
PRACTICAL STATIC RACE DETECTION
FOR JAVA PARALLEL LOOPS

BY

COSMIN A. RĂDOI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Advisor:

Adjunct Assistant Professor Danny Dig

Abstract

Despite significant progress in recent years, the important problem of static

race detection remains open. Previous techniques took a general approach and

looked for races by analyzing the effects induced by low-level concurrency con-

structs (e.g., java.lang.Thread). But constructs and libraries for expressing

parallelism at a higher level (e.g., fork-join, futures, parallel loops) are becoming

available in all major programming languages. We claim that specializing an

analysis to take advantage of the extra semantic information provided by the

use of these constructs and libraries improves precision and scalability.

We present IteRace, a set of techniques that are specialized to use the

intrinsic thread, safety, and data-flow structure of collections and of the new

loop-parallelism mechanism to be introduced in Java 8. Our evaluation shows

that IteRace is fast and precise enough to be practical. It scales to programs

of hundreds of thousands of lines of code and it reports few race warnings, thus

avoiding a common pitfall of static analyses. The tool revealed six bugs in real-

world applications. We reported four of them, one had already been fixed, and

three were new and the developers confirmed and fixed them.

ii

Acknowledgments

This work has benefited from the time and support of many people. I would

like to thank my advisor, Danny Dig. He has trusted my research ability and

has guided me with patience throughout the development of this project.

I thank Codruta Girlea, Stas Negara, Sandro Badame, Francesco Sorrentino,

Rajesh Karmani, Nicholas Chen, Semih Okur, Samira Tasharofi, Milos Gligoric,

Traian-Florin Şerbănuţă, Manu Sridharan, Darko Marinov, and Vikram Adve

for their feedback. I also thank Mihai Codoban and Caius Brindescu for their

help in making an unbiased evaluation.

This research is partly funded through NSF CCF-1213091 and CCF-1219027

grants, an Intel gift grant, and the Illinois-Intel Parallelism Center at the Uni-

versity of Illinois at Urbana-Champaign. The Center is sponsored by the Intel

Corporation.

iii

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 Motivating example 5

Chapter 3 Race detection . 8
3.1 2-Threads program model . 8
3.2 Filtering using thread-safety model 12
3.3 Bubble-up to application level . 13
3.4 Synchronized accesses . 14
3.5 Discussion . 14

Chapter 4 Evaluation . 16
4.1 Methodology . 16
4.2 Results . 19

Chapter 5 Related work . 26
5.1 Dynamic analyses . 26
5.2 Static analyses for C and other languages 26
5.3 Static analyses for Java . 26

Chapter 6 Conclusion . 28

References . 29

iv

Chapter 1

Introduction

The recent prevalence of multi-core processors has increased the use of shared-

memory parallel programming. Loop parallelism is often the first choice when

attempting to speed up programs [48]. The major programming languages have

parallel constructs or libraries that provide extensive support for loop paral-

lelism, e.g., Parallel.For in .NET TPL [4], .parallel() in the upcoming

Java 8 collections [5], parallel for in C++ TBB [6]. Still, programs with

parallel loops are subject to the major plague in shared-memory concurrent

programming: data races. A data race can occur when one thread executing a

loop iteration writes a memory location and another thread executing another

loop iteration accesses the same memory location with no ordering constraint

between the two accesses.

Data races are hard to find due to non-deterministic thread scheduling. This

has led to a large body of research on race detection. Static race detection

techniques [8, 13, 34, 35, 37–39, 43–45, 51, 64] use an underlying static model of

the program’s real execution. In theory, this allows a single analysis pass to find

all the races that could occur in all possible program executions. Static race

detectors rarely miss races but are faced with the opposite problem: despite

continuous improvements, they still report impractically-many false warnings.

For example, we applied JChord [44], a state-of-the-art static race detector, on

compute-intensive loops from seven Java applications. In many cases, JChord

reported thousands of racing accesses per analyzed loop. This may be one

of the reasons why static race detectors have not been embraced in practice.

Indeed, most of the recent work on data-race detection has focused on dynamic

detectors [9, 21, 22, 25, 30, 39–41, 45–47, 55, 57, 58, 60, 62], which typically have

much fewer false warnings, but have high overhead and miss races on program

paths that are not executed.

Can static race detection for Java applications be practical? Previous ap-

proaches embraced generality : they tried to work equally well for any kind of

parallel construct by analyzing thread-level concurrency, did not differentiate

between application and library code, and did not use the documented behav-

ior of libraries. This came at the expense of practicality : they were either not

scalable or reported a high number of false warnings. We hypothesize that a

specialized analysis can significantly improve precision while maintaing scala-

1

(a) Runtime (b) General (c) IteRace

tm

t1 tnhs

h1 hn

tm

tm

t↵ t�hs

h↵ h�

tm

tm

tahs

ha

tm

Figure 1.1: Modeling a parallel loop. Circles are threads, squares heap
regions. Double line denotes abstraction.

bility. In this paper, we validate this hypothesis for the case of Java parallel

loops.

Our goals are to prune false warnings and reduce as much as possible the total

number of warnings the programmer has to inspect, while not sacrificing safety,

i.e., not removing any true races. We present three specialization techniques

that contribute to these goals: (i) 2-Threads – make the analysis aware of the

threading and data-flow structure of loop-parallel operations, (ii) Bubble-up –

report races in application code, not in libraries, and (iii) Filtering – filter the

race warnings based on a thread-safety model of library classes. We implemented

these techniques in a tool, IteRace, and empirically validated how well they

work individually, and in tandem.

2-Threads

A parallel loop is an SPMD-style (Single Program, Multiple Data) computation.

Its iterations are identical tasks processing different input elements. The tasks

are executed by a pool of threads. Without loss of generality, we can consider

that each task/iteration is computed by a different thread. The main thread

forks multiple identical threads at the beginning of the loop and waits for these

threads to join at the end of the loop (Fig.1.1.a). Each of the threads/iterations

can access a part of the heap. In the figure, hs is the set of objects shared

between parallel threads. hi is the set of objects specific to thread ti, i.e., input

or new objects only accessed by thread ti.

A general race detector models the identical forked threads by only one

abstract thread [44, 51] (see Fig.1.1.b). This makes the thread-specific object

sets h1...hn indistinguishable from each other, as they are modeled by a unique

set ha. Then, escape analysis or other techniques are used to refine the results

and reduce the number of false warnings.

2

In contrast, our specialized technique models the identical forked threads by

two distinct abstract threads, tα and tβ (Fig. 1.1.c). This closely matches the

definition of a data race as it disambiguates the two threads involved in the

definition. As the objects specific to each of the two threads are modeled by

the separate sets hα and hβ , the number of abstract objects that are shared

is significantly reduced. Our modeling subsumes the effect of thread escape

analysis but is more precise. Like with thread-escape, an abstract object that

does not escape a thread is considered safe. However, when an object does

escape, our analysis does not implicitly consider it unsafe. IteRace only reports

a race warning when an object reaches the other abstract thread and there is a

concurrent access.

Filtering

To improve performance, many library classes employ advanced synchronization

techniques (e.g., memory fences, spin-locks, compare-and-swap, immutability,

complex locking protocols). These classes pose challenges for any static race

detection and their analysis is mostly limited to model checking and verifi-

cation approaches. As our analysis is aimed at application code, not library

classes, we assume that libraries are correctly implemented. Thus, we use a

lightweight model of their documented behavior to determine correctness. In

addition, following Michael Hind’s advice on the importance of client-specific

pointer analysis [36], we use this model to specialize the context sensitivity to

increase precision and lower runtime.

Bubble-up

All Java programs of real value are built on top of libraries - even the “Hello

World” program uses several JDK classes. General race detectors do not keep

track of whether the race appears in library code or in application code. How-

ever, reporting a race in library code has little practical value for application

developers as such a race is rarely due to a buggy library - it is likely due to

concurrent misuse of the library.

IteRace bubbles-up the race warnings that occur in library code by tracing

back the race warnings to the application level and presenting a summarized

result to the developer. The application-level race warnings can be seen as

misuse warnings on shared, thread-unsafe library objects.

