.2)

where, h(x) = c0 + c1 cos(x)+ s1 sin(x)+ c2 cos(2x)+ s2 sin(2x)

{Wt} is a white noise process characterized by covariance σw.

The signal model is initialized according to the parameter values defined in
Table 3.2

Table 3.2: Observation model initialization

Parameter c0 c1 s1 c2 s2 σw

Value 1 1 1 1 1 0.01

3.2 Initialization of Filters

The performance of the following instances of extended Kalman filter and feed-
back particle filter is compared:

i. extended Kalman filter with low process noise covariance (Q = 0.12)

ii. extended Kalman filter with high process noise covariance (Q = 1)

iii. feedback particle filter with 50 particles

iv. feedback particle filter with 500 particles

The above four filters are initialized according to the parameter values defined
in Table 3.3
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Table 3.3: Filter initialization

Parameter EKF(Q = 0.12) EKF(Q = 1) FPF(50 particles) FPF(500 particles)

Initial condition X0 = 0 X0 = 0 X i
0 ∈ uni f orm(0,2π) X i

0 ∈ uni f orm(0,2π)

Model parameter a = 2π a = 2π ai ∈ uni f orm(1.8π,2.2π) ai ∈ uni f orm(1.8π,2.2π)

Process noise Q = 0.12 Q = 1 σ2
b = 0.0 σ2

b = 0.0

Observation noise R = 0.12 R = 0.12 σ2
w = 0.12 σ2

w = 0.12

P0 = π2/3 P0 = π2/3 N = 50 particles N = 500 particles

3.3 Comparison study

The performance of the four filters is compared with respect to the following
parameters:

i. initial condition of the signal model

ii. model parameter a of the signal model

iii. process noise σb

iv. observation noise σw

v. unknown observation model dynamics

3.3.1 Initial condition of the signal model

The initial condition of the signal model is varied and the accuracy of the state
estimate obtained from the filters is compared using the metrics defined in (2.14),
(2.15). The rest of the parameters of the signal model and observation model are
left unchanged. The filters are intialized to the parameter values defined in Table
3.3.

The initial condition of the signal model is varied from 0 to 2π in steps of 0.1π

and the corresponding error values are calculated for each of the four filters. The
following figures Fig. 3.1, Fig. 3.2 show the errors in X̂t and ĥt of the filters for
the corresponding initial condition of the signal model.
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Figure 3.1: X-error vs IC
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Figure 3.2: h-error vs IC

It can be observed from the plots that there are two values of the initial condi-
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tions, one around pi/2 and the other around pi, where sudden increase in the error
values of FPF’s can be seen. This might be because the particles do not converge
around these two values.

To observe the effects of observation noise of the filters on the performance of
the filters, the above process is repeated for two other values of observation noise
i.e., σw of the filters

i. R = σ2
w = 0.052 and

ii. R = σ2
w = 0.52

i. R = σ2
w = 0.052

The filters are intialized to the parameter values defined in Table 3.4. Except
for the observation noise (R = σ2

w) value, all the other parameters are intialized to
exactly the same values defined in Table 3.3

Table 3.4: Filter initialization

Parameter EKF(Q = 0.12) EKF(Q = 1) FPF(50 particles) FPF(500 particles)

Initial condition X0 = 0 X0 = 0 X i
0 ∈ uni f orm(0,2π) X i

0 ∈ uni f orm(0,2π)

Model parameter a = 2π a = 2π ai ∈ uni f orm(1.8π,2.2π) ai ∈ uni f orm(1.8π,2.2π)

Process noise Q = 0.12 Q = 1 σ2
b = 0.0 σ2

b = 0.0

Observation noise R = 0.052 R = 0.052 σ2
w = 0.052 σ2

w = 0.052

P0 = π2/3 P0 = π2/3 N = 50 particles N = 500 particles

The initial condition of the signal model is varied from 0 to 2π in steps of 0.1π

and the corresponding error values are calculated for each of the four filters. The
following figures Fig. 3.3, Fig. 3.4 show the errors in X̂t and ĥt of the filters for
the corresponding initial condition of the signal model.

