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ABSTRACT 
 
 
Recently restoration ecology and land management have found new focus and direction by emphasizing 

the value of ecosystem services to society. Resource management decisions frequently involve choices 

that reflect tradeoffs among ecosystem services. Tradeoffs occur when one service changes at the 

expense of another. These tradeoffs are not always explicit, and can exist without our knowledge. As a 

consequence, land managers may make decisions that diminish the value of some services while 

enhancing the value of others. Wetlands provide many ecosystem services, such as water quality 

maintenance, carbon storage, flood water abatement, and biodiversity support. Current compensatory 

wetland mitigation policy relies on the assumption that wetlands can be restored to provide a full suite 

of services. The goal of this study was to determine what tradeoffs exist among ecosystem services in 

restored wetlands, and identify the abiotic and biotic drivers underlying these tradeoffs. Thirty 

compensatory mitigation wetlands from across Illinois were included in this study. We measured 

denitrification potential, soil organic matter decomposition, aboveground herbaceous biomass, and soil 

organic content as proxies for nutrient-storage and removal services. Additionally, flood water storage 

potential was calculated using detailed LiDAR and topographic data. Since wetlands provide valuable 

biodiversity support, we determined plant, anuran, and avian diversity for each site. We found a clear 

tradeoff between biodiversity support and nutrient-cycling processes. Additionally, we found a positive 

relationship among the biodiversity indicators, as well as positive relationship between denitrification 

potential and flood water storage potential. Our findings indicate that designing wetlands to maximize 

nutrient storage and removal may likely come at the expense of biodiversity. Restoration policy makers 

and practitioners should consider these tradeoffs when planning wetland restoration and conservation 

at a watershed or landscape scale. Given these tradeoffs, it is unrealistic to expect all services to be 

maximized; therefore, restoration practitioners should prioritize services depending upon local site and 

watershed context. 
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Introduction  

Wetland ecosystems are valued for the many benefits they provide society such as water 

filtration, carbon storage, and flood abatement. Additionally, they provide significant plant and animal 

biodiversity support (MEA 2005, Zedler 2003, Brinson and Malvarez 2002, Mensing et al. 1998, Findlay 

and Houlahan 1997). Several states, including Illinois, have lost over 90% of their original wetlands since 

the eighteenth century (Dahl 1990). Today, agricultural land use dominates the Midwestern United 

States; in fact, the land-cover across some watersheds in Illinois is 90-95% corn and soybean (David et al. 

2010). The rampant drainage of wetlands has led to the widespread loss of the benefits they provide to 

society (Fennessy and Craft 2011, Zedler 2003, Turner et al. 2001, NRC 2001). Additionally, the alteration 

of surface hydrology through tile drainage and urban development has degraded many remaining 

wetlands, further impairing the benefits they provide (Fennessy and Craft 2011). 

Concern over the rapid loss of wetlands, and an increased understanding of their value to 

society led to the creation of federal and state laws meant to counteract pervasive dredging and filling 

(Hough and Robertson 2008). Under Section 404 of the Clean Water Act (CWA), the federal government 

requires that “unavoidable” impacts on wetlands be compensated for by the creation or restoration of 

other wetlands. This process is known as compensatory wetland mitigation (Hough and Robertson 

2008). Concurrently with the establishment of mitigation requirements, the federal government 

adopted a national goal of “no-net-loss” of both wetland area and functions (NRC 2001, NWPF 1987). 

The no-net-loss policy goal is meant to ensure that wetland mitigation replaces both the physical area of 

wetlands lost, as well as the associated ecosystem functions. Encapsulated within this goal is recognition 

of the inherent value of wetlands to society. However, research over the past decade indicates that in 

many cases mitigation leads to the creation of low-quality wetlands (Gebo and Brooks 2012, Moreno-

Mateos et al. 2012, Stefanik and Mitsch 2012, Hossler et al. 2011, Matthews and Spyreas 2010, NRC 

2001, Zedler and Callaway 1999). Current compensatory mitigation policy relies on the assumption that 
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wetlands can be restored to provide a whole suite of services. Similarly, the restoration of ecosystem 

services has become a major goal for many restoration projects.   

Since the landmark work by Costanza et al. (1998) brought the concept of ecosystem services to 

the forefront of ecology, policy, and management, researchers have sought to expand our 

understanding of the benefits provided by nature (Costanza et al. 2008, Naidoo et al. 2008, MEA 2005, 

Woodward and Wui 2001). Restoration ecology may have found new focus and direction by emphasizing 

the importance of ecosystem services (Jackson and Hobbs 2009), however before the concept can be 

effectively applied to management and practice, it is necessary to first clearly define the term (Jax et al. 

2013, Wallace 2007).  

Many different terms and definitions have been used interchangeably in the literature, 

conflating ecosystem services with ecosystem functions, processes, or ecosystem structure (Wallace 

2007, de Groot et al. 2002). Ecosystem processes and ecosystem structure are the means to attaining 

services, but are not the services themselves (Wallace 2007). For example, denitrification is not an 

ecosystem service per se, but it is a process that contributes to a service (water filtration and water 

quality control).). By measuring the relevant ecosystem processes and structures, it is possible to get an 

indication of the services provided by a given system (Hossler et al. 2011, Wallace 2007). In this paper 

we consider ecosystem services to be the benefits that people attain from the environment, which are 

derived from ecosystem structure and processes (Wallace 2007, MEA 2005). The ecosystem functions 

and processes measured in this study we consider to be supporting these wetland ecosystem services 

(Table 1).  

Natural resource management decisions frequently involve choices that reflect tradeoffs among 

ecosystem services.  Tradeoffs occur when one service changes at the expense of another service 

(Bennett et al. 2009). Additionally, synergies occur when two or more services simultaneously increase 

or decrease (Bennett et al. 2009). For example, managers of freshwater ecosystems face decisions that 
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result in conflicts among provisioning, regulating, supporting, and cultural services (Rodriguez et al. 

2006, MEA 2005). Water extraction from rivers and lakes for drinking, irrigation, or industry can conflict 

with services that depend upon stream flow or depth, such as fisheries maintenance (Rodriguez et al. 

2006). In a terrestrial context, logging creates extractive goods that come at the expense of recreational 

chances offered by original forest (Rose and Chapman 2003). Tradeoffs among services are not always 

explicit, they can occur unintentionally and without our knowledge (Rodriguez et al. 2006).  

Land use decisions are often based on immediate societal needs, without fully weighing the 

potential ecosystem consequences and can result in unintended ecosystem services tradeoffs (Palmer 

and Filoso 2009, DeFries et al. 2004). Ecosystem services may sometimes be linked or bundled together, 

and these bundles may respond in different or similar ways to changes in environmental pressures 

(Mitchell et al. 2013, Raudsepp-Hearne et al. 2010). Tradeoffs among ecosystem services have been 

examined in several different systems; however, previous work has primarily been done using 

simulation models and conceptual reviews (Briner et al. 2013, Maskell et al. 2013, McInnes 2013, 

Raudsepp-Hearne et al. 2010, Nelson et al. 2009, Bennett et al. 2009, Carpenter et al. 2009, Rodriguez et 

al. 2006, DeFries et al. 2004, Rose and Chapman 2003; for more details see Appendix A). Comparing 

differences and tradeoffs among ecosystem services provides  a helpful framework for land managers, 

but these conceptual models need to be tested .  

