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ABSTRACT

This thesis complements the large body of social sensing literature by devel-

oping means for augmenting sensing data with inference results that “fill-in”

missing pieces. Unlike trend-extrapolation methods, we focus on prediction

in disaster scenarios where disruptive trend changes occur. A set of predic-

tion heuristics (and a standard trend extrapolation algorithm) are compared

that use either predominantly-spatial or predominantly-temporal correlations

for data extrapolation purposes. The evaluation shows that none of them do

well consistently. This is because monitored system state, in the aftermath of

disasters, alternates between periods of relative calm and periods of disruptive

change (e.g., aftershocks). A good prediction algorithm, therefore, needs to

intelligently combine time-based data extrapolation during periods of calm,

and spatial data extrapolation during periods of change. The thesis develops

such an algorithm. The algorithm is tested using data collected during the

New York City crisis in the aftermath of Hurricane Sandy in November 2012.

Results show that consistently good predictions are achieved. The work is

unique in addressing the bi-modal nature of damage propagation in complex

systems subjected to stress, and offers a simple solution to the problem.
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CHAPTER 1

INTRODUCTION

1.1 Participatory Sensing System

Participatory Sensing, introduced first by Burke et al. [1] is the concept of

communities (or other groups of people) contributing sensory information to

form a body of knowledge. It can be used to retrieve information about the

environment, weather, congestion as well as any other sensory information

that collectively forms knowledge. For example, BeWell [2] developed by Lane

et al. is an individual wellbeing tracking system running on smartphones with

multiple sensors (e.g., cameras, gyroscope, and accelerometer). P-sense [3] is a

participatory sensing system for air pollution monitoring and control. In this

system, external sensors are used to collected environmental data and the data

is aggregated and propagated via the cell phone network. One other example

is ParkNet developed by Mathur et al. [4]. A GPS receiver and a passenger-

side-facing ultrasonic rangefinder are installed with each vehicle involved in

order to determine parking lot occupancy. And all the data are uploaded to

the central server to build the map of parking availability.

The spread of the smartphone brings more chance to participatory sens-

ing system, however, perhaps the most critical issue regarding participatory

sensing is privacy. Because if users’ or volunteers’ privacy is compromised,

they are unlikely to contribute to the study. For example, GPS sensor read-

ings can be used to infer private information such as their daily commute,

home location, and work location [5]. Many research has been done is this

field [6, 7, 8, 9, 10]. Other open issues include, but are not limited to, effective
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incentives for participation [11, 12], resource limitation [13, 14], and security

and data integrity [15,16].

1.2 Participatory Sensing in Disaster Monitoring and

Response

Thanks to the fast development of smartphones and social networks, partic-

ipatory sensing receives more attention in disaster monitoring and response

applications in recent years.

A large body of sensor network literature focused on monitoring and dis-

aster alerts. For example, Werner-Allen et al. deployed three wireless sensor

networks on active volcanoes [17]. The initial deployment was a small proof of

concept system that monitored acoustic signals from the Tungurahua volcano,

in Ecuador. The second deployment was to measure seismic signals at the

Reventador volcano, in Ecuador. The third deployment was at Tungurahua

in August, featuring a new data collection system. Li et al. deployed a sensor

network for monitoring and alerts in a coal mine [18]. Liu et al. present an

automatic and reliable sensor network for firefighter applications [19], which

allows a firefighter to carry a small dispenser filled with sensor nodes and de-

ploy them one-by-one in a manner that guarantees reliable communication.

The SensorFly project [20] develops a sensor cloud, which consists of many

low cost and individually limited mobile sensing devices that only when func-

tioning together can produce an intelligent cloud, in disaster situations such

as an earthquake and fire.

On the social network side, people share their information about the disas-

ter region to social networks and special-purpose services, to help each other

beat the disaster together. For instance, popular social networks such as Face-

book [21] and Twitter [22], played an important role after natural disasters

such as Japan Tsunami in 2011 [23] and US Hurricane Sandy in 2012 [24].

Many service providers, some notable names including Waze [25] and Gas-
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Buddy [26], set up special-purposes services to allow individuals to participate

and report the availability of various resources (e.g., gas stations) after Sandy

via the web or smartphones. Ushahidi [27] is another notable disaster and crisis

management mapping tool. It can be used to collect and visualize data from

multiple data streams including text messages, email, twitter and web-forms.

However, due to the opportunistic nature of participatory sensing, there are

typically “blind points” in the obtained points of interest (POIs) map at any

given time point.

1.3 Time Series Forecasting

Usually, a participatory sensing system is deployed to monitor the states of

a group of points of interest. The states of points of interest are time series

data. So, to fill in “blind points” in the time series data, we use time series

forecasting technologies.

Time series forecasting is the use of a model to predict future values based

on previously observed values. Given a time series of data, autoregressive

moving average (ARMA) [28] is one of the most classic models used to under-

stand the underlying structure. Fed with some training data, ARMA provides

a description of the time series data in terms of two polynomials, one for the

auto-regression and the second for the moving average. After that, the model

can be applied to forecasting future values. ARMA is a good for stationary

time series models, while autoregressive integrated moving average (ARIMA)

can be utilized when the model is non-stationary, by applying an initial dif-

ferencing step to the model [29]. These models are widely-used. For example,

Van Der Voort et al. [30] use Kohonen self-organizing map and ARIMA model

to do the short-term traffic forecasting. Another notable example is Pai et

al. [31], in which they try to forecast stock prices. In their work, they first use

support vector machines to solve the non-linear regression estimation problem

and then apply the ARIMA to capture the patterns.
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1.4 Research Contribution of this Thesis

The research topic of this thesis falls in participatory sensing application in

disaster settings. More specifically, this thesis explores the question of how to

inference missing data in the aftermaths of disasters in a reliable way.