12



0 1 2 3 4 5 6 7
Initial condition X0  (rad) 

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r i
n 
X̂
t

ekf−Q=0.12 ekf−Q=1 fpf50 fpf500

Figure 3.3: X-error vs IC
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ĥ
t

ekf−Q=0.12 ekf−Q=1 fpf50 fpf500

Figure 3.4: h-error vs IC
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ii. R = σ2
w = 0.52

The filters are intialized to the parameter values defined in Table 3.5. Except
for the observation noise (R = σ2

w) value, all the other parameters are intialized to
exactly the same values defined in Table 3.3

Table 3.5: Filter initialization

Parameter EKF(Q = 0.12) EKF(Q = 1) FPF(50 particles) FPF(500 particles)

Initial condition X0 = 0 X0 = 0 X i
0 ∈ uni f orm(0,2π) X i

0 ∈ uni f orm(0,2π)

Model parameter a = 2π a = 2π ai ∈ uni f orm(1.8π,2.2π) ai ∈ uni f orm(1.8π,2.2π)

Process noise Q = 0.12 Q = 1 σ2
b = 0.0 σ2

b = 0.0

Observation noise R = 0.52 R = 0.52 σ2
w = 0.52 σ2

w = 0.52

P0 = π2/3 P0 = π2/3 N = 50 particles N = 500 particles

The initial condition of the signal model is varied from 0 to 2π in steps of 0.1π

and the corresponding error values are calculated for each of the four filters. The
following figures Fig. 3.5, Fig. 3.6 show the errors in X̂t and ĥt of the filters for
the corresponding initial condition of the signal model.
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Figure 3.5: X-error vs IC
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Figure 3.6: h-error vs IC

Comparing the three cases against each other, it can be observed that the per-
formance of the EKF filters with respect to the changes in initial conditions, is
fairly invariant to the changes in the observation noise covariance of the filters.
The performance of the FPF’s on the other hand, although not by much, seems to
increase with the increase in the observation noise covariance of the filters. It can
also be observed that the sudden increase in error around π/2 and π go away as
the observation noise covariance of the filters is increased.

From the above plots for the case with σ2
w = 0.52, the following observations

can be made:

i. The errors in both X̂t and ĥt are very low for the two instances of FPF,
one with 50 particles and the other with 500 particles. This indicates that
the state estimate obtained from these two filters is very close to the actual
state of the signal model. This suggests that the FPF filtering technique
is fairly robust to the changes in initial conditions of the signal model and
the performance is not dependent on the accuracy of the initial guess of the
actual initial condition of the signal model.

ii. In the case of EKF with low process noise covariance, i.e., Q = 0.12, when
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the initial condition of the signal model is close to that of the initial guess
of the filter i.e., 0, the filter has done well which can be seen from low
errors in X̂t and ĥt . But as the initial value of the signal model moves away
from 0, the errors in both X̂t and ĥt shoot up rapidly suggesting that the
state estimate obtained from the filter is not a very accurate guess of the
actual state of the signal model. But then again as the initial condition of
the signal model moves closer to 2π , the errors. This instance of the EKF
filter performs very poorly when we don’t have a good guess of the actual
initial value of the signal model hence requires a reasonably accurate guess
of the actual initial condition of the signal model to perform well.

iii. In the case of EKF with high process noise covariance, i.e., Q = 1, a sig-
nificant improvement in the performance from the other instance of EKF
can be seen. The errors in both X̂t and ĥt are lower than those of EKF with
Q = 0.12 but higher than the two instances of FPF.

iv. It can also be seen that that when the initial guess of the filter is close to
actual initial value of the signal model, performance of all the four filters is
nearly the same.

v. When the initial guess is far from the actual initial value of the signal model,
the FPF’s outperform both the instances of EKF. From the plots it can be
concluded that the performance of
FPF with 500 particles ≈ FPF with 50 particles > EKF with Q = 1 > EKF
with Q = 0.12

iii. Low initial covariance (P0 = 0.1) for EKF

In this section, the effects of starting the EKF’s with a low initial covariance
value on the performance of the filters will be observed. The filters are intialized
to the parameter values defined in Table 3.6. Except for the initial covariance (P0)
value of the two EKF’s, all the other parameters are intialized to exactly the same
values defined in Table 3.5

16



Table 3.6: Filter initialization

Parameter EKF(Q = 0.12) EKF(Q = 1) FPF(50 particles) FPF(500 particles)

