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ABSTRACT

Opinions on the web present a wealth of information that can be leveraged in

our day to day decision making tasks ranging from which product to purchase

to which doctor to consult for a particular ailment. Due to the large volume of

opinions available from different sources across web, digesting all the available

opinions is a time consuming process which can severely impair user produc-

tivity. As a result, these valuable opinions become more of a hindrance than a

help in decision making scenarios especially those involving a large number of

entities.

Most existing work on solving this general problem has been focused on sum-

marizing opinions to help users better digest all the opinions. Unfortunately, in

many decision making scenarios, the number of entities in consideration could be

quite large. Thus, making decisions by reading summaries alone would still be

inefficient as you would need to read summaries of different entities thoroughly.

Further, as most of the opinion summarization systems focus on generating

summaries that are highly structured, these summaries lack details that can aid

decision making.

In this thesis, we propose a more efficient way of leveraging opinions, that is to

combine the strengths of search technologies with opinion analysis and mining

tools to provide a powerful decision making platform. This special platform is

called an Opinion-Driven Decision Support System (ODSS) - a platform that

enables users to find and analyze entities of interest based on opinions of other

web users.

We study three important problems of the ODSS, encompassing search, anal-

ysis and data acquisition. First, in providing a useful search capability, we study

the problem of Opinion-Based Entity Ranking - where entities are ranked based

on a set of user specified opinion preferences. Then, in providing analysis tools

to aid decision making, we study Abstractive Summarization of Opinions, where

unstructured summaries highlighting key opinions are generated on any arbi-

trary topic. In order to enable the search and analysis components, opinionated

content is imperative. Hence, in the third part of this thesis, we attempt to

study the problem of Opinion Acquisition.

In the first part of this thesis, we investigate the use of robust retrieval models

and extensions of it for the task of Opinion-Based Entity Ranking. Our evalua-

tion, in two different domains, shows that the proposed methods can be directly

applied to rank different types of entities for which opinions are available. Our
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user study further shows that the proposed evaluation strategy used for this

ranking task is effective and can be used in future evaluations.

In the second part of this thesis, we study two flavors of summarization tech-

niques for generating unstructured opinion summaries. We focus on using un-

supervised techniques to generate abstractive summaries that are concise, fairly

well-formed and convey key opinions in text. Through a series of experiments,

we have shown that the summaries generated through the proposed techniques

are indeed compact, readable and informative. Our techniques are also practical

as we rely very little on external resources and the methods are not bound to

the domain they were tested in.

As part of the final research question, we focus on automatic collection of on-

line reviews. We propose a lightweight, unsupervised framework for discovering

review pages of arbitrary entities leveraging existing Web search engines. We

use a novel information network called the FetchGraph to help with collecting

review pages in an efficient manner. The proposed methods were evaluated in

three domains and results show that the proposed approach is capable of finding

entity specific review pages with reasonable accuracy and efficiency.
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1 INTRODUCTION

The deployment of Web 2.0 technologies has led to rapid growth of various

opinions and reviews on the web, such as reviews on products and opinions

about people. The vast amount of opinions expressed by experts and ordinary

users can be very useful to help people make all kinds of decisions, ranging from

what to buy to what treatment to choose for a disease. For example, shoppers

at Amazon1 typically would read the reviews about a product before buying it,

and travelers may rely on opinions about hotels on Tripadvisor2 to help them

choose an appropriate hotel at the destination. It has been shown that 77% of

online shoppers use reviews and ratings when making a purchase decision3.

Unfortunately, the vast amount of online opinions has also made it difficult

for users to digest all the opinions about a specific topic or entity. Consider the

task of a user shopping online for an mp3 player to purchase. Not only is there a

large selection of mp3 players, each mp3 player may have hundreds of associated

customer reviews which can be found in a variety of different sources. This

makes it a challenge for users to actually understand the underlying sentiments

about each product and as a result user productivity is impaired. Thus, the

task of developing computational techniques to help users digest and exploit all

the opinions is a very important and interesting research challenge.

Most existing work on leveraging opinions has been focused on summarizing

opinions about an entity or a topic to help users better digest all the opinions.

Unfortunately, in many decision making scenarios, the choices are a plenty and

summaries alone will not be sufficient as this demands users to explore the sum-

maries for all entities. This becomes especially problematic when the user’s

selection space is quite large to start with (e.g. selecting a hotel in New York

City). Further, since most of the opinion summarization systems focus on gen-

erating summaries that are highly structured, these summaries lack sufficient

details to actually aid decision making tasks. Thus, a much broader set of tools

and techniques are needed to leverage online opinions in a more effective and

efficient manner so as to aid decision making.

Search technologies have long helped users find all sorts of documents and

entities based on topics. However, with respect to decision making, a user is

often interested in finding entities based on key attributes (e.g. price, brand) and

the opinions about each entity. While searching based on structured attributes

1http://www.amazon.com
2http://www.tripadvisor.com
3http://www.mediapost.com/publications/
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is supported by some vertical search engines, searching based on the opinions of

other users has not been previously explored. We believe that a more efficient

way to leverage online opinions is to extend search technologies to find entities

based on opinions and combine this with opinion analysis and mining tools to

provide a powerful opinion-driven decision making platform. Such a platform

is useful in several ways. First, a search capability based on a user’s opinion

requirements would enable users to find entities of interest without the hassle of

exploring all opinions or opinion summaries. This would also help narrow the

user’s selection space, making it more manageable. Users can then focus on using

the analysis tools to select the one entity that satisfies all their requirements.

For example, in the case of a user finding a hotel at a destination, the user may

only want to consider hotels that are said to be clean and have good breakfast.

Such a requirement can be specified using a specialized search technology that

would attempt to find hotels that satisfy this requirement. Using this smaller

list of hotels, user’s can further narrow down into hotels of their choice by using

the available analysis tools or adding more requirements to their search criteria.

We call this synergistic platform an Opinion-Driven Decision Support System

(ODSS) - a system that enables users to find and analyze entities of interest

(e.g. products, people and businesses) based on the opinions of other web users.

Such a decision platform has not been used in the commercial world nor has

it been previously studied by researchers in the field. This proposed platform is

very different from traditional search engines such as Google which can only help

people find documents based on topics rather than entities based on opinion

oriented requirements on those entities. Further, since traditional search engines

are not designed to aid decision making, these search engines do not offer any

type of analysis tools beyond a summary of the search results. One would think

that analysis tools would be readily available on more specialized search engines

such as Google Product Search4 and Hotels.com5. However, these systems only

provide search filters based on established attributes (e.g. price, name, brand)

and fall short of any opinion related analysis or comparison tools. The ODSS

thus fulfills deficiencies of current systems by providing a special platform to

facilitate decision making.

Our envisioned ODSS platform is made up of four core components: (1)

Search capabilities, (2) Analysis tools, (3) Data and (4) Presentation. These

components would enable the development of a large-scale opinion driven de-

cision support platform. The ODSS opens up a variety of interesting research

challenges in the areas of Information Retrieval, Text Mining and Natural Lan-

guage Processing. Figure 1.1 outlines some of these challenges. In this thesis, we

focus on three important problems of the ODSS, encompassing search, analysis

and data. First, in providing a useful search capability, we study the prob-

lem of Opinion-Based Entity Ranking - where entities are ranked based on a

4http://www.google.com/prdhp
5http://www.hotels.com
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Figure 1.1: Research questions related to building an Opinion-Driven Decision
Support System. Bolded fonts indicate questions that are addressed in this
thesis.

set of user specified opinion preferences. Second, in providing analysis tools to

further aid decision making, we study Abstractive Summarization of Opinions,

where we propose practical approaches to generating unstructured summaries

highlighting key opinions in text. In order to enable both the search and anal-

ysis components, opinionated content is imperative. Hence, in the third part

of this thesis, we attempt to study the problem of Opinion Acquisition. Fig-

ure 1.2 shows how each of these research questions fit into the framework of an

Opinion-Driven Decision Support System. In the next Section, we discuss the

details of these research questions.

1.1 Research Questions

This thesis is divided into four sub-parts where the first three parts are research

questions mentioned in the previous section and the final part is a web prototype.

The first part of this thesis is about enabling the search for entities based on the

user’s requirements. This capability is achieved through the study of Opinion-

Based Entity Ranking which enables users to find entities based on a set of

keyword based preferences. Then, in the second part of this thesis, the goal

is to provide analysis tools to aid decision making. For this, we study several

techniques related to Abstractive Summarization of Opinions. The third part

is about enabling large-scale opinion collection that will support the search and

analysis components. For this, we propose to study the crawling of opinions

3
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Figure 1.2: The core components of this thesis (numbered). Diagram shows
how each component fits into the framework of an Opinion-Driven Decision
Support System (red fonts).

in the form of reviews. As the final part of this thesis, we combine ideas from

the first three parts and develop a web-based prototype in the context of hotel

search. Figure 1.2 shows how each of the research questions in this thesis fits

into the framework of an Opinion-Driven Decision Support System.

1.1.1 Part 1: Opinion-Based Entity Ranking

The goal of the search functionality in the envisioned platform is to help users

find entities of interest based on their key requirements. Since a user is often

interested in choosing an entity based on opinions on that entity, a system that

ranks entities based on a user’s personal preferences would provide a more direct

support for a user’s decision-making task. For example, in the case of finding

hotels at a destination, a user may only want to consider hotels where other

people thought was clean. By finding and ranking hotels based on how well it

satisfies such a requirement would significantly reduce the number of entities in

consideration, facilitating decision making. Unlike traditional search, the query

in this case is a set of preferences and the results is a set of entities that match

these preferences. The challenge is to accurately match the user’s preferences

with existing opinions in order to recommend the best entities. While extensions

of existing opinion mining techniques can be leveraged to rank entities based

on opinions, most of these techniques pose practical limitations where most

techniques are domain dependent, some require supervision and some only allow

a limited set of aspects of an entity to be queried. Our goal is to propose a

solution that would easily work in any domain and would scale to large amounts
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of data. Thus in this thesis, we explore the use of robust information retrieval

models and extensions of it for this Opinion-Based Entity Ranking task [1].

1.1.2 Part 2: Abstractive Summarization of Opinions

Opinion summaries play a critical role in helping users analyze the entities in

consideration. Users are often looking out for major concerns or advantages in

selecting an entity. Thus, a summary that can quickly highlight the key opinions

about the entity would significantly help exploration of entities and aid deci-

sion making. Although opinion summarization has been long explored, most

techniques have focused on generating structured summaries on a fixed set of

topics, making the summaries rather restrictive thus lacking the level of detail

needed to aid decision making. Further, existing opinion summarization tech-

niques are inflexible in that they are mostly domain dependent and often need

some form of supervision. To address these limitations, we explore unsuper-

vised and domain-independent techniques [2, 3] to generate textual summaries

of opinions. Our goal is to generate summaries that are concise, readable and

informative. We focus on leveraging the redundancies in opinionated content

to generate summaries that are more abstractive as we believe that abstractive

summaries have the potential of being more concise and less redundant than

extractive summaries. Further, we aim at making these techniques flexible such

that the summaries can be displayed on various screen sizes as well as not be

restricted to a set of fixed topics.

1.1.3 Part 3: Opinion Acquisition

To support accurate search and analysis based on opinions, opinionated content

is imperative. Relying on opinions from just one specific source not only makes

the information unreliable, but also incomplete due to variations in opinions as

well as potential bias present in a specific source. Although many applications

rely on large amounts of opinions, there has been very limited work on collecting

and integrating a complete set of opinions. In this thesis, we focus on crawling

a comprehensive set of opinion containing pages pertaining to an entity. As

opinions in the form of user reviews alone make up a big portion of online

opinions, we narrow our focus of opinion crawling to review crawling. To make

this crawler usable in practice, our goal is to ensure that the crawler is (1)

general enough to collect reviews on any type of entity, (2) scalable to a large

number of entities and (3) useful to client applications even after the crawl

process is complete (e.g. to answer application related questions).

5



1.1.4 Part 4: Demo

To showcase the value of an Opinion-Driven Decision Platform, we build a pro-

totype system (http://www.findilike.com) [4] that implements some of the

ideas presented in this thesis. This prototype will be implemented in the context

of hotel search. The system that we build will enable future research and can

open up new research problems for further investigation. Here are some ways

in which the system will benefit the research community:

(1) Query logs from the system can be used to form a real test collection. This

test collection will be helpful in further improving the methods for ranking en-

tities based on preferences.

(2) The system can be used as a test platform to test new research ideas such

as new tools for opinion analysis, new retrieval models and so on.

(3) User interactions with the system will bring to light the features that are

important to end users and which interfaces are most effective for decision mak-

ing.

1.2 Thesis Materials

The content of this thesis is based upon a number of publications, self compiled

data sets and demos. The related materials are as listed below:

Publications:

[3] Kavita Ganesan, ChengXiang Zhai and Evelyne Viegas. Micropinion Gen-

eration: An Unsupervised Approach to Generating Ultra-Concise Summaries

of Opinions, Proceedings of the 21st International Conference on World Wide

Web (WWW ’12), 2012

[4] Kavita Ganesan and ChengXiang Zhai. FindiLike: Preference Driven Entity

Search, Proceedings of the 21st International Conference on World Wide Web

(WWW ’12), 2012

[1] Kavita Ganesan and ChengXiang Zhai. Opinion-Based Entity Ranking, In-

formation Retrieval, 2012

[2] Kavita Ganesan, ChengXiang Zhai and Jiawei Han. Opinosis: A Graph

Based Approach to Abstractive Summarization of Highly Redundant Opinions,

Proceedings of the 23rd International Conference on Computational Linguistics

(COLING ’10), 2010

Released Datasets:

[5] Opinosis Dataset. Dataset containing sets of related sentences extracted

from user reviews.

6
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[6] OpinRank Review Dataset. Dataset containing full reviews for cars and ho-

tels collected from Tripadvisor.com (259,000 reviews) and Edmunds.com (42,230

reviews).

Demos:

[2] Opinosis Summarizer: Java based text summarizer for opinions.

http://kavita-ganesan.com/opinosis-summarizer-library

[4, 7] FindiLike Web System: Web prototype of envisioned Opinion-Driven De-

cision Support System used in the context of hotel search.

http://www.findilike.com

7

http://kavita-ganesan.com/opinosis-summarizer-library
http://www.findilike.com


2 BACKGROUND

In this thesis, we propose an Opinion Driven Decision Support System compris-

ing of search, analysis and data collection components. We focus on solving key

problems related to building such a decision support platform ranging from pro-

viding the ability to rank entities based on opinions to opinion acquisition tasks

for compiling a comprehensive set of opinions. In this section, we will system-

atically survey related work in conjunction with the three main components of

this thesis. We start with the search component, where we draw similarities and

point out differences of our search task with existing work on entity retrieval,

expert finding, opinion retrieval and multifaceted search (Section 2.1). Then,

we move on to the second component on analysis where we propose practical

approaches to abstractive summarization of opinions (Section 2.2). Here, we

briefly describe existing methods in opinion summarization and then discuss

text summarization techniques that are closest to our task. Then, for the third

component on data collection (Section 2.3), we outline common web crawling

strategies and describe how our task on opinion crawling differs from existing

work.

2.1 Opinion-Based Entity Ranking

One of the core components of the proposed ODSS platform, is the ability to

find and rank entities based on the opinions expressed on these entities. While

searching based on structured attributes is supported by some vertical search

engines such as Google Product Search1, searching based on the opinions of

other users has not been previously explored commercially or by any existing

work. We believe that an efficient way to leverage online opinions is to extend

existing search technologies to enable entity finding based on opinions. Concep-

tually, this task may seem similar to other tasks such as expert finding, opinion

retrieval, multi-faceted search and so on. However, there are several key dif-

ferences that makes our ranking task unique. In the next few sub-sections, we

briefly describe some of the related work in existing literature and discuss the

important similarities and differences between our ranking task and these areas

of study.

1http://www.google.com/prdhp
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2.1.1 Expert Finding

Expert finding is a special case of entity retrieval where the goal is to retrieve a

ranked list of people or experts who are knowledgeable on a given topic using in-

formation retrieval technology. Expert finding has been addressed from different

viewpoints, including expertise retrieval, which takes a mostly system-centered

approach, and expertise seeking, which studies related human aspects.

To reflect the growing interest in entity ranking in general and expert find-

ing in particular, the Text REtrieval Conference, TREC introduced an expert

finding task at its Enterprise track in 2005 [8]. At this track, it emerged that

there are two principal approaches to expert finding [8, 9, 10, 11] - the candidate

model and the document model. Candidate-based approaches (also referred to

as profile-based methods) build a textual representation of candidate experts,

and rank them based on a query/topic, using traditional ad-hoc retrieval models.

With the document model on the other hand, the goal is to first find documents

which are relevant to the topic, and then locate the associated experts. Over

the years, various refinements have been accomplished by building on either the

candidate or the document models [12, 13, 14, 15].

While some of the ideas related to expert finding can be applied to the opinion-

based entity ranking task, our ranking task is different in that each entity is

represented by its corresponding textual opinions rather than a set of user ex-

pertise. Further, in our ranking task, the query is not just a topic of interest but

rather a set of opinion related preferences such as long battery life and excellent

sound quality (in the case of finding an mp3 player to purchase). Thus, we can

expect the query to contain opinion indicating words such as ‘excellent’. To ac-

curately match the user’s preferences with the existing opinions, special query

understanding techniques would thus be essential. In addition to all of that,

unlike expert finding, where the goal is to rank a special type of entity (people

or experts), with opinion-based entity ranking, we can rank any arbitrary entity

type as long as it is supported by opinion containing texts.

2.1.2 Opinion Retrieval

Opinion retrieval was first explored in the TREC Enterprise Track on email

search. The goal of opinion retrieval is to identify and rank blog posts express-

ing an opinion regarding a given topic. The idea is to test the ability to find

opinion expressing posts as this is essential to specialized search engines such

as blog search engines. Opinion retrieval systems [16, 17, 18] are very similar to

traditional retrieval systems in that they are usually built on top of standard

retrieval models. The standard retrieval models are used to find documents with

relevant content, and then opinion analysis is done on the retrieved content to

identify the opinion containing documents.

While opinion retrieval is about identifying documents containing opinions

9



about a certain topic, opinion-based entity ranking assumes that we already

have the opinionated content for a given entity. The task is to thus use all the

available opinions to rank entities based on a user’s preferences in the order of

likelihood that the entity matches the user’s preferences.

2.1.3 Multifaceted Search

Faceted search, also called faceted navigation or faceted browsing, allows users to

explore and find information that they need by filtering or navigating with the

help of some pre-determined facets [19]. The users often provide a very general

query (some systems do not support queries), and then they use the various

facets to navigate through the results until the items of interest are found. In

other words, the goal is to connect users to items that are of most interest to

them.

While the goal of faceted search and ours is similar, the paradigm is different.

First of all, in our setup, users find entities based on unstructured text containing

opinions of other users rather than structured or categorical data (often used

in faceted navigation). In addition, our focus is more on the keyword based

preferences in the query that allows users to specify their interest on various

facets. For example, a user who is looking for a laptop with a specific criteria,

would provide a query such as Lenovo, very light, bright screen. In such a query,

the facets are actually implicit where in this case the facets being queried are

brand, weight and screen. In traditional faceted navigation, these facets are

explicitly defined and are usually fixed. Thus, our idea can be considered an

ad-hoc faceted navigation or a personalized faceted navigation[20] system. This

new idea can be combined with ‘traditional’ faceted navigation to provide a

powerful search system that can greatly improve user productivity.

2.1.4 Rating Prediction and Decomposition

In recent years, there has been much work in trying to decompose reviews to

make aspect based rating predictions [21, 22, 23]. This line of work is closely

related to ours as, once we obtain ratings on different aspects, we would be

able to rank entities based on their ratings in the aspects interesting to a user.

With this setup, the problem would then be to rank the entities by its aspect

based ratings depending on which set of aspects the user is interested in. This

approach, however, has some practical limitations. First, most of these ap-

proaches assume a fixed number of aspects on a given entity. It is not only

impractical to define or mine a set of aspects for each category of entities (e.g.

politicians: approval rating, character ; laptops:battery life, screen), but a fixed

number of aspects would also severely limit the type of queries a user could

issue. More importantly, all the work in this line, require some supervision in

that they require the availability of ratings associated with reviews, which is not
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always present. This is especially true if the opinions are to be obtained from

completely unstructured sources such as blog or micro-blog sites.

Since the platform envisioned in this thesis is meant to be scalable and flexible,

we assume limited knowledge on the queriable aspects and focus on leveraging

robust retrieval models to find entities that closely match a user’s unstructured

preferences.

2.2 Abstractive Summarization of Opinions

Research in opinion summarization has been quite extensive with much of the

focus being on generating structured summaries of opinions. Early opinion sum-

marization systems focused on predicting the overall sentiment class (positive or

negative) on a given piece of text [24, 25, 26, 27]. In later years, this definition

was generalized to a multi-point rating scale where ratings are predicted on a

set of aspects [22, 28, 23, 29, 30, 31, 32]. In contrast to structured summariza-

tion approaches, studies addressing unstructured summarization of opinions are

notably fewer and abstractive approaches are less common than extractive ap-

proaches [33]. In extractive based techniques, the sentences or phrases deemed

most important by the system are included in the summary. Abstractive sum-

marization in the strictest sense involves condensing and rephrasing sections of

the source document and is often much harder to achieve.

As mentioned in Section 1.1.2, in the second part of this thesis, we focus

on generating textual summaries of opinions. Our goal is to use unsupervised

techniques (i.e. to provide greater flexibility) to generate summaries that are

concise, readable and can highlight key opinions in text. To the best of our

knowledge, no previous work has studied the generation of concise and abstrac-

tive summaries using unsupervised techniques such as those presented in this

thesis. Also, unlike existing methods that use a purely extractive approach or

a highly complex abstractive approach, we attempt to use a shallow abstrac-

tive approach using only the existing text and minimal dependency on external

resources.

The work closest to ours is perhaps the work of Branavan et. al [34] where a

keyphrase extraction model was implemented to generate a set of opinion sum-

marizing phrases. This model is based on a hierarchical Bayesian model, reusing

existing pros and cons phrases available from the web to train the keyphrase

extraction model. Unlike this supervised approach, our methods are unsuper-

vised and domain independent where we try to generate concise and informative

summaries using only the existing text, the inherent redundancies in opinions

and some additional resources such as a publicly available Web N-Gram model.

Carenini et. al [35, 36] compared both the use of extractive and abstractive

summarization methods for opinion summarization. A key difference between

our abstractive approach and theirs is that we focus on generating concise sum-
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maries (set of short phrases) using a domain-independent and lightweight ap-

proach, while they focus on generating paragraph level summaries made up of

full length sentences using a complex natural language generation architecture.

Other types of textual opinion summaries include contrastive summarization

[37, 38] where the summaries are meant to highlight contradicting sentence pairs

in opinionated text. Note that these summaries are not meant to summarize

key opinions in text.

2.3 Opinion Acquisition

While much research has been done on mining and summarizing existing opin-

ions [39, 40, 41, 42, 2, 3], there is limited work on automatically collecting a

comprehensive set of opinions. Any form of opinion analysis is currently per-

formed on a small portion of opinion containing documents. The problem with

relying on opinions from just one or two sources is data sparseness and source

related bias which could result in inaccuracies in information presented to the

end user. It is thus crucial to have an automatic method to collect a large

number of opinions from a variety of sources.

The concept of focused crawling was introduced by Chakrabarti et. al. [43]

where the goal is to download only web pages that are relevant to a query or

set of topics. Rather than collecting and indexing all accessible web documents,

a focused crawler analyzes its crawl boundary to find the URLs that are likely

to be most relevant for the crawl, and avoids irrelevant regions of the web.

While early focused crawling methods were based on simple heuristics [44, 45],

most topical crawlers in literature are predominantly supervised machine learn-

ing based methods [43, 46, 47, 48, 49, 50]. There are some key commonalities

amongst these topical crawlers. First, topical crawlers are primarily interested

in the relevance of a page to a topic. While initially topical relevance was deter-

mined using simple heuristics, topical crawlers generally rely on classifiers that

require labeled examples. Next, in most topical crawlers, URLs on pages con-

sidered ‘relevant’ are prioritized for further crawling. The three most common

concepts used for URL prioritization are (1) link context - the lexical content

that appears around the given URL in the parent page (2) ancestor pages - the

lexical content of pages leading to the current page and (3) web graph - the

structure of the Web subgraph around the node (page) corresponding to the

given URL.

While conceptually our task is similar to a traditional topical crawling task,

there are some key differences that makes our task unique. In traditional topical

crawling, relevance has mostly to do with how relevant a page is to the topic of

interest regardless of content type. In our task however, the goal is to collect

review pages specific to a set of entities, and thus relevance is about (1) if a

candidate page is a review page and (2) if a candidate page is relevant to one
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of the target entities. Next, in order to collect reviews for arbitrary entities

the approach should be general enough to work across domains. Most topical

crawlers however are domain dependent as they are trained on data from the

domain of interest.

Perhaps the work of Vural et. al [51] is closest to our work where the broad

goal is to discover opinion containing documents on the web. However, in their

work there is no need for an opinion containing page to be relevant to a specific

topic or entity as long as the content is subjective. The key idea used by Vural

et. al is to prioritize discovered URLs based on their predicted sentiment scores

so that the crawl is focused towards subjective content. The crawl path is similar

to that of general web crawling (long crawl). We focus on a short crawl because

we use search engine results that are specific to the target entity. Thus, the

results are already quite close to what we need and the challenge is more about

finding relevant review pages around the neighborhood of the search results with

reasonable accuracy and efficiency. In summary, none of the previous methods

was designed to solve our problem, and none of them can crawl reviews about

an arbitrary entity efficiently.
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3 OPINION-BASED ENTITY RANKING

In this chapter, we investigate the problem of Opinion-Based Entity Ranking,

that will provide a search functionality to help users find entities of interest

based on their personal preferences. Unlike traditional search, the query in this

case is a set of preferences and the results is a set of entities that match these

preferences. The challenge is to accurately match the user’s preferences with

existing opinions in order to recommend the best entities. This type of search

capability significantly reduces the user’s initial selection space thus making the

decision making task more manageable.

3.1 Introduction

The era of Social Computing has kindled massive growth of opinions and re-

views on the web, including reviews on businesses, products and opinions about

people. Let us just consider reviews of movies. On yahoo’s directory listing1,

the number of movie review sites alone is nearing two hundred. This number

does not even include the growing number of blogs or social networking sites

where people have the ability to freely express opinions about movies.

The vast amount of opinions expressed by experts and ordinary users can

be very useful to help people make all kinds of decisions, ranging from what

to buy to what treatment to choose for a disease. For example, shoppers at

Amazon2 typically would read the reviews about a product before buying it,

and travelers may rely on opinions about hotels on Tripadvisor3 to help them

choose an appropriate hotel at the destination. It has been shown that 77% of

online shoppers use reviews and ratings when making a purchase decision4.

Unfortunately, the abundance of opinions also poses challenges in digesting all

the opinions about an entity or a topic. For example, a popular product such as

the iPhone may have hundreds of reviews on Amazon.com, and popular hotels

like Marriott or Hilton may have over five hundred reviews on Tripadvisor.

Thus, the task of developing computational techniques to help users digest and

exploit all the opinions is a very important and interesting research challenge.

Most existing work on tackling this general challenge has focused on integrat-

ing and summarizing opinions to help users better digest all the opinions (see

1http://dir.yahoo.com/
2http://www.amazon.com
3http://www.tripadvisor.com
4http://www.mediapost.com/publications/
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Figure 3.1: An ideal Opinion-Based Entity Ranking System that accepts
keyword preferences as a natural keyword query.

Section 2 for a detailed review of related work). In this thesis, we propose a

different way of leveraging opinionated content, that is to directly rank inter-

esting entities based on how well the opinions on these entities match a user’s

preferences. Since a user is often interested in choosing an entity based on the

opinions on the entity, ranking entities in this way provides a more direct sup-

port for a user’s decision-making task. For example, the decision-making task

in the case of a user shopping for a product is to decide which product out of

the many to buy. Thus, it would be very helpful for such a user if we can take

a keyword query from the user expressing his/her preferences for the product

(e.g.,“comfortable seats, cheap and reliable” for a car), and return a ranked list

of cars in the order of likelihood that a car matches the users preferences. With

such a capability, the user is no longer overwhelmed by all the reviews available

on all cars, but rather the user can now analyze a much smaller set of cars

that roughly matches his/her preferences based on the judgment of other users.

Further, this type of ranking is flexible in that it can be applied to any entity

for which opinionated content is available.

To rank entities in this way, our idea is to represent each entity with the text

of all the reviews of that particular entity, often available from various websites.

Given a user’s keyword query that expresses the desired features of an entity,

we can then rank the relevant entities based on how well its reviews match the

user’s preferences. An ideal setup for an Opinion-Based Entity Ranking system

is as shown in Figure 3.1, where the user can freely express preferences as a

natural keyword query.

It is natural for a user to specify preferences on various aspects of an entity in

the envisioned entity ranking task. Thus we can expect a user’s query to consist

of preferences on multiple aspects; for example, a preference query for a car

might be “good gas mileage, cheap, reliable”, which consists of preferences on

three different aspects (i.e., efficiency, price, and reliability). In general, if a user

enters a query in a single query box, we would need to parse a query to obtain

preferences on different aspects. In this thesis, we focus on studying effectiveness
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Figure 3.2: One scenario of Opinion-Based Entity Ranking applications where
keyword preferences are expressed on a set of aspects.

of different ranking methods, so we assume that the multiple aspects in a user’s

query have already been segmented in order to factor out the influence of query

segmentation on retrieval accuracy. Such a query can also be naturally obtained

by providing a multi-aspect query form or asking a user to use a delimiter (e.g.,

a comma) to separate multiple preferences. For example, in Figure 3.2, we show

a system interface where the users can find hotels in any city by stating their

preferences on the various aspects of hotels.