3

Contributions

This paper makes the following contributions:

• Race detection approach. We propose three techniques aimed at mak-

ing static race detection for loop-parallel code practical. Our approach (i)

specializes in lambda-style parallel loops [5], (ii) traces, summarizes, and

reports the race warnings in application code, and (iii) is aware of and

uses known thread-safety properties of library classes.

• Tool. We implemented these techniques in a tool, IteRace, that analyzes

Java programs. We released it as open-source: http://github.com/cos/

IteRace

• Evaluation. We evaluated our approach by using IteRace to ana-

lyze seven open-source projects. For context, we also analyzed the same

projects with a state-of-the-art, but general, static race detection tool,

JChord [44]. The results show that our specialized approach is sufficiently

fast and precise to be practical. It runs it at most a few minutes and

reports very few warnings for many of the case studies.

We reported four of the bugs found by IteRace to the projects’ develop-

ers. One had already been known and fixed. The other three were new,

and they were confirmed and fixed by the developers.

Finally, we designed and carried out a set of experiments to measure the

effect of each specialization technique alone and in tandem with other

techniques.

This thesis is a revised version of work previously published by the au-

thor [53].

4

Chapter 2

Motivating example

To illustrate our analysis, we use a simple N-body simulation implementation,

shown partially in Fig. 2.1; for now, only consider the code, not the extra

graphical aid. An N-body simulation computes how a system of particles evolves

when subjected to gravitational forces. The parallel implementation uses the

loop parallelism library enhancements to be introduced in Java 8 [3]. In Java 8,

clients can call the parallel() method on any Collection to get a ”parallel

view” of it. They can then execute loop-parallel operations (e.g. parallel map)

by passing lambda expressions to this view.

In this example, a HashSet of particles is created by the lambda expression

at lines 11-15. Then, the simulation proceeds iteratively in time steps (line

16), at each step the particles being moved according to their mass and current

positions and velocities. An N-body simulation step is typically comprised of

two stages. The first stage updates the forces according to the mass and current

position of all particles. This stage is computed by the method updateForce,

which we choose not to detail here as it is verbose and does not add value to the

presentation. In the second stage, the parallel operator defined at lines 19-33

updates each particle’s velocity (lines 19-20) and position (lines 21-22).

For the purpose of showing how different races are handled by our analysis,

we have also included a computation of the centerOfMass of all particles (lines

24-31). Also, lines 33-34 print and then log the movement of the center of mass

in the ArrayList history.

The center of mass is stored in an instance field of NBodySimulation (line 6).

The computation proceeds as follows. Line 24 stores the current value of the

centerOfMass field in a local variable oldCOM. Then, the centerOfMass field is

updated to a new Particle object (line 25) which is populated with values based

on the oldCOM and the current particle, p (lines 27-31). As this computation

is part of the parallel operator, there are multiple threads executing this code

concurrently. The NBodySimulation object is shared between these threads, so

there are multiple races that can occur on the centerOfMass field and Particle

object referred by it. The centerOfMass field write on line 25 can race with

another thread executing the instruction on line 25 or any of the read field

instructions at lines 24, 28, 30, or 31. Also, lines 28, 30 and 31 write and read

fields of the Particle referenced by centerOfMass. This is the object initialized

5

class NBodySimulation {
 class Particle {
 double x, y, vX, vY; // position, velocity
 double fX, fY, m; // force, mass
 }
 Particle centerOfMass = new Particle();
 protected Object lock;
 ArrayList<Particle> history = new ArrayList<Particle>();

 void compute() {
Set<Particle> particles = (new Range(0,1000)).map(i -> {

1
2
3
4
5
6
7
8
9

10
11

 Particle p = new Particle();
 readParticle(p);
 return p;

12
13
14

 Particle p = new Particle();
 readParticle(p);
 return p;

12
13
14

}).into(new HashSet());
for (int i = 0; i < noSteps; i++) {

 updateForce();
 particles.parallel().forEach(p -> {

15
16
17
18

 p.vX += p.fX / p.m * dT;
 p.vY += p.fY / p.m * dT;
 p.x += p.vX * dT;
 p.y += p.vY * dT;

 Particle oldCOM = this.centerOfMass;
 this.centerOfMass = new Particle();

 synchronized (this.lock) {
 centerOfMass.m = oldCOM.m + p.m;
 }
 centerOfMass.x = (oldCOM.x * ...
 centerOfMass.y = (oldCOM.y * ...

 System.out.println(centerOfMass);
 history.add(centerOfMass);
}); ...

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

 p.vX += p.fX / p.m * dT;
 p.vY += p.fY / p.m * dT;
 p.x += p.vX * dT;
 p.y += p.vY * dT;

 Particle oldCOM = this.centerOfMass;
 this.centerOfMass = new Particle();

 synchronized (this.lock) {
 centerOfMass.m = oldCOM.m + p.m;
 }
 centerOfMass.x = (oldCOM.x * ...
 centerOfMass.y = (oldCOM.y * ...

 System.out.println(centerOfMass);
 history.add(centerOfMass);
}); ...

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

tm

t0↵

tm

t0�

t00↵ t00�

×

Figure 2.1: Visual representation of how our analysis sees a simple
N-body simulation implementation. Each block of code is labeled with
the abstract thread that executes it, e.g., t′α. The arrows show points-to
relations from variables to allocation sites, e.g., variable p at line 21 in thread
t′′α may point to the abstract object instantiated on line 12 in thread t′α. Only
relevant points-to relations are shown. The dashed crossed arrow represents an
abstract points-to relation that would not appear in any real execution, so it is
correctly missing in our model.

6

at line 6 but it is not thread-local, so multiple threads could access the same

Particle. The accesses to fields x and y (lines 30 and 31) are not synchronized

so they are racing. The accesses at line 28 are protected by a unique lock shared

between all threads, so they are safe.

Next, line 33 prints the current centerOfMass. Although this action accesses

shared resources, i.e. the standard output stream, it is safe due to synchroniza-

tion within the PrintStream class.

Finally, line 34 logs the current center of mass into an ArrayList pointed to

by the history field of the NBodySimulation object. As the history collection

is shared and the ArrayList class is not thread-safe, there will be races on the

inner state of ArrayList.

The next section explains how IteRace correctly identifies all the races de-

scribed above. The Filtering phase eliminates the races on the standard output

while the Bubble-up transforms the race warnings in the ArrayList to a single

warning on line 34. Finally, Synchronized determines that a race cannot occur

at line 28 because the accesses are protected by the shared lock. Furthermore,

the accesses on fields vX, vY, x, and y at lines 19-22 are not races and IteRace

does not report them as such. In this case, an analysis lacking 2-Threads and

relying on escape analysis would report false warnings.

7

Chapter 3

Race detection

We now explain how IteRace represents programs, how it detects races, and

how it avoids false warnings.

Figure 3.1 presents a high level overview of IteRace. WALA [7] provides

the underlying Andersen-style static pointer analysis. The call graph is com-

puted on-the-fly along with the heap model, based on context sensitivity. Each

of our techniques specializes the context sensitivity, as detailed in sections 3.1,

3.3, and 3.2. The analysis is flow-insensitive, with the exception of the lim-

ited amount of flow sensitivity provided by static single assignment. Objects

are abstracted by allocation sites and fields are distinguished. Method calls

have a bounded context sensitivity that is specialized by each technique. On

completion, the pointer analysis produces a static call graph representing the

execution, a control-flow graph for each method, and a heap graph.

Next, IteRace computes the set of potential races (pairs of accesses that

would race if not synchronized) by traversing the program representation and

matching instructions using alias information from the heap graph (Sec. 3.1).

Also, for each statement in the program, IteRace computes the lock set

that protects it. This is achieved by an IFDS analysis [54].

Then, the Filtering phase (Sec. 3.2) eliminates races based on a priori

thread-safety information for classes.

Accesses protected by the same lock are race-free. The Deep-Synchronized

phase (Sec. 3.4) filters out the potential races on such accesses, yielding the set

of actual races.

Then, IteRace “bubbles up” the races that occur in library code and reports

them in application code, on the library-method calls that led to them (Sec. 3.3).

Finally, Synchronized , a stage similar to Deep-Synchronized , further prunes

the bubbled-up race warnings.