Initial condition X0 = 0 X0 = 0 X i
0 ∈ uni f orm(0,2π) X i

0 ∈ uni f orm(0,2π)

Model parameter a = 2π a = 2π ai ∈ uni f orm(1.8π,2.2π) ai ∈ uni f orm(1.8π,2.2π)

Process noise Q = 0.12 Q = 1 σ2
b = 0.0 σ2

b = 0.0

Observation noise R = 0.52 R = 0.52 σ2
w = 0.52 σ2

w = 0.52

P0 = 0.1 P0 = 0.1 N = 50 particles N = 500 particles

The initial condition of the signal model is varied from 0 to 2π in steps of 0.1π

and the corresponding error values are calculated for each of the four filters. The
following figures Fig. 3.7, Fig. 3.8 show the errors in X̂t and ĥt of the filters for
the corresponding initial condition of the signal model.
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Figure 3.7: X-error vs IC
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Figure 3.8: h-error vs IC

With a lower value of the initial covariance P0, the instance of EKF with Q =

0.12 seems to perform well for a larger spread of initial values around zero. It can
be observed that in the previous case with a larger covariance, the error in X̂t and
ĥt shoot up drastically at around 0.3π while now this seems to happen at around
0.6π . On the otherhand, the performance of the EKF with Q = 1 remained fairly
invariant to the change in intial covariance P0.

3.3.2 Model parameter a of the signal model

In this section the model parameter a of the signal model is varied and the accu-
racy of the state estimate obtained from the filters is compared using the metrics
defined in (2.14), (2.15). The rest of the parameters of the signal model and
observation model are set to the values defined in Tables 3.1, 3.2. The filters are
initalized to the parameter values defined in Table 3.7
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Table 3.7: Filter initialization

Parameter EKF(Q = 0.12) EKF(Q = 1) FPF(50 particles) FPF(500 particles)

Initial condition X0 = 0 X0 = 0 X i
0 ∈ uni f orm(0,2π) X i

0 ∈ uni f orm(0,2π)

Model parameter a = 2π a = 2π ai ∈ uni f orm(1.8π,2.2π) ai ∈ uni f orm(1.8π,2.2π)

Process noise Q = 0.12 Q = 1 σ2
b = 0.0 σ2

b = 0.0

Observation noise R = 0.12 R = 0.12 σ2
w = 0.12 σ2

w = 0.12

P0 = π2/3 P0 = π2/3 N = 50 particles N = 500 particles

The model parameter a of the signal model is varied from 0.5 ∗ 2π to 1.5 ∗ 2π

in steps of 0.05∗2π , which corresposnds to increasing the frequency from 0.5 to
1.5 in steps of 0.05. The corresponding error values are calculated for each of the
four filters. The following figures Fig. 3.9, Fig. 3.10 show the errors in X̂t and ĥt

of the filters for the corresponding frequency of the signal model.
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Figure 3.9: X-error vs frequency
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Figure 3.10: h-error vs frequency

To observe the effects of observation noise of the filters on the performance of
the filters, the above process is repeated for two other values of observation noise
i.e., σw of the filters

i. R = σ2
w = 0.052 and

ii. R = σ2
w = 0.52

i. R = σ2
w = 0.052

The filters are intialized to the parameter values defined in Table 3.8. Except
for the observation noise (R = σ2

w) value, all the other parameters are intialized to
exactly the same values defined in Table 3.7
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Table 3.8: Filter initialization

Parameter EKF(Q = 0.12) EKF(Q = 1) FPF(50 particles) FPF(500 particles)

Initial condition X0 = 0 X0 = 0 X i
0 ∈ uni f orm(0,2π) X i

0 ∈ uni f orm(0,2π)

Model parameter a = 2π a = 2π ai ∈ uni f orm(1.8π,2.2π) ai ∈ uni f orm(1.8π,2.2π)

Process noise Q = 0.12 Q = 1 σ2
b = 0.0 σ2

b = 0.0

Observation noise R = 0.052 R = 0.052 σ2
w = 0.052 σ2

w = 0.052

P0 = π2/3 P0 = π2/3 N = 50 particles N = 500 particles

The model parameter a of the signal model is varied from 0.5 ∗ 2π to 1.5 ∗ 2π

in steps of 0.05∗2π , which corresposnds to increasing the frequency from 0.5 to
1.5 in steps of 0.05. The corresponding error values are calculated for each of the
four filters. The following figures Fig. 3.11, Fig. 3.12 show the errors in X̂t and ĥt

of the filters for the corresponding frequency of the signal model.
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Figure 3.11: X-error vs frequency
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Figure 3.12: h-error vs frequency

ii. R = σ2
w = 0.52

The filters are intialized to the parameter values defined in Table 3.9. Except
for the observation noise (R = σ2

w) value, all the other parameters are intialized to
exactly the same values defined in Table 3.7

