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ABSTRACT

A fundamental question in software testing research is how to compare test suites, often as a

means for comparing test-generation techniques that produce those test suites. Researchers

frequently compare test suites by measuring their coverage. A coverage criterion C provides

a set of test requirements and measures how many requirements a given suite satisfies.

A suite that satisfies 100% of the (feasible) requirements is called C-adequate. Previous

rigorous evaluations of coverage criteria mostly focused on such adequate test suites: given

two criteria C and C ′, are C-adequate suites (on average) more effective than C ′-adequate

suites? However, in many realistic cases, producing adequate suites is impractical or even

impossible.

This thesis presents the first extensive study that evaluates coverage criteria for the com-

mon case of non-adequate test suites: given two criteria C and C ′, which one is better to use

to compare test suites? Namely, if suites T1, T2, . . . , Tn have coverage values c1, c2, . . . , cn for

C and c′1, c
′
2, . . . , c

′
n for C ′, is it better to compare suites based on c1, c2, . . . , cn or based on

c′1, c
′
2, . . . , c

′
n? This thesis evaluates a large set of plausible criteria, including basic criteria

such as statement and branch coverage, as well as stronger criteria used in recent studies,

including criteria based on program paths, equivalence classes of covered statements, and

predicate states. The criteria are evaluated on a set of Java and C programs with both man-

ually written and automatically generated test suites. The evaluation uses three correlation

measures. Based on these experiments, two criteria perform best: branch coverage and an

intra-procedural acyclic path coverage. We provide guidelines for testing researchers aim-

ing to evaluate test suites using coverage criteria as well as for other researchers evaluating

coverage criteria for research use.
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CHAPTER 1

INTRODUCTION

Software testing helps developers to improve the quality of their code. Developers or test

engineers run test suites and inspect failures to identify faults in the code. A fundamental

task in software testing research is evaluating (and improving) test suites. For example, eval-

uating suites is central to the development of automated test-generation techniques whose

goal is to generate high-quality suites.

To compare suites, researchers typically use real faults, seeded faults, and/or coverage

criteria. For real faults, researchers measure how many faults (previously known or newly

found) the suites find. However, collecting code with real faults and analyzing failures takes

substantial effort. Thus, experiments often use a relatively small set of real faults, preventing

rigorous statistical analysis of the results [7].

Researchers also use mutation testing [23,41,49] to seed a large number of artificial faults

and measure the mutation score, i.e., how many mutants a suite kills. Several studies [5, 6]

show that the results obtained on mutants predict detection of real faults, i.e., suites that

kill more mutants are likely, on average, to find more real faults. While mutation testing

can provide a good basis for statistical analysis [7], it can also be prohibitively expensive to

perform. Even a small program with only a few hundred lines of code may have thousands of

mutants, and determining killed mutants may require running a test suite on each mutant.

Researchers therefore most often use coverage to compare suites. A traditional coverage

criterion provides a finite set of test requirements for the code under test, and one measures

how many requirements a given suite satisfies. For example, statement and branch coverage

are well-known structural criteria [4]. A suite that satisfies 100% of the (feasible) require-

ments for a criterion C is called C-adequate. Measuring test coverage is almost always much

cheaper than performing mutation testing; even if the criterion has a high runtime overhead,
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it only requires running tests once per program, as opposed to once per mutant. Coverage

criteria are widely used in testing research and practice, e.g., papers on automated testing

techniques often report that one technique is better than another because it generates, say,

“suites with 10% more branch coverage on average.”

This thesis addresses the following question: What coverage criteria should researchers use

to evaluate suites? Research comparing1 coverage criteria dates back at least 20 years [27,

28, 46] but has largely focused on adequate test suites : given two criteria C and C ′, do C-

adequate suites (on average) find more faults than C ′-adequate suites? However, testing

practice and research widely use non-adequate test suites because determining which test

requirements are feasible is hard, generating suites for all feasible requirements is often

impractical, and some recently used criteria [9, 15, 16, 35, 36, 58, 65, 69, 74] even have an

infinite (or astronomically large) set of requirements.

To the best of our knowledge, there has been no extensive study comparing coverage crite-

ria over non-adequate suites except for the recent ISSTA conference paper [31] co-authored

by the author of this thesis. This thesis focuses on two critical questions:

1. Are any coverage criteria able to predict mutation scores for non-adequate suites, and

thus suitable for use in evaluations?

2. Given two criteria C and C ′, is it better to use C or C ′ to compare test suites? Namely,

if suites T1, T2, . . . , Tn have coverage values c1, c2, . . . , cn for C and c′1, c
′
2, . . . , c

′
n for C ′,

is it better to compare suites based on c1, c2, . . . , cn or based on c′1, c
′
2, . . . , c

′
n?

To illustrate the key difference in comparisons with adequate and non-adequate suites,

consider a comparison of statement coverage (SC) with branch coverage (BC). For adequate

suites, it is well known that BC subsumes SC: a suite with 100% BC would have 100%

SC and should, on average, be likely to find more faults than another suite with 100% SC

but less than 100% BC. For non-adequate suites, however, the situation is less clear. For

instance, suppose a suite T1 has 50% BC and 75% SC, and a suite T2 has 60% BC and 65%

SC. (Our experiments show that up to 11% of test-suite pairs have such discordant values

1Note that we use the term “comparison” to refer to both comparisons of suites and comparisons of
coverage criteria, but the intended use should be clear from the context.
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for BC and SC; more details are provided in Chapter 4.) Should we use BC and declare

T2 better (60%>50%), or should we use SC and declare T1 better (75%>65%); is T1 or T2

more likely to kill more mutants? Substituting a variety of criteria for branch and statement

coverage, this scenario describes a common occurrence in evaluation of testing techniques.

The major contribution of this thesis is an evaluation of multiple criteria, both traditional

(statement and branch) and recently used (based on program paths, equivalence classes of

covered statements, and predicate states). We evaluated criteria on a large set of Java and C

programs with both manually written and automatically generated tests. We measured the

effectiveness of criteria (using three statistical correlation coefficients) in terms of how well

they predicted the mutation scores of suites (and thus, arguably, the real-fault detection of

suites [5, 6]). We designed our experiments to have a direct application to the evaluation of

suites (and thus testing techniques) in testing research, and propose that our experimental

approach would easily extend to other criteria, programs, and subjects. A minor contribution

of this thesis is the first implementation and evaluation of Ball’s predicate-complete test

coverage criterion (PCT) [9,10]. In Chapter 3, we describe all implementation challenges we

faced in both Java and C.

Our results show that a variety of criteria are able to effectively predict mutation scores.

This provides support for previous research studies that used these criteria to compare test

suites. Moreover, for future studies, we propose two guidelines for researchers using coverage

criteria to evaluate suites. First, our results show that branch coverage performs as well as

or better than all other criteria studied, in terms of ability to predict mutation scores, and

has a very low measurement overhead and implementation complexity. However, in some

settings, branch coverage provides values that do not distinguish between test suites. Second,

if researchers want a stronger criterion that can distinguish more test suites, but comes at

the price of increased measurement overhead and implementation complexity, our results

show that an acyclic intra-procedural variation of path coverage is about as effective as

branch coverage. Our results also demonstrate that for non-adequate suites, criteria that

are stronger (in terms of subsumption for adequate suites) do not necessarily have better

ability to predict mutation scores. Additionally, as a guideline for future studies evaluating

the effectiveness of criteria themselves, we suggest that results be based on a large set of
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suites generated by as many techniques as feasible for as many subjects as feasible, and that

multiple correlations be measured to ensure that the results do not depend on a particular

choice of correlation. All tools, source code, and experimental subjects, along with more

results, are publicly available at: http://mir.cs.illinois.edu/coco/.

The contributions of this work include:

• The first extensive study on comparing how coverage criteria predict mutation score

for non-adequate suites.

• The first implementation of the Predicate-Complete Test (PCT) coverage criterion.

• The first evaluation of the Dynamic Basic Block (DBB) measurement as a coverage

criterion. DBB was previously proposed for fault localization [12].

• Some guidelines for using coverage criteria to compare suites in testing research.

• One guideline for performing future studies on comparing coverage criteria.

4
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CHAPTER 2

COVERAGE CRITERIA

Our comparison of criteria includes SC and BC, which are standard in practice. Our eval-

uation also includes a set of criteria based on program paths, equivalence classes of covered

statements, and predicate states, which we define and illustrate in this section using a simple

Java data structure. (Note that our implementations support larger programs in both Java

and C.) Figure 2.1.a shows the relevant part of a class implementing the binomial heap data

structure [20, 69] that supports fast union operation. The figure shows only the part of the

BinomialHeap class relevant for our discussion. Each BinomialHeap object has a pointer

to the root of the heap (nodes) and the number of nodes in the heap (size). Every node

keeps a value (key) and pointers to its parent, sibling, and child. The decreaseKey method

decreases the value of a node, which may affect the heap invariant that each parent should

not have a higher value than its children, so the value is propagated to ancestors until the

appropriate position is found.

2.1 Dynamic Basic Block Coverage (DBB)

We first describe Dynamic Basic Block (DBB) coverage, which may be unfamiliar to most

readers outside the fault-localization community. Baudry et al. [12] proposed the notion of

a dynamic basic block1 to measure a test suite’s effectiveness for fault localization. Suppose

we are given a program and execute a number of tests on the program. Consider a partition

of the program statements into equivalence classes, where two statements belong to the same

equivalence class if and only if they are covered by the same set of tests. Each equivalence

class is called a dynamic basic block (DBB). The Baudry et al. study [12] showed that the

1Not to be confused with dynamic basic blocks as used in computer architecture or compilers [59].
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1 // pu b l i c c l a s s BinomialHeap { . . .
2 stat ic class Node {
3 int key ;
4 Node parent ;
5 // . . .
6 }
7 Node nodes ;
8 int s i z e ;
9

10 void decreaseKey ( int oldKey , int newKey ) {
11 Node tmp = nodes . findNodeWithKey( oldKey ) ;
12 i f (tmp == null ) return ;
13 tmp . key = newKey ;
14 Node tmpParent = tmp . parent ;
15 while ( ( tmpParent != null )
16 && (tmp . key < tmpParent . key ) ) {
17 int z = tmp . key ;
18 tmp . key = tmpParent . key ;
19 tmpParent . key = z ;
20 tmp = tmpParent ;
21 tmpParent = tmpParent . parent ;
22 }
23 }
24

25

26

27

28

29 ””

void decreaseKey ( int oldKey , int newKey ) {
try {

Coverage . beginMethod ( 0 ) ;
Node tmp = nodes . findNodeWithKey( oldKey ) ;
i f (tmp == null ) {

Coverage . cover (
1 , p$10 ( nodes ) , p$20 (tmp ) ) ;

return ;
}
Coverage . cover (2 , p$10 ( nodes ) , p$20 (tmp ) ) ;

tmp . key = newKey ;
Node tmpParent = tmp . parent ;
while ( ( tmpParent != null )

&& (tmp . key < tmpParent . key ) ) {
Coverage . cover (3 , p$10 ( nodes ) , p$20 (tmp ) ,

p$21 ( tmpParent ) , p$49 (tmp , tmpParent ) ) ;
int z = tmp . key ;
tmp . key = tmpParent . key ;
tmpParent . key = z ;
tmp = tmpParent ;
tmpParent = tmpParent . parent ;

}
Coverage . cover (4 , p$10 ( nodes ) , p$20 (tmp ) ,

p$21 ( tmpParent ) , p$49 (tmp , tmpParent ) ) ;
} catch ( Exception e ) {

Coverage . endMethod ( ) ;
}

}

(a) (b)
1 // tmp . key < tmpParent . key
2 boolean p$49 (Node tmp , Node tmpParent ) {
3 try {
4 i f (PCT. tes tAndSet InPred i cate ( ) )
5 return fa l se ;
6 i f ( tmpParent == null ) return fa l se ;
7 i f (tmp == null ) return fa l se ;
8 return tmp . key < tmpParent . key ;
9 } catch ( Exception ) { return fa l se ;

10 } f i na l l y { PCT. r e s e t InPr ed i ca t e ( ) ; }
11 }

♥ ♥

♥ ♥

3 5

7 9

parent

parent parent

nodes

✛

❩
❩

❩
❩❩⑥

✛

❄

(c) (d)

Figure 2.1: BinomialHeap as running example

larger the number of DBBs a test suite has, the more effective the test suite is for spectrum-

based fault localization. The underlying rationale is that having few DBBs equates to a suite

having little ability to distinguish statements with respect to their causal impact on fault

behavior. We use the number of DBBs as a test coverage metric instead, on the grounds

that these equivalence classes show distinct program behaviors that are not explored. Every

DBB that can be broken by some test not in a suite (where statements are always executed

together in that suite, but this is not required for another suite) also indicates a missing

whole program path for that suite. For example, consider the instance of BinomialHeap
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shown in Figure 2.1.d.

Assuming that there are two tests available for the decreaseKey method — (9, 8) and

(9, 2) — the total number of DBBs is two. The first DBB includes all the statements

before the while loop, i.e., lines between 10 and 16 (Figure 2.1.a); these lines are covered

by both tests. The second DBB includes all the statements in the body of the while loop,

i.e., lines between 17 and 22; these lines are covered only by the second test. We say that

this test suite has DBB coverage of 2. In general, a program with s statements having a

test suite of t tests can partition the program into up to min(s, 2t) DBBs. DBB is obviously

not useful for suites that consist of only a single very large test, and has a limited value to

distinguish suites that have a small number of tests.

