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Abstract

Ocean wave energy conversion is a popular research area due to the
increasing scarceness of nonrenewable energy resources. However, extract-
ing wave energy is not a simple process. For example, the design and con-
struction of wave energy take-off devices that are reliable, long-lasting,
and efficient is a non-trivial endeavor. In this report, the physics-based
theories behind a permanent magnet linear generator are reviewed. A
model of the generator is built from a series of independent and depen-
dent parameters. The model is simulated using Matlab® with a specific
set of parameter values. Two of the independent parameters are studied
and improvement potential is revealed.

∗This technical report was submitted in partial fulfillment of an independent study project
at the University of Illinois at Urbana-Champaign Department of Industrial and Enterprise
Systems Engineering.

†B.S. Candidate in Industrial Engineering, Department of Industrial and Enterprise
Systems Engineering, University of Illinois at Urbana-Champaign, xinniu2@illinois.edu.
©2013 Xin Niu

1



Contents

1 Permanent Magnet Linear Synchronous Generators 3
1.1 Electromagnetic Theory . . . . . . . . . . . . . . . . . . . . . . . 4

2 Dynamic System Model 7
2.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Generator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Wave Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Numerical Studies 16
3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Design Parameter Studies . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Model Stiffness Study . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Conclusion 36

A Appendix: Modeling Code 39

B Appendix: Engineering Science Elements in this Report 48

2



1 Permanent Magnet Linear Synchronous Gen-
erators

Figure 1: Heaving Linear Generator Power Take-Off Device for Wave Energy
Conversion (from Ref. [1]).

This report describes a model for a permanent magnet (PM) linear syn-
chronous generator that is part of a system for converting ocean wave energy
into electricity [2]. A dynamic mathematical model of such a generator was de-
veloped based on Ref. [2], and tested using a variety of simulations. A generator
is known as “synchronous” when the waveform of the generated voltage is syn-
chronized with the rotation of the generator. Permanent magnets are used to
provide the field excitation in a linear synchronous generator. Due to mechani-
cal constraints, linear motors have large and variable airgaps [3]. Therefore, the
magnetic circuit has a large reluctance. Magnetic reluctance, or magnetic resis-
tance, is a property of magnetic circuits. The concept of magnetic reluctance is
analogous to resistance in an electrical circuit. However, instead of dissipating
electrical energy, magnetic reluctance stores magnetic energy. An electric field
causes an electric current to follow the path of least resistance. Similarly, a mag-
netic field causes magnetic flux to follow the path of least magnetic reluctance.
A permanent magnet linear synchronous motor requires magnets with a large
coercive force, which is the intensity of the applied magnetic field required to
reduce the magnetization of that material to zero after the magnetization of the
material has been driven to saturation. When a material has a large coercive
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force it is difficult for the material to lose its magnetization. Using magnets with
a large coercive force results in a permanent magnet generator that has stable
properties over time. Ferrite and rare-earth magnets are examples of permanent
magnets with a large coercive force [3].

1.1 Electromagnetic Theory

Pertinent elements of electromagnetic theory will be reviewed here as a foun-
dation for understanding the operation of permanent magnet linear synchronous
generators. For a circuit carrying a current I as shown in Fig. 2, the magnetic
field intensity H at a point P is defined by the following equation:

H =
1

4π
I

∫
C

dl× r1
r2

. (1.1)
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Figure (2): The magnetic intensity dH produced by a line element dl of the current I in a circuit.  
 
 
2.1.2 Magnetic induction B 
 
Magnetic induction is defined by the force it exerts on a conductor carrying an electrical current. It is related 
with the magnetic field intensity as follows: 
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where the constant P  is the permeability of the medium. Magnetic induction is expressed in teslas (T). The 
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2.1.3 Magnetic flux )   
 
The magnetic flux through a surface S is: 
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It is measured in webers (W). 
 
 
2.1.4 Magnetization M 
 
The magnetization M is the magnetic moment per unit volume at a given point in a medium. The magnetic 
moment is associated with the orbital and spinning motion of electrons. It has the same unit as the magnetic field 
intensity, amperes per meter. The magnetization M and the magnetic field intensity H contribute to the magnetic 
induction as follows: 
 

� �MHB � 0P .     (4) 
 
This is called the field equation 
 
 
2.2 Fundamental equations 
 
The whole electromagnetic theory can be derived from Maxwell’s four fundamental equations. Three of these 
equations will be necessary for the understanding of the theory in this work, namely: 
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Figure 2: The Magnetic Intensity dH Produced by a Line Element dl of the
Current I in a Circuit (from Ref. [4]).

The integration is carried out over a closed circuit C. The unit vector r1 and
the distance r show the direction and distance respectively from the source to
the point of observation. Magnetic field intensity is expressed in amperes per
meter (A/m).

A magnetic field B is quantified by the force that it exerts on a conductor
carrying an electrical current. It is related with the magnetic field intensity as
follows:

B = µH, (1.2)

where the constant µ is the permeability of the medium the magnetic field passes
through. Magnetic field is expressed in Tesla (T or N·A−1 ·m−1). If the material
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is nonlinear, the permeability is a function of B:

µ =
B

H(B)
. (1.3)

The permeability of free space µ0 is defined as: µ0 = 4π × 10−7 T · m/A.
The magnetic flux through a surface S is the component of the magnetic field

B passing through that surface:

Φ =

∫
S

B · dA, (1.4)

and is measured in Weber (W or T ·m2).
The magnetization M is the magnetic moment per unit volume at a given

point in a medium. The magnetic moment is associated with the orbital and
spinning motion of electrons. It has the same unit as the magnetic field intensity,
A/m. When magnetization M is present, it combines with the magnetic field
intensity H to produce the magnetic induction through the field equation:

B = µ0(H + M). (1.5)

The fundamentals of a permanent magnet linear synchronous generator are
closely related to magnetic field and Maxwell equations. Three of the four
equations are related to permanent magnet linear synchronous generators by
Ampere’s Law:

∇×H = J +
∂D

∂t
. (1.6)

Here J is the volume current density in the circuit. The second term (∂D/∂t)
involves electric displacement D, which is a vector field that accounts for the
effects of free charge within materials. When the cyclic variation of D has
low frequency, which is the case in this report, the second term is considerably
smaller than J . Therefore, electric displacement will be neglected in this report.
With this simplification, Eqn. (1.6) can be rewritten as follows:∮

C

H · dl =

∫
S

J · dA. (1.7)

Equation (1.7) states that line integral of H over a closed curve C is equal to
the current crossing the surface S bounded by C. Often the same current crosses
the surface bounded by the curve C several times. A solenoid is a coil wounded
into a tightly packed helix, as illustrated in Fig. 3. A current runs through the
coil and creates a magnetic field. With a solenoid, C could follow the axis and
then return outside the solenoid. The total current crossing the surface is then
the current in each turn multiplied by the number of turns. Equation (1.7)
describes how the magnetic field intensity is determined by the distribution of
current in a circuit. This equation governs the behavior of the stator part of a
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permanent magnet linear synchronous generator. The stator is the stationary
portion of the generator. It contains an electric circuit, and current is induced in
the stator circuit by the moving permanent magnets located on the translator.
The stator and translator are depicted in Fig. 1.

∇×B = 0. (1.8)

Equation (1.8) is the second of the three Maxwell’s equations discussed here,
and is also known as Gausss law. It states that the net flux of B in any volume
is zero. Unlike electrical field lines, a magnetic field line must complete a closed,
continuous curve. This must always be taken in to account in the design of the
magnetic circuit of a generator.

∇×E = −∂B
∂t

. (1.9)

Figure 3: An Example of a Solenoid.