Although this ranking problem closely resembles an information retrieval

problem where the reviews of an entity can be regarded as an “entity docu-

ment,” there are two important differences. First, the query is meant to express

a user’s preferences in keywords; thus it is expected to be longer than regular

keyword queries on the Web. More importantly, the query generally would con-

tain preferences on multiple aspects of an entity. As we will show later in the

paper, modeling these aspects can improve ranking accuracy. Second, the rank-

ing criteria are to capture how well an entity satisfies a user’s preferences rather

than the relevance of a document to a query as in the case of regular retrieval.

Therefore, the matching of opinionated words or sentiment would be important.

We will show that although traditional query expansion works reasonably well

in some cases, expanding a query with similar opinion words can significantly

improve ranking accuracy on different types of data.

In addition to evaluating the effectiveness of standard text retrieval models

for this task, we further propose several extensions of these models to better

solve this special ranking problem. Specifically, we propose two heuristics: (1)

query aspect modeling where we use each query aspect to rank entities and then

aggregate the ranked results from the multiple aspects of the query; and (2)

opinion expansion where we expand a query with related opinion words found

in an online thesaurus. Our approach is light-weight, scalable and flexible as we

avoid the need for costly information extraction and data mining.

Evaluation of this ranking task is a challenge since no existing test collection

can be used for evaluation. We thus opted to create a benchmark data set by

leveraging existing rating information. While it is not hard to collect reviews

for different entities, it is a significant challenge to obtain reasonable queries

and also to evaluate ranking accuracy quantitatively. We propose to solve this

problem by leveraging the ratings of different aspects of cars and hotels available
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on Edmunds.com5 and Tripadvisor.com6, and created two different data sets as

a gold standard for quantitative evaluation. The data sets are available at

http://sifaka.cs.uiuc.edu/ir/downloads.html.

Experimental results on these two data sets show that the proposed extensions

over standard retrieval models are effective for the task of opinion-based entity

ranking. The focused expansion technique (i.e. opinion expansion) is shown to

be particularly effective. Modeling the aspects in a user’s query as opposed to

just treating the query as a “long keyword query” is also beneficial, especially

for longer queries with more aspects.

3.2 Methods for Opinion-Based Entity Ranking

In this section, we present several methods for ranking entities based on how

well its opinions match a user’s preferences, including both standard retrieval

models, which we treat as baselines, and some extensions of these models that

we propose. To facilitate the discussion, we first introduce some notation. Let

E = {e1, ..., en} be a set of entities to be ranked. For each entity ei, we assume

that we can collect a set of review documents Ri = {ri1, ..., rini} that contain

the opinions about the entity expressed by users or reviewers, where rij is a

review document. Let Di be the concatenation of all the review documents of

an entity ei. For convenience, we call Di the opinion document for entity ei. To

solve the entity ranking problem, we cast it as a text retrieval problem where

the text collection C consists of all the opinion documents for all the entities.

That is, C = {D1, ..., Dn}.
From a user’s perspective, the easiest way to express preferences for an entity

would be to use keywords to describe desirable properties in various aspects.

For example, a query for cars may look like “good gas mileage, small size, re-

liable.” We denote such a keyword query by Q. On the surface, our problem

is very similar to a regular retrieval problem. However, as discussed in Sec-

tion 3.1, there are some important differences, which we will leverage to extend

a regular retrieval model to improve ranking accuracy. In particular, our queries

semantically consist of a set of sub-queries each describing preferences for one

separate aspect of an entity, and we will show that it is indeed beneficial to

model these semantic aspects. We will also show that emphasizing matching of

opinion words through opinion expansion is very effective because it captures

the desired matching criteria of relevance better for this ranking task. We now

present three baseline standard retrieval models and then we present the two

extensions mentioned.

5http://www.edmunds.com/
6http://www.tripadvisor.com/
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3.2.1 Standard retrieval models

By casting the entity ranking problem as a problem of preference matching, we

can directly use any standard retrieval model to solve the problem. Here we

present three state-of-the-art standard retrieval models that we will experiment

with; they are known to be most effective [52, 53] for the task of text retrieval.

BM25 (Okapi)

The BM25 (or Okapi) retrieval function was proposed by Robertson et. al [54]

and has been shown to be quite effective and robust for many tasks. Although it

was derived based on probabilistic models, it can also be regarded as a variant

of the popular vector space model since it provides a term frequency-inverse

document frequency (TF-IDF) weighting-based ranking formula. Formally, the

score of an opinion document D in collection C (with n documents) and a query

Q is given by:

SBM25(D,Q) =
∑

t∈Q∩D

k1c(t,D)

c(t,D) + k1(1− b+ b ∗ |D|/|D̃|)

× log
n+ 1

nt

where c(t,D) and c(t, Q) are the count of term t in document D and query

Q, respectively, |D| is the length of document D, |D̃| is the average document

length in the collection, nt is the number of documents containing term t, and

b, k1, and k3 are parameters that are typically set as b = 0.75, k1 between

1.0 to 2.0, and k3 between 0 and 1000. We replaced the IDF in the original

Okapi formula with the normal IDF because the original one causes negative

weights [53] and also performs significantly worse than the normal one in our

experiments.

Dirichlet prior

The Dirichlet prior retrieval function is one of the most effective language mod-

els for retrieval [55]. It is derived based on query likelihood scoring [56] and

Bayesian estimation of document language model [57], but its weighting for-

mula also resembles TF-IDF weighting and document length normalization.

Formally, the score of document D and query Q is:

SDir(D,Q) =
∑

t∈Q∩D
c(t, Q) log(1 +

c(t,D)

µp(t|C)
) + |Q| log

µ

µ+ |D|

where the notations are as in Okapi, p(t|C) is the probability of term t according

to a background collection language model, and µ is a smoothing parameter to
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be empirically set.

PL2

PL2 is one of the most effective functions in the family of divergence from

randomness retrieval (DFR) models [52]. Its scoring formula is based on basic

statistics similar to those used in other retrieval functions and is formally defined

as:

SPL2(D,Q) =
∑
t∈Q∩D c(t, Q)

×
tfnDt ·log2(tfn

D
t ·λt)+log2 e·( 1

λt
−tfnDt )+0.5·log2(2π·tfn

D
t )

tfnDt +1

where tfnDt = c(t,D) + log2(1 + c · |D̃||D| ), λt = n
c(t,C) (c(t, C) is the count of

term t in the collection C) and c > 0 is a retrieval parameter.

All these three standard retrieval models have corresponding pseudo feedback

methods that can take some top ranked documents in an initial retrieval result

as if they were relevant documents to extract additional terms to expand a

query. Since we use the Terrier[58] toolkit for our experiments, we leverage the

pseudo feedback mechanism implemented in this toolkit. Terrier provides vari-

ous DFR[52] based term weighting models for query expansion. We specifically

use the Bose-Einstein 1 (Bo1) model, which is based on Bose-Einstein statistics

[59] and is similar to Rocchio[60].

Although standard retrieval models can be used to solve the opinion-based

entity ranking problem, these models do not consider the multiple aspects in

the query. It also does not consider the special notion of “relevance” when

matching an opinion document with a query. Below, we present two extensions

of a standard retrieval function to model query aspects and expand a query with

opinion words.

3.2.2 Query Aspect Modeling (QAM)

In our setup, we assume that separate query fields would be provided for each

aspect, thus the query would naturally consist of multiple aspects. However,

a standard retrieval model would not distinguish these multiple aspects; as a

result, it is possible that an entity may be scored high just because of matching

one of the many aspects extremely well. Thus, one way to improve a standard

retrieval function is to use each aspect query to score an opinion document

(equivalently an entity) and then combine the scores of an entity in all the query

aspects. This way, we can ensure that an entity matches all the aspects. Another

potential advantage of modeling aspects in a query, though not explored in this

thesis, is the ability to add expansion terms that are relevant to the aspect. For

example, say we have a two aspect query - ‘good gas mileage’ and ‘extremely

comfy ’. If we distinguish this query based on aspects, for ‘good gas mileage’,

terms like ‘mpg’,‘mileage’, ‘fuel’ can be potentially added. However, if we treat
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the user’s preferences as long query, without distinguishing aspects, we have to

be very careful on the type of terms added as we may end up retrieving items

that are better in one aspect compared to the other.

While we have assumed separate query fields for different aspects, the aspects

in a query can also be obtained explicitly by asking a user to use a special delim-

iter such as a comma to separate multiple aspects. These aspect queries can also

be obtained from a regular keyword query using query parsing or segmentation

techniques as shown in the work of [61]. Thus, by capturing multiple aspects in

the query, we may now denote a query with Q = {Q1, ..., Qk} where k ≥ 1 and

Qi is a keyword query for an aspect of the entity, which we will refer to as an

aspect query.

We now present several methods for leveraging this aspect structure. Let

S(D,Q) be any retrieval function. We can use the function to compute a score

for each document with respect to each aspect query Qi (i.e., S(D,Qi)), and

then combine the scores to generate an overall score for each document. De-

pending on how we combine the scores, we have several variants of this query

aspect modeling (QAM) strategy. In particular, we can either combine the

scores directly or combine the ranks of documents according to their scores in

each query aspect. Moreover, we can also use different ways to aggregate the

scores or ranks. In our experiments, we tested the following QAM scoring meth-

ods:

Average Score: SAvgScore(D,Q) = 1
k

∑k
i=1 S(D,Qi)

Average Rank: SAvgRank(D,Q) = 1
k

∑k
i=1Rank(D,Qi)

Median Rank: SMedRank(D,Q) = Mediani∈[1,k]Rank(D,Qi)

Min Rank: SMinRank(D,Q) = Mini∈[1,k]Rank(D,Qi)

Max Rank: SMaxRank(D,Q) = Maxi∈[1,k]Rank(D,Qi)

Here, Rank(D,Qi) refers to the rank of document D in the ranked list of doc-

uments for aspect query Qi. Note that we did not consider other variations of

score combination because of the concern that scores of a document in different

aspects may not be comparable.

3.2.3 Opinion Expansion

Another limitation of the standard retrieval models for opinion-based entity

ranking is that matching an opinion word and matching an ordinary topic word

are not distinguished. Intuitively, since we would like to reward an opinion

document where a query aspect is favorably reviewed, it is important to match
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opinion words in the user’s query. However, since topic words are expected to be

much more common in review documents and have less variation than opinion

words, we hypothesized that expanding a query with additional “equivalent”

opinion words may help in emphasizing the matching of opinion words.

Consider a query like ‘fantastic battery life’. Due to the non-uniform way in

which people express opinions, for the same expression, some may say ‘awesome

battery life’ while others may say something brief such as ‘good battery’. There-

fore, it would be beneficial to expand such a query by adding synonyms of the

word fantastic.

We thus propose the following opinion expansion method to expand a query

with related opinion words. We use a controlled online dictionary7 to first

extract two classes of words from the query: (1) intensifiers, which are adverbs

such as very, really, extremely and (2) common praise words, which are

adjectives such as good, great, fantastic. In the case of intensifier words, we use

only words that are neutral, where the orientation of the word would depend on

the word or phrase following. This is to avoid changing the intended orientation

of the query. For example, for the query ‘extremely comfortable car’, related

intensifiers such as exaggeratedly and excessively can change the actual meaning

of the user’s preference as both these words have negative connotation. Such

words would thus not be included in our list or expanded on when opinion

expansion is performed. Table 3.1 shows the complete list of intensifiers and

praise words used for opinion expansion.

For a given query Q, we can add synonyms of query terms to the query to

enrich the representation of opinions and accommodate flexible matching of

opinions. Formally, let ti be a term in a given query Q. Let syna1 , ..., syna35

be the set of synonyms for praise words and synb1 , ..., synb23 be the set of syn-

onyms for intensifier words. If ti matches an intensifier term or a praise term,

the corresponding synonyms will be appended to the query. Even if there are

multiple praise words or intensifiers in a query, the expansion is done only once.

3.3 Data Set

Since the task of opinion based entity ranking as we defined has not been studied

previously, no test collection exists for this task. This makes it a challenge to

quantitatively evaluate the proposed methods. In this section, we describe how

we address this challenge by creating a benchmark data set from two different

domains. While review documents are easy to obtain from the Web, it is unclear

how we can obtain queries and create a gold standard to quantitatively evaluate

the proposed methods for entity ranking. We propose to use seed aspect queries

to generate synthetic longer queries and leverage the available numerical aspect

ratings as if they were relevance judgments. We believe that the creation of

7thesaurus.com
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praise words intensifiers
acceptable absolutely
admirable acutely
agreeable amply
amazing astonishingly
awesome certainly
commendable considerably
decent dearly
excellent decidedly
exceptional deeply
fantastic eminently
favorable emphatically
genius extensively
good extraordinarily
gratifying extremely
great highly
honorable incredibly
lovely really
marvelous substantially
nice tremendously
pleased truly
pleasing very
premium
remarkable
satisfactory
satisfying
sound
splendid
stupendous
super
superb
superior
terrific
tremendous
wonderful
worthy

Table 3.1: List of praise words and intensifiers used for opinion expansion

22



Figure 3.3: A sample car review from Edmunds.com.

this first test data set and the associated evaluation methodology for ranking

entities, is one of the important contributions of this work. The data set is

available at http://sifaka.cs.uiuc.edu/ir/downloads.html.

3.3.1 Review Document Collection

Our task is to return a set of entities based on how well the user’s keyword pref-

erences match the opinions on these entities. Therefore, we need a reasonable

sized opinion data set supporting each entity. Although our idea is to allow the

retrieval of any entity with supporting opinions, we chose to limit to sources

that have free-text opinions accompanied by numerical ratings on individual

aspects. We restricted our search to such sources to facilitate the evaluation of

our task (explained in detail in Section 3.3.3).

With careful analysis, we chose to use reviews from two different domains

that represent different types of reviews. The first is car reviews from Ed-

munds.com and the second is hotel reviews from Tripadvisor.com. Both sources

have free-text reviews accompanied by numerical ratings on several aspects (all

provided by users).

The nature of car reviews on Edmunds.com differs from hotel reviews on

Tripadvisor.com. The hotel reviews are far more verbose than the car reviews.

Most reviews on cars are only 4-5 sentences long, while the hotel reviews can

span several paragraphs with detailed explanation of the reviewer’s experience.

Figure 3.3 shows an example of a car review from Edmunds.com. The section

titled Detailed Ratings provides us with the discrete aspect ratings for each

review.

To construct our data set, we collected reviews on cars for model-year 2007,

2008, and 2009 and hotel reviews for hotels in 10 major cities internationally.
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Car Data Set Hotels Data Set

average aspect ratings average aspect ratings

year # of cars max min mean var city # of hotels max min mean var

07’ 227 10.00 5.13 8.72 0.54 beijing 98 5.00 2.56 4.10 0.25

08’ 228 10.00 3.79 8.75 0.63 chicago 116 4.92 1.70 4.02 0.31

09’ 143 10.00 6.03 8.85 0.41 dubai 148 5.00 1.60 3.92 0.49

las-vegas 154 5.00 1.12 3.70 0.47

london 727 4.96 1.00 3.53 0.71

montreal 98 4.97 1.10 3.79 0.57

new-delhi 80 5.00 1.58 3.55 0.51

new york city 246 4.98 2.58 4.09 0.19

san-francisco 186 4.94 1.32 3.78 0.52

shanghai 92 4.93 2.09 3.95 0.27

Table 3.2: Basic statistics on collected review data used in experiments.
Columns labeled min, max and mean are based on the averaged per aspect
user ratings for each entity.

This includes hotels in London, Beijing, Shanghai, Montreal, New Delhi, Dubai,

New York City, Chicago, San Francisco and Las Vegas. In creating our data

set, we avoided reviews that were too sparse as there would not be sufficient

opinion text to test the effectiveness of a ranking method. Thus, we ensured

that we only considered cars/hotels that had at least least 10 reviews.

The accompanying aspect ratings on Edmunds.com are on 8 different aspects,

namely fuel economy, comfort, performance, reliability, interior design, exterior

design, build and fun to drive. These ratings are on a scale of 1-10. As for hotel

reviews, there are 5 aspects and this includes cleanliness, value, service, location

and room. These ratings are on a scale of 1-5.

Table 3.2 provides a summary of the collected data. Columns labeled min

and max show the absolute minimum and maximum aspect ratings for a given

model-year/city, where the aspect ratings have been averaged across reviews of

the same entity. The mean aspect ratings and variance are also shown in this

table. Overall, the variance in ratings in both data sets is small.

3.3.2 Query Generation

The queries expected in an opinion-based entity ranking system are very dif-

ferent from a regular query one would issue to a typical vertical search engine,

like a product search engine. If a user were looking for a laptop on Google

Product Search8, the user would typically type short keywords like laptop or

dell laptops. Such systems generally return a list of entities without any specific

order to start with, allowing the user to narrow down into the items of interest

using different filters or through faceted navigation.

In our case, assuming that the type of entity (e.g. people, cars, hotels, restau-

rants) being searched for is known, users can then state their preferences for that

entity using a set of descriptive keywords. These keywords would indicate what

8http://www.google.com/products
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the user desires in the different aspects of that entity. For example, for a laptop

we can have a query such as ‘dell, good battery life, bright screen, very portable’.

The system would then return a ranked list of entities in the order of likelihood

that the entity matches the user’s preferences. Queries issued to a system such

as this would thus have two important properties: (1) the query lengths can

vary greatly - from short queries like ‘good battery life’ to longer queries like

‘excellent battery life, bright screen, lightweight’ and (2) the queries may con-

tain opinion indicating words and intensifiers (e.g. very, extremely, good, super,

excellent).

While there are many vertical search systems like Google Product Search,

there exists no system that currently takes a set of keyword based preferences

as shown in Figure 3.1. This makes it hard for us to obtain a natural sample of

queries. We thus constructed our test queries from a set of seed queries. Since

we expect the user to express his/her preferences on a fixed number of aspects,

for the purpose of evaluation, we assume that these aspects would correspond to

the aspects that have associated numerical ratings in our data set. We manually

obtained a set of seed queries for each of these aspects and then we randomly

combined the seed queries from different aspects to form longer multi-aspect

queries that we call generated queries.

Specifically, we asked three average users to provide a few queries that they

would issue on the various aspects of entities in our data set, to ‘find’ those

that match their preferences. So, a user who desires a comfortable car with

good gas mileage may issue a query such as ‘comfortable seats, excellent mpg ’,

where ‘comfortable seats’ corresponds to the comfort aspect and ‘excellent mpg’

corresponds to the fuel economy aspect. The user thus specifies both the aspect

being queried and the query keywords for that aspect. This is to simulate the

behavior of obtaining queries from a query interface such as the one in Figure 3.2.

With this, we obtained an average of six seed queries per aspect (5 for hotels

and 7 for cars) for the two domains. We ignored one aspect, ‘exterior design’

as it was not a popular topic of discussion within the car reviews, and hence

may not help in evaluating retrieval methods that rely on keyword matching.

In Table 3.3, we show the estimated aspect mentions in the car dataset. These

numbers were obtained by counting the number of times the representative

words in each aspect were mentioned.

Through random combination of seed queries from different aspects, we gen-

erated 10,000 queries per data set. These queries are to be used with entities

in each city (for hotels) and model-year (for cars). The shortest query is one

aspect long and the longest query can be a query that touches each aspect of

the car/hotel. Each generated query can have at most one seed query from a

given aspect. Table 3.4 shows some sample seed queries defined on 2 different

aspects of cars and hotels and Table 3.5 shows some sample generated queries

for the car data set.

Since the seed queries were obtained without a real system in place, it is
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Aspect Words used for keyword matching Mentions
comfort comfort 15530
interior interior 13068
fuel economy gas, fuel 10924
performance performance 5013
build built, build 4156
reliability reliability, reliable 4119
exterior exterior 3122

Table 3.3: Approximate aspect mentions in the car dataset.

important to ensure that these seed queries indeed represent typical user queries

in our evaluation domain. Queries submitted to a car or a hotel search engine

would not be useful because such systems are typically very structured and

have limited support for natural keyword queries. However, users tend to use

the major search engines like Bing9, Yahoo!10 and Google11 as a starting point

to many of their search activities. Since the query suggestion feature of search

engines is based on what other users have searched on, and the related searches

feature is typically mined from query logs [62], we use both these features to

determine how representative our seed queries are in these two domains.

We append the entity type to each seed query (for e.g., ‘very clean’ + ‘hotel ’

for the cleanliness aspect of hotels) and use that as a query into the major

search engines. We then note the related searches and query suggestions for

each seed query. We call these the common aspect queries. For example, a

query like ‘clean hotels’ may yield in common aspect queries like ‘clean hotels

in Las Vegas’ and ‘clean hotels NYC cheap’. With this, we know that the seed

query indeed reflects a natural user query. Almost all seed queries (in both

domains) returned a set of common aspect queries on the major search engines.

Table 3.6 and 3.7 show some of the seed queries with corresponding common

aspect queries for each aspect in the two domains. The build aspect from the

cars domain and the service aspect from the hotels domain are the only ones

that had limited or no related queries (in all three search engines). This makes

sense as some aspects are relatively more subjective or opinion oriented. So, it is

not very likely that users would search for ‘hotels with polite staff’ on the major

search engine sites. However, given a system like the one we envision, it would

be more likely that such queries would be encountered. Therefore, these seed

queries provide a nice mix of what a user typically looks for in these domains

and what users could potentially search for in the future given an opinion-based

search system. For further analysis, we looked into the Microsoft Live Labs

query logs (released in 2006) to see what the most frequently mentioned aspects

of preferences are in these two domains. This query log has 15 million queries,

from US users, sampled over one month. Although this is a relatively small query

9www.bing.com
10www.yahoo.com
11ww.google.com
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Cars Hotels
Aspects Sample Seed Aspects Sample Seed

fuel
economy

good gas mileage, great
mpg

cleanliness very clean, clean

comfort comfortable, very comfy value cheap, affordable

Table 3.4: Sample seed queries used to generate longer multi-aspect queries

Aspects Generated Queries
comfort comfortable

very comfy
comfort, fuel comfortable, good gas mileage

very comfy, great mpg
comfort, reliability, fuel comfortable, reliable, good gas mileage

comfy, dependable, great mpg

Table 3.5: Example of generated queries for the car data set

log, it is sufficient enough to show some word distribution in these domains. For

this, we used the words ‘cars’ and ‘hotels’ to retrieve all related queries from

the query logs. For each domain, we then collect the counts of terms in these

retrieved queries and sort them in decreasing order of their frequencies. The

top 50 query words related to the purchasing of a car and the top 30 query

words related to finding a place to stay are shown in Table 3.8. We see that all

these words can be mapped into the aspects that we considered in generating

our queries (the mappings are shown in parentheses in the table). Furthermore,

in both domains, most of the aspects that we used for evaluation (i.e., aspects

with known ratings from reviewers in Tripadvisor.com and Edmunds.com) were

indeed queried by users. The aspects not well covered in these top query words

are the fun and comfort aspects for cars and the cleanliness aspect for hotels.

We believe that this does not necessarily indicate a lack of interest by users in

these aspects, but rather, it is likely that users would not expect the current

search engines to return meaningful results for such aspects, thus they would

not even try such queries. Overall, the query log analysis results indicate that

the queries we generated indeed represent typical aspects of preferences that

users are interested in when ranking cars and hotels.

3.3.3 Relevance Judgments Generation

One of the most important task in our evaluation is to determine how well the

retrieved entities match the user’s preferences. Ideally, for a subjective task like

this, given a user’s preference query, we would need a human judge to read the

related reviews and provide a judgment score of how well the retrieved entities

match the user’s preferences. This would involve understanding the underlying

opinions in the reviews of each retrieved entity for each aspect involved in the

user’s query. This process is not only time consuming but can also be over-
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Cars
Aspect Sample Seed Related User Queries from Google,

Yahoo, Bing
fuel good gas mileage

good fuel economy
decent gas mileage
excellent fuel economy

cars with high mpg
cars with great gas mileage
fuel efficient cars
good fuel economy trucks
cheap good gas mileage cars
best fuel economy cars

comfort comfortable
very comfortable
comfortable to drive

top 10 comfortable cars
comfortable cars for back pain
best comfortable cars
small comfortable cars
most comfortable ride

fun fun driving
fun to drive
easy to drive

most fun driving cars
most fun to drive cars
2010 fun to drive cars
fun to drive sedans

build well built
good build
solid build

well built cars
most well built car

reliability reliable
very reliable
durable
dependable

most reliable car
reliable used car
dependable used car
most dependable cars 2008
cheap dependable cars
top ten durable cars
cheap durable cars
high reliability cars

performance good overall performance
good performance
high performance

high performance cars
performance cars for sale
performance cars and trucks
high performance used cars
high performance electric cars

interior quiet interior
comfortable interior

cars with quiet interior
quiet cars 2010
most quiet cars
cars with quietest rides
comfortable interior cars
cars comfortable seats

Table 3.6: Seed queries and corresponding related user queries (about cars) on
major search engines like Yahoo!, Bing and Google.
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Hotels
Aspect Sample Seed Related User Queries from Google,

Yahoo, Bing
value cheap

affordable
good value
reasonable price

hotels downtown chicago reasonable prices
cheap downtown chicago hotels
cheap hotels
affordable hotels in nyc
good value new york city hotels
good value hotels cheap
very cheap hotels in new york

cleanliness clean place
clean
good cleanliness

hotel nice clean
cheap clean hotels nyc
clean hotels in hershey pa
clean hotel rooms
cheap clean hotel
clean hotel hong kong
clean hotel singapore

room spacious room
comfortable room
nice room
cozy rooms

cozy hotels in chicago
comfortable hotels in paris
comfy hotels dublin
comfortable hotel rooms in las vegas
spacious hotel rooms in new york
really nice hotel rooms
cheap nice hotel rooms
nice hotel rooms in las vegas

location great location
nice location
great view
nice view

great location hotels london
paris hotels in great location
new york hotels with great views
hotels with great views in washington
hotels with nice views san francisco
hotels with nice views in nj

service helpful staff
polite staff
good service

N/A

Table 3.7: Seed queries and corresponding related user queries (about hotels)
on major search engines like Yahoo!, Bing and Google.
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Top 50 query words related to cars
(p=performance, g=mileage, i=interior, e=exterior,
a=affordability, r= reliability)
454 seat (i)
433 cheap (a)
352 muscle (e)
217 hybrid (g)
217 fast (p)
211 seats (i)
190 sports (e)
173 gas (g)
172 electric (g)
171 fuel (g)
157 cool (e)
139 luxury (e)
130 stereo (i)
123 big (e)
101 price (a)

96 mileage (g)
93 diesel (g)
89 video (i)
79 performance (p)
78 carseat (i)
64 safety (r)
64 fastest (p)
63 small (e)
50 convertible (e)
45 economy (g)
42 storage (i)
41 alarm (i)
35 tv (i)
35 miles (g)
35 dvd (i)

35 alarms (i)
32 light (e)
31 speed (p)
31 efficient (g)
31 compact (i)
31 cheapest (a)
30 coupons (a)
29 japanese (r)
29 ipod (i)
28 milage (g)
28 charger (i)
26 player (i)
25 sound (i)

Top 30 query words related to hotels
(l=location, p=price, r=room, s=service)
576 cheap (p)
324 airport (l)
305 island (l)
200 downtown (l)
186 discount (p)
168 pet (s)
166 friendly (s)
165 ocean (l)
161 lake (l)
113 luxury (r)
95 beach (l)
78 falls (l)
52 water (l)
45 jacuzzi (r)
41 close (l)
40 around (l)

38 niagara (l)
37 oceanfront (l)
34 sea (l)
32 university (l)
30 worth (p)
28 beachfront (l)
24 romantic (l)
24 coast (l)
23 rates (p)
22 budget (p)
16 service (s)
16 pools (s)
14 honeymoon (l)

Table 3.8: List of most frequent co-occurring terms in queries “cars” and
“hotels” in the Microsoft Live Labs query logs and their corresponding aspects
of preferences.
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Figure 3.4: A car review with accompanying aspect based score ratings. There
are mentions of the car being comfortable and quiet and accordingly a high
score was given to the comfort aspect. There is also a mention of the car not
being very exciting and as can be observed only a moderate rating was given
to the fun aspect.

whelming and it may be hard for the human judges to keep track of the ‘key

opinions’. We thus need a reasonable way to approximate human judgment. To

solve this problem, we propose to leverage the existing aspect ratings that come

with the user reviews in our two data sets.

Both our data sets come with free-text reviews accompanied by a set of nu-

merical ratings on several aspects. Some of the mentions in the free-text reviews

directly reflect on the aspect score that an entity receives. Figure 3.4 shows a

car review with corresponding aspect ratings. In this review, there are mentions

of the car being ‘comfortable and quiet’ and accordingly a very high score was

given to the comfort aspect. There was also a mention of the ‘car being not too

exciting’ and accordingly, a moderate rating was given to the fun aspect. As in

most user reviews, users tend to write about aspects that stands out most to

them either in a good way or a bad way. In our two data sets, users are also

allowed to provide aspect scores that may be reflective of some of their free-text

comments. These aspect scores can thus serve as a relevance judgment score

that indicates how well an entity performs on each of its aspects. We believe

that this is a good approximation to human judgment. For example, if most

users find that a particular car has excellent gas mileage, then the fuel econ-

omy aspect would have a high aspect score. In the other extreme, apart from

negative mentions about the fuel economy, the score for this aspect would also

be low. So, if a user is looking for a car with ‘very good mpg’ then ideally we

should return all cars that have very high scores on the fuel economy aspect or
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otherwise the system should be penalized. However, such a judgment is based

on average ratings of a group of users, thus it may not reflect the real preferences

of any particular user. As a result, the evaluation results using such judgments

are only meaningful for relative comparison of different ranking methods, which

is our goal.

Judgment scores are needed on individual aspects (to evaluate how well an

entity matches one query aspect) and also on a combined set of aspects (to assess

how well an entity matches the entire query). To compute judgment scores for

individual aspects, we use the ratings provided by each user on a given aspect

and average it. We call this score the Average Aspect Rating (AAR).

