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ABSTRACT

In a recent work it is shown that importance sampling can be avoided in the
particle filter through an innovation structure inspired by traditional nonlinear
filtering combined with optimal control formalisms. The resulting algorithm is
referred to as feedback particle filter.

The purpose of this thesis is to provide a comparative study of the feedback
particle filter (FPF). Two types of comparisons are discussed: i) with the extended
Kalman filter, and ii) with the conventional resampling-based particle filters. The
comparison with Kalman filter is used to highlight the feedback structure of the
FPF. Also computational cost estimates are discussed, in terms of number of op-
erations relative to EKF. Comparison with the conventional particle filtering ap-
proaches is based on a numerical example taken from the survey article on the
topic of nonlinear filtering [2]. Comparisons are provided for both computational
cost and accuracy.
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CHAPTER 1

INTRODUCTION

Filtering and state estimation from noisy measurements is a concept that feeds
into many fields such as signal processing, navigation, and control. From global
positioning systems (GPS) and target tracking to applications in computer vision
and even economics, the applications of filtering are diverse and widespread.

The primary objective in filtering is to provide an estimate of the hidden state of
a dynamical system. This state estimate can then be used within feedback control
laws, or to display information to a user. A higher quality estimate can result
in better and more desirable behavior of control laws, or a richer, more accurate
interface to a user.

In the real-time setting, the quality of the state estimate provided by the filter
is not the only thing that must be taken into consideration. The computational
efficiency of the filter is also a key determining factor in whether a particular filter
can be utilized for a real-time problem. Oftentimes, for these type of problems,
a trade-off study usually must be conducted to find the proper balance between
tracking accuracy and computational load across the various filtering techniques.

1.1 Filtering Problem

In this thesis, the standard model of the continuous-time nonlinear filtering
problem is considered:

dXt

dt
= a(Xt)+ Ḃt , (1.1a)

Yt = h(Xt)+Ẇt , (1.1b)
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where Xt ∈ Rd is the state at time t, Yt ∈ Rm is the observation on the state, a( ·)
and h( ·) are C1 functions, and {Ḃt}, {Ẇt} are mutually independent white noise
processes of appropriate dimension.

The mathematical objective of the filtering problem is to estimate the posterior
distribution of Xt given the history of observsations, Zt := σ(Zs : s ≤ t). The
posterior is denoted by p∗, so that for any measurable set A⊂ Rd ,∫

x∈A
p∗(x, t) dx = Prob{Xt ∈ A |Zt}. (1.2)

In the case that a( ·) and h( ·) are linear functions, the optimal solution is given
by the Kalman filter. If a( ·) or h( ·) are nonlinear then a nonlinear filtering algo-
rithm is required. Many approaches exist to approximate the nonlinear filter. A
common approach is to extend the solution provided by the Kalman filter (EKF)
to the nonlinear problem by linearizing the functions a( ·) and h( ·) about the state
estimate and applying the Kalman algorithm [9]. Another common approach is
to use a particle filter. Various resampling techniques are available to deal with
the traditional particle filter issues such as particle degeneracy where only a few
particles will have significant weights. Recent approaches, such as the feedback
particle filter (FPF) in [16, 14], seek to utilize the concept of feedback which has
made the Kalman filter so successful in the linear problem setting.

1.2 Contribution of Work

In this thesis, various nonlinear filtering techniques are evaluated on the criteria
of tracking accuracy and computational efficiency. In particular, two cases are
presented: the “feedback methods” (EKF and FPF) are compared on a benchmark
problem to evaluate the similarities and differences between the methods. The
other case evaluated is a comparison of the resampling based particle filtering
techniques with the feedback particle filter.

The remainder of the thesis is organized as follows: chapter 2 provides back-
ground on the extended Kalman filter and feedback particle filter. Chapter 3 pro-
vides background on the conventional resampling based particle filters compared
to the feedback particle filter. Chapter 4 then provides a series of benchmark
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problems comparing these filtering methods. Chapter 5 ends with conclusions
and directions for future work.
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CHAPTER 2

COMPARISON OF FEEDBACK BASED
FILTERING APPROACHES

This chapter provides an introduction to the algorithms used for the feedback
particle filter and the extended Kalman filter. A computational comparison of the
two algorithms is made by calculating estimated operation counts. The outline of
the remainder of this chapter is as follows: in section 2.1 the algorithm for the
feedback particle filter is introduced, section 2.2 provides an introduction to the
extended Kalman filter, and section 2.3 then draws comparisons between the two
filtering methods, particularly highlighting the feedback structure present in both.

2.1 Feedback Particle Filter

In [16, 14], the algorithm for the feedback particle filter (FPF) was introduced.
FPF is a novel algorithm for nonlinear filter and employs the principle of feedback
(as the algorithm for the EKF does as well). Unlike the EKF though, the FPF is
applicable to a general class of nonlinear filtering problems with non-Gaussian
posterior distributions. The EKF, as such, is unable to handle these non-Gaussian
distributions.