Equation (1.9) is the third of Maxwell’s equations relevant to linear genera-
tors, and states that the curl of the electric field is equal to the negative time
derivative of the magnetic field. This demonstrates the duality of electric and
magnetic fields. In physics, in the static case, electromagnetism has two separate
facets: electric fields and magnetic fields. This gives rise to the electromagnetic
dual concept. Expressions of either of these will have a dual expression of the
other. The reason behind this is related to special relativity when using Lorentz
transformation to transform electric fields to magnetic fields. Some examples
of the duality of electric and magnetic fields include electric field and magnetic
field, electric displacement field and magnetizing field and Faraday’s law and
Ampere’s law. Equation (1.9) can be rewritten by using Stokes Theorem on the
left hand side and Eqn. (1.4) on the right hand side:

e = −dΦ

dt
, (1.10)

where e is the electromotive force (EMF) and Φ is the magnetic flux through a
closed surface.

Equation (1.10) is the most widespread formulation of Faraday’s Law, which
states: The induced electromotive force, which is the voltage generated, in any
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closed circuit is equal to the negative of the time rate of change of the magnetic
flux through the circuit. The direction of the current induced in the circuit is
such that its magnetic field opposes, to a greater or lesser extent depending on
the resistance of the circuit, the change in flux. If the closed circuit comprises
N turns close together, each intercepting the same magnetic flux, then the
electromotive forces add up, resulting in an N times larger electromotance.
With this in mind, we can define NΦ as the flux linkage Λ:

Λ = NΦ, (1.11)

and Faraday’s Law for circuits with multiple turns can be rewritten as:

e = −dΛ

dt
. (1.12)

2 Dynamic System Model

There are two primary types of permanent magnet linear synchronous gen-
erators: tubular permanent magnet linear synchronous generators and flat per-
manent magnet linear synchronous generators. The tubular permanent magnet
linear synchronous generator is cylindrical. The force-to-weight ratio of such
machines has been proved to be higher than flat generators [5]. However, flat
generators are less expensive and easier to build.

In this report two models of a permanent magnet linear synchronous gen-
erator will be built and simulated. A series of differential equations will be
formulated to describe the incident ocean wave and the reaction of the perma-
nent magnet linear synchronous generator. The incoming ocean wave is assumed
to be sinusoidal. For the first model, we ignore the reaction force applied by
the generator. The second model includes the effect of the reaction force of the
generator. These two models were then used to simulate dynamic generator
behavior. Generator performance was evaluated using each model.
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2.1 System Description

Figure 4: Schematic of the Quasi-Flat Tubular Permanent Magnet Linear
Synchronous Generator: (a) Longitudinal Cross-Section (b) Top-View (from
Ref. [2]).

The proposed structure of the permanent magnet linear synchronous gen-
erator is shown schematically in Fig. 4, which is based on the structure from
Ref. [2]. It consists of four flat primary elements and four secondary elements
enclosed within one housing. The secondary elements, which correspond to the
translator in Fig. 1, move with the buoy and are called translators, which are the
non-stationary parts in a generator. The primary elements, which correspond
to the stator winding in Fig. 1, don’t move and are called stators. Each of the
flat sides is similar in structure to a flat linear machine as shown in Fig. 5.
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Figure 5: Structure of the Flat Permanent Magnet Linear Synchronous Gener-
ator (from Ref. [2]).

Figure 5 depicts the stator, which is the top element in the figure, and the
translator, which is the bottom element shown in the figure. The stator con-
tains the windings. Normally a permanent magnet linear synchronous generator
contains a number of individual windings stacked together. The model in this
report describes a permanent magnet linear synchronous generator with three
phases. The three phases of windings are labeled A, B, and C. L is the length of
the stator core. Ys is the stator yoke thickness. hs is the height of the slot. W
is the width of the stator. hm is the height of the magnet. Yr is the translator
yoke thickness.

The translator will move along with the buoy that moves with the ocean
wave. Since the magnets on the translator are also moving with it, the magnetic
field that passes through the motionless stator windings will change with time.
According to Faraday’s Law discussed in the previous section, this will induce
currents in the circuit. This is the mechanism that transforms the kinetic energy
of the ocean wave into electricity. A dynamic model of this energy conversion
based on differential equations will be presented later in this section.

2.2 Generator Model

The structure of the primary core is shown as below, where geq is the equiva-
lent air gap. The primary core is the stator. The secondary core is the translator.
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Figure 6: Schematic Representation of Unslotted Primary Core (from Ref. [2]).

The stator circuit windings run through slots in the stator. The slot dimen-
sions are shown below:

Figure 7: Illustration of Primary Core Slots (from Ref. [2]).

An equivalent circuit model of the generator is shown in Fig. 8:
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Figure 8: Equivalent Circuit of 3-Phase Winding of Generator (from Ref. [2]).

Table 1: Generator Parameters (from Ref. [2]).

Name Symbol Value Units
Number of phases m 3

Number of poles p 6
Number of slots/pole/phase q 1

Number of armatures Ms 4
Number of turns per coil N 82
Length of the stator core L 0.432 m

Stator width Ws 0.2 m
Air gap ga 0.002 m

Height of magnets hm 0.006 m
Permissible flux density in translator core Br 1.2 T

Coercive magnetic field intensity Hc 905000 A/m
Armature resistance Ra 1.5 Ω

Load resistance RL 7.5 Ω
Synchronous inductance Ls 0.115 H

Table 1 lists model parameters. The values used for most parameters listed in
this table are based on the values given in Ref. [2]. Some parameters, namely m,
p, q, Ms, N , L, Ws, ga and hm, are physical parameters and independent from
each other. They are variables that can be changed by designers, and are treated
as independent design variables in this report. However, it should be noted that
they still have finite ranges of validity due to physical constraints. In addition,
not all combinations of variable values within allowed ranges are physically
meaningful. Br and Hc are properties of the magnetic material used in Ref. [2].
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We assume the magnetic material choice is fixed, so these two parameter values
are not changeable here. Please note that some parameters, including Ra, RL
and Ls, are dependent parameters that will change with the physical design
of the generator, but are considered to be fixed here for the specific generator
design detailed in Ref. [2]. This assumption simplifies modeling, but does reduce
model fidelity to some degree.

The number of turns per coil N refers to the number of turns in each of
the three stator windings. The model in this report is a four-sided permanent
magnet linear synchronous generator, with the windings on the stator elements.
For the generator architecture used here, the stator elements are known also
as armatures, which the power-producing component in a generator. Therefore
this generator has four armatures, one for each side.

The armature resistance Ra is the resistance of each phase of the armature
circuits. The synchronous inductance Ls is the inductance in each phase, and
the load resistance RL is the resistance of the load in the circuit. The load refers
to an external electrical system being powered by the generator. These elements
are depicted in the equivalent circuit model that is illustrated in Fig. 8.

The pole pitch τp is the overall width of each pole. It may be expressed as a
function of stator core length L and the number of poles p:

τp =
L

p
. (2.1)

The tooth pitch τt may be derived from the pole pitch, and is illustrated in
Fig. 7:

τt =
τp
mq

, (2.2)

where m is the number of phases and q is the number of slots per phase per
pole. Here we assume the slot width is:

bs = 0.016 m. (2.3)

Knowing bs, we can calculate tooth width:

bt = τt − bs. (2.4)

In a slotted armature, the effective area of the magnetic flux path is sub-
stantially reduced due to its geometry. This results in an increase in air gap
reluctance. This phenomenon may be understood by studying Carter’s coeffi-
cient (Kc) for air gap reluctance. In this simple method for estimating the air
gap reluctance, we assume that the air gap flux is uniformly distributed over
the whole of the slot pitch except for a fraction of slot width. This is possible
because of how small the air gap is relative to the rest of the geometry (i.e., the
stator is very close to the magnets). In fact, the magnetic field just above the
magnet surface is perpendicular to the surface and uniform. Therefore, we can
assume that the stator element is in this nearly uniform magnetic field.