For queries that span multiple aspects, we take individual AAR scores of the

aspects involved and average it. This, we call the Multi-Aspect AAR (MAAR).

Let Q = Q1, ..., Qk be a query with k aspects and E be an entity. Let ri(E) be

the AAR of E in aspect i. Thus, MAAR(E,Q) is defined as:

MAAR(E,Q) = 1
k

∑k
i=1 ri(E)

We assume that an ideal ranking of entities for query Q would correspond

to ranking E in the descending order of MAAR(E,Q), and this enables us to

quantify how close a retrieval result is to this ideal ranking.

3.4 Experiments

In this section, we describe our experimental setup and present the experiment

results on the two test sets.

3.4.1 Experimental Setup

Evaluation Measures

Since our gold standard has multiple levels of ratings for a car, we used the

Normalized Discounted Cumulative Gain (nDCG) [63] measure as the evaluation

metric of our ranking task. In an opinion-based entity ranking system, only

the top-k items (k = 10 in our case) that closely match the user’s preferences

are deemed critical. Thus, we used nDCG of the top 10 entities (denoted as

nDCG@10) as a main measure.

The Discounted Cumulative Gain (DCG) accumulated at a particular rank

position p is defined as:

DCGp = MAAR1(E,Q) +
∑p
i=2

MAARi(E,Q)
log2 i

To allow the DCG to be comparable across queries and search results, it is

normalized by its ideal ranking, which is obtained by sorting documents based

on their MAAR values available from our gold standard. Let the DCG at

32



position p of the ideal ranking be denoted by IDCGp. The nDCG is then

computed as:

nDCGp =
DCGp
IDCGp

Data Pre-processing

To evaluate the effectiveness of the proposed methods, we retained only the text

segments of the reviews, dropping all HTML overhead and numerical ratings.

The ratings were removed from our data set so that our experiments are in

no way influenced by them. So, in essence, each document in our collection is

a concatenation of text based reviews about a car/hotel. The length of each

document varies greatly based on the number of reviews and also the size of

individual reviews.

Implementation of retrieval methods

We use the three retrieval models (i.e., BM25, Language Modeling, and PL2)

implemented in the Terrier 2.2 [58] toolkit for our experiments. We, however,

had to make a few implementation changes to support Dirichlet Prior based

Language Models [55] and fix the IDF problem of Okapi BM25 model discussed

in [53].

3.4.2 Experiment Results

Standard Retrieval Models

We first look into the performance of the three state of the art standard text re-

trieval models. We used the default model parameters for Okapi BM25 (b=0.75,

k3=8, k1=1.2 ) on both data sets as varying them did not make much differ-

ence in performance. PL2 uses a parameter c, a value for the term frequency

normalization. This value was set to 1000 for both the car and hotels data

set. We varied this value and found that a large value works well for the type

of collection that we have. For the language modeling based retrieval, we set

µ = 1000 for both data sets as has been done in some previous work [64] and

this value works well in our experiments.

Hotels Cars
PL2 LM BM25 PL2 LM BM25

StdNoFb 0.890 0.889 0.847 0.926 0.926 0.924
StdFb 0.897 0.896 0.869 0.926 0.923 0.923
change 0.81% 0.74% 2.48% -0.03% -0.32% -0.08%

Table 3.9: nDCG@10 using standard (Std and StdNoFb) retrieval models.
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The nDCG values based on 10,000 queries (for each data set) averaged across

queries is reported in Table 3.9, where, in addition to comparing the three

methods, we also compare these methods using the pseudo feedback mechanism

explained in section 3.2. Based on Table 3.9, we can make several observations:

(1) It appears that, overall, PL2 is most effective, followed by Dirichlet prior

LM and then BM25. Interestingly, as we will show later, BM25 appears to

perform the best with the proposed extensions. (2) We further see that pseudo

feedback consistently helps improve the ranking of hotels but deteriorates the

ranking performance of cars. Since the hotel reviews are much denser, the use

of pseudo feedback is effective as the terms added to expand the query are more

meaningful for the ranking process. Upon analysis of the pseudo feedback for the

ranking of cars, it becomes clear why performance is degraded. For the query

‘good fuel efficiency’, some of the words added are 4cycl, jeep and kia, and these

words have no relation to fuel efficiency being good, resulting in the wrong cars

being ranked highly. Even though pseudo feedback seems promising for this

task, it only helps when the reviews are verbose. We will show later that our

proposed opinion expansion is consistently effective and improves performance

on both data sets.

Opinion Expansion

We now look into the question of whether the proposed opinion expansion

method helps improve ranking accuracy. To test the idea of opinion expansion,

we alter a query if it contains a praise word or an intensifier, and add the cor-

responding opinion synonyms to expand the query (explained in section 3.10).

Table 3.10 shows the results obtained using opinion expansion on top of stan-

dard models and models that use query aspect modeling (to be discussed in the

next section). From this table, it is indeed clear that opinion expansion helps

all models in generating better ranking of hotels and cars. The performance

improvement for BM25 is especially clear. With the use of opinion expansion,

BM25 proves to be most effective amongst the three retrieval models. (We

will further compare the three retrieval models in Section 3.4.2. The Wilcoxon

signed rank test [65] shows that all the improvements in Table 3.10 are statisti-

cally significant with a very low p-value (p < 10−6). This indicates that enriched

opinion words in the query can indeed accommodate flexible matching of opin-

ions, which is needed for the opinion based entity ranking task; in contrast, the

standard pseudo feedback-based query expansion is only effective in some cases

(see Table 3.9). Moreover, the improvements observed with pseudo-feedback

are not as high as can be achieved with opinion expansion.

It is possible that the improvement of opinion expansion may have come from

simply favoring entities with more ‘positive’ reviews. That is, it is possible that

the System selects entities that are positive overall, which would naturally have

higher MAAR scores, thus yielding better nDCG than the baseline method. To
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Hotels Cars
PL2 LM BM25 PL2 LM BM25

StdNoFb 0.890 0.889 0.847 0.926 0.926 0.924
+ OpinExp 0.921 0.918 0.923 0.936 0.932 0.950
change 3.38% 3.17% 8.18% 1.06% 0.48% 2.73%
AvgScoreQAM 0.898 0.894 0.848 0.926 0.927 0.924
+ OpinExp 0.924 0.920 0.928 0.936 0.934 0.951
change 2.77% 2.85% 8.61% 1.08% 0.67% 2.75%

Table 3.10: nDCG@10 using opinion expansion

Hotels- Performance Improvements using  Opinion 

Expansion 

1.00%

Cars - Performance Improvements using  Opinion 

Expansion 

BM25 LM PL2
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

BM25 LM PL2
0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

BM25 LM PL2

Short Query 7.50% 2.52% 3.25%

Long Query 11.13% 2.70% 3.99%

BM25 LM PL2

Short Query 0.60% 0.17% 0.42%

Long Query 0.79% 0.88% 1.09%

Figure 3.5: Performance improvements over the AvgScoreQAM model with
the use of opinion expansion for long and short queries. Better improvements
are achieved on longer queries than shorter queries.

analyze the actual behavior, we look into the performances of two subgroups

of queries, short queries and long queries. Short queries are those that touch

1-2 aspects, while long queries are those touching 4-5 aspects for hotels and 6-7

aspects for cars. If the System was only picking out entities that were more

positive in general, the improvements on shorter queries should be just as high

or in fact higher (since it is less affected by score combination across aspect

queries). This is however not the case as can be seen in Figure 3.5. The graphs

show that the improvements achieved on longer queries is considerably higher

than that achieved on shorter queries, which means that the system is not just

favoring entities that are simply more positive.

Query Aspect Modeling

Another extension we proposed is to model the multiple aspects in the query

explicitly and then combine the scores from multiple aspects to generate an

overall score for a document. We now examine the effectiveness of this extension.

Table 3.11 summarizes results obtained with the query aspect modeling ap-

proach when the aggregation method is “Average Score” (i.e., SAvgScore(D,Q)),

which, as will be shown later, is the best among all the four ways of aggregation

when used with opinion expansion. From this table, we see that query aspect

modeling improves performance of ranking on both data set. Even though opin-

ion expansion significantly improves the performance of the standard method
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Hotels Cars
PL2 LM BM25 PL2 LM BM25

StdNoFb 0.890 0.889 0.847 0.926 0.926 0.924
AvgScoreQAM 0.898 0.894 0.848 0.926 0.927 0.924
change 0.97% 0.58% 0.12% 0.00% 0.16% 0.00%
StdNoFb + OpinExp 0.921 0.918 0.923 0.936 0.932 0.950
AvgScoreQAM + OpinExp 0.924 0.920 0.928 0.936 0.934 0.950
change 0.35% 0.25% 0.58% 0.00% 0.18% 0.00%

Table 3.11: nDCG@10 of using standard models against QAM models.
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Figure 3.6: nDCG@10 using different ranking strategies with QAM+OpinExp

(as shown in Table 3.10), introducing query aspect modeling provides further

improvements. Wilcoxon signed rank test [65] shows that all the improvements

above 0.1% in Table 3.11, are statistically significant with a very low p-value

(p < 10−6).

In Figure 3.6, we further provide a comparison of performance results using

the different ranking strategies. This comparison is essential as the ranking

strategy has a direct impact on how the entities are ranked. Based on this

graph, we can say that the average score (AvgScore) based strategy works the

best on the whole. The use of the actual ranks like AvgRank only works well

in some cases as can be seen in the graph.

One advantage of our evaluation method is that we can easily analyze queries

of different numbers of aspects. Since this factor is intuitively related to ef-

fectiveness of query aspect modeling, we further looked into how well the base

method compares to the aspect modeling method on queries of different numbers

of aspects.

Users who provide short queries are typically flexible users who have limited

preferences. Queries that such users issue could be short queries like ‘good mpg’.

There are also the “picky” or “rich” users who have very specific preferences on

many aspects. These users will typically issue long queries like “excellent fuel

economy, comfortable interior, solid build, highly reliable”. For both the data

sets, we manually selected some of the shortest queries (covering 1-2 aspects)

and some of the longest queries (covering 6-7 aspects for cars and 4-5 aspects for
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Figure 3.7: Performance change of AvgScoreQAM over StdNoFb and
AvgScoreQAM+OpinExp over StdNoFb+OpinExp on queries of different
length

hotels). We compare the performance of the QAM runs with its corresponding

standard run on these queries. The percentage of change in performance is

shown in Figure 3.7.

On the car data set, it can be seen that the aspect modeling of queries consis-

tently yields performance improvement on very short queries. On longer queries

however, performance improvements can only be seen with the LM and BM25

models. The reverse is the case for hotels. Modeling aspects in short queries

seems to be effective only with BM25. On longer queries however, all three

models benefit from the use of query aspect modeling. Overall, the use of QAM

shows to be most beneficial with the BM25 model with consistent performance

improvements on both data sets and for both long and short queries.
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Behavior of Retrieval Models with Opinion Expansion

While all three retrieval models show performance improvements with the use

of opinion expansion, BM25 consistently outperforms its counterparts with the

use of this expansion technique. To understand why, we looked deeper into the

details of the rankings. Specifically, we compared these three models in two

subgroups of queries (short vs. long) and three subsets of review documents

with different sizes. Each city (for hotels) and model-year (for cars) has a set of

review documents, where each review document represents a distinct real-world

entity. For the purpose of this discussion, we will refer to all review documents in

a given city or model-year as a collection. As shown in Table 3.2, each collection

can have a varying size of review documents.

Figure 3.8 shows the AvgScoreQAM and AvgScoreQAM+OpinExp perfor-

mance on the hotels data set at different collection sizes for both long queries

and short queries. Here, we see that for both types of queries, when no opinion

expansion is used, the LM approach is most stable to variation in the collection

size, but as the collection size grows, the other two models suffer a degradation

in performance. In particular, BM25 is worse than the other two methods in

all cases. With the use of opinion expansion, it is interesting that we now see a

different pattern: the BM25 model performs the best overall, and in particular,

it does much better than the other two models when the collection size is large

(i.e., more entities to rank). A similar behavior was also observed with the cars

data set. This means that BM25 gains much more than the other two models

from opinion expansion.

Analytically, a major difference between BM25 and the other two models is

that BM25 has an upper bound on the score contribution that can be made

by each matched query term, no matter how frequently the term occurs in the

document [66], while the other two do not have this property. Thus intuitively,

BM25 would favor documents that match more query terms, while the other two

models would be more prone to favoring non-relevant documents that match

just a few query terms many times. Since opinion expansion would introduce

many additional opinion and intensifier words, we hypothesize that the reason

why BM25 gains more from opinion expansion is because PL2 and LM cannot

properly handle the additional words added to the query, which could occur

frequently in the review documents. The mistakes that it makes in terms of

ranking become far more apparent when the collection size is large. However,

with BM25, any one term’s contribution to the document score cannot exceed

a saturation point.

To validate this hypothesis, we looked into the result set of a query that

yielded in high discrepancies in the rankings between the competing paradigms.

The query is ‘very clean, cozy rooms, excellent staff’. For this query, we took

the first ranked entity of each result set (PL2 and LM ranked the same entity

as the first) and plotted a graph that shows the query terms (after expansion),
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Figure 3.8: Performance of AvgScoreQAM and
AvgScoreQAM+OpinExp vs the number of review documents in each city
from the hotels data set.

against the average term frequencies of the query terms in its corresponding

entity document. The resulting graph is as shown in Figure 3.9. The MAAR

score of the first ranked entity by PL2 and LM is 4.54 (denoted by A), while

the one by BM25 is 4.83 (denoted by B). The highest MAAR from the gold

standard for this query is 4.87.

Figure 3.9 shows that the top ranked entity by BM25 indeed has a more

balanced matching of all query terms, while the top ranked entity by PL2 and

LM has more skewed frequencies of query terms. For example, A has a very

large number of occurrences of the term ‘very’, while an important original query

term ‘cozy’ has a very low average frequency. In contrast, B matches the query

terms in a more balanced fashion, where the original query terms (labeled in the

graph) and the expanded terms have average frequencies that are not extremely

high or extremely low.

Such a concern about the skewness of matched query terms becomes more

serious after opinion expansion as an expanded query would contain many re-

dundant words, increasing the chance of a non-relevant document to dominate

the ranking result. Similarly, when the collection size is large, the problem also

becomes more serious as there is a higher chance of having such a distracting

non-relevant document.

39



0.008 

0.010 

0.012 

Sorted by average term frequency

cozy

0.000 

0.002 

0.004 

0.006 

0.008 

tremendous exceptional superior cozy absolutelytremendous exceptional superior cozy absolutely

BM25

0.008 

0.010 

0.012 

Sorted 

clean
cozy

excellent

0.000 

0.002 

0.004 

0.006 

0.008 

absolutely certainly excellent fantastic highly

BM25BM25

very

by average term frequency

clean excellent
rooms

staff

absolutely clean super wonderful good staffabsolutely clean super wonderful good staff

PL2/LM

very

orted lexicographically

staff
rooms

highly nice rooms super terrific very

PL2/LMPL2/LM
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for the query ‘very clean, cozy rooms, excellent staff’. The labeled terms are
the original query terms. All other terms are the result of opinion expansion.
PL2 and LM ranked the same entity as the first.

Influence of the availability of review data

One assumption in our problem setup is that we have enough review data to

represent opinions about an entity. We now try to understand how much data

we actually need to get a reasonable ranking of entities. This will also help

us understand if the proposed extensions can be expected to perform better

and better as we accumulate more review data. To understand this, we var-

ied the amount of reviews used by selecting a different percentage of reviews

for ranking. We ran the best performing configuration, (which by far is the

AvgScoreQAM+OpinExp run) on these different sizes of reviews.

Figure 3.10 illustrates the performance versus the amount of review data used.

Notice that for the hotels data set, the performance peaked when we used only

60%-70% of the data, after which there was a slight degradation in performance.

On the car data, performance consistently improved after about 60% of the data

was used.

The quick performance improvement for the hotels data set is likely due to

the verbose nature of this data set. While for the car data set, due its sparse

nature, almost the entire data set was needed for the performance to peak. The

trend of this curve indicates that there could be more improvements if more

reviews were introduced. It is possible that the quality of reviews used would

also play a role in how much review data is actually needed for this task.
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Figure 3.10: Performance vs % review data used

Sample Results

To illustrate some sample results of ranked hotels and cars, we show results from

the two domains. First we show how a ranked list of hotels change as aspect

queries are added to it. Then, we show the top ranked cars for an interesting

query. The results shown were obtained using the AvgScoreQAM+OpinExp

configuration.

Table 3.12 shows the top 10 ranked hotels in Dubai (with corresponding AAR)

that match the query, ‘very clean’. Then, in Table 3.13, we show how this ranked

list changes as a new aspect query, ‘great views’ is added to the original query.

From Table 3.12 we can see that the lowest AAR for the cleanliness aspect

(for all hotels in Dubai), is 2.71 and the highest is 4.951. The AAR scores of

all the top 10 hotels that match this query are above the average AAR for this

aspect. This clearly shows that the users are indeed getting reasonable matches.

However, the ordering of these entities are still not perfect. For example, the

first ranked hotel, Hatta Fort Hotel, has an AAR score that is lower than that

of Burj Al Arab, the hotel that ranks second in this list.

Next, when a new aspect query, ‘great views’, is added to the current query,

there is a noticeable change in the ranking of hotels (as shown in Table 3.13).

The Burj Al Arab which previously ranked second, now ranks first with the

addition of this new aspect query. The Le Royal Meridien Beach Resort which

ranked third, now ranks tenth in the second ranked list. The Hatta Fort Hotel

that previously ranked first, is not even in the top 10 of this new ranked list.

This is reasonable because the AAR of the Hatta Fort Hotel on the location

aspect is only 4.107 compared to 4.745 for the Burj Al Arab. Most entities in

this list have AAR scores that are well above the average in their respective

aspects.

Here are some interesting review snippets for Burj Al Arab with regards to

cleanliness and location:

“The rooms are really huge and spotlessly clean, the gym is state of the art with

great sea views from the tread mills and the Spa is fantastic....”
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System

Rank

Hotels ‘cleanliness’

AAR

1 hatta fort hotel 4.607
2 burj al arab 4.920
3 hilton dubai creek 4.642
4 le royal meridien beach resort spa 4.914
5 renaissance dubai hotel 4.600
6 the ritz carlton dubai 4.693
7 al manzil hotel 4.915
8 le meridien dubai 4.586
9 hilton dubai jumeirah 4.762
10 bel ali golf resort spa 4.620

Highest possible AAR 4.951
Lowest possible AAR 2.710
Average AAR 4.220

Table 3.12: Top 10 ranked hotels for the query ‘very clean’. This ranking has
an nDCG of 0.960. All hotels in this list have AARs above 4.5, which is above
the average AAR for this aspect.

“The rooms are all suites and very spacious. They are all 2 floors with beautiful

views...The rooms are clean and the hotel is well situated.”

“...the hotel itself is just beautiful, and in a lovely location, with fantastic views

from all the floor to ceiling windows in our suite (13th fllor) across the ma-

rina...”

The second illustration of results is based on the query ‘very reliable’ on the

car data set, a query that most people can relate to. The top 10 cars that

match this query is shown in Table 3.14. As can be seen in this list, the cars

returned are mostly Japanese cars which are known for their reliability12. While

these cars have high AAR scores on the reliability aspect, the overall ratings of

these cars are not necessarily high. This shows that the system is not simply

retrieving cars that are positive overall. The following snippets show some of

the supporting comments for the first ranked car, 2007 Honda Accord.

“...Solid, reliable car with low cost of ownership. Nice computerized mainte-

nance notification system. Comfortable heated leather seating...”

“...I had to find something reliable, with good resale. This car is incredible.....”

“...My experience with this vehicle has been as follows - the engine & trans-

mission provide a smooth, powerful and reliable ride. The suspension is awful

though...”

12http://www.independent.co.uk/life-style/motoring/motoring-news/japanese-cars-are-
still-the-most-reliable-2016405.html
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System

Rank

Hotels ‘cleanliness’

AAR

‘location’

AAR

1 burj al arab 4.920 4.745
2 jw marriott hotel dubai 4.373 3.608
3 hilton dubai creek 4.642 4.112
4 al qasr at madinat jumeirah 4.833 4.817
5 mina a salam at madinat

jumeirah
4.918 4.881

6 dar al masyaf at madinat
jumeirah

4.951 4.848

7 grand hyatt dubai 4.895 4.289
8 le meridien dubai 4.586 4.069
9 hilton dubai jumeirah 4.762 4.312
10 le royal meridien beach

resort spa
4.914 4.694

Highest possible AAR 4.951 4.881
Lowest possible AAR 2.710 1.900
Average AAR 4.222 3.767

Table 3.13: Top 10 ranked hotels for the query ‘very clean’ and ‘great views’.
This ranking has an nDCG of 0.944. The bolded hotels appear in the result
set of the query ‘very clean’ shown in Table 3.12.

3.5 User Study

We performed a small user study to further understand the effectiveness of

our proposed method in retrieving entities and also assess the effectiveness of

our evaluation strategy. In this study, we asked users to judge the relevance

of entities retrieved by our best performing system (BM25 with AvgScore-

QAM+OpinExp). These relevance scores were then used for various analysis.

3.5.1 Procedure

We recruited two undergraduate students (referred to as User1 and User2 )

who were asked to act as ‘real users’ of a system that enables them to search

for entities based on a set of preferences. These users were presented with a

query, and corresponding results (i.e. the ranked list of entities that satisfy

the query) along with its respective reviews. The users were informed that the

query is meant to be a set of user preferences and the entities presented as re-

sults should ideally match these preferences based on the reviews. With this in

mind, for each query, the users were asked to analyze the reviews of the top 10

entities and then assign a relevance score to those entities based on how well it

satisfies the query. This judgment is based on a 3-point rating scale defined as

follows:

43



System Rank Cars ‘reliabillity’
AAR

overall ratings

1 2007 honda accord 9.350 8.846
2 2007 honda civic 9.280 8.870
3 2007 toyota camry 9.720 8.115
4 2007 toyota yaris 9.690 9.275
5 2007 toyota corolla 9.360 8.700
6 2007 honda fit 9.580 9.079
7 2007 honda cr-v 9.380 8.933
8 2007 toyota tundra 9.170 8.871
9 2007 ford fusion 9.460 9.101
10 2007 toyota tacoma 9.090 8.790

Min 6.320 6.888
Max 9.940 9.790
Average 8.951 8.722

Table 3.14: Top 10 ranked cars from model-year 2007 that match the query
‘very reliable’. Most cars have AAR scores that are above average.

Score 1: Poor match. The entity does not satisfy the query well.

Score 2: Reasonable match. The entity satisfies the query reasonably well.

Score 3: Good match. The entity is a very good match for the query.

For each relevance score that the user assigns, the user was also asked to

provide a brief justification for those scores. For example Score (1) - Does not

match most preferences or Score (2) - Matches only some preferences really

well. This study was performed on 25 queries which were randomly selected

from both our car and hotel dataset. Our goal is to obtain a representative set

of queries of different characteristics. In total, we had 12 long queries (touching

> 2 aspects) and 13 short queries (touching 1-2 aspects). The entities pre-

sented as results were generated by our best performing system (BM25 with

AvgScoreQAM+OpinExp).

3.5.2 Analysis of Relevance Ratings

In Table 3.15 we report the average relevance ratings assigned by User1 and

User2. On average, it can be seen that both users thought that the entities

retrieved by the system were a reasonable match to the queries. Notice that in

the majority of cases, both users thought the entities were either a reasonable

match (User1 - 110 entities; User2 - 81 entities) or a good match (User1 - 84

entities; User2 - 140 entities), rather than a poor match(User1 - 56 entities;

User2 - 29 entities). This shows that our proposed retrieval based method for

this special task is actually quite effective, with an average rating of above 2.0.

We further look into the entities that were assigned a low score. In Table 3.16,

we summarize the most common justification provided by User1 and User2 on
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User 1 User 2
Average Rating 2.14 2.44
Std. Dev 0.40 0.25

# Entities rated 1 56 29
# Entities rated 2 110 81
# Entities rated 3 84 140
Total 250 250

Table 3.15: Average user judgment scores.

User1 User2
Score (1) -does not match one or more preference

-does not match any of the preferences

well

-no preference matched except one

-no preferences are matched

Score (2) -matches all preferences, but not too
much

-match most preferences well, but some

do not match that well

-all preferences are matched, but some
conflicting opinions
-all preferences are matched to some
extent

-not much information about one

preference

Score (3) -matches all preferences well -matches all preferences well

-matches all preferences well, except one

Table 3.16: Summary of relevance score justification given by User1 and User2

their rating assignments. As can be seen, a score of 1 is typically assigned

when the reviews do not contain any mentions about one or more preferences

within the query. A score of 2 is assigned when (1) there is limited evidence

in the reviews about the preferences or (2) only some preferences are matched

well or (3) there are conflicting opinions about a preference. A score of 3 is

only assigned when most of the preferences are matched well (with sufficient

evidence).

The agreement in terms of relevance ratings assigned by User1 and User2 is

shown in Table 3.17. As can be seen, the kappa scores show that the agreement

is quite low with most of the disagreement happening when the users were to

choose between a rating of 2 and 3. Also, the disagreement is higher on longer

queries than on shorter ones. This may be because with longer queries, we have

more preference criteria, which amplify the variances of subject judgments. The

results also suggest that User1 seems to have used a different rating strategy

than User2 and this is also quite clear from the justification summary provided

in Table 3.16.

Deeper analysis into the rating assignments reveals that User1’s strategy is

overall agreement short queries long queries
1 2 3 1 2 3 1 2 3

1 5 14 37 1 2 13 9 1 3 1 28
2 2 22 94 2 1 15 43 2 1 7 51
3 0 5 71 3 0 5 42 3 0 0 29

kappa 0.09 kappa 0.12 kappa 0.07

Table 3.17: Agreement on relevance ratings between User1 and User2
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to look into both the number of matched aspects as well as how many people

praised the relevant aspect. The user first checks if all preferences in the query

are matched in the reviews. If all preferences are matched and if the user feels

that there is ‘enough’ evidence for each of those preferences, then User1 assigns

a rating of 3. Otherwise, the user only assigns a rating of 2. User2’s strategy is

to look at the bigger picture. On short queries, if all preferences are matched

well then a rating of 3 is assigned. If all the preferences are matched well but

there are some conflicting opinions, then a score of 2 or 1 is assigned depending

on the severity of conflict. On longer queries however, if just one preference is

not matched well, the entity is still considered a good match and a score of 3

is assigned. A score of 2 or 1 is only assigned when there are either conflicting

opinions or more than one preference does not match well.

These differences are indeed very interesting as this tells us that different

users have different criteria in judging the relevance of an entity. Some users

may prefer entities ranked based on the level of evidence (positive mentions)

on an aspect. Other users may prefer entities with no conflicting opinions even

though not all preferences are matched well. This suggests that the ranking of

entities can be further personalized according to what matters most to the user.

While the individual ratings provided by User1 and User2 do not agree all

that well, it is quite possible that correlation exists in their relative preferences

of entities. We thus measured rank correlation using the relevance ratings pro-

vided by both users. In particular, we computed the average Gamma correlation

coefficient [67] between the rankings. The Gamma statistic was preferred over

Kendall τ as ties are taken into account explicitly. Note that ties are common

in the rankings of User1 and User2 as they were only allowed to use a 3-point

rating scale. The correlation ranges between -1 and +1. A value of 0 means

that there is no correlation; 1 is perfect positive correlation; -1 is perfect neg-

ative correlation. Based on the 25 queries, we obtained an average correlation

score of 0.69. This correlation score shows that the two users actually agree

reasonably well on the relative rankings of the entities even though the actual

score assignments may be different.

3.5.3 Effectiveness of Gold Standard Rankings

In our evaluation, we have assumed that the average numerical ratings provided

by review writers (on various aspects), would reflect the best ordering of entities.

These ratings were thus used as the gold standard rankings. To validate this

assumption, we compare the nCDG of the gold standard rankings and system

rankings using the relevance ratings provided by User1 and User2. Specifically,

we assume that the actual ideal ordering of entities is based on the ratings

provided by User1 and User2 (as opposed to our gold standard rankings). Then,

to compute the system nDCG, the relevance ratings provided by User1 and

User2 are re-ranked according to the system rankings. Similarly, to compute
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Figure 3.11: nDCG @ 10 scores of system rankings and gold standard rankings
using judgments provide by user1 and user2

User1 User2

System Avg. Gold Avg. System Avg. Gold Avg.
0.865 0.910 0.923 0.950

Table 3.18: Average nDCG @ 10 scores of system rankings vs. gold standard
rankings using judgments provide by user1 and user2.

the nDCG of our gold standard rankings, these relevance scores are re-ranked

according to the gold rankings. The intuition here is that, if our gold standard

ranking is indeed an accurate measure of relevance, it should have stronger

agreement with human rankings than the system rankings would. In other

words, compared to the system, the gold standard should be better at recovering

human rankings.

Figure 3.11 shows the resulting nDCG scores of system rankings and gold

standard rankings using the relevance ratings provided by User1 and User2. In

Table 3.18, we report the average scores. Based on Figure 3.11, we see that

in many cases (especially for User1), the resulting nDCG scores of the gold

standard rankings is higher than that of system rankings. The cases where the

scores overlap almost perfectly was due to ties in the rankings. As an example,

when a rating of 3 is assigned to all entities, this results in the same nDCG

scores for both the system rankings and gold standard rankings regardless of

any ordering. As can be seen, this mainly happens to entities ranked by User2.

On average however (see Table 3.18), it is clear that the gold standard agrees

more with the two users than does the system. Thus, our assumption that the

average numerical ratings given by web users can be a good approximation to

human judgment is indeed reasonable.

3.6 Discussion

Overall, our experiments show that the idea of ranking entities based on a user’s

keyword preferences and the opinions of other users is promising and opens up
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a new application area of retrieval models. Even the simple extensions that we

made to the standard retrieval models have already shown promising results,

and there are many possibilities to further optimize a retrieval model for this

task.