In participatory sensing, sources measure application-related state at loca-

tions of interest then usually report it at a later time (e.g., when they encounter

a WiFi access point a few hours later). Hence, at any given time, the latest

state of some points of interest may be unknown. Incomplete real-time cover-

age may also arise due to scarcity of sensing resources. For example, volunteers

in a disaster-response application may survey and report locations of damage.

If there are fewer volunteers than damage locations, the state of some of these

locations will not be immediately reported. In such scenarios, one question is:

can we infer the missing data? Our thesis is mainly to answer this question

in disaster aftermath scenarios. To the best of our knowledge, our approach

is the first one addressing this problem effectively.

Disaster aftermath distinguishes from many other scenarios in two aspects,

namely, disruptive change and scarcity of training data. Many time-series

data extrapolation approaches are based on the assumption that past trends

are predictive of future values. These approaches do not do well when disrup-

tive changes occur. For example, a history of no traffic congestion on main

highways of some city does not offer a good traffic predictor if a natural dis-

aster causes a mass evacuation. An alternative recourse is to consider only

spatial correlations. For example, certain city streets tend to get flooded to-

gether after heavy rain (e.g., because they are at the same low elevation), and

certain blocks tend to run out of power together after a thunderstorm (e.g., be-

cause they share the same power lines). Understanding such correlations can

thus help infer state at some locations from state at others when disruptive

changes (such as a flood or a power outage) occur. In the following chapters,

We show that system state in post-disaster scenarios alternates between pe-
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riods of calm (when the past is a good predictor of the future) and periods

of sudden change, as new parts of the infrastructure are damaged (e.g., due

to aftershocks) or repaired. Hence, data extrapolation algorithms that rely

predominantly on spatial correlations or predominantly on temporal correla-

tions tend not to work consistently well, as the relative importance weights

of temporal versus spatial correlations change significantly between periods

of calm and periods of change. Instead, we show that such algorithms must

switch intelligently between two extrapolation modes with different emphasis

on temporal versus spatial correlations.

Of special interest is the case where correlations needed for extrapolation are

themselves not known in advance, but are rather learned on the fly. The need

for joint learning and extrapolation distinguishes this thesis from some existing

work [32, 33, 34] that predicts missing sensor values assuming a previously

known correlation structure between sensors, or a known temporal pattern.

We apply the results to an example case study of a New York City crisis in

the aftermath of Hurricane Sandy. Many gas stations, pharmacies, and grocery

stores around New York City were closed after the hurricane, resulting in severe

supply shortage that lasted several days. The outages were correlated, since

different stores shared suppliers or power. Our study shows the degree to which

extrapolation could infer gas, food, and medical supply availability during the

crisis in the absence of complete and fresh information.

To the best of our knowledge, no previous work has been applied to real-

world disaster response scenarios where inference algorithms were investigated

that (i) specifically address the bimodal nature of damage propagation and

that (ii) require very little training data. Our thesis fills in this gap by ana-

lyzing the example of New York City gas crisis in the aftermath of Hurricane

Sandy via real data traces.
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1.5 Organization of this Thesis

The remainder of this theis is organized as follows. We present the general sys-

tem design and illustrate prediction challenges in Chapter 2. A new algorithm

that addresses these challenges via appropriate switching between spatial and

temporal extrapolation is presented in Chapter 3. An evaluation is presented

in Chapter 4. Chapter 5 demonstrates the working system. Chapter 6 reviews

related work. We conclude the thesis in Chapter 7.
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CHAPTER 2

SYSTEM MODEL

We consider a model of participatory sensing applications in which the reported

state is binary. It is desired to obtain the state of several points of interest.

A central collection node (e.g., the command center) collects the state from

participants who make observations and report them later.

The time when participants report their observations may vary. Measure-

ments that are older than some threshold, are deemed stale. Hence, at any

given time, there may be “blind points” in the PoI map generated by partic-

ipants, where fresh information is not available. The challenge is to infer the

missing state automatically and accurately.

The main contribution of this work lies in addressing the extrapolation prob-

lem in scenarios consistent with disaster response. Two main challenges char-

acterize those scenarios:

• Disruptive change: By definition, disasters are unique disruptive events

that invalidate normal data trends, making prediction based on historical

(time-series) trends largely incorrect.

• Scarcity of training data: Since disasters are rare and generally unique,

there is very little training data that one can rely on. To understand the

worst case, we restrict the prediction algorithm to use only training data

available from the current disaster itself. This scarcity of data severely

limits the complexity of prediction models that can be used.

We consider applications where today’s information matters the most and

people prefer undertaking some actions based on best-effort guessing to ob-
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taining exact data at a certain delay. For example, in the case of finding gas

stations around New York City that are operational after hurricane Sandy, if

one needed to fill up their car now, yesterday’s gas availability would be of less

use. The challenge is therefore to infer the current missing PoI state.

We assume that old (and hence potentially stale) information on PoI state

is available. For example, in disaster response scenarios, volunteers might

physically report back to the command center daily, which makes yesterday’s

information available at the center. We call the maximum reporting latency,

a cycle. Hence, by definition, the backend server knows the state of all PoI

sites in previous cycles, but has only partial information in the current cycle.

This assumption simplifies our algorithmic treatment. It can easily be relaxed

allowing for information gaps in previous cycles as well, since such gaps can

always be filled in using the same extrapolation algorithm, applied to past

state.

2.1 Problem Statement and Solution Challenges

More formally, our participatory sensing system can be characterized by a

weighted graph G = (V,E), |V | = n, |E| = m, where the node set V represents

the n PoIs. We assume that set V is known and remains unchanged. The link

set E represents the correlations among PoIs.

One way to compute links E, is to apply the Kendall’s Tau statistical method

[35] to estimate correlations. More concretely, assume two PoIs, x and y,

have data (x1, x2, · · · , xn) and (y1, y2, · · · , yn). The Kendall’s Tau correlation

coefficient, denoted by KT (x, y), can be represented as:

KT (x, y) = 1− 1

n

n∑
i=1

XOR(xi, yi) (2.1)

Each edge (x, y) between PoI nodes x and y has a weight, wxy = KT (x, y),
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representing the correlation value. The link set E may be reduced by setting

a predefined threshold such that only links with correlations higher than the

threshold are retained.