12



Carter proposed a model for estimating air gap reluctance based on a coef-
ficient that depends upon the ratio of slot width to gap length [6, 7]. In this
approach we account for increased air gap reluctance by computing an equiva-
lent air gap geq, which then influences flux density calculations. The equivalent
air gap is calculated as follows:

geq = Kc · ga, (2.5)

where Carter’s Coefficient obtained by evaluating the following expression [2]:

Kc =
τt(5ga + bs)

τt(5ga + bs)− b2s
. (2.6)

For each phase, the air-gap flux density (accounting for increased reluctance) is:

φ =
BrhmHcµ0

hmHcµ0 − geqBr
. (2.7)

The voltage equations associated with the equivalent circuit in Fig. 8 are as
follows, where e1,2,3 are the values of induced electromotive force for each phase:

e1 = Rai1 + Ls
di1
dt

+ v1, (2.8)

e2 = Rai2 + Ls
di2
dt

+ v2, (2.9)

e3 = Rai3 + Ls
di3
dt

+ v3, (2.10)

where v1,2,3 are generator terminal phase voltages (computed using Eqns. (2.16)
below), and i1,2,3 are the phase currents. The voltage induced in the phase
winding by the translator motion is:

eph = KE cos
(π
τ
z
)
v(t), (2.11)

where z is the displacement of the buoy, v(t) is the vertical velocity of the buoy
and the voltage constant KE is calculated using:

KE = Ms ·Ws ·Nph · φ · vav, (2.12)

where vav is the average buoy speed defined as vav = 2
πvm with vm being the

vertical speed amplitude, and Nph = Nc ·p · q is the number of turns per coil for
each phase. The induced voltages in the windings for each phase are computed
as follows:

e1 = KE cos
(π
τ
z
)
v(t), (2.13)

e2 = KE cos

(
π

τ
z − 2π

3

)
v(t), (2.14)

e3 = KE cos

(
π

τ
z − 4π

3

)
v(t). (2.15)
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The generator terminal phase voltages are:

vj = ijRL, j = 1, 2, 3. (2.16)

The electromagnetic force for each phase (ph = 1, 2, 3) can therefore be com-
puted using:

Fph = Nphφph
π

τ
sin
(πz
τ

)
iph. (2.17)

We will consider two model fidelity levels here. The lower fidelity model,
referred to here as the simple model, ignores the electromagnetic force in the
formulation of the governing differential equations. This means that only the
induced current in the circuit is considered without the effect it has on the
moving translator. In this model, due to the absence of the electromagnetic
force, v(t) will be the same as the wave elevation equation that defines ocean
wave elevation as a function of time u(t) (see Eqn. (2.23)). This will be known
as the simple model, and the corresponding system of governing differential
equations is:

d

dt
i1 =

e1 − v1 − i1Ra
Ls

, (2.18)

d

dt
i2 =

e2 − v2 − i2Ra
Ls

, (2.19)

d

dt
i3 =

e3 − v3 − i3Ra
Ls

, (2.20)

where the phase currents (i1, i2, i3). In this model we assume that the buoy
(translator) position track the wave elevation exactly (see Section 2.3 for a dis-
cussion of the ocean wave model). This is not what occurs in reality, as the dif-
ference between wave elevation and buoy position is what provides the buoyancy
force that moves the translator to produce electrical energy. This simplification,
however, allows investigation of PTO dynamics via a simple third-order dynamic
model. A detailed implementation of this model is presented in Appendix A.

The second, higher-fidelity, model accounts for the electromagnetic force and
the mechanical dynamics of the buoy. This model is referred to here as the com-
plex model. Inclusion of the wave energy converter (WEC) translator dynamics
results in a fifth-order dynamic model. Buoy dynamics depend on mass and ge-
ometry. Therefore, v(t) will no longer be the same as u(t) since electromagnetic
force is not ignored. Instead, it will be defined by the electromagnetic dynamics
of the whole system. There are several possible shapes of the buoy, including
cylindrical and spherical. Cylindrical buoys are easy to simulate because buoy
cross section does not change with respect to vertical position [8, 9]; a cylindrical
cross section is used in this model.

The two state variables added to the complex model include the translator
position (z) and the translator velocity (v, which is equivalent to buoy veloc-
ity). In this model buoy position is decoupled from ocean wave elevation. The
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following two equations are added to Eqns. (2.18)-(2.20) to form a set of five
differential equations:

d

dt
z = v, (2.21)

d

dt
v = −

[Rr(T ) +Rv]
[
v − 2π

T A cos
(
2π
T t
)]

+ ρgπa2
[
z −A sin

(
2π
T t
)]

M +mr(∞)
. (2.22)

The parameters in Eqns. (2.21) and (2.22) are defined in Section 2.3.

2.3 Wave Model

To understand and quantify the performance of the permanent magnet linear
synchronous generator we need a mathematical model of the incoming ocean
wave. In both the simple and complex models the incident ocean wave is as-
sumed to be sinusoidal, and in the simple model we assume that the ocean
wave elevation is unaffected by the WEC. These are strong assumptions. In
reality, ocean waves are irregular. An irregular incident wave field can be mod-
eled as a linear superposition of a finite number of regular, or sinusoidal, wave
components [8, 10]. This model is not identical to the real situation, but this
simplification allows us to understand how the general model will work. We
can understand, through this simplified model, how the PTO will transform the
kinetic energy in the incoming ocean wave into electricity.

In the simple model the wave speed amplitude (um), which is the maximum
vertical speed of the wave, is assumed to be 2.2 m/s, and the period of the wave
(T ) is assumed to be 12.6 s. With the speed amplitude and period specified, we
can now define the wave elevation equation:

u(t) = um sin

(
2πt

T

)
, (2.23)

which describes buoy speed as a function of time.
In the complex model, however, the existence of the electromagnetic force

complicates the dynamics of the buoy. In the complex model the displacement
amplitude of the wave is assumed to be A = 4 m. The period T is still assumed
to be 12.6 s. While in the simple model we assume that the buoy and translator
position is coupled with the wave elevation, the complex model allows for relative
motion between the wave and buoy. This allows the generation of net buoyancy
force, and requires that we account for the dynamics of the buoy and several
other effects. First, we need to consider the volume and mass of the buoy. The
mass and displaced volume determine the buoyant force exerted on the buoy by
the water. We can calculate the displaced volume based on the buoy radius a
and the position of the buoy relative to the wave elevation. The draft b is the
depth of the bottom surface of the buoy in still water.

The mass of the buoy is assumed to be M = 1000 kg. When the buoy is
moving in the water, it will entrain (move) some amount of water with it. This
phenomenon gives rise to the term added mass, which is the mass of the water
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that moves along with the buoy as it oscillates in the water. When formulating
a dynamic model of the buoy system the mass used is the sum of the buoy mass
and the added mass. According to the calculation in Ref. [8], the added mass
mr(∞) for the buoy in this report is 289 kg. Since the buoy is moving relative
to the water, the radiation resistance Rr, which depends on the geometry of
the buoy and the wave frequency [11], will have an effect on the motion of the
buoy. Rr is calculated to be 16 Ns/m [8]. In addition, the viscous damping Rv
will also play a role in the dynamics, which is calculated to be 717 Ns/m [8].
All the necessary parameters are in Table 2. After taking all these effects into
consideration we have the system described as Eq. (2.21) and Eq. (2.22).

Table 2: Heaving Cylinder WEC Parameters for Complex Model [8, 9].

