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ABSTRACT 

 

A form of microscopy based on the unique optical properties of a photonic 

crystal (PC) biosensor provides both label-free (LF) and enhanced fluorescence 

(EF) imaging modalities for the study of cell-surface interactions and 

nanoparticle-based assays. The imaging system utilizes an angle-tunable 

illumination source, either LED or laser, to achieve highly efficient coupling of 

incident light to PC optical resonances. Detection of the wavelength of resonantly 

reflected light from PC surfaces enable high-sensitivity label-free biosensing, 

whereas the enhanced electromagnetic (EM) fields associated with the resonances 

can be used to strongly improve the fluorescence output of fluorescent labels 

above PC surfaces.  

Photonic Crystal Enhanced Microscopy (PCEM) was applied to the study 

of murine dental stem cells by providing label-free, quantitative, submicron 

resolution, time-resolved images of the evolution of cell attachment and 

morphology during chemotaxis and drug-induced apoptosis. It enabled the 

monitoring of cell behavior with spatial resolution sufficient for observing 

intracellular attachment strength gradients. PCEM was also used to image 

fluorescence labeled cells, in which alternating on/off-resonance images was used 

to derive maps of the surface engagement of cell structures.  
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CHAPTER 1 

INTRODUCTION 

The development of cell biology is highly dependent on the progress in 

light microscopy technology. Such kind of strong correlation comes from two 

simple facts: (1) vision is one of the most fundamental means that people sense 

the outside world; (2) cellular level biological structures are usually invisibly 

small for naked eyes. The observations made through early microscopes helped 

scientists build the foundation of modern biological sciences. As a matter of fact, 

the biological concept “cell” was firstly brought up by an English microscopist 

Robert Hooke in the 17
th

 century in his famous study of thin slices of cork, which 

marks the start of imaging in biology. Nowadays, light microscopy has gone far 

beyond the qualitative viewing of small objects by objective magnification and 

contrast enhancement. It is possible now to detect the location, motion and 

environment of specific biomolecular structures, such as proteins and organelles.  

The study of cell adhesion is of fundamental importance in cell biology 

since cell adhesion plays a critical role in a wide range of cellular processes such 

as growth, migration, proliferation, apoptosis, and differentiation that occur 

during drug exposure, cell-to-cell communication [1], the presence of chemical 

gradients [2], introduction of growth factors, and programmed gene expression. 

Ultimately, these fundamental processes govern biological activity such as tissue 

growth, inflammation, wound healing and metastasis [3] as cellular adhesion is 
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modulated by a complex combination of mechanical force from substrate to cell, 

signaling pathways that involve protein structures embedded in the plasma 

membrane, the makeup of extracellular matrix (ECM) proteins, and cytoskeleton 

components of the cell [4]. While the significance of cell-substrate adhesion has 

been realized for years, there are few tools currently available that enable 

visualization and quantification of this phenomenon with the ability to screen out 

the effects of cell-to-surface coupling behavior. 

In this thesis, we will present photonic crystal enhanced microscopy 

(PCEM) as both a label-free biosensor imaging technique and a surface-restricted 

fluorescence imaging technique for visualizing and quantifying complex cellular 

responses to multiple stimuli over prolonged periods of study. 

1.1 Optical Microscopy 

Optical microscope is now one of the most widely used tools in 

biomedical research for various imaging purposes with the ability to magnify the 

object of observation. While people have realized the magnification effect 

brought by lens-shaped crystals or glass from long ago, technically the first 

compound microscope was not invented until the late 15
th

 century [5]. Compared 

to the simple microscope, which relies on a single lens to provide an erect 

enlarged virtual image, the compound microscope comprised of two or more 

convex lenses in a tube allows for much higher magnification and more flexibility 

to adjust the magnification. The lower lens, called the objective lens, is put close 
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to the object to be observed and collects the light that focuses a real image of the 

object inside the microscope. This image is then magnified by the upper lens, 

called the eyepiece, and forms an enlarged inverted virtual image of the object.  

The overall magnification effect of the compound microscope is the product of 

the lateral magnification caused by the objective and the angular magnification 

caused by the eyepiece. Meanwhile, the image resolution of compound 

microscope is limited by light diffraction. Because objective with certain 

numerical aperture (NA) can only collect finite information about the object, the 

output image of a single point source, instead of being a point,  is a circle with 

certain radius, called Airy disks [6]. The resolution of a compound microscope is 

defined as the ability to distinguish two closely spaced Airy disks, therefore it is 

commonly stated as the radius of the Airy disk, which is the ratio between half the 

wavelength of the applied light and the numerical aperture. While great progress 

has been made in modern microscopy technologies with various kinds of high 

quality images generated by microscopes today, the principles of the compound 

microscope remain as the underlying foundation for all of them.  

Except for the fluorescence microscopy that we are going to introduce in 

more details in the Section 1.2, there are several types of optical microscopy 

techniques that are commonly used in biology research, including bright field, 

dark field, phase contrast, differential interference contrast (DIC) and confocal 

microscopy. Bright field microscopy, as the simplest of all optical microscopy 

illumination techniques, records the intensity distribution of the white light 
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scattered by the observed objects, which must be transparent. The image contrast 

is purely caused by the difference between materials in light absorbance. Dark 

field microscopy improves the image contrast by blocking low frequency 

component of the light signal at the cost of big intensity loss, which has the same 

effect as to add a high pass filter. Phase contrast microscopy, different from the 

previous two which measure intensity amplitude of light, records phase shifts 

after the light passing through a transparent sample. It is usually achieved by 

separating the illuminating background light from the sample scattering light and 

measuring the interference pattern. DIC also uses the interference effect to form 

the image but with two orthogonally polarized beams coming from the same light 

source that both pass through the sample. The image contrast results from the 

optical path difference of the two beams. Confocal microscopy applies a spatial 

pinhole to eliminate out-of-focus light coming from the object and scans over the 

object surface to form the whole image. It theoretically can achieve unlimited 

image resolution, but the pinhole in practice cannot be made too small.  

1.2 Fluorescence Microscopy 

Fluorescence microscopy is one of the most popular microscopy currently 

in medical and biological research because of its excellent specificity and high 

sensitivity as well as the wide availability of fluorophores [7]. In contrast to 

normal optical microscopy technique, fluorescence microscopy relies on the use 

of fluorescent probes that emit fluorescence light by themselves under external 
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stimulus and label the specific structures within biological samples. The electrons 

of the fluorescent molecules (or fluorophores) can absorb the photons of the 

excitation light at a specific wavelength, which raises the energy level of the 

electrons to an excited state.  The excited state exists only for a finite time 

(typically 1-10 nanoseconds). During this period, some of the energy is dissipated 

subject to multiple interactions with the outside environment. The remaining 

energy is then emitted as a photon returning the electrons back to the ground state. 

Since the emitted photons usually carry less energy than the incident ones, the 

wavelength of emitted fluorescence light is distinct from the incident light. 

Therefore we can use a filter to block the incident light and only collect the 

fluorescence light coming from the labeled biological structures. In this way, the 

fluorescence light can visibly indicate the presence of a structure even if it is too 

small to be resolved in a compound microscope, making fluorescence microscopy 

a very powerful tool widely used in many different biomedical research areas, 

especially in the quantitative measurements of biological structures and processes. 

However, the use of fluorescence microscopy is limited by several 

inherent drawbacks. First, fluorophores lose the ability to emit fluorescence light 

under continuous illumination in a process called photobleaching. It is caused by 

the chemical damage of fluorophores from the excited electrons. The rapid 

intensity decay allows only a limited time for researchers to analyze the objects. 