Table 3.9: Filter initialization

Parameter EKF(Q = 0.12) EKF(Q = 1) FPF(50 particles) FPF(500 particles)

Initial condition X0 = 0 X0 = 0 X i
0 ∈ uni f orm(0,2π) X i

0 ∈ uni f orm(0,2π)

Model parameter a = 2π a = 2π ai ∈ uni f orm(1.8π,2.2π) ai ∈ uni f orm(1.8π,2.2π)

Process noise Q = 0.12 Q = 1 σ2
b = 0.0 σ2

b = 0.0

Observation noise R = 0.52 R = 0.52 σ2
w = 0.52 σ2

w = 0.52

P0 = π2/3 P0 = π2/3 N = 50 particles N = 500 particles

Again, the model parameter a of the signal model is varied from 0.5 ∗ 2π to
1.5 ∗ 2π in steps of 0.05 ∗ 2π , which corresposnds to increasing the frequency
from 0.5 to 1.5 in steps of 0.05. The corresponding error values are calculated for
each of the four filters. The following figures Fig. 3.13, Fig. 3.14 show the errors
in X̂t and ĥt of the filters for the corresponding frequency of the signal model.
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Figure 3.13: X-error vs frequency
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Figure 3.14: h-error vs frequency

//
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Comparing the three cases against each other, it can be observed that the er-
ror curves for all the four filters are more flatter in the case with lower observa-
tion noise which indicates lower errors and better state estimates from the filters.
Hence the performance of all the four filters with respect to changes in model
parameter a of the signal model increased by decreasing the observation noise
covariance of the filters.

The case with filter observation noise convariance of σ2
w = 0.052 is considered

to make the following observations:

i. The errors in both X̂t and ĥt are low for both the instances of FPF, for most
of the values of model parameter a of the signal model. This indicates that
the state estimate from these two filters is close to the actual state of the
signal. This suggests that when started with a value of model parameter a

different from that of the signal model, the FPF’s are able to cope with the
difference. We can say that both the FPF’s are fairly robust to the changes in
model parameter a of the signal model and the performance is not dependent
on the accuracy of the value of a with which the particles are initialized.

ii. In the case of EKF with low process noise covariance, i.e., Q = 0.12, when
the value of model parameter a of the signal model is close to the value
with which the filter is initialized, the filter perfomed really well which can
be concluded from the low errors in X̂t and ĥt . But as the value of a of
the signal model moves away from the model parameter value of the filter,
the errors in both X̂t and ĥt shoot up rapidly indicating that this instance
of EKF is not able to cope up with large changes in model parameter a of
the signal. Hence this instance of EKF is not robust to changes in model
parameter of the signal and the performance of the filter is dependent on the
accuracy of the value of a with which the filter is initialized. The closer the
model parameter a of the filter is to that of the signal model, the better the
performance of the filter is.

iii. In the case of EKF with high process noise covariance, i.e., Q = 1, it can be
observed that the errors in both X̂t and ĥt are very low for all the values of
model parameter a of the signal model. Hence this instance of EKF is very
robust to changes in model parameter of the signal model and the perfor-
mance of the filter is independent on the accuracy of the model parameter
value with which the filter is initialized.
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iv. When the model parameter a of the filter is close to that of the signal model,
performance of all the four filters is comparable

v. When the model parameter a of the filter is not close to the actual model a

of the signal model, the EKF with Q = 1 outperforms both the instances of
FPF and EKF with Q = 0.12. From the plots it can be concluded that the
performance of
EKF with Q = 1 > FPF with 500 particles ≈ FPF with 50 particles > EKF
with Q = 0.12

iii. Variation in spread of particle model parameter vallues for FPF’s

In this section, the effects of changing the initial spread of particle model pa-
rameter values on the performance of the FPF’s will be observed. The filters are
intialized to the parameter values defined in Table 3.10. Only the model param-
eter values of the two instances of FPF are varied and rest of the parameters are
left unchanged.