2.1.1 Feedback Particle Filter Algorithm

Feedback particle filter (FPF) is a system of N controlled particles. The state of
the filter is {X i

t : 1 ≤ i ≤ N}: The value X i
t ∈ Rd is the state for the ith particle at

time t. The dynamics of the ith particle have the following gain feedback form,

dX i
t

dt
= a(X i

t )+ Ḃi
t + Kt Ii

t︸︷︷︸
(control)

(2.1)
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where {Ḃi
t} are mutually independent white noise processes with covariance ma-

trix Q, and Ii
t is similar to the innovation error found in the extended Kalman

filter,
Ii
t := Yt−

1
2
(h(X i

t )+ ĥ), (2.2)

where ĥ := E[h(X i
t )|Zt ]. In a numerical implementation, this is approximated

ĥ≈ N−1
∑

N
i=1 h(X i

t ) =: ĥ(N).

The gain function K is found as the solution to an Euler-Lagrange boundary
value problem (E-L BVP): for j = 1,2, . . . ,m, the function φ j is a solution to the
second-order partial differential equation,

∇ · (p(x, t)∇φ j(x, t)) =−(h j(x)− ĥ j)p(x, t),∫
Rd

φ j(x, t)p(x, t)dx = 0,
(2.3)

where p denotes the conditional distribution of X i
t given Zt . In terms of these

solutions, the gain function is given by,

[K]l j(x, t) =
m

∑
s=1

(R−1)s j
∂φs

∂xl
(x, t) . (2.4)

Denoting [Dφ ] := [∇φ1, . . . ,∇φm], where ∇φ j is a column vector for j∈{1, . . . ,m},
the gain function is succinctly expressed as a matrix product,

K= [Dφ ]R−1.

It is shown in [16, 13] that the FPF is consistent with the nonlinear filter, given
consistent initializations p(·,0) = p∗(·,0). Consequently, if the initial conditions
{X i

0}N
i=1 are drawn from the initial distribution p∗(·,0) of X0, then, as N→ ∞, the

empirical distribution of the particle system approximates the posterior distribu-
tion p∗(·, t) for each t.

The main computational burden of the algorithm is the computation/approximation
of the gain function at each time t. For the following examples, the gain is re-
stricted to the so-called constant gain approximation described in the following
section. A more general class of Galerkin algorithms appears in [13].
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2.1.2 Constant Gain Approximation

The gain function needs to be computed at each time. For a fixed time t and
j ∈ {1, . . . ,m}, a vector-valued function ∇φ j(x, t) is said to be a weak solution of
the BVP (2.3) if

E
[
∇φ j ·∇ψ

]
= E[(h j− ĥ j)ψ] (2.5)

holds for all ψ ∈H1(R; p) where E[·] :=
∫
Rd ·p(x, t)dx and H1 is a certain Sobolev

space (see [13]). The existence-uniqueness result for the weak solution of (2.5)
also appears in [13].

(const. gain)

Figure 2.1: Approximation of the function K by its expected value E[K] (For
illustrative ease, the comparison is shown for the scalar (d = 1) case).

In general, the weak solution ∇φ j(·, t) of the BVP (2.5) is some nonlinear
vector-valued function of the state (see Fig. 2.1). The idea behind the constant

gain approximation is to find a constant vector c∗j ∈ Rd to approximate this func-
tion (see Fig. 2.1). Precisely,

c∗j = arg min
c j∈Rd

E[|∇φ j− c j|2].

By using a standard sum of square argument, the result is:

c∗j = E[∇φ j].

Even though ∇φ j is unknown, the constant vector c∗j can be obtained using (2.5).
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Specifically, by substituting ψ(x) = x = (x1,x2, . . . ,xd) in (2.5):

E[∇φ j] = E[(h j− ĥ j)ψ] =
∫
Rd
(h j(x)− ĥ j) x p(x, t)dx.

In simulations, the last term is approximated using particles:

E[∇φ j]≈
1
N

N

∑
i=1

(
h j(X i

t )− ĥ j
)

X i
t ,

which gives the following constant gain approximation:

∇φ j ≈
1
N

N

∑
i=1

(h j(X i
t )− ĥ j)X i

t =: c(N)
j . (2.6)

Denoting C := [c(N)
1 , . . . ,c(N)

m ], where c(N)
j is a column vector for j ∈ {1, . . . ,m},

the gain function is succinctly expressed as a matrix product,

K=CR−1.

It is interesting to note that for the linear-Gaussian case, this constant approxima-
tion for the gain function yields the same result as the Kalman gain.

2.1.3 Extensions of the Feedback Particle Filter

There are two extensions of the feedback particle filter:

1. PDA-FPF: In [12, 8], the classical Kalman filter-based probabilistic data as-
sociation filter (PDAF) is generalized to the nonlinear filtering problem with data
association uncertainty. The resulting filter is referred to as the PDA-FPF.

2. IMM-FPF: In [11], the classical Kalman filter-based interacting multiple
model filter (IMMF) is generalized to the nonlinear filtering problem with model
association uncertainty. The resulting filter is referred to as the IMM-FPF.