Second, the fluorophores are often toxic, especially to living cells. The fluorescent 

labels frequently permanently alter the state of the cell, and often require fixing or 
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isolation of the samples to be considered for examination. Third, the natural 

emitted light coming from unlabeled biological structures known as 

autofluorescence interfering with specific fluorescent signals can compromise the 

detection sensitivity. The autofluorescence occurs in many biological structures 

such as lysosomes as well as some other non-biological structures [8]. 

One particular form of fluorescence microscopy, total internal reflection 

fluorescence (TIRF) microscopy (shown in Fig. 1), can visualize cell-substrate 

interactions by utilizing fluorescent dyes that label specifically targeted cell 

structures and by concentrating illumination energy to a confined zone on a 

transparent glass substrate. The evanescent field generated by the total internal 

reflection effect can selectively excite fluorophores near the adherent cell surface, 

while minimizing fluorescence originating from the bulk of the cell [9] through a 

spatially restricted evanescent field upon a substrate surface. While TIRF 

microscopy has been broadly adopted through the availability of specialized 

microscope objectives, the approach is not able to differentiate between a locus of 

high fluorescence intensity that is bright due to being close to the cell-substrate 

interface, and a high intensity region of an image that is bright due to the high 

concentration of fluorescent dye contained [10]. 

1.3 Surface Plasmon Resonance Imaging 

In order to address the challenges inherent in label-based cell imaging 

techniques, label-free microscopy technologies have been demonstrated as 
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effective tools for measuring an increasingly diverse range of cellular processes 

[11-13]. Label-free microscopy involves a biosensor transducer surface that 

generates an electrical or optical signal when cells interact with it. Biosensors 

measure intrinsic cellular properties (such as dielectric permittivity) that can be 

used to determine the number of cells in contact with the transducer, or to 

determine the distribution of focal adhesion points. Such transducers may be 

prepared with surface coatings that either selectively capture specific cell 

populations through interaction with proteins expressed on their outer membranes 

or mimic the in vivo microenvironment within tissues. 

Due to the fundamental importance of cell-surface interactions, several 

technologies have sought to quantify and image cell membrane adhesion. Surface 

Plasmon Resonance imaging (SPRi) [14] (shown in Fig. 2) is capable of detecting 

cell attachment to a gold surface by measuring changes in the intensity of front-

reflected light at a fixed angle and wavelength, but practical limitations degrade 

image quality. SPRi requires illumination to pass through cell structures, which 

introduces changes in reflected light intensity that are not related to cell surface 

attachment, and the lateral propagation distance of surface plasmons limits spatial 

resolution [15]. Interpretation of SPRi images is complicated by the variability of 

reflected light intensity introduced by scattering, inhomogeneity of the light 

source, and nonuniformity of the sensor surface [16], while non-normal light via 

prism coupling hinders the quality of focus [17].  
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1.4 Photonic Crystal Biosensor 

Photonic Crystal (PC) biosensors have recently been demonstrated as a 

highly versatile technology for a variety of label-free assays including high-

throughput screening of small molecule-protein interactions, characterization of 

protein-protein interactions, and measurement of cell attachment modulation by 

drugs [18-20]. A PC is a sub-wavelength grating structure consisting of a periodic 

arrangement of a low refractive index material coated with a high reflective index 

layer (shown in Fig. 3). When the PC is illuminated with a broadband light source, 

high-order diffraction modes couple light into and out of the high index layer, 

destructively interfering with the zeroth-order transmitted light [21]. At a 

particular resonant wavelength and incident angle, complete interference occurs 

and no light is transmitted, resulting in 100% reflection efficiency. The resonant 

wavelength is modulated by the addition of biomaterial upon the PC surface, 

resulting in a shift to a higher wavelength. The electromagnetic standing wave 

that is generated at the PC surface during resonant light coupling inhibits lateral 

propagation, thus enabling neighboring regions on the PC surface to display a 

distinct resonant wavelength that is determined only by the density of biomaterial 

attached at that precise location. By measuring the resonant peak wavelength 

value (PWV) on a pixel-by-pixel basis over a PC surface, an image of cell 

attachment density may be recorded. PWV images of the PC may be gathered by 

illuminating the structure with collimated white light through the transparent 

substrate, while the front surface of the PC is immersed in aqueous media. 
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The advantages of PC-based surfaces for cell attachment imaging are 

compelling. As a label-free technology, cell attachment to a PC sensor is 

measured without the use of dyes or stains, so a population of cells can be 

measured repeatedly without disrupting their culture environment. The detected 

output signal is highly quantitative, providing measurements that are repeatable 

between sensors, instruments, and laboratories without photobleaching. PC 

biosensors are fabricated from inexpensive materials and require only low 

intensity illumination from beneath the sensor, so no electrical or physical contact 

between the sensor and the detection system occurs, and illumination does not 

pass through the cell body, the cell media, or the liquid-air meniscus of a 

microplate well. The PC biosensor strictly limits lateral propagation of resonantly 

coupled light, enabling imaging-based detection with resolution sufficient for 

measuring subtle variations in cell adhesion strength within a single cell, without 

needing to pre-tune the sensor to a particular resonant coupling condition, as in 

SPRi. PC biosensor imaging provides information that is fundamentally different 

than that provided by an optical microscope, as the sensor responds to local 

variation in cell attachment strength to the transducer surface. The sensor can be 

prepared with a variety of surface functionalizations (such as matrix coatings, 

antibodies, and peptides) and thus can be used as a tool for measuring how cell 

attachment to surfaces is modulated by drugs, growth factors, or other 

environmental factors. 
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1.5 Figures 

Figure 1 Schematic drawing of a commercially available total internal reflection 

microscope. A neutral-density (ND) filter can be used to reduce illumination 

intensity. The collimated beam is then focused on the back focal plane of the 

objective (in the pupil plane) by a second lens. Moving the fiber laterally results 

in a corresponding movement of the focused beam in the back focal plane of the 

objective and a corresponding change in the angle of incidence. The fluorescence 

emitted by the sample (green) is collected by the objective lens, passes through 

the dichroic mirror, and is eventually focused on the camera by the tube lens of 

the microscope [22].  
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Figure 2 Schematic diagram of surface plasmon resonance imaging (SPRi) setup. 

SPRi can be used to characterize cell attachment to a metal surface by measuring 

the induced changes in light reflectivity with both wavelength and angle fixed 

[23].  
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Figure 3 Schematic diagram of the photonic crystal (PC) biosensor. A PC sensor 

is comprised of a replica molded polymer grating overcoated with a high 

refractive index thin film of TiO2. Inset: simulated reflection spectrum of PC 

biosensor under the illumination of broadband light source. 
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CHAPTER 2 

INSTRUMENTATION 

2.1 Optical Instruments 

As a multi-function imaging system, PCEM is designed to support both 

label-free and enhanced fluorescence cell imaging. A schematic diagram of the 

PCEM instrument is shown in Fig. 4. The system is built upon the body of a 

standard microscope (Carl Zeiss Axio Observer Z1), but in addition to ordinary 

bright field imaging, a second illumination path is provided from the back of the 

microscope. The two imaging modalities can be selected by either using or not 

using the gray color mirror shown in Fig. 4.  

