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ABSTRACT 
 
Structural control techniques are an alternative approach to protect structures from natural 
hazards that continue to plague our nation’s infrastructure. Due to their onboard sensing, 
communication, and computational capabilities, wireless smart sensors, which have become 
popular for structural health monitoring applications, are an attractive option for implementing 
structural control systems.  However, wireless smart sensors pose unique challenges, such as 
communication latency and unreliable communication, which make common centralized control 
systems over wireless networks less feasible. Previous research has implemented wireless 
structural control using decentralized approaches on semi-active control systems; however, these 
implementations are less sensitive to the challenges related to wireless structural control, because 
semi-active control systems are inherently stable. On the other hand, wireless active control 
systems require the entire control system, from hardware selection to control design, to deal with 
these challenges to limit delays and error and to ensure a stable system. Therefore, this research 
addresses all the elements of wireless active control design to overcome these challenges. Low-
latency data acquisition and actuation hardware tailored for control limits any inherent delay due 
to the sensing and control components. Real-time wireless data acquisition and control strategies 
are implemented within the existing software framework. The approach for digital control design 
preserves stability and control performance in the presence of delays and at slow sampling rates. 
The wireless control system is validated on an actively controlled multi-story, small-scale test 
structure suitable for different levels of control decentralization. The result of this research is the 
realization of a decentralized wireless active structural control system that overcomes the 
challenges posed by wireless smart sensors to realize their potential for structural control. 
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  Chapter 1

INTRODUCTION 
1.1 Motivation 

Natural hazards, such as earthquakes and hurricanes, pose a serious risk to a nation’s civil 
infrastructure. Ensuring adequate performance of civil infrastructure, e.g., buildings and bridges, 
during these events is essential for improving life-safety and limiting the economic costs to 
society. Limiting structural response to natural hazards, particularly wind and seismic response, 
has been a long standing goal of building codes and academic research. One approach that is 
typical of building codes is to limit the response by altering the stiffness or mass distribution in 
the original structural design. A second approach is to limit the response through an auxiliary 
structural control technique that can introduce damping or alter the stiffness of the structure.  
 Structural control offers an appealing approach to protect structures from natural hazards 
by adding supplemental damping devices. These supplemental damping devices can be divided 
into four main categories: passive, active, hybrid, and semi-active. While passive devices, which 
include base-isolation and viscous dampers, have seen widespread use, particularly in California, 
they lack the ability to adapt to changes in the structure and loading. On the other hand, active, 
hybrid, and semi-active control techniques use measured responses from the structure to alter the 
supplemental damping device in real-time. Active techniques, such as active mass drivers 
(AMD), which are more common in Japan, use the feedback of the response to appropriately 
input energy into and remove energy from the system to alter the properties of the system and 
limit the structural response. Semi-active techniques, which have been the recent focus of much 
research, use feedback to alter the properties of the damping device (i.e., magnetorheological 
(MR) dampers), which then limits the structural response; thus, no additional energy is input into 
the system. 
 Until recently, modern control systems that utilize feedback are based on a centralized 
control design. In centralized control, sensors distributed throughout the structure are connected 
to a central controller node. Thus, all the sensor data feeds back to one control point. While these 
systems can provide good performance due to their knowledge of the complete structural 
response, they also provide a control system with a single point of failure and can be costly to 
install. As sensor systems become more densely distributed throughout structures, decentralized 
control systems, which only use local structural response, have become an attractive approach. 
By providing multiple localized controllers, they offer robustness to the control system and lower 
the installation costs with a tradeoff in the ease of design and possible performance. 
 Sensors distributed throughout a structure are becoming more common due to ongoing 
research in structural health monitoring (SHM). In SHM, the health of a structure is evaluated 
after a natural hazard event based on the measured structural response. Changes are detected in 
the structure using algorithms that use the structural response as input. In traditional wired 
systems, the structural response is gathered from various sensors back to a central base station. 
However, these systems, while becoming more common in new structures for SHM, can be 
expensive to install and operate; because damage is a highly local phenomenon, numerous 
sensors are needed, thus increasing the cost of the system. 
 The relatively high cost of wired systems has made wireless sensor systems an appealing 
alternative for structural health monitoring applications. The advances in wireless technology 
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decrease the deployment cost by simplifying and limiting the implementation time. This relative 
ease in implementation and lower cost encourages dense sensor deployments, which is ideal for 
identifying structural changes. In addition, wireless smart sensors, which combine onboard 
processing, memory, and sensing with wireless communication on a single node, have leveraged 
these capabilities to process the data locally to extract important information in a decentralized 
fashion. Thus, the data sent back to the base station, or user, is limited to reduce the possibility of 
inundating the network with data and encourage dense deployments.  
 Due to their onboard sensing and computational capabilities, these wireless smart sensor 
networks are an attractive option for implementing structural control systems. However, wireless 
smart sensor networks pose unique challenges for application of structural control. Wireless 
smart sensors have unique hardware limitations that make the common centralized control 
approaches used over tethered networks less feasible. Wireless communication introduces 
communication latency and the possibility of data loss. These challenges can reduce the possible 
sampling rate and introduce significant time delay and error into the system. Furthermore, the 
processing time required for handling the large amount of data from a dense network of sensors 
at a single node can be prohibitive. To limit these factors in the design, decentralized control 
techniques are used.  
 Given the proliferation of wireless smart sensors in the research community, 
decentralized structural control has become an area of interest. Although a large body of work in 
decentralized control exists, it had not been applied to structural control until recently. 
Decentralized control offers several advantages to wireless structural control, including limiting 
the wireless communication required and the associated slow sampling rate and time delays and 
adding robustness to the control system. However, less knowledge of the system is available at 
each controller node. Thus, in wireless structural control, a tradeoff exists between system 
knowledge and limiting hardware-related challenges. 
 Previous research has explored this tradeoff by implementing wireless structural control 
using decentralized optimal control approaches on semi-active systems. Wang et al. (2006a) 
successfully implemented a wireless semi-active control system on a three-story structure. The 
faster sampling rate of the decentralized control approaches compensated for the reduced 
information about the structural response available to the controller. Since this initial test, 
experimental research has focused on semi-active structural control systems using various 
decentralized control techniques that account for time delay and data loss. However, semi-active 
control systems are less sensitive to the challenges related to wireless structural control, because 
they are inherently stable systems.  
 Active control systems do not guarantee a stable response, as they have the potential to 
input energy into the structure; thus, they are more sensitive to the hardware-related challenges 
inherently posed by wireless smart sensors. Modern structural control research has illustrated 
that practical considerations, such as sampling rate, time delay, and microprocessor speed, need 
to be considered to ensure performance. However, the previous work in wireless control has not 
needed to directly address these challenges, because stability is guaranteed for the semi-active 
systems. Similarly, the only application of wireless structural control to active control systems 
found in the literature does not present a scalable approach that accounts for the time delays and 
processing demands as the number of nodes in the network increase. In contrast, effective 
wireless active structural control requires the entire control system, from the hardware selection 
to the control design, to be addressed to account for these factors, limit delays and error, and 
reduce the possibility of instability. 
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1.2 Overview of Research 

The objective of this research is to design, produce, and implement a decentralized wireless 
active structural control system. In particular, this work will address all the elements of wireless 
control design including: (1) the hardware and software support, (2) digital control design at 
slow sampling rates, (3) implementation of decentralized control strategies on the wireless 
control system, and (4) experimental validation on a small-scale structure appropriate for 
decentralized approaches. The result of this research will be the realization of a wireless active 
structural control system that overcomes the challenges posed by wireless smart sensors to 
realize their potential for structural control. 
 Chapter 2 provides background on structural control and, in particular, research that seeks 
to account for and overcome practical challenges such as time-delay, low sampling rates, and 
sensor failure. Experimental applications of wireless smart sensor networks to semi-active 
control systems present a promising first-step to addressing these challenges, since they are 
inherently stable. The limitations in current hardware, software, and wireless control designs that 
address practical considerations are identified. 
 Chapter 3 presents technical background relevant to this research that is outside a 
traditional civil engineering experience. Analog-to-digital converter architectures relevant to this 
work are outlined and their application limitations are addressed. Modern control theory is 
presented and both continuous and discrete-time systems are discussed. In addition, the wireless 
smart sensor platform and software framework used in this research are presented in detail. 
 Chapter 4 illustrates the limitations of current hardware tailored to SHM and presents 
low-latency data acquisition and actuation hardware for control applications. The development of 
a data acquisition board and corresponding software to address these limitations for control 
operation are outlined in detail. The actuation interface completes the hardware necessary for 
wireless control. The resulting performance of the hardware highlights the latency improvements 
and informs the control designs presented in Chapter 7 and Chapter 8. 
 Chapter 5 presents the framework for wireless data acquisition for real-time state 
knowledge. The inherent challenges of embedded software and the smart sensor platform, 
including communication time and the single-threaded operating system, are outlined and 
addressed in the framework development. The application performance highlights the sampling 
rate limitations for centralized wireless control. The framework is extended for high-throughput 
applications, which are less sensitive to delays. 
 Chapter 6 builds on the framework and insights from Chapter 5 to implement centralized 
and fully decentralized control strategies on the wireless smart sensor platform fitted with the 
low-latency hardware. The fully decentralized implementation leverages the on-board processing 
power to offer very high sampling rate performance while maintaining accurate control 
calculations. The centralized control implementation maintains an adequate sample rate for 
control and preserves computational accuracy while limiting data loss. 
 Chapter 7 presents the control of a small-scale, single-degree-of-freedom structure with 
an active mass driver using both wired and wireless smart sensor systems. An approach for 
discrete-time control design at slow sampling rates is used for the smart sensor control designs. 
The smart sensor control system provides comparable performance to the tethered system, which 
illustrates the feasibility of wireless active structural control. In addition, the low-latency data 
acquisition hardware is experimentally validated and outperforms the previous hardware tailored 
for SHM applications. 
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 Chapter 8 compares wired, fully decentralized wireless, and centralized wireless control 
systems on a four-story structure fitted with two active mass drivers for control. A high fidelity 
model of the multi-input multi-output system is used for the control designs. The control design 
approaches for all three systems are presented in detail. The sampling rate performance of the 
wireless control implementations in Chapter 6 guide the fully decentralized and centralized 
control designs. The experimental control performance is evaluated in both the frequency and 
time domain using band-limited white-noise and earthquake ground motions applied at the base 
of the structure. In addition, the robustness of the fully decentralized control system is assessed 
by forcing node failures during closed-loop control of the structure when subjected to earthquake 
ground motions. 
 Chapter 9 summarizes the research presented in this dissertation and discusses future 
research directions in regard to decentralized control designs and wireless smart sensors for 
structural control.    
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  Chapter 2
 

LITERATURE REVIEW 
 
This chapter presents a review of structural control and the necessary practical considerations, 
the requirements of wireless structural control, including the hardware, decentralized control 
schemes, and embedded software, and experimental wireless control applications. 

2.1 Structural Control 
The strength of civil infrastructure used to be the predominant focus of structural design; 
however, the dynamic response due to wind and earthquakes has become a significant concern 
due to tighter serviceability and life-safety requirements. To limit vibration response, control 
concepts common in mechanical systems were proposed for civil systems by Yao (1972). 
Structural control limits the vibration response due to wind and earthquakes by altering the 
stiffness, mass, damping, or including counter forces. Civil infrastructure systems pose unique 
challenges, such as requiring large control forces, limited measurements, and uncertainty in 
loading; and thus, structural control has become its own area of research (Housner et al. 1997).  

Typically, these control systems are broken into two main categories: (1) passive control 
systems, (2) active, hybrid, and semi-active control. Passive control systems impart forces to 
alter the stiffness or damping of the system based on the structure’s own motion; and therefore, 
do not require an external energy source (Housner et al. 1997). In the latter category, forces are 
applied to the structure based on sensor measurements and real-time processing and usually 
require an external energy source (Chu et al. 2005). This research will focus on the second 
category of control systems, because they offer adaptability and can be effective over a broader 
frequency range (Soong 1990). 

Active, hybrid, and semi-active structural control systems consist of three main 
components: sensors, control computers, and control actuators. A generic control system is 
illustrated in Figure 2.1. The combination of the excitation, structure, and response elements at 
the bottom of the schematic are often referred to as the open-loop response, as it represents the 
system without any control. On the other hand, the inclusion of the control in the system 
response is referred to as closed-loop control. Within the control system, sensors are used to 
either measure the excitation, the structural response, or both; the controller calculates the 
appropriate forces based on the measurements; and, the actuators apply the desired forces to the 
system. 
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Figure 2.1: Generic Control Schematic (Spencer and Sain 1997). 

The control systems are categorized based on how the measurements are included in the 
control calculations. . When measurements of the response are used in the controller, the system 
is referred to as feedback control. The response is continually fed back to the controller to alter 
the control force applied to the system. On the other hand, a feedforward control system uses 
measurements of the excitation in the control calculations. Because feedback systems compare 
the actual response to the desired, they are able to operate under disturbances to the system and 
variations in the plant (Kwakernaak and Sivan 1972). 
 The approach used to achieve the desired control action differentiates between the types 
of control: active, semi-active, and hybrid. Active control systems use externally powered 
actuators placed strategically throughout the structure to apply the desired forces. The forces can 
add to as well as dissipate energy in the system (Housner et al. 1997). Some examples include 
active mass driver and tendon systems. In hybrid systems, an active system is used in 
combination with a passive control device to achieve the control goals. Because these systems 
use passive devices to achieve a portion of the control effort, they can be more efficient than 
purely active systems and offer some protection if the external power source required for active 
control fails (Chu et al. 2005). One example of hybrid control is an active base isolation system, 
in which actuators are used to limit the displacements of the base isolated structure. Semi-active 
control systems achieve their control effort through a passive energy dissipation device in which 
the properties of the device are changed in real-time; they are often referred to as controllable 
passive devices (Housner et al. 1997). As a result, only a limited external power supply is 
required. Some common examples of semi-active systems are magnetorheological (MR) and 
variable orifice dampers. The categorization of how the control forces are applied to the structure 
has implications on the efficiency of the system and power requirements. 

In addition, the difference between active and semi-active systems has significant 
implications on the design requirements. Semi-active systems do not have the potential to add 
mechanical energy to the system like active systems. Therefore, because civil systems are 
typically inherently stable, bounded-input-bounded-output stability holds (Housner et al. 1997). 
On the other hand, stability is not guaranteed in active systems; thus, particular attention must be 
paid to practical considerations in control design, such as time delay, modeling errors, etc.   
 Numerous reviews of the structural control literature have been published, providing 
overviews of the control categories discussed in this section, as well as the technologies/devices 
used, control algorithms, industry implementations, and experimental testing. Soong (1990) 
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discusses the early experimental studies of active control and the practical considerations in 
design. Housner et al. (1997) provides a thorough review of the devices developed for passive 
and semi-active control as well as the control algorithms used in active control. Spencer and Sain 
(1997) and Spencer and Nagarajaiah (2003) focus on the developments of semi-active control 
strategies. In addition, they both provide a summary list of the controlled buildings and towers, 
in which a majority are in Japan and use a hybrid mass damper. Given the existing literature 
reviews, this section will focus on the practical challenges in active control and related active 
control experiments. 
 
2.1.1 Practical Considerations in Active Control 

Within the components of the active closed-loop control system, several hardware elements can 
impact the control implementation. These large-scale structural systems need to be reasonably 
modeled for the control design. In addition, the location, type of sensors and actuators, and the 
associated delays need to be considered. Furthermore, as pictured in Figure 2.2, a digital control 
system is usually used for the controller computer, and as such the performance of the relative 
components needs to be considered. These components can impact the resolution of the data, 
accuracy of the control calculations, and sampling rate of the controller system. Thus, several 
common practical issues must be considered, including: modeling errors, time delay, sampling 
rate, limited number of sensors and controllers, and quantization issues (Chu et al. 2005). 

 
Figure 2.2: Schematic of Active Control Problem (Housner et al. 1997). 

Civil engineering systems are typically large, distributed parameter systems, for which a 
reduced, finite-order model must be developed for control design. Significant research into 
modeling for control system design can be found in the literature (Soong 1990; Housner et al. 
1997). One key contribution to the modeling of systems for control was by Dyke et al. (1995). 
Dyke et al. (1995) highlighted the importance of considering the control actuators directly in the 
model of the system, because control-structure interaction can significantly impact the 
performance of the resulting control design. If significant dynamics are neglected in the 
modeling of the system, unexpected performance of the closed-loop control, including 
destabilization, may result. 
 Because digital control systems are used for active control calculations, the sample 
period, T, must also be considered. In general, the performance of the control system improves 
with faster sampling rates; however, a tradeoff is usually found between the time allowed for 
computation, cost of the digital system, and the performance of the digital controller (Franklin et 
al. 1998). For approximation of the discrete control system as continuous, the sample rate should 
be about thirty to fifty times the highest mode of interest, or bandwidth of the system (Hirata and 
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Powell 1990; Franklin et al. 1998). Otherwise, the discrete sample time should be considered in 
the modeling, because lower sampling rates can lead to poor disturbance rejection and challenges 
in control (Hirata and Powell 1990). An absolute minimum is to sample at a rate which is at least 
twice the system bandwidth to avoid aliasing of the higher dynamics, which could result in an 
unstable closed loop response (Franklin et al. 1998; Chu et al. 2005). In addition, a slow 
sampling period due to computation may result in a large time delay between the measurement 
time and the control application, which may result in poorer control performance. 

Time delays and lags due to sensor delays, processing time, or actuator dynamics may 
lead to instability and poorer control performance when not accounted for in the controller 
design. Chu et al. (2002) illustrate that a system fitted with an AMD is sensitive to time delays 
and that, by accounting for the delay, the system can achieve the same performance as a system 
with no delay. Various time delay approaches are used both within continuous time and discrete 
time systems that offer varying degrees of robustness to delay. Agrawal and Yang (2000) 
compare continuous time compensation techniques on an active tendon control system including: 
the recursive response method, the state-augmented compensation method, the controllability 
based stabilization method, the Smith predictor method, and the Padé approximation method. 
The Padé approximation compensation approach developed by Sain et al. (1995) offered stability 
and good performance under long time delays. In discrete time, the most common approaches 
involve state augmentation, where an additional delayed state is used in the model; within this 
augmentation approach, different techniques are used to solve for the controller based on the 
augmented state model (Chung et al. 1995; Franklin et al. 1998; Chu et al. 2002). Thus, the 
destabilizing effect of time delay can be overcome with appropriate compensation techniques. 

Due to cost and the scale of civil systems, often the number of sensors and controllers 
available will be limited.  The minimum number of sensors required is restricted by the number 
of modes that are to be controlled (Soong 1990). However, as sensors systems have become 
cheaper, the availability and scale of sensor networks has increased. The implications of these 
large sensor networks and large-scale civil systems will be addressed in the discussion of 
decentralized control in the next section.  
 Within these sensors, the analog-to-digital converter (ADC) hardware used for 
representing the analog measurement of the response can lead to error and noise. Quantization is 
used to divide the amplitude of a signal into discrete ranges. If the signal is very low amplitude 
in comparison to the voltage range of the sensor input, the variation of the signal may not be 
appropriately captured. This phenomenon is called quantization error and can lead to poor 
control feedback (Dyke et al. 1996). As the cost of high-resolution hardware has decreased, the 
effects of quantization error have been limited; however, when addressing the ADC selection of 
a wireless sensor board, the resolution should be considered. 
 
2.1.2 Active Control Experiments to Examine Practical Considerations 

To highlight and overcome the practical challenges discussed previously, two benchmark 
problems were proposed for analytical analysis of structural control algorithms based on an 
experimental setup. These benchmark problems allowed investigators to address issues with 
measurement availability, sensor resolution, delay, and modeling, including model-order and 
control structure interaction (Spencer et al. 1998a). The first benchmark is an evaluation model 
of a three-story building fitted with an AMD at the top story and more detail can be found in 
Spencer et al. (1998a). The second benchmark is based on an experimental setup of a three-story 
structure fitted with an active tendon system on the first story (Spencer et al. 1998b). These two 
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benchmark problems emphasize the significance of including various practical considerations 
when evaluating control performance. 
  One other consideration addressed in the benchmark problems is the measurements used 
for feedback, because often only acceleration measurements are available; therefore, another area 
of research has compared the performance of control algorithms given the feedback used and 
weighted in the controller. Many of the time delay compensation algorithms or analytical studies 
assume full-state or static output feedback, which is often not available (Chung et al. 1995; 
Agrawal and Yang 200). Dyke et al. (1996) investigates the performance of acceleration 
feedback on a three-story structure fitted with an AMD. The results indicate that acceleration 
feedback can achieve good control performance in all three modes of the system. The 
comparison between different feedback measurements and weightings are still often addressed in 
the literature both for wired and wireless control, as will be shown in the following sections. 

2.2 Decentralized Control 
The structural control studies discussed previously usually assume centrality, in which all the 
information from the system and the related calculations occur at a single location; however, as 
systems increase in size, either in dimensionality or physical scale, this assumption of centrality 
often fails due to constraints on the information flow to a single node or the existence of multiple 
communication and control locations (Sandell et al. 1978; Lunze 1992). Furthermore, in these 
large-scale systems, the economics of scale and reliability of the communication links often 
encourages a decentralized scheme (Sandell et al. 1978).  

Decentralized control methods are not a new area of research in control; however, its 
application to civil systems is more recent. Sandell et al. (1978) survey techniques for 
decentralized control systems, including model descriptions, procedures for testing stability, and 
decentralized control schemes. Some examples of large systems in other fields include power 
networks, manufacturing networks, digital communication networks, and economic systems 
(Sandell et al. 1978).  

The control approaches for large-scale systems can be separated into two types: 
decentralized and distributed. Decentralized control applies to the information structure used for 
making decisions within the control algorithm (Lunze 1992). Thus, although the information 
structure is decentralized, the control algorithm can be designed in a centralized way. The degree 
to which the decision units are independent is the measure of decentralization in the decision 
process. In distributed control, the control problem is reformulated as a set of interdependent 
sub-problems, which is often informed by the internal structure of the system to be controlled 
(Lunze 1992). A common example of distributed control is a hierarchical structure or multilevel 
system. Often these two types (decentralized and distributed) are lumped into the concept of 
decentralized control. 

In decentralized control, two main information structures are considered: totally 
decentralized and partially decentralized. The level of decentralization corresponds to the amount 
of access the controller has to the global information. In totally decentralized, as shown in Figure 
2.3(a), only local knowledge is available to the controller. The impact of the control effort on the 
global response of the system in not known. On the other hand, in partially decentralized (Figure 
2.3(b)), some sharing of local knowledge between the controllers is considered. Therefore, some 
information about the global response is available. However, the level of information sharing is 
well below that of centralized control, in which complete knowledge of the system is available to 
the controller. 
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In distributed control, the most common structure is hierarchical control. Often this 
structure is considered as a third information structure in decentralized control (Lynch and Law 
2002a). An additional layer of controllers, or supervisors, is above the local controllers as seen in 
Figure 2.3(c); thus, hierarchical control is commonly also referred to as multilayer control 
(Sandell et al 1978). The goal of the higher level of controllers is to maintain concordant 
behavior among the local controllers to achieve the desired global response of the system.  

 
2.2.1 Decentralized Control for Civil Structures 

Although decentralized control algorithms have been studied for a number of years, the 
extension of these algorithms to civil structures is more recent. Typically these algorithms are an 
extension of the popular H∞ or H2/LQG optimal control algorithms used for structural control. As 
Sandell et al. (1978) pointed out, often the decentralized information structure is enforced in a 
heuristic or ad-hoc manner to a controller designed in a centralized way. 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2.3: (a) Completely Decentralized, (b) Partially Decentralized, (c) Hierarchically Decentralized Information 
Structures (Lynch and Law 2002a). 

 The linear quadratic regulator (LQR) design assumes full state feedback, and thus 
represents a centralized control design. However, in systems where the actuators and sensors are 
collocated, the diagonal terms typically dominate the resulting gain matrix (Lynch and Law 
2002a). Therefore, the information structure is naturally decentralized. The off-diagonal terms 
can be zeroed based on the desired information structure in a more ad-hoc manner. The resulting 
controller will be sub-optimal but will closely approximate the optimal design. As the off-
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diagonal terms increase, this approximation will deteriorate. Lynch and Law’s (2002a) 
application to the twenty-story benchmark problem (Spencer et al. 1999) reflects the good but 
sub-optimal performance of the decentralized extension of the LQR solution; the decentralized 
extension results in irregular behavior between stories. Thus, the off-diagonal terms, although 
small, contribute to the reduction of the response. 
 On the other hand, Lunze (1992) presents a heuristic approach to optimal decentralized 
LQR control. In this approach, an information structure is enforced when solving for the 
controller gain. Therefore, the controller gain matrix has the desired decentralized structure. An 
iterative search procedure, which ensures closed-loop stability and an improving solution, is used 
to solve the optimal control problem. Lynch and Law (2002a) applied this optimal decentralized 
control solution to the twenty-story benchmark and achieve comparable performance to the 
centralized LQR controller. The centralized control performs slightly better due to the 
information sharing about the complete state of the system, but the optimal decentralized 
controller performs better than the ad-hoc decentralized extension previously discussed. 