2.2 Intra-Method Path Coverages (IMP and AIMP)

We next describe two forms of path-based coverage used in our evaluation. Whole-program

path coverage was proposed over 20 years ago [52] to measure how many different paths

tests execute from the beginning to the end of a program. Even for loop-free programs,

whole program paths result in a number of test requirements exponential in the number of

branches in a program, so more recent work [16, 34, 36, 74] used more scalable intra-method

paths (IMP), where each path is for a single method execution only (similar to Godefroid’s

notion of compositional path coverage [32]). An intra-method path starts at the beginning

of a method, includes the IDs of the executed basic blocks2, does not include nested method

invocations, and ends when the execution returns from the method. IMP subsumes BC

(and thus SC) but faces the problem that loops introduce an unbounded number of test

requirements.

Our second variant of path coverage, acyclic intra-method paths (AIMP), retains subsump-

tion of BC but bounds the total number of requirements by considering only acyclic paths

in intra-method control-flow graphs [11]. The number of AIMP paths is therefore bounded

by m · 2k where m is the number of methods in a program and k is the maximum number

2These are the standard basic blocks, not dynamic basic blocks from DBB. When we want to refer to
DBBs, we explicitly use “dynamic”.
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of branches in a single method. The paths to be covered have no repeated IDs, i.e., AIMP

modifies IMP such that a repeated basic block ID ends the current path and starts a new

path3. Ball and Larus present an efficient approach to compute AIMP coverage [11].

Figure 2.1.b shows an instrumented version of decreaseKey that can be used to col-

lect IMP and AIMP coverages. (The p$ methods will be discussed in the next section.)

Coverage.beginMethod and Coverage.endMethod are invoked at the beginning and end of

the method, respectively, and they are used to begin and end a path. Coverage.cover is

invoked at each basic block and is used to collect the block IDs in a path. In addition,

for AIMP, the Coverage.cover method may end the current path and start a new path

if the block ID is repeated on the current path. For example, consider the instance of

BinomialHeap shown in Figure 2.1.d.

Invoking decreaseKey on that heap with arguments (9, 8) executes the IMP 0 → 2 → 4

and covers the same path for AIMP. (Note that 0, 2, and 4 refer to IDs of basic blocks).

Invoking decreaseKey on that heap with (9, 2) instead executes the IMP 0 → 2 →

3 → 3 → 4 but covers two paths for AIMP: 0 → 2 → 3 and 3 → 4. Note that IMP

and AIMP collect paths for every method run, e.g., each invocation of decreaseKey calls

findNodeWithKey (which may invoke other methods), so for each invocation, IMP has one

path (and AIMP at least one path) for both methods.

2.3 Predicate-Complete Test Coverage (PCT)

Predicate-complete test coverage (PCT) [9,10] was introduced by Ball as a finite-state alter-

native to path coverage, inspired by predicate abstraction in model checking [8]. Like path

coverage, PCT subsumes both BC and SC, but unlike some versions of path coverage, PCT

does not face the problem that loops introduce an unbounded number of test requirements.

PCT is incomparable to (i.e., neither subsumes nor is subsumed by) path coverages such

as IMP and AIMP, even for loop-free programs. Several research studies [35, 36, 58, 65, 69]

compared test suites using PCT, but with manually selected predicates for measuring PCT;

3Our AIMP uses the notion of simple path common in graph theory, where no vertex is repeated, rather
than definition of prime path found in some testing literature [4].
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we refer to this version as PCTMS.

PCT defines coverage using Boolean predicates extracted from the program source, in

particular from branch conditions, implicit run-time checks, and program assertions. These

predicates are evaluated at many program points, e.g., at all statements or all starts of basic

blocks, potentially far from where the predicates appear in the program source. In fact,

evaluating predicates both near and far from where they appear is what makes PCT even

stronger than MC/DC or other related criteria sometimes called “predicate coverage” [4]

that evaluate predicates only near where they appear. The test requirements for PCT are

to cover all (feasible) combinations of predicate values at all the points. In the limit, for n

predicates at p points, there are p · 2n combinations (many often infeasible, and not every

point has all n predicates). The PCT coverage for a test suite is measured as the number of

combinations of predicate values obtained during the execution of the test suite.

We next illustrate PCT using the BinomialHeap example. The first step is to extract a

set of Boolean predicates from the code under test. Our example code has two conditional

statements at lines 12 and 15 (Figure 2.1.a), which lead to three predicates: tmp == null,

tmpParent != null, and tmp.key < tmpParent.key. Note that we take as a predicate each

atomic condition rather than the complex expression. The implicit run-time checks in our

example guard against dereferencing null: nodes != null, tmp != null, and tmpParent

!= null. Note that the same predicate may be extracted several times, so syntactically

identical duplicates are removed (Section 3). A key goal for PCT is to extract all predicates,

as otherwise PCT may not subsume BC or MC/DC.

The second step is to insert evaluation of predicates at all appropriate program points.

Our tool first generates a method for evaluating each predicate and then inserts calls to

these methods. Note that one cannot simply evaluate the predicate as it could lead to

problems, e.g., raise an exception if certain variables are null. The method for each

predicate performs the necessary checks. Figure 2.1.c shows the method for the pred-

icate tmp.key < tmpParent.key. The methods Coverage.testAndSetInPredicate and

Coverage.resetInPredicate guard against infinite recursion. The catch clause handles

exceptions in predicate evaluations.

For program points, our PCT tools for Java and C allow instrumenting all statements,

9



PCTST, or all beginnings of basic blocks, PCTBB. Figure 2.1.b shows an example instrumen-

tation at the basic-block level. Each Coverage.cover call informs the tool that a certain

program point (identified with an integer ID) is being executed with a specific combination

of predicate values. Note that predicates cannot be evaluated at points where their variables

are not in scope, e.g., the predicates for tmpParent cannot be evaluated before line 13. Our

tools insert evaluation for all predicates that can be evaluated. Some predicates can be

evaluated far from where they are extracted, e.g., nodes != null is evaluated on line 16

(Figure 2.1.b), although it is extracted based on line 4 (Figure 2.1.b). Some predicates (on

instance fields, rather than on method local variables) can even be extracted in one method

and evaluated in another method.

While PCTBB maintains the key subsumption properties of PCT over BC, it is only an

approximation of PCTST because statements within a block can change predicate values.

The example shows that this is not unusual: tmp.key, tmpParent.key, and tmp are all

modified inside the block beginning at line 15 (Figure 2.1.b) in ways that may introduce

combinations of predicate values that will never be seen at basic block entries.
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CHAPTER 3

PCT IMPLEMENTATION

As stated previously, one of our contributions is the first implementation of Ball’s PCT [9],

and therefore we are the first to encounter a number of unique challenges related to this cov-

erage criterion. We find it important to document our experiences related to these unique

challenges. Specifically, we find that the design of a programming language may impose

fundamental problems for correct and efficient implementation of PCT, by making certain

information unavailable at runtime. In the following sections, we first discuss the implemen-

tation for both Java and C1, challenges that are both unique and shared by these languages,

and how we addressed these challenges.

3.1 Java Implementation

We implemented our tool for measuring PCT for Java as an Eclipse headless plugin [25] that

performs source-to-source instrumentation. The tool can instrument the code under test for

measuring PCT at each statement or each basic block.

3.1.1 Extracted Predicates

According to the original source on PCT [9], all atomic predicates should be extracted from

conditional statements, implicit run-time checks, and assertions. For complex conditionals or

assertions, e.g., A || (B && C), each of A, B, and C must be treated as a separate predicate

(otherwise, PCT could not subsume multiple condition coverage). However, the original

source [9] gives no specific instructions on which run-time checks to consider. To limit the

1Note that the author did not develop the tool for C. This tool was developed by collaborators [31].
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cost of instrumentation, our tool considers only two types of run-time checks for creating

predicates: null dereference and index out of bound. It creates one predicate for each field

access (e.g., predicate obj != null for obj.f) and method invocation (e.g., predicate obj

!= null for obj.m()), and two predicates for each array element access (e.g., predicates arr

!= null and 0 <= i && i < arr.length for arr[i]).

3.1.2 Minimizing the Set of Predicates

We maintain predicates as a set and do not instrument multiple occurrences of the same

predicate multiple times, for efficiency reasons. We are limited in our ability to detect

semantically, rather than syntactically, equivalent predicates (the problem is not decidable);

even when semantically duplicate predicates appear in instrumentation, they do not change

the total number of covered location-predicate values (redundant bits in a bit vector do not

change the bit vector equality).

3.2 C Implementation

We implemented our tool for measuring PCT for C as a source-to-source transformation

using the CIL framework [55]. Like the Java version, the C version allows us to choose

instrumenting each basic block or each statement.

The challenges in extracting predicates in C are somewhat different than in Java. C is

arguably a simpler language than Java, e.g., lacking inheritance or exceptions and having

simpler scoping rules. Unfortunately, attempting to instrument real-world C programs for

PCT faces challenges rooted in the C language itself.

The fundamental problem is that C is an unsafe language. In Java, it is easy to perform

runtime checks to avoid invalid memory accesses: the length of an array can be queried,

and if a reference is not NULL, it is valid. In C, however, arrays do not carry length

information and pointers can be non-NULL yet point to deallocated or remote memory—a

C pointer is simply an arbitrary memory address. The only way to safely capture values

for most predicates involving pointers or arrays in C would be to further instrument the
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program to track array lengths and check pointers for validity. However, the overhead

of such instrumentation is unfortunately high for many C programs — an additional 2-5

slowdown over predicate instrumentation in runtime and 2-10 times additional overhead in

memory usage for an efficient tool such as Purify, and possibly more for instrumentation

that can work with our predicate instrumentation [2]. Therefore, in our tool we have chosen

not to instrument predicates using pointers or array referencing.

The core instrumentation is quite simple: after transforming the input code to the CIL’s

canonical form, a CIL visitor first traverses the program collecting predicates (and their

scopes), and then another visitor inserts function calls to capture values at each block or

statement.

3.3 Challenges

During the implementation of our tools we discovered several technical challenges unique to

measuring PCT coverage. We discuss these challenges, marking each with the language—J

for Java, C for C, and JC for both—in which the challenge is identified.

3.3.1 Side EffectsJC

Simply extracting all expressions that appear in conditional statements and evaluating these

exact syntactic expressions at certain program points can lead to incorrect instrumentation

because a conditional expression may contain side effects, such as assignments, prefix/postfix

operators, or invocations of methods/functions that modify the program state. Because of

side effects, the state of the instrumented program at some point in the execution may not

match the state of the original program at the corresponding point in the original execution.

To identify side effects, we implemented a (simple) purity analysis [61,68] using WALA [73]

for Java. The analysis checks each extracted predicate and does not instrument elsewhere

for those that are not side-effect free. In C, CIL removes the problem of side effects by using

temporary variables to make all conditionals side-effect free. This means that in C, we often

instrument a predicate for a temporary variable only assigned once. This is not clearly worse
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than simply not instrumenting the predicate: it captures some additional states, without

adding any spurious states since the temporary value is local in scope.

3.3.2 Recursive Predicate InvocationJC

Each predicate can contain an arbitrary expression, as long as the expression does not have

side effects. Therefore, a predicate may contain an invocation of a method that invoked the

predicate, which would lead to infinite recursion. To prevent this, the instrumentation inserts

special method calls at the beginning and end of each predicate. Recall Figure 2.1.b. The

method Coverage.testAndSetInPredicate checks a Boolean flag that indicates whether

a predicate evaluation has started. If no evaluation has started, it sets the Boolean flag

and starts the predicate evaluation. If the flag was already set, the predicate would not

be evaluated. The method Coverage.resetInPredicate simply resets the Boolean flag to

mark the end of the evaluation.

3.3.3 Field/Element Access or Method InvocationJC

A predicate can contain arbitrary (side-effect free) expressions including field accesses,

method invocations, or array-element accesses. Since a predicate can be evaluated at any

program point where the variables used in the predicate are visible, some of these expres-

sions could lead to null pointer dereference or index out of bounds exceptions (in Java) or

other problems (in C). For C, our tool does not use such predicates. For Java, our tool adds

checks to the predicates, specifically a null check for each field access and method invocation

and both a null check and bound check for each array element access. If all checks are

satisfied, the predicate is evaluated, otherwise the evaluation of the predicate is ignored. In

the example in Figure 2.1.c, there are checks for tmp != null and tmpParent != null.

3.3.4 Checked ExceptionsJ

A Java predicate can in general contain an invocation of a method that declares some

checked exceptions (e.g., IOException). Such exceptions have to be either propagated to
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a caller (by specifying the types of the exceptions in the throws clause) or caught. We

did not want to simply ignore such predicates (especially since they can be important for

bugs related to exceptional control flow [29]). Instead, our implementation adds code to

catch the exception(s) and ignores the evaluation of the predicate if an exception is caught.

Figure 2.1.b shows such a catch block, although it is not strictly required for that example

predicate. In practice, only a small percentage of predicates requires catching exceptions,

because our purity analysis already filters out most of the methods that may throw an

exception.

3.3.5 Inner/Anonymous Classes and Class HierarchyJ

Our current implementation does not instantiate certain predicates that could be in theory

instantiated across class boundaries but do not occur often in practice. First, inner/anony-

mous classes in Java can access predicates from the outer classes. However, an additional

check would be needed to ensure that a predicate from an outer class can be instantiated in

an inner class: all local variables needed as the predicate arguments must be declared final.

