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Abstract 
 
 The study of the dysregulation of the transcriptome in diseases like cancer and drug abuse 

can offer insights into preventive and therapeutical remedies, as well as targets for future basic 

and applied research.  The identification of reliable transcriptome biomarkers requires the 

simultaneous consideration of regulatory and target elements including microRNAs (miRNAs), 

transcription factors (TFs), and target genes.  Previously, there has been limited validation of 

reported associations between these diseases and miRNAs, TFs, and target mRNA in 

independent studies.  This may be due to several reasons.  Few studies simultaneously analyze 

multiple miRNAs, TFs, and target mRNA.  Also, most studies do not consider clinical or cohort-

dependent factors when characterizing the associations between the transcriptome and disease.  

Lastly, most transcriptome studies tend to be small, and the individual analysis has limited 

statistical power to detect accurate and precise associations between transcripts and diseases.  

This thesis aims to address the previous limitations and identify replicable biomarkers of cancer 

and drug abuse.   

 Functional and network analyses were performed to identify and study targets of 

microRNA biomarkers associated with glioblastoma multiforme survival within and across race, 

gender, recurrence, and therapy cohorts.  A Cox survival model was applied to profiles from 253 

individuals, 534 microRNAs, and the results were confirmed using cross-validation, discriminant 

analyses, and cross-study comparisons.  All 45 microRNAs revealed were confirmed in 

independent cancer studies, and 25 of those were further confirmed in glioblastoma studies.  

Thirty-nine and six microRNAs were associated with one and multiple glioblastoma survival 

indicators, respectively.  Nineteen and 26 microRNAs exhibited cohort-dependent and 

independent associations with glioblastoma, respectively.
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An approach integrating survival analysis, feature selection, and regulatory network 

visualization was used to identify reliable biomarkers of ovarian cancer survival and recurrence.  

Expression profiles of 799 miRNAs, 17,814 TFs and target genes and cohort clinical records on 

272 patients diagnosed with ovarian cancer were simultaneously considered and results were 

validated on an independent group of 146 patients.  This study confirmed 19 miRNAs previously 

associated with ovarian cancer and identified two miRNAs that have previously been associated 

with other cancer types.   In total, the expression of 838 and 734 target genes and 12 and eight 

TFs were associated (FDR-adjusted P-value <0.05) with ovarian cancer survival and recurrence, 

respectively.  The simultaneous analysis of co-expression profiles along with consideration of 

clinical characteristics of patients allowed reliable microRNA-transcription factor-target gene 

networks associated with ovarian cancer survival to be inferred.    

 Illicit drug exposure brings about changes in the brain transcriptome that result in the 

dysregulation of pathways.  To detect the progression of drug exposure pathways, meta-analysis 

of five individual microarray experiments measuring gene expression in the brain of mice under 

acute and chronic drug exposure was performed.  Functional analysis and network visualization 

offered insights into the network changes across drug exposure levels.  Meta-analyses uncovered 

263 and 2,641 genes differentially expression (FDR-adjusted P-value <0.1) between control and 

acute and chronic exposure, respectively.  Individual genes in these processes have been 

previously associated with drug exposure and reward-dependent behaviors.  The MAPK 

signaling pathway and the molecular functions of protein dimerization and leucine zipper 

transcription factor were enriched in response to acute exposure.  This study was able to detect 

the progression of drug exposure pathways using meta, functional, and network analyses.  
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CHAPTER I: Literature Review 

Gene expression, microRNAs, and transcription factors 

Gene transcription and factors influencing transcript levels 

Gene expression refers to the production of a protein or functional RNA from a gene. 

Several steps are involved in the process of transcribing DNA into messenger RNA (mRNA) and 

of translating the latter into proteins. The first major step in gene expression is transcription.  

Transcription is a process in which one DNA strand is used as a template to synthesize a 

complementary RNA (1). The DNA strand serving as the template is often referred to as the 

template strand, while the other DNA strand is termed the non-template or coding strand. Both 

the DNA coding strand and the RNA strand are complementary to the template strand and thus, 

have the same sequences except the Thymines in the DNA coding strand are replaced by the 

Uracils in the RNA strand (2).  Structural changes in the chromatin are required to initiate 

transcription and elongation, and the resulted primary transcript is processed and transported 

from the nucleus to the cytoplasm. 

Growth of a nucleic acid strand is always in the 5' to 3' direction (3).  Enzymes, termed 

polymerases, are used to catalyze the synthesis of nucleic acid strands.  Initiation of transcription 

on a chromatin template requires the enzyme RNA polymerase to bind at the promoter.  

Eukaryotic DNA is then unwound by a specific transcription factor, and RNA synthesis begins 

based on the sequence of the DNA template stand (2, 4). 

There are three classes of RNA polymerases in eukaryotic cells that are specialized for 

the transcription of particular sets of genes. RNA polymerase I (RNA Pol I) is located in the 

nucleus and synthesizes ribosomal RNA (rRNA); RNA polymerase II (RNA Pol II) is 

responsible for mRNA synthesis and is involved in the transcription of all protein genes; and 
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RNA polymerase III (RNA Pol III) is located outside the nucleus and synthesizes transfer RNA 

(tRNA) and other small RNAs (2).  None of the three RNA polymerases recognize their 

promoters directly. These polymerases depend on other proteins, or transcription factors, to 

recognize the promoter and bind to it.  The binding region contains all binding sites necessary for 

RNA polymerase to bind and function to initiate transcription by guiding RNA Pol II to the start 

point.  After the first bound is synthesized, RNA Pol II is released from the promoter to start 

transcript elongation (4). The capping of the 5' end and addition of a poly (A) tail added to the 3' 

end must occur for mRNA export. The majority of pre-mRNAs consist of coding and non-coding 

sections, termed exons and introns (1). During RNA splicing, a RNA-protein catalytical complex 

known as a spliceosome removes the introns and joins the exons together.  Alternative splicing 

may also occur where some introns or exons may be either removed or retained in mature mRNA 

which creates a series of different transcripts originating from a single gene (3). Once the non-

coding sections are removed and exons are spliced together, the mature mRNA is then 

transported from the nucleus to the cytoplasm where protein synthesis occurs (2). 

 

Introduction to transcription factors 

Transcription factors (TFs)  are proteins needed for the initiation of transcription that are 

not part of RNA polymerase (3).  Transcription factors create a structure at the promoter to 

provide the target that is recognized by the RNA polymerase. The RNA Pol II is associated with 

six general transcription factors, termed TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH, where 

TF stands for transcription factor and II for the RNA Pol II (1, 2).  In eukaryotes, promoters are 

very diverse, but around 20% of them are characterized by a sequence of seven bases 

(TATAAAA) termed the TATA box.  TFIID consists of TBP (TATA-box binding protein) and 
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TAFs (TBP associated factors) (2). The role of the TBP is to bind the core promoter, the binding 

region containing all binding sites necessary for RNA polymerase to bind and function to initiate 

transcription by guiding RNA Pol II to the start point.   

 Transcription factors bind to cis-regulator DNA sequences and are responsible for either 

positively or negatively influencing the transcription of specific genes, essentially determining 

whether a particular gene will be turned on or off (5). Roughly 8% of genes in the human 

genome encode TFs (6). Transcription factors are classified according to their conserved 

sequences as well as their three-dimensional protein structure, including basic helix-turn-helix, 

helix-loop-helix, and zinc finger proteins (7).  

 

Transcription factors influencing gene expression 

The gene regulatory region that the TF targets can span dozens of kilobases (5). 

Regulation of gene expression by TFs requires the coordinated interactions of multiple proteins 

(7).  Transcription factors have defined DNA-binding domains with up to 106-fold higher affinity 

for their target sequences than for the remainder of the DNA strand (7).  

Besides regulation at the level of gene expression, TFs are also regulated via 

posttranslational events including protein phosphorylation, processing, and localization (5). 

Transcription factors are vital for many important biological processes (6). Examples include 

regulating muscle differentiation in embryonic development (myogenic differentiation; MYOD), 

helping the kidneys recover from water dehydration (nuclear receptor subfamily 2, group C, 

member 2; NR2C2), andinstigating oncogenesis (v-myc myelocytomatosis viral oncogene 

homolog avian MYC). Expression of many TFs is subject to microRNA regulation and the 

specific expression profiles of microRNAs are brought about in large part by TF-dependent 
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transcriptional control mechanisms, hence microRNAs and TFs are linked to one another in gene 

regulatory networks. 

 

Introduction to microRNAs 

Introduced in the early nineties, microRNAs (miRNAs) are small, non-coding RNA 

molecules ~22 nucleotides (nt) in length (Figure 1.1)  that are highly conserved among species 

(8). Over 21,264 miRNAs from over 193 species are registered in the miRBase database 

(http://www.mirbase.org/) as of August 2012, and bioinformatics studies predict that up to 1,500 

miRNAs may exist in humans alone (9).  It is estimated that the transcription of about 1/3 of 

human genes is regulated (enhanced or weakened) by miRNA (8).  The accepted nomenclature 

of miRNAs starts with miR- followed by a number identifier (e.g. miR-125), although there are a 

few exceptions. To distinguish miRNAs within a group of similar sequences, an additional letter 

following the miRNA number is used (e.g. miR-125b).  In addition, miRNA that have identical 

mature sequences may be coded at several genomic loci by different precursor sequences. Thus, 

an additional number is added at the end of the sequence (e.g. miR-125b-1) to further distinguish 

these events (9). 

Based on the genomic distribution, miRNA coding genes can be grouped into two 

classes, intergenic miRNAs and intragenic miRNAs (10, 11).  About 42% of miRNAs are 

intergenic, or miRNA-coding genes located between protein-coding genes (10).  Intragenic 

miRNAs, or miRNA-coding genes located within their host protein-coding genes, can be further 

subdivided into four subclasses: a) intronic miRNAs, located within introns of their host protein 

coding genes; b) exonic miRNAs, located within exons of host protein coding genes; c) 

3'untranslated region (3'UTR) miRNAs, located within 3'UTR of host protein coding genes; and 
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d) 5'UTR miRNAs, located within 5'UTR of host protein coding genes (10).  The majority of 

intragenic miRNA are intronic (44%), with the other three subclasses accounting for less than 

10% of total miRNA (10).  

 

MicroRNAs influencing gene expression 

miRNAs are generated by two mechanisms (Figure 1.2).  Intergenic miRNA genes are 

initially transcribed as long transcripts, termed primary miRNAs (pri-miRNAs), by RNA 

polymerase II or RNA polymerase III (12).  These pri-miRNAs are then capped and 

polyadenylated.  Intronic miRNAs, processed by sharing the same promoter and other regulatory 

elements of their host genes, are first transcribed along with their host genes by RNA polymerase 

II (10).  Pri-miRNAs are processed in the nucleus by the RNase III enzyme Drosha and the 

double stranded RNA-binding domain protein DiGeorge Syndrome Critical Region 8 Protein 

(DGCR8)/Pasha to release a ~70nt precursor miRNA (pre-miRNA) product with a 1-4 nt 3’ 

overhang (13).  DGCR8 recognizes the junction between single-stranded RNA and double-

stranded RNA, which allows for the cleavage of the pri-miRNA to begin (10). The specific RNA 

cleavage by Drosha predetermines the mature miRNA sequence and provides the substrates for 

further processing (14).  Through an interaction of Drosha and DGCR8, the stem of the pri-

miRNA is cleaved eleven nts away from the two single stranded segments (10).  MicroRNA 

precursor-containing introns are derived from certain debranced introns that fold into hairpin 

structures with 5' monophosphates and a 3' 1-4 nt overhang, which mimic the structure of pre-

miRNAs, allowing entry into the miRNA-processing pathway (10, 13).  

The 3' overhang of the pre-miRNA (or miRNA precursor-containing introns) is then 

recognized by Exportin-5 (Exp-5) which transports it into the cytoplasm via a Ran-GTP-
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dependent mechanism that releases the pre-miRNA from Exp-5 (14).  In the cytoplasm, the pre-

miRNA is cleaved by RNase enzyme III Dicer about two helical turns away from the ends of the 

pre-miRNA steploop producing a double stranded RNA.  A helicase then unwinds the cleaved 

double stranded RNA in a strand specific direction (13).  The unwound strand with relatively 

lower stability of base-pairing at the 5’end is subsequently incorporated into a RNA-induced 

silencing complex (RISC) and thus, becomes the active miRNA, while the other strand is 

typically degraded.  RISC is composed of several proteins, including the transactivation-

responsive RNA-binding protein (TRBP) and Argonaute (Ago) proteins (11).  These proteins 

contain four domains: PAZ, which binds to the 3' end of the active miRNA, and the N-terminal, 

middle, and Piwi domains, which form a unique structure that creates grooves for target mRNA 

and miRNA interactions (10).  Once incorporated into RISC, the mature miRNA guides the 

complex to target sequences through the binding of imperfect complementary sites within the 3’ 

UTR of mRNA transcripts by the Watson-Crick base-pairing mechanism, with a 5'-end 2-8 nts 

that is exactly complementary to the recognition motif within the target (10, 12).  This 5'-end 2-8 

nt region known as the seed sequence is critical for miRNA actions (10, 15).  Partial 

complementarity with the rest of the sequence of a miRNA also plays a role in producing post-

transcriptional regulation of gene expression (11).   

MicroRNA regulate gene expression by either translational repression or degradation of 

target mRNA, or both, depending on the degree of sequence complementarity (15, 16).  The 

miRNA seed sequence is crucial for miRNA targeting and function, and is responsible for 

searching for complementarity to sequences in the 3'UTR of all target genes (13, 17). The overall 

degree of complementarity of the binding site, the number of recognition motifs corresponding to 

the seed sequence of the miRNA, and the accessibility of the binding sites all determine how 
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gene expression is regulated (10).  The greater the degree of complementarity of accessible 

binding sites, the more likely a miRNA degrades the targeted mRNA (10, 17).  MicroRNAs do 

not require perfect complementarity for functional interactions with mRNA targets, and thus a 

single miRNA can regulate multiple targets and conversely, multiple miRNAs are known to 

regulate individual mRNAs (13). A simple change of one miRNA can provoke a chain reaction 

of feedback pathways involving multiple miRNAs and affecting multiple target genes of the 

same or different pathways (10).  Likewise, the deregulation of one single miRNA is enough to 

trigger global alterations of genetic programs implicated in cell proliferation, differentiation, 

survival, or invasiveness depicted in Figure 1.3 (18).  

In addition to up- or down-regulating the transcription of genes, the miRNAs themselves 

can be up-regulated or down-regulated. The combination of up and down regulation can help 

identify genes that are regulated by specific miRNAs and cellular processes that are affected by 

specific miRNAs (10, 19).  Genome-wide microarray expression techniques are widely used to 

comprehensively assay the global miRNA expression profile (also termed miRNome) in samples 

(10).  

 

MicroRNA and target genes 

MicroCosm (http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/), a central 

online repository for miRNA nomenclature, sequence data, annotation and target prediction, is a 

web resource developed by the Enright Lab at the EMBL-EBI containing computationally 

predicted targets for miRNAs across various species (20). The miRNA sequences are obtained 

from the miRNA Registry, and most genomic sequences are obtained from EnsEMBL. 

MicroCosm uses a miRanda algorithm to identify potential binding sites for a given miRNA in a 
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genomic sequence by using a weighted scoring system and rewarding the 5' end of the miRNA.  

The entire process of assembling miRNAs, genomic sequences, cross species UTR alignments 

and miRanda analysis is performed in parallel on a high performance compute cluster.  Target 

and sequence information can be downloaded by the user based on genome and format (21). 

Complementing MicroCosm, CircuitsDB (http://biocluster.di.unito.it/circuits/index.php) 

is a public web application devoted to the study of interactions between transcriptional and post-

transcriptional regulatory network integration in the human and mouse genomes based on 

bioinformatic sequence-analysis (22).  The database was constructed using an ab-initio oligo 

analysis procedure for the identification of the transcriptional and post-transcriptional 

interactions. Currently, the focus pertains to the study of mixed miRNA/ TF Feed Forward 

Regulatory Loops (FFLs), which are regulatory circuits in which a master TF regulates a miRNA 

and, together with it, a set of joint target protein-coding genes (Figure 1.4).  CircuitsDB allows 

users to explore and directly investigate relationships in terms of their sequence and functional 

annotation through a bioinformatic sequence analysis pipeline applied to the human and mouse 

genomes.  The main access point in CircuitsDB is a dataset of mixed FFLs where a researcher’s 

entry point of interest can be a TF, miRNA, or gene.  CircuitsDB also contains a transcriptional 

network and post-transcriptional network that users can explore where entry points can be a TF 

of interest, a gene, or a DNA oligo.  Users can also access all data sets contained in CircuitsDB 

in plain text format and download the complete catalogue of mixed FFLs for the human and 

mouse genomes (22).  

miRNAs exhibit important regulatory roles in a variety of biological processes, including 

development, cell proliferation, cell survival, and apoptosis (8, 23).  Notably, most of these 

processes, when miss-regulated, can lead to cancer. 
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Review of complex diseases: glioblastoma multiforme, ovarian serous cystadenocarcinoma, 
and illicit drug abuse 

 

Introduction to cancer 

Cancer, also known as malignant neoplasm, is a class of diseases in which grouped cells 

display uncontrolled growth, invasion, and damage of nearby tissues or organs (24). The mass of 

cancer cells will eventually become large enough to produce lumps.  These lumps are most 

commonly referred to as tumors and defined as a mass with a distinct growth pattern from 

adjacent normal tissues in the absence of stimuli (24, 25).  Tumors can be classified as benign or 

malignant. Benign refers to a tumor that is localized and has not metastasized to another organ or 

invaded nearby tissue.  Metastasis is where cancer cells break away from a tumor and enter the 

bloodstream or lymphatic system to form secondary tumors in other parts of the body (24).  In 

general, benign tumors are usually not harmful, as they grow slowly and can usually be removed 

without return. However, depending on the size and weight, some benign tumors can press on 

nearby organs, blood vessels, or nerves causing problems.  Malignant tumor cells are abnormal 

and invade and destroy surrounding tissues, possibly even metastasizing to various other tissues 

and organs in the body (26).  On the molecular level, human tumors manifest a complex 

interplay of multiple, nonrandom genetic events that encompass activation of proto-oncogenes 

and inactivation of tumor suppressor genes, which in turn lead to aberrant expression of growth 

factor receptors and their ligands thus, promoting the initiation and progression of cancer (26, 

27).  The fundamental mechanisms underlying the genetic basis of cancer are constantly being 

defined and involve alterations in three general categories of genes: 1) proto-oncogenes, which 

are involved in growth promotion (defects leading to cancer are gain of function); 2) tumor 
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suppressor genes, which are negative regulators of growth (a loss of function gives rise to 

cancer); and 3) DNA repair genes (28). 

 Proto-oncogenes and oncogenes are a class of genes that encode for proteins that 

function to positively promote cell proliferation.  The normal (non-mutant) versions are 

commonly referred to as proto-oncogenes while the mutant versions or inappropriately active 

forms are known as oncogenes (26).  Mutations converting proto-oncogenes into their oncogenic 

forms are usually gain-of-function mutations, and these mutations include point mutations; 

structural alterations, such as insertions, deletions, inversions, and translocations; gene 

amplification; and hypomethylation of transcription regulatory elements (24, 25).  Genes that 

repair DNA or caretaker genes help maintain fidelity of the genome and, when functioning 

abnormally, can result in a mutator phenotype (i.e., an enhanced frequency of unrepaired 

mutations) and in turn, a predisposition to cancer (27). 

Different types of cancers have unique attributes, different growth and proliferation rates, 

and various responses to therapies. Cancers are defined as primary when they are developed in 

the same site without evidence of a previous neoplasm, and secondary if originated from 

antecedent malignant cells (24). 

Brain cancers are classified according to The World Health Organization (WHO) by 

grade, histology, and group. The WHO grading system has four classes according to the level of 

malignancy of the brain neoplasm: I, II, III, and IV (29).  Grade I tumors are characterized by a 

low proliferation rate and are usually cured with surgical resection.  Grade II tumors have an 

increased capacity for recurrence compared to grade I tumors, allowing for more aggressive 

types of cancer to develop.  Grade III tumors, compared to grade II tumors, are usually defined 

by a higher progression of the neoplasm.  The most aggressive and fatal of tumors that reproduce 
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rapidly and invade other tissues is grade IV (29, 30).  This grading system is applied to all types 

of primary malignant neoplasms of the central nervous system. Among the categories of brain 

neoplasms, astrocytomas constitute one of the largest groups and are derived from glial cells 

(30).  The most aggressive form is the WHO grade IV astrocytoma known as glioblastoma 

multiforme (GBM). 

Ovarian tumors are classified according to cell type and are stratified as benign, 

borderline, or malignant based on the degree of cellular proliferation, nuclear atypia, and 

presence or absence of stromal invasion (28).  The WHO's classification system subdivides 

ovarian tumors into five main categories: epithelial tumors, sex cord-stromal tumors, germ cell 

tumors, metastatic tumors, and other (31). These categories are further grouped into histological 

types such as serous, mucinous, endometrioid, clear cell, transitional cell tumors, mixed 

epithelial tumors, and others (31). Ovarian tumors are classified into two grades: type 1 tumors, 

that are low grade and slowly developing, and type 2 tumors, which are high grade and rapidly 

progressive (32).  

 

Impact of brain cancer on the population  

Glioblastoma multiforme is the most common and aggressive of primary brain tumors, 

with an incidence of 3.55 new cases per 100,000 Caucasians per year (8).  Glioblastoma 

multiforme consists of a genotypically and phenotypically divergent population of cells that are 

highly malignant and infiltrate the brain extensively (33).  The survival median is less than one 

year with essentially no long term survival (33).  Glioblastoma multiforme is given a WHO 

grade of IV due to the capacity to quickly proliferate, invade, and progress in the brain. 
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Glioblastomas can be classified as primary, manifesting de novo, or secondary, 

progressing to GBM from lower grade gliomas.  Primary GBM accounts for 60% of the cases 

and typically develops in patients over the age of forty-five (33, 34).  Secondary GBM  develops 

from a malignant transformation of a previously diagnosed low-grade tumor (cancers that have 

clinical, radiologic, or histopathologic evidence of malignant progression from a preexisting 

lower-grade tumor), is usually more common in younger patients (33). The histopathologic 

findings of primary and secondary GBMs are indistinguishable, and the prognosis does not 

appear to be different after adjustment for age. Glioblastoma multiforme is slightly more 

common in men than women, with a male-to-female ratio of 3:2 (35).  These high grade 

astrocytomas are also more common in Caucasians compared to African Americans, Latinos, and 

Asians (35). 

Despite major improvements in neuroimaging, neurosurgery, radiation and chemotherapy 

techniques, the overall prognosis of GBM has changed little in the past two decades.  The 

topographically diffuse nature of the disease makes it difficult to completely extract in surgery.  

Glioblastoma multiforme's high level of cellular heterogeneity is associated with therapeutic 

resistance (8).  The understanding of the genetic basis of this malignancy is important for the 

development of effective therapies.   

Glioblastom multiforme is multiforme, as its name suggests, in various ways: grossly, 

showing regions of necrosis and hemorrhage; microscopically, with regions of pseudopalisading 

necrosis, pleomorphic nuclei and cells, and microvascular proliferation (33).  Likewise, there are 

multiple genomic events associated with GBM such as deletions, amplifications, and mutations 

of individual genes. For example, the cyclin-dependent kinase inhibitor 2A/ cyclin-dependent 

kinase inhibitor 2B (Cdkn2a/Cdkn2b) locus is deleted in 46.4% of all GBM cases, and epidermal 
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growth factor receptor (Egfr) is amplified in 35.7% of all GBM cases (36).  Tumor protein 53 

(TP53) is the most commonly mutated gene in human cancer, with about 40% of GBM patients 

displaying such mutations (37). 

 
Impact of ovarian cancer on the population 
 

Ovarian cancer, a cancer that begins in the ovary of a women's reproductive system, is a 

potentially fatal threat to women's lives. Ovarian cancer is the leading cause of death from a 

gynecologic malignancy among women in the United States and is the fifth leading cause of 

cancer deaths among women over all (28). In 2013 approximately 22,240 women in the United 

States will receive a new diagnosis of ovarian cancer and about 14,230 will die from ovarian 

cancer (38).  Generally, less than half (45%) of ovarian cancer patients survive more than five 

years after initial diagnosis (39).  

One of the biggest detriments to effective treatment for ovarian cancer is the failure to 

reliably identify early stage disease (28).  Due to the asymptomatic nature of the disease in initial 

stages and nonspecific symptoms, early detection is difficult (28).  As a result of a lack of early 

specific symptoms and signs, newly diagnosed patients may have already developed advanced 

cancer where the cancer has disseminated beyond the ovary, at which point the five year survival 

rate is less than 20% (40).  Clearly, an effective form of screening and early detection ovarian 

cancer would significantly impact outcome.   

Epidemiologic studies have shown that endocrine, environmental, and genetic factors are 

important in the carcinogenesis of ovarian cancer (28).  Age is the most significant risk factor of 

ovarian cancer, with incidence rates increasing with each decade of life and peaking in the 

middle to late seventies (28, 41).  Ovarian steroids, estrogen and progesterone, are important 

factors for tumor growth (42).  Biochemical and molecular studies have shown that leiomyomas 
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(pelvic tumors) have significantly increased levels of both estrogen and progesterone when 

compared to normal tissue (42).  Approximately 10% of ovarian cancers arise in the setting of 

known genetic predisposition, with the majority of cases associated with mutations in the breast 

cancer type 1 and 2 (BRCA1 and BRCA2) genes (27-28, 41-43). 

Although cancers may arise from most of the many cell types of the ovary, the vast 

majority are believed to originate from the cells covering the ovarian surface. Accounting for 

90% of ovarian cancers, epithelial ovarian cancer is a heterogeneous group of neoplasms and is 

divided into histologic subgroups, each with their own underlying molecular genetic events (28, 

41).  Among them, the serous type accounts for 75-80% of epithelial ovarian carcinomas (41).  

Epithelial tumors arise from the surface epithelium or from the crypts or inclusion cysts 

developed from this surface epithelium.  Common epithelial ovarian tumors are classified 

according to their cell type, grade, and stage (28).  Although ovarian cancer is the most lethal of 

gynecologic malignancies, relatively little is known about the molecular genetics of ovarian 

cancer’s initiation and progression (41). 

 
Association between transcriptome profile and brain and ovarian cancer 

Molecular genetics of glioblastoma multiforme 

A deeper understanding of the molecular mechanisms behind GBM must be gained to 

identify potential targets for therapeutic intervention and to develop more optimized and 

effective treatment strategies. Glioblastoma multiforme is a complex and genetically unstable 

tumor characterized by a multitude of chromosomal gains and losses, gene mutations and 

amplifications, epigenetic dysregulation, and aberrant post-translational modifications (44).  In 

tumors, multiple modes of gene perturbation exist including sequence mutations, copy number 

alterations, gene fusion events, or epigenetic changes. (45).  Molecular studies thus far have 
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identified at least three important genetic events in human GBMs: 1) dysregulation of growth 

factor signaling via amplification and mutational activation of receptor tyrosine kinase (RTK) 

genes; 2) activation of the phosphatidylinositol-3-OH kinase (PI3K pathway); and 3) inactivation 

of the p53 and retinoblastoma (RB) tumor suppressor pathways (33, 45, 46).  