3.1 2-Threads program model

The main thread of the program is modeled by an abstract thread tm (lines

1-8 and 16-17 in our example). As outlined in Fig. 1.1, the concrete threads

executing each loop are modeled by two abstract threads, tα and tβ . In our

example (Fig. 2.1), 〈t′α, t′β〉 and 〈t′′α, t′′β〉 model the threads executing the parallel

8

CG - CFGs Heap Graph

potential races

data-flow analyses

locksets

Deep-Synchronized

bubble out of JDK

reported races

traverse and match

pointer analysis

CG - CFGs

Filtering

Synchronized

2-Threads, Bubble-up, Filtering

Figure 3.1: Analysis overview. Ovals represent different sub-analyses.
Rectangles represent intermediate and final data structures. The bottom
half-oval represents the specialized context sensitivity mechanism.

loops at line 11 and 18, respectively. We will further use the notation t : x to

refer the instructions at line number x as executed in the context of abstract

thread t; e.g., t′α : 12 refers the instruction at line number 12 executed by t′α.

The analysis matches loops operating on the same collection, e.g., 〈t′α, t′β〉
and 〈t′′α, t′′β〉, using may-alias. If the collection references do not alias in a con-

crete execution, the analysis may introduce spurious warnings, but it is still safe.

Additionally, the technique dynamically adds levels of object sensitivity [42] in

order to precisely track the collections of interest through the program.

The analysis maintains a special modeling for each collection of interest.

The elements of a collection are modeled by two abstract fields, eα and eβ .

Fig. 3.2 shows how each of the abstract threads, tα and tβ , processes one of

the abstract fields, eα respectively eβ . This modeling allows our technique to

distinguish between elements processed by different threads. For example, in the

case of the forEach operation, different elements of the collection, eα and eβ ,

are processed by different threads, tα respective tβ . Also, it sees that the result

of processing eα only updates eα, not both eα and eβ , and vice-versa. While

our implementation does not cover all the new Java 8 collection operations [5],

it can be easily adapted to do so once the specification stabilizes.

The above modeling is used for both the parallel and the sequential loop

operations over the collection of interest. This allows IteRace to understand

the relationships between the elements of the collection as it is processed by

different loops. In Figure 2.1, both the collection initialization at lines 11-15

and the processing at lines 18-35 are modeled. Thus, IteRace sees that the

element p in t′′α is the same with p in t′α but different from p from t′β .

9

c.forEach(op)
op(eα) [tα]

op(eβ) [tβ]

c.map(op)

eα = op(eα) [tα]

eβ = op(eβ) [tβ]

return c [tm]

c.reduce(base, op)

x1 = op(eα,base) [tα]

x2 = op(x1, eβ) [tβ]

return x2 [tm]

Figure 3.2: Model of collection operations. The abstract thread executing
each operation is bracketed to its right.

A potential race is a pair of accesses to the same field of the same object,

such that one is a write access executed by tα and the other is either a read or

a write executed by tβ . In our example, there are several potential races on the

centerOfMass field of the NBodySimulation object. t′′α : 25 writes to the field

centerOfMass while t′′β : 24 and t′′β : 25 read and respectively write the same

field of the same object. Therefore, according to the definition above, the pairs

of accesses 〈t′′α : 25, t′′β : 24〉 and 〈t′′α : 25, t′′β : 25〉, on the centerOfMass field

of the NBodySimulation object are potentially racing. Accesses at lines 28, 30,

and 31 in thread t′′β are also racing with t′′α : 25 because they read centerOfMass.

The more interesting cases are the potential races on fields of the Particle

references by centerOfMass. We will look at the write access at t′′α : 31 and the

read/write accesses at t′′β : 31. centerOfMass at t′′α : 31 may point to the objects

instantiated at either of tm : 6 (the pointer analysis is flow-insensitive), t′′β : 25

or t′′α : 25. centerOfMass and oldCOM at t′′β : 31 may point to the same three

objects. For the latter of the objects, i.e., the one instantiated at t′′α : 25, there

are two potential races on its y field, one for the write-write accesses (both writes

on centerOfMass), and one for the write-read accesses (write on centerOfMass,

read on oldCOM). Similarly, there are two potential races for each of the objects

instantiated at tm : 6 and t′′β : 25. It is not possible for a race to occur on the

object instantiated at tm : 6 but IteRace is flow insensitive so it does not take

into consideration that the field update at line 25 happens before the potential

race on line 31. Still, the resulting false warnings are not particularly distracting

to the programmer as they are usually accompanied by warnings of real races

on the same variable, as in our example. Also, section 4.2 shows how the way

we report races makes such cases less of a nuisance.

We now look at accesses that are not potential races because of our partic-

ular representation of collection operations. i.e., two abstract threads for each

operation with an underlying modeling of the collection elements. Let us con-

sider the pair of non-racing write accesses to p.x 〈t′′α : 21, t′′β : 21〉. They are not

10

racing as each refers to a different unique element of the collection.

In order to determine if they are racing, an analysis needs to determine

whether the p variables from each of the threads may alias. If the parallel loop

iteration would be modeled by only one abstract thread, there would be only

one abstract representation for the p variable so it would obviously may-alias.

Then, thread escape analysis could be employed to cut down the number of

accesses that can be involved in a race. In this case, escape analysis would not

solve the problem as the object referenced by the variable is escaping through

particles. Then, other more expensive analyses could be further employed to

refine the results, for example [43].

In contrast, our approach is simpler yet very effective, making thread-escape

analysis unnecessary. As IteRace models each parallel loop by two threads,

it does not need to consider races that might occur between instructions of the

same abstract thread. Also, as IteRace models the collection to distinguish

between the elements processed by each of the two abstract threads, it achieves

collection-element sensitivity. For example, the object initialized at t′α : 12 is

identified as the same with the object accessed at t′′α : 21, but different from the

object initialized at t′β : 12 (crossed arrow). Similarly, the object initialized at

t′β : 12 is the same with the object accessed at line t′′β : 21 and different from

the one at t′α : 12. Hence, p at t′′α : 21 and p at t′′β : 21 may not alias, therefore

〈t′′α : 21, t′′β : 21〉 cannot race.

Additionally, all objects are labeled with their instantiation thread. IteRace

uses this information to alleviate the effect of the pointer analysis not being

meet-over-all-valid -paths [59]. The code listing below shows a very simple ex-

ample of how a shared object can “piggyback” on a non-shared object’s ab-

stract path through the program and then introduce a false race. Without any

extra context sensitivity, both calls to returnMyself are represented by the

same call graph node. Thus, particle points to both the objects referenced

by sharedParticle and the new, locally initialized Particle. As the pointer

analysis does not filter invalid paths, p will also point to both the new object,

as it should, and the shared object. Now, any write access, like the one to the

x field below, will introduce false warnings.

public void re turnMyse l f (P a r t i c l e p a r t i c l e) {
return p a r t i c l e ;

} . . .

r e turnMyse l f (s ha r edPa r t i c l e) ;

P a r t i c l e p = returnMyse l f (new Pa r t i c l e ()) ;

p . x = 7 ;

To alleviate this effect, out tool makes calls within parallel iterations con-

text sensitive on the sharing nature of their arguments. Each call has a prop-

erty shared in its context, with shared(argNo) meaning that the argNoth

argument has not been instantiated in the current iteration. For the above

example, shared(1) is true for the call on sharedParticle but false for the

call on the new Particle. Thus, two distinct call graph nodes are created for

11

returnMyself. In effect, p only points to the new object, and no false races are

introduced.

3.2 Filtering using thread-safety model

IteRace uses a simple a priori thread-safety model of the classes to drastically

reduce the number of warnings introduced by the intricate thread-safety mech-

anisms in libraries. To this purpose, we both adjust the context sensitivity and

add one warning filtering phase.

Filtering uses the following a priori information about methods. A method:

• is threadSafe if any invocation of itself cannot be involved in races. All

methods of thread-safe classes are at least threadSafe.

• is threadSafeOnClosure if it is threadSafe and any other invocation reach-

able from its invocation cannot be involved in races. This class of methods

includes, but is not limited to, methods of immutable classes. As expected,

all threadSafeOnClosure methods are also threadSafe. The converse is not

true, as it is explained at the end of this subsection.

• instantiatesOnlySafeObjects if any object instantiated inside the method,

but not necessarily in other methods called by it, is thread-safe.

• circulatesUnsafeObjects if the method may either return or receive a pos-

sibly non-thread-safe object as a parameter.