Similarly, some predicates extracted from inner classes could be instantiated in the outer

classes if all the variables used in the predicate are declared in the outer classes. Second,

predicates that are extracted from a class and reference its instance fields are in principle

visible in all subclasses (that do not shadow these fields). The reason to ignore these predi-

cates is additional implementation burden required to track relation between classes and to

keep predicates across instrumenting multiple classes.

3.3.6 Method Size LimitJ

In a few cases, our instrumentation produced code that was so large that it was rejected by

some Java compilers. Namely, there were many predicates and points in the instrumented

code, and some of the instrumented methods exceeded the 64KB limit set by the Java classfile

specification [71]. One approach to reduce the size would be to (randomly) select only some

predicates and/or program points for PCT where the predicates should be instantiated.
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However, a good way to select predicates and/or points is not known as of now. Thus, we

decided to ignore all predicates and points that lead to methods that exceed the limit.
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CHAPTER 4

EXPERIMENTAL METHODOLOGY

To compare coverage criteria, we examine first and foremost how well the coverage values

predict test suite quality in terms of mutation scores. We additionally consider the cost of

measuring coverage. We compare two traditional criteria (SC and BC) and three sets of

recently used criteria based on equivalence classes of covered statements (DBB), program

paths (IMP and AIMP), and predicate states (various PCTMS, PCTBB, and PCTST).

Testing literature does not have one agreed upon methodology for comparing test coverage

criteria, so we motivate and describe the methodology we use. Coverage values are used to

evaluate suites, typically as predictors for finding real faults. Intuitively, if a good criterion

deems one suite better than another suite, then we expect the better suite to find, on average,

more faults. However, performing large controlled experiments with real faults is hard due to

the difficulty of collecting many suitable faulty programs, and statistical validity is difficult

to attain with the typically small number of faults in each program. For these reasons, while

older studies on comparing coverage criteria used (a small number of) real faults [27,28,46],

more recent studies use (a large number of) systematically seeded mutants [6, 13, 53].

Specifically we examine the ability of coverage values to predict (the relative ordering or ab-

solute values of) mutation scores. To visualize this concept, Figure 4.1 shows eight plots (for

eight coverage criteria) that relate coverage values and mutation scores for BinomialHeap.

Each point represents one of 300 suites (selected as explained in Section 4.2). The X-axis

shows coverage, normalized between 0.0 and 1.0, and the Y-axis shows mutation score1. It

is clear in all six plots that if a suite A has a higher coverage than a suite B, then the suite

A also likely has a higher mutation score than the suite B. The purpose of our statistical

1The mutation score is not normalized, but dividing by a constant never changes values for our three
correlations.
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Figure 4.1: Coverage criteria values and mutation scores correlation for BinomialHeap

evaluation is to quantify the degree to which this relationship holds for each criterion, and

thus to compare criteria. We apply three different standard statistical tools: Kendall’s τb

rank correlation, Spearman’s ρ rank correlation, and the R2 coefficient of determination for

linear regression, discussed in detail in Section 4.4. Intuitively, Kendall’s τb and Spearman’s
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Subject NBNC
Size of

test pool
Total

mutants
Killed

mutants

language: Java

JFreeChart 72,490 2,217 45,409 14,932
JodaTime 27,472 3,828 24,956 16,478
AvlTree 344 11,041 335 51
BinomialHeap 264 8,423 205 37
BinTree 100 13,825 55 16
FibHeap 264 12,842 186 38
FibonacciHeap 397 4,478 295 74
HeapArray 98 4,064 122 61
IntAVLTreeMap 213 17,072 199 38
IntRedBlackTree 296 20,419 279 210
LinkedList 245 1,307 167 5
NodeCachLList 234 1,776 159 16
SinglyLList 98 1,762 57 10
TreeMap 449 14,076 463 106
TreeSet 323 17,400 360 82

language: C

Space 6,200 1,350 1,142 753
SQLite 81,934 117,240 52,367 19,294
YAFFS2 11,760 5,000 10,674 4,186
Printtokens 479 4,130 536 442
Printtokens2 401 4,115 343 343
Replace 512 5,542 613 530
Schedule 292 2,650 140 125
Schedule2 297 2,710 300 251
SglibRbtree 1,564 5,000 443 193
Totinfo 340 917 511 511
Tcas 135 1,608 311 311

Table 4.1: Subject programs used in the evaluation (basic statistics)

ρ measure how well coverage values predict the relative ordering of mutation scores, and R2

correlates coverage values with mutation scores using a linear regression model.
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4.1 Experimental Subjects

Programs: Table 4.1 summarizes the programs used in our experiments, showing the name

and number of NBNC (non-blank, non-comment) lines of code (measured by CLOC [18])

for each program. We used a total of 26 programs, 15 Java programs and 11 C programs.

All Java programs but two are implementations of data structures that have been used in

numerous previous studies, primarily on comparing different testing techniques [30, 35, 36,

64,65,69]. JFreeChart [48] is an open-source library for both interactive and non-interactive

manipulation of charts. JodaTime [50] is an open-source library for manipulating date and

time. For C, seven programs are from the Siemens suite from the SIR repository [24, 46],

Space [24,72] is a bigger program from the same repository, SglibRbtree [70] is the red-black

tree implementation from the Sglib library, YAFFS2 [78] is a widely used open-source flash

file system for embedded devices (the default image format for older versions of Android),

and SQLite [67] is a widely deployed database engine.

Tests: Table 4.1 also shows the total number of tests in the test pools from which various

test suites are selected. For Java data structures, we use test pools automatically generated in

previous studies [35,36,65] using three test-generation techniques: random (Random), shape

abstraction (ShapeAbs) [69], and adaptation-based programming (ABP) [35, 36]. Table 4.1

shows the total number of tests generated by all three techniques. For JFreeChart and

JodaTime, we use the large, publicly available pool of manually written JUnit tests. For C

programs, we use the Siemens/SIR test pools for the programs from SIR. For SglibRbtree

and YAFFS2, we generated random tests (feedback-directed [37] for YAFFS2). For SQLite we

use manually written tests available from the SQLite repository [67].

Mutants: Table 4.1 also tabulates for each program the number of mutants created and

the total number of mutants killed by the entire test pool (while different suites selected from

the pool kill different number of mutants). The percentage of killed mutants is low because

we mutated all the methods in the code but automatically generated tests execute only some

core methods for the smaller subjects [65]. Low absolute mutation scores are suitable for

our purpose of examining non-adequate suites, the typical case for suites for large programs.

Non-adequate suites will seldom attain extremely high mutation scores. Additionally, we did
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not investigate which mutants are equivalent, as this does not affect our analysis (because

compensating for equivalent mutants is equivalent to dividing mutation score by a constant,

which does not affect τb, ρ, or R
2).

For Java programs, we used Javalanche [62] to create mutants. Because the number of

mutants may be lower than one would expect, it should be noted that Javalanche uses

selective mutation [56] to reduce the cost of mutation testing. Selective mutation applies

only a subset of mutation operators that are empirically shown to approximate the results

that would be achieved if all operators were used. In particular, Javalanche uses only the

following operators: replace numerical constants, negate jump condition, replace arithmetic

operator, replace method calls, and remove method calls. Still, Javalanche created over 45K

and 24K mutants for JFreeChart and JodaTime, respectively.

For C programs, we created mutants using the tool implemented by Andrews et al. [5],

which produces mutants based on a set of operators selected through an empirical study on

selective mutation [54]. Specifically, the tool uses the following operators: replace constants;

delete statements; negate decisions in conditional statements; and replace a relational, arith-

metic, logical, bit-wise logical, increment/decrement, or arithmetic-assignment operator by

another operator from the same class.

Statement and Branch Coverage Information: The SC and BC columns in Table 4.2

provide information for statement and branch coverage, respectively: “static” shows the

number of branches in the code, and “exe” shows the number of branches executed by at

least one test.

DBB Information: Table 4.2 also provides DBB-specific information, i.e., the total

number of DBBs obtained by using a single test suite consisting of the entire test pool

summarized in Table 4.1. Note that the total number of DBBs differs when we select

different test suites from the test pool. For SQLite, DBBs are not meaningful as “suites”

consist of a single lengthy execution sequence with no breakdown into separate tests.

IMP and AIMP Information: Table 4.2 also provides the total number of paths

executed by the entire test pool.

PCT Information: Table 4.2 finally provides PCT-specific information, i.e., the total

number of predicates used in the instrumentation, the number of program points at which
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these predicates are inserted, and the number of executed states (i.e., encountered states

during the execution) by the entire test pool. MS (“Manually Selected”) denotes a set of

predicates and points that were first manually selected for four data structures by Visser et

al. [69] and then similarly selected for the remaining structures by Sharma et al. [65]. These

programs, with manually selected predicates for PCT coverage, are publicly available [22].

BB (“Basic Blocks”) and ST (“Statements”) denote the results of automatic instrumentation

by our PCT coverage tools. Recall that our tools select (almost) all predicates from the

code and insert each predicate at (almost) all program points where the variables from the

predicate are in scope.

4.2 Test Suites

We used two approaches for selecting test suites, to see if results are robust in the face

of different suite compositions. The bounds in our approaches (e.g., 100 test suites) were

chosen before experimentation, to limit computation time while providing sufficiently many

samples for statistical analysis, or were chosen to match previous papers.

Coverage-varied Selection: For each program, to ensure that the selected test suites

are of varying coverage and size, we created suites by first uniformly selecting a coverage

level between 1% and 100% and then randomly selecting tests from the test pool until they

reached the selected level of PCTBB coverage. We picked PCTBB as one strong criterion but

could have used any other criterion. For the Java data structures we selected 100 suites from

the pool for each of the three test-generation techniques (Random, ShapeAbs, and ABP),

giving a total of 300 test suites. For JFreeChart and JodaTime we used 100 test suites

created following the same steps. Similarly, for all C programs except SQLite we used 300

suites. For SQLite each “test” in the pool is essentially a large suite of tests that must run

together, so we treated each of the 592 “tests” as a suite.

Size-varied Selection: We also followed another suite selection approach, used in pre-

vious studies of coverage criteria [43, 53]. For each program, we created 100 random suites

for each size (number of tests) between 1 and 50, which gives 5,000 suites per program, but

with less varied coverage than Coverage-varied Selection. Also, this approach creates many
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suites that are near adequate in at least one criterion and does not include suites based on

different test generation techniques, which most closely reflect the intended purposes of our

evaluation. SQLite was handled as for the Coverage-varied Selection.

4.3 Metrics

We collected several metrics for the selected test suites.

Coverage Criteria: For each suite, we measured several coverage values (for both Java

and C): SC, BC, DBB, IMP, AIMP, PCTMS (except for JFreeChart, JodaTime, and all C

programs), PCTBB, PCTST, and mutation score.

Runtime Overhead: We separately ran each coverage measurement so that we could

measure the runtime overhead. We performed all Java experiments on a machine with a

4-core Intel Core i7 2.70GHz processor and 4GB RAM, running Linux version 3.2.0 and

Java OpenJDK 64-Bit Server VM, version 1.7.0 04. We performed all C experiments on a

machine with a 4-core Intel Xeon E5400 2.83GHz processor and 4GB RAM, running Linux

version 2.6.32.

4.4 Correlation Analysis

To evaluate the relationship between coverages and mutation scores, we computed three

correlation measures.

Kendall’s τb: One core question of this paper is whether (and which) coverage criteria

can be used to effectively predict the rank order of suites’ mutation scores. This is the

primary use of coverage in recent studies; authors have tended to focus on claiming that

some testing technique is “better”, and relatively small differences in coverage values have

been used to justify a claim of “better” [36, 69]. The most robust and usefully interpreted

statistical measure for this question is Kendall’s τ rank correlation coefficient [17, 51].

Consider the coverage and mutation score data as a set of pairs (C,M), where C is the

coverage value for a suite and M is the mutation score for that suite. Two pairs (C1,M1)

and (C2,M2) are called concordant if the ordering of C1 and C2 matches the ordering of
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M1 and M2, i.e., C1 < C2 and M1 < M2 or C1 > C2 and M1 > M2. The pairs are called

discordant if C1 < C2 and M1 > M2 or C1 > C2 and M1 < M2. Kendall’s τ is the ratio of

the difference between the number of concordant and discordant pairs and the total number

of pairs. Kendall’s original τ does not handle ties well, and thus was not suitable for our

study, where several criteria can have many ties among suites for some subjects.

To illustrate concordant and discordant pairs, consider three test suites T1, T2, T3 that have

respective coverage values 0.3, 0.4, 0.5 and mutation scores 0.7, 0.6, 0.8. There are 2 concor-

dant pairs — (T1, T3), (T2, T3) — where higher/lower coverage values have higher/lower

mutation scores, and one discordant pair — (T1, T2).

Kendall’s τb, used in our study, is a standard adaptation that adjusts for ties [21]. Using

a non-parametric rank correlation allows us to avoid the difficult question of whether the

relationship between any criterion and mutation score is linear; τb does not make any as-

sumption about the underlying functional relationships. A final attractive feature of τb is

that in the absence of ties, the value can be intuitively interpreted: 0.5 + | τ
2
| is the proba-

bility of correctly predicting the ordering of mutation scores using the ordering of coverage

values [21]. Despite these desirable features of τb, our study is among the first to use τb in

comparison of multiple coverage criteria. (A few studies [53,76,77] only mention τ or use it

for other purposes.) Values for τb range from -1.0 (which would indicate that the coverage

values are always opposite of the mutation score) to 1.0 (which would indicate a perfect

predictive power for a criterion); a τb of 0.0 indicates there is no relationship between the

rank ordering by the criterion and rank ordering by mutation score.