While the optimal LQR decentralized control solution is attractive for civil systems, the 
algorithm does not account for the time delay common in wireless structural control. Wang et al. 
(2007a) combine the approaches of Chung et al. (1995) and Lunze (1992) to create an optimal 
discrete decentralized control solution that considers time delay. The control design uses an 
augmented system that accounts for time delay within Lunze’s (1992) heuristic optimal 
decentralized control approach, where the decentralized architecture is enforced on the gain 
matrix. They investigate the design of both fully and partially decentralized control solutions for 
a three-story experimental test structure. However, one limitation of the design algorithm is that 
it is highly dependent on the initial gain matrix and search step size.  
 Similarly, Wang et al. (2009) extend the optimal H∞ control algorithm to decentralized 
architectures, both completely and partially decentralized, using linear matrix inequalities (LMI). 
Again, the decentralized control design is heuristic, because it enforces an information structure 
on the gain matrix. They analytically investigate both fully and partially decentralized control 
structures on three-story and twenty-story structures. As expected, the decentralized LQR control 
architecture is better at minimizing the H2-norm and it reduces the response with less control 
effort than the decentralized H∞ control designs. In general, however, the partially and 
centralized control designs outperform the fully decentralized designs when the sampling rate is 
held constant. For the twenty-story structure, Wang et al. (2009) start to address decentralized 
algorithms for wireless structural control by considering different sampling rates and 
communication channels for the control subsystems. Although the sampling rates are not based 
on any specific wireless smart sensor platform, they find a tradeoff between the degree of 
decentralization, sampling rate, and performance. 
 The decentralized H∞ algorithm is another attractive option for wireless structural control 
of civil systems; however, the algorithm does not account for time delay, which is common with 
this type of hardware setup. Wang (2011) extends the algorithm to account for this limitation by 
including time delay in the system model; the algorithm then can be applied to varying 
decentralized architectures through homotopic transformation. The decentralized control designs 
are heuristic, because the decentralized structures are enforced on the gain matrix as well as LMI 
constraints at each iteration step. The algorithm is applied analytically to a five-story model 
similar to the Kajima-Shizuoka Building (Kurata et al. 1999). For different decentralization 
structures, the time delay is increased based on the amount of information required for each 
controller, as might happen in a wireless system; however, no specific wireless smart sensor 
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hardware is used as a basis for the time delays used in the analysis and the corresponding 
sampling rate variations are not considered. Due to the longer time delays required for more 
information feedback, the structures with more information feedback can actually lead to poorer 
performance. Thus, despite less global information, lower requirements on the communication 
network (or smaller time delays) can be preferable for implementation. Furthermore, when 
compared to time-delayed decentralized controllers based on LQR optimization, the H∞ approach 
is better at reducing maximum responses, while the LQR (H2-norm) approach reduces the root-
mean-square (RMS) response with less control effort, as expected. 

Unlike previous decentralized optimal control algorithms, an algorithm extended to civil 
systems by Ma et al. (2008) does not ensure global and local stability through an iterative 
approach, but rather the control signal is calculated using a linear feedback component, which 
ensures local stability, and a nonlinear feedback component, which guarantees global stability in 
the face of uncertainties. The structure is broken up into artificially independent subsystems and 
the interactions among the subsystems are treated as unknown disturbances to the individual 
systems. The algorithm, originally developed for decentralized robotic control, which is based on 
sliding mode control, is extended to building systems, and the conditions for guaranteeing 
stability and ensuring good performance are outlined. The algorithm is analytically applied to 
linear and nonlinear shear-type building structures. When compared to decentralized and 
centralized LQR control designs, the control algorithm is found to offer at most comparable 
performance; but, the algorithm is significantly more robust to actuator failure than the 
centralized design and capable of limiting the structural response in the presence of major 
modeling uncertainties. While these results are promising, the analysis does not account for 
practical considerations of sensing and actuator dynamics. 

Algorithms based on control of systems that are naturally decentralized have been 
extended to structural systems and compared with classic centralized control techniques. Market 
based control (MBC), initially used in microelectromechanical (MEMs) systems and computer 
architectures, mimics the free markets, in which control power is the scarce system resource that 
is optimally distributed similar to goods and services (Lynch and Law 2002b). The idea is that 
the free market is naturally decentralized and can perform as well or better than a centrally 
controlled system. Lynch and Law (2004) extend MBC to a more rational formulation based on 
the energy balance of the system called energy market-based control (EMBC). The market 
demand and supply functions of the buyers and sellers are based on the dynamic energy of the 
structural system in addition to the wealth considerations of the buyers and sellers. In both cases, 
stability of the systems is not guaranteed, however, because semi-active control actuators are 
used, bounded-input, bounded-output stability can be assumed. When analytically applied to the 
five-story Kajima-Shizuoka building and the twenty-story SAC building fitted with semi-active 
hydraulic dampers, the MBC-based formulations achieve the same performance as centralized 
LQR designs with the same or additional accumulated control force. This algorithm could be 
expanded to include other costs, such as wireless communication, and should also consider other 
practical considerations such as computational requirements, time delays, and effects of actuator 
failure, plant changes, or failures in the monitoring system. 

Other non-classical control approaches, including multi-layer neural networks, have 
gained attention for system identification and control due to their ease of decentralization. Xu et 
al. (2003) numerically investigated neural networks for the decentralized control of a cable-
stayed bridge. The cable-stayed bridge uses active tendons to provide control forces through 
actuators.  Each actuator is controlled by a neurocontroller that uses only local state information. 
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The controller, which is trained on a decentralized system identification, achieves good 
performance for both its trained input and other earthquake excitations. However, the control 
design is less successful when the original structure used for training is altered. The authors 
recommend online training to counteract this limitation. Given these active control results, 
decentralized neurocontrol may be an attractive option for large-scale active structural control 
applications; however, the impact of practical considerations on the performance, such as 
sampling rate, measurement availability, and actuator performance is not addressed in the 
simulation. 

The previous decentralized control techniques assume full-state feedback; however, 
typically only limited measurements are available to the controller and estimation must be used 
within the decentralized control framework. Loh and Chang (2008) investigate several 
decentralized Linear Quadratic Gaussian (LQG) control algorithms utilizing acceleration 
measurement feedback. Three general types of decentralization are considered: half centralized, 
fully decentralized, and partially decentralized subsystems are considered, in which the control 
gain for each subsystem is designed separately and the corresponding measurement structures are 
used for the design of the Kalman filter. Within partially decentralized control, different coupling 
structures are considered based on the degree of coupling among the subsystems. The controllers 
are analytically investigated on the twenty-story SAC II building; and, the decentralized 
controllers are found to have comparable performance to the centralized control system but are 
more robust to control system failure. In addition, an acceleration threshold system, in which two 
decentralized control systems are used alternately depending on the acceleration level, is 
successful at limiting the system response.  The threshold system illustrates that a different 
control system can be used in parallel in case communication failure occurs among the 
controllers. 

Similarly, Lei et al. (2012) divide the system into smaller substructures each controlled 
by its own local LQG control scheme using acceleration feedback; however, in this work, the 
interconnections between the adjacent subsystems are treated as disturbances. These unknown 
disturbances are estimated using a recursive technique. When measurements of the unknown 
disturbances are unavailable, the states are shared among neighboring substructures for 
estimating the disturbances; thus, the system approaches partially decentralized rather than a 
fully decentralized architecture. When measurements of the disturbances are available, the full 
disturbance influence can be estimated locally; thus, the subsystem controllers are fully 
decentralized. The two cases achieved comparable performance analytically to the centralized 
LQG control of the twenty-story SAC building. Similar to other analytical studies, practical 
considerations relating to sensor and actuator dynamics were not included in this work.  

Using a novel redundant Kalman estimation technique, Seth et al. (2005) more directly 
address the concerns associated with wirelessly networked distributed control. The authors hope 
to limit wireless communication by locally estimating the full state of the system. The local state 
estimates are compared to what is measured, and when this differs by more than a specified error 
tolerance, the measurements of the system are transmitted wirelessly to neighboring controllers. 
As the error tolerance is lowered, the system approaches a centralized controller. When 
analyzing the partially decentralized control system, they consider the error threshold that should 
be used to balance communication performance and system performance. All control designs 
analytically implemented on the Kajima-Shizuoka building improve performance when 
compared to no control. Although the system does directly consider issues related to wireless 
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smart sensors, including the probability of data loss and time delay, the analysis does not 
consider a varied sampling rate based on the communication required. 

 
2.2.2 Hierarchical Control for Non-Civil Systems 

Although completely decentralized and partially decentralized control systems have been 
implemented on civil systems, hierarchically decentralized control systems have yet to be 
implemented for structural control. On the other hand, hierarchical control has been successfully 
applied in robotic, automotive, industrial, and MEMs systems (Sandell 1978; Antsaklis and 
Passino 1993; Guenther et al. 1997). In these applications, the authors typically find that 
hierarchical control is a good compromise between local response with simple architectures and 
the inclusion of global knowledge for better global performance. 

In robotic and automotive systems, hierarchical control structures are often considered as 
autonomous systems, in which the controller is divided into multiple levels. For example, 
Antsaklis and Passino (1993) break a hierarchical autonomous controller for a space vehicle into 
three levels: Management and Coordination Level → Coordination Level → Execution Level. 
The lower levels incorporate conventional control techniques, while macro techniques are used 
for control decisions at higher levels. The higher levels essentially act as managers to ensure 
global performance and robustness to failures or model changes. 

On a different physical scale, hierarchical controllers have been shown to be effective in 
MEMs systems, where the success of conventional control algorithms is limited due to physical 
distribution, delays, possible element failure, and difficulty in effective modeling. One particular 
concept of interest in large networks of MEMs sensors is a multihierarchy control organization, 
in which hierarchies centered on each ‘agent’, or controller, are interleaved to overcome 
mismatches between the organizational and physical distance among agents (Hogg and 
Huberman 1998). Guenther et al. (1997) found a multihierarchy based on market-based control 
was able to achieve comparable performance to a centralized controller with less power required. 
In addition, Hogg and Huberman (1998) found that the multihierarchical organization slightly 
outperformed the hierarchical organization in maintaining stability in the presence of modeling 
errors and time delay. However, these ideas do not directly transfer to civil systems, because 
often these MEMs systems are considered to be ‘smart matter’, in which the mechanical time 
scale is slow in comparison to sensor, communication, and computation speeds and the physical 
interconnections between agents are considered to be small or negligible (Guenther et al. 1997; 
Hogg and Huberman 1998).  

2.3 Wireless Structural Control 
Wireless smart sensors have become an exciting alternative to tethered systems for structural 
health monitoring (SHM). As smart sensors become cheaper and research in the area continues, 
dense deployments have been encouraged; for example, the most recent large-scale deployment 
on the Jindo Bridge in South Korea included 113 sensor nodes (Jo et al. 2011). These dense 
wireless smart sensor networks, which include onboard communication and processing 
capabilities, are an attractive alternative to tethered networks for control due to their ease of 
implementation and lower costs (Lynch and Loh 2006). However, smart sensors face numerous 
challenges when applied to wireless control, including both hardware and software. To highlight 
these challenges, this section will address the hardware used, implementations of real-time data 
acquisition, and previous experimental investigations of wireless control. 
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2.3.1 Wireless Control Hardware 

Typically, a wireless control sensor unit consists of a sensing interface, computing core, wireless 
radio, and an actuation interface. Lynch and Law (2006) and Rice and Spencer (2009) provide a 
summary of academic and commercial wireless smart sensor platforms. Of the sensor node 
elements, two essential hardware components that should be addressed specifically for wireless 
control include the analog-to-digital converter (ADC) for sensing and the digital-to-analog 
converter (DAC) for issuing control commands. Chapter 3 will provide more theoretical 
background on the types of converters, while this section will present the hardware used in the 
literature. 
 The most important qualities of the sensor interface are the resolution and sampling rate 
(Lynch and Loh 2006). One additional concern for wireless control is the latency of the ADC 
architecture. However, for SHM applications, the latency present in the ADC is less of a 
concern; so often, improved resolution is traded for an ADC architecture that has higher latency. 
Because latency is not often considered, most sensor node specifications only provide the 
maximum sampling rate, ADC resolution, and the number of channels.  

In wireless control, the most common ADC architecture used in the literature is a 
successive-approximation-register (SAR) type (Wang et al. 2006b; Lynch et al. 2008; Swartz and 
Lynch 2009; Wang and Law 2011). An SAR type ADC has minimal latency and is appropriate 
for high-resolution, medium throughput applications (Maxim Integrated Products 2001); thus, 
they are a good choice for wireless structural control. However, little rationale is provided in the 
literature for their selection besides the high maximum sampling rate; on the other hand, the 
literature on the hardware for wireless control often presents the actuation interface in detail.  

Although additional components are used within the actuation interface to alter and 
amplify the output voltage range, the most important component is the DAC. This actuation 
interface is present in a broad category of sensors called ‘Wireless Active Sensors’, which 
includes both systems that are used for active sensing popular in non-destructive evaluation 
methods and structural control (Lynch and Loh 2006). As a result, the type of DAC selected is 
often tailored to the application requirements. 

In wireless control, the main concerns are the resolution and speed of the DAC. The goal 
is that both the sensing and actuation interfaces are capable of comparable high-speeds and 
resolution. Casciati and Rossi (2003) present a wireless controller unit that has a 12-bit DAC that 
is equivalent to the sensor resolution capable of 0 to 10 V or bipolar 5V output. The initial unit 
employed by Lynch et al. (2004a) uses a 12-bit TI-DAC7642 DAC with zero-order-hold (ZOH) 
analog output and a low settling time for each conversion, which allows for high-speed 
operation. The next generation of the unit (WiSSCon, Wang et al. 2006a) used in several 
wireless control implementations upgrades to a 16-bit Analog Devices AD5542 DAC to output a 
stable zero-order-hold analog signal. The very low settling time of the DAC allows for very high 
sampling rates (1 MHz maximum). The Narada unit uses a two-channel 12-bit TI-DAC7612 
DAC to provide steady analog outputs (Swartz et al. 2005; Swartz and Lynch 2009). In all these 
cases, the overall goal is to provide a zero-order-hold analog output signal with comparable 
resolution and speed to the sensing interface. 

 
2.3.2 Real-time Data Acquisition 

In SHM, two approaches to data acquisition in large sensor networks are used commonly to limit 
the impact of scarce power and bandwidth resources: data logging and decentralized data 
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aggregation. In the first, data is acquired locally on sensor nodes prior to sending the measured 
data individually back to the base station. The collected time histories can then be analyzed. This 
data logging approach better utilizes the transmission bandwidth when compared to real-time 
acquisition; however, the process can take a significant amount of time. In the second approach, 
data is acquired locally and then processed, typically in small communities of neighboring sensor 
nodes; the aggregated data is then returned to the gateway node (Rice et al. 2010). This approach 
leverages the onboard computational power to reduce transmission size and power consumption 
(Lynch et al. 2004b); however, complete time histories of the measured data are no longer 
available. On the other hand, real-time data acquisition allows wireless sensor systems to 
emulate tethered networks when real-time visualization of the response is desired or real-time 
state knowledge is necessary for systems that include actuation capabilities. 
 Therefore, the first step to achieving wireless structural control is real-time data 
acquisition, in which the data is transmitted to the gateway node with minimal latency. Despite 
the onboard processing and communication capabilities, real-time data acquisition on wireless 
smart sensors is challenging due to operating system limitations, tight timing requirements, 
sharing of transmission bandwidth, and unreliable wireless radio communication. As a result, 
recent sensor systems have implemented real-time data acquisition by limiting network size, 
channels acquired, and/or sampling rates. 
 The most common approach initially to achieve wireless real-time data acquisition was to 
decrease the sampling rate and the number of nodes communicating to limit the demands on the 
wireless bandwidth. Galbreath et al. (2003) achieve continuous streaming on their own prototype 
sensor by acquiring 3-channels of 12-bit sensor data sampled at 1 kHz on a single sensor node. In 
this monitoring approach, multiple nodes were not required to communicate with the gateway 
node. Similarly, Paek et al. (2006) limit the size of their networks and sampling rate to achieve 
sampling of 12 channels of acceleration across four nodes at 20 Hz using a TENET network 
composed of Stargate and MicaZ sensor nodes. Limited low-level software modifications or 
scheduling were required in these approaches. 

On the other hand, Wang et al. (2007b) improve their possible data throughput by 
addressing low-level programming issues in the operating system. One major limitation of 
common wireless sensor operating systems is that they are single-threaded, thus sampling and 
sending cannot occur at exactly the same time. Wang et al. (2007b) use a multi-threaded 
operating system with multiple memory buffers that does not require sending within one sample 
period; and thus, they can use a retry and acknowledgement protocol to ensure reliable 
communication. As a result, they achieve reliable near-real-time transmission of 24 wireless 
sensors with 16-bit data at sampling rates up to 50 Hz on their own prototype sensor node. 
However, the reliable communication scheme and use of multiple memory buffers may introduce 
latency. 
 Another possible solution to improve throughput is to use a scheduled communication 
and sensing approach. Scheduling communication reduces contention on the wireless channel, 
which limits data loss due to collisions and delays due to clear-channel-assessments (CCA). One 
common approach is the time-division multiple access (TDMA) protocol that allows multiple 
leaf (remote) nodes to communicate with a single receiver, or gateway node, by transmitting in 
different time slots. Niu et al. (2009) achieve reliable near-real-time communication of 34 
channels of 10-bit data across 17 nodes at up to 50 Hz on the IRIS sensor node by using a 
TDMA protocol with a buffer of multiple samples. The buffering of samples improves the 
throughput, but can introduce latency into the system. Furthermore, the TDMA communication 
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interval used is independent of the sampling rate or number of nodes and can result in buffer 
overflow at higher sampling rates and additional latency. 

Whelan and Janoyan (2009) combine scheduling with low-level operating system 
modifications to achieve high-throughput real-time data acquisition. A throughput of 40 channels 
of 12-bit data over 20 nodes at a sampling rate of 128 Hz is achieved on the TmoteSky sensor 
node through low-level modification of TinyOS-1.x handling of events. These modifications 
include interrupt-driven handling of events rather than just a first-in-first-out (FIFO) scheme, 
which allows for prioritizing of critical events.  To achieve reliable communication, they 
retransmit lost data, which can introduce some latency. While the Whelan and Janoyan (2009) 
system exhibits impressive performance, the time synchronization among nodes is only viable 
for several minutes, which limits the possible sensing interval.  
 Therefore, high-throughput real-time data acquisition that is viable over an extended 
interval has yet to be realized. A solution will require tightly scheduled communication and 
sampling along with time synchronization that is viable over an extended interval. For SHM 
applications, only near-real-time acquisition is required; and thus, some latency in the approach, 
such as buffering of samples, is practical. However, structural control applications require 
minimal latency; and thus, approaches with memory buffers of samples are impractical. 

The overall goal of real-time acquisition for wireless structural control is to limit the total 
communication time; thus, real-time communication approaches for structural control typically 
use a scheduling method to limit contention delays and data loss. Lynch et al. (2008) outlines a 
TDMA-based communication scheme that ensures that no two nodes communicate with the 
controller, or gateway, node at the same time. The protocol used assumes three nodes are 
communicating with the controller node and uses predefined wait times for each node. The 
communication scheme is initiated when a beacon is sent to the remote sensor nodes. When 
implemented on their prototype sensor fitted with a 24XStream radio, the total data exchange 
takes about 74 ms, which results in a sampling rate of about 12.5 Hz. The resulting sampling rate 
is slow and highlights the challenges wireless communication presents in structural control; 
however, the general ideas of this scheduled approach can be applied to more powerful sensor 
nodes to improve real-time data acquisition for wireless control. 

 
2.3.3 Wireless Structural Control Experimental Implementations 

Several wireless structural control experiments have been conducted on semi-active systems to 
explore the challenges of using wireless smart sensor nodes and implement newly developed 
decentralized control algorithms. Semi-active control systems have the advantage that they are 
inherently stable, so they are well suited to the new area of wireless structural control, which can 
have data loss, slow sampling rates, and time delays. In these experiments, the wireless control 
hardware, real-time data acquisition protocol techniques, and decentralized control algorithms 
discussed previously are combined to achieve wireless structural control.  
 Wang et al. (2006a) were the first to experimentally explore the tradeoffs of control 
sampling rate and the decentralization of sensor feedback present in wireless structural control. 
They implemented centralized, partially decentralized, and decentralized control schemes on a 
three story steel structure with MR dampers located at each story and fitted with a WiSSCon 
wireless system. The decentralized wireless systems use the iterative procedure developed by 
Lunze (1992) to determine the control gains when considering LQR with velocity feedback. The 
resulting centralized wired system, fully decentralized wireless system, partially decentralized 
wireless system, and centralized wireless system operate at 200 Hz, 50 Hz, 16.67 Hz, and 12.5 
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Hz, respectively. The slower sampling rates, when more data is fed back to the controller, were 
due to the time required for wireless radio communication. The fully decentralized system was 
able to achieve comparable performance to the centralized wired LQR design. Among the 
wireless cases, the superior performance of the fully decentralized system highlights that the lack 
of complete sensor data is overcome by the higher sampling rate (or lower communication 
latency). 

Lynch et al. (2008) explore the effect of slow sampling rates and the information 
feedback on the performance of the wireless structural control system. Centralized wired and 
wireless systems are implemented on a three-story, single-bay steel structure fitted with an MR 
damper on the first story and using WiSSCon wireless sensor nodes. An in-depth discussion of 
the wireless sensor implementation is provided, including an outline of the TDMA 
communication scheme used and psuedocode of the controller software. The resulting wired and 
wireless systems operate at 200 Hz and 12.5 Hz, respectively. In comparison to the passive-on 
and passive-off cases, the wireless system using velocity feedback was more successful at 
mitigating the response of far-field earthquakes. The wireless system performed worse than the 
wired system for the near-field Chi-Chi and Kobe earthquakes. This poor performance is 
attributed to the state truncation when using velocity state feedback and the slower sampling rate. 
Utilizing acceleration feedback, the system performed as well or better than the other control 
systems (passive and wired). In addition, the work highlights the idea that decentralized control 
and an improved communication protocol could further enhance performance by increasing the 
wireless sampling rate. 

Loh et al. (2007) investigate the application of fully decentralized control to a system 
using acceleration feedback. They compare wireless (WiSSCon) and wired control systems on a 
three-story steel structure with an MR Damper on each story. Both centralized and fully 
decentralized discrete LQG control designs are presented; as discussed previously in Loh and 
Chang (2008), the fully decentralized algorithm is based on individual subsystem design rather 
than an ad-hoc decentralization of the centralized solution or solving for the optimal overall 
decentralized design. The TDMA communication protocol requires a significant amount of time 
for each send and computation, which results in a centralized wireless system sampling rate of 10 
Hz. On the other hand, the fully decentralized system, which only requires computation, operates 
at 50 Hz. In their analysis of the system, the performance of the wireless system is discussed, 
including the accuracy of the wireless LQG calculations, MR Damper calculations, and data loss, 
as well as the actual control performance when compared to a wired system. The wireless 
systems, both centralized and decentralized using acceleration feedback, have almost the same 
control effectiveness as the wired system; and, the closed-loop wireless controllers typically 
outperform the passive-on and –off cases.  

Swartz and Lynch (2009) use a partially decentralized control architecture, where the 
level of communication between nodes depends on the error between the true states and estimate, 
to improve the performance of wireless structural control systems using acceleration feedback. 
Based on the work by Swartz et al. (2005) discussed previously, they investigate different error 
thresholds, performance, and the communication required. The wireless control system is applied 
to a six-story single-bay, scaled, steel structure fitted with an MR damper at each story. By using 
an acknowledged TDMA scheme on the Narada node, which has a multithreaded operating 
system, the TDMA communication protocol results in an operating sampling rate of 33 Hz. The 
results showed that an optimal error threshold that maximized the improved performance of 
partially decentralized control while limiting the communication required; however, when they 
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compare the results with essentially centralized or fully decentralized solutions, they don’t 
consider that these approaches might use different sampling rates, i.e. a fully decentralized 
architecture would offer a faster sampling rate. 

To improve the performance of wireless control systems using velocity feedback, time 
delay is considered in the control algorithm development by Wang et al. (2007a). The time-
delayed LQR algorithm initially discussed in section 2.2.1 is applied to a three story, single bay, 
steel structure fitted with an MR damper at each story. The Narada unit is utilized for the 
wireless system, where the centralized system operates at 12.5 Hz, partially decentralized at 
16.67 Hz, and fully decentralized at 50 Hz. The wired system used for comparison operates at 
200 Hz. The simulation and experimental results highlight the importance of considering 
sampling rate and decentralized control architecture in the control design; the decentralized 
wireless strategies provide equivalent or better performance than centralized approaches due to 
the higher sampling rate. Although the paper does not directly compare the time-delay 
compensation approach with a non-compensated approach, the good performance of the wireless 
system using velocity feedback suggests that the approach is advantageous. 
 Wang and Law (2011) next apply several partially decentralized time-delayed control 
designs, which use multiple communication subnets to improve performance. The control 
designs are based on the time-delayed H� decentralized control algorithm discussed by Wang 
(2011) and addressed previously in section 2.2.1. The experiment consists of a six-story, scaled, 
steel structure fitted with an MR-damper between each story and a Narada control unit at each 
device interfaced with two velocity meters. Four levels of decentralization are considered, 
ranging from centralized to completely decentralized, with the corresponding sampling intervals: 
47, 18, 12, and 7ms; the communication is assumed to take 2ms each with computation requiring 
the majority of the interval. This result is the first reported experiment to utilize different 
communication channels for each subnet. In general, the results were not as good as in 
simulation, which is attributed to possible modeling errors of the structure and MR Damper. 
Looking at both the RMS and peak responses, the centralized system performed the best and next 
was two subnets of three nodes. While all feedback systems outperformed passive-off, the more 
decentralized schemes did not improve on passive-on. Although the idea of multiple subnets is 
promising, the poorer than expected performance in this case might be overcome through the use 
of overlapping subnets. 