It is well established that wetlands can provide a complex suite of ecosystem services, including 

flood abatement, water quality maintenance through nutrient and sediment storage, valuable avian and 

amphibian habitat, while also supporting diverse plant communities. However, it is likely that many of 

these services occur at the expense of other services; bundles of services depend upon landscape 

context and site design (Raudsepp-Hearne et al. 2010). For example, Hansson et al. (2005) found that 

large basin surface area is strongly associated with nitrogen removal (primarily through denitrification), 

but not phosphorus retention. Additionally, they found a clear tradeoff between phosphorus retention 
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in wetlands with small deep basins and plant biodiversity. Recent research has identified the need to 

examine potential tradeoffs among water quality improvement and other ecosystem services in 

restored and created wetlands (Fennessy and Craft 2011). Uncovering these tradeoffs and the 

underlying interactions that cause tradeoffs or synergies is a crucial first step in developing effective 

policy and management using the ecosystem services concept. 

Given the widespread use of the compensatory mitigation process and other similar biodiversity 

offset programs, there is an urgent need to determine the underlying relationships among services. 

(Georgio and Turner 2012, Walker et al. 2009, Robertson 2004). Due to the inherent difficulty and 

complexity associated with ecological restoration, there may be unknown relationships among 

landscape and local abiotic and biotic factors that lead to unintended restoration outcomes with varying 

bundles of ecosystem services (Raudsepp-Hearne 2010, Petterson, and Bennett 2009).  A prerequisite to 

preventing unintended ecological consequences is to quantify potential tradeoffs between ecosystem 

responses (DeFries et al. 2004). Additionally, in order to determine how to restore the delivery of 

specific ecosystem services, it is necessary to identify the primary biotic and abiotic drivers underlying 

these tradeoffs. Assessing wetland restoration outcomes and ecosystem structure and functional 

development is necessary if we are to determine the implications of current mitigation policy and 

practices on the national no-net-loss goal.  

 

 

The objectives of this study were: 

1.) To determine the tradeoffs that exists among ecosystem services in restored 

wetlands, and the implications for mitigation policy.  

2.) Identify the abiotic and biotic factors underlying these tradeoffs in order to improve 

wetland restoration policy and practice. 
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Methods 

Study Approach 

Since the goal of this study is to examine tradeoffs among ecosystem services in restored 

wetlands, we measured ecosystem processes and indicators of ecosystem structure that are supportive 

to the delivery of important wetland ecosystem services (Table 1). To quantify the biodiversity support 

value of each wetland we measured the community composition of anuran, avian, and plant species and 

calculated diversity. To examine the floodwater abatement potential of each site, detailed topographic 

data were used to calculate the basin surface volume per area of each wetland. To further examine the 

nutrient removal-related services of these wetlands, we estimated several nutrient cycling ecosystem 

processes and components. Specifically, we measured soil organic matter content, organic matter 

decomposition rates, and aboveground herbaceous biomass, all of which directly relate to nutrient 

cycling and the release of carbon sources used for bacterial metabolism in biogeochemical processes 

such as denitrification (Fennessy et al. 2008). Additionally, denitrification enzyme assay was used to 

directly measure the denitrification potential of each wetland. 

Study Sites 

Wetlands selected for study had been restored by the Illinois Department of Transportation (IDOT) 

as mitigation for wetlands impacted in the course of road construction. Thirty mitigation wetlands 

located across Illinois were included in this study (Fig. 1 and Appendix B). Detailed information on the 

study sites can be found in Matthews et al. (2009a, 2009b) and Matthews and Spyreas (2010).   
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Fig. 1. Locations, within Illinois, of 
compensatory mitigation projects 
used in this study. 

Ecosystem Services Associated Supporting Wetland Ecosystem Functions 

Climate regulation and carbon storage Soil organic matter content 
 Herbaceous biomass 
 Soil organic matter decomposition  
 Basin morphology 

Water filtration and hydrologic regulation Denitrification potential 
 Basin morphology 

Flood water storage Basin morphology  

Biodiversity support Avian diversity 
 Anuran diversity 
 Woody plant diversity 
 Herbaceous plant diversity 

Recreation and cultural/aesthetic fulfillment Woody plant diversity 
 Herbaceous plant diversity 
 Anuran diversity 
 Avian diversity 
 Basin morphology 

 

Table 1.Wetland ecosystem services considered in this study and the variables measured as proxies 

of each service. 
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Sampling Design 

At each site, a baseline was placed on the longest axis of the wetland divided into four equal 

segments. At a random point within each segment a transect was placed perpendicular to the baseline, 

creating four transects along which sampling was conducted (Fig. 2). Along each transect, ten 0.25 m2 

plots were placed at equal distances, for a total of forty plots per wetland. All sampling was conducted 

between May and September of 2012, with the exception of the anuran call surveys, which were done 

between March and August of 2013. At two of the ten plots along each transect additional sampling was 

conducted: soil samples were collected for nutrient analysis, herbaceous biomass samples were 

collected, and light penetration was measured. Additionally, at one of these two plots along each 

transect, soil bulk density samples were collected, and organic matter decomposition was measured 

using the cotton strip assay method. For each variable, additional specific methodological details are 

provided below. 

 

 

 

 

 

 

 

 

 

 

 

Baseline transect 

 

Sampling Transects 

10 evenly spaced plots  

Fig. 2. At each site, a baseline transect was placed on the 
longest axis of the wetland. This transect was divided into 
four equal segments. At a random point within each 
segment an additional transect was placed perpendicular 
to the baseline, creating four transects along which 
sampling was conducted  
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Vegetation Sampling 

At each of the forty plots, herbaceous-layer vegetation (<1 m tall) was quantitatively sampled by 

recording every species and assigning each a cover class based on a visual estimate (<1%, 1-5%, 6-25%, 

26-50%, 51-75%, 76-98%, 96-100%). The number of woody stems taller than 1 m was recorded in a 

4x30-m belt randomly placed along each of the four transects. Stem density was averaged across each 

transect to estimate stem density for each site. For each site, Shannon diversity index was calculated for 

woody and non-woody plant species (Spellerberg and Fedor 2003). Plant species nomenclature followed 

Mohlenbrock (2002). 