Spearman’s ρ: A statistic similar to τ or τb is Spearman’s ρ [66]; it is also a rank

correlation coefficient. The primary arguments for ρ are tradition and ease of calculation.

Also, Spearman’s ρ handles ties by averaging the ranks. In many cases, ρ and τ/τb are very

similar in value. Intuitively, we use ρ to measure the degree to which the coverage values

and mutation scores are monotonic. When ρ is positive, it implies that coverage value

tends to increase when mutation score increases, and when ρ is negative, it implies that

coverage value tends to decrease when mutation score decreases. A ρ correlation coefficient

of 1.0 indicates a perfect increasing monotone fit, and a coefficient of -1.0 indicates a perfect

decreasing monotone fit. (Only a few previous studies of coverage criteria [54, 76] briefly
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mention Spearman’s ρ.)

R2: We also formed linear regression models for each criterion and obtained the R2

coefficient of determination for the fits of those models to our data. It is well known that

mutation scores do not depend linearly on coverage values [6, 13, 43, 53], but R2 still gives

an indication of correlation. Intuitively, it attempts to answer the question: if one suite

has X% higher coverage value than another suite, does it have a c · X% higher mutation

score? More precisely, it shows how well a linear model fits the actual data points, with 1.0

indicating a perfect fit and 0.0 indicating there is no relationship between the coverage and

mutation score. Figure 4.1 shows lines that best fit the observed data.
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Kendall’s τb Rank Correlation

Tables 5.1 and 5.2 show Kendall’s τb correlation values for all subjects and all criteria we

examined, for Coverage-varied Selection and Size-varied Selection, respectively. Each sec-

tion highlights the best (darker/green) and worst (lighter/red) values. Values for PCTMS

are missing where manual selection of predicates was not used, and values for SQLite are

repeated for both approaches. The first key observation is that most criteria had τb values

over 0.5, often over 0.7, for most subjects. Using any of the criteria studied would correctly

predict mutation score rankings for a large fraction of all suite pairs. Based on the standard

Guilford scale [39], we would say that the mean values often showed high (> 0.7) or nearly

high (> 0.6) correlation, and almost all correlations were at least moderate (> 0.4). All val-

ues below 0.4, for criteria other than DBB, IMP and PCTMS, came from just 4 simple Java

data-structure classes. Given DBB’s occasionally negative correlations, it is not clear that

DBB is a useful criteria for suite evaluation for any purpose but fault localization, although

even DBB often correlated very well.

The second key observation is that the absolute values and relative effectiveness of criteria

vary with subject and test-suite selection approach, in a few cases by a wide range. How-

ever, considering all subjects and both approaches, it is clear that BC performs very well,

and AIMP seems to perform best of the non-branch criteria (although PCTBB and PCTST

have slightly higher means for Coverage-varied Selection). For large subjects, coverage and

mutation score ties were rare enough (more details in Section 5.7) that the values in the

tables can be reasonably interpreted as indicating these criteria predict mutation score rank

successfully 80% or more of the time. We additionally note that our results support, to a
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Subject Size SC BC DBB IMP AIMP PCTMS PCTBB PCTST

language: Java

JFreeChart 0.958 0.962 0.966 0.961 0.845 0.964 - 0.951 0.936
JodaTime 0.937 0.966 0.972 0.958 0.965 0.964 - 0.959 0.961
AvlTree 0.012 0.773 0.774 0.665 0.783 0.785 0.756 0.789 0.816
BinomialHeap -0.152 0.617 0.775 0.069 0.487 0.585 0.527 0.637 0.631
BinTree 0.389 0.132 0.220 0.340 0.341 0.351 0.491 0.417 0.510
FibHeap 0.058 0.759 0.807 0.692 0.278 0.395 0.509 0.634 0.515
FibonacciHeap 0.202 0.494 0.512 0.259 0.539 0.527 0.497 0.480 0.478
HeapArray -0.017 0.803 0.801 -0.377 0.761 0.726 0.638 0.771 0.703
IntAVLTreeMap 0.239 0.777 0.770 0.612 0.788 0.815 0.786 0.728 0.762
IntRedBlackTree 0.111 0.710 0.741 -0.020 0.712 0.751 0.697 0.748 0.737
LinkedList -0.048 0.756 0.746 0.603 0.713 0.716 0.746 0.705 0.701
NodeCachLList -0.142 0.737 0.724 0.020 0.527 0.670 0.693 0.531 0.495
SinglyLList 0.243 0.577 0.586 0.174 0.451 0.495 0.492 0.571 0.634
TreeMap 0.242 0.747 0.772 0.578 0.690 0.748 0.721 0.743 0.755
TreeSet 0.063 0.755 0.784 0.346 0.696 0.770 0.737 0.752 0.772

language: C

Space 0.876 0.926 0.929 0.881 0.913 0.929 - 0.917 0.911
SQLite 0.585 0.908 0.904 - 0.837 0.909 - 0.906 0.904
YAFFS2 0.347 0.688 0.702 0.347 0.501 0.690 - 0.667 0.680
Printtokens 0.552 0.894 0.781 0.548 0.901 0.916 - 0.794 0.855
Printtokens2 0.561 0.851 0.845 0.564 0.826 0.831 - 0.839 0.844
Replace 0.541 0.717 0.699 0.533 0.691 0.697 - 0.677 0.681
Schedule 0.437 0.773 0.776 0.408 0.747 0.766 - 0.716 0.711
Schedule2 0.339 0.766 0.767 0.338 0.683 0.749 - 0.691 0.751
SglibRbtree 0.693 0.763 0.793 0.691 0.680 0.698 - 0.765 0.762
Totinfo 0.380 0.673 0.758 0.389 0.743 0.748 - 0.671 0.711
Tcas 0.639 0.732 0.773 0.710 0.739 0.739 - 0.766 0.749

Standard deviation ignored 0.166 0.147 0.318 0.172 0.158 0.116 0.134 0.133
Geometric mean ignored 0.707 0.735 - 0.660 0.709 0.627 0.711 0.717
Arithmetic mean ignored 0.741 0.757 0.452 0.686 0.728 0.638 0.724 0.729
The best results ignored 5 13 0 1 5 0 0 3
The worst results ignored 1 0 21 4 0 0 0 0

Table 5.1: τb values for Coverage-varied Selection

considerable extent, previous studies that used newer path and predicate criteria to evaluate

test suites/techniques [9,15,16,35,36,58,65,69,74]: while PCT criteria were not our best, the

PCTMS with manually selected predicates performed well, and PCT performed better than

IMP, which was used in fewer studies. Our results also indicate the benefit of using multiple

criteria to evaluate suites, as is common practice in studies: while the worst correlation for

some subjects is below 0.5, the best is over 0.5 in all but two subjects. Agreement between

multiple criteria should increase confidence in a ranking.
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Subject Size SC BC DBB IMP AIMP PCTMS PCTBB PCTST

language: Java

JFreeChart 0.703 0.777 0.818 0.813 0.768 0.792 - 0.818 0.776
JodaTime 0.748 0.808 0.835 0.842 0.836 0.840 - 0.826 0.815
AvlTree 0.560 0.301 0.301 0.301 0.556 0.492 0.494 0.520 0.530
BinomialHeap 0.428 0.624 0.629 0.629 0.367 0.521 0.409 0.467 0.450
BinTree 0.594 0.271 0.510 0.271 0.587 0.696 0.564 0.658 0.656
FibHeap 0.495 0.566 0.637 0.584 0.475 0.641 0.676 0.622 0.617
FibonacciHeap 0.479 0.409 0.419 0.411 0.492 0.487 0.440 0.389 0.395
HeapArray 0.507 0.728 0.723 0.728 0.519 0.742 0.646 0.592 0.583
IntAVLTreeMap 0.584 0.684 0.682 0.706 0.633 0.677 0.665 0.621 0.617
IntRedBlackTree 0.489 0.671 0.726 0.717 0.757 0.803 0.755 0.778 0.758
LinkedList 0.130 0.353 0.849 0.353 0.132 0.154 0.849 0.157 0.155
NodeCachLList 0.358 0.404 0.355 0.403 0.343 0.393 0.404 0.377 0.380
SinglyLList 0.466 0.494 0.494 0.494 0.419 0.824 0.385 0.667 0.699
TreeMap 0.492 0.680 0.700 0.696 0.759 0.777 0.746 0.741 0.738
TreeSet 0.511 0.703 0.739 0.733 0.736 0.774 0.732 0.764 0.754

language: C

Space 0.793 0.853 0.858 0.836 0.815 0.881 - 0.769 0.759
SQLite 0.585 0.908 0.904 - 0.837 0.909 - 0.906 0.904
YAFFS2 0.583 0.614 0.640 0.591 0.466 0.655 - 0.640 0.632
Printtokens 0.642 0.815 0.627 0.670 0.730 0.829 - 0.617 0.688
Printtokens2 0.533 0.717 0.695 0.587 0.548 0.605 - 0.655 0.679
Replace 0.541 0.483 0.504 0.520 0.566 0.539 - 0.485 0.493
Schedule 0.551 0.776 0.720 0.630 0.546 0.653 - 0.731 0.745
Schedule2 0.562 0.474 0.493 0.512 0.588 0.532 - 0.529 0.548
SglibRbtree 0.567 0.646 0.627 0.602 0.581 0.583 - 0.628 0.647
Totinfo 0.448 0.576 0.554 0.455 0.492 0.517 - 0.478 0.478
Tcas 0.677 0.589 0.720 0.689 0.703 0.703 - 0.747 0.729

Standard deviation ignored 0.173 0.156 0.161 0.170 0.172 0.157 0.166 0.163
Geometric mean ignored 0.585 0.624 0.567 0.555 0.624 0.577 0.593 0.595
Arithmetic mean ignored 0.612 0.645 0.591 0.587 0.655 0.597 0.622 0.624
The best results ignored 4 3 3 4 10 3 2 1
The worst results ignored 9 1 3 11 0 1 2 2

Table 5.2: τb values for Size-varied Selection

5.2 Spearman’s ρ Rank Correlation

Tables 5.3 and 5.4 show Spearman’s ρ correlation values for all subjects and all criteria we

examined, for Coverage-varied Selectionand Size-varied Selection, respectively. The first key

observation is that most criteria had positive ρ values for most subjects. Negative values

occurred only with DBB for Coverage-varied Selection. The second key observation is similar

to that for Kendall’s τ : it is clear that BC performs very well, and AIMP seems to perform

best of the non-branch criteria (though PCTBB has slightly higher means for Coverage-varied

Selection).
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Subject Size SC BC DBB IMP AIMP PCTMS PCTBB PCTST

language: Java

JFreeChart 0.997 0.997 0.997 0.997 0.945 0.997 - 0.995 0.994
JodaTime 0.992 0.997 0.998 0.997 0.997 0.997 - 0.996 0.997
AvlTree 0.002 0.880 0.885 0.784 0.901 0.901 0.892 0.918 0.935
BinomialHeap -0.210 0.724 0.889 0.067 0.654 0.743 0.690 0.796 0.786
BinTree 0.481 0.161 0.241 0.410 0.436 0.448 0.620 0.531 0.642
FibHeap 0.065 0.895 0.921 0.837 0.354 0.544 0.679 0.802 0.688
FibonacciHeap 0.246 0.641 0.661 0.353 0.706 0.689 0.666 0.639 0.634
HeapArray -0.026 0.913 0.911 -0.484 0.917 0.878 0.801 0.920 0.868
IntAVLTreeMap 0.302 0.908 0.900 0.773 0.921 0.931 0.922 0.885 0.907
IntRedBlackTree 0.090 0.887 0.905 -0.146 0.896 0.917 0.886 0.917 0.911
LinkedList -0.051 0.833 0.826 0.673 0.817 0.819 0.826 0.807 0.806
NodeCachLList -0.170 0.848 0.841 -0.003 0.692 0.813 0.820 0.694 0.636
SinglyLList 0.295 0.673 0.678 0.208 0.579 0.603 0.617 0.691 0.769
TreeMap 0.275 0.902 0.913 0.751 0.877 0.912 0.896 0.909 0.914
TreeSet 0.045 0.916 0.930 0.475 0.876 0.923 0.908 0.916 0.929

language: C

Space 0.876 0.987 0.988 0.962 0.985 0.990 - 0.989 0.911
SQLite 0.585 0.984 0.983 - 0.942 0.984 - 0.985 0.904
YAFFS2 0.347 0.862 0.874 0.424 0.672 0.862 - 0.843 0.680
Printtokens 0.552 0.981 0.921 0.664 0.983 0.986 - 0.939 0.855
Printtokens2 0.561 0.962 0.960 0.707 0.950 0.952 - 0.959 0.844
Replace 0.541 0.890 0.876 0.683 0.869 0.878 - 0.862 0.681
Schedule 0.437 0.902 0.908 0.505 0.895 0.905 - 0.874 0.711
Schedule2 0.339 0.908 0.904 0.416 0.842 0.896 - 0.858 0.751
SglibRbtree 0.693 0.917 0.934 0.829 0.853 0.865 - 0.919 0.762
Totinfo 0.380 0.823 0.883 0.481 0.874 0.870 - 0.834 0.711
Tcas 0.639 0.884 0.923 0.855 0.892 0.892 - 0.920 0.749

Standard deviation ignored 0.168 0.151 0.373 0.166 0.141 0.116 0.115 0.114
Geometric mean ignored 0.824 0.849 - 0.799 0.840 0.778 0.853 0.799
Arithmetic mean ignored 0.857 0.871 0.529 0.820 0.854 0.786 0.861 0.807
The best results ignored 6 10 1 1 5 0 3 4
The worst results ignored 1 0 17 2 0 0 1 5

