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ABSTRACT

This thesis presents methodologies for the e�cient assessment of the impact

of statistical variability on the performance of electromagnetic structures and

systems. The proposed techniques are based on the Sparse Grid Collocation

method which is a more e�cient alternative than the standard Monte Carlo

method.

The high dimensionality challenge associated with certain stochastic prob-

lems, de�ned in terms of correlated random variables, is alleviated with a

random-space dimensionality reduction technique that, in combination with

an a-priori sensitivity assessment, results in an accurate technique for the

statistical characterization and yield estimation of stochastic electromagnetic

systems. Two real-world applications demonstrate the bene�ts of the pro-

posed methodologies, a pair of interconnects with random cross-sectional pa-

rameters, and a band pass microwave �lter with randomly positioned loads.

The thesis focuses on methodologies for the assessment of structures ex-

hibiting localized uncertainty, namely random changes in the geometric and

material properties occurring throughout the structure under consideration.

Among the proposed methodologies, a technique is developed for the stochas-

tic electromagnetic macromodeling of two-dimensional subdomains exhibit-

ing geometric and material uncertainty. The methodology makes use of the

theory of polynomial chaos expansion and the concept of a global impedance/

admittance matrix relationship de�ned over a circular surface enclosing the

cross-sectional geometry of the domain of interest to construct a stochastic

global impedance/admittance matrix boundary condition on the surround-

ing surface. Such a method is generalized for the broadband response of the

random domains through a stochastic model order reduction technique based

on the Krylov subspace projection. Numerical examples are used to demon-

strate the attributes of the proposed stochastic macromodel to the solution

of electromagnetic scattering problems by an ensemble of targets exhibiting
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uncertainty.

Macromodeling is also employed for the assessment of signal integrity per-

formance in high-speed interconnect structures exhibiting localized uncer-

tainty. Speci�cally, two applications are studied for demonstrative purposes,

the �rst one concerns a coaxial cable with a random permittivity pro�le and

the second one, a multiconducting interconnect structure with variability

in its routing. In the �rst case, an e�ective stochastic homogeneous model

of the dielectric permittivity is constructed that is used to quantify the in-

duced distortion of the transmitted signal in terms of a random jitter. In

the second signal-integrity application, a methodology based on a passive

parametric macromodeling technique is developed for the predictive analy-

sis of the impact of interconnect routing uncertainty on their transmission

properties.

The last stochastic application presents an expedient methodology for the

predictive analysis of the impact of statistical disorder on the electromagnetic

attributes of periodic waveguides. The proposed methodology makes use of

ideas from the Anderson localization theory to derive closed-form expressions

for the calculation of an e�ective exponential decay ratio that quanti�es the

impact of periodicity disorder on the transmission properties of the wave-

guide. The computational e�ciency of the proposed method over Monte

Carlo based alternatives is demonstrated through a speci�c example involving

a periodically-loaded parallel plate waveguide.
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Chapter 1

INTRODUCTION

1.1 Motivation and Literature Review

The �eld of Computational Electromagnetics (CEM) has reached a high level

of maturity due to the astonishing development of digital computers and

breakthroughs in fast numerical algorithms [3]. As a matter of fact, the the-

ory of Maxwell equations has been well known for over a century [4] and its

understanding has lead to the accurate solution of well-de�ned deterministic

numerical problems in reasonable simulation times. Besides, domain decom-

position methods and parallel programming techniques [5], popularized in

the last decade, allow further speed up in electromagnetic (EM) simulations.

Such advances have played an important role in the boom of computer in-

dustry [6], the development of military applications, the invention of imaging

techniques, and the construction of wireless and radio communication sys-

tems, among many others. For example, the characterization and design

of high-speed interconnects and the quanti�cation of electromagnetic inter-

ference (EMI) e�ects require accurate and fast methodologies that provide

the electromagnetic assessment of the circuits and systems under consider-

ation. Even though important statistical EM applications and techniques

have been developed in the topics of scattering from rough surfaces, wave

propagation in random media [7], and large random cavities, much of the ex-

isting computational machinery is not meant to take into consideration the

manufacturing-induced variability and/or the uncertainty raised by the lack

of detailed information of the structure under consideration. Hence, we see

the opportunity for the development of e�cient statistical techniques that, if

possible, are compatible with commercially available EM solvers and are ca-

pable of assessing the impact of uncertainty in the electromagnetic response

of electronic systems. Some of the ideas that have led to the development
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of the aforementioned statistical applications motivate the stochastic CEM

applications proposed in this dissertation.

1.1.1 Manufacturing-Induced Variability

The increasing tendency of industry toward miniaturization and complexity

of electronic systems results in unintended manufacturing-induced defects in

the geometry and material properties of devices, structures, and systems that

are manifested in the reduction of production yield. The predictive assess-

ment of the impact of such uncertainty to inform and guide the mitigation of

performance and reliability problems requires fast algorithms to comprehend

the statistical component of the electromagnetic problem.

One of the most common practices in dealing with manufacturing-induced

uncertainty is to rely upon the investigation of the "corner" cases of the

pertinent design space. This entails the analysis of the structure for the

extreme values in the ranges of the input parameters. This rudimentary ap-

proach attempts to provide some insight about the electromagnetic response

of the structure and, thus, provide guidance to remedy problematic cases

by either adjusting the design or by demanding better tolerances from the

manufacturer, which often results in higher costs. Clearly, such an approach

does not provide any meaningful answer for the statistical characterization

of the performance of electronic systems. On the other hand, the rigorous

mathematical method to tackle this type of problems is the Monte Carlo

(MC) method. Such method proposes the random generation of samples of

the input parameters that follow a certain distribution, then the computer

model (EM solver) evaluates the output for the set of samples and its his-

togram and corresponding probability density function (PDF) and moments

are estimated (see Fig. 3.1-(a)). The major disadvantage of MC, however,

is the convergence that goes as the inverse square root of the number of

simulations, thus requiring a large number of samples to obtain reliable re-

sults. Considering that electromagnetic simulations of realistic structures are

computationally expensive, the hinderance of such an approach is obvious.

Alternatively, an e�cient Stochastic Collocation (SC) method based on the

Smolyak algorithm [8] that has been broadly researched over the years (e.g.,

[9, 10, 11, 12, 13, 14, 15]) is employed and described in Chapter 2. The
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method is based on multivariate interpolation and it uses an EM solver to

simulate the structure for a given grid of nodes in the random space and,

next, an interpolation of the response is constructed with a given set of basis

functions that can be used to obtain the PDFs of the output parameters and

their corresponding statistical moments.

1.1.2 Lack of Detailed Information

The EM analysis of increasingly complex electronic systems and structures

requires the corresponding geometric information, material speci�cations and

de�nitions of ports and sources. These speci�cations, however, might not be

available at every step of the design process or, even more, they might not be

easily obtained due to the high complexity of the system under consideration.

Under these circumstances, the lack of a complete deterministic information

in the de�nition of a structure for modeling/simulation, can be viewed as a

source of uncertainty in the de�nition of the pertinent EM boundary value

problem (BVP). A clear example of EM structures that present uncertainty

due to the lack of information are large cavity structures where electromag-

netic interference (EMI) and compatibility (EMC) applications need to ac-

count for the uncertainty raised by the partially available information. It

is of particular importance to obtain the average e�ects and probabilities of

failure of systems inside random structures like aircraft cavities [16]. That is

why the methods associated with electromagnetic �elds in cavities have been

extensively explored in the literature and some of them have been compiled

in books like Electromagnetic Fields in Cavities by Hill [17].

In the area of random cavities, reverberation chambers have been exten-

sively used for emissions and immunity measurements and due to the high

sensitivity of the �elds with respect to the operation frequency and geomet-

ric parameters only statistical techniques are appropriate to characterize its

electromagnetic behavior [17]. Over the years, a few authors have tackled

the problem of the sensitivity of cavity �elds from a statistical perspective

[18, 19, 20, 21, 22]. Among them, Lehman [23] and Price [24] derived sta-

tistical models of the electromagnetic �eld variables in complex cavities and

the topic has been studied by Hill [25, 26] with a plane wave integral rep-

resentation of the �elds where variability has been introduced through the

3



plane-wave coe�cients that are assumed to be random variables.

The idea of treating uncertainty induced by the lack of information in large

cavities can be used in other contexts where deterministic solutions have

traditionally been employed. Speci�cally, we propose an e�cient statistical

assessment of the impact of uncertainty in the routing of printed circuit board

(PCB) interconnects that, in their early design stages, the layout speci�city

is usually lacking.

1.1.3 Problem of High Dimensionality of Random Spaces

E�cient alternatives based on the stochastic collocation method have been

used in a variety of electromagnetic problems to assess the impact of the

variability in the EM response of the corresponding system. They include

response surface modeling (RSM) [27, 28] that has been incorporated in the

design process to account for manufacturing variability [29, 30, 31, 27]. Xiu

[32, 13, 14] has proposed a mathematical foundation of sparse grid colloca-

tion for di�erential equations with random input parameters. Klimke [15, 33]

developed an interpolation MATLABr tool [34] based on the sparse grid in-

terpolation scheme that makes use of an adaptive scheme [35] to sample the

random space in an e�cient way. Ghanem and Spanos [36] proposed to ex-

pand mechanical �elds in terms of a set of orthogonal polynomials in the

context of the �nite element method (FEM). Such a technique, known as

polynomial chaos expansion (PC) has been broadly employed in signal in-

tegrity modeling applications by Stievano [37], Manfredi [38, 39], and Rong

[40], among others. Heiss [41] developed a quadrature rule toolbox that has

been used in this dissertation for the calculation of the statistical moments.

The SC-based methods aim at reducing the computational cost of traditional

Monte Carlo by �nding an approximate model of the desired output response

over the space de�ned by the random input parameters. This approximate

model lends itself to faster statistical analysis of the desired outputs. How-

ever, despite their success, the high dimensionality of the input random space

for some of the problems of interest remains as a major bottleneck because the

number of simulations grows exponentially with the number of dimensions in

the case of tensor product grids and polynomially in the case of sparse grids

[13]. While the adaptive sparse grid collocation method (ASGC) reduces
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the number of necessary simulations [35] by selectively sampling the random

space in an e�cient way, the number of sampling points needed may still be

quite large for the case of problems with a high-dimensional input random

space. The high-dimensional model representation (HDMR) approach has

been presented as a promising remedy to this problem [42], by representing

the output as a hierarchical correlated function of the input parameters, cast

in terms of an expansion from lower-order to higher-order components. Its

success relies upon the assumption that the statistical behavior of the output

of a physical system is primarily in�uenced by the �rst few lower-order terms

in the expansion [42].

In this dissertation, another approach is proposed for reducing the dimen-

sion of the input random space and thus the number of simulations neces-

sary for obtaining the statistics of the output response. We call this method

Principal Component Analysis with Sensitivity Assessment (PCASA) and it

constructs a new, reduced random space by taking into account not only the

interdependencies of the input random variables but also the sensitivity of

the output response on each one of the input random variables. Next, ASGC

is used to sample the reduced space and obtain an interpolation of the out-

put in terms of the reduced-space parameters. In this way, the number of

simulations is considerably reduced.

1.1.4 Bene�ts of Macromodeling in Stochastic EM Simulation

The problem of electromagnetic modeling of structures that exhibit random-

ness is one of signi�cant interest to the EM community because of its rele-

vance to several application domains such as remote sensing, EMI/EMC in

electronic systems, and EM wave propagation in random media [43]. For

the case of EM wave scattering by composite random structures the com-

plexity of a Monte Carlo or stochastic collocation numerical solutions are

compounded by the need to generate a discrete numerical model for each

one of the geometries resulting from the sampling of the multidimensional

random space de�ning the randomness of the structure. For example, in the

context of the �nite element solution of the EM boundary value problem

(BVP), a new �nite element grid needs to be generated for each one of the

realizations of the geometry during the sampling of the random space. This
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can be even more challenging for the case of multi-scale structures with �ne

details and intricate geometries. A way to simplify the statistical simulation

is to construct a �xed macromodel boundary condition surrounding portions

of linear, passive EM structures that exhibit geometric and/or material un-

certainty and that can replace the uncertain object in a way that the need

of meshing the entire structure in each iteration of the statistical simulation

is avoided.

For the purpose of this thesis, EM scattering problems by a group of tar-

gets, some of which present uncertainty is considered. Electromagnetic scat-

tering by targets exhibiting uncertainty has been previously studied with the

use of the stochastic collocation method by Chauviere [44] and Zeng [45]. Al-

ternatively, a methodology, based on macromodeling [46, 47] as an e�cient

framework to analyze the stochastic response of targets exhibiting uncer-

tainty is explored. Speci�cally, parametric macromodeling [48] is used as a

means to develop an interpolation of the macromodel in a given parametric

space. Such techniques have been studied in detailed in recent years by Fer-

ranti [49, 50] in the context of signal integrity. In addition, El-Moselhy [51]

has developed a reduced-order macromodeling technique for the characteriza-

tion of interconnects presenting variability, Sumant [52] used an FEM-based

reduced-order macromodeling technique to take into account the uncertainty

in micro electromechanical systems (MEMS), and Vande Ginste [53] em-

ployed a stochastic macromodeling technique to capture the dependencies of

the state-space representation matrices with the input random parameters

for on-chip interconnects stochastic applications. While those approaches

are frequency-domain based, Zadehgol [54] published a work on stochastic

electromagnetic time-domain macromodels.

In this thesis, a macromodeling methodology is proposed as a means to

alleviate the repeated discretization of the computational domain in the nu-

merical solution of the stochastic EM BVP. The proposed methodology makes

use of the mathematical framework of polynomial chaos expansions [55] and

SC. These are combined with the concept of network matrix representation

of passive EM structures to develop a compact stochastic impedance (or ad-

mittance) matrix macromodel on a �xed boundary enclosing each one of the

domains that exhibits randomness.
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1.1.5 Global vs. Localized Variability

A stochastic problem can be recognized as either exhibiting global or local-

ized uncertainty. Global uncertainty is understood as the uniform variability

of random parameters from one structure to the next such that they are

kept constant within each single structure. On the other hand, this disserta-

tion focuses on problems with localized uncertainty, de�ned as the statistical

variability of geometric and material parameters throughout the structure

itself. Examples of EM statistical problems with local variability are wave

propagation in random media like atmosphere, oceans, and biological tissue,

scattering from random surfaces and the assessment of disordered periodic

structures [43, 56]. They have attracted signi�cant attention from the sci-

enti�c community due to their importance in �elds like telecommunication

systems. For instance, Ishimaru [7] has worked extensively in wave propaga-

tion and scattering in random media, statistical models for characterization

of indoor multi-path propagation has been proposed by Spencer [57] and

more recently, the topic of propagation of laser beams in random media has

been explored [58].

In like manner, the topic of scattering by rough surfaces is extensively rich

and of importance in surface physics, remote sensing and radar data inter-

pretation where the feature granularity size is in the order of the wavelength

[59]. Many authors have devoted their research to the study of scattering

form rough surfaces [60, 56, 61, 62, 63]. Among those, Mendez [64], Kim

[65], and Ishimaru [66] studied the occurrence of backscattering enhancement

by random rough surfaces like the case of the moon that is brighter at the

full-moon stage. Wagner [59] used a Monte Carlo simulation in combination

with a fast multipole method to compute the scattering of an EM wave from

a two-dimensional rough surface. Li [67] used a �nite di�erence time domain

(FDTD) method for the investigation on two-dimensional rough surfaces, and

Lai [68] proposed a two-dimensional domain-decomposition FDTD method

to simulate wave scattering by rough surfaces. An additional application

of the study of rough surfaces is the quanti�cation of the power absorption

of roughness induced in printed circuit boards (PCBs) interconnects to pro-

mote adhesion. The e�ect of surface roughness on the current losses has been

studied by Morgan [69]. Hammerstad [70] proposed an empirical formula for

calculating the power absorption enhancement factor based on Morgan's re-
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sult that has been veri�ed with the use of numerical methods [71]. This

theory has evolved over the years and Tsang [72] proposed a model that

calculates the roughness-induced absorption with the use of a second-order

small perturbation method. Such theory has been extended to 3D [73] and

the propagation loss in interconnects has been well predicted for measured

surface pro�le data [74, 75, 76, 77].

In this thesis, we consider the problem of disordered periodic structures.

This topic is of particular importance due to the degradation caused by the

manufacturing-induced statistical disorder on the transmission properties of

periodic structures like arrays of nanoparticles, a promising recon�gurable

waveguide application in the optical regime. The e�ects of such disorder

need to be quanti�ed in order to obtain realistic simulations that agree with

measurements that often di�er form the theoretical predictions [78]. The pro-

posed methodology is based on the localization theory proposed by Anderson

[79] which has been popularized in the solid state community. The theory

predicts an e�ective decay in the propagating modes as a result of the mul-

tiple re�ections that the wave encounters as it travels through a disordered

periodic structure. Kissel [80, 81] utilized Anderson's concepts to study disor-

dered periodic mechanic structures and proposed a small-disorder expression

to account for disorder. Cai [82] proposed a methodology that takes into ac-

count the multiple re�ections between adjacent unit cells to approximate the

impact of disorder in the transmission properties of periodic structures. In

earlier studies [83], it has been demonstrated how this technique can be used

to analyze the e�ects of statistical material/geometric disorder in the elec-

tromagnetic properties of transmission-line based metamaterial structures,

where only lumped circuit elements and transmission-lines structures are

employed to calculate the impact of uncertainty in metamaterial devices.

1.2 Contributions and Organization

The collection of stochastic applications are a sample of potential research

opportunities in the stochastic modeling �eld. In fact, by incorporating so-

phisticated statistical tools to treat typical computational electromagnetic

problems, one can identify a great number of opportunities that will be dis-

cussed in forthcoming chapters. The present dissertation shows the potential
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in this area and the importance of considering stochastic problems for the

CEM community, not only to treat uncertainties form manufacturing pro-

cesses but also to deal with complexity in stages of design when complete

deterministic information is not available. The statistical tools employed in

this document can be used to solve a variety of problems from nanotechnol-

ogy to electromagnetic compatibility applications. This thesis is an attempt

to motivate the usefulness of these tools and show how we can bene�t from

advances in stochastic modeling and statistical analysis, as well as ideas prac-

ticed in other engineering �elds in solving e�ciently complex electromagnetic

problems and problems exhibiting uncertainty and randomness.

Chapter 2 presents the formulation of the sparse grid stochastic collocation

based on Smolyak algorithm and demonstrates the advantages of using this

technique over traditional Monte Carlo through a simple scattering problem.

In Chapter 3, a methodology is presented for the expedient statistical

analysis of the electromagnetic attributes of passive microwave structures

exhibiting manufacturing uncertainty in geometric and material parameters.

In the proposed approach, the computational complexity stemming from the

high dimensionality of the random space that is often necessary to describe

such uncertainty is mitigated by employing a principal component analysis

[84] with sensitivity assessment in combination with an adaptive sparse grid

collocation scheme. The method exploits the inherent dependencies between

random parameters to reduce the number of simulations needed to extract

the statistics of the desired output response. This leads to the expedient es-

timation of production yield by means of the cross-entropy (CE) algorithm,

which provides for fast calculation of the failure probability for a given func-

tionality criterion. The proposed methodology is demonstrated through its

application to the analysis of crosstalk in coupled microstrip lines exhibiting

uncertainty in their cross-sectional dimensions and material properties and

the bandwidth characteristics of a bandpass �lter in the presence of uncer-

tainty.

A methodology for the development of stochastic electromagnetic macro-

models for domains exhibiting geometric and material uncertainty is pre-

sented in Chapter 4. Focusing on the EM scattering problem and the case of

domains in the structure under investigation exhibiting geometric/material

invariance along one of the axes of the reference coordinate system, the

methodology proposes the use of the theory of polynomial chaos expansion
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and the concept of a global impedance/admittance matrix relationship de-

�ned over a circular surface enclosing the cross-sectional geometry of the

domain of interest to construct a stochastic boundary condition, de�ned on

the enclosing circular surface, whose elements are truncated polynomial chaos

expansions over the random space de�ned by the random variables that pa-

rameterize the geometric and material uncertainty inside the domain. Use is

made of sparse Smolyak grids to reduce the computational cost of construct-

ing the stochastic macro-model. Numerical examples are used to demonstrate

some of the attributes of the proposed stochastic macro-models to the nu-

merical solution of electromagnetic scattering problems by an ensemble of

cylindrical targets exhibiting uncertainty in their shape and relative posi-

tioning.

In Chapter 5 the ideas presented in Chapter 4 are extended to enable

computationally e�cient prediction of the broadband response of the random

system by employing a Krylov subspace model order reduction scheme [85].

It is shown that the proposed approach is more accurate than previously

published schemes [86, 87]. Furthermore, the method is employed to treat

multiple scatterers with the use of the transition matrix formulation that

enables the EM scattering solution by an ensemble of random targets can be

simulated with no need of meshing the surrounding media when the media

is homogeneous.

Next, new ideas for stochastic electromagnetic modeling pertinent to signal

integrity applications are presented in Chapter 6. Speci�cally, a computer

model is proposed for the fast predictive analysis of the impact of interconnect

variability in its routing and electrical properties pro�les. Through the use

of a parametric macromodel of the interconnect structure and rational func-

tion interpolation in the frequency domain, the proposed model propagates

structure variability described in terms of a set of properly de�ned random

variables to broadband, stochastic scattering parameters for the transmission

channel. In this manner, an e�cient Monte Carlo analysis can be performed

for the prediction of the statistics of the transient response of the channel

due to local uncertainty.

In Chapter 7, the important class of periodic electromagnetic problems

exhibiting disorder is studied. An e�cient methodology is presented for the

fast electromagnetic analysis of the impact of statistical disorder on their

transmission properties. The proposed methodology makes use of ideas from
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the Anderson localization theory to derive closed-form expressions for the

calculation of an e�ective exponential decay ratio that quanti�es the impact

of periodicity disorder on the transmission properties of the waveguide. With

regard to the quanti�cation of the statistics of periodicity disorder from data

obtained from a limited number of manufactured devices, a nonparametric

probability density estimation process is examined and found to be satisfac-

tory for our purposes. The computational e�ciency of the proposed method

over brute-force Monte Carlo based alternatives is demonstrated through

speci�c examples involving a periodically-loaded parallel plate waveguide.

Furthermore, this numerical study is used to examine the accuracy of cal-

culating the overall change in the propagation constant of the structure due

to several sources of disorder as the sum of the changes calculated with each

one of the sources of disorder considered individually.

Chapter 8 concludes with a summary of the contributions and ideas for

future work.
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Chapter 2

STOCHASTIC COLLOCATION

2.1 Introduction

Maxwell equations describe the physics of electromagnetism and, along with

appropriate boundary conditions and excitations, they can be used to obtain

analytical or numerical solutions for the resulting electromagnetic �elds for a

wide variety of practical applications. In this chapter, we describe the statis-

tical tools that are chosen for the purposes of this work to take into account

the random variability in electrical properties and geometry of structures

under consideration.

More speci�cally, the method used is the stochastic collocation approach.

This method is an alternative to the traditional Monte Carlo method and,

roughly speaking, it is aimed at the interpolation of the output in terms of

the random input parameters by appropriately sampling the random space.

Then, the interpolation is employed in the statistical assessment of our out-

put of interest. This technique is a non-intrusive methodology in the sense

that its application does not require modi�cation of the EM solver. The way

the random space is sampled is dictated by the Smolyak algorithm. More

speci�cally, we rely on the mathematical theory presented by Xiu [13] to

implement the Sparse Grid Collocation scheme used to propagate input un-

certainty to output response. Although much attention has been devoted

to its application, the derivation of the Smolyak algorithm is hardly ever

presented. In this chapter, a brief derivation is shown in Section 2.4.2.
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2.2 Formulation

In order to solve Maxwell's equation under uncertain conditions, we focus in

�nding a random function, u ≡ u(χ,x) : Ω×D → R, where χ = (χ1, . . . , χN)

is a �nite set of N random variables that characterize the uncertainty of the

problem under consideration, Ω represents the random domain, and x =

(x1, ..., xd) are the spatial coordinates in Rd for d = 1, 2, 3. Such function is

a parameterized solution of Maxwell's equations for a given electromagnetic

problem that satis�es

Lxu(χ,x) = h(χ,x), x ∈ D (2.1)

with the boundary condition

B(χ,x;u) = g(χ,x), x ∈ ∂D (2.2)

where Lx is a di�erential operator (in our particular case, Maxwell equations

and their di�erent �avors, e.g., Helmholtz, Laplace, Telegrapher's equations,

and so on) that acts on the spatial domain, B is a boundary operator (bound-

ary conditions) and h and g represent source excitations.

Our goal is to construct an interpolation model of the response u in terms

of those N random variables. Once we have obtained such a model, we

can perform a fast Monte Carlo simulation by evaluating the interpolation,

instead of running the EM solver. Alternatively, the statistical moments of

the output can be obtained with a quadrature rule. In this manner, we can

drastically decrease the simulation time.

Before considering multivariate interpolation, we detail the one-dimensional

interpolation scheme, which is used in Section 2.4 for the development of the

multivariate case.

2.3 Univariate Interpolation

Problem (2.1) presents statistical uncertainty which are carried to the so-

lution u. In order to capture that uncertainty, we will proceed to �nd an

approximation of u in terms of the random variable χ, denoted as û(χ,x).

Such approximation is expressed in terms of a set of some basis functions,
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`k(χ) and function evaluations, u(χk,x),

û(χ,x) ≡ U(u) =
M∑

r=1

u(χr,x)`r(χ), (2.3)

where we let Θ1 = {χr}Mr=1 ∈ Ω be a set of M prescribed nodes in the

one-dimensional random space Ω and U denotes a sampling operator [9, 11].

Without loss of generality, we assume that the bounded support of the ran-

dom variables {χr}Mr=1 is Ω = [−1, 1].

It is clear, then, that �nding interpolation û(χ,x) is equivalent to solving

M deterministic problems (2.1)-(2.2), for each nodal point χr, r = 1, ...,M

in the nodal set Θ1 [13]. Once the interpolation has been constructed, the

moments of random function can be obtained, for example,

E(û)(x) =
M∑

r=1

u(χr,x)

ˆ

Ω

`r(χ)f(χ)dχ, (2.4)

where f(χ) is the PDF of random variable χ.

The integral in (2.4) is numerically evaluated and reduced to

E(û)(x) =
M∑

r=1

u(χr,x)ωr, (2.5)

where weights ωr and the nodes in set Θ are given and chosen according to

the employed quadrature rule, for instance the Gaussian quadrature rule.

2.4 Multivariate Interpolation

The interpolation of a multivariable function is obviously more complex. In

fact, a considerable amount of research has been devoted to �nd appropri-

ate selections of points ΘN = {χr}Mr=1 that give good approximation of the

unknown function to the desired accuracy level [88].

Two types of interpolation grids are explored for the implementation of

stochastic collocation, namely tensor and sparse grids. While the number of

nodes in a tensor grid grows exponentially with the number of dimensions of

the random space, the number of nodes in a sparse grid grows much more

slowly (see [13] for details). In this section, we discuss those approaches
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and focus our attention toward the formulation of sparse grid interpolation

methods that will be extensively used in forthcoming chapters.

2.4.1 Tensor Grid Interpolation

A natural way to obtain the interpolation model is the tensor product of

one-dimensional sets; see equation (2.3) [13]. The approximation of function

u : [−1, 1]N → R is constructed with a tensor interpolation based on the

individual one-dimensional interpolation schemes. The tensor formula is,

û(χ,x) ≡ (U i1⊗· · ·⊗U iN )(u) =

mi1∑

r1=1

. . .

miN∑

rN=1

u(χi1r1 , . . . χ
iN
rN
,x).(`i1r1 ⊗ . . .⊗ `iNrN ),

(2.6)

where the vector of summation indices, r = [r1, . . . , rN ] count the samples in

the grid, while indices i = [i1, . . . , iN ] refer to the level of interpolation. The

higher the level, the more accurate approximation we get and the denser the

grid is. In this method, for each sample χink there are mi1 samples in random

variable 1, mi2 samples in random variable 2, and so on.

The interpolation nodes are commonly chosen to be the roots of the Cheby-

shev polynomials of the �rst kind in order to optimize the integration like in

equation (2.4). The nodes are given by

χir =

{
− cos π(r−1)

mi−1
, if mi > 1

0, if mi = 1
. (2.7)

The grid that results from the use of such nodes is called Clenshaw-Curtis

and is commonly used in numerical integration of high-dimensional spaces.

For the one-dimensional case, the number of nodes mp depends on the

parameter i and is given by

mi =

{
1, if i = 1

2i−1 + 1 if i > 1
. (2.8)

The number of required nodes, M , grows exponentially with the number of

nodes in each dimension. Thus, for a uniform grid, M = mN
i , while, in gen-

eral M =
N∏

n=1

min . Clearly, this number grows quickly for high-dimensional
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stochastic problems. This limitation motivates the implementation of an al-

ternative scheme, called Sparse Grid Interpolation, which reduces the high

computational cost associated with tensor grids.

