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ABSTRACT

Automated isotope identification has long been an important problem in

homeland security and nuclear emergency response. This process is difficult

for low-resolution spectra because of the presence of the Compton contin-

uum, electronics noise, and peak overlap. The wavelet transform stands

out among many potential solutions of this problem, owing to its ability to

de-noise noisy signals, pattern matching, and simultaneous multi-resolution

signal analysis. In this thesis, a novel wavelet-based algorithm for detecting

peaks and measuring their areas is introduced. Its abilities in locating peaks,

resolving overlapping peaks, and determining peak areas are presented and

assessed with both simulated signals and real gamma-ray spectra. Peak area

uncertainty was explored and future work and directions were discussed at

the end.
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CHAPTER 1

INTRODUCTION

Spectral analysis is among the most important steps in radioisotope identifi-

cation. Today the most widely used detector for nuclear emergency response

and border examinations is sodium iodide (NaI) scintillators owing to the

fact that they are inexpensive, efficient, reasonably stable over a broad range

of environmental conditions (for example, they can operate at room temper-

ature without cooling). Therefore, demand exists for radio-isotope identifi-

cation algorithms for gamma ray spectra acquired by scintillators, however

it is a complicated problem [2].

1.1 The Isotope Identification Problem

Since the energy resolution of NaI is considerably poor and and the com-

plexity of gamma-ray interactions with materials is significant [3] [1], the

spectrum generated by NaI detectors is not as desirable as high-resolution

detectors like high-purity germaniums because the energy needed to gener-

ate charge carriers is greater in scintillators. That leads to bad resolution

for peaks in the spectra. Because the full-width-at-half-maximum of individ-

ual peaks is broad, the centroids of peaks are hard to accurately determine.

Additionally, the Compton continuum, peak overlap, and electronics noise

can cause interference with peak localization. How to measure information

about photopeaks such as the peak centroid, peak area, and uncertainty of

the peak area is a major concern.
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Attempts have been made for peak detection by using Gaussian functions [4].

The generalized second derivative of the Gaussian function is calculated and

convolved with the spectrum to eliminate the interference from the fluctu-

ating baseline and that from Compton edges. In the end, peak amplitude,

centroid, and width are determined by least squares fitting. It was almost a

primitive way of generating wavelet functions according to the input signal.

The wavelet-equivalent function was found by optimizing the two determining

parameters: the degree of smoothness and the support (region of definition)

of the function, which is not in the scope of this thesis but the possible future

work of this thesis.

The aforementioned method provides a direction for discriminating peak fea-

tures from a fluctuating baseline and Compton continuum and demonstrated

ability in handling overlapping double peaks, but peak areas are not solved

from this method. Secondly, the peak width needs manual iteration to opti-

mize. Efficient automation of peak searching and quantification needs to be

found.

The weighted least squares method is also utilised in alpha spectroscopy to

fit peaks with Gaussian functions [5]. Peak areas and uncertainties are de-

termined in the study. However, the presence of Compton continuum and

significant baseline problems do not exist in alpha spectral analysis. The

least squares method demonstrated in the study here alone can not solve the

problem in gamma-ray spectral analysis.

1.2 Our Solution to the Problem

In this thesis we describe a method to locate peaks and quantify their area

based on wavelet analysis. Similar problems in mass spectrometry were also

studied and used wavelet analysis well [6]. In mass spectrometry, the x-axis

would be mass-to-charge ratio and the y-axis is the intensity of materials
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with corresponding mass to charge ratio. The goal is to qualitatively or

quantitatvely evaluate the peaks of interests and determine the presence of

certain materials and the mass of them. Peak detection is critically impor-

tant in mass spectral analysis and the ability of continuous wavelet transform

is demonstrated in peak detection. With the help of the wavelet transform

modulus maxima (related concepts will be introduced in Chapter 2) lines,

peaks were successfully located in this study. However, peak areas were not

further pursued here.

Wavelet analysis is good at extracting singularities or features of interests [7] [8].

For quantification of these features, Non-negative Least Squares(NNLS), in

our case, can be used. NNLS has displayed satisfactory ability in peak quan-

tification not only for related applications but also for other kinds of spectral

analysis. For example, full spectrum analysis (FSA) for environmental in-

situ gamma-ray spectra measured by a NaI detector was studied with Non-

Negative Least Squares method and confirmed with results from an HPGe

detector with small error [9]. In this method, NNLS is used for fitting the

whole spectrum with a linear combination of background and the fundamen-

tal spectra profiles of each library isotope. The criterion for this study was

the achievement of minimum chi-square value. However the limitation is also

obvious. In-situ gamma-ray spectrum analysis has predefined knowledge of

isotopes that would be present in the soil samples which contains a few iso-

topes, mainly K-40, U-238, Th-232, Cs-137. Also the true values of peak

area and the uncertainty were not presented in the discussion.

Instead of Gaussian functions used in the FSA method, exponential kernel

functions were exploited as basis function template in the kinetic modeling

method to decompose the spectrum for the purpose of quantifying peaks [10].

After the decomposition, the correlation matrices and covariance matrices

can be obtained by NNLS calculation and these matrices are critical in un-

certainty evaluation of the decomposition and quantification. Both kinds of

matrices are investigated respectively considering both the coupling of model

parameters and the pre-known noise distribution.

Another demonstration of NNLS in spectral analysis is Nuclear Magnetic
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Resonance (NMR). As a non-destructive diagnostic technique, it offers abun-

dant industrial and medical applications. Among them are quality control

and pharmaceutical metabolism monitoring with respect to moisture mea-

surements by observing signals produced after electromagnetic wave interac-

tions with water and aqueous solutions [11]. During the process, individual

nuclear magnetic moments interact with the environment (lattice) but also

each other. The reaction between nuclear magnetic moments and the lattice

is called spin-lattice relaxation, and is characterized by decay time constant

T1. The reaction between nuclear magnetic moments themselves is referred

to as spin-spin relaxation, characterized by T2, the spin-spin relaxation de-

cay time [12] [13]. The intensity value on y-axis reveals the number of proton

on frequency value(got from relaxation time T2 value) indicated on x-axis.

Because of this property, NMR spectrum reveals the concentrations of com-

ponents in the samples. With the quantification process of NNLS algorithm,

the concentrations of components are calculated with respect to their cor-

responding relaxation time for given NMR spectrum. In this application,

the basis kernel function is exponential due to the nature of decay time. By

minimizing the least-squares variance, NNLS finds the best fitting spectrum

in a least squares sense. Even though the fit of models to the spectrum is

not unique, requiring further statistical techniques, NNLS performs well in

spectrum quantification.

After all being said, the spectroscopic analysis problem is eventually boiled

down to peak detection and quantification. Direct fitting of peaks manually

is cumbersome. With the wavelet transform, peak detection can be done

much more efficiently and automatically. For peak quantification linear re-

gression methods have come a long way, as described in diverse area such

as mass spectrometry, nuclear magnetic resonance data analysis, molecu-

lar spectroscopy [6] [14] [15] [16]. Therefore, combining the ability of pattern

recognition of the wavelet transform and the quantification capability of least

squares fitting methods, a solution for gamma-ray spectrum analysis is pro-

posed in this work. The solution is composed of two parts. The first part is

peak detection achieved by wavelet analysis, following by the second part–

peak quantification with Non-negative Least Squares method (NNLS). Elab-

oration on the fundamental theories and implementation is given in chapters
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below.
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CHAPTER 2

THEORY

2.1 Wavelet Basics

A wavelet function is a continuous function with finite support. Rather

than fluctuating on and on like sinusoids, it only fluctuates in its support

region. Because of this property, it possesses a much better capability in

capturing the location of certain singularities while convolving with the in-

put signals [8] [17] [18]. Compared to the Fourier transform which is often

seen in signal processing applications, the wavelet transform is a powerful

tool to project signals simultaneously in both the time domain (because we

are dealing with energy spectrum instead of time series signal in our case, the

time domain here means energy domain) and frequency domain (equivalent

to the scale domain) [7]. The Fourier transform can only allow us to process

signals in the time domain or in the frequency domain one at a time. This

empowers us to have a thorough understanding on both the position and the

frequency of specific features of interests. The coefficients produced after the

transform reveal where and how greatly wavelet function matches the spe-

cial features in the original signals. Normally features not of interest would

be regarded as noise, which would be eliminated with the proper choice of

wavelet function. Therefore, the wavelet transform basically combines the

processes of de-noising and template fitting into one single step. Because of

this distinguished pattern recognition capability, wavelet analysis is widely

recognized in image processing [8] [19] [7], climate signal detection [20], de-

fect detection in mechanical engineering [21], upstream exploration analysis

for well logging [22], financial engineering [23] and proteomic pattern recog-

nition [24].
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Mathematically, the continuous wavelet transform is written as below:

T (E, s) =

∫ ∞
−∞

ψ(
t− E

s
)f(t)dt; (2.1)

where T is the wavelet transform coefficient, f (t) is the original signal, ψ(t) is

the mother wavelet kernel function, E is the shifted distance in the daughter

wavelet function and s is the scale of the daughter wavelet function ψ( t−E
s

).