Table 5.3: ρ values for Coverage-varied Selection

5.3 Linear Regression

Tables 5.5 and 5.6 show R2 values for our subjects and criteria. For the primary research

question of this paper (the validity of using criteria to predict ranking of mutation scores),

R2 is less relevant than τb and ρ, and the validity of relative R2 values may be compromised

by non-linear relationships. However, the overall picture of the correlation between criteria

and mutation scores changes from τb and ρ to R2 only in that R2 suggests that AIMP is often

better than BC coverage for quantitative prediction. This confirms the claim that AIMP

is the most useful non-BC criterion. We also note that in some cases R2 for a coverage

criterion is too low to suggest it as a valid predictor of mutation score, but Kendall’s τb

and Spearman’s ρ show that the criterion nonetheless manages to have a high probability
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Subject Size SC BC DBB IMP AIMP PCTMS PCTBB PCTST

language: Java

JFreeChart 0.881 0.931 0.955 0.954 0.918 0.942 - 0.953 0.931
JodaTime 0.911 0.947 0.961 0.963 0.961 0.963 - 0.957 0.951
AvlTree 0.718 0.350 0.350 0.350 0.709 0.592 0.633 0.636 0.622
BinomialHeap 0.530 0.659 0.662 0.661 0.457 0.588 0.502 0.559 0.543
BinTree 0.741 0.309 0.579 0.309 0.741 0.817 0.709 0.798 0.802
FibHeap 0.653 0.677 0.754 0.687 0.637 0.768 0.824 0.763 0.759
FibonacciHeap 0.646 0.507 0.512 0.503 0.660 0.607 0.580 0.524 0.534
HeapArray 0.646 0.791 0.787 0.791 0.649 0.832 0.743 0.717 0.712
IntAVLTreeMap 0.707 0.751 0.750 0.768 0.742 0.753 0.788 0.740 0.737
IntRedBlackTree 0.655 0.823 0.861 0.850 0.917 0.942 0.914 0.930 0.917
LinkedList 0.158 0.355 0.851 0.355 0.162 0.169 0.851 0.173 0.172
NodeCachLList 0.434 0.410 0.358 0.409 0.416 0.432 0.442 0.421 0.428
SinglyLList 0.570 0.514 0.514 0.514 0.515 0.868 0.442 0.741 0.780
TreeMap 0.660 0.832 0.841 0.836 0.918 0.924 0.906 0.905 0.903
TreeSet 0.678 0.843 0.863 0.857 0.900 0.921 0.894 0.918 0.911

language: C

Space 0.793 0.968 0.970 0.962 0.950 0.979 - 0.922 0.917
SQLite 0.585 0.984 0.983 - 0.942 0.984 - 0.985 0.984
YAFFS2 0.583 0.796 0.822 0.777 0.648 0.837 - 0.823 0.816
Printtokens 0.642 0.923 0.770 0.831 0.883 0.940 - 0.768 0.845
Printtokens2 0.533 0.825 0.799 0.740 0.696 0.726 - 0.775 0.788
Replace 0.541 0.645 0.670 0.696 0.747 0.711 - 0.658 0.669
Schedule 0.551 0.877 0.845 0.792 0.728 0.795 - 0.885 0.897
Schedule2 0.562 0.559 0.656 0.668 0.761 0.704 - 0.713 0.732
SglibRbtree 0.567 0.800 0.778 0.761 0.745 0.729 - 0.786 0.805
Totinfo 0.448 0.617 0.607 0.539 0.595 0.603 - 0.582 0.584
Tcas 0.677 0.718 0.642 0.824 0.775 0.775 - 0.746 0.746

Standard deviation ignored 0.203 0.174 0.195 0.189 0.188 0.174 0.186 0.185
Geometric mean ignored 0.675 0.713 0.664 0.687 0.731 0.688 0.712 0.716
Arithmetic mean ignored 0.708 0.736 0.696 0.722 0.765 0.710 0.745 0.749
The best results ignored 2 3 2 4 10 4 1 2
The worst results ignored 8 3 4 9 1 1 1 2

Table 5.4: ρ values for Size-varied Selection

to correctly predict rank order of mutation scores.

Test Suite Size: We also examined the importance of suite size as a criterion, because

previous work has considered the possibility that coverage criteria are primarily valuable

because they force the production of large suites. This is not a major concern for us, because

we minimize size as a confounding factor by using a wide range of sizes with numerous suites

of each size, and computing τb and ρ over all pairs (including many tied in size). We also

note that a trend towards comparing only suites that require the same computational effort

further reduces the importance of size [36,38,42]. For our subjects, using size alone to predict

mutation score is an extremely ineffective predictor, with values of τb, ρ, and R2 much worse

than for other criteria (often < 0.25); we were surprised to even see small negative values
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Subject SC BC DBB IMP AIMP PCTMS PCTBB PCTST

language: Java

JFreeChart 0.992 0.995 0.987 0.836 0.998 - 0.989 0.989
JodaTime 0.990 0.994 0.987 0.999 0.998 - 0.997 0.998
AvlTree 0.801 0.790 0.726 0.778 0.753 0.867 0.916 0.927
BinomialHeap 0.520 0.690 0.250 0.520 0.824 0.771 0.875 0.863
BinTree 0.248 0.271 0.449 0.198 0.310 0.454 0.393 0.485
FibHeap 0.825 0.884 0.809 0.124 0.277 0.599 0.713 0.536
FibonacciHeap 0.473 0.497 0.157 0.441 0.517 0.472 0.493 0.478
HeapArray 0.743 0.870 0.086 0.506 0.679 0.581 0.846 0.679
IntAVLTreeMap 0.888 0.860 0.666 0.800 0.896 0.767 0.785 0.827
IntRedBlackTree 0.637 0.659 0.010 0.807 0.834 0.769 0.833 0.813
LinkedList 0.583 0.757 0.381 0.423 0.818 0.757 0.658 0.546
NodeCachLList 0.492 0.730 0.064 0.566 0.694 0.702 0.550 0.440
SinglyLList 0.325 0.359 0.081 0.176 0.304 0.302 0.399 0.468
TreeMap 0.799 0.829 0.605 0.781 0.889 0.875 0.897 0.903
TreeSet 0.762 0.776 0.232 0.777 0.874 0.824 0.827 0.875

language: C

Space 0.947 0.989 0.905 0.839 0.993 - 0.985 0.972
SQLite 0.937 0.950 - 0.051 0.981 - 0.965 0.960
YAFFS2 0.785 0.804 0.143 0.137 0.802 - 0.770 0.779
Printtokens 0.947 0.834 0.570 0.745 0.976 - 0.799 0.899
Printtokens2 0.850 0.854 0.399 0.724 0.827 - 0.856 0.856
Replace 0.757 0.771 0.418 0.537 0.751 - 0.746 0.749
Schedule 0.701 0.813 0.205 0.558 0.837 - 0.826 0.821
Schedule2 0.745 0.705 0.094 0.574 0.732 - 0.735 0.760
SglibRbtree 0.852 0.877 0.559 0.660 0.773 - 0.842 0.835
Totinfo 0.560 0.667 0.171 0.610 0.695 - 0.664 0.637
Tcas 0.464 0.819 0.755 0.790 0.790 - 0.828 0.791

Standard deviation 0.204 0.176 0.311 0.259 0.206 0.177 0.167 0.176
Geometric mean 0.681 0.744 0.287 0.480 0.725 0.646 0.755 0.743
Arithmetic mean 0.716 0.771 0.428 0.575 0.762 0.672 0.776 0.765
The best results 0 6 0 1 10 0 3 7
The worst results 1 0 19 6 0 0 0 0

Table 5.5: R2 values (mutants∼coverage) for Coverage-varied Selection

for τb and ρ for some subjects (Tables 5.1 and 5.3). Further, as we show in Tables 5.7 and

5.8 and Tables 5.9 and 5.10, using size as an additional variable in regressions [53] did not

change our general results: adding either size or log(size) to coverage values improved R2

for PCT criteria the most, but BC and AIMP still had higher correlations overall.

5.4 Combining Criteria

After observing the high effectiveness of BC, we attempted to exploit it by using BC as

a base criterion and breaking ties with stronger criteria. Specifically, we lexicographically

compared pairs, e.g., 〈BC,AIMP 〉, for each suite such that BC is the primary criterion
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Subject SC BC DBB IMP AIMP PCTMS PCTBB PCTST

language: Java

JFreeChart 0.875 0.916 0.913 0.417 0.892 - 0.900 0.863
JodaTime 0.914 0.935 0.926 0.934 0.937 - 0.929 0.918
AvlTree 0.390 0.418 0.423 0.575 0.622 0.674 0.627 0.605
BinomialHeap 0.617 0.766 0.803 0.369 0.866 0.782 0.881 0.878
BinTree 0.172 0.276 0.185 0.600 0.667 0.665 0.606 0.700
FibHeap 0.735 0.805 0.763 0.414 0.652 0.703 0.796 0.752
FibonacciHeap 0.222 0.300 0.326 0.377 0.415 0.439 0.396 0.398
HeapArray 0.834 0.897 0.818 0.577 0.862 0.828 0.911 0.846
IntAVLTreeMap 0.891 0.872 0.888 0.793 0.884 0.766 0.863 0.865
IntRedBlackTree 0.486 0.462 0.467 0.817 0.815 0.744 0.793 0.782
LinkedList 0.751 0.904 0.631 0.042 0.463 0.904 0.362 0.373
NodeCachLList 0.725 0.707 0.580 0.122 0.691 0.618 0.357 0.343
SinglyLList 0.446 0.456 0.450 0.484 0.567 0.492 0.607 0.741
TreeMap 0.686 0.695 0.721 0.851 0.895 0.872 0.875 0.873
TreeSet 0.683 0.662 0.668 0.827 0.869 0.824 0.818 0.847

language: C

Space 0.932 0.963 0.899 0.900 0.974 - 0.899 0.896
SQLite 0.937 0.950 - 0.051 0.981 - 0.965 0.960
YAFFS2 0.762 0.798 0.680 0.397 0.826 - 0.793 0.775
Printtokens 0.952 0.764 0.808 0.700 0.969 - 0.740 0.882
Printtokens2 0.658 0.653 0.579 0.455 0.642 - 0.651 0.639
Replace 0.622 0.652 0.564 0.560 0.669 - 0.635 0.642
Schedule 0.680 0.816 0.455 0.494 0.825 - 0.845 0.849
Schedule2 0.716 0.434 0.371 0.503 0.545 - 0.540 0.739
SglibRbtree 0.837 0.834 0.712 0.648 0.765 - 0.823 0.827
Totinfo 0.599 0.681 0.510 0.420 0.691 - 0.694 0.674
Tcas 0.433 0.768 0.752 0.770 0.770 - 0.803 0.772

Standard deviation 0.212 0.202 0.201 0.245 0.158 0.139 0.176 0.166
Geometric mean 0.630 0.672 0.598 0.448 0.742 0.702 0.710 0.725
Arithmetic mean 0.675 0.707 0.636 0.542 0.760 0.716 0.735 0.748
The best results 4 3 0 1 8 3 4 4
The worst results 7 2 2 13 0 1 0 1

Table 5.6: R2 values (mutants∼coverage) for Size-varied Selection

to compare suites, and iff two suites have the same BC, then the second criterion (AIMP

in the example) is used to predict the mutation score ranking. However, the correlations

were almost uniformly worse than for either criterion alone. It is possible that some other

weighting of multiple criteria would perform better than any of the studied approaches;

however, the complexity of devising such a scheme and measuring multiple criteria does

not make this an immediately attractive approach, given that studied criteria are already

effective.