The extrapolation algorithm takes partial state of PoI sites in the current

cycle, historical data of PoI sites in previous cycles, and the relationships (i.e.,

edges) learned so far as inputs. It then infers the current state of missing PoI

sites.

As argued above, scarcity of training data renders complex prediction mod-

els, such as ARIMA and various data mining models [36], ineffective. For

example, on the 4th day of a disaster, we have only 3 past training points,

which might be fewer than the number of parameters in some models. This

means that our prediction model would have to be very simple. Indeed a con-

tribution of this work lies in arriving at a very simple model that works well

with little data, as opposed to beating the current mature state of the art in

time-series prediction from large data sets.

We first consider several obvious simple heuristics that can be used for ex-

trapolation. To illustrate the impact of insufficient training data, we also con-

sider ARIMA [36], a standard (and powerful) time series analysis method for

non-stationary processes, commonly used in complex forecasting tasks, such

as forcasting financial systems [37]. The performance of these solutions will

determine whether or not a new extrapolation approach is needed.

• Random: It is the most trivial baseline in which the status of missing

sites is guessed at random. It shows what happens when no intelligence

is used in guessing.

• BestProxy: It uses the Kendall’s Tau method to find actual pairwise

(spatial) correlations between PoIs and predicts missing state based on

the state of the best neighbor (i.e., the PoI that has the largest correlation

with the one being predicted). It is an example of exploiting local spatial

correlations, where state of an individual node is predicted from state of
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another (well-chosen) individual node.

• Majority: It computes the majority state of all known PoIs and predicts

all missing state to be the same as the majority state. This heuristic is

another example of exploiting spatial correlations. It lies at the other

end of the spectrum from BestProxy, in that it exploits a global notion of

spatial correlations, where state of an individual node is predicted from

global state.

• LastKnownState: It explores temporal correlations among PoI sites.

Namely, the predicted state today is set equal to the last known state.

• ARIMA: This, in principle, is one of the most general forecasting meth-

ods for time series data that assumes an underlying non-stationary pro-

cess [36].

Note that, we include Random to understand the baseline performance of a

prediction algorithm that has no intelligence. Best Proxy, and Majority are

different versions of algorithms that exploit spatial correlations. LastKnown-

State is a simple way of exploiting temporal correlations. ARIMA is a state

of the art forecasting method. It is included to illustrate the inefficiency of

such methods when training data is minimal. The performance of the above

baselines is discussed next.

2.2 New York City Crisis

The dataset used here is the New York City crisis after 2012 US Hurricane

Sandy. In November 2012 [38], Hurricane Sandy made landfall in New York

City. It was the second-costliest hurricane in United States history (surpassed

only by hurricane Katrina) and the deadliest in 2012. The hurricane caused

wide-spread shortage of gas, food, and medical supplies as gas stations, phar-

macies and (grocery) retail shops were forced to close. The shortage lasted
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about a month. Recovery efforts were interrupted by subsequent events, hence

triggering alternating relapse and recovery patterns.

The daily availability of gas, food, and medical supplies was documented

by the All Hazard Consortium (AHC) [39], which is a state-sanctioned non-

profit organization focused on homeland security, emergency management, and

business continuity issues in the mid-Atlantic and northeast regions of the

United States. Data traces1 were collected in order to help identify locations of

fuel, food, hotels and pharmacies that may be open in specific geographic areas

to support government and/or private sector planning and response activities.

The data covered states including West Virginia, Virginia, Pennsylvania, New

York, New Jersey, Maryland, and District of Columbia. The information was

updated daily (i.e., one observation per day for each gas station, pharmacy,

or grocery shop). To give an example of the extent of damage, Figure 2.1(a)

shows the distribution of the percentage of time that each of 300+ affected

gas stations in the New York area was unavailable during the first month

following the hurricane. We can see that 40 gas stations were not available for

more than 1 week and some were out for almost the whole month. Similarly,

Figure 2.1(b) shows the distribution of outage for affected food stores and

Figure 2.1(c) shows the distribution of outage for affected pharmacies.

Figure 2.2(a) shows the percentage of available gas stations in each cycle. It

is clear that there is a disruptive change occurred in the 7th cycle (start from

0). Similar trends are observed for pharmacy and food supply, as shown in

Figure 2.2(c) and Figure 2.2(b), respectively.

2.3 Failure of Individual Baselines

With these PoI sites and input data as ground truth, we evaluate the baselines

described. The metrics we use are accuracy of inference and amount of data

needed. We break time into cycles as discussed earlier. We set each cycle to

1Available at: http://www.ahcusa.org/hurricane-Sandy-assistance.htm
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(a) Distribution of gas outages (b) Distribution of food outages

(c) Distribution of pharmacy outages

Figure 2.1: Distribution of public services outages
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(a) Gas station recovery progress (b) Food supply recovery progress

(c) Pharmacy recovery progress

Figure 2.2: Recovery progress of public services
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a day to coincide with the AHC trace. We then plot the performance of the

above baselines when a configurable amount of today’s data is available (in

addition to all historic data since the beginning of the hurricane).

We evaluate the solutions on November 3rd, and November 8th. November

8th corresponds to a period of disruptive change due to a second snow storm

that hit after Sandy, causing massive temporary relapse of recovery efforts due

to new power outages, followed by a quick state restoration to the previous

recovery profile. November 3rd is an example of a period of little change,

when damage was incurred but recovery efforts have not yet been effective.

The same trend was observed for all datasets we have, namely, gas, pharmacy,

and food.

Figure 2.3, Figure 2.4, and 2.5 plot the prediction error with standard devi-

ation shown as error bars in availability of gas stations, food (grocery shops),

and pharmacies, respectively. In each figure, sub-figures (a) and (b) refer to

November 3rd and November 8th, respectively.