Decomposition 

Since soil organic matter decomposition directly relates to nutrient cycling, carbon 

sequestration, and the release of carbon to fuel bacteria for biogeochemical processes such as 

denitrification, we measured decomposition rates at each wetland. General rates of soil organic matter 

decomposition were measured using the cotton strip assay (CSA) method (Geatz et al. 2013, Slocum et 

al. 2007, Latter and Walton 1988). The CSA method uses the decomposition of a standard cotton fabric 

as a proxy for organic matter decomposition. Decay rates are based on the loss of tensile strength over 

time compared to a reference strip.  The Fredrix brand 12-ounce artistry cotton canvas was used in this 

study, which was tested and proposed by Slocum et al. (2007) to replace the former standard Shirley 

Cotton, which has been discontinued (Mendelssohn et al. 1999).  
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At each designated plot, a strip 10 cm wide by 20 cm long, was inserted into the soil by first 

creating a pilot hole with a flat-shovel spade, and then putting the strip against the back of the shovel 

and inserting it into the hole, typically at least 8 cm deep.  The soil surface level on each strip was 

marked for reference during sample processing (Fig. 3). Fifteen reference cotton strips were inserted 

into the soil at six sites and immediately removed. Three replicate strips were inserted in one plot per 

transect, for a total of twelve strips per site. Each strip was left in the soil between 25-30 days, which we 

determined based on a pilot study to be the length of time necessary to achieve at least 50% strength 

loss. Each strip was carefully extracted from the soil by digging around the strip and gently peeling or 

pulling off the soil. In the lab, each strip was carefully washed by soaking and using a gentle stream of 

water to remove soil and debris (Latter et al. 1988). The strips were then air-dried for at least 72 hours 

and stored in a refrigerator.  Each strip was laterally cut into 4-cm depth increments (Fig. 3). Each lateral 

strip was then cut and frayed thread by thread down to the 2.5-cm X 10-cm center section of each strip  

to standardize strips and to fit them evenly into tensometer grip bits (Slocum et al. 2007). The lateral 

strips were broken using a Tinius Olsen Series 5000 UTM tensometer machine (maintained at the 

University of Illinois Department of Materials Science and Engineering teaching laboratory). Each strip 

Fig. 3. Example cotton strip 
depicting the configuration 
of lateral strips 

Cotton strip 

0-4 cm 

4-8 cm 

8-12 cm 

Soil surface 
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was placed between the tensometer grip bits so that there were 5 cm between the bits, and 2.5 cm on 

each side of the strip was within each bit. The breaking force for each strip was measured in kilograms-

force and was calculated relative to the mean of the reference strips, and expressed as a percent of 

strength-loss compared to the reference mean (Geatz et al 2013). 

Soil Bulk Density 

To compare differences in soil structural development, we collected, using an Uhland Sampler, 7 cm 

deep soil samples for determination of bulk density from the same four plots as the CSA (Doran and 

Mielke 1984). The aluminum ring inside the Uhland sampler, from which the soil is extracted, has a 

volume of 331.5 cm3.  Each sample was placed in a gallon-size Ziploc bag and stored until processing. 

Samples were weighed in the lab, and subsamples were dried and weighed to calculate soil bulk density 

(bulk density = dry weight (g)/volume (cm3)).  

Soil Nutrient and Microbial Analysis  

To examine differences in nitrogen and soil organic matter, eight soil cores (1.9-cm diameter 

and 10-12 cm deep) were collected and composited from two plots along each transect at each site. Soil 

samples were air-dried and passed through a 2-mm sieve. Available ammonium (NH4
+) and nitrate (NO3

-) 

were determined for each composite sample using the Berthelot reaction method for colorimetric 

analyses (Rhine et al. 1998). Since the transformation of nitrate (NO3
-) into inert nitrogen gas (N2) 

through denitrification is a key ecosystem process for maintaining water quality, especially in 

watersheds where land cover is heavily urban or agriculture, the denitrification potential of each site 

was estimated (Hossler et al. 2011, David et al. 2010). Denitrification potential (DNP) was determined by 

denitrification enzyme activity assay (Peralta et al. 2010).  Soil organic matter content was measured by 

combustion (Rhine et al. 1998).  
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Light Availability and Herbaceous Biomass 

To quantify differences in plant community structure and canopy light penetration, 

photosynthetically active radiation (PAR) was measured at two plots along each transect (LI-COR LI-250A 

Light Meter). Measurements were taken at the soil surface and 1 m above ground-level. Light 

penetration data were relativized for each site to light measurements collected in the open, under no 

canopy vegetation.  To estimate aboveground herbaceous plant biomass at each site, samples were 

collected from the same plots as the light measurements and soil nutrient samples. Aboveground plant 

material was trimmed to ground level within a fixed PVC template (30x30 cm).  Each sample was oven-

dried at 60°C for at least 48 hours and weighed.  

Avian Sampling 

To measure avian diversity at each wetland, five-minute unlimited distance avian point counts 

were conducted at each site between May and August 2013. As many point counts as possible were 

done at each site, with a minimum distance of 250 m between points. Partners in Flight (PIF), a private-

public sector conservation partnership program, developed a system to score and rank birds based on 

conservation need (Panjabi et al. 2005). PIF scores are derived from six global and/or regional elements: 

population size, breeding and non-breeding distribution, threats to breeding and non-breeding, and 

population trends (Panjabi et al. 2005). The avian conservation significance score used provides a 

standard quantifiable method to examine a given area’s relative value for avian conservation (Twedt 

2005). Conservation scores were assigned to each species found, and a total avian conservation score 

was calculated for each site (Fig. 4) to assess its value as bird habitat (Twedt 2005). The conservation 

significance of each species was derived as the product of each species’ concern rating and TDR divided 

by 1000. Each site’s avian conservation significance (ACS) was obtained from the sum of the measures of 
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conservation significance of all species (from Twedt 2005). Avian Conservation Significance (AS) is 

calculated as:  

 

for species i = 1 to n, CR = LOG GAMMA(PIF Concern)2, and TDR= 10*LOG2(observed density). 

Anuran Call Surveys 

Anuran call surveys (ACS) are a commonly used, cost-effective technique for evaluating anuran 

species population trends and patterns of distribution (Pierce and Gutzwiller et al. 2004). Call surveys 

were conducted from mid-March until the first week of August 2013, to correspond with the breeding 

times of anuran species present in Illinois (Table 3). The ACS method used was adapted from Pillsbury 

and Miller (2008) and Pierce and Gutzwiller (2004). At each wetland, 15-minute surveys were conducted 

at least 30 minutes after dusk, with air temperatures greater than 5.6° C , a wind speed less than 5.8 m s-

1, and a water temperature greater than 10° C (NAMP 2012, Pillsbury and Miller 2008). For each species, 

a call index was recorded as: 0, no individuals of a given species heard; 1, one individual heard; 2, 

multiple individuals with no overlap in calls; and 3, a full chorus (NAMP 2012, Pillsbury and Miller 2008). 

Due to time and geographic constraints, each site was sampled twice across the breeding season, this 

may have led to underrepresenting community composition. The total calling rank, or sum of call values 

at each site for all species, was calculated to compare anuran species abundance and diversity among 

sites (Pillsbury and Miller 2008, Pope et al. 2000).  