The remarkable conclusion of both these papers is that the FPF-based imple-
mentations retain the innovation error-based feedback structure even for the non-
linear problem. This structure is expected to be useful because of the coupled
nature of the filtering and the data/model association problems. The theoretical
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results are illustrated with numerical examples for target tracking applications.
For additional details, see [11, 12, 8].

2.2 Extended Kalman Filter

Extended Kalman filter (EKF) is an extension of the Kalman filter algorithm.
The algorithm is used to obtain an approximate solution to the nonlinear filtering
problem. The EKF approximates the posterior distribution by a Gaussian distri-
bution, parameterized by its mean X̂t and the covariance matrix Pt .

To perform the update step, the EKF uses linearizations of the signal model a(·)
and the observation model h(·), evaluated at the mean X̂t . The respective Jacobian
matrices are denoted by A := ∂a

∂x (X̂t) and H := ∂h
∂x (X̂t).

The EKF algorithm is given by,

dX̂t

dt
= a(X̂t)+Kt

(
Yt−h(X̂t)

)
, (2.7)

dPt

dt
= APt +PtAT +Q−KtHPt . (2.8)

where the Kalman gain
Kt = Pt HT R−1. (2.9)

Under the assumptions that the signal and the observation models are linear and
the posterior distribution is Gaussian, the Kalman filter is the optimal solution.
For non-Gaussian and strongly nonlinear problems, the EKF algorithm is known
to perform poorly, and can suffer from divergence issues; cf., [7].

2.3 Comparisons Between EKF and FPF

Fig. 2.2 provides a comparison of the feedback structure of the EKF and FPF
algorithms. A pseudo-code for the two algorithms is given in Fig. 2.3. Although
the FPF pseudo-code is for the constant gain approximation, the two algorithms
are quite close even in the general case. The only difference is that in the gen-
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eral case, the gain is a function also of the state, as given by the solution of the
BVP (2.3), or its weak form (2.5).

2.3.1 Comparison of the Feedback Structure

In recent decades, there have been many important advances in importance sam-
pling based approaches for particle filtering; cf., [4, 2, 10]. A crucial distinction
in the feedback particle filter algorithm is that there is no resampling of particles.

It is believed that the introduction of control in the feedback particle filter has
several useful features/advantages:

Innovation error. The innovation error-based feedback structure is a key feature
of the feedback particle filter (2.1). The innovation error in (2.1) is based on the
average value of the prediction h(X i

t ) of the ith-particle and the prediction ĥ(N) due
to the entire population.

The feedback particle filter thus provides for a generalization of the Kalman
filter to nonlinear systems, where the innovation error-based feedback structure
of the control is preserved (see Fig. 2.2). For the linear case, the optimal gain
function is the Kalman gain. For the nonlinear case, the Kalman gain is replaced
by a nonlinear function of the state (see Fig. 2.1).

a b

Figure 2.2: Comparison of feedback structure: (a) feedback particle filter and (b) Kalman filter.

Feedback structure. Feedback is important on account of the issue of robustness.
A filter is based on an idealized model of the underlying dynamic process that
is often nonlinear, uncertain and time-varying. The self-correcting property of
the feedback provides robustness, allowing one to tolerate a degree of uncertainty
inherent in any model.

In contrast, a conventional particle filter is based upon importance sampling.
Although the innovation error is central to the Kushner-Stratonovich’s stochastic
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partial differential equation (SPDE) of nonlinear filtering, it is conspicuous by its
absence in a conventional particle filter.

Arguably, the structural aspects of the Kalman filter have been as important
as the algorithm itself in design, integration, testing and operation of the overall
system. Without such structural features, it is a challenge to create scalable cost-
effective solutions.

The “innovation” of the feedback particle filter lies in the (modified) definition
of innovation error for a particle filter. Moreover, the feedback control structure
that existed thusfar only for Kalman filter now also exists for particle filters (com-
pare parts (a) and (b) of Fig. 2.2).

Does not require resampling. There is no resampling required as in the conven-
tional particle filter. This property allows the feedback particle filter to be flexible
with regards to implementation and does not suffer from sampling-related issues.

Variance reduction. Feedback can help reduce the high variance that is sometimes
observed in the conventional particle filter. Numerical results in [15] support this
claim, where a comparison of the feedback particle filter and the bootstrap filter is
provided.

Ease of design, testing and operation. On account of structural features, feed-
back particle filter-based solutions are expected to be more robust, cost-effective,
and easier to debug and implement. Computationally, it is seen that the resam-
pling step in conventional particle filters is very expensive, whereas implementing
feedback is seen to be rather efficient.

2.3.2 Comparison of the Computation Time

In this section, a comparison of the number of operations required to imple-
ment an FPF algorithm, relative to an EKF algorithm is provided. For the FPF
algorithm, a constant gain approximation is assumed.