Using this information, the context of a callee is generated from the context

of the caller by adding a ThreadSafeOnClosure sticky flag when the callee is

threadSafeOnClosure.

Additionally, Interesting and Uninteresting sticky flags are used to indicate

that the downstream call graph should always, respectively never, be expanded

according to other rules (i.e. the ones introduced by 2-Threads and Bubble-up).

The flags are sticky in the sense that they will be propagated downstream

unless explicitly removed.

The Filtering stage uses the above model and the generated flags to filter out

accesses that cannot be involved in races. An access in the abstract invocation

na of method ma, on object o instantiated in a method mo, cannot be involved

in a race if any of the following conditions is met:

• threadSafe(ma)

• instantiatesOnlySafeObjects(mo) – this is mostly useful for anonymous

classes as they cannot be modeled with threadSafe

• the context of na is ThreadSafeOnClosure

12

It is possible to have methods that are threadSafe but not threadSafeOnClosure.

Let us go back to the example in Fig.2.1. Line 34 contains a call to PrintStream

on the method println(Object) listed below:

public void p r i n t l n (Object x) {
St r ing s = St r ing . valueOf (x) ;

synchronized (this) {
pr in t (s) ;

newLine () ;

}
}

This method is threadSafe as a race cannot occur within it but it is not consid-

ered threadSafeOnClosure because of the call to String.valueOf. This method

verifies whether the passed object is a String and calls toString on it other-

wise. The problem is that we know nothing about the thread-safety of toString

on arbitrary objects. Even if String.valueOf(x) were within the synchronized

section, it wouldn’t have helped, as another access holding a different lock or

none at all could still race with it. The method also calls print(String) and

newLine(). These methods are threadSafeOnClosure as they are also synchro-

nized internally and do not operate on any object supplied from outside.

3.3 Bubble-up to application level

Next, IteRace bubbles up the races that occurred in libraries to application

level. Reporting a race means reporting a racing pair of accesses. IteRace

reports each of the accesses occurring in library code as a set of method invo-

cations in application code that lead to the in-library access.

For each race in library code, we have a pair of sets of application-level

accesses leading to it. The sets are computed by traversing the call graph

backwards, from the race to the first call graph node outside of library code.

Finally, IteRace groups warnings on each application-level receiver objects.

The intuition is that the application programmer does not care which library

inner object the accesses occurred on. She only cares which accesses to said

application-level object generate races. For line 34 in our example (Fig. 2.1),

the programmer doesn’t care that the races occurred on fields elementData and

size inside the ArrayList object. She only cares about the pair of accesses on

history. The programmer can tell IteRace which classes to consider as library

classes, yielding reports at various depth levels.

The Bubble-up technique also adds a layer of object sensitivity between the

application and library to improve precision. This layer is also sensitive to the

presence of the Interesting flag described in Section 3.2.

13

3.4 Synchronized accesses

We determine locksets and filter races in a similar manner to Naik et al. [44].

Locks are represented by abstract objects. A lock protects an access if, for

each each path through the program reaching the access, the last lock operation

on the said lock is an acquisition. A pair of accesses is considered safe if the

intersection of their locksets is not empty.

In order to determine if a program is correctly synchronized, one needs to

determine which locks protect each instruction that may run in parallel with

other instructions. In the case of a static analysis such as ours, a conservative

set of locks needs to be determined. Our approach is similar to [44] but we

choose to represent locks as variables in call graph nodes, not as a subset of the

abstract objects from the abstract heap graph.

Additionally, we filter safe accesses at two levels: once on an initial set of

races, as in previous work [45], and once after the Bubble-up. Our evaluation

revealed that applying the algorithm after Bubble-up is slightly faster and more

effective. The reason lies in the library objects’ abstraction imprecision. A single

call graph node of a library method abstracts multiple runtime invocations.

When invocations that are protected by application-level synchronization are

conflated with unprotected invocations, and locksets are checked at library level,

all accesses are considered unsafe. If the accesses are checked at application-

level, the tool has better chances of distinguishing safe accesses.

3.5 Discussion

IteRace is subject to the typical sources of unsoundness for static analysis,

i.e., it has only limited handling of reflection and native method calls, to the

extent provided by WALA.

The Synchronized phase unsafely uses may-alias information to approximate

must-alias lock relations. The analysis can easily be adapted to use a must-alias

analysis once a scalable must-alias analysis is available. Also, our evaluation

shows that the Deep-Synchronized and Synchronized phases have much less

warning-reduction effect than the others. The programmer can choose to deac-

tivate these phases to get safer results.

The Filtering technique relies on the programmer specifying which methods

and classes are threadSafe, threadSafeOnClosure, instantiatesOnlySafeObjects,

or circulatesUnsafeObjects. An incorrect specification may lead the analysis to

miss true races. We have already specified the thread-safety characteristics of

a large number of JDK classes and methods by using the javadocs as a guide.

A programmer using IteRace may need to extend this, especially if she uses

other libraries containing thread-safe classes.

IteRace is designed to analyze the lambda-style loop-parallel parts of the

program and cannot reason about concurrency that appears by spawning other

14

threads besides the ones used by the parallel loops. In such cases, IteRace

warns the programmer about the potentially unsafe thread spawn. Extending

our tool to handle other concurrency constructs should be straightforward. The

Bubble-up and Filtering techniques could be applied directly and would be ben-

eficial. 2-Threads would not be applicable directly but its underlying idea could

prove useful in designing similar techniques for other thread structures.

15

Chapter 4

Evaluation

We evaluate our tool by answering the following questions:

1. Is IteRace practical? As the main culprit of static race detection is

the high number of warnings, we gauge practicality by the number of

warnings the programmer has to inspect. Precision is also important so

we also check how many of the warnings reported by IteRace lead to

true races. For context, we also compare our tool with a state of the art,

but general, data race detection tool for Java, JChord [44].

2. What is the impact of each specialization technique? For each

specialization technique we analyze how much it reduces the number of

warnings and how it affects runtime. We measure each specialization

technique as applied individually and in tandem with other techniques.

4.1 Methodology

We evaluate our approach by using IteRace to analyze the 7 open-source Java

projects shown in Table 4.1. Then, we use JChord to analyze the same projects

under the same conditions and compare the results. Finally, we measure the

impact of each of our specialization techniques.

Case studies When building the evaluation suite, we first looked for applica-

tions with parallel implementations that used loop-parallelism. Unfortunately,

the lack of a proper loop parallelism library in JDK has discouraged program-

mers from parallelizing their programs. We have only found three applications

where programmers have used a form of loop parallelism to improve the per-

formance of their application, i.e., Lucene, jUnit, and Cilib. Thus, we looked

further to applications that have sequential implementations but where the un-

derlying algorithm is inherently parallel and included four more applications,

i.e., MonteCarlo, EM3D, Coref, and Weka.

The evaluation suite is heterogenous: it has applications from different do-

mains (benchmarks, NLP, data mining, computational intelligence, testing) and

of various sizes, from hundreds of lines of code to hundreds of thousands. Ta-

ble 4.1 shows a short description of each application and indicates which part of

16

Table 4.1: Evaluation suite. Column 4 shows the number of methods
analyzed by IteRace. The size of library code varies as some applications use
extra libraries besides JDK. The number of methods reflects methods reached
by the race detector.

Description SLOC (k) #

Project (parallel section) (app+lib) methods

mc Monte Carlo simulation 1.4 + 220 252

(the separate simulations) [16]

em 3D EM wave propagation simulation 0.2 + 220 80

(force update) [17]

coref NLP coreference finder 41 + 225 927

(processing documents) [11]

weka data mining software 301 + 253 1236

(generation of clusterers) [33]

lucene Lucene search benchmark 48 +220 2363

(separate searches) [12]

junit testing framework 16 + 220 508

(jUnit’s own test suite)

cilib computational intelligence library 53 + 454 1957

(simulation engine)

it is parallel, the application’s size in lines of code, and the number of methods

analyzed by our tool.

As Java 8 has not been released yet, analysis tools, including WALA, do not

have support for its new features, in particular for lambda expressions. In Java,

anything that can be expressed through lambda expressions can also be ex-

pressed, more verbosely, using anonymous classes. For evaluation purposes, we

created a collection-like class based on ParallelArray [2] that exposes part of the

new collection methods proposed for Java 8, but implemented with anonymous

classes. Once WALA handles lambda expressions, adapting the implementation

will be trivial.