For the label-free imaging, a fiber-coupled broadband LED (Thorlabs 

M617F1, 600 < λ< 650 nm) is selected to provide narrow-band and non-coherent 

light. The fiber output is collimated and filtered by a polarizing beamsplitter cube 

to illuminate the PC with light that is polarized with its electric field vector 

oriented perpendicular to the grating lines. The polarized beam is focused by a 

cylindrical lens (f = 200 mm) to form a linear beam at the back focal plane of the 

objective lens (10x, Zeiss). After passing through the objective lens, the 

orientation of the line-shaped beam is rotated to illuminate the PC from below at 

normal incidence. The reflected light is projected, via a side port of the inverted 

microscope and a zoom lens, onto a narrow slit aperture at the input of an imaging 

spectrometer. The width of the adjustable slit was set to 30 µm for the work 
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reported here. Using this method, reflected light is collected from a linear region 

of the PC surface, where the width of the imaged line, 1.2 µm, is determined by 

the width of the entrance slit of the imaging spectrometer and the magnification 

power of the objective lens. The system incorporates a grating-based spectrometer 

(Acton Research) with a 512 × 512 pixel CCD camera (Photometrics Cascade 

512). The line of reflected light, containing the resonant biosensor signal, is 

diffracted by the grating within the spectrometer (300 lines/mm) to produce a 

spatially resolved spectrum for each point along the line. Therefore, each pixel 

across the line is converted to a resonant reflection spectrum, containing a narrow 

bandwidth (Δλ ~ 4 nm) reflectance peak from the PC. The Peak Wavelength 

Value (PWV) of each peak is determined by fitting the spectrum to a second-

order polynomial function, and then mathematically determining the maximum 

wavelength of the function. By fitting all 512 spectra, in a process that takes 20 

msec, a line comprised of 512 pixels is generated that represents one line of a 

PWV image of the PC surface. With an effective magnification of 26x, each pixel 

in the line represents a ~ 0.6 µm region of the PC surface and 512 such pixels 

cover a total width of ~300 µm. To generate a two-dimensional PWV image of 

the PC surface, a motorized stage (Applied Scientific Instruments, MS2000) 

translates the sensor along the axis perpendicular to the imaged line in increments 

of 0.6 µm/step. Using this technique, a series of lines are assembled into an image 

at a rate of 0.1 sec/line and the same area on the PC surface can be scanned 

repeatedly. Each image is comprised of 512 by n pixels, where n can be selected 
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during each scan session, and each pixel represents a 0.6 × 0.6 µm region of the 

PC surface. A biosensor experiment involves measuring shifts in PWV. A 

baseline PWV image is gathered before the introduction of cells, when the PC is 

uniformly covered by cell media, which is aligned and mathematically subtracted 

from subsequent PWV images gathered during and after cell attachment. 

For enhanced fluorescence imaging, the second illumination path is 

provided from a semiconductor laser (λ = 637 nm, AlGaAs) to excite the 

fluorescent dyes. The laser is coupled to a polarization maintaining fiber to 

provide a linearly polarized beam, which is later collimated by a condenser lens 

yielding a laser beam with a diameter of 6.7 mm. A half-wave plate is then used 

to adjust the electric field polarization to be perpendicular to the PC grating lines, 

thus ensuring TM mode illumination.  The output beam is focused by the same 

cylindrical lens in label-free optical path to form a linear beam at the back focal 

plane of the objective lens via a 50/50 beamsplitter. After passing through the 

objective lens, the laser is focused along the direction parallel to the PC grating 

while remaining collimated in the direction perpendicular to the grating. The 

width of the illumination line is 6 μm, effectively minimizing the exposure of 

fluorophores in adjacent areas. The PC is still placed on the motorized sample 

stage that moves in a direction perpendicular to the illumination line during 

experiments to cover a targeted area on the PC surface. The emitted fluorescence 

is collected by the objective and projected, via a side port of the inverted 

microscope and a zoom lens onto the EM-CCD camera. An emission filter is 
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placed in front of the camera to block the laser light coming from the source, 

which passed only the fluorescence emission photons. In order to match the 

resonance condition of PC, an angle tuning capability is needed to adjust the 

incident angle of the laser light. For this purpose, an assembly including the end 

of the PM fiber, the collimator, the half waveplate and the cylindrical lens is 

mounted on a motorized translation stage (Zaber LSM-25) that shifts the incident 

light along the horizontal direction. The lateral position displacement (Δd) of the 

laser light focused at the back focal plane of the objective effectively leads to a 

change in the angle (Δθ) of illumination for the PC surface given by equation: Δθ 

= tan
-1

(Δd/f). The incident angle can be controlled from -10° to +10° with an 

increment of 0.03° by translating the motorized stage over a distance of 6 mm 

with a step size 0.01 mm.  

To construct a two-dimensional fluorescence image, the sample stage 

holding the PC translates along the axis perpendicular to the imaged line with an 

increment of 0.6 µm/step, while the camera gathers the fluorescence intensity of 

the center pixel line within the illuminated region at each step position. Using this 

technique, a series of lines is assembled into an image at a rate of 0.1 s/line to 

form the whole image. After completing a scan, the stage can return to its starting 

position to repeat the scan using a second incident angle. The pixel resolution 

along the scan direction is determined by the step increment (0.6 µm) and the 

pixel resolution in the other direction is also 0.6 µm, as determined by the camera 

resolution and effective optical magnification of the system. Each image is 
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comprised of 512 × 512 pixels covering a ~ 300 × 300 µm region on the PC 

surface.  

2.2 Software Controller 

The software controller for PCEM was written in C# programming 

language aiming to manage the entire microscope system including the camera, 

sample stage, computer and the linearly motorized stage for laser light source.  

After the user selects the type of image to output, this controller can automatically 

complete the work of data acquisition, data processing and image generation. In 

the fluorescence imaging experiment, the controller is also able to tune the angle 

of the incident light by accurately controlling the position of the laser stage. An 

advantage of this controller over the previous versions of the PCEM instrument is 

that all the above functions are integrated into a single application program. Users 

do not need to open several different windows in each different step and reload 

the data again and again. The operation interface for this software is made up by 

six panels shown in Fig. 5. 

The panel (a) is for camera setting. Based on the written drivers and 

provided API support for Hamamatsu EM-CCD, this panel is to able to initialize 

the camera according to the input settings, which include the integration time, EM 

gain, ADC gain and readout speed. When the camera is turned on, this panel 

keeps showing to the user the camera name and the current temperature obtained 
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from the camera. After the experiment is done, the user may click on “close 

camera” to stop the data acquisition.  

Panel (b) can be used to either show the spectra when the spectrometer slit 

is narrow (~30 µm) or show the real-time bright field image when the 

spectrometer slit is wide open. After clicking on the “take spectrum” or “live 

camera” buttons, an extra window will pop out to image the light currently 

received by the camera. When the slit is narrow, the grating in spectrometer has a 

strong diffraction effect and the light is spectrally resolved, therefore the signal 

read by the camera is about light spectrum. The spectrum can be shown in the 

spectrum window (d) and the user can select whether to read only one single 

spectrum at the center position or the averaged spectrum of the whole areas. 

When the slit is wide, the grating works more as a reflector than a diffractor, thus 

the image shown in the pop-out window is a bright field image.  