RTK Genes  

The receptor tyrosine kinases are a transmembrane protein family that plays crucial role 

in tumor growth, survival, metastasis, dissemination and angiogenesis (47).  The most common 

RTK target of mutation in GBM is amplification of Egfr, often coupled with intragenic deletion 

resulting in a constitutively activated form (34).  Egfr is involved in control of cell proliferation 

and is frequently activated in primary glioblastoma multiforme (48).  Egfr-mediated signaling 

plays a critical role in normal brain development (44). Potential ways in which Egfr might 

directly influence GBM include gene amplification and mutation, as well as wild type and 

mutant receptor over-expression (44). 

PI3K Pathway  

The PI3K-AKT pathway is a frequent target of disruption in GBM. Major downstream 

effects of PI3K/AKT activation include cell growth, proliferation, survival, and motility, which 

are all factors that drive tumor progression (44, 45).  Known alterations in the PI3K/AKT 

pathway include frequent alterations or homozygous deletion of phosphatase and tensin homolog 

(PTEN), mutations in AKT, and alterations to the components of the PI3K complex (45). 

PTEN has been shown to be a critical tumor suppressor gene that is commonly 

inactivated in GBM by deletion, mutation, or attenuated expression to abolish the major negative 

regulator restraining PI3K activation (46, 49). PTEN is a cellular phosphatase that turns off 

signaling pathways.  When phosphatase activity is lost due to mutation, signaling pathways can 
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become activated constitutively, resulting in aberrant proliferation.  The AKT pathway is 

regulated by PTEN (46).  Loss of functional PTEN leads to increased activity of the AKT and 

mTOR kinase pathways, which promotes tumor cell survival and proliferation through 

phosphorylation and activation of several downstream mediators (46).  Phosphoinositide-3-

kinase, regulatory subunit 1 (alpha) (PIK3R1) encodes a regulatory subunit of PI3K and is 

important in down-regulating AKT-mediated cell signaling (44).  

p53 and RB   

The p53 tumor suppressor pathway prevents the propagation of unstable genomes by 

activating the expression of downstream genes that inhibit growth and invasion, and thus 

functions as a tumor suppressor.  This pathway is frequently altered (inactivated) in GBM (45, 

50).  Nearly all GBM tumors contain alterations within the p53 pathway (~86%), including 

mutations and deletions of Tp53 and amplifications of MDM2 oncogene, E3 ubiquitin protein 

ligase (MDM2) and Mdm4 p53 binding protein homolog (mouse) (MDM4) (45, 48).  

The Tp53 gene encodes tumor protein p53, which responds to diverse cellular stresses to 

regulate target genes that induce cell cycle arrest, apoptosis, and DNA repair (50).  Malfunction 

of Tp53 inhibits apoptosis of malignant cells. Mutations in the Tp53 gene once thought to 

predominate in secondary GBM have now been found with surprisingly high frequency in 

primary GBM (44). MDM2/MDM4 amplification or over-expression constitutes an alternative 

mechanism to escape from p53-regulated control on cell growth by binding to the p53 gene and 

diminishing its tumor suppressor function (49, 50).  

Nearly all GBMs universally circumvent cell cycle inhibition through genetic alterations 

to the RB pathway (45, 48).  Alterations include mutations in the tumor suppressor gene 

retinoblastoma 1 (RB1), amplification of cyclin-dependent kinase 4 and 6 (Cdk4 and Cdk6), and 
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homozygous deletions of cyclin-dependent kinase inhibitor 2A, 2B, and 2C (Cdkn2a, Cdkn2b, 

and Cdkn2c) (45, 49). Cdk4 and Cdk6 are responsible for the phosphorylation of RB gene 

product. Mutations in this gene were found to be associated with tumorigenesis of a variety of 

cancers.  The Cdkn2a gene is frequently mutated or deleted in a wide variety of tumors and is 

known to be an important tumor suppressor gene (49). The Cdkn2b and Cdkn2c genes encode a 

cyclin-dependent kinase inhibitor, which forms a complex with Cdk4 or Cdk6, and prevents the 

activation of the CDK kinases.  Thus, the encoded proteins of Cdkn2b and Cdkn2c function as 

cell growth regulators that control cell cycle G1 progression (28, 49). 

Currently, genetic alterations on DNA mismatch repair (MMR) genes and the O-6-

methylguanine-DNA methyltransferase (MGMT) gene are of interest in regards to therapeutic 

research in GBM.  The DNA MMR system is a highly conserved biological pathway that 

corrects errors generated during DNA replication (51).  The primary function of the MMR 

system is to eliminate base-base mismatches and insertion-deletion loops which arise during 

replication of DNA (51).  MMR defects are produced by mutations in any of the genes, such as 

mutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli) (MLH1), mutS homolog 2, colon 

cancer, nonpolyposis type 1 (E. coli) (MSH2), and mutS homolog 6 (E. coli) (MSH6), and 

inactivation of this system leads to an altered gene and protein expression (51).  MGMT is a 

DNA repair enzyme that removes alkyl groups from guanine residues (34, 48).  One of the most 

important biomarkers for GBMs is the methylation status of MGMT, which predicts sensitivity to 

temozolomide (48).  Temozolomide (TMZ) is the most commonly used and most effective 

chemotherapy for GBM (44).  The benefit of TMZ is superior in patients with low levels of 

MGMT in their tumor (44).  MGMT removes the methyl groups from the O-6 position of 

guanine, thus reducing TMZ's effectiveness (44). Transcriptional silencing of the MGMT gene 
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by promoter hypermethylation is seen in ~50% of GBMs and is linked to prolonged survival 

(34).  MMR deficiency and MGMT methylation together, in regards to treatment, exert a 

powerful influence on the overall frequency and pattern of somatic point mutations in GBM 

tumors (48).  A better understanding of the mechanisms driving tumor initiation and progression 

and subsequent discovery and advancement of targeted therapies for cancer offers new hope for 

molecularly targeted treatment of GBM. 

 

Molecular genetics of ovarian cancer 

Ovarian cancer is the most lethal of gynecologic malignancies, yet relatively little is 

known about the molecular genetics of its initiation and progression.  Ovarian cancer arises from 

genetic alterations resulting in different patterns of expression, such as amplification and deletion 

(28). Alterations in tumor suppressor genes such as Tp53 and RB, and other oncogenes such as v-

Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and v-myc myelocytomatosis viral 

oncogene homolog (c-Myc) have been shown to play an important role in ovarian cancer 

development (43). 

  Around 54% of ovarian cancers exhibit chromosomal variants including amplifications of 

8q, 1q, 20q, and 19q, and ~50% have deletion of 13q, 4q, and 18q (43).  The deletion of 13q 

results in the inactivation of the RB gene, the negative regulator of cell growth and suppressor of 

tumorigenesis (28, 43).  This effect may be potentiated in ovarian cancer by the amplification of 

c-Myc, an antagonize tumor suppressor function of the RB gene (28).  Over-expression of c-Myc 

is associated with stage III disease, suggesting a role in disease progression (28). 

The genes RAS, v-akt murine thymoma viral oncogene homolog 2 (AKT2), and PIK2CA 

code for protein products that act within signal transduction pathways and are oncogenes 
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involved in the pathogenesis of ovarian cancer (28).  The AKT2-PTEN-PI3K pathway is 

important in the processes of cell cycle, apoptosis, and RAS signaling, and appears to be 

frequently disrupted in ovarian tumors by alterations in PTEN, PIK2CA, and AKT2 (28).  PTEN 

is down-regulated in a proportion of ovarian tumors, and an inverse correlation between PTEN 

expression and activated AKT2 expression has been found (28).  Mutations in the KRAS gene 

have been reported at a fairly high frequency in ovarian tumors (28).  Individuals that are 

heterozygotes for the BRCA gene have a 20-40% lifetime risk of ovarian cancer (52).  The loss of 

wild-type BRCA allele and mutational inactivation of the Tp53 gene are used to search for 

preclinical genetic evidence of ovarian tumorigenesis (52).  

Egfr is over-expressed in 70% of ovarian tumors and is associated with advanced disease, 

poor prognosis, and chemo-resistance (53).  Platelet-derived growth factor and its receptor (Pdgf-

Pdgfr) and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (c-KIT) are over-

expressed in 70% of ovarian cancers (53).  The expression of Pdgfr is associated with shorter 

overall survival, and abnormal c-KIT expression, yet not mutations, have been associated with 

ovarian tumors (28).  A possible new target oncogene v-src sarcoma (Schmidt-Ruppin A-2) viral 

oncogene homolog avian Src), which has been linked to drug resistance and survival of ovarian 

cancer cell lines in translation studies, has been identified as being over-expressed in ovarian 

cancer (54). 

The identification of candidate oncogenes and tumor suppressor genes has provided a 

foundation for further studies to assess the relative importance of these genes and pathways in 

the development of ovarian cancer. 
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Role of microRNA in cancer 

Cancer is a genetically complex disease that is caused by the accumulation of mutations, 

which ultimately lead to the deregulation of gene expression and uncontrolled cell proliferation 

(24).  A possible link between miRNAs and cancer was reported in chronic lymphocytic 

leukemia, where miR-15 and miR-16 were found to be down-regulated in the vast majority of 

tumors (13).  Recent studies have shown that miRNA are aberrantly expressed in a variety of 

cancers (9).  Over 50% of annotated human miRNA genes are located in fragile chromosomal 

regions which are susceptible to amplification, deletion, or translocation in the process of cancer 

development and progression (14).  Possible mechanisms leading to abnormal expression of 

miRNA in cancer that have been reported include chromosomal rearrangements, genomic copy 

number changes, defects in miRNA biogenesis pathway, regulation by transcriptional factors, 

and epigenetic modifications (13).   

Epigenetic regulation of miRNA expression has been reported in various cancers.    

Between 20% and 40% of miRNAs are located close to CpG islands making them susceptible to 

epigenetic silencing (19). Epigenetic gene silencing is associated with aberrant hypermethylation 

performed by one of several DNA methyltransferases of CpG dinucleotides within the gene 

promoters. Inhibition of these DNA methyltransferases leads to the reversal of aberrant 

hypermethylation (55).  Global hypomethylation or aberrant hypermethylation of gene promoter 

CpG islands result in tumor cell genomic instability and gene silencing, particularly of tumor 

suppressor genes (56).  

Evidence shows that miRNAs have the ability to function as oncogenes or tumor 

suppressors, and expression profiling has revealed characteristic miRNA signatures in a variety 

of human cancers (14).  To date, significant miRNA expression changes have been observed in 
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every type of tumor analyzed by profiling experiments (39). MicroRNA profiles are able to 

distinguish between normal and cancer tissues, separate different cancer types, and stratify the 

cancer differentiation state with high accuracy (15).  In fact, miRNA profiling outperformed 

cDNA microarrays in the classification of tumors of unknown primary (11).  

 

Transcription factors, microRNA and target genes and pathways of cancer 

Transcription factors and miRNAs are important components of gene regulatory 

networks that control the expression of genomic information. By binding to discrete cis-

regulatory elements, individual TFs and miRNAs can control dozens, if not hundreds, of target 

genes, and together they generate a complex combinatorial code (57).  Transcription factors and 

genes containing binding sites for TFs have a high probability of being targeted by miRNAs. 

MicroRNA and TFs are linked to one another in gene regulatory networks. 

Transcription factors act as both oncogenes and tumor suppressors, thus, making them 

targets for the development of anticancer drugs (16).  Cancer cells avoid apoptosis by the 

activation of oncogenes and the loss of tumor suppressor genes.  By controlling the up or down 

regulation of expression of specific genes, TFs and miRNA play a role in pathways affected by 

cancer. MicroRNA may function as a oncogene or as a tumor suppressor depending upon the cell 

type specific microenvironment, which may provide a different repertoire of available target 

genes (16). A miRNA can act as a tumor suppressor when its function loss can initiate or 

contribute to the malignant transformation of a normal cell.  Loss of function can be attributed to 

several mechanisms, including genomic deletion, mutation, epigenetic silencing, and/or miRNA 

processing alterations (11, 14).  For example, miR-16-1 negatively regulates cell growth and cell 

cycle progression and induces apoptosis in several human cancer cell lines (11, 39).  A miRNA 
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can act as a oncogene by promoting proliferation, inhibiting apoptosis, or inducing tumor 

angiogenesis (11).  There is strong evidence that miR-21 functions as an oncogene as this 

miRNA is up-regulated in a wide variety of hematological malignancies and solid tumors (39). 

There is evidence that miRNA may play a dual role as both a tumor suppressor and oncogene, 

(which has been previously described in protein-coding genes involved in the pathogenesis of 

cancer such as Tp53), depending on the tissue and its transcriptome, including miRNA targets 

expressed in particular tissue (11).  A particular type of cancer may be associated with the 

dysregulation of several distinct miRNAs and conversely, dysregulation of one miRNA can be 

associated with several cancer types (14).  A single miRNA can have many targets that are 

involved in different oncogenic pathways, such as miR-181 that targets the genes B-cell 

CLL/lymphoma 2 (Bcl-2, apoptosis), T-cell leukemia/lymphoma 1A (TCL-1, AKT pathway), 

and CD69 molecule ( adhesion). Basically, modulating the level of a single miRNA can affect 

many pathways at the same time (11). 

MicroRNA profiling may be an invaluable tool that can be used to classify tumors that 

represent diagnostic challenges, and the discovery of distinctive miRNA signatures will likely 

improve the molecular classification of cancer (11, 14).  The role of miRNAs as potential 

oncogenes and tumor suppressors has generated great interest in using them as targets for cancer 

therapies (15).  Certain miRNA signatures are correlated with the prognosis of cancer and in the 

future could possibly be used to determine the specific course of treatment (15). In order to 

globally observe and identify miRNAs and their associated cancer modules, a generation of a 

cancer-(gene/transcription factor)-miRNA network is crucial. 

 
 
 
 



23 
 

Illicit drugs and addiction 
 
Introduction into drug abuse 

Drug addiction is defined as the loss of control over drug use or the compulsive seeking 

and taking of drugs despite adverse consequences (58). Drug addiction is characterized by three 

phases: preoccupation/anticipation, where one has a compulsive need to seek and take a drug; 

binge/intoxication, where one consumes the drug and has a loss of control over the amount of 

drug consumed; and withdrawal/negative affect, where one has periods of attempted abstinence 

closely followed by relapse to drug taking behavior (59, 60).  Drugs of abuse produce both acute 

and chronic changes in brain function.  Acute drug use is defined as consumption of a high dose 

of a drug on one occasion, normally corresponding to recreational or casual drug users (59, 61-

63).  Chronic drug use is defined as repeated use of large enough doses of a drug to maintain an 

excessive drug concentration in the body over a long period of time, more commonly associated 

with addicts (59, 61-63).  Acute exposure to drugs can cause alterations in the gene transcriptions 

which are related to addictive properties of various drugs (63).  Chronic drug use by humans 

resulting in addiction can be observed for most drugs of abuse.  Drug addiction is a brain disease 

(63).  Periods of prolonged drug use result in cellular and neurological adaptations in brain 

reward systems resulting in addiction (59).  

 

Impact of drug abuse on the population and transcriptome 

 Substance abuse and addiction have a devastating effect on individuals and their families, 

as well as pose a worldwide threat to public health.  Between 99,000 and 253,000 deaths globally 

were attributed to illicit drug use in 2010 (64).  Global prevalence of HIV, hepatitis C, and 

hepatitis B is heightened among drug users (65).  At least 15.3 million people have drug use 
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disorders (65). Illicit drug use also puts a heavy financial burden on society, with relation to drug 

related crime and drug treatment (65).  Accidental and intentional injury, drug induced psychotic 

symptoms, and increased risk for heart, liver, and lung disease can all be consequences of 

substance abuse.  Addiction is a psychiatric disease attributable to biological and environmental 

factors. 

Genetic factors contribute around 40-60% of vulnerability to drug addiction, with 

environmental factors accounting for the rest (58).  Currently, there is a limited understanding of 

the underlying mechanisms of drug addiction.  To study and understand the neurobiology of 

compulsive drug intake, it is necessary to employ an animal model that accurately recapitulates 

aspects of the disorder seen in human addicts.  The mice striatum is a well-established system to 

study gene expression changes associated with illicit drug challenges (63).   

Changes in gene expression have been documented in the brain after administration of 

drugs of abuse (63, 66, 67).  Brain regions that control rewards sensitivity, motor function, and 

habit learning are the major neural target sites of addictive drugs (63).  For example, the use of 

cocaine, a potent pharmacological stimulus that exerts widespread effects in striatal neurons, 

results in the blocking of the dopamine transporter in the striatum increasing dopamine levels 

and contributing to the reward-related effects (59).  Further research must be done in the 

identification and evaluation of coordinated gene networks and transcriptional signatures 

associated with drug addiction.  New opportunities arising from the analysis of these networks 

include identifying novel relationships between genes and signaling pathways, connecting 

biological processes with the regulation of gene transcription, and associating genes and gene 

expression with diseases. A broader understanding of genetic changes in the brain from short and 

long term drug abuse can be obtained with gene expression data. 
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Pathways statistically significantly enriched in addiction-related genes can be clustered 

into two categories: 1) upstream events of drug addiction including crosstalk among MAPK 

signaling, insulin signaling, and calcium signaling; and 2) downstream effects including 

regulation of glycolysis metabolism, regulation of the actin cytoskeleton, and apoptosis (58). The 

MAPK signaling pathway plays a role in regulating synaptic plasticity related to long lasting 

changes in both memory function and addictive properties (58).  The GnRH signaling pathway is 

involved in regulating stress and may be involved in the regulation and control of certain 

emotional behaviors in addiction (58). As technologies continue to improve, more and more 

genes and pathways may emerge as being linked to addiction.  

 
Transcriptomic analysis of complex diseases 

 
Platforms to measure gene expression 
  

DNA microarrays are a commonly used to detect the presence and abundance of labeled 

nucleic acids in samples on a high throughput level. Microarrays allow the simultaneous 

measurement of the expression of thousands of genes across treatments, developmental stages, or 

other conditions. The probes in the microarray can be oligonucleotides (or cDNAs) that are a 

perfect complementary match to a segment of the gene of interest. Gene expression describes the 

transcription of information contained within DNA into mRNA that is then translated into the 

proteins critical for the functions of cells (50).  By examining the amounts of mRNA that are 

produced by a cell, scientists are able to identify which genes are expressed, which in turn 

reveals how cells adapt to changes within and outside of the organism due to treatments or other 

conditions.  Changes in gene expression levels can be a suitable indicator of the changes in the 

abundance of protein (68).  Data from multiple microarray experiments are available in public 

databases like the Gene Expression Omnibus (GEO; http:// www.ncbi.nlm.nih.gov/geo), and the 



26 
 

most commonly used microarray platform is the Affymetrix in-situ synthesized oligonucleotide 

array (69). 

 

Affymetrix In-Situ Synthesized Oligonucleotide Array Technology 

Oligonucleotide probes used in microarray platforms are short (i.e. 20 to 80 nucleotides 

long) segments of RNA or DNA synthesized by cleaving longer segments, or by polymerizing 

individual nucleotide precursors.  During in-situ synthesis, oligos are built up base-by-base on 

the surface of the array (68).  This occurs by a covalent reaction between the 5’ hydroxyl group 

of the sugar of the last nucleotide to be attached and the phosphate group of the next nucleotide.  

A protective group on the 5’ position of each added nucleotide prevents the addition of more 

than one base during each round of synthesis.  Before moving on to the next round of synthesis, 

the protective group is converted to a hydroxyl group (70). Different methods can be used for 

this deprotection, with our interest focused on the Affymetrix technology.    

Affymetrix GeneChip microarrays are high density oligonucleotide gene expression 

arrays widely used in genomics studies (70).  For deprotection, a photodeprotection method 

using masks is employed.  Basically, masks allow light to pass to appropriate features, while 

keeping it from other features, in order to convert the protective group on the terminal nucleotide 

into a hydroxyl group where bases can then be added.  Each step of synthesis requires a different 

mask.  Photodeprotection has a coupling efficiency of about 95%, meaning about 95% of 

nucleotides are successfully added at each step of synthesis (69, 71).  The longer the 

oligonucleotide synthesized, the worse the yield of full length oligos.  The composition of the 

final population of oligonucleotides is influenced by capping, which prevents further synthesis 

on a failed oligonucleotide resulting in all oligonucleotides on a feature to have the same start, 
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but be of different lengths (72). On an Affymetrix microarray, each gene is represented by a 

probe set consisting of 11 different pairs of 25 base pair oligos covering features of the 

transcribed gene.  A probe set can consist of a series of probe pairs and represents an expressed 

transcript (72).  Each pair consists of a perfect match (PM) and a mismatch (MM) 

oligonucleotide (although the latest versions of Affymetrix are excluding MM).  The PM probe 

exactly matches the sequence of a particular standard genotype, while the MM differs in a single 

substitution in the central, 13th base and is designed to distinguish noise caused by non-specific 

hybridization from the specific hybridization signal (71).  A single sample that has been 

previously labeled with a fluorescent dye (biotin) is hybridized to the microarray probes, the 

microarray is scanned, and an image of fluorescence intensities is obtained. Gene expression is 

determined by comparing the signal intensity from hybridization to probes complementary to the 

gene being measured with the signal intensity from hybridization to probes that contain 

mismatches; the signal from the mismatch probes are thought to represent cross-hybridization 

(73).    

Affymetrix Microarray Experiment Protocol  

There are four basic steps in using a microarray to measure gene expression in a sample: 

sample preparation and labeling; hybridization; washing; and image acquisition (72).  Affymetrix 

platform experiments a specific protocol, which allows for easier comparison of results between 

laboratories than other platforms.  First, RNA must be extracted from the tissue of interest.  For 

labeling, one must construct a biotin-labeled complementary RNA for hybridizing to the 

GeneChip(69).  The GeneChip anchors tens of thousands of closely arrayed oligonucleotide 

probes on to the surface of solid substrates, where the process of recognition can be highly 

parallel (74).  In hybridization, DNA probes form heteroduplexes with labeled DNA (or RNA) 
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via Watson-Crick base pairing (71).  Slides are washed after hybridization to ensure only the 

target specifically bound to features on the array (DNA/RNA we are trying to measure) are left 

and to reduce cross-hybridization.  Affymetrix has integrated its image-processing algorithms 

into the GeneChip experimental process. Overall, oligonucleotide arrays are powerful tools for 

monitoring gene expression. 

 
Microarray data processing and normalization 
 

Quality control of the gene expression data involves the transformation of the image 

scanned from the arrays into reliable mRNA expression data. Hence, processes regarding the 

measurement of probe fluorescence in the array and data transformation are crucial steps that 

must be performed prior to statistical analyses in microarray experiments. This review of 

processing steps centers on the in-situ Affymetrix GeneChip platform (69). 

During hybridization, fluorescence signals are emitted from the GeneChips and images 

are scanned at the end of the process and stored as .DAT files.  This raw data file contains details 

regarding the image size, technical information and the pixel intensities from the whole array. 

The estimation of the intensity of each spot is stored in .CEL files after the grid alignment, to 

localize each probe cell in the array, and the computation of the 75th percentile of the intensity 

from the pixels in the corresponding cell or spot. In this manner, the correct grid alignment is 

important to avoid errors when summarizing the information from .DAT to .CEL files. In 

addition to this factor, other events can affect the overall quality of image acquisition, such as 

background variation and flagging. Pixels in high-intensity parts tend to lose signals to 

surrounding areas. If these neighboring pixels have too low of a signal, they will record the 

intensity from different pixels resulting in blurry images (71). The background signal must be 

subtracted from the feature in order to have a better estimate of the cell hybridization. Flagged 
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features have image problems and must be removed from the analysis. Some cells can have a 

higher pixel standard deviation compared to the mean (bad feature), higher background than 

foreground signal (negative feature) or even have a very low signal (dark feature). These 

estimates can be automatically removed from the data by software or manually by the user. Like 

in the other steps of gene expression analysis, image acquisition needs standardization of the 

procedures to yield high quality results (72). 

Prior to the statistical analyses, the probe intensity data must be normalized in order to 

remove systematic errors and bias originated from microarray experimentation. Normalization 

attempts to remove sources of variation allowing the realization of meaningful biological 

comparisons. A widely used technique to normalize microarray data is the GC-Robust Multichip 

Average or GC-RMA (71, 75).  . This method takes probes sequences into consideration and 

uses quantile normalization and median polish to process the expression data (76).  The GC-

RMA method usually yields more precise results and is more accurate than other normalization 

methods.   

Microarray technology is susceptible to technical error even after following the 

recommended experimental protocols. Some of the systematic sources of variation can be 

removed through the process of normalization or preprocessing of the microarray gene 

expression intensities before analysis. Examples of these sources of technical error include arrays 

with higher overall expression levels than others with comparable samples due to scanning or 

labeling, and probes appearing more fluorescent than others due to the nucleotide composition. 

The most common normalization techniques applied to Affymetrix microarray experiments is the 

quantile normalization followed by the GC-RMA.  The quantile normalization results in all the 

arrays in an experiment having the same distribution, thus the same mean, variance, quantiles, 
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and percentiles. This normalization maintains the within gene changes in expression across 

treatments or samples but removes all systematic differences between arrays across genes. The 

more general RMA normalization provides a single gene expression value per gene and 

microarray by combining all the probe values within a gene (75). The GC-RMA adjusts the 

expression intensity by the composition of bases and location of the bases on the probe. The 

rationale for this adjustment is that the hybridization bond between the complementary probe and 

sample bases depends on the labeling and base (72, 75). The label typically binds to Cytosine C 

base, and this can interfere with the Cytosine-Guanine bond. However, the C- G bond is stronger 

than the Adenine-Thymine bond. An adjustment formula was developed to account for these 

factors in the normalization of the gene expression measurements. The normalizations of the 

microarray experiments in my studies are implemented in Beehive 

(http://stagbeetle.animal.uiuc.edu/Beehive). Beehive is a public integrated suite of web-based 

tools to study gene expression data from microarray experiments (77).    

Data processing and normalization are critical steps to remove systematic errors and bias 

from the data and allow a more adequate subsequent modeling and testing of gene expression 

across conditions.  In many microarray experiments, the ultimate goal is to identify genes that 

are differentially expressed across conditions. Here, gene expression is considered the response 

variable, and the explanatory variables are the condition(s) (factors or covariates of interest). 

These models are analyzed by using a one or multi-way ANOVA model or regression model. 

The results of these models provide the ranking of the genes in terms of P-value and fold 

changes, which allows for the identification of differentially expressed genes. 