These experimental investigations of wireless structural control highlight the tradeoff 
between degree of decentralization, sampling rate, and performance. In addition, the application 
of algorithms that include time delay and approaches to limit communication offer practical 
examples that can be used in future work. However, in all these cases, the main objective was to 
improve control performance. Although the stability of semi-active systems is guaranteed due to 
BIBO stability, the feasibility and performance of these approaches on active control systems is 
not guaranteed, because they are likely more sensitive to sampling rate, delays, and data loss. 

 
2.3.4 Wireless Active Control 

To date, the only reported use of wireless sensors for active structural control system has been by 
Casciati and Chen (2012), who examined control of a three-story, steel structure fitted with an 
active mass driver (AMD). The wireless sensor uses a CC1110 transceiver that includes an 
onboard microprocessor. The sensor measurements are transmitted using a frequency division 
multiplexing (FDM) technique in which each of the remote sensors uses a different frequency 
band and the structural controller is fitted with multiple wireless transceivers. The wireless 
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measurements are then fed into the microcontroller for control calculations, and the desired 
control displacement is output to a board designed by the authors for PID control of the AMD. 
The wireless system is able to achieve comparable performance to the wired system when the 
building is subjected to a sinusoidal excitation at its natural frequency. Although the performance 
of the system is promising, the time required for this FDM technique and the resulting sampling 
rate for the system is not provided. In addition, the scalability of this centralized system is 
limited because the number of communication channels and wireless transceivers required at the 
controller node will increase linearly as the number of remote sensors increases.  

Although only one experimental investigation of wireless active structural control has 
been completed, some investigations of wireless control have been considered for active 
mechanical systems. Such systems typically use controllers linked through a wireless network 
rather than wireless smart sensors. In addition, stability is often addressed and considered 
alongside performance. Wireless control also has been investigated for other systems, such as 
industrial processes; however, the time scales for these problems are typically much longer than 
found for structural systems and thus, are not considered. 
 A fundamental mechanical system addressed in wireless control is stabilization of an 
inverted pendulum; thus, stability is directly addressed when considering delays, data loss, and 
sampling rate. Initially, Eker et al. (2001) investigate the tradeoff between time delays and 
reliable transmission when two nodes connected over Bluetooth are used to control the inverted 
pendulum. They consider two approaches: a varying delay with reliable transmission and 
unreliable transmission with a stable delay. The variable delay LQR control design is found to be 
successful at stabilizing the system, while assuming a constant delay or non-compensation when 
reliable transmission is used results in instability. An estimation approach to correct bit errors 
combined with static delay compensation effectively stabilized the system; however, when 
incorrect data is used in the controller, instability resulted. Since the tradeoff between reliable 
communication and data loss is a concern with wireless systems, the approaches presented offer 
some insight for wireless active structural control.  

One other approach to network contention and data loss is to use a varying sampling rate. 
Poplys et al. (2004) maintain stability of the inverted pendulum at the upright position with a 
control system comprised of two nodes connected over an 802.11 network. They use an event-
driven control approach, where sensing is based on the clock and actuation is based on receipt of 
a control command; thus, time synchronization among individual nodes is not required. A 
discrete LQR control design operating at 200 Hz is used to maintain stability in the presence of a 
one-step time delay. Furthermore, the system is shown to be robust for various sampling rates 
and packet loss rates until ultimately instability occurs. As a result, a slowly adjusting sample 
rate approach is considered to maintain a target packet loss rate and reliability for various 
sampling rates (100-250Hz are considered). Finally, the system is extended to a multi-input 
multi-output system with light tracking to investigate the improvement in performance using 
coordinated control. The coordinated control proves successful and does not seem to hinder the 
performance of the individual control loops, but rather improves the performance of the total 
system. Although the sampling rates used are higher than what is typically possible with a 
wireless smart sensor, the consideration of stability with delays and the idea of adjusting the 
sampling rate to balance performance and data loss could be applied to active control structural 
systems. 

Kawka and Alleyne (2005) further investigate the stability of the wirelessly controlled 
inverted pendulum and the performance improvement offered by varying the sampling rate over 
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time. They examine the control of the inverted pendulum by framing the problem as a 2-state 
Markov model, which can be used along with H� norms to identify stability regions and 
expected performance. Ultimately, these results inform a decentralized control approach that 
adjusts the sampling rate (i.e., required rate of communication) based on communication 
performance in the network. The two states used in the model are based on network 
performance; when communication fails, the control command is set to zero, such that the 
system is open loop. Otherwise, the system operates in a closed-loop state.  The probability of 
closed-loop to open loop is used as a feedback parameter, within a set of bounds, to vary the 
sampling period. The strategy, examined experimentally, improves controller performance as 
measured by tracking error and successful transmission when communication disturbances are 
present. Again the sampling intervals used here are likely faster than what is currently possible 
with a wireless smart sensor, but the idea of adjusting the sampling rate in real-time is promising.  

2.4 Summary 

The literature review in this chapter shows the progression of structural control research, 
focusing on studies that have sought to overcome and account for practical considerations, 
including time delay, sampling rate, etc. Wireless structural control is particularly susceptible to 
these inherent hardware and software related challenges due in part to communication and data 
loss. Experimental application of wireless structural control to semi-active control systems is a 
promising first step towards investigating wireless control, because the systems are inherently 
stable. These implementations have highlighted the tradeoffs between decentralization, sampling 
rate, and performance. This research will focus on addressing the hardware and software 
limitations, in addition to the previously considered tradeoffs, to enable successful 
implementation of wireless active structural control. 
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  Chapter 3

 

BACKGROUND 
 
To lay the foundation for the research presented herein, this chapter provides technical 
background on both the wireless sensing and control elements, including the wireless smart 
sensor platform, the existing software architecture, and optimal control techniques. 

3.1 Wireless Smart Sensor Platform 

3.1.1 Imote2 

While numerous wireless smart sensing platforms, both commercially and academically 
available, have been developed for SHM applications (Lynch and Loh, 2006), the Imote2 was 
selected for this work. The Imote2, shown in Figure 3.1, is well suited for high data-throughput 
applications due to its high and variable processing speed, large onboard memory, and low-
power radio. The XScale PXA271 processor allows for variable processing speeds, including 13, 
104, 208, and 416 MHz, that can be selected based on tradeoffs between performance and power 
consumption. In addition, the higher processing speed allows control computations to be 
completed quickly to limit latency. The onboard memory consists of 32 MB of flash, 256 KB 
SRAM, and 32 MB of SDRAM. The Imote2 utilizes the popular CC2420 low-power radio that 
can be combined with an onboard or external antenna for wireless communication over the 2.4 
GHz wireless band using the IEEE 802.15.4 protocol. The radio offers a theoretical maximum 
transfer speed of 250 Kbits/sec. 

 
Figure 3.1: Imote Smart Sensor Platform: Top View (left), Bottom View (right). 

3.1.2 SHM-A Sensorboard 

The Imote2 platform does not provide an onboard ADC, instead allowing it to interface with a 
user-selected sensor board over its basic connectors. The SHM-A sensor board, designed for 
SHM applications, was initially selected for this work among the commercially available sensor 
boards for the Imote2 due to its high-sensitivity accelerometers and high-resolution analog-to-
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digital converter with user-selectable sensing parameters (Rice and Spencer 2009). The sensor 
board, shown in Figure 3.2, consists of a three-axis accelerometer (ST Microelectronics 
LIS344ALH), temperature and humidity sensor (Sensirion SHT11), light sensor (TAOS 2561), 
and an external 16-bit analog input. The four analog signals interface with a 16-bit analog-to-
digital converter (QF4A512), which offers user-selectable anti-aliasing filters and sampling rates. 

 
Figure 3.2: Imote2 fitted with SHM-A sensor board and external antenna. 

The Quickfilter QF4A512 is an oversampling, pipeline type analog-to-digital converter 
that oversamples and digitally applies filters and decimation to achieve high-resolution, anti-
aliased data (Quickfilter 2007). The general architecture is shown in Figure 3.3. The analog 
portion consists of a pre-gain amplifier (PGA) and a high-cutoff anti-aliasing filter. The analog-
to-digital converter (ADC) is 12-bits in hardware but oversamples and averages the resulting 
conversions to achieve up to a 13.1 ENOB resolution. The digital signal is then passed to the 
Finite Impulse Response (FIR) Filter for user-defined filtering. The FIR filters can accommodate 
up to 512 taps each.  

 
Figure 3.3: Quickfilter architecture (Quickfilter 2007). 

3.2 Analog-to-Digital Converter Hardware 

The analog-to-digital converter (ADC) architecture should be selected based on the application. 
Two main types of analog to digital converters exist: those that complete the conversion within 
one sampling interval and those that have an inherent latency until the data is available. The first, 
which includes Flash and Successive Approximation Register (SAR) ADCs, is best suited for 
low latency applications such as control. The second type, which includes Pipeline and Sigma-
Delta ADCs, is suited for high-resolution applications where latency is less of a concern, such as 
SHM. This section will discuss the two main ADC architectures that are used in this work: the 
SAR and Pipeline ADCs. 
 
3.2.1 Successive Approximation Registers 

A successive approximation converter is well-suited for medium to high-resolution applications 
with moderate throughput. Typical SAR converters range from 8 to 16 bits and have speeds up to 
5 megasamples per second (Msps) (Maxim 2001). The architecture implements a binary search 
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algorithm to determine the N-bit register value for the corresponding analog input (Pelgrom 
2010). A schematic of an SAR converter is shown in Figure a and a 4-bit example of the search 
algorithm is provided in Figure b. As illustrated, the analog input is held initially with the sample 
and hold. The binary search algorithm starts with VDAC held to midscale, which is compared with 
the voltage input. If VIN is higher than VREF/2, the bit is held high, otherwise it is flipped to zero. 
The SAR logic then moves to the next bit in the register and flips it high. This voltage is output 
through the digital-to-analog converter (DAC) and then compared with VIN as before. The 
process continues until all N-bits of the register are addressed. In the 4-bit example (Figure a), 
VDAC used for comparison is shown in bold.  

The throughput and accuracy of the converter is a function of the components, mainly the 
DAC and comparator. Due to the algorithm, N clock samples are required for conversion. As a 
result, although the internal hardware is running at the higher clock rate, the available ADC 
sample rate is a fraction of that rate. The maximum sampling rate is limited by the DAC settling 
time for the VDAC to stabilize prior to comparison and the speed of the comparator itself. 
Similarly, the accuracy of the converter is limited by the DAC and the comparator. 

 
3.2.2 Pipeline Converter 

The pipeline architecture is well-suited for high-throughput, high-resolution applications where 
some latency is not a concern. The converter is a multiple-stage analog-to-digital converter, 
which typically consists of N similar stages that account for a bit of resolution (Pelgrom 2010). 
Once a stage completes processing a sample and passes it on to the next stage, the stage can start 
processing the next sample received. This pipeline architecture increases the throughput, but 
introduces latency. Thus, for an N-stage pipeline at least N sample delays exist; plus, there is 
additional delay due to the digital reconstruction and error correction. Therefore, the delay 
between the initial sampling and the digital output can be significant.  

 
 
 

 
(a) 

Figure 3.4: (a) Schematic of successive approximation architecture (Maxim 2001) (b) 4-bit example of binary search 
algorithm. 
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(b) 

Figure 3.4 continued. 

3.3 Essential Embedded Software Components 

Embedded software is an essential component in the design of real-time wireless data 
acquisition, which is required for structural control. This section will discuss four main 
components of the software for application development. First, the operating system and overall 
software architecture; and then, more specifically, time synchronization and the sensing 
approach. 
 
3.3.1 Operating System 

The operating system popular with numerous embedded wireless sensor networks, TinyOS, is 
used on the Imote2 (Lynch and Loh 2006). TinyOS (www.tinyos.net) is a component-based 
operating system written in the NesC language, a version of C for embedded systems, which has 
limited memory requirements. The open-source software supports an event-driven concurrency 
model, in which tasks are completed in a first-in-first-out (FIFO) manner along with interrupts 
(Levis et al. 2005). The inclusion of asynchronous interrupts allows the system to interact with 
real-time hardware. Thus, two main execution methods are possible: a task posted to a queue and 
an asynchronous interrupt handler. 
 
3.3.2 Software Architecture 

Similar to a component-based operating system, the Illinois Structural Health Monitoring 
(ISHMP) Services Toolsuite (http://shm.cs.uiuc.edu/software.html) employed in this work 
utilizes a modular service-oriented architecture. The framework consists of three main elements: 
foundation services, application (domain-specific) services, and tools and utilities (Rice et al. 
2010). A typical application would combine several foundation and application services. Several 
of the key foundation services to support real-time sensing include reliable communication and 
synchronized sensing. The reliable communication service allows reliable sends of different 
message types, including commands and long data sets. The synchronized sensing service 
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combines time synchronization, which provides global timestamps, and resampling to account 
for sampling offset and variation of sampling rates (Nagayama et al. 2009). 
 
3.3.3 Time Synchronization 

Precise time synchronization serves two key purposes in applications that require tight event 
scheduling and sensing, such as real-time sensing: (i) providing consistent global timestamps for 
synchronizing the data acquired from different sensor nodes, and (ii) scheduling communication. 
Time synchronization errors in sensor data can introduce phase errors in SHM applications 
(Nagayama et al. 2007). Thus, while approximately 1 ms precision typically suffices for 
communication scheduling, much tighter precision is needed for acquiring high-quality 
synchronized data.  
 Each individual sensor node has its own local clock, which is not initially synchronized 
with the other nodes. In addition, each clock ticks at a slightly different rate. Through 
communication between nearby nodes, the sensors can assess and correct for the relative 
difference in their local clocks. Several well-known time synchronization algorithms exist 
including the Flooding Time Synchronization Protocol (FTSP, Maróti et al. 2004). 
  A custom time synchronization protocol for SHM applications on the Imote2 has been 
implemented (Nagayama et al. 2009).  By extending the Flooding Time Synchronization 
Protocol with clock drift estimation and compensation features, the protocol maintains 
synchronization error within 80 µs over a period of several minutes without resynchronization. 
 Li et al. (2012) has transformed the time synchronization protocol to be viable over a 
longer sampling interval and limit the initial latency due to clock drift estimation. The system 
aligns clocks initially and then synchronizes the data post-sensing. This approach is not currently 
viable for applications that require tight scheduling and real-time sensing; however, the approach 
could be combined with the original protocol to extend the synchronization over a longer 
sampling interval. 
 
3.3.4 Sensing Approach 

In general, the sensing application on the Imote2 interfaces with the sensor board through driver 
commands. The user first specifies the desired channels, sampling rate, and number of samples. 
The application relays this information to the driver when posting a sensing task. When the 
driver is initialized, sensing begins and the data is passed to the application through a buffer. 
Sensing continues until the desired amount of data has been acquired. 

3.4 Optimal Control Techniques 

The controllers used in this work consist of an estimator and control gain designed separately 
based on the separation principle. Although numerous design techniques and algorithms exist for 
selecting control and estimator gains, common optimal control algorithms are used in this work: 
linear quadratic regulator and Kalman filter. Initially, the state-space representation of the 
equations of motion, on which these methods are based, is presented in this section followed by 
the two optimal design techniques. 
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3.4.1 State-Space Representation of the Equations of Motion 

The optimal control techniques outlined in this section are based on the state-space formulation 
of the dynamic equations of motion. The state-space formulation offers a different way to 
represent the same equation of motion. These state-space based methods are particularly 
advantageous when designing controllers for multi-input, multi-output (MIMO) systems and 
systems with time delays.  
 The state variables z1 and z2 are defined as the displacement and velocity vectors; 
therefore, the state vector can be represented as 

  (3.1) 

Thus, a system with a second order equation of motion 

  Mx +Cx +Kx = u(t)  (3.2) 

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F(t) is the 
excitation, and x  is the degree of freedom, can be represented using Eq. (3.1) as a set of two first 
order differential equations known as the state equation: 
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The state equation is commonly represented in compact matrix form as 

  z = Az +Bu  (3.4) 
where A and B are the system matrices and u is the system input, defined as 
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The measurements of the system, y, is given by the measurement equation 
 = +y Cz Du  (3.6) 

where C and D  are functions of the state variables selected to represent the measurements of the 
system desired or available. For example, if the velocity measurements are the only output of the 
system, the C and D matrix would be given by 

  (3.7) 

In this work, we assume a linear time invariant (LTI) system in which the stiffness, 
damping, and mass matrices do not change. Therefore, A, B, C, and D are assumed to be 
constant. 

For systems sampled at a slower rate, a discrete time representation of the system is 
advantageous for control design (Franklin et al. 1998). If we assume the control is applied from 
the computer using a zero-order hold (ZOH), then we can obtain the discrete state-space 
representation of the system 
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  (3.8) 

where 

  (3.9) 

and T is the sampling period. 
 
3.4.2 Linear Quadratic Regulator Control 

Given a feedback control system, linear quadratic regulator (LQR) control design provides a 
balance between good system response and the control effort required (Franklin et al. 1998). The 
control design gets its name because it applies to linear systems, has a quadratic cost function, 
and regulates (controls) the state of the system. Initially the continuous-time representation will 
be presented followed by the discrete time formulation. 

In continuous time, the method calculates a feedback gain K that minimizes the following 
cost function 

  (3.10) 

where Q is a positive semi-definite state weighting matrix and R is a positive definite control 
weighting matrix. The values of Q and R are selected by the designer to achieve a desired 
closed-loop response. The resulting gain, K, yields the optimal closed-loop controller to achieve 
this balance of control effort and system response. 

The solution for the steady-state optimal control 

  (3.11) 

that minimizes Eq. (3.10) is  

  (3.12) 
where P is the positive definite solution of the algebraic Riccati equation, given by 

  (3.13) 

The algebraic Riccati equation has well-known solution techniques. 
 In discrete time, the linear quadratic regulator design serves the same function, but has a 
slightly different representation. The cost function minimized in discrete time is 

  (3.14) 

where Q and R  have the same properties as in continuous time. The states and input are now a 
function of the sample, k.  

Similarly, the solution for the steady-state optimal control 
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  (3.15) 

that minimizes Eq. (3.14) is 

  (3.16) 

where S is the positive definite solution of the discrete algebraic Riccati equation, given by 

  (3.17) 

Thus, the solution has a similar procedure, but each equation has a slightly different form. 
 
3.4.3 Kalman Filter 

The LQR control design assumes full-state feedback; however, rarely is the full state information 
available to the controller. Typically, only a few measurements are available, e.g., accelerations. 
Thus, an estimator is used to reconstruct the state elements used for the control law as shown in 
Figure 3.5. The Kalman filter is an optimal model-based predictor-corrector type estimator in 
that it minimizes the variance of the estimated error covariance in the presence of Gaussian type 
process and measurement noise (Stengel 1986). Although the Kalman filter was originally 
derived in discrete-time, the continuous-time Kalman filter will be initially presented and 
followed by the discrete-time implementation (Stengel 1986). 
 

 
Figure 3.5: Block diagram of Kalman Filter. 

In continuous-time, the typical state-space plant model is represented as 

  (3.18) 

where the previous state-space model is augmented with the process noise, w, and measurement 
noise, v. The noise variables are assumed to be white noise processes uncorrelated with each 
other and with covariances defined by 

 E w(t)w(t +τ )[ ] = Swδ (t),    E v(t)v(t +τ )[ ] = Svδ (t)   (3.19) 
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The measurement noise can be determined experimentally; however, the process noise is harder 
to evaluate. In general, the relative noise weighting of Sw and Sv can be tuned by the designer to 
balance the speed and accuracy of the resulting estimator.  

An estimate of the state,  is obtained from the resulting estimator given by 

  (3.20) 

where the open-loop estimate accounting for system dynamics, or time update, is corrected using 
the measurement weighted by the Kalman gain, L, as shown in Figure 3.5. If the estimated state, 

, is subtracted from the true state x, the dynamics of the error in the estimate, , is represented 
by 
  (3.21) 

and should go to zero if the estimator gain is selected properly and the system is observable. 
Note that D is assumed to be zero, since in our applications the input does not directly feed 
through to the measurements. 

The steady-state Kalman gain, L, is given by 

  (3.22) 

where P is the error covariance. Similar to the LQR solution, the error covariance, P, is the 
positive definite solution to the algebraic Riccati equation  

  (3.23) 

While the solution is similar in discrete time, the estimator is typically implemented 
predicator-corrector form. The state-space model of the plant is similarly represented as  

  (3.24) 

where the measurement and process noise have the same properties as before. The first stage is 
the time update, in which the state estimate, is predicted based on the previous estimate and 
the system dynamics. This estimate is then corrected using a measurement update that accounts 
for the effect of the measurement . The steps are outlined below (Lewis 1986). 

For each k = 1,2,… 
Step 1: Time Update (between measurements) 

  (3.25) 

  Step 2: Measurement Update (at measurement time) 

  (3.26) 

The steady-state Kalman gain used in the measurement update is given by 

  (3.27) 

where P is the steady-state error covariance. The error covariance, P, is the positive definite 
solution of the discrete algebraic Ricatti equation 
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  (3.28) 

3.5 Summary 

This chapter provides an overview of the wireless smart sensor platform and control algorithms 
used in this work. The wireless sensor hardware, specifically the ADC used, has inherent 
implications on the latency in the system. Thus, the architecture should be considered. In 
addition, the operating system and software framework will inform the solution used in wireless 
control. The control algorithms presented, both centralized and decentralized representations, 
need to be considered due to the slower sampling rates possible in wireless systems, as discussed 
in Chapter 2. Utilizing the hardware, software, and control algorithm background outlined in this 
chapter, will contribute to the successful implementation of wireless structural control. 
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  Chapter 4

LOW-LATENCY SENSING AND ACTUATION HARDWARE 
 
The time-domain performance requirements of wireless sensor hardware are unique for control 
applications, as compared to health monitoring, due to the real-time feedback required. Sensing 
hardware tailored to monitoring applications often uses digital filtering, which may result in 
significant latency. As a result, careful evaluation should be carried out to assess the applicability 
of such hardware for structural control purposes. Similarly, actuation hardware that complements 
the data acquisition performance is required to complete the control loop. By developing low-
latency sensing and actuation hardware, the high-performance processing of the Imote2 can be 
leveraged for structural control applications. 

4.1 Evaluation of SHM-A Sensor Board 

The performance of the SHM-A has been evaluated to establish to assess its applicability for 
structural control. As discussed in Chapter 3, the analog to digital converter (ADC) used on the 
SHM-A is tailored for structural health monitoring applications; therefore, the sensor board may 
have limitations in terms of control applications. The major focus of the evaluation is latency 
introduced by the pipeline architecture and an approach to limit this latency. 
 The oversampling, pipeline style of the Quickfilter ADC requires the use of digital FIR 
(Finite Impulse Response) filters for downsampling and filtering, which can introduce significant 
latency. The filters used in structural health monitoring to limit aliasing and improve noise 
rejection require a significant number of taps. The total number of latency samples is a 
combination of the delay within the ADC architecture and the taps in the FIR filter. For example, 
89 sample delays are required for a good 50 Hz filter design, which results in a delay of 1.78 
seconds due to the Quickfilter chip alone. This delay is significant and not suitable for most 
structural control applications. Because an FIR filter is required for this ADC, alternative 
solutions with filters requiring fewer taps and utilizing higher sampling rates are necessary. 
 The proposed solution to limit the latency with the SHM-A is to maximize the possible 
sampling rate on the sensor board and minimize the taps used in the filter. The latency is a 
function of the number of taps and the sampling rate as shown in equation (4.1). The minimum 
number of samples, even when an all-pass filter is used, is 26, which is substantially lower than 
the previous filter design. In addition, a higher sampling rate results in a smaller latency for the 
same number of taps. The highest reliable sampling rate with continuous sensing of the SHM-A 
is 1,000 Hz. This results in a latency of 26 milliseconds for a maximum control system rate of 38 
Hz. Thus, data is oversampled on the Quickfilter chip at 1,000 Hz and decimated on the Imote2 
to the rate desired. 

 
 (4.1)  

 Note that decimation on the Imote2 without digital filtering will result in aliasing. 
Selecting an appropriate sampling rate given the system bandwidth can reduce aliasing at 
frequencies of interest; however, the noise floor will significantly increase by noise aliasing back 
into the range of interest. Thus, including some digital filtering might be advantageous, despite 
the associated delay. A low-pass filter with a cutoff frequency of 150 Hz and a slow roll-off is 

1#samples
s

Latency f= ×
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used to reduce the noise present in the decimated system; the extra taps of the filter only results 
in an additional delay of three samples, yielding a total latency of 29 ms. Table 4.1 compares the 
root-mean-square value of the noise level in milli-g for the following filtering configurations: 
original 25 Hz filter (Rice and Spencer 2009), 1 kHz all-pass filter, 1 kHz filter with slow roll-
off, and the 1 kHz configurations decimated to 25 Hz. A higher noise level results when no filter 
is used (all-pass); yet, this is significantly reduced with the use of even minor filtering. 
Furthermore, the filter reduces considerably the noise aliased back during decimation. Thus, the 
tradeoff between additional latency and noise filtering is worthwhile.  
 

Table 4.1: RMS Value of Noise Level in mg for Different Filter Configurations. 