In this thesis, we only studied the effectiveness of our proposed method in

two specific domains and on a fixed set of aspects (to facilitate evaluation).

However, our idea itself can be expanded to a variety of real world domains

which includes ranking people, products, businesses and services using a set

of keyword based preferences expressed on any arbitrary aspect. The basic

requirement in setting up such an opinion-based entity ranking system is the

need for a large number of opinion containing documents. For example, using

all the mentions about different politicians in blog articles, news articles from

CNN13 and BBC14 and micro-blogging sites such as Twitter, we can rank these

politicians based on a user’s preferences. These preferences can be attributes

such as ‘honest’ and ‘liberal’ or the politician’s promises such as ‘better health

care plan’ and ‘against child abortion’, etc. Similarly, using all the reviews

from e-commerce sites like Amazon.com15, BestBuy.com16 and Walmart.com17,

we can rank products based on the user’s preferences. For example, if the

user is interested in purchasing a laptop, the user could find laptops based on

his/her personal tradeoffs using a set of keywords such as ‘lightweight’, ‘bright

screen’,‘highly reliable’, ‘long battery life’ and so on. Thus, instead of reading

many reviews for a large number of laptops (to check if the laptop actually

satisfies the user’s preferences), the entity ranking system tries to shortlist a set

of laptops that match these preferences. With this, the user would only need to

analyze the laptops ranked by the system.

In terms of accepting a user’s preferences, different types of user interfaces

may be used. The most general interface would be a single text field that would

allow users to express preferences using a natural keyword query. Aspects in

the query can then be obtained using query segmentation techniques. Another

approach is to ask users to specify a special delimiter to separate their pref-

erences. While this would require just one additional character between two

preferences, users could find this requirement rather unnatural to their usual

browsing and searching pattern. A more practical user interface would be to

provide separate text fields to represent the different preferences. While all these

are reasonable suggestions, the question with regards to the best user interface

for an entity ranking task such as this remains open until a full user study has

been performed.

Our use of retrieval models for this task represents a shallow but general so-

lution to the problem. If we assume that users will only express preferences on

13www.cnn.com
14www.bbc.com
15www.amazon.com
16www.bestbuy.com
17www.walmart.com
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a set of common aspects, then it is possible to leverage existing work in rating

prediction [21, 22, 23] to rank entities more accurately based on a user’s prefer-

ences. Although such a refined approach could lead to more accurate ranking,

as we have mentioned in Section 2, these approaches pose practical limitations.

With the rating prediction approach, scaling up to different domains would in-

volve a lot more text processing compared to our retrieval based approach. For

example, aspect discovery in each domain would be a necessity and once found,

users are tied to these limited number of aspects. Further, the rating predic-

tion approaches require some form of supervision such as the presence of overall

ratings, which severely limits the type of textual content that can be utilized.

3.7 Conclusions and Future Work

In this thesis, we proposed a novel way of utilizing opinion data - that is to

directly rank entities like people, businesses and products based on a user’s

preferences and existing opinions on those entities. We studied the use of several

state-of-the-art retrieval models for this task and propose some new extensions

over these models. We also leverage rating information associated with some

car and hotel reviews to create a benchmark data set for quantitative evaluation

of opinion-based entity ranking.

Experimental results show that the use of opinion expansion is especially ef-

fective for improving the ranking of entities according to the user’s preferences.

We also show that the aspect modeling of queries as opposed to treating queries

as set of keywords, is effective on longer queries. While all three state-of-the-art

retrieval models show improvement with the proposed extensions, the BM25 re-

trieval model is most consistent and works especially well with these extensions.

Our evaluation, in two very different domains (cars and hotels), shows that the

proposed methods can be directly applied to rank different types of entities for

which we have reviews available. We thus believe that this is a very promising

line of study with good prospects of practical applications. Our user study

shows that the ranking results of entities from the proposed methods have high

NDCG values based on human judgments and can be very useful for users to

help them choose entities based on opinions.

Our work opens up many interesting future research directions. First, in this

thesis, we only explored techniques that are unique to the problem of opinion-

based entity ranking. We believe that many of the existing techniques and

refinements in information retrieval especially in areas like expert finding can

further help in improving the performance of this task. Also, in both query

aspect modeling and opinion expansion, we explored some simple ideas in this

thesis. The fact that these simple techniques are effective suggests that more

sophisticated methods such as structured query language models [68] and sen-

timent analysis techniques can be potentially leveraged to further improve per-
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formance. The data set and evaluation methodology introduced would greatly

facilitate further exploration in this direction.

In the next chapter, we will look into our proposed methods for summarization

of opinions as part of the analysis tools to facilitate decision making.

17The work done in this chapter has been published in (Ganesan & Zhai 2012) [1].
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4 GRAPH-BASED APPROACH TO

ABSTRACTIVE SUMMARIZATION OF

OPINIONS

In providing fine-grained analysis tools as part of the ODSS platform, we propose

several abstractive summarization methods. In this Chapter, we describe a

graph based approach to abstractive summarization of opinions. This approach

takes advantage of the structural redundancies in text, modeled using graphs to

generate summaries that are concise, readable and informative. Unlike existing

methods in abstractive summarization, this approach is domain independent

and lightweight making it suitable for practical use.

4.1 Introduction

Summarization is critically needed to help users better digest the large amounts

of opinions expressed on the web. Most existing work in Opinion Summarization

focus on predicting sentiment orientation on an entity [24, 69] or attempt to

generate aspect-based ratings for that entity [22, 70, 28].

Such summaries are very informative, but it is still hard for a user to under-

stand why an aspect received a particular rating, forcing a user to read many,

often highly redundant sentences about each aspect. To help users further di-

gest the opinions in each aspect, it is thus desirable to generate a concise textual

summary of such redundant opinions.

Indeed, in many scenarios, we will face the problem of summarizing a large

number of highly redundant opinions; other examples include summarizing the

‘tweets’ on Twitter or comments made about a blog or news article. Due to the

subtle variations of redundant opinions, typical extractive methods are often

inadequate for summarizing such opinions. Consider the following sentences:

1. The iPhone’s battery lasts long, only had to charge it once every few days.

2. iPhone’s battery is bulky but it is cheap..

3. iPhone’s battery is bulky but it lasts long!

With extractive summarization, no matter which single sentence of the three

is chosen as a summary, the generated summary would be biased. In such a

case, an abstractive summary such as ‘iPhone’s battery is cheap, lasts long but

is bulky ’ is a more complete summary, conveying all the necessary information.

Extractive methods also tend to be verbose and this is especially problematic
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when the summaries need to be viewed on smaller screens like on a PDA. Thus,

an informative and concise abstractive summary would be a better solution.

Unfortunately, abstractive summarization is known to be difficult. Existing

work in abstractive summarization has been quite limited and can be categorized

into two categories: (1) approaches using prior knowledge [71, 72, 73] and (2)

approaches using Natural Language Generation (NLG) systems [74, 75]. The

first line of work requires considerable amount of manual effort to define schemas

such as frames and templates that can be filled with the use of information

extraction techniques. These systems were mainly used to summarize news

articles. The second category of work uses deeper NLP analysis with special

techniques for text regeneration. Both approaches either heavily rely on manual

effort or are domain dependent.

In this paper, we propose a novel flexible summarization framework, Opinosis,

that uses graphs to produce abstractive summaries of highly redundant opinions.

In contrast with the previous work, Opinosis assumes no domain knowledge and

uses shallow NLP, leveraging mostly the word order in the existing text and its

inherent redundancies to generate informative abstractive summaries. The key

idea of Opinosis is to first construct a textual graph that represents the text to be

summarized. Then, three unique properties of this graph are used to explore and

score various subpaths that help in generating candidate abstractive summaries.

Evaluation results on a set of user reviews show that Opinosis summaries have

reasonable agreement with human summaries. Also, the generated summaries

are readable, concise and fairly well-formed. Since Opinosis assumes no domain

knowledge and is highly flexible, it can be potentially used to summarize any

highly redundant content and could even be ported to other languages. (All

materials related to this work including the dataset and demo software can be

found at http://timan.cs.uiuc.edu/downloads.html.)

4.2 Opinosis-Graph

Our key idea is to use a graph data structure (called Opinosis-Graph) to rep-

resent natural language text and cast this abstractive summarization problem

as one of finding appropriate paths in the graph. Graphs have been commonly

used for extractive summarization (e.g., LexRank [76] and TextRank [77]), but

in these works the graph is often undirected with sentences as nodes and similar-

ity as edges. Our graph data structure is different in that each node represents a

word unit with directed edges representing the structure of sentences. Moreover,

we also attach positional information to nodes as will be discussed later.

52

http://timan.cs.uiuc.edu/downloads.html


Algorithm 1 (A1): OpinosisGraph(Z)

1: Input: Topic related sentences to be summarized: Z = {zi}ni=1

2: Output: G = (V,E)

3: for i = 1 to n do

4: w ← Tokenize(zi)

5: sent size← SizeOf(w)

6: for j = 1 to sent size do

7: LABEL← wj

8: PID ← j

9: SID ← i

10: if ExistsNode(G,LABEL) then

11: vj ← GetExistingNode(G,LABEL)

12: PRIvj ← PRIvj ∪ (SID, PID)

13: else

14: vj ← CreateNewNode(G,LABEL)

15: PRIvj ← (SID, PID)

16: end if

17: if not ExistsEdge(vj−1 → vj , G) then

18: AddEdge(vj−1 → vj , G)

19: end if

20: end for

21: end for

Our graph representation is closer to that used by Barzilay and Lee [78] for the

task of paraphrasing, wherein each node in the graph represents a unique word.

However, in their work, such a graph is used to identify regions of commonality

and variability amongst similar sentences. Thus, the positional information is

not required nor is it maintained. In contrast, we maintain positional informa-

tion at each node as this is critical for the selection of candidate paths.

Algorithm A1 outlines the steps involved in building an Opinosis-Graph. We

start with a set of sentences relevant to a specific topic, which can be obtained

in different ways depending on the application. For example, they may be

all sentences related to the battery life of the iPod Nano. We denote these

sentences as Z = {zi}ni=1 where each zi is a sentence containing part-of-speech

(POS) annotations. (A1:4) Each zi ∈ Z is split into a set of word units, where

each unit, wj consists of a word and its corresponding POS annotation (e.g.

“service:nn”, “good:adj ”). (A1:7-9) Each unique wj will form a node, vj , in the

Opinosis-Graph, with wj being the label. Also, since we only have one node per

unique word unit, each node keeps track of all sentences that it is a part of using

a sentence identifier (SID) along with its position of occurrence in that sentence

(PID). (A1:10-16) Each node will thus carry a Positional Reference Information

(PRI) which is a list of {SID:PID} pairs representing the node’s membership

in a sentence. (A1:17-19) The original structure of a sentence is recorded with

the use of directed edges. Figure 4.1 shows a resulting Opinosis-Graph based

on four sentences.

The Opinosis-Graph has some unique properties that are crucial in generating

abstractive summaries. We highlight some of the core properties by drawing

examples from Figure 4.1:

Property 1. (Redundancy Capture). Highly redundant discussions are nat-
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my phone calls frequently

too
{3:8}

withdrop

iphone is a

my
{2:1}

phone
{2:2}

calls
{2:3, 3:6}

frequently
{2:5, 3:9}

with
{2:6}

the

drop
{2:4, 3:7}

great
{1:5, 3:1}

{1:2, 2:8, 4:2} {1:3,4:3} {1:4}

.
{1:7, 2:9, 3:10}

{1:1, 2:7, 3:5, 4:1,4:5}

worth

price
{4:6} { , }

,
{3:3}

but
{3:4}

{1:7, 2:9, 3:10}worth
{4:4}

node label
SID:PID pairs

device
{1:6, 3:2}

Input:
SID:1. The iPhone is a great device. 
SID:2. My phone calls drop frequently with the iPhone. 
SID:3. Great device, but the calls drop too frequently.

p

, p q y
SID:4. The iPhone is worth the price.

Figure 4.1: Sample Opinosis-Graph. Thick edges indicate salient paths.

urally captured by subgraphs.

Figure 4.1 shows that although the phrase ‘great device’ was mentioned in differ-

ent parts of sentences (1) and (3), this phrase forms a relatively heavy sub-path

in the resulting graph. This is a good indication of salience.

Property 2. (Gapped Subsequence Capture). Existing sentence structures

introduce lexical links that facilitate the discovery of new sentences or reinforce

existing ones.

The main point conveyed by sentences (2) and (3) in Figure 4.1 is that calls drop

frequently. However, this is expressed in slightly different ways and is reflected

in the resulting subgraph. Since sentence (2) introduces a lexical link between

‘drop’ and ‘frequently ’, the word ‘too’ can be ignored for sentence (3) as the same

amount of information is retained. This is analogous to capturing a repetitive

gapped subsequence where similar sequences with minor variations are captured.

With this, the subgraph calls drop frequently can be considered redundant.

Property 3. (Collapsible Structures). Nodes that resemble hubs are possibly

collapsible.

In Figure 4.1 we see that the subgraph ‘the iPhone is’, is fairly heavy and the

‘is’ node acts like a ‘hub’ where it connects to various other nodes. Such a
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structure is naturally captured by the Opinosis-Graph and is a good candidate

for compression to generate a summary such as ‘The iPhone is a great device

and is worth the price’. Also, certain word POS (e.g. linking verbs like ‘is’ and

‘are’) often carry hub-like properties that can be used in place of the outlink

information.

4.3 Opinosis Summarization Framework

In this section, we describe a general framework for generating abstractive sum-

maries using the Opinosis-Graph. We also describe our implementation of the

components in this framework.

At a high level, we generate an abstractive summary by repeatedly searching

the Opinosis graph for appropriate subgraphs that both encode a valid sentence

(thus meaningful sentences) and have high redundancy scores (thus representa-

tive of the major opinions). The sentences encoded by these subgraphs would

then form an abstractive summary.

Going strictly by the definition of true abstraction [79], our problem formu-

lation is still more extractive than abstractive because the generated summary

can only contain words that occur in the text to be summarized; our prob-

lem definition may be regarded as a word-level (finer granularity) extractive

summarization. However, compared to the conventional sentence-level extrac-

tive summarization, our formulation has flavors of abstractive summarization

wherein we have elements of fusion (combining extracted portions) and com-

pression (squeezing out unimportant material from a sentence). Hence, the

sentences in the generated summary are generally not the same as any orig-

inal sentence. Such a “shallow” abstractive summarization problem is more

tractable, enabling us to develop a general solution to the problem. We now

describe each component in such a summarization framework.

4.3.1 Valid Path

A valid path intuitively refers to a path that corresponds to a meaningful sen-

tence.

Definition 1. (Valid Start Node - VSN). A node vq is a valid start node if

it is a natural starting point of a sentence.

We use the positional information of a node to determine if it is a VSN. Specif-

ically, we check if Average(PIDvq ) ≤ σvsn, where σvsn is a parameter to be

empirically set. With this, we only qualify nodes that tend to occur early on in

a sentence.

Definition 2. (Valid End Node - VEN). A node vs is a valid end point if

it completes a sentence.
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We use the natural ending points in the text to be summarized as hints to which

node may be a valid end point of a path (i.e., a sentence). Specifically, a node

is a valid end node if (1) the node is a punctuation such as period and comma

or (2) the node is any coordinating conjunction (e.g., ‘but’ and ‘yet’ ).

Definition 3. (Valid Path). A path W = {vq...vs} is valid if it is connected

by a set of directed edges such that (1) vq is a VSN, (2) vs is a VEN, and (3)

W satisfies a set of well-formedness POS constraints.

Since not every path starting with a VSN and ending at a VEN encodes a

meaningful sentence, we further require a valid path to satisfy the following

POS constraints (expressed in regular-expression) to ensure that a valid path

encodes a well-formed sentence:

1. . ∗ (/nn) + . ∗ (/vb) + . ∗ (/jj) + .∗
2. . ∗ (/jj) + . ∗ (/to) + . ∗ (/vb).∗
3. . ∗ (/rb) ∗ . ∗ (/jj) + . ∗ (/nn) + .∗
4. . ∗ (/rb) + . ∗ (/in) + . ∗ (/nn) + .∗

This also provides a way (if needed) for the application to generate only specific

type of sentences like comparative sentences or strictly opinionated sentences.

These rules are thus application specific.

4.3.2 Path Scoring

Intuitively, to generate an abstractive summary, we should select a valid path

that can represent most of the redundant opinions well. We would thus favor a

valid path with a high redundancy score.

Definition 4. (Path Redundancy). Let W = {vq...vs} be a path from an

Opinosis-Graph. The path redundancy of W , r(q, s), is the number of overlap-

ping sentences covered by this path, i.e.,

r(q, s) = nq∩̄nq+1...∩̄ns,

where ni = PRIvi and ∩̄ is the intersection between two sets of SIDs such

that the difference between the corresponding PIDs is no greater than σgap, and

σgap > 0 is a parameter.

Path redundancies provide good indication of how many sentences discuss some-

thing similar at each point in the path. The σgap parameter controls the

maximum allowed gaps in discovering these redundancies. Thus, a common

sentence X between nodes vq and vr, will be considered a valid intersect if

(PIDvrx − PIDvqx
) ≤ σgap.

Based on path redundancy, we propose several ways to score a path for the

purpose of selecting a good path to include in the summary:

1.Sbasic(W ) = 1
|W |

∑s
k=i+1 r(i, k)

2. Swt len(W ) = 1
|W |

∑s
k=i+1 |vi, vk| ∗ r(i, k)
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3. Swt loglen(W ) = 1
|W | (r(i, i+ 1) +

∑s
k=i+2 log2|vi, vk| ∗ r(i, k))

vi is the first node in the path being scored and vs is the last node. |vi, vk| is the

length from node vi to vk. |W | is the length of the entire path being scored. The

Sbasic scoring function scores a path purely based on the level of redundancy.

One could also argue that high redundancy on a longer path is intuitively more

valuable than high redundancy on a shorter path as the former would provide

better coverage than the latter. This intuition is factored in by the Swt len and

Swt loglen scoring functions where the level of redundancy is weighted by the

path length. Swt loglen is similar to Swt len only that it scales down the path

length so that it does not entirely dominate.

4.3.3 Collapsed paths

In some cases, paths in the Opinosis-Graph may be collapsible (as explained

in Section 4.2). In such a case, the collapse operation is performed and then

the path scores are computed. We will now explain a few concepts related to

collapsible structures. Let Ŵ = {vi...vk} be a path from the Opinosis-Graph.

Definition 5. (Collapsible Node). Node vk is a candidate for collapse if its

POS is a verb.

We only attempt to collapse nodes that are verbs due to the heavy usage of

verbs in opinion text and the ease with which the structures can be combined

to form a new sentence. However, as mentioned earlier other properties like the

outlink information can be used to determine if a node is collapsible.

Definition 6. (Collapsed Candidates, Anchor). Let vk be a collapsible

node. The collapsed candidates of vk (denoted by CC = {cci}mi=1) are the re-

maining paths after vk in all the valid paths going through vi...vk. The prefix

vi...vk is called the anchor, denoted as Canchor = {vi...vk}. Each path {vi...vn},
where vn is the last node in each cci ∈ CC, is an individually valid path.

Table 4.1 shows a simplistic example of anchors and corresponding collapsed

candidates. Once the anchor and collapsed candidates have been identified, the

task is then to combine all of these to form a new sentence.

Definition 7. (Stitched Sentence) A stitched sentence is one that combines

Canchor and CC to form a combined, logical sentence.

We will now describe the stitching procedure that we use, by drawing examples

from Table 4.1. Since we are dealing with verbs, Canchor can be combined

with the corresponding CC with commas to separate each cci ∈ CC with one

exception - the correct sentence connector has to be used for the last cci. For

Canchora , the phrases really good and clear can be connected by ‘and’ due to

the same sentiment orientation. For Canchorb , the collapsed candidate phrases
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Canchor CC Connector
a. the sound quality is cc1 : really good and

cc2 : clear
b. the iphone is cc1 : great but

cc2 : expensive

Table 4.1: Example of anchors, collapsed candidates and suitable connectors

are well connected by the word ‘but’. We use the existing Opinosis-Graph

to determine the most appropriate connector. We do this by looking at all

coordinating conjunction (e.g. ‘but’, ‘yet’) nodes (vcconj) that are connected

to the first node of the last collapsed candidate, ccm. This would be the node

labeled ‘clear ’ for Canchora and ‘expensive’ for Canchorb . We denote these nodes

as v0,ccm . The vcconj , with the highest path redundancy with v0,ccm , will be

selected as the connector.

Definition 8. (Collapsed Path Score) The final path score after the entire

collapse operation is the average across path scores computed from vi to the last

node in each cci ∈ CC.

The collapsed path score essentially involves computing the path scores of the

individual sentences assuming that they are not collapsed and then averaging

them.

4.3.4 Generation of summary

Once we can score all the valid paths as well as all the collapsed paths, the

generation of an abstractive summary can be done in two steps: First, we

rank all the paths (including the collapsed paths) in descending order of their

scores. Second, we eliminate duplicated (or extremely similar) paths by using

a similarity measure (in our experiments, we used Jaccard). We then take the

top few remaining paths as the generated summary, with the number of paths

to be chosen controlled by a parameter σss, which represents summary size.

Although conceptually we enumerate all the valid paths, in reality we can use

a redundancy score threshold, σr to prune many non-promising paths. This is

reasonable because we are only interested in paths with high redundancy scores.

4.4 Summarization Algorithm

Algorithms A2 and A3 describe the steps involved in Opinosis Summarization.

A2 is the starting point of the Opinosis Summarization and A3 is a subroutine

where path finding takes place, invoked from within A2.
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Algorithm 2 (A2): OpinosisSummarization(Z)

1: Input: Topic related sentences to be summarized: Z = {zi}ni=1

2: Output: O ={Opinosis Summaries}
3: g ← OpinosisGraph(Z)

4: node size← SizeOf(g)

5: for j = 1 to node size do

6: if V SN(vj) then

7: pathLen← 1

8: score← 0

9: cList← CreateNewList()

10: Traverse(cList, vj , score, PRIvj , labelvj , pathLen)

11: candidates← {candidates ∪ cList}
12: end if

13: end for

14: C ← EliminateDuplicates(candidates)

15: C ← SortByPathScore(C)
16: for i = 1 to σss do

17: O = {O ∪ PickNextBestCandidate(C)}
18: end for

(A2:3) Opinosis Summarization starts with the construction of the Opinosis-

Graph, described in detail in Section 4.2. This is followed by the depth first

traversal of this graph to locate valid paths that become candidate summaries.

(A2:6-12) To achieve this, each node vj in the Opinosis-Graph is examined to

determine if it is a VSN and, if it is, path finding will start from this node

by invoking subroutine A3. A3 takes the following as input: list - a list to

hold candidate summaries; vi - the node to continue traversal from; score - the

accumulated path score; PRIoverlap - the intersect between PRIs of all nodes

visited so far (see Definition 4); sentence - the summary sentence formed so far;

len - the current path length. (A2:7-10) Before invoking A3 from A2, the path

length is set to ‘1’, path score is set to ‘0’ and a new list is created to store

candidate summaries generated from node vj . (A2:11) All candidate summaries

generated from vj will be stored in a common pool of candidate summaries.

(A3:3-4) Algorithm A3 starts with a check to ensure that the minimum path

redundancy requirement is satisfied (see definition 4). For the very first node

sent from A2, the path redundancy is the size of the raw PRI. (A3:5-10) If

the redundancy requirement is satisfied, a few checks are done to determine if

a valid path has been found. If it has, then the resulting sentence and its final

score are added to the list of candidate summaries.

(A3:11-31) Traversal proceeds recursively through the exploration of all neigh-

boring nodes of the current node, vk. (A3:12-16) For every neighboring node,

vn the PRI overlap information, path length, summary sentence and path score

are updated before the next recursion. (A3:29) If a vn is not collapsible, then

a regular traversal takes place. (A3:17-27) However, if vn is collapsible, the

updated sentence in A3:14, will now serve as an anchor in A3:18. (A3:21) A3

will then attempt to start a recursive traversal from all neighboring nodes of

vn in order to find corresponding collapsed candidates. (A3:22-26) After this,

duplicates are eliminated from the collapsed candidates and the collapsed path
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Algorithm 3 (A3): Traverse(...)

1: Input: list, vk ⊆ V , score, PRIoverlap, sentence, len
2: Output: A set of candidate summaries
3: redundancy ← SizeOf(PRIoverlap)
4: if redundancy ≥ σr then
5: if V EN(vk) then
6: if V alidSentence(sentence) then
7: finalScore← score

len

8: AddCandidate(list, sentence, finalScore)
9: end if

10: end if

11: for vn ∈ Neighborsvk do

12: PRInew ← PRIoverlap ∩̄ PRIvn
13: redundancy ← SizeOf(PRInew)
14: newSent← Concat(sentence, labelvn )
15: L← len+ 1
16: newScore← score+ PathScore(redundancy, L)
17: if Collapsible(vn) then
18: Canchor ← newSent
19: tmp← CreateNewList()
20: for vx ∈ Neighborsvn do
21: Traverse(tmp, vx, 0, PRInew, labelvx , L)
22: CC ← EliminateDuplicates(tmp)
23: CCPathScore← AveragePathScore(CC)
24: finalScore← newScore+ CCPathScore
25: stitchedSent← Stitch(Canchor, CC)
26: AddCandidate(list, stitchedSent, finalScore)
27: end for
28: else
29: Traverse(list, vn, newScore, PRInew, newSent, L)
30: end if
31: end for
32: end if

score is computed. The resulting stitched sentence and its final score are then

added to the original list of candidate summaries.

(A2:14-18) Once all paths have been explored for candidate generation, dupli-

cate candidates are removed and the remaining are sorted in descending order

of their path scores. The best σss candidates are ‘picked’ as final Opinosis

summaries.

vi is the first node in the path being scored and vs is the last node. |vi, vk| is the

length from node vi to vk. |W | is the length of the entire path being scored. The

Sbasic scoring function scores a path purely based on the level of redundancy.

One could also argue that high redundancy on a longer path is intuitively more

valuable than high redundancy on a shorter path as the former would provide

better coverage than the latter. This intuition is factored in by the Swt len and

Swt loglen scoring functions where the level of redundancy is weighted by the

path length. Swt loglen is similar to Swt len only that it scales down the path

length so that it does not entirely dominate.

4.5 Experimental Setup

We evaluate this abstractive summarization task using reviews of hotels, cars

and various products1. Based on these reviews, 2 humans were asked to construct

‘opinion seeking’ queries which would consist of an entity name and a topic of

1Reviews collected from Tripadvisor, Amazon, Edmunds
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interest. Example of such queries are: Amazon Kindle:buttons, Holiday Inn,

Chicago: staff, and so on. We compiled a set of 51 such queries. We create

one review document per query by collecting all review sentences that contain

the query words for the given entity. Each review document thus consists of a

set of unordered, redundant review sentences related to the query. There are

approximately 100 sentences per review document.

We use ROUGE [80] to quantitatively assess the agreement of Opinosis sum-

maries with human composed summaries. ROUGE is based on an n-gram co-

occurrence between machine summaries and human summaries and is a widely

accepted standard for evaluation of summarization tasks. In our experiments,

we use ROUGE-1, ROUGE-2 and ROUGE-SU4 measures. ROUGE-1 and

ROUGE-2 have been shown to have most correlation with human summaries [81]

and higher order ROUGE-N scores (N > 1) estimate the fluency of summaries.

We use multiple reference (human) summaries in our evaluation since it can

achieve better correlation with human judgment [82]. We leverage Amazon’s

Online Workforce2 to get 5 different human workers to summarize each review

document. The workers were asked to be concise and were asked to summarize

the major opinions in the review document presented to them. We manually

reviewed each set of reference summaries and dropped summaries that had lit-

tle or no correlation with the majority. This left us with around 4 reference

summaries for each review document.

To allow performance comparison between humans, Opinosis and the base-

line method, we implemented a Jackknifing procedure where, given K references,

the ROUGE score is computed over K sets of K-1 references. With this, aver-

age human performance is computed by treating each reference summary as a

‘system’ summary, computing ROUGE scores over the remaining K-1 reference

summaries.

Due to the limited work in abstractive summarization, no natural baseline

could be used for comparison. The existing work in this area is mostly domain

dependent and requires too much manual effort (explained in Section 4.1). The

next best baseline is to use a state of the art extractive method. Thus, we

use MEAD [83] as our baseline. MEAD is an extractive summarizer based on

cluster centroids. It uses a collection of the most important words from the

whole cluster to select the best sentences for summarization. By default, the

scoring of sentences in MEAD is based on 3 parameters - minimum sentence

length, centroid, and position in text. MEAD was ideal for our task because

a good summary in our case would be one that could capture the most essen-

tial information. This is exactly what centroid-based summarization aims to

achieve. Also, since the position in text parameter is irrelevant in our case, we

could easily turn this off with MEAD.

We introduce a readability test to understand if Opinosis summaries are in

fact readable. Suppose we have N sentences from a system-generated summary

2https://www.mturk.com
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Recall

ROUGE-1 ROUGE-2 ROUGE-SU4 Avg #

Words

Human 0.3184 0.1106 0.1293 17

Opinosis 0.2831 0.0853 0.0851 15

Baseline 0.4932 0.1058 0.2316 75

Precision

ROUGE-1 ROUGE-2 ROUGE-SU4 Avg #

Words

Human 0.3434 0.1210 0.1596 17

Opinosis 0.4482 0.1416 0.2261 15

Baseline 0.0916 0.0184 0.0102 75

F-score

ROUGE-1 ROUGE-2 ROUGE-SU4 Avg #

Words

Human 0.3088 0.1069 0.1142 17

Opinosis 0.3271 0.0998 0.1027 15

Baseline 0.1515 0.0308 0.0189 75

Table 4.2: Performance comparison between Humans, Opinosisbest and
Baseline.

and M sentences from corresponding human summaries. We mix all these sen-

tences and then ask a human assessor to pick at most N sentences that are least

readable as the prediction of system summary.

readability(O) = 1− #CorrectP ick
N

If the human assessor often picks out system generated summaries as being

least readable, then the readability of system summaries is poor. If not, then

the system generated summaries are no different from human summaries.