ψ(t) can not claim itself a wavelet function unless the admissibility conditions

are satisfied [25] [7] [8]:

(1) ψ(t) is square integrable, which means it has finite energy:∫
|ψ(t)|dt <∞&

∫
|ψ(t)|2dt <∞; (2.2)

(2) the Fourier transform of ψ(t) : ψ̂(ω) satisfies:

∫ ∣∣∣ψ̂(ω)
∣∣∣2

ω
dω <∞; (2.3)

which requires that ψ̂(0) = 0.

(3) ∫
ψ(t)dt = 0; (2.4)

which is derived from (2), meaning no energy contributes to the zero-frequency

component (i.e. the DC energy is zero).

With the admissibility conditions satisfied, the continuous wavelet transform

(CWT) is defined as the convolution of a signal with the daughter wavelet

functions ψ( t−E
s

), which are the scaled and shifted versions of mother wavelet

function. The result is that the one dimensional original signal, f (t), is pro-

jected on a two dimensional vector space with independent variables time t

and scale s .

There are countless numbers of series of wavelet kernel functions for appli-

cations: Haar, Morlet, Daubechies [26], and so on. The features of interest

of this study would be photopeaks in gamma-ray spectra which have ap-

proximately Gaussian profiles. With that in consideration, theoretically we

are choosing near symmetric wavelets in order to pick up the Gaussian pro-
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file and obtain the corresponding scales of the peak [17]. Mother wavelet

functions such as: ’gaus4’–the fourth derivative of a Gaussian, ’coif2’–coiflet

wavelet of second order smoothness (differentiable up to two degrees) and

’bior2.6’–biorthogonal wavelet of second order smoothness in reconstruction

function and sixth order smoothness in decomposition function, were chosen

for evaluation based on previous study [18]. Their profiles are shown in

Figure 2.1. They have finite range and among the three only ’gaus4’ has an

analytic expression.

(a) gaus4 (b) coif2 (c) bior2.6

Figure 2.1: Profiles of some wavelet templates

Three Gaussian functions were generated in the upper part of Figure 2.2,

with peak centroids located at 140, 560, 900 and σ of 5, 10, and 20 respec-

tively. The wavelet transform was performed on all of them using ’bior2.6’

wavelet. A two-dimensional matrix of wavelet transform coefficients is formed

from the process, which is called the scalogram, as shown in Figure 2.2. The

local maxima in the scalogram are called wavelet transform modulus maxima

(WTMM) and are shown as black lines in the figure. By orderly collecting

and linking these points, WTMM lines are formed.

In previous studies it was shown that the larger coefficients from the CWT

mean better matching between signal and wavelet [6]. The paper concluded

peak features can be found on WTMM lines which are formed by linking local

maxima of CWT coefficients across the scales. The SNR threshold specifically

defined by CWT coefficients instead of the simple peak-amplitude-to-noise-

level is claimed to have a decreased rate of false positive alarms on peak

detection. The advantage of this method is that it is possible to avoid the

trouble of baseline removal and smoothing. Even though it is not pursued
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further to get the AUC (area under curve) in the spectrum, measurement

of the AUC obtained from the wavelet method is pointed out as a future

research to this thesis. As will be shown later, WTMM lines were used

to identify useful information in scalogram: the maximum scale , and the

wavelet transform coefficients of the signal on that scale, which were used in

the next step (NNLS calculation) to solve the accurate value of peak centroid

and peak area.

For peak features, if the wavelet transform coefficient values are plotted with

respect to scales along the line, a profile with the slope which changes from

positive to negative number is expected to show up, as shown in the lower

part of Figure 2.3. In this profile, the scale where largest wavelet coefficient

in y axis can be found is defined as the maximum scale smax. What the max-

imum scale means is at this scale the wavelet function resonates the most

with original signal. The maximum scales for the three Gaussian functions

shown in Figure 2.2 are 39, 79, and 162.

As is seen in the three Gaussian peaks example, smax is positively correlated

to the width of peak features. Therefore, as the energy resolution decreases

with energy and the lower limit of peak width increases in real spectra,

smax actually increases with energy as well. If the the relationship of peak’s

FWHM (full width at half maximum) versus the peak centroid in units of

channel for certain detector is acquired, the relationship of maximum scale

smax with the corresponding channel can be predicted according to that. It is

defined in this work as the detector response function (DRF). Take the DRF

of a commercial Ortec 2×2 NaI detector for example: Figure 2.4a presents the

relation between peak centroid and peak FWHM. According to our study,

this relationship for a NaI detector is best conditioned when fitted with a

polynomial function in the energy domain. Since the wavelet transform is a

linear transform, the DRF in the wavelet domain remains as a polynomial

function. The curve in Figure 2.4b gives the relation between peak centroid

and optimal scale sopt which indicates the scale of single photopeak on that

channel if any of single photopeak exists.
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Figure 2.2: Gaussian functions and their wavelet transform scalograms,
with maximum scales shown.
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Figure 2.3: WTMM line for the middle peak and the wavelet transform
coefficient values along the line.
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As we can see in Figure 2.4b, the DRF in wavelet domain drawing a line

between possible region and impossible region for true peaks to show up, rep-

resents the optimal scale sopt for the given detector. The maximum detected

scale smax of a true peak measured with this detector on certain channel can

not be smaller than the optimal scale sopt for same channel on the DRF curve.

This is because sopt is the lowest limit of width of single true peak that could

be provided by gamma photon. The width can not go any smaller. Any

narrower peaks would be caused by electronics noise fluctuations. So any

wavelet transform modulus maxima located on a scale in the region marked

with red cross indicates a feature with narrower width than a true peak’s

should be. However in situations where smax > sopt, there might be multiple

peaks presented or other effects that broaden the peaks.

(a) DRF in energy domain (b) DRF in wavelet domain

Figure 2.4: Profiles of DRF functions and the separated regions: green
circles indicate possible region for true peaks because smax ≥ sopt, whereas
red crosses show the region where smax < sopt indicating no true peak is
present.

2.2 Non-Negative Least Square Fundamentals

Non-negative least squares (NNLS) is a special case of the least squares prob-

lems with linear inequality constraints. NNLS offers a potential advantage for
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gamma-ray spectral analysis because all photopeaks will have non-negative

areas. By imposing this extra non-negative constraint in solving the linear

regression problem by least squares, theoretically the peak area should be

acquired with least error, or best goodness of fitting [27] [28].