Sampling 
Rate 25 Hz 1 kHz 25 Hz Decimated 

Filter 
Configuration QF Filtered All-Pass Filtered All-Pass Filtered 

x-axis 0.26 1.29 0.40 1.81 0.71 

y-axis 0.29 1.42 0.31 1.74 0.53 
z-axis 0.69 1.85 0.76 2.23 1.37 

4.2 SHM-SAR: Data Acquisition Hardware Tailored For Control 

Although modifications were made to improve the performance of the SHM-A for control, the 
solution still results in significant latency and only a small interval available for processing due 
to the high overall sampling rate.  Therefore, a new sensing architecture tailored for wireless 
control applications is necessary. This section will discuss the analog-to-digital converter (ADC) 
architecture and component selected, evolution of the board layout, and the driver development. 
The board design, layout, and fabrication discussed in the section were completed with the help 
of Hongki Jo in the Smart Structures Technology Laboratory at the University of Illinois. 
 To reduce the latency associated with data conversion, an architecture that can complete 
the conversion within one sampling interval is selected. As described in Chapter 3, a Successive 
Approximation Register (SAR) type converter is an ADC of this type and suited for high-
resolution applications with medium throughput. Thus, an SAR-type ADC is selected for the 
data acquisition board tailored for control, which is further referred to as SHM-SAR. 

The SAR component selected is the Analog Devices AD7682 (Analog Devices 2008). 
The AD6782 is a 4-channel, 16-bit charge redistribution successive approximation register ADC 
that is capable of 250,000 samples per second. Some advantages of the component include: 
internal low drift reference, selectable one-pole filter, and channel sequencer. The signal-to-
(noise + distortion) ratio (SINAD) is relatively high in comparison to equivalent components, 
which results in a theoretical effective number of bits (ENOB) of 14.16. In addition, the power 
draw is relatively low, because the device powers down between conversions. Finally, for easier 
driver development, the AD7682 interfaces with the Imote2 over the SPI bus, which already has 
timing configurations developed for the Imote2. 
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4.2.1 SHM-SAR Revision 1.0 

The low-latency data acquisition board (SHM-SAR) that interfaces with the Imote2 over the two 
connectors has been designed around the AD7682. In the initial version of the SHM-SAR, four 
analog inputs connect to the AD7682 directly or through analog amplifiers depending on a 
switch, as shown in the block diagram (Figure 4.1). The AD7682 is powered by the Imote2 and 
digitally interfaces with Imote2 over the SPI interface. The top and bottom of the SHM-SAR is 
pictured in Figure 4.2. 

 
Figure 4.1: Block Diagram of SHM-SAR. 

  
Figure 4.2: SHM-SAR: (left) top (right) bottom. 

 The signal amplifiers are used to minimize any signal attenuation during conversion; 
however, because there is a possibility that they can introduce some additional delay, they are 
user-selectable in the initial revision. In addition, the amplifier can be used in combination with 
resistors for analog filtering of the data. The amplifiers did not introduce any appreciable delay 
into the system and improved the performance of the data-acquisition by limiting any signal 
attenuation prior to conversion.  
 In addition to component selection, the board layout uses best practices to limit any 
additional signal noise from the digital channels. As shown in Figure 4.3, a split ground plane is 
used to isolate the digital and analog components. This division limits any noise that might arise 
from the quickly alternating digital signals for data transfer over the SPI bus. Through careful 
board layout, the performance of the AD7482 can be preserved. 
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Figure 4.3: SHM-SAR: Split Ground Plane. 

4.2.2 SHM-SAR Revision 2.0 

To simplify deployment in control systems that use acceleration feedback, a MEMS 
accelerometer is added to the SHM-SAR for revision 2.0. Either the accelerometer output or 
external analog signals can be selected using the physical switches placed prior to the ADC 
(Figure 4.4). Both sets of signals feed through an op-amp to limit any signal attenuation prior to 
conversion similar to revision 1.0. The main components are highlighted in the top and bottom 
view of the SHM-SAR rev 2.0 pictured in Figure 4.5. 

 
Figure 4.4: Block Diagram of SHM-SAR Revision 2.0. 
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Figure 4.5: Top and Bottom View of SHM-SAR Revision 2.0. 

The MEMs accelerometer used is a 3-axis, low power LIS344ALH by ST 
Microelectronics with a ± 2g range (ST Microelectronics 2008). The properties of the 
accelerometer are listed in Table 4.2. Given the DC measurement, the z-axis will measure +1g 
when the board sits level and parallel to the ground.  Since the 0g offset is 0.4V above the 
midrange of AD7682, the acceleration range of the accelerometer on the SHM-SAR revision 2.0 
is truncated to -2g to 1.03g. The accelerometer signal could be scaled in future revisions to 
within the AD7682 input range. 

 
Table 4.2: Accelerometer Properties (ST Microelectronics 2008). 

Parameter Value 
Measurement Range ±2g 

Sensitivity 0.66V/g 
0g Offset 1.65 V 

Frequency Range 0 – 1.8 kHz 
Noise Density 50 µg/√Hz 
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4.2.3 Driver Development 

Once the DAQ board hardware was developed, the initial driver for sampling using the SHM-
SAR was implemented; the goal of the driver is to provide consistent sampling with minimal 
latency at the user specified rate. The architecture of the driver is presented in Figure 4.6. When 
sampling is initiated, the ADC outputs at its native sampling rate, which is significantly higher 
than desired; thus, an alarm time interrupt is fired at the desired sampling interval to initiate 
sampling and transfer the sample. Sampling is initiated by sending/writing the configuration 
register, and sampling is completed with the buffer transfer done event. To obtain the most 
consistent sampling interval, the time for the next alarm is determined when the current alarm 
fires, as shown in equation (4.2). The alarm is then set when the transfer is complete to ensure 
that sampling is occurring properly. The approach maintains a consistent sampling interval; but, 
if there is any shift in time between the alarm firing and the SPI transfer due to other tasks 
running on the processor, only one off mean sample results due to this architecture. Furthermore, 
because the SPI interface transfers and receives a buffer simultaneously, two buffers are received 
until the sample acquired is received across the buffer on the Imote2. To limit the latency, the 
samples are received in succession at the native sampling rate of the ADC. Thus, the sampling 
interval is slightly longer than specified, on the order of microseconds, but still consistent. 
 

 
Figure 4.6: SHM-SAR Driver Architecture. 

  (4.2) 

With this driver architecture, the processing speed of the Imote2 can be increased to 
provide a more consistent sampling interval and reduce the overshoot of the desired sampling 
interval that is due to the several samples taken in succession. Figure 4.7 shows the sampling 
interval in milliseconds over several hundred samples for different processing speeds. The 
specified sampling rate was 10 Hz, so the sampling interval should be 100 milliseconds. 
Significant variation in the sampling rate results when operating at 13 MHz, but this variation 
decreases with the increase in processing speed. In addition, the sampling interval approaches the 
desired rate as the processing speed increases. However, when the processing speed is increased 
from 208 MHz to 416 MHz, the performance does not significantly improve, because the bus 
speed does not increase and relatively little processing is required within the driver. Although 
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running the processor at 416 MHz provides the sampling rate closest to the desired, any speed 
above 104 MHz offers good performance; so, ultimately the choice of processor speed depends 
on the application because the power consumption increases with processor speed (Moinzadeh et 
al. 2012). 

 
Figure 4.7: Sampling Rate Comparison for Different Processing Speeds. 

When sampling multiple channels, the AD7682 uses a multiplexer to sample multiple 
channels in succession rather than simultaneously sample and hold. If multiple channels are 
desired, the sequencer will sample each channel in succession and then only the desired channels 
are saved by the driver and transferred to the application. The SPI transfer continues until all 
channels are sampled and then a new alarm is set when the final buffer transfer is complete 
(Figure 4.6). Due to the multiplexer, there is a small sampling delay between channels. The time 
delay between two neighboring channels is consistently 33 µs. The total delay from channel 1 to 
channel 4 is 99 µs. This delay is due to both the multiplexer and the multiple transfers across the 
SPI bus. Since the time offset between channels is consistent, the sampling rate performance for 
each channel is the same as for a single channel. However, as a result of the delay between 
channels, the maximum sampling rate for single-channel sampling and multiple-channel 
sampling are different. 

To verify the performance of the driver a known analog signal was input to the SHM-
SAR acquisition board and recorded on the Imote2 as shown in Figure 4.8. A 0.5 Hz, 1 volt sine 
wave centered at 1.25 volts was output from Siglab Spectrum Analyzer and input into the first 
channel of the SHM-SAR data acquisition board (Spectral Dynamics 2007). The recorded signal 
is plotted in Figure 4.9. The data acquisition board was able to capture the analog signal 
accurately. The sampling rate is visibly not exactly 10 Hz, which is a multiple of the sine wave 
frequency, because the location of the sample points along the signal shift slightly over time. 
However, the sampling interval is consistent. The slight difference in sampling rate from 
specified is common; for example, the true sampling of the Quickfilter chip is slightly different 
due to the filter design. 
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Figure 4.8: SHM-SAR Verification Experimental Schematic. 

 
Figure 4.9: SHM-SAR Recorded Signal for Verification Testing. 

4.3 SHM-SAR Performance 

4.3.1 Maximum Sampling Rate 

The maximum sampling rate of the SHM-SAR on the Imote2 is a function of the AD7682, the 
driver architecture, and the processor and bus speed. The limiting factor in this case is the time 
for each sample cycle after the alarm has fired (Figure 4.6). The processor and particularly the 
bus speed will have a significant impact on this interval. At a processor speed of 416 MHz and a 
bus speed of 208 MHz, the maximum rate when sampling a single channel is 3700 Hz. If 
multiple channels are sampled, the maximum sampling rate at 416 MHz is 2700 Hz. This 
difference in the maximum sampling rate is due to the total multiplexer delay of about 100 
microseconds. The sampling rate performance of the SHM-SAR should be adequate for most 
civil engineering applications. 
 
4.3.2 Latency 

The central goal of the SHM-SAR board is to reduce the latency due to the data acquisition 
hardware for control applications. To verify the latency of the two ADC configurations, an 
experiment similar to the previous verification test was conducted, except the recorded signal 
was issued as an analog output back to Siglab through the SHM-D2A, which will be discussed in 
the next section (Figure 4.10). A band-limited white noise was input to the system through 
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Siglab and the phase between the output and resulting input was used to calculate the time delay. 
The delay calculated accounts for both the latency of the ADC architecture and the other 
hardware components in the system.  
 

 
Figure 4.10: DAQ Hardware Latency Experimental Schematic. 

 The latency of the SHM-SAR acquisition board is significantly lower than the SHM-A, 
which is essential for wireless control. The time delay for the SHM-A and SHM-SAR acquisition 
boards are plotted in Figure 4.11 and Figure 4.12, respectively. The plots show the time delay 
over frequency for various sampling rates. For both cases, the time delay is independent of the 
sampling rate on the ADC. This result is expected on the SHM-SAR but only results on the 
SHM-A due to the oversampling/decimating modifications discussed in the previous section. The 
time delay on the SHM-A is about 30 milliseconds; the majority of this delay is due to the 
latency of the Quickfilter ADC architecture. On the other hand, the time delay on the SHM-SAR 
is about 200 microseconds, which is significantly lower and can be neglected in future control 
design. In this case, the other hardware components including the SPI transfers and processing 
contribute to a larger proportion of the delay. Overall, due to the selection of the ADC 
architecture, the SHM-SAR is successfully tailored to control applications. 

 
Figure 4.11: Time Delay Experimentally Determined for SHM-A. 
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Figure 4.12: Time Delay Experimentally Determined for SHM-SAR. 

4.3.3 Resolution 

The effective resolution of the as-built SHM-SAR board indicates any additional noise in the 
hardware due to the layout or driver architecture when compared with the specification. The 
equivalent number of bits is calculated using the signal-to-(noise + distortion) ratio (SINAD). 
However, because ensuring the input signal lies on a spectral line is a challenge, spectral leakage 
in the power spectrum makes this result highly variable. As a result, the calculated signal-to-
noise ratio is used to determine the effective resolution according to: 

 
SNR = 20 log FSR

Nrms

⎛
⎝⎜

⎞
⎠⎟

ER = SNR −1.76
6.02

 (4.3) 

where FSR corresponds to the full-scale range in volts, Nrms is the rms noise value in volts, and 
ER is the effective resolution in bits. 
 To determine the signal-to-noise ratio, a zero volt signal is applied to the SHM-SAR 
external input. The zero volt input is generated by dSpace (Model RT1103). The external input is 
sampled by the SHM-SAR mounted on an Imote2 at four different sampling rates: 40, 100, 1000, 
and 2000 Hz. The rms noise value calculated at 2000 Hz is 7.9 x 10-4 V and the resulting 
effective resolution is 11.4 bits. This resolution is lower than the specified 14.16 bits in the data 
sheet (Analog Devices 2008). The difference in resolution is likely due to aliasing on the SHM-
SAR, since no filtering is used. Figure 4.13 compares the PSD of the sampled signal for each 
sampling rate. The noise floor rises as the sampling rate lowers, whereas the noise floor would 
remain constant if anti-aliasing filters were utilized. Similarly the rms noise levels for each 
sampling rate are the same, so the energy in the signal is constant (Table 4.3). If filtering is used, 
the effective resolution will increase for lower sampling rates. 
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Figure 4.13: Comparison of the Noise PSD for the SHM-SAR at Different Sampling Rates. 

Table 4.3: RMS Noise Level for the SHM-SAR at Different Sampling Rates. 

Sampling Rate (Hz) RMS Noise Level (V) 
40 7.4 x 10-4 

100 7.5 x 10-4 

1000 7.6 x 10-4 

2000 7.9 x 10-4 

 
4.3.4 Accelerometer Performance 

The initial tests of the onboard accelerometer compared dynamic measurements with a wired 
accelerometer and evaluated the static calibration of the sensor. The accelerometer offset and 
sensitivity were determined using the static calibration method outlined in Jang and Rice (2009). 
The 0g offset value is initially measured and then the +1g and -1g values are measured to 
determine the sensitivity in LSB/g. The SHM-SAR board was then mounted on the Imote2 and 
affixed to the second story of the flexible structure addressed in Chapter 8. The structure was 
then excited by a band-limited white noise. The SHM-SAR acceleration measurement was 
compared with a reference capacitive accelerometer both sampled at 725 Hz (PCB Model 
3701G3FA3G, PCB Piezotronics 2013). The time domain response comparison is plotted in 
Figure 4.14. The two signals match closely; so, the static calibration technique is adequate. 
However, the magnitude of the SHM-SAR signal is occasionally larger. This discrepancy in the 
signals is due to the higher noise density for the SHM-SAR board.  
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Figure 4.14: Time-domain Comparison of SHM-SAR and Wired Accelerometer Measurements. 

 To further evaluate the noise density and rms noise value for the SHM-SAR 
accelerometer configuration, a 0g signal is sampled at 1000 Hz. The PSD of the signal is plotted 
in Figure 4.15. The resulting rms noise floor is 2.9 mg, which is higher than the SHM-A 
configuration. Similar to the resolution analysis in section 4.3.3, the additional noise in the 
system is due to aliasing. 

 
Figure 4.15: PSD of 0g Signal for SHM-SAR Onboard Accelerometer. 

 An analog filter is implemented to reduce the noise in the accelerometer measurements. 
The internal resistance of the accelerometer is used with a capacitor and the op-amp to produce a 
single-pole low-pass analog filter (Figure 4.16). The cutoff frequency filter is determined by 

  (4.4) 1
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The nominal internal resistance, Rload, is 110 kΩ. However, the internal resistance can vary by as 
much as ±20%. Therefore, there can be a significant phase mismatch between two different 
measured accelerometers’ signals. In addition, a filter will introduce additional delay in the 
system and the roll-off of a single-pole filter is very slow. To balance these tradeoffs, a 3.3 nF 
capacitor is used for a cutoff frequency of about 438 Hz.  Figure 4.17 shows the maximum phase 
mismatch and the time delay introduced by the filter. The rms noise determined for the filtered 
signal is 1.8 mg, which is about 38% less than the unfiltered value. Therefore, the reduction in 
noise outweighs the small delay introduced and the possible phase mismatch for this design. If a 
lower cutoff frequency was desired, the possible phase mismatch and time delay would be much 
larger. In that case, the on-board accelerometers should be used in any model development to 
account for the phase mismatch and additional delay in the system due to the filter. 

 
Figure 4.16: Analog Single-Pole Low-Pass Filter Using Internal Resistance of the Accelerometer. 

 
    (a)     (b) 

Figure 4.17: (a) Maximum Phase Mismatch and (b) Time Delay Introduced by RC Filter. 

4.4 SHM-D2A: Actuation Interface for Imote2 

The other essential hardware component for wireless control is an actuation interface. The SHM-
D2A board converts a command calculated on the Imote2 to an analog output voltage. The main 
considerations for the actuation interface are the required voltage output, resolution of the output, 
and speed of conversion. Therefore, as described in Chapter 2, the most essential component is 
the digital-to-analog converter (DAC). 
 An SHM-D2A actuation board that interfaces with Imote2 over the two connectors is 
built around the TI-AD8565 (Texas Instruments Inc. 2007). The four-channel DAC has 16-bit 
resolution, which is equivalent to the data acquisition board; thus, no resolution is lost by the 
actuation interface. The component has a short settling time of 10 microseconds, which offers 
comparable performance to the SAR-type ADC for medium throughput applications. In addition, 
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the DAC offers a low-power stable internal voltage reference of 2.5V. This clean, stable voltage 
reference is an attractive alternative to the voltage supplies offered by the Imote2. Finally, the 
component can use an SPI interface for digital operation, which simplifies driver development. 
 Additional hardware to alter the voltage output range is not utilized on the SHM-D2A 
because the voltage output is considered adequate for a variety of applications and additional 
components will add to the current draw of the device. A block diagram and image of the 
actuation board is provided in Figure 4.18 and Figure 4.19, respectively. The desired output is 
transferred over the SPI interface to the TI-AD8565, which then outputs the corresponding 
analog voltage. The driver, originally developed by Ralph Kling and then modified, uses the 
standard SPI driver routines offered for the Imote2 in TinyOS. A desired voltage and 
corresponding channel is written over the SPI bus and then output as an analog signal. The 
voltage is held until changed or powered-down. At power-up the voltage on all channels is 
initialized to zero volts. 
 

 
Figure 4.18: Block diagram of SHM-D2A. 

 Because the Imote2 offers two SPI interfaces, the actuation board can easily be combined 
with a data acquisition board by stacking them. Figure 4.19 illustrates the SHM-D2A stacked on 
the SHM-A and Imote2 for combined sensing and actuation, as would be used in wireless 
control.  

 
Figure 4.19: SHM-D2A stacked with Data Acquisition Board and Imote2. 

4.5 Summary 

Data acquisition hardware tailored for structural health monitoring can introduce significant 
latency due to oversampling and digital filtering; therefore, a low-latency data acquisition board 
for control applications is developed for the Imote2. The board, centered on a SAR-type ADC, 
significantly reduces the latency in the system due to the hardware from 30 ms to 200 µs. An on-
board accelerometer offers easy application of acceleration feedback for control and simplified 
implementation of a single-pole RC filter to limit aliasing. The control loop is completed with an 
actuation interface. The SHM-D2A offers comparable specifications to the SHM-SAR. The 
combination of the two boards offers low-latency performance for control applications. 
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  Chapter 5

REAL-TIME WIRELESS DATA ACQUISITION 
 
High-throughput, real-time wireless data acquisition is an essential software component for 
wireless control. In this chapter, the implications of hardware and software limitations on the 
implementation of real-time sensing are discussed and addressed in the communication protocol 
and application design for real-time data acquisition. The initial application framework is then 
expanded to provide high-throughput, near-real-time wireless data acquisition for applications 
requiring a larger network size. Two near-real-time approaches are considered and evaluated 
based on their resulting network size, sampling rate, and data delivery reliability. In near-real-
time data acquisition, the samples are only available on the base station after a latency of several 
sampling intervals. Real-time data acquisition is required in applications such as wireless 
structural control. Structural health monitoring applications are less sensitive to latency for real-
time visualization of the response and thus near-real-time data acquisition suffices. 

5.1 Implications of Hardware and Embedded Software on Real-Time Data 
Acquisition 
 
The TinyOS operating system design, while useful for embedded applications, makes the real-
time scheduling and control required for real-time wireless data acquisition challenging. This 
section will outline how the event-driven concurrency model of TinyOS along with standard 
hardware limitations impacts real-time sensing. 
 
5.1.1 Sampling Rate Limitation 

The FIFO task queue and lack of priority-based scheduling limit the sampling rates possible for 
real-time data acquisition. Each data sample is passed through to the application from the driver 
in an event generated by an interrupt handler, which is similar to posting a task. Any processing 
tasks including, calculating the global time stamps, temperature correction, and sending must 
occur before the next data sample is passed. Otherwise, the task queue will slowly fill and the 
real-time nature is lost. Thus, the sample interval is limited by the total time required to process 
and send. 
 
5.1.2 Communication Time 

To improve communication reliability, the radio utilizes a clear channel assessment to ensure 
that the wireless channel is free prior to transmitting. Thus, multiple nodes transmitting at the 
same time can increase communication time. Furthermore, because the radio waits a random 
back-off time prior to reassessing the channel, the time required to send while multiple nodes are 
transmitting is not consistent. Therefore, predicting the sending time, which is important for 
determining the sampling rate, is challenging. 
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5.1.3 Sensing Offset 

The sensing approach, as well as variation in hardware start-up times, introduces an offset 
between the desired and actual start of sensing. A desired sensing start time is specified when the 
sensing task is posted; however, sensing does not begin at this exact specified time. Nagayama et 
al. (2009) explains that while performing all sensing and time stamping within the interrupt 
context could be used to gain more accurate timing than posting a task, firing an interrupt with a 
computationally intensive interrupt handler (transferring data over the SPI bus, decoding and 
storing it, and adding a timestamp) at a high frequency is unreasonable in the TinyOS 
concurrency model. Furthermore, variation in hardware initialization times would result in a 
delay nonetheless.   

As a result, the sensing approach, illustrated in Figure 5.1, accepts relative uncertainty in 
the start time for sensing. When the driver initializes, sensing begins; however, samples are not 
stored and passed to the application until they are within a sampling interval of the desired start 
time, tstart. This offset is non-trivial and, due to variation in processing of the sensing task and the 
hardware initialization time, is non-deterministic. In local data logging approaches, this sensing 
offset is recorded and accounted for during post-processing by resampling the data prior to 
transmission (TinyOS 2006).  

 

 
Figure 5.1: Sensing Approach 

However, the strict timing of real-time transmission requires accounting for this offset 
during sensing in the application design. Although time synchronization aligns the global clocks 
among the nodes, the sampling times are not consistent due to this offset. Thus, any scheduling 
among nodes based on sample ready events will not be aligned. Furthermore, the time stamps of 
the data must be transmitted as well, so the offset can be accounted for later in resampling, if 
desired. 

5.2 Real-time Data Acquisition for Real-Time State Knowledge 

The sampling rate limit, sensing approach, and communication latency limitations due to the 
design of wireless sensor hardware and TinyOS described in the previous section must be 
addressed in the application design. Consequently, unlike wired systems, implementation of real-
time wireless data acquisition requires addressing the tradeoff between performance, including 
network size and sampling rate, and reliability. The resulting wireless data-acquisition service, 
which could be applied to structural control or health monitoring applications, and its 
performance will be presented in this subsection. 
 
5.2.1 Application Design 

Given the FIFO scheduling of TinyOS, minimizing the time for each element of a sampling 
interval and providing a consistent time to send is necessary for determining the maximum 
sample rate possible. Due to the random communication latency when multiple nodes send at the 
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same time, a scheduled communication approach is utilized. Furthermore, within this framework, 
the amount of data returned to the gateway nodes is minimized to the 8-bit node ID, 4 channels 
of 16-bit data, and a 32-bit timestamp for accurate reconstruction of the data. Thus, the total 
packet payload is limited to a minimum of 14 bytes.  

Communication Protocol 
The common time-division multiple access (TDMA) protocol is implemented to allow multiple 
leaf nodes to communicate with a single receiver, or gateway node, by transmitting in different 
time slots. A TDMA protocol, illustrated in Figure 5.2, permits only one node to send at a time; 
thus, allowing the communication time to be more readily determined due to the absence of 
contention and back-off delays. The complete sensing interval is broken down into three 
components: processing on the leaf node (or remote processing), send time, and processing on 
the gateway node (or local processing). The processing on the leaf node includes any handling of 
the sensor data and time stamping. The send time consists of the time from calling send on the 
remote node until the completion of packet transmission. Finally, processing on the local node 
consists of extracting and decoding the data from the packet on the gateway node and 
transferring it to an internal buffer. 
 

 
Figure 5.2: TDMA Communication Protocol 

Because a reliable communication protocol involving acknowledgements and resends 
may take an undetermined amount of time, a generic, or unreliable, communication scheme with 
only a cyclic-redundancy check (CRC) for packet error detection is used. Thus, if bit errors are 
found within the packet, the data packet is dropped and no retransmission occurs. While this 
GenericComm scheme does not address packet loss, a relatively consistent send time is possible 
(TinyOS 2006). Furthermore, a TDMA protocol reduces the loss of packets due to collisions by 
limiting the likelihood of multiple nodes transmitting at the same time. While collisions are only 
one of numerous causes of packet loss, including path loss and antenna orientation, a TDMA 
protocol can help to improve reliability (Shankar 2002).  