Multiple testing corrections adjust p-values derived from multiple statistical tests to 

correct for occurrence of false positives. For example, in the stringent Bonferroni correction, the 
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p-value of each gene is multiplied by the number of genes in the gene list (78). The false 

discovery rate (FDR) is the expected fraction of statistically significant results that are 

mistakenly declared significant.  In the false discovery rate (FDR) correction, N p-values are 

sorted in ascending order (i.e., p1,p2,…,pn).   Then k denotes the largest index I for which pi ≤ 

di/N for all i=1,…,k ≤ N.  All tests with p-values p1,p2,…,pk are then declared significant (78). If 

the corrected p-value is still significant, the gene is still significant.   In some microarray 

experiments, an additional objective is to identify biomarker genes that can be used to accurately 

classify samples across conditions or predict phenotypes (e.g. survival, growth). Here, the 

condition is actually the response variable, while the expression of one or multiple genes is the 

explanatory variable. 

 
Linear mixed model analysis 
 
Standard linear model 

The general linear model is used to determine the strength of association between a 

response variable y and one or many continuous or discrete explanatory variables x, as well as 

predict for values of x.  Explanatory variables can be discrete, taking one of several distinct 

values, or continuous, taking any value within a continuous range.  A basic linear effects model 

can be written as (79): 

Υ𝑖 =  𝛽0 +  𝛽1Χ𝑖  +  𝜀𝑖 
 
where Yi is the value of the response variable in the ith trial; β0 and β1 are parameters; Xi is a 

known constant, namely the value of the predictor variable in the ith trial; ɛi is a random error 

term with mean E{ɛi} = 0 and variance σ2{ ɛi }= σ2 ; ɛi and ɛi are uncorrelated so that their 

covariance is zero (i.e., σ{ɛi, ɛj} = 0 for all i, j; i ≠ j; and i=1,…,n (79). The parameters β0 and β1 

are the regression coefficient.  β1 is the slope of the regression line indicating the change in the 
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mean of the probability distribution of Y per unit increase in X. The parameterβ0 is the Y intercept 

of the regression line and gives the mean of the probability distribution of Y at X=0 (79).  

Survival analysis 
 

Survival analysis, also known as time-to-event analysis, is a statistical methodology to 

model the probability of occurrence of an event at a specific time or hazard (80).  In survival 

analysis, the outcome variable is the time until an event occurs, which can be in years, months, 

weeks, or even days. The event is any designated experience of interest that may happen to an 

individual, most commonly death or disease incidence.  Survival analysis allows for a study to 

start without all experimental units enrolled and to end before all experimental units have 

experienced an event through censoring. Censoring is used when one does not know the exact 

survival time (80). Subjects can be right, left, or interval censored.  For example, if a person does 

not experience the event before the study ends right censoring is used; if an event occurred 

before the start of the study left censoring is used; or if both of the previous examples occur, 

interval censoring is used.   

Survival data is generally described and modeled in terms of survival and hazard 

functions.  Given that T denotes the survival time, where T≥0, and t is any specific value of 

interest for T, the probability that a person survives longer than some specified time t, i.e. 

P(T>t),  is defined as the survival function S(t) (81): 

𝑆(𝑡) =  𝑃 (𝑇 > 𝑡) 

Theoretically, the survivor function is graphed as a smooth curve with t ranging from zero to 

infinity (Figure 1.5).  For example, at the beginning of a study (time t=0) the probability of 

surviving past time zero is one since no one has yet gotten to the event. If the study period 

increased without limit (time t=infinity), eventually no one would survive resulting in the 
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survivor curve falling to zero.  However, in practice obtained graphs are usually step functions 

(Figure 1.6). This is due to the fact that the study period is never infinite in length and the 

estimated survival function may not go all the way down to zero at the end of the study (80).  

Unlike the survival function which concentrates on not failing (event not occurring), the 

hazard function focuses on failing, or on the event occurring.  The hazard function h(t) gives the 

instantaneous potential at time t for getting an event, like death or disease, given survival up to 

time t and the expression is (81, 82): 

ℎ(𝑡) = lim
Δt⟶0

𝑃(𝑡 ≤ 𝑇 < 𝑡 +  Δ𝑡|𝑇 ≥ 𝑡)
Δ𝑡

 

The hazard formula gives the probability that a person's survival time, T, will lie in the time 

interval between t and t+Δt, given that the survival time is greater than or equal to t (80).  The 

division of the numerator (conditional probability) and the denominator (Δt=a small time 

interval) gives the probability per unit time.  The hazard function is graphed with t ranging from 

zero to infinity and can start anywhere and go up or down in any direction over time.   

For example, the hazard function 1) may be constant, where no matter what value of t is 

specified, h(t) equals the same value; 2) may increase over time, whereas survival time increases, 

potential for the event occurring increases; 3) may decrease over time, whereas survival time 

increases, potential for the event occurring decreases; or 4) may first increase and then decrease 

(Figure 1.7).  

In the context of identification of transcript profiles associated with survival in cancer 

patients (GBM or ovarian cancer), the explanatory variables in the survival model include the 

expression levels of miRNA or genes, cohort information such as therapy, gender and race and 

potential interactions between transcript and cohort information.  The Cox proportional hazards 

model is a technique for investigating the relationship between survival time and variables. This 
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model can be used to identify expression profiles associated with an event or hazard, 

independent or dependent on clinical factors, through an interaction term.  The model is: 

ℎ{(𝑡), (𝑧1𝑧2 … 𝑧𝑚)} =  ℎ0(𝑡) ∗ exp (𝑏1 ∗ 𝑧1+⋯+  𝑏𝑚 ∗ 𝑧𝑚) 

where h(t,...) denotes the event or hazard, given the values of the m biomarker expression, 

clinical factors, and interaction levels (z1, z2,... zm) and the corresponding survival time (t).  The 

term h0(t) denotes the hazard when all expression levels are equal to zero and all factors are at 

base level.  Once the transcriptome profiles statistically and biologically associated with survival 

are identified, functional analysis can be used to pinpoint biological processes and pathways 

enriched among the transcripts. In addition to studying known pathways, gene networks can be 

inferred based on the co-expression of the transcripts associated with survival. 

 
 

Feature selection 

 Two widely used feature selection approaches for model selection in regression include 

stepwise selection and forward selection.  Stepwise selection is an automatic search procedure 

that develops a sequence of regression models, at each step adding or deleting an x variable until 

a final best subset of variables is developed and a best model reveled (79).  Two different 

significance levels must be chosen, one for entry into the model and one for deletion from the 

model.  Basically, the process is one of alternation between choosing the least significant 

variable to drop and then re-considering all other dropped variables for re-introduction into the 

model.  The algorithm is described in terms of t* statistics and associated p-values.  In the first 

step, a simple linear regression model is fit for each of the P-1 potential X variables.  The t* 

statistic with the largest value is the candidate for the first addition 

𝑡𝑘∗ = 𝑏𝑘
𝑠{𝑏𝑘}
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The variable is added only if the t* value exceeded a predetermined level or if the corresponding 

p-value is less than a predetermined α value (79).  The regression routine now fits the regression 

model with two X variables, based again on the t* value or p-value, and so on.  After each new 

variable is added, the model is scanned to examine whether any other X variables in the model 

should be dropped.  In summary, explanatory variables enter the model one at a time if they 

surpass a p-value threshold.  After an explanatory variable is added, all pre-existing explanatory 

variables are tested to see if they are still significant at another p-value threshold.  If any pre-

existing explanatory variables are no longer significant, the variable is removed from the model.  

This process is repeated until no further explanatory variables can be added or removed from the 

model. 

Forward selection is essentially a simplified version of the stepwise regression.  At each 

step, each variable that is not already in the model is tested for inclusion with the most 

significant of the variables being added to the model.  In forward selection, the step of testing 

whether a variable once entered into the model should be dropped is omitted (79).  Hence, once a 

variable enters the model, it stays in the model.  Variables are continually added until none of the 

remaining variables are significant enough to be added.  A drawback of this selection is an 

addition of a new variable may render one or more of already included variables non-significant.  

Meta-, functional and network analysis of transcriptome profiles 
 
Meta-analysis  

The integration of gene expression information from multiple microarray studies via 

meta-analysis can aid in the characterization of gene expression profiles.  The integration of 

various studies can produce a more accurate identification of specific transcriptome biomarkers 

and pathways than a single study alone.  Model-based meta-analysis is when linear models are 
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used to combine indicators of expression patterns from individual studies (such as fold changes 

or differences between mean groups, standardized estimates, or normalized values) and 

associated test-statistics or functions are then used to evaluate the expression pattern across these 

studies (83).  Gene expression patterns can be accurately characterized with increased statistical 

power through the meta-analysis of microarray experiments (83).  Examples of meta-analysis 

include comparison of lists of genes with differential expression, consideration of gene 

expression data across treatments and experiments, and combination of p-values or estimates 

(84).  The strength of a meta-analysis is its ability to combine the results from various small 

studies that may have been underpowered to detect a statistically significant difference.   

However, challenges can sometimes occur with different conditions among studies. 
 

A deeper understanding of the molecular relationship of tumors is necessary in order to 

derive insights into diagnosis, prognosis, and treatment.  Due to the large number of factors 

influencing differentially expressed genes, it is not surprising that gene lists from independent 

studies generally show little overlap.  In order to compile the most accurate and robust list of 

relevant genes, meta-analysis of multiple independent publically available data sets can be 

performed. Meta-analytic statistics provide a combined ranking of significant genes while not 

allowing for strong p-values from any individual study to dominate the results (85).  The general 

framework of meta-analysis can be used to distill relevant information from a vast amount of 

published literature and available data sets (86).  The aggregation of data from various 

experiments that is obtained with meta-analysis enhances both the precision and accuracy of 

pooled results (86).  For example, the gene vascular endothelial growth factor A (Vegfa), which 

is known to be important in gliomas and generates more than 750 pertinent citations on its own, 

is sixth in the meta-analysis list but does not even fall among the top 30 genes on any individual 
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lists from each study (85).   Meta-analysis results are likely to be more accurate and stable 

because of the greater sensitivity and specificity that result from the integration of data.   

 

Functional analysis 

High-throughput technologies such as microarrays, genome wide association studies, and 

next generation sequencing produce huge amounts of data of unachievable interpretation without 

the application of automatic procedures for functional profiling (87).  Extensive bioinformatic 

analysis of microarray data can be used to characterize differences in transcript profiles and 

uncover predominant signaling molecules (such as cytokines) in one tissue relative to another 

which allows for the identification of potential targets among genes that are more highly 

expressed in order to discover novel inter-tissue signaling networks (88). Advanced 

computational methods are needed for the integration, mining, comparative analysis, and 

functional interpretation of high-throughput data. Bioinformatics methods using the biological 

knowledge accumulated in public databases has made it possible to systematically dissect large 

gene lists in an attempt to assemble a summary of the most enriched and pertinent biology. 

Sources of biological information to categorize the differentially expressed transcripts include 

functional (Gene Ontology (GO), http://www.geneontology.org/; Kyoto Encyclopedua of Genes 

and Genomes (KEGG), http://www.genome.jp/kegg/; Biocarta, http://www.biocarta.com/), 

regulatory (Transfac, http://www.gene-regulation.com/pub/databases.html; Jaspar, 

http://jaspar.genereg.net/), miRNAs, text-mining, and protein-protein interactions (89).  

The consideration of themes or annotation categories shared by genes identified from 

analysis of microarray experiments helps facilitate interpretation by allowing one to discuss 

groups of genes instead of just individual genes.  The goal of functional analysis is to identify 
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categories differentially represented (or enriched) among genes.  Fisher's hypergeometric test 

tests for the enrichment (depletion) of a category among a list of significant differentially 

expressed genes by generating all possible contingency tables with marginal column and row 

totals (90). The hypergeometric distribution describes the number of successes in a sequence of n 

draws from a finite population without replacement.  For N genes in a platform, K genes are in 

the significant list. The hypergeometric distribution describes the probability that in a subsample 

of n genes belonging to a category, k genes are in the significant list.  For example, there are �𝑁𝑛� 

possible samples without replacement; �𝐾𝑘� ways to obtain k significant genes in a category; and 

�𝑁 − 𝐾
𝑛 − 𝑘 � ways to fill the rest of the sample where �𝐾𝑘� = 𝐾! ÷ (𝑘! (𝐾 − 𝑘)!) (90).  Thus the 

hypergeometric probability is (90):  

𝑃(𝑋 = 𝑘) =
�𝐾𝑘� �

𝑁 − 𝐾
𝑛 − 𝑘 �

�𝑁𝑛�
 

 

For analysis of all genes in a platform (instead of a smaller list of significant genes), Gene Set 

Enrichment Analysis can be performed.  Gene Set Enrichment Analysis (GSEA) is a powerful 

analytical method for interpreting gene expression data at the level of gene sets (91).  Genes are 

first ranked in a list based on the correlation between their expressions.  An enrichment score 

(ES) is calculated that reflects the degree to which a set of genes is overrepresented at the 

extremes (top or bottom of list). The goal of GSEA is to determine whether members of a gene 

set are randomly distributed among the gene list or if they are primarily found toward the top or 

bottom of the differential expression list.  Sets related to phenotypic distinction should show the 

latter distribution (91).  An advantage of GSEA is its ability to detect biological processes, such 
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as metabolic pathways, transcriptional programs, and stress responses, that are distributed across 

an entire network of genes which are subtle at the level of individual genes (91). 

Babelomics (http://www.babelomics.org) is a website that aims to provide the scientific 

community with an advanced set of tools for the functional profiling of high-throughput 

transcriptomic, genomic, and proteomic data (89).  Babelomics consists of a complete suite of 

methods for the analysis of gene expression data that include normalization, pre-processing, 

differential gene expression, predictors, clustering, and large scale genotyping assays.  These 

analysis facilities are integrated and then connected to multiple options for the functional 

interpretation of experiments.  Various methods of functional enrichment can be used to 

understand the functional basis of an analyzed experiment in Babelomics.   

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) 

Knowledgebase (http://david.abcc.ncifcrf.gov/) is a large gene-centered knowledgebase that 

integrates the most useful and highly regarded heterogeneous annotation resources in a 

centralized location with improved cross-referencing capability between NCBI and UniProt 

systems (92).  DAVID provides a comprehensive set of functional annotation tools for 

researchers to understand biological meaning behind large lists of genes. The DAVID 

Knowledgebase is built around a single-linkage method to agglomerate tens of millions of 

gene/protein identifiers from a variety of public genomic resources into DAVID gene clusters, 

thus improving cross-reference capability and enabling more than 40 publicly available 

functional annotation sources to be comprehensively integrated and centralized (92).  This helps 

to aid researchers in focusing on data analysis or the core development of new high-throughput 

functional data mining algorithms.  For any given gene list, DAVID tools are capable of 

identifying enriched biological themes (predominantly GO terms); discovering enriched 
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functional-related gene groups; clustering redundant annotation terms; visualizing genes on 

BioCarta and KEGG pathway maps; listing interacting proteins; exploring gene names and 

redirecting to related literatures; and converting gene identifiers from one type to another (92).  

The identification of enriched functional categories relies on a EASE score that is based on 

Fisher’s test with a higher level of stringency. In addition to reporting the functional categories 

that are enriched among a list of genes uploaded, DAVID includes an algorithm that further 

clusters functional categories with similar gene composition. This additional clustering level 

minimizes the risk of over-counting related enriched categories that span across levels of the GO 

hierarchy or across databases (92). The entire DAVID Knowledgebase is freely downloadable in 

simple, pair-wise, text format files.  

KEGG, or the Kyoto Encyclopedia of Genes and Genomes, is a database resource for 

understanding high-level functions and utilities of the biological system.  It consists of the 

molecular building blocks of genes and proteins and chemical substances that are integrated with 

the knowledge on molecular wiring diagrams of interaction, reaction, and relation networks.  

KEGG is a reference knowledgebase for the integration and interpretation of large scale 

molecular data sets generated through genome sequencing and other experimental technologies.  

The KEGG database is divided into three categories, which are subdivided into sixteen 

databases.  The first category contains systems information with databases including: KEGG 

PATHWAY, KEGG BRITE, KEGG MODULE, KEGG DISEASE, KEGG DRUG, and KEGG 

ENVIRON.  Genomic information makes up the second category with KEGG ORTHOLOGY, 

KEGG GENOME, KEGG GENES, and KEGG SSDB as databases. The final category is 

chemical information and includes databases: KEGG COMPOUND, KEGG GLYCAN, KEGG 

REACTION, KEGG RPAIR, KEGG RCLASS, and KEGG ENZYME.  Each of the databases 
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contain various data objects for computer representation of biological systems.  Object identifiers 

are used to distinguish the database entry of each KEGG object and consist of a database 

dependent prefix and a five digit number (93).  

 

Repositories of microRNA, transcription factors, Gene Ontology, pathway information 

Network visualization 

Visualization is a technique used to graphically represent sets of data.  When data is large 

or abstract, visualization can help make the data easier to read or understand (94).  Network 

visualization allows for the studying of networks of interactions within various biological 

systems by using tools to assist in modeling of network data.   

Cytoscape (http://www.cytoscape.org/) is an open source software platform for 

visualizing complex networks designed to fill the strong demand for an easy, powerful, general-

purpose, and extensible network interaction modeler (95).  This resourcesupports the integration 

of large biological data sets and assists in the exploration of network models that are major parts 

of systems biology.  By working as a web service client, Cytoscape can directly connect to 

external databases and import network and annotation data. Currently, external databases 

supported include Pathway Commons (http://www.pathwaycommons.org/pc/), IntAct 

(http://www.ebi.ac.uk/intact/), BioMart (http://www.biomart.org), NCBI Entrez Gene 

(http://www.ncbi.nlm.nih.gov/gene), and Protein Identifier Cross-Reference (PICR, 

http://www.ebi.ac.uk/Tools/picr/). Basic visualization consists of a set of nodes connected by 

edges that describe the type of interaction occurring between them (95).  By attaching 

annotations to a network, a user can access these annotations to alter visualization of a network 

through various colors, shapes, images, sizes, or layout. Networks can be exported as 
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publishable-quality images, and PDF, EPS, SVG, PNG, JPEG, and BMP files are all supported 

(95). 

Visual depiction of networks can be simplified with the use of certain plugins.  The 

GPML-plugin (http://apps.cytoscape.org/apps/gpmlplugin) can be used in Cytoscape and is a 

converter between Cytoscape networks and the GPML (GenMAPP Pathway Markup Language) 

pathway format (96),.  Via an import menu, this plugin allows a webservice client to directly 

search and open pathways represented on WikiPathways (http://www.wikipathways.org) as well 

as save the GPML pathways (97, 98),  WikiPathways is an open, public platform dedicated to the 

curation of biological pathways by and for the scientific community (97, 98). 

Another tool for gene network building and visualization is the BisoGenet plugin from 

the Cytoscape software (99).  The BisoGenet system consists of three tiers: a data tier, a middle 

tier, and a client tier.  In the data tier, genomic information, protein-protein interactions, protein-

DNA interactions, gene ontology, and metabolic pathways are all stored in a database (99).  The 

middle tier consists of a global network of all data on bioentities and their relationships from this 

database (99).  The client tier is the actual Cytoscape plugin which allows for user input, 

communication, visualization and analysis of the resulting network (99).  BisoGenet's database, 

SysBiomics, integrates data from multiple public domain datasets such as BIND, HPRD, Mint, 

DIP, BioGRID or Intact NCBI, UniProt, KEGG, and GO.  With BisoGenet one can build and 

visualize biological networks along with distinguishing the relations between genes and their 

products. 

 

 

 

http://apps.cytoscape.org/apps/gpmlplugin
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Network reconstruction 

An effective approach to rapidly and maximally leverage available transcriptome and 

phenotypic (e.g. cancer survival) data is needed. This will augment our understanding of the 

disease to develop the best diagnostic and treatment practices for patients with specific tumor 

characteristics, in terms of genetics (the potential for disease outcome), disease biology (how the 

potential has played out up to the point of measurement), and the connections between these and 

the clinical outcome.  The main challenge in systems biology is uncovering the complex gene 

regulatory network that renders the phenotype or disease state of a biological system in response 

to various environmental cues (100).  A proper incorporation of multi-source biological 

knowledge is beneficial for network reconstruction.  The complex interaction between genes and 

the environment that govern the cellular response cannot be understood at the level of individual 

components of the network, but emerges through the intricate interplay between genes, miRNAs, 

and TF (100).  An approach to tackle the integration of transcriptomic and phenotypic data is 

reverse-engineering. This approach encompasses network  inference directly from a data set that 

generated probabilistic network models consisting of nodes and directed edges between then 

nodes (32). Subsequently, the models can be used to simulate transcriptome profiles and make 

quantitative outcome predictions (101).  The edges represent statistical relationships that can be 

interpreted as casual when perturbations are used in the experiment.  Genetic variation across 

tumors serves as perturbations that explain variation in molecular measurements and survival 

outcomes and helps to anchor casual influences in the model (32).  The nodes consist of the 

measured molecules in the experiment (in this case, miRNAs, genes, survival outcome, and other 

relevant clinical covariates such as tumor grade).  These models have the ability to automatically 

span the course of millions of possible scenarios to determine and distinguish the key driver 
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genes and pathways (potential targets) from the passenger entities with respect to a given genetic 

background (32).  This approach of analyzing experimental and clinical data sets allows for 

building models capable of subject-specific predictions.   

Cellular phenotypes are determined by the dynamical activity of large networks of co-

regulated genes, and thus dissecting the mechanisms of phenotypic selection requires clarifying 

the function of individual genes in the context of the networks in which they operate.  ARACNE, 

An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular 

Context (http://wiki.c2b2.columbia.edu/califanolab/index.php/Software/ARACNE) , is a novel 

information-theoretic algorithm for the reverse engineering of transcriptional networks from 

microarray data (102).  This method uses an information theoretic approach to eliminate the vast 

majority of indirect interactions typically inferred by pair-wise analysis. Relationships between 

nodes (e.g. transcripts, proteins) are identified based on the capability of the co-variation (e.g. 

co-expression) patterns to augment the information (assessed as a function of the log-transform 

probability) in the data, conditional on other nodes. ARACNE focuses on identifying direct 

transcriptional interactions in cellular networks in order to elucidate functional mechanisms that 

underlie cellular processes.  ARACNE has a low computational complexity, does not require 

discretization of expression levels, and does not rely on a priori assumptions (102).   

 

Thesis motivation 

 The study of the dysregulation of the transcriptome in diseases like cancer and drug abuse 

can offer insights into genes, mRNA and proteins that can be the target of preventive and 

therapeutical remedies. Several reasons may be behind the limited validation of reported 

associations between these diseases and miRNAs, TFs, and target mRNA in independent studies. 
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First, few studies simultaneously analyze multiple miRNAs, TFs, and target mRNA.  Second, 

most studies do not consider clinical or cohort-dependent factors when characterizing 

associations between the transcriptome and disease. Lastly, most transcriptome studies are small 

and the individual analysis has limited statistical power to detect accurate and precise 

associations between transcripts and diseases. The overall goal of this thesis is to address the 

previous limitations and identify replicable biomarkers of cancer and drug abuse.  
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Figures 
 

 
 
Figure 1.1 Typical hairpin structure and corresponding secondary structure sequence of miRNA 
precursor.  Base pairings are represented by complementary parentheses and non-paring bases by 
dots. Human miRNA mir-24-1 is shown.  
 
Source: Brameir and Wiuf (2007) (103) 
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Figure 1.2 Biogenesis of miRNA and miRNA-mediated gene regulation in animal cells.  
 
Source: Chen (2005) (104)
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Figure 1.3 A) miRNAs and TFs in FFLs tend to mutually target genes from the same pathway. 
B) Co-regulated miRNAs and miRNA families co-target many genes in the same pathway 
resulting in a significant total output which has a major effect on cell fate. 
 
Source: Shalgi et al. (2009) (105)
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 Figure 1.4 Feed-forward loops. Representation of a typical mixed feed-forward loop. In the 
square box, TF is the master transcription factor; in the diamond box, miR represents the miRNA 
involved in the circuit; in the round box, the Joint Target is the joint protein-coding target gene. 
Inside each circuit, −• indicates transcriptional activation/repression, and ⊣ indicates post-
transcriptional repression.  
 
Source: Re et al. (2009) (106) 
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Figure 1.5 Probability of survival across time t.  Theoretical situation where probabilities are 
non increasing, with 𝑆(𝑡) = 1 when 𝑡 = 0, and 𝑆(𝑡) = 0 when 𝑆(𝑡) = ∞.  
 
Source: Kleinbaum (1996) (80) 
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Figure 1.6 Probability of survival across time t.  Practical situation where not all individuals 
show occurrence of the event and, thus, the estimate survival function does not go to zero at the 
end of the study. 
 
Source: Kleinbaum (1996) (80) 
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Figure 1.7 Hazard functions across time. For example, the hazard function a) may be constant, 
where no matter what value of t is specified, h(t) equals the same value; b) may increase over 
time, whereas survival time increases, potential for the event occurring increases; c) may 
decrease over time, whereas survival time increases, potential for the event occurring decreases; 
or d) may first increase and then decrease.  
 
Source: Kleinbaum (1996) (80) 
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Chapter II 
 

Therapy-, Gender- and Race-specific microRNA Markers, Target Genes, and Networks Related 
to Glioblastoma Recurrence and Survival* 

 
 

ABSTRACT 

Aim: To identify and study targets of microRNA biomarkers of glioblastoma survival across events 

(death and recurrence) and phases (life expectancy or post-diagnostic) using functional and network 

analyses. Materials and methods: MicroRNAs associated with glioblastoma survival within and 

across race, gender, recurrence, and therapy cohorts were identified using 253 individuals, 534 

microRNAs, Cox survival model, cross-validation, discriminant analyses, and cross-study comparison.  

Results: All 45 microRNAs revealed were confirmed in independent cancer studies, and 25 of those 

were further confirmed in glioblastoma studies. Thirty-nine and six microRNAs (including hsa-miR-

222) were associated with one and multiple glioblastoma survival indicators, respectively. Nineteen 

and 26 microRNAs exhibited cohort-dependent (including hsa-miR-10b with therapy and hsa-miR-486 

with race) and independent associations with glioblastoma, respectively. Conclusion: Sensory 

perception and G protein-coupled receptor processes were enriched among microRNA gene targets 

also associated with survival, and network visualization highlighted their relations. These findings can 

help to improve prognostic tools and personalized treatments. 
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Introduction 

Glioblastoma multiforme (World Health Organization glioma grade IV) is a primary and 

aggressive cancer. Glioblastoma patients have a median survival of less than one year, and the 

incidence of glioblastoma varies among cohort groups, such as race and gender (8, 107).  Some genes 

and microRNAs, small non-coding RNA molecules that can affect the post-transcriptional regulation of 

genes, exhibit abnormal expression patterns in glioblastoma (108, 109). Data and methodological 

limitations have prevented the identification of consistent microRNA biomarkers of glioblastoma 

survival that could be used to develop effective prognosis and diagnostic tools and therapies.  Data 

limitations mostly encompass small data sets with unknown or restricted representation across cohort 

groups and consideration of a single glioblastoma survival indicator. Methodological limitations 

include arbitrary discretization of response (e.g. high and low survival) and explanatory (e.g. high or 

low expression level) variables (110), single-microRNA analysis (17, 111), pre-selection of 

microRNAs, and use of approaches that cannot accommodate the multifactorial nature of the disease.  