The reader is reminded that we assume that, on a given day, one knows

the status of only a fraction of PoIs (where the status refers to whether they

are open or closed). The purpose is to extrapolate this data and find out the

status of the remaining ones. The horizontal axis in the aforementioned figures

varies the percentage of PoIs whose status is known on the indicated day from

5% to 50%. To eliminate bias that may result from knowing the status of

specific PoIs, each point (corresponding to a specific percentage of PoIs whose

status is known) is an average of 50 different experiments. In each experiment,

a different random set of PoIs is selected as known (adding up to the required

percentage). The results shown are the average of the 50 experiments.

Consider Figure 2.3-a and Figure 2.3-b, that illustrate the overall prediction

error rate for gas availability on November 3rd and 8th, respectively, as a

function of the percentage of PoIs whose status is known that day. On the

vertical axis, the performance of baselines is compared.

Figure 2.4-a and Figure 2.4-b similarly compare the performance of the
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(a) Error rate on November 3rd. (b) Error rate on November 8th.

Figure 2.3: Comparing baselines to predict gas availability after Sandy

(a) Error rate on November 3rd (b) Error rate on November 8th

Figure 2.4: Comparing baselines to predict food availability after Sandy

(a) Error rate on November 3rd (b) Error rate on November 8th

Figure 2.5: Comparing baselines to predict pharmacy availability after Sandy
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baselines in predicting food availability on November 3rd and 8th. Figure 2.5-

a and Figure 2.5-b compare the performance of the baselines in predicting

pharmacy availability on November 3rd and 8th.

It can be seen that no single baseline does consistently well in all figures.

Specifically, LastKnownState does remarkably well on November 3rd, when

the change was minimal from the day before. This is especially true for gas

and food (grocery) availability prediction, where it beats the next heuristic

by a wide margin. However, BestProxy does better on November 8th, when a

second snow storm hits and its aftermath causes a lot of perturbation. More

specifically, the error rate of BestProxy is around 8% lower than LastKnown-

State on November 8th. BestProxy clearly outperforms LastKnownState that

day for gas and pharmacy availability prediction, and ties for food availability

prediction. Majority does poorly on November 3rd and better (but not best)

on November 8th. Random does worse. Very interestingly, ARIMA does only

marginally better than Random and much worse than the best heuristics on

either day. This is attributed to the lack of sufficient training data, and the

challenges caused by disruptive changes in the time-series. Also notice that,

the standard deviations for all baseline methods are quite small compared to

the error rates, which indicates that which PoIs are known does not have a

significant effect on the performance. This is quite important for at least two

reasons. One is in practice we cannot predict which points of interest we will

know at any certain time. The other is that this indicates all these baseline

methods can be used as building blocks of some more complex algorithms, for

example, the one we will show in the following chapter.

The results confirm that algorithms that do spatial extrapolation (such as

BestProxy) are better on days of more change, whereas algorithms that do

temporal extrapolation (such as LastKnownState) are better on days of less

change. The results also suggest that, due to lack of training data, complex

prediction models that normally do well, such as ARIMA, are ineffective. We

leverage these observations to guide the design of new algorithms that con-
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sistently offers the best performance. The algorithms should appropriately

adapt to periods of change versus periods of calm, that is, taking both spatial

and temporal factors into account. Attempts to design such algorithms are

described in the next chapter.
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CHAPTER 3

HYBRID ALGORITHMS

3.1 First Attempt: Spatial-temporal Statistical Model

First, it is natural to think of building a statistical model that takes both

spatial and temporal correlation into account.

3.1.1 The Model

The inference component takes partial state of PoI sites in current cycle, his-

torical data of PoI sites in previous cycles, and the inference relationships

learned so far as inputs. It then interpolates the current state of missing PoI

sites. The relationship between PoI sites and their neighboring sites defines

the joint distribution of the state of these sites. Therefore, by feeding the

historical data into the joint distribution, this relationship can be estimated

and then the missing PoI sites in the current cycle are interpolated using this

estimated relationship.

Let Xij be the status of PoI j at cycle i. Xij is binary. Taking the gas

station application as an example, Xij = 1 indicates that gas station j has

gas in cycle i, and Xij = 0 means no gas. The conditional distribution of Xij

based on its neighbors is modeled by a logistic regression,

P (Xij = 1|Nj) =
exp(z′ijβ + ρ

∑
k∈Nj

Xik)

1 + exp(z′ijβ + ρ
∑

k∈Ni
Xik)

(3.1)

where zij is a collection of covariates that are related to the status of PoI j

at cycle i, and Nj is a collection of sites that are neighbors of PoI j. In this
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model, β measures the impact of the covariates and ρ measures the between-

site dependence.

By the Hammersley-Clifford Theorem [40], the specified conditional distri-

bution well defines the joint distribution

P (Xij, j = 1, ..., N |(β, ρ)) (3.2)

= ci(β, ρ)−1 exp(
N∑
j=1

Xijz
′
ijβ +

1

2

N∑
j=1

∑
k∈Nj

XijXik) (3.3)

where

ci(β, ρ) =
∑
x

exp(
N∑
j=1

xijz
′
ijβ +

1

2

N∑
j=1

∑
k∈Nj

xijxik) (3.4)

The constant c(β, ρ) ensures a proper probability distribution. In case that

some sites have missing values, for example, at time i, the sites with id in set

si have missing status. Here, we use Xi,si to denote the possible status of sites

si and Xi,sci
to denote the status of the observed sites. Then we immediately

have the joint distribution of Xi,sci
,

P (Xi,sci
) (3.5)

= ci(β, ρ)−1
∑
xi,sc

i

exp(
N∑
j=1

xijz
′
ijβ +

1

2

N∑
j=1

∑
k∈Nj

xijxik) (3.6)

= ci(β, ρ)−1bi(β, ρ,Xi,sci
) (3.7)