Due to hardware variations among Imote2s and the event driven nature of TinyOS, the 
time required for sending and processing will vary both among sensor nodes, as well as on an 
individual node. Thus, a timing analysis was conducted on several sensors nodes to assess the 
time required for each step in a single sampling interval; remote processing, send time, and 
processing on the gateway node are recorded for 500 samples over 4 trials for several nodes. A 
cumulative distribution function of the discrete results was calculated for each step, as shown in 
Figure 5.3, and the 97th percentile values were selected to ensure that each step in the sampling 
interval typically occurred within the time allotted. The timing analysis results are given in Table 
5.1. For the processing steps, the variation in time required to complete the tasks is small; 
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however, the variation in sending time is significant. Thus, while selecting the 97th percentile 
value decreases the maximum possible sampling rate, the larger send time will improve 
reliability by guaranteeing that most sends will occur within the time allotted. Ultimately, the 
combination of the processing and sending times on the leaf node are used to calculate the delay 
to be employed in the TDMA scheme. 

 
Table 5.1: Timing Analysis for Steps in Wireless Data Acquisition. 

 Processing Leaf 
(ms) 

Sending Leaf  
(ms) 

Processing 
Gateway (ms) 

Total Time  
(ms) 

97th Percentile 0.50 6.55 1.5 8.55 
Mean 0.37 4.17 1.27 5.81 

Standard Deviation 0.09     1.48    0.20 1.77 
 

    

 
Figure 5.3: Empirical CDF for (a) Remote Processing Time, (b) Send Time, (c) Gateway Processing Time. 

In addition, the variable processing speed of the Imote2 is utilized to reduce the time 
required for each step. The speed is increased from the normal operating speed of 13 MHz to 104 
MHz to achieve this performance. Because the processing time given in Table 5.1 is so much 
smaller than the sending time, the processing speed is not increased to the maximum of 416 MHz 
due to the significantly greater power consumption at higher speeds (Miller et al. 2010; 
Moinzadeh et al. 2010). 

(a) (b) 

(c) 
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The variations in the cumulative distribution functions (Figure 5.3) also highlight the 
effects of underlying processes on the sensor nodes. The staircase pattern of the empirical CDF 
of the send time can be attributed to the random back-off time in the wireless communication 
protocol to limit collisions and bandwidth contention. The discontinuities in the processing CDFs 
are likely due to background tasks executed prior to the completion of packet transmission by the 
non-preemptive FIFO scheduler used in TinyOS. Since both radio and memory management 
tasks are included in the gateway processing, the time variation is larger. 

Sensing Offset 
The TDMA communication protocol assumes that all nodes are sensing at the same time; 
however, as discussed in Section 5.1.3, the exact time of sensing for each node is offset. This 
offset, which is not known prior to the start of sampling, must be accounted for in the 
communication scheduling to ensure that sends do not overlap despite using a TDMA approach. 
Furthermore, the time stamp must be returned with the data to account for this offset in 
resampling, which increases the packet payload for each sample. 
 
5.2.2 Application Flowchart 

The complete application requires combining accurate time synchronization and reliably sent 
commands to start sensing with this scheduled communication approach. Figure 5.4 illustrates 
the combination of these services into the overall program flow. At the start of the application, 
the user inputs the sensing parameters including the channels, number of samples, sampling rate, 
and leaf nodes for which data is to be acquired. These parameters are sent to the leaf nodes 
reliably to initialize the application. Time synchronization then occurs to ensure the leaf node’s 
clocks are aligned, which is necessary to provide reasonable alignment in sensing and allow the 
tight scheduling of sends in the TDMA protocol. After synchronization a message for calculating 
the appropriate delay in sending for the communication protocol is sent reliably to the responsive 
nodes. The two initialization messages are sent reliably, because they are essential to successful 
completion of the application and, as such, more time is allotted for these messages. Once 
sensing begins, the continuous sensing and sending protocol starts and continues until the leaf 
nodes have acquired and sent all the desired number of samples.  
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Figure 5.4: Overall Application Flowchart. 

Because the continuous sampling component is the central part of real-time wireless data 
acquisition, it is presented in more detail in Figure 5.5. When a sample is passed from the sensor 
board driver to the application, a sample ready event is signaled. Next, the time for a send timer 
interrupt is calculated based on the time the sample is received, the start of sensing offset, and 
the sending delay determined for the TDMA scheme. If the time calculated is greater than one 
sampling interval due to the sensing offset, then it must be accounted for when setting the timer 
interrupt and determining the appropriate packet to send when the interrupt fires. A timer 
interrupt is used to signal the send rather than the default TinyOS timer that uses task posting, as 
accurate scheduling is required for the TDMA scheme. Once the interrupt is set, the sample is 
processed. The time stamp is calculated and temperature correction of the acceleration data is 
applied if necessary. After the interrupt is fired, the selected radio packet is sent unreliably to the 
gateway node. 
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Figure 5.5: Continuous Sensing Flowchart for Leaf Node. 

The interrupt time is calculated and set prior to processing the data, because the time 
required for processing has some variation, as mentioned previously; as such, the time for 
processing is encompassed in the delay for the TDMA scheme. Thus, the total sending delay 
determined for the TDMA scheme is based on how many nodes are in the system and the total 
time required to process and send the packet. Including the number of nodes and the 
sending/processing times in the TDMA approach makes this approach unique from of other 
MAC-layer protocols, which cannot account for these variables (van Hoesel and Havinga 2004; 
Gobriel et al. 2009).  

 
5.2.3Application Performance 

Given the application design and timing analysis, the resulting performance of real-time wireless 
data acquisition in terms of network size, sampling rate, and throughput, when only sensor data 
is considered, is provided in Table 5.2. Due to the TDMA scheme, the maximum sampling rate 
decreases as the number of sending nodes in the network increases. However, the maximum data 
throughput stays relatively unchanged due to the increase in network size.  
 

Table 5.2: Performance of Real-time Wireless Data Acquisition. 

Number of Nodes Sampling Rate 
(Hz) 

Max. Data 
Throughput 

(Kbps) 
1 115 7.36 
2 60 7.68 
3 40 7.68 

 
The maximum data throughput is lower than the theoretical maximum available on the 

radio band due to the TDMA approach and FIFO task scheduling of TinyOS. For example, if the 
entire radio packet is used during transmission, including the preamble, headers, maximum data 
size, and footer as shown in Figure 5.6, the maximum data throughput achievable using a 
timeslot length of 7.1 ms for this TDMA scheme is about 149 Kbps. However, if only the 
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maximum possible data payload is considered in the throughput calculations, the maximum data 
throughput possible further reduces to about 125 Kbps. In our specific application, due to the 
small payload size, the data throughput is significantly lowered from the maximum possible. 
Therefore, while the TDMA scheme and scheduling communication around sensing offers a 
solution, it is at the cost of significant performance. 

 

 
Figure 5.6: Packet Layout (TinyOS 2006). 

5.3 High-Throughput Near-Real-Time Data Acquisition 

For applications that only require near-real-time sensing, such as structural health monitoring, 
the performance of real-time wireless data acquisition discussed in Section 5.2 can be 
significantly improved by buffering samples. The performance improvement is seen in the 
network size and associated sampling rate and data throughput. However, a tradeoff results 
between the latency, network size, and sampling rate, because they are directly related to the 
number of samples buffered prior to sending. As such, the design and performance of two 
different buffering sizes are presented: 3-sample buffer and a 9-sample buffer. 
 
5.3.1 Application Design 

The application design for a buffered approach mirrors the design for real-time data acquisition 
presented previously. A scheduled communication approach is still used; however, it is expanded 
to utilize the advantage of buffering of multiple samples within one packet prior to sending. 
Within this framework, the data returned to the gateway includes the desired number of buffered 
samples, which is comprised of 4 channels of 16-bit sensor data, an associated 32-bit time stamp, 
and an 8-bit node ID. Thus, the payload when buffering three and nine samples is 38 and 110 
bytes respectively. A maximum of nine buffered samples is considered, because the maximum 
data payload of one radio packet dictated by the IEEE 802.15.4 protocol and TinyOS 1.x 
standard MAC protocol is 112 bytes (see Figure 5.6). The three sample buffer offers an increase 
in network size over the previous approach with a relatively small increase in payload size, 
which will slightly decrease the maximum sampling rate as discussed later.  

Communication Protocol 
Similar to the previous design, a scheduled TDMA communication protocol is used to allow 
multiple leaf nodes to communicate with one gateway node in a consistent and more reliable 
manner. However, buffering of multiple samples prior to sending allows the number of nodes in 
the network to increase for a comparable sampling rate. As shown in Figure 5.7, a staggered 
TDMA approach is used based on the number of samples buffered. For example, when three 
samples are buffered, three sampling intervals can be used for sending. Thus, the TDMA 
approach illustrated in Figure 5.2 can be applied to all three sampling intervals. 

Data
Protocol
Header

112 bytes13 bytes
Radio Header: 1 byte

Radio Preamble: 5 bytes
MAC Footer: 2 bytes
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Figure 5.7: Staggered TDMA Protocol for 3-Sample Approach with 6 Leaf Nodes 

As was done previously, a timing analysis was conducted on several sensor nodes, in 
which the time for each step was determined for 250 samples over 9 trials for several nodes. A 
cumulative distribution function of the discrete results was calculated for each step and the 97th 
percentile values were selected for reliability. The timing analysis results for both approaches are 
given in Table 5.3.  

 
Table 5.3: Timing Analysis for TDMA Approach with Buffered Samples – 97th Percentile Values. 

Approach Processing Leaf 
(ms) 

Sending Leaf  
(ms) 

Processing 
Gateway (ms) 

Total Time  
(ms) 

3 – sample 0.4 7.7 2.3 10.4 
9 – sample 0.4 10.1 2.0 12.5 

 
While the buffered approach allows the size of the network to increase, the resulting 

sample rate will decrease due to the additional time required for each step of a sampling interval: 
remote processing, remote send, and local processing. The difference in processing time on the 
remote node is negligible for the different approaches, since the sample processing is the same. 
However, the sending time increased for the 3-sample buffer and again for the 9-sample buffer 
due to the larger packet payloads. This increase will have the most significant impact on the 
maximum sampling rates possible. 

 
5.3.2 Application Framework 

Similar to real-time data acquisition, the near-real-time approach requires tight time 
synchronization and reliable commands to start sensing in combination with the staggered 
communication protocol. Thus, the general application flowchart matches that presented in 
Figure 5.4. The main difference in the approaches is the calculation and setting of the send timer 
interrupt. Because samples are buffered, the send interrupt is only set every n samples when an 
n-sample buffer is used. Furthermore, while the interrupt is based on the same calculation of 
current time, sensing offset, and TDMA send delay, accounting for this calculated time being 
greater than one sample period is made simpler by the buffering of multiple samples. 
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5.3.3 Application Performance 

Near-real-time wireless data acquisition can significantly improve performance in terms of 
network size and associated maximum sampling rate and throughput; however, a tradeoff results 
between the network size, sampling rate, and latency due to the number of samples buffered. 
Furthermore, an increase in the number of samples buffered, means a higher number of samples 
will be lost if a packet is dropped using unreliable communication. The resulting performance of 
the application in both sampling rate and reliability is presented in this section. 

Sampling Rate and Throughput 
Given the timing analysis presented in Table 5.3 and the application design, the resulting 
performance in terms of network size and associated maximum sampling rate and throughput is 
presented in Table 5.4 and Table 5.5. The resulting network size and data throughput is 
significantly improved over the previous approach by buffering samples. Furthermore, the drop 
in the maximum possible sampling rate for the network is not significant considering the large 
increase in network size. This large increase in network size and associated packet payload is the 
biggest contributor to the increase in data throughput.  
 

Table 5.4: Application Performance for 3-Sample Buffer Approach. 

Number of Nodes Sampling Rate 
(Hz) 

Max. Data 
Throughput 

(Kbps) 
1 – 3 100 19.2 
4 – 6 50 19.2 
7 – 9 35 20 

Table 5.5: Application Performance for 9-Sample Buffer Approach 

Number of Nodes Sampling Rate 
(Hz) 

Max. Data 
Throughput 

(Kbps) 
1 – 9 75 43.2 

10 – 18 40 46 
19 – 27 25 43.2 

Data Delivery Performance 
Because an unreliable communication protocol is used in combination with a timed 
communication scheme, some data loss is expected. However, the packet loss due to the 
application design and chosen sending delays is expected to be minimal. Because multiple 
samples are buffered into one packet, a lost packet corresponds to more lost data and thus is a 
greater concern and needs to be investigated.  

To determine the data delivery performance of near-real-time data acquisition 
application, the application was evaluated in a near perfect communication environment. The 
sensor nodes with a mix of onboard and external antennas were placed evenly spaced in an open 
environment with a clear line-of-sight to the gateway node. The 3-sample approach was tested in 
an outdoor parking garage on the University of Illinois campus as pictured in Figure 5.8(a). Due 
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to inclement weather, the 9-sample approach was conducted in a classroom in the Newmark 
Civil Engineering building on the university campus as shown in Figure 5.8(b). Five trials of 
continuous data acquisition of several hundred samples at key sample rates for each approach 
and network size were conducted. Two different node configurations for each network size were 
considered. The complete testing matrix is provided in Table 5.6. Fewer samples were taken in 
each trial of the 3-sample approach in order to prolong battery life over the tests; whereas, the 
nodes in the 9-sample approach were powered with USB. 

 

  
(a) 

 
(b) 

Figure 5.8: Test Set-up for (a) 3-Sample and (b) 9-Sample Approach. 

Table 5.6: Testing Matrix for Data Delivery Performance. 

 3-Sample 
Buffer 

9-Sample 
Buffer 

# of Samples 500 1000 
Sampling Rates 

(Hz) 10, 25, 35, 50, 100 10, 25, 40 75 

Network Sizes 3, 6, 9 9, 18, 27 
 
The data delivery results for each approach are given in Figure 5.9 and Figure 5.10, 

respectively. The average reception rate gives an indication of data loss, because it accounts for 
data sample loss not packet loss. In general, minimal data loss was observed. The average 
reception rate for the 9-sample approach was slightly lower than the 3-sample approach, which is 
expected as each dropped packet contains more samples; however, the average reception rate is 
higher than 97%, which was the selection cutoff for timing parameters. 
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Figure 5.9: Data Delivery Performance Results for 3-Sample Approach. 

 
Figure 5.10: Data Delivery Performance Results for 9-Sample Approach. 

In addition to average reception rate, the maximum cluster of samples dropped was 
calculated. The maximum cluster size gives an indication of burst loss, which is more of a 
concern when samples are buffered. Furthermore, a small cluster size illustrates that the 
application is able to recover if the timed scheme fails for a sample and that the transmission 
errors do not accumulate.  For the 3-sample approach, typically only one packet is dropped. The 
maximum cluster size indicates about two packets are dropped for the 9-sample approach. The 
slightly poorer performance could be accounted for by the indoor testing environment, which has 
a higher likelihood of poor communication due to multi-path effects and other wireless networks 
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or devices operating locally on the 2.4 GHz band. In general, however, the maximum cluster size 
is small for both approaches. 

Overall, these results highlight the tradeoff between the number of samples buffered, 
network size, maximum available sampling rate, and reliability. The 9-sample approach 
significantly increases the network size for a small increase in sampling interval; however, the 
average reception rate is lower, because a lost packet corresponds to more data loss. Thus, the 
real-time data acquisition application can be tailored based on the desired network performance, 
i.e. for minimum latency the un-buffered approach is used, for maximum network size with high 
sampling rates the 9-sample buffer is used, and for balanced throughput, latency, and reliability 
the 3-sample buffer is used. 

5.4 Summary 

This chapter presents the implementation of high-throughput real-time wireless data acquisition 
on the Imote2 platform. While this implementation is specific to the Imote2, the hardware and 
software challenges addressed are common to many available platforms. The resulting 
application framework for real-time data acquisition and its performance are presented. The 
application is expanded for high-throughput applications that require large network sizes and 
high sampling rates. Ultimately, the communication and processing protocols allow for near-
real-time sensing of 108 channels across 27 nodes at up to 25 Hz with minimal data loss and 
require no low-level modifications to the operating system or large memory buffers. 
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   Chapter 6
 

IMPLEMENTATION OF CONTROL STRATEGIES ON 
WIRELESS SENSOR PLATFORM 

 
Essential features for control implementation are consistent sampling and actuation times among 
nodes, accurate computation, and flexibility for a variety of systems. The tight scheduling, use of 
alarm interrupts, and communication protocol insights from the real-time wireless data 
acquisition framework described in the previous chapter are used to achieve these control 
implementation goals. Two control strategies are considered in this chapter: fully decentralized 
control and centralized control. The fully decentralized control strategy addresses both the SHM-
A and SHM-SAR implementation. The control node approach developed for fully decentralized 
control is combined with real-time wireless data acquisition for a centralized control 
implementation. The performance of each control strategy implementation is evaluated to inform 
future control designs. 

6.1 Fully Decentralized Control 

A fully decentralized control framework was implemented on the Imote2 smart sensor platform 
that ensures consistent actuation times, accurate computation, and flexibility for future 
decentralized control implementations. An overall application flowchart is presented in Figure 
6.1. In fully decentralized control, the sensing, computation, and commanding occur on each 
individual leaf node, or controller node. The gateway node conducts time synchronization on the 
network to ensure consistent start time and scheduling among the nodes. In experimental 
settings, when the decentralized control is complete, the gateway node retrieves the sensor data 
and computed control action for verification. 
 

 
Figure 6.1: Application flowchart for Fully Decentralized Control. 
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6.1.1 Fully Decentralized Control with an SHM-A for Data Acquisition 

Within the continuous sensing and commanding portion on the controller node, a tightly timed 
approach is used to maintain consistent actuation command intervals (Figure 6.2). Based on the 
approach used in continuous sensing, command alarms are set at a specified interval after the 
sensing event to maintain better scheduling of the actuation. The sensing events are a more 
consistent basis for setting the command alarm rather than using a timer, which can be 
preempted or delayed in the task queue, or setting repeated alarms based on the command 
interval, because delays in the alarm can accumulate. The one limitation of this approach is that 
the slight variation in sampling rates on different nodes can cause the actuation times to drift 
between individual nodes. For example, on two nodes fitted with an SHM-A, the sampling rates 
differ within the resolution of the clock on the Imote2 when sampling at 10 Hz; yet, a drift 
results in the difference of command times, which is illustrated in Figure 6.3. Some of this drift 
could also be attributed to error in the clock drift estimate during time synchronization, but this 
part of the drift should not be significant within the initial operation of the application. Although 
this difference in the command time will accumulate over time, the performance is at the limit of 
the current hardware and software; and, the error is reasonable over a standard testing timeframe. 
Therefore, the current timed approach maintains consistent actuation intervals over an 
experimental timeframe. 
 

 
Figure 6.2: Sensing and Command Flowchart for Leaf Node within Fully Decentralized Control with an SHM-A. 
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Figure 6.3: Drift in the Difference in the 100ms Command Interval among Controller Nodes. 

On the controller node, the estimation and control gain calculations were broken up to 
limit the processing time and care was taken to ensure their accuracy. The predictor-corrector 
formulation of the Kalman filter allows the time update of the estimate, or prediction, to be 
calculated separately from the measurement update, or correction, as shown in Figure 6.2. 
Within the calculations, care was taken to limit cancellation error and leverage any sparsity in the 
system to limit the number of operations and improve accuracy. To evaluate the performance of 
the calculations on the controller node, a sample controller developed for a SDOF setup was 
implemented on the Imote2 fitted with an SHM-A. A random input was applied to the node and 
the resulting calculations were compared with an implementation on Matlab. The Imote2 and 
Matlab calculations lie directly on top of one another with a maximum error of 4x10-5. 
Therefore, the numerical error due to calculations on the Imote2 processor is limited. 
In addition, the results of a timing analysis of the relative components conducted with the Imote2 
operating at 104 MHz are given in   
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Table 6.1. The ‘Sensing Time’ is the time from when a sample is received through 
determining the timestamp. The ‘Command Time’ encompasses the time required to correct the 
predicted estimate, calculate the control command, and command the SHM-D2A. The ‘Estimate 
Time’ is the processing time required to calculate the predicted estimate. The standard deviations 
are small because the processing time should be consistent. Because the variation is small, the 
mean plus one standard deviation offers a good baseline to calculate the maximum sampling rate 
possible with this level of computation. If all three components are considered, the maximum 
sampling rate possible if only processing is considered is about 330 Hz. Therefore, if the 
appropriate sensing hardware is used, the additional processing power of the Imote2 and the 
implementation on the controller node results in significantly improved sampling rate 
performance for decentralized control.  
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Table 6.1: Timing Analysis of Controller Node Processing Components in Decentralized Control. 

 Sensing Time Command Time Estimate Time 
Mean (µs) 571.0 896.9 1411.5 

Standard Deviation (µs) 101.9 21.1 14.6 
Mean + Standard Deviation 

(µs) 672.9 918.0 1426.1 

 
6.1.2 Fully Decentralized Control with an SHM-SAR for Data Acquisition 

Because the SHM-SAR driver uses alarms for data acquisition, the sensing and control 
implementation on the leaf node for fully decentralized control uses a different approach than 
outlined in section 6.1.1. Additionally, no appreciable time delay between data acquisition and 
sample availability on the Imote2 is found for the SHM-SAR; so, the command time and sample 
ready event overlap. The sensing and control approach on the leaf node uses the sample ready 
event to signal the command for actuation; and, no additional alarm is required (Figure 6.4). The 
consistency of the command interval is dependent on the performance of the sampling interval 
and any variation in the time required to command the SHM-D2A. As seen in Chapter 4, the 
SHM-SAR driver results in a consistent sampling interval and particularly when the processor 
operates at 406 MHz. By limiting the computation between sampling and commanding the 
SHM-D2A, the variation in the time required for actuation is minimal; however, the framework 
builds in one sample delay between sampling and commanding.  
 

 
Figure 6.4: Sensing and Commanding Flowchart on Leaf Node for Fully Decentralized Control with an SHM-SAR. 

Because alarms are used in this framework to maintain consistent sampling intervals and, 
by extension, the control intervals, a timing analysis is used to determine the maximum sampling 
rate and the time required for each component. Significant loads on the processor will cause 
large variations in the sampling interval and delays to accumulate, so the timing analysis is 
essential for successful control implementation. In the timing analysis presented in Table 6.2, the 
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‘Command and Process Sample Time’ corresponds to the time from the sample being passed to 
the application until it is processed, which includes the time required to command one channel of 
the SHM-D2A. The ‘calculation time’ includes updating the predicted estimate, calculation of 
the control command for the next step, i, and updating the predicted estimate given that 
command. The same calculation formulation is used as for the SHM-A, so the calculation 
accuracy is unchanged; however, the calculation time is shorter due to the higher processor 
speed.  The 97th percentile value from the cumulative density function of the timing analysis is 
used to determine the minimum interval so that variation in the sampling interval due to load on 
the processor is minimal. Given the timing analysis, the maximum sampling rate is about 975 
Hz. This decentralized control rate is significantly higher than for the SHM-A and previous 
implementations in the literature. 

 
Table 6.2: Timing Analysis for Leaf Node Framework with SHM-SAR. 

 Command and Process 
Sample Time (µs) 

Calculation Time 
(µs) 

Minimum 
Interval (µs) 

Mean 406.8 526.3 933.1 
Mean + Standard 

Deviation 463.0 531.2 991.2 

97th Percentile 498 533 1024 
 

 Any drift in the command times among nodes for the SHM-SAR framework is mainly 
due to the SHM-SAR driver. Because the timing analysis limits error due to load on the 
processor, the largest source of error in the command time is the alarm interrupts for sensing 
used by the driver. At a 406 MHz processor speed, the variation in the sampling interval among 
nodes is small. Some additional drift over time will occur due to time synchronization among the 
nodes, but this drift should not be significant in the initial application operation. Figure 6.5 
shows the difference in the command time for two leaf nodes fitted with the SHM-SAR running 
fully decentralized control at 25 Hz. The jumps every 100 samples are due to the time stamping 
process, which interpolates between time stamps captured every 100 samples. Therefore, the 
difference in the command time is truly the value it is converging to over time, which is 
approximately 15 µs. In addition, unlike for the SHM-A framework, the difference in command 
time does not grow with time but is bounded. This difference in command times among nodes is 
non-deterministic but is a small percentage of the interval. Therefore, the difference in the 
control time due to the implementation on the Imote2 is very small and will not impact the 
controller performance. 
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Figure 6.5: Drift in Command Interval for Fully Decentralized Control Framework with SHM-SAR. 

6.2 Centralized Control Implementation 

Centralized control combines wireless data acquisition and control calculations on the received 
data. Because the SHM-SAR offers low latency and excellent decentralized control 
implementation performance, the SHM-SAR data acquisition board will be used exclusively for 
centralized control. Therefore, the centralized control implementation outlined in this section 
combines the controller node insights from section 6.1.2 and the real-time wired data acquisition 
presented in Chapter 5.  

The overall centralized control framework uses three different node classifications: 
gateway node, controller node, and leaf nodes (Figure 6.6). The gateway node is responsible for 
initializing the application, conducting time synchronization, and issuing the time-division 
multiple-access communication protocol (TDMA) delay message based on the responsive nodes. 
In experimental settings, the gateway also retrieves data from the controller node to evaluate the 
performance. The controller node processes the remote data, completes the control calculations, 
and commands the SHM-D2A. The leaf nodes continuously sense and send the data to the 
control node similar to the leaf nodes in Section 5.2. The commands to initialize the application 
and set the TDMA delay are sent reliably to ensure the control application is initialized properly 
(Figure 6.7). On the other hand, the data from the leaf nodes is sent unreliably to the controller 
node. As a result, data loss is possible in the centralized control implementation. 