2.4.2 Sparse Grid Interpolation

The sparse grid interpolation schemes are based on the Smolyak algorithm

[8] which attempts to approximate (2.6) with a simple sum of M weighted

basis functions,

û(χ,x) =
M∑

r=1

u(χr,x)Lr(χ). (2.9)

2.4.2.1 Formulation

In order to explain the approximation taken by Smolyak we proceed with the

consideration of a simple formulation presented by Ullrich [9].

Consider the convergent sequences of numbers, (ai1)
∞
i1=0, . . . , (aiN )∞iN=0.

The limits are denoted by a1, . . . , aN with the conditions a−1 = 0. Therefore,

we can write,

an =
∞∑

in=0

(ain − ain−1). (2.10)

The case of multidimensional functions is extended by considering the ten-

sor grid formulation (2.6). The product of basis functions is analogously

obtained through the product of series limits as follows

a1 · . . . · aN =
∞∑

i1,...,iN=0

N∏

n=1

(ain − ain−1). (2.11)

Smolyak [8] proposed to approximate (2.11) by truncating the in�nite sum-

mation in the following way

∑

i1+...+iN≤q

N∏

n=1

(ain − ain−1), q = 0, 1, . . . . (2.12)

By letting ain ≡ U in(χn), where U denotes a sampling operator, the suggested
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approximation procedure results in an operator which uses samples from a

sparse grid [9, 11] and we are able to approximate tensor formula (2.6) with

a less computationally expensive one,

ûq,N(χ,x) =
∑

i1+...+iN≤q

(U i1 − U i1−1)⊗ . . .⊗ (U iN − U iN−1). (2.13)

2.4.2.2 Sparse Grid

For an easier numerical implementation of the Smolyak algorithm, we can

express equation (2.13) in the form shown in [12],

ûq,N(χ,x) =
∑

q−N+1≤|i|≤q

(−1)q−|i|

(
N − 1

q − |i|

)
U i1 ⊗ . . .⊗ U iN , (2.14)

where |i| = i1 + . . . + iN . This means that we need to consider only those

indices that satisfy the inequality q−N + 1 ≤ |i| ≤ q and thus calculate the

function (our system response) for those nodes that correspond to the sparse

grid given by

ΘN ≡ H(q,N) =
⋃

q−N+1≤|i|≤q

(Θi1
1 × · · · ×ΘiN

1 ). (2.15)

This is the cornerstone of the Smolyak algorithm since it reduces the num-

ber of required nodes in the interpolation by making use of approximation

(2.13). The number of required simulations of a given process is considerably

less than those in the tensor grid interpolation. Several studies have been

presented in literature [13, 14, 89], where the advantages due to computa-

tional savings are quanti�ed. It is common in the literature to de�ne the

interpolation level, k, as k = q − N . This is a measure of the accuracy of

the interpolation. The higher the level, the more points in the grid, and the

more accurate the interpolation is. Furthermore, the grid nodes are chosen

in a nested fashion Θi ⊂ Θi+1, such that, as we increase the level, only a

small set of extra simulations is required.

Finally, the basis functions, Lr(χ), can be found from the initially targeted

formula (2.9) as [88],
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Lr(χ) =
s∑

j=1

(−1)

q−|ij |(
N − 1

q − |ij|

)
.(`i

j
1
r1
⊗ . . .⊗ `i

j
N
rN ), (2.16)

where we select those coordinates that satisfy q − N + 1 ≤ |ij| ≤ q and all

such distinct grid coordinates are added to an index set I and numbered

consecutively form j = 1 to s, such that I = {i1, ..., is} [88].
Sparse grid interpolation is employed in Chapter 3 to assess microwave

structures with uncertainty in their geometry and electrical properties. Next,

a numerical example is presented where sparse grid interpolation is used as

a multivariate quadrature rule (see (2.5)) to demonstrate its accuracy in the

context of calculating the statistical moments of the �elds in an EM scattering

problem.

2.5 Numerical Example

The bene�ts of stochastic collocation and sparse grid interpolation are demon-

strated through an application example that calculates the statistical mo-

ments of the radiation cross section (RCS) for a two-dimensional homoge-

neous dielectric cylinder with random geometry and permittivity. Similar

studies have been presented in the literature [90, 45].

2.5.1 Statistical Characterization

The pro�le of an in�nitely long homogeneous cylinder of constant cross sec-

tion along its length and its permittivity are described in terms of random

variables. For the case of the relative permittivity,

εr = εro (1 + χ1) , (2.17)

where the random variable, χ1, follows a Gaussian distribution with zero

mean.

In the case of its cross-sectional geometry, we assume the cylinder has a

circular pro�le perturbed by the statistical variability. With the z-axis of

the reference coordinate system taken to coincide with the cylinder axis, the

radius of a cylinder is taken to be a periodic function of the transverse-plane
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angle, we can write it in terms of a Fourier series expansion,

ρ (φ) = ρo +
∞∑

n=1

(an cos (nφ) + bn sin (nφ)) . (2.18)

For the case of a circular cylinder, expression (2.18) is reduced to a simple

constant value, ρo. For our purposes, two random variable are introduced to

de�ne the random perturbation from the circular cross section as follows.

ρ (χ2, χ3;φ) = ρo + χ2cos (2φ) + χ3 sin (2φ) . (2.19)

The random variables χ2,3 are i.i.d. (independent and identically dis-

tributed) zero-mean Gaussian random variables. Furthermore, they are also

assumed independent of χ1. In this way, we can characterize a cylinder with

a distorted pro�le and uncertain permittivity in terms of three independent

random variables.

2.5.2 Stochastic Simulation

An integral equation solver is employed for our purposes and the technical

details are presented in Appendix A. The radiation cross section, RCS, is

de�ned by

RCS
(
φ, φinc

)
= lim

ρ→∞
2πρ

|Esc (ρ, φ)|
|Einc (ρ, φinc)| , (2.20)

RCS
(
φ, φinc

)
= lim

ρ→∞
2πρ

|Hsc (ρ, φ)|
|Hinc (ρ, φinc)| , (2.21)

where (Esc,Hsc) denote the scattered electric and magnetic �elds observed

in direction φ and (Einc,Hinc) denote the incident �elds observed in direction

φ [91].

Given the proposed statistical framework, the mean of the radiation cross

section,

µRCS(x) =

ˆ

Ω

RCS (χ,x) p (χ) dχ (2.22)

and its variance,
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σ2
RCS(x) =

ˆ

Ω

RCS2 (χ,x) p (χ) dχ− µ2
RCS, (2.23)

are calculated. Even though Monte Carlo simulation is the most direct way to

estimate the statistical moments, its convergence is very slow and it becomes

impractical for complex structures that require expensive computations. In-

stead, an e�cient multivariate quadrature rule, based on the sparse Smolyak

algorithm is employed for the numerical calculation of the statistics of the

RCS [89, 13]. After invoking (2.5), (2.22) and (2.23) are estimated through

the weighted summation of function evaluations,

µRCS (φ) ≈
M∑

r=1

RCS (χr, φ) p (χr)wr, (2.24)

and

σ2
RCS (φ) ≈

M∑

r=1

RCS2 (χr, φ) p (χr)wr − µ2
RCS (φ) . (2.25)

Equations (2.24) and (2.25) require M function evaluations, where M is

signi�cantly smaller than the number involved in a tensor product grid and

it is determined by the accuracy level. More details on the calculation of the

Smolyak grid nodes, χr, and weights, wr, for a given level of accuracy can

be found in [13] and [41].

2.5.3 Discussion

The perturbed circular homogeneous dielectric cylinder with εro = 5 and

ρo = 0.5 m, is impinged by a plane wave propagating along the +x-axis with

electric �eld amplitude of 1 V/m in the transverse magnetic (with respect to

z) polarization (TMz) or magnetic �eld amplitude of 1 A/m in the transverse

electric (with respect to z) polarization (TEz). For the numerical simulation,

the boundary of the cylinder was divided into 500 sections. The mean and

standard deviation of the RCS are computed for an accuracy level of 4 [41].

The maximum number of nodes in the sparse grid is 69, requiring 69 numer-

ical solutions of the electromagnetic problem. This number of solutions is

considerably less than the tensor grid approach that requires 4913 grid nodes
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for the same one-dimensional nodes, and even less than the number required

by a Mote Carlo simulation that has a convergence inversely proportional to

the square root of the number of iterations meaning that quadrupling the

number of sampled points only halves the error. The number of MC samples

is typically chosen to be larger than 104.

The variance of Gaussian random variables in (2.17) and (2.18) is 0.025

and its mean is zero. Figure 2.1 presents the numerical results where the

mean of the RCS is shown along with error bars of length ±std (standard

deviation). In general, we observe that there is an excellent agreement with

the Monte Carlo result. Also included in the �gure is the calculated RCS for

the deterministic case of a cylinder of radius and permittivity obtained using

the mean values of the three random variables. We clearly see that the mean

RCS does not correspond to the one obtained from the �mean-values simu-

lation�. Therefore, to get accurate simulations of scattering problems with

uncertain targets, we need to take into account the variability in geometry

and electromagnetic properties of objects instead of simply solving for the

deterministic problem de�ned by the mean values of the random parameters.

Tables 2.1 and 2.2 present the percentage errors of the means and standard

deviations with respect to the MC simulation de�ned as follows

error =
1

2π

√√√√
ˆ

φ

|ηSC (φ)− ηMC (φ)|2 dφ, (2.26)

where η denotes the mean and standard deviation of the RCS for the stochas-

tic collocation and Monte Carlo simulations. It is clear that as the level k

increases, the number of simulations increases as well as the accuracy. This

parameter can be easily used for convergence assessment of the approach

due to the nested construction of the sparse grid. In this manner, if a higher

accuracy is required, only an extra number of simulations are needed. On

the other hand, the increasing number of numerical solutions as the random

dimensions increase can still become a computational bottleneck. In view of

this, a dimensionality reduction scheme is considered in Chapter 3 to allevi-

ate the computational burden associated with high-dimensional problems.
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Figure 2.1: Radiation cross section (RCS) for TMz polarization (up) and
TEz polarization (bottom) for a dielectric cylinder with random boundary
given by ρ (χ2, χ3;φ) = ρo+χ2cos (2φ)+χ3 sin (2φ) and permittivity
εr = 5 (1 + χ1). Gaussian random variables, χ1,2,3 have zero mean and
variance 0.025. The error bars have a length of ±std, where std is the
standard deviation of the RCS. The operation frequency is 0.2 GHz. The
stochastic collocation approach is compared with Monte Carlo simulation
as well as the calculated RCS from a cylinder de�ned by the mean-value
parameters of the random variables.
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Table 2.1: Relative percentage error of the mean and standard deviation of
the radiation cross section integrated over the angle φ for the stochastic
collocation approach with respect to Monte Carlo simulation for di�erent
accuracy levels, k, for the case of TM polarization.

k 2 3 4 5
No. Simulations 7 25 69 165

% Error(µ) 0.422 0.233 0.083 0.116
% Error(std) 7.051 2.087 1.304 0.997

Table 2.2: Relative percentage error of the mean and standard deviation of
the radiation cross section integrated over the angle φ for the stochastic
collocation approach with respect to Monte Carlo simulation for di�erent
accuracy levels, k, for the case of TE polarization.

k 4 5 6 7
No. Simulations 69 165 351 681

% Error(µ) 0.365 0.209 0.532 0.197
% Error(std) 5.550 5.766 4.235 3.319

2.6 Concluding Remarks

In this chapter, we have presented the framework for sparse grid stochastic

collocation that will be employed in the following chapters for the proposed

stochastic modeling methodologies. By interpolating a given output function

in terms of input random parameters, it is possible to obtain the statistics of

the output �elds, signals or quantities of interest in an expedient way. Be-

sides, the moments of the �elds can be obtained with an e�cient quadrature

rule based on the sparse grid interpolation as demonstrated with the exam-

ple provided. Therefore, traditionally expensive Monte Carlo simulation can

be avoided in favor of more e�cient methodologies, which is an essential

capability for statistical electromagnetic modeling.
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Chapter 3

RANDOM-SPACE DIMENSIONALITY

REDUCTION TECHNIQUE AND YIELD

ESTIMATION

3.1 Introduction

In this chapter sparse grid interpolation is employed to obtain a statistical

characterization of the performance of microwave structures under uncer-

tainty. Particularly, we take advantage of inherent statistical dependencies

among random parameters to orthogonalize the random space and reduce

its dimensionality. The analysis is also employed to calculate the production

yield of the structures under consideration.

As already discussed in the Chapter 2, stochastic collocation is an e�-

cient alternative to the traditional Monte Carlo method. It aims to reduce

the computational cost of brute force Monte Carlo techniques by construct-

ing an approximate model of the desired output response over the random

space de�ned by the random input parameters and by making use of e�cient

sampling schemes to enable faster statistical analysis. Despite its notable

advantages, it is often the case that the dimension of the random space is

so high that computation e�ciency is still an issue. In fact, the number

of simulations grows exponentially with the number of dimensions of the

random space for the tensor grid interpolation and polynomially for sparse

grid interpolation. Consequently, for this reason it is still an open problem

of continued research interest. For example, a model-order reduction based

approach was proposed recently to tackle the computational cost of a high-

dimensional random space of the input parameters [92]. In advancing new

methods, an important attribute of signi�cant interest to the designer is for

these methods to be seamlessly compatible with commercially available elec-

tromagnetic �eld solvers. This attribute is one that is emphasized in the

methodology proposed in this chapter.

The proposed methodology makes use of the Principal Component Analy-
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sis (PCA) method to relax the computational complexity of an input random

space of high dimension. This approach has been successfully applied in pre-

vious works [93, 94] to orthogonalize extracted equivalent circuit parameters

of microwave circuits. For our purposes, an implementation is proposed

to include an a-priori sensitivity assessment to �weigh� the input random

variables according to their level of impact on the desired output response

quantities [95, 96]. The resulting modi�ed PCA method is called Principal

Component Analysis with Sensitivity Assessment (PCASA). Next, the Adap-

tive Sparse Grid Collocation (ASGC) method is used to adaptively sample

the reduced space and obtain an interpolation of the output in terms of the

reduced-space parameters. In this way, the number of electromagnetic �eld

simulations necessary for the construction of the interpolation of the output

response function over the reduced random space is considerably reduced.

Finally, given the interpolation function of the output, its statistics can be

calculated quickly using Monte Carlo (MC). In particular, the scheme from

[97] based on the Cross Entropy (CE) algorithm is used to e�ciently calcu-

late the production yield of microwave structures in the presence of input

parameter uncertainty.

The chapter is organized as follows. Section 3.2 presents the details of the

proposed methodology. In Section 3.3, two microwave structures, a coupled

microstrip line and a bandpass �lter, are used to demonstrate the attributes

of the proposed method. The chapter concludes with a summary of the key

elements of the proposed methodology.

3.2 Formulation

Consider a stochastic electromagnetic boundary value problem (BVP) with

N input random variables, ξ = (ξ1, . . . , ξN) that, for our purposes, are as-

sumed to be Gaussian, with mean values, µi, i = 1, 2, . . . , N , and standard

deviations, stdi, i = 1, 2, . . . , N . The input random space is rede�ned with

the use of the normalized random variables (RVs), χi, i = 1, 2, . . . , N , de�ned

such that

ξi = µi + stdiχi. (3.1)

25



These random variables are associated with the de�nition of the BVP;

thus, they are associated with geometric and/or electromagnetic properties

of the materials that de�ne the structure to be analyzed. Following [30],

and in the context of propagation of uncertainty from input to output, they

de�ne the �rst of three levels of abstraction. The second level is de�ned by

intermediate parameters that are computed toward the eventual computa-

tion of the electromagnetic response of the structure under a given excitation.

For example, for the case of a multi-conductor transmission line system and

under the assumption of quasi-transverse electromagnetic (quasi-TEM) wave

propagation, the second level of parameters involves the per-unit-length pa-

rameters resistance, inductance, conductance and capacitance matrices that

govern wave propagation in the system. More generally, for a passive mi-

crowave multi-port system, its scattering parameters de�ne the second level

of abstraction. Finally, the third-level parameters are the desired output

response parameters. For example, for the aforementioned multi-conductor

transmission line system, these parameters may be the transient voltages at

the transmission line ports obtained for a speci�c length of the line and a

speci�c set of excitation and termination conditions.

Dimensionality reduction is applied at the �rst abstraction level to reduce

the full-order random space of dimension N to a reduced-order random space

of size n < N . Reduced dimensionality leads to the acceleration of ASGC,

which obtains an interpolation model for the desired output response over

the random space. The aim is to reduce signi�cantly the number of required

simulations for obtaining the statistics of the output response by adaptively

sampling the reduced-order random space. To elaborate, consider a tensor

grid interpolation over the random space. The number of simulations for

the full-order case is mN , where m is the number of sampling points in each

dimension, while for the reduced-order case, mn simulations are required.

Even with a factor of two reduction of the dimensionality of the random

space, the number of simulations for the reduced-order model equals the

square root of those for the original problem. The algorithm used for random-

space dimensionality reduction is described next.
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3.2.1 Principal Component Analysis with Sensitivity

Assessment

First, we take advantage of the correlation, if any, between the input variables

parameters to reduce the random space through an orthogonalization of the

random space. Toward this objective, Principal Component Analysis (PCA)

is used [84]. More speci�cally, the random space is orthogonalized by �nding

the non-correlated components of the random input vector of length N , which

are linear combinations of the original variables. Then, the reduced space is

de�ned in terms of those n < N components with largest variances.

PCA works well for a number of problems where the dimensionality is so

large that it is impossible to use a sparse grid interpolation for statistical as-

sessment. For example, random pro�les can be described as a �nite sequence

of correlated random variables (see Section 7.2) and their principal compo-

nents can be extracted to simplify the statistical characterization. However,

PCA does not take into account the importance of each parameter with re-

spect to the output but only the amount of variation of each parameter.

Clearly, this can be a limitation to correctly de�ne the reduced-order ran-

dom space. Therefore, the selection of the reduced set of variables needs to

be also guided by the requirement for the selected variables to be those with

the most considerable impact on the response. For this purpose, sensitivity

coe�cients, ci, are de�ned to measure the individual impact of each input

variable on the output of interest, u(χ), through the equation,

ci =

√
E(u(χi)− u(0))2

max(
j

√
E(u(χj)− u(0))2)

. (3.2)

It is evident from the de�nition that the sensitivity coe�cient measures the

relative deviation of the output with respect to the non-perturbed case when

only the i-th random variable changes. If m1 is the number of nodes in the

one-dimensional quadrature rule used for the one-dimensional integration in

(2), N ·m1 electromagnetic simulations are required for the calculation of the

N sensitivity coe�cients. These extra calculations increase the complexity

of our algorithm; however, as demonstrated in Section 3.3, they signi�cantly

improve the accuracy of the proposed method.

Once the sensitivity coe�cients are computed, they are used to �weigh�

the parameters, χ′i = ciχi, i = 1, 2, . . . , N . Then, the reduced-order random
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vector, χred ∈ Rn, is found through the transformation

χred = QTχ′, (3.3)

where the superscript T denotes matrix transposition and the matrix Q ∈
RNÖn is built with columns the n eigenvectors of the correlation matrix Σ ∈
RNÖN for the N random variables of the vector χ with largest deviations,

given by their corresponding eigenvalues, λi, i = 1, 2, . . . , N . The degree of

the variation captured by the reduced-order random space is given by the

cumulative percentage of total variation,

Cr = 100

∑n
i=1 λi∑N
i=1 λi

. (3.4)

This serves as a measure of the accuracy of the approximation and provides

a criterion to decide on the dimension n of the reduced-order space. Cr > 90

is recommended.

3.2.2 Sparse Grid Interpolation

The dimensionality reduction stage of the approach is followed by the con-

struction of an interpolation of the output on the reduced random space.

This interpolation is subsequently used to calculate the statistics of the out-

put and the corresponding production yield. Figure 3.1 demonstrates the

advantages of constructing an interpolation for statistical modeling over us-

ing MC. As shown in Fig. 3.1-(b) the number of full-wave solver simulations

are only needed to construct the interpolation. Once it is constructed, the

evaluation of the function is done much more e�ciently.

Even though there are several interpolation schemes that can be used,

like polynomial chaos expansion [36], response surface model [29], or high-

dimensional model representation (HDMR) [42], these approaches might not

be the most suitable for the rare-event calculations required for yield estima-

tion because of their low accuracy in the distribution tails of the parameters.

In view of this, we employ a sparse grid interpolation using piecewise linear

basis functions, making use of the MATLAB Sparse Grid Interpolation tool-

box of [34]. This toolbox makes use of the Smolyak Algorithm [8]. The key

attributes of the interpolation are summarized in the following. The reader
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Full-wave 
solver 
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Figure 3.1: For a Monte Carlo simulation (a), the full-wave solver needs to
be evaluated for a large number of samples so that the PDF of the output
can be estimated, while with stochastic collocation (b), a set of prescribed
nodes is evaluated with the solver and an interpolation constructed and
used to sample the random space to calculate the statistics of the output.
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is referred to [33] for more details.

As discussed in Chapter 2, the Smolyak scheme approximates the general

tensor product multivariate interpolation formula (2.13)

ûq,n(χ) = ûq−1,n +
∑

|i|=q

(U i1 − U i1−1)⊗ . . .⊗ (U in − U in−1), (3.5)

where ûn−1,n = 0, |i| = i1+. . .+in, q ≥ n is a parameter that de�nes the level

of the interpolation, k = n − q, and operant U represents the interpolation

operator in each dimension,

U i(u) =

mi∑

r=1

u(χir)`r(χ
i). (3.6)

In (3.6), `r is the basis functions associated with the r-th grid value of

the parameter, and U0 = 0. The number of nodes, mi, depends on the

particular grid choice and the value of i. Clenshaw-Curtis-type sparse grids,

as presented in equations (2.7) and (2.8), are employed.

Equation (3.5) suggests that the interpolation accuracy can be increased

without having to discard previous results [15]. The key advantage of the

Smolyak formula is that we only need to compute the output using the typ-

ically computationally expensive electromagnetic solver at the sparse grid

nodes only,

H(q, n) =
⋃

q−n+1≤|i|≤q

(Θi1
1 × · · · ×Θin

1 ). (3.7)

The grid nodes are chosen in a nested fashion Θi ⊂ Θi+1, such that, as

we increase the level, only a small set of extra simulations is required. Fur-

thermore, the hierarchical construction of the interpolation provides for a

dimension-adaptive scheme [35], so that more interpolation points are as-

signed to the variable that results in larger changes of the output.

3.2.3 E�cient Calculation of Yield

Once the scheme for the e�cient interpolation of the random space has been

constructed we can proceed with the calculation of the desired statistics of
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the output response. For example, the mean, standard deviation, and PDF

of the output can be calculated for a complete statistical characterization of

the output. Another important quantity is yield, understood as the number

of units out of the total number of units produced that fail certain perfor-

mance criteria required for acceptable unit functionality. A straightforward

way to compute yield is through the calculation of the probability of fail-

ure using Monte Carlo. Given a prede�ned threshold of the desired output

response that quanti�es failure, the number of cases where the response ex-

ceeds the threshold divided by the total number of cases considered is the

failure probability or yield,

y =
1

M

M∑

i=1

I{u(χ)≥γ}, (3.8)

where I{C} = 1, if condition C is true, and I{C} = 0, otherwise.

Obviously, component design is carried out in a manner that maximizes

yield; thus, y in (3.8) is a very small number. Therefore, a brute force Monte

Carlo approach to the calculation of yield is computationally expensive. For

example, in the case that only one component out of a total of 10,000 fails,

at least 10,000 simulations are required to calculate the probability of fail-

ure, and many more to get good con�dence in our estimation. This makes

evident the fact that yield estimation is essentially a rare-event probabil-

ity calculation. Even though the evaluation of our interpolation function is

considerably more computationally e�cient than running the EM solver, the

large number of iterations required by this type of simulation could constitute

not only a bottleneck in the e�ciency of the methodology but also a memory

problem due to the large-sized sets of evaluation values. Fortunately, a ro-

bust algorithm has been developed in the statistical community based on the

importance sampling technique [98] called the cross-entropy method (CE)

[99, 97]. This algorithm allows the fast calculation of rare event probabilities

by changing the sampling PDF which increases the convergence of the sim-

ulation. The CE algorithm, presented in [97] and reviewed in Appendix B,

is used to calculate the yield for very small failure probabilities and can be

also applied to �nd non-small values of yield.

The formulation of CE is based on the importance sampling technique that

calculates a probability y of a function of random parameters χ with given

probability density function (PDF), f(χ), to exceed a certain threshold, γ,
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by changing the sampling PDF to another one, g(χ), that is more heavily

distributed near the value of the threshold than the original PDF. The change

in sampling PDF is done as follows,

y =

ˆ

I{u(χ)≥γ}f(χ)dχ =

ˆ

I{u(χ)≥γ}W (χ)g(χ)dχ, (3.9)

where the likelihood ratio, W (χ) is de�ned as W (χ) = f(χ)/g(χ). Notice

that the right-hand side of (3.9) can be estimated with

y =
1

M

M∑

i=1

I{u(χ)≥γ}W (χ), (3.10)

where we sample with respect to the distribution g(χ). In this way, the

number of required MC simulations is considerably reduced for a given con-

vergence criterion. CE provides an e�cient adaptive technique to �nd the

corresponding PDF, g(χ).

Gaussian PDFs are used for the input parameters which have been nor-

malized. As a consequence, the set of principal components are independent

random variables and the joint distribution, f(χ), with zero mean is the

product of the individual Gaussian PDFs of each principal component. Also,

we assume that the principal components are constrained to the vector range

[−3std, 3std], where std is the vector of variances of the distributions of the

principal components. In real-world situations, the range should be provided

by the manufacturer. Appendix B provides an iterative algorithm to �nd

an appropriate Gaussian PDF, g(χ), with mean vector v which is used in

(3.10) to sample the random domain more e�ciently than the original dis-

tribution. This is accomplished by calculating the mean value of the desired

PDF in an iterative way so that the distribution is shifted toward the value

of the prede�ned threshold. As a result, the probability of the rare event

increases when sampled using this newly de�ned distribution. This shift-

ing process can lead, however, to the sampling of parameters in non-de�ned

ranges. We avoid this issue by modifying the width of the computed PDF.

This is done in step 3 of the algorithm by setting the standard deviation vec-

tor to stdt = std0− |vt|/3, where t denotes the iteration index. In this way,

the range [vt − 3stdt,vt + 3stdt] where the new distribution is constrained,

is a subset of the original range, [−3std, 3std], so that the parameters are

sampled only in the prede�ned domain.
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Figure 3.2: Process �ow of the proposed methodology.

This is the �nal step of the proposed methodology that is summarized in

Fig. 3.2. The next section presents two numerical applications that demon-

strate the e�ciency and accuracy of the proposed statistical process.

3.3 Numerical Applications

3.3.1 Pair of Interconnects Exhibiting Variability

First, we consider the case of a pair of coupled stripline interconnects of

cross-sectional geometry depicted in Fig. 3.3. The random input parameters

are the cross-sectional dimensions s, w1, w2, hD, h1, h2, and the relative per-

mittivity, εr, of the insulating substrate. All random variables are assumed
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Figure 1. Process flow of the proposed methodology

y =
1

M

MX

i=1

I{ (�)��}W (�), (11)

where we sample with respect to the distribution g(�). In this
way, the number of required MC simulations is considerably
reduced for a given convergence criterion. CE provides an
efficient adaptive technique to find the corresponding PDF
g(�).

In this paper Gaussian PDF’s are used for the input pa-
rameters. As a consequence, the set of principal components
are independent random variables and the joint distribution
f(�) is the product of the individual Gaussian PDF’s of
each principal component. In this paper, we assume that
the principal components are constrained to the range is
[�3std, 3std]. In real-case situations, the range should be
provided by the manufacturer. The Algorithm from Appendix
finds an appropriate Gaussian PDF g(�) by adjusting the
means of the distributions. Besides, step 3 has been modified
in order to account for the range of the random variables.
Specifically, the variance are modified to constrain the PDF to
the aforementioned range and set to stdt = std0 � |vt�1|/3.

This is the final step of the proposed statistical methodology
that is summarized in Fig. 1. The next section presents two
numerical applications that demonstrate the efficiency and
accuracy of the proposed statistical process.

III. NUMERICAL APPLICATIONS

The proposed methodology is tested with two numerical
examples. First, a pair of interconnects with uncertain cross-
sectional dimensions and dielectric permittivity is studied. A
quantity that determines the failure of this type of structures
is the cross talk and it can be used as a failure criterion. In the
first example, the statistics of the time-domain peak cross talk

hD!

w1! w2!

s!
h1! h2!

εr!

s w1 w2 hD h1 h2 "r

µ 3.5 1.5 1.5 4.0 1.75 1.75 4.4
std 0.15 0.2 0.2 0.4 0.1 0.1 0.25

Figure 2. Cross-sectional geometry of the coupled stripline structure, showing
the parameters assumed to exhibit stochastic variability according to the
statistics shown in the table. The units of the geometry parameters are mm.