Panel (c) is the most important part of this software which is in charge of 

the scan process. Before each scan, the user selects the type of image to output. In 

the “Hyper spectrum type” list box, the user needs to choose “Peak wavelength 

value image”, “Peak intensity value image”, “Intensity image”, “Single 

wavelength image”. The “select wavelength” box is used to tell the computer the 

center wavelength of the collected light, and it should be the same value as the 

one set in spectrometer.  The user also needs to set the step size and total number 

of scanned lines for the following scan. Usually the step size is set to be 6 kÅ (= 

0.6 µm) to match the image resolution of the microscope and the number of 
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scanned lines is 512. After clicking on “scan data”, the controller will 

automatically move the sample stage back half the length of the total scan 

distance to start the scan. During each scan, the stage moves step-by-step while 

the camera reads the spectrum information at each step position. To generate the 

finally output image, the computer first reads the command input before with the 

image type. For the PWV image, the computer will record the wavelength value 

of the spectrum peak position as the pixel value through a peak fitting algorithms. 

The computer firstly roughly searches the highest intensity region in the spectrum 

and then fits the data into a second-order polynomial to accurately find the peak 

wavelength. For the peak intensity value (PIV) image, the computer does the 

same searching and fitting work but outputs the spectrum intensity of the peak 

position as the pixel value. For the intensity image, the spectrum intensity at all 

wavelength values is summed together as the pixel value at each point. For the 

single wavelength image, the system tracks the spectrum intensity change at only 

the selected wavelength value and takes such intensity as the output pixel value in 

a similar manner as the SPRi. To obtain a good spectrum signal, it is also 

necessary to take the reference spectrum, the reflection spectrum of light source 

without the presence of PC, and the dark spectrum, the spectrum signal receives 

by the system when light source is off. For the practical use of this software, we 

also add a long scan function to it. The user can set the time interval between each 

scan and the total number of scans. In this way, the PCEM controller can achieve 
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a long-time observation of the cells. All the data is automatically saved by this 

software.  

Panel (d) is the window to show the reflection spectrum of light collected 

by the CCD camera.  

Panel (e) controls the motion of the sample stage except the scan period. 

User can take a specific position (usually the corner position of the PC biosensor) 

as the reference point by clicking on “Reference point”. Then all the motion of the 

sample stage takes this position as the zero in coordinates. After selecting the scan 

area, the user can acquire the relative coordinates of the scan position to the 

reference point and record that coordinates. This can help the user to find exactly 

the position of last scan even after the user changes the stage position for other 

purposes. And if the user wants to take a multi-points long scan, a long scan that 

tracks the images at several different places, the coordinates of the desired scan 

position needs to be input and the “Multi points scan” checkbox needs to be 

checked.  

Panel (f) is only for the enhanced fluorescence experiments. The “Talk”, 

“Open”, “Close” and “Ports” buttons are used to connect the computer with the 

motorized stage that holds the laser light source. For each enhanced fluorescence 

experiment, it is important to find the resonant incident angle of the PC sample, so 

the “Angle scan” button can travel the motorized stage from the “Start” position 

to the “End” position with the input “Step size” and record the average image 

intensity at each step position. During this period, information of the current 
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position and the current intensity value continuously shows up in the “Position” 

and the “Intensity” box. The position with maximum intensity is then recorded by 

the computer. After the angle scan, by clicking on “Get to resonance position”, 

the stage can moves to the position that matches the PC resonant conditions. Then 

by clicking on “Scan”, the system behaves almost the same as under the command 

“Scan data”, except the computer directly takes the pixel line with the highest 

fluorescence intensity value and generates the output images with those pixel 

lines. 
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2.3 Figures 

 

Figure 4 Instrument schematic of the PCEM. Illumination from a fiber-coupled 

LED is collimated and passed through a polarizing beamsplitter (PBS) to create a 

pure electric field polarization perpendicular to the PC grating. A cylindrical lens 

focuses the light to a line at the back focal plane of the objective. The PC 

resonantly reflects only a narrow band of wavelengths, which are collected 

through the entrance slit of an imaging spectrometer.  
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Figure 5 Operation interface of the PCEM software controller is made up of six 

panels: (a) camera setting, (b) spectrum setting, (c) scan setting, (d) spectrum 

read-out window, (e) sample stage setting, and (f) laser stage setting.   
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CHAPTER 3 

LABEL-FREE IMAGING 

3.1 Label-Free Cell Imaging 

The most commonly used method for identification of differentiating stem 

cells is the labor- and time-intensive methylcellulose assay, which only reveals 

the identity of the colonies weeks after commitment occurs [24-26]. Furthermore, 

this approach requires cells to be resuspended in liquid phase, thereby altering 

many of the environmental cues that yielded the observed differential 

development. Using PCEM, it is possible to capture the dynamics of cell 

morphology and cell-matrix interactions during complex processes such as stem 

cell differentiation under real-time conditions (with less than 60 seconds between 

subsequent images). Such a tool would be critical for examining the potential of 

cell attachment signatures as a proxy for stem cell lineage commitment, 

particularly considering that such analyses could be performed without disturbing 

the extracellular environment.  

As cells attach and spread, positive PWV shifts are observed due to an 

increase in the concentration of cellular material within the evanescent field 

region of the PC.  A PWV image for human pancreatic cancer cells (Panc-1) is 

compared to a brightfield image of the same cells in Fig. 6. Morphological 

profiles are consistent with healthy, attachment-dependent cells. Representative 

spectra are shown from inside and outside the cell region, demonstrating a 
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definitive whole-spectrum shift of the characteristic resonant peak. Clearly visible 

boundaries of ~ 0.5 nm PWV shifts demonstrate the ability of PCEM to provide 

information about the geometry of attachment, which has been shown to have 

significant implications for both the classification of differentiating stem cells 

[27], and the metastatic potential of tumor cells [28]. In addition, sub-cellular 

variation of PWV is indicative not only of the presence of cellular adhesion, but 

also modulation in the strength of attachment. For example, cell “2” in Fig. 6 

shows a gradient in cell attachment strength from left to right. A region of greater 

PWV shift along the leading edge suggests the formation of lamellipodia, 

indicating a higher concentration of intracellular matter than is present in the rest 

of the cellular attachment footprint. As it can be assumed that the majority of this 

lower-PWV shifted footprint occurs under regions of cytosol, the increased PWV 

of the cell boundary, especially in these protrusions, most likely can be attributed 

to the formation of actin bundles at sites of focal adhesion, a process thoroughly 

documented via traditional, yet cytotoxic, fluorescent staining techniques [29-31]. 

Next, murine dental stem cells (mHAT9a) were cultured and allowed to 

attach to a PC surface prepared with fibronectin over a period of two hours 

(shown in Fig. 7). From the series of PWV images gathered at 3 minute intervals, 

initial attachment times can be identified within the 3 minute period of image 

acquisition. Cells are observed attaching to the treated surface, with initial 

attachment characterized by small, round areas of PWV shift, consistent with 

spherical cells exiting suspension. As time progresses, average cell diameter 
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increases, and membrane boundaries become more irregular as cellular processes 

begin to extend from cell bodies. Many cells maintain highest shifts at their 

periphery, which is consistent with the high concentration of cytoskeletal protein 

necessary for boundary maintenance and lamellar extension. Random locomotion 

is observable, which reveals that cellular detachment results in a full recovery of 

initial PWV values when a cell moves to a new location. We observe no 

preference for the cells to extend themselves or to move along the direction of the 

PC grating. 