For already-parallel applications, we manually adapted the implementation

to use our collection. We changed the original implementations as little as

possible, i.e., we neither performed any additional refactoring, nor fixed any

races.

For the sequential applications, we parallelized each of them by performing

the following steps:

1. run a profiler and identify the computationally intensive loop and the data

structure it is iterating.

2. refactor the data structure into our collection.

17

3. refactor all loops over the data structure to use operators instead of for.

The computationally intensive loop is refactored to run in parallel, while

the rest are transformed to anonymous-class-operator form.

IteRace We first analyze each application using IteRace with all the spe-

cialization techniques activated. We inspect each generated race warning in

order to determine its root fault. Each race warning can be seen as a possible

error. Typically, one fault can lead to multiple errors. In our case, one fault may

lead to multiple warnings. If we cannot find a fault for a particular warning, we

deem it as false.

At first, we only considered JDK as library code and, despite our techniques

reducing the number of warnings by orders of magnitude, we still found ourselves

needing to analyze a few thousands of warnings. Many of the warnings were

still over ten levels deep in the call graph, counting from the parallel loop.

Figuring out whether the racing accesses are actually reachable during an actual

execution, let alone whether truly shared objects can reach them, proved very

challenging.

The solution came from a top-down approach based on our Bubble-up tech-

nique: We first aggressively mark application classes as library code in order to

make the analysis report warnings much closer to the loop body. This drastically

reduces the number of warnings but also hides the reason the analysis considers

some pairs of accesses as leading to races. Then, we gradually remove the library

markings until the source for the race reveals itself. In our experiments, it took

up to 10 analysis reruns in order to find the set of library markings that best

describe the fault. For each application, it took us between a few minutes and

a few hours to reach this optimal level. We are not experts in the applications

we analyzed, so we expect this effort to be lower for developers more familiar

with the code. The results presented in the paper reflect this optimal balance.

We also analyze all applications with selectively deactivating various tech-

niques to reveal their effect upon the analysis as a whole. In addition to the

three main techniques (2-Threads, Filtering , and Bubble-up), we also measure

the effect of filtering warnings that come from correctly synchronized code, both

at deep and at application level (see Section 3.4). Thus, there are five distinct

parts of the analysis that can be turned on and off, hence 32 possible configu-

rations. We run the analysis in all 32 configurations over all the applications.

For each run, we measure runtime and number of warnings.

The machine running the experiments is a quad-core Intel Core i7 at 2.6

GHz (3720QM) with 16 GB of RAM. The JVM is allocated 4 GB of RAM.

We implemented the race-detection techniques in Scala and we use the static

analysis framework WALA, which is implemented in Java.

JChord We also analyze all projects using JChord. We asked Mayur Naik,

JChord’s lead developer, for advice on how to best configure the tool. Accord-

18

ingly, we configure JChord such that:

• it also reports races between instructions belonging to the same thread.

By default, JChord only reports races between distinct abstract threads.

As it models the threads executing a parallel loop as one abstract thread,

the default behavior would ignore all races in parallel loops. Additionally,

we have implemented a small tool that filters JChord’s reports to remove

races between the abstract thread representing the parallel loop and main

thread. Such warning are obviously false and are easy to filter out, so we

considered it is fair towards JChord to disregard them.

• it ignores races in constructor code. This reduces significantly the number

of false positives reported by JChord but adds a source of unsoundness.

While rare, constructors can have races, e.g., a constructor reads an ob-

ject’s field while another thread writes it. IteRace does not ignore races

in constructors.

• it does not use conditional must not alias analysis [43] as it is not currently

available.

Additionally, we set JChord to ignore classes that IteRace models as

threadSafeOnClosure and do not circulatesUnsafeObjects. This increases the

tool’s precision without hampering safety.

JChord gives a very high number of warnings with their accesses deep in

the call graph. We attempted to also inspect whether some of the warnings are

true but it proved very difficult. As it was originally the case with IteRace, it

is very hard to determine if a race reported deep in the application or library

code is true. In the end, we could only complete the inspection for three of the

case studies.

4.2 Results

We first present our experience analyzing the evaluation suite applications using

IteRace. Afterwards, we dig deeper and examine how effective is each of the

techniques individually and in combination with others.

Table 4.2 shows an overview of the results. For context, the first three

columns show JChord’s performance analyzing the evaluation suite applica-

tions. JChord’s runtime is reasonable but the reported number of warnings

is overwhelming for five out of the seven case studies. For em3d and junit the

number of warnings is low enough to be inspected but all of the warnings are

false.

A static race detection tool’s runtime and results are heavily dependent on

the underlying pointer analysis. Since JChord and IteRace have different

underlying pointer analyses and abstraction choices, their results may vary in

19

Table 4.2: Overall results. “#” is the number of warnings. “real” is how
many of the warnings are real races. Multiple warnings may be caused by the
same program “fault”. A warning may be false or benign, thus mapping to no
fault. For mc, there is a real but benign race.

JChord IteRace (our tool)

warnings warnings

project t (s) # real t (s) # real faults

em3d 20 15 0 3.7 0 0 0

mc 22 44 1 5.4 1 1 0

junit 24 123 0 9.5 0 0 0

coref 85 19.5k - 154.8 34 30 2

lucene 95 53.4k - 171.9 119 2 2

weka 156 19.6k - 432.2 1 1 1

cilib 271 21.4k - 112.4 1735 2 1

terms of number of warnings. Still, JChord’s results can give an idea about the

effectiveness of a tool not implementing our techniques. JChord’s results are

similar to that of our tool with only the Deep-Synchronized technique activated.

Let us look at the issue of missed races. IteRace’s underlying approach is

very similar to JChord’s. Synchronized is the application-level version of the

same may-alias lockset-based filtering used in JChord. 2-Threads and Bubble-

up are inherently safe and Filtering is safe when used correctly (see Section

3.5). Thus, it is highly unlikely that IteRace will miss any true races JChord

finds.

The last four columns show IteRace’s performance over the same applica-

tions. As expected, the runtime varies significantly with the size of the appli-

cation, but it is acceptable even for the very large ones. For two applications,

our tool doesn’t report any races, correctly deeming them safe. For the other

applications, after Bubble-up, the number of warnings is low and the reported

accesses are close enough to the parallel loop body to be relatively easy to

understand.

Furthermore, at first glance, the number of warnings might seem rather

large. Still, the way IteRace reports them makes them easy to understand.

In IteRace’s standard output the races are not reported as pairs but as race

sets on fields of abstract objects. A race set on one field of an object is shown

as a set of α accesses and a set of β accesses - races are obtained by cross-

product. E.g., one single race set of 5 write (α) accesses and 10 β accesses

would generate 50 race warnings, as counted in Table 4.2. Still, it is relatively

easy for a programmer familiar with the application to inspect 5+10 accesses

involving the same field of the same object.

20

Case studies em3d and junit are race free and IteRace correctly reports no

warnings for any of them. mc contains a benign race where a static global is

initialized with the same value in every iteration. This is a true race but cannot

be considered a fault. We have not accounted for this type of scenario so our

tool issues a warning. JChord found this race, also.

Coref is one of the applications that we parallelized ourselves and we con-

tributed back the parallel version. The developers of the project told us that

there is no interaction between the iterations of the parallel loop. IteRace

reports 34 warnings out of which 30 are true. Most of the warnings are rooted

in the sharing introduced via two static fields used for caching purposes. The

developers confirmed the faults and fixed the application by making the static

fields thread-local.

For lucene, IteRace reports many warnings out of which two are true.

First, there is an unsynchronized access to a custom, thread-unsafe, String

interning class. Second, there is an unsynchronized access to a factory method

of the DateFormat class. The access leads to an atomicity violation in the

JDK LocalServiceProviderPool class. We reported the problem to the JDK

developers. The problem is mostly benign assuming correct implementation of

other classes. Still, it had already been fixed in the latest JDK release.

For weka, the analysis hits the right target with great precision. While

running the analysis at a deeper level also yields false positives, after Bubble-

up, the analysis only makes one warning report, a correct one: all loop iterations

share the same thread-unsafe custom collection object.