The main objective of this study was to identify microRNAs that are reliable indicators of 

glioblastoma survival and recurrence using survival analysis. The study also aimed at extending the 

findings to microRNA target genes, their biological processes, molecular functions, and networks. 

Another goal was to identify and profile cohort-dependent associations between microRNAs and 

glioblastoma that can be used in personalized therapies.  

 

Materials and methods 

Survival, cohort, recurrence, and microRNA information from 253 individuals diagnosed with 

glioblastoma and death and recurrence records between the years 1990 and 2008 was considered. 

Surgical samples corresponded to newly diagnosed glioblastoma cases, had a minimum of 80% tumor 

nuclei and a maximum of 50% necrosis (112). The data was obtained from The Cancer Genome Atlas 

(TCGA) December 2009 data freeze (113). Cohort factors were gender (male or female), race (white 
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Caucasian or not), therapy received (radiation therapy alone, RX; chemotherapy plus radiation and no 

targeted therapy, CRN; chemotherapy plus radiation and targeted therapy, CRT; and all other therapies 

including no therapy, OTHER), and the detection of glioblastoma recurrence or progression after the 

original diagnosis (progression/recurrence or not). 

Prognostic microRNA biomarkers for two events (death and recurrence) and two phases (from 

birth to event or from diagnostic to event) were studied through three complementary glioblastoma 

survivals: life expectancy (years from birth to death associated with glioblastoma), post-diagnostic 

glioblastoma survival (months from glioblastoma diagnostic to death), and post-diagnostic 

glioblastoma recurrence or progression (or post-diagnostic recurrence hazard, encompassing the 

months from glioblastoma diagnostic to reports of progression or recurrence). The last two indicators 

are also known as overall survival (OS) and progression-free survival (PFS) and offer complementary 

information to life expectancy (LE). The models used to describe the three indicators are specified in 

terms of hazard (instead of survival) and thus, hazard or survival is used where appropriate. Table 2.1 

summarizes the number and distribution of individuals studied across levels of the covariates 

considered in the model. The median age at diagnosis was 55.7 years. Expression levels of 534 

microRNAs were measured using the Agilent 8 × 15K Human microRNA platform (Agilent 

Technologies, http://www.genomics.agilent.com/). The data was quantile-normalized (at the probe 

level), collapsed within microRNA, and log 2-transformed following the procedures described in 

Beehive (114).  

A glioblastoma hazard predictive model that simultaneously considered all microRNAs and 

cohort information was used to identify general and personalized (or cohort-independent and -

dependent, respectively) biomarkers. This model overcame the limitation of previous studies that 

ignored the simultaneous association between multiple microRNAs and glioblastoma hazard by 

analyzing only one microRNA at a time or ignoring cohort information that may result in cohort-

dependent relationships between glioblastoma events and microRNA profiles by predicting hazard 
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within clinical factor levels. The factorial and complex nature of the data, including more microRNAs 

than individuals and a large number of cohort variables, required the novel integration of multiple 

statistical and computational tools into a biomarker identification pipeline. 

Statistical computing method 

A Cox survival model together with leave-one-out cross-validation (LOOCV) and discriminant 

analyses were used to identify microRNA expression profiles associated with glioblastoma survival. 

This model accommodates censored data resulting from individuals that are alive or that do not have a 

recurrence record at the end of the period analyzed. The Cox proportional hazard model assumes a 

parametric model to test the association between the covariates and the hazard ratio of the event. The 

model does not require the specification of a baseline hazard rate or an estimate of absolute risk, and 

thus, this non-parametric component of the model does not require the specification of the absolute 

shape of the curve formed by the two hazard rates (e.g. female versus male) over time. The test of no 

association between the microRNAs or cohort prognostic markers and the hazard ratio between gender, 

race, therapy, or recurrence groups and the 95% confidence interval limits follow a Chi-square 

distribution. The Cox model assumes proportional hazards across the period studied. This assumption 

can be expressed as parallel survival functions across the levels of the microRNA or cohort variables in 

the model.  This assumption was tested for each of the three hazards considered, and there was no 

indication of significant departure from the assumption. Furthermore, visualization of the survival and 

residuals did not suggest departure from the model assumptions. There was no indication of significant 

departure from the proportional hazards assumption, also confirmed by the overlap on microRNAs 

between survival indicators. 

 

A multi-step strategy was undertaken to identify and validate microRNA prognostic markers of 

glioblastoma survival or recurrence. Cohort variables, microRNAs, and interaction terms were included 
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simultaneously in a Cox model, and a combination of forward and stepwise model selection methods 

were used to identify association for each survival.   

Three model selection methods were used because of their complementary advantages. In the 

first method, a stepwise model selection was run on all microRNAs and included cohort variables 

(entry into the survival predictive model conditional on the other biomarkers already in the model or 

entry P-value < 0.3 and remain in the survival predictive model after consideration of other biomarkers 

or remain P-value < 0.1). Next, a forward model selection was applied to all microRNAs and included 

cohort variables (entry P-value < 0.3). The significant microRNAs from the previous stepwise and 

forward model were identified and included in a model that was subjected to a stepwise selection (entry 

P-value < 0.3 and remain P-value < 0.1). This step allowed us to identify broad or general associations 

between microRNA profiles and glioblastoma hazards. The relaxed P-value threshold allowed us to 

detect the microRNA that may first have weak associations among large sets of microRNAs but 

stronger associations become apparent as the set is streamlined. 

In the first step of the analysis, the Cox model was used to identify the cohort groups and 

microRNA profiles associated with the three complementary glioblastoma hazards. The complete 

microRNA set was analyzed using the Cox model because of the goal of identifying systematic and 

cohort-dependent microRNA associated with the three glioblastoma events. The associations between 

cohort and microRNA biomarkers and prognosis, while adjusting for the other systematic variables, 

were assessed. This strategy allowed to ensure a sufficient number of observations per cohort level in 

the model and to uncover prognostic microRNAs that exhibit unique patterns in cohort groups with 

moderate representation in the complete data set, such as individuals receiving uncommon therapies. 

 

In the second step, the interaction between the microRNAs remaining in the model after the 

biomarker selection and cohort indicators was evaluated using the stepwise approach. This step 

allowed the identification of cohort-dependent associations between microRNA profiles and the hazard 
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of death or glioblastoma progression. The first and second steps were implemented separately for all of 

the microRNA measured in the platform and for 14 microRNAs that have been reported to be 

associated with glioblastoma (hsa-miR-21, hsa-miR-221, hsa-miR-222, hsa-miR-181a, hsa-miR-181b, 

hsa-miR-7, hsa-miR-128, hsa-miR-124, hsa-miR-137, hsa-miR-451, hsa-miR-10b, hsa-miR-129, hsa-

miR-139 and hsa-miR-218) (8).   

In the third step, the results from the analyses of all microRNAs and of previously reported 

microRNAs were combined and further streamlined using the stepwise method. The combination of the 

biomarkers identified from considering all microRNAs in the platform and only microRNAs known to 

be associated with glioblastoma facilitated the detection of novel microRNA biomarkers and 

verification of known biomarkers. The output of this comprehensive methodological tactic was a 

cohort and microRNA index to prognosticate glioblastoma. The association between the glioblastoma 

hazards and the cohort factors and microRNA expression profiles was visualized by plotting the 

probability of survival predicted from the Cox model against time.  

Following common practice, the resulting microRNAs were evaluated using a LOOCV 

approach (115-117) and classification analyses (118-121). LOOCV is recommended especially for data 

sets of limited size, providing an almost unbiased estimator and identifying the same best classifiers as 

other X-fold training-test data partitions (115-117). For the X-fold validation approach, the 

specification of suitable training and testing data sets would have required at least 160 patients in each 

data set (5 patients ×  2 races ×  2 genders ×  4 therapies ×  2 recurrence groups) and only 253 patients 

were available. Use of smaller data sets would have lead to low power and biased findings because of 

the ill-representation of patients across cohort groups. Patients were classified into high and low 

survival groups using the median time at the glioblastoma event (death or recurrence) as a cutoff and 

removing patients with unclear hazard within one unit of the median.  Only non-censored records were 

used to avoid biased classification estimates. Preliminary results from linear and quadratic 
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discriminant, logistic, and k nearest-neighbor analyses were consistent, and quadratic discriminant 

results are presented. 

Validation of the results from the Cox model, LOOCV, and classification analyses on an 

independent data set was not feasible because no other data set has information on gender, race, 

therapy, recurrence, and age that would allow testing the cohort-dependent microRNAs identified in 

this data set. Thus, a two-fold approach was used to offer corroboration of our findings. First, the 

microRNA biomarkers identified in this study were searched against the glioblastoma multiforme and 

cancer literature based on independent data sets. Second, the expression profile of the targets genes of 

the microRNAs were analyzed (122). The gene targets corresponding to the microRNAs associated 

with glioblastoma survival were obtained from MicroCosm (20, 21). Expression measurements for the 

target genes were available from the same patients using the Affymetrix HT HG-U133A platform. The 

normalization and Cox survival models used for the gene targets were the same as described for the 

microRNAs. The target genes subsequently used had a significant association (P-value < 0.001) with 

either glioblastoma OS, PFS, or LE (122). Functional Gene Ontology (GO) and KEGG Pathway 

analysis of the significant target genes of the significant microRNAs was undertaken (93, 123). The 

enrichment of functional categories was evaluated using Fisher's exact (two-tailed) test and false 

discovery rate (FDR) multiple test adjustment (89). Network visualization was accomplished by 

depicting all pair-wise relationships between target genes using the BisoGenet plugin from the 

Cytoscape software (99).  BisoGenet's database, SysBiomics, integrates data from multiple public 

domain datasets such as BIND, HPRD, Mint, DIP, BioGRID or Intact NCBI, UniProt, KEGG, and GO. 

Based on this information, a global network of relations among microRNA target genes was created 

and visualized using Cytoscape. The network was inferred using only significant target genes (circular 

network nodes) of significant microRNAs associated with either glioblastoma survival. Only 

interactions (network edges) connecting two target genes directly or through an intermediate gene 

(square gray node) were portrayed to facilitate the visualization of relationships and minimize the 



60 

incorporation of relationships not relevant to the microRNA biomarkers detected in this study. Known 

gene relationships depicted in the network are summarized in the SysBiomics repository (99). 

 

Results 

The median length of glioblastoma LE, OS, and PFS was 59 years, 13 months, and 6 months, 

respectively. The probabilities of survival at 12, 24, 36, and 48 months post-diagnostic were 0.55, 0.26, 

0.16, and 0.11, respectively.  Survival length indicators confirm previous reports that most TCGA 

samples correspond to primary glioblastoma with null or a very minor percentage of secondary 

glioblastoma cases (8, 124).  MicroRNAs associated with the three glioblastoma survivals are listed in 

Tables 2.2 to 2.4, respectively.  Hazard ratio estimates >1 indicate an increase in the hazard (decrease 

in survival probability) per unit increase in the level of microRNA expression, and hazard ratio 

estimates <1 denote the opposite trend, conditional on all other cohort and microRNA predictors in the 

model.  Additional statistical significance indicators include the 95% confidence interval of the hazard 

ratio estimate and the statistical significant P-value. 

Tables 2.2 to 2.4 also list previous studies that support the association between the microRNAs 

and glioblastoma identified in this study. Corroborating our findings, the majority of microRNAs 

associated with glioblastoma survival (25 out of 45 microRNAs) have also been associated with 

glioblastoma in independent studies, and the rest (20 microRNAs) have been associated with other 

types of cancer (Tables 2.2 to 2.4). MicroRNAs in two families (hsa-miR-181 and hsa-miR-34 family) 

and six other microRNAs were associated with multiple survival indicators, while 35 microRNAs were 

associated with one survival indicator.  The same number of positive and negative associations (HR >1 

or HR <1) between microRNA expression levels and the three glioblastoma hazards studied were 

revealed in this study (Tables 2.2 to 2.4). Twenty-six and 19 microRNAs had cohort-independent and      

-dependent relationships with glioblastoma survival, respectively.  The survival plot in Figure 2.1 

depicts the lower post-diagnostic survival probability of females that have a low level of microRNA 
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ebv-miR-bhrf1-1 relative to males with a high expression level. Three microRNAs (hsa-miR-10b, hsa-

miR-222, and hsa-miR-140) exhibited different hazard ratio trends across glioblastoma indicators, and 

the associated confidence interval allowed the identification of the trend best supported by the data.  

Integration of Cox survival model, LOOCV, and discriminant analysis supported the correct 

classification of 98% and 93% of the patients into the high and low post-diagnostic survival or OS 

groups, respectively, and the area under the receiver operator characteristic (ROC) was 94%. Likewise, 

100% and 91% of the individuals in the high and low PFS groups were correctly classified, and the 

area under the ROC was 97%. Finally, 86% and 75% of the patients in the high and low LE groups 

were correctly classified, and the area under the ROC was 85%. Another indicator of the reliability of 

the integrated approach is that all microRNAs detected in this study have been previously associated 

with cancer, and a majority were associated with glioblastoma in independent studies. An additional 

indicator supporting the microRNAs identified is that 239, 418, and 336 gene targets of the 

microRNAs were significantly associated with LE, OS, and PFS, respectively. 

Several GO categories were enriched (FDR-adjusted P-value < 0.05) among the target genes 

significantly associated with multiple survival indicators. Tables 2.5 to 2.7 summarize these findings, 

with the latter table including an FDR-adjusted P-value <0.01 and a minimum of six genes due to space 

limitations. Categories are sorted by GO theme, followed by level and P-value. The GO categories 

enriched across all three survival indicators included sensory perception (of chemical stimulus and 

smell), neurological process, olfactory receptor activity, rhodopsin-like receptor activity, and 

transmembrane receptor activity. All GO categories enriched in the post-diagnostic death or OS were 

also identified in either or both of the remainder indicators. Figure 2.2 portrays the network including 

target genes (denoted in pink) of significant miRNAs that also themselves have a significant 

association with either glioblastoma OS or PFS, and have a minimum of one relationship and at most 

one indirect relationship with other target genes.  
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Discussion 

All microRNAs associated with glioblastoma survival detected in this study have been 

confirmed to be associated with glioblastoma in previous independent studies (25 microRNAs) or have 

been associated with other cancer types (20 microRNAs). This extensive confirmation, the large 

number of target genes also significantly associated with glioblastoma survival, and the correct 

classification of patients into survival groups further supports the robustness of our findings. The equal 

number of positive and negative associations between microRNA expression levels and survival, and 

the fact that 17% of the microRNAs exhibited associations with multiple glioblastoma survival 

indicators confirm the paradigm that glioblastoma initiation and recurrence are impacted by 

microRNAs targeting a wide range of oncogenes, tumor suppressor genes, and pathways at different 

stages of tumor genesis and growth (125).  Some of these genes and pathways are activated or silenced 

by microRNAs acting throughout the glioblastoma phases; meanwhile, others are phase or event 

dependent.  Likewise, the equal number of positive and negative associations between the microRNA 

expression levels and hazard of the three glioblastoma events investigated are in agreement with 

previous reports on the complex and multifaceted regulation of cancer initiation and progression by 

microRNAs (125). Most microRNAs (64%) exhibited a broad, cohort-independent relationship with 

glioblastoma survival. This indicates that mainstream and general practices to treat glioblastoma on the 

basis of microRNA profiles alone are promising. The identification of gender-, race-, and therapy-

dependent microRNA biomarkers indicates that general practices can be effectively complemented 

with personalized practices.  The following discussion of the microRNA biomarkers focuses on novel 

and high impact discoveries, and relevant supporting references for all other microRNAs are listed in 

Tables 2.2 to 2.4. 

Higher levels of Kaposi's sarcoma-associated herpes virus (kshv) miR-k12-1 were associated 

with all three glioblastoma survival indicators (Tables 2.2 to 2.4) in agreement with associations 

between this microRNA and two B-cell-derived cancer types (14). MicroRNAs ebv-miR-bhrf1-1, hsa-
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miR-565, hsa-miR-137, and hsa-miR-512-3p had gender-, race-, and recurrence-dependent associations 

with OS and PFS (Tables 2.3 and 2.4). For these four microRNAs, cohort-independent trends in the 

same direction were reported respectively for Burkitt's lymphoma, ovarian cancer, chemoradiation-

treated rectal cancer, and for both metastatic pancreatic ductal adenocarcinoma cell lines and 

hepatocellular carcinoma cells that have been linked to the inhibition of the tumorgenesis factor c-FLIP 

(126-128). Likewise, the gender-, therapy- and race-dependent associations between hsa-miR-93, hsa-

miR-489, human cytomegalovirus (hcmv) miR-ul70-3p, hsa-miR-758, hsa-miR-143, and PFS (Table 

2.4) have been confirmed at a cohort-independent level for T-cell leukemia, breast-cancer MCF-7 cells 

resistant to tamoxifen, tumors from various tissues (e.g. breast, colon, liver), a multidrug-resistant 

variant of a human gastric adenocarcinoma cell line, and for both B-cell chronic lymphocytic leukemia 

and colorectal cancer cell growth through inhibition of KRAS translation (129-134).  The cohort-

independent and gender-dependent association of hsa-miR-222 with OS and PFS (Tables 2.3 and 2.4, 

respectively) confirm the results of Ciafre et al. (135). The therapy-dependent association between 

glioblastoma and members of the hsa-miR-181 and hsa-miR-34 families (Tables 2.2 to 2.4) are 

consistent with previous reports (3, (17, 136). High levels of hsa-miR-140 were associated with higher 

LE and lower and therapy-dependent OS (Tables 2.2 and 2.3). The multiple modes of action of hsa-

miR-140 are consistent with reports of up-regulation in most glioblastoma cases (136), inhibition of 

cell proliferation in osteosarcoma and colon cancer cell lines (137), and treatment-dependent action 

(137). Reanalysis of the association between glioblastoma survival and hsa-miR-140 alone (with and 

without cohort factors, results not shown) produced trends similar to that in the multi-microRNA 

models.  Thus, our results suggest that the influence of hsa-miR-140 on glioblastoma survival may vary 

with the glioblastoma phase considered.  A gender-dependent association between hsa-miR-26a and 

OS was uncovered (Table 2.3). The general trend is consistent with the proposed role of hsa-miR-26a 

promoting glioblastoma cell growth and formation (135, 138), and the gender-dependent model is in 
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agreement with the higher expression of hsa-miR-26a in women than in men diagnosed with 

hepatocellular carcinoma (139).  

Additional analyses resolved the apparent inconsistencies in the trends between previous reports 

and our study for seven microRNAs hsa-miR-182 (140), hsa-miR-106b (141), ebv-miR-bart7 (142), 

hsa-miR-189 (143), hsa-miR-221 (144), hsa-miR-21 (145), and  hsa-miR-10b (17, 140, 141).  For hsa-

miR-182, hsa-miR-106b, and hsa-miR-221, the individual microRNA analysis supported the multi-

microRNA results. For ebv-miR-bart7, hsa-miR-189, and hsa-miR-10b, the individual analysis did not 

detect a significant trend. In one case, hsa-miR-21 was not detected when considered simultaneously 

with other microRNAs but was significant when considered alone, in agreement with Chan et al. (145). 

These results suggest that identification of biomarkers on an individual basis may result in spurious 

associations and also validates the approach used in this study to identify biomarkers that 

simultaneously considers multiple microRNAs.  

The large number of gene targets of the detected microRNAs that also exhibited significant 

association with glioblastoma survival further substantiates our findings. Sensory perception, 

neurological process, olfactory receptor, and transmembrane receptor activity were among the 

processes and functions consistently over-represented among the target genes of microRNAs associated 

with all three glioblastoma survival indicators. The neurological and sensory perception processes are 

consistent with reports of glioblastoma candidates for single nucleotide polymorphisms of sensory 

perception genes and with reports that individuals with brain tumors lose sensory perception (146). 

Oncogenes act by mimicking the growth signals transmitted by transmembrane receptors (147). G 

Protein-coupled receptor (GPCR) activity (e.g. rhodopsin-like gene) regulates cellular motility, growth 

and differentiation, and gene transcription; three factors central to the biology of cancer (148). The 

network of gene targets that have significant association with glioblastoma survival displays known 

relationships, including many in the signaling pathways that involve GPCR, including MAPK, 

adipocytokine, chemokine, ErBB, FC epsilon RI, mTOR, neurotrophin, notch, p53, 
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phosphatidylinositol, RIG-I-like receptor, T-cell receptor, TGF-beta receptor, toll-like receptor, VEGF, 

and Wnt signaling pathways (Figure 2.2). 

In summary, this study confirmed 25 microRNAs previously associated with glioblastoma 

survival and identified 20 other microRNAs that have been previously associated with other cancer 

types. This confirmation and the high correct classification of patients into survival groups suggests 

that the biomarkers revealed in this study are good leads for empirical confirmation, improved 

prognostic tools, and personalized treatments of glioblastoma multiforme. Six and 39 microRNAs were 

identified as biomarkers of multiple or single glioblastoma survival indicators, respectively, suggesting 

the multifactorial and multifaceted genomic basis of this cancer. Nineteen microRNAs exhibited 

gender-, race-, therapy-, or recurrence-dependent associations with glioblastoma survival, suggesting 

that personalized treatments that consider individual variation can improve the outcome for 

glioblastoma patients. Sensory perception and GPCR activities are among the processes of the 

microRNA target genes associated with survival. 
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Figures 
 

 
 
Figure 2.1. Overall survival plots for males (black lines) and females (gray lines) that have high 
(dashed lines) and low (solid line) levels of ebv-miR-bhrf1-1. 
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Figure 2.2 Network of target genes of glioblastoma microRNAs.  
Circular pink nodes denote target genes of microRNAs associated with glioblastoma survival 
that also have a significant association with survival themselves. Square gray nodes denote a 
maximum of one intermediate gene between target genes. Edges denote known relationships 
between genes from several databases which are summarized in the SysBiomics repository. 
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Tables 

Table 2.1 Number and distribution of individuals analyzed for overall and post-diagnostic 
hazard of glioblastoma death and post-diagnostic hazard of glioblastoma recurrence and levels of 
the cohort factors considered. 
 

    
Post-diagnostic survival 

(overall survival) a   
Post-diagnostic recurrence 
(progression-free survival) 

  
Number Percentage 

 
Number  Percentage 

Total   253     192   
N Censored 

 
26 10% 

 
17 9% 

Race  Caucasian 211 83% 
 

161 84% 

 
Other 42 17% 

 
31 16% 

       Gender  Females 91 36% 
 

68 35% 

 
Males 162 64% 

 
124 65% 

       Therapy RX 38 15% 
 

32 17% 

 
CRN 133 53% 

 
113 59% 

 
CRT 31 12% 

 
28 15% 

 
OTHER 51 20% 

 
19 10% 

       Recurrence Yes 192 76% 
 

192 100% 
  No 61 24%   0 0% 

 
 a The number of patients analyzed for post-diagnostic survival and life expectancy is the same. 
N, Number of patients; RX, radiation therapy alone; CRN, chemotherapy plus radiation and no targeted therapy; 
CRT, chemotherapy plus radiation and targeted therapy; OTHER, all other therapies including no therapy.
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Table 2.2 MicroRNAs associated with life expectancy on a cohort-independent or -dependent 
manner and supporting independent studies. 
 

MicroRNA P-value Hazard ratio (95% C.I.) Relevant literature 
references 

hsa-miR-181a* 0.0537 RX=0; 0.33 (0.21 to 0.51) (108, 109)G 

   RX=1; 1.05 (0.33 to 3.38)  
hsa-miR-189 0.0204             0.20 (0.05 to 0.78) (143)O 
hsa-miR-19b 0.0049             1.46 (1.11 to 1.90) (149)G 
hsa-miR-222 0.0258             0.83 (0.70 to 0.98) (17, 135, 136)G 

hsa-miR-34a 0.05  RX=0; 0.69 (0.57 to 0.85) (150, 151)G 

   RX=1; 1.17 (0.72 to 1.89)  
hsa-miR-550 <0.0001             4.18 (2.31 to 7.56) (152)O 
hsa-miR-625 0.0119             2.48 (1.22 to 5.02) (153)O 

kshv-miR-k12-
1 0.0023             2.08 (1.30 to 3.32) (14)O 

hsa-miR-10b <0.0001             0.74 (0.64 to 0.85) (17, 140, 141)G 
hsa-miR-140 0.013             1.57 (1.10 to 2.24) (136, 137)G 
hsa-miR-149 0.0056             0.76 (0.63 to 0.92) (154)G 

 
C.I., Confidence Interval; RX=1 denotes radiation therapy alone, RX=0 denotes non-radiation therapy; G 

glioblastoma multiforme study; O study on any other type of cancer. 
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Table 2.3 MicroRNAs associated with overall survival on a cohort-independent or -dependent 
manner and supporting independent studies. 
 

MicroRNA P -value Hazard ratio (95% C.I.) Relevant literature references
hsa-miR-182 0.0245        RX=0: 0.67 (0.57 to 0.77) (140)G

       RX=1: 1.00 (0.71 to 1.38)
0.0027      CRT=0: 0.66 (0.56 to 0.77)

     CRT=1: 1.19 (0.83 to 1.69)
hsa-miR-189 0.0316                    0.12 (0.02 to 0.83) (143)O

hsa-miR-196a 0.0168                    1.39 (1.06 to 1.81) (155)G

hsa-miR-221 0.0298        RX=0: 0.67 (0.43 to 1.04) (17, 135, 136, 144)G

       RX=1: 0.41 (0.22 to 0.75)
hsa-miR-222 <0.0001                    2.14 (1.51 to 3.03) (17, 135, 136)G

hsa-miR-23b 0.0135                    1.61 (1.10 to 2.35) (135)G

hsa-miR-26a 0.002          Male: 1.33 (1.02 to 1.71) (135, 138, 139)G

     Female: 2.52 (1.78 to 3.58)
hsa-miR-324-5p <0.0001                    2.73 (1.80 to 4.14) (156)G

hsa-miR-34c 0.0106                    0.62 (0.43 to 0.90) (150, 151)G

ebv-miR-bhrf1-1 0.0009        Other: 0.09 (0.01 to 0.51) (126)O

    Caucasian: 1.83 (1.16 to 2.88)
0.0008          Male: 0.65 (0.35 to 1.24)

      Female: 2.77 (1.43 to 5.38)
hsa-miR-512-3p 0.003                     0.28 (0.12 to 0.65) (153, 157)O

hsa-miR-565 0.0996         Other: 2.97 (1.71 to 5.16) (127)O

Caucasian: 1.80 (1.41 to 2.30)
0.0003     Pr/Re=0: 3.80 (2.40 to 6.02)

    Pr/Re=1: 1.59 (1.27 to 2.00)
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Table 2.3 (con’t) 
 

 
 
C.I., Confidence Interval; RX=1 denotes radiation therapy alone, RX=0 denotes non-RX therapy; CRT=1 denotes 
chemotherapy plus radiation and targeted therapy, CRT=0 denotes non-CRT therapy; Pr/Re=1 denotes glioblastoma 
recurrence or progression report, Pr/Re=0 denotes no recurrence or progression report; CRN=1 denotes 
chemotherapy plus radiation and no targeted therapy, CRN=0 denotes non-CRN therapy; G glioblastoma multiforme 
study; O study on any other type of cancer. 
 