4.6 Results

The baseline extractive method (MEAD) selects 2 most representative sen-

tences as summaries. For a fair comparison, we fix the Opinosis summary size,

σss = 2. We also fix σvsn = 15. The best Opinosis configuration with σss = 2

and σvsn = 15 is called Opinosisbest (σgap = 4, σr = 2, Swt loglen). ROUGE

scores reported are with the use of stemming and stopword removal.

Performance comparison between humans, Opinosis and baseline. Ta-

ble 4.2 shows the performance comparison between humans, Opinosisbest and

the baseline method. First, we see that the baseline method has very high re-

call scores compared to Opinosis. This is because extractive methods that just

‘select’ sentences tend to be much longer resulting in higher recall. However,

these summaries tend to carry information that may not be significant and is

clearly reflected by the poor precision scores.

Next, we see that humans have reasonable agreement amongst themselves
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Figure 4.2: ROUGE scores (f-measure) at different levels of σgap, σr = 2.
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Figure 4.3: ROUGE scores (f-measure) at different levels of σr averaged across
σgap ∈ [1, 5]

given that these are independently composed summaries. This agreement is

especially clear with the ROUGE-2 recall score where the recall is better than

Opinosis but comparable to the baseline even though the summaries are much

shorter. It is also clear that Opinosis is closer in performance to humans than to

the baseline method. The recall scores of Opinosis summaries are slightly lower

than that achieved by humans, while the precision scores are higher (Wilcoxon

test shows that the increase in precision is statistically more significant than the

decrease in recall). In terms of f-scores, Opinosis has the best ROUGE-1 score

and its ROUGE-2 and ROUGE-SU4 scores are comparable with human perfor-

mance. The baseline method has the lowest f-scores. The difference between

the f-scores of Opinosis and that of humans is statistically insignificant.

Comparison of scoring functions. Next, we look into the performance of the

three scoring functions, Sbasic, Swt len and Swt loglen described in Section 4.3.

Figure 4.2 shows ROUGE scores of these scoring methods at varying levels of

σgap. First, it can be observed that Swt basic which does not use path length

information, performs the worst. This is due to the effect of heavily favoring

redundant paths over longer but reasonably redundant ones that can provide

more coverage. We also see that Swt len and Swt loglen are similar in performance

with Swt loglen marginally outperforming Swt len when σgap > 2. Since Swt len
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Figure 4.4: Precision-Recall comparison with different Opinosis features
turned off.

uses the raw path length in its scoring function, it may be inflating the path

scores of long but insignificant paths. Swt loglen scales down the path length,

thus providing a reasonable tradeoff between redundancy and the length of the

selected path. The three scoring functions are not influenced by different levels

of σr as shown in Figure 4.3.

Effect of gap setting (σgap). Now, we will examine the effect of σgap on the

generated summaries. Based on Figure 4.2, we see that setting σgap=1 yields in

relatively low performance. This is because σgap=1 implies immediate adjacency

between the PIDs of two nodes and such strict adjacency enforcements prevent

redundancies from being discovered. When σgap is increased to 2, there is a

big jump in performance, after which improvements are observed in smaller

amounts. A very large gap setting could increase the possibility of generating

ill-formed sentences, thus we recommend that σgap is set between 2-5.

Effect of redundancy requirement (σr) . Figure 4.3 shows the ROUGE

scores at different levels of σr. It is clear that when σr > 2, the quality of

summaries is negatively impacted. Since we only have about 100 sentences

per review document, σr > 2 severely restricts the number of paths that can

be explored, yielding in lower ROUGE scores. Since the scoring function can

account for the level of redundancy, σr should be set according to the size of

the input data. For our dataset, σr = 2 was ideal.

Effect of collapsed structures and duplicate elimination. So far, it has

been assumed that all features used in Opinosis are required to generate rea-

sonable summaries. To test this hypothesis, we use Opinosisbest as a baseline

and then we turn off different features of Opinosis. We turn off the duplicate

elimination feature, then the collapsible structure feature, and finally both. Fig-

ure 4.4 shows the resulting precision-recall curve. From this graph, we see that

without duplicate elimination and when collapsing is turned off, the precision

is highest but recall is lowest. No collapsing implies shorter sentences and thus

lower recall, which is clearly reflected in Figure 4.4. On top of this, if duplicates

are allowed, the overall information coverage is low, further affecting the recall.
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“About food at Holiday Inn, London”
Human summaries:
[1] Food was excellent with a wide range of choices and good services.
[2] The food is good, the service great. Very good selection of food for breakfast 
buffet.

“What is free at Bestwestern Inn, San Francisco”
Human summaries:
[1] There is free WiFi internet access available in all the rooms.. From 5-6 p.m. there is free 
wine tasting and appetizers available to all the guests.
[2] Evening wine reception and free coffee in the morning. Free internet, free parking and 
free massage

Opinosis abstractive summary:
The food was  excellent,  good and  delicious. Very good selection of food.

Baseline extractive summary:
Within 200 yards of leaving the hotel and heading to the Tube Station you have a 
number of fast food outlets, highstreet Restautants, Pastry shops and 
supermarkets so if you did wish to live in your hotel room for the duration of your

free massage.

Opinosis abstractive summary:
Free wine reception in evening. Free coffee and biscotti and wine.

Baseline extractive summary:
The free wine and nibbles served between 5pm and 6pm were a lovely touch. There's free 
coffee teas at breakfast time with little biscotti and best of all from 5 till 6pm you get a freesupermarkets, so if you did wish to live in your hotel room for the duration of your 

stay, you could do.......
coffee, teas at breakfast time with little biscotti and, best of all, from 5 till 6pm you get a free 
wine 'tasting' reception which, as long as you don't take……

“About food at Holiday Inn, London”
Human summaries:
[1] Food was excellent with a wide range of choices and good services.
[2] The food is good, the service great. Very good selection of food for breakfast 
buffet.

“What is free at Bestwestern Inn, San Francisco”
Human summaries:
[1] There is free WiFi internet access available in all the rooms.. From 5-6 p.m. there is free 
wine tasting and appetizers available to all the guests.
[2] Evening wine reception and free coffee in the morning. Free internet, free parking and 
free massage

Opinosis abstractive summary:
The food was  excellent,  good and  delicious. Very good selection of food.

Baseline extractive summary:
Within 200 yards of leaving the hotel and heading to the Tube Station you have a 
number of fast food outlets, highstreet Restautants, Pastry shops and 
supermarkets so if you did wish to live in your hotel room for the duration of your

free massage.

Opinosis abstractive summary:
Free wine reception in evening. Free coffee and biscotti and wine.

Baseline extractive summary:
The free wine and nibbles served between 5pm and 6pm were a lovely touch. There's free 
coffee teas at breakfast time with little biscotti and best of all from 5 till 6pm you get a freesupermarkets, so if you did wish to live in your hotel room for the duration of your 

stay, you could do.......
coffee, teas at breakfast time with little biscotti and, best of all, from 5 till 6pm you get a free 
wine 'tasting' reception which, as long as you don't take……

Figure 4.5: Sample results comparing Opinosis summaries with human and
baseline summaries.
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Notice that the presence of duplicates with the collapse feature turned on results

in very high recall (even higher than the baseline). This is caused by the pres-

ence of similar phrases that were not eliminated from the collapsed candidates,

resulting in long sentences that artificially boost recall. The Opinosis baseline

which uses duplicate elimination and the collapsible structure feature, offers a

reasonable tradeoff between precision and recall.

Readability of Summaries. To test the readability of Opinosis summaries,

we conducted a readability test (described in Section 4.5) using summaries gen-

erated from Opinosisbest. A human assessor picked the 2 least readable sentences

from each of the 51 test sets (based on 51 summaries). Collectively, there were

565 sentences out of which 102 were Opinosis generated. Out of these, the hu-

man assessor picked only 34 of the sentences as being least readable, resulting

in an average readability score of 0.67. This shows that more than 60% of the

generated sentences are indistinguishable from human composed sentences. Of

the 34 sentences with problems, 11 contained no information or were incompre-

hensible, 12 were incomplete possibly due to false positives when the sentence

validity check was done, and 8 had conflicting information such as ‘the hotel

room is clean and dirty ’. This happens due to mixed feelings about the same

topic and can be resolved using sentiment analysis. The remaining 3 sentences

were found to contain poor grammar, possibly caused by the gaps allowed in

finding redundant paths.

Sample Summaries. Finally, in Figure 4.5 we show two sample summaries on

two different topics. Notice that the Opinosis summaries are concise, fairly well-

formed and have closer resemblance to human summaries than to the baseline

summaries.

4.7 Conclusion

In this chapter, we described a novel summarization framework (Opinosis) that

uses textual graphs to generate abstractive summaries of highly redundant opin-

ions. Evaluation results on a set of review documents show that Opinosis sum-

maries have better agreement with human summaries compared to the baseline

extractive method. The Opinosis summaries are concise, reasonably well-formed

and communicate essential information. Our readability test shows that more

than 60% of the generated sentences are no different from human composed

sentences.

Opinosis is a flexible framework in that many of its modules can be easily

improved or replaced with other suitable implementation. Also, since Opinosis

is domain independent and relies on minimal external resources, it can be used

with any corpus containing high amounts of redundancies.

Our graph representation naturally ensures the coherence of a summary, but

such a graph emphasizes too much on the surface order of words. As a result, it
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cannot group sentences at a deep semantic level. To address this limitation, we

can use a similar idea to overlay parse trees and this would be a very interesting

future research.

2The work done in this chapter has been published in (Ganesan et al. 2010) [2]
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5 LEVERAGING WEB-NGRAMS TO

GENERATE ULTRA-CONCISE SUMMARIES

OF OPINIONS

In the previous chapter, we described our first abstractive summarization method

using a graph data structure to model the structural redundancies in text. In

this chapter, we study a more generative approach to summarization. We

propose to leverage publicly available Web-Ngrams to generate ultra-concise

summaries of opinions using a formal optimization framework. We give spe-

cial importance to the conciseness of summaries (captured by the optimization

framework) so that summaries can be displayed on various screen sizes. This

approach just as the previous one, is lightweight and general, and requires no

linguistics or domain knowledge.

5.1 Introduction

In this chapter, we explore the task of generating a set of very concise phrases,

where each phrase (micropinion) is a summary of a key opinion in text. The

ultra-concise nature of the phrases allows for flexible adjustment of summary

size according to the display constraints. Our emphasis on generating concise

abstractive summaries (rather than extractive summaries), makes this a unique

summarization problem which has not been previously studied. In Table 5.1,

we show examples of envisioned micropinion summaries.

On the surface, our summarization task appears to be similar to a keyphrase

extraction problem. However, since the goal is to help users digest the underly-

ing opinions, there are some important aspects that are unique to this task. In

traditional keyphrase extraction, the goal is primarily to select a set of phrases

to characterize documents. Thus, phrases such as battery life and screen from a

set of reviews about a phone may be selected as keyphrases. For our task, such

keyphrases are meaningless without the associated opinions. In addition, as we

want readers to understand the opinions in the summary, the phrases in the

Mp3 Player Y Restaurant X
Very short battery life.
Big and clear screen.
(8 words)

Good service.
Delicious soup dishes.
Very noisy at nights.
(9 words)

Table 5.1: Example of micropinion summaries on two different topics given a
constraint of 10 words.
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summary need to be fairly well-formed and grammatically sound. Consider a

phrase such as ‘short battery life’ in contrast to one such as ‘life short battery’.

Even though both phrases contain the same words, the ordering is different,

changing their meaning, where the former is readable and the latter is not.

This readability aspect is less of a concern in traditional keyphrase extraction

as the phrases are only used to ‘tag’ documents.

In this chapter, we present a novel unsupervised approach to generating mi-

cropinion summaries for different display constraints. Our idea is to start with

a set of high frequency seed words from the input text, gradually forming mean-

ingful higher order n-grams. At each step the n-grams are scored based on their

representativeness and readability. We frame this problem as an optimization

problem, where we attempt to find a set of concise, non-redundant phrases

(not necessarily occurring in the original text) that are readable and represent

the major opinions. We propose heuristic algorithms to solve this optimization

problem efficiently.

Evaluation results using a set of product reviews shows that our approach is

effective in generating micropinion summaries and outperforms other summa-

rization approaches. Further, the proposed approach is lightweight and general,

requiring no linguistics or domain knowledge. It can thus be used in a variety of

domains and could even be used with other languages. The dataset and demo

would be publicly available upon publication.

5.2 An Optimization Formulation for Micropinion
Summarization

The goal of our task is to generate a compact and informative summary using

a set of micropinions. A micropinion is a short phrase (between 2 and 5 words)

summarizing a key opinion in text. The minimum phrase length of 2 is based on

the observation that a meaningful opinion is often targeted towards an object

[84] (e.g. clear screen vs. clear). The maximum phrase length of just 5 is to

allow for flexibile adjustment of summary size according to the display require-

ments. For example, a small phone may have stricter display requirements than

a full sized PDA. Thus, compared with most existing work in text summariza-

tion, a unique aspect of our goal is to maximize information conveyed in the

given constraints.

Formally, given a set of sentences Z = {zi}ni=1 from an opinion document,

our goal is to generate a micropinion summary, M = {mi}ki=1, where |mi| ∈
[2, 5] words and each mi ∈ M conveys a key opinion from Z. Note that while

we require mi to use words that have occurred at least once in Z, we do not

require mi to be an exact subsequence of any of the sentences in Z. This makes

our task setup more of an abstractive summarization problem. In contrast

to the predominantly popular extractive summarization task, this raises a new
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interesting challenge in how to compose concise and meaningful summaries using

only words from the original text. This requirement is not restrictive since user

generated content such as opinions have the benefit of volume and with this

there would be many choices of words to describe a major opinion.

Intuitively, we would like the generated micropinion summary, M = {mi}ki=1

to be: (1) representative (i.e., each mi should reflect the major opinions in

the original text), (2) readable (i.e., each mi should be well formed according

to the language’s grammatical rules), and (3) compact (i.e., M should use as

few words as possible to convey the major opinions). Thus, in theory, we can

solve this new summarization problem by enumerating all possible summaries

and evaluating each one to see how well it satisfies these three criteria, which

suggests that we can formulate micropinion summarization as the following

optimization problem:

M∗ = argmaxM={m1,...,mk}

k∑
i=1

[Srep(mi) + Sread(mi)]

subject to
∑k
i=1 |mi| ≤ σss

Srep(M) ≥ σrep

Sread(M) ≥ σread
sim(mi,mj) ≤ σsim∀, i, j ∈ [1, k]

where

1. Srep(mi) is a scoring function measuring the representativeness of mi;

2. Sread(mi) is a scoring function measuring the readability of mi;

3. sim(mi,mj) is a similarity function measuring the similarity of mi and

mj ;

4. σss, σrep, σread, and σsim are four thresholds for the maximum length

of the summary, minimum representativeness, minimum readability and

maximum similarity.

The rationale for this optimization formulation is the following: First, the ob-

jective function captures the intention of optimizing both representativeness and

readability. Second, the compactness is captured by setting a threshold on the

maximum length of the summary and a threshold on the similarity between any

two phrases in the summary so as to minimize redundancy. Finally, we impose

two thresholds for minimum representativeness and readability respectively for

two reasons. First, this ensures efficiency by not exploring non-promising can-

didate phrases. In turn, this also ensures a summary to be both representative

and readable (i.e., avoid “skewed tradeoffs”).

Clearly, the main challenge now is to define the representativeness func-

tion Srep(mi), the readability function Sread(mi), and the similarity function
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sim(mi,mj). In this chapter, we focus on studying how to define Sread(mi)

and Srep(mi) as they represent interesting new challenges raised by micropinion

summarization. For sim(mi,mj), we use the Jaccard similarity [85] to measure

and eliminate redundancy.

In Section 5.2.1, we will explain the proposed method to measure the rep-

resentativeness of mi, Srep(mi), based on the pointwise mutual information of

the words in mi. This captures how well mi aligns with major opinions in the

original text. Then in Section 5.2.2, we describe how we estimate readabil-

ity, Sread(mi), of phrases based on a general n-gram language model with the

assumption that mi is more readable if mi is more frequent according to the

n-gram model.

5.2.1 Representativeness

In general, opinions are often redundant and may contain contradicting view-

points. Hence, generating a few highly representative phrases is a challenge.

Since we are mainly interested in summarizing the major opinions in text, a

representative summary would be one that can accurately bring to surface the

most common complaint, praise or critical information. For example, assuming

we have 10 sentences in the input document that talks about “battery life being

short” and one about “battery life being excellent”, by our definition, the former

would be the representative opinion phrase.

In determining the representativeness of a phrase mi, we have defined two key

properties of a highly representative phrase: (1) the words in each mi, should

be strongly associated within a narrow window in the original text and (2) the

words in mi should be sufficiently frequent in the original text.

The first property ensures that only a set of related words are used in the

generated phrases to avoid conveying incorrect information. As an example, if

we were to generate a phrase containing the word short, it is important that

short is used with the right set of words or we may convey information not

present in the original text (e.g. the phone is short instead of battery life is

short). While this is not a problem for methods that use existing n-grams

from the input document, it is important for our method as we form n-grams

from seed words. This first property of strong association can be captured

by computing the pointwise mutual information (PMI) of words in mi based

on its alignment with the original text. Note that PMI was shown to be the

best metric to measure strength of association of word pairs [86]. For a set of

strongly associated words to be considered representative, these words should

also be significant in the input text. The second property thus rewards n-grams

containing words that occur frequently in the original text. Formally, suppose

m = w1...wn is a candidate phrase. We define Srep(m) as follows:
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Srep(w1...wn) =
1

n

n∑
i=1

pmilocal(wi) (5.1)

where pmilocal(wi) is a local pointwise mutual information function defined as:

pmilocal(wi) =
1

2C

i+C∑
j=i−C

pmi′(wi, wj), i 6= j (5.2)

where C is a contextual window size. The pmilocal(wi) measures the average

strength of association of a word wi with all its C neighboring words (on the left

and on the right). So, for the phrase short battery life, assuming C = 1, for short

we would obtain the average PMI score of short with ‘battery’ and for battery

we would obtain the average PMI of battery with ‘short’ and battery with ‘life’.

When this is done for each wi ∈ m, this would give a good estimate of how

strongly associated the words are in m, which is the rationale for Equation 5.1.

We use a modified PMI scoring referred to as pmi′ where the pmi′ between two

words, wi and wj is defined as:

pmi′(wi, wj) = log2

p(wi, wj) · c(wi, wj)
p(wi) · p(wj)

(5.3)

where c(wi, wj) is the frequency of two words co-occurring in a sentence from the

original text within the context window of C (in any direction) and p(wi, wj)

is the corresponding joint probability. We later show the influence of C on

the generated summaries. The co-occurrence frequency, c(wi, wj) which is not

part of the original PMI formula is integrated into our PMI scoring to reward

frequently occurring words from the original text (based on property (2)). The

problem with the original PMI scoring is that it yields in high scores for low

frequency words. By adding c(wi, wj) into the PMI scoring, we ensure that low

frequency words do not dominate and moderately associated words with high

co-occurrences have relatively high scores.

5.2.2 Readability

For a summary to be readable, it will have to be fairly well-formed and gram-

matically sound according to the language’s grammatical rules. The readability

aspect is an important requirement in any summarization task as this allows a

reader to easily digest information. In extractive summarization, the readability

of a summary is less of a problem as existing sentences or phrases are reused

to form summaries. In our approach, we do not reuse sentences or phrases di-

rectly from Z, but rather attempt to generate new phrases using existing words

from Z. Hence, there is no guarantee that the generated phrases would be well-

formed and readable. For example, without readability scoring, it will be hard

to distinguish the grammatical difference between the phrases The good iPhone

is and The iPhone is good.
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Without any form of supervision, measuring the readability of a phrase is

difficult. We address this problem by leveraging the publicly available Microsoft

N-gram service1 [87], to score all our system generated phrases. The abundance

of textual content on the web which includes blogs, news articles, user reviews,

tutorials, etc makes an n-gram model estimated based on all such content an

ideal judge of how readable the system generated phrases are. The intuition

is that if a generated phrase occurs frequently on the web, then this phrase is

readable. This approximation to determining readability is fair, since the web

as a corpus, is extremely large and there would be enough evidence to segregate

a well-constructed phrase from a poorly constructed one.

Specifically, we use the Microsoft’s trigram language model trained on the

body text of documents to obtain conditional probabilities of the candidate

phrases. In scoring each phrase, we first obtain the conditional probability of

different sets of trigrams in the phrase. These scores are combined and averaged

to generate the final readability score. Suppose m = w1...wn is a candidate

phrase, Sread(m) is thus defined as follows:

Sread(wi...wn) =
1

K
· log2

n∏
k=q

P (wk|wk−q+1...wk−1) (5.4)

where q represents the n-gram order of the model used and in our case, q = 3.

K represents the number of conditional probabilities computed.

Equation 5.4 is essentially the chain rule used to compute the joint probability

in terms of conditional probabilities, which is then averaged. Averaging the

scores allows us to set cutoffs which helps in pruning non-promising candidates.

5.2.3 Parameter Settings

The optimization formulation involves several parameters to be empirically set.

Some of these have to be set in an application-specific way based on tradeoffs

between multiple criteria of summarization. For example, σss indicates the

desired total length of a summary and can be set, e.g., based on the screen size

of a mobile device if the summary is to be displayed on such a device. σsim

controls the amount of redundancy allowed in the summary (less redundant

with a smaller σsim). Finally, σrep and σread help with the efficiency of the

optimization algorithm and also help in ensuring minimum representativeness

and readability of phrases; we will later examine the influence of these two

parameters in our experiments. With this setup, the remaining challenge is

to solve the optimization problem efficiently, which we will discuss in the next

section.

1http://web-ngram.research.microsoft.com
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5.3 Summarization Algorithm

Since we want to compose new phrases using words from the original text, the

potential solution space for our optimization problem, is huge. In practice, it is

infeasible to enumerate all the possible summary candidates and score each one

of them. In this section, we propose a greedy algorithm to solve the optimization

problem by systematically exploring the solution space with heuristic pruning

so that we only touch the most promising candidates.

At a high level, we start with a set of high frequency unigrams from the

original text. We then gradually merge them to generate higher order n-grams

as long as their readability and representativeness remain reasonably high. This

process of generating candidates stops when an attempt to grow an existing

candidate leads to phrases that are low either in readability or representativeness

(i.e. does not satisfy σrep or σread).

Specifically, the input to our summarization algorithm is a set of sentences

from an opinion containing document. For example, all review sentences about

the iPhone. We denote these sentences as Z = {zi}ni=1. The output is a mi-

cropinion summary with a set of n-gram phrases M = {m1, ...,mk}, where

the number of micropinions is determined based on the constraints of the opti-

mization problem. The summarization algorithm consists of the following three

steps:

Step 1. Generation of seed bigrams: The first step takes the original text,

Z as input and generates a set of promising bigrams based on combinations of

high frequency unigrams.

Step 2. Generation of scored n-grams: The second step takes the seed

bigrams as input and further grows them into a set of promising n-grams by

concatenating bigrams that share an overlapping word. While generating n-

grams, we also compute their representativeness and readability scores Srep and

Sread, and prune all the cases where any of these scores is below the correspond-

ing threshold. We further check redundancy of the generated candidates, and if

two phrases have a similarity higher than the σsim threshold, we would discard

the one with a lower combined score of Srep + Sread.

Step 3. Generation of micropinion summary: The final step is to sort

all the candidate n-grams based on their objective function values (i.e., sum of

Srep and Sread) and generate a micropinion summary M by gradually adding

phrases with the highest scores to our summary until the accumulated summary

length reaches the length threshold σss.

We will now focus on elaborating steps 1 and 2. Step 3 is straightforward and

thus will not be discussed.
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5.3.1 Generation of seed bigrams

As redundancies are inherent in opinionated documents, this property can be

leveraged to shortlist a set of seed words that can be used to generate higher

order n-grams. This way, we avoid having to try every combination of words.

Our assumption is that if a word is not frequent in the original text, it is unlikely

a good candidate word to be included in any phrase of a micropinion summary

(presumably we will have other better candidate words to work with).

Assuming that the input text is a set of sentences, we shortlist a set of high

frequency unigrams from the input text, where the unigrams should have counts

larger than the median count (after ignoring words with frequency of 1). This

ensures that the cutoff is adjusted according to the input size. The low threshold

serves as an initial reduction in search space; further reduction happens when

Srep and Sread are computed later.

Each of these high frequency unigrams is then paired with every other unigram

to form bigrams. For example, if we have the words ‘battery’ and ‘life’, the

bigrams generated would be ‘battery life’ and ‘life battery’. We then compute

the representativeness score Srep of each bigram and keep only those bigrams

whose Srep passes the threshold σrep. Although the combination of words could

be quite random, the Srep function helps in pruning invalid combinations (since

it demands co-occurrences of two words in a small window of the original text).

5.3.2 Depth-first search for candidate generation

Using the seed bigrams described in the previous section, we attempt to generate

higher order n-grams that will finally serve as candidate micropinions. If there

are a large number of seed bigrams (for large input documents), the starting

seeds can further be shortlisted by their representativeness scores. For example,

using only the top 500 seeds as the starting point. Algorithm 4 outlines the

steps involved in candidate micropinion generation.

Algorithm 4 GenerateCandidates(p)

1: Input: A candidate phrase (bigrams initially)
2: Output: A set of micropinions
3: if (Sread(p) < σread||Srep(p) < σrep) then
4: return
5: end if
6: if V alidCandidate(p, candList) then
7: candList← {candList ∪ p}
8: end if
9: joinList← GetJoinList(seedBigrams)

10: for bigram ∈ joinList do
11: if NotMirror(p, bigram) then
12: newPhrase←Merge(p, bigram)
13: Score(newPhrase)
14: GenerateCandidates(newPhrase)
15: end if
16: end for

First, for any incoming phrase, p, a check is done to determine if p is a

promising phrase. This is done by checking the Sread(p) and Srep(p) scores
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with the corresponding thresholds (line 3). If the score constraints are not

fulfilled, then p will not be further expanded. This step ensures that we explore

only reasonable phrases, thus improving efficiency.

If p fulfills the score constraints, then a check is done to determine if it can

become a candidate micropinion (line 6). This is based on the similarity between

p and the existing candidate phrases from the pool of candidates. If p is not

similar to any of these phrases, then p will automatically be added to this

candidate pool. If p is similar to a phrase X in the pool, p will replace X if

Srep(p) + Sread(p) > Srep(X) + Sread(X). In other words, at any given time,

we will have a set of non-redundant candidate phrases.

Once the validity of a phrase has been determined, the algorithm proceeds

recursively in a depth first fashion in an attempt to expand p to a higher order

n-gram (line 9-16). We expand phrases using concepts used for pattern growth

as shown in [88]. In particular, we impose a merge requirement between a

candidate phrase p and a bigram, B (from the set of seed bigrams) as follows: (1)

the ending word in p should overlap with the starting word in B and (2) p should

not be a mirror of B. With this, all seed bigrams that satisfy this requirement

will be merged with p. Consider a phrase very long battery and a seed bigram

battery life. The overlapping word battery, connects the two phrases and since

one is not a mirror of the other, the two phrases can be merged to form very

long battery life. Such a pattern growth approach eliminates the need for an

exhaustive search and it also avoids exploration of n-grams that are extremely

random and unlikely useful. The newly merged phrases are then scored for their

readability and representativeness prior to being further expanded (line 13).

5.4 Experimental Setup

5.4.1 Dataset

To evaluate this micropinion generation task, we leverage user generated reviews

from CNET2 for 330 different products. Each product has 5 associated reviews

at the minimum. The CNET review structure is such that a user writes a full

length review about a product followed by a brief summary about the pros and

cons (PC). The PCs are usually a set of short phrases such as “bright screen,

fast download, etc” where these phrases tend to summarize the full reviews and

hence are quite redundant. In evaluating our summarization task, we ignore

the PCs and use only the full reviews for a product to make the summarization

task more realistic (i.e we eliminate obvious redundancies). Thus, for a given

product X, we generate a review document, rx, where rx holds all sentences

from the full reviews related to X. On average, there were 500 sentences per

review document. Out of the 330 review documents generated, we use only

2http://www.cnet.com
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230 documents for evaluation as 100 were withheld to train one of the baseline

approaches.

While the PCs seem ideal as the gold standard summary, in some cases the

PCs are just an enumeration of features that the user likes or dislikes and con-

tain no specific opinions. For example, “Pros: battery, sound ; Cons: hard

disk, screen”. Since we need a set of opinion phrases that are more complete

such as “improved battery life; crystal clear sound”, we leverage these PCs to

help human summarizers compose meaningful summaries. Specifically, for each

product X, we find the top 10 high frequency phrases from the PCs which are

then presented as hints to the human summarizers. Since we have a large num-

ber of review documents to summarize, such hints help the human summarizer

with topic coverage, thus reducing bias in the summaries. Two human summa-

rizers, were asked to read the reviews of each product presented to them and

then compose a set of phrases summarizing key opinions on the product. Out

of the 330 products, 165 were assigned to one summarizer and the remaining to

the other. With this, for each rx, we obtained a corresponding human summary,

hx.

5.4.2 Quantitative Evaluation

In demonstrating the effectiveness of our approach, we need to quantify to what

extent our summaries are representative of key opinions and how readable these

summaries are so that they can be understood by human readers. One way of

assessing the quality of summaries is to measure how well system summaries

resemble human composed summaries. Keyphrase extraction tasks are typi-

cally evaluated based on the number of overlapping keyphrases between system

generated keyphrases and the gold standard ones. This requires exact matches

which is unlikely, as there could be many ways to describe one opinion and

subtle variations may result in an unfair ‘no match’.

We thus chose to use ROUGE [80], an evaluation method based on n-gram

overlap statistics found to be highly correlated with human evaluations. ROUGE

was also the standard measure used in the DUC 2004 summarization task3 on

generating very short summaries such as headline summaries (< 10 words).

