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ABSTRACT 

 

Unbound aggregates are widely used in road construction to replace unsuitable soil, prepare 

pavement working platform or construct pavement foundation layers. Their primary function in 

flexible pavements is to distribute wheel loads and provide adequate protection of the subgrade. 

However, the empirical strength based quality evaluations and current “recipe-based” 

specifications have little direct consideration of the actual performance of materials used in 

unbound aggregate layers. Based on a comprehensive set of laboratory repeated load triaxial test 

results archived for a variety of unbound aggregate materials, research efforts in this dissertation 

are aimed at linking aggregate physical and mechanical properties to pavement response and 

performance, identifying correlations among resilient modulus (MR), plastic deformation and 

shear strength behavior under repeated loading, and developing viable models to predict 

engineering behavior and field performance. This thesis is organized into three sections. First, 

statistical and generic algorithm (GA) based models are developed to estimate MR and shear 

strength properties for performance prediction using aggregate properties. The MR sensitivities 

are assessed using both Monte Carlo type simulation and First-order Reliability Method (FORM) 

with the interactions between aggregate properties properly taken into account. Both gradation 

and aggregate shape properties are identified as influential factors affecting MR. The effects of 

unbound aggregate quality on mechanistic response and performance (MR, shear strength and 

rutting) and layer characteristics on pavement life expectancies are investigated. Secondly, 

aggregate gradation effects on strength and modulus characteristics of unbound aggregates are 

analyzed from laboratory test results to develop improved material specifications. The most 

significant correlations are found between a gravel-to-sand ratio (proposed based on ASTM 

D2487-11) and aggregate shear strength properties. A certain value of gravel-to-sand ratio is 
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proposed to optimize aggregate gradations for improved unbound layer performances primarily 

influenced by shear strength. To further confirm the optimal range of the gravel-to-sand ratio and 

verify existing packing theory based analytical gradation framework, a validated image-aided 

Discrete Element Method (DEM) modeling approach is also employed to realistically study 

optimum contact and packing arrangements of the aggregate skeleton from various gradations 

and morphological levels for better aggregate interlock. Guidelines are recommended for 

engineering the aggregate shape and gradation properties to achieve such desired improved 

engineering performances of unbound aggregate layers. Finally, this research described employs 

the shakedown concept to interpret laboratory single-stage repeated load triaxial permanent 

deformation test results performed at varying dynamic stress states and aggregate physical 

conditions. A stable permanent strain rate is highlighted to give a viable criterion for ranking the 

rutting potential of unbound aggregate layers under realistic field stress states and also relating to 

shear strength via the Mohr-Coulomb failure criteria. A unified approach to rutting prediction 

that is applicable to a much wider range of stress states and physical conditions is also developed 

based on shear strength properties and validated using actual rutting measurements from field 

full-scale accelerated pavement testing (APT) sections. The methodology and results in this 

dissertation provide insights that could potentially be used to develop a performance based 

material characterization and design framework for unbound aggregates.  
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Chapter 1 Introduction 

1.1 Background 

1.1.1 Unbound Aggregate Layer Functionality 

A large quantity of annually produced aggregate materials (crushed stone, sand, and 

gravel) is used in the construction of pavement foundation layers known as unbound aggregate 

base and subbase. In flexible pavements, the primary function of base/subbase layers is to 

distribute the repeated wheel load over weaker subgrade soils. Permanent deformation (or 

rutting) is the predominant distress type and failure criterion for such layers. Whereas, in rigid 

pavements, those unbound layers are built mainly for providing uniform support, adequate 

drainage, and long-term durability for Portland cement concrete (PCC) slabs. As demands for 

heavier and greater number of loads are increasingly being placed on highway and airport 

pavements, unbound aggregate layers need to not only be accurately characterized for structural 

behavior but also be adequately designed for cost-effectiveness. 

Unbound aggregate base/subbase layers transfer wheel loads through the aggregate 

skeleton. The layer responses and performance are greatly affected by material properties and 

composition of such aggregate skeleton, not to mention the changing environmental conditions. 

The aggregate type and quality, in addition to traffic load related factors, should influence the 

thickness requirements of unbound aggregate layers in pavement applications. Note that 

“quality” in this dissertation study refers exclusively to structural support (or bearing capacity) 

and permeability, not to other aspects of quality such as freeze-thaw or wet-dry durability, and so 

on. Those aggregate properties affecting quality in regards to structural component may include 

aggregate shape, texture and angularity, gradation, fines content (percentage passing No.200 or 



 2 

0.075-mm sieve), plasticity index (PI), moisture and density conditions related to compaction, 

and their interactions. 

1.1.2 Unbound Aggregate Layer As A Pavement Structural Component 

The quality of the unbound aggregate layer materials can have a significant impact on the 

performance of the pavement. The low stiffness of the unbound aggregate layer and the resulting 

excessive rutting in pavement are often attributed to the quality of the material used for road 

construction. Currently, unbound aggregate layers are often constructed using aggregate 

materials that are preferably dense-graded crushed stone. Pavement engineers commonly use 

aggregate quality to describe the suitability of an aggregate for use in road construction, while 

highway agencies commonly use density and proof rolling to determine the quality of 

base/subbase layers. However, different approaches may exist for classifying aggregate materials 

and rating the quality of an aggregate for structural layer function. Furthermore, different 

aggregate sources can be classified as meeting the same specification as long as the material 

meets the gradation requirements even though they may have varying physical properties 

affecting performance. Effects of physical shape, texture and angularity of aggregate particles, in 

addition to gradation, on the strength, stability and performance of unbound pavement layers are 

often not considered by current practice. The reason might be due to the lack of accurate and 

repeatable measurements of the coarse aggregate morphology in the past. 

Traditionally, “recipe-based” physical classification systems judge the performance of an 

aggregate by using a variety of aggregate tests and specifications developed by ASTM, 

AASHTO, and state and local agencies. As listed in Figure 1.1, only the intrinsic physical 

properties of the material that are related to basic geologic origin, mineralogy, and other 

properties such as hardness and durability are considered by such physical classification systems; 
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more importantly, these testing techniques, material specifications and design procedures are 

several decades old and/or intended for “standard” materials with proven field performance. This 

results in one major disadvantage, i.e., the lack of direct and robust linkages between intrinsic 

physical properties and field performance requirements. Therefore, unsuitable materials can be 

accepted in some cases or rejected in other cases (Cook and Gourley, 2002). Under such physical 

classification framework, naturally occurring or locally available materials could also be 

excluded for use due to any combination of grading, plasticity, particle hardness, strength, etc. 

lying outside the specification requirements. This becomes a major concern in developing 

countries where naturally occurring or locally available materials need to be used extensively for 

cost-effective low volume road construction. In summary, confident decisions regarding the use 

of a specific aggregate material in unbound pavement layers may not be guaranteed.  

 

Figure 1.1 Non-standard Material Groups and Their Likely Problems (Cook and Gourley, 2002) 
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Unbound aggregates are becoming increasingly scarce and expensive in many parts of the 

U.S. and around the world as gravel mines and rock quarries are being lost to other land uses. As 

pavement design procedures transition from using empirical strength based evaluations, such as 

the California Bearing Ratio (CBR), the Hveem R-value and Soil Factor and modulus of 

subgrade reaction (k-value), to the use of resilient modulus (MR) based mechanistic-empirical 

(M-E) structural analysis and design procedures, an awareness of optimizing aggregate type, 

quality and layer thicknesses from mechanistic-based pavement design according to site-specific 

performance requirements would be useful for selecting aggregate, reducing waste, better 

utilizing construction dollars, and eventually achieving best values. To promote sustainability, 

more adaptable design methods and performance-based material specifications also need to be 

developed to accommodate aggregates with a wider range of physical characteristics, especially 

locally available marginal quality aggregates. This requires the development of mechanistic 

based aggregate classification systems that quantitatively address individual aggregate properties 

influencing quality for material selection.  

1.2 Problem Statement 

Unbound aggregate base and granular subbase layers commonly used in conventional 

flexible pavements serve as major structural components for distributing wheel loads and 

providing adequate protection of subgrade to ensure longevity or proper pavement performance. 

In essence, this functionality is achieved mainly through the aggregate skeleton in which 

individual aggregate particles in contact with each other to transmit the external load. From a 

mechanistic-empirical pavement design perspective, resilient modulus and permanent 

deformation characteristics, linked to aggregate quality and layer thickness, are the primary 

properties influencing mechanistic response and pavement performance. A stable and 
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adequately-designed unbound aggregate layer is expected to experience low-magnitude resilient 

and permanent deformations throughout the targeted service life. To achieve this goal, it still 

remains crucial to develop a sophisticated design and characterization methodology. 

In the past few decades, significant efforts have been made to better understand 

individual aggregate properties as factors influencing mechanical and hydraulic response trends 

of unbound aggregate materials (Thompson and Smith, 1990; Garg and Thompson, 1997; Tian et 

al., 1998; Bilodeau et al., 2009; Tutumluer et al., 2009). When compared to aggregate type and 

mineralogy, not well understood are properties such as aggregate shape, texture and angularity to 

be evaluated together with fines content (percentage passing No.200 sieve or smaller than 0.075 

mm size), plasticity index, and moisture and density conditions related to compaction. For 

example, particle size distribution or gradation is a key factor influencing not only the 

mechanical response behavior characterized by resilient modulus (MR), shear strength and 

permanent deformation, but also the permeability, frost susceptibility, and erosion susceptibility 

(Bilodeau et al., 2007; Bilodeau et al., 2008).  

To ensure adequate pavement performance, State highway agencies currently employ 

“recipe-based” specifications for unbound aggregates used in road base/subbase construction. 

These empirical gradation bands used in pavement applications specify different aggregate 

classes and source rock quality, etc., which reportedly have no robust linkage with actual 

performance in the field (Mulvaney and Worel, 2002). Such requirements based on various 

grading envelopes (e.g., well-graded, uniformly-graded, etc.) and limits of maximum particle 

size may not only be conflicting in regards to pavement layer stability and drainability but may 

also fail to distinguish different gradations within the specified bands, especially when 

aggregates from different sources are used (Tian et al., 1998; Tao et al., 2008). With “standard” 
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high-quality materials becoming increasingly scarce and expensive, such traditional gradation 

specifications may potentially reject many marginal materials that are often lowering cost and 

local availability. Recent research efforts demonstrated that marginal materials could become 

quite economical for use in low-volume roads and serve properly the design traffic levels and the 

operating environment (Bullen, 2003). Therefore, development of performance based gradation 

specifications can help maximize beneficial use of the locally available materials that is 

potentially a green and sustainable transportation infrastructure alternative. 

Resilient modulus (MR) is a key mechanistic pavement analysis input for designing 

conventional flexible pavements with unbound aggregate base and granular subbase layers. For 

satisfactory pavement design and performance, it is often challenging to determine unbound 

aggregate layer modulus inputs when only limited aggregate source property data are available. 

Laboratory testing for MR requires expensive test equipment and time-consuming and detailed 

testing procedures. Therefore, using correlations to link MR behavior with performance-related 

aggregate source properties would be more cost-effective in the current M-E pavement design 

applications. 

Moreover, unbound pavement layers are subjected to both extension and compression 

type stress states under moving wheel loading. Such complex loading stress paths, stress levels, 

and continuous rotation of the principal stress planes lead to complicated nonlinear elastic and/or 

elasto-plastic behavior that are rarely incorporated into laboratory test procedures or mechanistic 

response prediction models. While many of the performance models in current pavement design 

procedures have reached a level of accuracy appropriate for design, permanent deformation 

models continue to inaccurately predict actual performance in the field, making permanent 

deformation still remain a highly studied topic. These challenges stem from complex mechanistic 
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behavior of the pavement systems as well as from the susceptibility of these models to variations 

in climatic and loading conditions. Although shear strength properties have been demonstrated to 

play an important role in field rutting development of unbound aggregate layers, shear strength is 

not routinely incorporated into most of the existing rutting prediction models. The absence of 

shear strength in these models could possibly limit their prediction abilities. As such, the 

significance of further investigation into the development of improved rutting prediction models 

is obvious. 

1.3 Research Objective and Scope 

The primary objective of this research study is to evaluate through experimental 

investigations and numerical simulations the effects of material properties on mechanical 

behavior of unbound aggregate layers, as characterized by resilient modulus, shear strength, and 

permanent deformation resistance, for the development/recommendation of performance-based 

specification guidelines. The scope includes three different methodologies employed to achieve 

the aforementioned objective: (i) laboratory data analysis to link physical and mechanical 

properties of unbound aggregate materials for pavement response and performance; (ii) an 

image-aided Discrete Element Method (DEM) modeling approach for engineering aggregate 

shape and gradation properties for improved shear strength (or rutting resistance behavior); and 

(iii) a unified approach to permanent deformation (or rutting) prediction of unbound aggregate 

layers based on shear strength. Based on all these methodologies successfully employed, a set of 

recommendations for improving material specifications for unbound aggregates used in 

conventional flexible pavement foundation will be presented. The corresponding research 

approaches (see Figure 1.2) and their significant contributions to advancing the state-of-the-art in 

knowledge are described next. 



 8 

 

 

Figure 1.2 Flowchart of Analysis Approach 

 

1.4 Contributions to Advancing Knowledge 

To address the inefficiency of current material specifications and design methodologies 

for unbound aggregate layers in conventional flexible pavements, this research study is aimed at 

synthesizing all the laboratory and field data recently available with our Transportation 

Geotechnics research group at UIUC and developing a performance-related material 

specification methodology for unbound aggregate materials. Although scoped for conventional 

flexible pavements, such specifications could potentially help design cost effective base types 

and thicknesses suitable for rigid pavements as well. The major contributions of this dissertation 

study are aligned with the following research tasks:  
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(1) A large laboratory and field performance database on unbound aggregate layers is 

synthesized and analyzed to demonstrate the potential of the performance-based material 

specification methodology for achieving pavement longevity and cost-effectiveness; 

(2) Guidelines are established to prepare improved aggregate material classifications by not 

only considering gradation but also including aggregate shape properties and drainage 

characteristics, with the aid of laboratory data analysis and particle imaging-aided DEM 

modeling approach; and 

(3) Relative importance of each aggregate physical property in controlling resilient modulus, 

shear strength, and permanent deformation behavior of unbound aggregates is identified, 

along with other design features and site conditions, based on mechanistic-empirical 

pavement analysis. 

1.5 Thesis Organization 

Background information and literature review on laboratory characterization and 

numerical modeling of unbound aggregate behavior is presented in Chapter 2. Major factors 

influencing resilient modulus, shear strength, and rutting resistance are reviewed with respect to 

load related factors and secondary factors due to material physical properties. Various resilient 

modulus and permanent strain models used to characterize the resilient and permanent 

deformation behavior of granular materials are also reviewed for major input variables, such as 

the number of load applications and applied stress states.   

In Chapter 3, the laboratory testing and field performance databases of unbound 

aggregate materials collected for this dissertation study including the descriptions of testing 

procedures and trafficking information of pavement test sections are introduced. The different 

types of granular materials extensively used in the laboratory studies and field pavement test 
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sections are also described in detail.  The full-scale tests conducted in related studies are 

presented.  

Chapter 4 mainly focuses on developing regression based models for the MR data as a 

function of the various performance-related aggregate properties. The study further details MR 

sensitivities using both Monte Carlo type simulation and First-order Reliability Method (FORM). 

The interactions between these aggregate properties are properly taken into account during 

sensitivity analyses. Mechanistic design input ranges are also identified and the effects of 

unbound aggregate quality and layer characteristics (i.e., material quality affecting modulus input 

and layer thickness) on pavement life expectancies are investigated in Chapter 4. 

In Chapter 5, improved linkages between quantitative gradation parameters and critical 

mechanical behavior of aggregate base/granular subbase materials are first established from a 

comprehensive statewide aggregate database, followed by further validation from other related 

aggregate databases and potential engineering applications. Commonly used gradation 

quantification methods are employed to identify key gradation parameters governing the shear 

strength behavior of the studied aggregate materials. 

Chapter 6 deals with applying a validated image-aided DEM modeling approach to 

engineer aggregate shape and gradation for desired end-use performance of unbound aggregate 

layers. The required DEM model parameters are first calibrated from laboratory triaxial 

compression tests of unbound aggregate materials. The calibrated DEM model is then employed 

to realistically study optimum contact and packing arrangements from various gradations for 

improved aggregate interlock. Existing analytical gradation analysis techniques that are 

developed from packing theory are further verified in Chapter 6 for their applicability through 
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DEM based packing simulations. Insightful guidelines are recommended for further classifying 

currently used gradation bands based on analytical and DEM based gradation analysis results. 

Chapter 7 details the development of a unified approach to permanent deformation (or 

rutting) prediction of unbound aggregate layers based on shear strength properties by using 

laboratory repeated triaxial test results.  

Chapter 8 presents the validation of this unified approach by using actual rutting 

measurements from field full-scale accelerated pavement testing (APT) sections. The current 

MEPDG rutting model for unbound aggregates is also evaluated for their accuracy in predicting 

field rut depth development. The importance of shear strength in controlling rutting development 

is confirmed. 

In Chapter 9, research findings are summarized and recommendations are made for 

selecting unbound granular base and subbase materials for use in conventional flexible 

pavements.  Suggestions are also made for future research needs to conduct follow-on research 

based on the findings presented in this dissertation. 
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Chapter 2 Literature Review 
 

This chapter first highlights the important aggregate physical properties governing 

granular layer modulus, strength, and permanent deformation characteristics. Commonly used 

laboratory tests and constitutive models to characterize the elastic (or resilient) and plastic 

(permanent) deformation trends of unbound aggregate materials are discussed next with a review 

of typical pavement stress states and initial loading conditions due to repeated traffic loading. 

Accordingly, different mechanisms contributing to the failure of pavement systems with 

unbound aggregate layers are reviewed to emphasize the importance of aggregate material 

quality governing pavement performance. Both empirical and mechanistic-empirical methods 

developed for designing unbound aggregate pavement systems are summarized with a historical 

perspective by listing their advantages and limitations. Numerical simulation techniques for 

modeling mechanical behavior of unbound aggregate materials, including finite element and 

discrete element methods, are also reviewed in this chapter. 

2.1 Aggregate Properties Affecting Unbound Aggregate Layer Behavior 

The geologic characteristics of aggregates are not very critical for pavement application 

purposes. Rather, physical characteristics of the rocks governing load distribution and particle 

interlocking aspects differentiate “good quality” and “poor quality” aggregates. Moreover, 

chemical properties of the aggregates governing their durability and soundness are also critical to 

ensuring long-lasting pavement structures. The recent NCHRP Project 4-23, “Performance-

Related Tests of Aggregates for Use in Unbound Pavement Layers (Report 453),” summarized 

the most important tests that relate to the performance of aggregates in unbound pavement layers 

(Saeed et al., 2001).  Among the tests highlighted, the screening tests (sieve analysis, Atterberg 
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limits, moisture–density relationship, flat and elongated particles, uncompacted voids), durability 

test (magnesium sulfate soundness), shear strength tests (triaxial tests conducted on wet and dry 

samples and California bearing ratio or CBR test), stiffness test (resilient modulus conducted on 

wet and dry samples), toughness and abrasion resistance tests (micro-Deval), frost susceptibility 

test (tube suction) are the most relevant for unbound aggregate pavement layers. Extensive 

review of technical literature was conducted to identify the most important physical properties 

affecting aggregate strength, modulus and deformation behavior in unbound pavement layers. A 

summary of the findings on important physical properties from the literature review is presented 

below.   

2.1.1 Particle Size Distribution and Fines Content 

One of the primary variables in any laboratory testing of aggregate materials is the grain 

size distribution. Gradation itself is a key factor influencing not only the mechanical response 

behavior characterized by resilient modulus, shear strength and permanent deformation, but also 

permeability, frost susceptibility, and erosion susceptibility. (Bilodeau, 2007; Bilodeau, 2008). 

Aggregate gradation is also critical to achieving good packing and thus stability in an aggregate 

mix. Differences in aggregate gradations can often lead to significantly different performances 

for the same aggregate type. This is due to the different packing order and void distributions that 

play a crucial role in load carrying through particle to particle contact in an aggregate matrix.  

Using a directional modulus approach by changing the pulsing direction in repeated load 

triaxial tests, Tutumluer and Seyhan (2000) determined an optimum fines content (percentage of 

material passing No. 200 sieve or smaller than 0.075 mm) of 7% for a dense graded crushed 

limestone aggregate base material. Well graded aggregates have been found to have higher 

resilient modulus values up to the point where the fines content of the mixture displaces the 
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coarse particles and the properties of the fines dominate (Jorenby and Hicks, 1986; Kamal et al., 

1993; Lekarp et al., 2000). Thom and Brown (1988) found that the effect of grading varied with 

the compaction level. Brown and Chan (1996) successfully reduced rutting in granular base 

layers by selection of an optimum aggregate material grading which maximized compacted 

density.  

Bilodeau et al. (2009) identified, from a laboratory study conducted on unbound granular 

materials with six gradations and three aggregate sources commonly used in Canada, one fines-

related volumetric parameter (termed fine fraction porosity) that described satisfactorily not only 

the mechanical performance but also the environmental stress sensitivity of materials tested. 

Also identified from their study were the optimized gradation zones that ensured adequate 

overall performance of those three aggregate sources. 

2.1.2 Particle Shape, Surface Texture and Angularity 

The gradation, shape, and hardness have a great influence on the mechanical behavior 

and the strength properties of aggregate particles in contact. Angularity, a measure of crushed 

faces of an aggregate particle is important because it determines the level of internal shear 

resistance that can be developed in the particulate medium. Coarse aggregate angularity provides 

rutting resistance in flexible pavements as a result of improved shear strength of the unbound 

aggregate base. The maximum size of aggregates, the size distribution, and the shape of the 

particles determine the packing density that can be derived with an aggregate sample, assuming 

sufficient compaction is provided.  

Rounded river gravel with smooth surfaces was found to be twice as susceptible to rutting 

compared to crushed stones (Barksdale et al., 1989). Aggregates made with uncrushed or 

partially crushed particles have a lower resilient modulus than those with angular crushed 
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particles. This effect has been attributed to the higher number of contact points in crushed 

aggregates which distribute loads better and create more friction between particles (Lekarp et al., 

2000). Saeed et al. (2001) showed that aggregate particle angularity and surface texture mostly 

affected shear strength and stiffness. 

Using the UIAIA system, Uthus et al. (2007) studied the aggregate morphological 

property changes due to rounding of aggregate particles in a Ball Mill drum. For cubical 

aggregates, the changes in both angularity and surface texture seemed to have a significant effect 

on both the elastic and plastic aggregate shakedown threshold limits. Tutumluer and Pan (2008) 

reported that aggregate blends comprising angular, rough particles consistently showed lower 

permanent deformation accumulations when studied using the UIAIA system.  The angularity 

property was found to contribute mainly to the strength and stability of aggregate structure 

through confinement, whereas the surface texture property tended to mitigate the dilation effects 

through increasing friction between individual aggregate particles.  

2.1.3 Degree of Compaction 

Compaction methods applied on aggregate samples affect considerably the moisture-

density relationship for determining maximum dry density and optimum moisture content. 

Commonly, impact type Proctor compaction effort is applied on aggregate samples using the 

methods specified in the AASHTO T99 Standard and AASHTO T180 Modified Proctor test 

procedures (also ASTM D698 and D1557) although other laboratory compaction procedures, 

such as the vibratory and gyratory compaction techniques, are known to be more realistic for 

simulating field applied stress conditions under vibratory rollers. Density is used in pavement 

construction as a quality control measure to help determine the compaction level of the 

constructed layers. Generally, increasing the density of a granular material makes the aggregate 
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layer stiffer and reduces the magnitude of the resilient and permanent deformation response to 

both static and dynamic loads (Seyhan and Tutumluer, 2002). While some have found the 

research on density to be ambiguous in regards to the resilient behavior of soils causing little 

change in the resilient modulus (Knutson and Thompson, 1977; Elliott and Thornton, 1988; 

Lekarp et al., 2000) others have found that there is a general increase in the resilient modulus 

with increasing density (Rowshanzamir, 1995; Tutumluer and Seyhan, 1998). 

The impact of density seems to be larger on the permanent deformation behavior of 

aggregates. Decreased density, as measured by degree of compaction, substantially increases 

permanent deformation. Barksdale (1972) found that decreasing the degree of compaction from 

100% to 95% of maximum dry density increased permanent axial strain by 185% (on average). 

Increasing density from the standard Proctor to the modified Proctor maximum density decreased 

permanent deformation 80% for crushed limestone and 22% for gravel (Allen, 1973). The degree 

of compaction (DOC) was reported as the most important factor controlling permanent 

deformation development by Van Niekerk (2002).   

2.1.4 Moisture Content 

Moisture has been widely accepted to adversely affect the performance of unbound 

aggregate layers in pavement structures, and can affect aggregates in three different ways: (i) 

make them stronger with capillary suction, (ii) make them weaker by reducing suction forces and 

causing lubrication between the soil particles, and (iii) reduce the effective stress between 

particle contact points due to increasing pore water pressure thus decreasing the strength of the 

soil. Degree of saturation is a factor that reflects the combined effect of density and moisture 

content. The resilient modulus is strongly correlated with degree of saturation (Thompson and 

Robnett, 1979). Based on the comprehensive subgrade soil resilient modulus testing study, 



 17 

Thompson and LaGrow (1988) proposed using the “moisture adjustment” factors to adjust 

resilient modulus values for moisture contents in excess of optimum. For example, resilient 

modulus of a silt loam soil may decrease approximately 1500 psi for 1% increase in moisture 

content (Thompson and Robnett, 1979). 

Wetting up from a shallow ground water table reduces suction and may cause a 

constructed unbound pavement layer to deform permanently. Moisture sensitivity will vary 

depending on specified gradations and the amount and plasticity index (PI) of the fines, i.e., 

percent passing No. 200 sieve (P200). Tutumluer et al. (2009) compared relative impacts of 

molding (as-compacted) moisture content and plasticity of fines on the permanent deformation 

behavior of both crushed (dolomite) and uncrushed (gravel) aggregate materials with P200 = 

12%. A drastic reduction in aggregate performance can be clearly seen when plastic fines are 

combined with increased molding moisture. Accordingly, the specification limits for compaction 

moisture content must be based on accumulated permanent deformation. 

2.2 Aggregate Specifications and Classification Systems 

2.2.1 Physical Classification System 

Pavement engineers commonly use aggregate quality to describe the suitability of an 

aggregate for use in road construction; however, a number of ways rather than one single 

formalized procedure exist for classifying aggregate materials and rating the quality of an 

aggregate. These “recipe-based” physical and mechanical classification systems are currently 

used for judging the performance of an aggregate. By using a variety of aggregate tests and 

specifications developed by ASTM, AASHTO, and certain state and local agency procedures, 

the former system considers the intrinsic physical properties of the material that are related to 

basic geologic origin, mineralogy, and other properties such as hardness and durability. One 
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major disadvantage associated with such physical classification systems is that it could possibly 

accept unsuitable materials in some cases and reject desired materials in other cases (Cook and 

Gourley, 2002). Under such physical classification framework, naturally occurring materials 

could be excluded for use due to any combination of grading, plasticity, particle hardness, 

strength, etc. lying outside the specification-demanded requirements. As illustrated in Figure 2.1, 

soft limestones could be categorized as unacceptable materials for use in pavement foundation 

applications due to their high Los Angeles coefficient and wet micro-Deval coefficient both of 

which are indicators of aggregate toughness and abrasion characteristics; however, they could 

actually be acceptable if examined by mechanistic properties such as characteristic secant 

modulus E and characteristic permanent strain εp. 

 

Figure 2.1 Physical (Left) Versus Mechanical (Right) Classification for Various Unbound 

Granular Materials (Paute et al., 1994) 

 

2.2.2 Performance-based Mechanical Classification System 

Separate from the physical classification presented above, the mechanistic classification 

discerns different qualities of unbound aggregates from mechanical properties that are required 
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as input to the constitutive relationships incorporated into mechanistic-empirical pavement 

design procedures, such as the characteristic secant modulus E and characteristic permanent 

strain εp shown in Figure 2.1. It is expected that such mechanistic classification systems, in 

combination with certain levels of local experiences, should have direct relevance or even robust 

linkage to the actual performance of materials used in pavement layers. To better assess 

performance and rank different sources of aggregate materials, coupling mechanistic 

characteristics including moduli, strength, and permanent strains under representative ranges of 

operating traffic and environmental conditions is of essential importance from the Mechanistic-

Empirical Pavement Design perspective. Without utilizing performance-based material 

specifications to be developed, optimized material use with reduced waste, and eventually better 

utilized construction dollars cannot be achieved extensively. 

2.2.3 Best Value Granular Material Concept 

More attention is nowadays paid to better or sustainable utilization of best value granular 

materials, thus reducing the cost and energy associated with material hauling. Figure 2.2 presents 

the concept of best value granular materials illustrated as an implementation challenge of a 

recent research study findings (Xiao and Tutumluer, 2012). Three components were proposed for 

incorporation into the M-E pavement analysis and design to implement the best value granular 

material aggregate selection, utilization and mechanistic based design concepts: (i) GIS-based 

aggregate source management component, (ii) aggregate property selection component for 

design, and (iii) aggregate source selection/utilization component. Specifically, aggregate 

material source locations should be identified with certain aggregate properties to be linked to 

mechanistic pavement analysis property inputs. The quality aspects of those utilized aggregates 
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should then be assessed for both cost effectiveness and unbound aggregate layer design thickness 

requirements for a sustainable pavement performance. 

 

Figure 2.2 Best Value Granular Material MnPAVE Design Implementation (Xiao and Tutumluer, 

2012) 

 

2.3 Gradation Analysis and Packing Theories 

To ensure adequate pavement performance, state highway agencies currently employ 

“recipe-based” specifications for unbound aggregates used in road base/subbase construction. 

These empirical gradation bands used in pavement applications specify different aggregate 

classes and source rock quality, etc., which reportedly have no robust linkage with actual 

performance in the field (Mulvaney and Worel, 2002). Such requirements based on various 

grading envelopes (e.g., well-graded, uniformly-graded, etc.) and limits of maximum particle 
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size may not only be conflicting in regards to pavement layer stability and drainability but may 

also fail to distinguish different gradations within the specified bands, especially when 

aggregates from different sources are used (Tian et al., 1998; Tao et al., 2008). With “standard” 

high-quality materials becoming increasingly scarce and expensive, such traditional gradation 

specifications may potentially reject many marginal materials that are often lowering cost and 

locally available. Recent research demonstrated that marginal materials could become quite 

economical for use in low-volume roads and serve properly the design traffic levels and the 

operating environment (Bullen, 2003). Therefore, development of performance based gradation 

specifications can help maximize beneficial use of the locally available materials that is 

potentially a green and sustainable transportation infrastructure alternative. 

Establishing robust linkages between gradation and satisfactory unbound aggregate 

mechanical behavior is essential for the development of performance based gradation 

specifications. The qualitative gradation descriptions (e.g., upper, median, and lower limits), as 

documented in previous laboratory experiments investigating gradation influences, are certainly 

not applicable for this purpose (Thompson and Smith, 1990; Tian et al., 1998; Molenaar and van 

Niekerk, 2002; Cunningham, 2009). With the advent of analytical gradation models and 

aggregate packing theories, recent research efforts have focused on quantifying gradation curves 

as numbers on a continuous scale to better relate them to mechanistic behavior trends (Kim et al., 

2007; Bilodeau et al., 2009). These analytical gradation measures can quantify the change in 

performance of a given aggregate material within specified gradation bands leading to optimized 

gradation zones for desirable mechanical and hydraulic performance based on site-specific traffic 

and environmental conditions, respectively.  
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2.3.1 Review of Gradation Quantification Methods 

Among the various mathematical functions proposed to describe aggregate particle size 

distribution, the Talbot equation was quite possibly one of the earliest to describe a maximum 

density curve for a given maximum aggregate size (Talbot and Richart, 1923). By regressing 

percent passing data (pi) against sieve sizes (Di) as per Equation 2.1, a given gradation curve can 

be represented as a “point” with coordinates (n, Dmax) in a similar Cartesian plane where shape 

factor n is on x-axis and Dmax is on y-axis. Using this representation, Sánchez-Leal (2007) 

proposed a gradation-chart approach to promote “free design” in which a calculated Gravel-to-

Sand ratio was used in lieu of the traditional gradation bands to ensure that required Hot Mix 

Asphalt (HMA) performance was met by available aggregate sources. According to Sánchez-

Leal (2007), an increasing Gravel-to-Sand ratio markedly resulted in diminished workability, 

greater rutting resistance, and increased permeability. 

max

n

i
i

D
p

D

 
  
 

                                                               (2.1) 

where pi is the percentage of material by weight passing the ith sieve size; Di is the opening size 

of this particular ith sieve; Dmax is the maximum size of aggregate; and n is called the shape factor 

of the gradation curve. 

It is worth mentioning that the above gradation-chart approach was developed from 

gradation curves explained by the Talbot equation with R2 values greater than 0.97, and that 

extending such an approach to gradation curves with R2 values less than 0.97 still remains 

unexplored. For gradations other than well-graded ones (e.g., open-graded) that may not be well 

explained by the Talbot equation, the Rosin-Rammler distribution function described by 

Djamarani and Clark (1997) can outperform others, as it is reported to be particularly suitable for 

describing the particle size distribution of powders of various nature and sizes generated by 
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grinding, milling, and crushing operations. As given in Equation 2.2, two parameters, the mean 

particle size Dm and the measure of the spread of particle size distribution n, are used to represent 

the Rosin-Rammler function. 
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                                                      (2.2) 

where pi is the percentage of material by weight passing the ith sieve size; Di is the ith sieve 

opening size; Dm is the mean size of aggregate; and n is called the spread factor. 

 The Unified Soil Classification System (USCS), as per ASTM D 2487-11 (2001), 

quantifies the gradation of a soil with less than 12% of fines using two parameters, i.e., 

coefficient of uniformity, Cu (D60/D10), and coefficient of curvature, Cc (D30
2/D60D10). Soils are 

considered very poorly graded when Cu<3; whereas gravels and sands are deemed well-graded 

when Cu is larger than 4 and 6, respectively.  Note that Cc for well-graded soils or aggregates 

often ranges between 1 and 3. The definitions for “gravel” and “sand” are not unique, with USCS 

defining “gravel” as particles passing 75-mm (3-in.) sieve and retained on 4.75-mm (No. 4) sieve 

and “sand” as particles passing 4.75-mm (No. 4) sieve and retained on 75-μm (No. 200) sieve. 

Thus, an aggregate would be classified as gravel or sand (coarse aggregate or fine aggregate) 

depending on whichever proportion present is larger. 

The influence of gravel (or coarse aggregate) content on the shear strength of cohesion-

less soil-gravel/sand-gravel mixtures has been the topic of investigation by many geotechnical 

researchers. According to Vallejo (2002), the frictional resistance between the gravel particles 

controlled the shear strength of the soil/sand-gravel mixtures when the percentage by weight of 

gravel was on average greater than 70%; whereas the gravel particles with a concentration by 

weight less than average 49% basically had no control over the shear strength of the mixtures. 
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This scientific observation could imply that the relative contents of gravel and sand particles in 

aggregate base/granular subbase materials may possibly be an inherent factor controlling mixture 

performance mechanically and/or hydraulically, as supported by findings of Sánchez-Leal (2007) 

from hot mix asphalt (HMA) studies. 

In terms of characterizing aggregate packing in stone-based infrastructure materials, such 

as HMA, the Bailey method is one of the pioneers. It analyzes the combined aggregate blend 

using three parameters: the coarse aggregate ratio (CA), the coarse portion of fine aggregate ratio 

(FAc), and the fine portion of the fine aggregate ratio (FAf), which are all calculated from the 

following designated sieves: half sieve, primary control sieve (PCS), secondary control sieve 

(SCS), and tertiary control sieve (TCS) (Vavrik et al., 2002). Although the Bailey method has 

been widely used in HMA gradation design and performance evaluation, its application and 

validity for aggregate base/granular subbase gradation design has not been fully explored yet. 

Equation 2.3 summarizes the essential equations associated with the Bailey method. 

c

f

Half sieve = 0.5 NMPS ;

PCS = 0.22 NMPS; SCS=0.22 PCS; TCS=0.22 SCS ;

%Passing Half sieve - %Passing PCS
CA ratio = ;

100% - %Passing Half sieve

%PassingSCS
FA = ;

%Passing PCS

%Passing TCS
FA = .

%PassingSCS



  

                         (2.3) 

where NMPS is the Nominal Maximum Particle Size, a Superpave® asphalt mix design 

terminology defined as one sieve larger than the first sieve that retains more than 10%. 
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2.3.2 Analytical Gradation Analysis Framework 

2.3.2.1 Concept of Gravel-to-Sand Ratio 

Xiao et al. (2012) employed commonly used gradation quantification methods, including 

the Talbot equation, the Rosin-Rammler distribution function, the Unified Classification System 

parameters, the conventional Gravel-to-Sand ratio, as well as the Bailey method, to identify key 

gradation parameters governing the shear strength behavior of the studied aggregate materials. 

While other gradation parameters seemed to be less significant, the Gravel-to-Sand (G/S) ratio 

was found to control the shear strength behavior of both “standard” and reclaimed materials. 

Depending on the relative concentrations of gravel and sand sized fractions, different packing 

states with varying stability and porosity can be achieved. 

2.3.2.2 Concept of Primary Structure (PS) and Secondary Structure (SS) 

Yideti et al. (2013) developed a gradation model based on packing theory to evaluate the 

effect of the aggregate size distribution on the strength and permanent deformation performance 

of unbound granular materials. As illustrated in Figure 2.3, two basic components of the skeleton 

of the unbound aggregate materials, i.e., Primary Structure (PS) and Secondary Structure (SS), 

are identified by this framework along with their volumetric composition. The procedure to 

identify the load carrying part of the aggregate skeleton (PS) was developed and packing 

parameters controlling the stability of the loading carrying material were identified. It is shown 

that strength values of granular materials are controlled to a great extent by the packing 

characteristics of their load carrying skeleton (Yideti et al., 2013).  
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(a) (b) 

Figure 2.3 Packing Theory based Gradation Model Proposed by Yideti et al. (2013): (a) Skeleton 

of Unbound Granular Material and (b) Volumetric Composition of Skeleton  

 

 

Determination of Primary Structure  

According to the gradation analysis framework proposed by Lira et al. (2013), the upper 

and lower limits for the average particle size between two contiguous sieve sizes can be 

formulated as in Equation 2.4, which determines the interaction between particles retained on 

two contiguous sieve sizes. 

1 1
0.311 0.689 0.703 0.297

n n avg n n
D D D D D

 
                      (2.4) 

where 
n

D  is the mean size of particles for the sieve size n
D  with material retained at min

D

(opening of the sieve) and smaller than max
D (opening of the previous sieve). It is defined as in 

Equation 2.5. 

 min maxn
D B D D                                                       (2.5) 

where B is a dimensionless parameter representing the mean value for a distribution between 0 

and 1. The parameter B can be calculated using probability distributions.  

Lira et al. (2013) determined the interaction between two consecutive sieve sizes (i.e., 

stone-on-stone contact) by assuming that all particles are considered as spherical, and that the 

material within a sieve presents a uniform distribution of sizes (i.e., B=0.5). The gradation 
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analysis via Equation 2.4 is done in a systematic way until the last sieve size and a list of 

interaction ranges are obtained. Note that the interaction range might include several sieve sizes; 

and in some cases, these consecutive ranges can be interrupted by a non-interactive case, giving 

several possible ranges for the Primary Structure. To select which one of these ranges is the 

strongest one, the total concentration of material at each range is accounted. Then, the range of 

sieve sizes that has the highest concentration will be the Primary Structure. According to the 

fundamentals of the model, the PS range must have a minimum concentration of 45% to carry 

load, but these values are not always achieved. According to the literature (Lira et al., 2013), the 

smallest material to be part of the Primary Structure is the one passing the 2.36 mm sieve and 

retained at the 1.18 mm sieve (AASHTO T27, ASTM C136) or retained at 2 mm (ISO 565, DIN 

4188, BS 410). 

 

Porosity of the Primary Structure  

The porosity of the PS is calculated as the fraction of volume of voids over the total 

volume, as shown in Equation 2.6.  

other PS

T a a

PS other

T a

V V V

V V


 



                                                     (2.6) 

where T
V is the total mix volume, 

other

a
V is the volume of aggregates that are of a size larger than 

the PS and just float in the whole aggregate matrix, and 
PS

a
V is the volume of aggregates 

belonging to the Primary Structure.  

In the analysis by Lira et al. (2013), only the influence of the whole structure formed by 

the stones was considered, which is characterized by porosity of the assemblage, contact points, 

and air void size as a key parameter to understand the stability of the structure. Contact points are 
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the number of points where a particle touches its neighbor and is related to the shear and rutting 

resistance of unbound granular materials. Coordination number (m) is the average of contact 

points per particle and can be calculated using the relationship derived based on packing theory. 

Lira et al. (2013) presented the relation (as in Equation 2.7) found from plotting coordination 

number (m) against porosity () for four theoretical packing arrangements for spheres, i.e., 

Simple cubic, Orthorhombic, Tegragonal-Sphenoidal, and Rhombohedral. 

1.0692.827m                                                        (2.7) 

 

Disruption Factor  

To determine the influence of the Secondary Structure on the stability of the Primary 

Structure as defined previously, Lira et al. (2013) proposed the Disruption Factor (DF) as a 

rational measure. The DF is calculated as in Equation 2.8. 

1
1

3

.
4

3

dp dp sb dp sb

PSPS PS

aV Void
Void

V W G W G
DF

VV No Voids V
V

r

  




                                 (2.8) 

where 
dp

V is the volume of the potentially disruptive portion of the Secondary Structure which 

includes particles bigger than the PS average void size according to packing (obtained from the 

PS porosity) and smaller than the smallest PS particle size, 
dp

W is the weight of the potentially 

disruptive particles, sb
G is the specific gravity of the aggregates, . PSNo Voids is the number of 

voids in the PS, 
1Void

V is the volume of each void in the PS, 
PS

a
V is the volume of aggregate in the 

PS, and r is one half of the weighted average size of PS. 
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Rutting performance of unbound aggregate layers is related to the capacity of the 

aggregate skeleton formed to resist shear. In addition to a strong aggregate skeleton (i.e., the PS), 

an adequate amount of Secondary Structure, especially the potentially disruptive particles, will 

benefit the whole aggregate matrix in the load carrying capacity. The amount of Secondary 

Structure will also determine the microstructural behavior of an aggregate matrix and its 

response to failure. The gradation analysis framework presented above, as developed by Lira et 

al. (2013) allows identifying the load carrying aggregate size range. The PS gives information 

about the way the aggregates are arranged within the mix, the air void distribution, its capacity to 

resist shearing and its durability. The porosity and disruption factor allows us to characterize the 

Primary Structure to subsequently relate it to performance of unbound aggregate layers. Relating 

such gradation analysis framework parameters to field rutting performance of several asphalt 

mixtures, they found that those mixtures with a more balanced combination between coarse and 

fine material (around 60/40) showed a low rut depth. Interestingly, this 60/40 combination 

coincides with the optimal value of around 1.5 proposed from the Gravel-to-Sand ratio concept 

(Xiao et al., 2012). 

2.3.2.3 Concept of Gradation Weighing Factor (fv)  

Shen and Yu (2011) defined a gradation weighing factor fv (Equation 2.9) as the 

percentage of voids change by volume due to the addition of unit aggregate, which is an 

indication of the resulting volumetric impact when smaller aggregates are added into the 

structure. The newly added aggregates typically have two effects, either enlarge the structures by 

creating more voids, or fill the voids created by the original aggregates without changing the 

total volume of the structure. It is also possible that part of the added aggregate particles serve as 

creating voids while others serve as filling the voids. 
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2 1 2 2 1 1

2 2

v v

v

a a

V V V p V p
f

V V

 
                                        (2.9) 

In the gradation and packing analysis, the actual v
f  values can be determined for each 

sieve size when added into the aggregate structure consisting of upper sieve size aggregates. The 

development of the v
f  parameter provides a straightforward method to estimate the porosity or 

VMA of an aggregate structure. This method is an iteration process starting from an aggregate 

structure with uniform size (typically NMAS) of aggregates. When smaller size aggregates are 

added in, the resulting porosity of the new structure can be determined as in Equation 2.10. 

Repeating the same procedure, smaller size aggregates will be added into the mixed aggregate 

structure, and the corresponding v
f  values will be determined. Once all v

f  values for each sieve 

size are determined, the following Equation 2.11 will be used to predict the void in mineral 

aggregates (VMA) of the mix. It provides a linkage between the aggregate gradation properties 

and the resulting porosity. It can be used to estimate the v
f  values or the porosity values when 

the other information is available. Shen and Yu (2011) assumed that the v
f  values are not 

sensitive as long as they have the same nominal maximum aggregate size (NMAS) and belongs 

to the same gradation type (coarse-graded, medium-graded, or fine-graded), which was later 

verified by the DEM simulation.  

 
2 2 1

2

2 1 2
1

v v a v

v a

V f V V
p

V V f V


 

 
                                            (2.10) 

 

1

1

1

n

vi ai
i

n

vi ai
i

f V

p

f V












                                                     (2.11) 
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where 2v
V is the total air void volume at state II, 2

V is the total volume at state II, 2
p is aggregate 

porosity at state II, vi
f is the v

f value for ith sieve size of the gradation, ai
V is the percentage by 

volume of aggregate retained in the ith sieve size, and p is the porosity or VMA of the aggregate 

structure. 

2.3.3 Imaging based Determination of Particle Morphology 

Past research efforts have correlated the size and shape properties of aggregates to 

mechanical response of pavement structural layers and pavement performance. This necessitates 

the objective and accurate quantification of particle size and morphology. The NCHRP 4-30A 

project, “Test Methods for Characterizing Aggregate Shape, Texture, and Angularity (Report 

555)” recommended the University of Illinois Aggregate Image Analyzer (UIAIA) as a viable 

imaging system for analyzing aggregate morphology and quantifying aggregate morphological 

effects to influence strength and permanent deformation behavior of unbound aggregate 

materials (Masad et al., 2007). The UIAIA uses 3 cameras to collect individual aggregate particle 

images from three orthogonal directions and in essence captures an “actual” 3D view of each 

aggregate particle, as illustrated in Figure 2.4(a). The captured images are then processed using 

software developed specifically for this application and the needed size and shape properties are 

determined (Rao, 2001; Pan, 2006). Coarse aggregate particle shape indices defined by the 

UIAIA system include the Flat and Elongated Ratio (F&E Ratio), Angularity Index (AI), and 

Surface Texture (ST) Index. These three indices were developed to represent the three key 

morphological descriptors of coarse aggregate materials as the shape or form, angularity, and 

surface texture.  
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(a) (b) 

 

 

 

(c) (d) 

Figure 2.4 Illustration of the University of Illinois Aggregate Image Analyzer (UIAIA): (a) the 

First Generation, (b) the Second Enhanced Generation, (c) Images Captured from Three 

Orthogonal Views of a Particle, and (d) Key Morphological Descriptors and their Algorithms 

(Rao, 2001; Pan, 2006; Moaveni et al., 2013) 

 

A second-generation, enhanced UIAIA (E-UIAIA), was designed and manufactured 

recently at the University of Illinois with many improvements, as pictured in Figure 2.4(b). 

Equipped with three high-resolution (1292964 pixels), charge-coupled device, progressive-scan 
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digital color cameras, the new version of UIAIA is able to capture digital color images of 

aggregate particles. Therefore, different types of mineral aggregates with a wide variety of colors 

can be scanned with this system. The best contrast and sharpest-possible aggregate images can 

also be achieved by optimizing light intensity and minimizing shadows of the four LED 

illumination lights with dimmer controls (Moaveni et al., 2013). 

2.3.4 Discrete Element Method (DEM) based Aggregate Packing Simulation 

In reality, the granular assembly consists of discrete grains that have different shapes and 

sizes; therefore, the suggestion to treat the assembly as a continuum is not correct. Further, no 

well formulated equations have been developed to quantify the effects of the surface roughness 

and grain shape. Accounting for the influences of unbound aggregate physical properties (e.g., 

gradation and geometry) and their interactions through experimental methods requires a very 

comprehensive, time-consuming, and labor-extensive set of experiments, yet still may not 

provide insight for understanding the mechanical behavior of unbound aggregates in relation to 

aggregate selection and optimizing the internal structure to improve performance. It is imperative 

that the contribution of the aggregate properties to unbound layer performance is better 

understood, and that methods are developed to analyze this contribution during aggregate 

selection. Current specifications often delineate maximum and minimum percentages of material 

that pass certain critical sieve sizes (e.g., 1-in., No. 4, and No. 200); however, in many cases, 

these specifications for grain size distribution are often empirical and ad-hoc in nature, simply 

require the use of well-graded materials (as per Unified Soil Classification System). By adjusting 

the percentages of particles at different sizes, aggregate gradations can be optimized at the 

microstructure level for large enough void space and adequate structural performance.  
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Evans et al. (2009) simulated biaxial compression tests on 2D particulate assemblies of 

four grain size distributions (GSD) and interpreted material responses in terms of stress-strain-

strength behavior at both the macroscale and particle-level properties at the microscale. They 

found that a coarser well-graded specimen had a higher shear strength than a finer well-graded 

specimen, and that more uniformly graded specimen is softer at low strains, requires a higher 

strain to peak, and is significantly more dilatant than the well-graded assemblies. As shown in 

Figure 2.5, four distinct GSDs were used for their simulations, i.e., fine, baseline, coarse, and 

linear. Note that the fine, baseline, and coarse distributions were selected to represent upper, 

middle, and lower bound distributions of commonly used unbound aggregate base course 

materials. To avoid unaffordable simulation time which is the function of both sample size (a 

function of the maximum particle size) and the minimum particle size, the particle size bins were 

mapped into smaller margins to have analogous grain size distributions to desired grain size 

distributions and yield a more practical number of particles (around 5×104) in DEM simulation. 

 

 

Figure 2.5 Four Distinct Grain Size Distribution Curves for DEM Simulation (Evans, 2009) 
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With the realistic particle shape representation (polyhedron), Huang (2010) investigated 

the effect of gradation on ballast volumetric properties using the validated digital image aided 

DEM ballast model. As shown in Figure 2.6(a), different gradation lines with varying minimum 

particle sizes (termed as “characteristic gradation curves”) that were derived from the Talbot 

Equation (see Equation 2.1) were studied for their effects on aggregate assembly volumetric 

properties and the structural layer support characteristics. Figure 2.6(b) shows the ballast 

gradation samples generated to conduct air void test DEM simulations. Figure 2.6(c) illustrates 

the effect of minimum particle size on mean air voids content. Clearly, there exists a threshold 

minimum particle size at which the densest packing can be achieved. Huang (2010) also found 

out that AREMA ballast gradation specifications could be possibly engineered based on DEM 

simulation results in an effort to improve the structural support and resistance to settlement. 

Cao and Lin (2010) built a 2D packing model in which a random distribution and 

compacted contact of different size aggregates were assumed. The mathematical solution to this 

model was achieved by using the geometric theory of space topology.  
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(a) 

 

(b) 

 

(c) 

Figure 2.6 DEM Simulation Results by Huang (2010): (a) Characteristic Maximum Density 

Gradation Curves Studied, (b) DEM Cylindrical Sample for Air Voids Determination, and (c) 

Effect of Minimum Particle Size on Mean Air Voids Content 
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2.4 Resilient Response of Unbound Aggregate Layers 

This section and the one immediately following present an overview of unbound 

aggregate material characteristics and structural layer behavior as the primary structural 

component in pavement systems. A thorough review of different aggregate test procedures and 

characterization methods commonly used to model granular pavement layer resilient responses 

and permanent deformation behavior is imperative to facilitate better designs of pavement 

systems, and ultimately ensure adequate performance under repeated moving wheel loading.  

2.4.1 Laboratory Characterization Methods 

Ideally, pavement layer response under traffic loading should be purely elastic, and thus 

no accumulation of permanent deformation should occur during its service life. Accordingly, 

mechanistic-based pavement design approaches have traditionally focused on the elastic or 

resilient response of unbound aggregate layers to predict the critical pavement responses under 

traffic loading. The most important input property for characterizing repeated load behavior of 

unbound aggregate layer in pavement analysis has been the “resilient modulus”. Defined as a 

secant modulus representing hysteretic stress-strain behavior of materials, the resilient modulus 

(MR) is a critical material property needed for mechanistic-empirical (M-E) pavement design 

methods (Puppala, 2008).  