Table I
CORRELATION FUNCTION ⌃ OF THE NORMALIZED INPUT PARAMETERS.

s w1 w2 hD h1 h2 ✏r

1 0.213 0.163 0.007 0.068 0.060 -0.002
1 0.160 -0.0011 0.180 0.007 0.032

1 -0.031 0.006 0.125 -0.032
1 0.360 0.250 0.0022

1 0.250 -0.016
1 0.009

1

voltage are characterized with the use of PCASA which results
in a more accurate characterization than the traditional PCA
and, in general, a more efficient approach than the full-order
case due to the dimensionality reduction. The CE algorithm is
applied and we show that it is a more efficient estimation than
the crude Monte Carlo. One additional example is presented, a
pass-band filter with uncertain dimensions and the bandwidth
is studied for this case. Although we have taken the bandwidth
as the yield estimator, a series of other parameters that are
usually specified for filters, like the attenuation, the 3dB-
frequencies, and the quality factor are other candidates for
the yield estimation.

A. Pair of interconnects exhibiting variability

Consider the pair of striplines shown in Fig. 2, where the
cross-sectional parameters (s, w1, w2, hD, h1, h2, ✏r) are
assumed to exhibit uncertainty.

The mean values and standard deviations of the geometric
and electric parameters defining the structure are shown in
Fig. 2. The dielectric material is epoxy FR4, the conductors
are copper and the length of the line is 5 cm. One trace is
driven by a voltage source generating a trapezoidal pulse of
amplitude 5 V and turn-on delay time of 20 ns, rise and fall
times of 2 ns, and width of 6 ns. The input resistance of the
source is 50 ⌦. The resistive termination of the ports is also
50 ⌦. Concerning the random perturbations, they are assumed
to be Gaussian random variables with the correlation matrix
of normalized random vector � shown below.

For the sensitivity analysis, a quadrature rule with 3 nodes
was employed. This step adds 14 extra simulations to the
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where we sample with respect to the distribution g(�). In this
way, the number of required MC simulations is considerably
reduced for a given convergence criterion. CE provides an
efficient adaptive technique to find the corresponding PDF
g(�).

In this paper Gaussian PDF’s are used for the input pa-
rameters. As a consequence, the set of principal components
are independent random variables and the joint distribution
f(�) is the product of the individual Gaussian PDF’s of
each principal component. In this paper, we assume that
the principal components are constrained to the range is
[�3std, 3std]. In real-case situations, the range should be
provided by the manufacturer. The Algorithm from Appendix
finds an appropriate Gaussian PDF g(�) by adjusting the
means of the distributions. Besides, step 3 has been modified
in order to account for the range of the random variables.
Specifically, the variance are modified to constrain the PDF to
the aforementioned range and set to stdt = std0 � |vt�1|/3.

This is the final step of the proposed statistical methodology
that is summarized in Fig. 1. The next section presents two
numerical applications that demonstrate the efficiency and
accuracy of the proposed statistical process.

III. NUMERICAL APPLICATIONS

The proposed methodology is tested with two numerical
examples. First, a pair of interconnects with uncertain cross-
sectional dimensions and dielectric permittivity is studied. A
quantity that determines the failure of this type of structures
is the cross talk and it can be used as a failure criterion. In the
first example, the statistics of the time-domain peak cross talk
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voltage are characterized with the use of PCASA which results
in a more accurate characterization than the traditional PCA
and, in general, a more efficient approach than the full-order
case due to the dimensionality reduction. The CE algorithm is
applied and we show that it is a more efficient estimation than
the crude Monte Carlo. One additional example is presented, a
pass-band filter with uncertain dimensions and the bandwidth
is studied for this case. Although we have taken the bandwidth
as the yield estimator, a series of other parameters that are
usually specified for filters, like the attenuation, the 3dB-
frequencies, and the quality factor are other candidates for
the yield estimation.

A. Pair of interconnects exhibiting variability

Consider the pair of striplines shown in Fig. 2, where the
cross-sectional parameters (s, w1, w2, hD, h1, h2, ✏r) are
assumed to exhibit uncertainty.

The mean values and standard deviations of the geometric
and electric parameters defining the structure are shown in
Fig. 2. The dielectric material is epoxy FR4, the conductors
are copper and the length of the line is 5 cm. One trace is
driven by a voltage source generating a trapezoidal pulse of
amplitude 5 V and turn-on delay time of 20 ns, rise and fall
times of 2 ns, and width of 6 ns. The input resistance of the
source is 50 ⌦. The resistive termination of the ports is also
50 ⌦. Concerning the random perturbations, they are assumed
to be Gaussian random variables with the correlation matrix
of normalized random vector � shown below.

For the sensitivity analysis, a quadrature rule with 3 nodes
was employed. This step adds 14 extra simulations to the
process. The dimensionality reduction algorithm was applied
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where we sample with respect to the distribution g(�). In this
way, the number of required MC simulations is considerably
reduced for a given convergence criterion. CE provides an
efficient adaptive technique to find the corresponding PDF
g(�).

In this paper Gaussian PDF’s are used for the input pa-
rameters. As a consequence, the set of principal components
are independent random variables and the joint distribution
f(�) is the product of the individual Gaussian PDF’s of
each principal component. In this paper, we assume that
the principal components are constrained to the range is
[�3std, 3std]. In real-case situations, the range should be
provided by the manufacturer. The Algorithm from Appendix
finds an appropriate Gaussian PDF g(�) by adjusting the
means of the distributions. Besides, step 3 has been modified
in order to account for the range of the random variables.
Specifically, the variance are modified to constrain the PDF to
the aforementioned range and set to stdt = std0 � |vt�1|/3.
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voltage are characterized with the use of PCASA which results
in a more accurate characterization than the traditional PCA
and, in general, a more efficient approach than the full-order
case due to the dimensionality reduction. The CE algorithm is
applied and we show that it is a more efficient estimation than
the crude Monte Carlo. One additional example is presented, a
pass-band filter with uncertain dimensions and the bandwidth
is studied for this case. Although we have taken the bandwidth
as the yield estimator, a series of other parameters that are
usually specified for filters, like the attenuation, the 3dB-
frequencies, and the quality factor are other candidates for
the yield estimation.

A. Pair of interconnects exhibiting variability

Consider the pair of striplines shown in Fig. 2, where the
cross-sectional parameters (s, w1, w2, hD, h1, h2, ✏r) are
assumed to exhibit uncertainty.

The mean values and standard deviations of the geometric
and electric parameters defining the structure are shown in
Fig. 2. The dielectric material is epoxy FR4, the conductors
are copper and the length of the line is 5 cm. One trace is
driven by a voltage source generating a trapezoidal pulse of
amplitude 5 V and turn-on delay time of 20 ns, rise and fall
times of 2 ns, and width of 6 ns. The input resistance of the
source is 50 ⌦. The resistive termination of the ports is also
50 ⌦. Concerning the random perturbations, they are assumed
to be Gaussian random variables with the correlation matrix
of normalized random vector � shown below.

For the sensitivity analysis, a quadrature rule with 3 nodes
was employed. This step adds 14 extra simulations to the
process. The dimensionality reduction algorithm was applied
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where we sample with respect to the distribution g(�). In this
way, the number of required MC simulations is considerably
reduced for a given convergence criterion. CE provides an
efficient adaptive technique to find the corresponding PDF
g(�).

In this paper Gaussian PDF’s are used for the input pa-
rameters. As a consequence, the set of principal components
are independent random variables and the joint distribution
f(�) is the product of the individual Gaussian PDF’s of
each principal component. In this paper, we assume that
the principal components are constrained to the range is
[�3std, 3std]. In real-case situations, the range should be
provided by the manufacturer. The Algorithm from Appendix
finds an appropriate Gaussian PDF g(�) by adjusting the
means of the distributions. Besides, step 3 has been modified
in order to account for the range of the random variables.
Specifically, the variance are modified to constrain the PDF to
the aforementioned range and set to stdt = std0 � |vt�1|/3.

This is the final step of the proposed statistical methodology
that is summarized in Fig. 1. The next section presents two
numerical applications that demonstrate the efficiency and
accuracy of the proposed statistical process.
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quantity that determines the failure of this type of structures
is the cross talk and it can be used as a failure criterion. In the
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voltage are characterized with the use of PCASA which results
in a more accurate characterization than the traditional PCA
and, in general, a more efficient approach than the full-order
case due to the dimensionality reduction. The CE algorithm is
applied and we show that it is a more efficient estimation than
the crude Monte Carlo. One additional example is presented, a
pass-band filter with uncertain dimensions and the bandwidth
is studied for this case. Although we have taken the bandwidth
as the yield estimator, a series of other parameters that are
usually specified for filters, like the attenuation, the 3dB-
frequencies, and the quality factor are other candidates for
the yield estimation.

A. Pair of interconnects exhibiting variability

Consider the pair of striplines shown in Fig. 2, where the
cross-sectional parameters (s, w1, w2, hD, h1, h2, ✏r) are
assumed to exhibit uncertainty.

The mean values and standard deviations of the geometric
and electric parameters defining the structure are shown in
Fig. 2. The dielectric material is epoxy FR4, the conductors
are copper and the length of the line is 5 cm. One trace is
driven by a voltage source generating a trapezoidal pulse of
amplitude 5 V and turn-on delay time of 20 ns, rise and fall
times of 2 ns, and width of 6 ns. The input resistance of the
source is 50 ⌦. The resistive termination of the ports is also
50 ⌦. Concerning the random perturbations, they are assumed
to be Gaussian random variables with the correlation matrix
of normalized random vector � shown below.

For the sensitivity analysis, a quadrature rule with 3 nodes
was employed. This step adds 14 extra simulations to the
process. The dimensionality reduction algorithm was applied
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where we sample with respect to the distribution g(�). In this
way, the number of required MC simulations is considerably
reduced for a given convergence criterion. CE provides an
efficient adaptive technique to find the corresponding PDF
g(�).

In this paper Gaussian PDF’s are used for the input pa-
rameters. As a consequence, the set of principal components
are independent random variables and the joint distribution
f(�) is the product of the individual Gaussian PDF’s of
each principal component. In this paper, we assume that
the principal components are constrained to the range is
[�3std, 3std]. In real-case situations, the range should be
provided by the manufacturer. The Algorithm from Appendix
finds an appropriate Gaussian PDF g(�) by adjusting the
means of the distributions. Besides, step 3 has been modified
in order to account for the range of the random variables.
Specifically, the variance are modified to constrain the PDF to
the aforementioned range and set to stdt = std0 � |vt�1|/3.

This is the final step of the proposed statistical methodology
that is summarized in Fig. 1. The next section presents two
numerical applications that demonstrate the efficiency and
accuracy of the proposed statistical process.
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The proposed methodology is tested with two numerical
examples. First, a pair of interconnects with uncertain cross-
sectional dimensions and dielectric permittivity is studied. A
quantity that determines the failure of this type of structures
is the cross talk and it can be used as a failure criterion. In the
first example, the statistics of the time-domain peak cross talk
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voltage are characterized with the use of PCASA which results
in a more accurate characterization than the traditional PCA
and, in general, a more efficient approach than the full-order
case due to the dimensionality reduction. The CE algorithm is
applied and we show that it is a more efficient estimation than
the crude Monte Carlo. One additional example is presented, a
pass-band filter with uncertain dimensions and the bandwidth
is studied for this case. Although we have taken the bandwidth
as the yield estimator, a series of other parameters that are
usually specified for filters, like the attenuation, the 3dB-
frequencies, and the quality factor are other candidates for
the yield estimation.

A. Pair of interconnects exhibiting variability

Consider the pair of striplines shown in Fig. 2, where the
cross-sectional parameters (s, w1, w2, hD, h1, h2, ✏r) are
assumed to exhibit uncertainty.

The mean values and standard deviations of the geometric
and electric parameters defining the structure are shown in
Fig. 2. The dielectric material is epoxy FR4, the conductors
are copper and the length of the line is 5 cm. One trace is
driven by a voltage source generating a trapezoidal pulse of
amplitude 5 V and turn-on delay time of 20 ns, rise and fall
times of 2 ns, and width of 6 ns. The input resistance of the
source is 50 ⌦. The resistive termination of the ports is also
50 ⌦. Concerning the random perturbations, they are assumed
to be Gaussian random variables with the correlation matrix
of normalized random vector � shown below.

For the sensitivity analysis, a quadrature rule with 3 nodes
was employed. This step adds 14 extra simulations to the
process. The dimensionality reduction algorithm was applied
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where we sample with respect to the distribution g(�). In this
way, the number of required MC simulations is considerably
reduced for a given convergence criterion. CE provides an
efficient adaptive technique to find the corresponding PDF
g(�).

In this paper Gaussian PDF’s are used for the input pa-
rameters. As a consequence, the set of principal components
are independent random variables and the joint distribution
f(�) is the product of the individual Gaussian PDF’s of
each principal component. In this paper, we assume that
the principal components are constrained to the range is
[�3std, 3std]. In real-case situations, the range should be
provided by the manufacturer. The Algorithm from Appendix
finds an appropriate Gaussian PDF g(�) by adjusting the
means of the distributions. Besides, step 3 has been modified
in order to account for the range of the random variables.
Specifically, the variance are modified to constrain the PDF to
the aforementioned range and set to stdt = std0 � |vt�1|/3.

This is the final step of the proposed statistical methodology
that is summarized in Fig. 1. The next section presents two
numerical applications that demonstrate the efficiency and
accuracy of the proposed statistical process.
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The proposed methodology is tested with two numerical
examples. First, a pair of interconnects with uncertain cross-
sectional dimensions and dielectric permittivity is studied. A
quantity that determines the failure of this type of structures
is the cross talk and it can be used as a failure criterion. In the
first example, the statistics of the time-domain peak cross talk
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voltage are characterized with the use of PCASA which results
in a more accurate characterization than the traditional PCA
and, in general, a more efficient approach than the full-order
case due to the dimensionality reduction. The CE algorithm is
applied and we show that it is a more efficient estimation than
the crude Monte Carlo. One additional example is presented, a
pass-band filter with uncertain dimensions and the bandwidth
is studied for this case. Although we have taken the bandwidth
as the yield estimator, a series of other parameters that are
usually specified for filters, like the attenuation, the 3dB-
frequencies, and the quality factor are other candidates for
the yield estimation.

A. Pair of interconnects exhibiting variability

Consider the pair of striplines shown in Fig. 2, where the
cross-sectional parameters (s, w1, w2, hD, h1, h2, ✏r) are
assumed to exhibit uncertainty.

The mean values and standard deviations of the geometric
and electric parameters defining the structure are shown in
Fig. 2. The dielectric material is epoxy FR4, the conductors
are copper and the length of the line is 5 cm. One trace is
driven by a voltage source generating a trapezoidal pulse of
amplitude 5 V and turn-on delay time of 20 ns, rise and fall
times of 2 ns, and width of 6 ns. The input resistance of the
source is 50 ⌦. The resistive termination of the ports is also
50 ⌦. Concerning the random perturbations, they are assumed
to be Gaussian random variables with the correlation matrix
of normalized random vector � shown below.

For the sensitivity analysis, a quadrature rule with 3 nodes
was employed. This step adds 14 extra simulations to the
process. The dimensionality reduction algorithm was applied
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where we sample with respect to the distribution g(�). In this
way, the number of required MC simulations is considerably
reduced for a given convergence criterion. CE provides an
efficient adaptive technique to find the corresponding PDF
g(�).

In this paper Gaussian PDF’s are used for the input pa-
rameters. As a consequence, the set of principal components
are independent random variables and the joint distribution
f(�) is the product of the individual Gaussian PDF’s of
each principal component. In this paper, we assume that
the principal components are constrained to the range is
[�3std, 3std]. In real-case situations, the range should be
provided by the manufacturer. The Algorithm from Appendix
finds an appropriate Gaussian PDF g(�) by adjusting the
means of the distributions. Besides, step 3 has been modified
in order to account for the range of the random variables.
Specifically, the variance are modified to constrain the PDF to
the aforementioned range and set to stdt = std0 � |vt�1|/3.

This is the final step of the proposed statistical methodology
that is summarized in Fig. 1. The next section presents two
numerical applications that demonstrate the efficiency and
accuracy of the proposed statistical process.
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voltage are characterized with the use of PCASA which results
in a more accurate characterization than the traditional PCA
and, in general, a more efficient approach than the full-order
case due to the dimensionality reduction. The CE algorithm is
applied and we show that it is a more efficient estimation than
the crude Monte Carlo. One additional example is presented, a
pass-band filter with uncertain dimensions and the bandwidth
is studied for this case. Although we have taken the bandwidth
as the yield estimator, a series of other parameters that are
usually specified for filters, like the attenuation, the 3dB-
frequencies, and the quality factor are other candidates for
the yield estimation.

A. Pair of interconnects exhibiting variability

Consider the pair of striplines shown in Fig. 2, where the
cross-sectional parameters (s, w1, w2, hD, h1, h2, ✏r) are
assumed to exhibit uncertainty.

The mean values and standard deviations of the geometric
and electric parameters defining the structure are shown in
Fig. 2. The dielectric material is epoxy FR4, the conductors
are copper and the length of the line is 5 cm. One trace is
driven by a voltage source generating a trapezoidal pulse of
amplitude 5 V and turn-on delay time of 20 ns, rise and fall
times of 2 ns, and width of 6 ns. The input resistance of the
source is 50 ⌦. The resistive termination of the ports is also
50 ⌦. Concerning the random perturbations, they are assumed
to be Gaussian random variables with the correlation matrix
of normalized random vector � shown below.

For the sensitivity analysis, a quadrature rule with 3 nodes
was employed. This step adds 14 extra simulations to the
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Figure 3.3: Cross-sectional geometry of the coupled stripline interconnect
structure, showing the input parameters, assumed to be random Gaussian
variables, with mean values and standard deviations as shown in the table.
The units of the parameters that de�ne the geometry are mm.

Table 3.1: Correlation function Σ of the normalized input parameters for a
coupled stripline structure.

s w1 w2 hD h1 h2 εr

1 0.213 0.163 0.007 0.068 0.060 -0.002
1 0.160 -0.0011 0.180 0.007 0.032

1 -0.031 0.006 0.125 -0.032
1 0.360 0.250 0.0022

1 0.250 -0.016
1 0.009

1

gaussian with mean values and standard deviations given in the accompany-

ing table in Fig. 3.3. Furthermore, the correlation matrix for their normalized

values is given in Table 3.1.

For this type of structure, in the context of signal integrity, crosstalk volt-

age at the ports of one of the interconnects when the other one is excited is

an undesirable quantity that quali�es as a failure criterion. Therefore, for

the purposes of this study, we will use the crosstalk voltage at the far end of

one of the two wires as the failure criterion for the calculation of yield in the

presence of uncertainty in the input parameters.

ANSYS® Q3D Extractor® [100] has been used for the RLGC parameters

extraction. The insulating dielectric material is epoxy FR4, the conductors

are copper, and the length of the traces is 5 cm. One trace is driven at one

end by a voltage source of input resistance of 50 Ω, generating a trapezoidal

pulse of amplitude 5 V, turn-on delay time of 20 ns, rise and fall times of 2

ns, and width of 6 ns. The remaining three ports are terminated with 50 Ω

34



Table 3.2: Simulation results for a coupled stripline structure.

No. of Simulations ISE (1/V) in probability density

n PCA PCASA PCA PCASA
3 117 109 8.542 0.975
4 157 161 13.138 0.784
5 115 153 2.104 0.127
Full order 293 Reference Solution

resistors.

For the sensitivity analysis part of the PCASA algorithm, a quadrature

rule with three nodes was employed. This step adds 14 extra simulations

to the process. The dimensionality reduction algorithm was applied next to

reduce the seven-dimensional random space to reduced spaces of dimension

3, 4, and 5. The construction of the interpolant for the calculation of the

cross-talk voltage in terms of these reduced-order parameters was done with

the tool spinterp [9]. The adaptive sampling process stopped when a relative

tolerance of 0.05 was achieved. Once the model was created, it was used to

compute the probability density functions of the cross-talk voltage for the

case of the standard PCA and the proposed PCASA.

The e�ect of the dimensionality reduction is quanti�ed in Table 3.2. The

advantage of employing the reduced order model is evident in terms of the

number of sampling points required for convergence to a given tolerance and

the obtained accuracy. Focusing on columns 2 and 3 in Table 3.2, we observe

that, while the original full-order system needs 293 simulations, the reduced-

order systems require a smaller number and, as expected, the smaller the

order of the reduced system, the smaller the number of simulations. Further-

more, as evident from Fig. 3.4, the incorporation of sensitivity assessment in

PCA improves the accuracy of the reduced-order model. This improvement

comes at the cost of an increased number of simulations, as clearly seen in

the comparison between PCASA and PCA in Table 3.2; however, the mean

integrated squared error (MISE) is considerably reduced when the sensitivity

assessment is performed. Also, for the same number of simulations, PCASA

yields lower error values. Finally, we comment that the cumulative percent-

age of total variation for n = 5 is 99.5%, for n = 4 is 93.2%, and for n = 3,

80.9%, which is re�ected in the MISE of the results.
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(a)

(b)

Figure 3.4: Probability density function of the peak cross-talk voltage of
the full-order and three reduced-order systems obtained through (a) regular
PCA and (b) PCA with sensitivity assessment.

Calculation of yield. Next, the estimation of the yield is carried out using

the CE method assuming crosstalk thresholds of 23 mV and 26 mV. For this

purpose, the reduced system of n = 5 was used and the values ρ = 0.02

and M = 103 were used for the CE algorithm. The performance of the

CE algorithm is compared with Monte Carlo and the results are shown in

Table 3.3. We observe that the probability of failure values are similar for the

Monte Carlo and CE cases and they di�er as the threshold increases, because

that makes the calculation more expensive. A quantity used to measure the

accuracy of the approach is the relative error (RE) de�ned as the standard

variation of the yield divided by its value. Even though the relative error

is lower for the CE case, the number of iterations needed in the simulation

is one order of magnitude lower than the Monte Carlo calculation and so is

the CPU time. This demonstrates that the proposed approach yields more

accurate results with less computational e�ort.

3.3.2 Bandpass Filter

The second study examines the impact of geometric uncertainty on the �l-

tering properties of a bandpass �lter. Speci�cally, we focus on the e�ect of
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Table 3.3: Calculation of yield for a maximum peak crosstalk voltage.

γ P (vxt > γ) std(y)/y No. iter. CPU time

MC 23 mV 3.6x10−4 0.477 104 10.34 s
CE 23 mV 3.74x10−4 0.1854 103 1.432 s
MC 26 mV 5.88x10−5 0.2691 5x105 535 s
CE 26 mV 6.32x10−5 0.154 5x104 52.7 s
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Figure 4. Geometry of the band-pass filter. The model and dimensions where
obtained from [25]. The geometric parameters indicated in the picture present
uncertainty according to the table shwon above (for i = 1, 2, ..., 6)
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Figure 5. Grid nodes simulations of the scattering parameters.

The scattering parameters of the structure have been com-
puted for the sparse grid nodes for a number of reduced-sized
random space. Some of the corresponding plots are shown in
Fig. 5 where we clearly observe that the uncertainty results in
a change in the bandwidth originally designed to be about 1
GHz.

The corresponding probability density functions of the
bandwidth are calculated and pictured in Fig. 6 where we
observe a very good correlation between the different reduced-
order schemes and the reference solution, taken to be the case
with N -dimensional (full order) random space. Besides, we
have compared our methodology with the traditional PCA in
Table V and we observe a better accuracy for the different
schemes. Additionally, the number of simulations is reduced
if we compare with the full-order case.

Calculation of yield: In the final step of your methodol-
ogy we estimate the yield with the CE algorithm. The system
with a reduced dimension of 9 has been employed for such
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Figure 6. Probability density function of the bandwidth of full-order and
reduced-order systems through PCA with sensitivity assessment.

Table V
SIMULATION RESULTS OF THE INTERPOLATION OF THE BAND-PASS FILTER

No. of Simulations ISE (1/GHz) in probability density
n PCA PCASA PCA PCASA
5 29 57 0.0189 0.0153
7 59 55 0.0582 0.0029
9 63 67 0.0652 0.00181
Full order 143 Reference Solution

studies and referring to step 3 from the CE Algorithm, the
values ⇢ = 0.005 and M = 103 were used. Results are
shown in Table VI where we observe a dramatic drop in the
yield as the threshold increases from 1.05 GHz to 1.07 GHz.
Comparisons between the MC approach and the CE algorithm
indicates that the last one is a lot more efficient and reliable,
reducing the memory usage and simulation times significantly.

IV. CONCLUSION

The present study proposes an efficient formulation for the
reduction of the dimensionality of the input random space of
a stochastic electromagnetic problem. The process relies on a
modified principal component analysis and an adaptive sparse
grid collocation scheme to expedite the statistical assessment
of microwave structures presenting geometric and electrical
uncertainties while keeping good accuracy levels. The method-
ology has been employed to calculate the production yield
of the structures with uncertainty. For this purpose the cross-
entropy algorithm has been successfully applied as an efficient
alternative to Monte Carlo simulations. This approach presents
results in higher accuracy with less number of iterations.
Besides, the simulation time of the yield calculation has been
reduced by a factor of 10. Future contributions aim at using
the cross entropy method for optimization calculations of
microwave designs.

Table VI
CALCULATION OF YIELD FOR A MAXIMUM BANDWIDTH OF 1.05 AND 1.07

GHZ.

� (GHz) P (BW > �) std(y)/y No. iter. CPU time
MC 1.05 12x10�4 0.104 105 1412 s
CE 1.05 12x10�4 0.137 104 144.3 s
MC 1.07 6.7x10�6 0.362 106 975 s
CE 1.07 6.7x10�6 0.147 105 99.5 s
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The scattering parameters of the structure have been com-
puted for the sparse grid nodes for a number of reduced-sized
random space. Some of the corresponding plots are shown in
Fig. 5 where we clearly observe that the uncertainty results in
a change in the bandwidth originally designed to be about 1
GHz.

The corresponding probability density functions of the
bandwidth are calculated and pictured in Fig. 6 where we
observe a very good correlation between the different reduced-
order schemes and the reference solution, taken to be the case
with N -dimensional (full order) random space. Besides, we
have compared our methodology with the traditional PCA in
Table V and we observe a better accuracy for the different
schemes. Additionally, the number of simulations is reduced
if we compare with the full-order case.
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reduced-order systems through PCA with sensitivity assessment.

Table V
SIMULATION RESULTS OF THE INTERPOLATION OF THE BAND-PASS FILTER

No. of Simulations ISE (1/GHz) in probability density
n PCA PCASA PCA PCASA
5 29 57 0.0189 0.0153
7 59 55 0.0582 0.0029
9 63 67 0.0652 0.00181
Full order 143 Reference Solution

studies and referring to step 3 from the CE Algorithm, the
values ⇢ = 0.005 and M = 103 were used. Results are
shown in Table VI where we observe a dramatic drop in the
yield as the threshold increases from 1.05 GHz to 1.07 GHz.
Comparisons between the MC approach and the CE algorithm
indicates that the last one is a lot more efficient and reliable,
reducing the memory usage and simulation times significantly.

IV. CONCLUSION

The present study proposes an efficient formulation for the
reduction of the dimensionality of the input random space of
a stochastic electromagnetic problem. The process relies on a
modified principal component analysis and an adaptive sparse
grid collocation scheme to expedite the statistical assessment
of microwave structures presenting geometric and electrical
uncertainties while keeping good accuracy levels. The method-
ology has been employed to calculate the production yield
of the structures with uncertainty. For this purpose the cross-
entropy algorithm has been successfully applied as an efficient
alternative to Monte Carlo simulations. This approach presents
results in higher accuracy with less number of iterations.
Besides, the simulation time of the yield calculation has been
reduced by a factor of 10. Future contributions aim at using
the cross entropy method for optimization calculations of
microwave designs.

Table VI
CALCULATION OF YIELD FOR A MAXIMUM BANDWIDTH OF 1.05 AND 1.07

GHZ.

� (GHz) P (BW > �) std(y)/y No. iter. CPU time
MC 1.05 12x10�4 0.104 105 1412 s
CE 1.05 12x10�4 0.137 104 144.3 s
MC 1.07 6.7x10�6 0.362 106 975 s
CE 1.07 6.7x10�6 0.147 105 99.5 s
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Figure 3.5: Geometry of the bandpass �lter. The model and dimensions
were obtained from [1].

variability on the 3 dB bandwidth of the �lter. For our purpose, the �lter

considered is the bandpass �lter described in Ansoft's HFSS® [100] tutorial

document [1] has been used for the RLGC parameters extraction. The �lter

has six internal rods that are assumed to exhibit uncertainty in their posi-

tion and dimensions as indicated in Fig. 3.5 and the accompanying table

that includes the mean values and standard deviations of the twelve geo-

metric parameters involved. These parameters are assumed to be Gaussian

random variables with correlation matrix for their normalized values given

in Table 3.4. It is evident from the correlation matrix that the dependencies

are stronger for adjacent rods.