Flood Water Storage Potential 

Flood water storage potential was calculated by estimating the volume of the wetland basin(s) 

at each site using Illinois LiDAR data from the Illinois State Geological Survey (ISGS) Height 

Modernization Program (ISGS 2012). LiDAR-derived digital terrain models (DTM) were used in the 

    ∑ 
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analysis (Fig. 4). The LiDAR coverage for Illinois is still incomplete, so precise (2-3 cm accuracy of XYZ 

data) GPS data were collected using a Fast Survey GPS ProMark 200 for five of the sites. The Surface 

Volume tool in ArcMap 10.1 3D Analyst was used to calculate basin volume below a reference plane 

defined by the lowest outlet point for each basin.  To relativize between sites, volume was compared 

per area (Lane and D’Amico 2010).  

 

 

 

 

 

 

 

 

Land Cover 

To examine the effects of landscape context on the ecosystem function response variables, the 

USDA National Agricultural Statistics Service (NASS) 2012 Cropland Data Layer (CDL) data was used to 

calculate the proportion of wetlands, forest, open water, developed  land, and agriculture within buffers 

around  each study site (Appendix C).  Land cover was calculated at multiple buffer radii (500, 1000, 

1500, 2000 m) and was found to be tightly correlated across scales (r2 > 0.73), therefore 1000 m was 

used in the analysis. For each site, outside-only buffers were created using ArcMap 10.1 (ESRI, Redlands 

Fig. 4. Mitigation site in Stephenson County Illinois, outlined in pink. Left: digital terrain model 

(DTM) derived from LiDAR data used in calculating floodwater storage potential. Right: 

Orthographic image of study area.  
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California, USA), and any buffer overlap was dissolved. The program Geospatial Modeling Environment 

(GME), which interfaces with R, was used to calculate the proportion of each land cover class (Spatial 

Ecology LLC 2012). The GME intersect- polygons-with-raster tool (isectpolyrst) was used to summarize 

raster cell values contained by the buffer. To reduce the number of land cover variables to orthogonal 

principal components and describe the primary gradients in land use, we used principal components 

analysis (PCA) on a correlation matrix followed by varimax rotation (using XLSTAT Pro) (Abdi and 

Williams 2010, Matthews et al. 2009). 

Statistical Analysis 

 Ordination is often used in ecological research to summarize multivariate data and uncover the 

underlying structure in a dataset (Jongman et al. 1995). We used principal component analysis (PCA) to 

identify whether a latent tradeoff structure exists among wetland ecosystem services. Principal 

components analysis is ideal for answering this type of question because it can effectively take a large 

dataset and express the variables in a way that clearly highlights similarities and differences, as well as 

identify specific patterns (Abdi and Williams 2010, Gotelli and Ellison 2004). The mean of each variable 

was calculated at the site level to make comparisons at the site scale. Every variable was standardized 

prior to analysis (woody H’, herbaceous H’, total avain score, total anuran call rank, denitrification 

potential, soil organic matter content, flood water storage potential, herbaceous biomass, 

decomposition).  A scree plot of the eigenvalues vs. the principal components was studied to decide 

which components to report (Abdi and Williams 2010).  

 Redundancy analysis (RDA) is a multivariate multiple regression technique used in conjunction 

with PCA. RDA was used to quantify the amount of variation in the ecosystem service variables that can 

be explained by the abiotic and biotic predictors (Borcard et al. 1992). Forward selection was used 

(CANOCO 4.5) to remove non-significant (p> 0.1) predictor variables (Matthews et al. 2009, Heikkinen et 
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al. 2004, Borcard et al. 1992). Partial Monte Carlo permutation tests (n = 499) were used to examine 

each potential predictor variable (Leps and Smilauer 2003). The composite land cover variables (riparian 

and developed), ground-level photosynthetically active radiation, soil bulk density, and percent non-

native plant cover were retained. 

Results 

Land cover  

Principal components analysis of the land cover variables resulted in two components explaining 

69.32% of variation in land cover among sites (Table 2). Similar to the results of Matthews et al. (2009), 

the first axis described a gradient from riparian settings, characterized by high cover of forest, wetland 

and open water, to non-riparian settings, mainly associated with developed land. The second axis 

described a gradient from developed urban land to rural agricultural settings. 

 

Variable PC 
axis 1 

PC 
axis 2 

Proportion of open water 0.635 -0.113 

Proportion of developed land -0.408 -0.905 

Proportion of forest 0.794 0.042 

Proportion of wetland 0.687 0.066 

Proportion of agriculture -0.354 0.912 

Variance explained (%) 35.95 33.37 

 

Ecosystem services 

Two principal components were retained from the PCA of ecosystem service proxies (Table 3). 

Principal component vectors that cluster together and point in the same direction correspond to the 

latent tradeoff among the variables (Fig. 5). The nutrient-cycling related principal component vectors 

Table 2. Land cover variable (1000m) loadings on PCA 

axes after Varimax rotation. 
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point opposite of the biodiversity vectors (Fig. 5), indicating that wetlands which tend to support higher 

rates of biodiversity also tend  to provide less support to nutrient-cycling ecosystem functions.  

Specifically, soil organic matter content, herbaceous biomass, denitrification potential and organic 

matter decomposition variables are negatively loaded on PCA axis 1 (Fig. 5, Table 3). Non-woody plant 

diversity, woody plant diversity, avian conservation score, and anuran species richness were strongly 

positively loaded on PCA axis 1.  Additionally, the floodwater storage (volume/ha) and denitrification 

vectors were positively loaded on the second PCA axis (Fig. 5, Table 3).  

 

SOM 
Biomass 

Denitrification  

Potential 

Decomposition Herbaceous H' 

Woody H' 

Avian Score 

Anuran 

 Call rank 

Floodwater 

Storage 
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Fig. 5. Biplot from principal components analysis (PCA) of service variables, 

after applying a Varimax rotation for interpretation.  Combined, both axes 

account for 52.29% of the variation explained.  
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Variable  
PC 

axis 1 
PC 

axis 2 

Soil organic matter (SOM) -0.652 0.334 

Biomass (g/m2) -0.578 0.368 

Denitrification potential  (mol/g/hr) -0.173 0.811 

Decomposition -0.539 0.211 

Herbaceous Shannon Index (H’) 0.687 0.187 

Woody Shannon Index (H’) 0.677 -0.164 

Total avian score 0.442 -0.226 

Total anuran Call rank 0.863 0.034 

Floodwater storage (vol ha-1)  0.097 0.826 

Variance explained (%) 36.09 16.20 

 

Seven predictor variables were retained in the redundancy analysis (Fig. 6) following forward 

selection (p < 0.1), explaining 45% of the variation in ecosystem service variables. Total nitrogen 

explained the most variation, followed by soil bulk density, percent non-native plant cover, land cover 

PCA axis 1 (riparian gradient), and PAR availability at ground level. The riparian PCA axis was positively 

associated with the biodiversity indicators (woody and non-woody vegetation, anuran and avian 

diversity) (Fig. 6). Additionally, soil bulk density was negatively associated with nutrient-cycling related 

ecosystem functions, specifically denitrification potential (DNP), organic matter decomposition, and soil 

organic matter content (SOM). Total soil nitrogen was positively correlated with the nutrient cycling 

related wetland functions, specifically herbaceous biomass, SOM, DNP and decomposition (Fig. 6).  