The comparison, tabulated in Table 1.1, is obtained by counting the number
of operations – addition, multiplication and function evaluation – to implement a
single update step for a simple scalar valued observation.
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With a constant gain approximation, the number of operations scales linearly
with the number of particles N, and also with the state dimension d. This is in
contrast to EKF where the number of operations scale as d3, in the number of
dimensions.

By counting the addition, multiplication and function evaluation operations, the
total number of operations required to implement the update step (per observation)
in EKF is,

OEKF = 4d3 +12d2 +3d +4. (2.10)

For the FPF, it is
OFPF = 3Nd +6N +2d +1. (2.11)

Setting the total operation counts in (2.10) and (2.11) equal to each other gives the
critical number of particles,

Ncrit =
4d3 +12d2 +d +3

3d +6
, (2.12)

where the FPF and EKF implement the same number of operations.

If one assumes that additions, multiplication and function evaluation each take
the same computation time, for N = Ncrit, the two algorithms have identical com-
putation time requirement. Since the number of operations scale linearly with N,
the computation time to implement the update step in FPF then is a factor N

Ncrit

more than the computation time to implement the update step in EKF.

The accuracy of the FPF improves as the number of particles N increases. The
computation time analysis, presented in this section, can be used to carry out
performance-computation time trade-off studies, relative to EKF.

Table 2.1: Operation count (per observation) for the FPF

FPF
Calculation Adds Multiplies Func Eval
h(X i

t ) 0 0 N
ĥ(N) = 1

N ∑
N
i=1 h(X i

t ) N 1 0

Ii
t = Yt − 1

2(h(X
i
t )+ ĥ(N)) 2N N 0

K= 1
N ∑

N
i=1(h(X

i
t )− ĥ(N))X i

t Nd+N Nd+2d 0
U i

t = KIi
t 0 Nd 0

Total Nd+4N 2Nd+N+2d+1 N
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Table 2.2: Operation count (per observation) for the EKF

EKF
Calculation Adds Multiplies Func Eval
A = ∂a

∂x (X̂t) 0 0 d2

H = ∂h
∂x (X̂t) 0 0 d

It = Yt −h(X̂t) 1 1 1
K= PtHT d2 d2 +d 0
Ut = KIt 0 d 0

Pt 2d3 +6d2 2d3 +3d2 1

Total 2d3 +7d2 +1 2d3 +4d2 +2d +1 d2 +d +2

Algorithm 1 FPF
1: Iteration At each time-step t
2: Calculate

ĥ(N) :=
1
N

N

∑
i=1

h(X i
t )

3: Calculate the const. approx. of
gain function

Kt =
1
N

N

∑
i=1

(
h(X i

t )− ĥ(N)
)

X i
t ,

4: for i := 1 to N do
5: Calculate the innovation error

Ii
t = Yt−

h(X i
t )+ ĥ(N)

2

6: Propagate the particle accord-
ing to the SDE

dX i
t

dt
= a(X i

t )+ Ḃi
t +KtIi

t

7: end for

Algorithm 2 EKF
1: Iteration At each time-step t
2: Evaluate the Jacobians at X̂t

A :=
∂a
∂x

(X̂t) H :=
∂h
∂x

(X̂t)

3: Calculate the gain function:

Kt = PtHT

4: Calculate the innovation error

It = Yt−h(X̂t)

5: Propagate the mean

dX̂t

dt
= a(X̂t)+KtIt

6: Propagate the covariance

dPt

dt
= APt +PtAT +Q−KtHPt

Figure 2.3: Comparison of the update step for the feedback particle filter, and the
extended Kalman filter (For notational ease, a scalar-valued measurement is
assumed with observation covariance R = 1).
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CHAPTER 3

RESAMPLING BASED PARTICLE FILTERS

This chapter provides an introduction to the algorithms used for the resam-
pling based particle filters In particular, the algorithms for particle filters based
on sampling importance resampling (SIR), occasional resampling, deterministic
resampling, and regularization are discussed.

3.1 Conventional Particle Filters

A conventional particle filter is a simulation-based algorithm to approximate
the filtering task. At time t, the state of the filter is {(X i

t ,w
i
t) : 1 ≤ i ≤ N}: The

value X i
t ∈Rd is the state and wi

t ∈ [0,1] is the weight, for the ith particle at time t.
The weights are assumed normalized, i.e., ∑

N
i=1 wi

t = 1. In terms of these particles,

Prob{Xt ∈ A |Zt}=
N

∑
i=1

wi
t1{X i

t ∈ A}.

for any measurable set A⊂Rd , where 1 denotes the indicator function. The initial
set of particles

{
X i

0
}N

i=1 may be drawn i.i.d. from the initial distribution p∗(·,0)
of X0. In this case the weights are uniform, wi

0 =
1
N .

3.1.1 Sampling Importance Resampling (SIR)

A conventional particle filter is an algorithm for evolution of the ensemble,

(X i
t ,w

i
t)−→ (X i

t+δ
,wi

t+δ
),

13



as new measurements are obtained; here δ is the time-step. This evolution is
carried out in two steps:

1. Prediction: Prediction involves using the SDE model (1.1a) to push-forward

the particles, X i
t −→ X i−

t+δ
. This is accomplished by numerically integrating the

SDE. The weights wi−
t+δ

= wi
t .