Cellular apoptosis and detachment were also studied. Using another 

fibronectin-treated PC biosensor, mHAT9a cells were allowed to attach to the 

sensor surface for 3 hours. A final concentration of 2 µm staurosporine, shown to 

induce apoptosis via protein kinase inhibition [32, 33], was added to the cell 

chamber and mixed for 15 seconds. Cells were imaged every 20 minutes for 18 

hours. Initial cells appear healthy, with various filopodia extending radially from 

cell bodies. As time progresses, the footprint of the cell bodies decreases, and 

several of the cells appear to detach completely. Other cells appear to undergo 

apoptosis prior to detachment, leaving behind remnants of cell membrane, which 

still produce a detectable PWV shift. The breakdown and modification of cell-cell 

and cell-ECM interactions is of great importance to answering questions about the 

progression of cancer cell detachment and metastasis from primary tumor sites. 

PCEM is unique in the fact that the biosensor response is a direct quantification 

and 2D localization of attachment at the single cell level, as opposed to indirect 
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methods of staining for actin bundle formation or even ensemble averaging of 

bulk dielectric properties. This direct observation available over a time scale of 

hours to days provides a natural tool for the future study of cancer cell detachment 

and metastasis. 

We next sought to validate the use of PCEM imaging in examining cell-

mediated chemotaxis (shown in Fig. 8). The importance of stromal cell-derived 

factor-1 (SDF-1α) in the directed chemotaxis of differentiating cells is well-

known for a myriad of situations including hypoxic ocular neovascularization, 

capillary formation and adipocyte differentiation in human adipose tissue, and 

bone regeneration in traumatic brain injury [34-36]. More recently, SDF-1α and 

its effect in attracting CXCR4 receptor positive cells have been investigated in 

dental healing and regeneration. However, current mechanisms for studying the 

recruitment of dental stem cells have been based on fixing and staining cells [37, 

38]. As the observed migration occurs on the order of days, label-based assays are 

not feasible for extended time course studies. PCEM provides an opportunity to 

monitor such events as they occur. 

We examined mHAT9a chemotaxis in response to beads soaked in SDF-

1α, a chemoattractant to which the receptor CXCR4 is sensitive [39]. After a bead 

was placed on the sensor surface, attached cells were observed to move in the 

direction of the eluting bead. Probing lamellipodia extend in multiple directions 

around the cell, but only projections formed in the direction of the bead are 

maintained by the migrating cells. Attachment in the trailing edge of the cell 
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decreases over time as the cell bodies proceed in the direction of chemotaxis, 

resulting in a return of the sensor to its native state. The experiment was repeated 

with a mHAT cell line with a constitutive knockout of the CXCR4 coding gene, 

and no directional movement was observed. This suggests that the observed 

cellular movement was indeed due to chemotaxis, as opposed to nonspecific 

locomotion. Critically, we do not observe preferential movement or extension of 

cell processes in the direction of the PC grating lines. To our knowledge, this 

represents the first label-free time-lapse imaging of the attachment localization of 

living cells during chemotaxis.  

It has been shown that SDF-1α/CXCR4 mediated recruitment of dental 

stem cells is likely an important inflammatory response and underlying promoter 

of reparative dentin formation [40]. Further investigation of the SDF-1α/CXCR4 

pathway with the PCEM technology could provide a valuable investigation of 

morphological changes induced by the inflammatory response of dental stem cells 

to dental damage. 

3.2 Label-Free Nanoparticle Imaging 

Nanoparticles (NP) prepared from dielectric, semiconductor, metal, and 

magnetic materials have recently become important elements of biosensor 

technology due to the ability to prepare their surfaces with ligands that enable 

them to recognize specific target molecules, and their ability to interact with 

electromagnetic fields in useful ways [41, 42]. For example, nanoparticles with 
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dielectric permittivity greater than that of water may be used as secondary tags for 

enhancing the signals from resonant optical biosensors [43], while magnetic 

nanoparticles are used to facilitate particle manipulation while at the same time 

providing a mass amplification tag for acoustic biosensors [44]. Likewise, 

metallic nanoparticles, comprised of silver or gold, couple with external 

illumination sources to generate surface plasmons, which are used to enhance 

local electric fields on the nanoparticle surface [45].  

While many biosensing approaches are capable of sensing the adsorption 

of large numbers of nanoparticles [46], several approaches are capable of 

detecting the presence of a single nanoparticle, if the particle is adsorbed to a 

specific active location [47]. Due to the difficulty of directing analytes to precise 

locations on a substrate surface where a biosensor has sensitivity, one approach to 

overcoming this limitation is to utilize a biosensor surface in which the entire 

surface area is active as a sensor. Through the use of an imaging detection 

approach, the adsorption of analyte upon any region within the field of view may 

be measured. Imaging-based biodetection utilizing optical sensors has been 

demonstrated using surface plasmon resonance, photonic crystal biosensors, and 

dielectric thin film interference sensors. Such approaches are advantageous 

because analytes that produce highly localized changes in dielectric permittivity, 

such as cells, virus particles, or nanoparticles, may be detected, with the potential 

to observe the attachment of individual targets. 
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Here, we apply PCEM to imaging the attachment of dielectric and metallic 

nanoparticles upon a photonic crystal (PC) surface (Fig. 9). While our initial 

demonstration of PCEM described imaging the spatial distribution and time 

evolution of live cell attachment strength to a functionalized PC surface with 0.6 

mm pixel resolution, here we report the detection of nanoparticles that are smaller 

than the pixel size. We demonstrate that metallic Au nanoparticles or nanorods 

produce highly localized effects upon the PC resonant reflection spectrum that 

enable individually attached particles to be easily observed by two distinct 

mechanisms, for particles as small as ~65 nm × 30 nm. We observe that the 

dielectric permittivity of particles results in a local shift in the resonant 

wavelength of the PC, while the optical absorption of nanoparticles results in a 

localized reduction in the resonant reflectivity magnitude. We anticipate the use 

of dielectric or metallic nanoparticles as functionalized tags in “sandwich” style 

assays that can be used to visualize the presence of individual captured analyte 

biomolecules upon a PC surface. PCEM nanoparticle imaging offers an attractive 

alternative to detection of fluorescent nanoparticles, as PCEM requires only low 

power broadband illumination, does not suffer from photobleaching, can provide 

long-term time-course data, and can be utilized for any type of nanoparticle tag. 
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3.3 Figures 

  

Figure 6 (a) Bright field and (b) PWV imaging of Panc-1 cells attached to the PC 

surface. Cells were seeded onto a fibronectin-coated sensor and allowed to 

incubate for 2 hours before imaging. Lamellipodial extensions are visible, 

especially from cell 2, demonstrating the ability of PCEM to resolve regional 

differences in single-cell attachment. Darker shading indicates regions of higher 
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protein concentration, and is present in regions near the boundary of lamellipodia 

formation, consistent with the creation of actin bundles. (c) Representative 

regions of cellular attachment. Selected areas of the PWV image from beneath a 

cell show the PWV shift of a typical Panc-1 cell is ~1.0 nm, and consistent 

throughout the entire spectrum at those locations. 
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Figure 7 (a) Time lapse PWV images of cellular attachment of mHAT9a cells. 

Cells were seeded at 20,000 cells/ml on a fibronectin-coated sensor surface. After 

3 minutes, regions of initial cell attachment appear as small, round regions, which 

are consistent with spheroid, trypsinized cells coming out of suspension and 

attaching to a surface. As time progresses, both the size of the cells and intensity 
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of the PWV shift induced by them increases, indicating a higher localization of 

cellular material at the sensor surface, which can be expected during cell 

spreading. Finally, once cells are sufficiently attached, cellular processes can be 

observed sensing the cells’ microenvironment in all directions. The outer irregular 

boundaries of the cells have a relatively low PWV, consistent with thin, 

exploratory filopodia, accompanied by a more heavily attached region slightly 

immediately adjacent in the cell interior, likely a result of actin bundle formation. 