33



Subject SC BC DBB IMP AIMP PCTMS PCTBB PCTST

language: Java

JFreeChart 0.998 0.998 0.997 0.914 0.998 - 0.991 0.990
JodaTime 0.998 0.998 0.996 0.999 0.999 - 0.997 0.998
AvlTree 0.804 0.799 0.748 0.792 0.771 0.867 0.916 0.930
BinomialHeap 0.528 0.695 0.294 0.523 0.826 0.771 0.875 0.864
BinTree 0.332 0.352 0.472 0.299 0.368 0.484 0.431 0.505
FibHeap 0.825 0.885 0.816 0.147 0.291 0.607 0.717 0.543
FibonacciHeap 0.624 0.640 0.289 0.442 0.642 0.605 0.620 0.604
HeapArray 0.748 0.872 0.124 0.689 0.679 0.582 0.846 0.679
IntAVLTreeMap 0.889 0.860 0.673 0.800 0.896 0.782 0.786 0.827
IntRedBlackTree 0.640 0.663 0.097 0.827 0.836 0.777 0.836 0.816
LinkedList 0.583 0.758 0.383 0.600 0.820 0.758 0.658 0.546
NodeCachLList 0.497 0.731 0.064 0.590 0.696 0.704 0.558 0.450
SinglyLList 0.529 0.556 0.151 0.430 0.505 0.486 0.556 0.603
TreeMap 0.801 0.830 0.610 0.781 0.899 0.883 0.900 0.908
TreeSet 0.762 0.777 0.240 0.786 0.874 0.825 0.828 0.876

language: C

Space 0.971 0.991 0.935 0.954 0.993 - 0.986 0.977
SQLite 0.938 0.950 - 0.053 0.981 - 0.965 0.960
YAFFS2 0.812 0.820 0.167 0.215 0.803 - 0.785 0.799
Printtokens 0.956 0.849 0.578 0.896 0.981 - 0.832 0.916
Printtokens2 0.851 0.856 0.399 0.724 0.834 - 0.858 0.857
Replace 0.776 0.773 0.424 0.684 0.761 - 0.748 0.751
Schedule 0.753 0.831 0.209 0.827 0.837 - 0.829 0.830
Schedule2 0.755 0.708 0.094 0.662 0.743 - 0.738 0.760
SglibRbtree 0.852 0.877 0.570 0.724 0.774 - 0.842 0.838
Totinfo 0.577 0.668 0.171 0.644 0.700 - 0.664 0.639
Tcas 0.703 0.830 0.760 0.793 0.793 - 0.831 0.803

Standard deviation 0.204 0.176 0.311 0.259 0.206 0.177 0.167 0.176
Geometric mean 0.681 0.744 0.287 0.480 0.725 0.646 0.755 0.743
Arithmetic mean 0.716 0.771 0.428 0.575 0.762 0.672 0.776 0.765
The best results 0 6 0 1 10 0 3 7
The worst results 1 0 19 6 0 0 0 0

Table 5.7: R2 values (mutants∼coverage+size) for Coverage-varied Selection

5.5 Cost of Measurement

While our key questions are about the predictive power of coverage criteria, we are also inter-

ested in the cost of measuring coverage. Table 5.11 shows the average overhead of measuring

various criteria using our prototype tools. Our implementation of IMP/AIMP is simple; Ball

and Larus [11] provide a much faster precise approach, and the hash-based imprecise ap-

proach of Hassan and Andrews would also apply [43]. Our results generally show feasibility

for experimental evaluation of test suites, even with a very simple implementation. The key

point is that our worst slowdown was slightly over 108X, and computing mutation score can

take over 1000X. In some cases, the instrumented code is faster and takes even less time

than the original code due to lightweight instrumentation and usual noise in experiments.
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Subject SC BC DBB IMP AIMP PCTMS PCTBB PCTST

language: Java

JFreeChart 0.924 0.938 0.926 0.804 0.921 - 0.925 0.916
JodaTime 0.927 0.939 0.928 0.936 0.939 - 0.940 0.936
AvlTree 0.682 0.693 0.695 0.577 0.716 0.695 0.740 0.739
BinomialHeap 0.665 0.784 0.811 0.369 0.866 0.801 0.882 0.881
BinTree 0.604 0.633 0.607 0.604 0.725 0.702 0.707 0.734
FibHeap 0.789 0.816 0.786 0.426 0.682 0.726 0.804 0.768
FibonacciHeap 0.478 0.491 0.488 0.453 0.520 0.512 0.502 0.505
HeapArray 0.867 0.915 0.843 0.579 0.867 0.828 0.914 0.850
IntAVLTreeMap 0.902 0.873 0.893 0.812 0.884 0.801 0.864 0.868
IntRedBlackTree 0.586 0.578 0.581 0.825 0.815 0.744 0.793 0.782
LinkedList 0.758 0.904 0.649 0.067 0.562 0.904 0.427 0.442
NodeCachLList 0.727 0.708 0.585 0.129 0.724 0.660 0.357 0.343
SinglyLList 0.557 0.561 0.568 0.494 0.615 0.541 0.638 0.749
TreeMap 0.756 0.760 0.772 0.853 0.897 0.872 0.875 0.873
TreeSet 0.761 0.752 0.753 0.828 0.870 0.827 0.829 0.851

language: C

Space 0.966 0.972 0.907 0.902 0.974 - 0.932 0.943
SQLite 0.943 0.950 - 0.053 0.981 - 0.965 0.960
YAFFS2 0.830 0.837 0.681 0.569 0.826 - 0.840 0.833
Printtokens 0.846 0.806 0.811 0.701 0.974 - 0.802 0.907
Printtokens2 0.670 0.669 0.586 0.462 0.645 - 0.663 0.660
Replace 0.665 0.666 0.564 0.576 0.669 - 0.646 0.653
Schedule 0.795 0.827 0.457 0.688 0.832 - 0.845 0.860
Schedule2 0.411 0.442 0.372 0.555 0.545 - 0.540 0.743
SglibRbtree 0.831 0.838 0.719 0.681 0.767 - 0.824 0.827
Totinfo 0.686 0.697 0.517 0.525 0.706 - 0.695 0.684
Tcas 0.807 0.810 0.790 0.770 0.770 - 0.815 0.799

Standard deviation 0.212 0.202 0.201 0.245 0.158 0.139 0.176 0.166
Geometric mean 0.630 0.672 0.598 0.448 0.742 0.702 0.710 0.725
Arithmetic mean 0.675 0.707 0.636 0.542 0.760 0.716 0.735 0.748
The best results 4 3 0 1 8 3 4 4
The worst results 7 2 2 13 0 1 0 1

Table 5.8: R2 values (mutants∼coverage+size) for Size-varied Selection

Note that the table does not include numbers for DBB, as the values for this criterion are

measured from statement coverage.

5.6 Quality of Mutants

Our results depend on the quality of the mutants, i.e., the difficulty of killing them. If all

the mutants are easy to kill, a simple coverage criterion may perform unrealistically well.

We therefore compare the percentage of tests that kill specific mutants to execution rates for

branches. Table 5.12 shows the results; we can see that some mutants, especially for large

programs, can be killed by only a small fraction of tests, e.g., only 0.05% of all tests kill the
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Subject SC BC DBB IMP AIMP PCTMS PCTBB PCTST

language: Java

JFreeChart 0.995 0.997 0.994 0.924 0.998 - 0.994 0.993
JodaTime 0.997 0.998 0.996 0.999 0.999 - 0.997 0.998
AvlTree 0.805 0.805 0.760 0.799 0.782 0.867 0.916 0.929
BinomialHeap 0.544 0.706 0.337 0.521 0.829 0.771 0.876 0.866
BinTree 0.405 0.421 0.499 0.358 0.431 0.527 0.480 0.539
FibHeap 0.825 0.884 0.835 0.151 0.299 0.620 0.720 0.548
FibonacciHeap 0.607 0.625 0.249 0.458 0.640 0.611 0.615 0.599
HeapArray 0.743 0.870 0.135 0.572 0.683 0.583 0.850 0.683
IntAVLTreeMap 0.889 0.860 0.710 0.801 0.896 0.782 0.787 0.828
IntRedBlackTree 0.657 0.677 0.156 0.833 0.866 0.824 0.873 0.863
LinkedList 0.583 0.758 0.398 0.507 0.819 0.758 0.658 0.546
NodeCachLList 0.525 0.738 0.069 0.595 0.704 0.712 0.570 0.473
SinglyLList 0.587 0.615 0.157 0.509 0.563 0.541 0.612 0.652
TreeMap 0.800 0.830 0.639 0.781 0.895 0.883 0.899 0.907
TreeSet 0.764 0.777 0.340 0.781 0.875 0.828 0.829 0.880

language: C

Space 0.987 0.992 0.979 0.977 0.993 - 0.992 0.992
SQLite 0.945 0.953 - 0.490 0.982 - 0.966 0.963
YAFFS2 0.821 0.824 0.244 0.276 0.802 - 0.790 0.805
Printtokens 0.957 0.863 0.603 0.746 0.980 - 0.862 0.923
Printtokens2 0.851 0.856 0.475 0.726 0.832 - 0.858 0.857
Replace 0.771 0.772 0.498 0.547 0.766 - 0.747 0.750
Schedule 0.778 0.842 0.278 0.656 0.837 - 0.831 0.832
Schedule2 0.758 0.708 0.113 0.667 0.747 - 0.740 0.761
SglibRbtree 0.853 0.878 0.679 0.670 0.773 - 0.842 0.836
Totinfo 0.577 0.667 0.189 0.625 0.702 - 0.665 0.638
Tcas 0.719 0.819 0.759 0.794 0.794 - 0.828 0.792

Standard deviation 0.204 0.176 0.311 0.259 0.206 0.177 0.167 0.176
Geometric mean 0.681 0.744 0.287 0.480 0.725 0.646 0.755 0.743
Arithmetic mean 0.716 0.771 0.428 0.575 0.762 0.672 0.776 0.765
The best results 0 6 0 1 10 0 3 7
The worst results 1 0 19 6 0 0 0 0

Table 5.9: R2 values (mutants∼coverage+log(size)) for Coverage-varied Selection

least killed mutant for JFreeChart. It is clear that on average mutants are “harder” than

branches for most subjects, with a lower minimum and mean kill/execute rate as well as a

higher standard deviation.

5.7 Ties for Criteria

A final concern about using criteria to compare test suites in research is the problem of ties

— cases when test suites achieve the same coverage. For small subjects and large test pools,

researchers often report that branch and statement coverage are highly similar (if not exactly

the same) for test techniques that actually have different effectiveness for larger subjects.
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Subject SC BC DBB IMP AIMP PCTMS PCTBB PCTST

language: Java

JFreeChart 0.911 0.932 0.921 0.758 0.914 - 0.922 0.906
JodaTime 0.920 0.935 0.927 0.934 0.937 - 0.937 0.932
AvlTree 0.728 0.729 0.730 0.615 0.732 0.697 0.743 0.744
BinomialHeap 0.711 0.802 0.822 0.438 0.866 0.794 0.882 0.881
BinTree 0.715 0.723 0.714 0.703 0.743 0.729 0.734 0.748
FibHeap 0.782 0.813 0.784 0.555 0.674 0.756 0.801 0.761
FibonacciHeap 0.476 0.480 0.480 0.497 0.496 0.496 0.489 0.487
HeapArray 0.873 0.917 0.851 0.610 0.865 0.828 0.913 0.849
IntAVLTreeMap 0.906 0.875 0.897 0.802 0.885 0.785 0.863 0.866
IntRedBlackTree 0.556 0.546 0.550 0.846 0.829 0.761 0.808 0.797
LinkedList 0.762 0.905 0.667 0.103 0.578 0.905 0.405 0.428
NodeCachLList 0.736 0.708 0.581 0.269 0.710 0.640 0.383 0.372
SinglyLList 0.594 0.596 0.599 0.540 0.629 0.567 0.648 0.750
TreeMap 0.738 0.740 0.752 0.852 0.897 0.876 0.875 0.873
TreeSet 0.747 0.736 0.740 0.827 0.869 0.824 0.820 0.847

language: C

Space 0.956 0.970 0.939 0.939 0.975 - 0.960 0.962
SQLite 0.945 0.953 - 0.490 0.982 - 0.966 0.963
YAFFS2 0.829 0.841 0.720 0.719 0.826 - 0.834 0.831
Printtokens 0.965 0.872 0.820 0.813 0.970 - 0.873 0.927
Printtokens2 0.675 0.666 0.586 0.568 0.646 - 0.662 0.659
Replace 0.678 0.673 0.617 0.619 0.673 - 0.660 0.664
Schedule 0.832 0.849 0.556 0.558 0.827 - 0.851 0.869
Schedule2 0.815 0.514 0.443 0.504 0.567 - 0.563 0.739
SglibRbtree 0.844 0.843 0.728 0.721 0.775 - 0.834 0.833
Totinfo 0.656 0.699 0.518 0.494 0.698 - 0.696 0.688
Tcas 0.749 0.789 0.795 0.773 0.773 - 0.804 0.784

Standard deviation 0.212 0.202 0.201 0.245 0.158 0.139 0.176 0.166
Geometric mean 0.630 0.672 0.598 0.448 0.742 0.702 0.710 0.725
Arithmetic mean 0.675 0.707 0.636 0.542 0.760 0.716 0.735 0.748
The best results 4 3 0 1 8 3 4 4
The worst results 7 2 2 13 0 1 0 1

Table 5.10: R2 values (mutants∼coverage+log(size)) for Size-varied Selection

We investigated the likelihood of criteria with smaller number of requirements having larger

number of ties. Tables 5.13 and 5.14 show that there are indeed often more than 10% of tied

suite pairs for simple subjects with some criteria, but with the exception of LinkedList,

very seldom more than 5% with the other, stronger criteria.
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Overhead/Slowdown
Subject SC BC IMP PCTMS PCTBB PCTST

language: Java

JFreeChart 4.21 3.71 3.84 - 4.30 4.79
JodaTime 55.38 63.50 92.31 - 67.50 61.88
AvlTree 3.73 2.07 39.87 4.14 22.59 21.92
BinomialHeap 2.48 2.14 13.01 4.96 11.58 12.27
BinTree 2.13 1.63 4.91 2.22 3.65 3.74
FibHeap 2.38 1.86 7.65 3.13 5.63 7.54
FibonacciHeap 2.05 1.31 5.95 3.00 4.17 5.48
HeapArray 1.79 2.00 6.41 2.34 6.62 6.70
IntAVLTreeMap 2.29 1.59 15.75 2.48 7.56 7.70
IntRedBlackTree 2.13 1.41 10.88 2.65 5.10 6.19
LinkedList 1.63 0.94 4.28 1.64 3.15 3.57
NodeCachLList 1.56 1.09 6.01 1.74 5.07 5.68
SinglyLList 1.97 1.86 5.85 3.22 4.80 5.14
TreeMap 2.25 1.62 15.33 3.45 11.41 10.19
TreeSet 2.02 1.66 14.11 4.59 10.98 9.24

language: C

Space 0.87 0.87 1.33 - 0.86 1.02
SQLite 1.40 1.40 31.83 - 15.87 58.43
YAFFS2 1.96 1.96 108.25 - 9.82 28.58
Printtokens 1.88 1.88 1.85 - 1.75 1.81
Printtokens2 2.29 2.29 2.85 - 2.35 2.86
Replace 2.30 2.30 2.68 - 2.17 2.59
Schedule 1.33 1.33 1.63 - 1.42 1.57
Schedule2 1.82 1.82 2.62 - 1.85 1.99
SglibRbtree 0.99 0.99 4.71 - 1.98 2.69
Totinfo 1.66 1.66 2.13 - 1.77 1.90
Tcas 1.99 1.99 2.01 - 2.27 2.65