In a nut shell, the algorithm aims to solve the problem S = Bk with mini-

mum ‖Bk−S‖ (minimum error in the least square sense), where S and B are

known and k in turn remains to be solved. On top of this basic statement of

the problem, inequality constraint of k ≥ 0 is also imposed as additional re-

quirement, making it an NNLS problem. The algorithm solving this problem

is named NNLS algorithm. Basically k is assumed as many times as needed

to achieve Bk as close to S as possible. To this point, based on the linear

property of wavelet transform, the area of peak is proportional to the value

of k. Mathematically, it is written as∫
kf(t)dt = k

∫
f(t)dt. (2.5)

There are two main ingredients needed in the algorithm: a vector matrix,

S(in our case S is a vector of wavelet transform coefficients of the original

spectrum at the correct scale), and matrix, B, which is known as the designed

matrix or the basis matrix [29] (in our case B is a square matrix which pos-

sesses our pre-known knowledge of the scale of the peaks). Other ingredients

are defined or presumed in the following process of the algorithm. Detailed

steps of the algorithm are described in following box [27] [28].
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Steps:

1. initialize inputs: m×n basis matrix B, m×1 original signal vector S, empty

set P (defined as empty n-vector in Matlab), set Z={1, 2, ..., n}, integer iter

= 0 and empty n-vector solution k

2. define dual vector w = Bᵀ(S −Bk) and check terminating conditions: all

elements in the final k are ≥ 0 ; if satisfied, break and return k and norm of

the dual vector ‖w‖

3. if Z is empty and all elements in the final dual vector w reach ≤ 0

4. find the index t ∈ Z that w(t)= max{wj: j ∈ Z} and move t to P from Z

5. set BP = the tth columns of basis matrix B where t ∈ P

6. solve for z so that BP z ∼= S (z is current dummy for k in this loop)

7. if zj > 0 for all j ∈ P then k = z and go to step 2

8. iter = iter + 1, terminate if number of iterations of this optimization

exceeds the limit number 3n, let k = z and return k and norm of the dual

vector ‖w‖ ; find the index q ∈ P that kq
kq−zq = min { kj

kj−zj : zj ≥ 0, j∈ P }

9. set α = kq
kq−zq

10. set k = k + α( z - k )

11. find all indices j that kj = 0 and j ∈ P and move them from P to Z and

go to step 6

12. end and return k and norm of the dual vector ‖w‖
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CHAPTER 3

IMPLEMENTATION

In this chapter, the wavelet-based algorithm is described. The algorithm

will be explained with a Cs-137 spectrum and consists of two main parts.

The first part is the wavelet analysis where the centroids of the peaks are

detected. The second part is NNLS calculation where the exact values of

peak centroid and peak area are determined. Matlab is used to generate the

code for all analysis and calculations. The code is provided in Appendix.

3.1 Wavelet Analysis

The goal of wavelet analysis is to detect the presence of a true peak. If the

peaks detected are true peaks, their full widths at half maximum (FWHMs)

should satisfy the energy resolution limits calibrated for given detector. As

indicated in Chapter 2, the FWHM in energy domain is positively correlated

to scale in wavelet domain, hence, this problem can be transfer to the wavelet

domain and the maximum scale of a true peak should satisfy the limit cali-

brated by the DRF in wavelet domain. The maximum scale smax of a peak is

found where the peak resonates the most with the selected wavelet function.

In order to find this maximum scale smax, the largest coefficient is pursued

for its location in the scalogram.
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3.1.1 FILTER 1: WTMM-DRF crossing filter

The search for smax can be performed on every WTMM lines, but it is time-

consuming and not necessary. Because a lot of WTMM lines are created by

noise, baseline fluctuations, or the Compton continuum, they do not cross

the DRF curve and are discarded. Filtering out these WTMM lines can im-

proves the overall algorithm performance. Therefore, the first filter in the

wavelet analysis process is the WTMM-DRF crossing filter. In Figure 3.1, the

wavelet transform of Cs-137 spectrum is performed with the ’bior2.6’ wavelet

function. WTMM lines (black solid lines) formed by true photo-peaks always

cross with DRF curve measured by commercial Ortec 2×2 NaI detector with

a 1024 channel multichannel analyzer(white solid line). Figure 3.2 shows the

filtered WTMM lines that remain in the peak detection process.

3.1.2 FILTER 2: Vertical filter

The second filter is the so-called ”vertical filter” on the remaining WTMM

lines [18] [17]. WTMM lines that deviate over too large a range with respect

to energy are eliminated and are not considered for the next step. In the

current Cs-137 spectrum, WTMM lines shown in red in Figure 3.3 would be

regarded as too diagonal for the spectrum and are eliminated from further

consideration.

3.1.3 FILTER 3: Profile check on curve of wavelet transform
coefficient values

The third filter in wavelet analysis is the profile check on the curve of wavelet

transform coefficients along wavelet transform modulus maxima lines. For

true peaks, curves of their wavelet transform coefficients along wavelet trans-
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Figure 3.1: The un-processed WTMM lines for Cs-137 spectrum

Figure 3.2: The WTMM lines remaining for Cs-137 spectrum after the first
filter
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Figure 3.3: The WTMM lines eliminated after the second filter

Figure 3.4: The WTMM lines remaining after the second filter
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form modulus maxima lines possess a sign change of the first derivative of

the curves themselves. The blue line in lower part of Figure 3.5 shows the

profile of a true peak. In the Cs-137 spectrum all the WTMM lines from the

second filter possess profile like this one. For the current version of the code,

the smax is the first local maxima in the WTMM line profile.

3.1.4 FILTER 4: smax ≥ sopt

As discussed in Chapter 2, smax of true peaks from the spectrum are greater

than or equal to sopt on that channel. Therefore, the fourth filter obeying this

criterion is imposed on the remaining WTMM lines to get rid of electronic

noise. Peaks with WTMM lines that pass this filter are potential candidates

and would be sent to last filter with scale comparison on DRF function before

zero-padding preparation for the NNLS calculation.

As for peak quantification with NNLS calculation following wavelet analy-

sis, the optimal scale acquired from the wavelet transform modulus maxima

needs to be used to generate not only the basis function matrix but also the

DRF (detector response function) if simulated spectra with noise and base-

line or real spectra are dealt with.

There is certain pit fall during wavelet transform process on real spectra

though. Unlike noiseless and baseline-free signals where both the left and

the right sides are continuously zero and there is little boundary effect in

the transform, real spectra or simulated signal with noise and baseline de-

mand the elimination of boundary effect.The presence of non-zero baseline

through and beyond the net peak region, Compton scattering continnum

could be captured by the convolution with the wavelet functions and trigger

extra solutions outside the peak region. For this reason, zero-padding was

executed [30]. Detail on this will be discussed below in the next section on

NNLS calculation.
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Figure 3.5: WTMM line with its WT coefficient value profile

Figure 3.6: WTMM lines after the third filter

3.2 NNLS Solution

After peaks are identified from wavelet analysis, their optimal scale wavelet

transform coefficients are used for NNLS calculation. The requirement of

non-negative peak areas is established. As discussed in the last section, to

eliminate boundary effects, the region within ± 3σ from the peak centroid

would be cut out and padded with zeros by both sides before NNLS calcu-
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Figure 3.7: WTMM lines survived after the fourth filter

lation is performed. The lsqnonneg function is called in Matlab to generate

the NNLS solution vector, k, and norm of residuals.
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CHAPTER 4

RESULTS ON PEAK CENTROID AND
PEAK AREA

4.1 Simulated Spectra

Before the combined method of wavelet analysis and NNLS calculation was

tried on real spectra, simulated signals were used in testing the method.

Signals of single peaks with or without white noise and baseline continua

were tried to evaluate the method’s ability in eliminating the interference of

features other than peaks. Additionally, signals of multiple equally-scaled or

differently-scaled peaks with or without white noise and baseline situations

were tried to evaluate the method’s ability to resolve overlapping.

4.1.1 Single peak detection

As shown in Figure 4.1, a single Gaussian peak with area of 50 and centroid

of channel 903 was simulated as shown by the blue solid line. After wavelet

analysis and NNLS calculation, the centroid was found at channel 903 and

the area was measured to be 50, as shown by the green line of the same

figure.
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Figure 4.1: Simulated single peak signal with centroid at 903 and area of 50

Peak area evaluation with an added linear baseline

A constant baseline was added to simulate situations where a peak is situated

on a continuum caused by Compton scattering and background radiation. As

shown in Figure 4.2a, multiple spikes of solution values were given by NNLS

calculation but some of them are not even in the peak region. This was

caused by boundary effect from area extended beyond the net peak region.