As reviewed by Tutumluer (2013) in the recent NCHRP Synthesis 445 report, entitled 

“Practices for Unbound Aggregate Pavement Layers”, pavement stresses are mainly composed 

of two parts, initial in-situ stresses and stresses due to moving wheel loads. The initial in-situ 

stresses, static in nature, are the overburden and compaction-induced residual stresses. The initial 

stresses are typically lower at shallow depths than at greater depths. Compaction-induced 

residual stresses that are compressive in nature can often exist in the unbound aggregate layers 



 38 

and contribute to the static stress states (Uzan, 1985; Barksdale et al., 1997). On the other hand, 

traffic loading due to moving wheel loads induces much higher dynamic stresses than the static 

ones. In summary, a pavement element constantly experiences a combination of varying 

magnitudes of static and dynamic stresses depending on the depth in the pavement layer and the 

radial offset from the wheel load. The principal stress rotation and the constantly rotating fields 

of stresses under moving wheel loads have been observed from field measurements. In the case 

of aggregate bases, the cyclic component of load imposes a change (increment) of stress state 

which is not co-axial with the stress state under the static (overburden) load. This is illustrated in 

Figure 2.7. The major principal stress due to overburden is always aligned in the vertical 

direction regardless of the location of a moving wheel. The incremental stresses imposed by a 

wheel load, however, are not co-axial with this system, and as a result, the total principal stresses 

rotate as the wheel load passes. Principal stress rotation may cause increased rates of shear and 

volumetric strains during cyclic loading relative to equivalent stress paths without stress rotation 

(Kim and Tutumluer, 2005). 

 

Figure 2.7 Stress States and Rotation of Principal Stresses Experienced by the Aggregate Layer 

beneath a Rolling Wheel Load (Tutumluer, 2013) 
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Figure 2.8 illustrates the concept of stress path loading related to stress path slope (m) 

and stress path length (L) on a q-p diagram (Kim, 2005). Static overburden stresses correspond 

to qmin and pmin, whereas dynamic traffic load reaches up to qmax and pmax following a constant 

stress path slope (m). Analyses of test data often require defining geomaterial behavior in terms 

of these principal stresses considering a mean normal stress component (p) influencing volume 

change, and the deviator stress component (q) affecting shear behavior for shape change and 

distortion (Kim and Tutumluer, 2005). In general, the stress path slope  q
m

p





 for the 

standard CCP tests takes a constant value of 3.0. For variable confining pressure (VCP) tests, the 

stress slope varies generally from -1.5 to 3. VCP tests offer the capability to apply a wide 

combination of stress paths by pulsing both cell pressure, σ3, and vertical deviator stress, σd. 

Various stress paths cause different loading effects on pavement elements, which are not yet 

fully studied and understood to explain permanent deformation accumulation. 

 

 

Figure 2.8 Concept of Stress Path Loading Showing Slope and Length (Kim, 2005) 
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2.4.2 Review of Current Resilient Modulus Models 

Resilient moduli of granular materials increase with increasing stress states (stress-

hardening), especially with confining pressure and/or bulk stress, and slightly with deviator 

stress (Lekarp et al., 2000). Resilient behavior of unbound aggregate materials can be reasonably 

characterized by using stress dependent models which express the modulus as nonlinear 

functions of stress states. Such a characterization model must include in the formulation the two 

triaxial stress conditions, i.e., the confining pressure σ3 and the deviator stress σd or, the applied 

mean pressure p and the deviator stress q, to account for the effects of both confinement and 

shear loading. The model parameters are traditionally obtained from the multiple regression 

analyses of the repeated load triaxial test data. Currently available models are summarized in 

Table 2.1. 

Table 2.1 Summary of Current Resilient Modulus Models 

Model Name Model Form 

Confining Pressure Model 

(Seed et al., 1967) 

2K

R 1 3M K (σ )
 

(2.12) 

K-θ Model 

(Hicks and Monismith, 1971) 

n

RM K( )
 

(2.13) 

Bulk-Shear Modulus Model 

(Boyce, 1980) 

(1 n)

i

2

K p
K

q
1 β

p




 

  
  ; 

(1 n)

iG G p 
 

2

n

V

i

1 q
ε p 1 β

K p

    
     

      ;

n

q i

1 p
ε G p

3 q

  
   
     

(2.14) 
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Table 2.1 (cont.) 

Model Name Model Form 

Shackel’s Model 

(Shackel, 1973) 

 

 

2

3

K

oct

1 K

oct

τ
M  K

σ
R

 
  

    

(2.15) 

Uzan Model 

(Uzan, 1985) 
   2 3K K

R 1 dM K θ σ
 

(2.16) 

Lade and Nelson Model 

(Lade and Nelson, 1987) 

λ
2

1 2
a

a a

I J
E M p R

p p
 

(2.17) 

Universal Octahedral Shear 

Stress Model 

(Witczak and Uzan, 1988) 

2 3K K

oct1
R 1 a

a a

τI
M K p

p p
 

(2.18) 

Itani Model 

(Itani, 1990) 

2

3 4

K

K Kθ
R 1 a d 3

a

σ
M K p σ σ

p
 

(2.19) 

Crockford et al. Model 

(Crockford et al., 1990) 

4

2

β1 β

βw
R 0 oct

t w

V γ
M β θ 3Ψ τ

V γ
 

(2.20) 

UT-Austin Model 

(Pezo, 1993) 

     2 3K K1 b cdD
R d 3 1 d 3b c
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(2.21) 

Lytton Model 

(Lytton, 1995) 

2 3K K

oct1 m
R 1 a

a a

τI 3θ f h
M K p

p p

   
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(2.22) 

MEPDG Model 

(NCHRP 1-37A, 2004) 
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where θ is bulk stress = (σ1+2σ3) or (σd+3σ3), σd is deviator stress = (σ1-σ3), pa is atmospheric 

pressure, Ki is an initial value of bulk modulus, Gi is an initial value of shear modulus and n is a 

constant less than 1.0, β is i

i

K
(1 n)

6G
 , p is mean stress, q is deviator stress, V

ε and 
q
ε are the 

volumetric and shear strains, respectively, I1 is the first stress invariant and I2 is the second 

invariant, τoct is octahedral shear stress =1/3{(σ1-σ2)
2 + (σ1-σ3)

2 + (σ2-σ3)
2}1/2  =  1 3

2
σ σ

3
 , 

β0, β1, β2, and β3 are material constants,   is suction stress, w

t

V

V
 is volumetric water content, 

w

γ

γ
 is unit weight of material normalized by the unit weight of water, and n and Ki are material 

regression constants obtained from triaxial test data.  

2.5 Shear Strength of Unbound Aggregate Layers 

2.5.1 Laboratory Characterization Methods 

Strength is defined as the maximum level of stress that material can sustain before it fails 

or excessively deforms. Strength properties of a granular material can be best determined from 

static triaxial testing with monotonically increasing loading. Usually three triaxial tests are 

conducted over a range of confining pressure levels representative of probable in-service 

conditions. Confining pressures used typically vary from 3 to 40 psi. Axial strain rates used in 

triaxial testing are typically 1% to 2% strain per minute. Triaxial test data are then interpreted to 

determine the cohesion (c) and angle of internal friction () of the material tested. The 

parameters c and  define the shear strength of the material, which is given by the Mohr-

Coulomb equation:  
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max tannc                                                (2.24) 

where max is shear strength, c is cohesion,  σn is the normal stress on specimen failure plane, and 

 is the angle of internal friction.  

Considering vehicles usually move across a pavement very quickly, triaxial shear tests 

have been performed at University of Illinois at a rapid shearing rate which is more 

representative of usual loading conditions than the conventional slow triaxial shear test. Three 

different samples are tested at confining pressures of 5, 10, and 15 psi to determine the shear 

strength properties, friction angle and cohesion, of the aggregate materials. Compared to the 

conventional triaxial shear tests, a very high loading rate of 1.5 in./sec. is applied in rapid shear 

tests, causing 12.5% deformation in a 12-in. high specimen instantly. The rapid shear test 

initiated at the University of Illinois has been listed by the recent NCHRP Project 4-23 as a fairly 

simple and precise test method for accurate quantification of aggregate shear strength. It has also 

been reported to better simulate any possible failure condition of an in-service pavement layer 

under the dynamic application of a moving wheel load as compared to conventional triaxial shear 

tests (Thompson and Smith, 1990; Garg and Thompson, 1997). 

2.5.2 Review of Current Shear Strength Models 

The aforementioned linear Mohr-Coulomb criterion by Terzaghi has been used 

extensively to characterize the failure of soils; however, the use of this simple form to some 

types of soils and stabilized soils has led to a number of anomalies, as pointed out in previous 

studies. Results of many studies have shown that failure envelope of certain types of soils, 

especially cement treated soils, are curved; therefore, it is impossible to report a particular 

internal friction angle to characterize the strength over the wide range of confining pressures. 

Several failure criteria such as, Griffith crack theory, modified Griffith crack theory, Hoek and 
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Brown, and Johnston (1985) have been presented to improve the strength description of 

geomaterials. It must be noted that application of each failure criteria is limited to type of 

material and stress conditions. 

The stress pulse caused by moving vehicle loading consists of normal and shear stress 

components (Wang, 2011). Depending on the relative locations with respect to the loading, 

various multi-axial stress states can be found to exist in pavement layers. Such multi-axial stress 

states need to be considered rather than the one-dimensional tensile or shear stress only. The 

failure potential of unbound materials under the complex 3-D stress states can be better evaluated 

using the experimental methods that can simulate such multi-axial stress states, such as the 

triaxial test or hollow cylinder test. Several failure theories can consider multi-axial stress states, 

including maximum shear stress criterion (Tresca criterion), maximum octahedral shear stress 

(maximum distortional energy criterion or von Mises criterion), Mohr-Coulomb criterion, and 

Drucker-Prager criterion. The widely used Mohr-Coulomb criterion is expressed in terms of 

maximum and minimum principal stresses, and hence does not incorporate the effects of 

intermediate principal stresses. 

In addition to being plotted as a series of Mohr’s circles, the stress state is often plotted 

alternatively as points in a p-q diagram. The Mohr-Coulomb failure criterion states that a 

material would fail (either by fracture or by the onset of yielding) when a Mohr’s circle reaches 

its failure envelope. This can then be interpreted in such a way that a stress ratio can be defined 

to measure the closeness of a multi-axial stress state to the critical failure envelope. In this study, 

the shear stress ratio defined based on each of the two failure criteria is used to evaluate the 

failure potential, as shown in Equations 2.25 and 2.26. 
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where p is the mean normal stress at failure with  1 1 2 3
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; I1 is the first 

stress invariant; and J2 is the second stress invariant of deviatoric stress. 

2.6 Permanent Deformation of Unbound Aggregate Layers 

Rutting or accumulation of permanent deformation is the primary distress mechanism of 

unbound aggregate base/subbase layers in pavements. Accordingly, rutting resistance is a major 

performance measure for designing these pavement foundation layers. Field experiences, such as 

those from the AASHO road test, Minnesota Road Research test facility (Mn/ROAD), and the 

National Airport Pavement Test Facility (NAPTF) among many others, have clearly shown that 

granular base/subbase permanent deformation may contribute significantly to the overall flexible 

pavement surface ruts (Christopher et al., 2006; Dai et al., 2007; Kim and Tutumluer, 2006).  

To ensure satisfactory pavement performance and longevity, unbound aggregate layers 

should be properly designed to possess adequate rutting resistance, especially for unsurfaced or 

thinly surfaced pavements where nonlinear and inelastic behavior induced by dynamic wheel 

load stresses become quite crucial. Despite being a highly researched topic in the past few 

decades, realistic characterization and accurate prediction of rutting accumulation still remain 

challenging with great complexity arising from both traffic and environmental loading aspects. 

Better understanding of long-term rutting mechanism as well as more accurate and reliable 
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rutting models become urgent needs in the design of new pavements, especially those built with 

locally available marginal quality and/or recycled materials possessing greater performance 

uncertainty than traditional “standard” materials with proven field performance (Xiao et al., 

2012). 

Both experimental and field results indicated that permanent deformation response 

depends strongly on stress level and material state conditions (e.g., water content and density). 

Aggregate type, quality, and physical properties are long realized as individual factors to greatly 

influence the unbound pavement layer rutting performance, yet the underlying mechanisms of 

their interactions with in-situ stress states controlling field rutting development have not been 

fully explored. Mishra and Tutumluer (2012) studied a factorial combination of aggregate type, 

particle shape and surface texture, type and amount of fines, and moisture and density in relation 

to required compaction conditions for their effects on mechanistic pavement response and rutting 

performance through both laboratory repeated load triaxial (RLT) and field accelerated pavement 

testing (APT). They found that improved behavior in terms of both permanent deformation and 

resilient modulus could be achieved by maintaining a stable aggregate matrix (e.g., optimal fines 

contents); meanwhile, the stability of the aggregate matrix also depends on the interactions 

among individual aggregate physical properties such as moisture and plastic (cohesive) fines 

content, defined in this thesis study as the amount of material passing sieve No. 200 or 0.075 mm. 

Gabr and Cameron (2013) studied permanent strain behavior of recycled concrete aggregate for 

unbound pavement construction and related the accumulated permanent strain to moisture 

content and maximum dry density corresponded to the optimum, weighted plasticity index, and 

maximum shear stress ratio.  
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2.6.1 Laboratory Characterization Methods 

Empirical tests such as California Bearing ratio (CBR) cannot truly assess rutting 

performance; instead, rutting resistance should be assessed from tests that realistically mimic 

actual traffic loading encountered in the field (i.e., moving wheel loading). Although repeated 

load triaxial (RLT) test procedures, such as the AASHTO T307-99, have been established for 

determining resilient modulus of granular materials, there is currently no standard test procedure 

in the U.S. for evaluating permanent deformation or field rutting potential of unbound aggregate 

materials. The need to include permanent deformation aspects along with the resilient properties, 

when characterizing unbound granular materials, has recently been confirmed (Puppala, 1999). 

High modulus materials could still undergo severe plastic strain or permanent deformation, 

indicating that relying on resilient properties alone may not prevent excessive deformation or 

failure. Further, stress path RLT testing procedures are in fact needed to properly account for 

moving wheel loading and its effects on permanent deformation in pavement granular layers.  

Tutumluer et al. (2001, 2005, 2007) considered in laboratory testing the dynamic nature 

of moving wheel loads. They found that greater rutting damage could occur especially in the 

loose base/subbase under the extension-compression-extension type rotating stress states induced 

by a moving wheel pass. This kind of laboratory testing result is consistent with the previous 

field findings by Hornych et al. (2000) that permanent deformations observed under moving 

wheel load conditions can be up to three times higher than those obtained from plate loading 

tests. Gräbe and Clayton (2003, 2009, 2013) also concluded that principal stress rotation (PSR) 

caused by moving wheel loads has a significant and deleterious impact on both resilient moduli 

and permanent deformation of some types of road and track foundation materials, i.e., reduced 

resilient moduli and increased rate of permanent strain. Research using a hollow cylinder triaxial 

apparatus (Chan 1990) has shown that permanent strains increase significantly when a rotation of 
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the principal stresses is applied (for the same principal stress amplitude). Countries of the 

European Union recently approved a joint norm for permanent deformation testing of aggregate 

materials (prEN13286-7). The main objective of this new test procedure is to apply repeated 

loadings, based on both field and laboratory stress states, on test specimens to analyze the 

permanent deformation behavior of unbound granular materials. There are two ways to test 

aggregate specimens by following either a single stage or a multi-stage loading test procedure. 

2.6.2 Review of Current Permanent Deformation Models 

Cumulative permanent deformation has historically been categorized for a wide range of 

materials, such as metals, polymers, and some composites, into three stages: primary, secondary, 

and tertiary, as indicated on the representative RLT date set in Figure 2.9. The primary stage is 

characterized by a decreasing rate of accumulated permanent deformation and a relatively small 

permanent deformation magnitude, which results from abrasion at the aggregate particle contacts. 

In the secondary stage, permanent strain accumulates (or creeps) in a relatively linear fashion 

with a constant (or stable) rate due to the rearrangement of the particle grains. The tertiary stage 

occurs as the specimen fails (or flows) and is characterized by an increasing rate of accumulated 

permanent deformation that is attributed to the fracture of particle grains. In general, the 

permanent deformation is typically expected to increase rapidly during the early stage after 

initial pavement construction and being exposed to traffic, and then tend to stabilize (or continue 

to increase at a very small rate). The rate of accumulation depends not only on the state variables 

such as void ratio and stress, but also on the cyclic preloading history, i.e., the fabric of the grain 

skeleton (arrangement of the contacts, orientation of the contact normal, coordination number, 

fluctuation of stress). 
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Figure 2.9 Schematic Representation of Different Permanent Deformation Behavior 

 

Existing permanent deformation models for unbound pavement materials are mostly 

developed based on RLT tests for characterizing permanent deformation behavior at one or more 

of the three stages. They are of two main types, i.e., analytical or empirical relationships 

describing the variation of permanent strains with the number of load applications and the 

applied stresses, as well as increment models developed from plasticity theory for use in finite 

element based calculations. Well-known examples of the first type are summarized in Table 2.2. 

They provide relatively simple and intuitively understandable constitutive relationships to predict 

the amount of permanent deformation (or strain) at any number of loading applications.  

For example, the classical power law model simply correlates the cumulative permanent 

strain with the number of load cycles; consequently, regression coefficients (a and b) obtained 

from fitting laboratory RLT test results change with varying material properties, loading 

conditions, and environmental conditions such as moisture content. To give good predictions of 

laboratory RLT tests, the effects of both stresses and number of load applications are coupled in 
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some relationships, such as the one proposed by Gidel et al. (2001). Like the classical power law 

model, the majority of those empirical relationships is limited in characterizing the material 

behavior under all the stages of permanent deformation because the model parameters derived 

from the linear (secondary) portion of the cumulative permanent strain against the number of 

load applications curve ignore the tertiary zone of the deformation. To overcome this limitation, 

the three-state model in which a power law model, a linear model, and an exponential model is 

proposed to present the primary, secondary, and tertiary stages of the permanent deformation, 

respectively. However, the model coefficients still vary significantly with different material 

types because no fundamental material property is included in the model. Relationships that 

predict permanent strain from resilient properties (strain and modulus), such as the Tseng and 

Lytton model (1989), were reported to give erroneous predictions with permanent deformation 

decreasing as the resilient strain steadied. The current Mechanistic-Empirical Pavement Design 

Guide (MEPDG) rutting model for unbound granular materials, modified by Witczak et al. (2004) 

from the original Tseng and Lytton model, was also found to yield poor predictions, as is 

demonstrated later in this study. The relationship by Choi et al. (2012) was simplified from a 

rigorous mechanical model based on visco-plasticity for asphalt mixtures. 

Contrary to the empirical relationships, the plasticity theory based models are formulated 

in an incremental form and can be readily applied to the finite element modeling of pavement 

structures under realistic loading conditions (e.g., multiple wheel load interactions). However, 

they are sophisticated in nature and almost impractical to implement in routine pavement design, 

as applying thousands of repeated load cycles is still computationally expensive if not impossible. 

Model calibration is another challenging aspect requiring more advanced laboratory tests that 

highway agencies rarely perform on a routine basis. 
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Table 2.2 Summary of Current Permanent Deformation Models 

Model Name Model Form 

Barksdale Model 

(Barksdale, 1972) 
log( )p a b N  

 
(2.27) 

Phenomenological Model 

(Monismith et al., 1975) 

b

p AN 
 

(2.28) 

Strain Rate Model 

(El-Mitiny, 1980; Khedr, 1985) 
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Tseng and Lytton Model 

(Tseng and Lytton, 1989) 0
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Wolff Model 

(Wolff, 1992) 
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Rutting Rate Model 

(Thompson and Naumann, 1993) 
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Van Niekerk and Huurman Model 

(van Niekerk and Huurman, 1995) 
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(Paute et al., 1996) 
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Hurrman Model 

(Huurman, 1997) 
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Table 2.2 (cont.) 

Model Name Model Form 

Lekarp and Dawson Model 

(Lekarp and Dawson, 1998) 

 
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Wu et al. Model (2011)  
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Where p is the axial permanent strain; a is the axial permanent strain; p (Nref) is the permanent 

axial strain at a given reference number of cycles Nref; N is the number of load applications; 0, β, 

and ρ are material parameters that are different for each sample (determined based on the water 

content, resilient modulus, and stress states for base aggregate and subgrade soils through 

multiple regression analyses); RR is Rutting rate; RD is Rut depth; 1 is the major principal 

stress, 1,f is the major principal stress at failure; a1, a2, b1, and b2 are model parameter estimates; 

d is the axial deviator stress, p0 is the normalizing reference stress (often p0 = 1 psi or 1 kPa); L 

is the length of stress path, p is the mean normal stress 
 1 2 3

3
p

    
 

 
; q is the 

deviatoric stress  1 3q    ; (q/p)max is the maximum stress ratio. 
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2.6.2.1 Permanent Deformation in Unbound Materials 

Permanent deformation in unbound granular materials (UGMs) is influenced by a number 

of factors such as number of load cycles, stress level, stress history, and moisture content and 

aggregate gradation. Several attempts have been made to develop analytical or M-E rut 

predictive models for unbound pavement materials. Each model has its own pros and cons. For 

instance, the Tseng and Lytton (1981) model is a function of resilient strain and the number of 

load repetitions. This model has been implemented for estimating the permanent deformation in 

base, subbase, and subgrade layers in MEPDG (ARA, 2004). The permanent deformation model 

for granular base materials accepted in the current MEPDG was modified from Tseng and 

Lytton’s model. A large amount of calibration work has been performed in the NCHRP Project 

1-37a against the permanent deformation data collected from the Long Term Pavement 

Performance (LTPP) Program. The final calibrated form of permanent deformation model for 

granular materials is as follows.  

 

 

9

0 0

1 1

10

0

1

9

9

0.15 20

2

log 0.61119 0.017638

4.89285
10

1 10

N N

S S v soil cal v soil

r r

r

c

PD k h e k h e

e e

 





 









 
  

 





 



   
    
   

 
 
 

   
       

   

    
 

 

   

 
 
  

                        (2.40) 

where PD is the permanent deformation or plastic deformation accumulated in the layer; N is the 

number of axle load applications, v
 is the average vertical strain in the layer, 1S

k is the global 

calibration coefficients (1.673 for granular materials and 1.35 for fine-grained materials), 1S
 is 



 54 

the local calibration constant for the rutting in the unbound layers (by default 1.0), and cal
k  is 

the combined calibration constant. Note that water content is the only parameter needed in the 

above equations, because it was calibrated by the best fit of all the data collected regardless of 

aggregate type, density, or stress level. 

Note that the MEPDG uses one permanent deformation model with different sets of 

calibration factors for pavement unbound layers, including aggregate base, subbase, and soil 

subgrade (NCHRP, 2002). For an unbound pavement layer or sublayer, the permanent 

deformation of the layer or sublayer can be calculated by the following model: 
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where p =permanent deformation; r =resilient strain imposed in laboratory test (typically 

triaxial tests); v =average vertical resilient strain in the layer; 0 , ,   =material parameters; 

N=number of load applications; n=the number of sublayers; and hi=the i-th sublayer thickness. 

A layer strain model (Barksdale, 1972) can be utilized to compute the permanent 

deformation in each unbound pavement layer from a corresponding permanent deformation 

model using a set of respective material properties. Once the permanent strain within each 

pavement layer is calculated, the total rut depth of the pavement surface can then be obtained by 

summing up the contributions of permanent deformation from each layer. This approach can also 

be extended for cases with thick pavement layers by further dividing the layers into sublayers. 

The procedure is mathematically given as follows: 
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where 
,p i

 and i
z  denotes permanent strain and the thickness of the i-th sublayer, respectively; 

n is the total number of sublayers, and 
p

 is the rut depth. 

2.6.2.2 Permanent Deformation in the Subgrade 

The model by Tseng and Lytton (1989) has been used to estimate the development of 

permanent deformation in the subgrade and it is performed in two steps: first, the top 2 m of the 

subgrade layer is divided into 10 sublayers, each with a thickness of 20 cm and the permanent 

strains within these sublayers are then computed from the model. Second, for the remaining part 

of the subgrade, the influence of the induced resilient strain is assumed to decrease exponentially 

with depth, kza e
  , where a and k are constants and z  is the depth from the surface of the 

subgrade (Erlingsson, 2012). Thus, the contribution of the permanent deformation from the 

lower part of the subgrade can be computed by integrating kza e
 over the depth: 
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where the constant a and k can be computed by using vertical strain values at two locations (at 

the surface of the subgrade and 150 mm below the surface of the subgrade) and they are given by: 
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This gives the contribution to the rut from the subgrade for one repetition. For other 

repetitions, a similar approach is used 
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where 
sg

  is the permanent deformation in the lower part of the subgrade, 1v
  and 2v

 are the 

vertical strain at the surface of the subgrade and 150 mm below the surface of the subgrade, 

respectively, and z  is the computation depth measured from the surface of the subgrade. 

2.6.3 “Shakedown” Theory for Analyzing Permanent Deformation Behavior 

New concepts have been developed to determine the long-term mechanical behavior of 

unbound granular materials under repeated loadings. Researchers (Sharp and Booker 1984; Yu 

2005) also related the magnitude of the accumulated plastic strain to the shear stress level and 

concluded that the range of behaviors, obtained at various stress ratios in RLT tests, can be 

described using the shakedown concept. The “shakedown” theory pioneered by Sharp and 

Booker (1984) has been increasingly used to rank unbound granular materials on the basis of 

their structural responses under repeated loading. In particular, three possible categories of 

material response, as illustrated in Figure 2.9, can be distinguished by the criterion proposed by 

Werkmeister (2004), i.e., plastic shakedown (Range A), plastic creep (Range B), and incremental 

collapse (Range C).  

This classification assumes the existence of certain limiting values that define the stress 

states at which the permanent strain magnitudes and accumulation rates differ. The so-called 

“plastic shakedown limit” defines the plastic shakedown-plastic creep boundary, whereas the 

“plastic creep limit” defines the plastic creep-incremental collapse boundary. According to the 

European Standard (2004), the stress level corresponding to a permanent strain value of 4.510-5 

accumulated from 3,000 to 5,000 load applications is practically defined as the plastic 

shakedown limit, and the stress level  corresponding to an accumulated permanent strain of 

410-4 practically defines the plastic creep limit. For an adequately designed pavement section, 
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incremental collapse (Range C) type permanent deformation is expected to rarely occur; instead, 

either plastic shakedown or plastic creep behavior prevails throughout the intended service life. 

From the laboratory RLT permanent deformation curves of unbound granular materials 

tested, it is possible to evaluate for any confining pressure the axial stresses generating 

permanent strains close to the shakedown limits. Then, all possible combinations of confining 

and axial stresses (σ1, σ3) that cause the investigated shakedown limit conditions can be 

identified, followed by plotting those stress combinations on a plane axial stress (σ1) versus 

stress ratio (σ1/σ3) to evidence the boundary envelopes between the three possible permanent 

deformation responses. To determine the relatively linear slope of the secondary stage of the 

permanent deformation curve, the RLT test data is fit to the analytical models in Table 2.2, such 

as plotting the accumulated permanent strain versus the number of load applications (N) on a 

log-log scale. Noticeable is the model proposed by Perez and Gallego (2010) that fits the 

permanent strain data by using a combination of power law and exponential models. Five fitting 

coefficients are obtained with one of them representing the linear slope of the secondary stage. It 

has been proved that this model offers not only an excellent description of the material behavior 

in Range B (plastic creep) and Range C (incremental collapse) but also unbiased predictions, as 

contrary to the classic power law model and the Francken model which tend to underestimate 

and overestimate the measured permanent strain, respectively (Perez et al., 2010).  

Rushing and Little (2013) reported that the rate of increase in permanent strain (i.e., the 

slope of the secondary flow region) determined from triaxial static creep testing provided the 

strongest correlation to Asphalt Pavement Analyzer (APA) simulated traffic rutting and thus 

produced a reasonable indication of asphalt mixture rutting resistance. As pointed out by 

Wichtmann (2005), it is also possible to add into the rutting accumulation model a scalar variable 
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for a phenomenological description of the important stress history (or cyclic preloading) effects, 

which is expected to weight the number of load applications with corresponding permanent 

strain amplitude. 

Besides laboratory RLT tests, the shakedown theory has recently been found valid for 

field APT test sections and real roads. Raad and Minassian (2005) determined the relative 

influence of granular base characteristics on upper bound shakedown limit of pavement 

structures through a matrix of numerical runs. Tao et al. (2010) explained different shakedown 

responses of traditional and recycled pavement base materials obtained from both laboratory 

RLT and full-scale APT tests based on the dissipated energy concept. It was implied that 

permanent deformation characteristics of pavement materials provided a better measure for 

evaluating recycled and marginal materials against traditional unbound aggregates. Chen et al. 

(2013) examined the shakedown behavior of geogrid-reinforced unbound granular materials 

based on multi-stage RLT test results. In the project sponsored by Nordic countries, the field 

performance including rutting of eight 10-20 year old LTPP roads were monitored to validate 

pavement performance models for use in the design of new roads (NordFoU, 2010). Important 

findings from this project include that the shape of the rutting growth on real roads is the same as 

the shape of the deformations seen in the triaxial testing, indicating the validity of the shakedown 

theory for real roads. The trend of permanent deformation accumulation of the reported NAPTF 

full-scale testing granular base/subbase layers, as stress history built up and/or stress levels 

increased, became more of a linear type (Kim, 2005), similar to experimental findings by El abd 

et al. (2004). 
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2.6.4 Stress Path Loading Effects  

In-situ pavement stresses in unbound granular layers are mainly composed of two parts, 

i.e., initial static stresses and dynamic stresses due to moving wheel loads. The initial stresses, 

static in nature, are the overburden and compaction-induced residual stresses. The initial stresses 

are typically lower at shallow depths than at greater depths. Compaction-induced residual 

stresses that are compressive in nature can often exist in the unbound aggregate layers and 

contribute to the static stress states (Uzan, 1985; Barksdale et al., 1997). On the other hand, 

traffic loading due to moving wheel loads induces much higher dynamic stresses than the static 

ones. Therefore, a pavement element constantly experiences a combination of varying 

magnitudes of static and dynamic stresses depending on the depth in the pavement layer and the 

radial offset from the wheel load. The principal stress rotation and the constantly rotating fields 

of stresses under moving wheel loads have been observed from field measurements. In the case 

of aggregate bases, the cyclic component of load imposes a change (increment) of stress state 

which is not co-axial with the stress state under the static (overburden) load (Kim, 2005). The 

major principal stress due to overburden is always aligned in the vertical direction regardless of 

the location of a moving wheel. The incremental stresses imposed by a wheel load, however, are 

not co-axial with this system, and as a result, the total principal stresses rotate as the wheel load 

passes. Principal stress rotation may cause different resilient behavior and increased rates of 

shear and volumetric strains during cyclic loading relative to equivalent stress paths without 

stress rotation (Kim and Tutumluer, 2005; Grabe and Clayton, 2013).  

Among different test procedures proposed to mimic such moving wheel load effects is 

the stress path loading concept, which is represented by the stress path slope (m) and stress path 

length (L) as illustrated on a deviator stress q vs. mean normal pressure p diagram in Figure 2.10. 

Static overburden stresses correspond to qmin and pmin, whereas dynamic traffic load reaches up 
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to qmax and pmax following a constant stress path slope m. Note that the initial overburden stress 

state in the field often corresponds to the K0 (horizontal stress divided by the vertical) conditions, 

i.e., qmin/pmin=3(1-K0)/(1+2k0). According to plasticity theory of soil mechanics, the mean normal 

pressure p influences volume change behavior, while the deviator stress component q affects 

shear behavior for shape change and distortion. In general, the stress path slope (m) for the 

standard constant confining pressure (CCP) tests, such as AASHTO T307-99, takes a constant 

value of 3.0. In the variable confining pressure tests performed by Kim and Tutumluer (2005), 

both vertical and horizontal stresses are pulsed at different magnitudes to more realistically 

simulate conditions due to moving wheel loads with the stress slope varied from -1.5 to 3. 

Permanent deformation models were developed accordingly for such CCP and VCP stress states 

(Kim, 2005). A common misunderstanding regarding CCP and VCP tests is that they deliver 

similar irrecoverable and resilient strains if the average stress is the same. Rondon et al. (2009) 

systematically compared cyclic triaxial behavior of unbound granular material under CCP and 

VCP conditions. They concluded that both types of test deliver similar permanent axial or 

volumetric strains only for some special stress paths, while the CCP test may underestimate the 

permanent axial strain for some other stress paths as compared to the corresponding VCP tests.  

Note that when dynamic loading is applied in both vertical and radial directions (i.e., 

VCP tests), the following Equation 2.46 derived from axisymmetric stress-strain relations can be 

solved simultaneously for the isotropic aggregate properties: resilient modulus MR and Poisson’s 

ratio υ (Seyhan and Tutumluer, 2002). Previous studies demonstrate that the loading path only 

has minor influence on the shear strength of unbound aggregates, despite of the significant effect 

on the deformation behavior (Xu et al., 2012). Therefore, strength parameters obtained from 

conventional triaxial tests with constant confining pressures would be sufficient for pavement 
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analysis, as far as only shear strength is concerned. However, a realistic assessment of permanent 

deformation or rutting accumulation requires a better understanding of the stress-strain behavior 

along representative loading paths by laboratory testing, as well as developing suitable numerical 

models capable of simulating the observed stress-path-dependent behavior. 
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where ε1 and ε3 are resilient strains recorded in the vertical and radial directions, respectively; 

and σ1d and σ3d are the dynamic stresses pulsed during VCP tests in the vertical and radial 

directions, respectively. 

 

 

Figure 2.10 Schematic Representation of Stress Path Loading (Tutumluer, 2013) 
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2.6.5 Importance of Shear Strength in Controlling Rutting Accumulation 

Known trends of the traditional low quality unbound granular materials indicate that 

lower shear strength of the material is generally associated with a higher permanent deformation 

potential in the field; on the other hand, a properly compacted good quality aggregate 

base/subbase can adequately prevent settlement and any lateral movement in the layer through 

high shearing resistance and dissipating effectively wheel load stresses (Garg and Thompson, 

1997). The NCHRP 4-23 study identified shear strength as one of the most significant 

mechanistic properties influencing pavement performance (Saeed et al., 2001). A research 

project on VTT in Finland also reported that the shear stress level in the road structure is the 

predominant reason for permanent deformations in unbound granular material (Korkiala-Tanttu, 

2008).  Further, shear strength property rather than “resilient modulus” has been always shown to 

better correlate with unbound aggregate permanent deformation behavior for predicting field 

rutting performance (Thompson, 1998; Tao et al., 2010; Xiao et al., 2012). Despite its long-

realized role in controlling field rutting development, shear strength is still absent from the 

majority of the rutting prediction models, such as the one used in the MEPDG or AASHTO’s 

Pavement ME software.  

As presented previously, multi-axial stress state is commonly experienced in unbound 

granular layers that are known to be incapable of taking tensile stresses. The stress state with the 

greatest failure potential depends on a combination of normal and shear stresses and does not 

necessarily occur at the location of maximum shear stress. The closeness of the stress state to the 

failure envelope can be described by the shear stress ratio (SSR), which in essence is the actual 

shear stress divided by the maximum (failure) shear stress at the same normal stress. At any 

applied stress state, a SSR value is believed to give a certain fraction of the shear strength of the 

material that is acting on the failure plane due to the applied total stresses. The lower the SSR is 
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kept, the less likely the material would fail in a bearing capacity or shear type failure. A SSR 

value below 100 percent literally means that the material does not fail upon shearing. As 

illustrated in Figure 2.11 and formulated in Equation 2.47, two similar SSR definitions are 

commonly used in practice to evaluate the rutting potential and corresponding shear strength 

requirements of base/subbase layers: applied shear stress to shear strength (τf/τmax) in the σ-τ 

Diagram; and alternatively, applied deviator stress (q) to maximum deviator stress at failure 

(q/qfailure) in the p-q diagram. Note that both definitions are based on the Mohr-Coulomb failure 

criteria for unbound granular materials. 
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where f and max denote the shear stress acting on the potential failure plane and the maximum 

allowable shear stress at failure, respectively; σd and q represent the deviator stress in the triaxial 

stress space, i.e., the difference between axial and radial stresses; σ1 and σ3 are major and minor 

principal stresses, respectively; and c and ϕ are shear strength parameters representing internal 

cohesion and friction angle, respectively. 
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(a) (b) 

Figure 2.11 Representation of Mohr-Coulomb Failure Envelope in (a) σ-τ Diagram and (b) p-q 

Diagram 

 

Seyhan and Tutumluer (2002) reported the strong linkage between the SSR (τf/τmax) and 

the anisotropic modular ratios established as aggregate performance indicators during their study 

on the loading related dependency of granular material properties. They concluded that the SSR 

is not only an indicator of unbound aggregate performance under varying stress states, but also 

determines the maximum allowable working stress to control the permanent deformation of an 

unbound aggregate layer. The decreasing anisotropic moduli ratios typically indicate a stress-

softening behavior caused by increasing applied stress states or SSR values, and “good” quality 

aggregates typically have low SSR values in the range of 0.2 to 0.5 (Seyhan and Tutumluer, 

2002). Recently, Hashem and Zapata (2013) proved the shear stress/strength ratio to be a better 

predictor than the resilient modulus when enhancing the MPEDG rutting model for unbound 

materials. According to classical linear Mohr-Coulomb theory, shear strength can be 

characterized by cohesion intercept c and friction angle ϕ from monotonic triaxial compression 

tests conducted at different confinement levels, which are much less time consuming and easier 

to conduct than complex and tedious laboratory permanent deformation tests.  
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Instead of implementing more complex plasticity theory based models, the shear stress 

ratios as formulated in Equation 2.47 are explored subsequently in this study for their potential 

use in predicting the rutting accumulation of unbound aggregates under the application of 

moving wheel loads, provided that the shear properties of granular materials are available, i.e., 

the angle of internal friction φ and the cohesion c. If no strength properties are measured from 

RLT tests, the empirical equations similar to the one developed by Huurman and Molenaar (2006) 

can be used to predict the strength parameters of unbound granular materials from gradation, 

compaction quality index, and other common material properties. 

2.7 Numerical Simulation of Unbound Aggregate Materials 

Constitutive relationships often need to be developed to properly describe permanent 

deformation accumulation in unbound granular materials with number of load applications. In 

this section, a summary is given of the different models proposed by many researchers to predict 

permanent strain as a function of load and material property related factors. 

2.7.1 Continuum-based Finite Element (FE) Modeling 

Granular pavement foundation material is a nonlinear elasto-plastic material and shows 

nonlinear behavior starting from small strains. Traditional continuum-based finite element 

models have been developed to mimic such nonlinear response of granular materials to 

variations in confining pressure, grain size, density, and microscopic properties, etc., as observed 

from much experimental work. 

Developed at Georgia Institute of Technology in 1996, the nonlinear finite element 

program GT-PAVE uses isoparametric eight-node quadrilateral elements to analyze a flexible 

pavement as an axisymmetric solid consisting of either linear or nonlinear elastic layers with an 

optional cross-anisotropic characterization of the granular layers (Tutumluer, 1996). For the 



 66 

analyses of conventional flexible pavements, predicted responses by the axisymmetric GT-

PAVE FE program have been validated in several instances in the past with measured data from 

instrumented full-scale pavement sections as well as verified with similar computed responses by 

the commercial ABAQUSTM FE program (Tutumluer, 1996; Kim, 2007). 

Gudehus and Nubel (2004) emphasized on the fact that the angularity of the grains will 

control to some extent the polar friction which will affect the rotational resistance of the grains, 

as supported by Oda and Iwashita (1999). Vardoulakis and Sulem (1995) emphasized that the 

surface roughness affects the inter-particle slipping in granular materials. Therefore, the angle of 

internal friction and dilation angle are highly affected. Huang et al. (2002) attempted to bring the 

surface roughness and shape of the grains into a hypo-plastic numerical model to study their 

effect on the strain localization in granular materials. Despite the fact that they have put solid 

theoretical efforts in their work, these theories lack linkages between the theoretical parameters 

and physical quantities.  

Alsaleh et al. (2006) employed Cosserat continuum as the foundation of the mathematical 

formulations of the numerical model in their paper. The Cosserat theory can successfully 

separate grains rotation from their translation by adding three additional degrees of freedom to 

any point in the 3-D continuum. Primarily, the Cosserat continuum requires two internal length 

scales: the length of contact between particles and the arm of rotation (Alsaleh et al., 2004). The 

length or the size of the contact surface will influence the couple stress value and the arm of 

rotation will influence the curvature of the rotation. It is believed that these quantities highly 

depend on the size and the shape of the particles as well as the density and the confining pressure 

applied at those particles. Since it is not easy to quantify it, most of the published research 

considers the mean particle size to present those two length scales. Looking at particles at the 
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micro scale, one might consider the particle size distribution, the surface roughness distribution, 

and the shape indices distribution to account for the internal length scales (Alshibli and Alsaleh, 

2004). However, the present constitutive relations do not allow incorporating such parameters 

explicitly. Alsaleh et al. (2006) proposed to incorporate the effects of such parameters via their 

heterogeneous distributions at the finite-element level and the method seems to work properly. 

Based on a parametric study performed on large number of particles with different shapes, 

Alsaleh (2004) assumed that the surface roughness is assumed to contribute to the arm of 

rotation curvature and the angular moment of inertia; whereas the shape indices will affect the 

length of the contact surface, the angular moment of inertia, and the arm of rotation as well. 

2.7.2 Discrete Element Method (DEM) Modeling 

The discrete element method (DEM) modeling approach has recently been demonstrated 

to have the potential of being used effectively to identify differences in current aggregate 

specifications in terms of drainage and structural support and provide insight into optimizing 

foundation layer aggregate gradation for improved pavement performance. Hill et al. (2012) 

presented a framework for a unified approach for modeling several laboratory tests used for the 

characterization of unbound materials for pavement applications, including the California 

bearing ratio (CBR) test, the dynamic cone penetrometer (DCP) test, and the resilient modulus 

test (see Figure 2.12). Although some limitations still exist, this proposed methodology is shown 

to be promising for developing mechanistic-based correlation between test results. 

Buechler et al. (2012) investigated the relationships between soil properties and the 

mechanical responses for both plate (simulated LWD) and drum-roller loading. It was shown that 

purely cohesionless granular soils exhibited substantially different stress and strain fields 
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compared to cohesive soils. The ability of DEM to accurately model macro-scale features from 

variable microstructure and interactions was demonstrated.  

 

 (b)  

Figure 2.12 DEM Simulation for (a) CBR and (b) DCP Tests (Hill et al., 2012) 

 

The potential of using DEM simulations for representing granular material behavior 

during shear via the triaxial compression and other lab tests has been demonstrated by extensive 

studies. Lin and Ng (1997) used 3D discrete elements to model drained triaxial tests with cubic 

periodic cells and ellipsoidal particles with a focus on the effect of particle shapes on shear 

strength development. Liu performed 2D DEM simulations of direct shear box test on dense and 

loose samples of circular particles. The realistic particle shape modeling, which was absent in 

previous studies, is however considered to be critical for enhancing the quality of numerical 

simulation results.  

BLOKS3D, used later in this study, is a DEM program that is capable of modeling 3-

dimensional polyhedral particles as granular assemblies (Zhao et al., 2006; Tutumluer et al., 

2009). Ghaboussi and Barbosa (1989) established the fundamental principles and developed the 

original code for BLOKS3D program. Nezami (2004) and Zhao (2006) later on modified this 
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program significantly and established new contact detection algorithms, which considerably 

improved the speed of DEM simulations. These contact detection algorithms were named as the 

fast common plane (Hashash et al., 2007) and the shortest link methods (Zhao et al., 2006). 

Moreover, Huang (2010) developed a method to create particle shape libraries for BLOKS3D 

program using aggregate particle images with their morphological properties F&E ratio, AI, and 

STI quantified using the UIAIA. These particle libraries can be combined in DEM simulations to 

achieve target average AI and F&E ratio morphological properties within a granular ballast 

assembly. 

2.8 Summary 

This chapter reviewed important aggregate physical properties governing granular layer 

strength, modulus and permanent deformation characteristics. Commonly used laboratory tests 

and constitutive models to characterize the elastic (or resilient) and plastic (permanent) 

deformation trends of unbound aggregate materials were discussed next with a review of typical 

pavement stress states and initial loading conditions related to aggregate repeated load behavior. 

Both empirical and mechanistic methods developed for classifying aggregate materials were 

summarized with historical perspective by listing their advantages and limitations. 
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Chapter 3 Research Approach and Databases 
 

This chapter presents all the databases (both laboratory and field) from which field 

pavement performance and laboratory tested mechanistic analysis inputs (i.e., strength, 

permanent deformation, and MR data along with corresponding aggregate index properties) were 

collected for unbound aggregate pavement base/subbase materials. The primary data source for 

this study is the existing laboratory and/or in situ test data for Minnesota’s aggregates that were 

obtained from related research studies performed for/by Minnesota Department of Transportation 

(MnDOT) (Xiao and Tutumluer, 2012). In addition, as part of a comprehensive literature search, 

strength, permanent deformation and resilient modulus (MR) data were also collected from many 

relevant research studies completed for the last two decades at the University of Illinois 

Advanced Transportation Research and Engineering Laboratory (ATREL). 

3.1 University of Illinois Aggregate Modulus and Strength Databases 

3.1.1 NCHRP 4-23 Research Project Database 

As part of the NCHRP 4-23 Phase II laboratory testing program, UI-FastCell testing was 

undertaken to determine directional dependency (anisotropy) of MR at various stress states and 

then to correlate anisotropic modular ratios to the quality and strength properties of the aggregate 

(Seyhan and Tutumluer, 2002). Twelve aggregates with varying material types and properties 

were selected for MR testing using the UI-FastCell. In the selection process, consideration was 

given to both good and poor performing granular base/subbase materials obtained from seven 

different states. A realistic range of aggregate qualities and properties, such as average and top 

sizes, gradations (both uniform and well-graded samples), particle shapes (rounded gravel to 

angular crushed stone), and fines contents, i.e., materials less than 0.075 mm (No. 200 sieve) 
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size, were represented. The top aggregate sizes vary from 25-mm (1-in.) to 51-mm (2-in.). There 

is a considerable variation in the fines content values ranging from less than 1% to 17.9%. The 

variations among the aggregate types and properties were considered essential for studying the 

effects of material properties on the anisotropic resilient behavior under the application of 

vertical and radial pulse loadings. 

The maximum dry densities and the optimum moisture contents are for modified Proctor 

tests (AASHTO T-180). The static strength properties were obtained from standard triaxial tests 

(ASTM D 2850) conducted at confining pressures of 35, 69, and 104 kPa (5, 10, 15 psi) on 

samples compacted at optimum moisture states. Cylindrical specimens, 150 mm in diameter by 

150 mm high (approximately 6-in. in diameter by 6-in. high), were prepared to fit in the 

confinement chamber of the UI-FastCell for the repeated load triaxial testing. A total of 46 

specimens, four samples for each aggregate were prepared using a pneumatic vibratory 

compactor. For each material, samples were prepared at two moisture contents: (i) optimum 

moisture content corresponding to maximum dry density and (ii) wet of optimum moisture 

content near saturation. The achieved dry densities at optimum moisture contents match closely 

with the maximum Proctor densities.  For the wet of optimum tests, minimum moisture contents 

that provided at least 90% saturation were typically achieved. 

3.1.2 Federal Aviation Administration (FAA) Granular Base/Subbase Material Study 

Database 

Two crushed aggregate materials, specified herein as the P209 granular base and P154 

subbase materials, were tested for permanent deformation trends in the laboratory to study 

effects of moving wheel loads and the degree of compaction. The P209 material was a crushed 

limestone and the P154 material consisted of manufactured screenings specified by FAA’s 

Advisory Circular 150/5370-10B. The P209 aggregate material was classified as A-1-a according 
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to AASHTO procedure and as GP-GM (poorly graded gravel with silt) according to ASTM 

procedure; whereas the P154 aggregate material was classified as A-1-b according to AASHTO 

procedure and as SW-SM (well graded sand with silt) according to ASTM procedure. The 

National Airfield Pavement Testing Facility (NAPTF) P209 had a maximum size of 50-mm (2-in) 

and 6.7 % fines content, whereas the NAPTF P154 had a maximum size of 12.5-mm (0.5-in) and 

10% fines content. The P209 has much less amount of fines fraction than the P154. The mean 

particle sizes for the NAPTF P209 and P154 were 8-mm and 1.7-mm, respectively.  

The dry densities and moisture contents for the NAPTF P209 and P154 aggregates were 

determined following the procedure of the modified Proctor (AASHTO T180) test. The standard 

AASHTO T307-99 modulus test procedures were followed for NAPTF P209 and P154, 

respectively. Rapid shear tests were conducted at 35, 69, and 104 kPa (5, 10, and 15 psi) 

confining pressures. The NAPTF P209 aggregate had a friction angle of 61.7o with a cohesion 

intercept of 132 kPa and the NAPTF P154 material had a friction angle of 44o with a cohesion 

intercept of 182 kPa. Material properties, stress path RLT permanent deformation test programs, 

and corresponding laboratory test results for this study were detailed elsewhere (Kim, 2005). 

Both constant confining pressure (CCP) and variable confining pressure (VCP) tests were 

performed using an advanced repeated load triaxial testing device named UI-FastCell to clearly 

account for the effects of variable stress states, including stress ratio, stress magnitude, and stress 

path loading slope (representing rotating principal stress directions) on permanent deformation 

accumulation for the FAA P209 and P154 aggregate materials. As reviewed previously in 

Chapter 2, in the CCP tests, vertical wheel load stresses were repeatedly applied on laboratory 

specimens to adequately simulate the conditions realized directly under the wheel. In contrary to 

the CCP tests, the variable confining pressure (VCP) tests were performed by subjecting the 
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specimens to various constant stress path loadings realized under actual traffic. Specifically, two 

dynamic stresses of prescribed magnitudes were pulsed simultaneously in both horizontal and 

vertical directions, in addition to the applied constant hydrostatic confining stress. Different 

combinations of the stress path slope (m) and its length (L) were therefore applied to simulate the 

various dynamic loading conditions experienced under the moving wheels. 

3.1.3 Illinois Center for Transportation R27-1 Research Project Database 

The research focus of this study was on the characteristics and performances of dense 

graded structural layers for constructing aggregate working platforms over soft subgrades. A 

comprehensive experimental test matrix was developed for the three most commonly used 

aggregate types in Illinois: uncrushed gravel (denoted as G), limestone (L), and dolomite (Do). 

The primary objective was to establish ranges for major aggregate properties that primarily 

influence strength, modulus, and deformation behavior of unbound aggregate layers in any 

pavement system. These major physical properties studied include: fines content, Plasticity Index 

(PI) of fines, particle shape (flatness and elongation), angularity and surface texture, and 

moisture content and dry density (compaction) properties. The detailed laboratory test matrix, 

mechanistic property test programs, material properties, and complete test results can be found 

elsewhere (Tutumluer et al., 2009). 

In brief, for studying the effect of fines on aggregate behavior, laboratory specimens with 

four different target fines contents, i.e., 0%, 4%, 8% and 12% material passing No. 200 sieve, 

were fabricated and tested. To study the effect of type of fines on aggregate behavior, two 

different types of fines were used: one was non-plastic in nature such as mineral filler type 

(PI=0), and the other was plastic such as cohesive fine-grained soil type (PI in the range of 10-

12). The effect of moisture content on aggregate performance was also studied by testing the 
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blended aggregate specimens at three different moisture contents: optimum moisture content 

(wopt), 90 percent of wopt, and 110 percent of wopt, whereas the wopt was established through the 

standard Proctor (AASHTO T-99) test for each aggregate gradation. Therefore, the laboratory 

test matrix was a 4x2x3 factorial (4 different fines contents, 2 different types of fines, 3 different 

moisture contents) for each one of the three different aggregate types (Tutumluer et al., 2009).  

Resilient modulus and permanent deformation tests were performed on specimens 

according to AASHTO T307-99, i.e., the specimens were first conditioned for 1,000 load cycles 

to characterize their permanent deformation behavior at an applied stress state of 15-psi deviator 

stress and 15-psi confining pressure. Then, resilient modulus tests were conducted at the 15 

AASHTO T307 stress states. Three different samples were tested at confining pressures of 5, 10, 

and 15 psi to determine the shear strength properties, friction angle and cohesion, of the 

aggregate materials from rapid shear tests. Note that the permanent deformation test data 

analyzed subsequently in this Chapter were recorded from the condition stage. Rapid shear 

triaxial strength tests were also conducted on the aggregate samples to determine shear strength 

properties. Detailed laboratory test results can be found elsewhere (Tutumluer et al., 2009; 

Mishra, 2012). 

3.1.4 Geogrid Aggregate Base Reinforcement Database 

3.1.4.1 Materials Tested 

Recently, under the partnership with a lead geogrid producer, a total of six aggregate 

samples were received at the University of Illinois Advanced Transportation Research and 

Engineering Laboratory (ATREL) for imaging based shape analysis using the University of 

Illinois Aggregate Image Analyzer (UIAIA). The objective of the whole laboratory test program 

was to evaluate the relationship between aggregate physical properties (i.e., angularity index and 
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surface texture) and laboratory based resilient modulus, shear strength and permanent 

deformation characteristics. Those aggregate samples ranging from uncrushed to crushed ones 

were collected from various field construction sites and tested in the laboratory for physical and 

mechanical property characterization. Table 3.1 summarizes the aggregate types, sources and 

moisture-density properties used in the test program. 