Table 3.10: Filter initialization

Parameter EKF(Q = 0.12) EKF(Q = 1) FPF(50 particles) FPF(500 particles)

Initial condition X0 = 0 X0 = 0 X i
0 ∈ uni f orm(0,2π) X i

0 ∈ uni f orm(0,2π)

Model parameter a = 2π a = 2π ai ∈ uni f orm(1.8π,2.2π) ai ∈ uni f orm(1.8π,2.2π)

Process noise Q = 0.12 Q = 1 σ2
b = 0.0 σ2

b = 0.0

Observation noise R = 0.052 R = 0.052 σ2
w = 0.052 σ2

w = 0.052

P0 = π2/3 P0 = π2/3 N = 50 particles N = 500 particles

The model parameter a of the signal model is varied from 0.5 ∗ 2π to 1.5 ∗ 2π

in steps of 0.05∗2π and the corresponding error values are calculated for each of
the four filters for the following cases:

i. ai ∈ uni f orm(1.6π,2.4π)

The following figure Fig. 3.15 shows the error in X̂t .
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Figure 3.15: X-error vs frequency

ii. ai ∈ uni f orm(1.4π,2.6π)

The following figure Fig. 3.16 shows the error in X̂t .
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Figure 3.16: X-error vs frequency

iii. ai ∈ uni f orm(1.2π,2.8π)
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The following figure Fig. 3.17 shows the error in X̂t .

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Frequency (Hz) 

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r i
n 
X̂
t

ekf−Q=0.12 ekf−Q=1 fpf50 fpf500

Figure 3.17: X-error vs frequency

iv. ai ∈ uni f orm(1.0π,3.0π)

The following figure Fig. 3.18 shows the error in X̂t .
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Figure 3.18: X-error vs frequency
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From the above plots it can be concluded that the wider the spread of the model
parameter value of the particles, the better it performs when the actual value of a

of the signal model deviates from the approximate guess around which the particle
model parameter values are initialized.

3.3.3 Process noise σb

In this section the process noise covariance σb of the signal model is varied and
the accuracy of the state estimate obtained from the filters is compared using the
metrics defined in (2.14), (2.15). The rest of the parameters of the signal model
and observation model are set to the values defined in Tables 3.1, 3.2. The filters
are initalized to the parameter values defined in Table 3.11

Table 3.11: Filter initialization

Parameter EKF(Q = 0.12) EKF(Q = 1) FPF(50 particles) FPF(500 particles)

Initial condition X0 = 0 X0 = 0 X i
0 ∈ uni f orm(0,2π) X i

0 ∈ uni f orm(0,2π)

Model parameter a = 2π a = 2π ai ∈ uni f orm(1.8π,2.2π) ai ∈ uni f orm(1.8π,2.2π)

Process noise Q = 0.12 Q = 1 σ2
b = 0.0 σ2

b = 0.0

Observation noise R = 0.12 R = 0.12 σ2
w = 0.12 σ2

w = 0.12

P0 = π2/3 P0 = π2/3 N = 50 particles N = 500 particles

The process noise covariance σb of the signal model is varied from 0.1 to 1.5 in
steps of 0.1 and the corresponding error values are calculated for each of the four
filters. The following figures Fig. 3.19, Fig. 3.20 show the errors in X̂t and ĥt of
the filters for the corresponding value of σb of the signal model.
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Figure 3.19: X-error vs Process noise covariance(σb)
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Figure 3.20: h-error vs Process noise covariance(σb)

To observe the effects of observation noise of the filters on the performance of
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the filters, the above process is repeated for the following two values of observa-
tion noise i.e., σw of the filters

i. R = σ2
w = 0.052 and

ii. R = σ2
w = 0.52

i. R = σ2
w = 0.052

The filters are intialized to the parameter values defined in Table 3.12. Except
for the observation noise (R = σ2

w) value, all the other parameters are intialized to
exactly the same values defined in Table 3.11

Table 3.12: Filter initialization

Parameter EKF(Q = 0.12) EKF(Q = 1) FPF(50 particles) FPF(500 particles)

Initial condition X0 = 0 X0 = 0 X i
0 ∈ uni f orm(0,2π) X i

0 ∈ uni f orm(0,2π)