The scattering parameters of the �lter were computed for the sparse grid

nodes over reduced-order random spaces of di�erent dimensions. For such

purpose, ANSYS® HFSS® was employed. Some of the corresponding plots

are depicted in Fig. 3.6, making evident the impact of geometric uncertainty

on the �lter 3 dB bandwidth, which was originally intended to be 1 GHz
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Table 3.4: Correlation function Σ of the normalized parameters in the
geometry de�nition of a bandpass �lter (i = 1, 2, ...6).

wi wi+1 wi+2 wi+3 zi zi+1 zi+2 zi+3

1 0.36 0.09 0.01 0.152 0.0024 0 0
1 0.36 0.09 0.0024 0.152 0.0024 0

1 0.36 0 0.0024 0.152 0.0024
1 0 0 0.0024 0.152

1 0.694 0.354 0.057
1 0.694 0.354

1 0.694
1
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Figure 3.6: Calculated scattering parameters for various realizations of the
structure obtained via sampling of reduced input random space.

centered at 1.5 GHz.

The calculated probability density functions of the bandwidth using re-

duced models of di�erent order are depicted in Fig. 3.7 and compared with

the full-order model. Very good correlation is observed. A comparison of

the proposed PCASA algorithm with the traditional PCA is depicted in Ta-

ble 3.5. Its improved accuracy is evident. Additionally, such accuracy is

obtained at one third the computational cost of working with the full-order

case for the case of a reduced model of order 5, and roughly one half of the

computational cost of working with the full-order model for the case of a

reduced model of order 9.

Calculation of yield. In the �nal step of our methodology we estimate

the yield with the CE algorithm. The system with a reduced dimension

of 9 has been employed for this purpose, and the values ρ = 0.005 and

M = 103 were used in the implementation of the CE algorithm. Results are
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Figure 3.7: Comparison of the calculated probability density function of the
bandpass �lter bandwidth using the full-order model and reduced models of
di�erent dimensions generated through PCASA.

Table 3.5: Simulation results of the interpolation of the band-pass �lter.

No. of Simulations ISE (1/GHz) in probability density

n PCA PCASA PCA PCASA
5 29 57 0.0189 0.0153
7 59 55 0.0582 0.0029
9 63 67 0.0652 0.00181
Full order 143 Reference Solution

shown in Table 3.6 where we observe a dramatic drop in the yield as the

threshold increases from 1.05 GHz to 1.07 GHz. Also depicted in the table

are comparisons between Monte Carlo and the CE algorithm, indicating the

superior e�ciency and accuracy of the latter.

3.4 Concluding Remarks

In this chapter an e�cient methodology has been proposed for the reduction

of the dimensionality of the input random space of stochastic electromagnetic

problems associated with the modeling of passive microwave components

Table 3.6: Calculation of yield for a maximum bandwidth of 1.05 and 1.07
GHz.

γ (GHz) P (BW > γ) std(y)/y No. iter. CPU time

MC 1.05 12x10−4 0.104 105 1412 s
CE 1.05 12x10−4 0.137 104 144.3 s
MC 1.07 6.7x10−6 0.362 106 975 s
CE 1.07 6.7x10−6 0.147 105 99.5 s
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in the presence of input parameters uncertainty. The methodology makes

use of a modi�ed principal component analysis and an adaptive sparse grid

collocation scheme to expedite the sampling of the random space through

the construction of e�cient interpolants for the output response quantity of

interest without jeopardizing accuracy. The methodology has been employed

to calculate the production yield of the structures with uncertainty. For this

purpose, the cross-entropy algorithm has been successfully applied as an

e�cient alternative to Monte Carlo simulations, o�ering a tenfold reduction

in yield calculation for the cases considered. In addition to its e�ciency, the

resulting algorithm for yield calculation has been demonstrated to exhibit

superior accuracy.
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Chapter 4

STOCHASTIC MACROMODELING

4.1 Introduction

Up to this point, stochastic collocation has been employed in combination

with EM solvers to perform statistical assessment of the performance of mi-

crowave structures exhibiting uncertainty in their material and geometric

parameters. The algorithm dictates the sparse grid points in the random

space de�ned by the input random parameters of the structure under consid-

eration at which the response is to be calculated toward the implementation

of a faster means of calculating the statistics of the response. Special em-

phasis is placed on avoiding any modi�cation to the EM solver. In other

words, we want the methodology for expedient stochastic modeling to be

non-intrusive. In this and forthcoming chapters we present methodologies

based on the Finite Elements Method (FEM) and Sparse Grid Collocation

to extract stochastic macromodels of domains exhibiting uncertainty as pre-

sented in [101]. Such models are used next to extract the statistical moments

of the �elds in stochastic scattering problems.

Over the years, the term macromodeling has been used in scienti�c and

engineering modeling and simulation to describe a variety of things. In the

context of electromagnetic (EM) modeling and simulation, macromodeling

is widely understood to mean the process through which a compact physical

or mathematical model is de�ned to describe the EM attributes of a por-

tion of the system, the detailed description of which requires a large number

of degrees of freedom (state variables) for its modeling. In this context,

low-order, EM macromodels have been used extensively for a variety of ap-

plications. These include, expedient calculation of the broadband response of

passive EM devices; use of domain decomposition techniques for the EM �eld

modeling of electrically-large structures of high complexity; and the abstrac-
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tion of distributed portions of composite systems that include both lumped

circuit components and distributed electromagnetic structures.

In this chapter we describe a methodology for the macromodeling of por-

tions of linear, passive EM structures that exhibit geometric and/or material

uncertainty. In particular, we are interested in structures formed as an en-

semble of multiple domains, with the aforementioned material and geometric

uncertainty occurring in some or all of these domains but not in the medium

in which these domains are immersed. Figure 4.1 depicts a representative

example of such a composite structure.

The problem of electromagnetic modeling of structures that exhibit ran-

domness is one of signi�cant interest to the electromagnetics community

because of its relevance to several application domains such as remote sens-

ing, EMI/EMC in electronic systems, and EM wave propagation in random

media. For the case of EM wave scattering by composite random structures

like the one depicted in Fig. 4.1, the complexity of a Monte Carlo numerical

solution is compounded by the need to generate a discrete numerical model

for each one of the geometries resulting from the sampling of the multi-

dimensional random space de�ning the randomness of the structure. For

example, in the context of the �nite element solution of the EM boundary

value problem (BVP), a new �nite element grid needs to be generated for

each one of the realizations of the geometry during the Monte Carlo sampling

of the random space.

In this chapter a macromodeling methodology as proposed in [101] is pre-

sented as a means to alleviate the repeated discretization of the compu-

tational domain in the numerical solution of the stochastic EM BVP. The

proposed methodology makes use of the mathematical framework of polyno-

mial chaos expansions and stochastic collocation [36, 13, 32, 14], which has

been applied recently to the numerical solution of a variety of EM BVPs

(see [44, 102, 103, 86, 87] for representative examples). These are combined

with the concept of network matrix representation of passive EM structures

(see Chew [104] for details) to develop a compact stochastic impedance (or

admittance) matrix macromodel on a �xed boundary enclosing each one of

the domains that exhibits randomness. In this manner, only a single numer-

ical grid is needed for the Monte Carlo solution of the EM scattering by the

ensemble of the random domains.

The proposed approach is described in Section 4.2. Section 4.3 presents

42



	
  
1S 	
  

0S 	
  

2S 	
  
nS 	
  

NS 	
  
1V 	
  

2V 	
   nV 	
  
NV 	
  

EV 	
  

x	
  

y	
  

Figure 4.1: Reference geometry for the discussion of the concept of
stochastic macromodeling.

examples from the application of the method to the two-dimensional scatter-

ing by arrays of conducting cylinders exhibiting geometric randomness. The

chapter concludes with some remarks on future extensions of the method.

4.2 Stochastic Macromodeling

As suggested in the introduction, the electromagnetic structures of interest

to this discussion are composite structures comprising several subdomains,

with a good number of them exhibiting uncertainty in their material and/or

geometric composition. The EM analysis of such a structure using, for ex-

ample, a Monte Carlo (MC) process, requires the development of as many

�nite elements (FE)/ �nite di�erence (FD) models (including the generation

of an FE/FD mesh for each model) as the samples in the random space used

in the MC process. One way to reduce the associated computational cost is

by removing the need for the repeated mesh generation. The way stochastic

macromodeling makes this possible is demonstrated in this section.

To �x ideas, we will consider the case of electromagnetic wave scattering

by a collection of targets embedded in an unbounded linear host medium.

While the geometric and material attributes of each one of the targets ex-

hibit a statistically de�ned randomness, the host medium does not. Figure

4.1 serves as a representative example of such a structure. Any randomness in

geometric attributes or material properties occurs only inside the N regions

V1, V2, . . . , VN bounded by surfaces S1, S2, . . . , SN respectively. The exterior

medium, including the volume bounded by surface So, is assumed to be �xed
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in terms of its geometric attributes and its electromagnetic properties. In

view of this, it is immediately apparent that, under the assumption that the

N surfaces S1, S2, . . . , SN are �xed, the domain VE bounded by these N sur-

faces and the surface at in�nity is a �xed domain free from any geometric or

material uncertainty. The way the randomness of the interiors of the domains

Vn, n = 1, 2, . . . , N manifests itself in the solution of the exterior BVP in VE

is through the boundary conditions on the surfaces. This, then, suggests the

idea of a stochastic macromodel for each one of the N subdomains in terms

of a global surface impedance relationship on Sn, n = 1, 2, . . . , N . The way

this is done is described next.

4.2.1 Global Impedance Matrix

For the purposes of this discussion, let the geometry of Fig. 4.1 be the

cross-sectional geometry of an in�nitely long cylindrical scatterer. Under the

assumption that both the cross-sectional geometry of the scatterer and the

exciting electromagnetic �eld are z invariant, the pertinent electromagnetic

boundary value problem is a two-dimensional one. Focusing on the case

of TEz polarization, where the magnetic �eld is linearly polarized in the z

direction, we assume, without loss of generality, that Sn is a circle. A local

reference coordinate system is introduced, with the origin the center of the

circular boundary Sn. Fourier series expansions in the polar angle φ are used

to represent the tangential electric and tangential magnetic �elds on Sn. For

each Fourier mode in the expansion of the tangential magnetic �eld on Sn

the solution of the interior BVP in Vn yields a tangential electric �eld on Sn.

In this manner, a global impedance condition is established on Sn, de�ned

in terms of the matrix relationship,

ξk =

Nmod∑

m=−Nmod

Z
(n)
kmhm, k = 0,±1, . . . ,±M, (4.1)

where ξm, hm are, respectively, the coe�cients in the Fourier series expansions

of the tangential electric �eld and the tangential magnetic �eld on Sn,

Eφ ≈
Nmod∑

m=−Nmod

ξme
jmφ, Hz ≈

Nmod∑

m=−Nmod

hme
jmφ. (4.2)

44



The truncation of the expansions in (4.2) is necessary for the numerical

implementation of (4.1). The important observation here is that the global

impedance matrix, de�ned through (4.1), (4.2), serves as an electromagnetic

macromodel for the region Vn. Once the impedance matrices for all domains

Vn, n = 1, 2, . . . , N , are available, the solution to the exterior electromagnetic

BVP in VE due to an arbitrary excitation at the frequency of interest is

computed in a straightforward fashion. In the presence of geometric and/or

material uncertainty in Vn, the elements of the global impedance matrix Z(n)

can be used to account for the impact of the randomness of the region to

the electromagnetic response of the overall structure. By abstracting the

randomness of the interior region on the global impedance matrix de�ned on

a �xed boundary, a single numerical grid is necessary for the solution of the

exterior BVP. In the next subsection, a process is described for abstracting

the randomness in the geometric and/or material properties of the region Vn

to the elements of the global impedance matrix Z(n) on the �xed boundary

Sn.

4.2.2 Stochastic Global Impedance Matrix

Let χ = (χ1, χ1, . . . , χD) denote the set of independent random variables

necessary for describing the uncertainty in Vn. In the case of statistically

dependent random variables, the methodology proposed in Chapter 3 can be

used to orthogonalize the random space. Furthermore, let ρ(χ) denote their

joint probability density function. The objective is to develop a systematic

and expedient process for obtaining a global impedance matrix Z(n) that

serves as an accurate macromodel of the electromagnetic attributes of Vn

for any point in the D-dimensional probability space Ω de�ned by χ =

(χ1, χ1, . . . , χD).

4.2.3 Polynomial Chaos Expansion

Toward this objective, use is made of the machinery of polynomial chaos

expansion of random functions in Ω. Following the ideas in [14], a truncated

polynomial chaos expansion [55] of Z
(n)
km is of the form
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Z
(n)
km ≈

P∑

i=0

ciΓi(χ), (4.3)

where Γi(χ) are multidimensional orthogonal polynomials with regard to the

inner product,

〈ΓiΓj〉 ≡
ˆ

Ω

Γi(χ)Γj(χ)ρ(χ)dχ = δij ‖Γi‖2 . (4.4)

The type of random variables dictates the family of the polynomials to be

used [32]. For example, for the case of Gaussian random variables, Hermite

polynomials are used. A detailed description and list of multidimensional

polynomials are provided in [36]. The number of terms, P , included in the

truncated polynomial chaos expansion depends on the dimensionality D of

the random space and the highest-order p of the multidimensional polyno-

mials used, and is given by

P + 1 =
(D + p)!

D!p!
. (4.5)

In view of (4.3), the coe�cients in the polynomial chaos approximation of

(4.3) are computed using the orthogonality relation (4.4),

ci =
1

‖Ψi‖2

ˆ

Ω

Z
(n)
kmΓi(χ)ρ(χ)dχ. (4.6)

Clearly, the expedient calculation of the integral in (4.6) calls for an e�-

cient multivariate quadrature rule on Ω. For example, use of the Smolyak

sparse grid quadrature [89, 41] leads to the approximation of (4.6) through

the summation (see 2.5),

ci ≈
1

‖Ψi‖2

M∑

r=1

Zkm(χr)Γi(χr)ρ(χr)wr, (4.7)

where the number of nodes, M , is signi�cantly less than the one required by

a tensor product rule. The selection of the quadrature points, their weights

wr, and the level of accuracy that dictates the sparsity of the Smolyak grid

are presented in Chapter 2 and they are well documented in the literature

(see [41, 89, 105] for details).

Equations (4.3) and (4.7) de�ne the desired stochastic global impedance
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matrix macromodel of the random domain Vn. The process for its construc-

tion is summarized in terms of the following algorithm.

Algorithm

1. Choose the dimension of the global impedance matrix and, hence, the

number of Fourier modes used in the expansion of the tangential electric

and magnetic �elds on Sn.

2. Represent geometric/material randomness in terms of D independent

random variables χ = (χ1, χ2, . . . , χD).

3. Choose polynomial family and order for truncated polynomial chaos

expansion.

4. Generate a Smolyak grid on probability D dimensional random space

Ω.

5. For each point χr, r = 1, 2 . . . , R on the Smolyak grid, solve the deter-

ministic interior BVP to obtain Z(n)(χr).

6. Using the matrices obtained in step 5, calculate the coe�cients in the

polynomial chaos expansion of Z(n) using (4.7).

4.3 Solution of the Exterior Stochastic BVP

Once the stochastic global impedance matrices on the �xed circular bound-

aries Sn, n = 1, 2, . . . , N , have been constructed, the numerical solution of

the electromagnetic scattering problem by the union of the N + 1 targets,

Vn, n = 1, 2, . . . , N amounts to solving an exterior electromagnetic BVP in

VE. As already stated, since the circular boundaries are �xed, the �nite el-

ement solution of this exterior BVP requires a single numerical grid. The

randomness of each one of the N regions manifests itself in terms of the

polynomial chaos expansions of the elements of its stochastic impedance ma-

trix. With Dn denoting the number of independent random variables used to

parameterize the uncertainty in Vn, the dimension of the random space ΩE

for the exterior stochastic BVP is DE =
N∑

n=1

Dn. Irrespective of the process
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used for the solution of the exterior stochastic BVP, the global impedance

matrix on each one of the circular boundaries ΩE is readily computed from

its polynomial chaos expansion for each sample in the random space.

4.4 Numerical Validation and Demonstration Studies

In this section, several numerical examples involving electromagnetic wave

scattering by arrays of in�nitely long cylinders are used to validate the pro-

posed methodology and demonstrate its key attributes.

4.4.1 Single Cylinder with Random Radius

We begin with the problem of TEz time-harmonic uniform plane wave scat-

tering by a perfect electric cylindrical conductor of circular cross section and

of random radius, a = 0.80(1+χ) m, where χ is a Gaussian random variable

with zero mean and standard variation of 0.06. The cylinder is immersed in

free space and its axis coincides with the z-axis of the reference coordinate

system. The amplitude of the incident magnetic �eld is 1 A/m and its angu-

lar frequency is 9×108 rad/s. The availability of an analytic solution for this

problem makes possible the use of a standard Monte Carlo analysis to cal-

culate the reference solution for the statistics of the scattered magnetic �eld

on a circle of radius 1.2 m centered at the origin. Use of 104 sampling points

in the Monte Carlo process yielded an accuracy of 10−5 in the calculation of

the mean value of the magnitude of the scattered magnetic �eld.

Next, the problem was solved making use of the stochastic global impedance

condition de�ned over the circle of radius 1.2 m. The polynomial chaos ap-

proximation of the elements of the impedance matrix is in terms of Hermite

polynomials up to the third order. The dimension of the impedance matrix is

11. Since the dimension of the random space is 1, the Smolyak grid reduces

to a simple Gaussian quadrature rule. For accuracy level of 5, a Smolyak

involving �ve grid points is required for the calculation of the integrals in

(4.7). Since the random space for the exterior stochastic BVP is the same

with that for the interior, the same Smolyak grid used for the construction of

the global impedance matrix is used for solving the exterior stochastic BVP.

The mean and variance of the magnitude of the scattered magnetic �eld thus
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Figure 4.2: Mean value of the magnitude of the scattered magnetic �eld.
Error bars represent ±3std deviation from the mean.

computed are compared with those obtained analytically in Fig. 4.2. The

error bars represent a ±3std deviation with respect to the mean. Very good

agreement is observed. More speci�cally, the average error in the mean value

of the magnitude of the scattered magnetic �eld between the analytical and

the numerical solution, averaged over all angles, is 1.20%.

4.4.2 Four Elliptical Cylinders � TEz Polarization

Next, the case of TEz wave scattering by an array of four elliptical cylinders is

considered. All cylinders are perfect electric conductors, and the background

medium is free space. The angular frequency of the excitation is 9 Ö 108

rad/s. In the absence of any statistical variability, the centers of the four

cylinders coincide with the vertices of a square of side 2.4 m (see Fig. 4.3).

The randomness in the cross-sectional geometry is introduced through a set

of four independent random variables for each cylinder. Two of them, χ1,

χ2, are associated with the lengths 2a and 2b of the major axis (along the x-

axis) and minor axis (along the y-axis), respectively, of the elliptical cylinder.

More speci�cally, with the two random variables taken to be Gaussian of

mean value of 0 and standard deviation of 0.025, the lengths of the two axes

(in meters) are given by

2a(χ1) = 1.4(1 + χ1), 2b(χ2) = 1.4(1 + χ2). (4.8)

The other two random variables, χx, χy, control the random displacement
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Figure 4.3: Array of four PEC elliptical cylinders with random axes lengths
and random positions.

of the center of the cylinder from the vertex of the reference square. The

position of the center is given by

~rc = ~ro + x̂χx + ŷχy, (4.9)

where ~ro denotes the corresponding position of the vertex of the square.

Variables χx and χy are Gaussian random variables of zero mean value and

standard deviation of 0.025 m. Even though the same four variables are being

used to quantify the geometric uncertainty for each one of the four cylinders,

when considering the four-cylinder array, the four sets of random variables

are assumed to be independent. Thus, the randomness of the cross-sectional

geometry is parameterized in terms of 16 independent random variables.

Depicted in Fig. 4.3 are the four �xed circular boundaries on which

stochastic global impedance boundary conditions will be de�ned, one for

each one of the four cylinders. The center for each circle coincides with cor-

responding vertex of the reference square formed by the unperturbed centers

of the four cylinders in the array. The radius of each circle is such that

the cylinder associated with it remains enclosed by it for all points in the

four-dimensional domain in the random space de�ned by the random vari-

ables χ1, χ2, χx, χy. For this speci�c example, this radius was taken to

be 1 m. Given that the random variables are Gaussian distributions, or-

thogonal Hermite polynomials are used for the polynomial chaos expansion

of the elements of the stochastic impedance matrix. The calculation of the

coe�cients in the polynomial chaos expansion using polynomials of up to

second order is carried out e�ciently through the use of a Smolyak sparse
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grid, on the four-dimensional random space. More speci�cally, for the case

considered here, a Kronrod�Patterson rule [41], [105] of accuracy level 5 was

used, resulting in 201 points on the four-dimensional random space. For each

point on the Smolyak grid, a �nite element solution of the interior BVP was

used to calculate a global impedance matrix of dimension 21. The computed

matrices were subsequently used for the calculation of the coe�cients in the

polynomial chaos expansion of the stochastic impedance matrix making use

of (4.7).

With the stochastic global impedance matrix available on each one of the

four circular boundaries, a �nite element model was used for the solution

of the exterior stochastic BVP with excitation by a uniform, time-harmonic

plane wave propagating in the +x direction with magnetic �eld amplitude

of 1 A/m. Since the circular stochastic impedance boundaries are �xed, a

single �nite element mesh is needed for the discretization of the geometry.

The only changes to the �nite element matrix are those associated with the

speci�c values of the stochastic impedance matrices on the four boundaries

for each sample realization in the 16-dimensional random space. Rather

than a standard Monte Carlo process, a Smolyak sparse grid of accuracy

level 3 was used to extract the statistics of the scattered �elds and the radar

cross section. The number of points in the sparse Smolyak grid is 513. The

mean and variance of the output parameters are computed by performing

the integration over the random space. These integrals are approximated by

weighted summations of the scattered �eld, computed at each one of the 513

nodes as previously described,

〈|Hsc
z (ρ, φ)|〉 ≈

513∑

r=1

|Hsc
z (ρ, φ,χr)| ρ(χr)wr, (4.10)

var (|Hsc
z (ρ, φ)|) ≈

513∑

r=1

|Hsc
z (ρ, φ,χr)|2 ρ(χr)wr−〈|Hsc

z (ρ, φ)|〉2 . (4.11)

The calculated scattered magnetic �eld, sampled on a circle of radius 3.4

m centered at the center of the reference square de�ned by the unperturbed

centers of the four cylinders is depicted in Fig. 4.4. More speci�cally, shown

in the �gure is the mean value of the magnitude of the scattered magnetic

�eld along with error bars that indicate a ±3std deviation from the mean
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Figure 4.4: Mean value of the magnitude of the scattered magnetic �eld on
a circle of radium 3.8 m enclosing the four cylinders. Error bars represent
±3std deviation from the mean.

Figure 4.5: Mean value of the radiation cross section (RCS) of the magnetic
�eld. Error bars represent ±3std deviation from the mean.

value. The radar cross section (RCS) is depicted in Fig. 4.5. Again, the

mean value is plotted, along with error bars that denote ±3std deviation

from the mean.

4.4.3 Array of Elliptical Cylinders � TMz Polarization

The �nal numerical study considers the case where the polarization of the

excitation is TMz with the electric �eld linearly polarized along the z-axis.

For this case and in view of the fact that for the two-dimensional BVP

considered the governing equation is the scalar Helmholtz equation for the z-

component of the magnetic �eld, a global admittance matrix is used instead

of a global impedance matrix. The global admittance matrix relates the

Fourier coe�cients in the expansion of the tangential magnetic �eld on each

one of the circular boundaries Sn to the Fourier coe�cients in the expansion

of the tangential electric �eld.

For this case, the four-cylinder array depicted in Fig. 4.3 is illuminated

by a time-harmonic, line current source of current phasor of 1 A, angular
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Figure 4.6: Magnitude of the scattered electric �eld on a circle of radius 3.4
m. Error bars represent ±3std deviation from the mean.

Figure 4.7: Mean value of the magnitude of the far electric �eld at
ρ = 1000/ko. Error bars represent ±3std deviation from the mean.

frequency 9×108 rad/s, and placed at position (3, 0) m with its axis parallel

to the z-axis. The development of the global stochastic admittance matrix,

used on each one of the circular boundaries, was carried out following the

same choices for Hermite polynomial chaos expansion order and Smolyak

grid accuracy level as in the computation of the impedance matrix for the

TEz case.

Using expressions (4.10) and (4.11) the mean and the variance of the mag-

nitude of the z-component of the scattered electric �eld were computed.

Depicted in Fig. 4.6 is the mean value of the magnitude of the scattered

electric �eld recorded on a circle of radius 3.4 m with its center at the center

of the reference square of the four-cylinder array con�guration. Also depicted

in the �gure are error bars indicating ±3std deviation from the mean. The

large deviation obtained in the forward scattering direction (on the side of

the array where the line source is placed) is attributed to the close proximity

of the source to the cylinders. Also depicted in Fig. 4.7 is the mean value of

the magnitude of the total electric �eld for a distance in the far-�eld region.

Again, the error bars represent ±3std deviation from the mean.
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4.5 Concluding Remarks

In this chapter, a methodology has been proposed and numerically demon-

strated for the development of stochastic macromodels of sub-domains of a

complex electromagnetic structure exhibiting geometric and/or material ran-

domness. Under the assumption that the randomness inside the sub-domain

is parameterized in terms of a set of independent random variables, the pro-

posed methodology abstracts the randomness in the sub-domain in terms of a

stochastic global impedance or admittance matrix de�ned on a �xed surface

enclosing the sub-domain. The elements of the matrix are given in terms of

truncated polynomial chaos expansions on the random space de�ned by the

independent random variables.

As demonstrated through the numerical examples presented, use of such

stochastic macromodels alleviates the computational complexity of the so-

lution of the random scattering problem by eliminating the need for the

repeated numerical discretization (e.g., the repeated mesh generation) for

the entire structure for each sampling point in the Monte Carlo process.

While the proposed methodology was presented in the context of two-

dimensional EM scattering, its extension to three dimensions is rather straight-

forward. For example, for the case of an ensemble of multiple three-dimensional

objects, global stochastic impedance boundary conditions can be de�ned on

spherical surfaces enclosing each object.

Another extension of the proposed macromodeling involves the case where

the elements of the stochastic global impedance matrix are functions of fre-

quency. As already demonstrated in [52] and [86], this extension generalizes

the concept of stochastic global impedance macromodeling � in a manner

consistent with the concept of network matrix representation of passive EM

multi-ports � to provide for a broadband stochastic macromodel of a portion

of a composite structure exhibiting material and/or geometric randomness.

Chapter 5 presents the development of the broadband response.
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Chapter 5

STOCHASTIC REDUCED-ORDER

MACROMODELING

5.1 Introduction

In Chapter 4, a stochastic macromodeling methodology was proposed to ac-

count for the uncertainty in geometric and material properties of random

subdomains. One substantial limitation of the methodology is that it is only

valid for a speci�c frequency. In view of such a constraint, we turn our atten-

tion to its generalization for broadband stochastic modeling. Particularly, we

are concerned with the development of e�cient ways to account for uncer-

tainty (randomness) in geometric and material properties in the �nite element

modeling of electromagnetic wave phenomena in complex structures with a

reduced-order model technique. Along the same lines as the contributions

from Chapter 4, of particular interest are structures where such uncertainty

is localized, occurring in a �nite number of regions inside the structure. For

such cases, the numerical electromagnetic analysis of the structure can be

expedited by eliminating the repeated mesh generation in a Monte Carlo

process required for each sampling point in the random space de�ned by

the independent random variables that parameterize the uncertainty in the

structure.

Toward this objective, we develop a stochastic �nite-element macromodel

for each one of the random regions, with each macromodel de�ned over a

�xed surface enclosing the associated random region. In this manner, the

geometry exterior to the union of the random regions is deterministically

de�ned. Thus, a single �nite element mesh needs to be generated for the

discretization of the overall structure. The only thing that changes for each

sample in the Monte Carlo process is the stochastic macromodel for each one

of the random regions.

A Krylov subspace Model Order Reduction (MOR) methodology [85] is
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used to reduce the size of the �nite element model that discretizes the inte-

rior of the random region and a sparse stochastic collocation method is used

to develop reduced-order macromodels of the state-space representation ma-

trices that are expressed in terms of generalized polynomial chaos expansions

over the random space for the region [87].

Numerical studies of electromagnetic wave scattering by random targets

are used to highlight the attributes of the proposed stochastic �nite element

macromodels and demonstrate the computational bene�ts from their uti-

lization in the numerical modeling of electromagnetic wave interaction with

complex structures exhibiting uncertainty. For each iteration of the stochas-

tic simulation, the macromodel de�ned on the �xed boundary enclosing the

random region is used to compute the corresponding transition matrix [104]

that relates the coe�cients of the tangential scattered and incident �elds on

the boundary interpolated in terms of appropriate sets of spatial expansion

functions. In addition, the transition-matrix formulation is used to solve scat-

tering problems with multiple targets by employing a recursive formulation

based on the addition theorem proposed by Chew [104].