Table 3.1 Aggregate Material Types, Sources and Moisture-Density Properties Used in Geogrid-

Reinforced Applications 

Sample 

Number 

Classification Source 

Maximum Dry Density 

(pcf) 

Optimum Moisture 

Content (%) 

1 
Crushed 

Limestone 
Kentucky 141.8 6.5 

2 DGA1 Kentucky 146.0 7.0 

3 Salvage Base 
North 

Dakota 
136.3 7.8 

4 
Crushed 

Miscellaneous 
California 127.4 9.3 

5 - USACOE 148.9 4.3 

6 Crushed Gravel Utah 136.9 6.8 

Notes: (1) 1 pcf = 16.02 kg/m3; (2) AASHTO T-99 procedure was followed for compaction. 

 

3.1.4.2 Experimental Program 

For the aggregate samples used in geogrid reinforced applications, the resilient modulus 

and repeated load triaxial tests were performed on cylindrical samples first air-dried and then 

moisture-conditioned in the laboratory to achieve the optimum moisture content. Samples were 

prepared using moderate compaction energy (20-blow modified Proctor hammer) to achieve a 

150-mm diameter by 300-mm tall cylindrical test specimen at the targeted density level. Two 5-
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gallon buckets of each aggregate sample were received during the year of 2010. Each bucket 

received was spread onto plastic tarps on the floor and allowed to air-dry overnight. Once air-

dried, the material was split and quartered, thus four specimens of representative composition 

were produced for subsequent testing. 

All the aggregate samples were scanned for particle morphological/shape indices which 

include the flat and elongated (F&E) ratio, angularity index (AI), and surface texture (ST) index. 

An enhanced, second generation University of Illinois Aggregate Image Analyzer (UIAIA) with 

color image thresholding scheme was used to determine morphological indices, such as 

angularity index, AI (Rao et al., 2002) and surface texture index, ST (Rao et al., 2003) of the 

aggregate samples used in the test program. The UIAIA uses 3 orthogonally positioned cameras 

to capture 3 dimensional shape properties. The AI and ST indices are determined based on the 

particle image outlines obtained from each of the top, side and front views. Table 3.2and Table 

3.3 list the average aggregate shape indices quantified for aggregate samples used in geogrid 

reinforcement applications and the ICT studies, respectively. 

Table 3.2 Average Aggregate Shape and Surface Texture Indices for Aggregate Samples Used in 

Geogrid Reinforcement Applications 

Sample 

Number 

Angularity Index 

(AI) 

Surface Texture Index 

(ST) 

Flat & Elongated Ratio (by 

Weight) 

1 380 1.3 2.7 

2 460 2.2 2.7 

3 328 0.9 2.1 

4 434 1.5 2.1 

5 462 2.5 2.4 

6 372 0.5 2.1 
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Table 3.3 Average Aggregate Shape and Surface Texture Indices (Mishra, 2012) 

Aggregate 

Type 

Angularity Index (AI) Surface Texture Index 

(ST) 

Flat & Elongated 

Ratio (by Weight) 

Measured 

Value 

Typical 

Range* 

Measured 

Value 

Typical 

Range 

Measured Value 

Crushed 

Limestone 

481 400 - 500 1.8 1.2-1.8 2.5 

Crushed 

Dolomite 

428 N/A** 1.3 N/A 3.3 

Uncrushed 

Gravel 

330 250 - 350 1.0 0.5-1.2 1.9 

Notes: * Typical values identified from 39 different coarse aggregate materials in a pool fund 

study; ** N/A = data not available. 

 

3.2 MnDOT Laboratory Aggregate Databases 

In this research study, the results of a variety of aggregate index property and resilient 

modulus tests conducted by the MnDOT Office of Materials and/or its contracting agencies on 

different Minnesota project materials were collected and evaluated (Gupta et al., 2007; Xiao and 

Tutumluer, 2012). Two resultant databases, one for the MEPDG MR constitutive model 

parameters k1, k2 and k3 and the other one for corresponding aggregate source properties, were 

created and used in the subsequent statistical correlation studies. Each of these two databases 

contains a total of 376 effective aggregate specimens after eliminating samples with incomplete 

information such as missing gradation or index properties. The majority of the tested materials 

are “standard” or traditional unbound aggregate base and subbase materials of Classes ranging 

from 3, 4, 5 to 6 according to the MnDOT classification, and no reclaimed/salvaged materials 

were included in the resilient modulus database provided by MnDOT. The MnDOT specified 
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gradation bands for each individual aggregate classes are shown in Figure 3.1. Note that no 

crushed/fractured particles are allowed for Class 3 or 4. Class 5 requires at least 10% crushed 

particles, whereas Class 6 requires at least 15% crushed particles. 

 

 

Figure 3.1 MnDOT Specified Gradation Bands for Different Aggregate Classes 

 

3.2.1 Materials Tested 

The database provided by MnDOT includes various types of aggregates ranging from 

“standard” gravel (pit-run), limestone, granite and select granular materials to “non-standard” 

taconite tailings (a waste mining material), reclaimed asphalt pavement (RAP) and reclaimed 

concrete aggregates (RCA) blended with virgin aggregates at different blending ratios, and 

materials recovered from full-depth reclamation (FDR) sites. All the materials were collected 

from road construction sites in Minnesota for testing at the MnDOT Office of Materials and 
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Road Research laboratories and/or MnDOT’s contracting agencies/universities using consistent 

quality control procedures. Collected from this database, the results of a variety of aggregate 

index property and resilient modulus tests conducted were evaluated. Two resultant databases, 

one for the MEPDG MR constitutive model parameters k1, k2 and k3 and the other one for 

corresponding aggregate source properties, were created and used in the subsequent statistical 

correlation studies. Each of these two databases contains a total of 376 effective aggregate 

specimens after eliminating samples with incomplete information such as missing gradation or 

index properties. The majority of the tested materials are “standard” or traditional unbound 

aggregate base and subbase materials of Classes ranging from 3, 4, 5 to 6 according to the 

MnDOT classification, and no reclaimed/salvaged materials were included in the resilient 

modulus database provided by MnDOT due to the scope of this study. 

3.2.2 Experimental Program 

Resilient modulus test data include the following load-time history information recorded 

for each load sequence: confining pressures, deviator stresses, and resilient strain and resilient 

deformation values. The laboratory MR tests were conducted according to the NCHRP 1-28A 

protocol (Dai and Zollars, 2002). The load sequences start with 1,000 cycles of 207 kPa (30 psi) 

deviator stress at 103.5 kPa (15 psi) confining pressure for conditioning the specimen before MR 

data collection and continue with cycles repeated 100 times for 30 loading sequences with 

different combinations of confining pressures and deviator stresses. The MR is then calculated 

from recoverable axial strain and cyclic axial stress values from the last five cycles of each 

sequence. The moisture content of the specimens was within ±0.5% from the target moisture 

content. The vibratory hammer or gyratory compactor was used for compacting specimens to the 

target dry densities. Not all the tests were carried out at the optimum moisture content. Detailed 
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information about laboratory measured aggregate index properties includes AASHTO 

classification, MnDOT classification, material type, optimum moisture content, maximum dry 

density, actual sample moisture content, actual sample density, compaction method, gradation 

(i.e., percentages of materials passing specified sieves), silt content, clay content, liquid limit, 

plastic limit, and plasticity index. 

Considering the well-recognized significant effects that coarse aggregate morphology, i.e., 

flat and elongation ratio, angularity, and surface texture, have on the strength and resilient and 

permanent strain behavior of unbound aggregate materials (Pan et al., 2005; Pan et al., 2006; 

Tutumluer and Pan, 2008), twelve representative MnDOT aggregate resilient modulus (MR) test 

samples were shipped to the University of Illinois Advanced Transportation Research and 

Engineering Laboratory (ATREL) for imaging based shape analysis using the University of 

Illinois Aggregate Image Analyzer (UIAIA). Identified and recommended by the NCHRP 4-30A 

project among the most promising aggregate imaging systems to provide an automated means to 

determine coarse aggregate size and shape properties, the UIAIA system can take images of an 

individual aggregate particle from three orthogonal views, which has been very effective in 

reconstructing three-dimensional (3-D) particle shape and computing accurately the volume and 

size and shape indices (Tutumluer et al., 2000; Rao, 2001). 

3.3 FAA NAPTF Field Trafficking Study Database 

3.3.1 NAPTF Pavement Sections 

Widely used in pavement research, accelerated load testing is a middle solution between 

real field pavement sections and simple laboratory tests. Its advantages over real trafficking lie in 

the fact that the loading is applied in a shorter period, and that the environmental conditions are 

controllable. The National Airport Pavement Test Facility (NAPTF) at the Federal Aviation 
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Administration (FAA) was constructed to test full-scale instrumented pavement sections to 

investigate pavement performance subjected to complex gear loading of next generation aircraft. 

The NAPTF pavement test strip was 274.3-m long and 18.3-m wide. The first built group of test 

sections, named as Construction Cycle 1 (CC1) included nine test pavements composed of six 

flexible and three rigid pavements. These were built on three different subgrade materials, i.e., 

low (L), medium (M), and high (H) strength and two base sections, i.e., conventional (C) and 

stabilized (S) bases. The structural thickness requirements of CC1 cross sections are shown in 

Figure 3.2.  

A series of laboratory and field tests were conducted to characterize the pavement geo-

materials before, during, and after pavement construction. Repeated load triaxial tests were also 

conducted in the laboratory to determine resilient modulus, shear strength, and permanent 

deformation properties of subgrade soil and base/subbase aggregates and to develop proper 

material characterization models based on the laboratory test data. The subgrade and site 

preparation and construction of the pavement test sections are skipped in this study for brevity. 

The measured pavement critical responses and rutting depths were intended to be used for 

validating/calibrating the developed mechanistic rutting models for unbound layers in flexible 

pavements.  

3.3.2 APT Loading System 

The National Airport Pavement Test Machine (NAPTM) was used to load the NAPTF 

test sections. The NAPTM can carry up to 34-ton per wheel on two loading gears with 6-wheel 

per gear. Typical aircraft gear configurations, i.e., single, dual single, dual tandem, dual tridem, 

can be accommodated with the capability to change wheel load, wheel spacing, and wheel speed. 

This NAPTF pavement testing was conducted within two phases: response testing and trafficking 
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testing. The response testing was performed to determine the effects of static, monotonic and 

slow rolling gear configuration (0.55 km/hour). The trafficking tests were conducted at 8 

km/hour to investigate gear configuration and wander effects by monitoring pavement responses 

and performances as a function of number of load repetitions.  

To measure the structural responses in the CC1 test sections, several sensors were 

installed within the pavement sections. The NAPTF structural response instrumentations were 

Multi-Depth Deflectometers (MDD), Pressure Cells (PC), and Asphalt Strain Gauges (ASG). 

Details about the locations of the sensors such as MDDs and pressure cells were presented 

elsewhere (Kim, 2005; Kim, 2007). 

 

 

Figure 3.2 Cross Sections of NAPTF Pavement Test Sections (Kim, 2005) 
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3.4 University of Illinois Field Study Database 

3.4.1 Full-scale Pavement Sections 

Full-scale pavement working platform test sections were constructed using different 

aggregate materials and loaded to failure using an Accelerated Transportation Loading Assembly 

(ATLAS) at the University of Illinois ATREL facility for the ICT R27-81 research project 

(Mishra and Tutumluer, 2013). The main purpose was to evaluate the effect of subgrade strength 

on unsurfaced pavement performance and mechanisms contributing to rut accumulation. Figure 

3.3(a) shows the layout of the six test “cells” (numbered 1 through 6) constructed along three 

longitudinal test strips using the four aggregate types listed in Table 3.4 (Mishra and Tutumluer, 

2013). Figure 3.3(b) presents the plan view (on top) and cross-sectional details of a 

representative test cell constructed over a subgrade of IBV = 3% (same configuration for Cells 1 

through 4). The particle size distribution curve for each full-scale test section material was 

averaged from ordinary sieve analysis results of two replicate samples. Gradation charts for those 

test section materials are plotted in Figure 3.4, along with the determination of D10, D60, and Cu 

as tabulated in Table 3.5.  

Cells 1 through 4 were constructed with the four selected aggregate materials over a weak 

subgrade of IBV = 3%, whereas Cell 5 was constructed using material 2 (same as Cell 2) over a 

stronger subgrade of IBV = 6%. Cell 6 was constructed over a subgrade of IBV = 1% by first 

placing a 12-in. thick layer of porous granular embankment (PGE) which was subsequently 

capped by a 6-in. thick layer of IDOT CA-6 dense-graded aggregate (material 2 used for 

capping). As it can be seen from Figure 3.3, each individual test cell (except Cell 5) was 

constructed 39.6-m (130-ft) long and comprised of three test “sections” with aggregate layers of 

thicknesses 356 mm (14 in.), 305 mm (12 in.) and 203 mm (8 in.), respectively. Cell 5 was 
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constructed over a subgrade of CBR = 6% and therefore the aggregate layer thicknesses for the 

three sections were 254 mm, 203 mm and 152 mm (10, 8 and 6 in.), respectively. Note that the 

three sections for Cell 6 were constructed to similar thicknesses, using different PGE materials. 

More details about those test sections can be found elsewhere (Mishra and Tutumluer, 2013). 

The “as-constructed” moisture contents and dry densities of compacted aggregate layers were 

determined from nuclear gauge testing, are summarized in Table 3.6. To evaluate the effects of 

aggregate material type and quality on the dissipation of traffic-imposed stresses with depth, 

earth pressure cells were installed at the aggregate-subgrade interface along the North wheel path 

of individual test cells for monitoring the subgrade vertical compressive stresses.  

Table 3.4 Summary of Aggregate Material Properties for Field Test Sections (Mishra and 

Tutumluer, 2013) 

Test 

Cell 

No. 

Subgrade 

CBR 

(%) 

Material Type 

Aggregate 

Layer 

Thickness (in.) 

P200 

(%) 

Plasticity 

Index 

(PI) 

1 3 
Uncrushed Gravel, High Fines, 

Non-plastic 
8, 12, 14 12.3 0.0 

2 3 
Crushed Limestone, Low Fines, 

Moderately Plastic 
8, 12, 14 5.15 5.7 

3 3 
Crushed Dolomite, High Fines, 

Non-plastic 
8, 12, 14 12.75 0.0 

4 3 
Crushed Limestone, High Fines, 

Non-plastic 
8, 12, 14 9.95 0.2 

5 6 
Crushed Limestone, Low Fines, 

Moderately Plastic 
6, 8, 10 5.15 5.7 

6 1 
Porous Granular Embankment 

(PGE) Topped with CA-6 

12-in. PGE 

overlain by 6-

in. CA-6 

- - 
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(a) 

 

(b) 

Figure 3.3 Schematic Layout of Full-scale Pavement Test Sections: (a) Aerial View and (b) Plan 

View and Cross-sectional Profiles (Mishra and Tutumluer, 2013) 
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Figure 3.4 Gradation Curves of Materials Used in Full-scale Test Sections 

 

 

Table 3.5 Grain-size Distribution Curve Characteristics of Full-scale Pavement Test Section 

Test Cell No. D10 (mm) D60 (mm) Cu P200 (%) 

1 0.05 9.62 197.1 12.27 

2 (or 5) 1.36 10.17 7.5 5.14 

3 0.01 7.80 671.6 12.76 

4 0.20 6.21 31.4 9.97 
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Table 3.6 In-place Moisture-Density Values for Compacted Aggregate Layers (Mishra, 2012) 

Cell 

No. 

Section 1 Section 2 Section 3 

Moisture 

Content (%) 

Dry Density 

(pcf) 

Moisture 

Content (%) 

Dry Density 

(pcf) 

Moisture 

Content (%) 

Dry Density 

(pcf) 

1 7.6 129.7 7.3 129.3 6.9 131.2 

2 3.6 119.9 3.5 122.9 3 125.5 

3 6.1 129.8 6.1 126.3 5.8 129.7 

4 3.6 127.4 4.2 129.8 4.1 132.4 

5 3.6 124.7 4 129.2 3.6 124.4 

 

3.4.2 Accelerated Loading Facility and Test Program 

After construction, the pavement sections were loaded to failure by applying a 44.5-kN 

(10-kip) wheel load through a super-single tire (455/55R22.5) at a tire pressure of 758 kPa (110 

psi). Uni-directional loading was applied to simulate vehicular field loading conditions. The 

pavement test sections were loaded at two offset locations, one in the north side and the other in 

the south side. The one in the north side represents optimum moisture condition, whereas the one 

in the south side represents flooded condition. 

 The development of rutting with load application for each test section was monitored 

through surface profile measurements using a digital calliper. Average surface profile for each 

test section was calculated using two measurements separated by a distance of 152 cm (5 ft), 

located 152-cm (5-ft) away from the section boundaries on either side. Note that rut depth in the 

research study was defined as the deflection of any point on the pavement surface from its 

original profile. Trafficking of the test sections was continued up to a total rut depth of 
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approximately 102 mm (4 in.) in most cases, while some sections could be tested to rut depths 

more than 102 mm (Mishra and Tutumluer, 2013). 

3.4.3 Key Observations from Field Rutting Measurements 

Figure 3.5 shows the maximum rut depth recorded with load cycles for test sections at the 

optimum moisture condition, whereas Figure 3.6 shows the results at the flooded condition. As 

observed in all the test cells, flooding of the test sections led to weakening of the subgrade, 

which failed by undergoing excessive deformation.  

The uncrushed gravel in Cell 1 showed excessive shear movement within the aggregate 

layer, whereas the crushed aggregate sections in Cells 3, 4, and 5 failed primarily due to 

subgrade rutting. The crushed limestone material with low fines used in Cell 2 showed unstable 

matrix behavior under standard compaction conditions, leading to internal shear failure of 

Section 1 (14 in.) in Cell 2. Other two sections did not show significant shear movement within 

the aggregate layer, making excessive subgrade deformation the primary mechanism that 

contributed to failure of pavement sections under such conditions (Mishra and Tutumluer, 2013). 
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(a) (b) 

 

(c) 

Figure 3.5 Maximum Rut Depth Measured under Near-Optimum Conditions for (a) Section 1, (b) 

Section 2, and (c) Section 3 of Cells 1, 2, 4, and 5 
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(a) (b) 

 

(c) 

Figure 3.6 Maximum Rut Depth Measured under Flooded Conditions for (a) Section 1, (b) 

Section 2, and (c) Section 3 of Cells 1, 2, 4, and 5 
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3.5 Summary 

This chapter reviewed all the laboratory and field databases from which laboratory tested 

mechanistic design inputs (i.e., shear strength, permanent deformation, and MR data along with 

corresponding aggregate index properties) and field pavement performance were collected for 

unbound aggregate pavement base/subbase applications. The primary data source for this study 

is the existing laboratory test data for Minnesota’s aggregates that were obtained from related 

research studies performed for/by MnDOT and for geogrid reinforcement aggregate materials, as 

well as the in-situ test data obtained from the FAA NAPTF test sections. In addition, as part of a 

comprehensive literature search, strength, permanent deformation and resilient modulus (MR) 

data were also collected from many relevant research studies completed for over the last two 

decades at the University of Illinois. The recently completed full-scale pavement working 

platform test sections that were constructed at the University of Illinois ATREL facility for the 

ICT R27-81 research project is also used to verify the developed rutting prediction model. 
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Chapter 4 Resilient Modulus Behavior Estimated from 

Aggregate Source Properties and Its Effects on 

Flexible Pavement Performance 
 

This chapter first presents the establishment of regression based correlations between 

performance-related aggregate source properties and aggregate MR data, archived through 

modulus testing at the laboratories of Minnesota Department of Transportation (MnDOT) and 

University of Illinois, for identifying modulus ranges of unbound aggregate materials for 

mechanistic based pavement design applications. The performance-related aggregate source 

properties investigated in this study include percent fines content, gradation of particles, and 

imaging-based shape, angularity and surface texture of the aggregates, which have been long 

realized to significantly affect unbound aggregate mechanical behavior. Subsequently, the Monte 

Carlo type simulations and the First-order Reliability Method (FORM) are presented to assess 

the sensitivities of MR at given stress states to various aggregate source properties studied. 

4.1 Resilient Modulus Model for Unbound Aggregates 

The evaluation of typical mechanistic analysis inputs is an important first step towards 

implementing new mechanistic-based pavement design procedures. Resilient modulus (MR), a 

rational measure of the elastic response of unbound aggregate materials subjected to dynamic, 

repeated traffic loading, is a key mechanistic pavement analysis and design input. It is defined as 

the ratio of the maximum cyclic stress to the recoverable resilient strain in one repeated dynamic 

loading cycle. The stress-dependent nature of the resilient modulus has been well-observed from 

both laboratory and field testing. As reviewed in Chapter 2, various constitutive models have 

been developed to express the modulus as a function of applied stress states (e.g., bulk stress, 

deviator stress, or the combination of them) (Thompson et al., 1998). Among these, the Uzan 
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model (1985) first related MR to both confinement and shear stress effects. An advanced version 

of this model by Witczak and Uzan (1988) is well known as the Universal model to give high 

prediction accuracy by considering the confinement and shear stress effects under traffic loading 

for three-dimensional stress states. Owing to these advantages, the Witczak-Uzan Universal 

model has been recently adopted in the new NCHRP 1-37A developed Mechanistic-empirical 

Pavement Design Guide (MEPDG) with a hierarchical methodology to input MR of unbound 

aggregate base/granular subbase layers for the Level 1 flexible pavement analysis 

(www.trb.org/mepdg). This MEPDG model includes a bulk stress term and an octahedral shear 

stress component through which the confinement and shear stress effects are accounted for (see 

Equation 4.1). Other forms of MR constitutive models are also available in the literature with the 

capability to incorporate simultaneously the moisture- and stress-dependent characteristics of the 

resilient modulus of unbound aggregates, such as the one proposed by Lytton (1995). However, 

determining the matric suction and the soil water characteristic curve (SWCC) of the unbound 

aggregates was not included in the laboratory testing scope of the aggregate databases collected 

in this study. Therefore, the MEPDG MR model as in Equation 4.1 is selected for use in this 

study. 
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where, 

MR = Resilient modulus; 

θ = Bulk stress = σ1 + σ2 + σ3; 

σ1 = Major principal stress;  

σ2 = Intermediate principal stress = σ3 for MR test on cylindrical specimen; 

http://www.trb.org/mepdg
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σ3 = Minor principal stress or confining pressure in the triaxial tests; 

σd = Deviator stress = σ1 - σ2 = σ1 - σ3; 

τoct = Octahedral shear stress,  

=
2 2 2

1 2 1 3 2 3

1
( ) ( ) ( )

3
             

=
1 3

2
( )

3
    for cylindrical specimen in triaxial tests; 

Pa = Normalizing stress (atmospheric pressure = 100 kPa = 14.7 psi); 

K1, K2, K3 = Model parameters obtained from regression analysis. 

 

Laboratory testing for determining MR constitutive model parameters, which is the most 

accurate approach, requires expensive triaxial test equipment and time-consuming and detailed 

testing procedures such as the AASHTO T309 and NCHRP project 1-28A procedures. Therefore, 

using correlations to link MR constitutive model parameters with performance-related aggregate 

source properties would be more cost-effective in less advanced hierarchical level, such as 

MEPDG Level 2 or 3, pavement design applications.  

Commonly used material properties for such purposes include dry unit weight, moisture 

content, plasticity index, liquid limit, and percentage by weight of materials passing No. 200 

sieve (or fines content defined in this dissertation study). However, not very accurate correlations 

as indicated by low R2 values were often reported from using these index properties, some of 

which not only exhibit great variability but also are not directly related to the pavement 

performance. Therefore, repeatable and performance-related properties need to be employed to 

develop accurate correlations for estimating MR constitutive model parameters. 
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4.2 Importance of Aggregate Shape Properties 

The quality of the unbound aggregate base material can have a significant impact on the 

performance of the pavement. Despite being demonstrated by previous studies to be very 

influential (Tutumluer et al., 2006), effects of physical shape, texture and angularity of coarse 

aggregate particles on the strength, stability and performance of the pavement base/subbase layer 

are often not considered by current practice. The reason might be due to the lack of accurate and 

repeatable measurements of the coarse aggregate morphology in the past.  

The objective of this section is to illustrate importance of the aggregate morphology 

affecting engineering properties and performance of unbound granular materials. Test results 

from the two aforementioned University of Illinois databases were analyzed and presented herein 

for this purpose. The laboratory tests conducted include resilient modulus, permanent 

deformation, and the triaxial compression test, referred to as the rapid shear test in AASHTO T-

307. The readily available and recently enhanced image analysis device, University of Illinois 

Aggregate Image Analyzer (UIAIA), with its color image thresholding was used to quantify 

imaging based morphological indices, i.e., flat and elongated (F&E) ratio, angularity index (AI) 

and surface texture (ST) index, of the coarse aggregates.  Previous studies have shown that there 

is a correlation between imaging-based particle shape indices and resilient behavior, strength and 

stability of aggregates (Pan et al., 2006; Tutumluer and Pan, 2008). The research approach, 

testing procedure, and results were presented in Chapter 3. 

For the aggregate samples received from geogrid reinforcement applications and tested at 

the University of Illinois, the morphological index results of the aggregate samples are presented 

in Figure 4.1. The aggregate samples No. 2 and 5 have angularity index values that are greater 

than 400 and surface texture index values greater than 2.0. These values indicate that the samples 
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No. 2 and 5 consist of sub-angular and rough surfaced aggregate particles. The aggregate sample 

No. 4 also have angularity index values greater than 400 and surface texture index values below 

2.0. These values indicate that the sample No. 4 consists of sub-angular and rough surfaced 

aggregate particles. The aggregate sample No. 3 also has angularity index value that is close to 

325 and surface texture index values below 1.7. These values indicate that the sample No. 3 

consists of rounded and smooth surfaced aggregate particles. The applied stress states on a 

laboratory resilient modulus test specimen are always the primary factors governing the resilient 

behavior of that unbound material. For this reason, the resilient modulus values estimated at two 

bulk stress levels of 14 psi and 48 psi are presented together with morphological index results of 

the aggregate samples in Figure 4.1.  

The results graphed in Figure 4.1 showed a good correlation between aggregate shape 

properties and resilient modulus existed. Aggregates with high angularity index (AI) and surface 

texture (ST) properties, quantified from imaging using the newly enhanced University of Illinois 

Aggregate Image Analyzer, were found to have greater resilient moduli in comparison to 

aggregates with low AI and ST values (i.e., rounded particles with smooth surface texture). 

Furthermore, the effects of the AI and ST indices on the coarse aggregate resilient moduli are 

more significant when specimens are subjected to higher bulk stress-levels. This is due to the 

increase in confinement and aggregate particle contact under higher stresses. At lower stress 

conditions, particle contacts and related confinement effects are less dominant thus making 

resilient modulus correlations with the AI and ST morphological indices relatively less 

significant.   
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(a) 

 

(b) 

Figure 4.1 Effects of (a) Aggregate Angularity and (b) Surface Texture on Resilient Modulus 

Analyzed from Geogrid Reinforcement Applications 
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For the three different types of aggregates tested by Tutumluer et al. (2009), crushed 

limestone aggregates are regarded to consist of angular and rough surfaced particles, whereas the 

uncrushed gravel aggregates are deemed to consist of rounded and smooth surfaced particles, 

according to the imaging based quantification of aggregate morphological indices (see Table 

3.2). To show the differences between both types of aggregates in shear strength behavior as 

caused by aggregate morphology, the rapid shear test results obtained with a target fines content 

of 4% (based on dry sieving) at the optimum moisture content were graphed in Figure 4.2 and 

Figure 4.3. An interesting behavior can readily be seen when looking at the results of the rapid 

shear test.  

As explained by Mishra (2012), the achieved fines contents based on wet sieving for 

limestone and gravel aggregate samples, corresponding to the 4% target fines content, are in fact 

8.1% and 6.8%, respectively. Such difference was attributed to the significant amount of fines 

that remained on the surfaces of larger particles during dry sieving and contributed toward the 

total fines content determined by washed sieve analysis (Mishra, 2012). The reason why the 4% 

target fines content is selected for comparison is that the resulting achieved fines contents are 

approximately around 7%, an optimum fines content value determined by Seyhan and Tutumluer 

(2002) using the directional dependency (i.e., anisotropy) of aggregate stiffness as the criterion. 

To minimize the interfering effects of other aggregate physical properties such as moisture 

content, both moisture and density conditions selected for comparison are at the optimum.  

Figure 4.2 graphically depicts the results of this test for both aggregate types with non-

plastic fines, and clearly demonstrates the influence of the AI and ST indices on shear failure 

behavior of the aggregates. Crushed limestone aggregate samples consisting of relatively angular 

and rough surfaced particles show stable shear displacement after each sample reaches its peak 
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strength, whereas uncrushed gravel aggregate samples which consist of relatively rounded and 

smooth surfaced particles exhibit well-defined peak shear strength values although the dilative 

aspects would be expected to be much less for rounded and smooth surfaced aggregate particles. 

Moreover, the peak strength values at different confinement levels are much higher for crushed 

limestone aggregate samples consisting of relatively angular and rough surfaced particles. Note 

that other aggregate properties affecting the shear strength test results, such as the gradation 

properties, especially passing No. 200 sieve, and achieved specimen compaction densities and 

moisture contents, are intentionally selected to be at the optimum during this comparison. This 

further highlights the importance of aggregate morphology.  

Similar trends are also observed in Figure 4.3 for aggregate samples with plastic fines. 

However, the existence of plastic fines in both types of aggregates not only reduces the peak 

strength values but also cause unstable post-peak shear displacement. Interestingly, rounded 

aggregates exhibited a well-defined peak shear strength behavior, which could be influenced by 

their gradation properties and achieved specimen densities. The findings in this study also 

demonstrated that unbound aggregate resilient modulus properties should not be used alone to 

characterize aggregate base course performance mainly governed by rutting potential in the field. 

Laboratory permanent deformation tests should be conducted for evaluating rutting performances 

of unbound base/subbase courses. 
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(a) 

 

(b) 

Figure 4.2 Comparison of Rapid Shear Test Results for (a) Uncrushed Gravel (Rounded and 

Smooth Surfaced Particles) and (b) Crushed Limestone (Angular and Rough Surfaced Particles) 

with 4% Non-plastic Fines at Optimum Moisture Content (Data source: Tutumluer et al., 2009) 
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(a) 

 

(b) 

Figure 4.3 Comparison of Rapid Shear Test Results for (a) Uncrushed Gravel (Rounded and 

Smooth Surfaced Particles) and (b) Crushed Limestone (Angular and Rough Surfaced Particles) 

with 4% Plastic Fines at Optimum Moisture Content (Data source: Tutumluer et al., 2009) 
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In addition, based on comprehensive statistical analysis such as ANOVA, Xiao and 

Tutumluer (2012) also identified that among the three imaging shape indices examined (F&E 

ratio, AI and ST), surface texture ST is statistically the most significant influencing MR model 

parameter K1 predictions, whereas AI is the most significant for MR model parameters K2 and K3 

predictions. This finding was further validated with larger sample sizes (Mishra et al., 2010). The 

addition of aggregate shape properties into regression analysis can significantly improve the 

model prediction as is to be concluded from the following sections. 

4.3 Regression based Resilient Modulus Model Development 

This section presents the establishment of the regression models for the three model 

parameters (i.e., K1, K2, and K3 as in Equation 4.1) using the first model-building data set first 

without using shape properties and then with shape properties. The steps included in the 

regression analysis methodology are described next. 

4.3.1 Regression Analysis Methodology 

The flowchart description of the multiple linear regression analysis approach consists of 

the following consecutive steps: (i) determination of the pool of possible predictor variables to be 

regressed against response variables (i.e., k parameters); (ii) identification of the functional 

forms in which the predictor variables should enter the regression model and important 

interactions that should be included in the model; (iii) reduction of predictor variables and 

identification of “good” subsets of potentially useful predictor variables to be included in the 

final regression model; (iv) selection of the ultimate regression models; and (v) validation of the 

built regression models. The mean squared prediction error, denoted by MSPR in Eq. 4.2 below, 

is used as a means of measuring the actual prediction ability of the selected regression model; 
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hence, the calculated MSPR which is fairly close to MSE (mean squared error) is an indication 

of the appropriateness of the selected model. 

                                           

 
2

1

ˆ
n

i i

i

Y Y

MSPR
n












                                                                 (4.2) 

 

where    iY = the value of the response variable in the ith validation case; 

   ˆ
iY = the predicted value for the ith validation case based on the model-building data set; 

   n= the number of cases in the validation data sets. 

4.3.2 Selection and Diagnostics of Predictor Variables 

To identify which aggregate index properties significantly affect the resilient modulus, 

ANOVA analysis via SAS® statistical software was conducted for both MnDOT and ICT R27-1 

project databases. As introduced before, for the MnDOT database, the data set without shape 

properties has 376 observations, whereas the one with shape properties has 135 observations. In 

this application, each of those quantitative aggregate index properties to be studied is first 

grouped into different categories according to the magnitudes of their values. ANOVA then 

compares the means of the response variables, i.e., three k parameters here, for those newly-

created categories. A predetermined level of significance, denoted as α, is compared against the 

resultant level of significance of the categories, namely the p value, through which a statistical 

difference between the mean values of those categories can be identified as significant or not. 

The null and alternative hypotheses used for ANOVA in this case are expressed as follows: 

H0:  1 2 n     ;  

Ha:  At least one of the category means differs from the rest; 
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where i  is the mean value for the ith category of each aggregate index property. If the resultant 

p value is less than the α value (usually 0.05), then conclude Ha, indicating the aggregate index 

property analyzed is important for the response variable; otherwise, this property is considered 

insignificant. 

In addition to the ANOVA analysis, scatter plots matrix and Pearson’s correlation 

coefficients matrix are also powerful alternatives to identify important predictor variables for MR 

prediction models/equations. The principles of using scatter plots and Pearson’s correlation 

coefficients for preliminary diagnostics for nonlinear relationships and strong interactions among 

those basic parameters are as follows: (1) predictor variables that are highly correlated, as 

indicated by the high R values (usually above 0.8) in Pearson’s correlation matrix, are not 

combined due to strong multi-collinearity; (2) predictor variables that have the highest R values 

with dependent variables are selected first; and (3) it is desirable to select such predictor 

variables that are highly correlated with the dependent variable and, meanwhile, are less inter-

correlated with other predictor variables.  

4.3.3 First-order Model 

As no obvious nonlinear trends were observed in the scatter plots, a tentative first-order 

multiple linear regression model was examined first. All of the candidate variables were included 

in the model development. Due to the large number of predictor variables and their inter-

correlated nature, it was necessary to use different model selection criteria to select the most 

significant variables and thereby reduce the number of variables.  In this process, a list of models 

was first obtained using RSQUARE selection criteria available in SAS. The RSQUARE criterion 

ranks the subsets of candidate variables according to the coefficient of multiple determination R2, 

with a higher value of R2 indicating a better model. Besides R2, other indicators, such as adjusted 
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R2, Mallow’s Cp, PRESS (Prediction sum of squares) and VIF (Variance Inflation Factor) were 

also examined while selecting a model. Since ordinary R2 value always increases as more 

predictor variables are added to the regression model regardless of their relative significances to 

the response variable; the adjusted R2 takes into account the number of parameters in the 

regression model through the degrees of freedom and thus can indeed decrease as the number of 

parameters increases. Therefore, a model which produces least predictor variables, highest 

adjusted R2, smallest Cp value near the total number of parameters, smallest PRESS value, and 

VIF value much less than 10, besides having highest R2 value, was selected. The final selected 

models for three response variables (i.e., K1, K2, and K3 as in Equation 4.1), as shown in Table 

4.1 through Table 4.3, were generated by the stepwise regression method. Note that logarithmic 

transformation is demonstrated to be effective for K1. 

It can be seen from Table 4.1 through Table 4.3 that the VIF values for all regression 

coefficients are much less than the critical value of 10. As a rule of thumb, a maximum VIF 

value in excess of 10 is frequently indicative of serious multi-collinearity problems, whereas a 

VIF value close to 1 is taken as an indication that the predictor variable of interest is not linearly 

related to others. Therefore, it appears that multi-collinearity is not a serious issue in this case. 

The p values of all regression coefficients are much less than the significance level of 0.05 

(reject null hypothesis), indicating all predictor variables included are statistically significant, 

though the adjusted R2 values for three models are relatively low. The reason may be that all the 

aggregate samples studied came from different sources and locations and were tested for MR in 

different laboratories by different personnel, which may amplify the measurement variance and 

obscure the real statistical regression correlations. The magnitudes of standard errors of 

estimated regression coefficients are also reasonably low. 
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To better test the significance of one regression model and/or the significance of some 

specific regression coefficients, the corresponding hypothesis tests are conducted for the general 

multiple linear regression model as follows:    

p-1

0 i i i

i=1

Y=β + β X +ε : 

The overall F test of whether or not there is a regression relation between the response 

variable Y and the set of X variables: 

 

0 1 2 p-1

a k

H :β =β =…=β =0

H : not all β k=1,…,p-1 equal zero
 

The partial F test of whether a particular regression coefficient βk  equals zero:
0 k

a k

H : β =0

H : β 0
  

If the p-value of the corresponding hypothesis test is greater than the predetermined α 

value (e.g., 0.05), then the null hypothesis H0 is concluded; otherwise, the alternative hypothesis 

Ha is concluded. It is clearly listed in Table 4.1 through Table 4.3 that, not only all the three 

multiple linear regression models are significant because of the small p values (<0.0001), but all 

the individual predictor variables are also significant in the corresponding models as indicated by 

the individual p values, which are much less than the predetermined level of significance (i.e., 

α=0.05).  
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Table 4.1 Summary of Multiple Linear Regression (MLR) Analysis Results for Identifying 

Properties Used to Predict logK1 of MR Constitutive Equation 

Model 

Parameters 

Case 1 (376 observations) Case 2 (115 observations) 

Parameter 

Estimate 

Pr>|t| VIF 

Parameter 

Estimate 

Pr>|t| VIF 

Intercept 1.379 <.0001 0 4.323 <.0001 0 

ωopt -0.041 <.0001 1.51 -0.026 0.0031 1.74 

γd -0.005 0.0044 1.86    

ω/ωopt -0.294 <.0001 1.12 -0.555 <.0001 1.63 

FSAND 0.001 0.0441 1.85    

FE_Ratio    -0.052 <.0001 2.49 

ST    -0.060 <.0001 1.68 

P1"    -0.025 0.0001 1.33 

P#100    -0.064 <.0001 3.71 

R2 0.14 0.58 

Adj. R2 0.13 0.56 

Root MSE 0.16 0.12 

Pr>F <.0001 (F=15.09) <.0001 (F=25.36) 
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Table 4.2 Summary of MLR Analysis Results for Identifying Properties Used to Predict K2 

Parameter of MR Constitutive Equation 

Model 

Parameters 

Case 1 (376 observations) Case 2 (115 observations) 

Parameter 

Estimate 

Pr>|t| VIF 

Parameter 

Estimate 

Pr>|t| VIF 

Intercept 1.606 <.0001 0 1.785 <.0001 0 

ω -0.012 0.0311 1.25    

γd 0.006 0.0021 2.27    

(γdmax)
2/P#40 -0.0002 <.0001 1.86 -0.001 <.0001 6.09 

Cu -0.004 <.0001 3.97    

Cc -0.427 0.0102 5.71    

P3/4" -0.011 <.0001 2.39    

AI    -0.001 0.0297 4.35 

P#200/logCu    -0.073 <.0001 4.40 

GRAVEL    0.008 <.0001 5.42 

R2 0.32 0.50 

Adj. R2 0.31 0.48 

Root MSE 0.16 0.12 

Pr>F <.0001 (F=28.64) <.0001 (F=27.29) 
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Table 4.3 Summary of MLR Analysis Results for Identifying Properties Used to Predict K3 

Parameter of MR Constitutive Equation 

Model 

Parameters 

Case 1 (376 observations) Case 2 (115 observations) 

Parameter 

Estimate 

Pr>|t| 

Variance 

Inflation 

Parameter 

Estimate 

Pr>|t| 

Variance 

Inflation 

Intercept -9.867 <.0001 0 -8.602 0.0002 0 

ω/ωopt    0.528 0.0314 1.45 

(γdmax)
2/P#40 0.001 <.0001 4.46 0.001 <.0001 1.63 

Cu 0.007 <.0001 3.25    

P2" 0.067 0.0023 1.52    

P1.5"    0.131 <.0001 2.20 

P1"    -0.062 0.0015 1.71 

P3/4" 0.015 0.0604 3.33    

P#40 0.009 0.0001 4.59    

R2 0.394 0.53 

Adj. R2 0.386 0.52 

Root MSE 0.42 0.32 

Pr>F <.0001 (F=48.12) <.0001 (F=31.34) 

 

4.3.4 Examine and Test for Normality and Constant Variance 

Several graphic diagnostics were executed for examining whether the model assumptions 

have been violated: 1) linearity of regression functions, 2) constant error variance; and 3) 

normality of error terms (Xiao and Tutumluer, 2012). From a residual plot against the predicted 

values, whether a linear regression function is appropriate for the data being analyzed can be 
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studied. Both the Residual and Studentized Residual (RStudent) plots against predicted values 

for K1 show that the residuals approximately fall within a horizontal band centered around 0 with 

some outlying observations; therefore, no systematic tendencies towards positive and negative 

are displayed indicating a linear regression model is somewhat appropriate. The plots of Residual 

by regressors also reveal that no clear increasing or decreasing tendencies between residual and 

regressors exist, thus the non-constancy of error variance is not an issue in this case. The 

normality of error terms can be roughly studied from the histogram of residuals, namely Percent 

against Residual and the plot of Residual against Quantile. The facts that the histogram is more 

or less close to the normal distribution, and that the plot of Residual against Quantile almost falls 

on a straight line support the assumption of normality of error terms. The diagnostics analysis for 

model parameters K2 and K3 are similar to that for K1. It is concluded that all the inherent 

statistical assumptions embedded in the multiple linear regression analyses are satisfied here. 

4.3.5 Model Validation Using 15% Data 

To validate regression models developed with shape properties, the following data sets 

were used, i.e., 20 randomly-selected cases (around 15%) out of the 135 model-building cases. 

The validation results in terms of MSPR values for the remaining 20 cases are presented in Table 

4.4 below. As listed, the MSE and MSPR values are very close for these three regression models, 

which is indicative of the satisfactory model prediction ability. Furthermore, the measured values 

versus the predicted values for three K parameters are plotted in Figures 5.1 to 5.3. Accordingly, 

the developed models would have fairly good prediction abilities when used in the MEPDG level 

2 or level 3 design analyses as long as no extrapolations were made during the use of these 

regression models. 
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Table 4.4 Comparisons between MSPR and MSE Values for the Three k Parameters 

Validation 

Dataset 

Dependent Variables MSE MSPR 

20 cases from MnDOT 

(with Shape Properties) 

K1 0.01479 0.013205 

K2 0.01530 0.017817 

K3 0.10537 0.10791 

 

 

 

Figure 4.4 Measured vs. Predicted Values for logK1 
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Figure 4.5 Measured vs. Predicted Values for K2 

 
 

 

Figure 4.6 Measured vs. Predicted Values for K3 
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4.3.6 Final Model Development with Combined Data Sets 

As the regression models developed using the model-building data set (85% random 

observations) have been validated using the cross validation data set, it is then customary 

practice to re-develop the models by combining both the model-building and validation data sets 

as one single data set. The rebuilt regression models using the combined data set are presented in 

Equation 4.3. The residuals of model K1 pass all the tests for normality; however, the residuals of 

model K2 and K3 both fail to pass some of the tests for normality (Xiao and Tutumluer, 2012). 

The histograms of all the residuals are approximately close to normal distribution. Failing some 

of the tests for normality would not seriously violate the normality assumption of error terms; 

indeed, it still indicates that the residuals still approximate normal distribution to a reasonable 

extent. It is noteworthy that the regression models rebuilt from the combined data set should be 

used for MR prediction in further analysis. The subsequent sensitivity analysis is also based on 

the rebuilt regression models. The developed regression models with shape indices for K 

parameters are given by Equation 4.3 as follows: 
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The validation results in terms of MSPR values for the remaining 15% data indicated that 

the MSE and MSPR values are very close for these three regression models, which is indicative 

of the satisfactory predictive capability of these models. Therefore, the developed models are 

believed to have fairly good predictive capabilities to be used in MEPDG level 2 or level 3 

design analysis, as long as no extrapolations are made during the use of those regression models. 

Not only are all the three multiple linear regression models significant because of the small p 

values (<0.0001), but all the individual predictor variables are also significant in the 

corresponding models, as indicated by the individual p values which are much less than the 

predetermined level of significance (i.e., α=0.05). The variance inflation factor (VIF) value for 

each individual predictor variable is less than the critical value of 10. According to the rule of 

thumb, it appears that multi-collinearity is not a serious issue in this case. The magnitudes of 

standard errors of estimated regression coefficients are also reasonably low. No serious 

violations of the linearity, constancy and normality assumptions have been found in these three 

regression models developed with shape properties. 

4.4 Monte Carlo Simulation of Resilient Modulus 

To investigate sensitivities of resilient moduli of aggregate base/granular subbase 

materials to various input parameters (i.e., aggregate source properties) and their inherent 

variability, advanced risk modeling by Monte Carlo type simulation was performed via @RISK. 

The Monte Carlo type simulation models each input parameter as a stochastic variable with a 

distribution function assigned such that the distribution of the output values can be predicted. As 

contrary to conventional local sensitivity analysis techniques that change one variable at a time 

while keeping others at the reference levels, it is capable of varying all the variables 

simultaneously, which is advantageous to examine the global sensitivity. 
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4.4.1 Development of MR Predictive Model 

After the developed regression models for Case 2 (with aggregate shape indices) were 

validated using the cross-validation dataset, basic procedures of a customary practice were 

followed to re-develop the models by combining both the model-building and validation datasets 

as one single model development dataset. The resultant regression models for the K parameters 

were then entered into the MEPDG MR constitutive model (see Equation 4.1), leading to the 

following analytical model that expresses MR as a function of the applied stress states and 

aggregate source properties.  To calculate MR values, the stress terms included in the model 

given below, i.e., bulk stress θ and octahedral shear stress τoct, must be specified. Based on the 

MnPAVE program default layer modulus inputs and the 18-kip dual-tire axle loads (ESALs) 

applied, Table 4.5 lists the representative stress levels calculated in MnDOT aggregate base, 

granular subbase, and subgrade layers, respectively. 
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Table 4.5 Representative Stress Levels in Typical MnDOT Pavement Layers 

MnDOT 

Layer Material 

Layer Thickness 

Representative 

Stress Levels 

MnPAVE Fall 

Design Moduli 

in. cm psi kPa ksi MPa 

HMA: PG 58-34 6 15.2 - - - - 

Aggregate Base: Class 6 6 15.2 

σ1=9.0 

σ3=1.0 

σ1=62.1 

σ3=6.9 

24 164 

Granular Subbase: 

Select Granular 

18 45.7 

σ1=5.0 

σ3=1.0 

σ1=34.5 

σ3=6.9 

11.7 81 

Subgrade: Engineered Soil 12 30.5 

σ1=4.5 

σ3=1.0 

σ1=31.0 

σ3=6.9 

- - 

 

4.4.2 Simulation Results 

The Monte Carlo simulation was performed which allows for the analysis to be 

performed in Excel spreadsheets. The Latin Hypercube sampling and 100,000 iterations were 

adopted. The Monte Carlo simulation properly captured the distribution function for each input 

parameter. The initial distributions assigned to each of the input parameters, as detailed in Table 

4.6, were fitted from the databases collected. Summary statistics for the resulting distribution of 

calculated MR are presented in Table 4.7. As shown in Table 4.7, the MnPAVE fall-season 

design moduli listed in Table 4.5 for aggregate base and granular subbase have the reliability of 

at least 95% and 85% in the specified pavement structure, respectively. The mean MR values 

under both typical base and subbase stress levels are above the minimum MnPAVE requirement 

of 5 ksi, and the listed statistics are also within reasonable limits. 
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Table 4.6 Input Parameters and Distributions 

Input Parameters Mean Std. Dev. Min. Max. Distribution 

ωopt (%) 8.7 1.8 6.2 12.2 Log-logistic 

ω/ωopt 0.83 0.16 0.33 1.21 Weibull 

γd (pcf) 128 5 119 141 Beta general 

γdmax (pcf) 128 6 122 140 Log-logistic 

(γdmax)
2/P#40 897 311 404 1573 Log-logistic 

P2" (%) 99.4 1.6 95 100 Weibull 

P1" (%) 98.7 2.2 91 100 Weibull 

P#10 (%) 48.6 20.0 17 71 Beta general 

P#200 (%) 6.3 2.4 2.9 12.4 Johnson SB 

Cc 0.56 0.11 0.36 0.70 Johnson SB 

P#200/logCu 4.97 1.51 3.48 8.35 Beta general 

FE_Ratio 4.1 2.4 1.8 10.6 Johnson SB 

AI 425 61 307 499 Inverse Gauss 

ST 2.5 2.3 0.6 1.6 Pareto 

Note: Min. =Minimum, Max.=Maximum, and Std. Dev.=Standard Deviation.  
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Table 4.7 Monte Carlo Simulation Results for MR (Unit: ksi) 

Statistics MR at Base Stress Level MR at Subbase Stress Level 

Minimum 0 0 

Maximum 898.8* 4225.3* 

Mean 7.8 8.1 

Std Dev 6.0 19.2 

Median 6.9 6.1 

95% Percentile 15.6 18.5 

75% Percentile 9.4 9.3 

25% Percentile 5.0 4.0 

MnPAVE MR reliability >95% 85% 

Note: * Unreliable extreme outliers; 1 ksi=6.9 MPa. 

 

Figure 4.7 shows the sensitivity charts for aggregate base and granular subbase MR from 

which the relative influences of aggregate source properties on MR can be compared. At the 

representative aggregate base stress levels, the term 
2

max 40/ P  positively affects MR the most, 

while the moisture content ratio and the optimum moisture content are the primary negative 

factors. The same trends are also observed at granular subbase stress levels. As one would expect, 

larger F&E ratio and less angularity result in lower MR levels. However, the MR is found to 

increase with increased percent passing No.200 sieve (fines). The reason for that is probably the 

maximum percent fines found around 12% in the database; i.e., the coarse aggregate particle 

contact is not seriously severed by excessive fines. In general, the sensitivities of MR to 

aggregate source properties are in accordance with expectations, indicating that the developed 

correlations are reasonable. 
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(a) 

 

(b) 

Figure 4.7 Sensitivity Charts for MR: (a) Stress Levels in Aggregate Base and (b) Stress Levels 

in Granular Subbase 
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4.5 Reliability-Based Evaluation of Aggregate Source Properties Affecting 

Resilient Modulus Behavior 

4.5.1 Limit State Function Used 

The failure mode of this problem is defined as when the measured resilient modulus is 

below the designed value of resilient modulus. Therefore, the limit state function is expressed as 

follows: 

_( ) R R designg M M X                                                        (4.5) 

    A typical conventional pavement structure used in Minnesota was selected to calculate 

the representative stress levels in aggregate base layer. The stress results were tabulated in Table 

4.8, as well the standard design modulus specified by Minnesota Department of Transportation 

for Class 6 aggregate base materials. The resilient modulus constitutive equation used in this 

study is the model just developed and presented previously. The reason to use this model is that 

the database for this model was generated from real laboratory tests done on aggregate materials 

collected from different construction projects through Minnesota. This model also included all 

significant variables affecting resilient modulus behavior. Table 4.9 gives the abbreviations of 

variables used in this study. 

Table 4.8 Representative Stress Level and Design Modulus for Aggregate Base Layer in a 

Typical Conventional Pavement Structure 

Layer Material Layer Thickness 

Representative 

Stress Levels 

Design Modulus 

Units (in.) (psi) (ksi) 

Aggregate Base: Class 6 6 

σ1=9.0 

σ3=1.0 

24 
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Table 4.9 Abbreviations and Brief Descriptions of Significant Variables Influencing Resilient 

Modulus Behavior 

Abbreviation Brief description 

 FE ratio  Flat and Enlongated ratio 

ST  Surface Texture index 

opt  Optimum Moisture Content 

/ opt   Moisture content ratio 

2

max 40/ P  Complex maximum dry density 

cC  Coefficient of Curvature 

d  Achieved dry density 

10P  Percent passing #10 (2mm) size sieve 

200P  Percent passing #200 (0.075mm) size sieve 

AI  Angularity Index 

200 / log uP C  Complex percent fines 

 

    It is worth mentioning that the effects of variables P1’’ and P2’’ (percent passing 1” and 

2” sieves, respectively) were not included because most of the samples do not have sizes larger 

than 1’’ in diameter and the values of these two variables in most of the observed datasets thus 

remained constant (100 percent passing). Gradation was quantified by parameters P#10, P#200, Cc, 

and P#200/logCu. Moisture and density were quantified by parameters
2

max 40/ P , d , opt , and

/ opt  . Aggregate particle shape or morphology was quantified as Flat and Elongated (F&E) 

ratio, Angularity Index (AI), and Surface Texture (ST) index measured by the University of 

Illinois Aggregate Image Analyzer (UIAIA).  
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4.5.2 Variables and Distributions 

Totally 135 MR observations from MnDOT database supplemented with aggregate shape 

properties measured from 9 MnDOT samples via University of Illinois Aggregate Image 

Analyzer (UIAIA) were employed in this study. The initial distribution assigned to each of the 

random variables, as detailed in Table 4.10, were obtained by distribution fitting tool in 

MATLAB® from the databases collected. Corresponding distribution parameters were also 

calculated and presented in Table 4.10. The correlation matrix, as shown in Table 4.11, was 

established from the 135 datasets and adjusted according to definitions and characteristics of 

variables wherever necessary. Reasonable Assumptions were reasonably made for shape 

properties (FE ratio, ST and AI) that they are not correlated to other variables except density 

(
2

max 40/ P and d ), and that FE ratio is not correlated to AI or ST. 