 

Table 3. Variable loadings from principal components analysis (PCA) of service variables, after applying 

a Varimax rotation for interpretation.  
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Discussion 

Our results show a clear tradeoff between biodiversity indicators and nutrient-cycling related 

ecosystem functions. Consequently, our findings indicate that wetland restoration and management 

decisions may involve choices that reflect tradeoffs among ecosystem services. These tradeoffs occur 

across continua, represented by the latent structure we found in the two retained PC factors.  

 

Fig. 6. Redundancy analysis (RDA) biplot of the predictor and function variables. Red vectors: 

predictor variables, blue vectors: response variables.  Riparian and Developed refer to the PCA-

composite land cover variables.  G-PAR refers to available ground-level photosynthetically active 

radiation. Age is the wetland site age, %Nonnative is the percent cover of non-native plants, Soil 

BD refers to soil bulk density, and Nitrogen is total soil N. 

Axis 1 

A
xi

s 
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Tradeoffs and synergies among ecosystem services 

The first axis of the PCA of ecosystem service variables characterized a gradient from nutrient-

cycling and storage functions to biodiversity support.  Additionally, our results indicate a strong positive 

relationship among the plant, avian, and anuran indicators of biodiversity support. Similarly, Maskell et 

al. (2013) found strong positive relationships among plant, insect, and aquatic invertebrate diversity 

across Great Britain. Other authors examining the relationship among ecosystem services, found 

potential synergies among biodiversity components (Maes et al. 2012). In this situation, it is unclear 

whether the pattern we observed among the biodiversity components is due to a synergistic effect, 

where plant diversity enhances anuran and avian diversity. However, if this pattern is due to an 

underlying synergistic interaction, it would imply that plant community data are useful for assessing the 

biodiversity of other taxa at restoration sites. Identifying tradeoffs and enhancing potential synergies 

among ecosystem services could yield considerable benefits. Determining the factors that link synergies 

would be helpful to restoration practitioners and policy makers (Bennett et al. 2009). 

Contrary to previous studies which have reported a positive relationship between biodiversity 

and ecosystem function, we found diversity to be negatively correlated with indicators of function. 

Much research has focused on the connection between plant diversity and ecosystem stability and 

function (Hooper et al. 2005, Tilman 2001, Tilman et al. 1996). Ecosystem functions, such as productivity 

and nutrient retention, have been found to be positively correlated with plant species richness in some 

ecosystems (Hooper et al. 2005, Tilman et al. 2001). Most studies focus on the connection between 

plant diversity and due to ease-of-measure; assess biomass production as the sole ecosystem function 

(Hooper et al. 2005). Biomass production alone, while it is an ecosystem function, may not strongly 

relate to ecosystem service delivery. Recent work conducted in wetlands contradicts the hypothesized 

positive relationship between biodiversity and ecosystem function, and suggests that certain ecosystem 

functions, such as nitrogen retention and productivity may sometimes be maximized at lower levels of 
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diversity (Doherty and Zedler in press, Weisner and Thiere 2010, Hansson et al. 2005). The tradeoff 

between nutrient-removal services and biodiversity support we found appears to support these recent 

findings. 

 Maximizing nutrient attenuation functions that are associated with ecosystem services like 

water quality maintenance appears to conflict with biodiversity support services. We found non-native 

plant species cover, herbaceous biomass, soil organic matter content, and soil nitrogen to be positively 

correlated with one another, but also negatively associated with each diversity component (Fig. 6). 

Nitrogen loading is a major concern in the Midwest, and because of the transitional position wetlands 

occupy on the landscape, they receive high input rates of nitrate and other pollutants through surface 

water runoff (Hefting et al. 2012, David et al. 2010).  High N levels in our study wetlands may create 

conditions favorable to aggressive non-native plant species (Hogan and Walbridge 2009, Matthews et al. 

2009, Zedler and Kercher 2004, Brooks et al. 2005). Some of these dominant species, such as Phalaris 

arundinacea, Phragmites australis, and Typha angustifolia, are highly productive and may contribute to 

the higher levels of soil organic matter we found to be associated with herbaceous biomass and non-

native cover. Spyreas et al. (2009) found reed canary grass dominance to decrease plant diversity and 

insect abundance in Illinois wetlands. Similarly, we found non-native plant cover to be negatively 

associated with diversity components. Based on these results, there appears to be a clear tradeoff 

between plant diversity and nutrient removal, maximizing one may come at the expense of the other. 

Similar to our results, Weisner and Thiere (2010) found that wetlands which were less diverse, 

dominated by a few plant species, tended to be more efficient at removing nitrogen. Land managers and 

policy makers need to be aware of this relationship in order to make informed decisions relating to 

restoration, conservation, and ecosystem service provisioning.  

Landscape setting can have strong effects on wetland restoration outcomes, and the ecosystem 

services associated with them, especially biodiversity.  We found a strong positive relationship between 
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riparian settings, which in Illinois are associated with higher proportions of wetland and forests, to plant, 

avian and anuran diversity. Simultaneously, we found avian, anuran, and herbaceous plant diversity to 

be negatively associated with the proportion of developed land surrounding each site. Previous authors 

have found that, across multiple taxa, landscape context is an important controlling factor in 

determining biodiversity. Avian species richness has been found to increase in wetlands that are 

situated in a landscape context with a higher surrounding proportion of wetlands and forest (Fairbairn 

and Dinsmore 2001, Naugle et al. 1999). A similar landscape-context relationship has been observed in 

anuran communities in the Midwest (Pillsbury and Miller 2008, Houlahan and Findlay 2003, Knutson et 

al. 1999). Consequently, habitat fragmentation and loss may be driving the pattern we observed.  

Additionally, we found anuran diversity to be negatively correlated with total soil nitrogen. Pesticides 

and nitrate fertilizers are known to have toxic effects on amphibians (Camargo et al. 2005, Hecnar 

1995). Specifically, the effects of nitrate on four of the common species we observed in these mitigation 

sites (Pseudacris triseriata, Rana clamitans, Rana pipiens, Bufo americanus) have been studied 

experimentally, and significant toxic effects were found at nitrate loading levels common in agricultural 

settings (Hecnar 1995). Intensive land use surrounding wetlands can also impact plant community 

composition and diversity (Matthews et al. 2009).  For example, landscape fragmentation can eliminate 

plant propagule sources, reducing recruitment within restoration sites (Galatowitsch et al. 2000).  Based 

on previous findings and our results, it appears that landscape context contributes to the tradeoff we 

found between biodiversity and nutrient removal services. 