For cilib, we aim the analysis at various parts of its extensive algorithm

library. For some algorithms, the analysis is very precise, reporting only two

warnings, both true. We reported them to cilib developers and they confirmed

and fixed the fault [1].

For other cilib algorithms, IteRace proved less precise, raising many false

warnings along with the aforementioned true ones. We traced many of the

false warnings to a source of imprecision in WALA’s pointer analysis method

call abstraction: WALA propagates all actual parameter objects to the formal

parameters of all target call graph nodes, regardless of object context sensitivity.

This makes the technique described at the end of Section 3.1 less effective when

the receiver points to both shared and non-shared objects.

Effect of each specialization technique Tables 4.3 shows the runtime and

Table 4.4 shows the number of warnings reported by our analysis under 16 of

the 32 possible configurations. We are not showing results for filtering warnings

based on deep synchronization due to its limited impact (see the end of the

section) and space constraints. Each row shows the results for one configuration

- a dot denotes an activated technique.

The best results, i.e., the lowest number of warnings, are obtained when all

21

Table 4.3: Runtime under various configurations. (seconds)
T - 2-Threads, F - Filtering, B - Bubble-up, S - Synchronized

T F B S em3d mc junit coref lucene weka cilib avg.

3.5 4.0 5.7 22.3 16.9 45.4 22.3 11.8

• 4.0 5.4 7.6 88.3 87.6 191.4 62.1 28.5

• 3.6 5.1 6.8 470.7 469.3 302.8 45.5 45.2

• • 3.9 6.0 8.1 723.3 582.0 429.5 75.8 59.6

• 3.7 4.3 6.7 35.8 29.3 91.9 26.4 16.0

• • 3.6 4.8 8.2 62.5 62.8 147.2 47.2 23.4

• • 3.7 4.4 6.8 35.5 34.5 91.7 27.6 16.7

• • • 3.9 5.0 8.3 60.6 63.0 147.5 47.0 23.8

• 3.7 4.2 6.2 62.3 36.9 75.8 38.5 18.2

• • 3.7 5.5 7.9 271.8 175.9 492.3 145.6 47.9

• • 3.7 4.3 6.3 86.0 68.3 172.9 51.9 24.6

• • • 3.2 5.4 8.1 247.9 183.6 541.2 148.9 47.3

• • 3.8 4.3 7.1 76.6 70.0 221.9 54.1 25.9

• • • 3.7 5.5 9.5 145.6 159.4 427.8 113.3 41.8

• • • 3.4 4.6 7.2 75.8 86.6 240.3 60.0 27.2

• • • • 3.7 5.4 9.5 154.8 171.9 432.2 112.4 42.5

Table 4.4: Number of warnings under various configurations.
(racing pairs of accesses)
T - 2-Threads, F - Filtering, B - Bubble-up, S - Synchronized

T F B S em3d mc junit coref lucene weka cilib

1 2541 2389 81K 151K 110K 71K

• 1 2541 2351 81K 151K 103K 42K

• 1 748 222 586K 246K 20K 11K

• • 1 748 203 586K 244K 20K 11K

• 1 179 49 22K 37K 6675 9447

• • 1 179 24 22K 37K 6602 9442

• • 1 155 36 476 8312 1344 2771

• • • 1 155 30 476 6425 1344 2762

• 0 53 87 22K 32K 38K 38K

• • 0 53 70 21K 30K 32K 18K

• • 0 3 3 36K 13K 10K 6293

• • • 0 3 0 36K 12K 10K 6251

• • 0 1 17 427 14K 472 1795

• • • 0 1 0 427 12K 463 1791

• • • 0 1 3 34 2006 1 1741

• • • • 0 1 0 34 119 1 1735

22

Table 4.5: Effect of 2-Threads on the number of warnings.
(improvement ratio, see third paragraph of Sec. 4.2)

F B S em3d mc junit coref lucene weka cilib

∞ 47.94 27.46 3.70 4.71 2.85 1.86

• ∞ 47.94 33.59 3.70 5.02 3.18 2.31

• ∞ 249.33 74.00 15.97 17.73 1.95 1.77

• • ∞ 249.33 ∞ 15.97 20.35 1.95 1.77

• ∞ 179.00 2.88 53.13 2.66 14.14 5.26

• • ∞ 179.00 ∞ 53.12 2.94 14.26 5.27

• • ∞ 155.00 12.00 14.00 4.14 1344.00 1.59

• • • ∞ 155.00 ∞ 14.00 53.99 1344.00 1.59

techniques are activated (last row of Table 4.4). IteRace finishes the analysis

in under two minutes for all applications except WEKA.

Tables 4.5, 4.6, 4.7, and 4.8 highlight the effect of activating/deactivating

each technique. These tables are derived from Table 4.4. The value in each cell

is the ratio between the number of races on a certain configuration with the

technique deactivated and the number of races with the technique activated.

For example, the value in cell at the intersection of the next to last row (Filter-

ing and Bubble-up activated, Synchronized deactivated) and the “junit” column

in Table 4.5 is obtained from Table 4.4, column “junit”, by dividing the cell in

row 7 (2-Threads deactivated, Filtering and Bubble-up activated, Synchronized

deactivated) by the cell in the next to last row (2-Threads how activated, Filter-

ing and Bubble-up activated, Synchronized deactivated). A higher ratio means

the activated technique filters out more warnings, which is an improvement. ∞
denotes a situation where the number of warnings is reduced to 0. 1.0 means

no improvement. NaN denotes a situation where the number of warnings was

0 with the technique deactivated and it remains 0. A subunitary value means

that the number of warnings has increased.

Table 4.5 shows that 2-Threads (modeling each loop with two distinct threads)

significantly improves the results independent of other techniques. Upon inspec-

tion we found that, as expected, the filtered out warnings are on objects that

are thread-local by being either created and not escaped from the current itera-

tion or unique to each element of the collection. In the case of em3d, activating

2-Threads correctly removed all warnings, independent of the other techniques.

Table 4.6 shows that Filtering has a powerful effect for all larger applica-

tions. The filtered out warnings mostly involve accesses to library classes, e.g.,

synchronized I/O, Java security, regex, and concurrent or synchronized collec-

tions.

Table 4.7 shows the effect of Bubble-up. Its main value is not in reducing

the number of warnings but in making them more programmer friendly. As the

23

Table 4.6: Effect of Filtering on the number of warnings. (improvement
ratio, see third paragraph of Sec. 4.2)

T B S em3d mc junit coref lucene weka cilib

1.00 14.20 48.76 3.59 4.05 16.63 7.59

• 1.00 14.20 97.96 3.59 4.08 15.62 4.45

• 1.00 4.83 6.17 1233.12 29.70 15.56 4.01

• • 1.00 4.83 6.77 1233.12 38.13 15.56 4.01

• NaN 53.00 5.12 51.56 2.28 82.42 21.47

• • NaN 53.00 ∞ 51.47 2.38 70.10 10.17

• • NaN 3.00 1.00 1081.03 6.94 10711.00 3.61

• • • NaN 3.00 NaN 1081.03 101.16 10711.00 3.60

Table 4.7: Effect of Bubble-up on the number of warnings.
(improvement ratio, see third paragraph of Sec. 4.2)

T F S em3d mc junit coref lucene weka cilib

1.00 3.40 10.76 0.14 0.61 5.31 6.45

• 1.00 3.40 11.58 0.14 0.62 4.93 3.79

• 1.00 1.15 1.36 47.66 4.50 4.97 3.41

• • 1.00 1.15 0.80 47.65 5.77 4.91 3.42

• NaN 17.67 29.00 0.60 2.31 3.63 6.12

• • NaN 17.67 ∞ 0.60 2.50 3.03 2.91

• • NaN 1.00 5.67 12.56 7.02 472.00 1.03

• • • NaN 1.00 NaN 12.56 106.08 463.00 1.03

Table 4.8: Effect of Synchronized on the number of race warnings.
(improvement ratio, similar to Table 5).