It was then corrected by applying zero padding, with results presented in

Figure 4.2b. The outcome is that the patched wavelet/NNLS algorithm was

able to restore 100% accuracy for centroid and peak area when a constant

baseline is presented.

In Figure 4.3, a signal was simulated combining a linear baseline and a Gaus-

sian peak. An extreme situation is simulated where the baseline was so large

that the Gaussian peak was not immediately visible. However, the wavelets

were able to detect the peak and its area was solvable as shown in Figure 4.4

on page 25. In this case where an overwhelming linear baseline was added,

the algorithm can still obtain accurate results on peak centroid, but the cal-

culated peak area value was (49.99+0.005347)=49.995347, a deviation from
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the true value 50 by around 1.33%.

(a) Single peak with baseline not
processed with padding

(b) Single peak with baseline after
processed with padding

Figure 4.2: Boundary effect elimination in simulated peak added with
horizontal baseline (without noise).

(a) s(ch) (b) y(ch) (c) g(ch)

Figure 4.3: Combined signal s(ch) = y(ch) + g(ch), consisting of a Gaussian
peak, g(ch), with area 50 at channel 903 and a linear baseline given by
y(ch) = −0.2× ch+ 0.2, where ch is channel number.

Deviation of peak area evaluation when added with baseline and white noise

The importance of uncertainty evaluation comes mainly with noise where the

residual of the NNLS solution increased with the magnitude of the noise and

the peak area started to deviate from the true value. In the following Ta-

ble 4.1, each value of area is the average of 10 simulations and the variance
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Figure 4.4: Solution for peak area in simulated tilted-baseline-added signal.
Spikes in peak region are summed to yield the value of area.

is obtained from each batch of 10 simulations for every noise level. Some

examples of these signals are shown in Figure 4.5. The conclusion is when

the magnitude fluctuation of the noise is so big that it reaches 0.03, even

wavelet analysis combined with NNLS won’t be able to accurately determine

the peak area within a 2% deviation.

4.1.2 Multiple peaks situations

Centroids and areas for peaks with equal areas

One of the main obstacles in spectral analysis is resolving overlapping peaks.

In this section, double peaks with identical width and area were simulated

to assess the algorithm’s resolving capability.
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Table 4.1: Peak area deviation depends on the level of noise magnitude

Table 4.2: Examination on double peaks with same area

As shown in Figure 4.6, double peaks with equal area 50 were simulated

to assess the ability in accurately determining the centroids and areas of

both the peaks. Peaks with equal area remain resolvable to each other in

Figure 4.6 even when not visibly apparent to the naked eye. It was then

obvious to examine the minimum distance between two peaks which have

the same width and same area in the spectrum. Table 4.2 shows the result of

this examination. All peaks in this part possess FWHM of 65.355 channels.

The distance between peaks with equal area was decreased to 16 channels

until the deviation reached larger than 1% and was considered not accurately

resolvable any more. The conclusion is that as peaks get closer to each other,

it is harder for the algorithm to accurately resolve their areas. The lowest

boundary for distance between the two peaks is 0.245 FWHM of the peaks

with same FWHMs.
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(a) (b)

(c)

Figure 4.5: Examples of simulated single peak with baseline and white
noise of different level: (a) Simulated signal with baseline and white
Gaussian noise of σ 0.001 (b) Simulated signals with baseline and white
Gaussian noise of σ 0.005 (c) Simulated signals with baseline and white
Gaussian noise of σ 0.5

27



(a) (b)

(c)

Figure 4.6: Multiple peaks situation:(a)Simulated double peaks with equal
area 50 at channel 903 and 1764 (b)Simulated double peaks with equal area
50 at channel 903 and 1000 (c) Simulated double peaks with equal area 50
at channel 903 and 935
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Centroids and areas for peaks with unequal areas

Real life situations do not always provide close peaks with equal area. More

oftenly peaks with unequal area are present on the spectrum. Hence we eval-

uated the limit of minimum distance between two peaks that allows clear

resolvability. Table 4.3 records the data from this evaluation. Using a limit

on the deviation of 1%, the limits of minimum distance for 80%, 60%, 40%,

20% and 10% were 18, 22, 22, 23 and 23 channels respectively (All peaks are

generated with FWHM of 65.355 channel). The limit of minimum resolvable

distance increases when the area of the smaller peak decreases. A few exam-

ples are illustrated in Figure 4.7.

In summary, peak locations and areas were validated in this section 4.1

by analysing simulated signals with noise fluctuations, linear baselines and

overlapping effects. The algorithm can accurately locate single peak cen-

troids and determine single peak areas with either constant baseline or linear

baseline. On top of that, single peak areas for signals added with white

Gaussian noise calculated by the algorithm was kept in 2% deviation from

true values while the magnitude fluctuation of the noise hits 0.03. For double

peaks situation, resolvability on overlapping peaks’ areas were assessed for

this algorithm. The algorithm can resolve peaks with equal areas which are

as close to only 16 channels apart while their FWHMs are both 65 channels.

Double peaks with different areas are also resolvable by the algorithm but

the limit of minimum distance between the two peaks increases with the dif-

ference between their areas. For area ratio of small peak area over large peak

area being 80%, 60%, 40%, 20%, 10%, the minimum distances that allows to

resolve the peaks are 18, 22, 22, 23, and 23 channels respectively while both

peaks are generated with FWHM of 65 channels.
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(a) (b)

(c)

Figure 4.7: Double peaks with unequal area: (a) Simulated double peaks at
a distance of 10 channels with area 50 at channel 903 and area 30 at
channel 913 (b) Simulated double peaks at a distance of 13 with area 50 at
channel 903 and area 20 at channel 923 (c) Simulated double peaks at a
distance of 17 with area 50 at channel 903 and area 5 at channel 920

31



4.2 Real Spectra

4.2.1 The results from wavelet analysis for Am-241, Co-57,
Cs-137, Mn-54, Co-60, Na-22, Background( K-40,
Tl208)

Based on pre-measured data from Ortec model #2M/2 2×2 NaI detector

with 1024 channel MCA, the DRF function and basis matrix were generated.

Peak measurements extracted by the wavelet analysis are summarized below.

Isotope : Am-241

The predominant gamma ray of Am-241 spectrum is located at 59.5 keV. It

is detected by the algorithm. The centroid of the peak determined by the

algorithm is on channel 24, in consistent with the result from Origin. As for

the peak area, the algorithm gave 1466709. Assuming Origin result 315787

was true value, the algorithm deviated by 364.461%. This deviation of peak

area came from the fact that this 59.5 keV peak sitted on a much broader

and higher peak. Future simulation should be carried out by simulating

overlapping peaks with largely different FWHMs. and peeling out the impact

of peak not of interest. Additionally, the algorithm detected the peak at 1460

keV emitted by K-40 in the background radiation but not the background

peak of 2614 keV by Tl-208, as shown in Figure 4.8. Investigation of the

Tl-208 peak revealed that there are multiple maxima on that WTMM line,

as shown in Figure 4.9. Even though the centroid was correctly measured

at channel 837, the correct smax scale was not measured. The same case

occurred for Tl-208 peaks in other real spectra too. Improvement on filters

and DRF curve could be made for future implementations.
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Figure 4.8: Features in the Am-241 spectrum identified.

Figure 4.9: The Tl-208 peak not detected in spectra.
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Isotope : Co-57

In the case of the Co-57 spectrum, the peak of 122 keV was detected at

channel 46 as shown on Figure 4.10. The peak centroid for this 122 keV

photopeak given by the algorithm is 46, in comply with result from Origin.

The peak area was 642414 by the algorithm, having a 42.77% deviation

when compared with 449963 by Origin. The deviation was caused by the

peak of interest sitting on a non-linear baseline which assembles part of a

broad peak. The K-40 peak of 1460 keV is missed due to the same reason

as Tl-208 in Am-241 spectrum: the detected value of smax was at a local

maximum significantly smaller than sopt versus the global max, as shown

in Figure 4.11. The Tl-208 peak is missed in this spectrum too, but is

a different situation from the K-40 peak. The maximum coefficient along

the line occurs earlier than optimal scale. There is a 6% deviation to the

optimal scale in DRF function, hence, the concern of carefully monitored

measurement environment for DRF function is brought up here.