(b) Time lapse PWV images of mHAT9a apoptosis and detachment. Cells were 

seeded at 8,000 cells/ml onto a fibronectin-coated sensor surface. Cells that 

detach can be observed by the gradual retraction of filopodia and overall cell 

rounding before the PWV shift disappears entirely. Some cells appear to undergo 

apoptosis while still attached, leaving remnants of cell membranes and protein on 

the sensor surface. ΔPWV data was attained via background subtraction from an 

initial image taken before cell attachment (t = 0).  
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Figure 8 (a) Time lapse PWV images of chemotaxis of mHAT9a cells. Cells were 

deposited on the sensor surface at a concentration of 8,000 cells/ml and allowed to 

attach for 2 hours before imaging. An agarose bead was placed at a location 

approximately 100 microns above the top of the image, and PWV images were 

collected every 20 minutes after the bead was placed. Cell movement direction is 

indicated with an arrow in the leftmost frame. (b) CXCR4 knockout cells exhibit 

non-directional movement on the sensor surface. Similarly prepared, CXCR4 

mutants do not show directional movement toward the bead, demonstrating that 

the previously observed directional locomotion was due to chemotaxis.  
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Figure 9 PCEM detection of randomly distributed TiO2 and Au nanoparticles 

(NP). (a) PCEM-detected PWV image of the TiO2 NP displayed in a 3D surface 

plot. Inset: 2D PWV image in grayscale. (b) PCEM detected PIV image of the 

TiO2 NP displayed in a 3D surface plot (inversed for comparison). Inset: 2D PIV 

image in gray scale. (c) Normalized spectrum of a 500 nm TiO2 NP and a 

background pixel. Inset: Zoomed in image of the normalized spectrum with 2D 

polynomial fitting (TiO2 NP fitting in red line, background fitting in blue line), 

indicating a PWV shift of Δλ = 1.12 nm and a PIV reduction of ΔI = 58% when 

the NP is present. (d) Scanning electron micrograph of the Au NP on PC surface. 

Inset: Zoomed in image. PCEM detected (e) PWV image and (f) PIV image of the 

Au NP displayed in 2D with gray scale. (g) Normalized spectrum of a 100 nm Au 

NP and a background pixel. Inset: zoomed in image of the normalized spectrum 

with 2D polynomial fitting (Au NP fitting in red line, background fitting in blue 

line), indicating a PWV shift of Δλ = 0.15 nm and a PIV reduction of ΔI = 12% 

when the NP is present. 



 

37 

 

CHAPTER 4 

ENHANCED-FLUORESCENCE IMAGING 

Several available approaches for visualization of cell-substrate interactions 

utilize fluorescent dyes that label specifically targeted cell structures, and 

fluorescent excitation methods that concentrate illumination energy to a confined 

zone on a transparent glass substrate or waveguide that is in direct contact with 

adherent cells. For example, total internal reflection fluorescence (TIRF) 

microscopy can selectively excite fluorophores near the adherent cell surface, 

while minimizing the fluorescence signal originating from the bulk of the cell [9] 

through a spatially restricted evanescent field upon a substrate surface when total 

internal reflection occurs. While TIRF microscopy has been broadly adopted 

through the availability of specialized microscope objectives, the approach is not 

able to differentiate between a locus of high fluorescence intensity that is bright 

because it is close to the cell-substrate interface, and a high intensity region of an 

image that is bright because it contains a high concentration of fluorescent dye. 

Confocal microscopy is another important technique that is used to visualize 

features of cell membranes, in which a diffraction-limited focal volume of laser 

illumination is scanned through the three-dimensional volume of the cell.  

Although confocal microscopy can specifically target volume elements of the cell 

that are close to the boundary with the surface, the approach also results in 

background excitation of components that are above/below the region of greatest 
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illumination intensity that belong to the cell body.  Further, the throughput of 

confocal microscopy for rapidly imaging many cells in a large field of view is 

limited by the necessity of scanning the focused spot [48].  

In order to address the limitations of TIRF and confocal microscopy, there 

has been intense interest in the development of surfaces and nanostructures that 

can more effectively couple light from a fluorescence excitation source, and 

spatially confine it to the region of a cell that adheres to the surface.  These 

techniques can be advantageous because they can effectively amplify the 

excitation intensity beyond that available from an ordinary glass surface, resulting 

in greater fluorescent intensity than would be available from TIRF, given an 

identical illumination intensity.    

While the first demonstrations of enhanced fluorescence appeared shortly 

after the discovery of surface enhanced Raman scattering almost three decades 

ago [49-51], the application of this method to improving bioassays has only 

occurred recently, in conjunction with the increased use of fluorescence protocols 

in life sciences research. Enhancing fluorescence typically relies on an interaction 

between a fluorophore and a resonant optical structure, the most common of 

which are metal nanoparticles, smooth metal surfaces, and nanostructure metal 

surfaces that support plasmon resonances. These resonances can affect 

fluorophores in a variety of ways: they can amplify excitation light [52], alter the 

spatial distribution of the fluorophore emission [53], modify the radiative lifetime 

of the fluorophore [54], or simultaneously perform more than one of these 
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functions [55-57]. Metal nanostructures have been demonstrated to enhance 

fluorescence for applications such as immunoassays [58] and cell imaging [59].  

Previous demonstrations of metal-induced fluorescence enhancement have shown 

a signal increase of more than one order of magnitude [60, 61].  However, 

fluorophores in close proximity to metals (within 10 nm) often transfer their 

energy non-radiatively as well [62].  Fluorescence enhancement using metal 

surfaces or metal nanoparticles suffers from quenching if the fluorophore is too 

close to the metal, while electromagnetic fields associated with localized surface 

plasmons decay rapidly with distance as one moves away from the metal, 

resulting in very stringent requirements for surface-fluorophore spacing  [63].  

The low quality-factor of metal-based resonances, due to optical absorption, 

further reduces the achievable amplification factor for metal-enhanced 

fluorescence [64, 65].   

Photonic crystals (PCs), or periodic arrangements of materials with 

differing dielectric constants, represent a powerful class of substrates for 

enhancing fluorescence.  The PCs used in our research are comprised of a 

periodically modulated low refractive index polymer surface structure coated with 

a high refractive index dielectric layer of TiO2, and capped with a low refractive 

index thin film of SiO2 in which the period is smaller than the wavelength of light 

used to excite the structure (Fig. 10a).  A resonance in this structure is excited 

when evanescent diffracted orders couple to modes of an effective high refractive 

index layer, and are re-radiated through diffraction in-phase with the reflected 
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zeroth-order wave and out-of-phase with the transmitted zeroth-order wave [21].  

The dispersion of the PC then reveals these resonances as transmission dips (Fig. 

10d) upon white light illumination, resulting from the coupling of light at specific 

incidence angles and wavelengths to the structure.  These resonances are capable 

of enhancing fluorescence in a similar fashion to surface plasmon resonances, 

taking advantage of two phenomena: enhanced excitation and enhanced 

extraction.  Enhanced excitation is the result of incident radiation coupling to a 

PC resonance, which increases the local electric field intensity throughout the 

structure.  These fields decay exponentially as one moves way from the substrate 

surface (Fig. 10e and 10f), in a similar fashion to TIRF microscopy, but the 

resonance coupling provides a constructive interference effect that amplifies the 

incident wave [66]. Thus enhanced excitation provides the benefit of localized 

surface-bound fluorophore excitation observed with TIRF, but with increased 

performance due to field enhancement. Multiplied with this enhancement effect is 

enhanced extraction, whereby fluorophore emission couples to the PC and is 

redirected along the PC dispersion [67].  This mechanism helps to claim emitted 

light that otherwise may have been lost to guided modes within the substrate or to 

emission at oblique angles not collected by the detection optics. Enhanced 

extraction increases the percentage of fluorescence emission that is available for 

detection. Overall, photonic crystal enhanced fluorescence (PCEF) provides an 

optically active surface capable of providing uniform fluorescence enhancement 
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over large areas without the quenching effects that limit metal enhanced 

fluorescence approaches.   