T F B em3d mc junit coref lucene weka cilib

1.00 1.00 1.02 1.00 1.00 1.08 1.71

• 1.00 1.00 1.09 1.00 1.01 1.00 1.00

• 1.00 1.00 2.04 1.00 1.01 1.01 1.00

• • 1.00 1.00 1.20 1.00 1.29 1.00 1.00

• NaN 1.00 1.24 1.00 1.07 1.20 2.12

• • NaN 1.00 ∞ 1.00 1.16 1.00 1.01

• • NaN 1.00 ∞ 1.00 1.12 1.02 1.00

• • • NaN 1.00 ∞ 1.00 16.86 1.00 1.00

24

technique maps deep warnings into a application-level warnings, and, as it is

common for one library class to be used repeatedly throughout the application,

Bubble-up may inflate the number of warnings. This effect is revealed by the sub-

unitary values in rows 1, 2, 4, 5, and 6. Still, when combined with Filtering (rows

3, 4, 7, and 8) the negative effect is reversed and we see improvement in most

cases. This is because most extra warnings came from correctly-synchronized

library classes.

Table 4.8 shows that, surprisingly, the lockset-based static filtering, i.e.,

Synchronized , does little to improve analysis results for larger projects, even in

the absence of Filtering .

25

Chapter 5

Related work

5.1 Dynamic analyses

Dynamic race detectors have been the favored approach in the last decade. Their

main advantage over static approaches is the significantly lower number of false

warnings. This advantage is counterbalanced by dynamic analyses’ failure to

catch races that are not “close” to the analyzed execution and the high runtime

cost of the more precise tools. A common approach is to compute some form

of order relation, e.g. happens-before, over the events of an observed execution

trace and, based on these relations, infer race conditions [9, 21,22,25,41,55,58,

61]. This approach can miss many races so lockset-based race detectors have

been developed as an alternative that catches more races at the expense of false

positives [19, 46, 57, 62]. There are also hybrid approaches that combine both

techniques [18,30,49,65].

Similarly, static race detectors vary between higher precision, lower scala-

bility [35, 43] and lower precision, better scalability [38, 44, 50, 51, 64]. Also,

annotations can be used to improve the performance of the analysis [8].

5.2 Static analyses for C and other languages

Several race analyses have been proposed for C or variants [26,31,52]. Henzinger

et al. [35] present a model checking approach that is both path and flow sensitive,

and models thread contexts. Pratikakis et al. present Locksmith [50, 51], a

type-based analysis that computes context-senstitive correlations between lock

and memory accesses. Relay [64] proposes a slightly less precise but more

scalable analysis that summarizes the effects of functions using relative locksets.

Although they are now applied to C programs, both of these techniques could

be adapted to improve the precision of Java analyses, including ours.

5.3 Static analyses for Java

Flanagan et al. [27] proposed using type checking systems to find races. Boya-

pati et al. [14, 15] introduced the concept of ownership to improve the results.

Type-based systems perform very well but they require a significant amount of

26

annotation from the programmer. Different approaches have been proposed to

automatically infer the annotations [10,28,29,56].

Praun et al. [63] propose an Object Use Graph model that statically approx-

imates the happens-before relation between accesses to a specific object.

Choi et al. [20] proposes a thread-sensitive but context-insensitive race detec-

tor. They use the strongly connected components of an inter-procedural thread-

sensitive control flow graph to compute must-alias relations between locks and

threads. Using this, they find a limited number of definite races. IteRace uses

the idea of thread-sensitivity but specializes the modeling of the parallel loops,

significantly increasing precision.

Naik et al. [44] builds an object-sensitive analysis that uses thread-escape

to lower the false positive rate. In a subsequent article [43], they present a

conditional must not alias analysis for solving aliasing relationships between

locks.

27

Chapter 6

Conclusion

By specializing static data race detection, we can make it practical. This paper

presents three techniques, implemented in a tool IteRace, that is specialized

to the new parallel features for collections that will be introduced in Java 8.

The restricted thread structure of parallel loops combined with loop operations

expressed as lambda expressions allows for better precision in the heap modeling

while maintaining scalability.

Our evaluation shows that the tool implementing this approach is fast, does

not hinder the programmer with many warnings, and it finds new bugs that

were confirmed and fixed by the developers. Thus, IteRace can also be used

in scenarios with high interactivity, e.g., refactoring for parallelism [23, 24, 32],

that require fast and precise analyses.

28

References

[1] CIlib bug. https://github.com/cilib/cilib/issues/111.

[2] Concurrency JSR-166 Interest Site - ParallelArray.
http://gee.cs.oswego.edu/dl/concurrency-interest/.

[3] JDK8. http://jdk8.java.net.

[4] Microsoft TPL. http://msdn.microsoft.com/en-us/library/dd460717.aspx.

[5] State of the Lambda: Libraries Edition. http://cr.openjdk.java.net/ brian-
goetz/lambda/sotc3.html.

[6] Threading Building Blocks. http://threadingbuildingblocks.org/.

[7] WALA documentation. http://wala.sourceforge.net/.

[8] Martin Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe
locking: Static race detection for java. TOPLAS, 28:207–255, March 2006.

[9] Sarita V. Adve, Mark D. Hill, Barton P. Miller, and Robert H. B. Netzer.
Detecting data races on weak memory systems. SIGARCH Comput. Archit.
News, 19:234–243, April 1991.

[10] Rahul Agarwal and Scott Stoller. Type inference for parameterized race-
free Java. In Bernhard Steffen and Giorgio Levi, editors, VMCAI, volume
2937 of Lecture Notes in Computer Science, pages 77–108. Springer Berlin
/ Heidelberg, 2004.

[11] E. Bengtson and D. Roth. Understanding the value of features for coref-
erence resolution. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 294–303. Association for Computa-
tional Linguistics, 2008.

[12] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and analysis. In Proceedings of the
21st ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’06, pages 169–190, New York, NY,
USA, October 2006. ACM Press.

[13] Eric Bodden and Klaus Havelund. Racer: effective race detection using
AspectJ. In Proceedings of the 2008 international symposium on Software
testing and analysis, ISSTA ’08, pages 155–166, New York, NY, USA, 2008.
ACM.

29

[14] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types
for safe programming: preventing data races and deadlocks. In Proceedings
of the 17th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, OOPSLA ’02, pages 211–230, New
York, NY, USA, 2002. ACM.

[15] Chandrasekhar Boyapati and Martin Rinard. A parameterized type system
for race-free Java programs. In Proceedings of the 16th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and appli-
cations, OOPSLA ’01, pages 56–69, New York, NY, USA, 2001. ACM.

[16] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey. A
benchmark suite for high performance Java. In Java Grande, pages 81–88.
ACM Press, 1999.

[17] B. Cahoon and K.S. McKinley. Data flow analysis for software prefetching
linked data structures in Java. In Parallel Architectures and Compilation
Techniques, 2001. Proceedings. 2001 International Conference on, pages
280 –291, 2001.

[18] Feng Chen, Traian Florin Şerbănuţă, and Grigore Roşu. jPredictor: a
predictive runtime analysis tool for Java. In Proceedings of the 30th In-
ternational Conference on Software Engineering, ICSE ’08, pages 221–230,
New York, NY, USA, 2008. ACM.

[19] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek
Sarkar, and Manu Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. In Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming language design and implemen-
tation, PLDI ’02, pages 258–269, New York, NY, USA, 2002. ACM.

[20] Jong-Deok Choi, Alexey Loginov, and Vivek Sarkar. Static datarace anal-
ysis for multithreaded object-oriented programs. Technical report, IBM
Research Division, Thomas J. Watson Research Centre, 2001.

[21] Jong-Deok Choi, Barton P. Miller, and Robert H. B. Netzer. Techniques for
debugging parallel programs with flowback analysis. TOPLAS, 13:491–530,
October 1991.

[22] Mark Christiaens and Koen De Bosschere. TRaDe, a topological approach
to on-the-fly race detection in Java programs. In Proceedings of the 2001
Symposium on JavaTM Virtual Machine Research and Technology Sympo-
sium - Volume 1, JVM’01, pages 15–15, Berkeley, CA, USA, 2001. USENIX
Association.

[23] Danny Dig, John Marrero, and Michael D. Ernst. Refactoring sequential
java code for concurrency via concurrent libraries. In Proceedings of the
31st International Conference on Software Engineering, ICSE ’09, pages
397–407, Washington, DC, USA, 2009. IEEE Computer Society.

[24] Danny Dig, Mihai Tarce, Cosmin Radoi, Marius Minea, and Ralph John-
son. Relooper: refactoring for loop parallelism in Java. In Proceedings of the
24th ACM SIGPLAN conference companion on Object oriented program-
ming systems languages and applications, OOPSLA ’09, pages 793–794,
New York, NY, USA, 2009. ACM.