Geometric mean 2.20 1.90 6.96 2.88 4.75 5.66

Table 5.11: Overhead measured as ratio of execution time the entire test pool on
instrumented to original code
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Subject
Tests killing mutants [%] Tests executing branch [%]

Min Max Mean SD Min Max Mean SD

language: Java

JFreeChart 0.05 26.79 0.34 1.00 0.05 29.72 0.44 1.41
JodaTime 0.03 75.10 0.61 2.65 0.03 82.42 1.35 5.29
AvlTree 0.01 100.00 41.94 38.69 45.39 100.00 77.05 17.12
BinomialHeap 0.07 98.72 41.86 28.09 2.48 98.72 67.52 24.19
BinTree 1.40 99.23 33.31 32.53 9.77 99.23 74.16 19.13
FibHeap 0.02 100.00 38.45 42.80 2.16 100.00 64.05 39.45
FibonacciHeap 0.02 99.98 32.91 37.54 4.89 99.98 69.60 27.84
HeapArray 1.33 100.00 49.87 37.24 1.48 100.00 59.33 33.26
IntAVLTreeMap 0.04 100.00 61.74 31.46 5.73 100.00 58.89 30.25
IntRedBlackTree 0.00 99.51 17.97 29.87 4.77 99.51 51.75 27.80
LinkedList 69.01 100.00 91.80 13.15 63.43 92.35 76.63 10.49
NodeCachLList 22.52 100.00 69.31 25.38 3.21 94.37 63.14 25.26
SinglyLList 7.15 94.32 41.90 29.95 24.80 94.32 47.70 22.85
TreeMap 0.04 99.29 20.11 26.44 2.29 99.29 40.67 26.34
TreeSet 0.03 99.42 26.96 29.95 3.33 99.42 49.57 27.15

language: C

Space 0.07 100.00 17.22 27.41 0.07 100.00 24.67 33.16
SQLite 0.17 100.00 26.85 38.77 0.21 100.00 26.73 37.33
YAFFS2 0.02 100.00 32.83 42.23 0.02 100.00 77.61 33.90
Printtokens 0.17 100.00 38.86 34.60 0.29 99.27 57.95 39.36
Printtokens2 0.73 99.27 39.17 36.89 0.73 98.54 52.55 36.29
Replace 0.02 89.32 24.09 24.57 0.40 99.60 39.02 31.53
Schedule 0.04 100.00 45.61 29.06 0.45 98.87 64.28 30.86
Schedule2 0.04 85.28 60.40 28.82 0.33 98.86 69.92 36.61
SglibRbtree 0.70 100.00 81.24 32.05 0.02 100.00 62.60 37.91
Totinfo 9.16 100.00 44.04 30.50 8.29 99.89 61.26 29.63
Tcas 0.06 100.00 19.35 32.37 1.87 98.13 24.54 20.49

Table 5.12: Statistics about percentage of tests that kill a mutant and execute a branch
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Subject SC BC DBB IMP AIMP PCTMS PCTBB PCTST Mutants

language: Java

JFreeChart 0.00 0.06 0.08 0.02 0.06 - 0.00 0.00 0.02
JodaTime 0.02 0.04 0.10 0.04 0.06 - 0.06 0.00 0.04
AvlTree 7.96 9.53 18.12 5.79 6.18 1.74 1.11 1.34 4.93
BinomialHeap 10.80 10.36 10.66 0.84 3.25 0.48 0.86 0.67 7.84
BinTree 18.19 10.18 24.03 1.38 3.05 0.96 0.67 0.74 21.00
FibHeap 11.25 11.69 15.09 1.75 2.89 5.04 2.96 1.82 11.26
FibonacciHeap 9.08 9.16 12.78 1.96 4.19 1.35 1.59 0.91 5.32
HeapArray 24.14 14.79 17.85 1.18 5.28 3.27 0.93 1.00 5.03
IntAVLTreeMap 4.50 5.28 5.24 2.33 5.16 0.74 0.88 0.74 6.84
IntRedBlackTree 2.34 4.63 4.09 0.93 1.61 0.43 0.33 0.34 0.96
LinkedList 25.46 24.18 29.64 15.79 14.72 24.18 15.95 14.91 44.83
NodeCachLList 17.93 16.83 20.48 4.56 9.14 12.15 5.67 7.09 21.09
SinglyLList 16.71 16.85 17.65 3.26 7.23 3.71 5.31 4.87 16.46
TreeMap 2.21 4.71 4.24 0.79 1.57 0.43 0.26 0.21 1.75
TreeSet 1.99 3.96 4.97 0.87 1.83 0.60 0.45 0.32 1.89

language: C

Space 0.09 0.19 13.52 0.31 0.34 - 0.07 0.03 0.27
SQLite 4.10 2.53 4.10 3.38 3.39 - 2.31 2.51 2.19
YAFFS2 0.25 0.32 83.58 0.21 0.54 - 0.05 0.02 0.23
Printtokens 1.41 4.03 45.47 2.01 2.14 - 1.23 0.36 0.45
Printtokens2 1.38 1.34 34.71 1.79 1.35 - 0.29 0.16 0.57
Replace 1.03 1.05 22.67 1.43 0.99 - 0.18 0.18 1.53
Schedule 11.20 6.04 47.48 2.89 3.69 - 0.52 0.22 1.23
Schedule2 4.88 6.31 64.39 3.05 3.88 - 1.03 0.27 1.12
SglibRbtree 0.50 1.14 26.63 1.15 2.73 - 0.06 0.02 2.71
Totinfo 4.97 4.90 52.52 10.42 3.73 - 1.12 0.62 3.09
Tcas 10.63 2.53 18.10 5.91 5.91 - 0.86 0.81 1.51

Arithmetic mean 7.42 6.64 23.01 2.85 3.65 4.24 1.72 1.54 6.31

Table 5.13: Percentage of tied pairs achieved by test suites created using Coverage-varied
Selection

40



Subject SC BC DBB IMP AIMP PCTMS PCTBB PCTST Mutants

language: Java

JFreeChart 0.04 0.05 0.12 0.09 0.08 - 0.08 0.07 0.04
JodaTime 0.04 0.07 0.12 0.12 0.11 - 0.06 0.06 0.03
AvlTree 91.39 91.42 91.42 3.04 26.30 6.08 20.02 38.77 10.20
BinomialHeap 38.67 38.61 38.96 0.59 19.66 2.30 5.63 3.79 36.71
BinTree 92.60 67.52 92.61 0.43 10.59 2.68 4.25 2.18 15.89
FibHeap 21.60 16.63 25.18 0.51 13.69 1.90 6.49 6.24 9.19
FibonacciHeap 39.37 40.83 41.74 0.51 25.18 9.17 6.92 5.76 2.97
HeapArray 43.99 44.26 44.06 0.45 13.22 14.44 2.82 2.22 20.87
IntAVLTreeMap 34.41 34.51 36.31 6.42 21.23 1.57 3.23 2.51 34.68
IntRedBlackTree 18.31 20.58 21.82 1.03 2.56 0.76 0.54 0.50 0.81
LinkedList 86.00 97.58 86.01 0.54 26.21 97.58 28.82 27.36 98.25
NodeCachLList 45.96 47.72 45.98 0.60 24.77 26.66 21.02 19.01 85.07
SinglyLList 86.30 86.30 86.31 0.94 51.34 17.76 21.96 20.98 55.79
TreeMap 9.31 12.49 12.98 0.71 1.95 0.75 0.26 0.22 2.33
TreeSet 14.65 18.06 18.56 0.89 2.80 1.19 0.97 0.77 3.50

language: C

Space 0.12 0.32 0.56 0.21 0.49 - 0.05 0.01 0.37
SQLite 4.10 2.53 4.10 3.38 3.39 - 2.31 2.51 2.19
YAFFS2 0.98 0.81 1.13 0.01 0.52 - 0.08 0.04 0.23
Printtokens 10.16 9.94 4.77 0.55 3.56 - 2.80 0.80 2.13
Printtokens2 9.94 9.04 3.24 0.53 4.51 - 1.47 0.85 4.68
Replace 4.35 3.15 2.06 0.48 1.77 - 0.41 0.24 2.70
Schedule 30.96 16.56 4.39 1.30 8.48 - 1.98 0.82 5.45
Schedule2 43.20 7.80 7.36 3.06 5.73 - 0.89 0.60 4.61
SglibRbtree 1.19 2.90 2.16 0.49 6.95 - 0.28 0.10 9.66
Totinfo 42.99 37.72 7.32 0.93 5.26 - 1.56 0.62 63.61
Tcas 24.81 9.19 19.16 3.91 3.91 - 0.28 0.17 0.94

Arithmetic mean 30.59 27.56 26.86 1.22 10.93 14.06 5.20 5.28 18.19

Table 5.14: Percentage of tied pairs achieved by test suites created using Size-varied
Selection
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CHAPTER 6

DISCUSSION

The most surprising result in our study is that BC performs so well. A second somewhat

surprising result is that, of non-BC criteria, AIMP performs best and performs much better

than the more frequently used IMP, despite the fact that IMP subsumes AIMP. We believe

that these two results are related. The ranking of criteria (to predict mutation scores) does

not follow the subsumption hierarchy, although one might expect stronger criteria to predict

mutation scores better than weaker criteria do. In fact, in many cases, exactly the opposite

is true. Our belief is that there is a fundamental tension between strength and predictive

power. Consider a criterion C that is weaker than another criterion C ′; C ′ is most likely a

better predictor than C for C-adequate suites (e.g., if we have many suites with 100% BC,

then we cannot predict varying mutation scores among those suites using BC itself, but we

can still use AIMP), but C ′ is less likely a better predictor than C for C-non-adequate suites

(e.g., IMP is a worse predictor than AIMP, but BC is a better predictor than SC).

Viewed differently, we can consider the question: how much information does the coverage

value for one criterion provide about the coverage value for another criterion? We realize that

a subsumed criterion often (but not always) provides more information about the criterion

that subsumes it than the reverse. For example, if a suite has an absolute BC value of k

(with each test contributing at least one unique branch), we know that the suite has absolute

AIMP, IMP, and PCT values of at least k. However, if we know that a suite has absolute

AIMP, IMP, or PCT coverage of k, with each test contributing at least one path or PCT

state, the absolute BC may be arbitrarily lower than k. In a sense, the weaker criteria

in these cases provide “more” information about a suite, so we can expect them to better

predict mutation score. For example, a suite may obtain very high AIMP coverage without

executing most code in the program, if the suite takes a huge number of paths through a
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Discordant Pairs

C
o
n
c
o
r
d
a
n
t
P
a
ir
s

SC BC DBB IMP AIMP PCTMS PCTBB PCTST Mutants

language: Java

SC 1.97 20.59 9.44 5.97 8.55 7.08 7.70 9.94
BC 85.61 21.46 9.19 5.26 7.61 5.86 7.40 8.91
DBB 64.10 63.24 28.31 24.79 28.46 25.63 25.25 23.12
IMP 79.30 80.21 58.14 6.13 8.18 8.41 9.29 14.27
AIMP 82.06 83.47 60.95 88.19 5.28 5.83 6.29 11.85
PCTMS 78.76 80.61 56.29 85.82 87.15 6.76 7.30 14.10
PCTBB 82.29 84.22 61.52 87.23 88.42 88.07 3.61 11.79
PCTST 81.76 82.73 62.00 86.49 88.08 87.65 93.27 11.86
Mutants 73.94 75.39 58.58 74.36 75.73 72.75 77.30 77.32

language: C

SC 9.32 5.31 13.23 10.98 - 11.45 10.46 9.17
BC 84.92 6.87 7.62 4.45 - 3.91 3.72 14.06
DBB 55.58 54.53 6.62 6.44 - 7.37 7.29 7.56
IMP 80.94 87.41 54.91 4.93 - 9.02 8.76 15.92
AIMP 83.52 90.87 55.15 90.75 - 6.36 5.98 14.45
PCTMS - - - - - - - -
PCTBB 84.53 93.09 54.93 87.70 90.68 - 3.14 15.52
PCTST 85.72 93.45 55.08 88.14 91.26 - 96.03 15.19
Mutants 86.23 82.06 54.31 80.10 81.89 - 82.59 83.15

Table 6.1: Percentage of discordant/concordant pairs achieved by test suites created using
Coverage-varied Selection (averaged over all subject programs)

Discordant Pairs

C
o
n
c
o
r
d
a
n
t
P
a
ir
s

SC BC DBB IMP AIMP PCTMS PCTBB PCTST Mutants

language: Java

SC 0.94 0.99 7.92 3.65 4.95 4.64 4.59 6.01
BC 55.17 0.66 7.27 2.78 4.55 3.70 4.09 5.22
DBB 56.03 55.01 7.05 2.86 4.03 3.84 4.00 5.02
IMP 50.16 51.23 49.76 9.81 12.52 13.55 14.06 12.17
AIMP 52.42 53.81 52.09 73.47 7.69 5.94 6.11 7.70
PCTMS 44.94 46.70 44.41 72.27 64.81 9.95 10.31 11.14
PCTBB 53.35 54.73 52.91 77.26 74.23 70.45 2.57 10.07
PCTST 53.51 54.42 52.83 76.30 73.86 69.37 87.16 10.12
Mutants 45.90 47.75 45.70 62.06 60.50 57.15 61.94 61.23

language: C

SC 10.64 9.14 15.52 13.47 - 13.16 12.30 10.07
BC 68.98 13.60 13.33 7.36 - 3.90 4.72 15.95
DBB 73.24 73.66 13.18 13.38 - 16.67 16.22 13.79
IMP 68.12 76.63 80.85 10.11 - 15.72 16.07 17.30
AIMP 68.24 80.80 78.15 85.22 - 10.09 10.35 16.05
PCTMS - - - - - - - -
PCTBB 70.54 86.57 77.39 82.01 85.03 - 4.28 18.09
PCTST 71.73 86.00 78.31 82.14 85.21 - 94.28 18.12
Mutants 69.99 69.55 73.27 72.86 71.95 - 72.33 72.69

Table 6.2: Percentage of discordant/concordant pairs achieved by test suites created using
Size-varied Selection (averaged over all subject programs)
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single loop with many internal branches; similarly, absolute PCT coverage cannot distinguish

between a suite that covers many (irrelevant) states of a small portion of a program and a

suite that covers fewer states but executes most of the program. Given the nearly uniform

distribution of mutants across a program, suites that do not execute most of the code are

likely to have poor mutation scores. In contrast, a high BC value indicates that many easy-

to-kill mutants are almost certainly killed. BC thus “warns” if a suite misses many “easy”

faults; IMP/AIMP and PCT may not “warn”.