At the end of prediction step, the particles are denoted as (X i−
t+δ

,wi−
t+δ

).

2. Update: The update step involves application of the Bayes’ formula to update
the weights. Given a new observation, Yt , the unnormalized weights are obtained
as,

w̃i−
t+δ

= wi−
t+δ

L(Yt |X i−
t+δ

), (3.1)

where L(y|x) is the likelihood function, conditional probability of observing Yt = y

given Xt = x. The likelihood function may be obtained by using the observation
model (1.1b). The weights at time t +δ are then obtained by normalization,

wi
t+δ

=
w̃i−

t+δ

∑
N
j=1 w̃ j−

t+δ

. (3.2)

This basic algorithm, known at least since 1960s (see [6]), is known to suffer
from the issue of particle degeneracy. whereby only a few particles have insignif-
icant weight values. This is a problem because it reduces the effective sampling
size. The remedy is to occasionally resample in order to ‘rejuvenate’ the parti-
cle population: That is, eliminate particles that have small weights and reproduce
particles that have larger weights.

There are several methods for resampling (see [5] for an early reference), some
of which are discussed next.

3.1.2 Occasional Resampling

Resampling is carried out periodically, every lth (discrete) time-step; the pa-
rameter l is referred to as the lag parameter.

In the simplest form of the algorithm, one resamples new particles from the dis-
crete distribution specified by the ensemble {(X1

t ,w
1
t ), . . .(X

N
t ,wN

t )}. The weights

14



{w1
t , · · ·wN

t } are interpreted as a probability mass function for a discrete random
variable taking values {X1

t , · · ·XN
t }. After the resampling step, the particles have

identical weight 1
N .

One drawback of this simple algorithm is that random resampling introduces
additional noise into the simulation. This is a problem because it can lead to large
variance and in some cases, numerical instabilities [3].

To address this issue, one may chose to do resampling in a deterministic man-
ner. An algorithm for this is described next.

3.1.3 Deterministic Resampling

As the name suggests, the particles are resampled in a (partially) deterministic
manner.

At each resampling time-step, the i-th particle is ‘branched’ ni times, where
ni = bNwi

tc. This means: If ni > 0, one creates ni copies of X i
t , and if ni = 0 then

X i
t is removed. After this deterministic step, one has Ñ = ∑

N
i=1 ni particles. Then,

Nres = N− Ñ more particles are obtained by using random resampling. For this
purpose, the residual weights are defined as wi,res

t := wi
t − ni

N . The Nres particles
are obtained by random sampling from the discrete distribution specified by the
ensemble {(X1

t ,cw1,res
t ), . . .(XN

t ,cwN,res
t )}, where c is a normalizing constant.

In summary, after each resampling time-step, one obtains a total of N parti-
cles of which Ñ are deterministically obtained from the ensemble and Nres are
randomly generated. The particles have identical uniform weight after the resam-
pling step.

Although these two algorithms alleviate the problem of particle degeneracy,
they can introduce the problem of sample impoverishment related to the loss of
particle diversity. The problem occurs if particles with large weights are selected
for resampling many times. In simulations, this can lead to nearly identical val-
ues for all particles, particularly if the process noise is small. This problem is
addressed by a regularization procedure, which is presented next.
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3.1.4 Regularization

A regularized particle filter refers to the algorithm where resampling from the
discrete distribution (specified by the ensemble {(X1

t ,w
1
t ), . . .(X

N
t ,wN

t )}) is re-
placed by resampling from an absolutely continuous distribution. The continuous
distribution is generated by using a kernel density smoother, the details for which
can be found in [2, 1].

In the simulations described next, a Gaussian kernel is used. That is the density
at time t is approximated as,

p(x, t)≈
N

∑
i=1

wi
tq

ε(x;X i
t ) =: p̃(x, t)

in which qε(x; µ) := 1√
2πε

exp(− (x−µ)2

2ε
); in numerical simulations, ε = 0.1 is

used.

The regularization may be done at the update or the prediction step. In the
simulation, regularization is done at the update step. For this regularized filter, an
algorithm for acceptance/rejection of particles is also implemented as described
in [2].
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CHAPTER 4

APPLICATIONS

In this chapter, comparisons on tracking accuracy and computational efficiency
are made between the various filtering methods discussed in earlier chapters. The
outline of this chapter is as follows: section 4.1 provides a comparison between the
FPF and EKF on a constant velocity target tracking problem, section 4.2 provides
a comparison of the FPF and EKF on a maneuvering target tracking problem, and
section 4.3 provides a comparison with the particle filters on a benchmark problem
defined in [2].

4.1 Constant Velocity Target Tracking

Starting with a basic two-dimensional problem with a simple white noise ac-
celeration model, the target is modeled as,

d
dt


x1(t)

x2(t)

v1(t)

v2(t)

=


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




x1(t)

x2(t)

v1(t)

v2(t)


with the target constrained to x2 = 0 and v2 = 0.