Name Symbol Value Units
Radius a 0.5 m

Draft b 1 m
Water depth h 10 m

Mass M 1000 kg
Density of water ρ 1025 kg/m3

Added mass mr(∞) 289 kg
Radiation resistance damping Rr(T ) 16 Ns/m

Viscous damping Rv 717 Ns/m

3 Numerical Studies

3.1 Simulation Results

We simulated the model using Matlab. We used the solver ode45—a variable
step Runge-Kutta method—to solve differential equations numerically. The
solver ode45 is appropriate for nonstiff1 problems when a medium order of
accuracy is desired.

Simple Model Results

First we simulated the simpler model, which does not include the electro-
magnetic force. While the simulation spanned 350 seconds, the time period of
primary interest in this study is between 250 s–350 s. After 250 s have elapsed
the system has had enough time to reach steady state operating conditions.

As illustrated in Fig. 9 and Fig. 10, z and v both have a sinusoidal shape.
The position z is always positive, while the velocity v is symmetric about 0.
The maximum and minimum values of z are 8.8235 m and 0, respectively. The
velocity v has a maximum of 2.2 m/s and a minimum of -2.2 m/s, as specified

1Model stiffness is addressed in Sec. 3.3.
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in the previous section. Figure 10 is scaled such that exactly one period of
steady-state conditions is displayed.
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Figure 9: Simple Model Results for Position and Velocity vs. Time.
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Figure 10: Simple Model Results for Position and Velocity vs. Time—One
Period (see Fig. 9).
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In Fig. 11 and Fig. 12, which depict current trajectories for all three phases,
we can see that there is an rounded envelope shape that bounds the current
trajectories. The three currents are symmetric about 0, with a maximum of
253.2 A and a minimum of -253.2 A. Figure 12 is scaled such that exactly one
period of steady-state conditions is displayed.

As can be seen from the figures, the electrical dynamics are much faster than
the mechanical dynamics (i.e., the position and velocity). The position and
the velocity trajectories complete exactly one cycle during one period, whereas
the current trajectories complete multiple cycles in one period. The maximum
slope of the currents are measured to be approximately 2.42 × 104 A/s, which
represents a significant change rate. Also to be noted is that the plot presents
a harmonic shape, with the currents being 0 at the beginning, middle and end
of each period.
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Figure 11: Simple Model Results for Current vs. Time.
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Figure 12: Simple Model Results for Current vs. Time—One Period (see
Fig. 11).

Figures 13 and 14 describe the power output of the system, where Fig. 14
is scaled such that exactly one period of steady-state conditions is displayed.
Power output ranges from 0 to 6.1332×105 W. The power is non-negative since
it is calculated using the formula P = i2RL. During one period there are two
peaks. The average power is 3.7590× 105 W.

20



250 300 350
0

1

2

3

4

5

6

7
x 10

5

t (s)

P
(W

)

Figure 13: Simple Model Results for Power vs. Time.
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Figure 14: Simple Model Results for Power vs. Time—One Period (see Fig. 13).
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Complex Model Results

The complex model was then used in simulating the WEC. As described ear-
lier, this model includes the electromagnetic force as quantified by Eqns. (2.21)
and (2.22). The position z(t) and the velocity v(t), depicted in Fig. 15 and
Fig. 16, are still periodic. In addition, Fig. 16 shows that v is still close to
harmonic, even with the added complexity of the system. The extremes of v(t)
are -2.2236 m/s and 3.2256 m/s. In terms of the position, z(t) is still close to
harmonic, which is probably due to the damping term in the equations. The
position trajectory z(t) has a range of -4.1688m to 4.1688m.
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Figure 15: Complex Model Results for Position and Velocity vs. Time.
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Figure 16: Complex Model Results for Position and Velocity vs. Time—One
Period (see Fig. 15).

The current trajectories that resulted from the simulation of the complex
model are shown in Figs. 17 and 18. The envelope of the plots in Fig. 17 is
similar to the envelope for the simple model simulation results, but not identical
because of the different dynamics of the buoy. The envelope still has the rounded
shape as before. The range of i is -285 A to 285 A, which is also larger than the
previous one. The dynamics are even faster with a maximum slope of 4.00×104

A/s. The currents are still symmetric about 0.
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Figure 17: Complex Model Results for Current vs. Time.
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Figure 18: Complex Model Results for Current vs. Time—One Period (see
Fig. 17).
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The plots of P , namely Fig. 19 and Fig. 20, are also nearly the same as
in the simple model simulation. The range, however, is 0 to 7.7994 × 105 W
with an average value of 3.5319 × 105 W. While the maximum power output
is larger than that of the simple model, the average power is slightly lower
than that of the simple model. This indicates that while the power trajectories
corresponding to the simple and complex model simulations appear to be the
same upon visual inspection, they do in fact have different shapes. In other
words, during a certain period of time, the area under the power output curve
is smaller, indicating that the shape of the complex model power trajectory is
more pointed.
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Figure 19: Complex Model Results for Power vs. Time.
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Figure 20: Complex Model Results for Power vs. Time—One Period (see
Fig. 19).

3.2 Design Parameter Studies

A parametric study is an activity in which certain parameters are varied
through a predetermined range, and the effect of changing these parameters is
investigated. In the study presented here one parameter at a time is changed
while other parameters are kept unchanged. For each parameter value combi-
nation to be tested a simulation is performed to determine the effect of certain
parameters on the whole system.

In this report two parameters are studied using the complex model. The first
parameter is the slot width bs, and the second is the air gap ga.

Slot Width Study

Various values of bs are studied within the range of 0.022 m to 0.023 m. The
maximum power is acquired around bs = 0.02248 m. Figure 21 illustrates energy
extraction over one steady-state period as a function of bs. It is depicted using
a semi log plot as the energy values span several orders of magnitude. This plot
exhibits a large peak with a maximum energy extraction value of 9.0396× 1013

J.
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Figure 21: Slot Width (bs) Parameter Study (The horizontal line represents the
maximum energy that can be extracted from the incoming ocean wave).

Figure 22 illustrates the power trajectory for the system design that corre-
sponds to the maximum energy design in the slot width parametric study (i.e.,
bs = 0.02248 m).
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Figure 22: Power Trajectory for Slot Width Value Maximizing Peak Power of
the Complex Model (bs = 0.0225 m).
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The peak in the middle suggests resonant behavior. Given the magnitude of
energy extraction at the peak, the validity of the model should be questioned.
For example, for a given buoy size and wave conditions, it is possible to calculate
the maximum amount of energy that can be extracted from an ocean wave. If
all of the energy is extracted, the wave will be completely destroyed [11]. A
practical wave energy converter will only be able to extract a fraction of the
total available energy. Using the approach described by Herber and Allison
[8], the maximum available energy in the wave was calculated and plotted as a
horizontal line in Fig. 21.

Clearly values of bs that produce energy values above this line in the simu-
lation will not produce these energy values in a physical system. This model
is not capturing some element of the real system behavior. Simply setting
bs = 0.02248 m cannot be expected to produce optimal system behavior. In
addition to improving model fidelity, system optimization would require the si-
multaneous consideration of all important design variables, not just a simple
study of one parameter at a time2.

Figures 23 and 24 illustrate the current trajectories for the design where bs
is 0.0225 m. It can be observed that the current trajectories are very dynamic
with larger ranges, meaning that more energy can be produced by this system
design.
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Figure 23: Current vs. Time for Slot Width Value Maximizing Peak Power of
the Complex Model (bs = 0.0225 m).

2While such an optimization effort is beyond the scope of this report, it is the subject of
ongoing research at the UIUC Engineering System Design Laboratory.
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Figure 24: Current vs. Time for Slot Width Value Maximizing Peak Power of
the Complex Model—One Period (see Fig. 23).