The parameters β and ρ can be estimated by maximum likelihood estimator

(MLE). To simplify the notations, we let Xi = (Xi,si , Xi,sci
)′ be the observed

data at cycle i. Therefore we have the log likelihood,

logL(X, β, ρ) =
∑
i

(log bi(β, ρ,Xi,sci
)− log ci(β, ρ)) (3.8)
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One challenge introduced by this approach is that, the two constants, c(β, ρ)

are hard to compute even with a moderately large N and the computation of

b(β, ρ,Xi,sci
) depends on the number of missing values. Therefore, instead

of computing the exact c(β, ρ) and b(β, ρ,Xi,sci
), we estimate the parameters

via the Monte Carlo maximum likelihood estimator (MCMLE) [41], where

ci(β, ρ) and bi(β, ρ,Xi,sCi
) are approximated by the Monte Carlo Markov Chain

(MCMC) method [42]. Note that,

ci(β1, ρ1)

ci(β, ρ)
(3.9)

= ci(β, ρ)−1
∑
x

exp(f(x, β,ρ)) (3.10)

= Ex|(β,ρ)
exp(f(x, β1, ρ1))

exp(f(x, β, ρ))
(3.11)

where Ex|(β,ρ) means the expectation is over x based on parameter (β, ρ)

and

f(x, β, ρ) =
N∑
j=1

xijz
′
ijβ +

1

2

N∑
j=1

∑
k∈Nj

xijxik

Here, (β1, ρ1) is the parameter values in the optimization routine from the

previous iteration. Then c(β, ρ)−1c(β1, ρ1) is approximated by

1

M

M∑
r=1

exp(f(x(r), β1, ρ1)− f(x(r), β, ρ)) (3.12)

where x(1), ..., x(M) are generated from distribution

P (xi|(β, ρ)). Here (β1, ρ1) is used in the approximation to improve the ac-

curacy by importance sampling. Similarly, if a number of sites have missing

values,

bi(β, ρ,Xi,sci
)−1bi(β1, ρ1, Xi,sci

) is approximated by

1

M

M∑
r=1

exp(f(x(r), β1, ρ1)− f(x(r), β, ρ)) (3.13)
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where x(1), ..., x(M) are generated from conditional distribution P (xi|(β, ρ))

given Xi,sci
.

The MCMC process can be implemented using Gibbs sampler [41]. At each

iteration, a Monte Carlo sample is generated by the conditional distribution

of each individual PoI site given their neighbors’ status from the previous

iteration. To estimate ci(β, ρ), the status of all PoI sites is updated at each

iteration. To estimate bi(β, ρ), the status of known PoI sites is fixed and only

the status of the unknown PoI sites is updated.

When the majority of historical data is available, β and ρ can also be esti-

mated using a pseudo-likelihood (PL) approach [43] to accelerate the inference

process. Instead of using the exact likelihood, the parameters (β, ρ) are esti-

mated by maximizing the pseudo likelihood,

∏
i

∏
j

exp(z′ijβ + ρ
∑

k∈Nj
Xik)

1 + exp(z′ijβ + ρ
∑

k∈Ni
Xik)

The PL approach bypasses the estimate of ci(β, ρ), and hence is computation-

ally much more efficient.

The parameters β and ρ will be estimated with cumulative data and as the

data cumulates, the estimates β̂ and ρ̂ become more robust. If at a new time

point, only a subset of full stations can be observed, the status of other stations

can be estimated using the Gibbs sampler based α̂ and β̂, similar as estimating

bi(β, ρ). Then the estimated probability that the status of jth station is 1 is

the mean of the MCMC samples at jth station, denoted by p̂j. Our proposed

approach can also provide the variability for interpolated probabilities, which

intuitively tells how reliable the results are. The uncertainty of these estimates

can be estimated using a parametric bootstrap as follows:

1. generate simulated data using β̂ and ρ̂

2. estimate β and ρ based on the simulated data. Denote these estimators

as β̃(i) and ρ̃(i).
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3. estimate the probability of stations of the unknown stations using β̃ and

ρ̃, denoted by p̃
(i)
j

4. repeat step (1)-(3) B times

Then the variance of p̂j can be estimated by,

var(p̂j) =
1

B − 1

B∑
i=1

(p̃
(i)
j − p̂j)2

and a 100× (1−α)% confidence interval for pj is (p̃j(α/2), p̃j(1−α/2)), where

p̃j(q) is the q percentile of p̃
(1)
j , ..., p̃

(B)
j .

To summarize, we use a spatial logistic model to characterize the relationship

between each PoI site and its neighboring sites. This relationship is estimated

using MCMLE based on historical data. A MCMC sampling procedure is used

to estimate the normalization parameters while deriving the MCMLE. Then

the distribution of each missing PoI site is estimated using these MCMLE.

Finally, we also use a bootstrap procedure to derive the uncertainty in our

estimated probabilities.

3.1.2 Result

We implement this model in R and apply it to the Sandy Gas dataset we have.

However, the parameters used in the model cannot be learned until cycle 10.

And similar results are produced in the food and pharmacy datasets. This

again proves that due to lack of training data, complex prediction models that

normally do well.

That spatial extrapolation heuristics alone and temporal extrapolation heuris-

tics alone do very well in some days, though not in all days, implies that

switching between the two might be able to achieve consistently good perfor-

mance. Note that, we do not aim to outperform any one heuristic at all times.

Rather, our aim is to match consistently the best performing heuristic at any
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time, even though that heuristic changes, depending on circumstances. Such

an algorithm is described next.

3.2 Second Attempt: A Hybrid Prediction Algorithm

The above study leads to two insights that help develop an algorithm for data

extrapolation in disaster response scenarios:

• Insight #1: The first insight is that our algorithm should be able to

switch between spatial and temporal prediction modes. On days with

little change, LastKnownState does really well and should be the default

prediction. On days where change is abundant, spatial correlations are

more appropriate to use for prediction.