ROUGE is ideal for our task as it does not demand exact matches but it can

measure both representativeness and readability of summaries. As an example,

ROUGE-1 measures the overlap of unigrams between system summaries and hu-

man summaries, thus measuring representativeness. Higher order ROUGE-

N (N > 1) captures the match of subsequences, which measures the fluency

or readability of summaries. In our experiments, we primarily use ROUGE-1,

ROUGE-2 (bigram overlap) and ROUGE-SU4 (skip-bigram with maximum gap

length of 4).

3http://duc.nist.gov/pubs.html#2004
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5.4.3 Qualitative Evaluation

In addition to the automatic ROUGE evaluation, we also performed a manual

evaluation to assess the potential utility of the micropinion summaries to real

users. Specifically, two assessors were asked to read the micropinion summaries

presented to them (using the original reviews as reference) and then fill out

a questionnaire assessing the summary on several aspects related to its effec-

tiveness. Note that these assessors are different from those that composed the

gold-standard summaries. The questionnaire consisted of three key questions

rated on a scale from 1 (Very Poor) to 5 (Very Good). The questions are as

follows:

Grammaticality: Are the phrases in the summary readable with no obvious

errors? Score (1) - None of the phrases are readable or comprehensible; Score

(5) - I don’t see any issues with the phrases in the summary.

Non-redundancy: Are the phrases in the summary unique with unnecessary

repetitions such as repeated facts or repeated use of noun phrases? Score (1) -

All the phrases mean the same thing; Score (5) - The phrases are very unique,

summarizing very different topics or issues.

Informativeness: Do the phrases convey important information regarding the

product? This can be positive/negative opinions about the product or some

critical facts about the product. Score (1) - None of the phrases contain useful

or accurate information about the product. Score (5) - All the phrases contain

accurate opinions or critical information about the product.

Note that the first two aspects, grammaticality and non-redundancy are lin-

guistic questions used at the 2005 Document Understanding Conference (DUC)

[89]. The last aspect, informativeness, has been used in other summarization

tasks [90] and is key in measuring how much users would learn from the sum-

maries.

For this evaluation, we used the micropinion summaries for 70 different prod-

ucts that were randomly selected from our dataset. The assessors were not

informed about which method was used to generate the summaries.

5.4.4 Baselines

To assess how well our approach compares with existing approaches, we use three

representative baselines. As our first baseline, we use TF-IDF, an unsupervised

language-independent method commonly used for keyphrase extraction tasks.

To make the TF-IDF baseline competitive, we limit the n-grams in consideration

to those that contain at least one adjective (i.e. favoring opinion containing n-

grams). Note that the performance is much worse without this selection step.

Then, we used the same redundancy removal technique used in our approach to

allow a set of non-redundant phrases to be generated.
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For our second baseline, we use KEA4 [91], a highly cited, state-of-the-art

keyphrase extraction method. KEA builds a Naive Bayes model with known

keyphrases, and then uses the model to find keyphrases in new documents. The

KEA model was trained using the 100 review documents withheld from our

dataset (explained in Section 5.4.1). With KEA as a baseline, we would gain

insights into the applicability of existing keyphrase extraction approaches for the

task of micropinion generation. Note that since KEA uses training data and our

method does not, the comparison is, strictly speaking, an unfair comparison.

As our final representative baseline, we use Opinosis [2], an abstractive sum-

marizer designed to generate textual summary of opinions. Opinosis was shown

to be more effective in generating concise opinion summaries compared to ex-

tractive approaches like MEAD [83]. We turned off the optional collapse feature

in Opinosis which attempts to merge several short phrases into longer ones to

simulate the task of micropinion generation. All other settings were set at their

default values.

In addition to these baselines, we also performed a run to examine the benefit

of our strategy of composing potentially new phrases as opposed to relying solely

on phrases that occurred in the original text. For this run (WebNgramseen),

we force our search algorithm to return n-grams that have occurred at least

once in the reviews. To give a fair comparison, all the n-grams in each of our

baseline are 2-5 words long. Our approach is referred to as WebNgram in all

our experiments.

5.5 Results

By default, the efficiency parameters in our approach are set as follows: mini-

mum readability score, σread = −2 (log of probabilities); minimum representa-

tiveness score, σrep = 4. As will be shown later, the performance of summariza-

tion is not very sensitive to the settings of these parameters. The contextual

window size is set to C = 3, which is the optimal setting. The user adjustable

parameter for redundancy control (using Jaccard) is set to σsim = 0.40, for

reasonable diversity in phrases.

Comparison of summarization strategies. First, we assess the effective-

ness of our approach (WebNgram) in comparison with other representative ap-

proaches (KEA, Opinosis, TF-IDF). The performance comparison is shown in

Table 5.2 for different σss settings. Since the summary size is constrained, we

are primarily interested in the gain in recall as the precision is proportional to

recall when summary length is fixed. First, based on Table 5.2, we see that over-

all, WebNgram has the highest ROUGE-1 and ROUGE-2 scores, outperforming

all baseline methods. The statistical significance of improvements (based on

Wilcoxon test) is indicated in Table 5.2. As the summary size increases, Web-

4http://www.nzdl.org/Kea/
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σss Web

Ngram

Opinosis TF-IDF Kea

5 1.00 1.14 1.63 1.90

10 2.91 3.00 3.40 4.01

15 4.53 4.76 5.00 6.04

20 5.85 6.56 6.66 8.01

25 7.36 8.43 8.32 9.86

30 8.74 10.01 9.93 11.75

Table 5.3: Average # of generated phrases in summary.

Ngram consistently gains both in terms of ROUGE-1 and ROUGE-2. This

shows that representative phrases are being included in the summary and these

phrases are also readable as shown by the consistent gain in ROUGE-2 (the

other baseline methods do not gain as much with ROUGE-2).

Next, we see that the ROUGE-1 scores of Opinosis and WebNgram are quite

similar, but the ROUGE-2 scores are very different. The similarity in ROUGE-

1 scores indicates that Opinosis is able to capture similar topics and opinions

as WebNgram. However, the ROUGE-2 score of Opinosis indicates that the

generated phrases are less fluent. Through manual inspection, we found that

Opinosis generates many short phrases (< 4 words), generally fragmented and

thus less fluent. This explains the lower ROUGE-2 scores. This is further

confirmed by the average number of phrases generated by Opinosis which is

higher (i.e more fragmented) than that of WebNgram (shown in Table 5.3).

One possible reason as to why Opinosis has problems generating longer and

more complete phrases is lack of structural redundancies between sentences in

the CNET reviews.

Amongst all the approaches, TF-IDF performs the worst as shown in Ta-

ble 5.2. This is likely due to insufficient redundancies of meaningful n-grams.

When there are subtle differences in common expressions, it is often difficult to

discover redundant n-grams. This is where our method excels as we do not di-

rectly rely on the structure of the input text, but rather expand high frequency

seed words into longer and meaningful phrases. Finally, notice that KEA does

only slightly better than TF-IDF even though KEA is a supervised approach.

While KEA is suitable for characterizing documents, such a supervised approach

proves to be insufficient for the task of generating micropinions. It might be

that the model needs a more sophisticated set of features for it to generate more

meaningful summaries. Note that varying the size of training data had minimal

effect on KEA.

Seen N-grams vs. System Generated N-grams. In our candidate gener-

ation approach, we form longer n-grams from shorter ones using the procedure

described in Section 5.3. One may argue that with sufficiently redundant opin-

ions, searching the restricted space of all seen n-grams may be sufficient for

generating micropinion summaries and thus such a search procedure may not

be necessary. We thus performed a run by forcing only seen n-grams to appear
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σss WebNgram

+Bias

Web

Ngram

Opinosis TF-IDF KEA

10 2.80 2.11 2.08 2.13 1.16

20 5.48 4.19 4.56 4.01 2.33

30 7.81 6.10 6.77 6.07 3.39

Table 5.4: Average # of opinion words in summary

as candidate phrases. The results are shown in Table 5.2 under WebNgramseen.

From this, it is clear that this approach yields lower performance compared

to using system generated n-grams (WebNgram), suggesting that our search

algorithm actually helps discover useful new phrases. When opinions are not

sufficiently redundant, observed n-grams tend to be less representative than our

system generated n-grams which are constructed by combining related words

and phrases (e.g. big and clear screen from “..the phone has a big screen..” and

“..the screen was clear..”). This is one good example of why a more abstractive

approach is suitable for generating such concise opinion summaries.

Well-formedness of phrases. Intuitively, a good summary phrase is one that

is fairly well-formed and clearly conveys the intended meaning. Thus, a few read-

able phrases is more desirable than many fragmented phrases. Consider two mi-

cropinion summaries, M = {very clear, screen is} andM ′ = {very clear screen}.
In this example, it is obvious that M ′ is a more desirable summary than M .

Thus, we now look into the average number of phrases generated for different

summary sizes which is shown in Table 5.3. We can see that the WebNgram

approach generates the fewest phrases for any given σss constraint. This shows

that the WebNgram phrases are longer on average (i.e. more well-formed) and

also readable as previously shown by the ROUGE-2 scores and further vali-

dated by our manual evaluation. KEA seems to favor very short phrases and

on average, KEA generates the most number of phrases.

Opinion coverage and effect of summary biasing. An important point to

note is that each of the baselines used (KEA, Opinosis and TF-IDF) has some

form of opinion biasing built-in; KEA with the training examples from human

composed summaries, Opinosis through selection of phrases with certain POS

tags and TF-IDF through selection of adjective containing n-grams. In our

current model, we do not use any form of biasing to evaluate the effectiveness

of our method as is. To estimate the actual coverage of opinions, we count

the average number of opinion words in the summary using a general set of

adjective words from General Inquirer5 (1,614 positive and 1,982 negative). The

results are reported in Table 5.4. Considering only the base WebNgram model

and the other 3 baselines discussed earlier, Opinosis has the highest number of

opinion words. However, notice that even without opinion specific refinements,

WebNgram has comparable number of opinion words to that of Opinosis and

TF-IDF (which have built-in biasing).

5http://www.wjh.harvard.edu/ inquirer/
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ROUGE-1 ROUGE-2 ROUGE-SU4

WebNgram 0.219 0.079 0.069

WebNgram+Bias 0.240 0.085 0.088

change 9.3% 7.8% 27.9%

Table 5.5: Recall scores with the use of biasing (σss = 30).

Recall F-score

Rouge R-1 R-2 R-SU4 R-1 R-2 R-SU4

+Srep-Sread 0.192 0.057 0.056 0.120 0.035 0.019

-Srep+Sread 0.199 0.061 0.062 0.127 0.035 0.020

+Srep+Sread 0.219 0.080 0.073 0.140 0.046 0.024

Table 5.6: Performance of scoring components (σss = 30).

To gain insights into how opinion specific refinements can help our summaries,

we explore a simple heuristics biasing. Specifically, in our final candidate selec-

tion step we only considered phrases that contain at least one adjective. This

run is called WebNgram+Bias. From Table 5.4 and Table 5.5, it is clear that

the addition of opinion biasing improves agreement with human summaries and

the average number of opinion words in the summaries is also much higher than

the base model. This suggests that our model can be further refined to generate

task specific summaries.

Effectiveness of two-part scoring. So far, it has been assumed that both

components of our scoring function, Srep and Sread are required to generate

reasonable summaries. To test this hypotheses, we generate summaries with

different scoring components turned off at a given time. The ROUGE scores

are reported in Table 5.6. Overall, the performance is lowest when Sread is

not used (row 1). Without Sread it is likely that ungrammatical phrases with

high representativeness scores appear as good candidates, thus resulting in poor

performance. While Sread is important, by itself, it does not perform as well

(row 2) as when used in conjunction with Srep (row 3). This is because Sread

favors highly readable phrases but these phrases may not be representative of

the underlying opinions. Thus, it is clear that Sread and Srep work in synergy

to generate meaningful summaries.

Stability of parameters. It is critical to understand the effect of non-user

TF-IDF WebNgram Human

Question Avg. Dev. Avg. Dev. Avg. Dev.

Grammaticality 2.01 0.63 4.16 0.86 4.71 0.65

Non-redundancy 2.34 0.87 3.92 0.69 4.53 0.71

Informativeness 1.67 0.71 3.22 0.76 3.61 1.01

Overall 2.00 0.74 3.77 0.77 4.29 0.79

Table 5.7: Results of manual evaluation with σss = 25. Score 1 (Very Poor) to
5 (Very Good).
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dependent parameters in our model (namely σread, σrep and C), so that these

parameters can be set correctly for a new dataset. The primary function of σread

and σrep is to prune non-promising candidates, thus improving efficiency and

as a result also ensuring minimum readability and representativeness. Without

these two parameters, we will still arrive at a solution, but the time to conver-

gence would be much longer and the results could be skewed (e.g. very repre-

sentative but not readable). Figure 5.1 (a) and (b) show how different settings

of σread and σrep affect the overall performance. The values in Figure 5.1 (a) are

averaged across σrep ∈ [1, 5] and C ∈ [2, 6]; The values in Figure 5.1 (b) are av-

eraged across σread ∈ [−4,−1] and C ∈ [2, 6]. Notice that these two parameters

are actually stable across different values and do not affect performance except

in extreme conditions (thresholds that are too high). When σread ≤ −1, phrases

are expected to have high readability scores from the start and this requirement

is too restrictive in finding good candidates. Similarly, when σrep ≥ 5, the can-

didates are expected to have extremely high representativeness scores at every

point, and again restricting discovery of good candidates. The fact that σread

and σrep do not affect performance (except when the thresholds are too high)

suggests that the objective function already ensures phrases to be both repre-

sentative and readable. It is thus safe to set these values to be small enough

(between -2 and -4 for σread; between 1 and 4 for σrep) to ensure reasonable

efficiency and meaningful summaries. Note that the low ‘min’ curves as seen

in Figure 5.1 (a), (b) and (c) is caused by the extreme values, σrep = 5 and

σread = −1.

The third parameter, C is a window size used to compute the representa-

tiveness score of a phrase. The requirement is that two words in a candidate

phrase should occur within a context window of size C in the original text (see

Section 5.2.1). Figure 5.1 (c) shows performance at different C values (averaged

across σrep ∈ [1, 5] and σread ∈ [−4,−1]). On average, the best performance is

achieved when C = 3, which is quite reasonable. Intuitively, when C is large,

certain important words that are spread out can now be seen in context (e.g.

the Nokia phone that I bought was cheap). At the same time, wrong pairs of

words may also be considered related and this is evident with lower performance

when C > 3.

To further show that the suggested parameter settings would hold true on new

datasets, we obtained the optimal parameter values tuned on the 100 review

documents withheld to train KEA. The values are: C = 3, σread = −4 and

σrep = 4. Note that all these values comply with the suggested settings. In fact,

the σrep and C values are the same as our default settings. The only difference

is that σread = −4. This new σread value on our evaluation dataset, did not

show any significant difference in terms of performance (ROUGE-1 gain:-0.004,

ROUGE-2 gain: +0.002). The only difference was in efficiency, which in this

case was slower due to the more relaxed setting. It is thus clear, that the

efficiency parameters have little effect on performance of summarization as long

84



0.01

0.02

0.03

0.04

0.05

-1 -2 -3 -4

average

max

min

σread (a)

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5

average

max

min

σrep (b)

0.020

0.030

0.040

2 3 4 5 6

average

max

min

C
(c)

Figure 5.1: ROUGE-2 with varying σread, σrep and C. Labeled as (a), (b) and
(c) respectively.

as the values are not too restrictive.

Manual evaluation. To assess potential utility of the micropinion summaries

to real users, a subset of the summaries were manually evaluated using the pro-

cedure described in Section 5.4.3. The average grammaticality, non-redundancy

and informativeness scores (along with respective standard deviation scores)

for three methods are reported in Table 5.7. The results on human summaries

serves as an upper bound for comparison. A score below 3 is considered ‘poor’

and a score above 3 is considered ‘good’.

Earlier, we showed that TF-IDF had the lowest ROUGE scores amongst all

the approaches, indicating that the summaries may not be very useful (see

Table 5.2). The scores assigned by the human assessors on the TF-IDF sum-

maries agree with this conclusion. On average, TF-IDF summaries received

poor scores (below 3) on all three dimensions compared to WebNgram and hu-

man summaries. WebNgram’s average scores are above 3 on all dimensions and

are quite close to human scores.

In terms of grammaticality, WebNgram summaries received an average score

of 4.16, which means that the WebNgram phrases are mostly grammatically

sound with a few exceptions. This number actually correlates well with our

ROUGE-2 scores discussed earlier. Next, the average non-redundancy score of

3.92 tells us that the WebNgram phrases are fairly unique with a few cases

of overlapping facts or opinions. Although our σsim setting requests a diverse

set of phrases, some of the redundancies were caused by the different ways in

which the same information can be conveyed. For example, the phrases Excel-
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lent sound quality and Great audio may seem different but actually mean the

same thing. Such differences can be resolved with the use of opinion or phrase

normalization or clustering of similar words and concepts prior to summariza-

tion. While the average informativeness scores of WebNgram and humans are

quite close, notice that these scores are just slightly above 3. This suggests

that the informativeness aspect is rather subjective and a score above 3 is ac-

tually quite encouraging. The WebNgram summaries that had informativeness

scores between 3-4 mostly had meaningful and representative phrases along with

some false positives that did not have any real information (e.g I bought this for

Christmas). The informativeness aspect can be improved in different ways, one

of which is through a much stricter selection of phrases. This is something we

would like to study in detail in the future.

5.6 Conclusion

In this chapter, we proposed an unsupervised summarization approach that

leverages Web N-grams to generate ultra-concise summaries of opinions. We

frame the problem as an optimization problem with an objective function cap-

turing representativeness and readability and constraints that ensures compact-

ness of a generated summary. We propose a heuristic search algorithm to solve

the optimization problem efficiently. Our evaluation using a set of user reviews

shows that our summaries can convey essential information with minimal word

usage and is more effective than other competing methods.

The proposed approach is practical, lightweight and general as it does not

rely on any linguistic annotations (e.g. POS tagging or syntactic parsing) and

is not designed or optimized for a specific domain. It only uses the existing text

and a web scale n-gram model to generate meaningful summaries. Thus, our

approach can be used in a variety of domains (e.g. blogs, twitter, etc) and can

be used to generate summaries in other languages.

In the future, we would like to explore further refinements such as including an

opinion component into the model and investigate the use of a domain specific

n-gram model to improve the quality of summaries.

5The work done in this chapter has been published in (Ganesan et al. 2012) [3]
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6 OPINOFETCH: AN UNSUPERVISED

APPROACH TO COLLECTING OPINIONS

ON ARBITRARY ENTITIES

To support the search and analysis tasks of the ODSS platform, opinionated

content is imperative. While previous works have been focused on mining

and summarizing online opinions, there is limited work on exploring the auto-

matic collection of opinion containing documents. In this chapter, we propose a

lightweight and unsupervised framework for collecting opinions namely reviews

for arbitrary entities. We show how we leverage existing web search engines

and use a novel information network called the FetchGraph to efficiently obtain

review pages for entities of interest.

6.1 Introduction

With the surge of Big Data capabilities, the abundance of opinions expressed by

experts and ordinary users on the Web is now becoming vital to a wide range of

applications. For example, market research tools may use opinions to determine

if a product is worth developing or marketing. Business intelligence applications

may use online opinions to understand what users like or dislike about a recently

launched product. Another important usage is with online shopping sites where

these sites can utilize existing opinions on the web to help users make purchase

decisions. While there is a clear need for a large number of opinions about a

topic or entity (e.g. person, product or business), access to such content is very

limited as opinions are often scattered around the web and the web is inherently

dynamic. Consider the task of collecting opinions about the iPhone 5 ; one can

find related opinions on well known e-commerce sites such as Amazon.com and

BestBuy.com within popular review sites such as CNET.com and Epinions.com

and on less mainstream sites such as Techradar.com and personal blog sites. It

is clear that there is no central repository to obtain all the opinions about an

entity or topic. Moreover, the set of sites that contain reviews about one entity

may not contain reviews about another similar entity. This makes the task of

developing computational techniques for collecting online opinions at a large

scale a new and interesting research challenge with a pressing need. ’

Online opinions are typically present in user generated reviews, personal and

professional blog sites, forums, tweets, Facebook status updates and more. In

this chapter, we focus primarily on user reviews as reviews alone make up a

big portion of online opinions. For example, user generated reviews can be

found in most e-commerce applications (e.g. Amazon.com, Walmart.com and
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eBay.com), specialized user review websites (e.g. Yelp.com), vertical search

engines (e.g. Hotels.com) and online directories (e.g. Yellowpages.com). Thus,

a comprehensive set of user reviews alone would be highly valuable to many

opinion dependent applications.

Intuitively, the simplest way to collect online reviews, is simply to crawl the

entire web and then identify opinion containing pages on entities of interest.

While in theory this method seems feasible, in practice it is actually intractable

as (1) visiting and downloading all pages on the web would be very time con-

suming and places high demands on network and storage resources and (2) it

would become very expensive to perform relevance classification on each page

from the web. Thus, a more reasonable method to solving this problem would

be to use a focused crawling strategy.

Existing focused crawlers [92] are primarily designed to crawl all documents

pertaining to a topic such as databases and cycling. Thus, the type of page or

document (e.g. review page, news page, blog article, etc.) is not as important

as the content of the page itself. In contrast, our goal is more specific as we

are interested in a particular type of page (i.e. review pages) and are more

concerned about the relevance of a page to entities of interest. Moreover, most

of the existing focused crawlers are either supervised relying on large amounts

of training data or rely heavily on external help, making these crawlers rather

restrictive.

With this, we propose OpinoFetch a practical unsupervised framework for

collecting online reviews for arbitrary entities. Our key idea is to first obtain

am initial set of candidate review pages for a given entity using an existing

Web search engine. We then expand this list by exploring links around the

neighborhood of the search results. All these entity specific candidate pages and

its supporting components are modeled in a heterogenous graph data structure

called the FetchGraph which helps with efficient lookup of important statistics

and helps answer important application questions. The FetchGraph is pruned

in the end based on relevance scores (computed using the FetchGraph itself)

leaving behind a set of relevant, entity specific review pages.

In contrast to all previous work, our approach is unsupervised and assumes no

domain knowledge and thus can work across any domain (e.g. hotels, cars, doc-

tors, etc.). This is to provide a more general and practical approach to finding

online opinions. Evaluation results in three different domains (i.e. attractions,

hotels and electronics) show that our approach to finding entity specific review

pages far exceeds Google search and we are able to find such review pages with

reasonable efficiency and accuracy. The dataset and demo of this system will

be available at http://timan.cs.uiuc.edu/downloads.html. In summary,

the contributions of this work are as follows:

1. We propose a lightweight, unsupervised framework for discovering review

pages of arbitrary entities leveraging existing Web search engines.

2. We introduce FetchGraph, a novel information network for efficient data
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collection

3. We create the first test set for evaluating this review page collection prob-

lem.

4. We run experiments to test the proposed methods in three domains and

show that our approach is capable of finding entity specific review pages

with reasonable accuracy and efficiency.

6.2 A General Unsupervised Framework for Review
Page Collection

Given a set of entities, E = {e1, ..., en}, from a domain, D, the goal of our task

is to find a complete set of online review pages denoted as Ri = {ri1, ..., rin},
where Ri contains a set of relevant review pages about ei. Entities refer to

objects on which reviews are expressed. This can be businesses such as hotels

and restaurants, people such as politicians and doctors and products such as

smart phones and tablet computers. The domain is a broad category and the

granularity of the domain (e.g. smart phones vs. all mobile devices) is decided

by the client application. Review pages are pages containing user composed

opinions about a target entity. This includes user generated reviews (e.g. as

found in Amazon.com) and expert reviews (e.g. as found in CNET.com).

Our problem set-up allows for flexible adjustment of entities of interest ac-

cording to the application needs and with this, the proposed framework would

mainly focus on finding opinions about these target entities. This is to support

a typical application scenario where a large number of reviews is needed for a

specific set of entities (e.g. all hotels in the United States).

There are several challenges to solving this special task of review page col-

lection for arbitrary entities. One important problem is the task of matching

entities of interest with crawled pages. Typically, to do this accurately, we would

need large amounts of training data. However, this is not practical as it requires

training data for each target entity and the list of entities can vary and can get

large depending on the application.

Another problem is that there is no easy method for obtaining starting points

for the crawl. Unlike commonly crawled domains such as news and blog domains

where published RSS feeds are easily obtainable for use as starting points, ob-

taining an initial set of seed pages for review page collection is not as easy. If we

used links from one specific review site as seeds, aside from being able to crawl

all reviews from that site, there is no guarantee that this would take the crawler

to other review sites. We also cannot rely only on a fixed set of sites to obtain

entity specific reviews because review containing sites are often incomplete. If

one site has reviews for entity A this does not guarantee reviews for entity B

even if they are closely related (e.g. reviews on iPhone 4s and iPhone 5).
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To address these challenges, we propose a general unsupervised review page

collection framework capable of collecting review pages for arbitrary entities,

by leveraging an existing Web search engine. The framework consists of the

following steps:

Step 1. Obtain initial Candidate Review Pages (CRP): Given an entity

ek, we obtain an initial set of Candidate Review Pages (CRP) using a general

Web search engine. This is used in conjunction with an entity query, a special

query requesting review pages related to the target entity. We use σsearch to

control the number of search results.

Step 2. Expand CRP list: We then expand the CRP list by exploring

links around the neighborhood of each initial CRP, building a larger and more

complete list of potential review pages. σdepth controls how far into the neigh-

borhood the exploration should happen. Intuitively, the more pages we explore,

the more chances of recovering relevant review pages.

Step 3. Collect Entity Related Review Pages Next, all the pages in the

expanded CRP list along with the initial CRPs are scored based on (1) entity

relevance and (2) review page relevance. Both these scores are used to eliminate

irrelevant pages from the CRP list retaining a set of relevant review pages for

each ek ∈ ED. We will now expand on the details of each of these steps.

6.2.1 Obtaining Initial Candidate Review Pages

Since most content on the web are indexed by modern web search engines such

as Google and Bing, review pages of all sorts of entities would also be part of

this index. Also, modern search engines are very effective at finding pages about

entities. Capitalizing on this fact, we can leverage web search engines to find

the initial CRPs. We can do this by using information about the entity as the

query (e.g. entity name + address or entity name + brand) along with biasing

keywords such as reviews or product reviews. This is called the entity query. For

example, the entity query for reviews of a hotel in Los Angeles would be similar

to: Vagabond Inn USC Los Angeles reviews. The hope is that the results of

such a query would consist of pointers to review pages about the target entity

or have relevant review pages somewhere in the neighborhood.

We can thus treat the results of the search engine as an entry point to col-

lecting a more complete and accurate set of pointers to entity related review

pages. There are several advantages of doing this. First, search engines can

help discover entity specific review sites as different sites would hold reviews for

different subsets of entities even within the same domain. As an example, when

we compare the search results for the query iPhone 3g reviews and iPhone 4

reviews on Google, we will find that there are sites that contain reviews for one

of these products but not the other and vice versa. Next, since web search en-

gines are effective in finding pages about entities, the task of matching reviews
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Figure 6.1: Example search results from Google for the query Vagabond Inn
USC Los Angeles reviews. Only two pointers are to actual review pages.

to an entity is already partially done by the search engine.

Since we use different search results for different entities, our task is more of a

hyper-focused data collection task, as the search results are already quite ‘close’

to the relevant content. This is unlike traditional topical crawling where search

results are used as a very general starting point of a long crawl. One may argue

that the results of search engines alone are sufficient in finding entity related

reviews. While some of the search engine returned pointers are valid links to

review pages, there are many pointers that are not. In Figure 6.1 we show

snapshot of results from Google for the query Vagabond Inn USC Los Angeles

reviews. From this, we can see that only two out of five items point to valid

review pages. The second item is pointer to the hotel’s homepage. The third

and fifth items point to sites that contain reviews about the hotel, but the link

is to the main entity page rather than the actual review page. To address these

problems, we propose to expand the CRP list.

6.2.2 Expanding CRP List

While it is possible to expand all URLs in a page for further exploration, this

is a waste of resources as some URLs are known to be completely irrelevant

(e.g. ‘contact us’ page and ‘help’ page). We propose a simple and effective

URL prioritization strategy that attempts to bias the crawl path towards entity

related pages. To achieve this, we measure the average cosine distance between

91



(1) terms within the anchor text and the entity query and (2) URL tokens

(delimited using special characters) and the entity query. Thus, the more the

anchor text or URL resemble the entity query, the more likely that this page is

relevant to the target entity. In each page, we can use the top N scoring links

for further exploration until the chosen depth (σdepth) is reached. N here can

be a constant or a percentage of links. While more sophisticated strategies are

possible, optimizing this step is not the focus of our work, we thus leave this as

a future work.

6.2.3 Collecting Entity Related Review Pages

During the course of expanding the CRP list, we would naturally encounter

many irrelevant pages to get to relevant ones. We thus need a method to elimi-

nate the irrelevant pages. A page can thus be scored in terms of (a) review page

relevance denoted by Srev(pi) and (b) entity relevance denoted by Sent(pi, ek)

where pi is a page in the crawled set and ek is the entity for which pi appeared

as a CRP. With this, to determine if a page pi is relevant to an entity ek, we

need to check if Srev(pi) > σrev and Sent(pi, ek) > σent where σent and σrev are

two thresholds that range from [0 − 1]. While it may be possible to combine

scoring of (a) and (b) into a single scoring approach, separating the scores pro-

vides more control on how each aspect is scored. Moreover, we may choose to

give higher priority to one aspect than the other.

The proposed framework does not put any restriction on how to define the

Srev(pi) and Sent(pi, ek) scores. Below we present a reasonable instantiation

that we evaluate in our experiments. Since we would like to do everything in

an unsupervised way, these scoring functions can only be defined in a heuristic

way.