Taking bearing-only measurements on this target, after rotating the coordinate
frame as, (

R1(t)

R2(t)

)
=

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
x1(t)− xb

1(t)

x2(t)− xb
2(t)

)
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Figure 4.1: Constant velocity target problem setup

and remembering that Yt is of the form:

Yt = h(Xt ,Xb
t )+σWWt

so here,

Yt = arctan
(

R2(t)
R1(t)

)
+σWWt

Fig. 4.1 depicts the basic set-up of this constant velocity problem: a target
moves along the x direction at a constant velocity, and a sensor moves at a constant
velocity towards the target taking bearing-only measurements.

For this experiment a mean-squared error metric is used on position,

MSE =

√
1
T ∑

T I

(
x1− x̂1

x1

)2

and on velocity,
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Figure 4.2: Typical position tracking results for constant velocity target

MSE =

√
1
T ∑

T I

(
v1− v̂1

v1

)2

Given a sampling rate of 20 Hz and an observation noise of 7◦, typical results
on position tracking as in Fig. 4.2 and for velocity tracking in Fig. 4.3 are given
for both the FPF and EKF.

From the typical simulations, it is seen that the FPF and EKF perform nearly
identically in tracking accuracy for the constant velocity target problem. This is
further backed up by the results from a series of Monte Carlo runs across a range
of number of particles for the FPF, sampling rates and observation noises. These
results are presented in Fig. 4.4, Fig. 4.5, Fig. 4.6 and Fig. 4.7.

The computation time between the EKF and FPF. is also compared Tables 2.1
and 2.2 show the timings(in microseconds) achieved for this problem from our
PYTHON implementation of each filter. Fig. 4.9 and Fig. 4.8 demonstrate the
correlation between the timing equilibrium point (where the computational load of
the FPF and EKF is equal) found during simulations (approximately 33 particles)
and the theoretical operation count equilibrium point (50 particles) found from
(1.14).
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Figure 4.3: Typical velocity tracking results for constant velocity target
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Figure 4.4: Position MSE results across sampling rates
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Figure 4.5: Position MSE results across observation noises
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Figure 4.6: Velocity MSE results across sampling rates
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Figure 4.7: Velocity MSE results across observation noises

Table 4.1: FPF Timings

FPF Equation 10 particles 100 particles 1000 particles

Calculate hi hi = arctan x2
x1

32.4 46.5 152.4

Calculate ĥ ĥ = 1
N

N
∑

i=1
hi 68.6 98.9 395.4

Gain K = 1
N

1
σ2

W

N
∑

i=1
(hi− ĥ)X i 94.1 123.7 465.9

Mean of hi and ĥ hmean =
hi+ĥ

2 98.8 162.7 797.4

Innovation Error Ii = Yt−hmean 35.1 68.4 388.8

Control U i = K ∗ Ii 8.3 9.9 21.1

Total 337.3 510.1 2221.0

Table 4.2: EKF Timings

EKF Equation Time

Predict Covariance P = P+FP+PFT +Q 18.0

Jacobian H= Cb(t)[ −x2
x2

1+x2
2
, x1

x2
1+x2

2
,0] 283.9

Kalman Gain K = 1
σ2

W
PHT 14.4

Innovation Error I = Y t−hx 47.6

Control U = K ∗ I 6.7

Update Covariance P = P−KHP 11.2

Total 381.8

For additional comparison, two more test cases were investigated. The first case
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Figure 4.8: Total operations for FPF (scaled with particles) and EKF
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Figure 4.9: Total times for FPF (linear fit between particles) and EKF
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Figure 4.10: Position tracking results on a constant velocity target with a low
noise bearing sensor

was the same simulation set-up as before, but the noise on the bearing sensor was
reduced to 0.3◦. The improved results here (Fig. 4.10, Fig. 4.11 demonstrate that
the poor velocity tracking in the previous case was likely due to lack of informa-
tion/observability from the higher noise sensor.

The second additional case investigated is the same scenario as above, with the
addition of a range sensor providing measurements to the filter. As with the low
noise bearing sensor case, the improved results in this case (Fig. 4.12, Fig. 4.13),
demonstrate that the lack of information/observability in the bearing-only mea-
surement case is likely what was causing some of the poor velocity tracking re-
sults.
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Figure 4.11: Velocity tracking results on a constant velocity target with a low
noise bearing sensor

Figure 4.12: Position tracking results on a constant velocity target with range and
bearing sensors

25



Figure 4.13: Velocity tracking results on a constant velocity target with range and
bearings sensors
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Figure 4.14: Position path taken by target with maneuvers

4.1.1 Maneuvering Target Tracking

Here, a similar set-up as the constant velocity model is used, except the target
is able to make a series of maneuvers: in this case two turns. It is assumed that
the maneuvers are unknown to the filters. The position and velocity profiles used
for the simulations are seen in Fig. 4.14 and Fig. 4.15.