To summarize, according to the simulation results, the optimal slot width
bs is 0.0225 m. This will give a peak power of 1.5741 × 1013 W, according to
Fig. 22. That produces 9.0396× 1013 J per period. However, other constraints
may prevent bs from achieving the optimal value. The model here likely is not
complete, and design variable interactions should be considered as well3.

Air Gap Study

The second parameter studied here is the air gap ga. Various values of ga are
studied within the range of 0.0035 m and 0.0045 m, and the maximum power
is realized at ga = 0.004 m. The maximum energy extracted during a period is
2.4494×1013 J. The energy extraction per period as a function of ga is illustrated
in Fig. 25, and the power trajectory that corresponds to the maximum energy
extraction is shown in Fig. 27.

3Determining the underlying cause of this model inaccuracy is beyond the scope of this
report, and is a topic for future research.
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Figure 25: Air Gap (ga) Parameter Study (The horizontal line represents the
maximum energy that can be extracted from the incoming ocean wave).
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Figure 27: Power Trajectory for Air Gap Value Maximizing Peak Power of the
Complex Model (ga = 0.0040 m).

As can be seen from Fig. 25, the range of ga values that produce large energy
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values is also very small. The peak in the middle also suggests that there is res-
onance occurring in the system when certain values of ga are chosen. Again, the
horizontal line represents the maximum amount of energy that can be possibly
extracted from the incoming ocean wave, calculated according to Ref. [8]. This
means that we actually can’t reach the peak energy extraction value shown in
this figure.

The current trajectories that correspond to the design that maximizes energy
extraction (i.e., ga is 0.004 m) are illustrated in Figs. 28 and 29. The behavior
here is very similar to what was observed in the slot width study. Ranges of
resonance exist in both parametric studies, and the current trajectories that
correspond to the peak energy extraction design have very large amplitudes.
According to the model used here, ga = 0.004 m produces a maximum peak
power of 4.2683 × 1012 W, and produces 2.4494 × 1013 J per period in steady
state. As noted before, other constraints will prevent realization of the predicted
maximum energy extraction.

Only two parameters of the generator are studied here. Other parameters,
especially other independent physical variables, are a subject for further study.

250 300 350
−8

−6

−4

−2

0

2

4

6

8
x 10

5

t (s)

i
(A

)

 

 
i1 (A)
i2 (A)
i3 (A)

Figure 28: Current vs. Time for Air Gap Value Maximizing Peak Power of the
Complex Model (ga = 0.0040 m).
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Figure 29: Current vs. Time for Air Gap Value Maximizing Peak Power of the
Complex Model—One Period (see Fig. 28).

3.3 Model Stiffness Study

The stiffness of the system modeled in this report was also studied. A dynamic
model is often thought of as stiff if it involves both fast and slow dynamics.
Here the mechanical dynamics are much slower than the electrical dynamics.
Another definition of model stiffness is that stiff systems may be simulated
more efficiently using an implicit solver for ordinary differential equations (i.e.,
a stiff solver).

One way of determining stiffness is to evaluate the time steps required to
simulate a system using both a stiff and non-stiff solver. Here ode45 was the
non-stiff solver used, and ode15s was the stiff solver used. Figure 30 illustrates
how the time step sizes change through time for ode45 based on the simple
model, and Fig. 31 illustrates time step sizes for ode15s based on the simple
model.
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Figure 30: Plot of Time-Steps using the Simple Model with ode45.
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Figure 31: Plot of Time-Steps using the Simple Model with ode15s.

It is clear from Fig. 30 that the time steps remain very small (they differ by
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less than an order of magnitude). This means that ode45, a non-stiff solver,
but use very small time steps throughout the entire simulation to maintain the
required accuracy. In other words, it struggles to solve the system of differential
equations efficiently. Figure 31, on the other hand, shows that ode15s is able to
use much larger time steps periodically and still maintain accuracy. After being
driven to a small step size to maintain accuracy due to rapid change in state, the
stiff solver is able to ‘recover’ to a larger step size, whereas the non-stiff solver
is unable to maintain accuracy unless step sizes are kept very small. In other
words, the stiff solver solves the system more efficiently than the non-stiff solver,
so this is evidence that this system model exhibits stiffness. This is common
in models of physical systems, and it is important to address the potential for
dynamic stiffness when developing models for the design of physical systems.

A similar result was observed when comparing the ode45 and ode15s solutions
based on the complex model. These results are illustrated in Figs. 32 and 33.
The range of step size values with the complex model is a bit larger than with
the simple model, indicating somewhat increased system stiffness. In addition,
the complex model takes some time to achieve steady-state time step behavior.

The total number of time steps for each simulation was also recorded. Table
3 summarizes these results. An additional non-stiff solver (ode23) was tested as
well. Based on the number of required time steps, ode23 performs similarly to
ode45. For both the simple and complex models, the total number of required
time steps (which is related to computational expense) is reduced significantly
when switching to a stiff solver. This is additional evidence that the system
model exhibits stiff behavior.

Table 3: Number of Time-Steps for Various ODE Solvers.

ode45 ode23 ode15s

Simple 119708 116235 69655
Complex 117676 110316 66583
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Figure 32: Plot of Time-Steps using the Complex Model with ode45.
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Figure 33: Plot of Time-Steps using the Complex Model with ode15s.
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4 Conclusion

Wave energy extraction is of great potential importance given that fossil fuel
as an energy source is limited and non-renewable. The design of a permanent
magnet linear synchronous generator for wave energy extraction can greatly im-
prove the efficiency. In this report the necessary physics theories for modeling
and designing a permanent magnet linear synchronous generator are reviewed.
Then a model of a permanent magnet linear synchronous generator is con-
structed, involving both independent and dependent parameters. It is simulated
in Matlab® for specific parameters. Two of the independent physical parame-
ters of the generator were studied further using parametric sweeps. The results
indicate that there is potential for improvements of the specific permanent mag-
net linear synchronous generator modeled in this work, as well as potential for
improving the system model. Future work may focus on deeper study of the
independent parameters of the model, interactions between independent pa-
rameters, improved-fidelity modeling (including more detailed models of other
system components), and design optimization studies.

36



Acknowledgments

This report is based on the prior work of James T. Allison, Allen Kaitharath
and Daniel R. Herber [8, 9]. The work presented in this report was conducted
under Prof. Allison’s supervision and with the guidance of Daniel R. Herber.
Significant edits and feedback have been provided by both Prof. Allison and
Daniel R. Herber.

References

[1] N. M. Kimoulakis, A. G. Kladas, and J. A. Tegopoulos. “Power Generation
Optimization from Sea Waves by Using a Permanent Magnet Linear Gen-
erator Drive”. In: IEEE Transactions on Magnetics 44.6 (2008), pp. 1530–
1533. doi: 10.1109/TMAG.2007.914854.

[2] R. Parthasarathy. “Linear PM Generator for Wave Energy Conversion”.
Master’s Thesis. Anna University, 2012. url: http://etd.lsu.edu/

docs/available/etd-04182012-121521/unrestricted/parthasarathythesis.

pdf.

[3] S. A. Nasar and I. Boldea. Linear Electric Motors: Theory, Design and
Practical Applications. Prentice Hall, 1987. isbn: 9780135368633.

[4] O. Danielsson. “Design of a Linear Generator for Wave Energy Plant”.
Master’s Thesis. Uppsala University, 2003. url: http://www.el.angstrom.
uu.se/meny/artiklar/design%20of%20a%20linear%20generator%

20for%20wave%20energy%20plant4.pdf.