• Insight #2: The second insight lies in refining the notion of spatial

correlations to be used for prediction. Since our default prediction is

LastKnownState (i.e., no change), we need spatial correlations only to

predict change. Hence, rather than using Kendall’s Tau correlation to

find a good proxy, we seek a proxy that helps predict change only. In

other words, we seek a proxy whose state changes (and not overall state)

are most correlated with those of the target to be predicted.

The second insight is intuitive in retrospect. Just because two gas stations

were out of gas or out of power for a long time, does not mean their state

changes are correlated. What’s more indicative is whether or not they lost gas

or power at the same time. The latter gives a better indication that if gas or

power is restored to one, it may also be restored to the other.

More concretely, consider two PoIs, x and y, that have state (x1, x2, ..., xn)

and (y1, y2, ..., yn). Let xn be unknown (i.e., it has not yet been delivered).

Let us define the change time series as (dx1, dx2, ..., dxn) and (dy1, dy2, ..., dyn),

where dxi = xi − xi−1 and dyi = yi − yi−1 (we assume that x0 = 1 and y0 = 1

(everything was working before the disaster). To predict xn (or equivalently
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predict the change dxn), we would like to find a proxy y, whose current status

is known and whose changes are maximally correlated with changes in x. We

can then use dyn to predict dxn and hence predict xn. To do so, we compute

P (change in x|same change in y) for all gas stations y whose current state is

known. This probability can be approximated by:

P (change in x|same change in y) =
count(dxi = dyi)

count(dyi 6= 0)
(3.14)

where count() is a function that counts the number of times the condition in

its argument was true for 1 ≤ i ≤ n−1. The best proxy for (predicting change

in) x becomes the y that maximizes the above probability. Let us call such a

y, ybest. Let the resulting probability, P (change in x|same change in ybest) be

denoted P best. Using insight #1 above, the sought algorithm is as follows:

Algorithm 1 Enhanced Best Proxy (x, n)

1: IF ( P best ≥ threshold T )

2: use SpatialPrediction

3: ELSE

4: use LastKnownState (i.e., xn = xn−1)

5:

6: SpatialPrediction

7: IF ((dybestn is not zero) AND (ybestn−1 = xn−1))

8: THEN xn = ybestn

9: ELSE use LastKnownState (i.e., xn = xn−1)

Lines 1 to 4 indicate that the algorithm alternates between spatial and

temporal prediction depending on whether the best found proxy for the target

x is sufficiently good (i.e., better than a threshold, T ). When spatial prediction

is used, we predict that state of x will change (i) if it was the same as the state

of the best proxy, and (ii) if the state of that proxy changed. Otherwise, we

predict no change. Note that, it is possible that there is no best proxy for

a certain PoI. When choosing the best proxy, we require one PoI to have at
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least a certain number of changes in its own history so far. To see why this

is necessary, imagine we are now considering choosing PoI A as B’s proxy,

however, A has only 1 state change in its history and the change happened

in the same cycle as B. In this case, A’s P score will be 1, which is always

larger than or equal to T and all other proxy candidates. Therefore, A will

be selected as B’s best proxy, although A is actually not a strong candidate,

especially when we have other candidates have scores, for example, 9/10.

It remains to derive the optimal value of the threshold, T . Let M denote

the fraction of PoIs that had state = 1 in the last cycle. Hence, 1 − M is

the fraction of PoIs with state = 0. Furthermore, let F denote the fraction of

PoIs (that we are aware of so far) that change state in the current cycle. The

optimal value of T is one that minimizes misprediction probability.

The above algorithm mispredicts either (i) when spatial prediction is used

and it is wrong, or (ii) when temporal (LastKnownState) prediction is used

and it is wrong. Hence, misprediction probability, Pm, is equal to the sum of

spatial misprediction probability, Psm, and temporal misprediction probability,

Ptm. Below, we compute these probabilities.

Spatial Misprediction: From line 7 of Algorithm 1, spatial misprediction

occurs when (i) P best exceeds the threshold T and (ii) the best proxy has the

same state as x in the last cycle, yet (iii) they have different states in the

current cycle. Note that, the first two conditions are what invokes spatial

prediction. The third condition causes that prediction to err.

Clearly, the probability of the first condition, P (P best > T ), decreases with

increasing threshold, T . Let us approximate P (P best > T ) = 1 − T . The

probability of the second condition is simply 1 − 2M(1 −M). Since P best is

the probability of a correlated change in x (given a change in the proxy), the

probability of the third condition (a misprediction) is approximately 1−P best.

We know that P best > T . Assuming that P best could be uniformly anywhere

above T , we can replace 1 − P best by (1 − T )/2. The spatial misprediction

probability is then the product of probabilities of the three conditions above,
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leading to the expression:

Psm = (1− T )[1− 2M(1−M)](1− T )/2 (3.15)

Temporal misprediction occurs when the algorithm resorts to temporal pre-

diction and is wrong. According to the algorithm, temporal (LastKnownState)

prediction occurs when (i) P best exceeds the threshold T , but (ii) the best proxy

does not have the same state as x in the last cycle, or when (iii) P best is less

than the threshold T . In either case, a misprediction occurs if the state of

x changes (hence contradicting LastKnownState). The latter probability can

be approximated by F , the fraction of nodes we know of that changed state

today. Hence:

Ptm = (1− T )[2M(1−M)]F (3.16)

+ [1− (1− T )]F

Recall that misprediction probability, Pm, is the sum of Psm and Ptm. Hence,

from Equation (3.15) and Equation (3.16), we get:

Pm = (1− T )[1− 2M(1−M)](1− T )/2 (3.17)

+ (1− T )[2M(1−M)]F

+ [1− (1− T )]F

The optimal threshold, T , is one that minimizes the above probability. The

equation is a quadratic function of T . Because the coefficient of T 2 is [1 −

2M(1−M)], which is always positive, the optimal threshold can be found by

setting the derivative of the above function to zero and enforcing the natural

constraints on values of probability (that they are between 0 and 1). In other

words:
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dPm
dT

= −(1− T )[1− 2M(1−M)] (3.18)

− [2M(1−M)]F

+ F = 0

subject to the constraint 0 ≤ T ≤ 1. After some rearranging and algebraic

manipulation, we get:

T = 1− F (3.19)

Unfortunately, we do not know the probability of change, F, in advance. In

the absence of further knowledge, we can design for F = 0.5. In this case, T

= 0.5.