Model parameter a = 2π a = 2π ai ∈ uni f orm(1.8π,2.2π) ai ∈ uni f orm(1.8π,2.2π)

Process noise Q = 0.12 Q = 1 σ2
b = 0.0 σ2

b = 0.0

Observation noise R = 0.052 R = 0.052 σ2
w = 0.052 σ2

w = 0.052

P0 = π2/3 P0 = π2/3 N = 50 particles N = 500 particles

The process noise covariance σb of the signal model is varied from 0.1 to 1.5 in
steps of 0.1 and the corresponding error values are calculated for each of the four
filters. The following figures Fig. 3.21, Fig. 3.22 show the errors in X̂t and ĥt of
the filters for the corresponding value of σb of the signal model.
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Figure 3.21: X-error vs Process noise covariance(σb)
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Figure 3.22: h-error vs Process noise covariance(σb)
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ii. R = σ2
w = 0.52

The filters are intialized to the parameter values defined in Table 3.13. Except
for the observation noise (R = σ2

w) value, all the other parameters are intialized to
exactly the same values defined in Table 3.11

Table 3.13: Filter initialization

Parameter EKF(Q = 0.12) EKF(Q = 1) FPF(50 particles) FPF(500 particles)

Initial condition X0 = 0 X0 = 0 X i
0 ∈ uni f orm(0,2π) X i

0 ∈ uni f orm(0,2π)

Model parameter a = 2π a = 2π ai ∈ uni f orm(1.8π,2.2π) ai ∈ uni f orm(1.8π,2.2π)

Process noise Q = 0.12 Q = 1 σ2
b = 0.0 σ2

b = 0.0

Observation noise R = 0.52 R = 0.52 σ2
w = 0.52 σ2

w = 0.52

P0 = π2/3 P0 = π2/3 N = 50 particles N = 500 particles

Again the process noise covariance σb of the signal model is varied from 0.1
to 1.5 in steps of 0.1 and the corresponding error values are calculated for each
of the four filters. The following figures Fig. 3.23, Fig. 3.24 show the errors in X̂t

and ĥt of the filters for the corresponding value of σb of the signal model.
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Figure 3.23: X-error vs Process noise covariance(σb)
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Figure 3.24: h-error vs Process noise covariance(σb)

Comparing the three cases against each other, it can be observed that the error
values of both X̂t and ĥt are lower in the case with lower observation noise of the
filter i.e.,σ2

w = 0.052 and these values seem to increase slightly with increase in
σw of the filter. Hence the performance of the filters with respect to the changes
in process noise covariance σb of the signal model, increased by decreasing the
observation noise covariance of the filters.

The case with filter observation noise convariance of σ2
w = 0.052, since it has a

slightly better performance, is considered to make the following observations:

i. All the four filters were able to cope reasonably well with the small changes
in σb i.e., 0.1≤ σb ≤ 0.6. From the plots it can be observed that both X̂t

and ĥt error values are small enough when 0.1≤ σb ≤ 0.6, which indicates
that state estimates from all the four filters are close to the actual state of the
signal model. It can also be observed from the plots that for 0.1≤ σb ≤ 0.6,
the performance of
EKF with Q = 1 ≈ FPF with 500 particles ≈ FPF with 50 particles ≈ EKF
with Q = 0.12

ii. When 0.7≤ σb ≤ 1.0, except for the EKF with Q = 0.12, the other filters
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are able to give a good estimate of the state of the signal model, which is
evident from the low X̂t and ĥt error values. From the error plots, it can be
said, in this case, that the performance of
EKF with Q = 1 > FPF with 500 particles ≈ FPF with 50 particles > EKF
with Q = 0.12

iii. When there are large changes in σb i.e., σb > 1.0, both the X̂t and ĥt error
values are large for the EKF with Q = 0.12. Hence the instance of EKF with
low process noise covariance cannot cope with large changes in σb. Even
both the instances of FPF have large X̂t and ĥt error values, at higher values
σb. But EKF with Q = 0.1 seems to be doing well even at higher values of
σb. From the error plots, it can be said that the performance of
EKF with Q = 1 > FPF with 500 particles ≈ FPF with 50 particles > EKF
with Q = 0.12