Our results provide support for previous work which found that soil structural development may 

hinder the restoration of ecosystem functions related to nutrient cycling. We found that denitrification 

potential, soil organic matter content, and decomposition rates were negatively correlated with soil bulk 

density (BD). Similarly, previous authors found soil BD to be negatively correlated with denitrification 

and other nutrient cycling processes (Wolf et al. 2011, Hossler et al. 2011, Hossler and Bouchard 2008, 
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Meyer et al. 2008). Since soil BD directly relates to soil organic matter content, root penetration, 

porosity, redox, and soil biotic activity, it has been recommended as a an indicator of physical and 

biological soil recovery following wetland restoration (Hossler et al. 2011, Meyer et al. 2008). Soil BD 

tends to decrease over time following wetland restoration.  For example, soil BD decreased gradually 

over a 55-year chronosequence of freshwater wetlands as soil organic matter increased (Ballantine and 

Schneider 2009). Further research is needed to determine the influences of soil properties on the 

tradeoff relationships observed in this study. In particular, the effects of wetland soil structural 

development on nutrient cycling, carbon storage, and invasive species dominance should be examined.  

 

Flood abatement and denitrification 

If synergistic relationships can be found among ecosystem services, management practices can be 

changed to exploit this information to enhance restoration and subsequent service provisioning.  For 

example, we found that wetlands with basin morphology conducive to storing large amounts of flood 

water may also experience higher rates of denitrification, acting as important nutrient sinks. The 

positive relationship we found between denitrification and the “pondedness” of a site may be due to 

the abiotic and biotic factors that control the process. Denitrification occurs in anoxic conditions, where 

nitrogen is used as an electron acceptor to facilitate anaerobic respiration. Consequently, more 

permanently inundated, lower elevation areas within restored wetlands have significantly higher 

denitrification potential than higher elevation areas with lower soil moisture (Peralta et al. 2010). The 

denitrification process is partially controlled by the availability of soil carbon, which is used by bacteria 

as a metabolic energy source (Bowden 1987). We found a positive relationship among soil organic 

matter content, soil nitrogen, and denitrification potential. Our findings also are consistent with 

previous work that found nitrate to increase denitrification rates in wetlands (Kjellin et al. 2007, 

Sirivedhin and Gray 2006, Hanson et al. 1994).  Prioritizing restoration and management to exploit 
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linkages between ecosystem services, such as between flood abatement and nutrient removal, could 

provide substantial benefits, especially in agricultural settings like the Midwest.  

 

Conclusions  

The differences we observed among ecosystem service proxy variables demonstrate that not all 

services occur simultaneously. Some occur at the expense of others (water quality maintenance and 

biodiversity support), whereas others may occur synergistically (biodiversity of different taxa). 

Therefore, restoration practitioners should prioritize services depending upon local site and watershed 

context (Zedler et al. 2012, Mitchell et al. 2012). In a recent review, Macfadyen et al. (2012) found that 

management options meant to increase biodiversity can sometimes maintain or enhance ecosystem 

services, but solely focusing on improving services may not increase biodiversity.  Similarly, when 

examining whether services spatially overlap with biodiversity, Naidoo et al. (2008) found that regions 

selected to maximize biodiversity provide no more ecosystem services that randomly selected areas. In 

some situations, particularly in landscapes such as Illinois, where water quality maintenance services are 

much-needed, restoring sites for the primary purpose of nutrient removal at the expense of biodiversity 

might be considered acceptable. However, restoration efforts solely focused on nutrient attenuation 

services must be balanced with projects managed for biodiversity support. As a consequence, 

restoration policy balancing these tradeoffs should occur at ecologically appropriate scales, such as the 

watershed level (Mitchell et al. 2013, Zedler et al. 2012, Zedler 2003, Woltemade 2000).  

The current metrics used to determine success in compensatory mitigation context are 

inadequate to assess and manage for ecosystem services. The majority of performance standards used 

in compensatory mitigation are vegetation-based (Matthews and Endress 2008), and provide little to no 

indication of ecosystem function development (Cole 2002). Our results support the findings and 

conclusions of Cole (2002) that more useful metrics for wetland functional and structural development 
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are needed. For example, Hossler et al. (2011) and Meyer et al. (2008) have suggested using soil bulk 

density as an indicator of soil structural and functional development in restored wetlands. Our finding 

that soil bulk density was negatively associated with nutrient cycling functions supports this suggestion. 

The ecosystem services concept may provide a new framework for restoration ecology and 

understanding human impacts on the environment (Jackson and Hobbs 2009). However, assessing and 

achieving restoration outcomes in the context of ecosystem service delivery are fraught with 

complications. Regulatory agencies establish mitigation requirements with the expectation of desirable 

restoration outcomes, but often overlook the particular ecosystem services being lost or replaced 

(Suding 2011). A deeper understanding is needed to determine how ecosystem service provisioning in 

restored wetlands compares to services provided by natural sites, and what factors drive these 

differences. Environmental offset programs like compensatory wetland mitigation rely on the 

assumption that wetlands can be restored to provide a whole suite of services, but it is clear that 

tradeoffs among services are occurring without our explicit knowledge. Additional research is needed to 

reveal the relationships among ecosystem services, in order to take advantage of potential synergies 

and prevent unintended tradeoffs.  
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Appendix A 

 

Ecosystem Service Tradeoffs 
Studied 

Ecosystem Service 
Synergies Studied 

Type of 
Analysis 

Citation 

Provisioning, Biodiversity  
Biodiversity and C 

sequestration 
Model Briner et al. (2013)  

Provisioning, Regulating , 
Cultural  

Regulating services 
Empirical 
model 

Raudsepp-Hearne et 
al. (2010) 

Provisioning , Regulating, 
Biodiversity 

Biodiversity components 
Empirical 
analysis 

Maskell et al. (2013)  
 

Provisioning, Supporting, 
Regulating, and Cultural 

____ Model 
Rodríguez et al. 
(2006)  
 

Provisioning , Regulating, 
Biodiversity 

____ Model Nelson et al. (2009)  

Provisioning, Supporting, 
Regulating, and Cultural 

____ qualitative McInnes (2013)  

Provisioning and Recreation ____ 
Economic 
model 

Rose and Chapman 
(2003)  

Provisioning, Supporting, 
Regulating 

____ Model 
Lautenbach et al. 
(2010)  

Provisioning, Supporting, 
Regulating, and Cultural 

____ 
Conceptual 
review 

Foley et al. (2005) 

Provisioning, Supporting, 
Regulating, and Cultural 

Cultural, Biodiversity 
Conceptual 
review 

Tallis et al. (2008) 

Provisioning, Supporting, 
Regulating, and Cultural 

____ 
Conceptual 
review 

DeFries et al. (2004)  
 