Next, we will evaluate this algorithm on the Sandy datasets.
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CHAPTER 4

EVALUATION

In this chapter, we evaluate the hybrid approach presented above versus the

baselines described earlier in Section 2.1 (i.e., Random, LastKnownState, Best-

Proxy, Majority, and ARIMA). For ground truth, we use the same data set,

featuring the daily status of gas stations, pharmacies, and food stores in the

aftermath of Hurricane Sandy.

4.1 Evaluating Hybrid Algorithm on Period of Calm

and Change

First, as before, we opt to predict the status of these PoIs on November 3rd and

8th, as examples of a day of relative calm and a day of significant change. We

do so by varying the fraction of PoIs whose state is revealed to the predictor

on a given day, and attemtping to predict the rest using each of the compared

approaches.

Figures 4.1-a and 4.1-b illustrate the accuracy of prediction of gas avail-

ability on November 3rd and 8th, respectively. The horizontal axis shows the

percentage of PoIs whose state is known on the given day. As before, each

point is the average of 50 experiments featuring different random selections of

stations whose status is known. On the vertical axis, two curves are compared.

One is the hybrid extrapolation algorithm developed in this thesis. The second

is the best of the predictions of the five baselines described in Section 2.1. It

can be seen that the new algorithm consistently matches or outperforms the

best of all others.
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(a) Error rate on November 3rd. (b) Error rate on November 8th.

Figure 4.1: Predicting gas availability after Sandy

(a) Error rate on November 3rd (b) Error rate on November 8th

Figure 4.2: Predicting food availability after Sandy

(a) Error rate on November 3rd (b) Error rate on November 8th

Figure 4.3: Predicting pharmacy availability after Sandy
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Specifically, on November 3rd, the hybrid approach matches the best base-

line. This is because it recognizes that change is small, and opts to use Last-

KnownState, which happens to be the best under the circumstances, as we

have seen in Figure 2.3-a). On November 8th, it outperforms the best base-

line, which tends to be BestProxy as we have seen in Figure 2.3-b. This is

because of the new definition of correlation that it uses, which focuses only on

changes, per Insight #2 discussed earlier.

Figures 4.2-a and 4.2-b repeat the experiment on the food data set. They

illustrate the accuracy of prediction of food availability on November 3rd and

8th, respectively. A similar trend is seen, where the hybrid matches the best

baseline on November 3rd and outperforms the best baseline on November

8th. Figures 4.3-a and 4.3-b illustrate the same for pharmacies. Further ex-

periments (not shown) demonstrated that the results are largely insensitive to

the choice of threshold, T . The superior results presented above can therefore

be robustly achieved.

The experimental results presented in this section show that the hybrid

approach is as good as or better than the best of all compared algorithms on

both November 3rd and November 8th. These two days were selected because

of their representative nature, as they exemplified days of calm and days of

change, respectively.

4.2 Evaluating Hybrid Algorithm on All Cycles

Next, to show that the above results hold true for other days as well, we com-

pute the worst case overage amount by which the prediction error of the hybrid

approach, as well as the prediction error of each of the five individual baselines,

exceeds the best of the five baselines. Hence, an algorithm that behaves as

the best of the baselines under all circumstances will have a worst-case over-

age of zero. Algorithms that are not consistently the best will have a higher

worst-case overage. The results are shown in Figure 4.4, where Figure 4.4-a,
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Figure 4.4-b, and Figure 4.4-c, are for the case of gas, food, and pharmacy

availability prediction, respectively.

In Figure 4.4, the worst-case overage, for each algorithm, is computed by

finding the maximum error overage computed over 10 days of the recovery

phase (from November 3rd through November 12th). For statistical signifi-

cance, the performance of each heuristic on each day is first averaged over 50

experiments before the overage is calculated. Consistently with other figures,

the horizontal axis shows the percentage of PoIs whose status is known. It is

seen that the new Hybrid algorithm has a worst-case overage that is roughly

zero. In other words, it never does worse than the best solution over all days

under consideration.

The figure shows that the overage of other baselines is higher. Their relative

prediction (in)accuracy follows roughly the same order in the three data sets.

Specifically, LastKnownState is generally the next best algorithm to ours. In

the aftermath of disasters, failures take long to fix, so the state changes gradu-

ally, making LastKnownState a good predictor most of the time. Errors occur

when aftershocks hit or major repairs are made, and are related to the size

of such perturbations. BestProxy comes next. Its accuracy depends on how

spatially well-correlated the PoI states are. No significant difference is seen

between its accuracy in gas and food availability prediction, but pharmacy

prediction is better. This can be attributed to the size of the pharmacy data

set, shown on the horisontal axis in Figure 2.1(c). Namely, the number of

pharmacies is the largest. Hence, the odds of finding a good proxy are better

than with the other data sets. Majority comes next after BestProxy. In sce-

narios where restoration is quicker, PoIs converge to the majority state faster,

and the predictor becomes more accurate. Comparing Figure 2.1(a), 2.1(b),

and 2.1(c), we can see that pharmacies and gas are restored the fastest, fol-

lowed by food, which roughly corresponds to how well Majority works in the

three cases. Finally, ARIMA and Random consistently do next-to-worst and

worst, respectively, showing little variation acorss the data sets. This is be-
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(a) Worst-case overage in gas availability pre-
diction error.

(b) Worst-case overage in food availability pre-
diction error.

(c) Worst-case overage in pharmacy availability
prediction error.

Figure 4.4: Worst-case prediction error overage of individual solutions
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cause their worst-case behavior is random (for ARIMA, it occurs in the very

early days), and hence not tightly related to the properties of input data.