 

 
Figure 6.6: Centralized Control Node Framework. 
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Figure 6.7: Application Framework for Centralized Control. 

 To limit the load on the processor due to receiving data, completing calculations, and 
issuing the command, the sampling and control are divided onto two different node types. If all 
those elements were on one node, the processing load can be prohibitive and cause the sampling 
and control to drift significantly; thus, making the application performance much less stable. 
Similar to the driver for the SHM-SAR, the control node uses an alarm to time the commands. 
Therefore, the command alarm on the controller node overlaps with sensing alarm on the leaf 
nodes. As illustrated in Figure 6.8, when the alarm interrupt fires, the command is issued to the 
SHM-D2A and then the alarm is reset using equation (4.2). The predicted estimate is updated 
based on the command applied. If all the leaf node samples are received, the estimate is corrected 
and the next command is calculated. Similar to fully decentralized control, the framework 
includes a one-sample control delay.  
 

 
Figure 6.8: Remote Sample Processing and Calculation Flowchart for Control Node in Centralized Control. 

 The timing analysis is essential for determining the maximum sampling interval possible 
while maintaining an accurate control interval on the control node. One key to the control node 
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framework is that the time-update of the estimate must be completed before samples are received 
from the leaf nodes. This approach allows the estimator to be time-updated if enough remote 
samples are not received to update the predicted estimate. Table 6.3 presents the timing analysis 
for a system with four leaf nodes and twelve states in the control model. Although the time 
required for sending per node will be consistent, the calculation time will vary with number of 
states in the model. Thus, for four remote nodes with a timeslot length of 7.8 ms, the maximum 
sampling rate is around 31 Hz. This sampling rate is similar to a network for wireless real-time 
data acquisition. 

Table 6.3: Timing Analysis for Control Node in Centralized Control. 

 Command and 
Estimate Time 

Send Time  
(per node) 

Control 
Calculation Time 

Mean (µs) 295.4 7095.0 1034.2 
Mean + Standard Deviation 

(µs) 303.9 7463.1 1044.5 

97th Percentile (µs) 311 7707.5 1059 
 

6.3 Summary 

The frameworks developed for two different control architectures achieve consistent command 
intervals among nodes, accurate onboard computation, and notable sampling rates. The fully 
decentralized and centralized control application frameworks build on insights gained in Chapter 
5, particularly the use of tight scheduling, alarm interrupts, and TDMA communication 
protocols. The fully decentralized control leaf node framework for use with the SHM-SAR 
highlights the advantage of this low-latency data-acquisition board over the SHM-A. The 
maximum possible decentralized sampling rate is significantly higher than previously identified 
in the literature. The centralized control framework maintains the sampling rate performance of 
real-time wireless data acquisition while including control calculations. Finally, these 
frameworks can easily be adapted to other levels of decentralization. 
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  Chapter 7

SINGLE-STORY BUILDING CONTROLLED 
WITH SMART SENSORS 

 
This chapter evaluates the low-latency hardware and wireless control framework through control 
of a single-degree-of-freedom (SDOF) structure fitted with an active mass driver (AMD). The 
successful implementation of active control using the Imote2 smart sensor platform is compared 
to a wired system for performance evaluation. This chapter presents the system model, discrete 
control design techniques, wired continuous control design for comparison, smart sensor control 
design, and experimental results. 

7.1 System Model 

The setup used for the active control experiment, performed in the Smart Structures Technology 
Laboratory is shown in Figure 7.1. The structure, manufactured by Quanser Consulting Inc., is a 
single-story building clamped to a fixed base. The aluminum columns have a section of 2 x 108 
mm and an interstory height of 490 mm. The mass of the story is 1.662 kg and the mass of each 
column is 0.227 kg. The structure is fitted with an AMD to control the structure. The mass of the 
AMD is 0.88 kg; although the mass of the AMD is a large percentage of the total structure, the 
goal of the experiment is to compare the performance of the two control systems. The AMD is 
fitted with a DC motor to move the cart along a geared track. An optical encoder is used to 
feedback the position of the cart along the 19 cm track. The position control of the cart is 
realized using a proportional derivative (PD) controller with the encoder feedback. The control is 
implemented using a WinCon real-time controller on a PC fitted with a MultiQ I/O board. 
Finally, a capacitive DC accelerometer with a range of ±2g and a sensitivity of 1V/g was placed 
on the top story. 
 A system identification was conducted to develop a model of the experimental setup. A 
band-limited white noise command displacement was input to the cart to excite the structure and 
the resulting AMD displacement and the acceleration of the top story was measured using a 
VibPilot data acquisition system. The resulting transfer functions were calculated and input into 
a frequency domain identification tool called MFDID (Kim et al. 2005), which will be described 
in more detail in Chapter 8. An analytical model of the system was developed alongside the 
experiment to develop intuition for the model identification. The resulting analytical model 
shown in Figure 7.2; the experimental data is shown in blue and the identified model is shown in 
red. The identified model closely matches the experimental data in the frequency domain. 
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Figure 7.1: Single-story experimental setup. 

 
Figure 7.2: Experimental Transfer Function and Identified Model of Small-Scale Setup. 
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The identified model neglects the high-frequency dynamics of the motor, which results in 
a four- pole model. The high frequency dynamics of the motor would require a pole far into the 
left-half plane that is significantly faster than the system of interest; therefore, the pole can be 
neglected. The acceleration response (g) due to the cart command (V) has four zeros at the origin 
and the cart displacement response has three zeros. The identified natural frequencies and 
damping are listed in Table 7.1. The first frequency corresponds to the structure and the second 
corresponds to the AMD. The identified damping in the first mode likely overestimates the 
damping in the structure, because experimentally the structure appears lightly damped. 
 In addition, the experimentally identified transfer functions illustrate the phenomenon of 
control-structure interaction (CSI) in which the dynamics of the structure directly impact the 
dynamics of the AMD controller. The phenomenon, first described by Dyke et al. (1995), is 
explained analytically for the AMD system by Battaini et al. (2000). The pole of the structure 
corresponds to the zero observed in the transfer function from the cart command to the cart 
displacement. Thus, at the natural frequency of the structure, where the response is the greatest, 
the AMD has the least ability to control the response. This system identification approach 
successfully captured CSI; inclusion of CSI is essential for control design. 
 

Table 7.1: Identified Natural Frequencies and Damping of Experimental Setup. 

Natural Frequency (Hz) Damping (%) 
1.81 11.9 
2.59 58.3 

 
Given the identified poles and zeros of the system, the state-space representation of the 

structure used for control design is as follows: 
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7.2 Discrete Control Design at Slow Sampling Rates 

An experimental control implementation typically requires a discrete-time representation of the 
controller. Because the wireless control system can often run at a slow sampling rate, a discrete-
time controller is necessary. For the wireless system, a slow sampling rate results from the time 
required for sensing, processing, and communication. Beyond ensuring the bandwidth of the 
system to be controlled is below the Nyquist frequency, the two important considerations for the 
performance of the discrete control design include: a discrete-time representation of the system 
and the inclusion of delays within the system model. 
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7.2.1 Discrete-Time Representation of the System to be Controlled 

Three common transformation techniques are used to develop discrete-time equivalents based on 
numerical integration (Franklin 1998); these techniques are illustrated in Figure 7.3. The forward 
rectangular rule, or zero-order hold (ZOH), can create an unstable system because the resulting 
discrete-time poles do not necessarily lie within the unit circle. The backward rectangular rule 
forces the poles within the right-half plane of the unit circle. The trapezoid rule, commonly 
known as the Tustin method, always results in a stable system because the resulting poles must 
lie within the unit circle; however, this transformation can result in significant distortion. 
Another approach is an algorithm that tries to match the zero-pole equivalent in a discrete system 
and match the gain at the origin. All these approaches have advantages and disadvantages, but 
the two most common transformation approaches that will be addressed in this section is the 
ZOH and Tustin transformation. 

 
Figure 7.3: Discrete Equivalent Transformation Techniques. 

One approach to control design is to transform a compensator designed in continuous 
time into discrete time. As described in Chapter 2, this approach is common in wired control 
systems, because a fast sampling rate can be employed. Within wired control systems, the most 
common approach for transformation of the compensator designed in continuous into discrete 
time is the Tustin method, because it guarantees a stable system and can closely represent the 
controlled continuous-time system. However, when applied to systems with a slow sampling 
rate, transformed continuous-time controllers often result in instability and poorer performance. 
When using a ZOH transformation of the continuous controller, often an unstable control system 
results. Similarly, when a Tustin transform of the compensator is used, the discrete closed-loop 
system at the slow sampling rate is near the stability boundary. Therefore, a less authoritative 
compensator is required for stability in discrete-time. The instability and poorer performance 
using this control transform approach is likely due to the slow sampling rate and un-modeled 
internal delay present in a discretely sampled system. 
 For systems operating at a slow sampling rate, designing a controller directly on the 
discrete-equivalent of the system leads to a more consistently stable system and better control 
performance. A sample single-degree-of-freedom system fitted with an AMD is used to compare 
the discrete time transformation of a system prior to control design. As shown in Figure 7.4, the 
Tustin transformation gives much better results at approximating the continuous-time system 
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whereas the ZOH transformation gives poor results at the origin in both the magnitude and 
phase. However, a ZOH transformation results in a better control design because it approximates 
the sampled data system present in control.  

 
Figure 7.4: Comparison of Discrete Time Transformation Techniques in the Frequency Domain. 

A sample and hold system used in the control system can be directly modeled in discrete-
time with a hold equivalent transform, as shown in Figure 7.5. A sample and ZOH is an exact 
model for the sample and hold common in the A/D converter used in discrete control. Thus, a 
ZOH transform reflects the actual sampled system that will be encountered by the controller. In 
addition, a ZOH sampled system introduces a delay of T/2, where T is the sampling interval. This 
internal delay is integrated into the model during the transform; and thus, the delay can be 
compensated for in the controller design. As a result, although the ZOH representation looks 
poorer in the frequency domain, a ZOH equivalent transform to a discrete-time model prior to 
control offers the best performance for a slowly sampled system. 

 

 
Figure 7.5: Equivalent Sample and Hold System in Discrete-Time Control. 
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7.2.2 Inclusion of Delays with the System Model 

The time required for the sensing hardware, processing, and wireless communication results in at 
least a one-sample delay in the control system, which can be included as a sensor or input delay. 
The two different delay approaches are shown in Figure 7.6, where the controller is represented 
by an estimator and control gain, K. When a sensor delay is considered in the system, the system 
responds to a command input in exactly the same way as without the delay because the estimator 
sees the input command through the feedforward loop. However, the estimator is sensitive to 
disturbances through the delayed output (Franklin 1998). In addition, the delayed states are not 
weighted within the control gain, but are weighted within the estimator design. On the other 
hand, when an input delay is present in the system, the delays will be excited in the system 
response to an input command; and thus, the delayed system is used within the control design. 
However, the delayed states are not weighted within the estimator. In addition, the control 
feedback will be delayed before it can react to a disturbance to the plant, so the system is more 
sensitive to disturbances (Franklin 1998). As a result, the representation of the delay can impact 
the resulting control design and performance of the system. 

 
Figure 7.6: Delay Representations (Franklin 1998). 

In simulation, the two representations can result in comparable control performance if the 
delay is compensated for in the control design; however, the representation should adequately 
represent the delay present in the experimental system. Although the delay present in the 
wireless system seems to be a sensor delay, an input delay better reflects the experimental 
configuration because the controller computation occurs on the sensor prior to the application of 
control to the system. In addition, the estimator design based on an input delay requires slightly 
less computation because the delayed state is not weighted, which can be advantageous on a 
smart sensor platform. As a result, based on the experimental configuration, an input delay 
model should be used to include the delay present in wireless control systems. 
 Several approaches to modeling the input delay within the system model are available, as 
described in Chapter 2; however, not all approaches allow dynamic output feedback. Two 
common approaches that do allow dynamic output feedback include the Padé approximation in 
continuous systems and state augmentation in discrete systems (Sain et al. 1992; Franklin 1998). 
Because a continuous-time model is required for Padé delay states, an equivalent one step delay 
could be included in the continuous time system. The order of the Padé approximation is limited 
by the bandwidth of the system when converted to discrete-time. In the previous analytical 
SDOF example, including the delay with a Padé approximation prior to discrete-time 
transformation resulted in a system close to the stability boundary and poorer performance in the 
presence of a time delay. Therefore, an input delay should be added to the discrete-time ZOH 
transformation of the system, described in the previous section, by including a delay state in the 
state-space representation: 
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where ud is the delayed input. Although the A matrix is no longer full rank, the augmented 
system does satisfy the conditions for a solution to the linear quadratic regulator (LQR) control 
problem. This discrete-time state augmentation approach was the best solution for implementing 
an input delay within the system model and resulted in good compensation performance. 

7.3 Control Design 

7.3.1 Wired Continuous Control Design 

A wired control system is developed for comparison with the smart sensor implementation. 
Because the wired system operates at 1000 Hz, the wired system can be approximated as 
continuous. Therefore, this section presents the continuous control design that is implemented on 
the wired system. 
 Acceleration feedback has been shown to be effective in active structural control, as 
described in Chapter 2. Because acceleration measurements can be reliable and inexpensive, the 
system will use the top story acceleration response as the primary measurement for control of the 
structure. Therefore, the control design will combine an estimator and linear quadratic regulator 
control design as outlined in Chapter 3. Furthermore, because the capacitive accelerometer 
provides a flat frequency response over the range of interest and zero phase lag, the sensor 
dynamics will be neglected in the design. 
 The LQR control design uses acceleration weighting to minimize the acceleration. To 
implement the acceleration weighting, the cost function presented in equation (3.10) is altered to: 

 J = yQy + uRu[ ]dt
0

∞

∫
 
 (7.3) 

where y is the acceleration output, Q is the relative weighting on the measurement, u is the 
control effort, and R is the weighting on the control effort. For the control design in this case, the 
ratio of Q/R is varied and the root-mean-square (RMS) of the acceleration response and the 
control effort are determined based on numerical simulation. In simulation, the cart is used to 
excite the structure prior to switching from excitation to control. Two initial conditions are 
considered based on when the cart is switched from excitation to control: the cart is at maximum 
velocity or maximum displacement. The RMS of the acceleration normalized by the uncontrolled 
response is plotted versus the RMS of the control effort for the two initial conditions in Figure 
7.7. As the control force weighting, R, decreases, the additional control effort actually causes a 
worse response than the uncontrolled. The control design that resulted in a minimum response to 
the initial displacement was selected because it is the larger response of the two initial 
conditions; the selected controller design is highlighted with a red ‘x’ in Figure 7.7. The 
associated Q and R values are 

 Q = 1[ ]     R = 0.9955[ ]   
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and the resulting control gain matrix is  

 [ ]0.0048 0.0344 0.2182 0.1068= − − −K . 

 
Figure 7.7: Summary of Continuous LQR Control Designs with Selected Design Highlighted. 

An estimator is required to reconstruct the full-state response of the system based on the 
acceleration measurement. Because the process noise is hard to estimate within the system, the 
final estimator design is determined experimentally. A range of estimator designs is determined 
analytically and then applied experimentally with the same LQR control design. The estimator 
that results in the best performance of the complete control system is selected: 

 Sw = 1[ ]    Sv = 10[ ]   
and the resulting estimator gain is 

 [ ]7.1861 5.8207 3.1096 0.2130= − −L . 

7.3.2 Discrete Control Design for Smart Sensor Implementation with the SHM-A 

A discrete control design was developed for the Imote2 wireless smart sensor fitted with an 
SHM-A. Given the decimation scheme presented in section 4.1, the latency associated with use 
of this sensor board is about 30 milliseconds. After combining the sensor latency with processing 
latency, a sampling interval of 40 milliseconds was selected, or a sampling rate of 25 Hz. Due to 
this slow sampling rate, a discrete control design is necessary. Following the design guidelines 
presented in section 7.2, a zero-order-hold discrete transformation of the system was determined 
that included an input delay through state augmentation. The resulting state-space system is 
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 Similar to the continuous control design, accelerometer weighting was used for the 
optimal discrete LQR control design. In numerical simulation, the AMD was again used to excite 
the structure prior to switching to control; two initial condition cases were considered: the cart is 
at maximum velocity or maximum displacement prior to switching to control. The RMS 
acceleration normalized to the RMS uncontrolled response and RMS control effort was tabulated 
for a range of Q/R ratios and the two initial conditions. The normalized RMS acceleration 
response is plotted against the RMS control effort in Figure 7.8. As the control effort increases, 
the response initially decreases and then ultimately the additional control effort negatively 
impacts the response. The control design selected minimizes the normalized RMS acceleration 
for the maximum cart displacement initial condition and is highlighted in Figure 7.8 with a red 
‘x’. The control design response weighting, Q, and control effort weighting, R, are: 

 Q = 1[ ]     R = 2.6727[ ]   

which results in a control gain 

 [ ]0.0160 0.0092 0.0904 0.6142 0.3655d = − − − −K  

Therefore, the discrete control design results in a significantly different weighting design and 
subsequent control gain than the continuous system. 
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Figure 7.8: Summary of Discrete LQR Control Designs with Selected Design Highlighted. 

 The accelerometer on the SHM-A was used for control feedback, due to its ease of 
implementation and the previous success with acceleration feedback in active structural control. 
Because the feedback measurements only include the acceleration, the full-state must be 
reconstructed using an estimator. A predictor-corrector formulation of the discrete-time Kalman 
filter was used for estimation, as described in Chapter 3. Similar to the continuous design, a 
range of estimators determined analytically were experimentally implemented to determine the 
best estimator given the process and sensor noise in the system. The estimator that resulted in the 
best overall control performance was selected. The resulting process and sensor noise weightings 
are: 

 Sw = 1[ ]    Sv = 100[ ]   
which results in the estimator gain matrix 

 [ ]0.1109 0.1442 0.0334 0.0092 0d = − −L . 

The larger noise weighting is due to the higher noise floor of the accelerometer on the SHM-A in 
addition to the noise added through aliasing during decimation. As expected, the resulting 
discrete-time design differs from the continuous control design. 
  
7.3.3 Discrete Control Design for Smart Sensor Implementation with SHM-SAR 

In addition, a discrete control design was developed for the Imote2 wireless smart sensor fitted 
with an SHM-SAR data acquisition board. Given the latency results presented in section 4.3 and 
the fully decentralized control framework presented in section 6.1, a sampling rate of 950 Hz 
was selected. Although this sampling rate is comparable to the wired system, a discrete control 
design approach was used because it will be implemented on the smart sensor platform. In 
addition, an input delay was included in the design to account for the one sample delay in the 
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control application. Following the design guidelines presented in section 7.2, a zero-order-hold 
discrete transformation of the system that included an input delay through state augmentation 
was used for design. The resulting state-space system is 
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Similar to the previous discrete control design, accelerometer weighting was used for the 
optimal discrete LQR control design. In simulation, the AMD was again used to excite the 
structure prior to switching to control; two initial condition cases were considered: the cart is at 
maximum velocity or maximum displacement prior to switching to control. The RMS 
acceleration normalized to the RMS uncontrolled response and RMS control effort was tabulated 
for a range of Q/R ratios and the two initial conditions. The normalized RMS acceleration 
response is plotted against the RMS control effort in Figure 7.9. As the control effort increases, 
the response initially decreases, and then ultimately the additional control effort negatively 
impacts the response. The control design selected minimizes the normalized RMS acceleration 
for the maximum cart displacement initial condition and is highlighted in Figure 7.9 with a red 
‘x’. The control design response weighting, Q, and control effort weighting, R, are: 

 Q = 1[ ]    R = 1.1697[ ]   
which results in a control gain 

 
   
K d = 0.00462 −0.0337 −0.2132 −0.1178 −0.00187⎡

⎣⎢
⎤
⎦⎥  

As the sampling rate increases, the control design will approximate the continuous control design 
with an input delay. 
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Figure 7.9: Summary of Discrete LQR Control Designs with Selected Design Highlighted. 

 A wired accelerometer was used for control feedback, due to its ease of implementation, 
previous success, and for comparison with the other control systems. Because the feedback 
measurements only include the acceleration, the full-state must be reconstructed using an 
estimator. A predictor-corrector formulation of the Kalman filter was used for estimation, as 
described in Chapter 3. Similar to the continuous design, a range of estimators determined 
analytically were experimentally implemented to determine the best estimator given the process 
and sensor noise in the system. The estimator that resulted in the best overall control 
performance was selected. The resulting process and sensor noise weightings are: 

 Sw = 1[ ]    Sv = 10[ ]   
which results in the estimator gain matrix 

 
   
Ld = −0.00729 0.00626 0.00322 −0.000242 0⎡

⎣⎢
⎤
⎦⎥  

The noise weighting is the same as the wired design, because the same accelerometer is used and 
little additional noise is added due to the SAR-based data acquisition. However, the resulting 
estimator gain matrix is different due to the discrete-time time design, as expected.  

7.4 Experimental Results 

The previous control designs have been implemented on the single-story experimental structure 
to validate the use of the smart sensor platform for active structural control. Five different 
configurations were considered for the validation: uncontrolled, zeroed control, wired control, 
smart sensor control with the SHM-A, and smart sensor control with the SHM-SAR. For the 
uncontrolled configuration, the AMD was fixed to the side of the structure; therefore, the 
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additional mass due to the cart was still present but otherwise did not influence the response. In 
zeroed control, a zero displacement command was issued to the AMD.  Schematics of the wired 
and smart sensor control experimental setups are provided in Figure 7.10, Figure 7.11, and 
Figure 7.12, respectively. In the schematics, the solid red lines represent analog signals and the 
dashed red line represents the digital encoder signal. The blue lines represent the computer 
control calculations and the green lines represent the wireless smart sensor node. 
 In the wired system (Figure 7.10), the acceleration feedback is passed to the control 
computer through the MultiQ A/D. The continuous control design programmed onto the 
computer calculates the required cart displacement command. The displacement command is 
converted to an appropriate voltage through the PD cart control, which uses the encoder 
feedback. The voltage is then applied to the AMD through the amplifier and power source. 
   

 
Figure 7.10: Schematic of Wired Control Experimental Setup. 
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Figure 7.11: Schematic of Smart Sensor Control Experimental Setup with the SHM-A for Data Acquisition. 

On the other hand, in the wireless system (Figure 7.11), the wireless smart sensor is 
responsible for the acceleration measurement and control calculations. The fully decentralized 
control implementation on the Imote2 platform (described in section 6.1) is programmed with the 
discrete control design discussed previously. The resulting cart displacement command is issued 
as an analog voltage from the SHM-D2A to the MultiQ board for the PD control of the AMD. 
The control computer then outputs the required voltage to the AMD, which is applied through 
the cart amplifier. The control computer is used for the PD control rather than the wireless smart 
sensor because the SHM-A cannot currently handle the encoder feedback required for 
displacement control.  

Two other considerations in the smart sensor experimental control implementation 
include the accelerometer calibration and the resolution of the MultiQ A/D. The offset and scale 
factors of the x-axis on the SHM-A accelerometer were determined using static calibration (Jang 
and Rice 2009). Because the model was not originally identified using the SHM-A, the 
accelerometer measurements must be scaled appropriately for successful control implementation. 
The second consideration is the resolution of the MultiQ A/D. Because the required AMD 
displacements are small values when scaled in meters, the full voltage range of the MultiQ A/D 
input is not used; therefore, the 12-bit resolution of the ADC is an issue. The output was 
multiplied by 10 on the Imote2 prior to conversion to obtain better resolution of the command 
input and stay within the output range of the SHM-D2A. 

Similarly, for the smart sensor experimental implementation with the SHM-SAR, the 
wired accelerometer output and the resolution of the MultiQ A/D need to be considered. The 
accelerometer output has to be appropriately shifted and scaled for use with the data acquisition 
board. The capacitive accelerometer offers the ability to shift the DC offset to 1.25V, or the 
mean of the input voltage range. The mean value is then removed in software on the Imote2 prior 
to control calculations. The control output is again multiplied by 10 on the Imote2 prior to 
conversion to obtain better resolution of the command input and stay within the output range of 
the SHM-D2A. 
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Figure 7.12: Schematic of Smart Sensor Control Experiment with SHM-SAR for Data Acquisition. 

In the experiment, an initial displacement was applied to the structure and then released 
to obtain the free response of the structure for each control configuration. A comparison of the 
responses for the four configurations is provided in Figure 7.13 and the RMS accleration 
response is given in Table 7.2. The uncontrolled response, shown in blue, reflects the damped 
free response of a structure. The zeroed response, shown in red, has a significantly faster decay 
in the response than the uncontrolled. Therefore, the AMD with a zero command introduces 
significant damping to the system due to the friction and slight motion of the AMD. The wired 
system, shown in cyan, achieves a significant reduction in the response. The smart sensor system 
with the SHM-A, shown in green, achieves comparable performance to the wired system; 
however, the performance is not as good initially. This result is likely due to the slow sampling 
rate. The smart sensor system with the SHM-SAR, shown in pink, performs as well as the wired 
system. Thus, the discrete-time control implementation on the smart sensor was able to achieve a 
similar reduction in the response as the continuous-time wired controller. Additionally, the new 
data acquisition hardware developed for wireless structural control (SHM-SAR) outperforms the 
SHM-A; so, in future control experiments, only the SHM-SAR configuration will be considered. 
 

Table 7.2: RMS Acceleration Response Comparison for Small-Scale Experimental Setup. 