Provisioning, Supporting, 
Regulating, and Cultural 

____ Conceptual 
review 

Bennett et al. (2009)  

Provisioning, Supporting, 
Regulating, and Cultural 

____ Conceptual 
review 

Carpenter et al. 
(2009)  

 

 

 

 

 

 

Table A1. Studies examining the issue of ecosystem service tradeoffs.  
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Appendix B 

 

Site code County Hydrologic Characteristics 
Forest (F) or 
Herbaceous(H) Age 

1 Cook Excavated depression H 19 

2 St.Clair Excavated depression H 17 

3 Hancock Floodplain F 19 

4 Whiteside Excavated depression H 16 

5 Ogle Floodplain, excavated H 16 

5 Ogle Floodplain F 16 

7 Lake Excavated depression H 15 

8 Cook Excavated depression H 15 

9 Champaign Depression H 15 

10 Cass Floodplain F 14 

11 Clinton Floodplain H/F 14 

12 St.Clair Depression F 14 

13 Alexander Floodplain F 14 

14 Tazewell Floodplain F 13 

15 Sangamon Floodplain, excavated H/F 13 

16 JoDaviess Floodplain F/H 13 

17 Henry Floodplain F/H 13 

18 Saline Excavated depression H/F 13 

19 Pike Floodplain F 13 

20 Henderson Floodplain, excavated H 13 

21 Mercer Floodplain F 13 

22 Stephenson Excavated depression H 12 

23 Stephenson Floodplain F 12 

24 Sangamon Floodplain H 11 

25 Perry Floodplain F/H 10 

26 Jackson Floodplain, excavated F 10 

27 Macon Excavated depression H 10 

28 Jackson Floodplain H/F 10 

29 Alexander Floodplain H 8 

30 Winnebago Floodplain, excavated H 7 

 

 

Table B1. General study site information 
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Appendix C 

 

Developed Land Wetlands Forest Agriculture 

Developed/Open Space Woody Wetlands Deciduous Forest Grassland Herbaceous 

Developed/Low Intensity Herbaceous Wetlands Evergreen Forest Pasture/Hay 

Developed/Med Intensity  Mixed Forest Every crop category 

Developed/High Intensity  Shrub land  

Barren    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table C1. NASS Cropland Data Layer categories were combined into four land cover categories used in 

this study (and open water).  
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Appendix D 

 

Species Breeding Information 

Bufo americanus March to July 
Bufo woodhousei Primarily between May and June 
Acris crepitans Late-April and throughout the summer 
Pseudacris triseriata Early March into May 
Hyla cinerea Mid-May to August 
Hyla crucifer Early March to early June 
Hyla versicolor Later April to August 
Rana areolata Early March to mid-April 
Rana catesbeiana Late April to August 
Rana palustris April to mid-June 
Rana pipiens Mid-March to May 
Rana sylvatica March 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table D1. Anuran species of Illinois and breeding timeframes (IL DNR 2012). 
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Appendix E 
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Figure E1. Radar graph depicting tradeoffs among ecosystem service variables 

(standardized). Each line represents a separate site. 
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Appendix F 

 

 

Site Area(ha) 
Soil BD 
(g/cm3) 

G-level  
(µmol s-1 m-2) 

1-meter 
(µmol s-1 m-2) 

Nitrogen 
(mg N L-1) Age 

1 0.7992 1.015818 0.410214 0.531989 0.415 19 

2 0.2096 0.740117 0.279123 0.437789 0.18375 17 

3 1.3533 1.15545 0.002846 0.024408 0.12375 19 

4 1.0388 0.584425 0.241959 0.454711 0.3525 16 

5 2.2776 1.014525 0.025948 0.588748 0.2875 16 

6 1.1878 0.960715 0.208858 0.887226 0.33625 16 

7 0.871 0.730821 0.556522 0.730433 0.33875 15 

8 0.9437 0.678748 0.332978 0.844832 0.2675 15 

9 1.3307 0.946594 0.109506 0.303788 0.29625 15 

10 2.5142 1.276033 0.014687 0.008292 0.10625 14 

11 2.7778 1.142373 0.096319 0.525496 0.16875 14 

12 0.4736 1.320948 0.21712 0.260691 0.1325 14 

13 0.9001 1.190369 0.035154 0.140339 0.0825 14 

14 0.2553 1.241387 0.111461 0.143293 0.1025 13 

15 3.5363 1.252496 0.41246 0.612407 0.125 13 

16 3.1382 0.709188 0.835632 0.939883 0.23 13 

17 6.5268 0.785183 0.004424 0.445264 0.29875 13 

18 1.5513 1.035813 0.05862 0.024132 0.14625 13 

19 7.876 1.066657 0.150671 0.373316 0.175 13 

20 3.5534 1.030189 0.25481 0.917614 0.1225 13 

21 0.6882 0.793472 0.015313 0.076913 0.295 13 

22 4.4724 0.728676 1.313731 1.794613 0.2275 12 

23 3.0059 1.058289 0.140944 0.535061 0.2725 12 

24 2.3762 1.118851 0.414364 0.77192 0.15375 11 

25 1.4337 1.16337 0.016168 0.167111 0.175 10 

26 0.6933 1.228968 0.070026 0.236446 0.11375 10 

27 4.3858 0.945197 0.030215 0.820281 0.195 10 

28 2.273 1.214054 0.263443 0.47206 0.11 10 

29 3.1227 1.142951 0.33677 0.740052 0.14625 8 

30 7.9832 0.854595 0.38465 0.786524 0.215 7 
 

 

 

Table F1. Site-level data used in PCA and RDA analysis. Table continued on following 

pages. 
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RCG cover %nonnative 
Woody Stem 
Density SOM (%) 

Herbaceous 
Biomass g m-2 

DEA potential  
(mol g-1 hr-1)  