3.3.4 Observation noise σw

In this section the observation noise covariance σw of the observation model is
varied and the accuracy of the state estimate obtained from the filters is compared
using the metrics defined in (2.14), (2.15). The rest of the parameters of the
signal model and observation model are set to the values defined in Tables 3.1,
3.2. The filters are initalized to the parameter values defined in Table 3.14

Table 3.14: Filter initialization

Parameter EKF(Q = 0.12) EKF(Q = 1) FPF(50 particles) FPF(500 particles)

Initial condition X0 = 0 X0 = 0 X i
0 ∈ uni f orm(0,2π) X i

0 ∈ uni f orm(0,2π)

Model parameter a = 2π a = 2π ai ∈ uni f orm(1.8π,2.2π) ai ∈ uni f orm(1.8π,2.2π)

Process noise Q = 0.12 Q = 1 σ2
b = 0.0 σ2

b = 0.0

Observation noise R = 0.12 R = 0.12 σ2
w = 0.12 σ2

w = 0.12

P0 = π2/3 P0 = π2/3 N = 50 particles N = 500 particles

The observation noise covariance σw of the observation model is varied from
0.01 to 0.1 in steps of 0.01 and the corresponding error values are calculated for
each of the four filters. The following figures Fig. 3.25, Fig. 3.26 show the errors
in X̂t and ĥt of the filters for the corresponding value of σw of the observation
model.
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Figure 3.25: X-error vs Observation noise covariance(σw)
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Figure 3.26: h-error vs Observation noise covariance(σw)

From the above plots, the following observations can be made:

35



i. The performance of the four filters based on the error in X̂t is fairly invariant
to the changes in σw of the observation model. The X̂t error values are very
low indicating that the state estimates from all the four filters are very close
to the actual state of the signal model even with highly noisy observations.

ii. It can also be observed that with an increase in σw of the observation model,
the ĥt error values also increase. This is expected because increasing the
observation noise messes up the h-functions hence increasing the ĥt error

3.3.5 Unknown observation model dynamics

The h-function of all the filters is changed to

h(x) = 1+ cos(x)+ sin(x), (3.3)

The h-function of the observation model is changed to

h(x) = 1+ cos(x)+ sin(x)+ c2 cos(2x)+ s2 sin(2x), (3.4)

In this section the h-function of the observation model is varied by changing
the coefficients c2 and s2 and the accuracy of the state estimate obtained from
the filters is compared using the metrics defined in (2.14), (2.15). The rest of
the parameters of the signal model and observation model are set to the values
defined in Tables 3.1, 3.2. The filters are initalized to the parameter values
defined in Table 3.15

Table 3.15: Filter initialization

Parameter EKF(Q = 0.12) EKF(Q = 1) FPF(50 particles) FPF(500 particles)

Initial condition X0 = 0 X0 = 0 X i
0 ∈ uni f orm(0,2π) X i

0 ∈ uni f orm(0,2π)

Model parameter a = 2π a = 2π ai ∈ uni f orm(1.8π,2.2π) ai ∈ uni f orm(1.8π,2.2π)

Process noise Q = 0.12 Q = 1 σ2
b = 0.0 σ2

b = 0.0

Observation noise R = 0.12 R = 0.12 σ2
w = 0.12 σ2

w = 0.12

P0 = π2/3 P0 = π2/3 N = 50 particles N = 500 particles

The coefficients c2 and s2 are varied such that c =
1
2
(c2

2 + s2
2) is varied from 0

to 1 in steps of 0.05 and the corresponding error values are calculated for each of
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the four filters. The following figures Fig. 3.27, Fig. 3.28 show the errors in X̂t and

ĥt of the filters for the corresponding value of c =
1
2
(c2

2 + s2
2) of the observation

model.
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Figure 3.27: X-error vs c =
1
2
(c2

2 + s2
2)
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Figure 3.28: h-error vs c =
1
2
(c2

2 + s2
2)

From the above plots, the following observations can be made:

i. From the ĥt error plot, it can be observed that the EKF with Q = 0.12 has
the highest ĥt error, followed by the two FPF’s and then EKF with Q = 1.
This indicates that the h-function of the EKF with Q = 1 is closer to the
actual observation model

ii. From the X̂t error plot, it can be observed that EKF with Q = 0.12 has the
lowest error among the four filters.
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