Figure 4.10: Features in the Co-57 spectrum that were identified.
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Figure 4.11: The WTMM line for the K-40 peak not identified in the Co-57
spectrum.

Isotope : Cs-137

The analysis of Cs-137 was successful, as shown in Figure 4.12. The backscat-

tering peak of approximately 186 keV was obtained from the spectrum, to-

gether with the characteristic peak of 662 keV and background peak K-40

at 1460 keV. The Tl-208 peak at 2614 keV was missed for the same reason

stated in Am-241 spectrum. The characteristic peak of 662 keV has peak

centroid on channel 223. The peak area was calculated to be 508599 by the

algorithm, deviating by 6.244%, when compared with 542473 determined by

Origin.

Isotope : Mn-54

Figure 4.13 shows that characteristic peak of 835 keV in Mn-54 was detected.

The peak centroid was found using the wavelet algorithm with perfect accu-

racy at channel 275 where true value of centroid was assumed by result from

Origin. Other features like Compton edges were also detected by the wavelet
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Figure 4.12: Features in the Cs-137 spectrum that were identified.

analysis algorithm. The peaks for K-40 and Tl-208 were missed in the same

situation of the Tl-208 peak in the Am-241 spectrum: smax measured much

smaller than sopt (Figure 4.14 and Figure 4.15). The peak area for 835 keV

peak was 4771418 by the algorithm, having only a 1.225% deviation from

Origin result 4830570.

Figure 4.13: Features in the Mn-54 spectrum that were identified.
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Figure 4.14: The missing K-40 peak in the Mn-54 spectrum.

Figure 4.15: The missing Tl-208 peak in the Mn-54 spectrum.
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Isotope : Co-60

Figure 4.16 shows the WTMM lines that remain in the collection after the

vertical filter and before scale filtering with the DRF curve. The values of

smax along the WTMM lines were too much smaller than optimal scales for

both 1173 keV peak and 1333 keV peak. Therefore both of the lines were

filtered out and both characteristic peaks are missed for this isotope. This

shows that further investigation of the DRF function needs to be carried out.

Figure 4.16: Features in the Co-60 spectrum that were identified prior to
the scale filter.

Isotope : Na-22

The characteristic peak of 1275 keV was detected for Na-22 at the correct

channel of 418, assuming true value given by Origin. The K-40 peak and the

Tl-208 peak were missed because of the same reason stated for the missing

Tl-208 peak in Am-241 spectrum (Figure 4.18 and Figure 4.19) The peak

area was 11429592 by the algorithm deviating by 5.801% to Origin result

10802900.

38



Figure 4.17: Features in the Na-22 spectrum that were identified.

Figure 4.18: The missing K-40 peak in the Na-22 spectrum.

Figure 4.19: The missing K-40 peak in the Na-22 spectrum.
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Up to this point, the algorithm has been evaluated for peak identification

and quantification on the real spectra of selected isotopes. Except for the

two in Co-60 (1.17 MeV And 1.33 MeV), all the characteristic photopeaks

in the spectra are detected and quantified by the algorithm, which are the

59.5 keV in Am-241, the 122keV in Co-57, the 662 keV in Cs-137, the 835

keV in Mn-54, and the 1275 keV in Na-22. Occasionally photopeaks by

background radiation such as the 1460 keV by K-40 and the 2614 keV by

Tl-208 are detected as well. The peaks undetected are due to the design of

filters related with scale and DRF. This should be addressed to in future

study.

Table 4.4: Peak information obtained by wavelet analysis and NNLS
calculation

4.2.2 The results from Origin

In this section, data were fitted with Gaussian functions and a linear baseline

in Origin to acquire peak centroids and peak areas as shown in Figure 4.20.

Complete results are listed in Table 4.5.

.
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(a) Peak of 59.5 keV in
Am-241 spectrum

(b) Peak of 122 keV in
Co-57 spectrum

(c) Peak of 835 keV in
Mn-54 spectrum

Figure 4.20: Eamples of peak fitting results in Origin.

Table 4.5: Peak information obtained by Origin 9
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4.2.3 Comparisons for subsection 4.2.1 and subsection 4.2.2

Comparison is made based on results from ORIGIN 9, as shown in Table 4.6.

The background peaks for K-40 and Tl-208 were not detected in the back-

ground spectrum, therefore there is no information on those peaks. Using

Table 4.6: Comparison between solutions from proposed algorithm and
Origin 9

the results from Origin as true values, except the two missing peaks of the

Co-60 spectrum, all other characteristic peaks were detected with centroid

deviation of less than 1%. However, the peak areas calculated by NNLS were

not in compliance with those from Origin. Deviation of peak areas decreases

significantly with energy. The reason of this may lie in the fact that low en-

ergy peaks sit on larger background and accumulated Compton continuum,

making it difficult for Origin to accurately determine peak area. Peak areas

calculated by NNLS were processed by wavelet extraction, therefore would

suffer less influence from baseline and continuum.

As shown in the comparison, for single-peaks sitting on baseline or contin-

uum that can be detected in the spectra by the wavelet-based algorithm, te

algorithm provides accurate solutions for peak centroids and areas as good

as Origin. However, better than Origin, with calibrated DRF of the detector,

our algorithm can not only automatically resolve overlapping peaks but also

can still provide overlapping peaks’ centroids and areas.

Below is a part of Ba-133 spectrum, sitting on a simulated linear baseline.

Origin can not resolve these four peaks at 276, 301, 355 and 383 keV. However
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with feature extraction ability of wavelet transform, our algorithm still pro-

vides indications on peak centroids and peak areas, though with uncertainty

to certain degree, which should be explored in the next step to accurately

determine.

Figure 4.21: The peak areas determined by wavelet algorithm in the Ba-133
spectrum.
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CHAPTER 5

EXPLORATION ON THE UNCERTAINTY
OF PEAK AREA

5.1 Conventional Uncertainty of Peak Area

Conventionally, the uncertainty of a peak’s area is calculated according to a

region of interest, where boundaries of the region are appearing as abrupt rise

and drop in counts number. The left bound and the the right bound of the

peak region can be adjusted case by case. Mathematically, the uncertainty

of peak area is determined by following equation:

σA =

√
A+D(1 +

n

2m
); (5.1)

where A is net peak area (counts accumulated above an average background

line below the net peak region), U is the upper boundary of the net peak

region, L is the lower boundary of the net peak region, n is the number of

channels within the net peak region, m is the number of channels of exten-

sion beyond the net peak region, D is the extended background area (counts

accumulated below extension beyond the net peak region below background

line) including background count integration from L−m to L− 1 and from

U + 1 to U +m, as shown in Figure 5.1 [1].

Our code implemented the equation above with extension width m = 5 chan-

nels, and the uncertainties were found for detectable peaks in real spectra,

using the technique described in the following sections.
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Figure 5.1: Definition of uncertainty of peak area in conventional way [1]

5.2 Attempt on Finding NNLS Uncertainty of Peak

Area

The derivation of the uncertainty of a peak’s area comes from error propa-

gation in least square problem [31] [32] [33] [34] [29]. Since we are, in essence,

evaluating the error in variables (the error of k in S = Bk), the answer has

close relation with property of matrix B

S = Bk, (5.2)

where B is the basis function matrix. The NNLS solution for vector k would

be

k = (BtB)−1BtS (5.3)

= OS. (5.4)

where

O = (BtB)−1Bt (5.5)
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and the minimum of ‖Bk− S‖ is achieved by this value of k (please refer to

Chapter 2).