5.2 Deterministic Transition Matrix

Transition matrix is a well-known concept [104] that relates the incoming

modes with the scattered ones by expanding the �elds in terms of the Fourier

harmonics in the two-dimensional case and the spherical harmonics for the

three-dimensional case. In this section, we present a two-dimensional tran-

sition matrix formulation in the FEM context to set the deterministic tools

for the stochastic transition matrix representation formulated in Section 5.4.

Consider a two-dimensional electromagnetic scattering problem with trans-

verse magnetic polarization. The scatterer is immersed in free space as shown

in Fig. 5.1 and bounded by a �ctitious circular boundary c corresponding

to the circle with radius ρ = ρo. A �nite element method is used to dis-

cretize the domain D and reduce the Maxwell's equations to a linear system

of equations. The Galerkin technique reduces the vector wave equation to

[85]
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1

Stochastic Scattering Matrix Boundary Condition
with Model Order Reduction

Juan S. Ochoa

Abstract—The following report presents a boundary condition
method based on a cylindrical harmonics expansion that allows
us to characterize scatterers and solve scattering problems for
any incident field in a frequency band. Specifically, we focus on a
2-dimensional transverse magnetic polarization. Besides, a model
order reduction techniques that preserves the quadratic equation
structure of the system is employed to reduce the order of the
problem.

I. INTRODUCTION

In the present article, we consider a general methodology
to solve scattering problems presenting statistical variability
organized as follows: first, the scattering matrix boundary con-
dition for deterministic problems, later we introduce a Model
Order Reduction (MOR) formulation combined with the pre-
vious scattering condition to characterize random scatterers
with a boundary condition. Additionally, numerical results of
the scattering by circular PEC cylinders with random radius
are presented and validated with Monte Carlo simulations of
the analytical expressions.

II. SCATTERING MATRIX BOUNDARY CONDITION

We consider a 2-dimensional electromagnetic scattering
problem with transverse magnetic polarization. The scatterer
is immersed in free space as shown in Fig. 1. A finite element
method is used to discretize the Maxwell’s equations and
reduce them to a linear system of equations. The Galerkin
technique reduces the vector wave equation to

˜

⌦
(r⇥ wi) · (r⇥ H)ds �

˜

⌦
k2

oH · wids =
�j!"o

´

c
(n̂ ⇥ Ez) · widl,

(1)

where wi represents the vector basis functions used to expand
the magnetic field,

H =

MX

i=1

wixh,i. (2)

We assume that the incident electric field has the form

Einc
z,n = H(1)

n (k⇢) ejn�. (3)

We can also consider an incidence given by linear combina-
tions of Hankel functions H

(1)
n and H

(2)
n , or Bessel functions,

Jn and Yn. While on the boundary c, the corresponding �-
component of the magnetic field is

Hinc
�,n = � j

⌘o
H 0(1)

n (ka) ejn�. (4)

Ω

c

Figure 1. Geometry of scatterer. Scattering boundary condition is computed
on contour c.

The corresponding scattered fields are cast in terms of
expansions of all the possible scattered Hankel modes. The
coefficients of the expansion of the scattered fields correspond
to the coefficients of the scattering matrix, S.

Esc
z,n w

NX

m=�N

smnH(2)
m (ka) ejm�, (5)

Hsc
�,n ' � j

⌘o

NX

m=�N

smnH 0(2)
m (ka) ejm�. (6)

In order to keep the size of the problem small while preserv-
ing the accuracy of the solutions, N should be chosen slightly
larker than 0.5kod, where d denotes the largest dimension of
the cross section of the scatterer [1], [2]. The total magnetic
field, tangential to the boundary c, is

H�,n = Hinc
�,n + Hsc

�,n. (7)

We make use of expansion (2), multiply (7) by e�jm� and
integrate it from 0 to 2⇡ to obtain

PMc
i

´

ci
wix

(n)
h,i e

�jm�d� =

� 2⇡j
⌘o

⇣
�mnH 0(1)

n (ka) + smnH 0(2)
m (ka)

⌘
.

(8)

Let’s express it in matrix notation,

BHXh = �2⇡j

⌘o
(H0(1) + H0(2)S), (9)

where the diagonal matrices H0(1) and H0(2) 2 C2N+1⇥2N+1

and their (mth, mth) diagonal entries are the corresponding
derivatives of the Hankel function of order m. Also,

B =


0
Bc

�
, (10)
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D 

Figure 5.1: Geometry of scatterer. Scattering boundary condition is
computed on contour c.

¨

D

(∇×wi) · (∇×H)ds−
¨

D

k2
oH ·wids =

−jωεo
ˆ

c

(n̂×Ez) ·widl,
(5.1)

where wi represents the vector basis functions used to expand the magnetic

�eld,

H ≈
Ne∑

i=1

wixh,i. (5.2)

In (5.2), we assume that the spatial domain has been descritized into Ne

�nite elements. In order to consider losses we would need to replace jωεo by

jωεo + σ.

The incident �elds can be expressed in terms of an expansion of the modes.

For the n-th Bessel mode of the incident �eld we have,

Einc
z,n = Jn (kρ) ejnφ. (5.3)

While on the boundary c, the corresponding φ-component of the magnetic

�eld is

H inc
φ,n = − j

ηo
J ′n (ka) ejnφ. (5.4)

The corresponding scattered �elds are cast in terms of expansions of Hankel

modes. In order to keep the size of the problem small while preserving
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the accuracy of the solutions, the number of modes, 2Nmod + 1, should be

chosen so that Nmod is slightly larger than ko`/2, where ` denotes the largest

dimension of the cross section of the scatterer [91, 106]. The coe�cients Tmn

of the expansion of the scattered �elds correspond to the coe�cients of the

transition matrix, T, that relates the amplitudes of the cylindrical modes of

the incident and the scattered �elds.

Esc
z,n ≈

Nmod∑

m=−Nmod

TmnH
(2)
m (ka) ejmφ, (5.5)

Hsc
φ,n ≈ −

j

ηo

Nmod∑

m=−Nmod

TmnH
′(2)
m (ka) ejmφ. (5.6)

The total φ-component of the magnetic �eld, Hφ = H inc
φ + Hsc

φ on the

boundary c is

Ne∑

i=1

φ̂ ·wixh,i = − j

ηo
J ′n (ka) ejnφ − j

ηo

Nmod∑

m=−Nmod

TmnH
′(2)
m (ka) ejmφ. (5.7)

Next, by making use of the orthogonality condition of the Fourier harmon-

ics, we get

BHXh = −2πj

ηo
(J′ + H′(2)T), (5.8)

where the �rst term of the right-hand side corresponds to the incident mag-

netic �eld, while the second term corresponds to the re�ected �eld. The

(m,m)-th entries of diagonal matrices J′ and H′(2) ∈ C2Nmod+1×2Nmod+1 are

the derivative of the Bessel/Hankel functions of order m. Also, matrix

B ∈ CNe×2Nmod+1 has zero entries except for the elements on the arti�cial

circular boundary c, for which

Bcin =

ˆ

ci

φ̂ ·wie
jnφdφ, (5.9)

where c = c1 ∪ c2... ∪ cNc and each sub-contour ci corresponds to each mesh

element on the boundary. Also, the n-th column of matrix Xh ∈ CNe×2Nmod+1

contains the magnetic �eld evaluated at angle φi for the n-th Bessel mode.

Let us consider now the right-hand side of the weak statement (5.1),
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−jωεo
ˆ

c

(n̂×Ez) ·widl = jωεoρo

2π
ˆ

0

Ez,nφ̂ �wi(φ)dφ. (5.10)

Expressing (5.10) in matrix notation and using (5.1) we obtain,

(Z + s2P)Xh = sεoρoB(J + H(2)T), (5.11)

where s = jω and state-space representation matrices Z and P ∈ RNe×Ne are

given by

Zij =

¨

Ω

(∇×wi) · (∇×wj)ds, (5.12)

Pij = εoµo

¨

Ω

wi ·wjds. (5.13)

Finally, by replacing expression (5.8) into (5.11), we get transition matrix

T,

T = −(H′
(2) − jηoYH(2))−1(J′ − jηoYJ), (5.14)

where the admittance matrix Y ∈ C2Nmod+1×2Nmod+1 is de�ned as

Y =
sρoεo

2π
BH(Z + s2P)−1B, (5.15)

and it is the one described in Chapter 4. The transition-matrix formulation

o�ers the advantage of avoiding the mesh of the surrounding media of the

scatterer, provided that such media is homogeneous. The following subsec-

tion illustrates the use of the transition matrix in a scattering problem.

5.2.1 Using Transition Matrix in a Scattering Problem

Once the transition matrix has been described, we can use it to �nd the

scattered �eld from any incident wave. For such a purpose, we express the

incident electric �eld in terms of Bessel modes and Fourier harmonics expan-

sion,
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Einc
z ≈

Nmod∑

n=−Nmod

anJn (kρ) ejnφ. (5.16)

The corresponding scattered �eld is given in a similar manner,

Esc
z ≈

Nmod∑

m=−Nmod

bmH
(2)
m (kρ) ejmφ. (5.17)

On the other hand, for each incident Bessel mode, we have a corresponding

series of scattered Hankel modes,

Esc
z ≈

∑

n

∑

m

anTmnH
(2)
m (kρ) ejmφ. (5.18)

Equating (5.17) and (5.18), we get

b = Ta. (5.19)

Finally, the scattered �eld is

xsce = ΞH(2)Ta, (5.20)

where the (i,m)th entry of matrix Ξ is ejmφi and the entries of vector xsce

correspond to the z-component of the electric �eld evaluated at angles φi at

a given radius ρ.

5.3 Multiple Scatterers

So far the transition matrix has been formulated for one single scatterer.

Such methodology is an important building block for the study of targets

exhibiting stochastic variability and the statistical methodology employing

such a concept will be presented in forthcoming sections. In this section, we

turn our attention to a transition-matrix based methodology proposed by

Chew [104] for the deterministic solution of the electromagnetic scattering

by multiple objects. For our purposes, addition theorem is used to change

the coordinate system of the electromagnetic �elds, that are expressed in

terms of wave functions. As a result, an expression for an e�ective transition

matrix is constructed that takes into account the presence of other objects in
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the space. Additionally, the application of the formulation avoids the need

of meshing the medium in which the scatterer is immersed if such a medium

is homogeneous. This attribute results in a more e�cient numerical solution

of the scattering problem than the formulation proposed in Chapter 4.

5.3.1 Addition Theorem

Addition theorem arises in a variety of scattering problems. It expresses

the wave functions in one coordinate system, denoted i, in terms of wave

functions of another coordinate system, denoted l [104].

For the case of cylindrical coordinates, the addition theorem is [104, 91]

H(2)
m (kρi)e

−jmφi =





∞∑

n=−∞

Jn−m (kdil)H
(2)
m (kρl)e

−jnφl+j(n−m)φd ρl > dil

∞∑

n=−∞

H
(2)
n−m (kdil) Jm(kρl)e

−jnφl+j(n−m)φd ρl < dil

,

(5.21)

where φd is the angle formed by the vector that starts at the origin of the

coordinate system l and ends at the center of the coordinate system i. The

parameter dil is the distance between the origin of the two coordinate systems.

In matrix notation, the addition theorem results in the following transfor-

mations

ΞH(2) (kρi) = ΞJ (kρl)α
li, ρl < dli, (5.22)

ΞH(2) (kρi) = ΞH(2) (kρl)β
li, ρl > dli, (5.23)

ΞJ (kρi) = ΞJ (kρl)β
li. (5.24)

The last expression was obtained by taking the regular part of (5.22) [104].

In (5.22), (5.23), and (5.24), matrices αli and βli are given by

αlim,n = Jm−n(kdli)e
j(n−m)φd , (5.25)
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Figure 5.2: Two scatterers in the presence of an incident �eld.

βlim,n = H
(2)
m−n(kdli)e

j(n−m)φd . (5.26)

5.3.2 Two Scatterers

In this section, the formulation of the two-dimensional electromagnetic scat-

tering by two objects will be detailed while, for the case of three or more

targets, the reader is referred to [104, 107]. Transverse magnetic polariza-

tion is assumed as shown in Fig. 5.2, where the geometry of the problem

under consideration is depicted. The incident electric �eld can be expanded

in terms of Bessel modes (see (5.16)) and, in matrix notation, it is

xince = ΞJ (kρ0) a, (5.27)

where the incident �eld is measured with respect to coordinate system O0.

The corresponding scattered �eld is also expressed in terms of Bessel modes,

xsce = ΞH(2) (kρ1) b1 + ΞH(2) (kρ2) b2. (5.28)

Therefore, the total electric �eld is given by

xsce = ΞJ (kρ0) a + ΞH(2) (kρ2) b2 + ΞH(2) (kρ1) b1. (5.29)

Notice that the electric �eld in (5.29) is expressed in terms of outgoing

harmonics in the self-coordinates of the scatterers [104]. To remedy this ob-

stacle, we invoke addition theorem to cast the �eld in terms of wave functions

with respect to one single coordinate system,
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xe = ΞH(2) (kρ1)β10a + ΞH(2) (kρ1)α12b2 + ΞH(2) (kρ1) b1. (5.30)

In (5.30), the �rst two terms can be viewed as the incident �eld impinging

on the scatterer 1 while the third term is the scattered �eld from scatterer

1. Next, by de�nition of the transition matrix (5.19),

b1 = T1(1)(β
10a +α12b2), (5.31)

where T1(1) is the transition matrix for the isolated scatterer 1 and the paren-

thesized 1 indicates that it is for one scatterer [104]. Similarly, for the second

scatterer,

b2 = T2(1)(β
20a +α21b1). (5.32)

Finally, (5.31) and (5.32) can be combined to obtain

bi = Ti(2)β
i0a, (5.33)

where Ti(2) is the two-scatterer transition matrix for the i-th scatterer. It

relates the total scattered �eld due to the i-th scatterer to the incident �eld

amplitude when two scatterers are present and is given by [104]

Ti(2)β
i0 = (I −Ti(1)α

ilTi(1)α
li)Ti(1)(β

i0 +αilTl(1)β
l0), (5.34)

where i, l = 1, 2 and i 6= l and βi0 was included so that the matrix is de�ned

with respect to the self-coordinates of the scatterers.

Therefore, the scattering problem by two objects can be solved by eval-

uating (5.34), (5.33) and (5.28). The methodology for solving scattering

problems involving three or more scatterers is described in [104], where the

author Chew proposes a recursive algorithm based on the ideas described in

this section to �nd matrices Tn(N) that are used to compute the scattered

�eld.

Our proposed formulation is based on the FEM characterization of the

targets. Such a description is done in terms of state-space representation

matrices that typically have a large size. Therefore, before describing the
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use of the discussed techniques in the context of random EM scattering, we

introduce a model order reduction methodology to reduce the dimensionality

of the problem and, as a consequence, the computational e�ort associated

with the calculation of the macromodel.

5.4 Model Order Reduction

The dimension of matrices Z, P and B (and, hence, the order of the model)

depends on the selection of the mesh density. To obtain a good accuracy, a

relatively high-dense mesh is often required, especially for targets exhibiting

high complexity due to �ne features. As a consequence, the dimension of such

matrices and the computational cost of the method increases. Model Order

Reduction (MOR) provides an alternative to alleviate the computational

burden by generating a transformation F, which reduces the dimensionality

of the problem while preserving the accuracy of the solution. Speci�cally, the

MOR technique with the equation structure preserved, described in [108, 85]

is used in the present formulation.

Admittance matrix, Y, is expanded at so, which corresponds to a central

frequency, ωo, as follows,

Y = − s

ηo
BH

∞∑

i=0

ri(s− so)i, (5.35)

where Btri is the block moment of Y.

The moments ri can be recursively calculated as





ro = R,

r1 = A1ro,

ri = A1ri−1 + A2ri−2, i ≥ 2,

(5.36)

where

R = (Z + s2
oP)−1B,

A1 = −(Z + s2
oP)−1(2soP),

A2 = −(Z + s2
oP)−1P.

(5.37)

The generated Krylov subspace is
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Kq(A1,A2; R) = colsp[ro, r1, ..., rn−1, ro, r1, ..., rl], (5.38)

where q is the order of the subspace, ri is the i-th column of the matrix rn,

n = bq/(2Nmod + 1)c, and l = q − n · (2Nmod + 1). It is desired that the

dimension of the Krylov subspace q is much smaller than Ne. The bases of

the Krylov subspace are orthogonalized via the Gram-Schmidt process, to

obtain the orthonormal bases,

F = [F1, F2, ..., Fq]. (5.39)

Next, we apply the transformation in order to reduce the order of the

matrices as follows,

Z̃ = FHZF, P̃ = FHPF,

B̃ = F
H

B.
(5.40)

Finally, the reduced-order admittance matrix is approximated by

Ỹ =
1

2π
B̃H(Z̃ + s2P̃)−1(sεoρoB̃). (5.41)

The corresponding transition matrix can be obtained from (5.41) by using

transformation (5.14). This is a frequency-dependent model valid for values

of s near so. Next, we can use this frequency-dependent model to replace the

target by a circular boundary and solve a scattering problem with any given

incident �eld for any frequency in the given frequency range.

5.5 Stochastic Transition Matrix with Model Order

Reduction

Next, we combine the MOR process described above with the polynomial

chaos formulation of Section 4.2.3 to obtain a reduced order model where its

matrices are cast in terms of an expansion of orthogonal polynomials over

the random space. We will make use of the Smolyak sparse grid algorithm to

evaluate the expansion coe�cients of the matrices to reduce computational

cost. Thus, these matrices become functions of the set of random variables

describing the geometry and material properties of the target. Finally, the
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statistics of the scattered �elds for any source and any frequency in the

bandwidth of validity of the macromodel can be calculated.

We will use a simple example to explain the approach, namely, the case

of scattering by a PEC circular cylinder with random radius given by the

expression

ρ = ρ̂(1 + χ), (5.42)

where the random variable χ follows a Gaussian distribution with zero mean

and standard deviation std.

Following the formulation presented in [52, 86], we consider the reduced-

order random version of equation (5.11) in matrix notation,

(Z̃rand + s2P̃rand)X̃h,rand = sεoaB̃rand(H
(1) + H(2)T̃rand). (5.43)

By using the polynomial chaos expansion, matrices Z̃rand, P̃rand, Ỹrand,

X̃h,rand, and T̃rand are expanded in terms of an orthonormal set of polynomi-

als, Γi (χ). For instance, matrix B̃rand is expressed as a truncated summation

of orthonormal polynomials as follows,

B̃rand ≈
P∑

i=0

BiΓi (χ) . (5.44)

More speci�cally, the one-dimensional Hermite polynomials are used given

the Gaussian distribution of the random variable. The truncated expansion

up to P = 2 involves polynomials up to the second order,

Γo(χ) = 1,

Γ1(χ) = χ,

Γ2(χ) = 1√
2
(χ2 − 1).

(5.45)

The Smolyak algorithm is used to compute the coe�cients in (5.44) in an

expedient way. Making use of the orthogonality of the basis polynomials,

Bi =

ˆ

Ωrand

B̃rand(χ)Γi(χ)f(χ)dχ, (5.46)

where f(χ) is the PDF of Gaussian random variable χ.

The Smolyak algorithm allows us to replace previous multivariate inte-
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grals by a �nite summation with reduced number of function evaluations

(see Chapter 2),

Bi ≈
M∑

r=1

B̃rand(χr)Γi(χr)wr. (5.47)

Therefore, the FEM solver needs to be used M times to characterize the

random matrices of the scatterer.

5.5.1 Approach 1: Augmented System

Sumant et al. [86] proposed a stochastic FEM methodology to account for

the uncertainties in a electromagnetic problem. This approach reduces the

stochastic FEM problem to a deterministic one, from which the statistics

of the �elds can be computed. For such purposes, we replace the random

matrices in (5.43) by their corresponding polynomial series expansions,

(Zo + Z1Γ1 + Z2Γ2 + s2(Po + P1Γ1 + P2Γ2))

(Xho + Xh1Γ1 + Xh2Γ2) = sεoa(Bo + B1Γ1 + B2Γ2)

(J + H(2)(To + T1Γ1 + T2Γ2)).

(5.48)

Next, we multiply (5.48) by Γi (χ) f (χ) and integrate over the random

space. For i = 0, we obtain:

(Zo + s2Po)Xho + (Z1 + s2P1)Xh1 + (Z2 + s2P2)Xh2 =

sεoa(BoJ + BoH
(2)To + B1H

(2)T1 + B2H
(2)T2),

(5.49)

for i = 1,

(Zo + s2Po)Xh1 + (Z1 + s2P1)(Xh1 +
√

2Xh2)+

+(Z2 + s2P2)
√

2Xh1 = sεoa(BoH
(2)T1+

B1(J+H(2)To +
√

2H(2)T2) +
√

2B2H
(2)T1),

(5.50)

and for i = 2,

(Zo + s2Po)Xh2 +
√

2(Z1 + s2P1)Xh1+

(Z2 + s2P2)(Xho + 2
√

2Xh2) = sεoa(BoH
(2)T2+√

2B1H
(2)T1 + B2(J+H(2)To + 2

√
2H(2)T2)).

(5.51)
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Collecting previous equations into an augmented equation, we obtain

(Zaug + s2Paug)Xh,aug = sεoaBaug(Jaug + H(2)
augTaug), (5.52)

where the augmented matrices are given by

Zaug =




Zo Z1 Z2

Z1 Zo +
√

2Z2

√
2Z1

Z2

√
2Z1 Zo + 2

√
2Z2


 , (5.53)

Paug =




Po P1 P2

P1 Po +
√

2P2

√
2P1

P2

√
2P1 Po + 2

√
2P2


 , (5.54)

Baug =




Bo B1 B2

B1 Bo +
√

2B2

√
2B1

B2

√
2B1 Bo + 2

√
2B2


 , (5.55)

Xh,aug =




Xho

Xh1

Xh2


 , J′aug =




J′

0

0


 , (5.56)

H′
(2)
aug =




H′(2) 0 0

0 H′(2) 0

0 0 H′(2)


 , (5.57)

and

T(2)
aug =




To

T1

T2


 . (5.58)

In a similar fashion, the tangential component of the magnetic �eld on the

circular boundary can be expressed as an interpolation of orthogonal Hermite

polynomials. The random reduced version of equation (5.8) is given by

B̃H
randX̃h,rand = −2πj

ηo
(J′ + H′

(2)
Trand). (5.59)

Next, by using the same approach as the one employed to obtain (5.52),

we have
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BH
augXh,aug = −2πj

ηo
(J′aug + H′

(2)
augTaug). (5.60)

Using (5.60) into (5.52) we get,

Taug = −(H′(2)
aug − jηoYaugH

(2)
aug)−1

(J′aug − jηoYaugJaug),
(5.61)

where

Yarg =
sεoa

2π
BH
aug(Zaug + s2Paug)

−1Baug. (5.62)

In this manner, we have reduced a random problem to a deterministic

expression of dimension three times larger than the original one.

5.5.1.1 Using Transition Matrix in Stochastic Scattering Problems

Following the same formulation as the deterministic problem described in

Section 5.2.1, the scattered electric �eld is computed,

xsce,rand = ΞH(2)Tranda, (5.63)

where matrix Ξim = ejmφi , and the entries of vector xsce,rand correspond to

the random z-component of the electric �eld evaluated at angles φi at a

given radius ρ. The stochastic problem can be reduced to the deterministic

augmented expression

xsce,aug = ΞaugH
(2)
augTauga, (5.64)

where

Ξaug =




Ξ 0 0

0 Ξ 0

0 0 Ξ


 , (5.65)

xsce,aug =




xsce,o

xsce,1

xsce,2


 . (5.66)

In (5.66), xsce,j represents the j-th expansion vector coe�cient of the poly-
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nomial chaos representation of the scattered electric �eld evaluated at an-

gles φi on the boundary c. It can be shown that the mean and stan-

dard deviation of the scattered electric �eld are mean(xsce,rand) = xsce,o and

std(xsce,rand) =
√∣∣xsce,1

∣∣2 +
∣∣xsce,2

∣∣2.

5.5.2 Approach 2: Direct Interpolation

Instead of expanding the full-order matrices and coming up with an aug-

mented deterministic system, the reduced-order random matrices, Z̃rand,

P̃rand, and B̃rand can be expanded in terms of the polynomial chaos and

their coe�cient matrices, stored. Such coe�cients characterize the random

object under consideration. For example, for the case of matrix Z̃rand, we

have

Z̃rand ≈
P∑

i=0

ZiΓi (χ) , (5.67)

where the matrix coe�cients Zi, i = 1, 2, . . . P characterize the random scat-

terer.

Once the random matrices have been characterized, one can proceed to

compute the statistics of the scattered �eld by computing the reduced-order

admittance/impedance matrix and the corresponding transition matrix. The

clear advantage of this method is that the size of the �nal system does not

increases with the order of the employed interpolation polynomials as in

the �rst approach. On the other hand, the formulation does not present

the advantage of obtaining the mean and standard deviation directly as the

augmented-system approach does. The formulation is summarized in the

following algorithms.

Algorithm: Characterization of random scatters

1. Choose the dimension of the global impedance matrix and, hence, the

number of Fourier modes used in the expansion of the tangential electric

and magnetic �elds on the boundary surrounding the target.

2. Represent geometric/material randomness in terms of D independent

random variables χ = (χ1, χ2, . . . , χD).
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3. Choose the polynomial family and order for the truncated polynomial

chaos expansion.

4. Generate a Smolyak grid on the probability space Ω.

5. For each point χr, r = 1, 2 . . . ,M , on the Smolyak grid, solve the de-

terministic interior BVP to obtain the reduced macromodel in terms of

the state-space representation matrices, Z̃(χr), P̃(χr), B̃(χr).

6. Using the matrices obtained in step 5, calculate the coe�cients in the

polynomial chaos expansion of Z̃(χ), P̃(χ), B̃(χ).

Algorithm: Computation of statistics of scattered �eld

1. For each realization in the random space, χr, where r = 1, 2, ...Msc

(a) Compute matrices Y(χk) and T(χk) by evaluating equations (5.15)

and (5.14). For the case of N targets, compute matrices Ti(1)(χi,k)

and Ti(N)(χi,k), i = 1, 2, ...N as indicated in Section 5.3 and ref-

erence [104].

(b) Find the scattered �eld for a given incidence by evaluating (5.20)

or (5.29).

2. Gather results and calculate the statistics of the scattered �eld at the

frequency of interest.

5.6 Numerical Studies

The proposed formulation has been used to characterize an in�nitely long

PEC circular cylinder of radius

ρ = 0.5(1 + χ)m, (5.68)

where χ is a Gaussian random variable with zero mean and standard devia-

tion 0.1. The cylinder is immersed in free space and is centered at the origin

of the reference coordinate system. The enclosing boundary is a circle of

radius ρo = 1 m centered at the origin as depicted in Fig. 5.3. The number
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of employed Fourier modes is (2Nmod + 1) = 11 and the expansion point

used in the stochastic MOR technique is so = 107rad/s. As a result, the

FEM state-space representation matrices are reduced to a size q = 33 and an

interpolation over the random space of matrices Z̃rand, P̃rand, and B̃rand is

obtained in terms of orthonormal polynomials as described in (5.67). In order

to obtain the expansion coe�cients of the polynomial chaos (PC) expansion,

an integration grid of accuracy level k = 5 requires only �ve electromagnetic

solutions of the structure in the one-dimensional random space.

With this interpolation available, we can proceed with �nding the statis-

tics of the scattered �eld for a given excitation using any one of the two

proposed approaches. Validations are provided through comparisons with

corresponding Monte Carlo solutions of the analytical formulation of plane

wave scattering. Additionally, a TMz current line source is considered and

an example involving two random scatterers is simulated by using a recursive

algorithm proposed by Chew [104].

5.6.1 Single Cylinder with Random Radius and Plane Wave

Incidence

The augmented system and the direct interpolation approaches are applied

to solve the random EM scattering problem shown in Fig. 5.3 with the

geometric perturbation de�ned in (5.68). The amplitude of the transverse-

magnetic (TMz) polarized incident �eld is 1 V/m and the position of the

sampled scattered electric �eld is indicated in Fig. 5.3. The results are

compared with 2 × 104 Monte Carlo solutions of the analytical Mie series

[109]. In contrast with the MC simulation our methodology requires only

�ve evaluations of the macromodel to calculate the corresponding transition

matrices by means of (5.15) and (5.14) and the scattered �eld with (5.19)

and (5.17). Such values were used in a one-dimensional quadrature rule to

�nd the statistical moments of the scattered electric �eld.

Figure 5.4 shows the mean and standard deviation of the z-component of

the scattered electric �eld with respect to the normalized wavenumber, koρo,

for the case of an incident plane wave impinging the scatterer as shown in

Fig. 5.3, calculated with four techniques. The �rst of such methods is the

Monte Carlo simulation of the analytical Mie series which is assumed to be
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Figure 5.3: Geometry of the studied problem. The �eld is sampled at the
position (0,1) m.

our reference solution. The augmented system approach is also employed

with �rst- and second-order polynomials, as well as the direct interpolation

approach. In general, we observe that the farther the wavenumber is from

the selected expansion point, the worse the accuracy is in our numerical

approaches, as expected from the construction of the MOR technique. Ad-

ditionally, it is clear that the augmented system approach of �rst- and even

second- order is less accurate than the direct interpolation approach. Due

to its better convergence, the direct interpolation technique is used in the

remaining numerical studies.