MicroRNA P -value Hazard ratio (95% C.I.) Relevant literature references
hsa-miR-572 0.0691                     0.76 (0.57 to 1.02) (158)O

hsa-miR-766 0.0052                     1.57 (1.15 to 2.16) (159)O

kshv-miR-k12-1 <0.0001                     2.77 (1.78 to 4.31) (14)O

kshv-miR-k12-6-3p 0.0608                     1.54 (0.98 to 2.43) (160)O

hsa-miR-101 0.0065                     1.63 (1.15 to 2.32) (125)G

hsa-miR-10b 0.0146         RX=0: 1.16 (0.97 to 1.38) (17, 140, 141)G

        RX=1: 0.74 (0.52 to 1.04)
hsa-miR-134 0.0007                     2.11 (1.37 to 3.25) (141)G

hsa-miR-137 0.001      CRN=0: 2.11 (1.45 to 3.05) (128)O

     CRN=1: 0.94 (0.67 to 1.32)
hsa-miR-140 0.001      CRN=0: 0.21 (0.12 to 0.37) (136, 137)G

     CRN=1: 0.65 (0.37 to 1.15)
hsa-miR-148a <0.0001                     1.65 (1.35 to 2.02) (161)O

hsa-miR-409-3p 0.0001                     0.43 (0.28 to 0.66) (162)O
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Table 2.4 MicroRNAs associated with progression-free survival on a cohort-independent or –
dependent manner and supporting independent studies 
 

 
 
 

MicroRNA P -value Hazard ratio (95% C.I.) Relevant literature references
hsa-miR-181c 0.0004      CRN=0: 0.27 (0.16 to 0.47) (17, 136)G

     CRN=1: 0.82 (0.53 to 1.35)
hsa-miR-188 <0.0001                    2.30 (1.55 to 3.40) (140)G

hsa-miR-222 0.0814          Male: 1.27 (1.02 to 1.58) (17, 135, 136)G

     Female: 1.65 (1.29 to 2.12)
hsa-miR-296 0.0247        RX=0: 1.56 (1.14 to 2.14) (136, 163)G

       RX=1: 3.83 (1.82 to 8.07)
0.0633      CRT=0: 2.04 (1.51 to 2.76)

     CRT=1: 0.90 (0.39 to 2.10)
ebv-miR-bart7 <0.0001                    0.05 (0.01 to 0.15) (142)O

hsa-miR-486 0.0168         Other: 0.74 (0.44 to 1.25) (140)G

Caucasian: 1.53 (1.12 to 2.08)
hsa-miR-489 0.0041                    0.04 (0.00 to 0.36) (130)O

hsa-miR-512-3p 0.0257         Other: 0.00 (0.00 to 0.04) (153, 157)O

Caucasian: 0.07 (0.02 to 0.28)
hcmv-miR-ul70-3p 0.0004          Male: 0.43 (0.27 to 0.67) (131)O

     Female: 1.13 (0.71 to 1.79)
hsa-miR-552 0.0001                    0.00 (0.00 to 0.01) (125)G

hsa-miR-578 <0.0001                    0.00 (0.00 to 0.00) (164)G

hsa-miR-582 0.0003                    5.49 (2.17 to 13.88) (125)G

hsa-miR-584 0.0307                    0.22 (0.05 to 0.87) (125)G
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Table 2.4 (con’t) 
 

 
 
C.I., Confidence Interval; CRN=1 denotes chemotherapy plus radiation and no targeted therapy, CRN=0 denotes 
non-CRN therapy; RX=1 denotes radiation therapy alone, RX=0 denotes non-RX therapy; CRT=1 denotes 
chemotherapy plus radiation and targeted therapy, CRT=0 denotes non-CRT therapy; G glioblastoma multiforme 
study; O study on any other type of cancer; n/a,  no association with any type of cancer found in literature. 

MicroRNA P -value Hazard ratio (95% C.I.) Relevant literature references
hsa-miR-758 0.0029      CRN=0: 0.77 (0.23 to 2.60) (132)O

     CRN=1: 0.08 (0.03 to 0.21)
hsa-miR-93 0.0006                    2.63 (1.51 to 4.85) (129)O

kshv-miR-k12-1 <0.0001                    3.19 (1.93 to 5.29) (14)O

kshv-miR-k12-6-5p <0.0001                    3.70 (1.93 to 7.10) (165)O

hsa-miR-106b 0.0014        RX=0: 0.12 (0.06 to 0.22) (141)G

       RX=1: 0.55 (0.22 to 1.40)
hsa-miR-143 0.002         Other: 0.30 (0.16 to 0.54) (133, 134)O

Caucasian: 0.83 (0.61 to 1.12)
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Table 2.5 Gene Ontology categories enriched (FDR-adjusted P-value <0.05) among the target 
genes of microRNAs associated with life expectancy 
 

 Gene Ontology Level Term FDR P-
value 

No. of 
genes 

Biological 
process 3 Neurological process 

(GO:0050877) 0.0248 219 

Biological 
process 4 Sensory perception 

(GO:0007600) 0.0111 151 

Biological 
process 5 Sensory perception of chemical 

stimulus (GO:0007606) <0.0001 70 

Biological 
process 6 Sensory perception of smell 

(GO:0007608) <0.0001 63 

Molecular 
function 4 Transmembrane receptor activity 

(GO:0004888) 0.0146 239 

Molecular 
function 5 G Protein-coupled receptor 

activity (GO:0004930) 0.0039 160 

Molecular 
function 6 Rhodopsin-like receptor activity 

(GO:0001584) 0.0023 134 

Molecular 
function 7 Olfactory receptor activity 

(GO:0004984) <0.0001 60 
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Table 2.6 Gene Ontology categories enriched (FDR-adjusted P-value <0.05) among the target 
genes of microRNAs associated with overall survival. 
 

 Gene Ontology Level Term FDR P-
value 

No. 
of 

genes 
Biological 
process 3 Neurological process (GO:0050877) <0.0001 371 

Biological 
process 3 Cell communication (GO:0007154) 0.0001 1546 

Biological 
process 4 Sensory perception (GO:0007600) <0.0001 255 

Biological 
process 4 Signal transduction (GO:0007165) 0.0006 1400 

Biological 
process 5 Sensory perception of chem. stimulus 

(GO:0007606) <0.0001 129 

Biological 
process 5 Cell surface receptor linked signal 

transduction (GO:0007166) 0.0145 684 

Biological 
process 6 Sensory perception of smell (GO:0007608) <0.0001 123 

Biological 
process 6 G Protein-coupled receptor protein signaling 

pathway (GO:0007186) 0.0156 413 

Molecular 
function 3 Receptor activity (GO:0004872) 0.004 711 

Molecular 
function 3 Antigen binding (GO:0003823) 0.0422 16 

Molecular 
function 4 Transmembrane receptor activity 

(GO:0004888) 0.0002 457 

Molecular 
function 5 G Protein-coupled receptor activity 

(GO:0004930) <0.0001 315 

Molecular 
function 6 Rhodopsin-like receptor activity 

(GO:0001584) 0.0002 274 

Molecular 
function 7 Olfactory receptor activity (GO:0004984) <0.0001 120 
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Table 2.7 Gene Ontology categories enriched (FDR-adjusted P-value <0.01, number genes >6) 
among the target genes of microRNAs associated with progression-free survival. 
 

 Gene Ontology Level Term FDR P -value
No. of 
genes

Biological process 3 Cell communication (GO:0007154) <0.0001 975
Biological process 3 Multicellular development (GO:0007275) <0.0001 507
Biological process 3 Neurological process (GO:0050877) <0.0001 248

Biological process 3 Anatomical structure development 
(GO:0048856)

<0.0001 483

Biological process 3 Cellular organization & biogenesis 
(GO:0016043)

0.0008 639

Biological process 3 Cellular metabolic process (GO:0044237) 0.0014 2290

Biological process 3 Cellular developmental process 
(GO:0048869)

0.0066 551

Biological process 4 Signal transduction (GO:0007165) <0.0001 889
Biological process 4 Sensory perception (GO:0007600) <0.0001 172
Biological process 4 System development (GO:0048731) <0.0001 386

Biological process 5 Sensory perception of chemical stimulus 
(GO:0007606)

<0.0001 86

Biological process 5 Cell surface receptor linked signal 
transduction (GO:0007166)

<0.0001 433

Biological process 5 Organ development (GO:0048513) 0.0085 285

Biological process 5 + Regulation of metabolic process 
(GO:0009893)

0.0087 84

Biological process 5 Carboxylic acid metabolic process 
(GO:0019752)

0.0095 185

Biological process 5 + Regulation of cellular process 
(GO:0048522)

0.0095 214

Biological process 6 Organ morphogenesis (GO:0009887) <0.0001 57
Biological process 6 Sensory perception of smell (GO:0007608) <0.0001 80

Biological process 6 G Protein-coupled receptor protein signaling 
pathway (GO:0007186)

0.0099 266

Molecular function 3 Protein binding (GO:0005515) <0.0001 1601

Molecular function 4 Transmembrane receptor activity 
(GO:0004888)

0.0017 305

Molecular function 6 Rhodopsin-like receptor activity 
(GO:0001584)

0.0101 179

Molecular function 7 Olfactory receptor activity (GO:0004984) 0.0002 79
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Chapter III 

Transcription factor-microRNA-target gene networks associated with ovarian cancer 
survival and recurrence* 

 
 
ABSTRACT 
 
The identification of reliable transcriptome biomarkers requires the simultaneous consideration 

of regulatory and target elements including microRNAs (miRNAs), transcription factors (TFs), 

and target genes. A novel approach that integrates multivariate survival analysis, feature 

selection, and regulatory network visualization was used to identify reliable biomarkers of 

ovarian cancer survival and recurrence. Expression profiles of 799 miRNAs, 17,814 TFs and 

target genes and cohort clinical records on 272 patients diagnosed with ovarian cancer were 

simultaneously considered and results were validated on an independent group of 146 patients.  

Three miRNAs (hsa-miR-16, hsa-miR-22*, and ebv-miR-BHRF1-2*) were associated with both 

ovarian cancer survival and recurrence and 27 miRNAs were associated with either one hazard. 

Two miRNAs (hsa-miR-521 and hsa-miR-497) were cohort-dependent, while 28 were cohort-

independent.  This study confirmed 19 miRNAs previously associated with ovarian cancer and 

identified two miRNAs that have previously been associated with other cancer types. In total, the 

expression of 838 and 734 target genes and 12 and eight TFs were associated (FDR-adjusted P-

value < 0.05) with ovarian cancer survival and recurrence, respectively. Functional analysis 

highlighted the association between cellular and nucleotide metabolic processes and ovarian 

cancer.  The more direct connections and higher centrality of the miRNAs, TFs and target genes 

in the survival network studied suggest that network-based approaches to prognosticate or 

predict ovarian cancer survival may be more effective than those for ovarian cancer recurrence. 

This study demonstrated the feasibility to infer reliable miRNA-TF-target gene networks 
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associated with survival and recurrence of ovarian cancer based on the simultaneous analysis of 

co-expression profiles and consideration of the clinical characteristics of the patients. 
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Introduction 

Ovarian cancer, the most malignant gynecologic neoplasm, is the fifth leading cause of 

cancer deaths among women.  Approximately 45% of ovarian cancer patients survive more than 

five years after initial diagnosis and less than 20% surpass this milestone once the cancer has 

disseminated (39).  Few gene expression profiles have been consistently related to ovarian cancer 

(166, 167).  This may be due to the limited simultaneous consideration of the transcripts and 

transcript regulators associated with ovarian cancer. 

MicroRNAs (miRNAs) are small, non-coding RNA molecules that bind to 

complementary sequences on target mRNA transcripts, and thus, regulate gene expression at the 

post-transcription stage. Transcription factors (TFs) are a different type of regulator. These 

proteins bind to specific DNA sequences in the promoter region, promoting or repressing 

transcription into mRNA, and thus, regulate genes at a pre-transcription stage (168). 

Transcription factorss and miRNAs can regulate each other and both can regulate the expression 

of target genes. Transcription factor-microRNA-target genes can function as onco or tumor 

suppressor networks, triggering global alterations of genetic programs implicated in cell 

proliferation, differentiation, apoptosis, and invasiveness in cancer. 

Few associations between ovarian cancer and miRNAs or TF have been validated in 

independent studies (166, 167). Several reasons may be behind the limited understanding of the 

regulatory networks associated with ovarian cancer. First, most studies associate ovarian cancer 

to genes (miRNAs or TFs) on an individual basis instead of considering multiple profiles 

simultaneously. Second, even when studies analyze multiple genome profiles simultaneously, the 

relationship between target genes and regulatory miRNAs and TFs are not used. Third, most 

studies do not consider clinical or cohort-dependent factors when characterizing associations 
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between expression profiles and ovarian cancer. Lastly, most studies consider the binary 

qualitative trait presence or absence of cancer, and more quantitative measurements such as 

survival and recurrence are not evaluated.  

The main objectives of this study were a) to develop a model to identify and characterize 

miRNAs, TFs, and target genes associated with ovarian cancer survival, and b) use this 

information to identify TF-miRNA-target gene networks associated with survival in ovarian 

cancer. Our overarching hypothesis was that reliable gene expression biomarkers of cancer can 

be obtained from the consideration of all components in a network simultaneously.  A systems 

biology approach was used to investigate the simultaneous association between multiple 

miRNAs, TFs, and target genes and cancer survival or recurrence, accounting for non-genetic 

patient-to-patient sources of variation, and the corresponding networks were analyzed. Results 

were validated in an independent data set. The study also identified enriched functional 

categories and pathways of genes associated with cancer survival and recurrence.  Understanding 

the molecular basis of ovarian cancer is key to developing improved prognostic indicators and 

effective therapies.  Given the heterogeneity of this disease, improvements in long-term survival 

might be achieved by translating recent insights at the molecular and clinical levels into 

personalized individual treatment strategies. 
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Materials and Methods 

Training data set 

Clinical information  

Survival, recurrence, cohort, and genomic expression information from 272 patients 

diagnosed with ovarian cancer was obtained from The Cancer Genome Atlas 

(http://cancergenome.nih.gov/; accessed September 2009) repository (112).  Cohort factors 

analyzed include treatment received (only chemotherapy, 93%; chemotherapy plus another 

treatment, 5%; and any treatment other than chemotherapy, 2%); preadjuvant therapy (yes, 8% or 

no, 92%); additional treatment (only chemotherapy, 41%; chemotherapy plus another treatment, 

14%; and any treatment other than chemotherapy, 45%); tumor stage (stage I or II, 4%; stage III, 

88%; stage IV, 8%); tumor grade (grade I or II, 4%; any grades other than I or II, 96%); tumor 

residual disease (no macroscopic disease, 26%; 1-20mm, 61%; greater than 20 mm, 13%); 

recurrence (yes, 58% or no, 42%), and age at diagnosis (in years). Preadjvant therapy refers to 

any treatment that the patient received prior to surgery and sample collection. Tumor stage refers 

to the pathological stage of the tumor in AJCC format (Primary Tumor: T; Stage 1: 1A; 1B; 1C; 

Stage II: IIA; IIB; IIC; Stage III: IIIA; IIIB; IIIC; Stage IV: IV).  Tumor grade is the numeric 

value used to express the degree of abnormality of cancer cells and is a measure of 

differentiation and aggressiveness.  Tumor residual disease is the measure of the largest 

remaining nodule.  Age refers to the age in years of the individual at the time of diagnosis of 

ovarian cancer.  These cohort factors were accounted for in the analysis because of their known 

association with survival (169).   

Expression profiling  



 
 

83 
 

The expression levels of 799 miRNAs were measured using the Agilent 8 × 15K Human 

microRNA platform (Agilent Technologies, http://www.genomics.agilent.com/). The expression 

levels of 17,814 TFs and target genes were measured using the Agilent Custom Gene Expression 

G4502A_07 human gene platform. The transcriptome data is available at (https://tcga-

data.nci.nih.gov/tcga/dataAccessMatrix.htm). The expression measurements were quantile 

normalized (probe level), collapsed within the miRNA, TF or gene, and log2 transformed 

following the procedures available in the Beehive (http://stagbeetle.animal.uiuc.edu/Beehive) 

system (77) and previously described in (170-172).  

 

Model and profile selection 

Two ovarian cancer response variables were studied: 1) survival time from diagnosis to 

death (months from diagnosis to death); and 2) recurrence time from diagnosis to recurrence 

(months from diagnosis to recurrence).  Information on comorbidities or cause of death was 

unavailable, thus the first variable describes the time-dependent likelihood of death, conditional 

on a prior ovarian cancer diagnostic, irrespective of cause of death or comorbidity. An ovarian 

cancer predictive model that simultaneously considered all miRNAs and cohort information was 

used to identify general (or cohort-independent) and personalized (or cohort-dependent) 

biomarkers. This model overcame limitations of prior studies which ignored the simultaneous 

association by only analyzing one miRNA at a time or ignoring possible cohort relationships.   

A biomarker identification pipeline was implemented based on the multivariate Cox survival 

analysis and complementary feature selection strategies (170, 171, 173). The Cox proportional 

hazard model assumes a parametric model to test the association between the covariates and the 

hazard ratio (HR) of the event. After transformation, the hazard (instant probability) of event 

http://stagbeetle.animal.uiuc.edu/Beehive


 
 

84 
 

(death or recurrence) was modeled with a linear combination of a baseline hazard and 

explanatory covariates including all the cohort variables, the expression profiles of all genome 

variables (miRNAs, TFs, or gene targets), and the interaction between them (81). Stepwise and 

forward selection strategies were used to identify the expression profiles associated with survival 

or recurrence because of the complementary advantages of these strategies. Profiles remained in 

the hazard predictive model after consideration of other biomarkers at P-value < 0.1.  The 

significant profiles from the previous stepwise and forward model were included in a model that 

was subjected to a stepwise selection. This step allowed the identification of broad or general 

associations between profiles and ovarian cancer hazards that can be used as population 

prognostic biomarkers. The relaxed P-value threshold allowed detection of profiles that may 

have weak associations among large sets of profiles and stronger associations as the set was 

streamlined. In the second step, the interaction between the selected profiles and cohort 

indicators were evaluated using the stepwise approach. This step allowed the identification of 

cohort-dependent associations between profiles and the hazard of ovarian cancer death or 

recurrence that can be used as individualized predictive biomarkers.  In the third step, all selected 

profiles and interactions were combined and further streamlined using the stepwise method. The 

association between the ovarian cancer hazards and the cohort factors and expression profiles 

was visualized by plotting the probability of survival predicted from the Cox model against time. 

The test of no association between the miRNA, TF, gene or cohort prognostic markers and the 

HR between cohort groups and the 95% confidence interval limits follow a Chi-square 

distribution. Hazard ratio estimates > 1 (< 1) indicate an increase in the hazard (decrease in the 

hazard) or decrease in survival probability (increase in survival probability) per unit increase in 

the level of gene expression. A False Discovery Rate (FDR)–adjusted P < 0.05 and 
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|HR/expression unit| > 1.15 thresholds were used to identify molecular factors associated with 

ovarian cancer survival or recurrence. The analysis was implemented using PROC PHREG in 

SAS (174).  

The Cox model assumes proportional hazards across the period studied. This assumption 

can be expressed as parallel survival functions across the levels of expression profiles or cohort 

variables in the model.  This assumption was tested for the two hazards considered, and there 

was no indication of significant departure from the assumption. Furthermore, visualization of the 

survival and residuals did not suggest departure from the model assumptions. There was no 

indication of significant departure from the proportional hazards assumption, also confirmed by 

the overlap on miRNAs, TFs, and genes between survival indicators. Biomarkers identified in 

this study were searched against the ovarian cancer and cancer literature based on independent 

data sets. 

 

Functional enrichment and miRNA-TF-target gene networks  

The known and predicted relationships between miRNAs, TFs, and target genes were 

obtained from the MIR@NT@N resource (http://maia.uni.lu/mironton.php, (175)). Only the 

relationship between transcription factors, miRNAs, and target gene supported by a mapping 

score > 0.85 that correspond to a median P-value < 1 x 10-3 and 90% of the relationships with P-

values < 1x10-2 were considered. The enrichment of Gene Ontology (GO, 

http://www.geneontology.org/) (176) molecular functions and biological processes and KEGG 

(http://www.genome.jp/kegg/) (93, 177) pathways was studied among the target genes associated 

with ovarian survival and recurrence. Two functional analyses were evaluated. The first 

functional analysis consisted on Fisher's exact (two-tailed) test implemented in DAVID 
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(http://david.abcc.ncifcrf.gov/) version 6.7(92) was used to identify the functional categories 

enriched among all target genes associated (FDR-adjusted P-value < 0.05) with survival or 

recurrence (170, 171).  Categories that had at least 5 genes and were significant at FDR-adjusted 

P-value < 0.1 were considered enriched. This analysis offered a baseline understanding of the 

categories associated with ovarian cancer.  

The second functional analysis consisted on a set enrichment analysis (87) of all target 

genes regardless of the significance level of the association with ovarian cancer survival or 

recurrence. This analysis considered the association between survival or recurrence and gene 

expression through the sorting of the target genes by the magnitude, sign, and standard error of 

the estimate in the underlying scale or loge(HR). Positive estimates correspond to HRs > 1 and 

thus lower survival or higher risk of recurrence. Conversely, negative estimates correspond to 

HRs < 1 and thus higher survival or lower risk of recurrence. The set enrichment analysis 

implemented in Babelomics (http://babelomics.bioinfo.cipf.es/) version 4.3 (87) was used to 

apply a segmentation test that identifies for asymmetrical distributions of functional categories 

between the genes ranked from negative to positive loge (HR) estimates for ovarian cancer 

survival or recurrence. Categories significant at FDR-adjusted P-value < 0.05 and having at least 

75 genes were considered enriched. The less stringent threshold used for the Fisher’s enrichment 

analysis relative to the set enrichment analysis was motivated by the higher number of target 

genes analyzed in the second analysis relative to the first analysis. The genes associated with 

ovarian cancer hazard were also searched against the Dragon database 

(http://apps.sanbi.ac.za/ddoc/) of ovarian cancer genes (178). The networks of TFs, miRNAs, 

and target genes significantly associated with ovarian cancer survival or recurrence (P-value < 

0.01) were depicted using Cytoscape (http://www.cytoscape.org/) software (95), an open source 
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software platform for visualizing networks and including attributes. The distribution and 

connectivity of the TFs, miRNAs, and target genes within sub-networks and the overall network 

were characterized 

 

Validation data set 

The associations between expression profiles and ovarian cancer survival or recurrence 

identified based on P-values and characterized based on HR estimates were validated on an 

independent data set of 146 patients obtained from the TCGA repository.  Two indicators of the 

reliability of the predictive profiles in the independent validation were considered.  First, mean 

square error (MSE) was used as measure of the lack of adequacy of the cohort-independent and -

dependent expression profiles to accurately predict the time to death or recurrence in the training 

and validation data sets. Second, additional validation of the detected profile association was 

gained from the study of the correlation of the estimates (loge(HR)) corresponding to each profile 

between training and validation data sets. The Pearson and Spearman correlations of the profile 

associations with death and recurrence between the training and validation data sets were 

computed.  
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Results and Discussion 

Table 3.1 summarizes the number and distribution of individuals studied across levels of 

the cohort covariates considered in the training and validation data sets. The median age at 

diagnosis was 60.2 years and 59.6 years for the training and validation data sets, respectively. 

These were consistent with the National Cancer Institute reports that the median age at diagnosis 

for cancer of the ovary (from 2004-2008) was 63 years of age and the median age at death was 

71 years of age (38). The range of age at diagnosis was 57 years (ages from 27 to 84 years) and 

52 years (ages from 37 to 89 years) for the training and validation data sets, respectively. The 

median time for survival and recurrence for the training set was 2.4 years and 47.4 months and 

for the validation set were 3.3 years and 58. 7 months, respectively. The Pearson and Spearman 

correlation coefficients between both events (age at death and at recurrence) were 0.72 and 0.77 

(P-value < 0.0001), respectively in the training data set and 0.69 and 0.68 (P-value < 0.0001), 

respectively in the validation data set. These statistics were in agreement with previously 

documented survival rates of ovarian cancer: 1 year: 77.5%, 2 year: 64%, 3 year: 54.4%, 5 year: 

43.9%, 8 year: 37.8%, 10 year: 36.4% (38).  Median survival for patients was 25.7 months for 

early treatment patients and 27.1 months for those patients in a delayed treatment group (38). 

The distribution of observations per cohort variable level in the training and validation sets was 

consistent (Table 3.1). The representation of treatment, preadjuvant therapy, additional 

treatment, tumor stage, tumor grade, tumor residual disease, and recurrence was comparable 

between data sets. None of the 15 sample source sites dominated the representation in either 

training or validation set.  

The correlations between the observed and predicted time-to-death and time-to-

recurrence were approximately 0.60. Higher correlations (0.8 on average) were observed when 
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only the lower times-to-event were considered because more observations were available and 

more precise predictions could be obtained. Prediction of longer time-to-event intervals were 

associated with higher uncertainty due to fewer observations within cohort variable levels, and 

thus lower correlations between training and validation data sets. The moderate correlation 

between the two time-to-event analyses suggests the differences in the magnitude and direction 

of genomic and environmental effects on ovarian cancer survival and recurrence. 

 

miRNA biomarkers of ovarian cancer survival and recurrence 

Tables 3.2 and 3.3 list the 16 and 14 miRNAs simultaneously associated with ovarian 

cancer survival and recurrence detected by the three-step feature selection approach and 

supporting literature references. The vast majority of the miRNAs associated with survival 

detected in this study have been reported by other studies. This level of validation reaffirms the 

validity of the approach undertaken and of the results presented. Of the 16 miRNAs associated 

with survival, 12 miRNAs have been previously associated with ovarian cancer (hsa-miR-144, 

hsa-miR-16, hsa-miR-182*, hsa-miR-521, hsa-miR-18b*, hsa-miR-19a*, hsa-miR-22*, hsa-miR-

381, hsa-miR-485-3p, hsa-miR-509-3-5p, hsa-miR-148a,  and hsa-miR-106b) and one miRNA 

has been associated with cervical cancer (hsa-miR-329; (179).  The literature review supporting 

these results was summarized in Table 3.2. 

Of the miRNAs previously associated with ovarian cancer, the trends of all 12 miRNA 

were consistent with those reported in previous studies. Hsa-miR-144 (HR=1.30), hsa-miR-16 

(HR=2.07), hsa-miR-182* (HR=2.35), hsa-miR-18b* (HR=1.95), hsa-miR-19a* (HR=1.75), and 

hsa-miR-106b (HR=1.57) were over-expressed in all 3 ovarian tumor histologic subtypes relative 

to normal primary human ovarian surface epithelium cultures (162).  The consistency between 
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the detected and previously reported trends further supports the biomarker detection strategy 

presented. 