PCEF offers an additional unique feature that is not available in TIRF 

microscopy.  For effective fluorescence enhancement by PCEF, the illumination 

angle of a monochromatic light source must be chosen to couple efficiently with 

the resonant mode used for enhanced excitation [68] by matching the illumination 

angle with the resonant coupling angle of the PC.  However, by intentional 

adjustment of the incident angle to an off-resonant condition, one may obtain 

“ordinary” laser illumination, and thus it is simple to adjust the illumination 

between an “on-resonant” and an “off-resonant” state, effectively switching the 

enhancement effect on/off at will.  In this thesis, we take advantage of this 

capability to create spatial maps of the PCEF enhancement factor of fluorescence-

emitting regions on the surface and inside live cells.  Rather than generating 

images of florescence intensity, as performed by TIRF, that result in fluorescence 

intensities that are dependent upon both the local dye concentration and the 

position of the emitters with respect to the substrate surface, PCEF microscopy 

creates fluorescence enhancement factor images, that derive their magnitude only 

from the proximity of the fluorescent emitter from the surface (Fig. 10f).  While 

previous publications have described the application of PCEF in the context of 

microarrays of biomolecular assays for multiplexed detection of soluble protein 

biomarkers [69], gene expression [20], and miRNA [70], this work represents the 

first report of PCEF for fluorescence imaging of cells, in which alternating on/off-
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resonance images are used to derive maps of the surface engagement of cell 

structures. Using dyes that target either outer cell membrane components or 

internal (nucleus) components of cells, we demonstrate that PCEF microscopy is 

capable of providing information about the spatial distribution of cell-surface 

interactions at the single-cell level that is not available from existing forms of 

microscopy, and that the approach is amenable to large fields of view, without the 

need for coupling prisms, coupling fluids, or special microscope objectives. 

4.1 Enhancement Characterization 

To characterize the resonant response of PC under the illumination of a 

TM polarized laser, a commercially available electromagnetic simulation package 

(FDTD Solutions, Lumerical Inc.) was used to study the optical field distribution 

(normalized to incident intensity) and the distance dependence of the 

enhancement effect. Since the fluorophores interact with excitation light primarily 

through excitation of their internal electrons, only electric field components are 

considered. One period of the PC structure was studied with a periodic boundary 

condition applied along the direction perpendicular to the grating lines, as shown 

in Fig. 10e.  

To simulate the electric field associated with the PC biosensor used in real 

experiments, the corners of grating were slightly rounded to match the shape 

observed via AFM, and the superstrate material was chosen to represent water 

(nwater = 1.33).   The illumination is provided by a monochromatic plane wave 
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light source at a wavelength λ = 637 nm, (the same wavelength used for 

experiments) and a magnitude, represented by the power of the incident electric 

field of |E|
2
 = 1 (V/m)

2
.  In our simulation, the on-resonance incident angle for a 

wavelength of λ = 637 nm is designed to be 0° (normal incidence).  Figure 10e 

(left) shows the spatial distribution of the near-field electric field at the resonance 

condition. The resonant electromagnetic standing wave generates surface-

confined electric field power with magnitudes as high as   |E|
2
 = 100-300 (V/m)

2  

in proximity to the TiO2 layer with the evanescent tails penetrating both the 

substrate and superstrate materials. To demonstrate the difference between the on-

resonance and the off-resonance condition, a second simulation was performed 

for the identical device structure and illumination source, but incident at an off-

resonant coupling angle 5° from normal. As shown in Fig. 10e (right), the 

enhancement effect is generally eliminated due to the mismatch of incidence 

angle with the resonant coupling angle and the near-field electric field intensity is 

very close to |E|
2
 = 1 (V/m)

2
. The distance dependence of the enhancement factor 

was estimated through simulation. The enhancement factor at a particular height 

was calculated as the ratio between the averaged electric field intensity at on- and 

off-resonance conditions, and is plotted as a function of the distance above the PC 

surface ranging from 2 nm to 600 nm, as shown by Fig. 10f.  As expected, the 

enhancement effect decays exponentially as the fluorescent emitter is translated 

vertically from the PC surface, with the enhancement effect nearly completely 

eliminated for distances from the surface greater than 500 nm. Importantly, the 
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enhancement factor at each vertical distance is unique, suggesting that we can 

estimate the distance between a fluorescent emitter and the PC surface by 

measuring the fluorescence intensity at both on- and off-resonance and calculating 

the enhancement factor. 

4.2 Enhanced-Fluorescence Cell Imaging 

In order to characterize the adhesion properties of live cells and 

demonstrate the enhanced fluorescence imaging capability of PCEM, 3T3 

fibroblast cells were cultured and observed when they are adherent to 

fiberonectin-treated PC sensors. Fibroblasts are the most common resident cells in 

the connective tissue. On injury, the fibroblast cells nearby the wound proliferate 

and produce large amounts of collagenous matrix to help to isolate and repair the 

damaged tissue [71]. The cell line was selected for initial demonstration of the 

PCEF microscopy due to their broad utility in tissue engineering and clinical 

applications.  

The 3T3 fibroblasts (ATCC) were cultured in DMEM media with 5% fetal 

bovine serum. Silicone rubber gaskets (prepared using polydimethylsiloxane 

(PDMS)) gaskets were added to the sensor surface to provide a liquid container 

for cell attachment (1 mL volume).  Prepared slides were treated with oxygen 

plasma, and incubated with 10 µg/mL fibronectin to encourage cellular 

attachment. Cells were incubated on the PC surface for 12 hours prior to labeling 

with fluorescent dyes.  For membrane staining, a non-lectin, amphipathic 
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membrane dye that fluoresces at a wavelength of λ = 666 nm (Life Technologies, 

excitation/emission: 659/674 nm) was added at 1x concentration to the chamber 

and incubated for 10 minutes.  Afterward, the chamber was rinsed with DMEM 

culture media.  For nuclear staining, a cell-permanent nuclear stain that binds to 

DNA and fluoresces at λ = 647 nm (Life Technologies, excitation/emission 

638/686 nm) was added to the chamber, and incubated for 30 minutes before 

imaging.  Imaging was completed on the instrument as described above inside an 

environmentally controlled incubation chamber (Zeiss) maintaining constant 37 

ºC temperature and 5% CO2.   

When illuminated with the λ = 637 nm laser, the excitation efficiency for 

the nuclear dye is nearly 100%, but for the membrane dye, the excitation 

efficiency is expected to be only ~50%.  Before each scan, an angle reflection 

spectrum is obtained, as shown in Fig. 11 (top left), to identify the on-and off-

resonance incident angles. The experimental on-resonance incident angle is ±1.14 

degrees. The two peaks observed in the spectrum are the result of bilateral 

symmetry of PC along the grating lines, which means that the incident angle can 

be equivalently coupled into the resonance mode from two symmetrical angles. 