5.6.2 Single Cylinder with Random Radius and Line Current

Excitation

In our next example, we consider the same PEC cylinder structure from the

previous example with a random radius given by expression 5.68. In this

case, the cylinder is illuminated by a time harmonic line source with magni-

tude 1A located at position (3,0)m as indicated in Fig. 5.5. Results of the

simulation are shown in Fig. 5.6 where we have depicted the mean and stan-

dard deviation of the scattered electric �eld as a function of the wavenumber

sampled at the coordinates (0,1)m and obtained with 2 × 104 Monte Carlo

solutions of the analytical Mie series as well as with the reduced-order di-

rect interpolation technique that employes only �ve evaluations to calculate

the corresponding statistical moments of the electric �eld. In general, we

observe a good agreement between the numerical and analytical approaches.

Additionally, with this example we can demonstrates the versatility of the

stochastic macromodel that can be used for any incident �eld.
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Monte Carlo Simulation	


Augmented syst. 1st order	


Augmented syst. 2nd order	


Direct interpolation	



Monte Carlo Simulation	


Augmented syst. 1st order	


Augmented syst. 2nd order	


Direct interpolation	



Figure 5.4: Monte Carlo simulation based on the analytical Mie scattering
solution is compared to the augmented system approach of the �rst- and
second-order and the direct interpolation approach. The �eld has been
sampled at φ = π, ρ = 1 m.
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Figure 5.5: Setup of the line source simulation. The PEC circular cylinder
has a random radius and the line source is located at the position (3,0) m.
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Figure 5.6: The simulation results of the problem to the scattering problem
depicted in Fig. 5.5, obtained with the direct interpolation stochastic
macromodeling and Monte Carlo solution of the analytical Mie series. The
plots show the mean value (top) and standard deviation (bottom) of the
z -component of the scattered electric �eld sampled at (0,1) m with respect
to the normalized wavenumber.
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Figure 5.7: Geometry of two PEC circular cylinders each with a random
radius, given by ρi = 0.5(1 + χi), for i = 1, 2 and χi ∼ N (0, 0.1). The
separation distance between the centers of the cylinders is d12 = 2.4 m and
the radius of the arti�cial boundaries is ρo = 1 m. The cylinders are
impinged by a plane wave with amplitude 1 V/m directed along the x-axis.

5.6.3 Two Cylinders with Plane Wave Incidence

One last example employing the reduced-order macromodel of the PEC cir-

cular cylinder structure shown in Fig. 5.3 with random radius given by

(5.68) is considered. Speci�cally, two of such structures located 2.4 m apart

form each other as depicted Fig. 5.7 are illuminated by a plane-wave with

transverse-magnetic polarization and electric �eld magnitude of 1 V/m. The

stochastic collocation scheme employes 29 evaluations of the macromodel and

electric �eld corresponding to a sparse grid of dimension two and accuracy

level, k = 3.

The reduced-order stochastic macromodeling approach based on the direct

interpolation formulation was used in combination with the transition-matrix

based algorithm for multiple scatterers described in Section 5.3.2 to calculate

the radiation cross section of the structure from Fig. 5.7. Such formulation

was validated with the full-order stochastic macromodeling approach that

follows the formulation from Chapter 4, where a stochastic admittance matrix

boundary condition is imposed in each one of the arti�cial �xed boundaries

surrounding the objects. In contrast with the full-order macromodel, the

reduced-order model does not require the meshing of the surrounding media

because the targets are immersed in a homogeneous medium, resulting in a

more computationally e�cient methodology.

The radiation cross sections obtained by means of the two methods are

shown in Fig. 5.8. It is clear that good agreement is observed in both

approaches while the reduced-order methodology is computationally more

e�cient due to the reduction in the size of the state-space representation

matrices and the absence of the surrounding mesh.
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Reduced-order model 

 
 

Full-order model 

Figure 5.8: Radiation Cross Section (RCS) of two random cylinders with
error bars representing ±3std deviation from the mean value. The centers
are 2.4 m apart and the frequency is 118 MHz.

5.7 Concluding Remarks

A formulation to study electromagnetic scattering by targets exhibiting un-

certainty was proposed. The methodology characterizes the reduced-order

state-space FEM matrices in terms of an expansion of orthogonal polynomi-

als of the random variables that characterize the uncertainty. The result is a

stochastic broadband macromodel of the subdomain that is employed next in

the solution of stochastic scattering problems. In the iterations of a stochas-

tic collocation scheme transition matrix that relates the wave functions of

the incident �eld with the outgoing wave functions of the scattered �eld is

computed. The use of a transition matrix avoids the need of meshing the

surrounding media of the targets provided that the media is homogeneous.

Additionally, the methodology can handle multiple scatterers by using a re-

cursive algorithm based on the addition theorem.

Several scattering problems have been used to assess the accuracy of the

methodology by comparing the simulations with Monte Carlo solutions of

the Mie series for cylindrical objects. It is demonstrated that the proposed

framework is more accurate than previously published works [86]. With

regard to the e�ciency of the reduced-order macromodeling technique, it

comes from the reduction of the size of the state-spare representation matrices

and the absence of the surrounding mesh.
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Chapter 6

STOCHASTIC SIGNAL INTEGRITY

ANALYSIS OF INTERCONNECTS

6.1 Introduction

Another important application of computational electromagnetics concerns

the study of the degradation of electrical signals as they are transmitted in

electronic circuits known as signal integrity. The existing numerical tools for

the accurate deterministic predictive models is well understood and rigorous

solvers [6] are available. In recent years, several researchers have published

a number of papers [38, 39, 37, 48, 110] that treat the problem of high-speed

interconnects exhibiting uncertainty. For most of the mentioned works, the

variability is assumed to occur from one structure to the next so that the

geometry and electrical properties are uniform within each manufactured

structure, in other words, they treat problems with global variability. The

intention of this chapter is to focus on variability that exists localized within

the structure itself, resulting in nonuniform geometries and electrical prop-

erties within an interconnect link. Due to the complexity of this kind of

problem, only a limited number of stochastic applications are found in the

literature (e.g. [40, 111, 112]) .

In this chapter, a general methodology is proposed in Section 6.2 and

two study cases are analyzed. The �rst one, presented in Section 6.3 is a

methodology for the assessment of interconnects with random permittivity

pro�les, and the second example, shown in Section 6.4 is a methodology

for the assessment of the impact of the interconnect routing variability on

signal degradation. For our purposes, as in previous chapters, stochastic

macromodeling techniques are employed.
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6.2 Proposed Methodology

Even though the statistical approaches to treat signal integrity applications

exhibiting uncertainty might vary from case to case, a general algorithm

can be recognized to perform statistical assessment of interconnects. The

�rst step is the de�nition of the random space in terms of a �nite set of

random variables and their corresponding PDFs and correlations. If possible,

principal component analysis (see Chapter 3) is applied to orthogonalize

and reduce the dimensionality of the random space. Next, a parametric

frequency-domain macromodel of the structure is extracted. Such a model is

usually given by the scattering parameters. With the macromodel in hand,

an e�cient Monte Carlo simulation is performed. In each MC iteration, the

load and source conditions are imposed and the voltage waves are computed.

The �nal result is given by the time-domain voltage curves computed with

an inverse fast Fourier transform (IFFT) applied to the frequency-domain

signals. After gathering these simulations, the statistics of the voltage signals

can be computed. The algorithm is summarized next.

Algorithm

1. Characterize the random space in terms of a �nite set of random vari-

ables.

2. Use Principal Component Analysis to orthogonalize and reduce the

random space.

3. Extract a frequency-domain parametric macromodel of the structure.

4. Perform a Monte Carlo simulation using the macromodel. For each

iteration of the simulation:

(a) Generate a large set of random samples of the input random pa-

rameters.

(b) Evaluate the macromodel for each sample.

(c) Impose load and source conditions.

(d) Calculate the set of voltage curves.

(e) Apply IFFT to extract the time-domain curves.
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Figure 6.1: Transmission lines exhibiting random variability in the
permittivity along the longitudinal axes.

5. Gather results and calculate the statistics of the time-domain signals.

Next, two stochastic examples exhibiting uncertainty are evaluated and the

proposed methodology is employed to perform the statistical assessment.

6.3 Case Study 1: Transmission Lines with Random

Permittivity Pro�les

For this particular signal integrity example, we assume that a coaxial cable

presents variability in permittivity of the dielectric of its substrate as shown

in Fig. 6.1. Such permittivity changes throughout the longitudinal direction

of the cable. Our goal is to present a homogenization methodology to capture

the variability in the permittivity of transmission lines in terms of an e�ective

permittivity that simpli�es the statistical electromagnetic simulation of the

structure, as shown in Fig. 6.2.

The permittivity pro�le is presented as a correlated chain of N random

variables. The dimensionality of the input space is reduced to an n di-

mensional random space by means of Principal Component Analysis (PCA).

Therefore, the complexity of the model is reduced and subsequent calcula-

tions are simpli�ed. With this context in mind, we recognize that we are

dealing with a non-uniform transmission line (NTL) problem. The tradi-

tional approach to solve an NTL is based on the concatenation of ABCD

matrices [113]. The idea of the mentioned approach is to describe the overall

electromagnetic response of the system by taking the product of the individ-

ual ABCD matrices corresponding to each segment with uniform properties

as it is done in the next example. In the present study case, however, we make

use of a frequency-domain one-dimensional Finite Element Method (FEM)
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Figure 6.2: Proposed homogeneous stochastic model.

for the electromagnetic simulation in combination with a Polynomial Chaos

(PC) expansion formulation [36] to characterize the impact of uncertainty

on the transmission properties of the line as a function of the input random

parameters. Sparse grid integration is also employed to reduce the cost of

the integration associated with the PC construction.

It is found that the random non-uniformity is manifested as a perturbation

in the propagation constant which results in a deviation of the propagation

time su�ered by the wave as it travels down the random structure. The

quanti�cation of the induced jitter is necessary for the appropriate signal

integrity assessment of the line since it can potentially introduce undesired

distortion and synchronization defects.

6.3.1 Statistical Characterization

The permittivity of the surrounding medium is assumed to vary along the

longitudinal dimension of the line (z-direction) according to the expression

εr(zi) = εrm + std(εri)χi, (6.1)

where χi is assumed to be a Gaussian random variable with zero mean and

unit variance, and εrm and std(εri) are the mean and standard deviation

of the permittivity measured at every position. It is assumed that these

quantities are constant for all the segments of the line as shown in Fig. 6.3.

The correlation between two random variables corresponding to two di�erent

positions, zi and zj is assumed to follow a Gaussian function that depends

on the separation between such positions and is given by
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Figure 6.3: Transmission line discretized in sections with uniform
permittivity.

Σij = e−(|zi−zj |/`)2 , (6.2)

where parameter ` is known as correlation length and quanti�es the size of

the permittivity �uctuations in the dielectric. This function ensures that the

pro�le is continuous and smooth. Other properties, such as the conductivity,

cross section or even random bending of the wires can be considered to vary

in a similar fashion.

Once the permittivity has been de�ned it is noticed that the number of

random variables equals the number of elements used in the discretization of

the transmission line, N . Also, the length of each discrete section, dl = L/N

must satisfy the condition dl < min{λmin/10, `/10} in order to ensure that

the EM solution and statistical description of the pro�le are accurate.

As already mentioned, the goal is to obtain a stochastic e�ective permittiv-

ity constant that can then be used as a homogeneous property of an uniform

line with equivalent transmission properties. Such permittivity is interpo-

lated in terms of a set of basis functions of the input random variables. For a

particular realization of the permittivity pro�le, this homogeneous constant

is obtained with an FEM solver that extracts the scattering parameters and

the corresponding propagation constant from which the e�ective permittivity

is calculated. The computational e�ort required by the interpolation tech-

nique is related to the dimensionality of the problem. For example, in the

case of a tensor grid interpolation [14], the number of required FEM sim-

ulations grows exponentially with the number of dimensions of the random

space as qN , where q is the number of samples taken along each random

variable. Such computational barrier can be overcome by reducing the orig-

inal random space of dimension N to a space of size n � N composed by

the uncorrelated components presenting the largest variability. The reduced

dimensionality algorithm is described next.
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Figure 6.4: First four principal components of the permittivity pro�le along
the transmission line.

6.3.2 Random Space Dimensionality Reduction

As already pointed out, the number of random variables N equals the number

of FEM grid segments of the structure. Since a relatively large number of

discretized segments is required to obtain accurate results, the dimension

of the random space grows accordingly. Therefore, advantage is taken of

the existing correlation between the variables to reduce the random space

through a Principal Component Analysis (PCA). Figure 6.4 presents the

permittivity pro�les of the �rst four principal orthogonal components of the

considered transmission line of length L = 1 m, correlation length ` = 25

cm, mean permittivity, εrm = 4 and std(εri) = 0.15. The ratio L/` = 4 is the

minimum number of components required to obtain an accurate model. For

this example, such number of components provide a cumulative percentage

variation of 94%.

6.3.3 Construction of Stochastic Homogeneous Model

With the statistical framework in hand, the electromagnetic simulation and

subsequent homogenization are described. For each FEM simulation associ-

ated with the construction of the interpolation of the e�ective homogeneous

permittivity model, the position-dependent RLGC parameters of the line are

required. In the case of a coaxial cable, there is a straightforward relation

between capacitance per unit length and permittivity,

C(z) =
2πεoεr(z)

ln(D/d)
, (6.3)

where D and d are the external and internal radius of the cable, respectively.

When other structures are studied, for example a stripline, a polynomial
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expansion can be employed to characterize the RLGC parameters in terms

of the varying material properties and/or geometry as described in [37].

We proceed to �nd a representation of the e�ective homogeneous permit-

tivity constant through a polynomial chaos expansion [36] ,

ε̃r(χred) =
P∑

i=0

αiΓi(χred), (6.4)

where the multivariate polynomials Γi(χred) depend on the type of random

variables. For the case of Gaussian random variables, Hermite polynomials

are employed. The number of polynomials, P , is given by (n + p)!/n!p!

where p is the maximum order of the employed polynomials. At this point,

we see the bene�ts of using PCA since it reduces the number of required

polynomials. Coe�cients αi's of expansion (6.4) are obtained by integrating

in the random domain Ω and by making use of the orthogonality condition

of the polynomials,

αi =

ˆ

Ω

ε̃r(χred)Γi(χred)ρ(χred)dχred. (6.5)

Such integrals are e�ciently computed with the use of a sparse grid quadra-

ture rule, so that integral shown above is approximated to a summation of

function evaluations by employing the multivariate quadrature tool provided

by Heiss [41]:

αi '
M∑

j=1

ε̃r(χ
j
red)Γi(χ

j
red)wj, (6.6)

where the values of wj and χ
j
red are given by the corresponding multivariate

quadrature rule.

For this type of integration scheme the number of required simulations, M

is given by the number of dimensions of the random space, M ∼ 2knk/k! for

large n, where k is known as the accuracy level of the Smolyak algorithm

[13]. Again, by using PCA the number or simulations has been reduced and

the model simpli�ed.

For each iteration of our sparse grid algorithm, the EM simulator yields

the scattering parameters of the structure. The (2,1)-th coe�cient of the

scattering matrix is used to extract the corresponding e�ective propagation
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constant of a wave traveling through the line,

β(χjred, ω)L = =[ln(S21(χjred, ω))], (6.7)

where = denotes the imaginary part.

The corresponding e�ective permittivity is computed by �tting the prop-

agation constant to the expression

βj(ω) '
(
ω

vm

)(
ε̃r(χ

j
red)

εrm

)0.5

, (6.8)

where vm and εrm are the known propagation velocity and relative permit-

tivity in the unperturbed line. Once the M samples of ε̃r(χred) are collected,

the coe�cients (6.6) are evaluated and the model is complete.

6.3.4 Numerical Validation

Finally, the formulation is evaluated with a numerical example. The inner

radius of the cable is d = 0.2 cm and the outer radius, D = 0.5 cm. The

capacitance per unit length varies with the permittivity (6.1) according to

expression (6.3), while the inductance is constant. The length of the line is 1

m, the correlation length, 0.25 m, mean permittivity, εrm = 4 and std(εri) =

0.15. For a maximum frequency of 4 GHz, corresponding to λ = 37.5 mm,

dl = 2.5 mm is used which results in N = 400 segments. After the application

of PCA, a four-dimensional vector of independent Gaussian random variables

with zero mean and variances Std = [12.63, 10.79, 8.34, 5.85] is obtained. The

e�ective permittivity is expanded in terms of �ve Hermite polynomials of the

reduced-space variables χred,

ε̃r = αo + α1χred,1 + α2χred,2 + α3χred,3 + α4χred,4, (6.9)

with constants αo = 3.98, α1 = 0.090, α2 = 0.00, α3 = 0.0156, α4 = 0.00.

There is no contribution from components 2 and 4. In fact, as Fig. 6.4 shows,

the average along the z-direction of such components is 4, meaning that the

cumulative e�ects of components χred,2 and χred,4 are zero. This suggests that

the permittivity can alternatively be estimated with the mean value of the

randomly generated pro�le of the line; therefore, avoiding the electromagnetic
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Figure 6.5: Far-end voltage samples for a number of Monte Carlo
realizations of a lossless coaxial cable. The distortion in the line is
manifested in terms of a random deviation of the time delay, ∆t.

simulation. By using the mean of the permittivity of the segments of the line

to estimate the e�ective permittivity for a speci�c realization of the pro�le

instead of the electromagnetic simulation (6.7), the coe�cients of model (6.9)

are αo = 4, α1 = 0.091, α2 = 0.00, α3 = 0.0159, α4 = 0.00. Therefore, the

mean-based approach provides an accurate and signi�cantly more expeditious

way to calculate the e�ective permittivity.

The impact of the variability in the permittivity of the line is quanti�ed in

terms of perturbation in the expected propagation time as observed in Fig.

6.5, where a number of Monte Carlo simulations of the far-end time-domain

voltage are pictured for coaxial cables with random permittivity pro�les.

For each of those iterations, an FEM simulation is performed to obtain the

scattering parameters of the entire line with a randomly generated pro�le

which are used to �nd the time-domain responses for a given load conditions

and source. The cable is driven by a voltage source generating a rectangular

pulse of amplitude 1 V and turn-on delay time of 1 ns, rise and fall times of

2.5 ns, and width of 3 ns. The source impedance is 50 Ω and the termination

impedance is also 50 Ω.

The results obtained with the Monte Carlo simulation are used as a refer-

ence to validate the model. By employing the homogeneous model, the time

deviation is computed as follows:

∆t(χred) =
L

vm

[
1−

(
ε̃r(χred)

εrm

)0.5
]
. (6.10)

The probability density function of ∆t as a result of the Monte Carlo sim-

ulation is compared with the corresponding density obtained with the homo-

geneous stochastic model and the curves are shown in Fig. 6.6. Very good
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Figure 6.6: Probability density function of the deviation of the time delay
induced due to the variability in the permittivity of the line. The
methodology based on stochastic collocation is compared with Monte Carlo
simulation.

agreement is observed. The advantage of employing the proposed method-

ology is clear if we consider the computational savings. For the traditional

Monte Carlo method, 10,000 FEM simulations where employed to construct

the corresponding PDF which took 6.05 hours to implement in a MATLABr

code running on a 1.80 GHz Xeon CPUWindows machine, while only 33 sim-

ulations corresponding to 2.74 minutes were needed to construct the polyno-

mial chaos interpolation of the e�ective relative permittivity constant with

Smolyak accuracy level of 3 for the electromagnetic-based model. On the

other hand, by using the mean-based approach, the time is cut down to

6× 10−3 seconds.

Figure 6.7 represents the standard deviation of the induced jitter as a

function of the variance of the permittivity and the correlation length of the

pro�le. It is expected that the deviation increases as the magnitude of the

perturbation of the permittivity increases as Fig. 6.7-(b) demonstrates. The

�rst depicted plot of Fig. 6.7 shows how the standard deviation increases as

the correlation length increases which can be explained as follows. In the limit

of no correlation (zero correlation length) the jitter is given by a sum of many

independent zero-mean random variables and according to the central limit

theorem, it tends to zero. On the other hand, when the correlation length

is much larger than the length of the line, the random variables behave as

one so that the cumulative e�ect in the jitter is not cancelled by multiple

contributions.

In this example the permittivity has been assumed to vary throughout

the line. In the next case, the geometry is assumed to vary, speci�cally the

routing of interconnects. The next example is meant for early design stages

of PCB boards when a complete information of the routing is available.
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6.4 Case Study 2: Interconnect Routing Variability

Transmission properties of high-speed interconnect channels are perturbed by

the electromagnetic attributes of the adjacent environment. It is for this rea-

son that, in analyzing the attributes of a channel, additional wiring present

in the immediate vicinity of the channel conductors are also included in the

electromagnetic model. However, early in the design stage routing informa-

tion about the neighboring wiring distribution may not be available to inform

the speci�cs of the electromagnetic properties of the environment in which

the speci�c channel will be used. This absence of speci�city may be thought

of as an uncertainty that could be accounted for in the model in terms of

a set of appropriately de�ned random variables. Predicting the transmis-

sion attributes of the channel in the presence of such routing variability, and

thus assessing its impact on signal distortion, is the second example of this

chapter.

While a variety of Monte Carlo based approaches have been proposed for

the solution of the problem subject to speci�c driving and termination condi-

tions in the presence of uncertainty in the values of per-unit length matrices

L, R, C, G (see, for example, [40]), these methods tend to be computa-

tionally expensive. Thus, and given the fact that, in early design stages

rough estimates of the signal degradation due to such routing uncertainty

may su�ce for the development of guidelines for noise-aware �oor-planning

and routing, it is the objective of this example to present a computationally

more e�cient alternative to the aforementioned methods.

More speci�cally, the proposed approach combines the framework of para-

metric macromodeling with guaranteed passivity of [50, 49] with the ideas

presented in [82, 81] and [114], to develop an expedient manner in which

the impact of interconnect routing uncertainty on signal distortion can be

computed.

Figure 6.8 presents the design �ow of a PCB board where the fast assess-

ment of the random routing is introduced in the early design stage in order to

provide with predictive guidelines for the speci�cation of rules that optimize

the design.
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Figure 6.8: Proposed design �ow of PCB boards in [2]. Our methodology
intends to predict the behavior of the board to provide guiding in the
design rules of the board.
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6.4.1 Statistical Characterization

To �x ideas and without loss of generality, the case of two coupled microstrip

lines will be used to describe the way routing uncertainty is described in

the model. Figure 6.9 presents a realization of the random structure under

consideration, where, in the absence of routing uncertainty, the two signal

traces run parallel to each other at a �xed separation distance, s, as depicted

in the cross-sectional view of Fig. 6.10. Routing variability along the length

of the interconnect can be described by the random displacement along the x-

axis of the two end points of the bottom signal trace relative to the top trace.

Recognizing that the channel formed by the two coupled interconnects may

be considered as the concatenation of N such sections, the random variables

assigned the x-axis relative displacement of the end points of the bottom

wire in each section with respect to the top wire in the same section de�ne

the random space in which routing uncertainty is de�ned. There are two

approaches that can be considered as shown in Fig. 6.9, depending on the way

the overall line is sectioned into smaller pieces. Particularly, the formulation

presented focuses on the Approach A due to its simplicity. Clearly, the

physical continuity of the channel requires that the same random variable is

used to describe the displacement of the connection point of two consecutive

sections. Thus, for the two-conductor channel case considered, assuming

�xed conductor pitch at the end points of the channel and N sections, each

of the same �xed length, `, used to segment the channel, routing uncertainty

requires the introduction of N − 1 random variables, χn, n = 1, 2, . . . , N − 1.

6.4.2 Electromagnetic Modeling in the Presence of Routing

Uncertainty

With the input uncertainty parameterized in terms of these N − 1 random

variables and their associated probability density functions (PDF), a stan-

dard Monte Carlo process would consist of the calculation of the broadband

electromagnetic response of the channel for a su�ciently large number of

model realizations in the N − 1 random space to ensure convergence. For

each one of the realizations, a broadband transfer function matrix (e.g., a

scattering-parameter matrix) of the interconnect multi-port will be gener-

91



Random Line 

Reference Line 

χ1 
χ2 

l 
χ1 l 

χ2 χ3 

nth unit cell 

Approach B 
3D Random Space 

Approach A 
2D Random Space 

Figure 6.9: Longitudinal view of a section of a planar interconnect structure
consisting of two signal traces. Uncertainty in routing is de�ned in terms of
the displacement of the x coordinate of each of the two end points of the
bottom wire.

s	



εr,	
  tanδ	



Traces	



Substrate	



Ground	



Copper	



Copper	



Figure 6.10: Cross section of a coupled microstrip line.

ated. Even with a possible reduction of the computational complexity of

the Monte Carlo analysis through the use of sparse sampling of the random

space (e.g., [13]), the overall computational complexity is still high because

of the cost involved in the broadband electromagnetic analysis of the entire

channel. Thus, and given the fact that our interest is in a quantitative as-

sessment of the impact of routing variability on signal degradation early in

the design phase when layout speci�city is still lacking, it is computational

e�ciency rather than solution accuracy that should be emphasized in the

development of the modeling methodology and the solution algorithm. Such

a methodology is described next.

An intuitively more e�cient alternative to the Monte Carlo methodology

described above is one that substitutes the electromagnetic response of the

entire structure with that of the unit cell of the structure, understood to be

the section depicted in Fig. 6.10. Toward this, it will be assumed that impact

on signal degradation due to possible geometric discontinuities at the junction

between adjacent sections is of secondary importance to that contributed by

the distributed geometric non-uniformity due to routing variability along the
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entire channel length. Thus, with the electromagnetic transfer function for

each section computed and cast in terms of a transmission matrix that relates

the output voltages and currents to the input voltages and currents [115],

[
vnout

inout

]
= Tn(χn−1, χn)

[
vnin

inin

]
, (6.11)

the overall transmission matrix is simply obtained as the multiplication of

the N transmission matrices, Tn, for n = 1, 2, ...N ,

TT = TN(0, χN−1)TN−1(χN−1, χN−2) . . .T1(χ1, 0). (6.12)

At this point it is important to stress that the matrices Tn(χn, χn−1) are

readily obtained from the more standard matrices (e.g., scattering matrix,

impedance matrix or admittance matrix) used for the de�nition of electro-

magnetic transfer functions of multi-ports. Once TT has been obtained, its

conversion to the scattering matrix, ST , for the overall channel is straight-

forward. The broadband scattering parameters are, in turn, used to perform

time-domain simulations for a given set of source and termination conditions

in an expedient way as described in [116]. Each such simulation corresponds

to one realization of the overall channel in the (N − 1)-dimensional random

space. Compared to the approach described earlier, any computational sav-

ings in this alternative approach appears to be associated with the fact that

we have decomposed the numerical electromagnetic analysis of the overall

channel to the numerical solution of each of the N sections, which, in addi-

tion to being faster because of the smaller number of degrees of freedom in

each section, could also be run in parallel. However, the major gains of such

an approach are associated with the fact that we can limit the numerical

electromagnetic analysis to only a single section (what we de�ned earlier as

the unit cell of the structure) computed for only a set of points on a two-

dimensional domain in the random space with boundaries dictated by the

extreme values of the channel routing uncertainty. The way this is done is

discussed in the next section.
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6.4.3 Parametric Electromagnetic Macromodeling of the Unit

Cell

It is evident from the discussion above that the routing uncertainty in the

unit cell of the speci�c two-conductor channel under consideration is de�ned

in terms of two random variables. The only di�erence from one section to

the next will be the end points of the domains over which each random

value is de�ned and, possibly, the associated pdf. Let χmin and χmax denote,

respectively, the smallest and the largest values of the random perturbations

of all random variables involved in the de�nition of the routing uncertainty.

Then the unit square in the two-dimensional random space (χ1, χ2) of side

χmax − χmin includes all possible values of the random perturbations that

de�ne the routing uncertainty in the channel. This, then suggests the use

of a parametric macromodel over the two-dimensional random space (χ1, χ2)

for the scattering matrix of the unit cell as a means for the fast generation

of the scattering matrix (and, thus, the transmission matrix) for each unit

cell. The way this can be done for the case of the scattering matrix and in a

manner that the generated macromodel is passive has been described in [50]

and is brie�y summarized in the following.

Consider a grid ofK points over the two-dimensional random space (χ1, χ2).