In conclusion, Figure 4.4 shows that while some prediction algorithms do

best under some circumstances, no baseline does consistently well under all

circumstances. The contribution of the new approach lies indeed in proposing a

method that adapts intelligently between time-based extrapolation and spatial

extrapolation, matching or outperforming the best baseline solution at all

times.
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CHAPTER 5

SYSTEM INTERFACE

We built a working system to demonstrate the functionality presented in the

previous chapters. The system architecture is shown in Figure 5.1.

Figure 5.1: System Architecture

There are three major parts, including:

• Data Aggregation Server: This is the server that collects data and gen-

erates the input for the data extrapolation engine.

• Data Extrapolation Engine: This is the core of the system and is de-

scribed in depth in the previous chapters.

• Web Interface: As displayed in Figure 5.2, different colors are used to

describe the states of PoIs.
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Figure 5.2: Web Interface
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CHAPTER 6

RELATED WORK

6.1 Aggregating and Cleaning-up Data

Our work focuses on a new problem in participatory sensing. Namely, the prob-

lem of automatically filling in the “blind spots” in reported observations. Past

research on participatory sensing describes how to aggregate and clean-up col-

lected data. A survey on analytic challenges in the field recently appeared [44].

For instance, CenWits [45] proposes a participatory sensor network to rescue

hikers in emergency situations. The idea is to use the concept of witnesses to

convey a subject’s movement and location information to the outside world.

BikeNet [46] presents a bikers sensor network for sharing cycling related data

and mapping the cyclist experience. The Nericell project [47] presents a sys-

tem that performs rich sensing using smartphones that users carry with them

in normal course, to monitor road and traffic conditions. The GreenGPS

system [48] provides a service that computes fuel-efficient routes for vehicles

between arbitrary end-points, by exploiting vehicular sensor measurements

available through the On Board Diagnostic (OBD-II) interface of the car and

GPS sensors on smart phones. SignalGuru [49] is a software service that re-

lies solely on a collection of mobile phones to detect and predict the traffic

signal schedule, producing a Green Light Optimal Speed Advisory (GLOSA).

CarTel is a distributed mobile sensor computing system [50], upon which road

sensing application can build. Each CarTel node is comprised of sensing unit

and data processing unit and relies on opportunistic wireless connectivity to

the Internet or to its peers to communicate with the central data aggregating
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portal. This thesis complements that past work by looking at the important

problem of how to fill in the data gaps. This unique challenge comes from

the timeliness constraints in disaster response applications. In the absence of

urgency, one can eventually fill in the data gaps by sending (or waiting for)

more observers. Hence, there is less need to “guess” them. However, in disas-

ter recovery scenarios, there is no time to wait, so the service provider needs

to fill in the gaps immediately as best one can.

6.2 Prediction-based Data Collection in Sensor

Networks

Our work is also related to the large body of literature focusing on prediction-

based data collection in sensor networks. Le Borgne et al. [51] apply time-series

prediction technology to reduce the communication effort while guaranteeing

user-specified accuracy requirements on each sensor nodes in wireless sensor

networks. Tulone et al. [52] propose a sensor network comprising normal sensor

nodes and sink nodes. Sensor nodes transmit their local autoregressive models

to sink node, and then sink node uses the models to predict sensor values

without communicating with sensors directly. Li et al. [53] presents a similar

system, in which sensors check sensed data with predicted values and transmit

only deviations from the predication back to the data gathering node. The

work by Silberstein et al. [54] points out that one critical weakness of sending

changes alone is message failure, which is not negligible in sensor networks. To

overcome that, they provide a solution which incorporates the knowledge of the

suppression scheme and application-level redundancy in Bayesian inference.

Krause et al. [55] develop an algorithm called pSPIEL, which is capable of

measuring the predictive quality of sensor locations and then selecting sensor

placements at informative and communication-efficient locations. All those

researches apply similar prediction technology to ours but focus on improving

the communication efficiency while maximizing the quality of collected data.
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6.3 Sensor Selection Algorithm Paired with Inference

Approach

Our system design is related to state of the art sensor selection algorithms

that are paired with inference approaches for missing or incomplete data. For

example, Aggarwal et al. formulate the problem of sensor selection, when

redundancy relationships between sensors can be expressed through an infor-

mation network by using external linkage information. They present methods

for efficient sensor selection by using regression models to estimate predictabil-

ity and redundancy [32]. The problem is extended to dynamic sensor selection

in data streams [56]. Similarly, PhotoNet [57] provides a picture-collection ser-

vice for disaster response applications that maximizes situation-awareness. In

the aftermaths of disasters, communication infrastructures may not be func-

tional. Under such circumstances, a protocol assigning priorities to images

for forwarding and replacement is helpful. Their work designs such a protocol

based on the similarity among images. Kobayashi et al. propose a sensor se-

lection method with fuzzy inference for sensor fusion in robot applications [34].

However, this existing work assumes that correlations between data items are

known in advance. These correlations are the basis for sensor selection. Also,

they assume a stationary process. Biswas et al. proposed a Bayesian infer-

ence approach and applied it on a simulated problem of determining whether

a friendly agent is surrounded by enemy agents [33]. However, their approach

does not work for binary PoI information due to the logistic regression overflow

problem. Our work complements these work in that we do not require priori

knowledge of the correlations between points of interest. Such knowledge is

computed on the fly.
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CHAPTER 7

CONCLUSIONS

We presented the design, implementation, and evaluation of an inference-based

algorithms for data extrapolation in participatory sensing systems for disaster

response applications. It was shown to be capable of accurately predicting the

status of PoI sites, when collected data is incomplete. The algorithm exploits

correlations among state changes in PoI sites and changes adaptively between

temporal and spatial extrapolation. Our experimental results via a real-world

disaster response application demonstrate that our algorithm is consistently

the best of all compared in terms of prediction accuracy, whereas others may

suffer non-trivial degradation. The new algorithm is currently being adapted

to more complex prediction tasks (e.g., non-binary variables) and evaluated

on new data sets.
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