To fully demonstrate the fluorescence enhancement ability of the PC, the off-

resonance scan is always completed first, followed by an on-resonance scan of the 

same field of view, so photobleaching effects do not artificially inflate the 

observed enhancement factor. Other than the angle of incidence, all other 
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instrument settings were maintained between subsequent imaging sessions of a 

field of view.  

i) Fluorescence imaging of cell membrane 

Figure 3a shows the brightfield image of 3T3 fibroblasts incubated on a 

PC biosensor, showing a morphology that is consistent with surface-attached 

cells. The filopodia are easily visualized as they extend radially from the cell 

bodies confirming a healthy and fully-spread status of the examined cells. The 

off-resonance fluorescence image of the labeled cell membranes was taken first 

(Fig. 11b), showing clear cell attachment patterns, that are consistent with the 

brightfield image. Immediately after the off-resonance scan, the incident angle of 

the excitation laser was tuned to be the resonant angle of the PC followed by an 

on-resonance scan of the same field of view, as shown in Fig. 11c. Through 

comparison of the two images, obvious fluorescence intensity enhancement is 

obtained via resonant illumination of the PC surface. To quantify the intensity 

amplification effect at each pixel position, an enhancement factor image was 

generated by dividing the on-resonance net intensity by the off-resonance net 

intensity (Fig. 11d). A fivefold enhancement was achieved through the effect of 

only enhanced excitation, as indicated by the image colorbar.  

Important information about cell adhesion can be inferred from the 

enhancement factor image. Due to the distance dependence characteristics of the 

resonant electric field strength shown by the previous simulation, the unequal 

excitation efficiency of fluorophores results from their difference in the vertical 



 

47 

 

distance from the PC surface. The higher enhancement factor exhibited by a 

fluorophore, the smaller gap exists between the fluorophore-bound cell 

component and its substrate. Consequently, the variation of the enhancement 

factor over intracellular locations not only implies the existence of cell binding to 

surface, but also evaluates the strength and gradient of the formed adhesion 

bonds. A three-dimensional plot of the enhancement factor (Fig. 11(e)) sketch the 

contours of the spatial profiles of the cell membrane that contacts the PC surface.  

ii) Fluorescence imaging of cell nucleus 

To extend the generality of PC enhanced fluorescence, we performed another live 

cell experiment with labeled nuclei. The brightfield, on-resonance, off-resonance 

and enhancement factor images are shown in Fig. 11(f)-(j). In contrast to the 

expected irregular morphological fluorescence patterns stemming from cell 

membrane shapes, the labeled nuclei appear to be circular, as expected.  When the 

incident angle is on-resonance, cell nuclei in the evanescent field region show an 

enhancement factor as large as 20 times that of the off-resonance image. 

According to the simulated enhancement decay curve (Fig. 10(f)), we can 

estimate that nucleus-bound fluorophore is within 150 nm of the PC surface.  
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4.3 Figures 

 

Figure 10 (a) Schematic diagram of the PC biosensor. (b) AFM image of the PC 

biosensor surface showing the grating period of 400 nm and grating depth of 50 

nm. (c) Photograph of the PC biosensor on a standard microscope slide substrate. 

(d) Reflection spectrum of a PC biosensor. Red curve and black curve indicate the 

reflection response of PC under the illumination of TM polarized light and TE 

polarized light respectively. (e) FDTD simulation of evanescent electric field 

distribution when the PC biosensor is under resonant (left) and non-resonant 

(right) illumination. The electrical field intensity under on-resonance condition is 

enhanced maximally 350 times compared to the incident light intensity, while the 

off-resonance electrical field exhibits little intensity increase.  (f) The distance 

dependence of the enhancement factor. 
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Figure 11 The (a) bright field, (b) off-resonance, (c) on-resonance, (d) 

enhancement factor, (e) 3D surface plot imaging of 3T3 cell membrane. Cells are 

labeled with plasma membrane dye with an excitation and emission wavelength at 

659 nm and 674 nm respectively. And the (f) bright field, (g) off-resonance, (h) 

on-resonance, (i) enhancement factor, (j) 3D surface plot imaging of 3T3 cell 

nucleus. The cell nucleus dye is excited with a maximum at 638 nm when bound 

to DNA, with an emission maximum at 686 nm. 



 

50 

 

CHAPTER 5 

CONCLUSION 

PCEM represents a new imaging modality that can be easily integrated 

with a conventional optical microscope to enable quantified, near real-time, high 

resolution imaging of cell-surface interactions. While traditional microscopy 

techniques such as phase-contrast and DIC provide basic information about 

cellular morphology and general appearance, PCEM provides information that is 

specific to the interface between the cell and its substrate.  By virtue of the 

surface-confined resonant electric field of the photonic crystal, PCEM enables 

high contrast imaging of the interaction strength of cells with a surface, providing 

a specific attachment footprint as opposed to a generalized shape of the entire 

three-dimensional cell body. The approach utilizes low cost illumination source 

from below, using a PC sensor structure that can be incorporated into standard 

coverslips (as demonstrated here), microscope slides, or microtiter plates that are 

typically used for cell research. PCEM clearly demonstrates that cell-surface 

attachment strength is not uniformly distributed within a cell or static as a 

function of time, but instead contains rich dynamic information that includes the 

rate of cell boundary extension, the size of a cell “footprint” on a surface, and the 

effect of the extracellular environment (including chemotactic gradients) on cell 

attachment.  

The cell imaging experiments used to demonstrate PCEM were selected to 
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show that the spatial resolution of the approach is sufficient for clearly observing 

features such as spatial gradients in cell-surface attachment and the extension of 

fine-structured filopodia, attributes that are typically observed only using dyes or 

stains. As a label-free and enhanced-fluorescence detection approach, PCEM 

enables continuous monitoring of these phenomena over extended time periods 

that are compatible with the biological time scales of chemotaxis, apoptosis, 

differentiation, and proliferation. This thesis demonstrates, to our knowledge, the 

first time-lapse movies of cell-surface interaction monitoring at these time scales. 

It is already well established that both the comparison of cancerous/non-

cancerous cells and of cell lineages differentiated from pluripotent stem cells lend 

themselves to investigation via their unique morphologies and cellular attachment 

protein expression, with the majority of such differences easily visible via 

traditional microscopy.  With PCEM, cellular attachment morphology can be 

directly observed, and attachment “profiles” for different cell types can be 

developed.  By limiting the study of cell morphology to the specific density of 

cellular material present in the evanescent field region of a photonic crystal, 

attachment can be observed in a more direct method with less subjectivity than 

simple qualitative observation using traditional microscopy methods.   

There is an increasing awareness of the importance of cellular adhesion 

and the mechanical microenvironment of cells on their behavior, yet directly 

measuring these attributes in a non-invasive fashion has proved difficult. PCEM 

provides a novel, robust methodology for the investigation of these attributes in a 
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controlled environment without chemical alteration. The relationship between 

mechanical microenvironmental cues and cancer cell behavior has been 

demonstrated, contributing significantly to tissue dysplasia and metastatic 

detachment [72]. With PCEM, it will be possible to investigate important 

components within the progression of tumor-development, such as the recruitment 

and movement of neutrophils to the cancer microenvironment. Neutrophil 

polarization and chemotaxis represent a challenging process to study as it presents 

a complex and dynamic set of cellular-ECM interactions. Near real-time imaging 

would allow for rapid improvement in our understanding of this and the other 

biological applications discussed herein, providing dynamic attachment 

information that is not currently available.  
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