More speci�cally, a Cartesian grid of points is considered, through the def-

inition of properly selected grid points along each one of the two axes. For

the speci�c case of the square random space (χ1, χ2) used for our purposes,

the same assignment of L grid points is made along the two axes χ1 and χ2;

hence, K = L2. Let χ
(1)
1 , χ

(2)
1 , . . . , χ

(L)
1 denote the grid points along the χ1

axis in the domain and χ
(1)
2 , χ

(2)
2 , . . . , χ

(L)
2 denote the grid points along the

χ2 axis. For each point (χ
(k1)
1 , χ

(k2)
2 ), k1, k2 = 1, 2, . . . , L, an electromagnetic

�eld solver is used to calculate the scattering matrix, S(sm, (χ
(k1)
1 , χ

(k2)
2 )),

m = 1, 2, . . . ,M , at a set of M frequency points over a predetermined fre-

quency range, where s = jω denotes the complex frequency. Subsequently,

making use of the vector �tting technique [117] a stable and passive rational

macromodel is generated for each one of the K realizations of the unit cell

section [46].

These K macromodels share the same poles and serve as the root macro-

models used for the subsequent development of a global parametric macro-

model of the unit cell, as described in [50]. More speci�cally, a tensor product
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bivariate interpolation is used on the square grid with node points the points

at which the root macromodels are generated. The resulting interpolant is

of the form

S(s, χ1, χ2) =
L∑

k1=1

L∑

k2=1

S(s, χ
(k1)
1 , χ

(k2)
2 )× wk1(χ1)wk2(χ2), (6.13)

where the interpolation functions wki(χi), i = 1, 2, are chosen to be the linear

interpolation functions of the form

χ(i)−χ
(ki−1)

(i)

χ
(ki)

(i)
−χ(ki−1)

(i)

, χ(i) ∈ [χ
(ki−1)
(i) , χ

(ki)
(i) ], ki = 2, · · · , L

χ(i)(ki+1)−χ(i)

χ
(ki+1)

(i)
−χ(ki)

(i)

, χ(i) ∈ [χ
(ki)
(i) , χ

(ki+1)
(i) ], ki = 1, · · · , L− 1

0, otherwise.

(6.14)

Since these interpolation functions satisfy the constraints

wm(χi) ≥ 0, m = 1, 2, . . . , L

wm(χi = χ
(n)
i ) = δm,n, m, n = 1, 2, . . . , L

L∑

m=1

wm(χi) = 1,

(6.15)

where i = 1, 2, the global parametric macromodel of (6.13) is stable and

passive [50].

The availability of such a stable, passive, global parametric macromodel

allows the fast calculation of the scattering parameters of the unit cell of the

channel for any values of the routing uncertainty induced perturbation of the

x coordinates of the end points of conductor 2 relative to conductor 1. Since

the two-dimensional random domain over which the global macromodel is

valid is de�ned by the extreme values of the relative perturbation along the

entire length of the channel, the same macromodel is used to calculate the

scattering matrix for each one of the N sections in which the channel has been

segmented for a given realization of the channel on the (N − 1)-dimensional

random space de�ned by the perturbations of the N − 1 end points. All

that is required is the de�nition of the probability density functions for the

random variables associated with each interior point in the segmentation of

the channel.

Thus, given the total length of the coupled microstrip interconnect chan-
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nel, the geometric attributes of the unperturbed cross-sectional geometry, the

electromagnetic properties of the conductors and the insulating dielectrics,

and the range of possible relative displacement of one of the conductors with

respect to the other, the process described above is used to calculate a global,

parametric scattering-parameter macromodel for a section of the channel of

length ` dictated by the total length of the channel and the number of points

N chosen to introduce either changes in routing direction or changes in the

pitch between conductors. The frequency range of validity of the global para-

metric macromodel is chosen such that it can support the bandwidth of the

transient simulations of interest to the analysis. With the global macromodel

available a computationally e�cient Monte Carlo analysis becomes possible

for the prediction of channel routing uncertainty induced signal degradation.

Irrespective of the way we sample the (N − 1)-dimensional random space

de�ned by the random variables associated with the N − 1 interior points

used for the segmentation of the channel, the e�ciency of the Monte Carlo

analysis is provided by the fact that the calculation of the channel trans-

mission matrix � and, thus, the channel scattering matrix � using (6.12)

involves the simple matrix multiplications of the transmission matrices for

each section, obtained from the unit cell global parametric macromodel for

the speci�c values of the perturbations of the end points of each section in

each realization.

6.4.4 Numerical Results

To demonstrate the proposed methodology, the case of a coupled microstrip

interconnect of total length of 30 cm is considered. The unperturbed cross-

sectional geometry of the structure is depicted in Fig. 6.10. The strips are

rectangular of width 3 mm and thickness 0.05 mm. The distance s between

them is 7 mm. The substrate of thickness 1.6 mm has relative permittivity

of 4.5 and loss tangent of 0.02. The thickness of the ground plane is 0.2 mm.

All conductors are copper of conductivity 5.8 × 107 S/m. The channel is

segmented into 10 sections, each of length 30 mm. Referring to Fig. 6.9, the

maximum perturbation from its original value in the spacing between the two

traces is ±6 mm. Thus, the global parametric macromodel for the unit cell of

length 30 mm is de�ned over the square domain in the χ1, χ2 random space.
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A 5×5 uniform grid of side length of 12 mm and centered at the origin is used

to generate the 25 root macromodels used for the interpolation. Consecutive

grid nodes are spaced 0.25 mm. For each grid node, the transmission matrices

for the unit cell were computed using ANSYS® Q3D Extractor® [100] at

30 linearly spaced frequency points in the frequency range [0.001, 5] GHz.

With these models a Monte Carlo simulation is performed to calculate

the statistics of the transient response of the channel under the following

excitation and termination conditions. The top trace is driven by voltage

source generating a rectangular pulse of amplitude 1 V and turn-on delay

time of 1 ns, rise and fall times of 0.5 ns, and width of 1 ns. The input

resistance of the source is 50 Ω. The resistive termination of the ports is also

50 Ω.

With regard to the de�nition of the routing uncertainty, any PDF describ-

ing a random variable in the range [-6,6] mm can be utilized for the end

points of the segment. For the purposes of this study, we assume a discrete

PDF of random variable χ given by

p(χ) =





1
5
, χ = 6,−6

1
5
, χ = 3,−3

1
5
, χ = 0

. (6.16)

The total number of Monte Carlo iterations was 5000. The near- and

far-end voltages are computed for each realization. The variability may be

quanti�ed in terms of the mean and the standard deviation (std) of the

response, as depicted in Fig. 6.11. Plotted in the �gures are the near-end

and far-end mean voltage responses for the top line, along with the ±std
deviations for each one. This is done for Approaches A and B from Fig.

6.9. The response variability due to routing uncertainty both in amplitude

and delay is evident. Figure 6.12 presents the PDF of the far-end voltage

evaluated at the middle point of the pulse width and it is shown that the

second approach results in a larger degradation as a consequence of the bend

that is captured in the model.

In summary, a methodology has been proposed for the expedient analysis

of the impact of routing uncertainty on the transmission attributes of high-

speed, coupled interconnects. Aimed for use in early stages in the design

phase where �oor planning and layout speci�city is still lacking, the proposed

methodology achieves its e�ciency by combining the ideas of passive multi-
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Figure 6.11: Calculated mean value and standard deviation for the
near-end and far-end voltages of the unperturbed line using Approach A
(top) and Approach B (bottom).

0.34 0.36 0.38 0.4

10

20
30

40

50

V(t=5 ns) (volt)

PD
F

 

 
Approach A
Approach B

Figure 6.12: Probability density of the far-end voltage at the middle point
of the pulse width.
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variate parametric macromodeling with a representation of the interconnect

channel in terms of a concatenation of several sections with conductor spacing

at their end points controlled by the routing uncertainty.

While the proposed methodology was presented, for simplicity, for the

case of two coupled wires in a microstrip con�guration, its extension to the

more general case of a multi-conductor system is straightforward. The only

di�erence is that the number of random variables used for the description

of the routing uncertainty in the random cell will increase with the number

of coupled wires. In addition, even though the section of the unit cell was

assumed �xed for the purposes of this chapter, its value may also be allowed

to be random, thus allowing for uncertainty in the length of the channel to

be included in the analysis.
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Chapter 7

MODELING OF DISORDERED PERIODIC

WAVEGUIDES

7.1 Introduction

The last stochastic modeling application concerns the problem of a peri-

odic waveguides exhibiting statistical variability. Following the assumptions

taken in Chapter 6, localized uncertainty is considered. In other words, we

assume that the periodic structure exhibits statistical disorder manifested

in variability of the geometric and material parameters from one cell to the

next.

Periodic waveguides are commonly used for a variety of �ltering and other

types of electromagnetic signal processing applications [115]. Although these

structures are intended to be ideally periodic, manufacturing-induced vari-

ability results in random alterations of the geometry and material properties

of the structure as it is shown in Fig. 7.1. These, in turn, result in degrada-

tion of the intended transmission attributes of the electromagnetic structure.

While Monte Carlo methods are the natural candidates for the quantitative

assessment of the impact of such statistical variability on the electromag-

netic attributes of the structure, their slow convergence is an issue of concern

when the computational cost of obtaining the response for each realization

of the structure is high. Given the structures of interest, this is the case for

our purposes, especially when three-dimensional full-wave electromagnetic

solvers are used. Thus, an alternative, more e�cient approach is desirable.

Such an approach is considered and evaluated in this chapter.
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Figure 7.1: Examples of disorder in periodic waveguides.

Figure 7.2: Disordered array of silver nanoparticles.

7.1.1 Motivation: Disordered Array of Nanospheres

Arrays of nanoparticles are employed in the design of metamaterial struc-

tures, nanocircuits, nanoantennas, among others. Most commonly, the mod-

eling of such devices is usually done assuming a perfect periodicity of the

array. In reality, however, the manufacturing process yields a disordered

pattern of particles due to variability in particle size, placement, and elec-

trical properties as depicted in Fig. 7.2. In view of this, a spherical nanoar-

ray provides an interesting candidate to study the impact of such disorder

on the electromagnetic behavior of waveguides composed by such arrays of

nanospheres. The investigation of the impact of disorder has been presented

in the literature for the case of a periodic chain of nanoparticles using a sim-

ple dipole model approximation [118, 78]. Here, a rigorous full-wave solver,

Wave3D [119] is used to characterize the impact of such disorder.

The silver spheres in ideal state have radius 10 nm and center-to-center

separation of 22 nm. The disorder is assumed to be quanti�ed in terms of

a set of independent random variables. For each parameter variation, for

example, permittivity or position, there are N random variables where N is

the number of spheres in the array. Particularly, Gaussian random variables

with zero mean and variance 0.5 nm are assumed to de�ne the perturbation

in the positions of the spheres along z- and x-axes. The operation frequency

is 780 THz and the corresponding relative permittivity, εr = −4.56− j0.22.

Stochastic collocation has been employed to calculate the mean and stan-
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Figure 7.3: Statistical disorder induced in the longitudinal position of the
10 middle spheres (up). Electric �eld sampled at (20 nm,0,z ). Error bars
have a height of two std(|E|) (down).

dard deviation of the electric �eld for the disordered array of silver nanospheres

from Fig. 7.2. Given the high dimensionality associated with this problem

only the 10 middle spheres have perturbation in their positions while the

15 �rst and last spheres are left unperturbed. Two types of perturbations

have been introduced, along the axis of the array ( longitudinal ) and per-

pendicularly to the axis (transverse). Figure 7.3 shows the geometry with

longitudinal perturbations and the corresponding moments of the �elds sam-

pled at a line 20 nm away from the z-axis while Fig. 7.4 shows the results for

the transverse-perturbation case. It is clear that the impact of the longitu-

dinal disorder is much larger than the transverse disorder case. Concerning

the sparse grid, for a ten-dimensional random space and accuracy level of 3,

201 full-wave solver simulations where needed.

It is evident that as we increase the number of spheres, the number of ran-

dom variables increases which means that the dimensionality of the problem

and the number of simulations grow too. Additionally, the electrical size of

the problem increases. This means that we require more simulations of more

computationally expensive structures as the number of spheres increments.

Notice that in the analysis, the propagating modes can be extracted by
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middle spheres (up). Electric �eld sampled at (20 nm,0,z ). Error bars have
a height of two std(|E|) (down).

sampling the �eld of a large enough structure such that the re�ections from

the end of the line are negligible. Even though this is a valid approach

and there are existing methods for the modes extraction using the complete

structure [120], the more straightforward way to do so is by using Foucault's

theory on one single unit cell. In view of this, it is necessary to search for

an alternative approach that captures the uncertainty of the problem by

focusing on one single unit cell. Such an approach has been investigated in

the aerospace community for mechanical waves by Cai and Lin [82]. In this

chapter, such methodology is put in the �nite element method context to

investigate electromagnetic waveguides with disorder.

The proposed approach makes use of the Anderson localization theory

[79] for the computationally e�cient calculation of an average exponential

decay per unit cell for the transmitted wave, also known in the solid-state

physics literature as localization factor. As already demonstrated through

earlier applications of the Anderson localization theory to a variety of peri-

odic dynamic systems (see, for example, [81], [121], and [82]), this average

exponential decay has been shown to provide for an accurate quantitative

measure of the disorder-induced degradation of the response attributes of
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the periodic structure. In earlier studies, it has been demonstrated how this

technique can be used to analyze the e�ects of statistical material/geometric

disorder in the electromagnetic properties of transmission-line based meta-

material structures, where lumped circuit elements and transmission-lines

based structures su�ce for their modeling [83]. The way this methodology

can be generalized for the case of periodic structures for which a full-wave,

vectorial electromagnetic �eld formulation is needed for their modeling, was

presented in [122, 123].

7.1.2 Organization

The chapter is organized as follows. In Section 7.2, we consider the un-

certainty in the geometric/material disorder of the periodic structure and

describe the method we adopt for its description in terms of a probability

density function given an appropriate set of experimentally obtained data.

In Section 7.3, we make use of the �nite element method (FEM) for the

electromagnetic modeling of the structure and explain how the FEM model

can be combined with the results in [82] to compute the localization factor

for a disordered periodic structure. The accuracy of the proposed method,

along with some of its key attributes, are examined in Section 7.4 through its

application to the analysis of a periodic waveguide. The chapter concludes

with a summary of the proposed methodology.

7.2 Quanti�cation of Uncertainty in Input

Parameters

To �x ideas, consider the case of the y-invariant, parallel-plate waveguide

structure, of the longitudinal section as depicted in Fig. 7.5. Without loss

of generality, we consider the case where all materials are lossless and the

structure is operated at the fundamental, transverse electromagnetic (TEM)

mode, with wave propagation along x. The intended periodic loading with

y-directed conducting strips of rectangular cross section would result, under

ideal conditions of perfect periodicity, in a band-stop �lter structure. How-

ever, in the presence of uncertainty in the longitudinal positioning of each

wire, such ideal behavior is degraded. For example, as depicted in the �gure,
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Figure 7.5: (a) Longitudinal cross section of a disordered periodic
parallel-plate waveguide. (b) The disorder is caused by a random
perturbation in the length of the unit cell.

an uncertainty in the length of the unit cell is readily described in terms of

a single random variable, χ.

To start with, we need to quantify the uncertainty in terms of the proba-

bility density functions (PDF) of the geometric parameters identi�ed as the

sources of the uncertainty. Once these PDFs are available, an electromag-

netic model of the structure is required to propagate the input uncertainty

to the electromagnetic response of the structure. The ultimate result is the

quantitative prediction of the impact of input uncertainties on the transmis-

sion properties of the structure. A common practice is to assume that the

input random parameters follow an arbitrary distribution, most often chosen

to be either uniform or Gaussian. However, in several cases, the only infor-

mation available for the characterization of input uncertainty is a set of data

obtained either from the direct measurement of the manufactured devices or

from information pertinent to the uncertainty introduced by the manufac-

turing process. This, then, calls for a systematic way for the estimation of

the PDF for an input random variable from a limited set of data.

Without loss of generality, let us assume that input uncertainty is de�ned in

terms of a �nite number of independent random variables, and no correlation

exists between random variables from one unit cell to the next.
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7.3 Di�usion Model for Density Estimation

The solution of a stochastic problem requires the statistical characterization

of the input random parameters in terms of their probability density functions

as the �rst step of the process. Consider, for example a pair of high-speed

links with random separation. Instead of assuming a particular nature for the

statistics of the parameter like uniform or Gaussian, a set of measurements

for di�erent board structures with di�erent trace separations are obtained

and used to extract a probability density of the parameter.

Botev proposes a nonparametric density estimation process that has the

attractive attribute that no assumption is made about the randomness of

the input data. This method known as the nonparametric di�usion-mixing

based estimator presented by Botev [124, 125] and previously employed in

the stochastic analysis of micro-electromechanical structures in [126], [127]

combines the traditional Kernel Density Estimation (KDE) process with the

solution to a generalized di�usion equation for the unknown distribution with

point sources associated with the available measured data. Utilizing position-

dependent di�usivity and drift terms that are dependent on an estimate of

the PDF, a position-dependent di�usion and drift are e�ected in the solution.

More speci�cally, in regions where the estimated density is low and thus fewer

observations are expected, a higher di�usion and drift provide for a smoothing

of the initial data. In contrast, for those regions where higher values of

the estimated density indicate a higher value of expected observations, the

di�usion and drift are lower.

In the heart of this method is the idea that the PDF to be estimated can

be computed as the solution of the generalized heat di�usion equation, given

by

∂

∂t
ρ̂(χ, t) =

1

2

∂

∂χ

(
a(χ)

∂

∂χ

(
ρ̂(χ, t)

p(χ)

))
, (7.1)

for χ ∈ D, t > 0. In equation (7.1), a(χ) is a positive function in D, and p(χ)

is the probability density function describing any available prior information.

The equation is solved in D with boundary conditions ρ(L1, t) = ρ(L2, t) = 0.

This restriction in fact allows us to model a density function according to

the physical restriction of the problem. The meaning of these boundary

conditions is obvious and physically satisfying: the estimated PDF is zero
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at the boundaries of the domain, because the range of the allowed values of

the parameter under consideration is �nite. For example, in the context of

the speci�c example of a periodic waveguide considered in this chapter. In

particular, adjacent crossing loading wires in the waveguide are at a �nite

distance from each other and cannot coincide or superpose partially. Thus,

the uncertainty in the distance between them is constrained to a certain

range controlled by the intended attributes of the structure. Returning to

the functions a(χ) and p(χ), it is noted that they provide for smoothing

of the density in regions where data is sparse and sharpening in regions of

high concentrations of data [127]. Clearly, they have to be speci�ed before

the equation can be solved. As already mentioned above, in the absence of

any a-priori information about the PDF, its initial value, ρ̂0(χ), is computed

using standard KDE with a Gaussian kernel. Once obtained, ρ̂0(χ) is used

for the calculation of a(χ) and p(χ) through the equations a(χ) = ρ̂0(χ) and

p(χ) = ρ̂ν0(χ), ν ∈ [0, 1]. As it has been shown in [126], these choices with

a relatively low value of ν minimize the mean integrated square error of the

estimated distribution. For our purposes a value of ν = 0.1 is employed.

Concerning the numerical solution of (7.1), a �nite di�erence time domain

(FDTD) formulation is used with initial condition taken to be a combination

of Dirac delta functions placed at the samples,

ρ(χ, 0) =
1

M

M∑

i=1

δ(χ− χi). (7.2)

Similarly to KDE, the optimum value of the simulation time in the solution

of (7.1) is chosen such that it maximizes the MLCV score,

MLCV (t) =
1

M

M∑

i=1

logρ−i(χi, t), (7.3)

where ρ−i(χ, t) is the solution of equation (7.1) with the initial condition

ρ−i(χ, 0) =
1

M − 1

M∑

j=1,j 6=i

δ(χ− χj), (7.4)

which excludes the i-th sample [128].

Due to these attributes, the di�usion-mixing based estimator has been

shown to provide improved accuracy over KDE in the PDF estimate for any
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Analytical 

Figure 7.6: Estimated PDF obtained using a di�usion-mixing based
estimator and KDE using as input 30 randomly chosen samples that follow
a Gaussian distribution.

point in the interval spanned by the input data. This improved accuracy is

demonstrated in Fig. 7.6, which compares the estimated PDF using standard

KDE and the di�usion-mixing based estimator using as input a set of 30

randomly chosen samples that follow a Gaussian random variable with zero

mean and standard deviation 0.05. The attributes of the di�usion-mixing

based estimator are evident. In particular, the method captures the behavior

of the random variable with higher accuracy in the peaks and valleys of the

distribution. A summary of the key steps for the development of an algorithm

for the di�usion-mixing based estimator is provided in [126], [127].

7.4 Electromagnetic Model for Uncertainty

Propagation

Next, we turn our attention to the development of a model for the propa-

gation of the input data uncertainty to the electromagnetic response of the

periodic structure. With the structure depicted in Fig. 7.5 as our reference

structure, and under the stated assumption that the structure is operated at

the fundamental, transverse electromagnetic (TEM) mode with wave prop-

agation along x, the transmission properties of the structure are quanti�ed
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in terms of the propagation constant of the TEM wave. In the case of an

ideal structure that exhibits no disorder in its periodicity, the propagation

constant can be computed through the application of Floquet analysis [115].

In such an analysis, the electromagnetic model involves the region associ-

ated with the unit cell of the periodic structure. Over this region, an approx-

imation of Maxwell's equations in the absence of sources is used to develop

the numerical model used for the analysis of the electromagnetic properties of

the periodic structure. For our purposes, the �nite element method is used

for the approximation of Maxwell's equations. In particular, the Floquet-

based �nite element model in [85] is adopted. Through a standard Galerkin

process, the �nite element approximation of the vector Helmholtz equation

for the electric �eld over the unit cell of the periodic waveguide results in a

linear system of the form,

[Mo1] xr = [Mo2] xl, (7.5)

where [Mo1] , [Mo2] ∈ CM×M , and the entries of vectors xr,xl ∈ CM×1 are

the weights of the expansion functions used to approximate the electric and

magnetic �elds on the left and right boundaries of the unit cell, respectively,

which are perpendicular to the direction of wave propagation. Imposing the

Floquet periodic boundary condition, xr = e−γ0Dxl, on these boundaries,

with D denoting the distance between the two boundaries for the case of the

unperturbed unit cell, results in the linear eigenvalue problem

e−γ0D [Mo1] xl = [Mo2] xl. (7.6)

The solution to (7.6) yields a set of M eigenvalues and their respective

eigenvectors. With the bandwidth of interest of the electromagnetic analy-

sis limited to TEM mode propagation only, the eigenmodes of interest are

the ones for the TEM left-propagating and right-propagating waves. Their

eigenvectors are sorted in the matrix [Vo]∈ CM×2.

Consider, next, a small disorder in the position of the wire in the n-th

cell, described in terms of a statistical variability in the length of the cell as

follows,

Dn = D (1 + χn) . (7.7)
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The random variable χn is assumed to follow a given probability distribu-

tion, ρ(χ), with zero mean and standard deviation denoted std. Furthermore,

it is assumed that variables χn, one for each cell that exhibits disorder, are

independent and identically distributed. In a manner similar to the case of

the ideal unit cell, the �nite element model describing propagation through

the n-th cell is of the form

[Mn1] [Vo] y
r = [Mn2] [Vo] y

l. (7.8)

In the above equation, use was made of the fact that the vectors xl,r at the left

and right ends of the n-th cell can be expressed in terms of the eigenvectors

of the fundamental eigenmodes xl,r = [Vo] y
l,r, where y ∈ C2×1. Multiplying

both sides of (7.8) on the left by ([Mn1] [Vo])
H , where the superscript H

denotes complex-conjugate transposition, and inverting the resulting 2 × 2

matrix yields the transmission matrix relationship,

yr = [Tn] yl. (7.9)

The transmission matrix [T (n)] relates the modes on the left boundary of the

unit cell to the modes on its right boundary. Clearly, for the unperturbed

unit cell (7.9) is of the form

yr =

[
e−γ0D 0

0 eγ0D

]
yl = [To] y

l. (7.10)

Finally, the assumption is made that the transmission matrix [Tn] of the

n-th perturbed cell can be expressed as the product of the ideal transmission

matrix, [To] and a perturbation matrix, [Qn] [82],

[Tn] = [Qn] [To] . (7.11)

Since we can compute matrix [Tn] for each realization of the geometry in

the random space and [To] for the unperturbed case, matrix [Qn] is computed

directly from (7.11).

With all the aforementioned matrices de�ned, standard microwave network

analysis techniques are used to calculate the transmission characteristics of a

structure consisting of the cascade of N cells exhibiting disorder. Under the
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assumption that cells with index n > N exhibit no disorder, such an analysis

may be used to obtain an e�ective propagation factor per cell that quanti�es

the transmission attributes of the structure and is de�ned as follows [82],

γD = lim
N→∞

1

N
ln (t22) , (7.12)

where t22 is the element (2,2) of the matrix [TT ] that represents the overall

transmission of a wave traveling from left to right from the input of perturbed

cell 1 to the output of perturbed cell N,

[TT ] = [TN ] [TN−1] · · · [T1] . (7.13)

While standard Monte Carlo analysis may be used for the calculation of

the propagation factor in the presence of statistical variability, under the

assumption of an in�nitely long disordered period structure (i.e., for the case

N → ∞), closed-form expressions for its calculation are possible under the

assumption of small, moderate, and even strong re�ections between adjacent

cells, as detailed in [82] and in the Appendix C. In particular, for the case of

small re�ections it is,

γsD = γoD −
ˆ

ln (q22 (χ)) ρ (χ) dχ, (7.14)

where the subscript s in γs is used to indicate that this value of the propaga-

tion constant is the one obtained under the assumption of small re�ections.

For the case of moderate re�ections, the closed-form expression becomes

γmD = γsD −
´

ln (q22 (χ)) ρ (χ) dχ+
´ ´

ln
(

1 + e−2γ0Dq12(χ2)q21(χ1)
q22(χ2)q22(χ1)

)
ρ (χ1) ρ (χ2) dχ1dχ2.

(7.15)

The subscript m in γm indicates that this value of the propagation constant is

the one obtained under the assumption of moderate re�ections. In the above

equations, qij (i, j = 1, 2) denote the elements of the perturbation matrix

[Qn] de�ned in (7.11).

Under the approximation of small re�ections, it is understood that the im-

pact of multiple re�ections between adjacent cells can be assumed negligible.

In this case, the integration in (7.14) is carried out over the random domain

of χ, and it is done by using a quadrature rule.
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For such purposes, we need to perform a number of FEM simulations to

compute matrix [Qn] and its element q22 for each node of a sparse grid in

the random space. Once the samples of q22 are found we can approximate

integral (7.14) with a simple weighted sum of R evaluations of the integrand.

The case of moderate re�ections is understood to represent the situation

where re�ections between adjacent cells are not negligible and must be ac-

counted for in the calculation of the perturbed propagation constant. Thus,

in this case the random space is two-dimensional, de�ned in terms of the

two random variables χ1 and χ2 in (7.15), associated with unit cells n and

n − 1, and contributing the impact of the inter-cell re�ection to the value

of the e�ective propagation factor. Since perturbation in one unit cell is

assumed to be described by statistics independent from the perturbation in

other cells, these two variables correspond to the same random variable χ

and share the same distribution. Therefore, even though a two-dimensional

quadrature rule is involved in this case for the calculation of the integral in

(7.15), the points on the tensor grid utilized for this purpose involves the

points of the one-dimensional quadrature along each dimension. Thus, the

matrix [Q] whose elements appear in (7.15) needs to be computed for the

same values of the one-dimensional quadrature rule. Consequently, the same

number, R, of �nite element solutions is needed for the calculation of [Q] for

both the case of small re�ections and the case of moderate re�ections.

7.4.1 Chain of Unit Cells

As already mentioned, (7.14) and (7.15) are meant to be used for structures of

a su�ciently large number of unit cells to approximate the case of an in�nite

disordered periodic structure. Their simplicity begs the question whether

they can be used as approximations to the propagation factor per unit cell of

�nite disordered periodic structures involving a small number of unit cells.

This possibility can be assessed in a straightforward fashion through the

approximation of equation (7.12) by the mean value of ln (t22) for the case

of the matrix [TT ] computed from (7.13) for a �nite structured involving a

small number of cells.
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With N being the number of cells, the pertinent integral is

γD =

ˆ

dχ ln (t22 (χ)) ρ (χ) , (7.16)

where χ is the vector of the random variables χi, i = 1, 2, . . . , N , that quan-

tify the disorder in each unit cell and ρ (χ), their joint probability distri-

bution. For the special case of N = 1, the above equation reduces to the

small-re�ections equation one (7.14). An advantage of (7.16) is that we

can prescind of assumption (7.11), necessary for the moderate-re�ections ap-

proach presented by Cai. Instead of a brute-force Monte Carlo scheme, an

e�cient multivariate quadrature rule, based on the sparse Smolyak algorithm

[89, 41] is employed for the numerical calculation of (7.16). In this manner,

the approximation of (7.16) through the weighted sum of function evalua-

tions,

γD ≈
R∑

r=1

ln (t22 (χr)) ρ (χr)wr, (7.17)

involves a number of nodes, R, over the random space that is signi�cantly

smaller than the one involved in a tensor product grid and is determined by

the Smolyak accuracy level. The details on the selection of the Smolyak grid

nodes, χr, and the associated weights, wr, for a given level of accuracy can

be found in [41].