Hsa-miR-182 was also up-regulated in ovarian carcinoma in Stage III/IV epithelial 

ovarian carcinoma versus normal tissue (13) and has been associated with higher death hazard in 

glioblastoma multiforme patients receiving chemotherapy plus radiation and targeted treatment 

(170). The region containing hsa-miR-182 was amplified in 28.9% of the epithelial ovarian 

cancer, implying an oncogene-type function, and possibly targets genes forkhead box O1, 

forkhead box O3 (FOXO1;FOXO3) which are involved in promoting differentiation and grown 

inhibition (tumor suppressors,(13)). Hsa-miR-18b* and hsa-miR-16 were found to robustly 

distinguish ovarian cancer tumors from normal tissue and were significantly up-regulated in 

ovarian cancer (180). Hsa-miR-16 (HR=2.07) has been shown to be up-regulated in serous 

ovarian carcinoma versus normal ovarian tissues, as well as up-regulated in stage III/IV ovarian 

cancer versus normal ovarian tissue (13, 41). Hsa-miR-22 (HR=0.25) was under-expressed in 3 

ovarian tumor histologic subtypes relative to normal primary human ovarian surface epithelium 

cultures (162). Hsa-miR-22 was also down -regulated in Stage III/IV epithelial ovarian 

carcinoma versus normal and up-regulated in primary versus recurrent serous papillary ovarian 

carcinomas (13). Hsa-miR-148a (HR=0.78) was down-regulated in ovarian cancer cell lines and 

may be involved in the carcinogenesis of ovarian cancer through deregulation of cell 

proliferation (181). Hsa-miR-509-3-5p (HR=0.69) was over-expressed in stage I ovarian cancer 

relative to stage III ovarian cancer with a p-value=0.017 and fold-change=4.01(182). Both, hsa-

miR-521 and hsa-miR-381 were over-expressed in platinum resistant versus platinum sensitive 

ovarian cancer (183, 184). 
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The evaluation of clinical factor dependent associations between miRNAs and ovarian cancer 

survival offer insights into general and condition-specific biomarkers. Of the 16 miRNAs 

associated with ovarian cancer survival, 15 exhibited general (clinically independent) 

associations with survival, meanwhile hsa-miR-521 had a tumor grade-dependent association 

with survival. The hazard of ovarian cancer death increased 2.10 per unit increase in hsa-miR-

521 level in patients that have grade I or II tumors and decreased 0.55 per unit increase in the 

miRNA in patients that have higher level tumors. The survival plot in Figure 3.1 depicts the 

association between the probability of ovarian cancer survival and the interaction between 

miRNA expression and tumor grade.  Lower expression of hsa-miR-521 was associated with the 

lowest and highest probability of survival in the presence of high (Rest) and low (I and II) grade 

tumors, respectively. 

Similarly to the findings for survival, the majority of the miRNAs associated with 

recurrence have been previously associated with ovarian cancer, thus reaffirming the reliability 

of the feature selection approach implemented. Among the 14 miRNAs associated with 

recurrence in ovarian cancer (Table 3.3), 9 have been previously linked to ovarian cancer (hsa-

miR-146a, hsa-miR-15b, hsa-miR-16, hsa-miR-206, hsa-miR-214*, hsa-miR-22*, hsa-miR-223, 

hsa-miR-497, and hsa-miR-96), and one had a previous association with paired lung primary 

tumors (hsa-miR-369-3p). Table 3.3 summarizes the literature review supporting the detected 

associations. 

The trends of the 9 miRNA previously linked to ovarian cancer and also found in this 

study were consistent with previously reported. Hsa-miR-146a (HR=0.62) was under-expressed 

in ovarian tumor histologic subtypes relative to normal primary human ovarian surface 

epithelium cultures (162). Hsa-miR-206 (HR=0.59) was down-regulated in ovarian cancer cell 
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lines versus normal (185). Hsa-miR-22 (HR=0.24) was over-expressed in recurrent ovarian 

cancer versus primary ovarian cancer (186). This miRNA also was down-regulated in ovarian 

carcinoma in early stage versus late stage; down-regulated in Stage III/IV epithelial ovarian 

carcinoma versus normal; and up-regulated in primary versus recurrent serous papillary ovarian 

carcinomas (13).  Hsa-miR-497 (in this study HR Chemo=0.84; Chemo_Other=0.53; 

Other=0.17) was down-regulated in ovarian cancer cell line versus normal ovarian cell lines 

(187, 188). Hsa-miR-16 (HR=2.76) up-regulated in serous ovarian carcinoma versus normal 

ovarian tissues, as well as up-regulated in stage III/IV ovarian cancer versus normal ovarian 

tissue as well (13, 41, 180) . Hsa-miR-214 (HR=2.03) was over-expressed ovarian tumor 

histologic subtypes relative to normal primary human ovarian surface epithelium cultures (162) . 

In a study of epithelial ovarian cancer, hsa-miR-214 was differentially expressed in those with 

recurrence compared with those without recurrence in both a training and validation set.  Tumor 

tissue samples from those with recurrence were up-regulated compared with those without 

recurrence in epithelial ovarian cancer (189).  Hsa-miR-214 expression was associated with high 

grade and late stage tumors, was up-regulated in ovarian cancer tumor tissues, and has a potential 

role in recurrence (13).  Hsa-miR-214 was also found to play a role in ovarian cancer by 

targeting PTEN (166). 

Hsa-miR-223 (HR=1.69) was over-expressed in all 3 ovarian tumor histologic subtypes relative 

to normal primary human ovarian surface epithelium cultures (162).  Hsa-miR-223 was over-

expressed in recurrent ovarian cancer versus primary ovarian cancer (186).  Hsa-miR-223 was 

up-regulated in tumor tissue sample from those with recurrence compared with those without 

recurrence in epithelial ovarian cancer (189). Hsa-miR-96 (HR=1.22) was over-expressed in 

ovarian cancer cell lines versus normal ovarian cell lines (162, 180, 187, 190). Hsa-miR-369-3p 
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(HR=1.52), associated with ovarian cancer recurrence in this study, was similarly up-regulated in 

paired lung primary tumors (191). 

The study of interactions between miRNA expression and cohort factors supported the 

identification of individualized biomarkers. General associations between miRNAs and 

recurrence irrespective of cohort factors were identified for 13 miRNA. A treatment-dependent 

association between risk or hazard of recurrence and hsa-miR-497 was identified.  The hazard 

for ovarian cancer recurrence decreased with increasing miRNA level in patients for all three 

treatments (Chemo, Chemo_Other, Other), and the hazard was lowest (0.17) for individuals 

receiving the Other treatment. Figure 3.2 depicts the association between the probability of non-

recurrence interaction between level of hsa-miR-497 and treatment. The probability of non-

recurrence was distinctively lower in patients with low miRNA levels receiving Chem treatment, 

however was not different between patients receiving Chemo or Chemo and Other treatments 

when the levels of miRNA were high. 

 

Transcription factors and target genes associated with survival and recurrence 

In total, the expression of 838 and 734 target genes and 12 and eight TFs were associated 

(FDR-adjusted P-value < 0.05) with ovarian cancer survival and recurrence, respectively. The 

TFs associated with ovarian cancer survival and recurrence and supporting literature review are 

listed in Tables 3.4 and 3.5, respectively. 

The four TFs significantly associated with both ovarian cancer survival and recurrence 

(early growth response 1 (EGR1), early growth response (EGR2), FBJ murine osteosarcoma viral 

oncogene homolog (FOS), and transforming growth factor beta 1(TGFB1), exhibited trends 

consistent with previous studies.  EGR1 (HR=1.15 for survival and recurrence) has a key role in 
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carcinogenesis and cancer recurrence, and exhibits increased expression in gastric cancer tissues 

relative to normal mucosa (192). The positive association between EGR2 and hazard uncovered 

in this study (HR=1.17 for survival and recurrence) was confirmed with reports that this TF plays 

a key role in the PTEN-induced apoptotic pathway. Furthermore, studies suggest that this TF 

may be a promising target molecule for gene therapy to treat a variety of cancers (193). FOS 

expression (HR=1.15; 1.13 for death and recurrence in this study, respectively) has been 

associated with ovarian cancer, and is a molecular predictor of recurrence and survival in 

epithelial ovarian carcinomas (194).  TGFB1 (HR=0.46; 0.56 for death and recurrence in this 

study, respectively) has been linked to ovarian cancer (195-197) , and may play an important role 

in ovarian cancer biology with potential effects on tumor growth and angiogenesis (198). 

Transcription factors associated with survival  

Eight TFs were solely associated with the hazard of ovarian cancer death: circadian 

locomotor output cycles kaput (CLOCK), estrogen receptor 2 (ESR2), v-ets erythroblastosis virus 

E26 oncogene homolog 2 (ETS2), histone deacetylase 3 (HDAC3), homeobox A1 (HOXA1), v-

myc myelocytomatosis viral oncogene homolog (MYC), nuclear receptor subfamily 5, group A, 

Member 1 (NR5A1), and POU class 2 homeobox 2 (POU2F2), and their trends were in 

agreement with previous studies.  MYC (HR=1.27) contributes independently to ovarian and 

breast pathogenesis when over-expressed (199), and was more frequently detected in malignant 

ovarian tumors when compared with benign ovarian tumors (104, 200). ESR2 (HR=0.66) was 

significantly lower in ovarian cancer cell lines and tissues than in their corresponding normal 

counterparts (201). ESR2 has been associated with malignant ovarian epithelial cells (202) and 

may be a susceptibility marker for epithelial ovarian cancer (203).   
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The opposite association between POU2F2 expression and ovarian cancer hazard 

(HR=0.64) detected in this study was consistent with reports that this TF, a member of the POU 

homeodomain family of transcriptional regulators critical for normal embryonic development, 

was associated with down-regulation of B-cell CLL/lymphoma 2 (BCL-2) that results in 

apoptosis (204) . Over-expression of ETS2 has previously been shown in human esophageal 

squamous cell carcinoma and breast cancer (202, 205) . This TF also plays a role in regulation of 

the production of TF MYC, also significantly associated with increased hazard (HR=1.27) in 

ovarian cancer in this study (206).  These findings were in agreement with the positive 

association between ETS2 and ovarian cancer death hazard detected in this study (HR=1.32). 

Defects in NR5A1 (HR=0.53 in this study) can result in arrest of ovarian function (207).   The 

relationship between CLOCK and ovarian cancer survival detected in the present study 

(HR=0.81) agrees with the report that variations in the epigenetics of CLOCK may lead to 

increased risk of breast cancer (208), and that in women with breast cancer, there was 

significantly less methylation of the CLOCK promoter region (209).  Similar to this study, 

HDAC (HR=1.63) was over-expressed in 80% of cases of ovarian cancer, with no significant 

difference in the expression profiles between histological subtypes (210) . Suppression of 

HOXA1 (HR=0.71) has been linked to an increase of invasive cancer cells in human pancreatic 

cancer (211). 

Transcription factors associated with recurrence  

Four TFs were only associated with the hazard of ovarian cancer recurrence, and their 

trends were all consistent with previous work: CCCTC-binding factor (CTCF), Myogenic 

Differentiation 1(MYOD1), SRY (sex determining region Y)-Box 18 (SOX18), and TATA Box 

Binding Protein (TBP).  CTCF (HR=1.71) plays a role in breast cancer (212, 213), and MYOD1 
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(HR=0.77) has previously been associated with cervical cancer (214, 215). SOX18 (HR=0.77), a 

member of the SOX family of transcription factors involved in the determination of the cell fate, 

has been proposed as a useful target for human cancer treatment (216, 217). Consistent with our 

findings on ovarian cancer, TBP (HR=1.63), which is highly expressed in the ovary, has elevated 

expression in human colon carcinomas (218).  

Target gene biomarkers of ovarian cancer survival and recurrence 

Among the target genes associated with ovarian cancer survival, 16 were identified in the 

Dragon database of ovarian cancer genes: acetylcholinesterase (ACHE); BCL2-antagonist/killer 

1 (BAK1); B-cell CLL/lymphoma 2 (BCL2); CD44 molecule (Indian blood group) (CD44); 

CD63 molecule (CD63); cadherin 13, H-cadherin (heart) (CDH13); cyclin-dependent kinase 

inhibitor 2B (p15, inhibits CDK4) (CDKN2B); colony stimulating factor 1 receptor (CSF1R); 

cathepsin D (CTSD); discoidin domain receptor tyrosine kinase 1 (DDR1); galactose-1-

phosphate uridylyltransferase (GALT); kallikrein-related peptidase 9 (KLK9); mitogen-activated 

protein kinase kinase 1 (MAP2K1); mitogen-activated protein kinase kinase 3 (MAP3K3); MYC, 

and platelet-derived growth factor receptor, alpha polypeptide (PDGFRA).  Likewise, among the 

genes associated with ovarian cancer recurrence, 9 were identified in the Dragon database: 

ACHE; BAK1; breast cancer 1, early onset (BRCA1); CD44; CTSD; DDR1; KLK9; antigen 

identified by monoclonal antibody Ki-67 (MKI67), and topoisomerase (DNA) II alpha 170kDa 

(TOP2A).  

Validation 

Two indicators of the reliability of the predictive profiles in the independent validation 

were considered.  The relative increment in MSE of the model including the cohort-independent 

and dependent-expression profiles between the training and validation data set were 13.4% and 
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15.4% for survival and recurrence, respectively. As expected, the predictive equation offered a 

better description of the data used to develop the equation (i.e. the training data set), and a small 

difference between training and validating data was expected due to sampling effects such as 

between-patient variation. The small increase in MSE between the training and validating data 

set was a first, global indicator of the similar profile-hazard relationship identified in both 

independent data sets and of the replicability of our findings. Second, the Pearson (and 

Spearman) correlations of the profile associations with death and recurrence between the training 

(e.g. Tables 3.2 to 3.5) and validation data sets were 89.7% (84.5%) and 87.3% (82.4%), 

respectively. The cross-validation results and the agreement between the literature review and 

the present findings further suggest that the detected profiles associated with ovarian cancer are 

likely to be replicable. Experimental confirmation of the findings is needed.  

 

Functional gene groups associated with ovarian cancer survival and recurrence  

The functional analyses of the target genes associated with ovarian cancer uncovered 

enriched pathways and processes, many of which were previously associated with ovarian 

cancer. Analysis of the significant target genes associated with ovarian cancer survival using a 

Fisher exact test uncovered enrichment of biological processes including ribonucleotide 

biosynthetic process (P-value < 0.002, 14 genes) and immune response (P-value < 0.0004, 49 

genes) and the KEGG pathways lysosome (P-value < 0.001, genes15) and epithelial cell 

signaling (P-value < 0.001, genes 11). Likewise, analysis of the significant target genes 

associated with ovarian cancer recurrence using a Fisher exact test uncovered enrichment of 

biological processes including the NAD metabolic process (P-value < 0.001, 6 genes), M phase 
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(P-value < 0.002, 24 genes), and pyrimidine-and nicotineamide-nuclotide metabolic processing 

(P-value < 0.02, 6 genes).  

The set enrichment analysis of all target genes segmented by their positive or negative 

association with survival or recurrence offered additional insights into the functional categories 

differentially represented among gene groups. Table 3.6 lists the GO biological processes 

differentially (FDR-adjusted P-value < 0.05, > 75 genes) represented between the genes that 

have negative or positive associations with death and recurrence hazard. Two GO biological 

processes had significant differential enrichment between the genes segmented by low and high 

hazard of ovarian cancer death. Likewise, 12 GO biological processes had significant differential 

enrichment between the genes associated with low and high hazard of ovarian cancer recurrence. 

Table 3.6 includes the corresponding characterization of the differential enrichment (loge(odds 

ratio)), and the statistical significance level.  A loge(odds ratio) > 0 (< 0) indicates that the 

category was more (less) enriched among the genes with lower hazard relative to the genes with 

higher hazard of death or recurrence. Among the significant categories, all were characterized by 

loge(odds ratio) > 0, indicating that there were more genes pertaining to the category in the low 

hazard group relative to the high hazard group. Supplementary Figures 3.1 and 3.2 depict the 

relation between the GO biological processes associated with the hazards of ovarian cancer death 

and recurrence inferred from the set enrichment analysis, respectively.  Processes associated with 

general metabolism were differentially enriched among the genes associated with ovarian cancer 

death. Processes associated with nucleotide metabolism and transcription were enriched among 

the genes associated with ovarian cancer survival recurrence. The processes identified by the set 

enrichment analyses were consistent with the results from the significant gene list enrichment 

analyses. The results from our functional analyses of target genes associated with ovarian cancer 
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survival and recurrence were in agreement with previous studies. Transcriptome analysis has 

shown that suppression of NOTCH signaling in ovarian cancer cells led to down-regulation of 

genes in pathways involved in cell-cycle regulation and nucleotide metabolism (219).  The 

inhibition of cell proliferation in an ovarian cancer cell line in response to a differentiation-

inducing agent was related to a shift in the direction of the purine metabolism from anabolism to 

catabolism (220).  Inhibition of cell metabolism has been proposed as an effective treatment 

against human epithelial ovarian carcinomas (221).  

 

microRNA-transcription factor-target gene networks of survival and recurrence 

In gene regulatory networks, TFs and miRNAs regulate each other and the expression of 

target genes (57).  The binding sites of TFs and genes can be the target of miRNAs and other 

TFs. Transcription factors regulate genes at the DNA level, while miRNAs regulate gene 

expression post-transcriptionally (175). Applying previously advocated approaches, this study 

combined TF and miRNA target prediction together with context-linked (cohort) information 

and experimental genome-wide co-expression data to identify biologically meaningful molecular 

interactions (100, 175). The networks of TFs, miRNAs, and target genes significantly associated 

with survival or recurrence (P-value < 0.01), were reconstructed using Cytoscape. The 

reconstructed molecular networks that integrate the pattern of association between TFs, 

miRNAs, target genes and survival or recurrence aid in the identification of robust network 

biomarkers of ovarian cancer.  

Figures 3.3 and 3.4 depict a global network of the miRNAs, TFs and target genes 

(irrespective of significance) for ovarian cancer survival and recurrence, respectively. These 

general networks include six and four TFs, 15 and 13 miRNAs and 167 and 89 target genes 
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associated with survival and recurrence, respectively. Supplementary Figures 3.3 and 3.4 

depict local sub-networks of significant miRNAs, TFs, and targets all significantly associated 

with ovarian cancer survival and recurrence, respectively. These targeted networks include six 

and three TFs, 14 and 13 miRNAs and 71 and 56 target genes associated with survival and 

recurrence, respectively. 

The difference in topology between global networks offers insights into the most 

effective therapies to ameliorate both phenotypes. The networks of survival and recurrence differ 

in interconnectivity and relation between driver and passenger genomic units. The survival 

network includes a larger number of driver TFs and miRNAs and a much larger number of target 

genes that translates into a more driver-centric connectivity than in the recurrence network. Up-

regulated miRNAs (red nodes indicate higher hazard of death) appear to dominate as hubs in the 

survival network, meanwhile a similar number of up and down-regulated miRNAs were hubs in 

the recurrence network. There were more up than down-regulated TFs in the survival network 

and no down-regulated TFs in the recurrence network. 

For the general and targeted survival networks, four edges was the most frequent shortest 

path length and was near double the number of paths of length two or three. For the general 

recurrence networks, four edges was the most frequent shortest path length and was near triple 

the number of paths of length two or three, meanwhile the distribution of path length was fairly 

uniform from two to six edges. This pathway comparison indicates that the connections between 

miRNAs, TFs and target genes were more direct for survival than for recurrence. This result was 

consistent with the distribution of shared neighbors and average neighborhood connectivity. This 

distribution was dominated by one shared neighbor in both survival and recurrence networks. 

However, two and three shared neighbors were more common in the recurrence network. The 
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median average neighborhood connectivity was 15 and seven for the general survival and 

recurrence networks, respectively. Betweeness and closeness centrality measurements confirmed 

these trends. Also the centralization of the survival network was double that of the recurrence 

network meanwhile the density of the networks follows an approximately inverse relationship. 

The more direct connections and higher centrality of the survival network suggest that network-

based approaches to prognosticate or predict ovarian cancer survival may be more effective than 

those for ovarian cancer recurrence. 
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Conclusion 

This study demonstrated the feasibility to infer reliable miRNA-TF-target gene networks 

associated with survival and recurrence of ovarian cancer based on the simultaneous analysis of 

co-expression profiles and consideration of the clinical characteristics of the patients. The 

expression of three miRNAs (hsa-miR-16, hsa-miR-22*, and ebv-miR-BHRF1-2*), four TFs 

(FOS, EGR2, EGR1, and TGFB1) and 308 genes were associated with the hazard of ovarian 

cancer survival and recurrence. Both hsa-miR-16 and hsa-miR-22* were previously linked to 

ovarian cancer and exhibited trends in this study similar to those in independent studies. The 

expression of TFs FOS, EGR1, and EGR2 was positively associated with ovarian cancer hazard, 

meanwhile the expression of TGFB1 was negatively associated with the hazard. These 

overlapping results suggest the importance of these biomarkers in the recurrence of ovarian 

cancer and are a strong lead for further experimental validation. This study confirmed 19 

miRNAs previously associated with ovarian cancer and identified two miRNAs that have 

previously been associated with other cancer types.  Three miRNAs were associated with both 

ovarian cancer survival and recurrence and 27 miRNAs were associated with only one hazard. 

Two miRNAs (hsa-miR-521 and hsa-miR-497) were cohort-dependent, while 28 were cohort-

independent.  Empirical confirmation of these general and cohort-dependent findings could lead 

to improved prognostic and predictive tools.  In total, the expression of 838 and 734 target genes 

and 12 and eight TFs were associated (FDR-adjusted P-value < 0.05) with ovarian cancer 

survival and recurrence, respectively. Functional analysis highlighted the association between 

cellular and nucleotide metabolic processes and ovarian cancer. The more direct connections and 

higher centrality of the miRNAs, TFs and target genes in the survival network suggest that 

network-based approaches to prognosticate or predict ovarian cancer survival may be more 
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effective than those for ovarian cancer recurrence. The understanding the biology and molecular 

pathogenesis of ovarian cancer is key to developing improved prognostic indicators and effective 

therapies.   
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Figures 

 

Figure 3.1 Probability of ovarian cancer survival for patients that have lower grade (I and II) 
tumors (black lines) or higher (Rest) grade tumors (gray lines) and  high (dashed lines) or low 
(solid line) levels of hsa-miR-521. 
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Figure 3.2 Probability of ovarian cancer non-recurrence for patients receiving the treatment 
chemotherapy only (Chemo; Red), chemotherapy along with another treatment (C_O; Blue) or 
some other treatment or combination of treatments except chemotherapy (Other; Green) that 
have high (dashed lines) or low (solid line) levels of hsa-miR-497.  
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Figure 3.3 Network of microRNAs, transcription factors, and target genes associated with 
survival in ovarian cancer. 
Node Shape: microRNA=diamond, target gene=circle, transcription factor=square; Node Color: 
Red indicates increased hazard with high expression, Green indicates decreased hazard with high 
expression; Node Size: larger indicates a more extreme association (P-value < 0.006), smaller 
indicates a less extreme association 
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Figure 3.4 Network of microRNA, transcription factors, and target genes associated with 
ovarian cancer recurrence. 
Node Shape: microRNA=diamond, target gene=circle, transcription factor=square; Node Color: 
Red indicates increased hazard with high expression, Green indicates decreased hazard with high 
expression; Node Size: larger indicates a more extreme association (P-value < 0.006), smaller 
indicates a less extreme association 
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Tables  
 
Table 3.1 Number and distribution of individuals analyzed for post-diagnostic survival and post 
diagnostic recurrence and levels of the cohort factors considered. 
 

 
1N: Number of patients;2Treatment: Type of treatment received;3Chemo: Only chemotherapy;4Chemo_Other: Chemotherapy plus another 
treatment;5Other:  Any treatment other than chemotherapy;6Preadjuvant Therapy: Any treatment that the patient received prior to surgery and 
sample collection;7Additional Treatment: Treatment given after initial first round treatment;8Tumor Stage: pathological stage of the tumor in 
AJCC format (Primary Tumor: T; Stage I: IA; IB; IC; Stage II: IIA; IIB; IIC; Stage III: IIIA; IIIB; IIIC; Stage IV: IV);9I_II: Stage I or II ovarian 
cancer;10III: Stage III ovarian cancer;11IV: Stage IV ovarian cancer;12Tumor Grade: Numeric value used to express the degree of abnormality of 
cancer cells;13I or II: Grade I or II tumor;14Rest: Any tumor grades other than I or II;15Tumor Residual Disease: Measure of the largest remaining 
nodule;160: No macroscopic disease;171_20: 1-20mm;18>20: Greater than 20 mm;19Recurrence: Return of cancer 

Number Percent Number Percent Number Percent Number Percent
Total 272 146 157 92

N1 Censored 107 39% 75 51% 31 20% 38 41%

Treatment2 Chemo 3 253 93% 101 69% 150 96% 67 72%
Chemo_Other 4 14 5% 25 17% 5 3% 18 20%
Other 5 5 2% 20 14% 2 1% 7 8%

Preadjuvant Therapy6 Yes 21 8% 36 25% 7 4% 25 27%
No 251 92% 110 75% 150 96% 67 73%

Additional 
Treatment7 Chemo 3 113 41% 49 34% 106 67% 45 49%

Chemo_Other 4 37 14% 35 24% 34 22% 35 38%
Other 5 122 45% 62 42% 17 11% 12 13%

Tumor Stage8 I_II 9 12 4% 17 12% 5 3% 9 10%
III 10 239 88% 89 61% 143 91% 59 64%
IV 11 21 8% 40 27% 9 6% 24 26%

Tumor Grade12 I or II 13 12 4% 45 31% 6 4% 35 38%
Rest 14 260 96% 101 69% 151 96% 57 62%

Tumor Residual 
Disease15 0 16 71 26% 52 36% 34 22% 30 33%

1_20 17 167 61% 60 41% 102 65% 40 43%
>20 18 34 13% 34 23% 21 13% 22 24%

Recurrence19 Yes 157 58% 92 63% 157 100% 92 100%
No 115 42% 54 37% 0 0% 0 0%

Survival Recurrence
Training Set Validation Set Training Set Validation Set
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Table 3.2 MicroRNAs associated with post-diagnostic survival and supporting independent 
studies. 
 