Then covariance matrix for k is given by

Ck = E{[k − E[k]][k − E[k]]t} (5.6)

= E{O[S − E[S]][S − E[S]]tOt} (5.7)

= OE{[S − E[S]][S − E[S]]t}Ot (5.8)

= OCSO
t, (5.9)

where E is the expectation operator, and CS is the covariance matrix of

S [35] [36] [37]. In practical situations, CS is not calculable because the basis

matrix B is singular [38]. However by assuming the psuedo-inverse of the

basis matrix B to be the inverse, we will have the generalized expression of

uncertainty of k. Then we will deal with the special case of the singularity

of the basis function from this generalized expression. So

CS = σ2
SI. (5.10)

Equation (5.9) becomes

Ck = OCSO
t (5.11)

= (BtB)−1Btσ2
SI[(BtB)−1Bt]

t
(5.12)

= σ2
S(BtB)−1BtI[(BtB)−1Bt]

t
. (5.13)

Since BtB is symmetrical, (BtB)−1 is also symmetrical too,

[(BtB)−1]
t

= (BtB)−1. (5.14)
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Therefore

Ck = σ2
S(BtB)−1BtB(BtB)−1 (5.15)

= σ2
kI = σ2

S(BtB)−1. (5.16)

However, because of the nature of our basis function, it is significantly sin-

gular. For example, the specially designed basis function matrix B for a

spectrum measured by the Ortec 2×2 NaI detector which has 1024 channels,

has a rank of only 442, making it singular. However, the errors in k would

only come from dimensions that are not free in the basis function matrix

B. Therefore, the individual uncertainty of elements in the solution k would

need to be scaled down to 1
m−n , which is 1

(1024−442) in this case. With cur-

rent references, we use the pseudo-inverse of BtB to calculate (BtB)−1. This

step is achieved with the built-in function from Matlab: pinv(), which is the

Moore-Penrose pseudo-inverse and is based on the theory of Single Value

Decomposition(SVD).

5.3 Results of Both Methods from Section 5.1 and

Section 5.2

Uncertainties were determined by both methods described in Section 5.1 and

Section 5.2, and results are listed in Table 5.1. As listed in the table, uncer-

tainties calculated from NNLS covariance matrix, conventional method and

Origin significantly differ between each other, like they are living in parallel

universe. A meaningful criteria or standard for uncertainty calculation needs

to be established for further exploration of this problem.
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Table 5.1: Comparison of uncertainty obtained from proposed algorithms
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

This thesis focuses on answering the problem of peak detection and peak

quantification of the peak centroid, area and the uncertainty of the area.

The continuous wavelet transform and NNLS were utilized in designing the

algorithm. Comparing with reference spectra or results from other software

tools, the performance of the algorithm was evaluated on both simulated

signals and real spectra.

On the assessment of results for real spectra, the algorithm works for find-

ing the characteristic peaks in Am-241, Co-57, Cs-137, Mn-54 and Na-22

but misses the two in Co-60. Preliminary interpretation on this problem is

that the Compton continuum of 1.33 MeV peak raised the baseline on which

1.17 MeV peak sits on. Therefore FWHMs from those two peaks used for

DRF calibration is broader than it should be. It is reasonable to rethink

the calibration data of DRF curve on these two peaks. If the FWHM gets

smaller, the sopt from the fitted DRF could be smaller, making the detection

of Tl-208 peak a possible task as well, because the difference between smax

and sopt gets smaller. For peaks identifiable by the algorithm, centroids and

areas are assessed comparing with results get from Origin. Uncertainties of

peak areas are calculated in both conventional ways and using NNLS solution

analysis. Comparisons were made between the NNLS solutions and Origin

fitting errors. Some deviations were large but there are directions for future

works that can be concluded from these results.
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6.2 Future work

There are many aspects that need to improve in order to better the perfor-

mance of current algorithm. The first one is the variability of basis function

matrices. Being one of the two most important elements in performing NNLS

computation, the basis matrix B must be carefully determined. Attempts

were made to compute this matrix on different computers to calculate the

results as quick as possible. It was discovered that sometimes the computa-

tions of B from different computers do not match. It does not mean that

every element in the corresponding position of different matrices varies with

each significantly. For example, the basis function matrices generated for

simulated peak of 65.355 channels in FWHM with wavelet ’bior2.6’ from two

computers are shown in Figure. They look the same and the results calcu-

lated for peak areas are the same, but 3,647,479 elements out of total 2048

× 2048 are different. For wavelet ’gaus4’, the situation gets worse: even the

results calculated for peak areas are different with the basis function matri-

ces calculated from different computers. Since basis function matrices are

generated with the same wavelet at the same scale, they should not vary ac-

cording to different computers. This might need more inspection considering

the inaccuracy of computation would be compounded as a result.

The second aspect is on what scale to solve the NNLS problem. Sometime

because the position of WTMM lines varies greatly along scales, uncertainty

in peak centroids can be large. For these situations, the proper way of de-

termining which scale should be used to solve the NNLS problem needs to

be found.

The variability in WTMM line positions also brings up the third need for im-

provement: further filters for true photopeak determination. Compton edges

are sometimes detected as peaks in the wavelet extraction part. However

the WTMM lines associated with Compton edges can have more variabil-
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(a) Difference matrix of Basis matrices
for ’bior2.6’ wavelet

(b) Difference matric of Basis matrices
for ’gaus4’ wavelet

Figure 6.1: Difference matrix of basis function matrices calculated from
different PCs

ity in scale positions than true peaks. Distinguishing features like Compton

edges can be accomplished by designing new filters for them. Moreover, only

WTMM lines in terms of scales are created as filters for uptodate algorithm,

attempts can be made to create WTMM lines with respect to energy chan-

nels. This extra filter can offer additional reference for peak searching.

Another aspect of future work is handling boundary conditions of the carved-

out small piece of the spectrum. As was shown in Chapter 4, a preliminary

way of handling boundary effect was used to determine peak areas. In sim-

ple, simulated signal analysis this technique works, but it is not sufficient in

more complex situations. Advanced techniques should be tested to evaluate

the efficacy of this approach.

There is also a need to simulate the situation where peaks are sitting on

non-linear baseline and evaluate peak area calculation in that situation.

Sixth, continuous exploration needs to be carried out on quantification on

uncertainty of peak area. There are commercial software built-in with prod-

ucts and packages that possess the ability to quantify peak area uncertainty.

But the current standard of quantification on uncertainty of peak area needs

to be found to evaluate the performance of our algorithm. Further research

should be carried out here.
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Next prospect of improvement is in careful data collection and curve fitting

for DRF function. The DRF for NaI scintillators has an empirical non-linear

curve template that can be fit [3] [39] [40]. However, data to fit this DRF

function can be difficult to control in a consistently-reproducible environ-

ment. Future data collection needs to be carefully monitored to maintain

the calibration environment so that we can have least interference of other

variables in the production of DRF function. The template of the DRF for

NaI needs continuous updating.

Also, as mentioned in Chapter 2, several near symmetric wavelets were used

in the beginning of study. Both fourth order of Gaussian function and Coiflet

of order two wavelets were not giving good enough results when solving for

peak areas of simulated signals. Therefore results and figures presented here

are generated by bi-orthogonal wavelet of order 2.6 solely. Yet even the

bi-orthogonal wavelet might not be perfect with respect to minimizing the

closest resolvable distance. For instance, as discussed in Chapter 4, the clos-

est resolvable distance between two equal area peaks was found to be 16

channels. It is possible that new custom-designed wavelets may be better

suited to solve this problem [4].