Experimental Configuration RMS Acceleration 
Response 

Uncontrolled 0.0893 
Zeroed Control 0.0573 

Smart Sensor Control – SHM-A 0.0430 
Smart Sensor Control – SHM-

SAR 0.0355 

Wired Control 0.0356 
 
In both controlled cases, the control predominantly occurs during the beginning of the 

response. As shown in Figure 7.13(b), the control effort alters both the magnitude and frequency 
of the response for the both the wired and smart sensor systems. The responses during the initial 
period lie within the zeroed control response and then are reduced further. At about three 
seconds, the control efforts are within the friction of the device and the systems return to free 
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response. The smart sensor control efforts are significantly lower than the wired system and still 
achieve comparable performance.  

Overall, the experimental results highlight the successful implementation of active 
structural control using a wireless smart sensor platform. By properly accounting for discrete-
time control design at slow sampling rates, the smart sensor implementation achieves 
comparable performance to the wired system. 

 
(a) 

Figure 7.13: (a) Comparison of Experimental Response of Small-Scale Setup (b) Zoom Over the Region of Control. 
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(b) 

Figure 7.13 continued. 

7.5 Summary 

This chapter provides an overview of the wireless smart sensor platform and control algorithms 
used in this work. The wireless sensor hardware, specifically the ADC used, has inherent 
implications on the latency in the system. Thus, the data acquisition architecture should be 
considered. In addition, the slower sampling rate due to the latency should be accounted for in 
the control design. A discrete-time model, which is based on a ZOH transformation and includes 
an input delay, offers better performance and insight on the stability of the closed-loop system 
during control design. Two smart sensor control systems were compared to a wired control 
system on a SDOF system fitted with an active control device. The smart sensor control systems 
offered comparable performance to the wired system; thus, highlighting the feasibility of 
wireless active control. In addition, the low-latency data-acquisition was experimentally verified 
and outperformed the original acquisition hardware developed for SHM. 
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  Chapter 8

WIRELESS ACTIVE CONTROL OF 
A MULTI-STORY STRUCTURE 

 
This chapter reports on the implementation of wireless smart sensors to control a multi-story 
structure. Two active mass dampers (AMDs) were used to control the response of a four-story 
structure subject to base excitation. Two control strategies were implemented on the Imote2 
fitted with the updated SHM-SAR and SHM-D2A acquisition and actuation hardware for 
comparison. The system identification, wired control design used for comparison, and wireless 
control performance are presented in this chapter. 

8.1 Structural System 

The experimental system used in this study of wireless structural control is a four-story structure 
fitted with two AMD control systems on 2nd and 4th floors. The structure is comprised of 
components by Quanser Consulting and has an overall height of 2.2 meters. The aluminum 
columns have a section of 2 x 108 mm and an inter-story height of 490 mm. The mass of the 
second and fourth story is 1.662 kg, stories one and three have a mass of 1.15kg, and the mass of 
each column is 0.227 kg. The additional mass on the second and fourth stories is due to the 
fixtures for the AMD. A summary of the component dimensions and mass are given in Table 8.1. 
In addition, a small, single-axis shake table excites the structure. A custom servo-motor drives 
the table with a stroke of ±5 cm and encoder feedback is used for proportional derivative (PD) 
control of the table. The complete setup is shown in Figure 8.1. 
 

Table 8.1: Experimental Structure Components Summary 

Component Properties 
Column Dimensions 2 x 108 x 490 mm 

Column Mass 0.277 kg 
1st and 3rd Story Mass 1.15 kg 
2nd and 4th Story Mass 1.662 kg 

AMD mass 0.454 kg 
 

The combination of the two AMDs on the second and fourth story helps limit the 
structural response in higher modes and offers different levels of control decentralization. Each 
AMD is fitted with a DC motor to move the cart along a geared track. Because the AMDs are 
inherently unstable systems, proportional-derivative (PD) controllers based on the optical 
encoder feedback are used for position control of the carts. In addition, the PD controllers can be 
tuned to ensure good position tracking as well as the frequencies of the control mode for each 
AMD. 
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Figure 8.1: Experimental Setup (left) and Analytical Model Diagram (right). 

By tuning the PD controllers, the control mode frequencies associated with each AMD 
can be adjusted (within reason) to have control authority over a desired range. An analytical 
model of the system, which included the PD control of each cart, was developed to determine the 
best ratio of the AMD control gains for the control of the structure. A diagram of the analytical 
model for reference is provided in Figure 8.1. To limit the coupling of the two controller modes, 
the proportional gains should not be equal. The controller gains for cart 1 and cart 2 are Kp1 = 
120, Kd1 = 0, Kp2 = 115, Kd2 = 0, respectively. The resulting proportional gains, determined 
experimentally, ensure good tracking performance while preserving the desired relationship. 

8.2 System Model 

A high-fidelity system model is essential for successful control design and analysis. 
Unlike in Chapter 7, the multi-story system used in the experiment requires a multi-input, multi-
output (MIMO) system model to capture the control inputs, base excitation inputs, and structural 
response. Figure 8.2 highlights the inputs and outputs modeled in the experimental setup. The 
three inputs are the desired displacements, ud, of the two AMDs and the ground excitation. The 
measured outputs are the accelerations of each story and the AMD relative displacements.  Given 
the MIMO nature of the system, three separate single-input multiple-output (SIMO) models are 
used to develop the complete system model (Chang and Spencer 2012). The SIMO models are 
developed from exciting the structure with each of the AMDs and shake table individually as 
shown in Figure 8.3. The models are then combined in two steps to develop a complete system 
model that captures control structure interaction. 
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Figure 8.2: System Model Inputs and Outputs. 

Identification of the system model from the AMD inputs to the structural response is the 
most important for control design, because the model captures how the control input will impact 
the system response. As a result, the two AMD SIMO systems are identified in the frequency 
domain and combined first. For each individual system identification, a 10 Hz band-limited 
white noise displacement input is commanded to the primary AMD, ten-percent of that BLWN 
signal is applied to the secondary AMD, and a zero command is issued to the table, as shown in 
Figure 8.3 (a) and (b).  The smaller BLWN signal input to the secondary AMD allows any 
coupling of the two AMD systems to be captured and provides a more accurate representation of 
the damping in the system when compared to a zeroed command. The zeroed command to the 
table allows any table-structure interaction to be captured, which is expected to be minimal in 
this setup. The primary AMD command input, AMD displacements, and structural accelerations 
were measured using a dSpace data acquisition system and resulted in six transfer functions for 
each AMD. 

The ground input SIMO identification is used to model how the excitation will impact the 
structural response. As shown in Figure 8.3(c), a band-limited white noise command is input to 
the shake table and the story accelerations and AMD displacements are measured. A zero 
command is applied to the two AMDs to capture any control structure interaction. In this case, 
the interaction is minimal due to the light mass of the carts and the strong PD control loops. The 
zeroed carts, however, introduce additional damping to the system.  The measured responses 
resulted in six experimental transfer functions and the magnitudes of the AMD displacements are 
very low. The SIMO model identified from the six experimental transfer functions will 
ultimately be combined with the MIMO system for the two control inputs. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 8.3: Experimental SIMO System Identifications: (a) Xc1 Approach, (b) Xc2 Approach, and (c) Xg Approach. 

A frequency domain identification of the resulting transfer functions is used to determine 
the single-input models. The tool, MFDID, developed by Kim et al. (2005) uses a four-stage 
optimization process to identify the SIMO models. Although MFDID may be used for MIMO 
model identification, only SIMO systems are identified using this tool to limit pole-zero 
cancellation of the AMD modes, which is highly likely in this system if a MIMO approach is 
used initially. The number of poles and zeros is specified prior to optimization and can then be 
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manually tuned during post-processing to improve the fit. Using the analytical system model, the 
appropriate ratio of poles and zeros, as well as the number of zeros at the origin, can be 
determined to improve the frequency domain model fit. A screen capture of the MFID graphical 
user interface after optimization for AMD-1 is provided in Figure 8.4. The blue line represents 
the experimental transfer function and the red line is the identified model.  

 

 
Figure 8.4: MFDID System Identification Screen Capture. 

 Each identified SIMO system for an AMD input includes the structural poles and the 
control poles for the respective AMD. Although analytically the control mode for the other AMD 
should be present in the SIMO system, the interaction of the two AMDs is relatively small and is 
not easily identified in the frequency domain. As a result, each identified system model has ten 
poles: eight from the structure and two from the control. The high-frequency dynamics of the DC 
motor are neglected and the PD control loop is incorporated in the system model. The four 
structural modes determined in each SIMO system have similar frequencies and real and 
imaginary components, which will ensure good model combination. The system combination of 
the two AMD SIMO models will result in a MIMO system with the four structural modes and a 
control mode for each AMD for a total of 6 modes, or 12 poles. 
 The SIMO models from the control inputs are combined to develop a MIMO model prior 
to combination with the ground input SIMO model, because the fidelity of the AMD input model 
is the most important for the control design. The identified models are combined using a 
modified minimal realization approach developed by Chang and Spencer (2012). The state-space 
representation of the SIMO models (Equations 3.4 – 3.7) are initially transformed to modal 
canonical form and a balance realization is performed on each repeated set of states one at a 
time. Once the new A and B matrices for the originally repeated states are identified, the 
measurement matrix, C, is determined. The remaining non-redundant states are added to the 
combined system to form the complete MIMO system. Figure 8.5 shows a comparison of the 
original SIMO identification for the AMD-2 command input and the combined MIMO system 
model for the command inputs. The original SIMO identification, shown in cyan, closely 
matches the experimental transfer functions in red. In addition, the combined system (blue) 
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successfully preserves the natural frequencies, damping, and system behavior from the SIMO 
system.  
  The identified ground input model is combined with the previously determined MIMO 
model to capture the effect of the ground excitation on the structural response. Because the 
interaction of the zeroed carts on the structural response due to the ground is small, only 
structural modes are present in the SIMO model identified with MFDID. The eight redundant 
states of the SIMO system are combined with the MIMO control input model using the same 
modified minimal realization approach. More weight is given to the control input state matrix, A, 
during the combination, because the model has a more accurate representation of the damping in 
the system. The total combined system model has twelve poles: eight structural poles and two 
poles for each controller.  

The combined system results in a complete model that includes the control inputs, the 
ground excitation and captures any control-structure interaction. Figure 8.6-8.8 show the transfer 
functions of the MIMO system for the AMD-1 input, AMD-2 input, and ground excitation, 
respectively. The model matches the poles and damping well for the AMD inputs. Some errors 
are present in the zeros and at the origin; however, the model matches the overall pole-zero 
behavior well. In addition, the transfer functions from each AMD input to its own AMD 
displacement capture the control-structure interaction phenomena. On the other hand, the transfer 
functions from each AMD input to the other AMD displacement are small in magnitude, due to 
their limited interaction given the strong PD control of the AMDs. In general, the small 
magnitude relationships are hard to represent in the model due to the resolution, but any 
discrepancies are reasonable if the model magnitude remains small. Furthermore, the poles of the 
ground input transfer function are slightly shifted to the left due to the smaller damping captured 
in the model than is present when the AMDs are zeroed. However, the magnitude of the transfer 
function and the system behavior due to a ground excitation input is captured in the model. The 
identified frequencies and damping are provided in Table 8.2. The third and fourth natural 
frequencies are associated with high damping because they are from the control systems. 
Overall, the identified model is a highly accurate model of the experimental system over the 
frequency range of interest. 

 
Table 8.2: Identified Natural Frequencies and Damping of the Experimental Setup. 

Natural Frequencies 
(Hz) Damping Ratio (%) 

0.68 1.34 
2.19 3.05 
2.76 56.65 
3.00 57.80 
4.25 1.48 
5.86 1.64 
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Figure 8.5: Combined Identified System Model for Control Inputs - Xc2 Command Input 
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Figure 8.6: Transfer Functions of the MIMO System from AMD -1 Input. 
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Figure 8.7: Transfer Functions of the MIMO System from AMD-2 Input. 
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Figure 8.8: Transfer Functions of MIMO model from Ground Excitation Input. 
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In addition, the PD controllers of the AMD systems resulted in the desired mode shapes 
and natural frequency distribution. The identified mode shapes of the system are illustrated in 
Figure 8.9; the blue line is the real component and the dashed red line is the imaginary 
component.  The third mode represents the control mode for AMD-2 and the fourth mode 
represents the control mode for AMD-1. Despite the similar mass of the carts, the different 
proportional gains resulted in the two distinct control modes. Also, the frequency of the AMD-1 
control mode is greater, which will help in the control of higher frequency modes. Therefore, the 
behavior of the analytical model used for the gain selection mirrors the experimental setup. 

 

 
Figure 8.9: Identified Mode Shapes and Associated Natural Frequencies. 

8.3 Wired Control Design 

A wired control system is used for comparison with the wireless sensor control implementations. 
The wired control system operates at 1000 Hz and, as such, is approximated as a continuous 
system during the control design. The control designs explored is this section are used to inform 
the discrete control designs outlined in the following sections for the wireless smart sensors. 
 Two main approaches to the control system model are considered in the design of the 
feedback controller. In the first approach, which is illustrated as Case A in Figure 8.10, the 
model developed in section 8.2 is used as the system for design. The two inputs to the system are 
the ground excitation, !!, and control input, u. In the second approach, an input-shaping filter is 
added to the system model to form an augmented system for control design. The shaping filter 
focuses the control effort to a narrower band of frequencies of interest. As shown in Figure 8.11, 
a filter on the inputs shapes a wide band excitation, w, to model the frequency content of an 
earthquake excitation. A Kanai-Tajimi filter is used in Case B to shape the wide-band excitation. 
The Kanai-Tajimi filter equations are given in equation (8.1); and, the filter properties are ωg  = 
5.27 rad/sec and ζg = 80% in order to focus the control on the first two modes of the systems. 
The augmented system with the input shaping filter will include two additional states due to the 
filter. These two control system cases are used in the feedback control design for comparison. 
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a + 2ζ gω g a +ω g
2a = w(t)

xg = −2ζ gω g a −ω g
2a

 (8.1)  

 

 
Figure 8.10: Case A Control System for Design. 

 
Figure 8.11: Case B Control System for Design. 

 Given the system identification, only acceleration measurements, y, are available for 
feedback control; as a result, a Linear Quadratic Gaussian (LQG) regulator is used. Based on the 
separation principle, the Linear Quadratic Regulator (LQR) and Kalman estimator are designed 
separately (Section 3.4). Two LQR control weightings are considered. In the first, the two AMD 
controllers weighted equally. In the second, the fourth-story AMD, AMD-2, is given more 
control authority. Two Kalman filter measurement weightings are considered as well. The first 
weights all acceleration measurements equally; and, the second places less weight on the 
measurements from the second and fourth story, due to the noisier measurements caused by the 
motion of the cart. A summary of the control designs considered is given in Table 8.3. In total, 
eight different LQG controllers are considered. 
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Table 8.3: Control Design Weighting Summary. 

Shaping Filter LQR Weighting Kalman Weighting 

Case A – No Shaping (a)    Q = I,  (1) Sv = diag 1 1 1 1⎡⎣ ⎤⎦( )  
 

Case B – Input Shaping (b)    Q = I,  (2) Sv = diag 1 1000 1 1000⎡⎣ ⎤⎦( )   

 
 The LQR control design is selected to minimize the root mean square (rms) acceleration 
response with the least rms control effort. The control performance for the calculated feedback 
control gain is determined using the Lyapunov equation to calculate the rms response when full 
state knowledge is known. The broadband system input is modeled in the frequency range of 
interest using a Kanai-Tajimi spectrum with ωg = 15 rad/sec and ζg = 30%. The rms acceleration 
response and rms control effort are calculated for a range of control weightings, r1, and each R 
weighting matrix (Table 8.3).  The calculated acceleration response versus the required control 
effort for AMD-1 is plotted for each shaping filter case (A or B) in Figure 8.12 and Figure 8.13. 
The four lines for each weighting matrix are for the acceleration of each of the four stories. The 
plots show that case b, which gives AMD-2 more control authority, reduces the rms accelerations 
of the story with less control effort for both shaping filter cases. As a result, this weighting 
matrix is chosen.   Also, as the control weighting, r1, is lowered, eventually there is little 
response reduction despite a significant increase in the rms control effort.  The control 
weightings that result in the lowest rms acceleration without a significant increase in the control 
effort for Case b are selected for the LQR design.  

 
Figure 8.12: LQR Control Performance Summary for Case A and AMD-1. 
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Figure 8.13: LQR Control Performance Summary for Case B and AMD-1. 

 The Kalman filter design is selected to recover the performance of the LQR controller 
when there is full-state knowledge. The ratio of the closed loop LQG response to the closed loop 
LQR response is calculated with the Lyapunov equation for a range of process noise weighting, 
Sw, values. Figure 8.14 and Figure 8.15 show the calculated response ratio versus the process 
noise weighting for the two measurement-noise weighting cases for each shaping filter case, 
respectively. The process noise weighting at which the response ratio stabilizes is selected for the 
design, because too high a weighting can ultimately cause much poorer estimator performance in 
the presence of measurement noise. 

 
Figure 8.14: Case A Kalman Filter Performance Recovery for Process Noise Weighting Values. 
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Figure 8.15: Case B Kalman Filter Performance Recovery for Process Noise Weighting Values. 

 Prior to selecting final design values the loop gain and sensitivity transfer functions are 
used to evaluate the stability of the controller design. As shown in Figure 8.16, the loop gain is 
determined by looking at the open loop performance of the system. The sensitivity transfer 
function is the identity matrix minus the loop gain.  

  (8.2) 

The loop gain and sensitivity functions should be high in regions of high authority or system 
knowledge. However, the loop gain should be really small in areas of uncertainty. For example, a 
small magnitude loop gain in the higher frequency range can help with noise rejection. Similarly, 
the sensitivity function should be close to unity in areas of uncertainty. The loop gains, plotted in 
Figure 8.17, are high in the regions of good system knowledge and roll off at high frequencies 
for good noise rejection. Similarly, the sensitivity transfer function is unity at high frequencies 
(Figure 8.18). Because these two control designs exhibit good performance and stability, they 
were implemented experimentally. The final wired designs are presented in Table 8.4. 
  

 
Figure 8.16: Representation of the Loop Gain Calculation. 
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Figure 8.17: Loop Gain Magnitudes for Case A and B Control Designs. 

 
Figure 8.18: Sensitivity Transfer Function Magnitude for Case A and B Designs. 
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Table 8.4: Wired Control Design Weightings. 

Shaping 
Filter LQR Weighting r1 Kalman Weighting Sw 

Case A – No 
Shaping 

(b) Q = I,  2.512 (2) Sv = diag 1 1000 1 1000⎡⎣ ⎤⎦( )  15 

Case B – 
Input Shaping 

(b) Q = I,  2.914 (2) Sv = diag 1 1000 1 1000⎡⎣ ⎤⎦( )  15 

 

8.4 Centralized Control Design for Wireless Smart Sensors 

A design methodology similar to that outlined in Section 8.3 is used to develop the centralized 
control design for the wireless smart sensor implementation; however, the control design is 
developed in discrete-time due to the slow sampling rate. In addition, an input delay will be 
included in the design based on the conclusions from Chapter 7.  This section will outline the 
control design for the centralized system implemented on the wireless smart sensor network. 

As discussed in Chapter 6, the resulting sampling rate is a function of the number of 
wireless communications and the number of states in the control design. In this centralized 
scheme, four nodes will communicate with the controller node requiring at least 32 milliseconds. 
An initial communication offset for the computational load on the processor is used to improve 
the communication reliability. The communication and this small offset results in a sampling 
interval of about 33 milliseconds or a rate of 30 Hz. The controller will be designed in discrete-
time at this 30 Hz rate. 

Initially the set of control weightings outlined in Table 8.3 were considered for the 
control design. For Case A, the system model identified in section 8.2 was converted to discrete 
time and an input delay was included in the system model prior to control design. The system 
consists of the original twelve states and an additional delay state for each control input. For 
Case B, the Kanai-Tajimi filter was converted to discrete time prior to combination with the 
discrete system model to form the augmented system for design. In this case, the input-shaping 
filter adds an additional two states to the model. Because the input-shaping filter has little impact 
on the control performance in the wired control system, the additional computation load due to 
the filter states was deemed unnecessary. Thus, only Case A is considered for the wireless 
control implementations. 

The LQR design is selected to minimize the rms structural accelerations with the least 
rms control effort. The control feedback gain is initially designed assuming full-state feedback. 
A discrete Lyapunov equation is used to determine the rms acceleration response and control 
effort for the closed loop system. The covariance of the state  

  (8.3) 

and at k+1 
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so, at steady state 

  (8.5) 

Using the formulation above, the discrete Lyapunov equation can be used solve for the steady-
state response, which can then be used to determine the rms acceleration response and control 
effort (Franklin et al. 1998). Figure 8.19 shows the rms acceleration response versus the rms 
control effort for a range of control weightings, r1, and the two weighting cases for R. Case b, 
where the controller on the fourth story is given more authority, offers better performance with 
the same control effort. As the control cost weighting decreases, eventually the control effort 
significantly increases with little reduction in the rms acceleration response. For the second 
story, the larger control effort actually starts to increase the response. The control weighting 
selected is at the minimum of these curves, where the control performance is best for the amount 
of control effort required. 
   

 
Figure 8.19: Centralized Wireless Control LQR Design Summary. 

The Kalman estimator is designed to recover the performance of the LQR control design, 
which assumed full-state feedback. A predictor-corrector form of the estimator is designed to 
reconstruct the full-state based on acceleration measurements. The ratio of the closed loop 
responses with the LQG system to the closed loop response with the centralized LQR control 
design is determined for a range of process noise weightings, Sw, using the discrete Lyapunov 
equation. Figure 8.20 shows the results for the two different measurement noise weighting 
matrices. At the slow sampling rate and with only story accelerations for feedback the original 
LQR performance cannot be completely recovered; however, the performance of the centralized 
LQG controller is able to closely match that of the original centralized LQR design. The process 
noise weighting when the response ratio levels off is selected for the design. 
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Figure 8.20: Centralized Control Kalman Estimator Design Summary. 

As was done previously, prior to experimental implementation the stability of the two 
estimator designs is evaluated with the loop gain and sensitivity transfer functions. Figure 8.21 
shows the loop gain transfer function magnitude for the two estimator designs. Although the 
equal weighting of the measurements appeared to be more effective in the Kalman filter design, 
the roll-off of the loop gain at higher frequencies is much slower. Therefore, to improve the 
stability of the system in areas with higher noise and less system knowledge, the second 
estimator will be used. Furthermore, the sensitivity transfer function magnitude, given in Figure 
8.22, is unity in the higher frequency range. Without evaluating the loop gain, a complete view 
of the stability and performance of the centralized LQG control design would not have been 
available.  

Although the same measurement feedback is available in the centralized control design as 
in the wired system, the resulting control design is very different due to the slow sampling rate 
and discrete-time design. The final centralized control design parameters are: 
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Figure 8.21: Centralized Control Design Loop Gain Transfer Functions. 

 
Figure 8.22: Centralized Control Design Sensitivity Transfer Functions. 

8.5 Fully Decentralized Control Design for Wireless Smart Sensors 

In the decentralized control approach, independent controllers are located at each AMD for a 
total of two control nodes (Figure 8.23). Because an LQG control approach is required and the 
controllers are not collocated with each system measurement, a heuristic algorithm enforcing a 
sparsity pattern on a global control design is not advantageous. As a result, the system is divided 
into two subsystems, and the controller is designed for each subsystem (Loh et al. 2007). Each 
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controller only has the feedback of the local acceleration measurement, and no communication is 
allowed among the controller nodes. 
 

 
Figure 8.23: Decentralized Control Subsystems. 

 Although the decentralized control implementation is similar to Chapter 7, the larger 
system size will reduce the maximum sampling rate of the wireless smart sensors. The number of 
states processed in the LQG controller increases from five to fourteen, which significantly 
increases the computational burden on the processor. As a result, the sampling rate of the 
decentralized system is 725 Hz. However, this sampling rate is more than adequate for the 
structural system and is still significantly higher than previous wireless decentralized control 
implementations outlined in Chapter 2. 
 Initially the LQR design is determined for each subsystem assuming full-state feedback. 
The discrete-time model is divided into two subsystems as 

  (8.6) 

where j = 2,4 for the acceleration measurement at the second and fourth stories, respectively. A 
cost function used to determine the control gain for each subsystem weights the complete system 
state response and the local control effort 

 Ji = zd
T

k=inital time

k→∞

∑ k[ ]Qzd k[ ]+ u
i

T k[ ]Riui k[ ]  (8.7) 

Subsystem 1 

Subsystem 2 

 

zd[k +1]= Φzd[k]+ Γ iui[k]
i=1

2

∑ +Gxg[k]

yj[k]= Cd( ) j zd[k]+ Dd( ) j xg[k]+ Fd( ) j ,i ui[k]
i=1

2

∑
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where the weighting R can be different for each AMD subsystem. Similar to the previous control 
designs, two ratios of the control weighting, Ri, are considered. In case a, the weighting is equal; 
and, in case b, the weighting on second subsystem is half of the first subsystem. The two 
compensators are combined with the system model to evaluate stability of the global system and 
determine the control performance with the discrete Lyapunov equation. Because only local 
stability is guaranteed in the subsystem control design, the stability of the complete system must 
be determined initially by looking at the closed-loop eigenvalues.  In Figure 8.24, the rms 
acceleration response is plotted versus the rms control effort for a range of control weighting 
values that resulted in a stable system. The concave portion of the curves near the origin is 
because the individual subsystem designs do not necessary result in optimal global control. 
However, similar to the previous control designs, eventually the reduction in the rms acceleration 
response is limited despite an increase in the rms control effort. Also, case b results in better 
control given the same level of control effort. The weighting value, r1 = 9, at which the case b 
controller minimizes the response with a reasonable level of control effort is selected for the 
LQR control design. 