Table 4.10 Basic Statistics of Aggregate Source Properties Used 

Property Variable Distribution Mean Standard Deviation 

 FE ratio  X1 Lognormal 4.110 2.446 

ST  X2 Exponential 2.504 2.300 

opt  X3 Gumbel 8.653 1.761 

/ opt   X4 Weibull 0.828 0.156 

2

max 40/ P  X5 Weibull 898.897 309.842 

cC  X6 Uniform 0.529 0.097 

d  X7 Lognormal 128.390 4.880 

10P  X8 Uniform 44.000 15.820 

200P  X9 Lognormal 6.351 2.689 

AI  X10 Normal 424.809 60.895 

200 / log uP C  X11 Lognormal 4.958 1.386 
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Table 4.11 Correlation Coefficients of Variables 

 
 FE ratio  ST  opt  / opt   2

max 40/ P  
cC  d  10P  200P  AI  200 / log uP C  

 FE ratio  1 0 0 0 -0.3 0 -0.1 0 0 0 0 

ST  

 

1 0 0 0.1 0 0.2 0 0 0.5 0 

opt  

  

1 -0.3 -0.3 0.5 -0.4 0.5 0 0 0.3 

/ opt   

   

1 0 0 0 0 0 0 -0.1 

2

max 40/ P  

    

1 -0.5 0.5 -0.5 0 0.4 -0.4 

cC  
     

1 -0.5 0.5 -0.2 0 0.4 

d  
  

Symmetric 

  

1 -0.4 0 0.4 -0.4 

10P  
       

1 0 0 0.4 

200P  
        

1 0 0.5 

AI  
         

1 0 

200 / log uP C  

          

1 

 

4.5.3 First-Order Reliability Method (FORM) Analysis 

Statistical analysis was performed using a First Order Reliability Method (FORM). The 

FORM algorithm approximates the integral of the joint probability distribution function of the 

basic variables X over the portion of the sample space that corresponds to failure of a component 

(Madsen et al., 1986). The function which defines this region is the limit-state function, (g(X) = 

0). FORM uses an one-to-one transformation of the random variables into a standardized normal 

space as shown below: 
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1 2 1 2( , ,..., ) ( , ,..., )n nX X X X U U U U                                    (4.6) 

where 1 2, ,..., nU U U  are uncorrelated random variables with standard normal distributions. Next, 

the limit-state surface in the X-space is mapped on the corresponding limit-state surface in the U-

space. The probability content of the failure set in the U-space is obtained by a search for the 

minimum distance   (also called the reliability index) from the origin to a point u* on the 

failure space (see Figure 4.8). The point u* is also known as the design point, or the most likely 

failure point. While various software/programs are available to perform these calculations, the 

FERUM program developed by Haukaas and Kiureghian (1999) at the University of California, 

Berkeley is used in this study. 

 

Figure 4.8 FORM Approximations (Haukaas and Kiureghian, 1999) 

 

Table 4.12 and Figure 4.9 show the calculated importance vector from FERUM. Negative 

sign of Importance Vector   means that the variable in the original space is capacity type and as 

the increase of the value of this variable, resilient modulus will increase. Positive sign of 

Importance Vector γ means that the variable in the original space is demand type and as the 

increase of the value of this variable, resilient modulus will decrease. 200 / log uP C , AI , 200P , 10P , 
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d  , cC , and 
2

max 40/ P  were found to be capacity type and / opt  , opt ,  ST , and FE Ratio

were found to be demand type. 

Table 4.12 Importance Vector of Variables Obtained from FERUM Program 

Source Properties Importance Vector   

 FE ratio  0.0689 

ST  0.292 

opt  0.1954 

/ opt   0.4277 

2

max 40/ P  -0.5771 

cC  -0.5463 

d  -0.0122 

10P  -0.145 

200P  -0.058 

AI  -0.0999 

200 / log uP C  -0.1514 

 

 

Figure 4.9 Relative Contributions of Various Variables to Resilient Modulus (MR) 
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4.5.4 Sensitivity of Variables to the Reliability Index 

The relative contribution of each variable can be examined by comparing the magnitude 

of
2 . Figure 4.10 shows that 

2

max 40/ P  has the most important contribution to resilient modulus 

behavior, followed by cC , / opt  , ST , opt , 200 / log uP C  ,and 10P . The contributions of

FE Ratio , d , 200P , and AI  were found to be insignificant as compared to others.  

A sensitivity analysis was used to quantify the effect of the variability of the parameters 

of those different random variables included in the analysis. This was done by taking the partial 

derivative of the reliability index  , with respect to the parameters considered. The results as 

summarized in Table 4.13 showed that the resilient modulus behavior is most sensitive to the 

variability in cC  and / opt  . 

 

Figure 4.10 The Relative Contribution of Each Variable to Resilient Modulus (MR) 
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Table 4.13 Sensitivity of Variables Studied with the Reliability Index 

Variable Sensitivity with respect to Mean 

Sensitivity with respect to Standard 

Deviation 

 FE ratio  -0.063 0.038 

ST  -0.277 0.160 

opt  -0.144 -0.030 

/ opt   -3.261 3.095 

2

max 40/ P  0.002 0.001 

cC  6.636 5.376 

d  0.003 0 

10P  0.009 0.003 

200P  0.034 -0.010 

AI  0.002 0.001 

200 / log uP C  0.141 0.031 
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4.6 Mechanistic-Empirical Evaluation of Aggregate Quality Affecting 

Flexible Pavement Performance 

The main objective of this section was to investigate effects of unbound aggregate layer 

characteristics (i.e., material quality affecting modulus input and layer thickness) on 

conventional flexible pavement performances predicted from a layer elastic program, MnPAVE. 

It is expected that the findings will help verify the current understanding of pavement 

performance and assist design engineers in selecting better and more appropriate strategies 

including the optimized use of locally available aggregate materials in pavements in order to 

achieve cost-effective and satisfactory pavement performance. 

A comprehensive mechanistic analysis matrix was carefully designed with various 

scenarios considering pavement structure and climatic effects. Two mechanistic aggregate inputs, 

i.e., resilient modulus and peak deviator stress at failure, were used to uniquely characterize the 

approximately 376 different Minnesota aggregates considered for quality ranges in the sensitivity 

analyses. The MEPDG stress-dependent MR models were used to identify k1-k2-k3 model 

parameters associated with high, medium and low MR levels of representative aggregate 

materials, i.e., MnDOT Class 5 and 6 materials for aggregate base and Class 3 and 4 materials 

for granular subbase from MnDOT laboratory-tested MR database. Using the MEPDG stress 

dependent models, the GT-PAVE nonlinear finite element (FE) program predicted modulus 

distributions in the base and subbase layers. Averaging the moduli along the load axis throughout 

each layer depth established equivalent single MR values in base and subbase for subsequent 

input into MnPAVE program so that fatigue and rutting life expectancies could be studied. 
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4.6.1 Representative Aggregate Quality Levels 

According to the literature review, classifying unbound aggregates into different quality 

levels by mechanistic means requires the simultaneous examination of resilient modulus and 

permanent deformation behavior; the second linked to shear strength properties. Provided that 

the MEPDG MR model is selected to characterize the nonlinear stress-dependent behavior of 

unbound aggregate materials, the corresponding MR model parameters k1-k2-k3 then can be 

assigned based on material quality. If one combination of parameters k1-k2-k3 results in the 

greatest calculated MR value for any predetermined stress level, then the aggregate material from 

which this combination was determined would most probably have the highest quality level in 

terms of resilient behavior; however, in order to avoid potential exceptions, permanent 

deformation behavior and shear strength properties should also be checked to confirm these 

levels identified according to MR values. As compared to the cohesion “c” and friction angle “ϕ” 

which may not be consistent when individually compared, the peak deviator stresses at failure 

can be used to consistently compare shear strength characteristics of different aggregate samples. 

Note that the three representative aggregate materials with high, medium, and low modulus 

results were selected from a pool of 124 Class 5 and 6 aggregate base materials and 64 Class 3 

and 4 granular subbase materials. As illustrated in Figure 4.11(a) and (b), two typical stress 

levels were chosen associated with field unbound aggregate base and granular subbase 

conditions, respectively, and the averaged MR values are also shown for each stress level.  

The selected MR model parameters k1-k2-k3 for the three modulus/quality levels are listed 

in Table 4.14 for the MEPDG and Uzan (1985) characterization models. The particle size 

distributions of those selected aggregate materials and the MnDOT gradation specifications for 

different material classes are shown in Figure 4.12.  Note that similar aggregate gradations 

shown in Figure 4.12 may have in fact significant differences in mechanical properties as 
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depicted from Table 4.14. Further, the peak deviator stresses at failure for those selected 

unbound base and subbase materials, also listed in Table 4.14, confirm the representative quality 

levels assigned from resilient moduli. In other words, higher peak deviator stresses at failure are 

associated with higher calculated MR values to adequately represent high, medium, and low 

quality levels. 
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Figure 4.11 Computed Resilient Moduli for Different Unbound (a) Aggregate Base and (b) 

Granular Subbase Materials (1 psi = 6.89 kPa) 
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Table 4.14 Characterization of Representative Aggregate Base and Granular Subbase Materials 

Material Properties 

Quality Level 

Aggregate Base Granular Subbase 

High Medium Low High Medium Low 

MEPDG 

Model 

Parameters* 

K1 4.716 1.817 0.620 3.195 1.621 0.724 

K2 1.042 0.924 1.022 0.711 0.624 0.795 

K3 -1.855 -0.959 -0.895 -1.226 -0.593 -0.289 

R2 0.740 0.830 0.972 0.606 0.943 0.993 

Uzan Model 

Parameters** 

K4 (psi) 8360.71 4537.26 1259.31 12526.46 6898.65 1707.14 

K5 1.223 0.943 1.022 0.778 0.628 0.782 

K6 -0.846 -0.455 -0.432 -0.535 -0.271 -0.140 

R2 0.76 0.89 0.93 0.72 0.91 0.99 

Peak Deviator Stress (psi) 

@ 4-psi Confining 

Pressure 

115 81 56 61 47 37 

Achieved Dry Density 

(pcf) 

135.3 130.2 130.6 119.3 125.4 129.0 

Max. Dry Density*** 

(pcf) 

133.0 127.4 131.1 124.3 126.2 127.7 

Notes: *MEPDG Model: 

2 3

1 1

K K

oct
R a

a a

M K P
P P

   
    

   
;  

            ** Uzan Model: 
5 6

4

0 0

K K

d
RM K

P P

   
    

     

            *** AASHTO T180;    (1 psi = 6.89 kPa, 1 pcf = 0.157 kN/m3) 
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Figure 4.12 Gradations of Representative Aggregate Base and Granular Subbase Materials 

 

4.6.2 Sensitivity Analysis Matrix 

To better evaluate the effects of various design features and site factors on predicted 

pavement performance, a full factorial sensitivity matrix was designed for MnPAVE analysis 

and design. The variables considered in the full factorial are listed in Table 4.15. Since the 

environmental conditions may have a significant effect on the performance of conventional 

flexible pavements, two representative climate zones in Minnesota, i.e., Beltrami County in north 

and Olmsted County in south, were selected. Different pavement sections were also analyzed to 

represent a wide spectrum of structural designs. Since the main goal was to investigate effects of 

unbound aggregate quality and layer thicknesses on pavement performance, the unrealistic 

pavement design alternatives, which might be found in the developed sensitivity analysis matrix, 

were not specifically excluded from the mechanistic analyses. Both aggregate base and granular 

subbase layers were modeled as nonlinear isotropic materials using the MEPDG resilient 
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modulus models. The asphalt concrete surface layer using PG58-34 binder and the subgrade, 

however, were simplified as linear elastic materials. It is worth noting that the elastic modulus of 

asphalt concrete layer was taken from the default value in MnPAVE program; and that the elastic 

modulus of natural subgrade was taken as 50 percent of that of engineered subgrade. A total 

number of 2,592 pavement section combinations were analyzed. 

Table 4.15 Input Values for All the Variables Used in the Sensitivity Analysis 

Input Category Input Variables 

Number of 

Variables 

Climate Zones Beltrami and Olmsted 2 

Design Traffic Volume 

(20-year ESALs in 

Millions) 

0.2, 0.6, 1.5, 3, and 6 5 

Asphalt Concrete (AC) 

Layer 

Type of Asphalt Binder PG58-34 1 

Layer Thickness (in.) 4, 6, and 8 3 

Aggregate Base Layer 

Quality Levels 

Low, Medium, and High 

quality Class 5/6 

3 

Layer Thickness (in.) 3, 6, 9, and 12 4 

Granular Subbase Layer 

Quality Levels 

Low, Medium, and High 

quality Class 3/4 

3 

Layer Thickness (in.) 6, 12, and 18 3 

Engineered Subgrade 

Layer 

Elastic Modulus (ksi) 2, 4, 7, and 10 4 

Layer Thickness (in.) 12, and 36 2 

Notes: 1 ksi = 6.89 MPa; 1 in. = 25.4 mm. 
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4.6.3 GT-PAVE Structural Finite Element Modeling 

The Uzan base/subbase models were employed in GT-PAVE finite element (FE) program 

(described in Chapter 2) for the characterization of the unbound aggregate base and granular 

subbase layers. The GT-PAVE FE mesh designed consisted of 780 isoparametric eight-node 

quadrilateral elements used to analyze each pavement section consistently with the same mesh in 

the sensitivity matrix. The FE mesh used and the typical distributions of predicted stress 

dependent moduli in both aggregate base and granular subbase layers are illustrated in Figure 

4.13(a) for one pavement section studied out of 2,592 analyses. 

The single wheel load of 9 kip (40 kN) was applied as a uniform pressure of 80 psi (552 

kPa) over a circular area of radius 6 in. (152 mm). The Poisson’s ratios for asphalt concrete, 

unbound aggregate base/granular subbase, and engineered/natural subgrade were taken as 0.3, 

0.4, and 0.45, respectively. The MnPAVE default elastic modulus of 490 ksi (3,380 MPa) in the 

Fall season was used for the PG58-34 asphalt concrete. The equivalent single MR values for the 

aggregate base/granular subbase to be used in subsequent linear elastic MnPAVE analyses were 

obtained by averaging moduli throughout each layer depth from the elements located at the load 

axis. The results of such equivalent MR values linked to high, medium and low aggregate quality 

levels are presented in Figure 4.14. Note that the equivalent MR value associated with each 

quality level was averaged from all the pavement sections studied in the sensitivity matrix. It is 

worth noting that in some cases the granular subbase material had much larger moduli than the 

aggregate base (see Figure 4.14). 
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(b) 

Figure 4.13 Illustrations of GT-PAVE (Not to Scale): (a) Finite Element Mesh of Pavement 

Structure, and (b) Predicted Modulus Distributions in the Base and Subbase 
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Figure 4.14 Equivalent MR Values Linked to Aggregate Quality for (a) 4-in., (b) 6-in., (c) 8-in. 

Asphalt Surface Thicknesses, and (d) Current Default MnPAVE Fall Design Moduli 

 

The nonlinear FE program GT-PAVE predictions were a key step for establishing the 

single equivalent MR values for the high (H), Medium (M) and low (L) modulus levels of 

aggregate base and granular subbase as shown in Figure 4.14. Those equivalent MR values, 

assumed to closely represent the related H, M, and L material quality standards, were 

subsequently input during MnPAVE analyses to calculate fatigue and rutting life expectancies. 

The MnPAVE program was run for all 51,840 combinations with each run generating an Excel 

spreadsheet file including the damage details. The major damage indicators are fatigue life, 
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rutting life, fatigue damage ratio, and rutting damage ratio, though other distress indicators 

including International Roughness Index (IRI), alligator cracks (% of length), and rutting >= 0.5 

in. (% of length) can also be predicted using empirical regression equations. In this section, 

pavement performance is mainly referred to rutting life and fatigue life, and the effects of various 

variables on rutting life and fatigue life were identified using the results from the cases studied. 

4.6.4 Effect of Aggregate Quality on Fatigue Life Performance 

Figure 4.15 shows pavement fatigue lives predicted according to the five design traffic 

levels studied for each base/subbase quality combinations in Beltrami and Olmsted Counties. 

The standard pavement structure consisted of 4-in. (102-mm) asphalt concrete surfacing over 12-

in. (305-mm) of base and 12-in. (305-mm) of subbase over a 12-in. (305-mm) engineered 

subgrade (E = 2 ksi or 14 MPa) considered in Beltrami and Olmsted Counties. For low traffic 

designs, less than 0.6 million equivalent single axle loads (ESALs), base and subbase quality is 

less important for achieving 20-year fatigue and rutting performance lives, even in the case of 4-

in. (102-mm) thick asphalt concrete surfacing (see Figure 4.15). For low-volume roads, using 

locally available and somewhat marginal materials may therefore be quite cost-effective. 

However, for traffic designs greater than 1.5 million ESALs, aggregate material quality becomes 

quite critical for the fatigue performance. 

With regard to the two climate zones studied, a move from Beltrami County in the north 

to Olmsted County in south Minnesota brings the following seasonal changes into pavement 

analysis and design: (i) lower winter temperatures, (ii) lower summer temperatures, and (iii) 

longer winter and shorter summer durations. The main effect of this change is expected to be on 

asphalt pavement surface temperatures and accordingly on fatigue performances, which was also 

supported by the similar results for the case of Olmsted County (see Figure 4.15b).  
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Figure 4.15 Fatigue Life Predictions For Different Base-Subbase Qualities: (a) Beltrami County, 

and (b) Olmsted County (M-L Stands for Medium Quality Base and Low Quality Subbase) 

 

The effect of unbound aggregate quality on pavement fatigue life prediction is further 

illustrated in Figure 6 for the case of Beltrami County. Figure 6 shows the percentages of 

pavement sections (y-axis) having service lives greater than a certain target performance life (x-

axis). Important conclusions can be drawn from Figure 6 in terms of overall fatigue life, using 

high (H) quality base and low (L) quality subbase material combinations does not make any 

significant difference from the use of low quality (L) base and high (H) quality subbase material 

combinations; however, a large decrease in fatigue life can be seen when the qualities of base 

and subbase materials both are changed from high (H) to low (L). Further, the quality of base 

layer has been found to directly impact fatigue life expectancy. With low quality materials used 
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in the base, increasing base layer thickness does not seem to improve fatigue life as there is not 

enough support under the asphalt concrete surfacing to minimize bending under wheel loading. 

 

Figure 4.16 Effects of Unbound Granular Material Quality on Fatigue Life for Beltrami County: 

(a) 0.6 Million ESALs, (b) 1.5 Million ESALs, and (c) 6 Million ESALs (H-L Stands for High 

Quality Base and Low Quality Subbase)  
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4.6.5 Effect of Aggregate Quality on Rutting Life Performance 

The effect of unbound aggregate quality on pavement rutting life prediction is illustrated 

in Figure 4.17 for both Beltrami and Olmsted Counties. The standard pavement structure again 

consisted of 4-in. (102-mm) asphalt concrete surfacing over 12-in. (305-mm) of base and 12-in. 

(305-mm) of subbase over a 12-in. (305-mm) engineered subgrade (E=2 ksi or 14 MPa) 

considered in Beltrami and Olmsted Counties. For this pavement structure with the thinnest 

asphalt concrete thickness (4 in. or 102 mm), pavement rutting life decreases as the quality 

standards of base and subbase layers decrease from the high (H) to low (L), indicating stiff 

granular layers are required to maintain structural integrity and protect subgrade. 

 

Figure 4.17 Rutting Life Predictions for Different Base-Subbase Qualities in (a) Beltrami and (b) 

Olmsted Counties (M-L Stands for Medium Quality Base and Low Quality Subbase)  
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It can be seen from Figure 4.18 that, if the aggregate base quality decreases from high (H) 

to low (L), its effect on rutting performance is almost negligible for any traffic designs from 0.6 

million to 6.0 million ESALs. Whereas, if a similar high (H) to low (L) quality drop is observed 

in the subbase, the rutting life is shortened more rapidly.  Such a difference in the subbase 

behavior has been proven to be statistically significant when all the sensitivity results were 

analyzed. Accordingly, a high quality, stiff subbase exhibits a bridging effect to better protect the 

subgrade and offset some of the detrimental effects of low base stiffness, and as a result, the 

quality of base materials becomes less important. Note that this is the same concept as utilized in 

the South-African “Inverted Pavement” designs, which often use a cement-stabilized subbase 

over soft soils to effectively protect the subgrade while providing a very stiff underlying layer for 

the base course above, which enables compaction of aggregate base materials in excess of 100% 

Proctor densities.   

The comparison between Beltrami and Olmsted County results revealed a less significant 

effect of climate on rutting performance, which might be attributed to a constant seasonal pore 

suction resistance factor of 1.0 used in these MnPAVE analyses. 

4.6.6 Statistical and Sensitivity Analyses 

The effects of different base and subbase material quality combinations on fatigue and 

rutting life predictions were statistically confirmed in the form of the notched box plots which 

compare two median values differing at the 95% confidence level and also from one-way 

Analysis of Variance (ANOVA). According to the statistical analysis results, the granular 

subbase material quality makes a significant difference/impact on both predicted fatigue and 

rutting lives even for low quality aggregate base; however, aggregate base quality is primarily 

related to pavement fatigue performance.  
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Figure 4.18 Effects of Unbound Granular Material Quality on Rutting Life for Beltrami County: 

(a) 0.6 Million ESALs, (b) 1.5 Million ESALs, and (c) 6 Million ESALs (H-L Stands for High 

Quality Base and Low Quality Subbase) 
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From the sensitivity analyses the following general observations can also be made. Both 

fatigue and rutting life performances improve as asphalt concrete (AC) thickness increases, with 

higher fatigue performance and less rutting performance improvements expected for AC 

thickness increasing from 6 in. to 8 in. (152 mm to 203 mm) than from 4 in. to 6 in. (102 mm to 

152 mm). Increasing aggregate base thickness may also result in longer fatigue life and 

significantly improved subgrade rutting life performance. For the same AC thickness, the rutting 

life performance increases considerably with increasing aggregate base thickness; and for the 

same AC and aggregate base thicknesses, the rutting life performance increases with increasing 

subgrade stiffness. Interestingly, increasing granular subbase thickness seems to significantly 

improve both rutting and fatigue performances. As compared to fatigue performance, rutting 

performance can benefit much more from an increase in granular subbase thickness. As expected, 

a stronger engineered subgrade contributes significantly to improved rutting performance. 

4.7 Summary 

This chapter presented the establishment of regression based correlations between 

aggregate source properties and aggregate MR data archived through modulus testing at the 

laboratories of MnDOT and University of Illinois for identifying mechanistic design moduli 

ranges of locally available materials in MEPDG Level 2 type pavement design applications. The 

effects of both stress sensitivity and seasonal variations were captured using the MEPDG MR 

model with three model parameters, i.e., k1, k2, and k3. Aggregate shape properties measured 

from the University of Illinois Aggregate Image Analyzer (UIAIA) and quantified through shape 

indices were also included in the study to improve developed correlations. The results showed a 

good correlation between aggregate shape properties and resilient modulus existed. Aggregates 

with high angularity index (AI) and surface texture (ST) properties were found to have greater 
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resilient moduli in comparison to aggregates with low AI and ST values (i.e., rounded particles 

with smooth surface texture). Interestingly, rounded aggregates exhibited a well-defined peak 

shear strength behavior, which could be influenced by their gradation properties and achieved 

specimen densities. The findings in this study also demonstrated that unbound aggregate resilient 

modulus properties should not be used alone to characterize aggregate base course performance 

mainly governed by rutting potential in the field. Laboratory permanent deformation tests should 

be conducted for evaluating rutting performances of unbound base/subbase courses. 

Monte Carlo type simulations and the FORM analysis were performed to assess the 

sensitivities of MR at given stress states to aggregate source properties. The detrimental effect of 

excessive moisture within pavement layers was also confirmed from the Monte Carlo simulation. 

The currently used aggregate base/granular subbase design moduli in MnPAVE Minnesota DOT 

mechanistic analysis and design program for the standard fall season were compared with the 

simulated MR distributions, and the design reliability of at least 85% was achieved for the 

selected conventional flexible pavement structure with aggregate base and granular subbase. 

FORM analysis was performed using FERUM program based on the developed model 

for estimating MR. The importance vector and the sensitivity of reliability index with respect to 

distribution parameters of different variables were investigated. It was concluded that the 

complex maximum dry density (
2

max 40/ P ), coefficient of curvature ( cC ), and relative moisture 

content ratio ( / opt  ) have the most important contributions to the resilient modulus behavior, 

and that the resilient modulus behavior is most sensitive to the variability in the distribution of 

coefficient of curvature ( cC ) and relative moisture content ratio ( / opt  ). Future work is needed 

to refine the distributions of those aggregate source property variables provided that more data 

are available; moreover, the significant negative correlations existing between several variables 
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caused problems when running FERUM program, leading to the slight modification of those 

correlation coefficients. This issue will also need to be looked into in more detail. 

A methodology used to investigate effects of unbound aggregate quality on conventional 

flexible pavement performance was also demonstrated. A comprehensive matrix of conventional 

flexible pavement layer thicknesses and mechanistic design moduli was carefully designed. The 

type and quality of unbound aggregate materials were represented by the resilient modulus (MR). 

Three representative sets of the MEPDG stress-dependent MR model parameters, k1, k2, and k3, 

were selected for the aggregate base and granular subbase layers from the MnDOT laboratory-

tested MR database. The nonlinear finite element (FE) program GT-PAVE was then used to 

determine the single equivalent MR values for the aggregate base and granular subbase by 

averaging layer moduli distributions computed for the elements in the nonlinear GT-PAVE FE 

analyses. Those equivalent MR values, assumed to closely represent the related H, M, and L 

material quality standards, were subsequently input during MnPAVE analyses to calculate 

fatigue and rutting life expectancies for the comprehensive matrix of pavement structures 

considered. 

For low-volume roads, using locally available and somewhat marginal materials may be 

quite cost-effective provided that the 20-year design traffic level would not exceed 1.5 million 

ESALs. For traffic designs greater than 1.5 million ESALs, aggregate material quality becomes 

quite critical for the fatigue and rutting performance. To consider structurally sound and cost-

effective design alternatives, base and subbase aggregate quality standards should be linked to 

mechanistic-empirical evaluation of satisfactory pavement performance. For example, a high 

quality, stiff granular subbase was found to exhibit a bridging effect that better protected the 

subgrade and offset some detrimental effects of low aggregate base stiffness on rutting 
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performance. As a result, the use of marginal quality locally available materials as aggregate 

base materials could be justified in some cases. The conclusions, which are subject to further 

validation using field performance data prior to implementation, pertain to aggregate base and 

granular subbase materials used in Minnesota and the local climatic conditions. 
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Chapter 5 Experimental Investigation of Aggregate Packing 

Affecting Shear Strength of Unbound Aggregates 
 

Establishing robust linkages between gradation and satisfactory unbound aggregate 

mechanical behavior is essential for the development of performance based gradation 

specifications. The analytical gradation measures can quantify the change in performance of a 

given aggregate material within specified gradation bands leading to optimized gradation zones 

for desirable mechanical and hydraulic performance based on site-specific traffic and 

environmental conditions, respectively.  This chapter presents an aggregate gradation mechanism 

based on the proportionality between gravel and sand size particles (as per ASTM D2487-11) to 

demonstrate how mechanical behavior, i.e., shear strength and resilient modulus (MR) 

characteristics, of aggregate base/granular subbase materials can be quantified and related to 

grain size distributions. A secondary goal is to also demonstrate that there is no unique 

relationship between modulus and shear strength properties as obtained from analyzing a 

comprehensive aggregate database established from a variety of sources in Minnesota, and 

further, the actual field rutting performance of an unbound aggregate base/granular subbase is 

primarily linked to the shear strength but not the modulus characteristics. 

5.1 Different Gradation Designs Studied in the MnDOT Aggregate Database 

The database provided by MnDOT (as presented in Chapter 3) includes various types of 

aggregates ranging from “standard” gravel (pit-run), limestone, granite and select granular 

materials to “non-standard” taconite tailings (a waste mining material), reclaimed asphalt 

pavement (RAP) and reclaimed concrete aggregates (RCA) blended with virgin aggregates at 

different blending ratios, and materials recovered from full-depth reclamation (FDR) sites. All 
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the materials were collected from road construction sites in Minnesota for testing at the MnDOT 

Office of Materials and Road Research laboratories and/or MnDOT’s contracting 

agencies/universities using consistent quality control procedures.  

Figure 5.1 and Figure 5.2 present the grain size distributions of these materials in relation 

to corresponding aggregate base/granular subbase gradation bands. Grouping them according to 

rock type and mineralogy is to minimize the confounding effects that aggregate shape properties 

(form, texture and angularity), which have been demonstrated to be quite influential (Xiao et al., 

2011), have on analyses of gradation. It appears that quarried limestone and granite materials 

have much less variability in gradation than the others. Proctor compaction tests were performed 

on the aggregate materials following the AASHTO T99 standard energy with index properties 

and optimum moisture contents and maximum dry densities determined accordingly. Table 5.1 

summarizes other sample details at optimum moisture conditions sorted from the database for 

subsequent correlation analyses, such as MnDOT specification designations and Nominal 

Maximum Particle Size (NMPS). The different aggregate top sizes available in the database 

make it possible to compare the laboratory measured performances of different top-sized 

gradations.  

Resilient modulus (MR) tests were conducted on compacted specimens following the 

NCHRP 1-28A protocol. After completion of MR tests, specimens were typically loaded to 

failure at constant confining pressures (σ3) ranging from 4 to 10 psi (see Table 5.1) using a 

constant loading rate of 0.03 in./s (0.76 mm/s) to obtain the peak deviator stress (σdf) values. 

Note that such shear strength tests performed after the completion of the repeated-load resilient 

modulus sequences were conditioned and thus included the effect of stress history as compared 

to unconditioned ones. The resilient modulus results of this database were analyzed in Chapter 4 
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to establish correlations between aggregate source properties and the MEPDG MR constitutive 

model parameters for use in Level 2 pavement design applications.  Hence, this chapter focuses 

on the shear strength results to provide much more definite evaluation of base/subbase material 

quality and performance potential as compared to MR. 

Considering the fact that permanent deformations were not recorded from the 

conditioning stages of MR tests and saved in the database, the permanent deformation trends 

linked to field rutting performances were then indirectly evaluated for these aggregate materials 

from the peak deviator stresses at failure (σdf) measured at a given confining pressure. The σdf 

data presented herein are therefore used as an indicator of the aggregate material’s shear strength. 

Tutumluer and Pan (2008) observed good correlations between maximum σd at failure (at 

σ3=34.5 kPa or 5 psi) and permanent strains at the 10,000th load repetition for twenty-one 

unbound aggregate blends in a study of aggregate shape effects. Although the Mohr-Coulomb 

shear strength parameters, cohesion “c” and friction angle “ϕ,” could be determined for some of 

the samples, to be consistent, they are not used in the following correlation analyses.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.1 Gradations of Traditional Base/Subbase Materials in MnDOT Database: (a) Select 

Granular; (b) Granite; (c) Pit-run Gravel; and (d) Limestone 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.2 Gradations of Non-traditional Waste Base/Subbase Materials in MnDOT Database: 

(a) Taconite Tailings; (b) Reclaimed Concrete (Class 7C); (c) Reclaimed Bituminous (Class 7B); 

and (d) Full-depth Reclamation (FDR) 
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Table 5.1 Details of the Aggregate Materials Compiled in the MnDOT Database 

Material Type 

MnDOT 

Specification 

σ3 for σdf 

(psi) 

NMPS 

(mm) 

Major 

Gradation 

Type 

“Standard” 

Select 

Granular 

Class 3/4 4, 8 

0.425, 0.6, 9.5, 

37.5 

Fine-graded 

Granite Class 6 4 16 Coarse-graded 

Gravel Class 5 4, 5, 8, 10 

9.5, 16, 19, 25, 

31.5 

Both 

Limestone Class 5 4 16, 25, 31.5 Coarse-graded 

“Non-

standard” 

Taconite 

Tailings 

Class 3/4 4 2, 4.75, 9.5 Fine-graded 

Reclaimed 

Bituminous 

Class 7B 4, 5, 8, 10 9.5, 19 Fine-graded 

Reclaimed 

Concrete 

Class 7C 5, 10 19 Fine-graded 

FDR Class 7 5, 10 19, 25 Fine-graded 

Notes: (1) No crushed/fractured particles are allowed for Class 3/4; (2) Class 5 requires at 

least 10% crushed particles; (3) Class 6 requires at least 15% crushed particles; (4) 3 and 

df denote confining pressure and peak deviator stress at failure, respectively; and (5) 1 psi 

= 6.89 kPa, 1 inch = 25.4 mm. 
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5.2 Analyses of Experimental Results 

5.2.1 Determination of Key Gradation Parameters 

To develop correlations between gradation parameters and the resilient modulus and peak 

deviator stress responses of base/subbase materials, the first step was to establish datasets 

containing all the independent and dependent variables. It was necessary to eliminate any 

differences among samples related to compaction moisture and density conditions.  This was 

accomplished by choosing samples with only molded moisture contents within ±0.5% of the 

targeted optimum, as per the NCHRP 1-28A protocol, for subsequent investigation. This way, 

samples compared were closely kept at optimum conditions with only gradations varying. It is 

worth mentioning that all the results presented in this paper were in fact based on the ±1% 

moisture content criterion, such a trial relaxation of ±0.5% criterion to ±1% increased the sample 

population but did not change the results and the trends observed in statistical analyses, and, the 

data included in the analyses were referred to as “near optimum conditions.” Unlike the moisture 

contents, the achieved dry densities were not found to influence results significantly in this study. 

The average relative compaction level (achieved dry density over the maximum dry density) was 

98.9% with a standard deviation of 3.5% for all the samples tested. 

The previously reviewed gradation quantification methods were employed one by one to 

calculate gradation parameters for all the samples selected; thus, the independent variables 

considered were: 1) maximum particle size Dmax and shape factor n from the Talbot equation; 2) 

mean aggregate size Dm and spread factor n from the Rosin-Rammler distribution function; 3) 

uniformity coefficient Cu, curvature coefficient Cc, the fines percentage %F, and the diameter 

values corresponding to 60, 50, 30, and 10% passing in weights d60, d50, d30, and d10 from the 

USCS, respectively; 4) the Gravel-to-Sand (G/S) ratio; and 5) three aggregate ratios of the Bailey 
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method aggregate (CA, FAc, and FAf). It is worth emphasizing here that the G/S ratios for 

MnDOT database gradations studied were calculated using Equation 5.1 that was derived from 

the two parameters of the Talbot equation (Dmax and n) fitted from the percent passing data, 

according to the “Gravel” and “Sand” definitions of the USCS.  This way, percentages passing 

all sieve sizes, but not just No. 4 (4.75-mm) and No. 200 (75-μm), were used. 
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                 (5.1) 

 

5.2.2 Modulus-Strength Relationship 

To determine representative aggregate base/granular subbase stress levels, MnPAVE 

layered structural analyses were performed on typical MnDOT pavement sections, given in 

Table 4.5, subjected to the 18-kip dual-tire axle loads (ESALs). MnPAVE program default 

values were assumed for parameters not specified in Table 4.5, which presents the representative 

stress states computed at mid-depth in the aggregate base and granular subbase, respectively. The 

representative stress states were needed for calculating base/subbase MR values using the 

modulus characterization models reported from laboratory testing of these aggregate materials.   

Relationships between modulus and shear strength properties were investigated for 

different MnDOT aggregate classes. Due to the limited number of datasets selected, the primary 

objective, however, was to verify if any consistent trends existed between modulus and strength 

(e.g., high shear strength for high modulus, and vice versa) for each MnDOT aggregate class, as 

assumed in a previous study on aggregate quality effects (Lindly et al., 1995). Modulus-strength 

trends for “standard” or conventional aggregate base and granular subbase materials at near 
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optimum moisture conditions are illustrated in Figure 5.3. The resilient modulus values of base 

and subbase materials were calculated at the representative stress levels computed at mid-depth 

base and subbase (as tabulated in Table 4.5), respectively. 

As shown in Figure 5.3, for standard high-quality crushed stones, such as granite, high 

resilient moduli generally correspond to high shear strength properties; while this trend is 

surprisingly reversed for weak subbase materials such as select granular. Overall, there seems to 

be no clear and significant modulus-strength relationship for all aggregate materials studied, 

which is probably due to the fact that the shear strength test is destructive in nature; whereas the 

MR test, by contrast, is nondestructive in nature. By testing materials close to maximum dry 

density and optimum moisture conditions, Thompson and Smith (1990) pointed out that 

permanent deformation under repeated loading, instead of resilient modulus, was a better and 

more definite property for ranking granular base performance potential. Bilodeau et al. (2009) 

tested materials at three water contents (+2% higher than the absorption, near saturation, and 

drained water contents) and also found that the permanent strain behavior of all source 

aggregates were related to grain-size properties of the smaller fractions; while the resilient 

behavior (at saturated water content) depended highly on the grain-size distribution of the gravel 

(or coarse) fraction for crushed rocks or on the gradation uniformity for partially crushed gneiss. 

These findings may partly explain the results shown in Figure 5.3, although further in-depth 

analysis is needed on suction stress which reportedly has different relative effects on resilience 

and strength. Contrary to the conventional wisdom that the load-carrying capacity of 

base/subbase materials increases with larger aggregate top sizes, it was observed for the data 

graphed in Figure 5.3 (although not explicitly shown) that gradations with larger top sizes did not 

necessarily perform better than those with smaller top sizes in terms of both resilient modulus 
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and shear strength characteristics, i.e., the top size appears to have no definite effect on resilient 

modulus and shear strength, as reported by Lindly et al. (1995). 

 

  

(a) (b) 

Figure 5.3 Resilient Modulus-Shear Strength Relationships for “Standard” (a) Aggregate Base 

and (b) Granular Subbase Materials at Near Optimum Moisture Conditions 

 

Based on similar findings, a limiting shear stress ratio (applied shear stress over shear 

strength) was recommended for implementation in the MnPAVE flexible pavement analysis and 

design program so that potential rutting performances of aggregate base and especially granular 

subbase courses in Minnesota could be taken into account.  Such an approach would avoid any 

catastrophic shear failure in base/subbase layer, such as the one reported by Mulvaney and Worel 

(2002) in Mn/ROAD forensic case studies. 

5.2.3 Critical Gradation Parameter(s) Governing Shear Strength Behavior 

To identify the most important gradation parameter(s) governing the shear strength 

behavior of base/subbase materials, a bivariate analysis, useful for identifying bivariate unusual 

points and bivariate collinearities, was employed to investigate relationships between the 



 158 

dependent variable (σdf at given confining pressure) and explanatory variables (gradation 

parameters). The coefficients of determination (R2 and adjusted R2) were the criteria for 

evaluating the strength of association between each pair of these parameters. The statistical 

normality of each parameter was also verified with the Shapiro-Wilk test. 

Among those calculated gradation parameters, the Gravel-to-Sand (G/S) ratio, in spite of 

its relative simplicity, was found to exhibit the best correlation with df for all the materials 

studied at various confining pressures, as shown in Figure 5.4.  For instance, aggregate ratios of 

the Bailey method, which were thought to be very promising for governing influential factors, 

were found to be statistically insignificant except for the fine aggregate coarse ratio (FAc). 

 

  

(a) (b) 

  

(c) (d) 

Figure 5.4 Peak Deviator Stress at Failure (df) vs Gravel-to-Sand (G/S) Ratio for Various 

aggregates: (a) 4-psi, (b) 5-psi, (c) 8-psi, and (d) 10-psi Confining Pressure (3) 

100% RAP 

75% RAP 

50% RAP 
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As shown in Figure 5.4(a), the Gravel-to-Sand (G/S) ratio appears to have an optimal 

value somewhere between 1.5 and 2 at which maximum df was computed for different 

gradations. Limestone samples exhibited decreased peak deviator stress at failure with increased 

G/S ratio (larger than a possible optimal G/S ratio). The examination of Figure 5.4(b) and (d) 

tends to confirm the inference made from Figure 5.4(a), as df values increase with larger G/S 

ratios regardless of aggregate types and gradations when G/S ratio is less than 1.5.  The trend in 

Figure 5.4(c) however is less obvious. As reported by Kim and Labuz (2005), specimens with 

increased RAP percentages exhibited higher permanent deformation. Almost the same df level 

for those three different RAP percentages in Figure 5.4(c) may be attributed to the increasing 

G/S ratios (less than 1.5 still), which could to a certain extent offset the detrimental effect of 

increasing RAP percentages (further study is needed to make this inference conclusive). In other 

words, it appears that when G/S ratios gradually approach about 1.5, shear strength behavior is 

improved. 

5.3 Discussions 

5.3.1 Interpretation of the Gravel-to-Sand Ratio 

The profound effect of the Gravel-to-Sand (G/S) ratio on the peak deviator stress at 

failure (or shear strength behavior) can also be interpreted from the particle packing and porosity 

characteristics acquired by different relative concentrations of gravel and sand size particles. 

Aggregate base/granular subbase materials, in essence, are mixtures of the gravel fractions, sand 

fractions and fines. Coarse aggregate grains can be deemed to enclose a void space in which 

finer sand particles fill; whereas the fines (passing No. 200 sieve or smaller than 0.075 mm) 

basically fill the void space created by the sand particles (see Figure 5.5).  
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(a) (b) (c) 

Figure 5.5 Different Packing States of Gravel-Sand-Fines Mixture with Different Gravel/Sand 

Ratios (G/S) (small black dots represent fines fraction): (a) Large G/S, (b) Optimum G/S, and (c) 

Small G/S 

 

Figure 5.5(a) indicates the packing state resulting in the largest G/S ratio as almost no 

sand grains to occupy a portion of the voids between the coarse aggregate particles. Mixtures at 

this state develop shear or permanent deformation resistance primarily by friction resistance 

between gravel size particles and may not be very stable depending on the grading of the gravel-

size particle distribution. G/S ratio decreases when more sand fractions exist until an optimal 

packing configuration is reached at the ideal state shown in Figure 5.5(b). This ideal state means 

the voids between the gravel size particles are completely occupied by the bulk volume of the 

sand grains, developing the condition of minimum porosity. The minimum porosity of the 

mixture can be theoretically interpreted as the boundary between a gravel-controlled and a sand-

controlled mixture. The phase diagram analysis of Figure 5.5(b) can also derive that the 

minimum porosity of the mixture is the product of the porosity of each individual fraction (i.e., 

nmin=nG*nS*nf) with the same specific gravity assumed for all fractions. After that, if sand 

fractions keep increasing (or G/S ratio decreases), then packing conditions will dictate gravel (or 
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coarse) particles to “float” in the sand-fine matrix and have trivial control over shear strength 

behavior of the mixture (see Figure 5.5c).  

To validate such inferences made above, the trends between the maximum dry density 

(γdmax) and optimum moisture content (ωopt) and the Gravel-to-Sand (G/S) ratio are plotted in 

Figure 5.6 for those materials studied. Intuitively, the maximum dry density and optimum 

moisture content obtained under a given compactive effort can serve as indicators of the porosity 

of the mixture, with lower maximum dry density and higher optimum moisture content 

representing greater porosity. The porosity is then related to the shear strength developed, and 

the maximum shear strength of the mixture tends to occur at an optimum range of low porosity 

values.  

As shown in Figure 5.6, maximum dry density approaches a maxima and optimum 

moisture content reaches a minima when the G/S ratio is around 1.5, indicating the minimum 

possible porosity achieved by mixtures with G/S of around 1.5. The relative importance of the 

suction stress is also reduced as the G/S ratio increases and the optimum moisture content 

decreases. Since mixtures with G/S ratios of around 1.5 at the moment is at the possibly densest 

packing state, it explains well why peak deviator stress at failure has a maxima at this point, as 

presented previously. Note that the minimum porosity of a mixture is a function of porosities of 

both coarse aggregate particles and fine aggregate particles. Therefore, the approximate value of 

1.5 found here may change when different material sources (e.g., with different bulk specific 

gravity) with different gradations are used. Nevertheless, such optimal proportions of gravel and 

sand fractions may exist when the mixture reaches its minimum porosity, gets packed to the 

densest state, and thus yields the highest shear strength. 
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(a) 

  

(b) 

Figure 5.6 Maximum Dry Density (σdmax) and Optimum Moisture Content (ωopt) vs Gravel-to-

Sand Ratio (G/S) at (a) 4-psi and (b) 8-psi Confining Pressure (3) 

 

The G/S ratio may also help better understand effects of unsaturated hydraulic 

conductivity on the suction behavior of base/subbase materials, especially those with broad 

particle size distributions. The G/S ratio reflects the relative concentrations of larger gravel (or 

coarse aggregate) and smaller sand particles which according to Gupta et al. (2005) control the 

saturated hydraulic conductivity and the water retention characteristics, respectively. Future 
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research in this area could potentially explain how moisture suction may become more 

controlling with smaller G/S ratios. 

5.3.2 Analyses of Other Aggregate Databases Collected 

To support the observed gradation effects and G/S ratio trends summarized so far, similar 

analysis results from other aggregate databases collected from the literature are also presented in 

this section. The first data source was collected from the comprehensive laboratory testing 

program performed by Garg and Thompson (1997) in which six base and subbase materials (CL-

1Fsp, CL-1Csp, CL-3sp, CL-4sp, CL-5sp, and CL-6sp) collected from the Mn/ROAD flexible 

pavement test sections were characterized for shear strength, resilient modulus, and rutting 

potential from rapid shear and repeated load triaxial tests. Since samples were tested in that study 

at varying moisture and density levels, to be consistent, only results of three samples (CL-1Csp, 

CL-4sp, and CL-5sp) tested at reported maximum dry density and optimum moisture content 

values (AASHTO T99) are presented here. In Figure 5.7(a), the calculated G/S ratios are plotted 

against the maximum dry density, optimum moisture content, resilient modulus calculated at 

100-psi bulk stress, and permanent strain calculated at the 1,000th load application from the 

reported values of “A” and “b” (εp%=A*Nb), respectively. It clearly shows that as the G/S ratio 

increases, the optimum moisture content decreases and maximum dry density increases, 

indicating the densification trend towards the minimum porosity. Note that higher permanent 

strain (at the 1,000th load application) represents increased rutting potential and lower shear 

strength. The decreased permanent strain or increased shear strength is also observed for 

increasing G/S ratio, which agrees with the previous findings. Although aggregate class CL-5sp 

required 10-15% crushed/fractured particles and no crushed/fractured particles were allowed in 

CL-1Csp or CL-4sp, a permanent strain decrease of up to 64% from CL-5sp to CL-4sp 
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demonstrates the significant role of G/S ratio for improving shear strength. Interestingly, resilient 

modulus increases with decreased permanent strain or increased shear strength. 

 

  

(a) 

  

(b) 

Figure 5.7 The Gravel-to-Sand Ratio Effects Observed in Other Databases Collected from (a) 

Garg and Thompson (1997) and (b) Tian et al. (1998) 
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The second data source collected was from the study of Tian et al. (1998) aimed at 

investigating resilient modulus and shear strength characteristics of two good quality aggregates 

commonly used in Oklahoma as base/subbase materials at three different gradations (finer, 

median, and coarser limits). As shown in Figure 5.7(b), the calculated G/S ratios (from actual 

gradation curves) are plotted against the unconfined compressive strength (Qu), maximum dry 

density (AASHTO T180), and optimum moisture content, respectively. The resilient modulus 

values were obtained at 689-kPa (100-psi) bulk stress. As indicated in Figure 5.7(b), both 

aggregates have an optimal G/S ratio of around 2 where mixture porosity reaches its minimum 

and the shear strength reaches its maximum values. The greater optimal G/S ratio found here 

may be possibly attributed to higher compaction energy used (AASHTO T180 rather than T99). 

In addition, the modulus-strength relationship does not show any consistent or unique trends 

similar to the previous MnDOT aggregate database findings. 

Tutumluer et al. (2009) recently characterized strength, stiffness, and deformation 

behavior of three aggregate materials (limestone, dolomite, and uncrushed pit-run gravel) with 

controlled gradations for subgrade replacement and subbase applications through a 

comprehensive laboratory test matrix. This comprehensive database was also analyzed for 

verification purpose. To be consistent, only samples that had nonplastic fines at optimum 

moisture conditions were studied here for the G/S ratio effects. The results are shown in Figure 

5.8. Note that the peak deviator stress values were recorded at 15-psi confining pressure, and MR 

values were calculated at 345-kPa (50-psi) bulk stress. The increasing maximum dry density 

(AASHTO T99) and decreasing optimum moisture content trends are consistent and indicate that 

the minimum porosity levels for the uncrushed gravel, crushed limestone, and crushed dolomite 

materials approximately take place at the G/S ratios of 1.6, 1.68, and 1.56, respectively. 
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Considering the specific gravity variations of those three materials, the three very close G/S 

ratios can actually be regarded as the same. Note that investigation of the gradation effect was in 

fact not the primary objective of this research study, so the gradations were well controlled and 

engineered by only varying percent fines. Although the peak deviator stress values do not 

consistently increase with increasing G/S ratios (or decreasing porosity), overall, the peak 

deviator stress values at the maximum G/S ratios for all three different aggregate materials are 

still approximately the maximum ones. Once again, no definite relationship exists between 

modulus and shear strength trends, which may require further investigation into effects of 

moisture-related suction stress for various fines percentages. 

 

  

Figure 5.8 The Gravel-to-Sand Ratio Effects Observed in Other Databases Collected from 

Tutumluer et al. (2009) 
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5.4 Engineering Application of the Gravel-to-Sand Ratio Concept 

Using open-graded aggregate base has been demonstrated to be one of the effective 

strategies for improving drainage efficiency and thus pavement longevity. For instance, two main 

types of permeable base materials are widely used in Minnesota, i.e., stabilized and unbound. 

Figure 5.9(a) illustrates the MnDOT gradation specifications for both unbound and stabilized 

permeable aggregate base (PAB) materials (Arika et al., 2009). It can be seen that the gradation 

of the stabilized material becomes much coarser due to the addition of a stabilizer (asphalt or 

cement) than unbound materials that need high contents of finer-size aggregates to achieve 

stability through aggregate interlock. Typical permeability values are 1000~3000 ft/day 

(0.35~1.06 cm/s) for unbound granular ones and 6800 ft/day (2.40 cm/s) for stabilized bases. In 

addition to maintaining adequate permeability, these layers are also required to remain stable 

during construction as well as future rehabilitation activities over the design service life.  

The aggregate gradation mechanism based on the proportionality between gravel and 

sand size particles (as per ASTM D2487-11) was presented previously to demonstrate how 

mechanical behavior, i.e., shear strength and resilient modulus (MR) characteristics, of aggregate 

base/granular subbase materials can be quantified and related to grain size distributions (Xiao et 

al., 2012). By using the concept of the G/S ratio gradation parameter, the current MnDOT 

specified gradation band for unbound permeable aggregate bases is analyzed herein for the 

optimal gradation that is qualified as drainable aggregate base but also potentially yields 

optimized strength and deformation characteristics.  

The selection process is illustrated in Figure 5.9(b). First of all, by regressing percent 

passing data (pi) against sieve sizes (Di) as per Equation 5.1, a gradation curve within the 

MnDOT unbound PAB gradation band can be represented as a “point” with coordinates (n, Dmax) 
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in a similar Cartesian plane where shape factor n is on x-axis and Dmax is on y-axis. The four 

vertices of the rectangular shown in Figure 5.9(b) represent the four boundary gradation curves 

illustrated in Figure 5.9(a). Note that candidate gradation curves are represented by points falling 

on the G/S ratio contour of 1.6 (see Figure 5.9(b)) which was found to be optimal in the 

aforementioned study. Among those points falling on the G/S ratio contour of 1.6, the point with 

maximum Dmax is preferred herein due to the potential to accommodate the use of larger-size 

recycled concrete aggregates (RCA) and reduce crushing costs. It turns out that the point (0.52, 

25.7) is the one representing the optimal gradation curve to be proposed.  