6.357457017 53.85845662 0 7.65625 365.5139 4.9349E-10 

0 45.69202566 0.045833333 2.1675 755.1806 1.35133E-10 

0 1.92 0.433333333 1.6675 390.9167 2.73388E-10 

19.905608 41.67129373 0.179166667 4.32 152.7778 1.51125E-09 

4.735013032 5.886185925 0 4.4975 375.3889 4.29025E-09 

13.21709038 13.35684813 1.041666667 5.13 436.4722 1.86239E-09 

0 52.9454901 0.052083333 4.62875 529.3472 4.54822E-09 

11.64929491 43.77682403 0 4.04 306.0952 1.8892E-09 

9.118214975 40.16305514 0.183333333 5.21125 449.75 2.93666E-10 

0 0 0.439583333 1.71375 13.625 5.66478E-10 

9.668943773 36.6001051 0.56875 1.95375 324.1528 2.14899E-10 

0 32.47191011 0.414583333 1.67 153.3611 2.73884E-10 

0 3.874376284 0.272916667 1.39 169.5556 2.23977E-10 

47.43230626 52.41830065 0.160416667 2.6 326.8056 4.93811E-11 

0 5.647840532 0.829166667 2.78 202.2361 -2.6277E-10 

26.96302451 39.17739925 0.05625 3.12875 29.18056 7.22408E-10 

94.38372799 94.8391014 0.222916667 4.5275 338.9167 9.55296E-10 

0 29.89690722 0.872916667 1.75375 271.4861 9.74842E-10 

6.775067751 28.55691057 0.541666667 2.2025 303.7778 1.62902E-09 

0 5.893476205 0 1.63875 312.5278 -2.1792E-10 

67.91907514 67.91907514 0.520833333 3.97125 49.49206 8.91244E-10 

18.44743016 30.17701002 0.00625 2.82375 74.51389 1.17757E-09 

84.5814978 87.33480176 0.1875 3.58 429.7222 6.14668E-10 

0 17.60530052 0.045833333 1.92375 130.5139 4.72047E-10 

7.805305854 38.87305415 0.710416667 2.07875 72.11111 5.31401E-11 

0 28.30286306 0.997916667 1.49875 73.15278 2.24538E-10 

0 50.29761905 0.039583333 3.3825 416.1806 8.43016E-10 

0 0.923787529 0.2625 1.455 87.79167 1.43243E-10 

0 37.59036145 0.004166667 1.98125 196.6389 3.60382E-11 

95.1066961 95.1066961 0.00625 2.8475 214.0556 5.39111E-10 
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%CTSL  

Herbaceous 
Shannon 
Index 

Woody 
Shannon 
Index 

Basin 
Volume 
(m3)/Ha 

Sum of 
Avian 
score 

Anuran 
Call 
Rank 

PC axis  
Riparian 
(1000m) 

PC axis  
Developed 
(1000m) 

64.53125 2.109272 0 3262.354 49.90867 1 -0.38919 -1.828141014 

87.63889 1.561296 0.62549 37888.69 29.63768 4 -0.77786 -0.756220755 

91.77083 2.28016 0.31061 1863.296 47.23197 0 1.135221 -0.036804015 

80 2.968053 1.49288 3076.984 32.1752 5 -1.18089 1.249127035 

82.15909 2.166053 0 119477.2 47.41275 9 0.866071 -0.361530141 

83.39286 1.051379 0.056 46.78812 31.58375 1 0.866071 -0.361530141 

85 2.559826 1.56742 1691.465 40.78322 1 -1.68978 -2.715900956 

97.14286 2.288459 0 7350.269 31.64459 6 -1.17391 -1.935775569 

88 3.052341 0.92816 19900.43 45.14179 4 -1.6715 0.945604539 

70.72917 1.103583 1.73036 20048.12 45.41437 15 2.264308 0.118282206 

42.41667 2.473996 1.87829 2067.224 54.30507 9 0.364402 0.219605833 

59.75 3.053127 2.69519 34708.44 31.29384 6 0.556463 0.685074251 

87.5 2.107824 1.61515 23101.73 56.05982 4 1.190901 -0.182466356 

84.6875 2.442176 1.44572 7927.057 57.15994 3 0.044152 0.714888692 

63.06818 2.621309 1.71097 4945.277 50.40272 8 0.2259 -1.730051711 

89.16667 2.661739 0 6422.784 74.0183 8 0.300413 0.408792501 

75.75 0.343739 0.83322 288.3374 25.27324 2 1.172447 0.200659288 

62.8125 2.683497 2.06419 213.6808 68.79739 11 0.701107 0.287053816 

69.79167 3.07617 1.83664 2976.936 42.50119 13 0.84586 -0.15826293 

78.86364 2.343301 0 93357.14 38.3116 10 0.898103 0.000117813 

77.375 1.085086 1.03823 3890.909 35.10741 0 0.108301 0.638671754 

83.95833 3.118842 1.09861 4542.452 99.54059 10 -1.40397 0.79043011 

86.25 0.646852 0.67686 3806.541 68.0848 2 -1.29706 0.924645507 

66.875 2.794982 1.1466 683.4832 61.91174 12 -0.09365 0.724552017 

78.64583 2.300153 1.6306 676.7854 46.9131 11 -0.9056 1.011735648 

86.25 3.341312 2.16545 1558.159 57.09673 9 0.171682 -1.501737268 

75.20833 1.835652 0.51465 3624.629 51.8818 2 -1.47421 0.889699158 

11.875 2.565312 1.72167 508.9986 62.5144 13 0.607795 0.116069988 

73.125 2.933088 0.69315 3720.143 60.5658 13 -0.58521 0.907568313 

87.5 0.229372 0 131.187 52.33721 1 0.32363 0.735842384 
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openwater1000 dev1000 For1000 Wet1000 Ag1000 

0.013523 0.813243 0.091863 0.025414 0.055957 

0.012969 0.582815 0.016752 0.031613 0.35585 

0.00146 0.064736 0.712095 0.039669 0.182039 

0 0.059406 0.060149 0.000743 0.879703 

0.102317 0.218858 0.360863 0.012159 0.305804 

0.102317 0.218858 0.360863 0.012159 0.305804 

0 0.996723 0.000252 0 0.003025 

0.001514 0.899041 0.020697 0.005553 0.073195 

0.000246 0.142705 0.000328 0 0.856722 

0.020674 0.001004 0.299478 0.584303 0.09454 

0.009202 0.173903 0.16588 0.163049 0.487966 

0.002329 0.043726 0.21837 0.200259 0.535317 

0.231899 0.144051 0.215443 0.027342 0.381013 

0.020712 0.066118 0.237387 0.014339 0.661445 

0.022192 0.673913 0.26087 0.019475 0.023551 

0.000679 0.066727 0.487446 0.010405 0.434743 

0.132674 0.08426 0.230326 0.094767 0.457973 

0.055773 0.055528 0.462084 0.000489 0.426125 

0.124116 0.220538 0.077219 0.15848 0.419648 

0.088262 0.172009 0.175621 0.129571 0.434537 

0.005455 0.096623 0.161039 0.109091 0.627792 

0.001539 0.167143 0.014955 0 0.816362 

0.00357 0.130299 0.021196 0 0.844935 

0.014288 0.083221 0.194246 0.022398 0.685847 

0.012075 0.085644 0.05814 0.000224 0.843918 

0.024457 0.585725 0.343898 0.00025 0.04567 

0.005668 0.144534 0 0.00081 0.848988 

0.036967 0.126303 0.402844 0.01564 0.418246 

0 0.081775 0.15499 0.018923 0.744312 

0.006192 0.035916 0.342711 0.037509 0.577672 
 

 

 

 

Variable notes: Soil BD: soil bulk density, G-level and 1-level: light availability at ground and 1 meter, RCG 

cover: reed canary grass cover, SOM%: percent soil organic matter content, DEA potential: denitrification 

potential, %CTSL: percent cotton tensile strength loss.  

 