 
 

1C.I.: Confidence Interval;  2NA:  No information found;  O: Associated with Ovarian Cancer; Z: Associated with 
other cancer type; 3I_II: Grade I or II tumor; 4Rest: Any tumor grades other than I or II 

MicroRNA P -Value Estimate Hazard Ratio (95% C.I.1)
Relevant 
Literature 
References

hsa-miR-22* <.0001 -1.4007 0.25 (0.14 to 0.44)
(13, 162, 183, 186, 
189)O

hsa-miR-770-5p <.0001 -1.2946 0.27 (0.16 to 0.47)  NA
hsa-miR-485-3p <.0001 -0.8158 0.44 (0.30 to 0.66) (181)O

hsa-miR-16 <.0001 0.7249 2.07 (1.53 to 2.79) (13, 41, 162)O

hsa-miR-144 <.0001 0.2644 1.3 (1.14 to 1.49) (162)O

ebv-miR-BHRF1-2* 0.0001 1.4787 4.39 (2.06 to 9.33)  NA2

hsa-miR-182* 0.0001 0.8547 2.35 (1.51 to 3.65) (13, 162, 222, 223)O

hsa-miR-381 0.0001 0.6801 1.97 (1.40 to 2.79) (184)O

hsa-miR-509-3-5p 0.0001 -0.3725 0.69 (0.57 to 0.83) (224)O

hsa-miR-19a* 0.0002 0.5574 1.75 (1.31 to 2.33) (162)O

hsa-miR-573 0.0007 0.6298 1.88 (1.31 to 2.70)  NA
hsa-miR-329 0.0031 -1.4082 0.25 (0.10 to 0.62) (179)Z

hsa-miR-106b 0.0024 0.4525 1.57 (1.17 to 2.11) (13, 162)O

hsa-miR-18b* 0.0042 0.6678 1.95 (1.24 to 3.08) (162, 180)O

hsa-miR-521 0.0051 1.3416 I_II3 = 2.10 (0.89 to 4.97)
Rest4 = 0.55 (0.40 to 0.76)

hsa-miR-148a 0.0063 -0.2493 0.78 (0.65 to 0.93) (181)O

(183)O
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Table 3.3 MicroRNAs associated with post-diagnostic recurrence on a cohort-independent or -
dependent manner and supporting independent studies. 
 

 
 
1C.I.: Confidence Interval;  2NA:  No information found;  O: Associated with Ovarian Cancer; Z: Associated with 
other cancer type; 3Chemo: Only chemotherapy; 4C_O: Chemotherapy plus another therapy; 5Other: Any therapy 
other than chemotherapy 

MicroRNA P -Value Estimate Hazard Ratio (95% C.I.1)
Relevant Literature 
References

hsa-miR-550* <.0001 -2.1165 0.12 (0.05 to 0.29)  NA
hsa-miR-22* <.0001 -1.4397 0.24 (0.12 to 0.46) (13, 186, 189, 225)O

hsa-miR-223 <.0001 0.5267 1.69 (1.36 to 2.12) (186, 189, 225)O 

hsa-miR-146a <.0001 -0.4869 0.62 (0.49 to 0.77) (225)O

hsa-miR-497 0.0001 1.5869 Chemo3 = 0.84 (0.69 to 1.03) (187, 188)O

1.125 C_O4 = 0.53 (0.20 to 1.41)
Other5 = 0.17 (0.08 to 0.35)

hsa-miR-214* 0.0001 0.7059 2.03 (1.41 to 2.91) (13, 166, 189, 225)O

ebv-miR-BHRF1-2* 0.0028 1.092 2.98 (1.46 to 6.10)  NA
hsa-miR-96 0.0065 0.1984 1.22 (1.06 to 1.41) (180, 187, 190, 225)O

hsa-miR-924 0.0102 1.3019 3.68 (1.36 to 9.92)  NA
hsa-miR-28-3p 0.0109 1.1811 3.26 (1.31 to 8.09)  NA2

hsa-miR-369-3p 0.013 0.4208 1.52 (1.09 to 2.12) (191)Z
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Table 3.4 Transcription factors associated with ovarian cancer survival. 
 
Transcription 
Factor Estimate Hazard Ratio (95% 

C.I.1) 
Relevant Literature 
References 

CLOCK 0.0097 0.81 (0.58 to 1.11) (208, 209)Z 
EGR1 0.0065 1.15 (1.03 to 1.28) (192)Z 
EGR2 0.0038 1.17 (1.06 to 1.30) (193, 226)Z 
ESR2 0.0065 0.66 (0.49 to 0.88) (201-203)O 
ETS2 0.0098 1.32 (0.99 to 1.76) (202, 205)Z 
FOS 0.0056 1.15 (1.03 to 1.28) (227)O 
HDAC3 0.0093 1.63 (1.13 to 2.37) (210)O 
HOXA1 0.0096 0.71 (0.53 to 0.97) (211)Z 
MYC 0.009 1.27 (1.05 to 1.54) (199, 200, 228)O 
NR5A1 0.0086 0.53 (0.34 to 0.82) (207)O 
POU2F2 0.008 0.64 (0.45 to 0.93) (204)Z 
TGFB1 0.0054 0.46 (0.32 to 0.66) (195-198)O 

 
1C.I.: Confidence Interval; 2NA:  No information found;  O: Associated with Ovarian Cancer; Z: Associated with 
other cancer types
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Table 3.5 Transcription factors associated with ovarian cancer recurrence. 

Transcription 
Factor Estimate Hazard Ratio (95% 

C.I.1) 

Relevant 
Literature 
References 

CTCF 0.0063 1.71 (1.11 to 2.64) (212, 213)Z 
EGR1 0.0076 1.15 (1.03 to 1.28) (192)Z 
EGR2 0.0054 1.17 (1.05 to 1.31) (193, 226)Z 
FOS 0.0092 1.13 (1.01 to 1.27) (194)O 
MYOD1 0.0075 0.77 (0.63 to 0.95) [(214, 215)Z 
SOX18 0.0082 0.77 (0.62 to 0.95) (216, 217)Z 
TBP 0.0088 1.63 (1.19 to 2.24) (218)Z 
TGFB1 0.0088 0.56 (0.39 to 0.80) (195-198)O 

 
1C.I.: Confidence Interval ;  O: Associated with Ovarian Cancer; Z: Associated with other cancer type 



 

113 
 

Table 3.6 Differentially enriched Gene Ontology biological processes among all target genes 
segmented by low and high hazard of ovarian cancer death or recurrence identified by set 
enrichment analyses. 
 

 
 
1- hazard genes: number of genes that have a negative association between the hazard of ovarian cancer death 
(higher survival) or recurrence and expression. 2+ hazard genes: number of genes that have a positive association 
between the hazard of ovarian cancer death (lower survival) or recurrence and expression. 3Loge(Odds Ratio): values 
> 1 indicate that the category was more enriched among the genes that have a negative association with hazard than 
among the genes that have a positive association with hazard; values < 1 indicate that the category was more 
enriched among the genes that have a positive association with hazard than among the genes that have a negative 
association with hazard; Extreme values indicate higher difference in the enrichment percentages between the 
negative and positive association groups. Values close to zero indicate similar enrichment percentages between 
positive and negative association groups. 4FDR-adjusted P-value: False discovery rate adjusted P-value of the log 
odds ratio test. Enrichment at FDR-adjusted Pvalue < 0.05) and ≥ 75 genes in the category.  
  

Loge
3 FDR-

Trait and GO Category GO identifier In GO Not in GO In GO Not in GO(odds ratio) P-value4

regulation of cellular metabolic process GO:0031323 218 502 198 766 0.52 1.46E-02
regulation of metabolic process GO:0019222 229 491 214 750 0.49 1.47E-02

nucleobase, nucleoside, nucleotide and 
nucleic acid metabolic process

GO:0006139 117 175 321 1034 0.77 3.91E-05

RNA processing GO:0006396 29 263 49 1306 1.08 5.96E-03
nitrogen compound metabolic process GO:0006807 122 170 354 1001 0.71 1.94E-04
regulation of gene expression GO:0010468 84 208 237 1118 0.64 5.48E-03
gene expression GO:0010467 109 183 291 1064 0.78 3.91E-05
regulation of transcription GO:0045449 78 214 213 1142 0.67 5.48E-03
cellular metabolic process GO:0044237 264 223 492 668 0.47 8.33E-03
cellular biosynthetic process GO:0044249 106 186 342 1013 0.52 3.13E-02
RNA metabolic process GO:0016070 80 212 219 1136 0.67 5.48E-03
transcription GO:0006350 82 210 219 1136 0.71 3.22E-03
regulation of nitrogen compound 
metabolic process

GO:0051171 84 208 237 1118 0.64 5.48E-03

macromolecule biosynthetic process GO:0009059 97 195 283 1072 0.63 5.42E-03

- hazard genes1 + hazard genes2

Survival

Recurrence
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Supplementary Figure 3.1 Relation between the Gene Ontology biological processes associated 
with ovarian cancer death inferred from the set enrichment analysis.  
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Supplementary Figure 3.2 Relation between the Gene Ontology biological processes associated 
with ovarian cancer recurrence inferred from the set enrichment analysis.  
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Supplementary Figure 3.3 Targeted sub-network of microRNAs, transcription factors, and 
target genes associated with ovarian cancer survival. 
Node Shape: microRNA=diamond, target gene=circle, transcription factor=square; Node Color: 
Red indicates increased hazard with high expression, Green indicates decreased hazard with high 
expression; Node Size: larger indicates a more extreme association (HR ≥ |1.6|), smaller 
indicates a less extreme association 



 

117 
 

 
Supplementary Figure 3.4 Targeted sub-network of microRNAs, transcription factors, and 
target genes associated with post-diagnostic recurrence in ovarian cancer. 
Node Shape: microRNA=diamond, target gene=circle, transcription factor=square; Node Color: 
Red indicates increased hazard with high expression, Green indicates decreased hazard with high 
expression; Node Size: larger indicates a more extreme association (HR ≥ |1.6|), smaller 
indicates a less extreme association
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Chapter IV 

Progression in the dysregulation of transcriptome pathways from acute to chronic illicit 
drug exposure* 

 
ABSTRACT 

Exposure to illicit drugs elicit changes in the brain transcriptome that result in the dysregulation 

of pathways. Pathway changes as the exposure progresses from acute to chronic are only 

partially understood. Microarray gene expression studies are typically small in size and often 

consider specific challenges. This situation hinders the elucidation of pathway dysregulation 

within and across levels of drug exposure persistency. To address these limitations, a meta-

analysis of six individual microarray experiments measuring gene expression in the brain of mice 

under acute and chronic drug exposure was undertaken. Validation on an independent data set, 

subsequent functional analysis, and network visualization offered insights into the network 

changes across drug exposure levels. Meta-analyses uncovered 263 and 2,641 genes 

differentially expressed (FDR-adjusted P-value < 0.1) between control and acute and chronic 

exposure, respectively.  These results confirm that the more extensive the exposure, the more 

extensive the impact on the transcriptome profile. The MAPK signaling pathway and the 

molecular functions of protein dimerization and leucine zipper transcription factor were enriched 

in response to acute exposure.  These processes give way to the enrichment of the molecular 

functions of ubiquitin conjugation, nucleotide binding, RNA splicing, and associated ribosomal 

pathways which were enriched in response to chronic exposure. Individual genes in these 

processes have been previously associated with drug exposure and reward-dependent behaviors. 

The meta-analyses allowed the uncovering of consistent profiles that support novel functional 
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understanding. This is the first study able to detect the progression of drug exposure pathways 

using meta, functional, and network-analyses. 
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Introduction 

Microarray gene expression experiments have helped in the characterization of hundreds 

of genes associated with drug addiction behaviors (58, 63).  The mice striatum provides a well-

established system to study gene expression changes associated with illicit drug exposure (229).  

The detection of differentially expressed genes between control and drug-treated striatum 

samples offers insights into the pathways affected by drug abuse as well as potential prognostic 

tools and diagnostic therapies (63, 230).   

The identification and understanding of genes and gene pathways dysregulated by drug 

exposure has been hindered by the limited size and focus of most experiments on a particular 

drug (e.g. cocaine, morphine, or methamphetamine) or single exposure (66, 67).  Applying 

accepted definitions of acute (single dose exposure) and chronic (multiple dose exposure), few 

experiments have investigated the impact of acute and chronic drug exposure on the striatum 

transcriptome profile (61-63).  However, no reports have investigated the dysregulation of 

pathways that are shared by different drugs or the progression of processes and pathways from 

acute to chronic drug exposure.  The goals of this study were to survey the genes, pathways, sub-

networks and molecular functions associated with illicit drug exposure, and to investigate the 

progress of the gene and pathway dysregulation from acute to chronic exposure. To accomplish 

this, five mice microarray experiments that evaluated different illicit drugs and extent of 

exposure were meta-analyzed. Results were validated on an independent data set.  Insights into 

the meta-analysis results were gained from functional analysis and network visualization.  
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Materials and Methods 

Data sets  

Five mice microarray experiments that compared gene expression between saline 

(control) and acute or chronic exposure to illicit drugs were integrated. The experiments are 

available in the Gene Expression Omnibus (GEO) repository ((231), 

http://ncbi.nlm.nih.gov/geo). The GEO identifiers of the experiments and associated reference 

are: GSE10869 (66), GSE10870 (67), GSE13386 (61), GSE7762 (62), and GSE8948 (232).  

Cocaine was used in experiments GSE10869, GSE13386, GSE8948, and GSE10870, and 

morphine was used in experiment GSE7762. 

All experiments evaluated a single drug dose (defined as acute exposure) and saline 

treatment, and striatum samples were obtained one hour after drug exposure (61, 62). In addition, 

experiments GSE7762 and GSE13386 included multiple drug exposures (defined as a chronic 

exposure), and samples were obtained four hours after the final exposure (61, 62).   

In experiments GSE10869, GSE10870, and GSE8948, exposure constituted intraperitoneal (i.p.) 

injection of either 25 mg/kg cocaine or saline, and the mice were sacrificed after one hour by 

cervical dislocation. For GSE13386, in order to habituate the mice prior to handling, all mice 

were first injected with 100 μl saline (vehicle) once daily for eight days. For the acute cocaine 

exposure, mice were injected with a dose of 20 mg/kg cocaine or 100 μl saline on day nine.  The 

striata were harvested four hours after the final injection.  For chronic cocaine studies, mice were 

injected with 20 mg/kg cocaine or 100 μl saline once daily for fifteen days, and the striata were 

harvested four hours after the last injection.  For GSE7762, acute (20 mg/kg, subcutaneous) and 

chronic morphine administration (10-40 mg/kg, three times daily for five days) were compared. 

On the fifth day of the experiment, acute treated mice were injected with a single dose of 
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morphine (20 mg/kg) and killed by decapitation after four hours. Chronically treated mice were 

injected with increasing doses of morphine for five days. Mice received morphine thrice daily 

(09:00 hours, 13:00 hours and 17:00 hours) for four days using a dosing schedule of 10, 20, 40 

and 40 mg/kg of morphine on days one, two, three and four, respectively. On the last day, a final 

morphine dose of 40 mg/kg was administered and four hours after the last injection, the mice 

were sacrificed. Mice in control groups were killed four hours after the last injection of saline.  

The number of saline: acute: chronic dose samples per experiment were: GSE10869 6:12:0; 

GSE10870 6:6:0; GSE8948 6:10:0; GSE13386 12:6:6; and GSE7762 12:12:12. 

GSE10869 used mice with ablation of the Camk4 gene in neurons expressing the 

dopamine receptor 1 (Drd1a) and were 5- to 6-week-old Creb1Camkcre4, Crem−/− mice (before 

onset of neurodegeneration) and 5- to 10-week-old Creb1Camkcre4, Crem+/− mice with littermate 

controls (Creb1loxP/loxP, Crem+/− and Creb1loxP/loxP, Crem−/−) (66).  In GSE10870, behavioral 

experiments were performed on 10- to 15-week-old transgenic mice using Cre-negative, Srf 

loxP/loxP or Srf loxP/wt littermates as controls (67).  In GSE8948, transgenic 5- to 6-week-old 

littermate male and female mice with targeted mutation of the Creb1 gene were used (232).  In 

GSE13386 lines CP73 and CP101 transgenic mice that expressed enhanced green fluorescent 

protein (EGFP)-tagged ribosomal protein L10a were used (61).  In GSE7762 adult male (8- to 

10-week-old) 129P3/J (000690), DBA/2J (000671), C57BL/6J (000664), and SWR/J (000689) 

mice were used (62).   

The Affymetrix GeneChip Genome Mouse 430 2.0 Array platform was used in 

experiments  GSE13386 and GSE7762, and the Affymetrix GeneChip Mouse 430A 2.0 array 

platform was used in experiments GSE10869, GSE8948, and GSE10870 ( (233), 

http://www.affymetrix.com). All probe sets represented on the GeneChip Mouse Genome 430 
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2.0 array are included on the GeneChip Mouse Genome 430A 2.0 array and represent 

approximately 39,000 transcripts from 14,000 genes. Probes common to both platforms were 

considered resulting in 45,036 probes analyzed.  

Probe expression intensities were normalized using the GCRMA affy R package 

following standard protocols (234-238) and centered by microarray corresponding to the first 

stage of a two-stage analysis (83, 84, 90, 239-241). Data processing and normalization were 

implemented in Beehive ((77, 114); http://stagbeetle.animal.uiuc.edu/Beehive1.0).   

 

Meta-analyses 

Individual-experiment and meta-analyses of all experiments were implemented (83, 84).  

In the individual-experiment analyses, the normalized expression of each gene was described 

with a linear mixed-effects model that included the fixed effects of drug exposure (saline, acute, 

or chronic) and the random effect of mice sample nested within exposure.  Lists of differentially 

expressed genes from each experiment were obtained, and the genes that overlap two lists were 

identified. In the sample-level meta-analysis, the normalized gene expression across all 

experiments was described with a linear mixed-effects model that included the fixed effects 

exposure and the random effects of sample and experiment. The random effects of sample and 

experiment allowed adjustment for differences between experiments such as strain and sex 

differences. Experiments were assumed to be normally distributed with 0 mean and unstructured 

variance to accommodate heterogeneity of variance among experiments.  

Results from the individual-experiment analyses were denoted with the experimental 

GEO identifier (e.g. GSE7762) as the prefix, and the results from the meta-analysis were denoted 

with the Meta prefix. Of interest was the contrast between acute (single) drug exposure and 
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saline treatment (denoted with suffix S) and between chronic (multiple) drug exposure and saline 

treatments (denoted with suffix M) within experiment. To protect for multiple-testing, false-

discovery rate (FDR) adjustment of the P-values was used to identify differentially expressed 

genes across drug exposure levels (78).  Probes were considered differentially expressed when 

the FDR-adjusted P-value was less than 0.1 and fold change greater than |1.25|.  All analyses 

were performed using the mixed model procedure in SAS version 9.3 ((242), SAS Institute, 

Cary, NC, USA). 

.  
Functional enrichment and gene networks 

The enrichment of Gene Ontology (GO) ((176), http://www.geneontology.org/) 

molecular functions and biological processes, and KEGG ((177), http://www.genome.jp/kegg/) 

pathways was studied among the genes differentially expressed that were identified by the meta-

analyses. The functional analysis consisted of Fisher's exact (two-tailed) test implemented in 

DAVID v6.7 ((92), http://david.abcc.ncifcrf.gov/).  DAVID was used to identify the functional 

categories enriched among all genes differentially expressed (FDR-adjusted P-value < 0.1) 

between saline and acute exposure (MetaS) and saline and chronic exposure (MetaM).  The 

DAVID Functional Annotation Clustering was used to detect enriched categories while 

accommodating for the relationships among the annotation terms and minimizing redundant and 

heterogeneous annotation contents ((243), 

http://david.abcc.ncifcrf.gov/manuscripts/fuzzy_cluster/).  

The networks of genes differentially expressed (FDR-adjusted P-value < 0.01) in the 

acute and chronic drug exposure relative to saline resulting from the MetaS and MetaM analyses 

were depicted using Cytoscape ((95),  http://www.cytoscape.org/), an open source software 

platform for visualizing networks and including attributes.  The distribution and connectivity of 
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the genes within sub-networks and the overall networks were characterized.  Network pathways 

were obtained from WikiPathways ((97, 98), http://www.wikipathways.org) and implemented in 

Cytoscape with the GPML plugin ((96), http://apps.cytoscape.org/apps/gpmlplugin). The GPML 

plugin for Cytoscape is a converter between Cytoscape networks and the GPML (GenMAPP 

Pathway Markup Language) pathway format. 

 

Validation 

The findings from the meta-analysis were validated on the independent experiment 

GSE15774 (244).  Experiment GSE15774 compared the effects of various substances of abuse 

on gene expression profiles in the mouse striatum. Samples were obtained one, two, four, or 

eight hours after a single acute morphine (20 mg/kg), heroin (10 mg/kg), ethanol (2 g/kg), 

nicotine (1 mg/kg), methamphetamine (2 mg/kg) or cocaine (25 mg/kg) i.p. injection, with 

respective saline and naïve control groups. Samples from two mice were pooled for each 

microarray. Three biological replicates of the microarrays were prepared per experimental group. 

Illumina MouseWG-6 v1.1 and 84 Illumina MouseWG-6 v2 array platforms that included probes 

representing approximately 48,000 transcripts were used. Data processing, normalization, and 

analysis followed the same procedures that were applied to the five individual experiments 

analyzed. Experiment GSE15774 was well-suited for independent validation because the drug 

exposures were comparable to the meta-analyzed experiments. Also, the array platform used in 

GSE15774 was vastly distinct to that used in the meta-analyzed experiments, and samples were 

pooled and used in triplicate instead of individually studied. 
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Results and Discussion 

Comparison of single experiment and meta-analyses of acute and chronic drug exposure 

Tables 4.1 and 4.2 list the number of significant (FDR-adjusted P-value < 0.1) probes per 

analysis and the overlap of probes detected between pairs of analyses contrasting acute (single 

dose) exposure relative to saline (denoted with the suffix S) and chronic (multiple dose) exposure 

relative to saline (denoted with the suffix M). Results from the individual experiment analyses 

are labeled with the corresponding GSE identifier as prefix and results from the meta-analysis 

across experiments are labeled with the Meta prefix. The number of significant (FDR-adjusted P-

value < 0.1) probes was 57, 191, 1, 1243, 3, 0, 2531, 263, and 2641 for the analyses GSE10869, 

GSE10879, GSE13386S, GSE7762S, GSE8948, GSE13386M, GSE7762M, MetaS, and MetaM, 

respectively. The common FDR-adjusted P-value < 0.1 threshold corresponded to the unadjusted 

P-values < 0.00025, 0.00085, 0.00001, 0.00275, 0.00002, 0.000001,0.0056, 0.00060, 0.0059, for 

the analyses GSE10869, GSE10879, GSE13386S, GSE7762S, GSE8948, GSE13386M, 

GSE7762M, MetaS, and MetaM, respectively 

Table 4.1 demonstrates the enhanced precision of the meta-analysis to detect 

differentially expressed transcripts compared to the analysis of individual experiments 

separately.  From the 57 transcripts detected in GSE10869, at most 40 transcripts were confirmed 

in one other experiment, yet 44 transcripts were confirmed by the meta-analysis. Likewise, from 

the 191 transcripts detected in the analysis of GSE10870, at most 40 transcripts were confirmed 

in one other experiment, yet 84 were confirmed by the meta-analysis.  

The validation of the findings from the meta-analyses using the independent experiment 

GSE15774 supports our findings. The correlation between the estimates from the meta-analysis 

and GSE15774 was over 50%. This correlation is notable considering the experimental design of 
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the validation data set that included two sets of pooled samples in triplicate. The experimental 

design, though comprehensive on treatments evaluated, had limited precision and statistical 

power. Consistent with our findings, the reported analysis of GSE15774 identified 42 drug-

responsive genes (244).   

Confirmation of the benefits of meta-analysis over simple overlap between individual 

experiment analyses is that the average overlap between an individual experiment and meta-

analysis was 52%, meanwhile the average overlap between any two individual experiment 

analyses was 42% (excluding experiments with 0 transcripts detected). Table 4.1 also 

demonstrates that the results from the meta-analysis were not biased by any one experiment.  

From the 1,243 differentially expressed transcripts detected in the analysis of experiment 

GSE7762, at most 19 transcripts were confirmed by one other study and 55 transcripts were 

confirmed by the meta-analysis.  The majority of overlapping transcripts between individual 

analyses expressed the same trends, and thus equal sign of the expression contrast. For example 

all 40 differentially abundant transcripts in common between GSE10869 and GSE 10870 had the 

same estimate sign. 

Table 4.2 offers insights into the transition between acute and chronic drug exposure. 

Comparison of the differentially expressed transcripts detected by the meta-analysis of acute 

dose (MetaS) and chronic dose (MetaM) identified the more consistently differentially expressed 

transcripts within or across drug exposure. One-third (34%) of the transcripts differentially 

expressed in MetaS were also differentially expressed in MetaM. There were more differentially 

expressed transcripts in the contrast between chronic exposure and saline than between acute 

exposure and saline treatment, both in the individual experiment analysis and meta-analysis.  
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Comparison of the number of differentially expressed transcripts identified by the single 

experiment analysis (GSE7762) and meta-analysis (MetaM) contrasting chronic drug exposure 

and saline treatment confirmed the advantages of meta-analysis noted for the acute drug 

exposure versus saline treatment (Table 4.2). Meta-analysis was able to detect more 

differentially expressed transcripts than the single experiment analysis. This trend is the result of 

meta-analysis gathering more precision through the consideration of multiple analysis and 

combination of estimates that may not reach statistical significance in the single-experiment 

analysis. Also, meta-analysis is not biased by one experiment because although the single 

experiment analysis of GSE7762M detected all the differentially expressed transcripts identified 

by experiments, including chronic exposure, only 16% of the transcripts detected by the single-

experiment analysis were detected by the meta-analysis MetaM (Table 4.2). 

The higher number of differentially expressed transcripts under chronic exposure relative 

to acute exposure could be due to a more marked effect of the drug on the expression of the same 

transcripts or related transcripts in the same pathways or to the effect of the chronic exposure on 

additional transcripts and pathways. The additional number of transcripts associated with the 

chronic exposure is unlikely to be due to the additional time required by the chronic exposure 

because samples from the acute and chronic drug exposures were collected at the same time in 

the experiments.  

 

Transcripts associated with acute and chronic drug exposure 

Tables 4.3 and 4.4 list the highly differentially expressed transcripts identified by the 

MetaS and MetaM analyses associated with addiction and behavioral disorders. A 

comprehensive list of all differentially expressed transcripts (FDR-adjusted P-value < 0.01) 
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identified by the MetaS and MetaM are summarized in Supplementary Materials Tables 4.1 

and 4.2. Numerous genes previously associated with addiction, reward-related behaviors, and 

neurological disorders were identified by the MetaS and MetaM analyses with the supporting 

references listed in Tables 4.3 and 4.4, respectively. FBJ osteosarcoma oncogene B (Fosb), 

activity regulated cytoskeletal-associated protein (Arc),  TCDD-inducible poly(ADP-ribose) 

polymerase (Tiparp),  Jun oncogene (Jun), calcium/calmodulin-dependent protein kinase I 

gamma (Camk1g),  FBJ osteosarcoma oncogene (Fos), G-protein coupled receptor 3 (Gpr3),  

cyclin-dependent kinase inhibitor 1A (Cdkn1a),  Rho family GTPase 3 (Rnd3), selenoprotein W, 

muscle 1 (Sepw1),  dynamin 1 (Dnm1),  and regulator of G protein signaling 7 (Rgs7)  have been 

reported to be linked to illicit drug dependency.  