 

  

(a) (b) 

Figure 5.9 MnDOT Gradation Specifications (a) for Unbound Permeable Aggregate Bases 

(PAB); (b) Gradation Chart with Contours of the Gravel to Sand (G/S) Ratio Gradation 

Parameter for MnDOT Unbound PAB Gradation Band 
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Prior to conducting any laboratory permeability tests, empirical relationships listed in 

Table 5.2 between hydraulic conductivity and grain size can be used to give a first-hand 

estimation of the order of magnitude of permeability. For example, Hazen (1930) proposed a 

widely used relationship between saturated hydraulic conductivity and soil particle diameter. The 

hydraulically based Kozeny-Carman equation is another frequently referenced relationship that 

relates hydraulic conductivity to the square of a representative grain size, porosity, and physical 

properties of the fluid. The Hazen equation (1930) and Kozeny-Carman equation (Carman, 1956) 

are formulated in Equations 5.8 and 5.9. It seems that the parameter d10 plays a significant role in 

permeability (Ksat) calculation and thus needs to be properly maximized, as it is included in most 

of the empirical relations. The following optimization problem as formulated in Equation 5.2 

was solved using Excel Solver. The resulting final optimal gradation is shown in Figure 5.10. 
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                                                        (5.2) 

A drainable aggregate base with such a proposed optimal gradation was already 

constructed to support a new PCC pavement on MnROAD test Facility 2013 Test Section 13 

reconstruction (an interstate test section) that needed to include a significant amount of recycled 

Portland cement concrete (PCC). The field performance of such a drainable aggregate base in 

terms of structural stability and drainability will be studied in the future upon the completion of 

the MnROAD test programs. It is also worth mentioning that the proposed gradation happens to 

be very similar to one of the permeable unbound aggregate gradations used by Ohio DOT and 
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designated as C307-IA (Liang, 2007). The C307-IA gradation is found to have a saturated 

permeability of 0.803 cm/s and an average resilient modulus of 72 ksi (500 MPa) according to 

AASHTO test protocol (Liang, 2007). 

Table 5.2 Empirical Models for Estimating Permeability of Unbound Granular Materials 

Model Formula 

Moulton (1980)  
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where CH is a coefficient varying from 1 to 1.5; SF is a shape factor varying from 6 to 8 

depending on the angularity of individual soil particles; fi is percent fraction of particles between 

two consecutive sieve sizes; D(av)i is average particle size between consecutive sieves; e is void 
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ratio; Cu is coefficient of uniformity (needed to be less than 2.5 for the Hazen model); D10 

(varying from 0.1 to 3 mm as limited by the model applicability) and D60 are sieve sizes 

corresponding to 10 and 60 percent passing, respectively; Rp is representative pore size in mm; 

AV is percent air voids; Deff is effective particle size in mm; and Ksat is the saturated hydraulic 

conductivity. 

 

 

Figure 5.10 Four Boundary Gradation Curves Consisting of MnDOT Unbound PAB Gradation 

Band and the Proposed Optimal Gradation 
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5.5 Summary 

A comprehensive statewide aggregate database, including both standard virgin and 

nontraditional aggregate materials collected from various sources in Minnesota, was used to 

investigate the influence of gradation parameters of these primarily aggregate base/granular 

subbase materials on the shear strength and resilient modulus characteristics. Commonly used 

gradation quantification methods, including the Talbot equation, the Rosin-Rammler distribution 

function, the Unified Classification System parameters, the conventional Gravel-to-Sand ratio, as 

well as the Bailey method, were employed to identify key gradation parameters governing the 

shear strength behavior of the studied aggregate materials. While other gradation parameters 

seemed to be less significant, the Gravel-to-Sand (G/S) ratio was found to control the shear 

strength behavior of both “standard” and reclaimed materials. For the MnDOT database samples 

studied, the highest shear strength was reached around an optimal G/S ratio of 1.5 where void 

spaces enclosed by the coarse aggregate fraction were probably filled completely by the sand 

size particles and fines. Further, there was inconclusive evidence of an apparent modulus-

strength relationship which suggested incorporating a limiting working shear stress to strength 

ratio to avoid catastrophic shear failure in base and especially subbase courses. 

Previous studies on soil/sand-gravel mixtures indicated that for large gravel (or coarse 

aggregate) concentrations, the friction resistance between gravel particles controls the shear 

strength behavior of mixtures; while at low gravel concentrations, the friction resistance of 

sand/soil grains controls the shear strength behavior. By applying this observation to this study, 

interpretation regarding the role of G/S was made, which well explained the validity of the 

optimal G/S ratio of 1.5 in this case. Additional aggregate databases collected from literature also 

confirmed the existence of such an optimal G/S ratio and the significant influence of the G/S 
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ratio gradation parameter. In light of these findings, current gradation specification bands, which 

may reject non-standard base/subbase materials for use in cost-effective road constructions, can 

be further revised and transferred into performance-based specifications in which the G/S ratio, 

together with other important factors, can be used to utilize available aggregate sources to match 

the site-specific design traffic levels and operating environmental conditions, for the sake of 

promoting sustainability. It is postulated here that within the current MnDOT specified gradation 

bands, those with the same G/S value of around 1.5 may exhibit similar shear strength behavior 

regardless of their maximum particle size, provided that other properties such as fines content, 

moisture and density conditions (AASHTO T99), and aggregate shape are not dramatically 

different from each other. 

To better understand the underlying mechanism of the G/S ratio from a microscopic level, 

Chapter 6 is to present the research work conducted using an image-aided Discrete Element 

Modeling (DEM) approach well-validated in railroad ballast studies (Tutumluer et al., 2009; 

Yohannes et al., 2009). The goal is to simulate aggregate shear strength tests with the capability 

to recreate the three-dimensional aggregate shapes as individual discrete elements 

(“polyhedrons/blocks”) based on the scanned images from the University of Illinois Aggregate 

Image Analyzer (UIAIA). This way, optimum contact and packing arrangements from various 

gradations will be realistically studied for improved aggregate interlock. More aggregate material 

types and gradations will definitely be helpful in terms of better quantifying effects of G/S ratio 

on mechanical behavior of aggregate base/granular subbase materials. 
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Chapter 6 Discrete Element Modeling of Gradation Effects 

Influencing Contact and Packing Characteristics of 

Aggregate Skeleton 
 

   The primary objective of this chapter is to employ a validated DEM model for 

evaluating the effects of gradation properties on both packing characteristics and load-carrying 

abilities of unbound aggregate materials. To achieve this goal, DEM model parameters are first 

determined from calibrating an image-aided DEM program BLOKS3D developed at the 

University of Illinois (Zhao et al., 2006) against laboratory rapid shear strength (triaxial 

compression) test results. Once calibrated and validated, such a DEM program could be 

potentially utilized to investigate effects of multi-scale aggregate gradation and morphological 

properties on structural performances of unbound aggregate pavement layers. The relationships 

among the microscopic internal structure, micro-mechanical parameters, and macroscopic 

responses could also be identified from DEM based numerical simulations.  

The DEM packing simulations using different gradations and particle shape are 

performed to investigate the validity of using the 4.75-mm sieve (or No. 4 sieve) as the breaking-

sieve-size for typical Minnesota dense-graded aggregates. Based on the concept of the Gravel-to-

Sand ratio (G/S) introduced in Chapter 5, the load-carrying coarse fraction is separated from the 

void-filling fine fraction. Finally, based on the DEM approach, current unbound permeable 

aggregate base (PAB) material gradations specified by Minnesota DOT are further engineered by 

optimizing the particle contact and packing characteristics in order to minimize the overall 

rutting potential (based on shear strength behavior) yet still accommodate desired drainage 

requirements. The optimal gradation proposed in Chapter 5 for unbound permeable aggregate 
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base (UPAB) materials according to the Gravel-to-Sand ratio concept is also verified in this 

chapter. 

6.1 Calibration of the DEM Model Parameters with Rapid Shear Tests 

6.1.1 Description of Laboratory Rapid Shear Tests 

The coarse aggregate materials used in the laboratory study consisted of the most 

commonly used crushed aggregate types in the paving industry, i.e., limestone, gravel, sandstone, 

granite, and slag. The six unblended aggregate samples are listed in Table 6.1, along with their 

relevant physical properties and rapid shear and permanent deformation test results. The 

angularity index (AI) and surface texture (ST) index of the aggregate samples were quantified 

from three orthogonally acquired two-dimensional (2D) images of individual particles using the 

UIAIA (Tutumluer et al., 2000; Pan et al., 2006). None of these coarse aggregate samples has 

flat and elongated particles exceeding 10% by weight of greater than 5 to 1 (>5:1) longest to 

shortest dimensions. To minimize the influences of maximum aggregate sizes and/or gradations, 

all the specimens were prepared according to the same gradation with the same top aggregate 

size of 38 mm (see Figure 6.1a). Additionally, each crushed aggregate type was blended with 

uncrushed gravel at 0, 50, 67, 83, and 100% by volume fractions to generate a total of 21 

aggregate blends for studying the effect of blending two different types of aggregates on the 

strength and rutting behavior, respectively (Tutumluer and Pan, 2008). Figure 6.1(b) illustrates 

that the blending with different crushed materials improved both shear strength and rutting 

resistance behavior of the uncrushed gravel. This is due to the fact that blending in this case 

results in more desirable aggregate shape properties than the uncrushed gravel.  

   The 21 aggregate blends were tested in dry (0% moisture content) condition with no 

fines included in gradation. Each specimen was prepared 152 mm in diameter and 305 mm in 
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height. The same void ratio of 67.5% (or porosity of 41%) was achieved for all triaxial rapid 

shear aggregate specimens by controlling the total volume of the aggregate particles contained in 

the specimen. The rapid shear test performed is a deformation controlled test with an axial strain 

of 12.5% (corresponding to 38 mm) obtained in 1 second at the confining pressure of 34.5 kPa. 

Such a loading rate is reported to be highly effective in characterizing the bearing capacity 

failure of the unbound aggregate base/subbase layer under moving traffic loading (Garg and 

Thompson, 1998). In this study, the maximum deviator stress at failure (σd)f=(σ1-σ3)f measured 

from only one rapid shear test at 34.5-kPa confining pressure is used as an indicator of the shear 

strength of each aggregate blend (see Table 6.1), instead of the friction angle and the cohesion 

intercept. 

6.1.2 Discrete Element Modeling of Rapid Shear Tests 

6.1.2.1 Particle Sizes and Shapes 

   The sample gradation (see Figure 6.1a) has a minimum aggregate size of 6.3 mm and a 

maximum aggregate size of 38 mm, which requires approximately 1,800 polyhedral particles in 

the DEM simulation with a time step of around 2.7310-7 s, given the specified specimen 

dimensions. A set of particle shapes was selected from the pre-established DEM particle shape 

library to match the measured shape indices for each aggregate blend (see Table 6.1), 

respectively. More details about the DEM particle shape library can be found elsewhere (Huang, 

2010). During particle generation, particle geometries were randomly chosen from the selected 

set of particle shapes.  

6.1.2.2 Simulation of a Flexible Membrane and Rigid Platens 

To model flexible membrane, the approach documented by Lee et al. (2012) was used. 

Specifically, a total of 240 rigid rectangular cuboid discrete elements are positioned in a 
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cylindrical arrangement to form a hollow space of 152.4-mm (6-in.) inner diameter and 304.8-

mm (12-in.) height, respectively. The particles are positioned inside the hollow cylinder. As 

shown in Figure 6.2(a), the height of the cylinder is divided into 10 layers each of which is 30.48 

mm high, and the circumference of each layer is simulated with 24 membrane elements. Each 

membrane element has a thickness of 4 cm and a surface area of 10 cm by 5 cm, which allows 

some initial overlap between neighboring membrane elements. To mimic the specimen 

deformation in the experiments, each membrane element is only allowed to have translation 

movement in radial direction and is independent of that of neighboring ones, with all the other 

degrees of freedom restricted. The external radial concentrated force is applied at the center of 

each membrane element and continuously adjusted to result in a constant confining cell pressure. 

The top platen is simulated as a frictional rigid rectangular cuboid element with a thickness of 2 

cm and a square cross sectional area of 30 cm by 30 cm. The shearing of the aggregate specimen 

is controlled through vertical displacement of the frictional rigid platen. No contact detection is 

performed between any two membrane elements or between platens and membrane elements. 

The friction angle between aggregate particles and membrane elements is set to zero throughout 

the simulations. The material properties of the platen are approximated to be the same as those of 

the aggregate particles.  

6.1.2.3 Sample Preparation and Shearing Procedure 

While detailed descriptions can be found elsewhere (Lee et al., 2012; Qian et al., 2013), 

the sample preparation process is illustrated in Figure 6.2 and briefly presented as follows: (i) 

generation of membrane elements and the top platen according to specified arrangement; (ii) 

particle generation with a target initial void ratio according to the prescribed gradation (different 

void ratios are achieved by changing either inter-particle friction angles or the gravitational 
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acceleration); and (iii) simultaneous application of (isotropic) confining pressure upon the top 

platen (in vertical/axial direction) and membrane elements (in radial direction). Once the sample 

preparation is complete, shearing of the aggregate specimen is performed by applying 

incremental vertical displacements on the top platen. Note that the particle-particle and platen-

platen friction angles and the gravity constant are re-set to their desired values prior to shearing.  

   In the laboratory rapid shear test, the sample was sheared at a rate of 31 mm (1.25 in.) 

per second. To avoid a long run-time as well as computational instability problem caused by 

dynamic effect during continuous shearing, the incremental shearing scheme reported elsewhere 

is adopted to reproduce the shearing process (Lee et al., 2012; Qian et al., 2013). Note that rapid 

shear tests performed on railroad ballast materials were found not sensitive to strain rate and thus 

can be treated as a quasi-static problem according to Qian et al. (2013). The top platen is moved 

discretely by 0.01 mm (0.01% of axial strain) in each increment. Immediately after each 

incremental displacement, the platen is fixed in its new position and the simulation is continued 

to allow the particles and the membrane elements to re-equilibrate under this new boundary 

condition until the changes of both vertical and horizontal effective stresses are below a desired 

tolerance level. Once equilibrium is reached, vertical and horizontal effective stresses and 

volumetric strain are recorded. In this study, all simulations were carried up to 7% axial strain 

based on the experimental results. 
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(a) 

 

(b) 

 

(c) 

Figure 6.1 Gradation Curve of Aggregate Specimens (a) and Aggregate Blending Effect on 

Maximum Deviator Stress σd (b) and Permanent Strain εp (c) (Data Source: Tutumluer and Pan, 

2008) 
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Table 6.1 Aggregate Types and Test Results (Data Source: Tutumluer and Pan, 2008) 

Aggregate 

Types * 

Angularity 

Index 

(AI) 

Surface 

Texture 

Index 

(ST) 

Specific 

Gravity  

(Gs) 

Specimen 

Weight 

(grams) 

Max. Deviator 

stress σd at 

Failure  

(kPa) ** 

Plastic strain 

p at N=10,000 

(%) *** 

Uncrushed 

Gravel 

252 0.9 2.583 8535 270.2 1.81 

Crushed 

Granite 

550 2.4 2.622 8664 710.2 0.61 

Crushed 

Limestone 

495 1.75 2.735 9037 510.2 1.15 

Crushed 

Gravel 

371 1.09 2.548 8419 420.6 1.35 

Slag 516 2.2 2.435 8046 531.0 0.87 

Sandstone 402 1.82 2.270 7501 482.6 1.07 

Notes: * Void ratio=67.5% (porosity=41%);  

            ** Confining pressure σ3=34.5 kPa;  

            *** σ3=34.5 kPa, bulk stress =172.4 kPa. 
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(a) 

 

 

(b) (c) 

Figure 6.2 Illustration of Triaxial Compression DEM Simulation: (a) Arrangement of Membrane 

Elements, (b) Aggregate Specimen Modeled, and (c) Specimen Preparation Process 

 

6.1.3 Calibration of the DEM Model with Rapid Shear Tests 

   The purpose of the calibration process is to select appropriate micro-parameters 

required in DEM simulations. Among required modeling parameters in the DEM simulation, 

particle shape and size are already chosen according to prescribed gradation, while inter-particle 

friction angle (’), normal contact stiffness (Kn), shear contact stiffness (Ks), and contact 

damping ratios remain to be selected. The global damping ratio is assumed as the default in this 

study (Lee et al., 2012). Those micro-mechanical parameters, which generally do not represent 
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real mechanical properties and are difficult to obtain experimentally, are often found by a trial 

and error procedure such that the simulation yields similar macroscopic (global) behavior as that 

of the aforementioned laboratory rapid shear tests. As compared to the normal and shear contact 

stiffness values, the inter-particle friction angle is reported to have a greater influence on the 

simulation results (Lee et al., 2012). To be specific, the normal and shear contact stiffness values 

are first kept constant; while the inter-particle friction angle that mainly depends on the particle 

surface roughness (i.e., the particle mineralogy) is varied within the typical range reported 

previously (Terzaghi et al., 1996). After selecting a proper inter-particle friction angle that results 

in simulated responses comparable to experimental data, the normal and shear contact stiffness 

values are then varied for calibration. For numerical stability, the shear contact stiffness value is 

chosen to be smaller than the normal contact stiffness value. For the very first trial, the stiffness 

values (Kn=20 MN/m and Ks=10 MN/m), successfully employed in prior studies (Huang, 2010; 

Qian et al., 2013) to simulate granite ballast behavior, were used. This procedure was repeated 

until the final stiffness values were selected. Since the critical time step for numerical stability is 

inversely proportional to the normal contact stiffness, the smallest normal contact stiffness value 

that matches experimental results fairly well was selected to allow for a larger simulation time 

step. It is worth noting that multiple simulations with different initial conditions (as resulted from 

randomly selecting DEM particle assembly from the pre-chosen particle library) were not 

performed in this study.  

   After a series of trials, the final parameters determined for the DEM simulations are 

listed in Table 6.2. The particle elastic modulus and Poisson’s ratio are fixed at 97.9 MPa and 

0.25, respectively. The contact damping ratio is set as 0.03. The DEM simulation results 

obtained using calibrated micro-mechanical parameters are tabulated in Table 6.3 where 
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satisfactory agreement is achieved. The DEM-predicted deviator stresses match closely with 

those from experiments, which means that the developed DEM model is capable of reproducing 

the typical mechanical behavior of unbound aggregate materials. The DEM simulations were 

carried out past each peak value of the deviator stress. Figure 6.3 shows the numerical results 

obtained with the micro-parameters reported in Table 6.2 at 34.5-kPa confining pressure level for 

uncrushed gravel, slag, and crushed granite specimens, as these three specimens represent three 

distinguishing deviator stress levels (i.e., high, medium, and low). It was revealed from DEM 

simulation results that the nonlinear stress-strain behavior of unbound aggregate materials 

(including dilatancy effects) was properly simulated by the DEM model. 

   According to the linear Mohr-Coulomb model, which is typically used to represent the 

shear strength of granular materials, the relationship between shear stress at failure (f) and 

normal stress (σn) is described as a function of the cohesion (c) and angle of internal friction (), 

i.e., f =c+ σn*tan. Despite the argument by many researchers whether c represents the 

material’s “true” cohesion or merely a parameter of a linear fit, i.e., apparent cohesion, of the 

linear Mohr-Coulomb model, c is assumed to be zero for aggregate specimens in this study 

which were sheared under dry conditions. As a result, the peak principal stress ratio (PSR) for a 

linear Mohr-Coulomb model is calculated for each DEM simulation to compute the peak friction 

angle (P) as in Equation 6.1: 

 
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where P is peak friction angle; and σ1 and σ3 are major and minor principal stresses, respectively.  
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Figure 6.4 shows the variation of P with aggregate shape indices. Note that the peak 

friction angle P increases with increased angularity index (AI) and surface texture (ST) index 

values, indicating improved shear resistance. 

Table 6.2 Calibrated DEM Model Parameters 

Aggregate Types 
Uncrushed 

Gravel 

Crushed 

Granite 

Crushed 

Limestone 

Crushed 

Gravel 
Slag Sandstone 

Friction Coefficient f 

(tan’) 
0.42 0.75 0.6 0.52 0.65 0.6 

Normal Contact 

Stiffness Kn (MN/m) 
10 40 20 20 20 20 

Shear Contact 

Stiffness Ks (MN/m) 
5 20 10 10 10 10 

 

 

Table 6.3 Triaxial Compression DEM Simulation Results 

Aggregate 

Types * 

Void Ratio e (%) Specimen Weight (g) 
Max. Deviator Stress σd 

at Failure (kPa) * 

Lab 

Measured 

DEM 

Predictions 

Lab 

Measured 

DEM 

Predictions 

Lab 

Measured 

DEM 

Predictions 

Uncrushed 

Gravel 

67.5 

67.5 8535 8535 270.2 262 

Crushed Granite 66.9 8664 8693 710.2 705 

Crushed 

Limestone 
66.1 9037 9111 510.2 515 

Crushed Gravel 67.0 8419 8442 420.6 415 

Slag 67.8 8046 8030 531.0 542 

Sandstone 66.3 7501 7554 482.6 490 

Note: * σ3=34.5 kPa. 
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Figure 6.3 Triaxial Compression DEM Test Results for Three Specimens Representing High, 

Medium, and Low Maximum Deviator Stress Levels 

 

 

 

  

(a) (b) 

Figure 6.4 Variation of Peak Friction Angle (ϕP) with (a) Angularity Index AI and (b) Surface 

Texture ST 
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6.2 DEM Approach for Studying Underlying Mechanisms of Aggregate 

Packing 

Unbound aggregates transfer external loads through forming the aggregate skeleton, 

which in turn is affected by aggregate gradation, surface texture, shape and stiffness. To ensure 

adequate particle contact for load transfer, proper gradation needs to be designed/selected for 

unbound aggregates possessing certain shape properties. However, limited analytical and 

numerical studies have been conducted in the past by considering only the packing and grain size 

distribution and the aggregate shape, angularity and surface texture were often neglected. There 

is currently no systematic procedure/guideline available for pavement engineers to engineer 

aggregate gradation and shape so that targeted performance can be achieved. In principle, the 

particle packing characteristics (e.g., contact points and porosity) are governed by the relative 

concentrations of aggregate particles of different sizes, as well as by the shape properties of 

individual aggregate particles. Those two governing factors interact with each other, thus 

necessitating the simultaneous consideration of both factors in developing technically sound 

gradation optimization framework.  

The DEM model calibrated for six different aggregate materials has the potential to study 

the underlying mechanisms of aggregate packing and to engineer the gradations of aggregate 

base materials, especially permeable (open-graded) ones that require both permeability and long-

term stability. By adjusting the percentages of aggregates at different sizes, aggregate gradation 

can be optimized at the microstructure level for large enough void space yet still adequate for 

structural performance (strength and stability).  
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6.2.1 Roles of Particles in an Aggregate Structure 

The use of current gradation envelopes inherently assumes that aggregates of different 

sizes contribute differently to the load-carrying capacity of the aggregate assembly. The 

existence of a continuous network of coarse particles, i.e., the primary load transferring chain in 

the aggregate assembly, was long realized by previous studies (Dantu, 1957; Dobry et al., 1989). 

According to the experimental and numerical findings, the stresses in particulate media are not 

transferred in a uniform manner but are concentrated along continuous columns of particles. The 

particles in between the columns only provide lateral support but do not carry much load. The 

deformation pattern is directly related to load transfer by shear in the columns of particles. The 

orientation of the columns are primarily in the direction of the principal stresses and are also 

affected by the assembly of the grains and their shape (Tutumluer, 1995).  

 

  

(a) (b) 

Figure 6.5 (a) Contact Forces for Two-dimensional Numerical Simulation under Anisotropic 

Loading (Dobry et al., 1989) and (b) Schematic Representation of Load Transfer in the Base 

Layer (Tutumluer, 1995) 
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Aggregate base/granular subbase materials, in essence, are mixtures of the gravel 

fractions, sand fractions and fines (as per ASTM D2487-11), as explained in Chapter 5. Coarse 

aggregate grains can be deemed to enclose a void space in which finer sand particles fill; 

whereas the fines (passing No. 200 sieve or smaller than 0.075 mm) basically fill the void space 

created by the sand particles (Xiao et al., 2012). Accordingly, Lira et al. (2013) define aggregate 

base/granular subbase materials as mixtures of the Primary Structure, the Secondary Structure, 

and other material, which was reviewed in detail in Chapter 2. According to this definition, the 

Primary Structure (PS) is a range of sizes in the gradation that due to its concentration forms the 

aggregate skeleton and thus provides the load bearing capacity for the mix (Lira et al., 2013). 

Within the PS, all the particles contact with each other, with more contacts existing in stronger 

skeletons. The Secondary Structure (SS) is formed by the particles with a smaller size than the 

PS. The SS fills in the voids between the PS particles and provides stability to the aggregate 

skeleton. Finally, there are other particles which are of a size larger than the PS and just float in 

the whole matrix. Relating gradation analysis framework parameters developed in their study to 

field rutting performances of several asphalt mixtures, they found that those mixtures with a 

more balanced combination between coarse and fine material (around 60/40) showed a low rut 

depth (Lira et al., 2013). Interestingly, this 60/40 combination coincides with the optimal value 

of around 1.5 proposed from the Gravel-to-Sand ratio concept (Xiao et al., 2012). This 

coincidence further indicates the necessity to explore the underlying mechanism of aggregate 

contact and packing characteristics affecting mechanical responses and performance of unbound 

aggregate materials. 
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6.2.2 DEM Simulations for Determining Breaking-Sieve-Size  

Different criteria currently exist to define the breaking-sieve-size that separates the load-

carrying coarse fraction and the void-filling fine fraction. For instance, according to the USCS 

definition, 4.75-mm (No. 4) sieve is the breaking-sieve-size for separating “gravel” and “sand” 

sizes. The gravel-to-sand ratio concept introduced in Chapter 5 was also based on this definition. 

Therefore, the validity of the 4.75-mm sieve as the breaking-sieve-size between coarse and fine 

fractions for typical Minnesota dense gradations needs to be examined. For this purpose, DEM 

simulations were performed using the polyhedral particles, and the results are presented in the 

following sections. 

6.2.2.1 Determination of Gradation Design Alternatives  

For the purposes of illustration and saving computational time, the DEM packing 

simulation targeted Minnesota DOT (MnDOT) specified Class 6 (CL-6) gradation band, which is 

coarser than other traditional MnDOT specified gradation bands (e.g., Class 5, Class 3, etc.), as 

shown in Figure 6.6. Table 6.4 lists the detailed lower and upper bounds of the MnDOT 

specified CL-6 gradation control sieve requirements. Since it is computationally expensive and 

almost impractical to model the whole distribution of the given gradations, the smallest particle 

size simulated in the DEM packing simulation was chosen as the one passing 4.75-mm sieve and 

retained at the 2-mm sieve. Different gradation design alternatives simulated in DEM were 

created by orderly changing the minimum particle sizes, as tabulated in Table 6.4. A visual 

representation of those gradations simulated in DEM is given in Figure 6.7 with the x-axis being 

the normalized 0.45 power sieve size. Note that the use of those gradation design alternatives in 

DEM is to mimic the process of sequentially adding finer aggregates into the aggregate structure. 
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Figure 6.6 Gradation Bands Specified by MnDOT for Different Aggregate Classes 

 

 

 

  

(a) (b) 

Figure 6.7 DEM Simulated MnDOT CL-6 Gradation Alternatives: (a) CL-6 Lower Bound and 

(b) CL-6 Upper Bound 
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Table 6.4 MnDOT Specified Class 6 (CL-6) Gradation Control Specifications and DEM 

Simulated Gradation Alternatives 

Control Sieve 

Upper Limit 

(% Passing) 

Lower Limit 

(% Passing) 

mm inches Spec.* 

Design Alternatives 

Spec.* 

Design Alternatives 

#1 #2 #3 #1 #2 #3 #4 #5 

37.5 1.5 100    100 100 100 100 100 100 

25 1 100    95 0 50 90 92.3 93.8 

19 3/4 100 100 100 100 90  0 80 84.6 87.5 

9.5 3/8 85 0 50 66.7 50   0 23.1 37.5 

4.75 #4 70  0 33.3 35    0 18.8 

2 #10 55   0 20     0 

0.425 #40 30    10      

0.075 No. 200 7    0      

Note: * denotes MnDOT specified control sieve specifications (spec.). 

 

6.2.2.2 DEM Simulation Procedures  

The main objective of this DEM simulation is to study and identify the breaking-sieve-

size for CL-6 gradation band. The methodology involves the use of an image-aided aggregate 

particle generation and establishing a cubical domain to create aggregate packing model 

simulations based on the DEM. To achieve this main objective, this study was primarily focused 

on studying the upper and lower bounds of the MnDOT specified CL-6 gradation band and using 

3-dimensional (3D) polyhedral discrete aggregate particles having low and high angularity 

categories quantified by image analysis.  
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Based on the gradations given in Table 6.4, three DEM simulation gradations that 

included different fractions of the CL-6 upper bound were established. For CL-6 upper bound, 

Gradation #1 includes aggregates larger than 9.5 mm; Gradation #2 consists of aggregates larger 

than 4.75 mm; and Gradation #3 contains all aggregates larger than 2 mm. Particles smaller than 

2 mm were assumed to behave as finer particles filling the voids of the aggregate skeleton and 

were not included in the DEM packing simulation. By analogy, five different gradations were 

created for CL-6 lower bound, as tabulated in Table 6.4. 

In BLOKS3D, a rectangular container was first generated with a side dimension of 6 

times the maximum particle size, i.e., 150 mm for CL-6 upper bound and 225 mm for CL-6 

lower bound, respectively. Target gradations of different sized particles were then created from 

predefined particle shape libraries and used in the DEM simulations. As tabulated in Table 6.5, 

two particle shape libraries were used in the DEM simulations to represent high and low 

angularity levels. The flatness and elongation (F&E) ratio of aggregate particles for each shape 

library was fixed as 1:1 to specifically study the effect of different angularity levels. Each 

particle defined in libraries had equal chance of being picked up by the simulation program. Note 

that each library also contained cube-shaped particles limited to around 2.5% of all the particles 

in the simulation (Huang, 2010). The total weight (or volume) of aggregate particles for a 

specific size group of each DEM gradation were calculated according to the proportions of the 

given gradation.  
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Table 6.5 Two Particle Shape Libraries Representing High and Low Angularity Levels Used in 

DEM Simulations 

Particle Shape 

Library 

Average 

Angularity Index 

(AI) 

Flatness & 

Elongation (F&E) 

Ratio 

Visual Representation 

High 

Angularity 

600 1:1 

     

Low 

Angularity 

419 1:1 

     

 

As illustrated in Figure 6.8, the aggregate gradation samples were generated and 

compacted in accordance to the following DEM procedure: (i) generate aggregate particles as 

discrete elements (Kn=20 MN/m; Ks=10 MN/m; θ=31°) and drop them, using a gravity constant 

of 9.8 m/s2, into the rectangular container also generated as a discrete element; (ii) switch the 

gravity constant between “+” and “-“ 9.8 m/s2 a few times to obtain a uniformly packed 

assembly; (iii) compact samples using a force of 50 psi (344.7 kPa) for 10 seconds; (iv) delete 

particles if necessary so that the total aggregate weights for different DEM gradations are 

proportional according to the given gradation. Given the specific gravity of particles, the weight 

of the DEM aggregate sample and the sample air voids content can be calculated. The DEM 

simulations were repeated twice for each gradation alternative with the averages reported.  
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(a) (b) 

 
 

(c) (d) 

Figure 6.8 Illustration of DEM Particle Generation Process for (a) Gradation #1, (b) Gradation 

#2, and (c) Gradation #3 of CL-6 Upper Bound and (d) Particle Compaction Process 
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6.2.2.3 DEM Simulation Results 

Table 6.6 and Table 6.7 list for CL-6 upper bound and lower bound the DEM simulated 

packing characteristics before and after compaction, respectively. By comparing the volume and 

porosity changes of different gradations simulated by DEM, the role of a specific particle size 

can be determined. To quantify the change of volume due to the addition of finer aggregates and 

to determine the roles of aggregate particles in a specific aggregate assembly, a parameter named 

relative volume change was used (Shen and Yu, 2011). It is defined as the ratio of the total 

volume increase (or decrease) to the solid volume of added finer aggregates (see Equation 6.2). 

A value greater than 1 indicates the added finer aggregates play a role of creating additional air 

voids in the aggregate assembly, whereas a value less than 1 indicates a role of filling the 

existing air voids. Therefore, the relative volume change for Gradation #2 is calculated from the 

difference between Gradations #1 and #2, and the relative volume change for Gradation #3 is 

calculated from the difference between Gradations #2 and #3. 

Re :

1, Creating additional voids

1, Filling air voids

T T

after before

S

added particles

lativeVolume Change

V V
V

V

 
   



                                  (6.2) 

where V =relative volume change, 
T

beforeV =total sample volume before adding finer aggregates, 

T

afterV =total sample volume after adding finer aggregates, and 
S

added particlesV =solid volume of finer 

aggregates added. 

As it can be seen from Table 6.6, adding aggregates within the size range of 4.75 to 2 mm 

into the coarser aggregate assembly decreases the value of relative volume change from above 1 

to below 1. The same is true for CL6 lower bound (see Table 6.7). This means that aggregate 

particles passing 4.75 mm sieve play a role of filling the voids between larger particles instead of 
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creating additional voids. Therefore, #4 sieve (or 4.75-mm sieve) can be regarded as the breaking 

sieve size that separates the gravel-sized coarse fraction (aggregate skeleton) and sand-sized fine 

fraction for the CL-6 upper bound. This further confirms that the concept of gravel-to-sand ratio, 

presented in Chapter 5 with the 4.75 mm sieve used as the breaking sieve size, appears to be 

reasonable for typical Minnesota aggregate gradations studied.  

Other packing characteristics such as the total number of contact points and coordination 

number (average stone-on-stone contact points per particle) are listed in Table 6.6 and Table 6.7 

as well. Note that the coordination number was calculated as the ratio of total contact points 

between aggregate particles only to the total number of particles without counting the contact 

points between particles and compaction plate/rigid boundaries. The geometric stability of 

granular media under mechanical loading is commonly studied in terms of their mechanical 

coordination number, i.e., average number of load-bearing contacts per particle, at a given stage 

of loading (Antony and Kruyt, 2009). Antony and Kruyt (2009) also found that granular 

assemblies attain peak shear strength (and maximum fabric anisotropy of strong contacts) when a 

critical value of the mechanical coordination number is attained. 

In general, compaction increases the coordination number value, an indication of 

improved structural stability and load-transferring ability of aggregate skeleton. Table 6.6 and 

Table 6.7 also reflect the fact that higher imaging based angularity levels generally result in 

greater number of particle contact points and thus greater coordination numbers. The decrease of 

the coordination number after adding aggregate particles within the range of 4.75 to 2 mm 

indicates that aggregate particles smaller than 4.75 mm have no apparent contribution to 

increasing load-carrying ability. It can be regarded as another indication of the validity of using 

4.75 mm sieve as the breaking-sieve-size between coarse and fine fractions. 
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Table 6.6 DEM Packing Simulation Results (High Angularity) for CL-6 Upper Bound 

Parameter 
Gradation 

#1 

Gradation 

#2 

Gradation 

#3 

High Angularity 

Particle Size Range (mm) 19 - 9.5 19 - 4.75 19 - 2 

No. of Particles 296 1066 2415 

Volume of Particles (mm3) 967,144 1,963,852 2,918,135 

Before 

Compaction 

Total Volume 

(mm3) 
150*150*180 150*150*240 150*150*300 

Porosity 0.462 0.377 0.279 

No. of Contacts 1085 4030 8585 

Coordination Number 3.17 3.45 3.29 

Relative Volume Change - 1.35 0.84 

After 

Compaction 

Total Volume 

(mm3) 
150*150*160 150*150*210 150*150*250 

Porosity 0.232 0.202 0.135 

No. of Contacts 1434 4986 9257 

Coordination Number 4.18 4.14 3.49 

Relative Volume Change - 1.21 0.85 

Low Angularity 

No. of Particles 295 963 2479 

Volume of Particles (mm3) 984,867 315,000 2,911,390 

Before 

Compaction 

Total Volume 

(mm3) 
150*150*180 150*150*240 150*150*300 

Porosity 0.453 0.379 0.353 

No. of Contacts 983 3340 8187 

Coordination Number 2.83 3.09 2.97 

Relative Volume Change - 1.39 0.82 

After 

Compaction 

Total Volume 

(mm3) 
150*150*171 150*150*220 150*150*270 

Porosity 0.367 0.322 0.215 

No. of Contacts 1314 3774 9069 

Coordination Number 3.38 3.41 3.16 

Relative Volume Change - 1.36 0.88 
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Table 6.7 DEM Packing Simulation Results for CL-6 Lower Bound 

Parameter 
Gradation 

#2 

Gradation 

#3 

Gradation 

#4 

Gradation 

#5 

Particle Size Range (mm) 37.5 - 19 37.5 - 9.5 37.5 - 4.75 37.5 - 2 

High Angularity 

No. of Particles 40 584 960 1487 

Volume of Particles (mm3) 776,531 3,935,004 5,088,646 6,219,595 

Before 

Compaction 

Total Volume 

(mm3) 
226*226*152 226*226*234 226*226*260 226*226*300 

Porosity 0.708 0.425 0.377 0.308 

No. of 

Contacts 
36 2039 3352 5187 

Coordination 

Number 
0.55 3.10 3.13 3.09 

Relative 

Volume 

Change 

- 1.33 1.15 0.72 

After 

Compaction 

Total Volume 

(mm3) 
226*226*140 226*226*210 226*226*240 226*226*258 

Porosity 0.620 0.300 0.288 0.229 

No. of 

Contacts 
81 2576 3761 5269 

Coordination 

Number 
2.0 3.72 3.43 3.12 

Relative 

Volume 

Change 

- 1.13 1.33 0.81 

Low Angularity 

No. of Particles 42 649 1017 1497 

Volume of Particles (mm3) 807,551 3,988,209 5,195,420 6,413,676 

Before 

Compaction 

Total Volume 

(mm3) 
226*226*141 226*226*236 226*226*266 226*226*300 

Porosity 0.614 0.426 0.387 0.325 

No. of 

Contacts 
76 2105 3245 4816 

Coordination 

Number 
1.40 2.86 2.76 2.75 

Relative 

Volume 

Change 

- 1.53 1.27 0.84 

 



 199 

Table 6.7 (cont.) 

Parameter 
Gradation 

#2 

Gradation 

#3 

Gradation 

#4 

Gradation 

#5 

Particle Size Range (mm) 37.5 - 19 37.5 - 9.5 37.5 - 4.75 37.5 - 2 

Low Angularity 

No. of Particles 42 649 1017 1497 

Volume of Particles (mm3) 807,551 3,988,209 5,195,420 6,413,676 

After 

Compaction 

Total Volume 

(mm3) 
226*226*135 226*226*210 226*226*240 226*226*270 

Porosity 0.553 0.283 0.266 0.261 

No. of 

Contacts 
66 2586 3759 4741 

Coordination 

Number 
1.57 3.24 3.11 2.67 

Relative 

Volume 

Change 

- 1.34 1.26 0.47 

 

6.3 Gradation Effects Influencing Contact and Packing Characteristics of 

Aggregate Skeleton 

For unbound aggregate layers, rutting or permanent deformation caused by repeated 

traffic loads is the most important single performance indicator. This occurs due to plastic flow 

in the base or subbase layer from the re-arrangement or crushing of the aggregate particles. Field 

observations have identified strong linkage between shear strength and rutting resistance. From 

the microscopic particle contact behavior perspective, unbound aggregate rutting or other 

stability criteria can be best addressed by improving the gradation design and material selection. 

By determining the load-carrying aggregate skeleton and its quality, the mechanism involving 

aggregate interactions is addressed. For this purpose, DEM packing simulation using different 

gradations was pursued to evaluate the gradation effects influencing the contact and packing 

characteristics of aggregate skeleton. 
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6.3.1 Determination of Gradation Design Alternatives  

According to the gravel-to-sand ratio concept presented in Chapter 5, an optimum 

gradation was recommended for a drainable base that satisfies the current MnDOT gradation 

specification for unbound permeable aggregate base (PAB). In order to further validate this 

result, the DEM simulation targeted MnDOT specified gradation band for unbound PAB. 

Different gradations were created by adjusting the percent passing values of the control sieves 

tabulated in Table 6.8. Table 6.8 also lists the percent passing values used to create the individual 

gradation curves, which were then studied using both analytical gradation analysis framework 

(reviewed in Chapter 2) and DEM simulations for their effects on the contact and packing 

characteristics of aggregate skeleton.  

Table 6.8 MnDOT Specified Gradation Control Sieves for Unbound PAB  

Control Sieve Upper Limit 

(% Passing) 

Lower Limit 

(% Passing) 

% Passing Values Considered 

mm inches 

25 1 100 100 100 

19 3/4 100 65 65, 72, 79, 86, 93, 100 

9.5 3/8 70 35 35, 40, 45, 50, 55, 60, 65, 70 

4.75 #4 45 20 20, 25, 30, 35, 40, 45 

2 #10 25 8 8, 16, 25 

0.425 #40 10 2 2, 6, 10 

0.075 No. 200 3 0 0, 1.5, 3 
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The individual grain size distributions studied are to realistically represent possible 

different new aggregate gradations that may be received from a pit/quarry source and all satisfy 

the MnDOT specified unbound PAB gradation requirements. Only the percent passing value for 

one control sieve was changed at a time, and the others were kept constant as the mid-range. In 

total, a full factorial of 686333=7776 different individual gradation curves can be possibly 

generated with all falling within the MnDOT specified unbound PAB gradation band (see Table 

6.8). However, the main objective of this gradation analysis is not to exhaust all the possible 

gradation curves but to identify the relative importance of each control sieve in governing 

aggregate packing characteristics. Therefore, special attention will be paid to the most important 

control sieves to achieve structural stability. 

6.3.2 Analysis Results of the Analytical Gradation Framework 

Different packing parameters have been proposed based on the analytical packing theory 

(spherical particles) based gradation framework to evaluate the unbound materials performance. 

The primary structure porosity (PS porosity) and PS coordination number were used to evaluate 

the resilient modulus property, whereas the disruption potential (DP) was used to evaluate the 

permanent deformation behavior (Yideti et al., 2013). Table 6.9 lists for each gradation curve the 

gradation analysis results using the aforementioned analytical framework, including the range of 

sizes that form Primary Structure (or aggregate skeleton), the Primary Structure Porosity, and the 

Coordination Number. As it can be seen, #4 sieve (or 4.75-mm sieve) is calculated as the 

breaking sieve size that separates the Primary Structure and Secondary Structure for the majority 

of those gradation curves. 
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Table 6.9 Analytical Gradation Analysis Results for MnDOT Specified PAB Gradation Band 

Control Sieve 

(mm) 
% Passing 

PS Range 

(mm) 

% Material Retained PS 

Porosity 

Coordination 

Number m PS SS O 

19 

100 - 0 100 0 1.00 2.8 

93 9.5 - 4.75 60.5 32.5 7 0.35 8.7 

86 9.5 - 4.75 53.5 32.5 14 0.38 8.0 

79 19 - 4.75 67.5 32.5 0 0.33 9.4 

72 19 - 4.75 67.5 32.5 0 0.33 9.4 

65 9.5 - 4.75 32.5 32.5 35 0.50 5.9 

9.5 

70 19 - 9.5 30 70 0 0.70 4.1 

65 19 - 4.75 67.5 32.5 0 0.33 9.4 

60 19 - 4.75 67.5 32.5 0 0.33 9.4 

55 19 - 4.75 67.5 32.5 0 0.33 9.4 

50 19 - 4.75 67.5 32.5 0 0.33 9.4 

45 19 - 9.5 55 45 0 0.45 6.6 

40 - 0 100 0 1.00 2.8 

35 - 0 100 0 1.00 2.8 

4.75 

45 19 - 9.5 47.5 52.5 0 0.53 5.6 

40 19 - 9.5 47.5 52.5 0 0.53 5.6 

35 19 - 4.75 65 35 0 0.35 8.7 

30 19 - 4.75 70 30 0 0.30 10.2 

25 19 - 4.75 75 25 0 0.25 12.4 

20 19 - 4.75 80 20 0 0.20 15.8 

2 

25 19 - 4.75 67.5 32.5 0 0.33 9.4 

16 19 - 4.75 67.5 32.5 0 0.33 9.4 

8 19 - 4.75 67.5 32.5 0 0.33 9.4 

0.425 

10 19 - 4.75 67.5 32.5 0 0.33 9.4 

6 19 - 4.75 67.5 32.5 0 0.33 9.4 

2 19 - 4.75 67.5 32.5 0 0.33 9.4 

0.075 

3 19 - 4.75 67.5 32.5 0 0.33 9.4 

1.5 19 - 4.75 67.5 32.5 0 0.33 9.4 

0 19 - 4.75 67.5 32.5 0 0.33 9.4 

Notes: “-“ denotes that no obvious Primary Structure exists according to the analytical 

framework; PS=Primary Structure (or aggregate skeleton); SS=Secondary Structure; O=Other 

materials floating in the aggregate matrix; and the theory was developed by Yideti et al. (2013). 
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Figure 6.9 graphically plots the PS Porosity and Coordination Number results against 

different percent passing values at each control sieve. Note that these results plotted were 

computed by using the analytical gradation framework that was developed by Yideti et al. (2013) 

based on ideal arrangement of spherical particles. It can be seen from Figure 6.9(c) that 

increasing percent passing #4 sieve steadily decreases the coordination number, an indicator of 

the quality of the formed aggregate skeleton. As expected, particles smaller than 2 mm have no 

influence on the primary structure, as shown in Figure 6.9(d). This is due to the fact that the 

smallest particle size of the primary structure is limited to 2 mm (Yideti et al., 2013).  

Based on the results presented in Figure 6.9, it is recommended that percent passing #4 

sieve (or 4.75-mm sieve) be kept at lower bound (i.e., 20) in order to maximize the coordination 

number for structural stability of the Primary Structure. Meanwhile, percent passing 19-mm and 

9.5-mm sieve could be kept around the corresponding mid-ranges, i.e., 80 and 60, respectively. 

Table 6.10 lists the optimum unbound PAB gradation in terms of maximum coordination number 

for structural stability and load transferring capacity of aggregate skeleton, which is obtained 

according to the aforementioned analytical gradation analysis results. Note that although percent 

passing 2-mm sieve has no effect on either porosity or coordination number in Figure 6.9, it was 

selected as 15 so that it falls within the range between 20 (percent passing 4.75-mm sieve) and 

10 (percent passing 0.425-mm sieve). Except the percent passing values at two sieve sizes (i.e., 

19 mm and 4.75 mm), it turns out to be reasonably close to the one recommended in Chapter 5 

for use at MnROAD construction based on the gravel-to-sand ratio concept.  

 



 204 

  

(a) 

  

(b) 

  

(c) 

  

(d) 

Figure 6.9 Relative Importance of Each Control Sieve in Primary Structure Porosity and 

Coordination Number from Spherical Packing Theory based Analytical Framework: (a) 19 mm, 

(b) 9.5 mm, (c) 4.75 mm, and (d) 2 mm 
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Table 6.10 Recommended Unbound PAB Gradation based on Packing Characteristics 

Sieve Size 

(mm) 
25 19 9.5 4.75 2 0.425 0.075 

% Passing 

Recommended by Packing Theory based Analytical Gradation Framework 

100 80 60 20 15 10 3 

Recommended by Gravel-to-Sand Ratio Concept 

100 92 61 41 24 10 3 

Note: the percent passing values at two sieve sizes, i.e., 19 mm and 4.75 mm are different 

between the two methodologies. 

 

The packing theory based analytical gradation framework was derived from the densest 

packing conditions of spherical particles (Yideti et al., 2013), whereas the optimal gravel-to-sand 

ratio of around 1.5 (for AASHTO T180 modified Proctor compaction) was observed from 

experimental results of a comprehensive aggregate database archived by MnDOT (Xiao et al., 

2012). Therefore, the reasonably good match between the optimal gradations recommended by 

both approaches further indicates that there indeed exists an optimal ratio between the coarse 

(aggregate skeleton) and fine (void-filling) fractions in the aggregate assembly. Note that the 

methodology presented herein for MnDOT PAB gradation band can be readily extended to 

MnDOT traditional Class 5 and 6 bands as well. 
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6.3.3 DEM Packing Simulation Results 

This section presents the verification results of the packing theory based framework using 

spherical particles against DEM packing simulation using polyhedral particles. DEM packing 

simulation was performed on a selection of gradations tabulated in Table 6.9 to verify the 

analysis results of the analytical gradation framework. The same DEM procedure as presented 

previously was followed. It is worth mentioning that the DEM code BLOKS3D employed herein 

currently cannot model individual particles as perfect spheres as assumed by the analytical 

gradation framework. The goal of the DEM simulation is to simulate the packing characteristics 

of different coarse aggregate structures, and to identify how the degree of aggregate contact and 

interlocking changes with varying percentages of material passing each individual sieve size. 

The effect of aggregate angularity was also considered directly by choosing different particle 

shape from pre-established shape library. The packing characteristic parameters obtained from 

the DEM simulation provide a promising approach to estimate the proper packing via stone-on-

stone contacts in the aggregate skeleton without the need for experiments. Eventually, a direct 

linkage between aggregate gradation and mechanical performance of the aggregate assembly will 

be needed for optimizing the aggregate gradation design.  

The minimum particle size simulated in the DEM is the one that retained on 4.75-mm 

sieve, according to the calculation results of the analytical gradation framework. The percent 

passing value for each of the two chosen control sieve sizes (i.e., 19 mm and 9.5 mm) was 

changed from upper bound, mid-range to lower bound at a time, and the others were kept 

constant as the mid-range, as shown in Table 6.11. The process of the DEM simulation involves 

three major steps. First, polyhedron particles are generated in the computer according to the 

target gradation. These particles are added to a square box (0.15*0.15*0.15 m) under a 

unidirectional gravitational force. Next, particles are compacted by the applied force to its stable 
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position. Finally, the volumetric properties and the mean contact force are calculated. Since the 

DEM aggregate samples of different gradations were compacted using the same amount of 

compaction energy, the resulting density and porosity levels could be different. In this study, the 

porosity was used as an indicator of the achieved density after compaction.  

The DEM simulation results are shown in Figure 6.10 and tabulated in Table 6.11. The 

DEM simulated coordination number increases with increasing percentage of material passing 

19-mm sieve, which is different than the trend predicted by the packing theory based analytical 

framework. The trend of the coordination number vs. percentage of material passing 9.5 mm 

sieve is, however, consistent with that predicted by the analytical framework. Therefore, to 

maximize the coordination number, the optimal unbound PAB gradation should be close to the 

upper bound at the 19-mm sieve and be close to the mid-range at the 9.5-mm sieve. The optimal 

gradation predicted by the gravel-to-sand ratio is found to be in agreement with the DEM 

simulation results. 

Table 6.11 Packing Characteristics Obtained from DEM Simulation for Unbound PAB 

Control 

Sieve Size 

(mm) 

% 

Passing* 

Particle 

Volume 

(mm3) 

No. of 

Particles 
Porosity 

No. of 

Contacts 

Coordination 

Number 

High Angularity 

19 

100 1,554,455 629 0.200 2986 4.13 

82.5 1,471,804 326 0.243 1348 3.56 

65 1,462,115 253 0.248 1034 3.22 

9.5 

70 5,199,771 1496 0.271 5545 3.43 

52.5 5,737,862 1316 0.263 5034 3.49 

35 5,712,392 1128 0.278 4446 3.35 

Note: * % Passing for each of the sieve sizes other than the control one is kept at the mid-range. 
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(a) 

  

(b) 

Figure 6.10 Relative Importance of Each Control Sieve in Primary Structure Porosity and 

Coordination Number from DEM Packing Simulation (High Angularity): (a) 19 mm and (b) 9.5 

mm 
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6.4 DEM Validation of the Gravel-to-Sand Ratio Concept 

In view of the slight difference in recommended optimal gradation between the Gravel-

to-Sand ratio concept and the packing theory based analytical gradation framework, DEM 

simulations were first performed on five different gradations (see Figure 6.11) with the G/S ratio 

values of 1.0, 1.6, 2.0, and 2.5, respectively. Those different gradations were selected from the 

current MnDOT specified gradation band for unbound permeable aggregate base (UPAB). The 

main objective was to verify if the recommended UPAB gradation (in Chapter 5) for MnROAD 

2013 construction cycle outperforms others in terms of both structural stability (as characterized 

by coordination number) and drainability (as characterized by porosity). Intermediate G/S ratio 

values of 1.2, 1.5, 1.7, 1.8, and 2.2 were also added subsequently into the DEM simulation. 

 

Figure 6.11 DEM Simulated Gradation Curves with Varying G/S Ratios 

 

Note that the gradation with a G/S ratio of 1.0 lies outside of the MnDOT unbound PAB 

gradation band, because the minimum G/S ratio calculated for such gradation band is 1.4 (see 
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Figure 5.9(b)). The inclusion of the gradation with Dmax=19 mm and G/S=1.6 was to study the 

effect of the maximum aggregate size, while the maximum aggregate size for all other gradations 

was chosen as 25 mm. Two different aggregate angularity levels, i.e., high and low, were also 

considered to include the interaction effects of grain size and particle shape. Note that instead of 

simulating the entire particle size distribution, the minimum particle size simulated in DEM was 

2 mm in order to avoid a long run time. The DEM procedure followed was presented previously. 