Last but not the least, the software written for this research has quite a few

parameters that need to be optimized, either for the purpose of efficiency or

the purpose of accuracy. Such parameters are the threshold value for finding

the local maxima in scalogram, the lower and upper bound of the carved-out

spectrum interval for NNLS calculation, the tolerance of the difference be-

tween maximum scale and the optimal scale of the WTMM line.
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APPENDIX A

MATLAB FUNCTIONS

function [arena,rec]=peaks2(spect0,wavelet,scales)

==Data Input and pre-processing

load(’final.mat’);

spect0=spect0’;

numch=size(spect0);chl=max(numch);

ch=1:chl;

==Direct Localmaxima

wt=cwt(spect0,scales,wavelet);

y=jmax(wt);[irow,icol]=find(y);

figure();

subplot(’position’,[0.05 0.7 0.92 0.25]); plot(spect0);axis tight;

hold on;subplot(’position’,[0.05 0.04 0.92 0.6]);

imagesc(wt);

hold on

plot(ch(icol),scales(irow),’k.’,’markersize’,4);

plot(SC,’w.’,’markersize’,4);title(’JMAX’);

set(0,’DefaultFigureWindowStyle’,’docked’)

y2=filterH(wt,y);

[irow2,icol2]=find(y2);

figure();

subplot(’position’,[0.05 0.7 0.92 0.25]);plot(log(spect0+1));axis tight;

hold on;subplot(’position’,[0.05 0.04 0.92 0.6]);

imagesc(wt); hold on;plot(ch(icol2),scales(irow2),’k.’,’markersize’,4);

plot(SC,’w.’,’markersize’,4);title(’filterH’)
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set(0,’DefaultFigureWindowStyle’,’docked’)

z=lines4(y2);

z2=linesplit(z);

==DRF check

for i=1:max(z2(:,1))

dummyIndex=find(z2(:,1)==i);

z2dummy=z2(dummyIndex,:);

iden=polyxpoly(ch,SC,z2dummy(:,3),z2dummy(:,2))

if isempty(iden)

z2(dummyIndex,1)=0;

end

end

z3=z2((z2(:,1)~=0),:);

==Get Optimal Scales and Rearrange Line Numbers

z5=flipud(z3);

d=unique(z5(:,1));len=length(d);

ops=zeros(len,1);opt=zeros(len,1);finalseed=[];seedid=[];

for i=1:len

z5dummy=z5(find(z5(:,1)==d(i)),:);

opt(i)=round(max(polyxpoly(ch,SC,z5dummy(:,3),z5dummy(:,2))));

ops(i)=SC(opt(i));

end

Ltwist=[opt d];

dumid=(1:max(size(Ltwist)))’;Ltwist=[Ltwist dumid];Ltwist=sortrows(Ltwist);

Ltwist=[ Ltwist(:,2) Ltwist(:,3) Ltwist(:,1)];

==Start Line by Line Inspection [Eliminations by Scales and
Slopes]

maxs=zeros(len,1);cen=zeros(len,1);rnorm=zeros(len,1);k5=zeros(len,chl);
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area=zeros(len,1);uncer=zeros(len,1);rec=[];

for i=1:len

dd=z5(find(z5(:,1)==d(i)),:);

maxs(i)=maxtesting5(dd,wt,i);

if maxs(i)==0

continue

else

cen(i)=dd(find(dd(:,2)==maxs(i)),3);

end

if spect0(cen(i))==0

continue

end

if maxs(i)>=(ops(i)-6)

low=floor(cen(i)-3*floor(fh(cen(i))));

up=ceil(cen(i)+3*ceil(fh(cen(i))));

lowa=floor(cen(i)-0.6*floor(fh(cen(i))));

upa=ceil(cen(i)+0.6*ceil(fh(cen(i))));

if low>0&&up<chl

n5=spect0(low:up);

nnlsk5=[zeros(1,low+1001),n5,zeros(1,chl-1-up+1000)];

elseif low<=0

low=1;

lefth=cen(i);

up=2*lefth-1;

n5=spect0(low:up);

if length(n5)<=10

continue

end

nnlsk5=[zeros(1,low+1001),n5,zeros(1,chl-1-up+1000)];

if lowa<=0

lowa=1;upa=2*cen(i)-1;

end

elseif up>=chl

up=chl;

righth0=cen(i);

righth=length(n5)-righth0;

low=chl-2*righth+1;
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n5=spect0(low:up);

if length(n5)<=10

continue

end

nnlsk5=[zeros(1,low+1001),n5,zeros(1,chl-1-up+1000)];

if upa>=chl

upa=chl;lowa=chl-2*cen(i)+1;

end

end

[k5(i,:),rnorm(i)]=

quickNNLSchl(n5,nnlsk5,’bior2.6’,Bb1024,

ops(i),maxs(i),cen(i),chl,low,up);

area(i)=sum(k5(i,lowa:upa));uncer(i)=0;

if isempty(finalseed)

finalseed=d(i);seedid=i;

else

finalseed = cat(2,finalseed,d(i));seedid=cat(2,seedid,i);

end

end

end

==Final Output and Display

arena0=[cen’; area’ ;uncer’]’;

arena=arena0((arena0(:,2)~=0),:);

z6=z5;

XOR=setxor(finalseed,z6(:,1));

lex=length(XOR);

for i=1:lex

fifi=find(z6(:,1)==XOR(i));

z6(fifi,1)=0;

end

z6=z6(z6(:,1)~=0,:);

LIN=Ltwist;

fifi4=[];

for i=1:length(seedid)

eee=LIN(LIN(:,2)==seedid(i),:);

if isempty(fifi4)
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fifi4=eee;

else fifi4=[fifi4;eee];

end

end

fifi4=[fifi4(:,3) fifi4(:,1) fifi4(:,2)];

fifi4=sortrows(fifi4);

fifi4=fifi4(:,3);

figure(251);

subplot(’position’,[0.05 0.7 0.92 0.25]);

plot(log(1+spect0));

hold on;

axis tight;

title(’Finals’);

hold off;

hold on;

subplot(’position’,[0.05 0.04 0.92 0.6]);

imagesc(wt);

hold on;

if isempty(seedid)

hold off

else

plot(ch(z6(:,3)),scales(z6(:,2)),

’k.’,’markersize’,4);

plot(ch(cen(seedid)),scales(maxs(seedid)),

’y*’,’markersize’,6);

plot(SC,’w.’,’markersize’,4);

title(num2str(fifi4’));

hold off;

end

set(0,’DefaultFigureWindowStyle’,’docked’)

cen0=cen(cen(:)~=0);

maxs0=maxs(maxs(:)~=0);

LIN=Ltwist;

LINSEED=find(cen(:)~=0);

StarInd=d(LINSEED);

z7=z5;

XOR2=setxor(StarInd,z7(:,1));
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lex2=length(XOR2);

for i=1:lex2

fifi2=find(z7(:,1)==XOR2(i));

z7(fifi2,1)=0;

end

z7=z7(z7(:,1)~=0,:);

fifi3=[];

for i=1:length(StarInd)

qq=LIN(LIN(:,1)==StarInd(i),:);

if isempty(fifi3)

fifi3=qq;

else fifi3=[fifi3;qq];

end

end

fifi3=[fifi3(:,3) fifi3(:,1) fifi3(:,2)];

fifi3=sortrows(fifi3);

fifi3=fifi3(:,3);

figure(250);

subplot(’position’,[0.05 0.7 0.92 0.25]);

plot(log(1+spect0));

hold on;

axis tight;

title(’After Straightness Filter’);

hold off;

hold on;

subplot(’position’,[0.05 0.04 0.92 0.6]);

imagesc(wt);

hold on;

plot(ch(z7(:,3)),scales(z7(:,2)),’k.’,’markersize’,4);

plot(ch(cen0),scales(maxs0),

’y*’,’markersize’,6);

plot(SC,’w.’,’markersize’,4);

title(num2str(fifi3’));

hold off;

set(0,’DefaultFigureWindowStyle’,
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’docked’)

==User Interaction

while(1)

diskey0=

input([’---------------------

Choose line number from 1 to ’,

num2str(len),

’ to display or choose 0 to exit : ’],

’s’);

diskey=str2double(diskey0);

if diskey>=1 && diskey<=len

dd=z5(find(z5(:,1)==d(diskey)),:);

figure();

subplot(212)

t=dd(:,2);r=wt(dd(:,4));

if maxs(diskey)~=0

ds=find(t==maxs(diskey));

fun=dd(find(dd(:,2)==maxs(diskey)),3);

plot(t,r,’b’,maxs(diskey),r(ds),’k.’);

title([num2str(diskey),

’ Smax = ’,

num2str(maxs(diskey)),

’, Sopt = ’