The predictive power of BC weakens, however, as suites approach adequacy, when more ties

are seen in BC, but mutation scores continue to diverge. The best predictive coverage may

be the criterion that minimizes potentially meaningless information without converging too

rapidly on 100% coverage. Among our evaluated criteria, AIMP seems to balance information

content and avoidance of ties best: it always has a percentage of tied values for suites that is

between the very high percentage of ties for BC and the very low percentages for PCT and

IMP criteria. IMP had the lowest percentage of ties of all criteria but also proved nearly the

least useful for predicting mutation score (Tables 5.13 and 5.14).

The usefulness of AIMP is encouraging. Hassan and Andrews have suggested that one rea-

son def-use and other dataflow coverages have been little used in practice, despite encouraging

results in some studies, is the difficulty of implementing the required static analyses [43].

AIMP is usually trivial to add to instrumentation for collecting BC, if a fairly high overhead

is acceptable (as done in this paper), and can be much more efficient if needed [11, 57].

Moreover, loop-free paths within a single function are intuitively easy to interpret, and

Godefroid’s compositional approach to dynamic symbolic execution essentially maximizes

AIMP [32]. In future studies evaluating test suites, our results suggest that IMP should be

replaced with AIMP.

We believe PCT coverage may be less effective than AIMP because it uses too many

predicates. PCT is inspired by abstraction in software model checking, which does not use

all in-scope predicates at all points (which leads to a state-space explosion) but instead only

uses those relevant to a specification [14,44]. Investigating whether the superior performance

of AIMP truly indicates that path-sensitivity is more important than logical-state-space

coverage would require a similar selectivity. Unfortunately, the approaches used in model

44



checking are impractical for testing large programs.

Unlike other coverage criteria, based on our experiments, DBB poorly predicts mutation

score. However, note that this holds primarily for data structures for which the number

of tests is large as the tests were automatically generated. More precisely, many tests may

increase the number of DBBs, but the number of killed mutants may remain constant because

most of the mutants for data structures are not hard to kill (Table 5.12). As seen in Table 5.1,

this may not be the case with larger programs. Although DBB may not be a good coverage

criterion for predicting mutation score, it is effective for fault localization, according to a

previous study [12].

As a supporting evidence of our initial example in the introduction (Chapter 1) that used

discordant pairs to illustrate difficulty in choosing coverage for evaluating test suites, we

measured average number of concordant and discordant pairs for all pairs of criteria. We

observe that there are substantial numbers of discordant pairs (Tables 6.1 and 6.2). Also, we

observe that the percentage of discordant pairs is similar for Java and C and does not vary

substantially among the compared coverage criteria or Size-varied Selection and Coverage-

varied Selection.

6.1 Threats to Validity

The primary threat is to external validity: our set of programs and suites, while fairly large

by the standards of previous literature, may not be representative of general results. In par-

ticular, we examined a larger number of data structures and a smaller number of real-world

programs, and our examples were chosen in a partly opportunistic, rather than random,

way: we needed subjects with many tests available or easily produced. Our selection of Java

data structures, however, at minimum sheds light on the validity of several previous evalu-

ations of testing techniques over these subjects. Construct validity is primarily threatened

by ignoring some predicates for PCT because of technical constraints (e.g., we were not able

to generate predicates in a class where instrumented methods would exceed the 64KB limit

set by the Java classfile specification).
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CHAPTER 7

RELATED WORK

Many previous studies have investigated the effectiveness of coverage criteria. The contribu-

tion of this paper is to perform a large study to address the specific needs of researchers now

investigating automated testing techniques: given two test suites, likely non-adequate, what

criteria are best for predicting the ability of those suites to kill mutants (and thus, arguably,

detect faults)? Are criteria recently adopted by researchers effective for this purpose?

Frankl and Weiss [28] performed an experimental comparison of branch coverage (BC)

and def-use coverage, showing that def-use is more effective than BC and that there is

stronger correlation between def-use and fault detection than BC and fault detection; their

primary conclusions concerned adequate suites, but some experiments included non-adequate

suites. Our work targets similar questions but differs in that we compare SC, BC, DBB,

IMP, AIMP, and PCT coverages, use larger applications, use a much larger set of tests

produced by various testing techniques, use (many) mutants as opposed to (few) real bugs,

and extensively explore non-adequate test suites.

Cai and Lyu [13] also investigated the correlation between different coverage criteria—BC,

decision coverage, P-use, and C-use—and fault detection, using a linear regression model.

Their conclusions are drawn based on experiments on one example, with 426 mutants and

1,200 tests. Different test suites were formed: all tests, tests from a specification, randomly

generated tests, tests that cause exceptions, and tests that do not cause exceptions. Their

results showed that coverage criteria were only a moderate indicator for fault detection, with

large variance for different test suites. Some other studies [27,46] also showed small or incon-

sistent correlation between coverage criteria and fault detection. Namin and Andrews [53]

investigated the correlation between coverage criteria, effectiveness, and size of a test suite.

The study showed that both coverage and size are non-linearly correlated with effectiveness.

46



An additional conclusion was that the best result is achieved if both size and coverage are

taken into account. Gupta and Jalote [40] examined the efficiency of coverage criteria using

minimal adequate test suites for SC, BC, and predicate coverage (the latter simply being

coverage of all atomic predicates from conditionals measured only at the conditionals, not

to be confused with PCT). In their results, while predicate coverage was the most effective

(correlated to mutation score), BC was the most efficient when suite size was considered.

Others (e.g., [3]) used smaller programs and suites than the listed studies, and/or only ex-

amined small sets of (seeded) faults. A different kind of study by Wei et al. examined the

correlation of BC to fault detection in 14 Eiffel classes, over a period of 2,520 hours of random

testing (divided into 6 hour runs) [75]. They found that the correlation between BC and

fault detection was very high during the first 10 minutes of testing, when new branches were

frequently being covered, but once BC was close to saturated, the correlation became weak,

and over 50% of faults were detected during the period between 30 minutes and 6 hours,

when BC seldom increased. Their conclusion was that BC is a poor stopping criterion for

random testing, and in this setting was not by itself a good measure of suite quality.

Studies investigating related questions (e.g., which criteria are best for prioritizing/mini-

mizing regression suites) are numerous, with results that also vary, though BC has arguably

performed fairly well [60]. Harder et al. examined the power of various adequacy criteria,

noting the possibility of size as a confounding factor [42]. Another related work is that of

Hassan and Andrews [43], which extends previous work [53] to a comparison of BC, def-

use coverage, and a novel coverage, called Multi-point Stride Coverage (MPSC), that has

resemblances to a generalized version of AIMP. Their results showed that def-use coverage

was highly correlated with BC in practice, BC was more correlated with fault detection

than other criteria, and MPSC was fairly well correlated with fault detection. Since some

MPSC coverages subsume AIMP, we would like to compare the two approaches using rank

correlation to see if our findings with respect to strength and predictive power hold here as

well. Of all previous studies, we find that only a few [47,53,54,76,76,77] mention Kendall’s

τ or Spearman’s ρ correlations, and those do not provide a comparison of multiple criteria as

candidates for use in evaluating suites. For example, Inozemtseva [47] only measures block

coverage, and uses machine learning to find a regression involving this measure combined
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with suite size, but proposes no guidance as to whether block is the best coverage to mea-

sure. In contrast, we use τb and ρ to compare criteria, across a variety of suite selection and

generation approaches.

One study currently in submission [33] explicitly adapts the evaluation measures for cov-

erage criteria used in this paper and applies them to a different, but related problem. Rather

than comparing multiple suites for a single program (the typical research problem), the study

addresses the problems of software developers attempting to determine whether a single, ex-

isting suite (be it manually manual or automatically generated) for a program is effective.

The goal (prediction of mutation scores) is the same, but the purpose is to determine if a

single suite would have good mutation score, not to compare suites. Based on data from

hundreds of open source Java programs on GitHub, their study finds that statement cover-

age (vs. block, BC, and a variation of AIMP) best predicts mutation score for both manual

suites in the repository and Randoop-generated [58] tests. We speculate that the difference

in problem statement (correlation across multiple subjects with a single suite vs. across

multiple suites for each subject) drives the difference in results, especially as it presumably

results in many fewer ties. In general the results are not radically different than our own—all

correlations (τb and R2) are above 0.65 (and some above 0.9) for all criteria for manually

produced suites, though τb for Randoop suites is relatively low for all criteria (0.48-0.54).

The results also confirm our claim that the subsumption hierarchy does not match corre-

lation with mutation scores; in fact, the ranking of criteria in their study is precisely the

opposite of the subsumption hierarchy.

Shuler and Zeller [63] propose the idea of checked coverage as a measure of oracle, rather

than suite, effectiveness. Checked coverage measures coverage over the dynamic slice of

statements influencing oracle statements only. They show that for seven open-source projects

this approach is better able to detect degradation of oracle quality than even mutation

testing. We focus only on traditional suite quality measurement, where the test inputs

rather than the oracle alone are the primary target for evaluation.

Baudry et al. [12] introduced the concept of dynamic basic blocks (DBBs) for measuring a

test suite’s fault localization capability. Our work evaluates the value of DBBs as a coverage

metric rather than for fault localization.
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Ball [9] introduced the theory behind PCT coverage and showed that PCT subsumes BC

and various decision coverages, and is incomparable to path coverage. Although PCT was

introduced in 2004 and was used to compare test-generation techniques, it was not exten-

sively evaluated empirically. Our study is the first that implements PCT and empirically

investigates the PCT criterion.

Another category of related work includes studies that used some of our criteria for mea-

suring the quality of test suites, which inspired our efforts. Visser et al. [69] were the first to

instrument code for measuring an approximation of PCT coverage and compared a number

of advanced test generation techniques against random testing using PCT. Because of the

lack of tools that can perform instrumentation for PCT, predicates were selected manually.

Specifically, not all predicates were selected, the constructed predicates were not instantiated

consistently at all points (either blocks or statements), and some predicates were instantiated

when they were not in scope. Pacheco et al. [58] used the same approach to PCT to demon-

strate the effectiveness of feedback in random test generation. Later, Sharma et al. [65]

compared random testing and shape abstraction on the same set of predicates as previous

studies, but predicates were instantiated systematically at all basic blocks. An extended

version of that instrumentation was used recently [35, 36] to evaluate the effectiveness of a

new test generation technique based on reinforcement learning.

The last category of related work includes tools for measuring code coverage. There

are many tools available for both Java [19, 26] and C [1] that can measure class, method,

statement, branch, and path coverage. Additionally, tools for mutation testing [62] can

be placed in this category. Ours is the first tool for systematically measuring Ball’s PCT

coverage. Because detailed empirical evaluation requires such a tool, we implemented tools,

both for Java and C, that can instrument code for measuring PCT. Using our tools, we were

able to automatically and systematically instrument reasonably large code bases. The only

previous attempt (to our knowledge) to address PCT in practical automated terms was in

the FShell system [45], which can perform model checking queries to find paths to satisfy

PCT coverage goals in C programs, but relies on being provided a list of relevant predicates,

does not distinguish between variables with the same name in different scopes, and does not

instrument for runtime collection of coverage data.
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CHAPTER 8

CONCLUSIONS

This paper considers these questions: (1) for researchers wishing to compare test suites but

lacking a statistically significant number of real faults and lacking the computational re-

sources to perform mutation testing, is it useful to compare suites using coverage criteria; if

so, (2) which criteria are best at predicting mutation scores? Recent literature has shown

that these are critical questions to answer, because publications are increasingly using cov-

erage criteria to compare test suites and techniques. Our results suggest that due to high

effectiveness and low overhead, researchers should use branch coverage to compare suites

whenever possible, but most evaluated criteria performed well in terms of predicting muta-

tion score for most of our subjects, with only dynamic basic blocks arguably ineffective for

many small subjects. A variation of intra-procedural acyclic path coverage performed best

of all non-branch coverage criteria, and has desirable simplicity, ease of implementation, and

reasonable overhead. Future work should evaluate these and other criteria on a larger set of

subject programs and test suites.
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