Figure 6.12 and Figure 6.13 show the final compacted aggregate assemblies in the DEM 

simulations for different gradations with G/S ratio values of 1.0, 1.6, 2.0, and 2.5, respectively. 

Table 6.12 lists the contact and packing characteristic parameters obtained from the DEM 

simulations for both high and low angularity levels. As it can be seen, the G/S ratio of 1.6 results 

in the highest coordination number due to the densest packing (indicated by the lowest porosity). 

Therefore, the optimal G/S ratio of 1.6 observed in Chapter 5 from experimental results agrees 

well with the DEM simulation results using the 3D polyhedral particles with realistic aggregate 

shapes. The recommended optimal gradation for unbound PAB in Chapter 5 exhibits better 

contact and packing characteristics of aggregate skeleton as compared to others; hence, it is 

expected to yield better structural stability in the field while still satisfying the MnDOT unbound 

PAB gradation band requirements. It can also be observed from Figure 6.14 that the coordination 

number increases with increasing aggregate angularity level, whereas the porosity decreases with 

increasing aggregate angularity level. This indicates that more angular aggregates are expected to 

have better structural stability (e.g., shearing and rutting resistance) as represented by higher 

coordination number and lower porosity. Further DEM simulations of triaxial compression tests 

may prove this postulation made based on particle packing and contact characteristics. 
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(a) 

  

(b) 

Figure 6.12 Final Compacted Aggregate Samples in DEM Simulation for Different G/S ratio 

Values: (a) 1.0 and (b) 1.6 (Left: Low AI; Right: High AI) 
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(c) 

  

(d) 

Figure 6.13 Final Compacted Aggregate Samples in DEM Simulation for Different G/S ratio 

Values: (a) 2.0 and (b) 2.5 (Left: Low AI; Right: High AI) 
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Table 6.12 Packing Characteristics Obtained from DEM Simulation for Different G/S Ratios 

Angularity 

Level 

G/S 

Ratio* 

Particle 

Volume 

(mm3) 

No. of 

Particles 
Porosity 

No. of 

Contacts 

Coordination 

Number 

High 

1.0 4,051,234 1499 0.198 5456 3.21 

1.6 4,219,308 1688 0.183 7483 3.67 

2.0 4,217,466 1274 0.181 5122 3.52 

2.5 4,221,270 1164 0.248 4422 3.34 

Low 

1.0 4,057,460 1399 0.248 4383 2.64 

1.6 3,971,062 1498 0.235 5161 2.98 

2.0 4,069,062 1189 0.241 4027 2.87 

2.5 4,046,569 1103 0.270 3961 2.80 

Note: * maximum aggregate size Dmax=25 mm. 

 

 

  

(a) (b) 

Figure 6.14 DEM Calculated (a) Coordination Number and (b) Porosity versus G/S Ratio for 

High and Low Angularity Levels 
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Figure 6.15 shows the cumulative distribution of the internal contact forces for three 

different G/S ratio values. As it can be seen, the G/S ratio of 1.6 results in the least internal 

contact forces as compared to the other two, while the G/S ratio of 1.0 results in the highest 

internal contact forces. The difference of internal contact force distribution between G/S ratio 

values of 1.6 and 2.0 is not very significant, indicating the approximate optimal range of G/S 

ratio from 1.6 to 2.0. Figure 6.16 and Figure 6.17 give the visual representations of the internal 

contact force vectors for G/S ratio values of 1.0 and 1.6 from different views, respectively. It can 

be seen that the G/S ratio of 1.6 results in more uniformly distributed internal contact force 

vector. This indicates better structured aggregate skeleton with well-connected force chains can 

be expected from the optimal G/S ratio of 1.6.  

 

 

Figure 6.15 Comparison of Internal Contact Force Distributions for Three Different G/S Ratios 
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The close-up comparison of 3D contact force vectors is shown in Figure 6.19 for G/S 

values of 1.0 and 1.6 and in Figure 6.20 for G/S value of 2.5, respectively. The contact force 

vector plots were obtained at the same time step for aggregate samples with different G/S ratios 

that were tested in DEM under an applied normal force of 72 kN. The comparison between 

Figure 6.19 and Figure 6.20 clearly shows that aggregates with a G/S ratio of 1.6 somewhat 

indicate a clear, well-connected contact force chain network as compared to those with other G/S 

ratios. Also, aggregate samples having smooth surfaces have a relatively wider and scattered 

contact force bands than angular ones having rough surfaces. This could be attributed to the 

effects of aggregate angularity and surface texture. 
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(a) (b) 

  

(c) (d) 

Figure 6.16 Illustration of DEM Calculated Internal Contact Force Vectors for G/S=1.0 with 

High Angularity Level: (a) X-Z Plane View, (b) Y-Z Plane View, (c) X-Y Plane View, and (d) 

Three Dimensional (3D) View 
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(a) (b) 

  

(c) (d) 

Figure 6.17 Illustration of DEM Calculated Internal Contact Force Vectors for G/S=1.6 with 

High Angularity Level: (a) X-Z Plane View, (b) Y-Z Plane View, (c) X-Y Plane View, and (d) 

Three Dimensional (3D) View 
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(a) (b) 

  

(c) (d) 

Figure 6.18 Illustration of DEM Calculated Internal Contact Force Vectors for G/S=2.5 with 

High Angularity Level: (a) X-Z Plane View, (b) Y-Z Plane View, (c) X-Y Plane View, and (d) 

Three Dimensional (3D) View 
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(a) 

 
(b) 

Figure 6.19 3D View of DEM Calculated Internal Contact Force Vectors for High Angularity 

Level: (a) G/S=1.0 and (b) G/S=1.6 
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Figure 6.20 3D View of DEM Calculated Internal Contact Force Vectors for High Angularity 

Level: G/S=2.5 

 

6.5 Summary 

In this chapter, a validated DEM model was employed for evaluating the gradation effect 

on both packing characteristics and load-carrying performance of unbound aggregate materials. 

DEM model parameters were first determined from calibrating an image-aided DEM program 

BLOKS3D developed at the University of Illinois (Zhao et al., 2006) against laboratory rapid 

shear strength (triaxial compression) test results. The predicted deviator stresses matched closely 

with those from the experiments, indicating the capability of the developed DEM model to 

reproduce the typical shear strength results of unbound aggregate materials. For future efforts, 

the calibrated DEM model has the potential for optimizing the selection of size and shape 

properties of various types of unbound aggregates to achieve desired shear strength (or rutting 
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resistance) and hydraulic conductivity or drainage characteristics (function of aggregate shape 

and air void distribution) for open-graded permeable aggregate base. 

The DEM packing simulations using different gradations and particle shape properties 

were performed to investigate the validity of using the 4.75-mm sieve (or No. 4 sieve) as the 

breaking-sieve-size for typical Minnesota dense-graded aggregates. The process involved the use 

of an image-aided aggregate particle generation and establishing a cubical domain to create 

aggregate packing model simulations based on the DEM. The focus was on studying the upper 

and lower bounds of the MnDOT specified CL-6 gradation band and using 3-dimensional (3D) 

polyhedral discrete aggregate particles with both low and high angularity categories quantified 

by image analysis. It was found from the DEM simulation results that #4 sieve (or 4.75-mm 

sieve) could be regarded as the breaking sieve size that separated the Primary Structure and 

Secondary Structure for the CL-6 gradation band. This further confirms that the concept of 

gravel-to-sand ratio presented in Chapter 5 that uses 4.75 mm sieve as the breaking sieve size 

appears to be working well for typical Minnesota aggregate gradations studied. 

Based on the DEM approach, current unbound permeable aggregate base (PAB) material 

gradations specified by Minnesota DOT were further engineered by optimizing the particle 

contact and packing characteristics and minimizing the overall rutting potential (based on shear 

strength behavior) to still accommodate desired drainage requirements. The optimal gradation 

proposed in Chapter 5 for unbound permeable aggregate base (UPAB) materials according to the 

Gravel-to-Sand ratio concept was also verified. To maximize the coordination number, the 

optimal unbound PAB gradation should be close to the upper bound at the 19-mm sieve and be 

close to the mid-range at the 9.5-mm sieve. The optimal gradation predicted by the Gravel-to-

Sand ratio was found to agree more closely with the DEM simulation results that took into 
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account the realistic 3D shape properties, as compared to that predicted by the packing theory 

based analytical gradation framework. 

Finally, DEM simulations were performed on three different gradations with the G/S 

ratio values of 1.0, 1.6, and 2.0, respectively. The three different gradations were all chosen from 

the current MnDOT specified gradation band for unbound permeable aggregate base (UPAB). 

The main objective is to verify if the recommended UPAB gradation for MnROAD 2013 

construction cycle outperforms others in terms of both structural stability (as characterized by 

coordination number) and drainability (as characterized by porosity). The G/S ratio of 1.6 

resulted in the highest coordination number due to the achieved densest packing (indicated by the 

lowest porosity). Therefore, the optimal G/S ratio of 1.6 observed in Chapter 5 from 

experimental results agrees well with DEM simulation using 3D polyhedral particles with 

realistic aggregate shape properties. 
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Chapter 7 Unified Approach to Unbound Aggregate Permanent 

Deformation Modeling Based on Shear Strength 
 

This chapter introduces viable criteria for ranking the long-term rutting potentials of 

unbound granular materials based on the shakedown theory and developing a unified approach 

for modeling permanent deformation behavior. This approach effectively takes into account 

various aggregate physical properties and field stress states due to moving wheel loads and thus 

can be applied with greater confidence to actual field conditions. This way, consequences of 

using different qualities of aggregates including local marginal and recycled materials can be 

effectively evaluated for a sustainable yet reliable utilization in pavement construction.  

This chapter deals with utilizing two comprehensive aggregate mechanistic property 

databases recently compiled at the University of Illinois from a number of research studies 

spanning almost two decades. The first data source of unbound aggregate permanent deformation 

results of laboratory RLT tests was from the FAA’s National Airport Pavement Test Facility 

(NAPTF) research study (Kim and Tutumluer, 2006). The second data source of unbound 

aggregate permanent deformation results of laboratory RLT tests is from an Illinois Center for 

Transportation (ICT) research project (Tutumluer et al., 2009). As presented in Chapter 3, 

resilient modulus, shear strength, and permanent deformation test data for several base/subbase 

aggregate materials used in highway and airport pavement foundation layers are included in this 

database. 

7.1 Evaluating MEPDG Rutting Model for Unbound Aggregates 

The AASHTOWare Pavement ME Design (formerly DARWin-ME) and the AASHTO 

Mechanistic-Empirical Pavement Design Guide Manual of Practice (MEPDG) provide a 
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methodology for the analysis and performance prediction of pavements (ARA, 2004). Although 

the rutting performance of flexible pavements is known to be closely related to properties of the 

subgrade and underlying layers (i.e., base and/or subbase), the rut depth predicted by this 

methodology has been found to show a low sensitivity to the properties of underlying layers. 

This methodology also does not always reflect the extent of the anticipated effect. Therefore, 

there is a need to evaluate the rutting prediction procedures contained in the Pavement ME 

Design and to identify or develop enhancements to ensure that the procedures appropriately 

account for the influence of subgrade and unbound layers on the rutting performance of flexible 

pavements (NCHRP 01-53, 2014).  

As reviewed in Chapter 2, the original Tseng and Lytton model (1989) is formulated as in 

Equation 7.1 where the regression coefficients ε0, β, and ρ, regarded as material constants, are 

obtained from laboratory RLT tests by fitting permanent strains against the number of load 

applications. Relating permanent strain with resilient strain and the number of loading cycles, the 

model was developed based on repeated load triaxial tests for a large number of loading cycles at 

which the material response became stable. Empirical relationships were also developed by 

Tseng and Lytton (1989) to estimate those material constants from water content (wc), bulk stress 

(θ) and resilient modulus (Er).  
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The original Tseng and Lytton model was modified and calibrated by El-Basyouny et al. 

(2005) for implementation into the current MEPDG. As shown in Equation 7.2, it normalizes the 

predicted permanent strain to the resilient strain and thus requires knowledge of resilient 

modulus as well.  
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where ωc is moisture content (%); σd and σθ are deviator stress (psi) and bulk stress (psi), 

respectively; ε0, β, and ρ are material constants; εr and Er is resilient strain and resilient modulus 

(psi), respectively; and a1=0.15, b1=0, a9=20, and b9=0 are the fitting parameters finally selected 

by the Arizona State University (ASU) researchers after a considerable study to provide the best 

prediction for a wide range of unbound material types. Note that b1=0 and b9=0 lead to a constant 

C0 value and the independency of parameter  on the resilient modulus E in Equation 7.2.  

Both models correlate rutting in the unbound layers inversely with resilient modulus, 

resulting in the general misunderstanding that a high modulus is regarded to lead to high rutting 

resistance. It has recently been observed in the field that significant rutting can still be exhibited 

by unbound aggregate materials with high resilient modulus properties under service traffic loads 
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(Puppala et al., 2005). It is not necessarily valid to assume less permanent deformation for high 

resilient modulus properties. Furthermore, the “universal” constants of the MEPDG rutting 

model, as well as its general applicability to a wide range of materials, still remain debating and 

need to be validated further for it to become a truly universal model; otherwise, it cannot be 

expanded to unbound granular materials with confidence. For instance, Hashem and Zapata 

(2013) recently found that the use of a9=50 yielded better prediction results as compared to a9=20 

adopted in the current MEPDG model. They also developed new prediction equation for β by 

replacing resilient modulus with shear stress/strength ratio. In a study of permanent deformation 

behavior of geogrid-reinforced flexible pavements using small scale accelerated pavement 

testing, Tang (2011) recalibrated the two constants b1 and b9 in the MEPDG rutting model (see 

Equation 2.26), instead of adopting nationally calibrated zero values, for subgrade soils using 

field APT subgrade rutting measurements. By doing so, the effects of stiffness of the unbound 

layer on the material constant   were properly accounted for. 

7.1.1 Applicability for Dynamic Stress States Induced by Moving Wheel Loading 

Under the application of moving wheel loads, unbound pavement layers are constantly 

subjected to dynamic stress states. That is, not only changes the magnitude of the load, but also 

the direction of the principal axes of the stresses rotates during the approaching and the departure 

of moving wheels. In this section, the original Tseng and Lytton model (1989) and nationally 

calibrated MEPDG rutting model for unbound granular materials are verified against laboratory 

triaxial test results obtained using both constant and varying confining pressure tests performed 

on two different types of base/subbase aggregates (i.e., FAA P209 and P154 materials). 

Permanent deformation data from laboratory RLT tests, as described previously, were first 

analyzed to obtain the accumulated permanent strain due to different loading along multiple 
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stress paths and different aggregate physical properties, respectively. Both permanent strain 

models were used to calculate the accumulated permanent strain after the corresponding number 

of load applications, respectively. The model parameters ε0, β, and ρ were solved for based on 

the least square error between the measured and calculated permanent strains.  

Table 7.1 and Table 7.2 list such parameters obtained using this approach for FAA P209 

and P154 materials, respectively. In both Tables, each CCP stress state applied is denoted by the 

constant radial confining stress σ3 (psi) and the pulsed axial deviator stress σd (psi). For example, 

the stress state of 3-psi constant confining pressure and 9-psi axial deviator stress is denoted as 

“3/9”. On the other hand, each VCP stress state applied is denoted by the constant hydrostatic 

confining stress σs (psi), followed sequentially by the vertical deviator stress σ1d (psi) and the 

horizontal deviator stress σ3d (psi). For example, the stress state of 3-psi constant hydrostatic 

confining stress, 11-psi vertical deviator stress, and 3-psi horizontal deviator stress is denoted as 

“3/11/3”. High R2 values close to 1 listed in both Tables indicate that the Tseng and Lytton 

model form can fit very well the permanent deformation curves obtained at each dynamic stress 

state.  
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Table 7.1 Permanent Strain Model Parameters for Stress Path Loading RLT Tests of FAA P209 

Material 

Material 
Stress Path 

Slope m 

Stress 

State 

(psi) 

RLT Test Results Model Parameters 

εr 

(%) 

MR 

(ksi) 
ε0 ρ β R2 

FAA 

P209 

 

3 

03/09 - - 0.13 0.61 0.10 0.962 

03/15 - - 0.53 9.67 0.20 0.999 

03/21 - - 0.59 1.59 0.19 0.999 

03/27 0.14 19.59 0.88 0.64 0.18 0.997 

05/15 0.08 18.73 0.42 40.00 0.28 0.999 

05/25 0.11 22.46 0.83 76.97 0.13 0.998 

05/35 0.14 25.53 0.94 3.12 0.17 0.998 

05/45 0.15 29.32 1.30 2.11 0.22 0.997 

08/24 0.09 26.92 0.66 7.51 0.18 0.999 

08/40 0.12 33.76 0.72 5.33 0.17 0.995 

08/56 0.15 36.76 0.86 3.20 0.18 0.999 

10/30 0.09 33.67 0.45 1.41 0.15 0.999 

10/50 0.14 35.30 0.87 5.26 0.14 0.998 

12/36 0.10 38.21 0.56 3.11 0.19 0.998 

12/60 0.13 43.09 0.79 24.12 0.12 0.998 

1.5 

3/11/3 0.11 8.72 0.45 27.69 0.21 0.998 

3/18/4 0.23 6.77 1.01 25.77 0.19 1.000 

3/24/6 0.23 8.85 0.94 15.17 0.21 0.998 

3/32/8 0.17 11.40 0.85 78.35 0.17 0.995 

5/18/4 0.05 30.38 0.51 17117.33 0.11 0.997 

5/29/7 0.16 13.80 0.65 15.04 0.22 0.997 

8/28/7 0.12 19.01 0.65 216.83 0.16 0.998 

8/47/12 0.18 14.38 0.81 22.90 0.19 0.999 

10/35/9 0.16 15.63 0.84 107.43 0.16 0.999 
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Table 7.1 (cont.) 

Material 
Stress Path 

Slope m 

Stress 

State 

(psi) 

RLT Test Results Model Parameters 

εr 

(%) 

MR 

(ksi) 
ε0 ρ β R2 

FAA P209 0 

3/9/9 0.04 5.90 0.26 64.63 0.25 0.998 

3/16/16 0.07 7.00 0.40 111.56 0.19 0.999 

3/22/22 0.08 8.33 0.41 13.40 0.21 0.998 

3/28/28 0.08 9.38 0.46 36.17 0.19 0.997 

5/16/16 0.05 8.97 0.34 55.76 0.19 0.998 

5/26/26 0.07 9.35 0.56 38.85 0.17 0.999 

5/37/37 0.10 8.82 0.69 23.26 0.17 0.999 

5/47/47 0.09 11.84 0.72 251.46 0.14 0.999 

8/25/25 0.06 11.40 0.46 218.91 0.17 0.998 

10/32/32 0.06 15.01 0.35 50.52 0.19 0.998 

Note:  “-“ denotes that information is not available. 
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Table 7.2 Permanent Strain Model Parameters for Stress Path Loading RLT Tests of FAA P154 

Material 

Material 
Stress Path 

Slope m 

Stress 

State 

(psi) 

RLT Test Results Model Parameters 

εr 

(%) 

MR 

(ksi) 
ε0 ρ β R2 

FAA 

P154 

 

3 

03/09 0.06 12.63 0.28 21399.12 0.07 0.98 

03/15 0.10 13.03 0.40 4.26 0.15 0.99 

03/21 0.06 14.81 0.62 99.25 0.19 0.99 

03/27 0.14 15.48 0.56 1.13 0.21 0.98 

05/15 0.08 16.73 0.31 3.16 0.15 0.97 

05/35 0.16 20.33 0.53 3.72 0.13 0.98 

08/24 0.11 20.55 0.39 55.78 0.10 0.99 

08/40 0.17 21.37 0.48 3.44 0.14 0.99 

1.5 

3/11/3 0.07 12.36 0.23 6023.60 0.09 0.97 

3/18/4 0.11 10.97 0.45 203.92 0.10 0.99 

3/24/6 0.12 15.29 0.57 0.44 0.15 0.98 

3/32/8 0.15 14.42 0.61 642.36 0.08 0.98 

5/18/4 0.09 16.23 0.41 2.50 0.17 0.99 

5/29/7 0.12 18.78 0.38 0.86 0.15 0.96 

5/41/10 0.14 21.59 0.41 0.31 0.13 0.96 

0 

3/9/9 0.05 4.04 0.32 2004.22 0.09 0.98 

3/16/16 0.07 6.48 0.50 9074.76 0.07 0.99 

3/22/22 0.07 6.12 0.31 3.98 0.13 0.98 

3/28/28 0.10 6.30 0.56 22423.59 0.07 0.98 

5/16/16 0.06 7.26 0.20 10.75 0.14 0.99 

5/26/26 0.08 7.68 0.37 1417895.27 0.05 0.93 

5/37/37 0.12 7.68 0.63 5974252.02 0.05 0.96 
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The regressed parameters ε0/εr, β, and ρ were then compared with those estimated from 

the original Tseng and Lytton’s empirical relationships (see Equation 7.1) and with the universal 

constants of the MEPDG model (see Equation 7.2), respectively. Note that the original 

regression coefficients in Tseng and Lytton’s empirical relationships (Equation 7.1) provided 

poor estimates for model parameters ε0/εr, β, and ρ in terms of very low R2 values; therefore, 

they were re-calculated by regressing fitted parameters ε0/εr, β, and ρ against the same 

independent variables in the original relationships (Equation 7.1), i.e., moisture content, bulk 

stress and resilient modulus, respectively. The relationships between the measured and predicted 

values of ε0/εr, β, and ρ are plotted in Figure 7.1 and Figure 7.2 for FAA P209 and P154 

materials, respectively.  

It can be seen from both Figure 7.1 and Figure 7.2 that low R2 values were overall 

observed for all three stress path slopes by using the Tseng and Lytton’s empirical relationships, 

even though the regression coefficients were recalculated. This indicates that the model 

parameters of Tseng and Lytton’s permanent strain model vary significantly with applied stress 

states along different stress paths. As contrary to current practice, relying on resilient modulus 

and bulk stress alone may not be sufficient enough to provide accurate prediction of rutting 

accumulation, especially for in-situ moving wheel load conditions. Note that the current MEPDG 

permanent strain model, simplified from the original Tseng and Lytton’s model, eliminates the 

dependence of model parameters on stresses and resilient moduli; instead, they are only 

dependent on moisture content. This explains why the same model parameters were obtained 

regardless of applied stress states. As shown in Figure 7.1 and Figure 7.2, such simplification 

apparently results in poor permanent deformation prediction that contradicts laboratory RLT test 

results. 
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(a) (b) 

 

 

(c) (d) 

Figure 7.1 Relationship between Laboratory Measured and Predicted Values of (a) log(ε0/εr), (b) 

logβ and (c) logρ by the Tseng & Lytton Model Form and (d) by the MEPDG Model for P209 

Material  
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(a) (b) 

 

 

(c) (d) 

Figure 7.2 Relationship between Laboratory Measured and Predicted Values of (a) log(ε0/εr), (b) 

logβ and (c) logρ by the Tseng & Lytton Model Form and (d) by the MEPDG Model for P154 

Material  

 

7.1.2 Applicability for Different Aggregate Physical Properties 

The above section demonstrated that neither the Tseng and Lytton’s empirical 

relationships nor the MEPDG “universal” constants can accurately predict the rutting model 

parameters for different dynamic stress states. Therefore, both of them cannot be regarded as 

truly universal and be adapted with confidence for a specific material subject to a much wider 

range of dynamic stress states. In this section, efforts are paid to further verify the applicability 
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of the Tseng and Lytton’s empirical relationships and the MEPDG “universal” constants to 

different aggregate materials that are of varying combinations of common aggregate physical 

properties but are subject to the same CCP stress state (15-psi axial deviator stress and 15-psi 

constant confining pressure). 

Table 7.3 through Table 7.5 list the permanent strain model parameters of the original 

Tseng and Lytton model (Equation 7.1) for ICT crushed dolomite, crushed limestone, and 

uncrushed gravel at different fines content and moisture conditions, respectively. The Tseng and 

Lytton rutting model form can also accurately fit all the permanent deformation curves obtained 

at different aggregate physical conditions (i.e., moisture content, fines content, and plasticity 

index), as indicated by the high R2 values very close to 1. Note that the achieved fines contents 

corresponding to the targeting 0%, 4%, 8%, and 12% fines were ensured at the order of 4%, 8%, 

12%, and 16%, respectively, due to fines sticking to larger particles (Mishra, 2012). Also shown 

in Table 7.3 through Table 7.5 are the calculated resilient strain and resilient modulus values. It 

can be clearly seen that either resilient strain or resilient modulus exhibits a similar magnitude 

level among different physical conditions, implying that relying on resilient strain or resilient 

modulus alone may not differentiate permanent deformation behavior in this case. 

Figure 7.3 shows that the Tseng and Lytton’s empirical relationships, on the other hand, 

predicted reasonably good values of material constants ε0/εr, β, and ρ for ICT crushed dolomite 

materials tested at different physical conditions, as indicated by R2 values (>0.54) comparable to 

those reported for the original empirical relationships. This could possibly imply that the 

difference in permanent deformation behavior caused by different aggregate physical properties 

under the same stress state can be reasonably captured by moisture content, bulk stress, and 

resilient moduli together. It is worth emphasizing that this finding is still subject to further 
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validation with greater number of load applications, as the permanent deformation results 

analyzed for ICT aggregates were collected from the conditioning stage with up to 1,000 load 

applications only. As expected, the laboratory measured values of ε0/εr, β, and ρ are significantly 

different from those estimated from the universal constants of the MEPDG rutting model. 

Therefore, it may be inferred from this study that the use of the universal constants in the 

MEPDG rutting model, as well as its general applicability to a wide range of materials subject to 

varying dynamic stress states and/or physical conditions, still remain questionable and are at 

least not supported by laboratory permanent deformation results. The original Tseng and Lytton 

model, if well calibrated, appears to yield more reasonable rutting prediction than its simplified 

version, i.e., the MEPDG rutting model, yet it may still be regarded as ineffective in predicting 

rutting caused by different aggregate physical properties and more importantly by moving wheel 

loads. 

While the Tseng and Lytton’s empirical relationships relatively outperform the MEPDG 

“universal” constants in predicting values of ε0/εr, β, and ρ, much weaker agreement between 

laboratory measured and predicted values of ε0/εr, β, and ρ by both models is observed in Figure 

7.4 and Figure 7.5 for ICT crushed limestone and uncrushed gravel, respectively. This could be 

interpreted as the fact that material constants ε0/εr, β, and ρ are not dependent only on moisture 

content, as contrary to the current MEPDG model; moreover, in addition to moisture content, 

resilient modulus, and bulk stress as adopted in the Tseng and Lytton’s empirical relationships, 

there exists other fundamental or critical factors that significantly affect the permanent 

deformation behavior but remain uncaptured in both models. 
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Table 7.3 Permanent Strain Model Parameters for ICT Crushed Dolomite Materials of Different 

Physical Properties 

Material 
Plasticity 

Index 

Target 

Fines 

Content 

(%) 

Moisture 

Condition 

RLT Test 

Results 
Model Parameters 

εr 

(%) 

MR 

(ksi) 
ε0 ρ β R2 

ICT 

Crushed 

Dolomite 

Non-

plastic 

0 

Dry 0.06 24.64 0.63 518.66 0.14 0.999 

Optimum 0.06 23.89 0.68 2246.46 0.13 0.999 

Wet 0.07 23.36 0.61 1225.42 0.13 0.999 

4 

Dry 0.06 24.06 0.84 18600.72 0.11 0.999 

Optimum 0.06 24.36 0.88 113920.09 0.09 0.999 

Wet 0.06 25.43 0.44 2409.96 0.12 0.998 

8 

Dry 0.07 23.16 0.92 5666.45 0.11 0.999 

Optimum 0.07 21.07 1.45 7015.67 0.13 0.998 

Wet 0.07 21.42 1.06 3056.90 0.13 0.999 

12 

Dry 0.07 20.80 1.46 6186.58 0.12 0.999 

Optimum 0.11 14.39 1.89 202.36 0.27 0.988 

Wet 0.08 18.00 1.16 152.93 0.25 0.994 

Plastic 

0 

Dry 0.07 22.65 1.13 15719.41 0.10 0.999 

Optimum 0.06 24.01 0.67 505.52 0.12 0.999 

Wet 0.06 23.62 0.49 250.26 0.16 0.997 

4 

Dry 0.07 21.47 0.59 367.75 0.13 0.999 

Optimum 0.06 23.86 0.56 718.67 0.12 0.999 

Wet 0.07 23.10 0.90 12518.19 0.11 0.999 

8 

Dry 0.08 19.96 0.62 24.55 0.19 0.998 

Optimum 0.08 19.15 0.85 200.47 0.16 0.998 

Wet 0.09 17.43 1.01 308.35 0.17 0.998 

12 

Dry 0.07 20.56 0.50 2.49 0.13 0.998 

Optimum 0.19 7.87 2.46 438.56 0.20 0.999 

Wet 0.35 4.35 5.91 29.76 0.27 0.980 
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(a) 

  

(b) 

  

(c) 

Figure 7.3 Relationship between Laboratory Measured and Predicted Values of (a) log(ε0/εr), (b) 

logβ and (c) logρ by the Tseng & Lytton Model Form (Left) and by the MEPDG Model (Right) 

for Crushed Dolomite 
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Table 7.4 Permanent Strain Model Parameters for ICT Crushed Limestone Materials of Different 

Physical Properties 

Material 
Plasticity 

Index 

Target 

Fines 

Content 

(%) 

Moisture 

Condition 

RLT Test 

Results 
Model Parameters 

εr 

(%) 

MR 

(ksi) 
ε0 ρ β R2 

ICT 

Crushed 

Limestone 

Non-

plastic 

0 

 

Dry 0.07 21.87 0.48 149.42 0.17 0.996 

Optimum 0.06 24.98 0.39 832.70 0.13 0.998 

Wet 0.07 22.56 1.04 2616.82 0.12 0.999 

4 

 

Dry 0.07 21.76 0.70 202.77 0.15 1.000 

Optimum 0.06 23.91 0.40 486.86 0.14 0.999 

Wet 0.07 20.55 0.84 3770.17 0.11 0.999 

8 

 

Dry 0.07 21.56 0.68 6818.01 0.11 0.999 

Optimum 0.07 23.57 0.51 1046.77 0.13 0.999 

Wet 0.07 20.97 0.79 59556.92 0.09 0.999 

12 

 

Dry 0.07 21.76 0.42 955.05 0.13 0.998 

Optimum 0.07 22.91 0.65 319.69 0.15 0.999 

Wet 0.07 21.86 0.58 3051.97 0.12 0.999 

Plastic 

0 

 

Dry 0.07 22.80 0.28 189.80 0.14 0.997 

Optimum 0.06 24.98 0.39 832.70 0.13 0.998 

Wet 0.07 20.80 0.70 894.34 0.12 0.999 

4 

 

Dry 0.07 20.45 0.51 396.56 0.12 0.999 

Optimum 0.06 23.66 0.48 415.55 0.14 0.999 

Wet 0.08 20.07 0.62 179.93 0.14 0.999 

8 

 

Dry 0.07 21.58 0.54 85.88 0.17 0.999 

Optimum 0.07 20.51 0.76 273.22 0.14 0.999 

Wet 0.07 20.29 0.67 85.73 0.16 0.999 

12 

Dry 0.08 18.54 0.86 302.29 0.13 1.000 

Optimum 0.07 20.39 0.73 161.76 0.16 0.999 

Wet 0.08 19.06 0.71 161.81 0.17 0.999 
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(a) 

  

(b) 

  

(c) 

Figure 7.4 Relationship between Laboratory Measured and Predicted Values of (a) log(ε0/εr), (b) 

logβ and (c) logρ by the Tseng & Lytton Model Form (Left) and by the MEPDG Model (Right) 

for Crushed Limestone 
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Table 7.5 Permanent Strain Model Parameters for ICT Uncrushed Gravel Materials of Different 

Physical Properties 

Material 
Plasticity 

Index 

Target 

Fines 

Content 

(%) 

Moisture 

Condition 

RLT Test 

Results 
Model Parameters 

εr 

(%) 

MR 

(ksi) 
ε0 ρ β R2 

ICT 

Uncrushed 

Gravel 

Non-

plastic 

0 

 

Dry 0.08 19.82 0.55 3.44E+03 0.11 0.999 

Optimum 0.08 20.04 0.14 519.96 0.35 0.998 

Wet 0.07 21.00 0.36 522.93 0.13 0.999 

4 

 

Dry 0.08 18.92 0.59 609.83 0.12 0.998 

Optimum 0.08 18.10 0.65 460.80 0.13 0.999 

Wet 0.08 19.16 0.84 3.13E+04 0.09 0.999 

8 

 

Dry 0.08 18.87 0.58 187.44 0.13 0.997 

Optimum 0.11 13.60 0.95 74.10 0.20 0.996 

Wet 0.09 16.30 0.73 64.05 0.19 0.998 

12 

 

Dry 0.10 15.74 0.65 74.84 0.16 0.998 

Optimum 0.45 3.39 3.72 32.54 0.45 0.976 

Wet 0.26 5.83 12.25 6.90E+04 0.14 0.999 

Plastic 

0 

 

Dry 0.08 19.73 0.75 12406.25 0.09 0.999 

Optimum 0.08 19.76 0.47 52.24 0.17 0.998 

Wet 0.08 18.35 0.67 1793.45 0.11 0.999 

4 

 

Dry 0.08 18.39 0.45 65.68 0.17 0.999 

Optimum 0.09 17.56 0.71 294.14 0.13 0.999 

Wet 0.08 18.85 0.74 411.70 0.12 0.999 

8 

 

Dry 0.08 18.53 0.57 15.47 0.14 0.999 

Optimum 0.11 13.83 0.87 92.10 0.17 0.998 

Wet 0.31 4.87 41.57 7.49E+07 0.09 0.997 

12 

Dry 0.08 17.82 0.38 5.44 0.23 0.999 

Optimum 0.12 13.08 0.91 23.58 0.22 0.998 

Wet 0.39 3.94 38.57 3.71E+07 0.09 0.999 
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(a) 

  

(b) 

 
 

(c) 

Figure 7.5 Relationship between Laboratory Measured and Predicted Values of (a) log(ε0/εr), (b) 

logβ and (c) logρ by the Tseng & Lytton Model Form (Left) and by the MEPDG Model (Right) 

for Uncrushed Gravel 
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7.1.3 Correlation between Resilient Modulus and Permanent Deformation for Unbound 

Aggregate under Repeated Loading 

Under each application of continuous repeated loading caused by vehicular traffic, both 

resilient and plastic strains occur in unbound pavement layers. The magnitude of each of these 

strains and consequently the pavement performance are affected by many factors, including 

pavement structure, load level, and pavement material properties. To adequately design and 

analyze a pavement, both resilient modulus and plastic deformation need to be measured and 

assessed concurrently under loading and environmental conditions that those materials are 

expected to experience in the field.  

Defined by the ratio of maximum deviator stress to resilient strain, resilient modulus is 

one of the most important material property input for structural analyses of conventional flexible 

pavements. Conversely, plastic deformation that accumulates in unbound pavement layers and 

subgrade soils is the primary failure criterion, as a large portion (over 40%) of the total pavement 

rutting observed at the pavement surface can be contributed by the plastic deformation in those 

layers, especially at high water content condition (Majidzadeh et al., 1978). As moisture content 

in those layers increases, the resilient modulus of unbound granular materials and subgrade soils 

decreases rapidly. This results in a common misunderstanding that low resilient modulus 

properties of unbound aggregates imply greater plastic deformation and vice versa, which is 

however not necessarily valid. Mohammad et al. (2006) reported that the plastic strain after 

10,000 repetitions for untreated and treated pavement base materials was related to resilient 

modulus via the following regression equation, i.e., 
0.25225R pM    . This equation shows that the 

resilient modulus decreases with increasing plastic strain. However, according to field 

observations, it is not very uncommon to find some unbound granular materials that exhibit good 
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resilient modulus while still yielding significant rutting under service traffic loads (Puppala et al., 

1999). Mohammad et al. (2006) also confirmed that the resilient modulus alone did not properly 

describe the performance of base materials.  

As outlined above, there is still ambiguity when correlating resilient modulus and 

permanent deformation for unbound granular materials as well as subgrade soils. In this section, 

both the resilient and plastic responses of different aggregate materials to repeated loading under 

various dynamic stress states are analyzed concurrently from shakedown perspectives to study 

any correlations between plastic strain and resilient modulus. Specifically, both FAA P209 and 

P154 materials were subject to different combinations of dynamic stress states for 10,000 and 

40,000 load repetitions (single stage), respectively; on the other hand, three different types of 

aggregates (crushed limestone, crushed dolomite, and uncrushed gravel) with varying 

combinations of aggregate physical properties were subject to the same stress state for up to 

1,000 load repetitions unless failure occurs first. The shakedown concept reviewed in Chapter 2 

is used to describe the accumulated plastic deformation and the strain-hardening and softening 

behavior. 

7.1.3.1 Dynamic Stress States 

According to the shakedown theory reviewed in Chapter 2, the behavior of unbound 

aggregates under repeated loading can be categorized as plastic shakedown, plastic creep, or 

incremental collapse. For an adequately designed pavement, incremental collapse should be 

avoided, yet unbound aggregates in the state of “plastic shakedown” or “plastic creep” could still 

result in rutting distress. Therefore, plastic shakedown is permitted only if sufficiently small 

plastic strain accumulates before developing fully resilient response, whereas plastic creep is 

acceptable only if the accumulated plastic strain does not lead to rutting distress. Note that in 
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order to differentiate the “plastic creep” state from the “incremental collapse” state, a 

considerable number of load applications are needed in the single-stage laboratory RLT tests; 

instead, multi-stage RLT tests have recently gained popularity due to reduced number of load 

applications. Due to the limited number of load applications to which FAA P209 and P154 

materials were subject, only plastic shakedown and plastic creep behaviors were observed from 

the permanent deformation results with no incremental collapse behavior observed. 

Figure 7.6 through Figure 7.8 plot the plastic strain and the resilient modulus against the 

number of load applications for P209 material at different CCP (stress slope m=3) and VCP 

(m=1.5 and 0) stress states. A general trend can be found from those figures. That is, the resilient 

modulus of unbound aggregates increases with increasing load cycles (i.e., strain-hardening) 

during the initial stage, followed by gradually reaching a constant level after a certain number of 

cycles; moreover, the strain-hardening phenomenon exhibited in the “plastic creep” state sustains 

longer than that exhibited in the “plastic shakedown” state. According to Khogali and Mohamed 

(2004), such strain-hardening behavior (or increase in resilient modulus) is attributed to 

microstructural changes related to aggregate particle rearrangement under the application of 

external loading, whereas reaching a relatively constant resilient modulus value afterwards 

indicates the establishment of a preferred particle orientation with no further microstructural 

changes (i.e., the steady state). The plastic strain, on the other hand, initially exhibits 

considerable increase with a much lesser rate of accumulation afterwards. This conforms to the 

shakedown behavior stated in Chapter 2, i.e., plastic deformation develops at an accelerated rate 

in the first few loading cycles due to changes in the microstructure while the material hardens. 

As this process continues, plastic deformation eventually either ceases to develop further or 
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accumulates at a relatively constant rate, which is also supported by the resilient modulus value 

reaching a constant level during the steady state.  

Another interesting yet important observation from Figure 7.6 through Figure 7.8 is that 

the use of either resilient modulus or permanent deformation as a criterion for evaluating the 

impact of dynamic stress states could result in significantly different outcome. Specifically, in 

the cases where the impact of different dynamic stress states on resilient modulus is barely 

noticeable (e.g., Figure 7.6(d)), a substantial impact on the determined permanent deformation 

potential is detected as evident from different permanent deformation trends. This further 

confirms that relying on resilient modulus alone could result in inadequate characterization of 

unbound aggregates for use in pavement applications. Instead, resilient modulus and permanent 

deformation need to be examined concurrently. 

Figure 7.9 through Figure 7.11 show the comparisons of resilient modulus and plastic 

strain for the FAA P154 material under different dynamic stress states. The previous 

observations are confirmed once again. In summary, the regions of material behavior described 

previously are found to be common to both P209 and P154 materials regardless of the dynamic 

stress state to which they were subjected. However, depending on whichever of the plastic 

shakedown and plastic creep states they were at, the duration of each of the deformation region is 

different. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 7.6 Relationship between Plastic Strain and Vertical Resilient Modulus for P209 Material 

Observed during CCP Test with Stress Slope m=3: (a) σ3s=3 psi, (b) σ3s=5 psi, (c) σ3s=8 psi, and 

(d) σ3s=10 psi 

 

 

 

Initial MR Increase Steady MR State 
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(a) (b) 

  
(c) (d) 

Figure 7.7 Relationship between Plastic Strain and Vertical Resilient Modulus for P209 Material 

Observed during VCP Test with Stress Slope m=1.5: (a) σ3s=3 psi, (b) σ3s=5 psi, (c) σ3s=8 psi, 

and (d) σ3s=10 psi 

 

  
(a) (b) 

 
(c) 

Figure 7.8 Relationship between Plastic Strain and Vertical Resilient Modulus for P209 Material 

Observed during VCP Test with Stress Slope m=0: (a) σ3s=3 psi, (b) σ3s=5 psi, and (c) σ3s=8 psi 

Steady MR Increase 
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(a) (b) 

 

(c) 

Figure 7.9 Relationship between Plastic Strain and Vertical Resilient Modulus for P154 Material 

Observed during CCP Test with Stress Slope m=3: (a) σ3s=3 psi, (b) σ3s=5 psi, and (c) σ3s=8 psi 

 

 

 

 

  

(a) (b) 

Figure 7.10 Relationship between Plastic Strain and Vertical Resilient Modulus for P154 

Material Observed during VCP Test with Stress Slope m=1.5: (a) σ3s=3 psi, (b) σ3s=5 psi, (c) 

σ3s=8 psi, and (d) σ3s=10 psi 
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(a) (b) 

Figure 7.11 Relationship between Plastic Strain and Vertical Resilient Modulus for P154 

Material Observed during VCP Test with Stress Slope m=0: (a) σ3s=3 psi, (b) σ3s=5 psi, and (c) 

σ3s=8 psi 

 

7.1.3.2 Different Aggregate Physical Properties 

Three different types of aggregates were tested at varying combinations of aggregate 

physical properties under the same CCP stress state. This provides an opportunity to explore the 

potential use of the resilient modulus-permanent deformation relation in effectively discerning 

the material quality. The incremental collapse behavior that is absent from FAA P209 and P154 

materials is observed for materials with high fines content on the wet side of the optimum 

moisture content. As indicated by Von Quintus and Killingsworth (1998) from field observations 

that the water content of cohesive subgrade soils in service were all on the wet side of optimum 

moisture content (OMC), the high moisture content that is 110% of the optimum one was also 

included in the laboratory test matrix. 

Figure 7.12 through Figure 7.14 plot both the plastic strain and resilient modulus against 

the number of load applications for crushed dolomite, crushed limestone, and uncrushed gravel, 

respectively. Note that the target fines contents of 0%, 4%, 8%, and 12% (based on dry sieve 

analysis) correspond to the achieved fines contents of around 4%, 8%, 12%, and 16% (based on 
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wet sieve analysis) respectively, as explained previously. Despite the fact that no noticeable 

difference was found among resilient modulus values for each combination of aggregate physical 

conditions, significant differences among permanent deformation curves were observed. For 

crushed dolomite, the target fines content of 4% (i.e., 8.7% achieved fines content) results in the 

most negligible difference in permanent deformation among the various physical conditions 

studied (see Figure 7.12 (c) and (d)). Such an optimum fines content agrees well with the one 

proposed by Seyhan and Tutumluer (2002). Figure 7.12 (g) and (h) clearly illustrated the 

detrimental effect of high fines content (12% target and 16.6% achieved), as resilient modulus 

decreases and permanent deformation increases with increasing moisture content. This implies 

the development of an unstable aggregate matrix. Figure 7.14 (f), (g), and (h) show the 

incremental collapse behavior observed for uncrushed gravel materials with high fines content at 

the wet side of the optimum moisture content. The resilient modulus in the incremental collapse 

state is found to increase during the initial load cycles and then decrease with further load 

applications. This situation could be regarded as strain softening of the material under repeated 

loading. Meanwhile, excessive plastic strain accumulates rapidly, leading to an unstable state. 

Based on the analysis results discussed above, the observed resilient modulus-permanent 

deformation relation for each of the three shakedown categories can be generalized as follows. 

During plastic shakedown, the stiffness of the material increases (due to strain-hardening) and 

the accumulated plastic strain stabilizes such that the material responds purely elastically to the 

applied load. As a result, both the plastic strain and the resilient modulus tend to reach a constant 

level, which signifies the occurrence of the steady state. At the state of plastic creep, more voids 

in the material are compacted due to the application of a higher stress level, thus strain hardening 

occurs and the plastic strain still accumulates with increasing number of load cycles. In other 
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words, the microstructure of the material is changing continuously. This can be confirmed by the 

fact that both the plastic strain and the resilient modulus increase at a specific rate. At a very high 

stress level, the material is in the incremental collapse state. The plastic strain accumulates 

rapidly, and strain softening of the material occurs. From the perspective of preventing rutting 

distress in the unbound pavement layers from occurring, it is important to accurately predict the 

allowable number of load cycles. In road pavements, plastic strain exceeding 4% would be 

deemed unacceptable (Muhanna, 1994). 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 7.12 Relationship between Plastic Strain and Vertical Resilient Modulus for Crushed 

Dolomite with Varying Fines Content (Left: Non-plastic; Right: Plastic) 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 7.13 Relationship between Plastic Strain and Vertical Resilient Modulus for Crushed 

Limestone with Varying Fines Content (Left: Non-plastic; Right: Plastic) 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 7.14 Relationship between Plastic Strain and Vertical Resilient Modulus for Uncrushed 

Gravel with Varying Fines Content (Left: Non-plastic; Right: Plastic) 

Decreasing MR 
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7.1.4 Enhancement of the Current MEPDG Permanent Deformation Model for Unbound 

Materials 

The original Tseng and Lytton model (1989) and the MEPDG rutting model, among 

many others, use resilient modulus or resilient strain as a variable to predict permanent strain of 

unbound granular materials. There is no doubt that ruts accumulate rapidly when the applied 

wheel load stress on the unbound layers exceeds a certain tolerable level based on its strength 

property. The NCHRP 4-23 study identified shear strength of unbound aggregates as one of the 

most significant mechanistic properties influencing pavement performance (Saeed et al., 2001). 

Moreover, shear strength rather than resilient modulus has been always shown to better correlate 

with unbound aggregate permanent deformation behavior for predicting field rutting 

performance (Thompson, 1998; Tao et al., 2010; Xiao and Tutumluer, 2012). From an extensive 

database of aggregate properties studied in Minnesota, Xiao and Tutumluer (2012) found no 

clear or significant modulus-strength relationships for unbound aggregates. In its current form, 

the Pavement ME Design software does not consider the effects of shear stress to strength ratio 

while predicting the performance of unbound aggregate base/subbase pavement layers under 

repeated traffic loading. This indicates that it still remains important for ME pavement design 

approaches to consider the effects of applied stress levels on aggregate layer rutting. However, 

from previous analyses of a series of laboratory triaxial test results, the inclusion of the resilient 

modulus as a predictive variable for estimating permanent deformation is at least not sufficient 

enough if not inaccurate. The fact that rutting in unbound pavement layers is actually a type of 

shear failure necessitates the inclusion of other predictive variables, such as the shear stress ratio 

(SSR), an important term identified by Seyhan and Tutumluer (2002), as well as the octahedral 

shear stress. 
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Based on the previous verification results of the original Tseng and Lytton model and the 

current MEPDG rutting model against laboratory RLT test results, the need for the further 

enhancement of both models becomes obvious. In this study, attention has been paid to develop 

an enhanced mechanistic rutting model for unbound materials based on the original Tseng and 

Lytton model as well as the MEPDG model. The proposed model was developed based on the 

two aforementioned databases.  

7.1.4.1 Enhancement for Dynamic Stress States 

To explore the relation between model parameters of the Tseng and Lytton rutting model 

and the shear stress ratio (SSR), bivariate plots are prepared. It is found that the correlation 

between the shear stress ratio and the model parameters of the Tseng and Lytton rutting model is 

statistically significant. Therefore, the enhancement proposed for the original Tseng and Lytton’s 

empirical relationships (see Equation 7.1) includes the addition of the shear stress ratio and the 

octahedral shear stress terms as two new predictive variables, as shown in Equation 7.3. Note 

that only one extra regression coefficient is added in the enhanced model, as compared to the 

original empirical relationships that have five regression coefficients. The logarithmic transform 

of the shear stress ratio in Equation 7.3 was found necessary. 

   

 

β
- ρ N

p 0

0

r

1 2 θ 3 4 5

ε N =ε e

ε
log

ε

logβ =A +A σ +A M A log SSR +A

logρ

R oct


 
 
 

    

                                              (7.3) 

where N=number of load applications; A1 through A6 are regression coefficients for log(ε0/εr), 

logβ, and logρ models; SSR=shear stress to strength ratio, MR=resilient modulus; σθ=bulk stress; 

and τoct=octahedral shear stress. 
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Table 7.6 and Table 7.7 list the model coefficients and R2 values of the enhanced rutting 

model for both FAA P209 and P154 materials, respectively. As compared to the original Tseng 

and Lytton’s empirical relationships, the enhanced model significantly improves the prediction 

accuracy as indicated by much higher R2 values, especially for P154 material. This further 

supports the argument that plastic strain is more related to shear stress level than the resilient 

modulus itself. 

Table 7.6 Enhanced Rutting Prediction Model for P209 Materials 

Model 

Coefficients 

m=3 m=1.5 m=0 

0

r

ε
log

ε

 
 
 

 logβ  logρ  0

r

ε
log

ε

 
 
 

 logβ  logρ  0

r

ε
log

ε

 
 
 

 logβ  logρ  

A1 1.40 -1.74 -4.65 3.42 -3.86 20.96 -0.30 -0.78 -4.43 

A2 0.01 -0.02 -0.02 0.017 -0.02 0.12 0.003 -0.001 -0.04 

A3 -0.01 0.02 -0.05 0.015 -0.01 0.12 -0.005 0.01 0.06 

A4 0.98 -1.94 -11.97 2.19 -2.50 15.36 -0.39 -0.06 -2.70 

A5 -0.02 0.07 0.24 -0.19 0.21 -1.37 0.07 -0.05 2.76 

R2 

New 0.40 0.46 0.35 0.97 0.95 0.98 0.44 0.75 0.44 

Original 0.21 0.26 0.32 0.88 0.77 0.90 0.12 0.71 0.23 
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Table 7.7 Enhanced Rutting Prediction Model for P154 Materials 

Model 

Coefficients 

m=3 m=1.5 m=0 

0

r

ε
log

ε

 
 
 

 logβ  logρ  0

r

ε
log

ε

 
 
 

 logβ  logρ  0

r

ε
log

ε

 
 
 

 logβ  logρ  

A1 -0.43 0.58 -16.36 2.63 2.29 -32.53 1.56 -1.55 8.18 

A2 -0.03 -0.02 0.04 0.005 -0.02 0.24 0.005 -0.01 0.11 

A3 0.07 0.04 -0.07 0.001 0.06 -0.54 -0.15 0.20 -2.76 

A4 -0.57 1.56 -17.22 1.70 3.20 -34.36 0.08 0.08 -2.04 

A5 0.05 -0.02 0.46 -0.11 -0.06 0.25 0.41 -0.60 7.41 

R2 

New 0.83 0.58 0.80 0.79 0.99 0.97 0.93 0.69 0.78 

Original 0.78 0.02 0.39 0.27 0.49 0.79 0.27 0.31 0.54 

 

7.1.4.2 Enhancement for Different Aggregate Physical Properties 

Only moisture content is included as a predictive variable in the original Tseng and 

Lytton’s empirical relationships (see Equation 7.1) as well as in the MEPDG rutting model (see 

Equation 7.2). This is obviously not sufficient enough to yield accurate prediction, as proved in 

the previous sections. In fact, fines content, plasticity nature of the fines, and their interactions 

with moisture content are also among the most important factors that affect both permanent 

deformation and resilient modulus behavior of unbound aggregates. In this section, the following 

enhancements were proposed and explored for their effectiveness: (i) replacing moisture content 

by percent saturation so that dry density information can be used as well; and (ii) the inclusion of 

weighted plasticity index (wPI) and shear stress ratio terms as new predictive variables. Previous 

studies have shown that the variable wPI can account for the effects of both plasticity index and 
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fines content (El-Badawy and Witczak, 2007). The final model form selected is shown as in 

Equation 7.4, in which the interaction term of wPI and SSR was found statistically significant. 

   
β

- ρ N

p 0

0

r

1 2 3 4 θ 5 6 7

ε N =ε e

ε
log

ε

logβ A +A S +A wPI A σ +A M +A SSR A SSR

logρ

r R
wPI

 
 
 

         

        (7.4) 

where N=number of load applications; A1 through A6 are regression coefficients for log(ε0/εr), 

logβ, and logρ models; SSR=shear stress to strength ratio, wPI=weighted plasticity index 

(=PI*%P200/100), PI=plasticity index (%), %P200=percent passing No. 200 sieve, and 

Sr=degree of saturation (in decimal); MR=resilient modulus; and σθ=bulk stress. 