30

[25] A. Dinning and E. Schonberg. An empirical comparison of monitoring al-
gorithms for access anomaly detection. SIGPLAN Not., 25:1–10, February
1990.

[26] Dawson Engler and Ken Ashcraft. RacerX: effective, static detection of race
conditions and deadlocks. SIGOPS Oper. Syst. Rev., 37:237–252, October
2003.

[27] Cormac Flanagan and Stephen N. Freund. Type-based race detection for
Java. In Proceedings of the ACM SIGPLAN 2000 conference on Program-
ming language design and implementation, PLDI ’00, pages 219–232, New
York, NY, USA, 2000. ACM.

[28] Cormac Flanagan and Stephen N. Freund. Detecting race conditions in
large programs. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, PASTE
’01, pages 90–96, New York, NY, USA, 2001. ACM.

[29] Cormac Flanagan and Stephen N. Freund. Type inference against races.
Sci. Comput. Program., 64:140–165, January 2007.

[30] Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise
dynamic race detection. In Proceedings of the 2009 ACM SIGPLAN con-
ference on Programming language design and implementation, PLDI ’09,
pages 121–133, New York, NY, USA, 2009. ACM.

[31] Dan Grossman. Type-safe multithreading in cyclone. In Proceedings of the
2003 ACM SIGPLAN international workshop on Types in languages design
and implementation, TLDI ’03, pages 13–25, New York, NY, USA, 2003.
ACM.

[32] Alex Gyori, Danny Dig, Lyle Franklin, and Jan Lahoda. Crossing the
gap from imperative to functional programming through refactoring. In
Proceedings of the 9th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE ’13, 2013.

[33] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The WEKA data mining software: an
update. SIGKDD Explor. Newsl., 11(1):10–18, November 2009.

[34] Richard L. Halpert, Christopher J. F. Pickett, and Clark Verbrugge.
Component-based lock allocation. In Proceedings of the 16th International
Conference on Parallel Architecture and Compilation Techniques, PACT
’07, pages 353–364, Washington, DC, USA, 2007. IEEE Computer Society.

[35] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Race checking
by context inference. In Proceedings of the ACM SIGPLAN 2004 conference
on Programming language design and implementation, PLDI ’04, pages 1–
13, New York, NY, USA, 2004. ACM.

[36] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, PASTE ’01, pages 54–61, New
York, NY, USA, 2001. ACM.

[37] Ranjit Jhala and Rupak Majumdar. Interprocedural analysis of asyn-
chronous programs. SIGPLAN Not., 42:339–350, January 2007.

31

[38] Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun Zhang. Static data
race detection for concurrent programs with asynchronous calls. In Pro-
ceedings of the 7th joint meeting of the European software engineering con-
ference and the ACM SIGSOFT symposium on The foundations of soft-
ware engineering on European software engineering conference and foun-
dations of software engineering symposium, ESEC/FSE ’09, pages 13–22,
New York, NY, USA, 2009. ACM.

[39] Percy Liang, Omer Tripp, Mayur Naik, and Mooly Sagiv. A dynamic
evaluation of the precision of static heap abstractions. In Proceedings of
the ACM international conference on Object oriented programming systems
languages and applications, OOPSLA ’10, pages 411–427, New York, NY,
USA, 2010. ACM.

[40] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. LiteRace:
effective sampling for lightweight data-race detection. In Proceedings of
the 2009 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’09, pages 134–143, New York, NY, USA, 2009.
ACM.

[41] John Mellor-Crummey. On-the-fly detection of data races for programs
with nested fork-join parallelism. In Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, ICS ’91, pages 24–33, New York, NY, USA,
1991. ACM.

[42] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized
object sensitivity for points-to analysis for Java. ACM Trans. Softw. Eng.
Methodol., 14:1–41, January 2005.

[43] Mayur Naik and Alex Aiken. Conditional must not aliasing for static race
detection. In Proceedings of the 34th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’07, pages 327–
338, New York, NY, USA, 2007. ACM.

[44] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection
for Java. In Proceedings of the 2006 ACM SIGPLAN conference on Pro-
gramming language design and implementation, PLDI ’06, pages 308–319,
New York, NY, USA, 2006. ACM.

[45] Mayur Naik, Percy Liang, and Mooly Sagiv. Static Thread-Escape Analysis
vis Dynamic Heap Abstractions. from Naik’s website, 2010.

[46] Hiroyasu Nishiyama. Detecting data races using dynamic escape analysis
based on read barrier. In VM, pages 10–10, Berkeley, CA, USA, 2004.
USENIX Association.

[47] R. O’Callahan and J.D. Choi. Hybrid dynamic data race detection. In
Proceedings of the ninth ACM SIGPLAN symposium on Principles and
practice of parallel programming, volume 38 of PPoPP ’03, pages 167–178.
ACM, 2003.

[48] Semih Okur and Danny Dig. How do developers use parallel libraries? In
Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ESEC/FSE ’12, pages 54–65, New
York, NY, USA, 2012. ACM.

32

[49] Eli Pozniansky and Assaf Schuster. MultiRace: efficient on-the-fly data race
detection in multithreaded C++ programs. Concurrency and Computation:
Practice and Experience, 19(3):327–340, 2007.

[50] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. LOCKSMITH:
context-sensitive correlation analysis for race detection. In Proceedings of
the 2006 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’06, pages 320–331, New York, NY, USA, 2006.
ACM.

[51] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. LOCKSMITH:
Practical static race detection for C. ACM Trans. Program. Lang. Syst.,
33:3:1–3:55, January 2011.

[52] Shaz Qadeer and Dinghao Wu. Kiss: keep it simple and sequential. In Pro-
ceedings of the ACM SIGPLAN 2004 conference on Programming language
design and implementation, PLDI ’04, pages 14–24, New York, NY, USA,
2004. ACM.

[53] Cosmin Radoi and Danny Dig. Practical static race detection for java
parallel loops. In Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ISSTA 2013, pages 178–190, New York,
NY, USA, 2013. ACM.

[54] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’95, pages 49–61, New York, NY, USA, 1995. ACM.

[55] Michiel Ronsse and Koen De Bosschere. RecPlay: a fully integrated prac-
tical record/replay system. ACM Trans. Comput. Syst., 17:133–152, May
1999.

[56] James Rose, Nikhil Swamy, and Michael Hicks. Dynamic inference of poly-
morphic lock types. Science of Computer Programming, 58(3):366 – 383,
2005.

[57] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. Eraser: a dynamic data race detector for multithreaded
programs. ACM Trans. Comput. Syst., 15:391–411, November 1997.

[58] D. Schonberg. On-the-fly detection of access anomalies. SIGPLAN Not.,
24:285–297, June 1989.

[59] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis. ACM Trans. Program. Lang. Syst., 1981.

[60] Tianwei Sheng, Neil Vachharajani, Stephane Eranian, Robert Hundt, Wen-
guang Chen, and Weimin Zheng. RACEZ: a lightweight and non-invasive
race detection tool for production applications. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, pages 401–
410, New York, NY, USA, 2011. ACM.

[61] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cor-
mac Flanagan. Sound predictive race detection in polynomial time. In
Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’12, pages 387–400, New York,
NY, USA, 2012. ACM.

33

[62] Christoph von Praun and Thomas R. Gross. Object race detection. In
Proceedings of the 16th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, OOPSLA ’01, pages 70–
82, New York, NY, USA, 2001. ACM.

[63] Christoph von Praun and Thomas R. Gross. Static conflict analysis for
multi-threaded object-oriented programs. In Proceedings of the ACM SIG-
PLAN 2003 Conference on Programming language design and implemen-
tation, PLDI ’03, pages 115–128, 2003.

[64] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. RELAY: static race detec-
tion on millions of lines of code. In Proceedings of the the 6th joint meeting
of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, ESEC-FSE ’07,
pages 205–214, New York, NY, USA, 2007. ACM.

[65] Yuan Yu, Tom Rodeheffer, and Wei Chen. RaceTrack: efficient detection
of data race conditions via adaptive tracking. SIGOPS Oper. Syst. Rev.,
39:221–234, October 2005.

34