In a naive approach, the same constant velocity models as the previous problem
were used and the results can be observed in Fig. 4.18, Fig. 4.19. It can be seen that
tracking accuracy has diminished severely for both filters, so a new approach must
be taken to regain some of the performance. As a secondary approach to the ma-
neuvering target problem, a constant acceleration model was implemented without
much improvement over the constant velocity model (Fig. 4.16, Fig. 4.17).

For the extended Kalman filter, the constant velocity model is replaced with the
Singer jerk model:
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Figure 4.15: Velocity profile of target with maneuvers
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Figure 4.16: Position tracking results on a maneuvering target with a constant
acceleration model for the filter
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Figure 4.17: Velocity tracking results on a maneuvering target with a constant
acceleration model for the filter
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Figure 4.18: Position tracking results on a maneuvering target with a constant
velocity model

29



0 10 20 30 40 50 60

t

20

15

10

5

0

5

10

15

20

25

v 1

True State FPF EKF

Figure 4.19: Velocity tracking results on a maneuvering target with a constant
velocity model

d
dt



x1(t)

x2(t)

x3(t)

v1(t)

v2(t)

v3(t)

a1(t)

a2(t)

a3(t)


=



0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1

τ
0 0

0 0 0 0 0 0 0 −1
τ

0
0 0 0 0 0 0 0 0 −1

τ





x1(t)

x2(t)

x3(t)

v1(t)

v2(t)

v3(t)

a1(t)

a2(t)

a3(t)


+noise

Here τ is chosen such that it is equal to the expected length of the maneuver. In
the Singer model the variance on the noise is given by

σ
2
m =

a2
max
3

[1+4Pmax−P0]

Where amax is the maximum acceleration, Pmax is the probability the target moves
with that acceleration, and P0 is the probability the target moves with no acceler-
ation.
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Figure 4.20: Position tracking results on a maneuvering target with a Singer
model on EKF and synchronized FPF

For the FPF, a technique referred to as synchronization is introduced. The con-
cept of synchronization in the context of the FPF involves distributing particles
over a variety of potential maneuver models; by then taking advantage of the feed-
back structure present in the FPF, the mean state of the particles will synchronize

around the particles maneuvering most like the actual target is. For the purpose
of the experiments presented here, a uniform distribution over the accelerations
[-5,5] was used. However, the flexibility of using particles allows many differ-
ent options when it comes to selecting a distribution (multi-modal Gaussian, delta
functions at specific maneuvers, etc.).

Fig. 4.20 and Fig. 4.21 show typical tracking results on a maneuvering target
for the EKF with a constant velocity model, EKF with a Singer model, and syn-
chronized FPF. As before, the constant velocity shows poor tracking capabilities
across both position and velocity. Interestingly, the EKF with Singer model and
the synchronized FPF show nearly identical and much improved tracking perfor-
mance across both position and velocity. Fig. 4.22 and Fig. 4.23 further exemplify
this improvement by showing a factor of nearly two reduction in the average MSE
over a set of Monte Carlo runs.
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Figure 4.21: Velocity tracking results on a maneuvering target with a Singer
model on EKF and synchronized FPF
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Figure 4.22: Position MSE results on a maneuvering target with a Singer model
on EKF and synchronized FPF
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Figure 4.23: Velocity MSE results on a maneuvering target with a Singer model
on EKF and synchronized FPF

4.2 Ship Tracking

For this example problem, the FPF and EKF are compared to the conventional,
resampling based particle filters. The example problem is taken from the survey
article [2].

In the example problem, the dynamics describe the motion of a ship. The ship
moves with a constant radial and angular velocity, perturbed by white noise, when
it is within some distance of the origin. If the ship drifts too far away from the
origin, a restoring force pushes it back towards the origin. The signal model for
the state process Xt = [Xt,1,Xt,2]

T ∈ R2 is described by,

dXt,1

dt
=−Xt,2 + f1(Xt,1,Xt,2)+ Ḃt,1,

dXt,2

dt
= Xt,1 + f2(Xt,1,Xt,2)+ Ḃt,2,

where Ḃt,1, Ḃt,2 are independent white noise processes, and

fi(x)
.
= γ

xi

|x|2 −Θ
xi

|x|1(ρ,∞)(|x|), i = 1,2,

where |x|=
√

x2
1 + x2

2, 1(ρ,∞) denotes the indicator function on the set (ρ,∞)⊂R,
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Figure 4.24: Typical trajectory for ship

0 2 4 6 8 10 12 14 16
t

−4

−3

−2

−1

0

1

2

3

4

Y
t

(r
a
d
ia
n
s)

Measurements Trajectory

Figure 4.25: Typical angle measurements seen versus time
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and γ,Θ, and ρ are real-valued parameters.

Noisy angular measurements are sampled at time-intervals of δ = 0.05, accord-
ing to the observation model,

Yt = h(Xt)+θVt , (4.1)

where Vt are sampled i.i.d. from a standard Gaussian distribution N (0,1), inde-
pendent of (X0, Ḃt) and h(x1,x2)

.
= arctan(x2/x1). For the numerical simulations,

choose θ = 0.32, which represents approximately 18◦ of standard deviation for
the (Gaussian) observation noise.