Table 7.8 through Table 7.10 summarize the model coefficient and R2 values obtained by 

the enhanced rutting prediction model for crushed dolomite, crushed limestone, and uncrushed 

gravel materials, respectively. It can be seen that the enhanced model yielded reasonably high R2 

values in predicting material constants ε0/εr, β, and ρ of the original Tseng and Lytton model, 

considering that a variety of different aggregate physical conditions are involved. This indicates 

that the enhanced model can be more robustly applied to a wider range of material types and 

physical conditions, as contrary to the original empirical relationships. Both variables, i.e., 

percent saturation and weighted plasticity index, can be effectively used as essential variables to 

characterize physical conditions of unbound aggregate materials (i.e., fines content, plasticity 

index of fines, and moisture content). 
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Table 7.8 Enhanced Rutting Prediction Model for Crushed Dolomite Materials 

Model 

Coefficients 

Non-plastic Plastic Combined 

0

r

ε
log

ε

 
 
 

 logβ  logρ  0

r

ε
log

ε

 
 
 

 logβ  logρ  0

r

ε
log

ε

 
 
 

 logβ  logρ  

A1 13.91 -4.09 -16.44 -2.33 2.56 -5.03 3.83 0.41 4.29 

A2 -0.79 0.25 -2.91 -0.43 0.49 -4.30 -0.41 0.13 -0.57 

A3 -31.87 56.10 -459.02 -1.77 1.78 -13.50 0.20 -0.08 0.31 

A4 -0.18 0.05 0.40 0.09 -0.08 0.38 -0.03 -0.01 -0.03 

A5 -0.04 -0.03 0.24 3.6E-04 -0.03 -0.03 -0.03 -0.02 0.01 

A6 -1.88 3.46 -35.42 -5.79 6.27 -37.74 0.03 -0.64 5.32 

A7 180.8 -305 2447.2 6.44 -7.24 43.54 -1.81 0.38 -7.10 

R2 
New 0.79 0.95 0.76 0.66 0.82 0.60 0.60 0.68 0.45 

Original 0.69 0.80 0.54 0.44 0.71 0.89 0.14 0.64 0.38 

 

 

Table 7.9 Enhanced Rutting Prediction Model for Crushed Limestone Materials 

Model 

Coefficients 

Non-plastic Plastic Combined 

0

r

ε
log

ε

 
 
 

 logβ  logρ  0

r

ε
log

ε

 
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 

 logβ  logρ  0

r

ε
log

ε

 
 
 

 logβ  logρ  

A1 -1.49 0.56 -21.20 20.56 -9.26 -26.63 -5.82 -2.94 -8.78 

A2 0.92 -0.64 6.45 0.99 -0.10 -1.10 0.79 -0.19 2.42 

A3 159.37 -1.66 -160.10 -1.81 0.64 -2.46 0.61 -0.25 2.75 

A4 -0.002 -0.02 0.41 -0.28 0.11 0.54 0.10 0.03 0.14 

A5 -0.02 0.02 -0.21 -2.3E-2 0.02 0.02 -0.02 0.01 -0.04 

A6 9.92 0.35 -8.07 -14.67 5.11 -13.39 2.06 -0.23 10.77 

A7 -707.1 -24.3 1029.2 10.44 -3.05 5.82 -3.04 1.37 -16.0 

R2 
New 0.75 0.54 0.62 0.85 0.92 0.85 0.64 0.54 0.58 

Original 0.43 0.23 0.26 0.68 0.41 0.52 0.31 0.28 0.22 
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Table 7.10 Enhanced Rutting Prediction Model for Uncrushed Gravel Materials 

Model 

Coefficients 

Non-plastic Plastic Combined 

0

r

ε
log

ε
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 logβ  logρ  0
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log

ε

 
 
 

 logβ  logρ  0

r

ε
log

ε

 
 
 

 logβ  logρ  

A1 19.4 -11.2 9.5 -24.1 14.0 -145.7 -0.8 -0.6 -57.0 

A2 -0.1 0.1 -2.5 1.3 -0.8 5.8 0.9 -0.4 6.1 

A3 561.6 -406.4 238.5 -0.05 0.7 -5.0 0.7 -0.1 -0.8 

A4 -0.4 0.2 -0.1 0.4 -0.2 2.4 0.02 0.01 0.8 

A5 -0.002 -0.04 0.21 0.03 -0.06 0.28 -0.05 -0.01 0.11 

A6 11.2 -8.9 -6.8 -1.44 2.57 -17.5 2.67 -1.06 8.24 

A7 -1.6E3 1.2E3 -8.6E2 -0.02 -2.1 12.9 -1.59 -0.07 6.87 

R2 
New 0.69 0.76 0.61 0.98 0.99 0.98 0.68 0.19 0.48 

Original 0.37 0.27 0.28 0.96 0.69 0.93 0.61 0.09 0.44 

 

7.2 Modeling Degradation Stiffness for Permanent Deformation Prediction 

As discussed in the previous sections, the resilient modulus (MR) deals with the elastic 

response of the material and ignores the plastic component responsible for permanent 

deformation. However, the need for capturing permanent deformation, a more critical 

performance indicator, has been highlighted by results of field and laboratory investigations. 

Although many methods have been proposed for estimating permanent deformation of unbound 

materials under cyclic (or repeated) load, no generally accepted design procedure yet exists. In 

principle, the mechanical behavior of unbound materials under cyclic loads, including permanent 

deformation, can be simulated cycle by cycle using sophisticated material constitutive laws. 

However, it is almost impractical, if not impossible, for pavement designers to use such 

numerical models with implicit calculation concepts to estimate permanent displacement, mainly 

because the rate of permanent displacement accumulation is usually very small and a large 
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number of cycles are often required. On the other hand, the repeated applications of traffic loads 

(in the order of several millions throughout the service life) on the pavement structures make the 

empirical approach inevitable in relating responses to the deteriorations/distresses. With explicit 

methods, semi-empirical approaches are used to describe the permanent deformation response 

with respect to the number of load cycles. The development of cyclic deformations dependent on 

the number of cycles is directly described by empirical equations (as reviewed in Chapter 2). 

These methods are based on small-scale laboratory RLT test results or field accelerated 

pavement testing (APT) with a limited number of cycles, and their suitability for actual 

pavements subject to field conditions is not clear. Despite cyclic laboratory tests are suggested to 

assess the response of pavement foundation geo-materials under long-term cyclic loading, there 

is still no approved method for taking into account the results of such tests in the design of 

pavement layers for accumulated rutting. 

The purpose of this section is to demonstrate how the results of laboratory repeated load 

triaxial tests on unbound aggregates can be applied in a numerical model to estimate the 

progressive deformation of unbound pavement layers under long-term cyclic load. To achieve 

this, the special numerical concept, namely the ‘‘degradation stiffness model”, is introduced in 

the following. The constitutive models for the degraded secant modulus are proposed based on 

the concept similar to that of the existing resilient modulus models, thus making them suitable 

for use with numerical tools such as the finite element simulation. By using the proposed models, 

the permanent deformation of unbound pavement layers under repetitive loading can be 

realistically predicted in a mechanistic manner, as contrary to the current empirical or semi-

empirical methods.  
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7.2.1 Degradation Stiffness Model 

The degradation stiffness model presented in this study was originally proposed by 

Achmus et al. (2009) for modeling the behavior of monopoles for offshore wind turbines. It is a 

method based on a combination of an evaluation of drained cyclic triaxial tests and a finite 

element (FE) simulation of the pavement structure. In cyclic triaxial tests, the plastic axial strain 

is observed to accumulate with the number of cycles under different loading conditions, whereas 

the material secant stiffness decreases. This is clearly shown in Figure 7.15(a), a schematic 

diagram of the typical stress–strain behavior of a soil sample under cyclic loading. The vertical 

and horizontal axes in Figure 7.15(a) represent the applied vertical cyclic stress and the resulting 

vertical strain, respectively. The accumulated total strain t
 , contributed by all loading cycles, is 

represented by the peaks of the cyclic curve, whereas the accumulated permanent strain 
p

  is 

represented by the line joining the ends of the load cycles. The magnitude of the resilient 

modulus is defined as the slope of the line joining the total and permanent strains for each cycle. 

Assessing the stress conditions in the distinct elements and introducing the stiffness degradation 

obtained by comparison with the cyclic test results in the finite element model yields the 

accumulated deformations of pavement layers. This is the basic concept of the degradation 

stiffness model. 
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(a) (b) 

Figure 7.15 Characteristic Response of Unbound Material: (a) Stress-Strain Relationship 

(Khogali and Mohamed, 2004) and (b) the Concept of Degradation Stiffness (Achmus et al., 

2009) 

 

The degradation stiffness approach to account for cyclic loading effects is elucidated in 

Figure 7.15(b). The resilient and permanent strains developed in the first cycle are denoted by 

, 1r N



 and

, 1p N



, respectively. The resilient and accumulated permanent strains after N cycles are 

denoted by 
,r N

  and
,p N

 , respectively. For adequately designed pavements, it is reasonable to 

consider that the magnitude of resilient strain converges after a specified number of load 

repetitions (NCHRP 2003; AASHTO 1999; LTPP 1996). Therefore, the degraded secant 

modulus, termed as the degradation stiffness by Achmus et al. (2009), is defined by the slope of 

the line that connects the peak of the curve at the N-th load cycle and the origin. Assuming the 

elastic strain to be negligible (as the material exhibits shakedown behavior), the degradation rate 

of secant stiffness after first cycle Es1 and N-th cycle EsN can be presented by the plastic axial 

strains after first cycle 
,1

a

p
  and N-th cycle 

,N

a

p
  as in Equation 7.5.  
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The accumulation of plastic strains in a cyclic triaxial test can be estimated from existing 

semi-empirical approaches. Here the classical power-law model (
,N

a b

p
a N   ) is considered 

for simplicity, and with it the degradation of stiffness can be described using one material 

parameters b as follows: 

,1

1 ,N

a

p bSN

a

S p

E
N

E





                                                            (7.6) 

 

7.2.2 Parameter Estimation for the Degradation Stiffness Model 

After presenting the degradation stiffness model – a numerical concept which is able to 

account for cyclic loading in the determination of permanent deformations in a realistic manner, 

a series of laboratory triaxial tests is needed to assess the parameters describing cyclic behavior 

of the soil. By dividing the deviator (cyclic) stresses applied by the accumulated permanent 

strain, the degraded secant modulus was evaluated for each load repetition. As an example, 

Figure 7.16 shows the variation of the degraded secant modulus with the number of load cycles 

for FAA P154 material subject to different combinations of CCP type confining and deviator 

stresses (m=3). The decreasing trend of the degraded secant modulus is obvious. Also noticeable 

from Figure 7.16 is the stress dependency of the degraded secant modulus. Note that the initial 

degradation stiffness Es1 can be described by the current constitutive models for resilient 

modulus. 
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To express the dependency of the degraded secant modulus on the number of load cycles 

(N) and the stress states, the forms of the power-law permanent deformation models and resilient 

modulus models often used in pavement design were employed to construct the constitutive 

models of the degraded secant moduli as in Equation 7.7. This approach was also used by Ahn et 

al. (2013). It should be noted that using the exponential term of the bulk stress in Equation 7.7, 

instead of the power term in the current resilient modulus models, is to accommodate boundary 

value problems with zero or negative bulk stress, which may happen at the top and bottom 

surfaces of base layers due to wheel loading. 

:
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                                     (7.7) 

where SN
E =degraded secant modulus, a

p =atmosphere pressure (14.7 psi) to normalize the bulk 

and octahedral stress terms, N=the number of load applications, and A, B, C, and D=regression 

coefficients to be determined from laboratory triaxial tests. 

 

  

(a) (b) 

Figure 7.16 Variation of Degraded Secant Modulus with Load Cycles for FAA P154 Material 

during CCP Tests: (a) 3-psi Confining Stress and (b) 5-psi and 8-psi Confining Stresses 
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The model parameters A, B, C, and D in Equation 7.7 can be estimated by multiple linear 

regression of the experimental results after taking logarithmic forms of the equation. Test results 

under more stress combinations may be required for a reliable estimation of the parameters and 

therefore reliable estimation of permanent deformation. Table 7.11 summarizes the model 

parameters obtained for the Model II in Equation 7.7 at different stress states. A comparison of 

model results with existing test results for unbound materials indicate quite good agreement. The 

calibrations for degradation stiffness model with large-scale model tests can be planned in 

further research studies. 

Table 7.11 Model Coefficients for Degraded Secant Modulus of FAA P154 Material (m=3) 

Model 

Coefficients 

Constant Confining Pressure (CCP) Type Stress State 

03/09 03/15 03/21 03/27 05/15 05/35 08/24 08/40 All 

A 258.6 49.74 102.08 314.18 89.86 2870.4 232.53 923.72 409.3 

B -0.04 -0.045 -0.103 -0.04 -0.04 -0.048 -0.05 -0.043 -0.06 

C -0.16 1.456 1.743 0.222 0.62 -0.132 0.61 0.053 0.47 

D 3.90 -1.58 -5.21 -0.84 0.82 -1.369 -1.68 -0.724 -1.76 

R2 0.99 0.94 0.98 0.76 0.87 0.98 0.98 0.95 0.71 

SEE 0.034 0.047 0.052 0.091 0.084 0.044 0.067 0.069 0.761 
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7.3 Shakedown based Interpretation of Permanent Deformation Test Results 

As discussed previously, the permanent strain model parameters of both Tseng and 

Lytton model and the MEPDG model vary significantly with changing dynamic stress states 

(quantified by stress path slope and magnitude) and material physical conditions. By either 

considering only moisture content, bulk stress and resilient properties or using universal material 

constants, their prediction accuracy and potential usefulness for practical applications could be 

severely reduced. Therefore, it is highly desirable for a rational permanent deformation model to 

properly include the respective effect of these variables. It then becomes the major motivation of 

this section to analyze from laboratory permanent deformation database a viable criterion for 

ranking long-term rutting potential based on the shakedown theory. 

The stress invariants will be used in this research to compare the stress paths applied by 

moving wheel loads and stress paths applied in laboratory tests. One of the ways to describe 

stress paths is to represent stress history on the deviatoric stress (q)-mean stress (p) space. For 

example, the second invariant of the deviatoric stress tensor Sij (J2), and the first invariant of the 

stress tensor σij (I1) can be used. The stress paths either induced by the moving wheel load in an 

unbound pavement layer or applied in laboratory tests can be plotted in p-q stress diagrams, and 

later compared with the shear stress failure of the material, by using a stress ratio analysis. The 

relative damage of the pavements was estimated by the stress ratio, which is the quotient 

between the actual stress applied and the stress at failure. If the stress ratio is low, the material 

will develop some plastic deformation for a finite number of load repetitions, but the response 

will remain essentially resilient after the initial loading. At higher stress ratios, the plastic 

deformation increases, up to a stress ratio limit, in which permanent deformation will accumulate 

rapidly. Therefore, the stress ratio has been considered as an approximate measure of the relative 



 269 

damage that will result from repeated load applications at lower stress conditions than the peak 

stress triaxial monotonic conditions (Seyhan and Tutumluer, 2002). 

7.3.1 Modeling the Primary and the Secondary Regions of Permanent Deformation 

Curves 

A typical accumulated permanent strain curve of unbound granular base/subbase 

materials can be divided into three main regions, i.e., primary, secondary, and tertiary. Within 

the primary region, the permanent strain accumulates rapidly but with a decreasing rate until 

reaching a constant accumulation rate at the beginning of the secondary region. The secondary 

region is characterized by a constant (or stable) permanent strain accumulation rate, indicating 

the occurrence of the steady state. During the tertiary region, permanent strain accumulates 

rapidly with an increasing rate until rutting failure occurs. To assess the rutting potential of 

different unbound materials at different stress states and/ or physical conditions, it then becomes 

necessary to identify the locations of the boundary points connecting the primary to the 

secondary regions, and the secondary to the tertiary regions. However, there is currently no 

general acceptance regarding how to identify these two boundary points on the permanent 

deformation curves. Furthermore, the rate of the accumulated permanent strain depends on 

several parameters among which both the dynamic stress state and aggregate physical properties 

(e.g., moisture and density condition, fines content, and plasticity index) warrant further 

investigation. 

Among the existing permanent deformation models, the semi-log model proposed by 

Barksdale (1972) and the power-law model developed by Monismith et al. (1975) can only 

represent the primary stage of the measured permanent deformation curve. The Tseng and 

Lytton’s model, the precedent of the current MEPDG model, are also reported as incapable of 

characterizing either the secondary or tertiary stage (Zhou et al., 2004). One commonly used 
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method for identifing the boundary points on the permanent deformation curve is to use 

permanent strain per cycle dεp/dN (Bayomy, 1982; Witczak et al., 2000; Kaloush and Witczak, 

2002). However, this procedure was found to be quite misleading due to the infinitesimal Δε/ΔN. 

Zhou et al. (2004) proposed the three-stage permanent deformation model (as in Equation 7.8) 

based on the definition of each stage, as well as the algorithms to determine the transition points 

and parameters of the three-stage permanent deformation model. A logarithmic model by 

Kalyoncuoglu and Tigdemir (2010) is also reported to more accurately simulate the primary 

region of the permanent deformation curves than the Pow-law model by Monistmith et al. (1975).  
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                    (7.8) 

where 
p

 =accumulated permanent strain, N=number of load applications, PS
N =number of load 

applications corresponding to the starting point of the secondary stage, ST
N =number of load 

applications corresponding to the starting point of the tertiary stage, PS
 =plastic strain at the 

starting point of the secondary stage, ST
 = plastic strain at the starting point of the tertiary stage, 

and a, b, c, d, f=regression coefficients. 

According to Zhou et al. (2004), a power-law model is first fitted to each permanent 

deformation curve with the model coefficients determined using the statistical regression 

analysis. Afterwards, the accumulated permanent strain for each permanent deformation curve at 

the last loading cycle was calculated using the developed power-law model. The deviation error 

of the calculated accumulated permanent strains from the measured ones at the last loading cycle 

was determined for each permanent deformation curve using the following Equation: 
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where e
D =deviation error of calculated accumulated permanent strains from measured ones at a 

specific loading cycle; 
 p Calculated

 =calculated accumulated permanent strain at a specific loading 

cycle; and 
 p Measured

 = measured accumulated permanent strain at a specific loading cycle. 

A threshold value of 3% was assigned to the deviation error by Zhou et al. (2004). If the 

deviation error of the power-law model from the measured accumulated permanent strain at the 

last loading cycle is less than 3%, the permanent deformation curve can be deemed to be still 

within the primary region at the last loading cycle. On the other hand, if the deviation error at the 

last loading cycle is larger than 3%, then the permanent deformation curve can be assumed to be 

within the secondary region at the last loading cycle. In the latter case, it is necessary to remove 

the last loading cycle and to repeat the aforementioned procedure until reaching a loading cycle 

with a deviation error of less than 3%. The resulted loading cycle is defined as the one at which 

the boundary point between the primary and secondary regions is located. 

In this section, a stepwise method following the approach by Zhou et al. (2004) is 

employed to identify the location of the boundary point connecting the primary to the secondary 

region of the permanent deformation curves. The primary and the secondary regions of the 

permanent deformation curves, once separated using such a stepwise method, are fitted to the 

best possible model and analyzed subsequently for the effects of various dynamic stress states 

and aggregate physical properties on the permanent deformation behavior.  
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7.3.2 Effects of Aggregate Physical Properties 

The unbound aggregate RLT test database collected from the ICT R27-1 Research 

Project is useful for assessing effects of individual material physical properties on permanent 

deformation behavior (Tutumluer et al., 2010; Mishra, 2012). It is worth noting that limited 

information regarding permanent deformation behavior is reflected in those data. This is because 

permanent deformation results were recorded from the pre-conditioning stage of the resilient 

modulus tests, and only one CCP type stress state of 103.42-kPa (15-psi) constant radial 

confining pressure (σ3) and 206.84-kPa (30-psi) axial deviator stress (σd) was applied for up to 

1,000 loading cycles (unless failure earlier) for each factorial combination of material physical 

properties. By applying the shakedown theory, Figure 7.17 illustrates the relationships between 

accumulated permanent axial strains and permanent axial strain rates (strain per load application) 

for each aggregate type (i.e., dolomite, limestone, and uncrushed gravel) at dry (D), optimum (O), 

and wet (W) moisture conditions, respectively. Note that the dolomite material (Do) with 12% 

plastic fines (P) at wet moisture condition (W), denoted by P-Do-12-W, was subject to only 91 

load applications before the specimen collapsed, while 916 for NP-L-0-D, 501 for NP-G-12-O, 

506 for NP-G-12-W, 326 for P-G-8-W, and 251 for P-G-12-W. With the shear strength 

parameters (c and ) obtained from rapid shear strength tests, the shear stress ratio qratio 

(qfailure/qmax) was also calculated and included as a covariate (shown in the legends of Figure 

7.17). It is worth mentioning that all the shear stress ratio values in this study were averaged 

from the actual stress magnitudes applied during RLT testing instead of the targeted stress values. 

The calculated shear stress ratio values are approximately within the range of 15% to 45%.  

Figure 7.17 shows that larger cumulative permanent axial strain (εp) and greater 

permanent axial strain rate (
p

 ) tend to be reached for materials of lower quality, as indicated by 
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curves shifting towards the upper right corner. For instance, the combination of the highest 

amount of fines (16%, either plastic or non-plastic) and wet moisture condition is consistently 

depicted among the worst scenarios for all three aggregate types. Overall, the shear stress ratio 

discerns fairly well different permanent deformation characteristics reflecting material quality 

aspects. The majority of these permanent deformation curves in Figure 7.17 exhibits steadily 

decreasing rate of cumulative permanent strain and thus can be categorized as plastic creep 

(Range B) behavior.  

To obtain the stable permanent strain rate (i.e., linear slope of the secondary stage), 

permanent deformation test data (εp vs. N) were then fitted against models reviewed in Chapter 2. 

It turns out that the Theyse model (2001) and the Perez and Gallego model (2010) consistently 

outperform others in best fitting all test data at each factorial combination of material physical 

properties. Figure 7.18 shows relationships between such permanent strain rates (expressed as 

percentage of permanent strain accumulated per load application) and fines content for each 

aggregate type at each moisture condition. Note that the specimens collapsed prior to the 

completion of prescribed 1,000 load applications are excluded from the analysis for consistency 

purposes.  
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(a) 

  

(b) 

  

(c) 

Figure 7.17 Cumulative Permanent Axial Strain (εp, N=1,000) Varying with Permanent Axial Strain 

Rate for (a) Crushed Limestone, (b) Crushed Dolomite and (c) Uncrushed Gravel 
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(a) 

  

(b) 

  

(c) 

 

Figure 7.18 Permanent Axial Strain Rate Varying with Fines Content for (a) Crushed Limestone, 

(b) Crushed Dolomite and (c) Uncrushed Gravel 
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For uncrushed gravel materials containing high amounts of plastic fines (exceeding 8.1%), 

a large increase in the permanent strain rate was observed in Figure 7.18(c) as moisture content 

increases beyond the optimum. On the contrary, nonplastic fines generally exhibit much less 

moisture susceptibility, especially for higher quality crushed aggregates (Dolomite and 

Limestone). Another noticeable observation is that eight percent seems to be the optimum fines 

content that overall leads to the least change in the permanent strain rate across all the test 

conditions. This remarkably matches previous findings reported by Tutumluer and Seyhan 

(2000). Using the directional dependency, anisotropy, of aggregate stiffness as the criterion, they 

determined an optimum fines content of 7%. The strain rate criteria proposed by Werkmeister 

(2003) to discern different shakedown ranges are also plotted as dotted lines in Figure 7.18, i.e., 

10-8 and 810-8 per cycle for Range A-B boundary and Range B-C boundary, respectively. Note 

that the permanent deformations recorded for up to only 1,000 cycles may not reach the 

secondary stage yet, which explains that greater strain rate values than the threshold value 

defining Range B-C boundary were obtained, as shown in Figure 7.18.  

7.3.3 Effects of Constant Confining Pressure (CCP) Stress States 

Figure 7.19 illustrates the stress path loading scheme for both P209 and P154 aggregate 

materials, as well as the shakedown ranges (i.e., Range A, B, or C) identified for each CCP (m=3) 

stress state according to the criteria proposed by Werkmeister (2003). It can be seen that only 

Range A and Range B behavior were exhibited by both materials under such prescribed CCP 

stress states. Figure 7.20 shows permanent deformation characterization results of P209 and 

P154 aggregate materials under the applied CCP stress states. The legends in Figure 7.20 

represent the CCP stress states applied, i.e., constant radial confining stress σ3 (psi), pulsed axial 

deviator stress σd (psi), and the calculated shear stress ratio qratio. The total number of load 
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applications is 10,000 for P209 aggregate material and 40,000 for P154 aggregate material, 

respectively. Note that the P154 specimens subjected to the stress state of 3-psi constant 

confining pressure and 21-psi axial deviator stress (denoted as “3/21”) were excluded from the 

following analysis, as only 10,000 load applications were recorded from it.  

 

  

(a) (b) 

 

(c) 

Figure 7.19 Laboratory Repeated Load Triaxial Permanent Deformation Tests for FAA NAPTF 

Aggregate Materials: (a) Stress Path Loading Scheme and Identified Shakedown Ranges for (b) 

P209 and (c) P154 Materials 
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As shown in Figure 7.20(a), for both materials, the permanent strain accumulation 

reaches a steady-state level at the end of the application of all stress states, as indicated by the 

decreasing or near constant cumulative permanent strain rate. This means that both materials 

exhibit plastic creep type permanent deformation behavior under such CCP stress states, which 

agrees with previous findings reported by Kim (2005). In particular, the P209 aggregate material 

is expected to undergo plastic shakedown under the stress state of 3-psi constant confining 

pressure and 9-psi axial deviator stress (“3/9/24%”), due to the radically decreasing cumulative 

permanent strain rate. The stress states resulting in higher shear stress ratio are seen to overall 

result in faster permanent strain rate during loading and greater final permanent strain. This may 

imply the capability of the shear stress ratio (SSR) as a variable to capture essential permanent 

deformation behavior. Detailed analyses of the role played by the shear stress ratio in controlling 

permanent deformation are discussed next in subsequent sections.  

The aforementioned stable permanent strain rate values were obtained by fitting triaxial 

test data from each CCP stress state against the Theyse model (2001) for both materials, 

respectively. Such stable permanent strain rates are then plotted in Figure 7.20(b) against the 

maximum axial stress (σ1=σ3+σd) at each confinement level. It is interesting to note from Figure 

7.20(b) that despite the limited number of CCP stress states investigated, a clear trend can still be 

observed. That is, the stable permanent strain rate for both materials consistently increases with 

increasing axial stress but decreases with increasing confinement level. The final accumulated 

permanent strain results also confirm such a consistent trend.  
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(a) 

  

(b) 

Figure 7.20 Permanent Deformation Characterization of P209 and P154 Aggregate Materials 

during CCP Tests: (a) Axial Permanent Strain Rate Vs. Axial Permanent Strain and (b) 

Stabilized Permanent Strain Rate Vs. Maximum Axial Stress 

 

 Figure 7.20(b) also highlights the differences among the permanent deformation trends 

of both aggregate materials investigated. The slopes of the stable permanent strain rate curves for 

the P209 change abruptly, while those for the P154 are aligned more parallel and closer to each 

other. This implies that for aggregate materials containing much less plastic fines such as the 

P209, the stable permanent strain rate increases much faster with decreasing confinement level 

(σ3); on the contrary, relatively more cohesive materials such as the P154 rely less on the 

confinement due to more contribution of the shear cohesive strength component and thus are less 
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susceptible to the axial stress increase. Intuitively, with a lower increase rate, higher axial stress 

increase would be required in order to cause the same amount of increase in the stable permanent 

strain rate; hence, better capability of withstanding axial stress (i.e., hardening response) can be 

expected. In practice, this means that a suitable confinement is needed for frictional (non-

cohesive) materials to avoid excessive permanent strain accumulation and offset the detrimental 

effect exerted by axial stress. This inference is indirectly supported by the GT-PAVE finite 

element analysis on the effect of compaction-induced residual stresses locked in granular bases 

(Tutumluer and Thompson, 1997). Conversely, cohesive materials may withstand higher 

permanent strains even in the absence of confinement by relying on the contribution of the shear 

cohesive strength component (e.g., pore water suction between interfaces of solid particles), 

which again confirms the importance of incorporating (unsaturated) shear strength behavior into 

permanent deformation prediction of unbound aggregate materials. Therefore, such stable 

permanent strain rate analysis is capable of discerning the changes in rutting behavior of 

materials dissimilar in nature. 

7.3.4 Effects of Varying Confining Pressure (VCP) Stress States 

As contrary to the aforementioned CCP type tests, deviator stresses in both vertical and 

horizontal directions are pulsed simultaneously during the varying confining pressure (VCP) 

type tests to simulate the moving wheel load effects. The stress path loading slopes (m) of VCP 

type tests represent the rotating principal stress directions caused by the moving wheel loads. 

This section examines the effects of VCP stress states on permanent deformation behavior of 

unbound aggregate materials from a different perspective, i.e., the stable permanent strain rate 

derived based on the shakedown theory.  
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Figure 7.21 shows the shakedown ranges (i.e., Range A, B, or C) identified for each VCP 

stress state according to the criteria proposed by Werkmeister (2003). It can be seen that only 

Range A and Range B behavior were exhibited by both materials under such prescribed CCP 

stress states.  

 

  

(a) 

  

(b) 

Figure 7.21 Shakedown Ranges Identified for P209 and P154 Materials under VCP Stress States: 

(a) Loading Slope m=1.5 and (b) m=0  
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Figure 7.22(a) plots the cumulative permanent axial strain against the permanent axial 

strain rate under different VCP stress states for both P209 and P154 materials, respectively. Note 

that the legends in Figure 7.22 sequentially represent the VCP stress states applied, i.e., constant 

hydrostatic confining stress σs (psi), vertical deviator stress σ1d (psi), horizontal deviator stress 

σ3d (psi), and the calculated maximum shear stress ratio qratio. Again, the total number of load 

applications is 10,000 for P209 material and 40,000 for P154 material, respectively. To be 

consistent, aggregate specimens that did not complete the entire prescribed load applications are 

excluded from the following analysis. 

 

  

(a) 

  

(b) 

Figure 7.22 Permanent Axial Strain Rate versus Axial Stress at Different VCP Stress States for 

P209 and P154 Materials: (a) m=1.5 and (b) m=0 
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First of all, it can be clearly seen that VCP stress states generally increase the permanent 

strain rate due to the dynamic nature of the applied stress states, as compared to results shown in 

Figure 7.22. Increasing magnitudes of the axial deviator stress are consistently associated with 

greater permanent axial strain and larger permanent strain rate. As the stress path loading slope 

changes from m=1.5 to m=0, the permanent strain accumulates with a lower rate to a smaller 

value upon the end of load applications. The effect of increasing stress path length can also be 

visualized, as it is proportional to the magnitudes of both vertical and horizontal deviator stresses. 

A longer stress path length at constant stress path slope leads to an increase in permanent strain 

accumulation. However, the effect of stress path length becomes apparent only when one 

compares the permanent deformations accumulated under the same applied stress path slopes. 

Low stress path loading slopes may also increase volumetric strains and thus create ruts or heave 

(Kim, 2005).  

Early research on permanent deformation has shown that permanent axial strains increase 

with increasing deviator stress q and decrease with increasing mean stress p. This has led to 

analytical relationships relating permanent axial strains (or shear strains) to p and q (Pappin, 

1979). The repeated loading and unloading occur in the p-q space between the residual stress pmin, 

qmin, pmin+Δp, qmin+Δq (see Figure 2.8). The stress state of pmin and qmin is resulted from the 

relatively small overburden and the compaction-generated “locked-in” (or residual) stresses. 

Two stress path loading related parameters, i.e., stress path length L and mean stress p, were 

screened by preliminary statistical analysis to affect the progressive increase of the permanent 

axial strain with the number of load applications. Figure 7.23 plots the stable permanent strain 

rates versus stress path loading parameters. Note that stress states causing Range A behavior 

(plastic shakedown) were excluded in Figure 7.23. Clearly shown is a statistically significant 
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linear relationship (R2>0.62) that relates the stable permanent strain rate with the stress path 

length (L), the applied stresses (Δp and Δq), and the initial stress state (Lmin and pmin) of both 

P209 and P154 materials for each stress path loading slope (m=Δq/Δp). Note that the stress path 

loading with a slope of m=3 (i.e., CCP tests) can be regarded as a special type of VCP tests.  

Equation 7.10 mathematically expresses the linear relationship identified in Figure 7.23. 

Interestingly, the intercept d in Equation 7.10 turns out to be constant among three different 

stress path loading slope (m) values for both P209 (d=410-7) and P154 (d=510-8) materials. 

Figure 7.24 shows that the slope c, on the other hand, can be statistically related to the stress path 

loading slope m in parabolic functions for both P209 and P154 materials, respectively. The 

different shape of those two parabolic functions could be possibly attributed to the differences 

among the permanent deformation trends of both aggregate materials investigated, as described 

previously for CCP stress states (see Figure 7.20). 

2 2

min min

p 2 2

min min min
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σ +2σ
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   
   
   

                                (7.10) 

where 
p
ε =stable permanent strain rate, Δp =mean stress increment ( max min

p p ), Δq

=deviator stress increment ( max min
q q ), 1d

σ =vertical deviator stress in triaxial stress space, 

3d
σ =horizontal deviator stress in triaxial stress space, and c and d are regression coefficients to 

be determined. 
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(a) 

  

(b) 

  

(c) 

Figure 7.23 Relationship between Stable Permanent Axial Strain Rate (έ) and VCP Stress Path 

Loading Parameters for P209 and P154 Materials: (a) m=3, (b) m=1.5 and (c) m= 0 
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(a) (b) 

Figure 7.24 Regression Coefficient c in Equation 7.10 versus Loading Slope m for (a) P209 and 

(b) P154 Materials 

 

7.4 Development of Phenominological Stable Permanent Strain Rate Model 

7.4.1 Mohr-Coulomb Representation of Stable Permanent Strain Rate Envelope 

After observing from Figure 7.20(b) the dependency of stable permanent strain rate on 

the maximum axial stress associated with certain confinement level, efforts were made 

accordingly to develop an analytical model for mathematically expressing such a dependency. 

As a result, a power law was found after several trials to well fit the experimental data. Equations 

7.11 and 7.12 formulate the identified model forms. Both models are acceptable in terms of the 

reasonably high R2 values and low standard error of estimates (SEE), both of which are 

frequently used measures of the differences between values predicted by a model and those 

actually observed. Note that the coefficient of σ3 shown in the power term of σ1 has different 

signs for both models (i.e., “-” sign for P209 and “+” sign for P154). This could be possibly due 

to the use of different sample sizes for regression-based model development, as well as due to 

varying dependence of shear strength development on confining pressure σ3.  Figure 7.25 also 
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illustrates the predictive accuracy of each model by plotting measured stable permanent strain 

rate against its predicted values, respectively. 

 31.009 0.0467 0.535 2 7

3 1209: 1.9 10 0.78, 9.78 10pP R SEE
                        (7.11) 

 30.808 0.0127 0.855 2 8

3 1154: 2.65 10 0.92, 7.24 10pP R SEE
                    (7.12) 

 

  

(a) (b) 

Figure 7.25 Predicted Vs. Observed Stable Permanent Strain Rate for (a) P209 and (b) P154 

 

Note that the two simple but effective model forms above include the major and minor 

principal stresses (σ1 and σ3) as explanatory variables. To make them directly applicable to other 

multi-axial stress states, the proposed stable permanent strain rate models are then depicted on a 

Mohr-Coulomb diagram. By rearranging Equations 7.11 and 7.12, the major principal stresses σ1 

can be formulated below in Equations 7.13 and 7.14 as function of the minor principal stresses σ3 

and the stable permanent strain rate (
p

 ).  
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                                            (7.14) 

Given a pre-specified permanent strain rate level, the major principal stress σ1 (or axial 

stress in triaxial testing) in Equations 7.13 and 7.14 can be calculated for any paired minor 

principal stress σ3 (or radial confining pressure in triaxial testing), both of which can be further 

used to construct the corresponding group of Mohr circles. Analogous to the concept of the 

Mohr-Coulomb failure envelope, the permanent deformation resistance envelopes can be defined 

by these Mohr circles representing all the possible stress states that cause the specified 

permanent strain rate condition. One prominent feature of such permanent deformation resistance 

envelopes is their potential usefulness in ranking and properly selecting different unbound 

pavement layer materials for use in specific traffic levels and site conditions, i.e., the rutting 

potential based on the shakedown theory is evaluated simultaneously in relation to the potential 

shear failure. Such a Mohr-Coulomb rutting resistance envelope representation also highlights 

the capacity of the proposed stable permanent strain rate model to distinguish the physical-

mechanical properties of different unbound pavement materials effectively and reliably. Figure 

7.26 shows as an example several envelopes representing different levels of the permanent 

deformation resistance for both P209 and P154 materials, respectively.  
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(a) 

 

(b) 

Figure 7.26 Mohr Circles (a) Representing Stable Permanent Strain Rate for P154 and (b) 

Rutting Resistance Envelopes for P209 and P154 Aggregate Materials 
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In many of the permanent deformation models reviewed in Chapter 2, the stress level 

and/or the shear stress to strength ratio are used to describe the permanent deformation behavior. 

Stresses above the shakedown threshold result in shearing; as a result, the permanent strain rate 

could either be stable or increase rapidly upon reaching failure, depending on how close to the 

strength the applied stress level is. A family of design curves can be developed using Equations 

7.11 and 7.12, as represented in Figure 7.27. It should be noted that the combination of lower 

confinement level and higher shear stress ratio leads to much more rapid permanent strain 

accumulation. The vertical axis represents the permanent plastic strain rate obtained under a 

constant minor principal stress (σ3) level with varying shear stress ratio. With the design traffic 

load and volume, the permanent plastic strain rate and thus the accumulated plastic strain in the 

unbound pavement layer can be predicted by the number of load cycles (N) and shear stress ratio 

corresponding to the design axle load. The adoption of this design chart in the pavement design 

process can avoid the development of excessive permanent deformation in the unbound 

pavement layers.  

  
(a) (b) 

Figure 7.27 Stable Permanent Plastic Strain Rate Design Chart Using Shear Stress Ratio and 

Minor Principal Stress (σ3) for (a) P209 and (b) P154 Aggregate Materials 



 291 

7.4.2 p-q Diagram Representation of Stable Permanent Strain Rate Envelope 

Previous research efforts have noted that the development of permanent deformation is 

directly related to the proximity of the applied stresses to the Mohr-Coulomb failure line 

expressed in q-p space (Barksdale, 1972). Huurmann (1997) showed that the closer the applied 

stress level is to the shear strength, the higher the permanent strain rate, which is logical due to 

the observations from laboratory permanent deformation test results. 

According to Equation 7.10 and Figure 7.24, Equations 7.15 and 7.16 can be derived to 

formulate the stable permanent strain rate models obtained for P209 and P154 materials under 

VCP stress states, respectively. One prominent feature of those two models is that they can be 

readily implemented in finite element programs to predict axial permanent strain accumulation 

under any radial stress paths in the (p, q) plane (i.e., stress paths with constant slope m ranging 

from 0 to 3). It is worth noting that a CCP stress state (i.e., m=3) is a special type of VCP stress 

states; therefore, Equations 7.15 and 7.16 are more general than Equations 7.11 and 7.12. 
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   (7.16) 

Figure 7.28 also illustrates the predictive accuracy of each model by plotting measured 

stable permanent strain rate against its predicted values, respectively. Both models yield 

reasonably good predictions of the stable permanent strain rate under different VCP stress states. 

As illustrated in Figure 7.29, the shear stress ratio for a stress path loading with a slope of m can 

be alternatively quantified in p-q diagram as the quotient between the actual stress applied and 
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the stress at failure. By employing Equations 7.15 and 7.16, it can be mathematically shown that 

the stable permanent strain rate under VCP states are in fact related to the shear stress ratio and 

the initial and current stress states (pmin, qmin, Δp, and Δq). Similar to the Mohr-Coulomb 

representation, the p-q diagram representation of the stable permanent strain rate can be 

established analogously. 

  
(a) (b) 

Figure 7.28 Predicted Vs. Observed Stable Permanent Strain Rate for (a) P209 and (b) P154 

under VCP Stress States 

 

 

Figure 7.29 Schematic Representation of Shear Stress Ratio in p-q Diagram for Stress Path 

Loading Condition  
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7.5 Unified Rutting Prediction Model Development 

The analysis results in previous sections clearly demonstrate that the permanent 

deformation accumulation of unbound aggregate layers is dictated by the shear stress ratio and 

the working stress states to which pavement layers are subjected. The progression of permanent 

deformation with the number of load applications, obtained either from laboratory RLT testing or 

from field rutting measurements, has been observed to include three distinct stages: Primary, 

Secondary, and Tertiary. The three-stage permanent deformation behavior can be regarded as the 

basic mechanical properties of unbound granular materials. A new three-stage model is proposed 

based on the shear strength properties to describe the primary, secondary, and tertiary stages. The 

stable permanent strain rate exhibited during the secondary stage is used as the rut indicator of 

unbound materials. Note that the majority of the permanent deformation results used in this study 

did not enter the tertiary stage but remain in the secondary region due to the limited number of 

load applications (up to 40,000). Therefore, identifying the transition point between the 

secondary and the tertiary stage and modeling the tertiary region are out of the scope of this 

thesis study. However, the framework developed in this study can be readily extended to 

incorporate the tertiary region, provided that the permanent deformation results up to the tertiary 

stage become available. 

7.5.1 Model Development for Different Aggregate Physical Properties 

The permanent deformation results from the ICT R27-1 research project were recorded 

from the conditioning stage of the resilient modulus tests with up to 1,000 load applications; 

therefore, the majority of the permanent deformation curves are for the primary stage only. The 

classical power-law model, proven to fit well the primary stage of the permanent deformation, is 

chosen as the basic model form to develop the unified rutting model for different aggregate 



 294 

physical properties. It is expected that such unified rutting model could be applied with a high 

degree of confidence to a much wider range of materials by incorporating critical stress variables 

and essential material properties that govern rutting behavior. 

It has been long realized that the variation in moisture is one of the environmentally 

driven variables that can affect permanent deformation behavior. At low moisture contents, the 

soil matric suction, as a fundamental stress state variable for unsaturated materials, contributed to 

the permanent strain responses of soils. To evaluate the impact of moisture variation, the 

moisture content is normalized corresponding to an optimum degree of saturation (S) and 100% 

compaction. For unbound materials, the influence of soil type (e.g., nonplastic and plastic) 

becomes more important as the moisture content goes beyond the vicinity of that under optimum 

conditions. An attempt to introduce the plasticity index (PI) as a predictive variable into the 

rutting model was made. It was decided to use the product of the decimal fraction of the material 

passing a No. 200 sieve (w) and PI (in percent) (wPI), because previous studies have shown that 

the variable wPI can account for the effects of both plasticity index and fines content (Zappata et 

al., 2013). It should be noted that this variable is also used in the MEPDG to estimate the soil 

water characteristic curve of the soil, which represents its moisture retention capability.  

The NCHRP 1-26 (1990) study concluded that permanent strain accumulation prediction 

models should include a stress ratio factor. It was found in previous sections that the following 

enhancement to the original Tseng and Lytton’s empirical relationships proved to be effective: 

(i) replacing moisture content by percent saturation; (ii) the inclusion of weighted plasticity 

index (wPI) and shear stress ratio terms as new predictive variables; and (iii) the inclusion of the 

statistically significant interaction term between wPI and shear stress ratio. As observed from 

Figure 7.27, the confinement level, in addition to the shear stress ratio, is also critical for 
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permanent strain accumulation of unbound granular materials. In this study, the bulk stress term 

that is responsible for the volume change behavior, is included to represent the confinement level.  

For the aggregate materials studied in ICT research studies, the proposed eight-parameter 

Power-law model to predict permanent axial strain is formulated as follows:  
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where 
p

 =permanent axial strain (%),  =bulk stress, 

max

f



=shear stress to shear strength ratio, 

0
p =normalizing unit pressure (1 psi), N =the number of load applications, S =achieved 

saturation level in decimal, 
opt

S =optimum saturation level in decimal, wPI =weighted plasticity 

index, and a, b, c, d, e, f, g, and h=regression coefficients. 

The proposed rutting model was then applied to the permanent deformation database of 

the ICT R27-1 Research Project. Figure 7.30 shows the model prediction results for those three 

different types of aggregates with varying quality aspects. As an example, the accuracy of the 

unified model in terms of R2 values, as well as the model parameters, are shown in Table 7.12. 

Although many factors affecting permanent deformation behavior exist, the proposed model 

seems to be still able to predict reasonably well the permanent axial strain value accumulating 

with the number of loading cycles. Considering the fact that the stress state applied during the 

conditioning stage to obtain permanent deformation results is similar among different specimens, 

a simplified version of Equation 7.17 can be pursued by dropping the bulk stress term, thus 

making the shear stress ratio the only stress-related term.  
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(a) (b) 

 

(c) 

Figure 7.30 Measured Cumulative Permanent Axial Strain vs. Predicted Cumulative Permanent 

Axial Strain for (a) Uncrushed Gravel, (b) Crushed Dolomite and (c) Crushed Limestone 
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Table 7.12 Summary of Permanent Strain Model Coefficients with Goodness of Fit for ICT Uncrushed Gravel Materials of Different 

Physical Properties 

Material a b c d e f g h R2 

Non-

plastic 

L_0_D 1.7E3 17 31 0.2 27.5 509 -29347 3.35 0.99 

L_0_O 0.82 -1.2 0.53 0.4 2.5 2.3 1.4 3.4 0.98 

L_0_W 62.4 21 23 0.15 -124 -4712 -22232 -4 0.99 

L_4_D 10.3 11.1 16.6 0.14 83.1 380.6 -6888 2.33 0.99 

L_4_O 3.42 -0.7 0.48 0.14 0.44 0.18 -0.005 0.46 0.99 

L_4_W 54.3 12.6 20.4 0.15 11.9 138 -10791 -2.64 0.99 

L_8_D 0.54 10.4 13.1 0.13 65.7 -89.8 -3495 2.15 0.99 

L_8_O 1.7 6.2 7 0.23 4.23 -916.5 -3192 0.024 0.99 

L_8_W 619 31.7 58.1 0.17 103 832.6 -18305 -5.44 0.99 

L_12_D 10713 13.3 28.4 0.14 -27 76.8 -5531 2.16 0.98 

L_12_O 1161 4.03 40.4 0.34 0 5832 -15356 0 0.99 

L_12_W 0.37 25.2 35.4 0.35 -44.4 -102 -8237.7 -3.9 0.99 

All Non-plastic Data 3E-12 7 5.5 0.3 -33 818 -2084 0.6 0.99 

Plastic 

L_0_D 1.94 7.77 9.9 0.13 0.27 -8.8 -108.6 1.59 0.99 

L_0_O 1.39 0.64 398 0.14 1.5 2062 -2675 0 0.98 

L_0_W 19.54 42.5 62.6 0.15 17.1 -3.7 -582 -8.0 0.99 

L_4_D 2.76 15.6 21.2 0.14 97.1 0.14 -79.4 2.8 0.98 

L_4_O 9.26 1.73 323 0.15 0.59 803.7 -1201 4.87 0.99 

L_4_W 148.6 12.2 23.3 0.14 -48.3 8.13 -84.2 -2.2 0.99 

L_8_D 0.52 165 207 0.1 71.9 17.2 -743.7 32.4 0.99 

L_8_O 9E+5 3.8 135 0.18 1.37 195.5 -322 1.21 0.99 

L_8_W 3.3E+4 -34.3 -36.5 0.35 57.2 10.43 85.3 6.46 0.99 

L_12_D 1596 171 231 0.1 71.6 17.4 -542 35.6 0.97 

L_12_O 2.37 4.72 191 0.17 3.46 220.5 -352.7 0 0.99 

L_12_W 0.8 30.7 30.8 0.33 -337 -3.2 -52 -6 0.99 

All Plastic Data 3E-59 32 0.4 0.2 95 1.1 -2.4 -1.5 0.96 

Add Data Combined 4E-44 23 -1.4 0.4 -51 -1.1 4.7 0.85 0.91 
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The developed permanent strain models are so far applicable to a specific type of 

aggregates (i.e., crushed dolomite, crushed limestone, or uncrushed gravel) prepared at different 

fines contents and moisture contents. An attempt was also made to combine the permanent strain 

test results and to construct a unified model that are applicable to all three different types of 

aggregates. To achieve this goal, additional explanatory variables are needed to effectively 

distinguish the mineralogical difference among the three different types of aggregates. Particle 

shape, texture, and angularity characteristics of the three aggregate types were quantified in the 

laboratory using a validated image analysis system, the University of Illinois Aggregate Image 

Analyzer (UIAIA). Those imaging based aggregate morphological indices, as tabulated in Table 

3.3, were previously identified to be closely related to mechanical performance indicators such 

as resilient modulus and permanent deformation (Tutumluer et al., 2009). Therefore, they are 

employed herein as explanatory variables to account for the difference among the three 

aggregate types. The final model form is mathematically expressed in Equation 7.18. 
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          (7.18) 

where FER, AI, and ST are imaging based aggregate morphological indices, i.e., Flat and 

Elongated Ratio, Angularity Index, and Surface Texture, respectively, and k, m, and n are 

additional regression coefficients corresponding to three aggregate morphological indices, 

respectively.  

Table 7.13 lists the model coefficients of the unified permanent strain model. The 

reasonably high R2 value (0.85) indicates that the unified model well fits all the test results. 

Figure 7.31 plots the measured permanent axial strain values against the predicted values by the 
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unified model. The data points are approximately scattered around the equality line. It should be 

noted that only the linear form of the predictive variables was explored in the developed unified 

model. Further refinement of the developed unified model by exploring other nonlinear forms 

may improve the prediction accuracy. 

Table 7.13 Summary of Permanent Strain Model Coefficients with Goodness of Fit for All Three 

Different ICT Aggregate Materials of Varying Physical Properties 

Model 

Coefficients 

a b c d e f g h k m n 

0.44 24.4 -0.75 0.32 0.44 -1.26 5.21 -0.014 36.1 -1.02 165.2 

R2 0.85 

SEE 0.11 

Data Points 13,522 

 

 

Figure 7.31 Measured Cumulative Permanent Axial Strain vs. Predicted Cumulative Permanent 

Axial Strain by the Unified Model 
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7.5.2 Model Development for Different Dynamic Stress States 

7.5.2.1 Selection of Model Form 

The major motivation of developing a unified rutting model is to predict permanent 

deformation accumulation with a high degree of confidence no matter what the applied stress 

states are in the granular layer and whether or not these stresses are due to stationary or moving 

wheel loads. The FAA database consists of permanent deformation results that were obtained at 

different dynamic stress states. The aim is to develop unified models that relate permanent strain 

to the number of cycles and the applied stresses, which have wider and more robust application 

than the models reviewed previously. The analysis is limited to permanent axial strain, as this is 

the most important for the estimation of rutting. Kim (2005) also developed CCP and VCP 

permanent deformation models using the same FAA database. According to Kim (2005), the R2 

values of the developed VCP models for m=-1 (triaxial extension) were in general the lowest 

possibly due to the high noise and fluctuations in the recorded triaxial data; therefore, permanent 

deformation test results for m=-1 is not analyzed in this study.  

In addition to the model form presented previously for ICT aggregates, two commonly 

used rutting models incorporating stress terms were verified first for their general applicability to 

dynamic stress states. The first model verified was the one suggested by Gidel et al. (2001), as 

shown in Equation 7.19. It was developed using repeated multi-stage triaxial test apparatus and 

uses the maximum deviator (qmax) and mean (pmax) stresses to compute the permanent strain. This 

model explicitly combines the effects of stresses and number of cycles on the axial permanent 

strain. 
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where 0
N  is the reference number of load applications (in this study=100), 

2 2

max max max
L p q  , and n, B, m, s, and 0

 are material constants. 

The second model evaluated has a similar formulation as the first one and is proposed by 

Korkiala-Tanttu (2008). According to this model, the development of permanent deformation is 

directly related to the distance from the stress point to the Mohr-Coulomb failure line expressed 

in q-p space and it also relates the effect of stress on the permanent deformation through a 

hyperbolic function (see Equation 7.20). This model accounts for the effect of the number of 

cycles through the log-log approach suggested by Sweere (1990). This model is given by: 

  1
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p
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N CN

A R
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
                                                  (7.20) 

where C and b are material parameters, A is a parameter independent of the material (A=1.05) 

and R is the deviatoric stress ratio given by max max

maxf

q q
R

q s m p
 

 
,  6sin 3 sinm     

and  6 cos 3 sins c     ,   is the angle of internal friction, c  is the cohesion of the 

material, and max
q  and max

p  are the maximum deviatoric and hydrostatic stresses of the load 

application, respectively. 