The AP-1 family, comprised of Fos and Jun family proteins, has been shown to play a 

significant role in mediating adaptations to drugs of abuse (245, 246).  Fosb is one of the key 

proteins implicated in the gene expression changes in the nucleus accumbens caused by drugs of 

abuse which contributes to the complex circuit adaptations underlying addiction-related 

behaviors (245). Fos has been shown to be regulated in response to morphine exposure in adult 

mice (247).  Expression of Jun in brain regions of adult mice decrease development of cocaine-

induced conditioned place preference, suggesting reduced sensitivity to rewarding effects of 

cocaine (246).  Arc expression is altered when interacted with stress and cocaine in mice and 

may be a potential molecular target modulated by stress to alter cellular sensitivity to cocaine 

(248).  Modulatory activity of Gpr3 in the brain has been related to the control of emotional 

behaviors, and altered signaling pathways of Gpr3 have been associated with the neurobiological 

substrate involved in developing addiction to cocaine in humans (249).  Expression levels of 

Rnd3 are up-regulated in the hippocampus and prefrontal cortex of mice when injected with 
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cocaine (250).  Sepw1, detected in the brain and shown to be associated with alcohol and alcohol 

drinking behavior, was differentially expressed between operant ethanol and water injections in 

rodents (251, 252).  Regulation of Dmn1 expression by nicotine, via a microRNA pathway, 

indicates that Dmn1 may play an important role in neural plasticity and the underlying 

mechanism of nicotine addiction (115).   Rgs7 plays an essential role in controlling cocaine 

sensitization and is associated with higher sensitivity to locomotor stimulating effects of cocaine 

in rodents (253).   

Among the genes known to be associated with neurological disorders that were detected by the 

meta-analyses are: growth arrest and DNA-damage-inducible, beta (Gadd45b), dual specificity 

phosphatase 1 (Dusp1), TAR DNA binding protein (Tardbp), survival motor neuron 1 (Smn1), 

Family with sequence similarity 123A also known as APC membrane recruitment 2 (Fam123a; 

also known as Amer2), Rho GTPase activating protein 6 (Arhgap6), hyaluronan and 

proteoglycan link protein 1 (Hapln1), SERTA domain containing 1 (Sertad1), N-myc 

downstream regulated gene 4 (Ndrg4), hepatic leukemia factor (Hlf), hairy and enhancer of split 

5 (Hes5), phosphodiesterase 4A, cAMP specific (Pde4a), and nemo like kinase (Nlk).  

Stress response gene Gadd45b is induced by neuronal activity and has been implicated in the 

promotion of adult neurogenesis (254, 255).  Tiparp, which previous studies have found to have 

a strong association with alcohol dependence, is located in a region that influences antisocial 

behavior and substance dependence vulnerability (256).  Sertad1 expression is essential for 

developmental neuronal death in the cerebral cortex and may be a suitable target for 

investigation on Alzheimer’s disease (257).  Dusp1 expression is up-regulated in the sensory 

input neurons of the thalamus and thalamic-recipient layer IV and VI neurons of the mouse 

cortex suggesting it has specialized regulation to sensory input neurons of the thalamus and 
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telencephalon (258).  Tardbp is correlated with behavioral and cognitive changes and has been 

found in multiple neurological disorders, including sporadic motor neurone disease, amyotrophic 

lateral sclerosis, frontotemporal dementia, Parkinson’s disease, and Alzheimer’s disease (259).  

Smn1 is involved in motor neuron pathology and behavioral alterations in the mouse model 

(260).  Fam123a is strongly expressed in the central as well as the peripheral nervous system of 

the mouse, and plays an important role during neurogenesis (261).  Arhgap6, a candidate for cell-

based therapy of neurodegenerative diseases, is involved in neurite outgrowth, early neuronal 

cell development, and neuropeptide signaling and synthesis (262).  Hes5 expression enhances 

fear retention (263).  Hapln1 plays a role in the control of the central nervous system plasticity 

and triggers the formation of perineuronal nets in mice (264). Associated with spatial learning 

and memory, Ndrg4 is expressed in various neurons of the brain and is necessary for the 

preservation of spatial learning and the resistance to neuronal cell death caused by ischemic 

stress (265).  Expressed in the central nervous system, Hlf plays a role in the function of 

differentiated neurons in the adult nervous system (266).  Pde4a has been implicated in the 

control of cognitive function and plays a role in cognitive deficit in schizophrenia (267). Up-

regulated in the brain during Huntington's disease, Nlk supports growth of sensory neurons and is 

involved in neuronal growth, glucose metabolism, cell motility, and differentiation (268).   

 
Processes and pathways associated with acute and chronic drug exposure 

Tables 4.5 and 4.6 list the top (FDR-adjusted P-value < 0.1) enriched GO molecular 

functions, biological processes, KEGG pathways, and other DAVID categories expressed by the 

transcripts identified by the MetaS and MetaM analyses. Supplementary Tables 4.3 and 4.4 

include the gene identifiers that map to these and other significantly (raw P-value < 0.005) 

enriched categories. The comparison of the molecular functions and biological processes 
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enriched among the transcripts differentially expressed under acute and chronic drug exposure 

aids in the understanding of the progression in the mechanisms altered by acute and chronic drug 

exposure.  

Consistent with the number of genes detected by either meta-analysis, the number of categories 

significantly associated with drug exposure and the number of genes within enriched category 

was lower in MetaS relative to MetaM. The top enriched categories among the genes identified 

by the MetaS analysis include protein dimerization and leucine zipper transcription factor that 

have been previously associated with illicit drug usage and other reward dependence behaviors.  

Little is known about the association between genes in the protein dimerization category and 

drug exposure. Mu-opioid receptor agonists promote dimerization of wntless and mu-opioid 

receptors, preventing wntless from mediating Wnt protein secretion that is critical for neuronal 

development (269).  Adaptations in this pathway may be a novel pharmacological target in the 

treatment of opiate addiction and pain (269).   

Expression of genes in the leucine zipper transcription factor category, such as c-fos and 

jun B, can be regulated by stimuli that affect the dopaminergic nigrostriatal system (270).  

Studies using adult rat striatum and cocaine showed activation of members of leucine zipper 

transcription factor categoryin response to catecholaminergic stimulation (270).  Cocaine induces 

coordinate expression of c-fos and jun B mRNAs in neurons of a rat’s striatum, and may 

contribute to response specificity of striatal neurons to stimulation by monoamines including 

dopamine (271).  Stimulation of dopamine receptors plays a huge role in the effects on addictive 

behavior, moment control, and working memory (272).   

Enriched categories such as ubiquitin conjugation, nucleotide binding, and RNA splicing 

detected by the MetaM analysis are in agreement with previous reports.  In ubiquitin cojugation, 
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the dysregulation of Ubl-substrate modification and mutations in the Ubl-conjugation machinery 

are involved in the etiology and progression of a number of neurodegenerative disorders (273).  

Inhibition of the ubiquitin system occurs by aggregated proteins (274).  Although still poorly 

understood, the aggregation of brain proteins into defined lesions is emerging as a common 

theme in sporadic and hereditary neurodegenerative disorders (274).   

Processes remaining enriched from acute to chronic drug exposure 

Table 4.7 lists the top (P-value < 0.005) enriched biological processes and molecular 

functions among the differentially expressed transcripts both in the acute and chronic drug 

exposure contrasts against saline treatment identified by the MetaS and MetaM meta-analyses. 

Supplementary Table 4.5 includes the gene identifiers that map to these enriched categories. 

Working with the 83 transcripts differentially expressed both in the MetaS and MetaM analysis, 

a less extreme significant threshold was used to contain the potential false negative rate of 

enrichment on a low number of transcripts.  The identification of biological categories shared by 

the acute and chronic drug exposure provides leads on the processes that are permanently 

dysregulated from the initiation during the progression of drug exposure. The enduring 

enrichment of these categories suggests critical processes that may be at the center of the 

permanent harmful effects of drug addiction. These processes may be at the center of recovery 

therapies that have a lasting impact. 

Categories enriched among the genes detected both by the MetaS and MetaM analyses 

are in agreement with previous reports.  Spliceosome and RNA degradation have been associated 

with neuropsychiatric disorders and are candidates for their therapeutic mechanism (275).  

Abiotic stimulus has been associated with differences in locomotor activity.  Depression, 
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Parkinson's disease, Huntington's disease, and activity disorders are all associated with deficits in 

locomotion (276).   

 

Network visualization 

Investigation of the relationship between the genes in categories associated with acute 

and chronic drug exposure offered insights into the unique gene relationships. The networks for 

the MAPK signaling pathway (enriched in the acute versus saline contrast) and for the ErbB 

pathway (enriched in the chronic versus saline contrast) are depicted in Figures 4.1 and 4.2.  

Acute drug exposure had a negative effect on the MAPK signaling pathway, resulting on under-

expression of multiple key genes (e.g. Jun, Fos). Figure 4.1 highlights the main trends. Many of 

these genes code elements on the terminal end of the pathway (Atf4, Nr4a1, Jun, Hspa8, Fos, 

Atf4, Dusp1) with direct effect on cell proliferation and differentiation. 

Chronic drug exposure had mostly positive effects on various subnetworks of the ErbB 

pathway (Figure 4.2). Chronic drug exposure resulted in the over-expression of genes associated 

with protein synthesis and the mTOR signaling pathway and metabolism. Noteworthy is the 

under-expression of Hbegf and over-expression of Erbb4 as result of chronic drug exposure 

identified in this study. The KEGG pathway reports a positive association between these two 

components. Chronic exposure also resulted in over-expression of genes associated with 

proliferation, adhesion, and migration. Chronic drug exposure was associated with under-

expression of genes associated with angiogenesis and adhesion through the MAPK signaling 

pathway, however, more terminal genes were not differentially expressed. 
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Figures 

 

 

Figure 4.1 MAPK Signaling Pathway 
Node Shape: Oval: Significantly expressed gene in platform, Square: Gene in platform but not 
significantly expressed, Diamond: Not in platform; Node Color: Red=negative gene estimate; 
Green=positive gene estimate; Line Edge: Arrow=promotion, T-shape=inhibition
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Figure 4.2 ErbB Pathway 
Node Shape: Oval: Significantly expressed gene in platform, Square: Gene in platform but not 
significantly expressed, Diamond: Not in platform; Node Color: Red=negative gene estimate, 
Green=positive gene estimate; Line Edge: Arrow=promotion, T-shape=inhibition
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Tables  
 
Table 4.1  Number (and relative percentage) of transcripts differentially expressed (FDR-
adjusted P-value < 0.1) between acute dose drug exposure and saline treatment resulting from the 
individual experiment and meta-analyses 
 

  GSE10869Sa GSE10870S GSE13386S GSE7762S GSE8948S MetaS 
GSE10869S 57b 40 (40)c 0 (0) 13 (12) 0 (0) 44 (0) 
GSE10870S 70% 191 0 (0) 19 (15) 2 (2) 84 (0) 
GSE13386S 0% 0% 1 0 (0) 0 (0) 0 (0) 
GSE7762S 23% 10% 0% 1243 0 (0) 55 (1) 
GSE8948S 0% 67% 0% 0% 3 2 (0) 
MetaS 77% 44% 0% 21% 67% 263 

 
 

aPrefix GSE denotes the individual experiment using the Gene Expression Omnibus identifier and prefix Meta 
denotes meta-analysis. Suffix S denotes that the contrast between a acute dose drug exposure and saline treatment 
was considered;  bDiagonals correspond to the detected number of transcripts within analysis, upper off-diagonals 
correspond to the number of transcripts detected by two analyses, and lower off-diagonals correspond to the 
percentage of transcripts detected by two analyses;  cNumbers in parenthesis indicate the number of overlaps that 
also have consistent estimate signs 
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Table 4.2 Number (and relative percentage) of transcripts differentially expressed (FDR-
adjusted P-value < 0.1) between acute (S) and chronic (M) dose drug exposure and saline 
treatment resulting from the individual experiment and meta-analyses 
 
  GSE13386Sa GSE13386M GSE7762S GSE7762M MetaS MetaM 
GSE13386S 1b 0 (0)c 0 (0) 0 (0) 0 (0) 0 (0) 
GSE13386M 0% 0 0 (0) 0 (0) 0 (0) 0 (0) 
GSE7762S 0% 0% 1243 291 (282) 55 (1) 340 (338) 
GSE7762M 0% 0% 23% 2531 160 (0) 399 (9) 
MetaS 0% 0% 21% 61% 263 89 (88) 
MetaM 0% 0% 27% 16% 34% 2641 

 
 

aPrefix GSE denotes the individual experiment using the Gene Expression Omnibus identifier and prefix Meta 
denotes meta-analysis. Suffix S denotes that the contrast between an acute dose drug exposure and saline treatment 
was considered. Suffix M denotes that the contrast between a chronic dose drug exposure and saline treatment was 
considered ; bDiagonals correspond to the detected number of transcripts within analysis, upper off-diagonals 
correspond to the number of transcripts detected by two analyses and, lower off-diagonals correspond to the 
percentage of transcripts detected by two analyses;  cNumbers in parenthesis indicate the number of overlaps that 
also have consistent estimate signs 
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Table 4.3 Most significant differentially expressed transcripts between the acute drug exposure 
and saline treatment identified by the MetaS meta-analysis and associated with addiction, 
behavioral or neurological disorders.  
 

Probe ID Gene 
Symbol Estimate1 Standard 

Error 
FDR P 
Value Reference 

1422134_at Fosb -1.31 0.17 2.79E-07 (245) 
1449773_s_at Gadd45b -0.93 0.12 2.79E-07 (254, 255) 
1418687_at Arc -1.46 0.21 4.19E-06 (248) 
1426721_s_at Tiparp -1.14 0.16 4.19E-06 (188) 
1417406_at Sertad1 -0.71 0.11 6.23E-06 (257) 
1448830_at Dusp1 -0.94 0.14 6.32E-06 (258) 
1417409_at Jun -0.78 0.12 1.67E-05 (246) 
1424633_at Camk1g -0.61 0.09 1.67E-05 (62) 
1423100_at Fos -1.77 0.28 1.97E-05 (247) 
1460275_at Gpr3 -0.67 0.11 1.06E-04 (249) 
1424638_at Cdkn1a -0.66 0.11 2.37E-04 (277) 
1416700_at Rnd3 -0.48 0.09 3.79E-04 (250) 

 
 

1Estimate is the log2(fold change)  
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Table 4.4 Most significant differentially expressed transcripts between the chronic drug 
exposure and saline treatment identified by the MetaM meta-analysis and associated with 
addiction, behavioral or neurological disorders.  
 

Probe ID Gene 
Symbol Estimate1 Standard 

Error 
FDR P 
Value Reference 

1423723_s_at Tardbp -0.41 0.07 2.72E-04 (259, 278) 
1426596_a_at Smn1 0.72 0.12 2.72E-04 (260) 
1454051_at Fam123a 0.85 0.13 3.12E-04 (261) 
1460561_x_at Sepw1 0.28 0.05 3.34E-04 (251, 252) 
1417704_a_at Arhgap6 -0.72 0.13 3.57E-04 (262) 
1423146_at Hes5 0.62 0.11 3.57E-04 (263) 
1426294_at Hapln1 -0.51 0.09 3.57E-04 (264) 
1426615_s_at Ndrg4 0.25 0.04 3.57E-04 (265) 
1434736_at Hlf 0.54 0.1 3.57E-04 (266) 
1421535_a_at Pde4a 1.01 0.18 3.82E-04 (267) 
1419112_at Nlk 0.55 0.1 3.82E-04 (268) 
1460365_a_at Dnm1 0.33 0.06 4.93E-04 (279) 
1450659_at Rgs7 0.39 0.07 5.45E-04 (253) 

 

1Estimate is the log2(fold change)  
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Table 4.5 Most significant (FDR-adjusted P-value < 0.1) enriched biological processes and 
molecular functions among the differentially expressed transcripts between acute drug exposure 
and saline treatment identified by the meta-analysis MetaS.  
 

 
 
 

acategory: original database/resource repository where term orients;  bcount: the number of genes involved in the 
term;  c%: percentage of the involved genes/total genes in list;  dGOTERM_MF_FAT: GO is Gene Ontology; MF is 
molecular function; FAT is a David created category;  eUP_SEQ_FEATURE: UP SEQ is a Uniprot sequence feature 
fINTERPRO: database accessible at http://www.ebi.ac.uk/interpro/;  gSMART: database accessible at 
http://smart.embl-heidelberg.de/ 

Categorya Term Countb %c FDR P-
value

GOTERM_MF_FATd GO:0046983~protein dimerization activity 17 7.59 2.35E-03

UP_SEQ_FEATUREe domain:Leucine-zipper 13 5.8 1.07E-05

INTERPROf IPR004827:Basic-leucine zipper transcription factor 9 4.02 2.03E-04

SMARTg SM00338:BRLZ 9 4.02 4.92E-04
GOTERM_MF_FAT GO:0046983~protein dimerization activity 17 7.59 2.35E-03
INTERPRO IPR011616:bZIP transcription factor, bZIP-1 6 2.68 2.68E-02
UP_SEQ_FEATURE DNA-binding region:Basic motif 11 4.91 2.97E-02
INTERPRO IPR011616:bZIP transcription factor, bZIP-1 6 2.68 2.68E-02
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Table 4.6 Most significant (FDR-adjusted P-value < 0.1) enriched biological processes and 
molecular functions among the differentially expressed transcripts between chronic drug 
exposure and saline treatment identified by the meta-analysis MetaM.  
 

Categorya Term Countb %c FDR P-
value

SP_PIR_KEYWORDSd ubl conjugation 103 4.7 2.23E-07
SP_PIR_KEYWORDS isopeptide bond 61 2.79 2.68E-05
GOTERM_MF_FATe GO:0000166~nucleotide binding 327 14.93 2.02E-10
SP_PIR_KEYWORDS nucleotide-binding 250 11.42 5.46E-08
GOTERM_MF_FAT GO:0032553~ribonucleotide binding 262 11.96 2.15E-06
GOTERM_MF_FAT GO:0032555~purine ribonucleotide binding 262 11.96 2.15E-06
SP_PIR_KEYWORDS atp-binding 199 9.09 3.84E-06
GOTERM_MF_FAT GO:0032559~adenyl ribonucleotide binding 217 9.91 1.80E-05
GOTERM_MF_FAT GO:0005524~ATP binding 214 9.77 2.86E-05
GOTERM_MF_FAT GO:0017076~purine nucleotide binding 265 12.1 3.11E-05
GOTERM_MF_FAT GO:0001883~purine nucleoside binding 223 10.18 1.49E-04
GOTERM_MF_FAT GO:0001882~nucleoside binding 224 10.23 1.62E-04
GOTERM_MF_FAT GO:0030554~adenyl nucleotide binding 220 10.05 2.83E-04
UP_SEQ_FEATUREf nucleotide phosphate-binding region:ATP 147 6.71 8.16E-03
SP_PIR_KEYWORDS Kinase 111 5.07 9.47E-03
SP_PIR_KEYWORDS rna-binding 92 4.2 1.48E-05
INTERPROg IPR000504:RNA recognition motif, RNP-1 50 2.28 2.85E-05
INTERPRO IPR012677:Nucleotide-binding, alpha-beta plait 49 2.24 9.24E-05
SMARTh SM00360:RRM 50 2.28 4.98E-04
GOTERM_BP_FAT GO:0000377~RNA splicing, via transesterification 17 0.78 3.84E-04
GOTERM_BP_FAT GO:0000375~RNA splicing, via transesterification 17 0.78 3.84E-04
GOTERM_BP_FAT GO:0000398~nuclear mRNA splicing, spliceosome 17 0.78 3.84E-04
GOTERM_BP_FAT GO:0010629~negative regulation of gene expression 77 3.52 3.25E-04
GOTERM_BP_FAT GO:0010605~negative regulation of macromolecule 88 4.02 1.29E-03
GOTERM_BP_FAT GO:0031327~negative regulation of cell biosynthesis 75 3.42 8.54E-03
GOTERM_BP_FAT GO:0009890~negative regulation of biosynthesis 75 3.42 1.21E-02
GOTERM_BP_FAT GO:0016071~mRNA metabolic process 63 2.88 1.07E-04
GOTERM_BP_FAT GO:0006397~mRNA processing 54 2.47 1.58E-03
GOTERM_MF_FAT GO:0019904~protein domain specific binding 40 1.83 4.48E-02
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Table 4.6 (con’t) 
 

 
 

acategory: original database/resource repository where term orients;  bcount: the number of genes involved in the 
term;  c%: percentage of the involved genes/total genes in list;  dSP_PIR_KEYWORDS: the SwissProt Protein 
Information repository database;  eGOTERM_MF_FAT: GO is Gene Ontology; MF is molecular function; FAT is a 
David created category;  fUP_SEQ_FEATURE: UP SEQ is a Uniprot sequence feature;  gINTERPRO: database 
accessible at http://www.ebi.ac.uk/interpro/;  hSMART: database accessible at http://smart.embl-heidelberg.de/ 
 
 
 
  

Categorya Term Countb %c FDR P-
value

KEGG_PATHWAY mmu03010:Ribosome 29 1.32 6.93E-05
GOTERM_BP_FAT GO:0046907~intracellular transport 76 3.47 4.86E-03
GOTERM_BP_FAT GO:0008104~protein localization 117 5.34 6.12E-03
GOTERM_BP_FAT GO:0030182~neuron differentiation 69 3.15 2.88E-02
GOTERM_BP_FAT GO:0030030~cell projection organization 57 2.6 6.82E-02
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Table 4.7 Most significant (P-value < 0.05) enriched biological processes and molecular 
functions among the differentially expressed transcripts common to the chronic and acute drug 
exposure contrasts relative to saline treatment identified by the MetaS and MetaM meta-
analyses.  
 

 
 
acategory: original database/resource repository where term orients;  bcount: the number of genes involved in the 
term;  c%: percentage of the involved genes/total genes in list;  dSP_PIR_KEYWORDS: the SwissProt Protein 
Information repository database;  eCOG_ONTOLOGY: Clusters of Orthologous Groups;  fGOTERM_BP_FAT: GO 
is Gene Ontology; BP is; FAT is a David created category 
 

Categorya Term Countb %c P Value

SP_PIR_KEYWORDSd Spliceosome 5 5.81 0.0013

COG_ONTOLOGYe RNA processing and modification 3 3.49 0.0039

GOTERM_BP_FATf GO:0009628~response to abiotic stimulus 6 6.98 0.0057
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Chapter V: Conclusion 

My study of the dysregulation of the transcriptome in diseases such as cancer and drug 

abuse can be the basis for preventative and therapeutic remedies, along with being a starting 

point for future work on biomarkers and applied research. The goal of my first project was to 

integrate statistical and bioinformatics tools to identify miRNA and gene expression profiles that 

were associated with the survival of patients diagnosed with brain cancer and characterize 

profiles that are common to all cancer-diagnosed patients and those that are cohort-dependent, 

where cohort can encompass gender, race, and therapy. This information is valuable in the 

development of effective personalized therapies.  In my second project, I further used the 

interaction between miRNA, transcription factors and target genes to identify accurate combined 

biomarkers of ovarian cancer survival.  In my last project, I continued the progression towards 

inferring gene networks by applying systems biology approaches to further mine the 

transcriptome results, facilitate interpretation, and further augment the understanding of the 

molecular mechanisms and changes underlying drug abuse.  

In my studies, the identification of miRNA and gene profiles associated with cancer 

survival and drug abuse has three possible benefits. First, the identification of individual 

transcripts associated in a reliable manner to survival can help in the development of disease 

biomarkers. Second, functional analysis of differentially expressed transcripts can provide 

insights into biological processes, molecular functions, and pathways that have a substantial 

impact on survival. Third, gene network reconstruction based on the correlated expression 

profiles can augment the understanding of the pathway components and how they are related to 

different survival outcomes.   
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In the past, few studies have looked at the simultaneous consideration of transcripts and 

transcript regulators.  It is important to look at all multiple profiles as opposed to only those on 

an individual basis in order to be able to draw conclusions and determine correctly affected 

biomarkers and pathways. The relationship between target genes and regulatory microRNAs and 

transcription factors is important, and future studies should focus on digging deeper into these 

relationships and how they work together to affect the progression of diseases.  The compilation 

of the information on biomarkers and their relationships on a searchable online database 

available to the public would be beneficial to the scientific community and public in general..  

This would help in the translation of recent insights at the molecular level into treatment 

strategies, as well as in the possible early detection of diseases.     

Depicting known relationships between microRNA, transcription factors, and target 

genes can help a researcher visualize how these factors all work together to affect the various 

pathways of the transcriptome.  Improvements in the program Cytoscape, such as easier 

depiction of relationships, would aid in the sharing of vital information to other researchers.  

Systems biology, which focuses on the interactions within biological systems, is an emerging 

field of study that can lead to vast improvements in the understanding of disease initiation and 

progression.  Improvements in the sharing of data such as frequently updated online repositories 

will save time and improve efficiency by allowing researchers to focus more time on actual 

experiments and interpretation, rather than the time consuming actions of having to perform 

various internet searchers.  Systems biology allows for the integration and analysis of complex 

data sets and multiple experiments.  Using technology to expand upon this will lead to quicker 

and more accurate studies thus vastly improving our understanding of disease biomarkers and the 

progression of dysregulation of pathways.
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Appendix 
 

Description of supplementary file: Delfino, KR_SupplementaryTables.xlsx 
 

Table S1. Significant differentially expressed transcripts between the acute drug exposure and 
saline treatment identified by the MetaS meta-analysis and associated with addiction, behavioral 
or neurological disorders.  Includes Probe ID, Sequence ID, Gene Symbol, Estimate or log2(fold 
change), standard error, p-value, and FDR p-value. 
 
Table S2. Significant differentially expressed transcripts between the chronic drug exposure and 
saline treatment identified by the MetaM meta-analysis and associated with addiction, behavioral 
or neurological disorders. Includes Probe ID, Sequence ID, Gene Symbol, Estimate or log2(fold 
change), standard error, p-value, and FDR p-value. 
 
Table S3. Significant (FDR-adjusted P-value < 0.1) enriched biological processes and molecular 
functions among the differentially expressed transcripts between acute drug exposure and saline 
treatment identified by the meta-analysis MetaS.  Includes enrichments score, original database 
repository, number of genes involved in each term, percentage of the involved genes/total genes 
in the list, the actual genes in the biological processes and molecular functions, p-value, and FDR 
p-value. 
 
Table S4. Significant (FDR-adjusted P-value < 0.1) enriched biological processes and molecular 
functions among the differentially expressed transcripts between chronic drug exposure and 
saline treatment identified by the meta-analysis MetaM. Includes enrichments score, original 
database repository, number of genes involved in each term, percentage of the involved 
genes/total genes in the list, the actual genes in the biological processes and molecular functions, 
p-value, and FDR p-value. 
 
 
Table S5. Significant (P-value < 0.05) enriched biological processes and molecular functions 
among the differentially expressed transcripts common to the chronic and acute drug exposure 
contrasts relative to saline treatment identified by the MetaS and MetaM meta-analyses. Includes 
enrichments score, original database repository, number of genes involved in each term, 
percentage of the involved genes/total genes in the list, the actual genes in the biological 
processes and molecular functions, p-value, and FDR p-value. 