The evaluation of (7.17) requires the computation of the transmission ma-

trix for the chain of N unit cells. From the point of view of the �nite element

solution of this problem, the number of degrees of freedom in the discrete

model for the entire structure is roughly N times that of the discrete model

for a single unit cell. Clearly, the computational cost of such an approach is

signi�cant, especially considering that the dimension of the random space is

N . Thus, a more computationally e�cient alternative is desired.

Such an alternative is o�ered by computing, instead, the transmission ma-

trices of the N single unit cells involved in the structure and then applying

(7.13) to obtain the overall matrix for each realization of the structure in

the random space. This approach allows us not only to reduce the computa-

tional cost associated with the �nite element solution of the N -cell structure,

but also to reduce the number of solutions needed. More speci�cally, the

assumption that the variables of each unit cell are identically distributed

allows us to employ a multidimensional Kronrod-Patterson quadrature rule

113



[41] whose N -tuples nodes are di�erent combinations of the nodes associated

with a much simpler one-dimensional quadrature rule. Therefore, similarly

to the calculation of the two-dimensional integral in (7.15), we only need

to obtain �nite element solutions for the unit cell at the nodes of the one-

dimensional grid. Thus, the bulk of computational cost of this alternative is

approximately the same to the one for (7.14).

7.5 Validation Studies

In this section, we use the presented methodology to compute the localization

factor, γD of the disordered waveguide as shown in Fig. 7.5. Its real part

represents the exponential decay per unit cell that the wave su�ers as it

travels through the disordered structure. For its calculation using integrals

(7.14) and (7.15), a one-dimensional quadrature rule with Smolyak accuracy

of level 3 is utilized. Thus, the �nite element solver used to compute matrices

[T ] for a single unit cell needs to be run only three times for each frequency,

corresponding to the grid points in the random space given by the quadrature

rule. This should be contrasted to the calculation of (7.17) with N = 4, where

the �nite element solver for the four-cell disordered geometry had to be run

33 times for each frequency. Once the transmission matrices have been found

and the corresponding distribution of the random variable characterized, the

localization factor, γD is numerically computed with a summation as shown

in (7.17).

Referring to the geometry of Fig. 7.5, a structure with H/D = 1 and

w = t = 0.2D was analyzed. A Gaussian random variable with zero mean and

standard deviation 0.05 was employed to quantify the cell length disorder.

Figure 7.7 depicts the calculated decay per unit cell, plotted versus koD =

ωD/c, where ω is the angular frequency and c is the speed of light in vacuum.

In the �gure, a comparison is o�ered of the ideal case of a perfect periodic

structure exhibiting zero attenuation in the pass band, with results obtained

using four di�erent approaches: (a) the small-re�ection formula (7.14) (black

dashed lines); (b) the moderate-re�ection formula (7.15) (gray asterisks); (c)

the calculation of (7.17) for N = 4 with the chain-of-cells approach (red

circles); (d) the calculation of (7.17) for N = 4 with the overall transmission

matrix obtained as the product of the four transmission matrices for the four
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unit cells with each cell modeled individually (white circles).

As mentioned in the introduction, we have previously considered the use of

the ideas from Anderson localization to the expedient analysis of the impact

of disorder of a transmission line-based metamaterial on its transmission

properties [83] and validated their accuracy using a brute-force Monte Carlo

analysis. Because of the increased computational cost of brute-force Monte

Carlo when �nite element models are necessary for the numerical analysis of

the structures of interest, we have relied on the use of sparse grid sampling

of the random space [13] for the Monte Carlo analysis of the four-unit-cells

structure.

It is clear from Fig. 7.7 that the computed attenuation (real part of γ)

using (7.14) under the assumption of small re�ections is in agreement with

the results obtained from the more expensive calculation using (7.17) as well

as the alternatives moderate re�ections and matrix-concatenation approach,

especially for frequencies to the left of the stop-band. The simulation times of

a MATLABr code running on a 2.50 GHz Xeon CPU Windows machine for

the small re�ections approach for di�erent number of unit cells are compared

in Fig. 7.8. The advantage of using a reduced number of unit cells in terms

of computational time is evident. If higher accuracy is desired, the more

computationally expensive approach (chain of unit cells) is recommended to

be used.

Also depicted in Fig. 7.7 is the result from the evaluation of expression

(7.14) using the distribution depicted in Fig. 7.6 that was estimated using

the nonparametric di�usion-mixing based KDE from 30 randomly chosen

samples (blue dotted line). It is evident from Fig. 7.7 that the computed

results are in excellent agreement with the other approaches that use ana-

lytical Gaussian distribution for the random variable describing the disorder.

This suggests that the proposed nonparametric di�usion-mixing based KDE

approach is a promising candidate for the description of uncertainty in input

parameters from a limited set of experimentally obtained data.

Figure 7.9 depicts the average perturbation in the imaginary part of the

propagation constant caused by the disorder for a range of standard devia-

tion values. As expected, the cases with larger disorder, described in terms

of a larger standard deviation, result in higher perturbation in the pass band.

While the real part of γ describes �eld attenuation per unit cell, the pertur-

bation in the imaginary part of γ quanti�es the resulting change in the phase
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Figure 7.7: Localization factor for the periodic structure of Fig. 7.5, due to
a random perturbation in the length of the unit cell following a Gaussian
distribution of zero mean and standard deviation of std = 0.05.

shift per unit cell of the transmitted wave.

7.6 The Case of Multiple Random Variables

Thus far, the discussion has focused on the case where the disorder in the

unit cell is described in terms of a single random variable. In the general case,

several random variables may be required for the description of geometric and

material uncertainty. Each of these variables contributes to the perturbation

in the propagation factor per unit cell. The resulting perturbation can be

computed using a slightly modi�ed version of (7.16),

∆γD = −γoD +

ˆ

dχ ln (t22 (χ)) ρ (χ) , (7.18)

where χ is a vector containing the m random variables, χi, i = 1, 2, . . . ,m,

describing the random disorder. Assuming that these variables are indepen-

dent, their joint PDF, ρ(χ), is simply the product of the m PDFs. Again, by

making use of a sparse grid integration algorithm, the number of full-wave

simulations needed for the calculation of the integral over the random domain

can be reduced.

As an alternative to the aforementioned approach for calculating the change
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Figure 7.8: Simulation times of a MATLAB code running in a 2.50 GHz
Xeon CPU machine per frequency point for chains of 5, 4, 3 and 1 unit cells
as a function of the sparse grid algorithm accuracy.

std = 0.01	



std = 0.05	



std = 0.1	



Figure 7.9: Perturbation in the imaginary part of the propagation constant
per unit cell for the periodic structure of Fig. 7.5, due to a random
perturbation in the length of the unit cell following a Gaussian distribution
of zero mean and standard deviation of value std = 0.01, 0.05, and 0.1.
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Figure 7.10: The case of a unit cell with two sources of disorder, namely,
the width and the thickness of the y-directed conducting strips.

in the propagation factor per unit cell, Kissel proposed in [80] that the local-

ization factor due to several sources of random disorder may be computed as

the sum of the individual localization factors obtained by considering each

source by itself,

∆γ =
m∑

i=1

∆γi. (7.19)

Clearly, the advantage of this alternative is that it results in a small number

of �nite element solutions per frequency point, equal to mR, where R is the

number of nodes in a one-dimensional quadrature grid over the interval of

each random variable.

To examine the validity of this assertion, we consider the case of a periodic

waveguide of the type depicted in Fig. 7.5 where the disorder in the unit cell

is described in terms of two parameters, namely, the width and the thickness

of the cross-sectional geometry of the y-directed wires. More speci�cally, we

have

w = wo(1 + χ1), (7.20)

and

t = to(1 + χ2), (7.21)

as shown in Fig. 7.10. In the above equations wo = to = 0.2D, and the

random variables, χ1, χ2 follow Gaussian distributions with zero mean and

standard deviations of 0.2 and 0.1, respectively.

For the evaluation of equation (7.18), a two-dimensional Smolyak grid

is utilized involving 37 points and of accuracy level of 5. Thus, 37 �nite

element solutions per frequency point are needed. In contrast, by considering

separately each one of the two sources disorder and then adding up the

calculated perturbations in the propagation factor to calculate the overall
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Figure 7.11: Real part of propagation constant per unit cell for the
disordered structure of Fig. 7.10 involving two sources of random disorder.

change according to (7.19), nine �nite element solutions per frequency point

are required for each source. Figures 7.11 and 7.12 contrast the results from

the two approaches. Shown in Fig. 7.11 is the real part of the propagation

constant per unit cell, plotted versus koD = ωD/c, while the imaginary

part of the change in the propagation constant per unit cell is shown in Fig.

7.12. Very good accuracy is observed, supporting Kissel's conjecture and

the merits of (7.19) as an expedient, yet accurate, means for computing the

change in the propagation constant of the wave due to multiple sources of

random disorder in the periodicity of the waveguide structure.

7.7 Concluding Remarks

In summary, a methodology has been presented for the calculation of the

impact of random disorder in periodic electromagnetic waveguides on their

transmission characteristics. Rather than using a Monte Carlo scheme where

the entire structure, which may consist of several disordered unit cells, is

solved using an electromagnetic �eld solver for each realization in the ran-

dom space, the proposed method makes use of ideas from the Anderson lo-

calization theory to limit the numerical modeling to the unit cell only. More

speci�cally, under appropriate conditions that are expected to hold in many

of the applications of interest, closed-form expressions are used to calculate

a disorder-induced attenuation factor per unit cell. The accuracy of these
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Figure 7.12: Imaginary part of the change in the propagation constant per
unit cell for the disordered structure of Fig. 7.10 involving two sources of
random disorder.

expressions has been assessed through the use of more general, yet computa-

tionally more expensive models, and has been found to be su�cient for the

cases studied.

Also addressed in the chapter is the issue of the proper modeling of the

random disorder in the structure for those cases where a probability density

function for its description is not readily available and its modeling has to

rely upon experimentally obtained data. For such cases it was shown that

the di�usion-mixing based kernel density estimator of [125] can be used reli-

ably to obtain the probability density function for the random variables that

describe geometric uncertainty.

For the case where the random disorder in the structure requires multiple

random variables for its description, the possibility of computing the overall

change in the propagation constant per unit cell as the sum of the changes

computed by considering each random variable individually was examined.

Very good accuracy was obtained for the structures considered, suggesting

that such an approach has merit and should be used as a �rst option, es-

pecially for cases where the dimension of the random space describing the

disorder is large.

While the proposed method was demonstrated in the context of a two-

dimensional waveguide, its extension to the general case of three-dimensional

waveguides exhibiting periodicity along the direction of wave propagation is

120



straightforward. It is emphasized that the electromagnetic modeling in the

proposed approach relies upon the calculation of the transmission matrix for

the unit cell of the structure, which, in turn, can be carried out using any

appropriate electromagnetic �eld solver.
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Chapter 8

CONCLUSIONS

The work presented in this dissertation is a compilation of original contribu-

tions for the e�cient assessment of stochastic electromagnetic applications.

The proposed methodologies are based on the Stochastic Collocation (SC)

method and the Smolyak algorithm, discussed in the second chapter, that

reduces the computational e�ort of the statistical simulation in comparison

with traditional Monte Carlo simulation by interpolating the desired output

in terms of a set of basis functions which results in an e�cient multivariate

quadrature rule allowing the fast calculation of the corresponding probabil-

ity density function of the output of interest. The following is an itemized

list of the new stochastic-collocation based contributions presented in this

dissertation.

1. Development of a random space dimensionality reduction tech-

nique for the expedient statistical assessment of structures

with manufacturing variability and estimation of production

yield. Even though sparse grid collocation is an e�cient alternative to

reduce the number of iterations in statistical simulations in compari-

son with traditional Monte Carlo simulation, its e�ciency is challenged

when the dimensionality of the random space becomes relatively large.

In view of this, an approach to reduce the dimensionality of the input

random space and thus the number of simulations associated with the

SC simulation was proposed. More speci�cally, we propose a modi�ed

Principal Component Analysis (PCA) that constructs a new, reduced

random space by taking into account not only the interdependencies

of the input random variables but also the sensitivity of the output

response on each one of the input random variables by introducing an

a-priori sensitivity analysis that improves the accuracy of the simula-

tion. In the next step of our proposed methodology, Adaptive Sparse

Grid Collocation (ASGC) is employed to sample the reduced space and
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obtain an interpolation of the output in terms of the reduced-space pa-

rameters. In this way, the number of simulations is reduced two to three

times in comparison with the full-order case in the considered numer-

ical examples. Additionally, a technique based on the cross entropy

algorithm was employed to expedite the calculation of the production

yield of structures and systems exhibiting manufacturing variability. It

was demonstrated that the cross-entropy algorithm o�ers an e�ciency

10 times higher than the Monte Carlo simulation for estimating the

yield.

2. Development of a stochastic macromodel boundary condition

for the e�cient random electromagnetic simulation of struc-

tures with uncertain subdomains. A methodology based on the

impedance/admittance matrix concept was proposed to construct a

stochastic macromodel of subdomains exhibiting geometric and/or ma-

terial randomness that are part of a group of targets exhibiting vari-

ability. The model of the sub-region is de�ned in terms of a �xed

mathematical boundary expanded in terms of orthogonal polynomials

of the random variables that parameterize the subdomain. This ap-

proach simpli�es the complexity of a stochastic collocation numerical

solution, compounded by the need to generate a discrete numerical

model for each one of the geometries resulting from the sampling of

the multidimensional random space de�ning the randomness of the

structure. The simpli�cation is achieved by imposing a �xed circu-

lar boundary surrounding each subdomain where the corresponding

impedance/admittance boundary condition is evaluated for each sam-

ple of the random space. Consequently, the approach is specially useful

for complicated geometries with intricate details and disparities in fea-

ture size between scatterers. The proposed macromodel technique was

extended next to characterize the broadband response of a random sub-

domain by means of the application of a Krylov-subspace model order

reduction technique. Besides, the use of a recursive algorithm based on

the addition theorem, allows the application of the transition matrix

to solve scattering problems with multiple scatterers.

3. Development of statistical framework for the study of inter-

connects with random permittivity pro�le. We propose a method-
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ology to assess the impact of statistical variability on the transmission

properties of interconnects. Such uncertainty is assumed to be local-

ized, in the sense that non-uniform changes in material properties occur

throughout the structure under consideration. Speci�cally, we present

the example of a transmission line with a random permittivity pro-

�le. The result is an e�ective homogeneous permittivity model is con-

structed in terms of orthogonal polynomials. The construction of the

model has been expedited by using a dimensionality reduction algo-

rithm and an e�cient multivariate integration technique based on the

Smolyak algorithm. The resulting homogeneous model was used to es-

timate the impact on the propagation time of a wave when it travels

through the interconnect structure, which predicts the distortion of the

signal and desynchronization of the system quanti�ed in terms of an

induced random jitter.

4. Statistical assessment of the impact of routing uncertainty in

the early design stages of printed circuit board interconnects.

A methodology, aimed for use in early stages in the design phase where

�oor planning and layout speci�city is still lacking, is proposed as an

e�cient predictive analysis of the impact of the uncertainty in the rout-

ing of interconnects on their transmission attributes. The technique

achieves its e�ciency by combining the ideas of passive multi-variate

parametric macromodeling with a representation of the interconnect

channel in terms of a concatenation of several sections with conductor

spacing at their end points controlled by the routing uncertainty.

5. E�cient assessment of statistical disorder on the �ltering prop-

erties of periodic waveguides. A methodology for the quanti�-

cation of the impact of random disorder in periodic electromagnetic

waveguides on their transmission properties is developed. The proposed

method makes use of ideas from the Anderson localization theory to

limit the numerical modeling to the unit cell only. More speci�cally,

under appropriate conditions that are expected to hold in many of the

applications of interest, closed-form expressions are used to calculate

a disorder-induced attenuation factor per unit cell. The accuracy of

these expressions has been assessed through the use of more general,

yet computationally more expensive models, and has been found to be
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su�cient for the cases studied. For the case where the random disorder

in the structure requires multiple random variables for its description,

the possibility of computing the overall change in the propagation con-

stant per unit cell as the sum of the changes computed by considering

each random variable individually was examined. Very good accuracy

was obtained for the structures considered, suggesting that such an ap-

proach has merit and should be used as a �rst option, especially for

cases where the dimension of the random space describing the disorder

is large.

In a summary, a number of stochastic modeling applications has been de-

veloped in the context of computational electromagnetics. The models allow

the treatment of multidimensional problems by interpolating the output of

interest as a function of the input random variables, propagating the uncer-

tainty in the computational process. Considering that some electromagnetic

simulations are computationally expensive, it was demonstrated that these

techniques are excellent alternatives to the brute-force Monte Carlo approach

by keeping the number of simulations considerably small while the accuracy

of the approximation is preserved. The stochastic collocation-based tech-

niques are utilized not only in examples where global uncertainty occurs but

also in examples presenting localized uncertainty for which macromodeling

methodologies have been employed to expedient the statistical assessment of

structures. The studied stochastic problems are important technology appli-

cations and their stochastic modeling is crucial for the correct assessment of

the impact of uncertainties on their electromagnetic behavior.

8.1 Future Work

This dissertation presents e�cient techniques for the statistical assessment

of electromagnetic systems and structures. Here we describe some potential

extensions of the proposed methodologies to solve a broader range of prob-

lems as well as additional research opportunities in the �eld of stochastic

modeling in computational electromagnetics.

First, the dimensionality reduction methodology can be extended by em-

ploying nonlinear principal components analysis (PCA), which has been
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broadly researched in the last couple of decades [129, 130], to reduce the

input random space when the relations between random variables are not

linear.

Another important extension of our stochastic collocation method concerns

the yield estimation methodology that, if combined with optimization tech-

niques can be used to derive an optimal set of ranges of the manufacturing

tolerances of the design parameters of electromagnetic structures that opti-

mizes the manufacturing cost. That optimization technique must take into

account the number of units that fail a certain performance criterion as well

as the cost of demanding such tolerances for the input random parameters.

Regarding the topic of stochastic macromodeling, the stochastic admit-

tance/impedance boundary condition methodology needs to be extended to

analyze three-dimensional structures with surrounding boundaries of arbi-

trary shape. For such a purpose, spherical wave functions need to be used

instead of cylindrical harmonics to expand the �elds and characterize the

boundary condition. As a result, a more versatile methodology can be applied

to the context of EMI (electromagnetic interference) and EMC (electromag-

netic compatibility) applications to simplify the extraction of the statistics

of the electromagnetic �eld in cavities and electronic structures presenting

variability.

As for the signal integrity applications, we recognize an interesting applica-

tion of practical importance for the computer industry, namely, the modeling

of the �ber weave e�ect that is introduced due to non-homogeneous nature

of the dielectrics of printed circuit boards caused by the �berglass weave

pattern. Such variability is specially important for bit rates higher than 5

GB/s and for di�erential pair traces, that introduces timing skew and mode

conversions leading to the detriment of the intended performance and EMI

radiation [131]. Instead of focusing in the worst case scenarios as it has tra-

ditionally been done, some of the proposed stochastic modeling techniques

can be used to assess the impact on the transmission properties of high-speed

interconnects.

Finally, an obvious extension for the problem of disordered periodic struc-

ture is the study of periodic arrays and structures in two or three dimensions.

Another extension of the methodology concerns the case of multimode propa-

gation. In such scenario, the impact of disorder is not only on each individual

propagating mode but also in the mode conversion between them. Such ef-
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fects need to be quanti�ed for a complete assessment of disorder in periodic

structures.
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Appendix A

INTEGRAL EQUATION SOLVER

The mathematical framework of the method of moments is described in

this appendix. The integral equation solver is employed to study the two-

dimensional scattering of a dielectric cylinder with arbitrary shape in Chapter

2. This study assumes an homogeneous in�nite dielectric cylinder immersed

in free space. The formulation has been detailed in [91, 104], where a com-

bination of the Helmholtz wave equation and Green's function is integrated

inside and outside the cylinder's domain to get an integral equation of the

�elds at the boundary of the cylinder. Speci�cally, for the transverse mag-

netic (TMz) mode the integral equation is

1

2
Ez (ρ)−

ˆ

So−s

[
Ez (ρ′)

∂Go (ρ, ρ′)

∂n′
− jkoZoGo (ρ, ρ′)Ht (ρ′)

]
dS ′ = Einc

z (ρ) ,

(A.1)

1

2
Ez (ρ) +

ˆ

So−s

[
Ez (ρ′)

∂Gi (ρ, ρ
′)

∂n′
− jkoZoµrGi (ρ, ρ

′)Ht (ρ′)

]
dS ′ = 0,

(A.2)

where the continuity condition of the �elds has been imposed. Also, in (A.1)

and (A.2), Gi (ρ, ρ
′) is the Green's function of the region inside the cylinder,

and So is the boundary of the cylinder. Notice that the integration domain

excludes the singularity (s) of the Green's function that arises when ρ = ρ′.

Similarly, for the transverse electric (TEz) mode we have

1

2
Hz (ρ)−

ˆ

So−s

[
Hz (ρ′)

∂Go (ρ, ρ′)

∂n′
+ jkoZoGo (ρ, ρ′)Et (ρ′)

]
dS ′ = H inc

z (ρ)

(A.3)

and
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1

2
Hz (ρ) +

ˆ

So−s

[
Hz (ρ′)

∂Gi (ρ, ρ
′)

∂n′
+ jkoZoεrGi (ρ, ρ

′)Et (ρ′)

]
dS ′ = 0,

(A.4)

for ρ ∈ So.
Equations (A.3) and (A.4) are reduced to a linear set of equations by

sectioning the boundary into smaller segments. Then, by assuming that the

�elds are constant on each section of the boundary, a matrix equation is

obtained. For the TM case it is

(
1

2
[I]− [Ao]

)
[Ez] + jkoZo [Bo] [Ht] =

[
Einc
z

]
, (A.5)

(
1

2
[I] + [Ai]

)
[Ez]− jkoZo [Bi] [Ht] = 0, (A.6)

where vectors [Ez] and [Ht] represent the interpolation values of the �elds on

each section of the boundary. Besides,

Amn =
1

4j

n̂ (ρn) · (ρm − ρn)

|ρm − ρn|
H

(2)
1 (k |ρm − ρn|) ln, m 6= n, (A.7)

Bmn =

{
1
4j
H

(2)
o (k |ρm − ρn|) ln m 6= n

1
4j

(
1 + 2

jπ
ln
(
γklm

4e

))
lm m = n

, (A.8)

where vector n̂ is the unitary normal vector on each segment of the boundary

of length ln.
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Appendix B

CROSS ENTROPY ALGORITHM

The Cross-Entropy (CE) algorithm presented in [99, 97] provides an e�cient

methodology to estimate the probability of rare events. This algorithm,

shown below is used in this manuscript to estimate the yield of microwave

structures under manufacturing uncertainty.

For a given random parameter u =u(χ), where χ is a multidimensional

random variable with PDF f(X;µ) and mean vector µ. The present algo-

rithm �nds the probability of u to be larger than a threshold γ.

1. De�ne v0 = µ. Set t = 1.

2. Generate a sample {χi}Mi=1 from the PDF f(X,vt−1), sort them and

evaluate the output u. If u(χd(1−ρ)Me) < γ, assign the d(1− ρ)Me-th
largest value of the output, u to γt . Otherwise set γt = γ.

3. Evaluate the following expression to �nd vt.

vt,j =

∑M
i=1 I{u(χ)≥γt}W (χi;µ,vt−1)χij∑M
i=1 I{u(χ)≥γt}W (χi;µ,vt−1)

, (B.1)

whereW (χi;µ,v) = f(X;µ)/f(X;v) is the ratio between the original

and the modi�ed PDF.

4. If γt < γ, set t = t + 1 and reiterate from step 2. Otherwise proceed

with step 5.

5. Estimate the rare-event probability y using the likelihood ratio estima-

tor

y =
1

M1

M1∑

i=1

I{u(χ)≥γt}W (χi;µ,vT ), (B.2)
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Notice that in the algorithm the mean values of the PDF changes in each

iteration. Other parameters can be assigned to change similarly. Besides,

the parameter M is normally chosen to be 103 and ρ between 0.1 and 0.005.
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Appendix C

LOCALIZATION TECHNIQUE FOR

ONE-DIMENSIONAL PERIODIC

STRUCTURES

This localization technique has been proposed in [82] and it is described in

this appendix for completeness purposes. Consider the n-th unit cell of a

periodic structure. The transmission properties of the cell can be quanti�ed

in terms of the transfer matrices relating the output to the input modal

�elds. It is assumed that the transmission matrix of the modes is given by

the product of an ideal section [To] of the structure without variability, while

[Qn] is used to capture the perturbation of the unit cell as depicted in Fig.

C.1.

Referring to Fig. C.1, the modal wave vectors are [an, bn], where an rep-

resents a wave traveling to the right, while bn represents a wave traveling to

the left. Following the formulation presented by Cai and Lin [82], the overall

transfer matrix [TT ] for a chain of N cell units is obtained by a consecutive

product of N matrices [To][Qn].

[TT ] = [QN ] [To] [QN−1] [To] . . . [Q1] [To] , (C.1)

where [To] is a diagonal matrix whose components relate the wave at the

output of the ideal unit cell with the input wave, introducing a magnitude

and phase change,

T	
  

To Qn 

2
na

Qn-1 To To 

(t1 (n)) 

(t2 (n)) 

(t3 (n)) 

Figure C.1: Schematic representation of re�ections in the n-th cell due to
perturbation.
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[To] =

[
λ 0

0 λ−1

]
. (C.2)

Scattering matrix [ST ], de�ned in [82], provides a relevant physical insight

into the problem since its coe�cients correspond to the re�ection and trans-

mission coe�cients of the propagating waves for the overall structure. The

overall scattering matrix is

[
b1

aN+1

]
= [ST ]

[
a1

bN+1

]
=

[
S11 S12

S21 S22

][
a1

bN+1

]
. (C.3)

Assuming there are no re�ections for cells n ≥ N + 1, the second row of

(C.3) results in

aN+1 = S21a1, (C.4)

where S21 represents the transmission of the wave moving to the right. A

propagation factor of the wave is then de�ned through the equation

γ = lim
N→∞

1

N
ln (S21) . (C.5)

Clearly, this propagation factor represents a measure of the phase shift and

attenuation in the disordered structure per unit cell. While standard Monte

Carlo analysis may be used for the calculation of the propagation factor in the

presence of statistical variability, closed-form expressions for their calculation

under the assumption of small, moderate and strong re�ections are possible,

as detailed in [82] and described next.

C.1 Small Re�ections

Considering the schematics of Fig. C.1, and assuming that the re�ections

from the perturbation is small, the only transmitted part of the incident wave

a2
n would be t1 (n) and is given by

t1 (n) = s21 (n) a2
n, (C.6)

where s21 (n) is the scattering parameter corresponding to the n-th pertur-

bation section.
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Then, the overall transmission coe�cient S21 is approximated by the prod-

uct of transmission coe�cients of each perturbation section, s21 (n), and λ

corresponding to each ideal section of the cell, resulting in

S21 ≈
N∏

n=1

s21 (n)λ, (C.7)

that expressed in terms of the coe�cients of matrices [Q (n)] is

S21 ≈
N∏

n=1

q−1
22 (n)λ. (C.8)

Plugging (C.8) into (7.12), a summation of independent and identically

distributed random variables is obtained which can be estimated with the

mean of the random variables, [82]

γd = lnλ−
ˆ

ln (q22 (χ)) ρ (χ) dχ, (C.9)

where ρ(χ) is the PDF of the random variables χ.

C.2 Moderate Re�ections

The next approximation, called moderate re�ections, considers re�ections

inside each unit cell but no interactions with adjacent cells are considered.

The total transmitted wave in each unit cell is the summation of terms t1 (n),

t2 (n), t3 (n),... of Fig. C.1. The �rst three such coe�cients are given by

t1 (n) = s21 (n) a2
n,

t2 (n) = s21 (n)
[
λ2s11 (n− 1) s11 (n)

]
a2
n,

t3 (n) = s21 (n)
[
λ2s11 (n− 1) s11 (n)

]2
a2
n. (C.10)

The transmitted wave in each unit cell n is given by the summation of

coe�cients ti(n) [82]
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t (n) =
N∑

i=1

ti (n) a2
n =

s21 (n)λ

1− λ2s11 (n− 1) s11 (n)
a2
n, (C.11)

while the re�ected wave in each unit cell is

r (n) =
s11 (n) s21 (n− 1)λ

1− λ2s11 (n− 1) s11 (n)
a2
n. (C.12)

Then, the overall transmission coe�cient, S21 of (C.5) is approximately

given by [82]

S21 ≈
N∏

n=1

s21 (n)λ

1− λ2s11 (n− 1) s11 (n)
. (C.13)

Plugging (C.13) into (7.12) and expressing factors sij (n) in terms of coef-

�cients qij (n) (i, j = 1, 2) of perturbation matrix [Qn] , we get [82]

γ = lnλ−
´

ln (q22 (χ)) p (χ) dχ+
˜

ln
(

1 + λ2q12(χ2)q21(χ1)
q22(χ2)q22(χ1)

)
p (χ1) p (χ2) dχ1dχ2

. (C.14)
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