6.2.3.1 Review Page Relevance

Determining if a page is made up of reviews can be done by using a lexicon

consisting of sentiment words or words commonly found in review pages to

score a page. Specifically, for a given page pi, we can heuristically compute a

review page relevance score as follows:

Srev(pi) =

∑
t∈V

log2{c(t, pi)} ∗ wt(t)

normalizer

where t is a term from the defined vocabulary, V and c(t, pi) is the frequency

of t in pi and wt(t) is the importance weighting given to term t. If we used

only raw term frequencies, this may artificially boost the Srev(pi) score even if

only one of the terms in V was matched. Thus, we use log to scale down the

frequencies. wt(t) is important because it tells the scoring function which terms

are better indicators of a review page. For example, terms like review and rating
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are better indicators than terms like date. Intuitively, a review page would have

many of the terms in V with reasonably high term frequencies.

Since, we perform a sum of weights over all terms in V , the Srev(pi) value

can become quite large for highly dense review pages and this would make it

difficult to set thresholds. To overcome this problem the Srev(pi) is normalized

with a normalizer.

Most review pages have similarities to a certain degree both in terms of struc-

ture and usage of words. Based on this property, we construct a review vocab-

ulary consisting of the most common review page indicating words where the

weight contribution of each word depends on its popularity across different web

sources. Specifically, we manually obtained URLs to 50 different review pages

from 25 distinct web sources covering a wide range of domains such as electron-

ics, software tools, doctors, hotels and others. We discarded all common stop

words and rank each remaining term t in the combined vocabulary of the 50

review pages, denoted as R as follows:

Rank(t, R) = SiteFreq(t, R) ∗AvgTF (t, R)

AvgTF (t, R) = 1
n

n∑
i

c(t,ri)
MaxTFri

where SiteFreq(t, R) corresponds to how many web sources the term t occurred

in and AvgTF (t, R) is the sum of normalized term frequencies of a term t across

all review documents that contain t. n is the total number of review documents

containing t. With this, the more popular a term is across sites and the higher

its average term frequency, the higher the rank this term would have. This

helps review page specific terms to emerge rather than domain specific words.

Example of terms from our review vocabulary are as follows: review, helpful,

services, rating, thank, recommend. The top 100 terms and their corresponding

weights that is the AvgTF (t, R) are included in the final review vocabulary.

To normalize Srev(pi) we define the following normalizers:

SiteMax Normalizer: If a particular site is densely populated with reviews,

then many of the review pages within this site would have high review relevance

scores. Similarly, if a site contains limited reviews, then its likely that many of

the review pages would have low review relevance scores. Thus, if we normalize

the raw Srev(pi) using the maximum Srev(pi) score from the site that it origi-

nates from, the score of a true review page would always be high regardless of

density of the review site.

EntityMax Normalizer: In many cases if an entity is highly popular, the user

reviews on that entity would accordingly be abundant. Similarly, if an entity is

not so popular, then the amount of reviews on that entity would also be limited.

This is usually true across websites. For example, reviews on the iPhone is

abundant regardless of the review containing site. By using the maximum review

page relevance score of all pages related to a particular entity as a normalizer, a

review page of an unpopular entity would still receive a high score because the
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maximum Srev(pi) score would not be very high.

GlobalMax Normalizer: To help with cases where the EntityMax or SiteMax

normalizers are unreliable, we can use the maximum Srev(pi) score based on all

pages in the FetchGraph. When there is a limited number of collected pages

for a given entity (e.g. uncommon entities such as a particular doctor) the

EntityMax normalizer could become unreliable. Also, when there is only one

page collected from a particular site (e.g. a blog page), the Srev(pi) score using

the SiteMax normalizer would be artificially high as it is normalized against

itself. To help with both these cases we incorporate the GlobalMax normalizer

which can act as a ‘backup’ normalizer.

6.2.3.2 Entity Relevance Scoring

Even though a page pi may be a review page, it may not be relevant to an

entity ek. To eliminate such irrelevant pages, we need an entity relevance score

measuring how relevant pi is to ek. We observed that most review pages have

URLs that contain the name of the entity commented on. We thus define the

relevance score as the similarity between the entity query and the URL of the

candidate review page.

To measure similarity we use Jaccard which is defined as the size of the

intersection divided by the size of the union of sample sets. The Jaccard measure

is ideal because we are measuring similarity of tokens between two pieces short

texts. Also, since the Jaccard similarity score ranges from [0 − 1] this makes

it easy to set the σent cutoff. With this, the entity relevance of a page pi with

entity ek, Sent(pi, ek) is defined as follows:

Sent(pi, ek) =
TURL ∩ TEQ
TURL ∪ TEQ

where TURL is a set containing all the URL tokens (tokenized by special char-

acters) and TEQ is a set containing all the terms within the entity query.

6.3 Implementation Challenges

In the previous section, we outlined a very general approach with a reasonable

instantiation to finding entity related review pages in an unsupervised manner.

While the proposed ideas can be solved in a multitude of different ways, the

question now is, how can we make this framework useful to client applications?

We define two key aspects to ensure usability in practice: (1) Efficiency and (2)

Access to rich information.

1. Efficiency: Our goal is to enable collection of review pages for a large

number of entities. Thus, the data collection task should be efficient enough

to terminate in a reasonable amount of time with reasonable accuracy without
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overusing resources. Efficiency is usually affected by the inability to obtain re-

quired information quickly and this usually stems from lack of proper structure.

Thus, it is important to manage crawl information properly so that we have

quick access to various statistics and related information.

2. Access to rich information: A client application will benefit greatly if the

framework can provide access to information beyond the basic crawled pages. In

standard crawling tasks, once the crawler is done crawling, the collected pages

and sometimes the WebGraph are the only information available to the client

application. Consider a query such as get review pages from top 10 popular sites

for entity X. Such a query is difficult to answer with a database or a WebGraph

as none of these can model complex relationships.

We now present a novel data structure called the FetchGraph which can

address the challenges mentioned in this Section.

6.4 FetchGraph: Novel Information Network for
Review Crawling

We propose a rich data structure called the FetchGraph, which is a directed heteroge-

nous graph or an information network that can model arbitrary relationships between

different components of a data collection problem. Figure 6.2 shows an example of

a FetchGraph for the problem of collecting review pages for a single entity, iPhone

5. Note that this is a partially complete graph used as an example. The first thing

we would notice from Figure 6.2 is that the FetchGraph provides an intuitive view

of the entire data collection problem as it models the complex relationships between

the different components (e.g. entities, pages, terms, sites). Each component is repre-

sented by a simple node in the graph and relationships are modeled using edges. This

rich information network has several interesting properties that helps provide balance

between efficiency and accuracy and helps with application related querying.

One simple data structure to access various statistics. The FetchGraph pro-

vides fast access to all sorts of statistics. For example, based on Figure 6.2, it is

obvious that in order to obtain the term frequency of a word in a given page, we only

need to lookup the weight of the edge connecting the relevant content node and term

node. We would not have to repeatedly compute the term frequencies nor do we need

to maintain a separate data structure in order to track page related terms.

Provides access to global statistics. Since the FetchGraph keeps track of different

components over the course of collecting review pages for many entities, we have access

to global statistics. For example, for normalization of the Srev(pi) scores, we can now

use global information such as the global maximum term frequency instead of relying

on just local information. Using global information to compute key statistics could

lead to higher accuracy.

Models complex relationships which can be persisted. As the FetchGraph is

able to model complex relationships between different components in a data collection

problem, the client application can leverage this information network to answer all

sorts of interesting questions. This is because once the graph has been constructed it
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Figure 6.2: Example FetchGraph for a single entity - iPhone 5. Dashed edges
indicate compound edges. Gray nodes indicate logical (conceptual) nodes.
Term nodes represent terms in the combined vocabulary of the data collection
task (e.g. page content and URL tokens).

can be persisted and accessed at a later time for use by the client application. For

example, for a given entity, the client application may only want to consider the top

N relevant review pages from each site. Using the FetchGraph we can retrieve such

pages by first accessing all pages related to the given entity. Then, we can find the

site that each page belongs to and rank pages from each site using the Srev(pi) scores.

6.4.1 Components of the FetchGraph

Intuitively, in a web (data) page collection problem, the goal is to collect a set of web

pages. Each of these pages originate from a specific site. Since this is a focussed data

collection problem, each page is related to a specific topic or entity. The page and its

URL, search queries, etc. are at the very core made up of a set of terms. Based on

this, we define 5 core node types of the FetchGraph: (1) entity nodes, (2) page nodes,

(3) term nodes (4) site nodes and (5) logical nodes and 2 application specific logical

nodes: (6) OpinVocab node and (7) query node.

In formal terms, we denote entity nodes as ED = {ei}ni=1 where D represents a

domain type, page nodes as P = {pi}ki=1, term nodes as T = {ti}zi=1, site nodes as

S = {si}mi=1 and logical nodes as LX , where X represents the type of logical node.

Figure 6.2 graphically illustrates how these nodes are connected.

A logical node, is a conceptual node encapsulating a sub-component, a concept or a

cluster of information. With this node, we can easily add semantics to the FetchGraph.

The OpinVocab node, LOpinV ocab is a logical node that encapsulates all terms in the

review vocabulary (to help with review relevance scoring). LOpinV ocab would thus have
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edges to all relevant term nodes with edges holding the weight contribution of each

term in the vocabulary. The query node, LQueryek is a logical node encapsulating the

entity query for each ek (to help with entity relevance scoring). To model the contents

of an entity query, there is an edge from Lqueryek to all relevant term nodes.

A page is made up of several sub-components (e.g. URL, title, contents). We model

the URL and contents of a page using logical nodes as both are used for relevance

scoring. LURLpi represents the URL node and LContentpi represents the content node.

Both these logical nodes link to term nodes to model term composition.

6.5 Efficient Review Crawling with FetchGraph

In this Section we will discuss how we use the FetchGraph for the review page collection

task. The key steps in our instantiation of the framework include (1) finding initial

CRPs, (2) expanding the CRP List, (3) Growing the FetchGraph and (4) Pruning

the FetchGraph to eliminate irrelevant pages. The first two steps are independent

of the FetchGraph and is already explained in Section 6.2. The main challenge in

using the FetchGraph is how to grow the FetchGraph to include pages and establish

relationships and how to compute relevance scores (to prune irrelevant pages) with

respect to the FetchGraph. We will now focus on elaborating these two steps.

6.5.1 Growing the FetchGraph

Algorithm 5 outlines the construction of the FetchGraph for review page collection.

We start with the set of CRPs collected for a given entity ek. For any incoming page,

we check if the page already exists in the graph (based on page URL). If a page is an

existing page, then only the ownership of the page to entity ek is determined. Entity

ownership is revised if the Sent(pi, ek) score is larger for the current entity than the

existing one (line 3-5).

Algorithm 5 GrowFetchGraph(CRPListek , ek, G)

1: for CRP ∈ CRPListek do

2: pi ← GetPageNode(CRP,G)

3: if pageExists(pi, G) then

4: SENT (pi, ek) = ComputeEntityRel(pi, ek)

5: UpdateEntityOwnership(pi, ek, SENT (pi, ek))

6: else

7: if NOT isNearDuplicatePage(pi, G) then

8: AddNode(pi, LURLpi
)

9: AddNode(pi, LContentpi
)

10: AddEdge(LURLpi
→ T ) {U}RL tokens is made up of terms

11: AddEdge(LContentpi
→ T ) {c}ontent is made up of terms

12: Srev(pi) = ScoreRevRel(pi) {r}eview page relevance

13: Sent(pi, ek) = ScoreEntRel(pi, ek) {e}ntity relevance

14: AddEdge(ek → pi) {an entity owns the page}
15: AddEdge(pi → sk) {page is part of a site}
16: else

17: AddToDuplicateList(pi, G)

18: end if

19: end if

20: end for
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If a page does not already exist in the graph, a check is done to see if the page is a

near duplicate page to an existing page (line 7). This usually happens when there are

multiple URLs linking to the same page. If a page is a near duplicate, then this page

is added to the duplicate list of the existing page (line 17). Otherwise, a new node

pi, representing this new page is created. We will not discuss how near duplicates are

detected since this is not the focus of our work and we also turn this feature ‘off’ during

evaluation. Next, the page related logical nodes described in the previous section are

created. These nodes are added to the parent page, pi (line 8-9). Then, these logical

nodes are linked to relevant term nodes based on the textual contents within these

components. For each component, there will be one edge for each unique term and

the term frequencies are maintained at the edge level (line 10-11).

Once a page is added to the FetchGraph, the next step is to score the new page in

terms of review page relevance, Srev(pi) and entity relevance, Sent(pi, ek) (line 12-13).

Note that for Srev(pi), only the unnormalized scores are initially computed.

After scores have been computed, other relationships in the FetchGraph are estab-

lished. An edge from the entity node to the page node is added to indicate entity

ownership (line 14). Entity ownership of a page depends on which entity the page

appeared as a CRP. We also link the page with the site that it originates from (line

15).

Once all CRPs for all entities have been added to the FetchGraph, the review page

relevance score, Srev(pi) is normalized using dependency information from the graph.

Then the graph is pruned based on the Srev(pi) and Sent(pi, ek) relevance scores .

This leaves us with a set of high confidence relevant review pages. Although pruning

here is done at the very end, it can also be performed periodically as the graph grows.

6.5.2 Computing Srev(pi) using FetchGraph

In Section 6.2.3.1 we presented our proposed method for scoring a page in terms of

review page relevance using a review vocabulary and several normalization strategies.

This vocabulary is modeled in the FetchGraph as described earlier where the terms

and their contributing weights are encapsulated by LOpinV ocab.

Without the FetchGraph, to compute term frequencies we can use an in memory

table. For this, we would first need to parse the page to obtain textual contents of

the page and then term frequencies can be maintained using a table with a unique

term as the key and frequencies as the entry. Assuming no database is maintained, to

normalize the raw scores we further need to compute statistics such as the maximum

term frequencies for all entity related pages (EntityMax normalization) which would

require access to more pages and term frequencies of those pages. While parsing and

computing these statistics just once may not seem too expensive, we need repeated

access to some of this information (e.g. to compute normalizers) and repeated compu-

tation of the same information is a waste of time and resources. One may argue that

we can keep track of all pages along with all sorts of statistics with just an in memory

table. While this is feasible for a few pages, for large number of pages and entities,

this would quickly become unmanageable and memory intensive. One possibility is to

maintain an inverted index for each page collected. However, inverted indexes can only

provide access to limited statistics. With the FetchGraph however, a page is loaded

98



into memory once for construction of the FetchGraph. After that, page related term

frequencies can be directly accessed from edges linking to relevant term nodes.

Formally, given a page node pi, its content node, LContentpi and the OpinVocab

node LOpinV ocab, let Tc be all term nodes connected to Lcontentpi and let Tov be

all term nodes connected to LOpinV ocab. For simplicity we refer to Lcontentpi and

LOpinV ocab as Lc and Lov. With this, the unnormalized Srev(pi) score with respect to

the FetchGraph is computed as follows:

Srev(pi) =
∑

t∈Tc∩Tov
log2[wt(Lc → t)] ∗ wt(Lov → t)

where Lc → t and Lov → t refer to the connecting edges from Lc to t and Lov to t.

To normalize the raw Srev(pi) scores, we have several options as proposed in Sec-

tion 6.2.3.1. Given P as all pages in the FetchGraph, let Pek be all pages connected

entity node ek and let Ps be all pages from a particular site s. With this the normalized

scores are defined as follows:

GlobalMax : SrevGM (pi) =
Srev(pi)

max
p∈P

(Srev(p))

EntityMax : SrevEM (pi) =
Srev(pi)

max
p∈Pek

(Srev(p))

SiteMax : SrevSM (pi) =
Srev(pi)

max
p∈Ps

(Srev(p))

SiteMax + GlobalMax: SrevSM+G(pi) = 0.5 ∗ SrevSM (pi) + 0.5 ∗ SrevGM (pi)

EntityMax + GlobalMax: SrevEM+G(pi) = 0.5 ∗ SrevEM (pi) + 0.5 ∗ SrevGM (pi)

The subscripts GM, EM and SM represent GlobalMax, EntityMax and SiteMax nor-

malization respectively.

6.5.3 Computing Sent(pi, ek) using FetchGraph

In Section 6.2.3.2, we propose to compute Sent(pi, ek) based on the similarity between

the page URL and entity query using Jaccard similarity. Since a given page can appear

in the CRP list of different entities, we will be computing the Sent(pi, ek) scores for

the same page with different entities. Therefore, there will be repeated access to URL

terms. To manage the URL terms without re-tokenizing it each time, we can maintain

a table in memory with the URL of a page as the key and the list of URL terms as the

entries. While this approach will work very well for a small number of pages, as the

list of URL’s grow (as more and more pages are crawled), the table will become huge

as we maintain separate lists of tokens for each page and the terms can be repetitive

across lists. In the FetchGraph however, there are no duplicate terms as we maintain

one unique node for a given term. The term make-up of a URLs is modeled using an

edge to the relevant term nodes. With this, the growth of the graph is much more

manageable (we show later that the FetchGraph’s growth is linear to the number of

pages).

Given an entity node ek and page node pi, where pi is connected to ek, the Sent(pi, ek)

with respect to the FetchGraph is computed as follows:

Sent(pi, ek) =
TURL ∩ TQ
TURL ∪ TQ
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where TURL contains all term nodes connected to LURLpi (logical node represent-

ing the URL) and TQ contains all term nodes connected to LQueryek (logical node

representing the entity query).

6.6 Experimental Setup

We evaluate our proposed OpinoFetch framework in terms of accuracy, give insights

into efficiency and provide examples of application related queries that the FetchGraph

can answer. For this we use three different domains - electronics, hotels and attractions

where each of these domains is quite different from one another.

Dataset and Queries. The electronics domain is highly popular with reviews in

a variety of sources ranging from personal blog sites to expert review sites. The

hotels domain while not as popular as electronics, has abundance of reviews on well

known travel sites such as Hotels.com and Tripadvisor. The attractions domain is

least popular on the web and the available reviews in each source is often incomplete.

Even on big sites like Tripadvisor, the reviews in the attractions domain only covers a

small portion of all available attractions. In our dataset, we have a total of 14 entities

for which reviews are to be collected (5 hotels; 5 electronics; 4 attractions).

In finding the initial set of CRPs, we use Google as the general search engine. Other

search engines can certainly be used to find initial CRPs. However, our focus is on

how we can identify relevant review pages from such starting points accurately and

efficiently. In expanding the initial CRP list, we explore the top 10 ranked URLs

(details in Section 6.2.2). For the entity query (search keywords) used with the search

engine we used a descriptive query consisting of the full entity name, address (if loca-

tion specific) and the term reviews. Thus, for an attraction such as Universal Studios

in Florida the resulting query will be Universal Studios, Orlando Florida Reviews.

Throughout our evaluation, we primarily use the top 30 Google results for each entity

query.

Evaluation Measures. As our task is more of a hyper-focused data collection task,

the actual pages that need to be collected are already close to the starting points.

Thus, the difficulty is in finding the actual relevant content around the vicinity of

these starting points. With this, we focus on a short range crawl rather than a long

crawl. We show later that distant URLs yield in much lower gains in recall. Topical

crawlers are usually evaluated by harvest rate which is the ratio between number of

relevant and all of the pages retrieved [92, 43]. While it is interesting to see shifts in

precision over number of retrieved pages for a long crawl, this is not so interesting for

a short crawl where the number of pages crawled per entity is not very large. Thus,

we measure precision and recall after the FetchGraph has been pruned.

Defining true recall for this task is extremely difficult as there is no mechanism to

obtain all relevant review pages about an entity from the web, nor is it easy to crawl

the entire web and identify review pages pertaining to the entities in our evaluation

set. Given that most pages on the web are indexed by well known search engines, we

approximate recall by constructing a gold standard judgment set that looks deeper

into entity specific search results.

Specifically, to construct our gold standard judgments, for each entity query in our

evaluation set, instead of using the top 30 results, we explore the top 50 results and
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follow links up to a depth of 3 in order to build a link repository. We then ask human

judges (through crowdsourcing) to judge if a given URL points to a review page for

the named entity. We had a total of 57,154 unique (entity query + URL) pairs which

called for 171,462 judgment tasks using 3 human judges for each task. The majority

voting was used as the final judgment. To control the quality of the judgments, we

introduced 50 gold standard judgment questions where for every few judgment tasks

presented to the workers there will be a hidden gold standard question. If a worker

misses too many of these gold standard tasks, then the contribution of this worker will

be excluded. Precision and recall for an entity ek are computed as follows:

Prec(ek) =
#RelPages(ek)

#RetrievedPages(ek)

Recall(ek) =
#RelPages(ek)

#AllRelPages(ek)

While the constructed judgments can provide a good estimate of precision and

recall, the actual precision and recall is actually higher. This is because, first,

there are many URLs with minor differences that point to the same content.

The precision and recall would be higher if we capture all of these URLs even

though in reality, capturing at least one is equally good. Resolving duplicates for

each URL in this judgment set would be expensive and is unnecessary because

ultimately what matters is the relative improvement in performance. Next,

other than prioritizing the URLs to be crawled, we do minimal filtration on

the specific URLs. Therefore, our judgment set can include pages in other

languages. While it is easy for a human to judge if some of the pages in other

languages contain reviews or not, our framework will most likely prune pages

that are non-English and this lowers performance values.

Baseline. Since there is no other relevant work that has explored the collection

of entity specific review pages, we do not have a similar competing method for

comparison. We thus use Google results as a baseline as these search results are

deemed relevant to the entity query and are ‘close’ to the actual information

need.

During evaluation, we turned off several extended features: We turned off the

duplicate elimination module so we do not tie duplicate pages together (which

would improve precision); We place no restrictions on the type of URLs followed

as there could be an many file types that can be eliminated; We also do not

force crawling of English only content to enable future work in other languages.

6.7 Results

By default, the following are the settings used throughout our evaluation unless

otherwise mentioned. Number of search results, σsearch = 30; CRP expan-

sion depth, σdepth = 1; Review normalization method: EntityMax+GlobalMax;

Minimum review relevance score: σrev = 0.1, Minimum entity relevance score:

σent = 0.1; σrev and σent are the only two thresholds to be empirically set where
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Recall

# of search results 10 20 30 40 50

Google 0.083 0.030 0.041 0.051 0.058

OpinoFetch 0.017 0.136 0.179 0.209 0.236

OpinoFetchUnnormalized 0.069 0.111 0.142 0.161 0.184

Precision

Google 0.301 0.271 0.252 0.247 0.229

OpinoFetch 0.311 0.287 0.274 0.261 0.255

OpinoFetchUnnormalized 0.402 0.364 0.343 0.322 0.311

# of pages shortlisted

Google 10 20 30 39 49

OpinoFetch 53 95 127 155 180

OpinoFetchUnnormalized 36 66 86 104 121

Table 6.1: Performance at different search sizes. OpinoFetch &
OpinoFetchUnnormalized are based on best F0.5 scores.

higher values yield in better precision and lower values favor recall. Our method

is referred to as OpinoFetch.

Google Search vs. OpinoFetch. In Table 6.1, we report performance com-

parison of OpinoFetch, OpinoFetchUnnormalized and Google at different search

result sizes. OpinoFetch uses EntityMax+GlobalMax normalization of Srev(pi)

and OpinoFetchUnnormalized does not use any normalization. Both these runs

are based on the best yielding F0.5 scores.

Based on Table 6.1 we see that the precision of Google search is low even

though the number of search results is not very large (between 10 - 50). If we

just considered the top 10 search results (where the precision is highest), on

average, 7 out of 10 results do not link to relevant review pages. This shows

that most of the search results are not direct pointers to review pages or are

completely irrelevant to the entity query. Then, we can also see that with Google

results there is limited gain in terms of recall even with increasing number of

search results. This goes to show that there exists many more relevant pages in

the vicinity of the search results then what the search engine sees as relevant.

One may argue that an entirely different query would improve these results.

However, general search engines like Bing and Google serve typical users who

want results fast and tend to use less descriptive queries than what was used in

our evaluation. Therefore, we expect the search results using our entity query to

be more accurate compared to a non-descriptive query (e.g. Universal Studios

Reviews which shows mixed results between the one in Florida and Hollywood).

From Table 6.1, we can also see that the performance of OpinoFetch (both the

normalized and unnormalized versions) is significantly better than plain Google

search. The recall steadily improves when more and more search results are

used. This shows that there is a lot of relevant content around the vicinity

of the search results and our approach that looks for such relevant content is

effective in that we are able to identify a lot of these relevant review pages. As

we pointed out in Section 6.6, the actual recall and precision values would be
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higher if we discount redundancies and language barriers.

Does normalizing Srev(pi) yield in better performance? In this work, we

have assumed that by leveraging the dependencies in the FetchGraph, we can

make more accurate review page relevance predictions. Our review page rele-

vance score, Srev(pi), uses dependencies in the FetchGraph to obtain normal-

ization scores. From Table 6.1, we see that the use of normalization maintains

higher recall than without normalization. Observe that OpinoFetchUnnormal-

ized prunes many more pages than OpinoFetch (including many relevant pages),

artificially increasing the precision, but the recall is adversely affected. By us-

ing dependency information from the FetchGraph, we actually avoid pruning

pages that seem irrelevant with unnormalized scores but are actually relevant.

This this why OpinoFetch has better recall than OpinoFetchUnnormalized even

though both have the highest F0.5 scores.

How many levels to explore? By default, in our evaluation we use σdepth =

1. Now, we look into how much improvement we see in terms of recall by

following links at different σdepth levels. We fix σsearch = 30 and compare gain

in terms of recall at different search depths. The results are shown in Figure 6.3.

Notice that we gain the most in terms of recall by just analyzing links within the

search results (σdepth = 1) and as we follow links that are further away from the

search results, the gain in recall keeps dropping. While the search results itself

may not be direct pointers to review pages, there are actually many relevant

review pages that are close to the search results and as these links are discovered,

recall significantly improves. On the other hand, as the crawler digs deeper and

deeper, the relevance of the links followed to the target entity (i.e. entity query)

declines and therefore the gain in recall is also much lower. Thus, the best crawl

depth is σdepth = 2 as crawling further does not improve recall significantly.

Also notice that the attractions domain gains the most in terms of recall at

every level. This is because reviews in this domain are sparse and any additional

links followed yields in more review pages compared to just the search results

which had very low precision and recall to start with.

Is one domain harder than another? While collecting review pages may

seem like a generic task for all entities, the difficulty in collecting reviews in

one domain can be quite different from another. In our evaluation, we have

observed that collecting reviews from the attractions domain was most difficult

with lowest precision and recall as shown in Figure 6.4. One reason for this

is because the attractions domain has relatively fewer reviews and review sites

compared with the other two domains. Thus, there is a higher likelihood of col-

lecting and following links to completely irrelevant pages. More importantly, we

have observed a lot more ambiguity in the attractions domain compared to the

electronics or hotels domain. For example, one of our entities in the attractions

domain is Disneyland Park Anaheim California. Based on our investigation,

we noticed many unrelated entities with their own review pages that carry the

name of this entity. Examples are review relates to Space Mountain Disneyland
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Figure 6.3: Gain in recall at different depths using OpinoFetch.
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Figure 6.4: Precision and recall of Google and OpinoFetch in different domains
with σsearch = 30

Park (a fun ride) and Fairfield Inn Anaheim Disneyland Park Resort (a hotel).

Best normalization method for computing Srev(pi). To determine the

best normalization strategy of Srev(pi), we look into the precision and F0.5

scores using different strategies across σrev ∈ {0.1, 0.3, 0.5}. We set σent = 0

to turn off pruning based on entity relevance. The results are summarized in

Table 6.2. First, notice that all normalizers improve precision of the results

and is especially clear for attractions domain. Next, we see that the methods

that incorporate EntityMax have higher levels of precision than the ones that

incorporate SiteMax. This is reasonable, because a popular site like Tripadvisor

would cover entities from different domains (e.g. hotels and attractions). Thus,

the maximum the Srev(pi) score from such a site may be too high for sparsely

populated domains such as attractions resulting in unreliable normalized scores.

This is why the attractions domain has the lowest precision when we use the

SiteMax normalizer.

EntityMax uses the maximum score of pages related to one entity and thus

the score gets adjusted according to entity popularity. Interestingly, Entity-

Max+GlobalMax performs slightly better than EntityMax in terms of precision
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Hotels Attractions Electronics Average

P F0.5 P F0.5 P F0.5 P F0.5

EM + GM 0.356 0.218 0.346 0.152 0.378 0.316 0.351 0.229

SM + GM 0.261 0.226 0.201 0.156 0.338 0.318 0.264 0.234

EM 0.350 0.229 0.311 0.162 0.374 0.315 0.337 0.235

SM 0.238 0.222 0.161 0.145 0.325 0.317 0.240 0.228

No Pruning 0.218 0.220 0.115 0.124 0.294 0.302 0.209 0.215

Change in precision over no pruning

EM + GM +63.03% +200.28% +28.38% +97.23%

SM + GM +19.47% +74.31% +14.91% +36.23%

EM +60.34% +169.87% +26.94% +85.72%

SM +8.87% +39.56% +10.44% +19.62%

Table 6.2: Avg. precision (P) and F0.5 across σrev ∈ {0.1, 0.3, 0.5} with
different normalizers. EM=EntityMax; SM=SiteMax; GM=GlobalMax

likely because we also use the global maximum which boosts the scores of densely

populated review pages and reduces the scores of sparsely populated ones.

6.7.1 Site Coverage

One could argue that it is possible to obtain reviews about all entities in a

particular domain (e.g. hotels, electronics, etc) just by crawling a few major

opinion sites. However, based on our observation, even entities within the same

domain can have a very different set of review sources and thus just a handful

of opinion sites would not cover all reviews about an entity. We would thus like

to show that OpinoFetch can reach out to long-tail reviews that we would not

be able to obtain by just crawling a few major opinion sites. We refer to this

analysis as site coverage.