As an example, permanent deformation results of FAA P154 material at different CCP 

and VCP stress states were used for comparison. Note that the s and m values required for 

calculating R value in Equation 8.18 are s=19.46 psi and m=2.49 for P209 material, and s=54.36 

psi and m=1.80 for P154 material according to the shear strength test results, respectively. Figure 

7.32 plots the measured permanent strain values again those predicted by each of the three 

models. The R2 and SEE values for the model by Gidel et al. (2001) are 0.57 and 0.13, and 0.67 

and 0.11 for the one by Korkiala-Tanttu (2008), respectively. Improved accuracy was obtained 
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by the model proposed in this study, as indicated by R2=0.90 and SEE=0.06. It can also be 

observed from Figure 7.32 that the model proposed in this study yielded predictions that match 

the measured values more closely.  

 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 7.32 Measured Cumulative Permanent Axial Strain vs. Predicted Cumulative Permanent 

Axial Strain by Different Models for P209 Material at a Loading Slope of (a) m=3 and (b) m=1.5 
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7.5.2.2 Two-stage Model 

Both primary stage and second stage exist in the permanent deformation curves recorded 

in the FAA database. Both the semi-log and power-law models were found to only represent the 

primary stage of the measured rutting curve, whereas the Tseng and Lytton’s model cannot 

characterize either the secondary or tertiary stage (Zhou et al., 2004). In summary, these types of 

models appear to adequately characterize only the primary stage, and none of them can describe 

effectively the secondary and/or tertiary stages. Therefore, instead of using a single classical 

power-law formulation to describe the entire permanent deformation curve, Zhou et al. (2004) 

proposed the concept of the three-stage permanent deformation model to mathematically 

describe the whole permanent deformation curve. It has been reported as the most accurate 

model, among all the developed models in this field, to fit the permanent deformation curves and 

to identify the locations of the two boundary points on the permanent deformation curves. 

Pérez and Gallego (2010) fitted several existing permanent deformation models to 

express the cumulative permanent strain as a function of the number of load cycles. They found 

that the sum of two well-known models offered excellent predictions, which in the long term did 

not tend to either underestimate or overestimate the measured values. The model has the 

following mathematical form as in Equation 7.21.  

  1
1B D N

p
AN m N C e                                               (7.21) 

As illustrated in Figure 7.33, the first term of this model produces a linear increase of 

permanent strain in relation to N on a log-log scale. It has a slope equal to infinity at N=0 and 

equal to the product of the two coefficients A and B at N=1. After a certain number of load 

cycles, the second summand reproduces a linear increase of permanent strain with N on a 
1 p
 -N 

scale. The model has a curvature determined by the value of coefficients B and D and an 
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eventual linear slope equal to coefficient m. The applicability of this model is limited to low-

traffic roads whose structural response behavior, according to the shakedown concept, 

corresponds to “Range A” and “Range B”. It has been proven that this model offers an excellent 

description of the material behavior in “Ranges A and B” in a pavement section of low-traffic 

roads (Pérez and Gallego, 2010). 

 

 

Figure 7.33 Schematic Representation of Model Parameters in Equation 8.19 (Pérez and Gallego, 

2010) 

 

In this study, the permanent deformation model form recommended by Pérez and Gallego 

(2010) is selected as the basic form for the unified rutting model to describe the plastic strain 

accumulation with the number of load applications. Note that such a basic form is conceptually 

similar to the three-stage model by Zhou et al. (2004). It is worth noting that the two-stage 

rutting model naturally combines the two unified models developed previously for modeling 
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primary and secondary stages, respectively. Therefore, it is capable of predicting the whole 

process of permanent deformation accumulation. The next step is to correlate the model 

parameters of the basic model form to a variety of stress variables so that it can accurately fit all 

the permanent deformation curves obtained at different stress states. To achieve this, the stress 

variables to be correlated with model parameters must be the fundamental ones that are sufficient 

to capture the stress sensitivity of the permanent strain accumulation. By combining the 

permanent deformation models developed by Kim (2005) primarily for describing the primary 

stage and the permanent strain rate model developed in this study for describing the secondary 

stage, the following model is proposed as in Equation 7.22 and then found to fit all the 

permanent deformation curves with good accuracy, as indicated by the high R2 values and low 

SEE values, as shown in Figure 7.34 for P209 material.  
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(a) (b) 

 

(c) 

Figure 7.34 Measured Permanent Axial Strain Vs. Predicted Values by the Unified Model for 

FAA P209 and P154 Materials at Different Loading Slopes: (a) m=3, (b) m=1.5, and (c) m=0 

 

It is worth noting that the unified rutting model and the stable permanent strain rate 

model developed in this study were based on two unique research project databases and were 

specific to unbound aggregate materials studied in those two databases, respectively. While the 

general forms of these two models could still be applicable to other changing materials and/or 

conditions, it is recommended that the model coefficients be calibrated using laboratory RLT 

permanent deformation test results prior to the use in actual predictions. 
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7.6 Summary 

This chapter presented the development of viable criteria for ranking the long-term 

rutting potentials of unbound granular materials based on the shakedown theory and a unified 

approach for modeling permanent deformation behavior. A comprehensive aggregate 

mechanistic property database recently compiled at the University of Illinois from a number of 

research studies spanning almost two decades were re-examined from a fresh point of view, i.e., 

the shakedown theory for rutting behavior. Resilient modulus, shear strength, and permanent 

deformation test data for several base/subbase aggregate materials used in highway and airport 

pavement foundation layers were comprehensively documented in this database.  

The adequacy of Pavement ME Design models to predict the influence of subgrade and 

unbound layer characteristics on the rutting performance of flexible pavements for a range of 

material, environment, and traffic conditions was first evaluated using this laboratory database. 

Based on the comparison results of the original Tseng and Lytton model and the current MEPDG 

rutting model against laboratory RLT test results, the need for further enhancement of both 

models becomes obvious. To improve the predictive ability of Pavement ME Design, rational 

modifications of the models contained in the Pavement ME Design were suggested, which will 

allow an improved analysis and design of flexible pavements against rutting distress. Both the 

resilient and plastic responses of different aggregate materials to repeated loading under various 

dynamic stress states and aggregate physical conditions were analyzed concurrently from 

shakedown perspectives to characterize the correlation between plastic strain and resilient 

modulus. This further confirms that relying on resilient modulus alone could lead to misleading 

characterization of unbound aggregates for use in pavement applications; instead, resilient 

modulus and permanent deformation need to be examined concurrently. 
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A special consideration of “degradation stiffness model” was introduced to demonstrate 

how the results of laboratory repeated load triaxial tests on unbound aggregates can be applied in 

a numerical model to estimate the progressive deformation of unbound pavement layers to the 

effects of long-term repeated loading. The constitutive models for the degraded secant modulus 

were proposed based on the concept similar to that of the existing resilient modulus models, thus 

making them suitable for use with numerical tools such as the finite element simulation. By 

using the proposed models, the permanent deformation of unbound pavement layers under 

repeated traffic loading can be realistically predicted using a mechanistic approach as opposed to 

the current empirical or semi-empirical methods.  

A stable permanent strain rate dependency was observed for characterizing the dynamic 

stress states induced by moving wheel loads. Efforts were made accordingly to develop an 

analytical model for mathematically expressing such a dependency. Analogous to the concept of 

the Mohr-Coulomb failure envelope, permanent deformation resistance envelopes were defined 

by Mohr circles representing all the possible stress states that cause a specified permanent strain 

rate. One prominent feature of such permanent deformation resistance envelopes is their 

potential usefulness in ranking and properly selecting different unbound pavement layer 

materials for use in specific traffic levels and site conditions, i.e., the rutting potential based on 

the shakedown theory is evaluated simultaneously in relation to the potential shear failure. 

A unified approach to rutting prediction was developed to predict permanent deformation 

accumulation with a high degree of confidence regardless of the applied stress states/material 

physical conditions in the granular layer and whether or not these stresses are due to stationary or 

moving wheel loads. This unified rutting modeling approach effectively takes into account 

various aggregate physical properties and field stress states induced by moving wheel loads and 
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thus can be applied with greater confidence to a wider range of conditions. This way, 

consequences of using different qualities of aggregates including local marginal and recycled 

materials can be effectively evaluated for a sustainable yet reliable utilization in pavement 

construction. Good agreement between model predictions and laboratory permanent deformation 

test results was achieved by using the developed unified models.  
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Chapter 8 Field Validation of Unified Rutting Prediction Model 

for Unbound Granular Materials Using Accelerated 

Pavement Tests 
 

One of the reliable methods to quantify the effectiveness of the developed rutting 

prediction models is by testing full scale pavement sections and measuring the pavement rut 

depth accumulation with the applied load repetitions. Full-scale flexible pavement test sections, 

i.e., the NAPTF facility and the University of Illinois field test sections described in Chapter 3, 

are studied in this chapter for this purpose. The primary objective is to evaluate three permanent 

deformation models, i.e., the original Tseng and Lytton model, the current MEPDG rutting 

model, and the unified model developed in this thesis study, for unbound granular base/subbase 

materials using rutting measurements from full-scale accelerated pavement testing (APT). A 

method to determine the criterion of shear strength of unbound granular base/subbase materials 

is also established. By following this method, the expected pavement rutting during design 

service life should not exceed the maximum allowable one, provided that the shear strength of 

unbound base/subbase materials meet such established criteria. 

8.1 Permanent Deformation Predictions of the NAPTF Test Sections 

8.1.1 Modeling Responses of NAPTF Test Sections 

To develop mechanistic based permanent deformation damage models for the unbound 

aggregate layers used in conventional flexible pavement sections, pavement stress and strain 

responses with depth are required. Using the NAPTF trafficking field data, individual rut 

accumulations in the granular layers had to be predicted accurately with the increasing number of 

load applications (or number of wheel passes) in order to validate the newly developed unified 

rutting models. This necessitated the estimation of the most accurate stress distributions in the 
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NAPTF P209/P154 granular layers to use as input in the permanent deformation models. Note 

that they can be calculated from the mechanistic response model. Accordingly, finite element 

(FE) models were created extensively in previous studies to simulate the accelerated pavement 

sections using axisymmetric programs (e.g., ILLI-PAVE and GT-PAVE) and 3D commercial 

software Abaqus® (Gopalakrishnan and Thompson, 2006; Kim, 2005; Kim and Tutumluer, 

2009). Developing new pavement response models or assessing different existing pavement 

response models are out of the scope of this study; therefore, the relevant pavement responses 

were obtained from those previous studies to calculate the rut depth development with the 

number of passes. Detailed pavement analysis results can be found elsewhere (Gopalakrishnan 

and Thompson, 2003; Kim, 2005; Kim, 2007). 

8.1.2 Permanent Deformation Predicted by the Unified Rutting Model 

To validate the proposed stable permanent strain rate model, the permanent deformation 

data from the NAPTF Construction Cycle 1 (CC1) test sections, in which both P209 and P154 

granular materials were extensively used in base/subbase layers, were selected. The rut depths 

were measured using Multi-Depth Deflectometers (MDDs) embedded. The displacements at 

specific depths were obtained by subtracting the specific depth displacement transducer (DT) 

response from the surface DT response. The cross sections of those pavement test sections are 

illustrated in Figure 3.2, whereas other details can be found elsewhere (Kim, 2005). The 

excessive shakedown and permanent deformations were reported to occur in the P209/P154 

layers. The post-traffic trenching study on the MFC test section revealed that shear failure in the 

subgrade and P154 subbase contributed to the pavement structural failure (Hayhoe and Garg, 

2002). The focus of this study is to predict the accumulation of rut depth with the number of load 
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repetitions for the P209 and P154 base/subbase layers, whereas permanent deformations of the 

asphalt surface layers and the subgrade soils are not the current focus. 

Kim (2005) took two different approaches in utilizing the finite element predictions for 

the granular layer stress states as inputs to the permanent strain models. In the first approach, an 

average stress state was estimated at mid-depth of the granular layer and used as an input to the 

permanent strain models. The predicted permanent strain was then multiplied by the total 

thickness of the granular layer to compute the total layer permanent deformation. In the second 

approach, the granular layer was divided into several sublayers and the permanent strain in each 

sublayer was computed by the model individually using the average stress states predicted at 

mid-depth of that sublayer. The predicted permanent strain in each sublayer was then multiplied 

by the thickness of that sublayer. The total granular layer permanent deformation was finally 

obtained as the summation of all the sublayer deformations. According to Kim (2005), both the 

1-layer and 10-layer (or 10-sublayer) results were somewhat close in predicting similar 

accumulations of permanent deformation with increasing number of Boeing 777 wheel passes 

showing only 0.02 in. (0.5 mm) difference in the results at 20,000 passes. For simplicity, only the 

permanent deformation predictions obtained following the first approach are presented and 

compared in this study with the measured rut values of NAPTF granular layers. 

Equation 7.22 corresponding to CCP conditions was used, as shown in Equation 8.1. The 

model parameters were previously obtained from fitting laboratory permanent deformation test 

results in the FAA database. During the study conducted by Kim (2005) to validate the 

developed permanent deformation models against measured rut depths of the NAPTF test 

sections, he reported that the measured NAPTF P209/P154 layer rut accumulations have 

commonly much larger “B” values and smaller “A” values as in the power-law model 
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(
1

B

p
A N   ), due to the combined effects of load pulse duration and stress history. This could 

be interpreted as follows: (i) the magnitude of permanent deformation in the very first load 

cycles (or primary stage) observed in the field trafficking is less than that exhibited in the 

laboratory tests (NAPTF test sections were pre-loaded extensively); and (ii) the slope (rate) of 

permanent deformation accumulation line is greater than that observed in the laboratory tests 

(multiple dynamic wheel loads with wander patterns were applied in the field). Kim (2005) 

found that adjustment factors were necessary for the prediction models to more accurately 

predict the NAPTF measured granular layer ruts due to the NAPTF slow moving response tests 

conducted in the field prior to trafficking. 
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                                                  (8.1) 

where A, B, C, D, a, b, c, p, q, r, and t are regression parameters obtained from fitting laboratory 

permanent deformation test results; and β1, β2, and β3 are calibration factor to represent the 

difference between laboratory testing and field trafficking conditions. 

In this study, the model parameters of the unified model (Equation 8.1) were initially 

obtained from laboratory tests which were inconsistent with field conditions, as described 

previously. While not explicitly incorporated in the developed rutting models, the stress history 

effects are demonstrated as an important factor governing the field rutting accumulation. This is 

evidenced by the laboratory observed permanent deformation curve following the power-law 

relationship, as contrary to the field measured rutting depth increasing with an approximate 

linear trend. In the field, the FAA test sections were subjected to the initial application of 
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considerable cycles of aircraft gear loadings prior to the APT loading. To properly address such 

inconsistency between laboratory testing and field trafficking conditions, three calibration factors, 

i.e., β1, β2, and β3, were introduced into Equation 8.1. The use of those calibration factors is 

expected to properly predict the initial permanent deformation magnitude during the primary 

stage as well as the long-term permanent strain rate exhibited in the secondary stage. Note that 

this concept is in essence similar to the local and global calibration adopted by the current 

MEPDG, as well as to the adjustment factor approach used by Kim (2005).  The values of those 

calibration factors were determined by a trial-and-error procedure until the P209/P154 layer rut 

depth predicted in the calibration section matched the accumulated permanent deformation data 

as well as the profile data measured after the moving-wheel test. The root mean squared error 

(RMSE) was set as the objective function to be minimized: 
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                                                      (8.2) 

where N is the number of load repetitions; mi
 is the measured layer rut depth at the i-th load 

repetition; and ci
 is the calculated layer rut depth at the i-th load repetition. 

Figure 8.1 and Figure 8.2 show the measured layer rut depths along with those predicted 

by the unified model for P209 and P154 layers, respectively. It can be seen that the model 

predicts the measured rut depth reasonably accurately. Note that the predicted curves in Figure 

8.1 and Figure 8.2 were shifted using the shift factor parameter k to obtain a good agreement 

between the measured and the predicted permanent deformation. The shift factor parameter k is 

used to account for the differences in the actual field conditions among different NAPTF test 

sections. The shift factors used for P209 or P154 layers are approximately the same, further 
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indicating the capability of the proposed model to capture the stress sensitivity in predicting rut 

depth. As compared to the original prediction made by Kim (2005), the permanent deformation 

prediction generated by the proposed two-stage permanent strain model is much closer to the 

field measured values. Note that the Kim (2005) model employed to generate the corresponding 

permanent deformation curves shown in Figure 8.1 was not corrected for load pulse duration and 

stress history effects. Considering the rutting depth accumulated during the primary stage for the 

NAPTF test sections is relatively small as compared to long-term rutting depth accumulated 

during the secondary stage and up to failure, it seems reasonable to use the proposed stable 

permanent strain rate model for predicting rutting depth up to the initiation of the tertiary stage.  

 

  

(a) (b) 

 

(c) 

Figure 8.1 Comparison of Field-measured and Model-predicted Layer Rut Depth for P209 

Layers 
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(a) (b) 

 

(c) 

Figure 8.2 Comparison of Field-measured and Model-predicted Layer Rut Depth for P154 

Layers 

 

8.2 Permanent Deformation Predictions of ICT Full Scale Test Sections 

8.2.1 Modeling Responses of ICT Full Scale Test Sections 

Although it is ideal to use a 3D FE model to simulate the actual geometries of the 

pavement test sections, a 3D model demands much more computational resources due to the 

increased number of elements. The approximation of the ATLAS wheel load as uniformly-

distributed circular load in this study led to axially symmetric loading conditions, which made it 

possible to employ the simplified axisymmetric models for the geometric model of the test 

sections. The axisymmetric models were expected to be more computationally inexpensive than 

3D models. A moving wheel load applied on pavements may consist of a static load and a 
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continuously changing dynamic load. The component of the dynamic load is mainly due to the 

irregularity of the pavement surface. The dynamic component of the wheel load is not considered 

in the modeling. The cyclic moving load can be reasonably assumed to be a stationary static load, 

considering the pavement materials assumed in this study are independent of the loading 

frequency.  

Numerical response models were first created with GT-PAVE, a nonlinear FE pavement 

analysis program, to simulate the result of the moving wheel test performed in this study. The 

vertical compressive strains along the center-line of the model were then extracted from the 

response model to calculate the rut depth development with the number of passes. Pavement 

response models serve two purposes in this study: (1) to provide forward modeling for 

comparison with instrumentation measurements; and (2) to predict pavement critical responses 

that were needed as the inputs in the mechanistic-empirical (ME) permanent deformation models 

based on field rutting measurements.  

8.2.1.1 Geometry of Pavement Structures and FE Model 

An 800-element, 2533-node axisymmetric finite element mesh was used to analyze the 

test sections as nonlinear elastic layered systems. The subgrade and the unbound aggregate layer 

were treated as nonlinear elastic materials, as deemed necessary by previous studies (Tutumluer 

et al., 2003; Kim and Tutumluer, 2009). As shown in Figure 8.3, the dimension of the response 

model should be large enough to minimize the boundary effect. Thus, the boundaries were set to 

be 135 inches in the radial direction and 420 inches in the vertical direction from the center of 

the load area. The as-constructed thickness and material of each layer were used in the response 

model for each test section. Tire pressure of 110 psi was applied to a circular contact area to 

simulate a 9-kips wheel load.  
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It is well known that compaction induces horizontal earth pressure increase within a 

certain influence depth. The increased horizontal stress, as realized by many researchers, can 

significantly increase the stiffness of the granular base layer. However, the compaction-induced 

horizontal stress has not been considered in the finite element response model in the current 

MEPDG (NCHRP, 2004). A constant compressive horizontal residual stress of 21 kPa (3 psi) 

was assumed to exist initially throughout the base and subbase courses before the wheel load was 

applied in order to consider the benefits of adequate compaction. The inclusion of residual 

stresses in the analysis was reported to improve the predictive ability of the anisotropic model by 

realistically assigning the moduli in a zone of little load influence (Tutumluer et al., 2003; Kim 

and Tutumluer, 2009). 

 

  

(a) (b) 

Figure 8.3 Pavement (a) Layer Thicknesses Considered and (b) the GT-PAVE FE Mesh 
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8.2.1.2 Material Properties 

Material properties for the individual test cells were assigned based on previous 

laboratory test results for the aggregate subbase materials and the subgrade soil at the University 

of Illinois ATREL facility (Kwon, 2007; Mishra, 2012). The Uzan type stress-dependent 

modulus model (Uzan, 1995) was used to characterize cross-anisotropic resilient moduli of 

aggregate subbase materials, as shown in Equation 8.3. Table 8.1 lists the cross-anisotropic 

modulus model parameters determined accordingly. The constant Poisson’s ratios used were 

νr=0.3 and νz=0.1. Tutumluer and Thompson (1997) considered a wide range and combination of 

values for Poisson’s ratios and found negligible effect on the computed granular material 

stiffness. 
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                                             (8.3) 

 

where   and d  are bulk stress ( 1 32  ) and deviator stress ( 1 3  ) in triaxial conditions, 

respectively; 0p  is normalizing unit pressure (1 psi); and Ki are regression constants from 

repeated load triaxial test data, respectively. 
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Table 8.1 Resilient Modulus Model Parameters for Aggregate Subbase Materials Used 

Materials 

Cell 

No. 

E 

(Initial 

Guess, 

psi) 

vh vv 

The Uzan Model Parameters 

Horizontal 

Modulus MR
H 

Vertical 

Modulus MR
V 

Shear Modulus 

GR
V 

Nonplastic 

Uncrushed 

Gravel 

1 8000 

0.35 0.1 

K1 = 221.7 psi 

K2 = 3.36 

K3 = -2.63 

K4 = 1043.7 psi 

K5 = 0.86 

K6 = -0.13 

K7 = 434.4 psi 

K8 = 1.06 

K9 = -0.33 

Plastic 

Crushed 

Limestone 

2/5 8000 

K1 = 395.3 psi 

K2 = 3.17 

K3 = -2.66 

K4 = 4066.1 psi 

K5 = 0.67 

K6 = -0.16 

K7 = 1186.9 psi 

K8 = 0.87 

K9 = -0.36 

Nonplastic 

Crushed 

Dolomite 

3 8000 

K1 = 359.7 psi 

K2 = 3.14 

K3 = -2.65 

K4 = 3688.2 psi 

K5 = 0.64 

K6 = -0.15 

K7 = 1077.8 psi 

K8 = 0.84 

K9 = -0.35 

Nonplastic 

Crushed 

Limestone 

4 8000 

K1 = 394.7 psi 

K2 = 3.16 

K3 = -2.65 

K4 = 4084.7 psi 

K5 = 0.66 

K6 = -0.15 

K7 = 1189.8 psi 

K8 = 0.86 

K9 = -0.35 

Note: 1 kPa = 0.145 psi. 

 

The subgrade soil was in general reported to be classified as ML, CL, or a combination of 

ML and CL using the dual classification following the Unified Soil Classification System (with a 

specific gravity of 2.72 and an average plasticity index of 5). The average field moisture content 

of 18.75% for the silty clay subgrade soils was very high to be able to make test samples for 

repeated load triaxial testing. Therefore, the model parameters used in the bilinear models were 
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assumed from the previous study by Thompson and Elliot (1985). Thompson and Elliott (1985) 

presented ILLI-PAVE based design algorithms for flexible pavements including four fine-

grained subgrade moisture conditions applicable to this study. Subgrade soil resilient modulus is 

characterized by the bilinear model in this study with model parameters tabulated in Table 8.2. 

Table 8.2 Resilient Modulus Model Parameters for Subgrade Soils 

Materials 
CBR 

(%) 
Cell No. 

E 

(Initial Guess, psi) 
v 

Bilinear 

Model 

Parameters 

Subgrade 1 

(Top 12 in.) 
3 1, 2, 3, 4 1450 

0.45 

ERI=1000 psi  

σdi=6.2 psi 

K3=1110 

K4=178 

σdll=1 psi 

σdul=21 psi 

Subgrade 2 

(Top 12 in.) 
6 5 2260 

ERI=3020 psi  

σdi=6.2 psi 

K3=1110 

K4=178 

σdll=1 psi 

σdul=21 psi 

Natural 

Subgrade 

(Infinite) 

- 1, 2, 3, 4, 5 4500 

ERI=7680  

σdi=6.2 psi 

K3=1110 

K4=178 

σdll=1 psi 

σdul=21 psi 

 

Note that subgrade was processed to a depth of 305 mm (12 in.) to achieve the desired 

subgrade CBR of 3% and 6% (Cell 5 only). Based on these algorithms and estimated CBR 

values, resilient modulus model parameters for the 305-mm prepared subgrade with CBR of 3% 

and 6% were assigned as very soft type soil and soft type soil, respectively. The rest of the 

underlying natural soils was assigned as medium soft type soil. This approach was also used by 

Kwon (2007) with reasonably good accuracy in his mechanistic modelling analysis of geogrid 
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reinforced test sections that were constructed at ATREL facility on top of the same type of 

subgrade soil.  

8.2.1.3 Resilient Response 

To first calibrate and validate the developed mechanistic model and its model parameters 

used in this study, the measured responses from the instrumented test sections were compared 

with those predicted by the developed mechanistic model. As described in Chapter 3, earth 

pressure cells were installed at the aggregate-subgrade interface along the North wheel path of 

individual test cells to monitor the subgrade vertical compressive stresses (Mishra, 2012). For 

illustration purpose, the field-measured subgrade vertical stress values for Section 2 and 3 (12-in. 

and 8-in. thick aggregate layers, respectively) in Cell 1, as previously reported by Mishra (2012), 

were plotted in Figure 8.4 along with the model-predicted values. It can be seen from Figure 8.4 

that the cross-anisotropic aggregate layer characterization gave better predictions for subgrade 

vertical stresses than the isotropic aggregate layer characterization. In general, mechanistic 

model predictions match the field-measured values reasonably well, which would conclude the 

validity of the developed mechanistic model and its model parameters used. Note that both the 

cross-anisotropic and isotropic aggregate layer characterizations used the Uzan model (1985) for 

resilient modulus (MR).  

From the comparisons of subgrade vertical stress values, the differences found can be 

attributed to the dynamic nature of moving wheel loads. The developed mechanistic model 

performed a static analysis to approximate the wheel load as applied uniform circular pressure. 

Accordingly, important effects of the moving wheel loads, i.e., tire configuration, speed, 

interaction of tire and pavement, and non-uniform tire contact pressures on pavement responses 

were ignored. Even the low strength subgrade material can be more subjective to localized 
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effects due to moving wheel loads. Kwon et al. (2008) also reported that the cross-anisotropic 

base characterization gave much better predictions for the vertical LVDT displacements on top 

of subgrade and the radial LVDT displacements at the bottom of base course. Their goal was to 

predict the resilient responses of instrumented full-scale pavement test sections, both geogrid 

base reinforced and control sections, studied under single and dual wheel loadings at the 

University of Illinois. Therefore, the cross-anisotropic aggregate layer characterization was 

employed subsequently in this study to predict pavement responses of those field full-scale test 

sections. 

 

 

Figure 8.4 Comparisons of Measured and Predicted Subgrade Vertical Stress Values for Test 

Section 2 and 3 in Cell 1 
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Figure 8.5 shows the vertical resilient strains along the center line of the load. These 

resilient strain data can be input into the damage model to calculate the permanent deformation 

of the test sections. As it can be seen, the increase of aggregate layer thickness from 8 in. to 12 in. 

significantly reduces the vertical resilient strain values in aggregate layer as well as in the 

subgrade soil.  

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 8.5 Vertical Resilient Strain Profile along the Center of the Wheel Load for: (a) Cell 1, (b) 

Cell 2, (c) Cell 3, (d) Cell 4, and (e) Cell 5 
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8.2.2 Permanent Deformation Predicted by the MEPDG Model 

8.2.2.1 Calibration of the MEPDG Permanent Deformation Model 

Note that the unified permanent deformation model developed in Chapter 7 for ICT 

aggregates with varying physical properties is limited to only one stress state that is commonly 

applied during the conditioning stage of the resilient modulus tests. Therefore, it would not be 

accurate enough, if not erroneous, to be extrapolated for use in much higher stress states 

experienced in the unsurfaced field full-scale test sections. Instead, the field validation is 

performed for the current MEPDG rutting model in this section. In this study, the total surface 

rutting was contributed by the aggregate layer and the underlying subgrade. No measurements 

were taken for deformation in each individual layer. The calibration of permanent deformation 

models was also limited by the number of tests, subgrade conditions, aggregate materials, and 

structural thickness. 

From the vertical resilient strain data extracted from the response model, the average 

vertical resilient strain (εv) can be calculated for each layer of material in each section. Then, 

permanent strains accumulated in each layer can be calculated from the average resilient strain 

using the damage model. Since no external data is available for calibrating the factor k (in 

Equation 8.3) for each individual aggregate layer, one of the test sections of each cell was 

selected to determine the calibration factor. The permanent deformation parameters for subgrade 

soil also need to be calibrated since the repeated load triaxial test data for subgrade soil is also 

not available. Since Cell 3 survived the highest number of load repetitions as compared to other 

test cells, Section 1 of Cell 3 was selected for determining the permanent deformation parameters 

for subgrade soil (CBR=3%) as well as the calibration factor for aggregate material in Cell 3. 

The calibration was carried out by a trial-and-error procedure until the total surface permanent 
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deformation predicted in the calibration section matched the accumulated permanent deformation 

data as well as the profile data measured after the moving-wheel test. The root mean squared 

error (RMSE) as in Equation 8.3 was set as the objective function to be minimized. Note that the 

rutting damage model for subgrade soil in the MEPDG is modified by replacing the local and 

global calibration factors (see Equation 2.26) by a single calibration factor k (see Equation 8.3). 

The calibration factor k is used to account for the differences in the conditions between the soil 

sample under a cyclic triaxial test and the soil in the field under a moving-wheel load. 
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                                                 (8.3) 

where PD is the permanent deformation in a particular layer, εv is the average vertical resilient 

strain along the center line of the model in this layer, hsoil is the thickness of this layer, and 0

r




,

,   are the material parameters obtained from the cyclic triaxial tests.  

Table 8.3 lists the permanent deformation parameters calibrated for subgrade soils of 

CBR=3% in Cells 1 through 4 and of CBR=6% in Cell 5, respectively. Also listed are the 

calibration factor k values for individual aggregate materials in each of the five test cells. Section 

1 (14 in. for Cells 1 through 4 and 10 in. for Cell 5) of each test cell was selected in this study for 

calibration purpose. The calibration factors for the aggregate layer as shown in Table 8.3 are 

considerably larger than 1. This is because the confining stress and cyclic stress applied to the 

sample in the repeated load triaxial test is not representative of the field stress level in an 

unsurfaced road subbase. For subgrade soil, k and 0

r





 
 
 

 was calibrated together. Tseng (1988) 

developed regression equations for estimating the model parameters for AC, granular materials, 

and subgrade soils and found that β was generally less than 0.2 while ρ ranged from 102 to 1026.  
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Table 8.3 Calibrated Parameters for Rutting Prediction from Section 1 of Each Test Cell (based 

on Field Rutting Measurements) 

Subgrade Soil 

Aggregate Subbase Layer 

(Section 1, 14 or 10 in.) 

Calibrated 

Parameters 

Cell 1 ~ 4 Cell 5 

Calibrated 

Parameters 

Cell 1 Cell 2/5 Cell 3 Cell 4 

0

r

k




 
 
 

 1.46E+5 4.27E+3 

k  25.8 24.5 0.86 19.1 
  2.81E+22 5.07E+8 

  0.045 0.103 

 

Figure 8.6 shows the calibration results in terms of predicted rut depth versus measured 

rut depth along the center line of the wheel load for each test section used for calibration. After 

well calibration, the trends shown in Figure 8.6 approximately agree with the key observations 

presented previously. That is, the total surface ruts in Cells 1 and 2 are contributed mainly by 

aggregate layers, whereas the crushed aggregate sections in Cells 3, 4, and 5 failed primarily due 

to subgrade rutting. Note that the calibration factor k is found to be zero for the aggregate layer 

in Cell 5, thus making the predicted total surface rut contributed only by subgrade deformation. 

As an example, Figure 8.7 shows the transverse rut profile for Cell 3 which sustained the 

highest number of load repetitions. Note that the axisymmetric FE model used in this study can 

only predict symmetric transverse rut profile with respect to the center line of the wheel load, 

whereas the field measured transverse rut profile generally does not exhibit such symmetry.  
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 8.6 Measured Vs. Predicted Maximum Rut Depth for Test Sections Used for Calibration: 

(a) Cell 1, (b) Cell 2, (c) Cell 3, (d) Cell 4, and (e) Cell 5 
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(a) (b) 

 

(c) 

Figure 8.7 Transverse Rut Profile for Test Sections of Cell 3: (a) Section 1 (Used for Calibration), 

(b) Section 2, and (c) Section 3 

 

8.2.2.2 Validation of the MEPDG Permanent Deformation Model 

Following the same procedures described previously, the calibration factors listed in 

Table 8.3 were used to calculate the permanent deformation of other pavement sections in the 

APT that were not used for calibration purposes. Figure 8.8 and Figure 8.9 present the measured 

and predicted total surface permanent deformation along with the load repetitions. Overall, the 

N=175 

N=1 

N=10 

N=100 

N=1 

N=10 
N=100 

N=175 

N=300 N=400 

N=1 

N=10 
N=100 

N=175 

N=300 
N=400 

N=700 



 330 

MEPDG rutting model overestimated the total surface permanent deformation for Cells 1 and 2, 

but underestimated the total surface permanent deformation for Cell 3. The prediction accuracy 

for Cells 4 and 5 was found to be reasonably good. However, it is worth mentioning that the shift 

factors used for matching predicted and measured rut depth values were found to vary 

significantly among different sections (even for the same aggregate subbase material type) within 

the same test cell. This further indicates the necessity to locally calibrate the MEPDG rutting 

model for specific field conditions.  

After careful calibration, the MEPDG rutting model appears to approximately distinguish 

the differences in rutting performance among the test sections, i.e., the predicted rank of the 

performance was consistent with the field observations made during APT trafficking. This could 

be most likely attributed to the fact that the effect of subgrade support was incorporated into the 

MEPDG model by means of vertical resilient strains which were extracted from the nonlinear 

finite element (FE) response model. In addition, the calibration factors even without physical 

meaning may also account for the subgrade support effects when they were calibrated to actual 

measurements. As contrary to traditional linear elastic programs (e.g., the MEPDG response 

module), the use of nonlinear FE response model with compaction-induced residual stress 

realistically considered in this study could be another contributing factor that results in better 

MEPDG rutting predictions. Without those efforts, the prediction accuracy of the MEPDG 

rutting model would be compromised due to its aforementioned deficiency.  
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(a) 

  

(b) 

  

(c) 

Figure 8.8 Measured Vs. Predicted Maximum Rut Depth for Test Sections Used in Validation: (a) 

Cell 1, (b) Cell 2, and (c) Cell 3 
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(a) 

  

(b) 

Figure 8.9 Measured Vs. Predicted Maximum Rut Depth for Test Sections Used in Validation: (a) 

Cell 4 and (b) Cell 5 
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8.3 Shear Stress Ratio Analysis for Interpreting Field Rutting Performance 

The field-observed rutting performance of ICT full scale test sections that were 

constructed with different types of unbound aggregate subbase materials was interpreted and 

modeled using both laboratory and field data. The interpretation was conducted for different 

aggregate quality levels represented by resilient modulus and shear strength together. To be 

specific, the p-q stress diagrams were used to plot the stress paths induced by the moving wheel 

loads in field test sections, which were compared with the shear stress failure of aggregate 

subbase materials estimated from the laboratory testing. The fundamental shear properties (angle 

of internal friction and cohesion) of unbound aggregates were introduced using the Mohr-

Coulomb failure criterion models reviewed in Chapter 2. The relative rutting damage of unbound 

aggregate subbase layers was estimated by the shear stress ratio (see Figure 7.29).  

The four different types of aggregate subbase materials used to construct field test 

sections were tested in the laboratory for resilient modulus, shear strength, and permanent 

deformation behavior (Mishra, 2012). In the laboratory, the specimens were loaded either 

monotonically or cyclically with relatively simple triaxial compressive stress conditions, whereas 

more complex stress conditions with varying magnitudes of vertical, horizontal, and shear 

stresses are induced by the moving vehicle wheels.  To better understand both laboratory and 

full-scale experimental results, a shear stress ratio analysis was performed. The stress paths 

induced by the moving wheel load in the aggregate subbase layer were plotted in p-q stress 

diagrams, and later compared with the static shear stress failure of aggregate subbase materials 

of different quality levels.   

The shear stress ratio analysis consisted of the following steps: (i) calculation of principal 

stresses in the aggregate subbase layer at different depths (Z) and longitudinal (X) locations of 
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the pavement; (ii) calculation of stress invariants I1 and J2 (see Equation 8.4) for each of the 

previously mentioned pavement locations; (iii) plotting the stress state of the pavement in a I1-J2 

stress diagram; and (iv) calculation of the shear stress ratio by using the peak calculated stress 

condition of the pavement at different depths and the shear failure stress condition of the 

aggregate subbase. Each test section was modeled using as-constructed layer thicknesses in the 

GT-PAVE, a validated nonlinear finite element program (Tutumluer, 1995).  
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                                (8.4) 

In the pavement model, the stresses were calculated at four different depths (z-axis) 

measured from the top of the aggregate subbase (i.e., 18.75%, 37.50%, 56.25%, and 75% of the 

total layer thickness, respectively), and at several longitudinal positions (x-axis), ranging from 0 

mm (directly under the wheel), where the stress magnitude reaches a peak, to 40 in. (1000 mm) 

where the stress is approximately zero. The other longitudinal positions where the stresses were 

calculated were 2 in. (50 mm), 4 in. (100 mm), 6 in. (150 mm), 8 in. (200 mm), 10 in. (250 mm), 

12 in. (300 mm), 16 in. (400 mm), and 20 in. (500 mm), as depicted in Figure 8.10. At each X-Z 

location, the six components of the stress tensor and the three principal stresses (σ1, σ2, and σ3) 

were calculated and converted to I1 and J2 stress invariants of the stress tensor, using Equation 

8.4. Note that the soil mechanics sign convention was adopted for the calculations, in which 

compressive stresses are positive and tensile stresses are negative. σ1, σ2, and σ3 are the major, 

intermediate, and minor principal stresses, respectively. 
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Figure 8.10 Schematic Illustrations of the Locations for Calculating Stress Path for Moving 

Wheel at Different Pavement Depths 

 

For illustration purpose, Figure 8.11 depicts the calculated stress paths at the four 

different depths for Section 3 (8 in. thick aggregate subbase) of each test cell. The curves were 

plotted by connecting each of the points that represent the stress condition of the pavement at 

different longitudinal (X) distances. It can be clearly seen that unlike the simpler straight-line 

paths applied in the laboratory tests, those stress paths are curved, indicating the more complex 

stress conditions applied in the real pavements. It is worth noting that the stress paths calculated 

in this study did not consider other effects that could yield even more complex loading 

conditions, such as the non-uniform contact stress between tires and pavement surface and the 

dynamic load applied by the wheels. Note that negative tensile stresses were predicted near the 

bottom of aggregate subbase layer, as indicated by the stress paths curved towards the left half 

axis in Figure 8.11. This could possibly be due to the weak support of the underlying subgrade 

(CBR=3%). Further, nonlinear isotropic analyses alone, as adopted in this study, generally do not 

result in tensile stresses low enough to be considered admissible in the granular layer (Tutumluer, 
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1995). To achieve drastic reductions in the predicted horizontal tension, nonlinear cross-

anisotropy analyses need to be performed instead. 

The static shear failure of those different aggregate materials, obtained from laboratory 

rapid shear strength (triaxial compression) tests, was indicated as red dashed lines in Figure 8.11 

as well and compared with the stress state of the aggregate subbase layers. Note that it would not 

be appropriate to compare static shear failure against other stress paths than the one calculated at 

x=0. According to the findings made in Chapter 7, if the shear stress to strength ratio is low, the 

aggregate subbase will develop some plastic deformation for a finite number of load repetitions, 

but the response will remain essentially resilient after the initial loading. Conversely, if the stress 

ratio increases beyond a stress ratio limit, the plastic deformation will accumulate rapidly until 

rutting failure. Therefore, the shear stress ratio could be considered as an approximate measure 

of the relative damage that will result from repeated load applications.  

According to Figure 8.11, uncrushed aggregates in Cell 1 and crushed limestone with low 

fines content are expected to experience internal shear failure, as indicated by the high shear 

stress ratio approaching or greater than 1. This agrees well with field trenching observations as 

described in Chapter 3. Therefore, as compared to MEPDG rutting model predictions, the use of 

shear stress ratio can more realistically represent the shear failure-induced rutting development in 

unbound aggregates. The proper consideration of the applied stress state relative to the shear 

strength is critical in understanding and accurately predicting the rutting accumulation in 

unbound aggregate layers. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 8.11 Stress Path Induced by Moving Wheel at Different Pavement Depths for ICT Full-

scale Test Sections 
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8.4 Summary 

This chapter presented the field validation of three permanent deformation models, i.e., 

the original Tseng and Lytton model, the current MEPDG rutting model, and the unified model 

developed in this thesis study, for unbound granular base/subbase materials by using rutting 

measurements from full-scale accelerated pavement testing (APT). A method to determine the 

criterion of shear strength of unbound granular base/subbase materials is also established. By 

following this method, the expected pavement rutting during design service life should not 

exceed the maximum allowable one, provided that the shear strength of unbound base/subbase 

materials meet such established criteria. 

The accumulated rut depths from actual measurements at different combinations of layer 

material and thickness were compared with the predicted rut depths from different rutting models. 

Nonlinear FE models of the NAPTF test sections and the University of Illinois unsurfaced 

pavement test sections was developed and used to predict the stress and strain responses in the 

mid-depth of the unbound aggregate layers/sub-layers. The proposed unified model predicted the 

measured rut depth reasonably accurately. It was found that the shift factors used for P209 or 

P154 layers are approximately the same, further indicating the capability of the proposed to 

capture the stress sensitivity in predicting rut depth. As compared to the original prediction made 

by Kim (2005), the permanent deformation prediction generated by the proposed two-stage 

permanent strain model is much closer to the field measured values. Considering the rutting 

depth accumulated during the primary stage for the NAPTF test sections is relatively small as 

compared to long-term rutting depth accumulated during the secondary stage and up to failure, it 

is reasonable to use the proposed stable permanent strain rate model for predicting rutting depth 

up to the initiation of the tertiary stage. 
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The unified permanent deformation model developed for ICT aggregates with varying 

physical properties is limited to only one stress state that is commonly applied during the 

conditioning stage of the resilient modulus tests. Therefore, it would not be accurate enough, if 

not erroneous, to be extrapolated for use in much higher stress states experienced in the 

unsurfaced field full-scale test sections. Instead, the field validation is performed for the current 

MEPDG rutting model in this section. The shift factors used for matching predicted and 

measured rut depth values were found to be different among different sections. This further 

indicates the necessity to locally calibrate the MEPDG rutting model for specific field conditions. 

Nevertheless, the calibrated MEPDG model was able to approximately distinguish the difference 

in performance among the test sections, i.e., the predicted rank of the performance was consistent 

with the field observations made during APT trafficking. This could be possibly attributed to the 

inclusion of subgrade support effect, as well as to the use of nonlinear FE response model with 

compaction-induced residual stress realistically considered.  
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Chapter 9 Conclusions, Findings, and Recommendations 
 

The research work described in this thesis focused on the effects of material properties 

affecting the mechanical behavior of unbound aggregate layers. The resilient modulus (MR), 

shear strength, and permanent deformation resistance were evaluated as mechanistic response 

and performance indicators through experimental investigations and numerical simulations for 

the development/recommendation of performance-based unbound aggregate material 

specification guidelines. Three different methodologies were employed to achieve the study 

objective: (i) laboratory data analysis to link physical and mechanical properties of unbound 

aggregate materials to pavement response and performance; (ii) an image-aided discrete element 

method (DEM) modeling approach for engineering the aggregate shape and gradation properties 

for improved shear strength (or rutting resistance behavior); and (iii) a unified approach to 

permanent deformation (or rutting) prediction of unbound aggregate layers based on shear 

strength. Based on all these methodologies successfully employed, recommendations for 

improving material specifications for unbound aggregates used in conventional flexible 

pavements were presented. The conclusions of this study, detailed research findings and 

recommendations for future research are summarized next. 

9.1 Conclusions 

In accordance with the overall objective stated in Chapter 1, this dissertation study has 

reached the following conclusions. Aggregate shape properties properly quantified using 

imaging techniques need to be included in material property characterization in order to achieve 

more accurate mechanistic response and performance predictions of unbound aggregate layers. 

The use of imaging quantified aggregate shape indices significantly improved prediction 
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accuracy of both resilient modulus and shear strength models. Optimal aggregate packing 

configurations may exist to achieve desired shear strength properties when coarse aggregates 

form a strong skeleton to transmit external loads and fine aggregate materials fill the air voids in 

between coarse aggregate particles to achieve stability. The concept of the gravel-to-sand (G/S) 

ratio, identified from experimental observations and further verified by discrete element based 

packing simulation results, can be used as an effective means to evaluate and design such 

optimal aggregate packing configurations. The rutting accumulation is found to have a strong 

dependence on the applied stress level in relation to shear strength. The use of the shear stress to 

strength ratio term proves to be indispensable for accurately predicting unbound aggregate 

rutting depths. 

9.2 Detailed Research Findings 

The following detailed findings were obtained/reconfirmed from the research tasks 

described in this thesis: 

(1) A good correlation between aggregate shape properties and resilient modulus exists. 

Aggregates with high angularity index (AI) and surface texture (ST) index properties 

were found to have greater resilient moduli in comparison to aggregates with low AI 

and ST values (i.e., rounded particles with smooth surface texture). Interestingly, 

rounded aggregates exhibited a well-defined peak shear strength behavior, which 

could be influenced by their gradation properties and achieved specimen densities.  

(2) Unbound aggregate resilient modulus properties should not be used alone to predict 

aggregate base course performance, which is mainly governed by rutting potential in 

the field. Instead, laboratory permanent deformation tests should be conducted for 

evaluating rutting potentials of unbound base/subbase course materials. 
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(3) Statistical analysis and reliability based sensitivity analysis were performed based on 

the developed model for estimating MR. It was concluded that the complex maximum 

dry density (
2

max 40/ P ), coefficient of curvature ( cC ), and relative moisture content 

ratio ( / opt  ) have the most important contributions to the resilient modulus 

behavior, and that the resilient modulus behavior is most sensitive to the variability in 

the distribution of coefficient of curvature ( cC ) and relative moisture content ratio 

( / opt  ). This revealed the significance of controlling gradation and moisture 

conditions to achieve proper resilient modulus behavior. 

(4) The effects of unbound aggregate quality on conventional flexible pavement 

performance were also investigated with a carefully designed comprehensive 

sensitivity analysis matrix of layer thicknesses and mechanistic design moduli. For 

low-volume roads in Minnesota, using locally available and somewhat marginal 

materials may be quite cost-effective provided that the 20-year design traffic level 

would not exceed 1.5 million ESALs. A high quality, stiff granular subbase was 

found to exhibit a bridging effect that better protected the subgrade and offset some 

detrimental effects of low aggregate base stiffness on rutting performance. As a result, 

the use of marginal quality locally available materials as aggregate base materials 

could be justified in some cases. 

(5) For the MnDOT database samples studied, the highest shear strength was reached 

around optimal gravel-to-sand (G/S) ratio of 1.6 where void spaces enclosed by the 

coarse aggregate fraction were probably filled completely by the sand size particles 

and fines.  
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(6) There was inconclusive evidence of an apparent modulus-strength relationship which 

suggested incorporating a limiting working shear stress to strength ratio to avoid 

shear failure in base and especially subbase courses. 

(7) The DEM packing simulations using different gradations and particle shape were 

performed. Results of DEM simulations indicated that #4 sieve (or 4.75-mm sieve) 

could be regarded as the breaking sieve size that separated the coarse aggregate 

skeleton fraction and void-filling fine fraction for the MnDOT CL-6 gradation band. 

This further confirms that the concept of gravel-to-sand ratio, which uses the 4.75 

mm sieve as the breaking sieve size, appears to be reasonable for typical Minnesota 

aggregate gradations studied. 

(8) Based on the DEM modeling approach, current unbound permeable aggregate base 

(PAB) material gradations were further engineered by optimizing the particle contact 

and packing characteristics. To maximize the coordination number, the optimal 

unbound PAB gradation should be close to the upper bound at the 19-mm sieve and 

be close to the mid-range at the 9.5-mm sieve. The optimal gradation predicted by the 

gravel-to-sand (G/S) ratio was found to agree more closely with the DEM simulation 

results that used realistic particle shapes, when compared to that predicted by the 

packing theory based analytical gradation framework using spherical particles only. 

(9) DEM simulations were performed on different gradations with varying G/S ratio 

values. The G/S ratio around 1.6 resulted in the highest coordination number due to 

the achieved densest packing (indicated by the lowest porosity). Therefore, the 

optimal G/S ratio of around 1.6 observed from experimental results agrees well with 

DEM simulation using 3D polyhedral particles with realistic aggregate shape. 
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(10) Based on comparing results of both the original Tseng and Lytton model and the 

current MEPDG rutting model with the laboratory repeated load triaxial test results, 

the need for further enhancement of both models became obvious. Rational 

modifications of the models contained in the Pavement ME Design were developed.  

(11) Both the resilient and plastic responses of different aggregate materials to 

repeated loading under various dynamic stress states and aggregate physical 

conditions were analyzed concurrently from shakedown perspectives to investigate 

any correlation between plastic strain and resilient modulus. Established poor 

correlations confirmed resilient modulus alone could lead to misleading 

characterization of unbound aggregates for use in pavement applications; instead, 

resilient modulus and permanent deformation need to be examined together. 

(12) A new numerical perspective to degradation, namely the ‘‘degradation stiffness 

model”, was introduced to predict the progressive plastic deformation of unbound 

pavement layers under long-term repeated loading. By using the proposed models, the 

permanent deformation characteristics of unbound pavement layers under repetitive 

loading can be realistically predicted using a mechanistic framework, as contrary to 

the current empirical or semi-empirical methods.  

(13) A stable dependency of permanent strain rate on the variables characterizing the 

dynamic stress states induced by moving wheel loads was observed. An analytical 

model for mathematically expressing such a dependency was developed. Analogous 

to the concept of the Mohr-Coulomb failure envelope, the permanent deformation 

resistance envelopes were defined by these Mohr circles representing all the possible 

stress states that caused the specified permanent strain rate condition. They are 
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potentially useful in ranking and properly selecting different unbound pavement layer 

materials for use in specific traffic levels and site conditions, i.e., the rutting potential 

based on the shakedown theory is evaluated simultaneously in relation to a potential 

shear failure. 

(14) A unified approach to rutting prediction was developed to predict permanent 

deformation accumulation with a high degree of confidence. This unified rutting 

model effectively takes into account various aggregate physical properties and field 

stress states induced by moving wheel loads and thus can be applied with greater 

confidence to a wider range of conditions. Good agreement between model 

predictions and laboratory permanent deformation test results was achieved by using 

the developed unified models. 

(15) The accumulated rut depths from actual measurements at different combinations 

of layer material and thickness were compared with the predicted rut depths from 

different rutting models. The proposed unified model predicted the measured rut 

depth reasonably accurately.  

(16) The field validation was performed for the current MEPDG rutting model. It 

shows the necessity to locally calibrate the MEPDG rutting model for specific field 

conditions. The importance of the inclusion of subgrade support effect, as well as the 

use of nonlinear FE response model with compaction-induced residual stress was 

highlighted.  

(17) The shear stress ratio concept was successfully applied to interpret field rut depth 

measurements on full-scale unsurfaced aggregate test sections. 
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9.3 Recommendations for Future Research 

Based on utilizing the advanced statistical analysis and numerical modeling procedures 

and relying on laboratory repeated load triaxial test results, future research should further 

investigate the following areas: 

(1) The linkages between aggregate physical properties and mechanical properties can be 

further improved by resorting to advanced techniques such as Artificial Neural 

Network (ANN) and Gene Expressing Programming algorithms. 

(2) Other image-aided DEM simulations can be performed using different gradation 

design alternatives to study the gradation effects on shear strength behavior more 

thoroughly. DEM simulations of triaxial compression tests also incorporating 

dynamic compaction forces can be performed to investigate the shear strength 

behavior affected by packing and interlocking characteristics of aggregate skeleton. 

For example, geogrid-aggregate interlock can be studied this way for quantifying 

reinforcement benefits. 

(3) The methodologies presented in this dissertation can be further extended to establish 

aggregate gradation and shape property optimization framework for aggregate 

functional classification and improved material specification development. 

(4) While not explicitly incorporated into the developed rutting models, the stress history 

effects are demonstrated as an important factor governing the field rutting 

accumulation and need to be studied in the future. This is evidenced by the laboratory 

observed permanent deformation-load repetition trends following the power-law 

relationship, as contrary to the field measured rutting depth increasing with an 

approximate linear trend. This is because; the FAA field test sections were subjected 
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to the initial application of considerable cycles of aircraft gear loadings prior to the 

APT loading. 
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