A single trajectory along with a sequence of measurements is depicted in Fig.().
The initial condition X0 = (0.5,−0.5) =: x0 and the parameters γ = 2, Θ = 50,
ρ = 9. This trajectory was obtained by using a predictor-corrector Euler scheme
for time-discretization of the ODE. A fixed discretization time-step of δ = 0.05
was used for this as well as for all other numerical simulations reported here.

Next, theresults of the numerical experiments are presented. In these experi-
ments, 100 distinct signal trajectories and measurement profiles were generated
over the time interval [0,8.25].

For each of the 100 Monte-Carlo runs, the initial condition of the ship’s tra-
jectory was randomly sampled from the prior distribution p0 = N (x0,10), where
x0 = [0.5,−0.5]. The process and the observation noise was generated for each
run in an independent manner.

The filters are initialized with a prior Gaussian distribution p0. That is, the
EKF is initialized with X̂0 = x0 and P0 = 10. For the particle filters, the initial
conditions of the particles, {X i

0}N
i=1, are randomly sampled from the distribution

p0.

The following metrics are used for the comparisons:

Root mean square error (rmse): Computed as a measure of performance over
all trajectories and over all time instants,

rmse :=
1

100
1

165

100

∑
j=1

165

∑
k=1
|X j(kδ )− X̂ j(kδ )|

where X j, j = 1, · · · ,100 represents the signal trajectory, X j(kδ ) is the true state
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at time instant kδ , X̂ j(kδ ) is the state estimate obtained as a mean, and 165 is the
total number of time instances during each simulation run (δ = 0.05, T = 165δ =

8.25).

Mean computation time: Computed as the mean time (in milliseconds) it took
to perform a single update step. The mean is obtained over the 100 Monte-Carlo
runs. The computation times are obtained by using a numerical profiler in the
PYTHON programming environment.

Fig. 4.26 shows a typical trajectory for the ship with the estimates provided
by the FPF and the EKF also being displayed. The results are further quantified
in Table 2.3. The trends shown in the Table 2.3 are consistent with the trends
reported in [2] for the particle filters. The quantitative numbers are also quite
close. The accuracy of the estimate, in terms of the rmse, improves by using
sophisticated versions of resampling schemes. The penalty is the computation
time, which increases as the rmse improves, with the FPF being the exception:
it has the best rmse and the lowest computation time among the particle filters.
The results for the regularization particle filter are not included because it became
computationally prohibitive to evaluate the Gaussian kernels for the 100 Monte-
Carlo runs.

The results with the EKF algorithm, as reported here, are not consistent with [2].
In that paper, the EKF was reported to have very poor performance. it was found
instead that the performance of EKF was in fact comparable to FPF, and better
than other particle filtering approaches.

Table 4.3: Performance Comparison

Filter Type rmse Comp. time

EKF 1.0143 0.062
PF SIR 1.2902 0.690
PF Resample 1.0991 1.448
PF Resample Lag 1.0856 1.077
PF Deterministic 1.0677 1.557
Feedback PF 0.9901 0.202
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Figure 4.26: Typical ship trajectory and the estimates of the state provided by
FPF and EKF in the x1− x2 plane
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Comparative studies of various nonlinear filtering techniques were provided.
FPF is shown to provide for a generalization of the Kalman filter to a general
class of nonlinear non-Gaussian problems. FPF inherits many of the properties
that has made the Kalman filter so widely applicable over the past five decades,
including innovation error and the feedback structure (see Fig. 2.2).

Comparisons using the FPF with a constant approximation for the gain against
the EKF, demonstrated a striking parity between the two filters. However, as the
nonlinearity and non-Gaussianity of the problems increase and the performance
of the EKF is expected to drop, it is suspected the FPF will continue to perform
strongly through the use of alternative, more complex, approximations to the gain
function and through intuitive use of particle distributions (as in the maneuvering
target problem).

Comparisons with several particle filtering algorithms are also discussed. The
results of the numerical example, taken from the survey paper [2], are encourag-
ing. These numerical results show that – for this particular example problem –
relative to conventional particle filtering algorithms, the FPF algorithm can pro-
vide better or comparable performance at a fraction of the computational cost.

Feedback is important on account of the issue of robustness. In particular, feed-
back can help reduce the high variance that is sometimes observed in the conven-
tional particle filter. Even more significantly, the structural aspects of the Kalman
filter have been as important as the algorithm itself in design, integration, testing
and operation of a larger system involving filtering problems (e.g., navigation sys-
tems). It is expected for the FPF to similarly provide for an integrated framework,
now for nonlinear non-Gaussian problems.

Future work will focus on further applications where the feedback structure of
the FPF could potentially be beneficial, as well as further development of the algo-
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rithms to work towards better approximations to the solution of the EL-BVP that
provides the gain function for the FPF. Other work within the research group has
focused on the use of filtering with oscillators with some interesting applications.
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