[5] A. W. van Zyl et al. “Comparison of Force to Weight Ratios Between
a Single-Sided Linear Synchronous Motor and a Tubular Linear Syn-
chronous Motor”. In: IEEE International Electric Machines and Drives
Conference 1999. Seattle, WA, USA, 1999, pp. 571–573. isbn: 0780352939.
doi: 10.1109/IEMDC.1999.769178.

[6] F. W. Carter. “Note on Air-Gap and Interpolar Induction”. In: Journal
of the Institution of Electrical Engineers 29 (1900), pp. 925–933. doi:
10.1049/jiee-1.1900.0095.

[7] F. W. Carter. “Air-Gap Induction”. In: Electric World and Engineer
38.22 (1901), pp. 884–888. url: http://hdl.handle.net/2027/uva.
x030741299.

[8] J. T. Allison and D. R. Herber. “Wave Energy Extraction Maximization in
Irregular Ocean Waves Using Pseudospectral Methods”. In: ASME 2013
International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference. Portland, OR, USA, 2013.
url: http://systemdesign.illinois.edu/publications/Her13a.pdf.

37

http://dx.doi.org/10.1109/TMAG.2007.914854
http://etd.lsu.edu/docs/available/etd-04182012-121521/unrestricted/parthasarathythesis.pdf
http://etd.lsu.edu/docs/available/etd-04182012-121521/unrestricted/parthasarathythesis.pdf
http://etd.lsu.edu/docs/available/etd-04182012-121521/unrestricted/parthasarathythesis.pdf
http://www.el.angstrom.uu.se/meny/artiklar/design%20of%20a%20linear%20generator%20for%20wave%20energy%20plant4.pdf
http://www.el.angstrom.uu.se/meny/artiklar/design%20of%20a%20linear%20generator%20for%20wave%20energy%20plant4.pdf
http://www.el.angstrom.uu.se/meny/artiklar/design%20of%20a%20linear%20generator%20for%20wave%20energy%20plant4.pdf
http://dx.doi.org/10.1109/IEMDC.1999.769178
http://dx.doi.org/10.1049/jiee-1.1900.0095
http://hdl.handle.net/2027/uva.x030741299
http://hdl.handle.net/2027/uva.x030741299
http://systemdesign.illinois.edu/publications/Her13a.pdf


[9] J. T. Allison, A. Kaitharath, and D. R. Herber. “Wave Energy Extrac-
tion Maximization Using Direct Transcription”. In: ASME 2012 Inter-
national Mechanical Engineering Congress and Exposition. Houston, TX,
USA, 2012. url: http://systemdesign.illinois.edu/publications/
All12c.pdf.

[10] T. Jeans et al. “Irregular Deep Ocean Wave Energy Conversion Using
a Cycloidal Wave Energy Converter”. In: 9th European Wave and Tidal
Energy Conference. Southampton, UK, 2011.

[11] J. Falnes. “Wave-Energy Absorption by Oscillating Bodies”. In: Cam-
bridge University Press (2002).

38

http://systemdesign.illinois.edu/publications/All12c.pdf
http://systemdesign.illinois.edu/publications/All12c.pdf


A Appendix: Modeling Code

Simulation.m

1 % This script accepts the values for the independent variables ...
bs and ga

2 % and also a flag indicating which model should be used. x(1) is the
3 % position of the buoy. x(2) is the velocity of the buoy. x(3), ...

x(4) and
4 % x(5) are the three currents. The outputs are t, x and Pout, ...

which is the
5 % output power.
6 function [t,x,Pout] = Simulation(bs,ga,flag)
7

8 % run simulation
9 [t,x] = ode45(@(t,x) LPM 3Phase(t,x,bs,ga,flag), [0 350], [0 ...

0 0 0 0]);
10

11 % calculate power
12 RL = 7.5; %Ohm
13 v(:,1) = x(:,3)*RL;
14 v(:,2) = x(:,4)*RL;
15 v(:,3) = x(:,5)*RL;
16 Pin = x(:,3).*v(:,1) + x(:,4).*v(:,2) + x(:,5).*v(:,3);
17 Pout = Pin.*0.85;
18

19 end
20

21 function dx = LPM 3Phase(t,x,bs,ga,flag)
22 dx = zeros(5,1);
23 p = 6;
24 q = 1;
25 m = 3;
26 N = zeros(1,3);
27 for i = 1:3
28 N(i) = 82*p*q;
29 end
30 L = 0.432; %m
31 taup = L/p; %m
32 taut = taup./(m*q); %m
33 % bs = 0.016; %m
34 bt = taut − bs; %m
35 % ga = 0.002; %m
36 Kc = taut*(5*ga+bs)/(taut*(5*ga+bs)−bsˆ2);
37 geq = Kc*ga;
38 hm = 0.006; %m
39 Br = 1.2; %T
40 mu0 = 4*pi*10ˆ(−7);
41 Hc = 905000;
42 phi = zeros(1,3);
43 for i = 1:3
44 phi(i) = (Br*hm*Hc*mu0)/(hm*Hc*mu0 − geq*Br);
45 end
46

47 if flag == 1 % Simple
48 um = 2.2; %m/s
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49 uav = 2/pi*um; %m/s
50 T = 12.6; %s
51 Ra = 1.5; %Ohm
52 Ls = 0.115; %H
53 RL = 7.5; %Ohm
54 Ms = 4; %number of armatures
55 Ws = 0.2; %m
56 KE = Ms*Ws*N(i)*phi(i)*uav;
57 % u = um*sin(omegam*t);
58 u = um.*sin(2*pi.*t./T);
59 du = 2*pi.*um./T*cos(2*pi.*t./T);
60 e = zeros(1,3);
61 e(1) = KE*cos(pi.*x(1)./taup)*u;
62 e(2) = KE*cos(pi.*x(1)./taup − 2*pi/3)*u;
63 e(3) = KE*cos(pi.*x(1)./taup − 4*pi/3)*u;
64 v = zeros(1,3);
65 v(1) = x(3)*RL;
66 v(2) = x(4)*RL;
67 v(3) = x(5)*RL;
68 F = zeros(1,3);
69 for i = 1:3
70 F(i) = ...

N(i).*phi(i).*pi./taup.*sin(pi.*x(1)./taup).*x(i ...
+ 2);

71 end
72 dx(1) = u; % u
73 dx(2) = du;
74 elseif flag == 2 % Complex
75 um = 2.2; %m/s
76 uav = 2/pi*um; %m/s
77 T = 12.6; %s
78 A = 4; %um*T/(2*pi); %m
79 Ra = 1.5; %Ohm
80 Ls = 0.115; %H
81 RL = 7.5; %Ohm
82 Ms = 4; %number of armatures
83 Ws = 0.2; %m
84 KE = Ms*Ws*N(i)*phi(i)*uav;
85 % u = um*sin(omegam*t);
86 u = x(2);
87 e = zeros(1,3);
88 e(1) = KE*cos(pi.*x(1)./taup).*u;
89 e(2) = KE*cos(pi.*x(1)./taup − 2*pi/3).*u;
90 e(3) = KE*cos(pi.*x(1)./taup − 4*pi/3).*u;
91 v = zeros(1,3);
92 v(1) = x(3)*RL;
93 v(2) = x(4)*RL;
94 v(3) = x(5)*RL;
95 F = zeros(1,3);
96 for i = 1:3
97 F(i) = ...

N(i).*phi(i).*pi./taup.*sin(pi.*x(1)./taup).*x(i ...
+ 2);

98 end
99 rho = 1025; %kg/mˆ3

100 g = 9.81; %m/sˆ2
101 a = 0.5; %m
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102 b = 1; %m
103 h = 10; %m
104 M = 1000; %kg
105 mr = 289; %kg
106 Rr = 16; %Ns/m
107 Rv = 717; %Ns/m
108 dx(1) = x(2);
109 dx(2) = −((Rr + Rv).*(x(2) − ...