,num2str(ops(diskey)),

’, centroid around ’,

num2str(cen(diskey))]);

subplot(211);

imagesc(wt);

hold on;

plot(ch(dd(:,3)),

scales(dd(:,2)),

’k.’,’markersize’,4);

plot(ch(fun),

scales(maxs(diskey)),’y*’,

’markersize’,6);

plot(SC,’w.’,’markersize’,4);
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title([’line’,num2str(diskey)]);

else

plot(t,r,’b’);

title([num2str(diskey),

’ Smax = ’,

num2str(maxs(diskey)),

’, Sopt = ’,

num2str(ops(diskey)),

’, centroid around ’,

num2str(cen(diskey))]);

subplot(211);

imagesc(wt);

hold on;

plot(ch(dd(:,3)),

scales(dd(:,2)),’k.’,

’markersize’,4);

plot(SC,’w.’,’markersize’,4);

title([’line’,num2str(diskey)]);

end

set(0,’DefaultFigureWindowStyle’,

’docked’)

elseif diskey==0

break

else

end

end

arena
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function [y,I] = jmax(x)

r = size(x,1);

y = [zeros(r,1) diff(abs(x),1,2)];

y(abs(y)<sqrt(eps)) = 0;

y(y<0) = -1;

y(y>0) = 1;

y = diff(y,1,2);

I = find(y==-2);

y = zeros(size(x));

y(I) = 1;

m=max(max(x));

I=find(y);

threshold=-10; %2.8 for log space of other wavelets %~50 normal space

for i=1:size(I,1)

if x(I(i))<threshold

y(I(i))=0;

end

end
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function [ y ] = filterH( x,y )

%FILTERH Summary of this function goes here

% Detailed explanation goes here

r2 = size(x,1);

r1 = size(x,2);

s=size(x);

w=30; %width to filter over

I=find(y);

y2=zeros(size(y));

for i=1:size(I,1)

[a,b]=ind2sub(s,I(i));

if (b-w)>0

if (b+w)<r1

m=max(x(a,(b-w):(b+w)));

if x(a,b)< m

y(a,b)=0;

for j=(b-w):(b+w)

if abs(m-x(a,j))<eps

y2(a,j)=1;

end

end

end

else

m=max(x(a,(b-w):r1));

if x(a,b)< m

y(a,b)=0;

for j=(b-w):(r1)

if abs(m-x(a,j))<eps

y2(a,j)=1;

end

end

end
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end

else

m=max(x(a,1:(b+w)));

if x(a,b)< m

y(a,b)=0;

for j=1:(b+w)

if abs(m-x(a,j))<eps

y2(a,j)=1;

end

end

end

end

end

%y=y+y2;

end
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function [ y ] = lines4( y )

% LINES4

% Given a matrix y of zeros and ones, changes the values of ones to the

% position nearest maxima above it. End of maxima chains are set to a value

% of -1 instead.

%

% Algorithm:

% 1. Find all ones on the bottom row of the matrix.

% 2. For each one, find the "nearest neighbor above".

% That is, look up one row. Is there another one within a set

% horizontal difference (hw)? If so, set the value of the lower one

% to the index value of the upper one. If not, look up another row.

% Repeat if needed up to a maximum vertical difference of hw. If no

% one is found, set the value of the lower one to ’-1’ to signify the

% end of a chain.

% 3. Repeat for each row.

% 4. At the end, there are still ones in the output matrix. These

% correspond either to the top most point of the line (the end of the

% chain) or isolated maxima points. We set all of these values to ’-1’.

%

%

% This is the final version of this code.

%Note that when referring to the elements of this matrices by the normal

%[a,b] index, the first index corresponds to the y-position (the row

%number) and the second corresponds to the x-position. Then if we know

%what (x,y) coordinate we want, we actually need to call it as [y,x]. This

%is why some of these variables are named ’sx’ or ’sy’: to remind that they

%are the size in that direction, etc

sx=size(y,2); %size in x direction

sy=size(y,1); %size in y direction

s=size(y); %size

%how spaced should we allow maxima to be?

hwl=10; %horizontal radius to check.

vwl=5; %vertical radius to check
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%scan across each row, starting from the bottom

%Note: loop ends at 2nd row. It is not possible to look for maxima above

%the first row, so it is handled separately.

for i=sy:-1:2

Il=find(y(i,:)); %(lower row)

yl=i; %

if numel(Il)~=0 %make sure there is at least one maxima

%in a row before checking

for ii=1:size(Il,2)

xl=ind2sub(s,Il(ii));

vl=min(i-1,vwl); %vertical limit to check

hlLEFT=min([xl-1,hwl]);

%horizontal limit, must stay within bounds

hlRIGHT=min([hwl,sx-xl]);

for H=1:vl

%check next row first,

%then so on if none found

%set value to -1

%if there is no maxima above it,

%i.e. it’s the

%end of the chain

temp=y(i-H,(xl-hlLEFT):(xl+hlRIGHT));

%ind=find(temp);

ind1=find(temp==1);

if numel(ind1)==0 %no ones found

if H==vl %no rows to check

y(yl,xl)=-1; %-1 signifies end of chain

break

end

else %new value found value found

[dy,dx]=ind2sub(size(temp),ind1);

y(yl,xl)=sub2ind(s,yl-H,xl-hlLEFT+dx-1);

break;

end
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end

end

end

end

%Fix all of the ones on the topmost row (they are the ends of maxima

%chains or isolated maxima)

y(find(y==1))=-1;

end
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function [ v ] = linesplit( y )

%LINESPLIT Takes the output of lines4 and separates the lines.

% returns 4 columns: line number, two normal subscripts, and the index.

sx=size(y,2); %size in x direction

sy=size(y,1); %size in y direction

s=size(y); %size

n=0;

v1=[]; %line number

v2=[]; %first index

v3=[]; %second index

v4=[];

for i=sy:-1:2

Il=find(y(i,:)); %(lower row)

yl=i; %

if numel(Il)~=0

%make sure there is at least one maxima

%in a row before checking

for ii=1:size(Il,2)

%find returns a 1xn vector

n=n+1; %next line

iii=sub2ind(s,i,Il(ii));

while iii>0

[a,b]=ind2sub(s,iii);

v1=[v1 n];

v2=[v2 a];

v3=[v3 b];

v4=[v4 iii];

iii=y(a,b); %next value

y(a,b)=0; %get rid of value so it isn’t checked again

end

end

end

v=[v1’ v2’ v3’ v4’];
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end
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function [maxind1,maxind]=maxtesting5(t,wt,lineind)

load(’final.mat’);

t0=t(:,2);

r=wt(t(:,4));

x=r;

n=max(size(x));

maxlist=[];ds=[];

d=5;

for i=2:(n-1)

m=[];

if i<=d

if (i+d)>=length(x)

m=max(x(1:end));

else

m=max(x((1):(i+d)));

end

if abs(x(i)-m)<eps

maxlist=[maxlist t0(i)];

ds=[ds i];

end

else

if i>=(n-d)

% m=max(x((i-d):(i)))

m=max(x((i-d):(n)));

if abs(x(i)-m)<eps

maxlist=[maxlist t0(i)];

ds=[ds i];

end

else

m=max(x((i-d):(i+d)));

if abs(x(i)-m)<eps

maxlist=[maxlist t0(i)];

ds=[ds i];

end

end

end
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end

%maxlist

% maxind1=maxind(1);

if isempty(maxlist)

maxlist=0;

end

maxind1=maxlist(1);
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function [k,resnorm]=

quickNNLSchl(n5,y,wavelet,B,ops,maxs,cen,chl,low,up)

ch=1:chl;

c1=cwt(y,1:512,wavelet);

cc1=c1(maxs,(1002:(1002+low+length(n5)+chl-up-2)));

[k,resnorm]=lsqnonneg(B,cc1’);

y0=y(1002:(1002+low+length(n5)+chl-up-2));

[AX,H1,H2] = plotyy(ch,y0,ch,k’);

title([’ Smax = ’,num2str(maxs),

’, Sopt = ’,num2str(ops),

’, centroid around ’,num2str(cen)])

set(get(AX(1),’Ylabel’),’String’,’Counts’)

set(get(AX(2),’Ylabel’),’String’,’Peak Area’)

xlabel(’Channel Number’,’FontSize’,12)

set(get(AX(1),’Ylabel’),’FontSize’,12);

set(get(AX(2),’Ylabel’),’FontSize’,12);

set(AX(1), ’xlim’, [1 chl])

set(AX(2), ’xlim’, [1 chl])

end
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