 
Figure 8.24: Fully Decentralized Control System LQR Design. 

 A Kalman estimator is designed for each subsystem given the individual measurement 
and knowledge of only the local control input. A predictor-corrector type Kalman filter is 
designed for each measurement in equation (8.6) to reconstruct the full state of the system. 
Because only one measurement is available, the measurement noise, Sv, is kept constant and the 
process noise is varied equally in both estimator designs. Despite the lack of measurement 
feedback, the Kalman estimators are able to reproduce the performance of the LQR control 
design, which assumed full-state feedback (Figure 8.25). The process noise value selected, Sw = 
4, is where the ratio is close to one for all acceleration ratios and most have stabilized. Given the 
lack of measurement feedback and the high fidelity system model, a very high process noise 
weighting value should not be selected for the fully decentralized controller. 
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Figure 8.25: Kalman Estimator Designs for Fully Decentralized Control System. 

 Stability of the fully decentralized control system is a significant concern, because only 
subsystem stability is guaranteed. The loop gain and sensitivity transfer functions for the selected 
control design offer good insight on the performance of the closed loop system. The loop gain, 
shown in Figure 8.26, does roll off at higher frequencies, but this roll-off is very slow. Similarly, 
the sensitivity transfer function magnitude slowly approaches unity at higher frequencies (Figure 
8.27). Therefore, although the system is stable, there could be poor noise rejection at higher 
frequencies. Despite the stability concerns, the robustness to node failure and the higher 
sampling rate make the fully decentralized control approach attractive for implementation. 

 
Figure 8.26: Loop Gain Transfer Functions Magnitude for Fully Decentralized Control Design. 
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Figure 8.27: Sensitivity Transfer Functions Magnitude for Fully Decentralized Control Design. 

8.6 Experimental Results 

The control performance of the wired and wireless smart sensor controllers outlined in the 
previous sections is evaluated on the experimental setup in both the frequency and time domain. 
For evaluation, the controlled systems are subjected both to a band-limited white-noise input and 
earthquake loadings. The performance of all systems is compared using the same wired 
capacitive accelerometers manufactured by PCB Piezotronics. The accelerometers have a 
measurement range of ±3g, a frequency range of 0-100 Hz, and a sensitivity of 1V/g. In total, 
five systems are evaluated: uncontrolled, zeroed control, wired control, centralized wireless 
control, and fully decentralized wireless control. 
 The inner control loops for the shake table and AMD are implemented on dSpace model 
1103; and the outer control systems are implemented on either the wireless smart sensors or 
dSpace as appropriate. The dSpace system is equipped with single-ended encoder inputs, 16-bit 
analog inputs, and 16-bit analog outputs alongside the digital signal processing board for control.  
For the wired control system, the control loop is executed in dSpace at 1000 Hz using the 
approach given in Figure 8.28. A discrete-time equivalent of the LQG control design is created 
with a Tustin transformation to better approximate the continuous-time system. Any distortion 
should not be significant due to the high sampling rate. For the wireless control systems, the 
digital conversion of the acceleration measurements, control processing, and analog output of the 
command displacement is completed onboard the wireless sensor nodes (WSN) similar to Figure 
7.11. The command displacement from the WSN is processed by dSpace to determine the 
command voltage based on the PD cart control. In the fully decentralized wireless system, the 
acceleration is measured with the onboard accelerometer. Figure 8.29 shows a decentralized 
control node deployed on the structure. The SHM-SAR Rev. 2.0 and SHM-D2A are stacked on 
the Imote2. The USB connection provides a consistent source of power and the cable from the 
SHM-D2A carries the command displacement output to dSpace. 
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Figure 8.28: Wired Control Implementation within dSpace. 

 
Figure 8.29: Decentralized Control Leaf Node on Experiment Structure. 

 Prior to closed-loop testing, the loop gain transfer functions are determined 
experimentally and compared with the analytical results to verify the closed-loop system model 
and the experimental setup. To determine the open loop response, a band-limited white noise is 
input to one AMD at a time and the calculated control commands are measured. Examples of the 
experimentally obtained loop gains for the wired, centralized, and fully decentralized system are 
plotted in Figure 8.30 (a)-(c), respectively. Overall, the experimental and analytical results match 
well, so the closed-loop system model used in design is satisfactory. The wireless centralized 
loop gain shows there is significantly more noise in the system due to the aliasing present from 
the slow sampling rate and data loss from communication. However, the overall behavior 
matches the analytical system. On the other hand, the wireless fully decentralized experimental 
loop gain matches the analytical results very closely. Thus, the lack of any data loss and the 
faster sampling rate for fully decentralized control significantly lowers the noise in the system.  
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(a)  

(b)  

(c)  
Figure 8.30: Experimental Loop Gain Comparisons for (a) Wired, (b) Centralized, and  

(c) Fully-Decentralized Control Systems. 
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8.6.1 Frequency Domain Performance 

The closed loop system is excited by a band-limited white-noise ground excitation from 0 to 10 
Hz to determine the response reduction at the natural frequencies of the structure. The 
uncontrolled and zeroed responses are determined as well for comparison. In zeroed control, a 
zero command is applied to the AMDs; by zeroing the AMDs, there will be additional damping 
in the system when compared to completely uncontrolled. The transfer functions from the 
acceleration response of each story to the ground acceleration are presented in Figure 8.31. The 
ratio of the peak response at the first natural frequency and the rms response compared to the 
uncontrolled system is provided in Table 8.5. 

All of the control systems reduce both the peak responses and the rms responses of the 
structure. As expected, the additional damping of the zero control reduces the peak response of 
the first natural frequency by about 50%; the reduction in the overall rms response is more 
modest.  The feedback controllers significantly outperform the zeroed control in reducing the 
peak response at the first natural frequency of the system and also further reduce the rms 
response. Therefore, the active control systems successfully improve the performance of the 
structure in the frequency domain.  

The three feedback controller systems offer a similar reduction of the first mode response 
but differ in their overall performance. In Figure 8.31, the reduction at the first natural frequency 
does not appear as significant as other modes, but this performance is good given the limited 
stroke of the AMDs. On the other hand, the wired and decentralized controllers offer better 
overall performance than the centralized wireless system. In the frequency domain, the 
centralized controller flattens the response by lowering the response at the higher natural 
frequencies but slightly raises the response at other frequencies. The wired and decentralized 
control result in similar reductions in the rms response, except at the first story due to the 
contribution of the third mode. Overall, however, the decentralized wireless control system 
results in comparable performance to the tethered system.  
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Figure 8.31: Transfer Functions of All Controllers from Ground Acceleration to Structural Responses 
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Table 8.5: Reductions in Frequency Domain Response of All Controllers Compared to Uncontrolled Response 

Controller 
1st Floor 

Acceleration 
2nd Floor 

Accelerations 
3rd Floor 

Acceleration 
4th Floor 

Acceleration 
(a) ratio of peak responses at 1st natural frequency to uncontrolled responses 

Zeroed 0.55 0.53 0.52 0.52 
Wired 0.17 0.16 0.17 0.15 

Centralized 0.19 0.18 0.16 0.18 
Decentralized 0.17 0.17 0.16 0.17 

(b) ratio of RMS responses to uncontrolled responses 
Zeroed 0.76 0.75 0.84 0.79 
Wired 0.29 0.34 0.37 0.34 

Centralized 0.64 0.68 0.56 0.62 
Decentralized 0.46 0.28 0.28 0.25 

 
8.6.2 Seismic Excitation Response 

A set of earthquake records is used to evaluate the time domain performance of the control 
systems. The four seismic excitations are:  
 

• El Centro: El Centro Array #9, Imperial Valley, CA (1940) 

• Kobe: KJMA Station (1995) 

• Chi Chi: Station CHY006 (1999) 

• Northridge: Castaic Old Ridge Rt Station (1994) 

The records, gathered from the PEER ground motion database (http://peer.berkeley.edu), are not 
time-scaled for the setup, because the first natural frequency of the structure lies within the 
region of peak demand of the earthquakes. However, the earthquake records are linearly scaled 
so the PGA is feasible for the small-scale experimental setup. 
 For accurate reproduction by the shake table, each earthquake record undergoes transfer 
function iteration to determine the appropriate displacement command for the table controller 
(Spencer and Yang 1998). The experimental transfer function for the shake table from the 
displacement command to the measured acceleration is used to determine a shake table model. 
The identified 3-pole, 3-zero model is: 

  (8.8) 

The zeros at the origin are shifted slightly prior to inverting the model for transfer function 
iteration to limit the large low-frequency component in the displacement command. Transfer 
function iteration is conducted offline to determine the displacement commands for each 
earthquake record (Spencer and Yang 1998). The comparison of the table produced and desired 
acceleration in Figure 8.32 shows some overshoot of the desired acceleration and reflects some 

H (s) = s2 (s +16.18)
(s + 860.9)2 (s + 8.57)
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challenges reproducing small motions. These two limitations are likely due to the friction in the 
table bearings. However, overall, the shake table can successfully reproduce ground motions 
through transfer function iteration. 

 
Figure 8.32: Comparison of Shake Table Generated Motion Compared to Desired for 0.2*El Centro. 

The closed-loop responses of all five systems are compared for each earthquake 
excitation in Figure 8.33 (a) – (d). The majority of the response occurs during the initial impulse 
of the earthquake and eventually undergoes free vibration. In general, all the controllers limit the 
response during the free vibration period; however, the response during the peak motion varies 
widely between controller and earthquake excitation. Table 8.6 and Table 8.7 present the ratio of 
the peak response and rms response to the uncontrolled for each story acceleration under each 
ground motion. In general, the wired control system offers the best control performance in both 
the peak and rms response. However, the decentralized wireless control system is similar, 
particularly for the El Centro and Northridge ground excitations.  

The two levels of decentralization of the wireless control systems present very different 
control performance. Despite having more knowledge of the system response, the centralized 
control system is less effective and uses more control effort. The centralized controller has 
difficulty reducing the response during the initial impulse but reduces the overall rms response of 
the structure. This behavior can mostly be attributed to the low sampling rate and the additional 
noise due to aliasing. Although some data loss occurs during control, the data loss in this 
experimental setup is very small. In addition, both wireless systems have more trouble with the 
Chi Chi and Kobe ground motions, because of the more cyclic impulsive load and saturation of 
the SHM-SAR measurements.  However, the fully decentralized wireless control system still 
results in good overall performance despite the lack of global knowledge of the system response. 
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 (a)  

(b)  
Figure 8.33: Acceleration Responses of All Control Systems Subjected to Seismic Motions: (a) 0.2*El Centro, (b) 

0.2*Northridge, (c) 0.3*Chi Chi and (d) 0.1*Kobe. 

0 5 10 15 20 25 30 35 40 45 50 55
−0.5

0

0.5

1F
Ac

ce
l (

g)

0 5 10 15 20 25 30 35 40 45 50 55
−0.5

0

0.5
2F

Ac
ce

l (
g)

0 5 10 15 20 25 30 35 40 45 50 55
−0.5

0

0.5

3F
Ac

ce
l (

g)

0 5 10 15 20 25 30 35 40 45 50 55
−0.5

0

0.5

Time (sec)

4F
Ac

ce
l (

g)

 

 

Uncontrolled Zeroed Centralized Decentralized Wired

0 5 10 15 20 25 30 35 40 45 50 55
−1

0

1

1F
Ac

ce
l (

g)

 

 

0 5 10 15 20 25 30 35 40 45 50 55
−0.5

0

0.5

2F
Ac

ce
l (

g)

0 5 10 15 20 25 30 35 40 45 50 55
−0.5

0

0.5

3F
Ac

ce
l (

g)

0 5 10 15 20 25 30 35 40 45 50 55
−0.5

0

0.5

Time (sec)

4F
Ac

ce
l (

g)

Uncontrolled Zeroed Centralized Decentralized Wired



 

 116 

(c)  

 (d)  
Figure 8.33 (cont.). 
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Table 8.6: Ratio of Peak Responses to Uncontrolled for Each Ground Excitation. 

Controller 1st Floor 
Acceleration 

2nd Floor 
Acceleration 

3rd Floor 
Acceleration 

4th Floor 
Acceleration 

(a) Ratio of Peak Response to Uncontrolled for 0.2*El Centro Ground Excitation 
Zeroed 0.99 0.67 1.04 0.70 
Wired 0.56 0.64 0.63 0.67 

Centralized 0.78 1.61 2.07 1.26 
Decentralized 0.70 0.79 1.03 0.84 

(b) Ratio of Peak Response to Uncontrolled for 0.2*Northridge Ground Excitation 
Zeroed 0.98 0.91 0.72 0.74 
Wired 0.73 0.85 0.45 0.83 

Centralized 0.76 1.84 0.95 1.42 
Decentralized 0.72 0.81 0.45 0.71 

(c) Ratio of Peak Response to Uncontrolled for 0.3*Chi Chi Ground Excitation 
Zeroed 0.82 0.85 0.95 0.90 
Wired 0.34 0.50 0.87 0.78 

Centralized 0.69 1.17 1.56 1.15 
Decentralized 0.46 0.63 0.81 0.77 

(d) Ratio of Peak Response to Uncontrolled for 0.1*Kobe Ground Excitation 
Zeroed 0.72 0.74 0.79 0.99 
Wired 0.38 0.65 0.60 1.02 

Centralized 0.71 1.56 1.54 1.84 
Decentralized 0.47 0.67 0.77 0.85 
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Table 8.7: Ratio of RMS Response to Uncontrolled for Each Ground Excitation. 

Controller 1st Floor 
Acceleration 

2nd Floor 
Acceleration 

3rd Floor 
Acceleration 

4th Floor 
Acceleration 

AMD-1 
Command 

(m) 

AMD-2 
Command 

(m) 
(a) Ratio of RMS Response to Uncontrolled for 0.2*El Centro Ground Excitation 

Zeroed 0.76 0.58 0.77 0.61 -- -- 
Wired 0.32 0.30 0.38 0.31 0.0050 0.0096 

Centralized 0.53 0.59 0.89 0.64 0.0138 0.0170 
Decentralized 0.53 0.42 0.70 0.41 0.0070 0.0080 

(b) Ratio of RMS Response to Uncontrolled for 0.2*Northridge Ground Excitation 
Zeroed 0.78 0.69 0.67 0.73 -- -- 
Wired 0.35 0.43 0.34 0.41 0.0074 0.015 

Centralized 0.63 0.97 0.64 0.87 0.017 0.022 
Decentralized 0.51 0.51 0.44 0.48 0.011 0.013 

(c) Ratio of RMS Response to Uncontrolled for 0.3*Chi Chi Ground Excitation 
Zeroed 0.83 0.87 1.04 0.98 -- -- 
Wired 0.32 0.52 0.57 0.59 0.0049 0.0145 

Centralized 0.60 1.18 1.22 1.14 0.014 0.019 
Decentralized 0.56 0.76 0.93 0.77 0.0069 0.0082 

(b) Ratio of RMS Response to Uncontrolled for 0.1*Kobe Ground Excitation 
Zeroed 0.67 0.84 0.92 0.93 -- -- 
Wired 0.23 0.37 0.32 0.36 0.0056 0.0110 

Centralized 0.53 1.07 0.76 0.95 0.0136 0.0160 
Decentralized 0.39 0.52 0.54 0.50 0.0082 0.0102 
 

8.6.3 Robustness of Fully Decentralized System to Leaf Node Failure  

One distinct advantage of the fully decentralized control system is the robustness to node or 
sensor failure. To evaluate the robustness, the performance of the decentralized control system 
when a leaf node fails is compared with the original fully decentralized wireless system. Two 
failure cases are considered under the Northridge ground motion: 
 

• The leaf node on the fourth story fails at the peak response and only AMD-1 is available. 

• The leaf node on the second story fail at the peak response and only AMD-2 is available. 

Failure of the leaf node is approximated in the experiment by zeroing the control to the 
respective AMD at the specified time of failure. 
  In both cases, the decentralized control system is still able to reduce the response of the 
structure and no instability results (Figure 8.34). As expected, the failure of the fourth-story 
AMD results in poorer performance, because AMD-2 is essential for limiting the first mode 
response. On the other hand, Table 8.8 indicates that failure of the leaf node on the second story 
results in comparable rms performance to the original system; although, the loss of AMD-1 does 
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result in larger peak responses. Therefore, decentralized wireless control can be a good and 
robust option for active structural control.  
 

 
Figure 8.34: Acceleration Responses for Decentralized Control Systems When a Controller Node Fails under 

0.2*Northridge Excitation. 
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Table 8.8: Summary of Response Ratios when a Decentralized Control Leaf Node Fails. 

Controller 1st Floor 
Acceleration 

2nd Floor 
Acceleration 

3rd Floor 
Acceleration 

4th Floor 
Acceleration 

AMD-1 
Command 

(m) 

AMD-2 
Command 

(m) 
(a) Ratio of Peak Response to Uncontrolled for 0.2*Northridge Ground Excitation 

Zeroed 0.98 0.91 0.72 0.74 -- -- 
Decentralized 0.72 0.81 0.45 0.71 -- -- 
AMD-1Fail 0.77 0.71 0.54 0.73 -- -- 
AMD-2 Fail 0.63 0.99 0.67 0.77 -- -- 

(b) Ratio of RMS Response to Uncontrolled for 0.2*Northridge Ground Excitation 
Zeroed 0.78 0.69 0.67 0.73 -- -- 

Decentralized 0.51 0.51 0.44 0.48 0.011 0.013 
AMD-1Fail 0.50 0.47 0.43 0.47 0.010 0.0129 
AMD-2 Fail 0.61 0.67 0.58 0.59 0.012 0.012 

8.7 Summary 

A four-story, small-scale structure suitable for different levels of control decentralization is used 
to evaluate two wireless active control systems. A high-fidelity MIMO model of the system that 
accounts for control structure interaction is formed from three SIMO models and used 
subsequently in control design. The wireless control designs are based on the control 
implementations presented in Chapter 6; due to the larger number of states in the system, the 
fully decentralized system operates at 725 Hz and centralized system runs at 30 Hz. The two 
wireless control systems are successfully implemented on the experimental structure. Despite the 
lack of complete knowledge of the system response, the fully decentralized control system 
outperforms the centralized wireless system in both the frequency and time domain due to the 
faster sampling rate and lack of data loss. The fully decentralized system also offers comparable 
performance to the wired system and robustness during node failure. 
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  Chapter 9

CONCLUSIONS AND FUTURE RESEARCH 
9.1 Conclusions 

This research presents a wireless smart sensor solution for active control of civil systems that has 
been successfully used on an experimental test structure. The hardware and software designed 
and produced overcomes the practical challenges for wireless active control, including time 
delay, data loss, and real-time performance. The LQG control design approaches addressed 
discrete-time control systems with internal delays, slow sampling rates, or lack of system 
knowledge. The designed wireless control system offered excellent performance on a four-story 
base-excited structure controlled with two active mass dampers. The successful implementation 
of the wireless system for active control highlights the potential of wireless smart sensors for a 
variety of control applications. 
 A thorough background of structural control has been provided, focusing in particular on 
systems that address the practical challenges of control including sensor failure, time-delay, and 
low sampling rates. Previous wireless control systems have focused on semi-active control, 
where smart sensor performance is not as much of a concern due to their inherent stability. These 
experimental applications present a good first step toward addressing and identifying the 
challenges of wireless structural control. Modern control theory as well as the wireless smart 
sensor platform and software framework that are at the core of the work are presented as 
necessary background for the successful design, production, and implementation of the wireless 
control system. 
 Low-latency data acquisition and actuation hardware tailored for control applications has 
been designed and implemented on the Imote2 smart sensor platform. Prior to development, the 
limitations of data acquisition hardware tailored for SHM are presented; the oversampling and 
digital filtering used to improve the resolution introduces significant latency into the system. 
Through the use of an SAR-type analog-to-digital converter and careful design of the 
corresponding driver, the latency due to the hardware alone is almost negligible. An onboard 
accelerometer further simplifies acceleration feedback for control. The control loop is completed 
with an actuation interface that complements the performance of the data acquisition hardware.  
 Real-time wireless data acquisition is essential for feedback control; however, application 
is not straightforward due to inherent challenges of the embedded software and the smart sensor 
platform. The application framework accounts for the single-threaded operating system and 
communication latency by using a tightly timed approach and a TDMA communication protocol 
that accounts for the sensing/processing time and the number of nodes in the network. The 
performance of the application highlights the challenge of centralized control and the tradeoff 
between the number of nodes in the network and the maximum possible sampling rate. The 
framework is extended for near real-time, high-throughput applications that require large 
network sizes and high sampling rates. 
 The application framework and insights gained from real-time data acquisition are 
extended in the implementation of fully decentralized and centralized control strategies on the 
Imote2 fitted with low-latency hardware.  In fully decentralized control, sensing, control 
calculations, and actuation all occur on each leaf node. The tight timing, alarm based approach, 
and powerful onboard processing capabilities preserve computational accuracy while operating 
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at a very high sampling rate. The sampling rate achieved is significantly higher than previous 
implementations of fully decentralized control.  The framework is then combined with real-time 
wireless data acquisition for centralized control. The application design limits data loss while 
preserving sampling rates adequate for control of most civil systems. 
 The wireless control system was applied to a small-scale single-degree-of-freedom 
structure with an active control system to evaluate the performance of the complete system in 
comparison to a wired control implementation. An approach for discrete-time control design that 
accounts for slow sampling rates and an input delay is used for the smart sensor control designs. 
By taking account of the discrete-time nature of the control system and the input delay in the 
design, the stability and performance of the closed-loop system can be preserved. The low-
latency wireless control system outperforms the original data acquisition hardware tailored for 
SHM and offers comparable performance to the wired control system. 
 The centralized and fully decentralized wireless control systems are compared using a 
four-story experimental structure suitable for different levels of decentralization. Two active 
mass dampers are used for control of the structure; by tuning the PD control system for each 
AMD, the control modes can be adjusted to improve the performance. The non-parametric model 
of the MIMO system identified experimentally captures the control structure interaction of the 
two AMDs and the shake table for use in the control designs. The fully decentralized controller 
consists of two independent subsystems that are designed separately to reduce the acceleration 
response of the complete structure. Because only the stability of each subsystem is guaranteed, 
care was taken to ensure global stability of the controlled system.  Despite the lack of complete 
system knowledge, the decentralized wireless control system outperformed the centralized 
wireless system under both a BLWN input and earthquake excitations. The additional response 
knowledge in the centralized system does not overcome the limitations of centralized wireless 
control: the slower sampling rate, a higher noise level due to aliasing, and the occasional loss of 
data. Furthermore, the decentralized wireless control system offered comparable performance to 
the wired system in the frequency domain and in the RMS response under earthquake 
excitations. 
 One distinct advantage of decentralized control systems is their robustness to sensor 
failure. To evaluate the robustness of the fully decentralized wireless system, failure of a 
subsystem controller was enforced during the application of an earthquake ground motion. The 
decentralized control system was able to reproduce the RMS control performance of the original, 
intact system. Because wireless control systems are well suited to decentralized control 
strategies, these results highlight the promise of wireless smart sensors for control over 
traditional tethered systems. 

9.2 Future Research Directions 

This research has addressed many of the challenges for wireless control of civil systems 
including latency, sampling rate performance, and discrete control design at slower sampling 
rates. The results encourage many new avenues of research, which will be discussed below. 
 

• Partially decentralized wireless control. The four-story actively controlled structure 
highlighted the performance advantage of fully decentralized wireless control despite the 
lack of complete knowledge of the system. Partially decentralized wireless control 
systems will likely offer a balance of system knowledge and sampling rate to further 
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improve the control performance. The flexibility of the wireless control implementation 
on the Imote2 will simplify the application of different levels of decentralization.  

• Hierarchically decentralized wireless control. Hierarchical control systems offer a higher 
level of control that can be used to ensure concordant behavior of control subsystems and 
modify the controller under different conditions. The hierarchical systems, popular in 
autonomous control applications, have yet to be applied to structural control; however, 
the onboard processing and wireless communication capabilities of smart sensor 
platforms make this control architecture more attractive. 
 

• Lower noise, low-latency data acquisition hardware. One limitation of low-latency data 
acquisition is the aliasing of noise at slower sampling rates. An easily modified anti-
aliasing filter that does not introduce significant delay would improve the performance of 
the hardware while still making them feasible for control applications. 

  
• Event based structural control. Control techniques that do not require tight timing or a 

consistent sampling rate have not been applied to structural control systems because they 
typically used for much longer time scales. Wireless smart sensors are well suited for this 
control approach, because maintaining real-time performance continues to be a challenge 
on wireless smart sensor platforms. 

 
• Multi-tasking wireless sensor networks. As wireless smart sensor networks become more 

common for structural or environmental monitoring, they could be leveraged for more 
than one application to improve the overall performance of the system. For example, an 
SHM deployment could be used for control under extreme events and long-term 
monitoring otherwise. A smart sensor network that is tailored for multiple tasks is not 
trivial due to the conflicting performance requirements of these systems. 

 
• Application of wireless control to energy harvesting systems. Feedback of environmental 

conditions and the state of the energy harvesting system (i.e. wind turbines) may be used 
to optimize the energy output. The low cost of deployment and ability to interface with a 
variety of sensors make wireless control networks appealing for these typically large-
scale systems. 
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