2.*pi.*A./T.*cos(2.*pi.*t./T)) +...
110 rho.*g.*pi.*a.ˆ2.*(x(1) − A.*sin(2.*pi.*t./T)))./(M ...

+ mr);
111 end
112 dx(3) = (e(1) − v(1) − x(3)*Ra)/Ls;
113 dx(4) = (e(2) − v(2) − x(4)*Ra)/Ls;
114 dx(5) = (e(3) − v(3) − x(5)*Ra)/Ls;
115 end

Parameter Studies.m

1 % This script will run the simulation for 500 different values ...
within the

2 % range given for two independent variables, bs and ga. The ...
results, which

3 % is the power output, will be analyzed and plotted.
4 path = msavename(mfilename('fullpath'),'Saved Data');
5 fig index = 0;
6

7 %% bs study
8 start = 0.022;
9 finish = 0.023;

10 N = 500;
11 array = linspace(start,finish,N);
12

13 results = zeros(N,1);
14 parfor i = 1:N
15

16 bs = array(i); % m
17 ga = 0.002; % m
18 [t,x,Pout] = Simulation(bs,ga,2);
19

20 t1 = find(t ≤ 250);
21 i1 = find(t1 == t1(end));
22 T = 12.6; %s
23 n = (t(end) − t(i1))./T;
24 periodT = t(i1:end);
25 periodP = Pout(i1:end);
26 E = trapz(periodT, periodP)./n;
27 results(i) = E; % max(Pout);
28

29 end
30 save(strcat(path, 'bs−study'))
31

32 %% figure // bs−study
33 %load(strcat(path, 'bs−study'))
34 data.fig name = 'bs−study';
35 % label names
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36 data.xname = '$b s$ (m)';
37 data.yname = '$\max(P {\mathrm{out}})$ (W)';
38 % state data
39 data.x1 = array;
40 data.y1 = results; % position
41 % axis limits
42 data.xmin = start;
43 data.xmax = finish;
44 data.ymin = min(results);
45 data.ymax = max(results);
46

47 fig index = fig index + 1;
48 create figure(data,fig index,1)
49 save2pdf(strcat(path,data.fig name,'.pdf'),fig index,600)
50

51 %% figure // Power−Complex−bs
52 % Simulate using optimal bs
53 bs index = find(results == max(results));
54 bs = bs index; % m
55 ga = 0.002; % m
56 [t,x,Pout] = Simulation(bs,ga,2);
57

58 data.fig name = 'Power−Complex−bs';
59 % label names
60 data.xname = '$t$ (s)';
61 data.yname = '$P$ (W)';
62 % state data
63 data.x1 = t;
64 data.y1 = Pout; % power
65 % axis limits
66 data.xmin = 250;
67 data.xmax = 350;
68 data.ymin = 0;
69 data.ymax = 1.5*10ˆ13;
70

71 fig index = fig index + 1;
72 create figure(data,fig index,1)
73 save2pdf(strcat(path,data.fig name,'.pdf'),fig index,600)
74

75 %% figure // Buoy−Complex−bs
76 % Simulate using optimal bs
77 bs index = find(results == max(results));
78 bs = bs index; % m
79 ga = 0.002; % m
80 [t,x,Pout] = Simulation(bs,ga,2);
81

82 data.fig name = 'Buoy−Complex−bs';
83 % label names
84 data.xname = '$t$ (s)';
85 data.y1name = '$z$ (m)';
86 data.y2name = '$v$ (m/s)';
87 % state data
88 data.x1 = t;
89 data.x2 = t;
90 data.y1 = x(:,1); % position
91 data.y2 = x(:,2); % speed
92 % axis limits
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93 data.xmin = 250;
94 data.xmax = 350;
95 data.y1min = −5;
96 data.y1max = 5;
97 data.y2min = −5;
98 data.y2max = 5;
99

100 fig index = fig index + 1;
101 create figure(data,fig index,2)
102 save2pdf(strcat(path,data.fig name,'.pdf'),fig index,600)
103

104 %% figure // Buoy−Complex−Zoom−bs
105 % Simulate using optimal bs
106 bs index = find(results == max(results));
107 bs = bs index; % m
108 ga = 0.002; % m
109 [t,x,Pout] = Simulation(bs,ga,2);
110

111 data.fig name = 'Buoy−Complex−Zoom−bs';
112 % label names
113 data.xname = '$t$ (s)';
114 data.y1name = '$z$ (m)';
115 data.y2name = '$v$ (m/s)';
116 % state data
117 data.x1 = t;
118 data.x2 = t;
119 data.y1 = x(:,1); % position
120 data.y2 = x(:,2); % speed
121 % axis limits
122 data.xmin = 252;
123 data.xmax = 264.6;
124 data.y1min = −5;
125 data.y1max = 5;
126 data.y2min = −5;
127 data.y2max = 5;
128

129 fig index = fig index + 1;
130 create figure(data,fig index,2)
131 save2pdf(strcat(path,data.fig name,'.pdf'),fig index,600)
132

133 %% figure // Current−Complex−bs
134 % Simulate using optimal bs
135 bs index = find(results == max(results));
136 bs = bs index; % m
137 ga = 0.002; % m
138 [t,x,Pout] = Simulation(bs,ga,2);
139

140 data.fig name = 'Current−Complex−bs';
141 % label names
142 data.xname = '$t$ (s)';
143 data.yname = '$i$ (A)';
144 data.y1name = '$i 1$ (A)';
145 data.y2name = '$i 2$ (A)';
146 data.y3name = '$i 3$ (A)';
147 % state data
148 data.x1 = t;
149 data.y1 = x(:,3); % current 1
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150 data.y2 = x(:,4); % current 2
151 data.y3 = x(:,5); % current 3
152 % axis limits
153 data.xmin = 250;
154 data.xmax = 350;
155 data.ymin = −1.5*10ˆ6;
156 data.ymax = 1.5*10ˆ6;
157

158 fig index = fig index + 1;
159 create figure(data,fig index,3)
160 save2pdf(strcat(path,data.fig name,'.pdf'),fig index,600)
161

162 %% figure // Current−Complex−Zoom−bs
163 % Simulate using optimal bs
164 bs index = find(results == max(results));
165 bs = bs index; % m
166 ga = 0.002; % m
167 [t,x,Pout] = Simulation Complex(bs,ga,2);
168

169 data.fig name = 'Current−Complex−Zoom−bs';
170 % label names
171 data.xname = '$t$ (s)';
172 data.yname = '$i$ (A)';
173 data.y1name = '$i 1$ (A)';
174 data.y2name = '$i 2$ (A)';
175 data.y3name = '$i 3$ (A)';
176 % state data
177 data.x1 = t;
178 data.y1 = x(:,3); % current 1
179 data.y2 = x(:,4); % current 2
180 data.y3 = x(:,5); % current 3
181 % axis limits
182 data.xmin = 255.2;
183 data.xmax = 267.8;
184 data.ymin = −1.5*10ˆ6;
185 data.ymax = 1.5*10ˆ6;
186

187 fig index = fig index + 1;
188 create figure(data,fig index,3)
189 save2pdf(strcat(path,data.fig name,'.pdf'),fig index,600)
190

191 %% ga study
192 start = 0.0035;
193 finish = 0.0045;
194 N = 500;
195 array = linspace(start,finish,N);
196

197 results = zeros(N,1);
198 parfor i = 1:N
199

200 bs = 0.016; % m
201 ga = array(i); % m
202 [t,x,Pout] = Simulation(bs,ga,2);
203