For the site coverage analysis, we run OpinoFetch (with a crawl depth of 2)

using the top 100 search results from Google for 4 entities within the electronics

domain. We then compile a list of sites for URLs deemed relevant by OpinoFetch

for each of the 4 entities. In creating the review site list, we eliminate all redun-

dancies and normalize international sites and sub-domains (e.g. asia.cnet.com,

reviews.cnet.com and www.cnet.com would be converted into cnet.com). With

this, we have a unique list of review sites for each entity. Given this list, we

categorize all sites that appear in the top 20 search results of each entity as

major opinion sites. Since users typically only look at the first few pages of the

search results, Google tends to rank all the sites deemed relevant and important

before other ‘less important’ sites. Thus, this strategy of considering sites that

appear in the top 20 search results as the major opinion sites is reasonable. All

other sites found using OpinoFetch are then regarded as long-tail sites.

Table 6.3 shows the distribution of sites for all 4 entities and Table 6.4 shows

examples of major opinion sites and long tail review sites for two of the en-

tities. Based on Table 6.3, we can see that in all cases, more than 50% of

the relevant review pages are from long-tail sites. This goes to show that
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Entity Type Major Opinion Sites Long Tail Sites # Unique Relevant Sites

Apple iPhone 64GB 4S 28.26% 71.74% 46

Garmin Nuvi 205 25.00% 75.00% 20

HP Touchpad Tablet 16GB 32.35% 67.65% 34

Nikon D5100 18.84% 81.16% 69

Table 6.3: Distribution of major opinion sites vs. long tail sites. Note that all
sites are unique accounting for sub-domain differences, internationalization
and any form of redundancies.

Entity Type Major Sites Long Tail Sites

Nikon D5100

target.com cameras.pricedekho.com
reviews.bestbuy.com club.dx.com
ebay.com digital-photography-school.com
costco.com kenrockwell.com
consumerreports.org nikondslrtips.com
pcmag.com photographylife.com

HP Touchpad
16G Tablet

reviews.officemax.com webosnation.com
newegg.com anandtech.com
computershopper.com pcpro.co.uk
engadget.com pocket-lint.com
expertreviews.co.uk forum.tabletpcreview.com
pcworld.co.uk winnipeg.kijiji.ca
wired.com tabletconnect.blogspot.com

Table 6.4: Example of major opinion sites and long tail review sites for Nikon
D5100 camera and HP Touchpad 16GB Tablet.

there are a lot of reviews that exist in a variety of different sources than

just the major opinion sites. Also, note that the number of sites contain-

ing relevant reviews about the entities are very different even though they all

are electronics. An example of a review page from a long tail site is http:

//www.kenrockwell.com/nikon/d5100.htm for the Nikon D5100 camera. An-

other example is http://www.webosnation.com/review-hp-touchpad for the

HP Touchpad 16GB Tablet. Both these sites contain personal reviews on the

corresponding products which will be a value add when aggregated with reviews

collected from all other sources.

6.7.2 Time and Memory Analysis

The OpinoFetch framework is developed in Java. For all experiments we use a

2x 6-core @ 2.8GHz machine with 64GB memory.

One key advantage of using the FetchGraph is its ability to keep most in-

formation related to the data collection problem encapsulated within a single

heterogenous network. This can range from representing information about en-

tities to individual terms within the data collection vocabulary. With this, it is

quite possible for the network to grow too large too fast and not fit in memory

for processing. In Figure 6.5, we can see that the FetchGraph’s growth is ac-
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Figure 6.5: Growth of FetchGraph with respect to number of pages collected.

+FetchGraph -FetchGraph
Srev(pi) (unnormalized) 0.085ms 8.62ms
EntityMax Normalizer 0.056ms 4.39s

Table 6.5: Average execution time in computing Srev(pi) & EntityMax
normalizer with and without the FetchGraph.

tually linear to number of pages collected and this is without any code related

optimization or special filters (which can decrease overall nodes created). If

we added 1 million pages to the FetchGraph and assume that each node and

edge are represented by objects of size 50 bytes (base object is 8 bytes), the

resulting FetchGraph would be approximately 20GB, which is still manageable

in memory and would only reduce in size with various optimizations.

Another advantage of using the FetchGraph is efficiency in information access.

When we need access to dependency information (e.g. in computing normalizers

for Srev(pi)) or repeated access to various statistics (e.g. page related term

frequencies), it is not possible to obtain such information easily or efficiently

without a proper data structure. Due to the versatility of the FetchGraph, once

a page gets added to this information network, it becomes easy to access all

sorts of information from the network.

Table 6.5 shows execution time of computing the unnormalized Srev(pi) score

and execution time for computing the EntityMax normalizer using the Fetch-

Graph and without it (averaged across all domains). It is clear that even to

compute the unnormalized Srev(pi) it would be quite expensive to repetitively

compute and recompute these scores without any supporting data structure.

This becomes worse when we normalize the scores as seen in the time to com-

pute the EntityMax normalizer without the FetchGraph. The execution time

utilizing the FetchGraph is notably lower as the page is only loaded into mem-

ory once and all other statistics can be obtained by accessing the FetchGraph

directly. While it is feasible to use a database for some of these tasks, the Fetch-

Graph is an in memory data structure and thus is much faster than accessing

the database especially when large joins are expected. Also, since we can sep-
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Electronics (3.92 ms) Attractions (2.60 ms)

Site Srev(pi) # Ent. Site Srev(pi) # Ent.

Amazon 57.90 5/5 Yelp 41.65 4/4

Bestbuy 19.48 5/5 Tripadvisor 32.76 4/4

Ebay 20.71 5/5 Yahoo! Travel 1.92 4/4

Cnet 17.94 4/5 Rvparkreviews 14.21 2/4

Digitaltrends 5.37 2/5 Virtualtourist 6.24 2/4

Techradar 5.83 2/5 Igougo 5.06 2/4

Table 6.6: Snapshot of results for the query select PopularSites(10) from
FectchGraph(D) order by EntityCount ; D=Electronics and D=Attractions.
Srev(pi) represents the cumulative Srev(pi) score for the site.

arate the data collection problem (e.g. by domain), we only need to load the

required networks into memory.

6.7.3 Sample Query & Results

One of the important uses of the FetchGraph is to answer application related

questions. Assuming we have a special query language to query the Fetch-

Graph, one interesting question is: What are the popular review sites in a given

domain?.This query is quite typical of business intelligence applications that

perform analysis on subsets of data. Using the FetchGraph this information

can be obtained by ranking the sites based on indegree information and cu-

mulative per site Srev(pi) scores which would result in popular and densely

populated review sites to emerge at the top.

Table 6.6 shows a snapshot of results requesting top 10 popular sites for the

electronics and attractions domain. In total, there were 77 sites for attractions

and 100 for electronics. First, it is obvious that the list of review websites vary

greatly from domain to domain. Then, we also see that not all sites within a

given domain contain reviews for all the entities. This is intuitive as some sites

may be very specific to a subset of entities (e.g. only cell phones) or some sites

may contain incomplete directory listings or product catalogs. The more striking

fact is that all this information (including score aggregation and ranking) can

be obtained very quickly from the FetchGraph (3.29 ms for electronics and 2.60

ms for attractions).

6.8 Discussion

In our current approach, we rely solely on entity relevance and review page

relevance scores in order to find review pages about an entity. While it is easy

and fairly effective to score the pages in this manner, setting thresholds can be

a bit of a problem as different entities and domains may behave differently with

different thresholds. When this is a concern, our heuristics based approach can
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actually be extended and used in a semi-supervised setting.

The idea is as follows; Instead of treating all search results from a general web

search engine equally, we can use relevant review pages from the top N search

results as training examples. For example, using our current scoring approach,

we can use the top 10 search results from Google to find a set of high confidence

review pages (i.e. review pages that score highly in terms of entity relevance

and review page relevance). These high confidence seed review pages can then

be used as training examples in order to find other relevant review pages from

the search results (and vicinity of the search results). We can use a simple

classifier such as nearest neighbor for this purpose. Training examples can be

incrementally added several times by applying our heuristics scoring method on

pages classified as relevant, again treating the very high scoring pages as training

examples. One advantage of this approach is that we only use heuristics to find

very high scoring pages to serve as training examples. All other pages do not

have to use these heuristics and the relevance in this case would be how close

all other pages are to the sample pages.

6.9 Conclusion

In this chapter, we proposed an unsupervised framework for collecting online

opinions namely reviews for arbitrary entities. We leverage the capabilities of

existing Web search engines and a rich information network called the Fetch-

Graph to efficiently discover review pages for arbitrary entities.

Our evaluation in three interesting domains show that we are able to collect

entity specific review pages with reasonable accuracy in an unsupervised manner

without relying on large amounts of training data or sophisticated Named Entity

Recognition tools. We also show that our approach performs significantly better

than relying on just search engine results and we can achieve higher accuracy

using the dependency information from the FetchGraph. Our analysis shows

that the FetchGraph supports efficient lookup of various statistics and helps

answer interesting application questions, making it a queriable network.

Compared with existing approaches in topical crawling, our approach is prac-

tically oriented, unsupervised and is domain independent, and is thus immedi-

ately usable in practice. The proposed FetchGraph is also highly flexible and

can be extended to different data collection problems such as collecting news

articles about specific topics.

109



7 DEMO - FINDILIKE: PREFERENCE DRIVEN

ENTITY SEARCH

To showcase the power of some of the proposed ideas in this thesis, I developed

a web demo system called FindiLike. This system is capable of finding hotels

based on preferences of the user (structured or unstructured opinion preferences)

and beyond search this system also provides analysis capabilities in the form of

opinion summaries as well as tag cloud visualization of reviews. This system was

demonstrated in the context of hotel search in the WWW 2012 demo session

[4]. This chapter provides a brief overview of the demo system as well features

that were demonstrated.

7.1 Introduction

Web search engines enable users to find all sorts of documents based on a topic

of interest. However, with the growth of online content, more and more people

are interested in finding entities or objects instead of just documents. This is

especially true in decision making scenarios where a user would often like to

find entities such as hotels, restaurants and doctors based on their personal

requirements. While current search engines like Google are able to recognize

certain types of entities (e.g. products and location) these search engines have

limited capability in assisting users with decision making. Thus, in a decision

making scenario such as choosing a place to eat or a doctor to see, users would

turn to sites like Yelp which have better support for decision making where

users can select entities of interest based on attributes such as price, location

and service and also by reading the unstructured reviews of these entities.

Similar to Yelp, vertical search systems like Amazon, Hotels.com, and Bing

Shopping facilitate decision making by providing domain specific navigation

capabilities in the form of search filters. These filters which are often based

on structured information (e.g. price, brand and color), help users to quickly

narrow into entities of interest. However, filters based on only structured in-

formation, limit the capability for selecting entities based on the unstructured

opinions of other users, which is another important factor in decision making.

The closest to an ‘opinion filter’ is the ability to limit entities by the overall user

ratings which would still force users to read the reviews to ensure that the opin-

ions within these reviews fulfill their requirements. Suppose, a user was looking

for a place to eat and wanted a quiet restaurant with good service. In this case,

just limiting the entities by the overall ratings would clearly not be useful. The
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user would still need to digest the reviews of all restaurants in consideration

to find those that satisfy this criteria. Further, not all sites have the ‘overall

ratings’ feature which makes it even harder to leverage existing opinions.

In reality, the opinions of other users is an important influencing factor in our

day to day decision making tasks, ranging from which doctor to see to which

of the many smart phones to purchase. However, digesting all the available

opinions is time consuming and can become confusing over time due to the

sheer volume of available opinions. To truly facilitate decision making, opinions

should be leveraged in a more efficient manner and should be tightly integrated

with the core decision making components of a system.

Existing works [93, 22, 23] have attempted to resolve this problem through

summarization of opinions to help users better digest all the opinions. How-

ever, when dealing with a large number of entities, even summaries would get

confusing as users would still need to keep track of how well each entity fulfills

their opinion requirements. Thus, to provide a more direct support for a user’s

decision making task, we have developed FindiLike, a novel system capable of

ranking interesting entities such as hotels based on a set of heterogenous pref-

erences with unstructured opinion preferences being a major component of the

system. The idea behind FindiLike is to allow users to specify key preferences

upfront to the system. These preferences include structured preferences (e.g.

price and distance) as well as unstructured opinion preferences that can be

specified using descriptive keywords (e.g clean rooms, cheap, good breakfast in

the context of hotels). With this, the system then scores relevant entities based

on how well these entities match the specified preferences. What makes this

system unique is that unlike faceted navigation which only filters out ‘irrele-

vant’ entities, FindiLike ranks entities by how well key preferences are matched,

giving users the flexibility in selecting entities based on preference tradeoffs.

On top of that, FindiLike allows users to analyze ranked entities using opinion

summarization tools which is rarely available with other entity search systems.

In the long run, FindiLike aims to evolve into a complete decision making plat-

form for different types of entities. We demonstrate our current system in the

context of hotel search. Additional information about this demo can be found

at: http://info.findilike.com.

7.2 Architecture

In this section, we provide a brief overview of the FindiLike system architec-

ture. FindiLike is a web application that enables users to find entities based

on structured and unstructured set of preferences. Although this ranking task

resembles the entity ranking task studied widely by the information retrieval

and database communities [94], our task is actually quite different. The goal

of entity ranking or entity retrieval is to return relevant entities instead of just
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Figure 7.1: Preference driven entity search architecture. The architecture
supports both structured and unstructured preferences.

documents. The entities are ranked according to how well these entities satisfy

a topic described in natural language text. While the goal of FindiLike is also

to retrieve relevant entities, FindiLike ranks entities in the order of likelihood

an entity matches a set of user preferences rather than just a topic described

in plain text. We thus refer to our special set-up as preference driven entity

search.

Just like any other entity search engines, the FindiLike system consists of sev-

eral key components ranging from the user query component to a data collection

component as shown in Figure 7.1. In brief, the system takes in user specified

preferences and sends these preferences to the relevant scoring engines: opin-

ion preferences to the opinion matching engine and structured preferences to

structured attributes matching module. These scoring engines score a subset of

entities (e.g. all hotels in a particular location) based on how well these entities

match a given preference. The individual preference scores are then combined

and the entities are re-ranked based on these new scores. The summarization

module generates a summary of the top N relevant entities which are then dis-

played to the user. The user then has the option of adding more preferences or

has the option of using the analysis tools to further assist them with decision

making. In the next few sections, we provide more information about some of

the key components of the system.

7.2.1 User Query

The query to the FindiLike system is a set of preferences. These preferences can

be structured by nature such as preference for price, preference for distance and

etc. and can also include unstructured preferences for opinions (e.g. desiring

a clean hotel when finding hotels at a destination). While opinions can be

extracted and used as structured preferences, this information extraction task

would be very costly on a large scale and would also force users to express

preferences on pre-defined aspects of an entity, which is rather restrictive. With

FindiLike, we avoid the need for any information extraction by directly using

the review texts of each entity as will be explained in Section 7.2.2.
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The structured preferences provided by the user can vary greatly depending

on the application domain. In the case of hotel search, we allow the user to

explicitly specify structured preferences on distance from a particular landmark

and the desired price range. While various attributes of an entity may be used

for preference based ranking, we believe that it is only essential to use the most

important attributes for such a ranking feature leaving the rest of the attributes

as filters just as in faceted navigation.

As for the unstructured opinion preferences, we ask users to state their opinion

preferences using a set of descriptive keywords. These keywords would indicate

what the user desires in the different aspects of an entity. For example, to

show desire for clean hotels with friendly staff, the user may specify a query

such as clean rooms, friendly staff or clean place, friendly service. The ability

to specify preferences using free-form text enables users to express preferences

on any arbitrary aspect and for any type of desired opinions. In accepting a

user’s unstructured preferences, different types of user interfaces may be used.

The most general interface would be a single text field that would allow users

to express preferences using natural keywords. Aspects in the query can then

be obtained using various query segmentation techniques. To make this more

practical, in our system, users can specify all their preferences in a single query

box using a special delimiter such as ‘and’ or comma to separate each preference.

We also allow users to incrementally add preferences as needed instead of re-

entering the entire query.

This type of unstructured expression for opinion related preferences, brings

about a new type of query understanding problem. The opinion preferences

expressed by users can often be ambiguous, and there can be multiple ways to

express similar preferences. For example, the expression “good breakfast” is

similar in meaning to “great breakfast”. To help with the matching of opinions,

it would thus be beneficial to expand such a query by adding synonyms of the

sentiment word. To this end, we have implemented ideas from [1] in dealing

with some of the query understanding problems namely for the task of opinion

expansion.

7.2.2 Entity Ranking Engine

For a given class of entities (e.g. hotels in Chicago), the entity ranking engine

takes in a set of preferences and attempts to find entities that match all of

these preferences. Each entity in the given class is scored based on how well it

matches each preference and then the scores are combined. The top N scoring

entities are returned as relevant results. By default, these entities are ranked in

the order of likelihood an entity matches a user’s preferences. More formally,

given a set of preferences, P = {p1, ...pn}, the score of an entity E from class i

is computed as follows:
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S(P,Ei) = 1
n [Sstructured(P,Ei) + Sopinions(P,Ei)]

where, Sstructured(P,Ei) is scoring based on structured preferences such as

price and distance and Sopinions(P,Ei) is scoring based unstructured preferences

which in this case is opinions. All preference scorings are on a scale of 5.

7.2.2.1 Scoring of Structured Preferences

The scoring of structured preferences is based on how well an entity fulfills

the given criteria. Suppose, the preference for the maximum price aspect is

set at $60. If an entity’s price is $70, this entity does not quite fulfill the

given criteria. In such a case, instead of completely penalizing this entity, the

entity is given a score lower than the maximum possible score depending on

how much it violates the criteria. In this example, the entity’s price exceeds the

maximum price by $10, so this entity may be assigned a score of 4/5 instead

of the maximum score of 5/5 for this specific aspect. On the other hand, if

the entity’s price falls within the maximum price requirement, then the entity

immediately receives a full score on this aspect.There are several advantages to

scoring entities in this way as opposed to completely eliminating entities. First, a

user’s requirement can sometimes be unrealistic and complete elimination could

yield in no results being returned, which is not good from the perspective of user

experience. In contrast, scoring entities with respect to the level of violation

would yield in results that most closely match the specified criteria only that

the scores could be much lower, which would then encourage users to change

their expectations. Users may also be willing to loosen their requirements on

some aspects if other aspects of an entity is in their favor. Using the previous

example, while the entity’s price exceeds the maximum desired by $10, this

entity may have matched other preferences extremely well. In this case, the

user may decide to give in to the higher price as all other aspects of the entity

are appealing to the user.

7.2.2.2 Scoring of Opinion Preferences

As we avoid the need for costly opinion mining and information extraction,

the scoring of opinion preferences differs from how structured preferences are

scored. In FindiLike, opinion preferences expressed using descriptive keywords

are scored against the review texts written by both experts and average users.

This matching task is quite different from keyword search in databases [95]

where the goal is to find objects where any of its fields match the given key-

words. Our idea is to represent each entity with the unstructured text of all the

reviews of that particular entity, often available from various websites. Given a

user’s keyword preferences that expresses the desired features of an entity (e.g

clean and safe for a hotel), we then score the relevant entities based on how well
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its reviews match the user’s preferences using a retrieval model as described in

Ganesan & Zhai [1]. The more relevant mentions there are in the reviews of an

entity, the higher the score an entity receives. Since opinions are highly subjec-

tive, it is often difficult to clearly determine if the opinions accurately describe

an entity. However, if different users express similar dissatisfaction and appre-

ciation about an entity, then its more likely that these opinions reflect accurate

descriptions of the entity which is the idea behind our scoring mechanism.

7.3 Demo

We will demonstrate our system in the context of hotel search which is accessi-

ble at http://www.findilike.com. We will demonstrate the following features

of FindiLike:

Ranking hotels by preferences. FindiLike enables users to find hotels us-

ing opinion driven preferences and other preferences such as distance and price.

Suppose the user needs to find hotels close to the Los Angeles Convention Cen-

ter and wants a hotel in a safe location. Using the FindiLike system, the user

can find relevant hotels based on all these requirements. The preference for

proximity to the Convention Center can be specified under the ‘distance’ tab

and the preference for hotels that are said to be safe can be specified using

the main search box using natural keywords such as safe neighborhood. Once

all the requirements have been specified, all hotels in the Los Angeles area are

then scored based on how well each hotel matches the specified preferences.

The results are then ranked in the descending order of the scores as shown in

Figure 7.2 (under ‘YourMatch’). The individual preference scores are displayed

using ‘green stars’.

Summarizing ranked hotels. In traditional web search, a user often nav-

igates into search results based on the relevance of the summary snippets to

the query. Since, in our case, the user is looking for a hotel based on a set of

preferences, a summary of the selected preferences is displayed to the user (as

shown in Figure 7.2). For opinion preferences, snippets from the user reviews

are displayed. For the distance preference, distance of the hotel from the se-

lected landmark along with the total driving time are displayed.

Browsing opinions via summaries. To further assist users in their decision

making process, we help users navigate the opinion space using automatically

generated summaries. In most systems, the closest to an opinion summary is the

averaged overall ratings provided by different users. Unstructured summaries

which can often be more informative [2, 3], is almost never available in existing

systems. FindiLike is capable of generating unstructured summaries of opinions,

so as to help users digest the most common praises or complaints within the

reviews. A snapshot of summaries generated for a hotel in Los Angeles is shown

in Figure 7.3. In addition to summaries, to help users visualize mentions within
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opinions, we also provide a tag cloud representation of the common mentions

under the ‘What’s Buzzing’ tab as shown in Figure 7.4.

List view vs. map view. Two kinds of presentational views are supported

by the system. The list view as shown in Figure 7.2 and a map view as shown

in Figure 7.5. In list view, the results are organized in a flat list ranked by the

overall preference score. This view provides a detail summary of the results and

enables users to easily select links and navigate into other components of the

system. In map view, the results are displayed on a Google Map, with a small

list type summary of the search results on the left. Individual markers need to

be selected to see detailed summaries and to navigate into other components of

the system.

Amati2002
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Figure 7.3: Opinion summaries generated by FindiLike for a hotel in Los
Angeles. Numbers within parentheses indicate the number of supporting
mentions for that particular summary. A click on each summary will display
all the supporting reviews.

Figure 7.4: ‘Clickable’ tag cloud visualization of common mentions within
reviews.
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Figure 7.5: Results in map view. Red markers represent relevant results.
Yellow marker represents the selected landmark.
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8 CONCLUSIONS

8.1 Summary

The main motivation for this thesis was to develop methods towards enabling

Opinion Driven Decision Support capabilities. This is an important problem to

address as opinions are becoming a mainstream source of information in many

of our day to day decision making tasks. Thus, the ability to utilize opinions

efficiently to support all sorts of decision making tasks would greatly improve

user productivity. While there are many aspects of an Opinion Driven Decision

Support System that can be solved, this thesis focusses on areas where essential

tools or methods are absent in practice or in existing literature. Further, to

enable these tools to be usable in practice and easily integrated into existing

applications, the methods proposed in this thesis are made to be general and

lightweight. With this, all the proposed methods are unsupervised and rely on

limited external resource.

The first aspect addressed in this thesis is the ability to find entities based on

existing opinions. This is to significantly reduce the number of opinions a user

would have to explore and digest in order to find one or more entities of interest.

To this end, existing information retrieval models were proposed for this task as

information retrieval models are robust, general and can be redefined in many

ways. Also these models tend to scale up to large amounts of texts which makes

this a highly appealing approach to solving this new search problem.

The second problem that this thesis addresses is methods for generating con-

cise textual summaries of opinions. This is to enable users to get a quick un-

derstanding about the good and bad about a specific topic or entity and this

type of summary also complements the well studied structured summaries. Two

different flavors of abstractive summarization approaches were explored. The

first approach referred to as Opinosis is a graph based summarization frame-

work which relies on structural redundancies between sentences. The second

approach WebNgram is an optimization framework that attempts to maximize

the readability and representativeness of the generated summary. Both these

approaches are unsupervised, lightweight and rely mostly on the existing text

to generate concise summaries.

The third problem addressed in this thesis is automatic collection of opinions

for arbitrary entities. Without a complete set of opinions about an entity, it is
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difficult for users to get a complete understanding of the underlying sentiments.

Further it would be hard for analysis tools to provide accurate information if the

opinions are biased or are very sparse. With this, an unsupervised, lightweight

and practical and method called OpinoFetch was proposed in order to collect

opinions about any type of entity.

To showcase the power of some of these proposed ideas in a decision making

platform, a web demo system, FindiLike was developed. This system is capable

of finding hotels based on preferences of the user (structured or unstructured

opinion preferences) and beyond search this system also provides analysis ca-

pabilities in the form of opinion summaries as well as tag cloud visualization of

reviews.

8.2 Future Work

The Opinion Driven Decision Support System proposed in this thesis opens

up an endless possibility of new research in the areas of Natural Language

Processing, Text Mining and Information Retrieval. The tools and techniques

proposed as part of this platform are just an initial step towards building a

complete ODSS platform. There are many interesting future research directions

that can be further pursued:

8.2.1 Opinion Based Entity Ranking

Improving entity relevance through phrasal search. In the current work

on Opinion Based Entity Ranking, we have looked into the use of information

retrieval models without emphasis on the proximity of keywords. While this

presents a highly general approach to querying, there can be cases where this

approach would result in false positives. For example, if a user looks for hotels

that are ‘close to university’, it is quite possible that the system would return

hotels that are ‘close to airport’ because of matching most of the terms in

the query (except the word ‘university’) at different positions in the opinion

document. If we impose phrase restriction, then we can limit deviation from

the actual query because we require that the query words exist and should also

exist within close proximity. While in theory, this approach seems to be ‘the

way to go’ for this ranking task, in practice however this approach does not work

well because it demands a lot of evidence in which all of the words have occurred

in close proximity. One possible way to address this is to use a “back-off” style

scoring where you first score entities based on the imposed phrase restriction

and then remove this restriction and score based on individual words. With

this, even if the words in the phrase never really occurred in close proximity the

system does not return empty results.

121



Using click-through and query logs to improve ranking of entities.

Since we are logging the queries and click through information using the Find-

iLike web system, we can further study how to improve the ranking of entities

using the available logs. For example, using previous click through information

we can re-rank the search results based on hotels that users have clicked on for

a similar query.

Addressing vocabulary gap between query and reviews. In ranking

entities based on preferences, we currently rely on surface level keyword match-

ing of words in the query and corresponding reviews. This approach does not

consider the true sentiments or semantics within the reviews. While this shal-

low approach works well with many queries or when there is a high volume of

reviews, there are cases where this shallow matching can result in false positives.

For example, in finding hotels with mentions of ‘clean rooms’, a hotel may be

ranked highly even if the user had mentioned “rooms not clean”.

There are several ways in which this problem can be subdued. First, since

users in general would desire entities that have positive ratings, we can first do

a basic sentiment analysis on the reviews and rank entities with more positive

sentiments before those with more negative sentiments. With this, it would be

more likely that the keyword matching on the positively rated entities would

yield in a true positive than a negatively rated one. Methods as proposed by

Wang et al. [21] can be used to decompose the sentiment ratings within the

reviews.

Another way to address this, is to take into account proximity of negative or

unwanted words near the actual query words (referred to as noise words). If a

noise word appears near the query words, then the matching score of the review

to the query should be discounted. The closer the proximity of noise words, the

more the discounting. This would require that we maintain a lexicon of noise

words.

Accounting for review quality in ranking entities. In this thesis, the

quality of reviews used for ranking entities was not taken into consideration.

However, in actuality the quality or validity of opinions within the reviews can

change over time. Consider an example where a very dated review about a

car mentions that the car was “very safe to drive”. A few years down the

road however, the car was recalled due to safety issues. To incorporate such

information, we can encode known facts or issues using a ‘prior’ predicate that

updates the opinions within the reviews. For example all instances of “very safe

car” or “is a safe car” or anything equivalent can be updated to “not a safe

car”. This prior should be able to hold any number of facts and can be updated

over time.

Another possibility is to discount the keyword matching contribution by tak-

ing into the temporal aspect of reviews. With this, the older reviews would have
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a lower ‘match’ contribution (even if the keywords matched perfectly) compared

to the newer reviews.

8.2.2 Abstractive Summarization of Opinions

Scaling up summarizers to work on Big Data. While the summariza-

tion approaches proposed in this thesis are known to work reasonably fast on

a medium pool of review texts, it would be important to understand how well

these approaches would scale up to much larger texts. For example, if we need to

summarize the electronic health records of all patients diagnosed with diabetes

to figure out the major complaints of these patients, then the size of the input

text can get quite large depending on the sample size (e.g. all patients in the

United States diagnosed with diabetes). It is possible to scale up these summa-

rization systems using the map reduce framework and the challenge would be

on how to distribute the summarization tasks and what gain can be expected

in terms of speed of summarization.

Can the summarizers work seamlessly on different content types other

than reviews? While the proposed summarizers have been shown to work

well on review texts, It would also be beneficial to understand if the proposed

summarization methods in this thesis would work with other types of texts

such as Tweets and Facebook comments which are much shorter and noisier or

news articles which are much more well formed. The goal is to see how much

adaptation would be required to cater for other types of content other than

reviews.

8.2.3 Opinion Acquisition

Is supervision necessary for opinion acquisition? The work on opinion

acquisition in this thesis is unsupervised for the purpose of generality and scal-

ability. Most existing focused crawlers however are supervised, requiring large

amounts of training data for each topic. Since supervised approaches tend to be

more accurate, it would be insightful to know if the performance of a supervised

approach is comparable to that of OpinoFetch. If the performances are compa-

rable, then there would be no reason to use supervision especially because we

give importance to generality and domain independence.

Improving recall of collected opinions. One of the most critical (and

difficult) problems in focused crawling is increasing the recall of relevant content.

The same is true for the task of opinion acquisition where we want to collect a

comprehensive set of opinions about an entity. Since in OpinoFetch, we use a

general web search engine as starting point, we could potentially improve the

recall of relevant review pages by exploring a lot more search results (more site
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coverage) and also leverage the search results of multiple web search engines as

well as social media search engines.
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