204 t1 = find(t ≤ 250);
205 i1 = find(t1 == t1(end));
206 T = 12.6; %s
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207 n = (t(end) − t(i1))./T;
208 periodT = t(i1:end);
209 periodP = Pout(i1:end);
210 E = trapz(periodT, periodP)./n;
211 results(i) = E; % max(Pout);
212

213 end
214 save(strcat(path, 'ga−study'))
215

216 %% figure // ga−study
217 %load(strcat(path, 'bs−study'))
218 data.fig name = 'ga−study';
219 % label names
220 data.xname = '$g a$ (m)';
221 data.yname = '$\max(P {\mathrm{out}})$ (W)';
222 % state data
223 data.x1 = array;
224 data.y1 = results; % position
225 % axis limits
226 data.xmin = start;
227 data.xmax = finish;
228 data.ymin = min(results);
229 data.ymax = 8.6*10ˆ12;
230

231 fig index = fig index + 1;
232 create figure(data,fig index,1)
233 save2pdf(strcat(path,data.fig name,'.pdf'),fig index,600)
234

235 %% figure // Power−Complex−ga
236 % Simulate using optimal ga
237 ga index = find(results == max(results));
238 bs = 0.016; % m
239 ga = ga index; % m
240 [t,x,Pout] = Simulation(bs,ga,2);
241

242 data.fig name = 'Power−Complex−ga';
243 % label names
244 data.xname = '$t$ (s)';
245 data.yname = '$P$ (W)';
246 % state data
247 data.x1 = t;
248 data.y1 = Pout; % power
249 % axis limits
250 data.xmin = 250;
251 data.xmax = 350;
252 data.ymin = 0;
253 data.ymax = 4*10ˆ12;
254

255 fig index = fig index + 1;
256 create figure(data,fig index,1)
257 save2pdf(strcat(path,data.fig name,'.pdf'),fig index,600)
258

259 %% figure // Buoy−Complex−ga
260 % Simulate using optimal ga
261 ga index = find(results == max(results));
262 bs = 0.016; % m
263 ga = ga index; % m
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264 [t,x,Pout] = Simulation(bs,ga,2);
265

266 data.fig name = 'Buoy−Complex−ga';
267 % label names
268 data.xname = '$t$ (s)';
269 data.y1name = '$z$ (m)';
270 data.y2name = '$v$ (m/s)';
271 % state data
272 data.x1 = t;
273 data.x2 = t;
274 data.y1 = x(:,1); % position
275 data.y2 = x(:,2); % speed
276 % axis limits
277 data.xmin = 250;
278 data.xmax = 350;
279 data.y1min = −5;
280 data.y1max = 5;
281 data.y2min = −5;
282 data.y2max = 5;
283

284 fig index = fig index + 1;
285 create figure(data,fig index,2)
286 save2pdf(strcat(path,data.fig name,'.pdf'),fig index,600)
287

288 %% figure // Buoy−Complex−Zoom−ga
289 % Simulate using optimal ga
290 ga index = find(results == max(results));
291 bs = 0.016; % m
292 ga = ga index; % m
293 [t,x,Pout] = Simulation(bs,ga,2);
294

295 data.fig name = 'Buoy−Complex−Zoom−ga';
296 % label names
297 data.xname = '$t$ (s)';
298 data.y1name = '$z$ (m)';
299 data.y2name = '$v$ (m/s)';
300 % state data
301 data.x1 = t;
302 data.x2 = t;
303 data.y1 = x(:,1); % position
304 data.y2 = x(:,2); % speed
305 % axis limits
306 data.xmin = 252;
307 data.xmax = 264.6;
308 data.y1min = −5;
309 data.y1max = 5;
310 data.y2min = −5;
311 data.y2max = 5;
312

313 fig index = fig index + 1;
314 create figure(data,fig index,2)
315 save2pdf(strcat(path,data.fig name,'.pdf'),fig index,600)
316

317 %% figure // Current−Complex−ga
318 % Simulate using optimal ga
319 ga index = find(results == max(results));
320 bs = 0.016; % m
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321 ga = ga index; % m
322 [t,x,Pout] = Simulation(bs,ga,2);
323

324 data.fig name = 'Current−Complex−ga';
325 % label names
326 data.xname = '$t$ (s)';
327 data.yname = '$i$ (A)';
328 data.y1name = '$i 1$ (A)';
329 data.y2name = '$i 2$ (A)';
330 data.y3name = '$i 3$ (A)';
331 % state data
332 data.x1 = t;
333 data.y1 = x(:,3); % current 1
334 data.y2 = x(:,4); % current 2
335 data.y3 = x(:,5); % current 3
336 % axis limits
337 data.xmin = 250;
338 data.xmax = 350;
339 data.ymin = −0.8*10ˆ6;
340 data.ymax = 0.8*10ˆ6;
341

342 fig index = fig index + 1;
343 create figure(data,fig index,3)
344 save2pdf(strcat(path,data.fig name,'.pdf'),fig index,600)
345

346 %% figure // Current−Complex−Zoom−ga
347 % Simulate using optimal ga
348 ga index = find(results == max(results));
349 bs = 0.016; % m
350 ga = ga index; % m
351 [t,x,Pout] = Simulation(bs,ga,2);
352

353 data.fig name = 'Current−Complex−Zoom−ga';
354 % label names
355 data.xname = '$t$ (s)';
356 data.yname = '$i$ (A)';
357 data.y1name = '$i 1$ (A)';
358 data.y2name = '$i 2$ (A)';
359 data.y3name = '$i 3$ (A)';
360 % state data
361 data.x1 = t;
362 data.y1 = x(:,3); % current 1
363 data.y2 = x(:,4); % current 2
364 data.y3 = x(:,5); % current 3
365 % axis limits
366 data.xmin = 255.2;
367 data.xmax = 267.8;
368 data.ymin = −0.8*10ˆ6;
369 data.ymax = 0.8*10ˆ6;
370

371 fig index = fig index + 1;
372 create figure(data,fig index,3)
373 save2pdf(strcat(path,data.fig name,'.pdf'),fig index,600)
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B Appendix: Engineering Science Elements in
this Report

This work presented in this report required learning several elements of engi-
neering science deeply in order to successfully build, test and analyze a model
of a wave energy converter generator.

The most significant aspect of engineering science that was studied here is
electromagnetic theory. All relevant electromagnetic theories are detailed in
the report. It is discussed in the first part of the report how a permanent
magnet linear synchronous generator works, including the interaction between
the translator and stator elements of the permanent magnet linear synchronous
generator.

Another aspect of engineering science that was studied is the underlying prin-
ciples of the incoming ocean waves. It is assumed in this report that the incom-
ing ocean wave is sinusoidal, which is a significant simplification. The author is
aware of polychromatic models of ocean waves that represent real waves more
accurately. In addition, significant insights about the dynamics of the waves and
wave energy converter were gained by constructing and testing both the simple
and complex models. In the complex model it was assumed that the reaction
force of the permanent magnet linear synchronous generator plays a part in the
determination of the acceleration of the buoy. This was verified by showing the
difference in simulation results between the simple and complex models.

Design issues were also investigated in this report, especially in the parametric
studies section. A simple approach for design space exploration was used to
investigate potential improvements in the system design. A series of parameter
values were tested and plotted. Furthermore, constraints are considered so that
the design is not without limits. Although the process is relatively simple, the
idea of design was a core element of this project.

Finally, dynamic model stiffness was discussed, and tests were performed to
evaluate model stiffness. Different Matlab® solvers for differential equations
were used to test the stiffness of the system based on time step evolution. The
plots of the change of time-steps were analyzed, and it was concluded that the
system is relatively stiff. This study demonstrates that a deeper understanding
of numerical methods for engineering was developed, and is another significant
aspect of engineering science that was learned during this project.
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