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ABSTRACT
Identifying repetitive code changes benefits developers, tool
builders, and researchers. Tool builders can automate the
popular code changes, thus improving the productivity of de-
velopers. Researchers can better understand the practice of
code evolution, advancing existing code assistance tools and
benefiting developers even further. Unfortunately, existing
research either predominantly uses coarse-grained Version
Control System (VCS) snapshots as the primary source of
code evolution data or considers only a small subset of pro-
gram transformations of a single kind — refactorings.

We present the first approach that identifies previously
unknown frequent code change patterns from a fine-grained
sequence of code changes. Our novel algorithm effectively
handles challenges that distinguish continuous code change
pattern mining from the existing data mining techniques.
We evaluated our algorithm on 1,520 hours of code devel-
opment collected from 23 developers, and showed that it is
effective, useful, and scales to large amounts of data. We
analyzed some of the mined code change patterns and dis-
covered ten popular kinds of high-level program transfor-
mations. More than half of our 420 survey participants ac-
knowledged that eight out of ten transformations are rele-
vant to their programming activities.

1. INTRODUCTION
Many code changes are repetitive by nature [13, 16, 24],

thus forming code change patterns. Frequent pattern min-
ing [11] is successfully applied in a broad range of domains.
For example, Amazon.com recommends related products based
on “customers who bought this also bought that”. Netflix
recommends new movies based on “customers who watched
this also watched that”. Similar frequent pattern mining has
revolutionized other services such as iTunes, GoodReads, so-
cial platforms, etc. More recently, data mining techniques
became popular in the domain of genetics [26, 28, 30]. In
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particular, these techniques are employed to identify similar
sequences of genes, which is a common task in DNA stud-
ies. We conjecture that mining frequent code changes can
be similarly transformative for software development.

Identifying frequent code change patterns benefits Inte-
grated Development Environment (IDE) designers, code evo-
lution researchers, and developers. IDE designers can build
tools that automate execution of frequent code changes,
recommend code changes, or offer intelligent code comple-
tion [2, 23, 25], thus improving the productivity of develop-
ers. Researchers would better understand the practice of
code evolution and also would be able to focus their atten-
tion on the most popular development scenarios. Library
developers can notice and fix the common mistakes in the
library API usage.

Existing research [2–4,14,18,20,29,31,34,35,38] predomi-
nantly detects frequent code change patterns either analyz-
ing the static source code of a single version of an applica-
tion or comparing the application’s Version Control System
(VCS) snapshots. In our previous study [22], we showed that
data stored in VCS is imprecise, incomplete, and makes it
impossible to perform analysis that involves the time dimen-
sion inside a single VCS snapshot. Recent research [8, 10]
considered more precise data captured directly from IDE,
but their code change identification techniques were limited
in two ways: (i) they were looking for a single kind of code
change patterns — refactorings, (ii) they considered only a
small subset of previously known kinds of refactorings.

In this paper, we employed data mining techniques to de-
tect previously unknown frequent code change patterns from
a fine-grained sequence of code changes. Our mining al-
gorithm does not use any predefined templates to look for
patterns, and thus, all patterns it detects are previously un-
known. We recorded the code changes as soon as they were
produced by developers. Consequently, our algorithm’s in-
put sequence is the most fine-grained and precise represen-
tation of code evolution.

There are unique challenges posed by our problem domain
of program transformations, which render previous off-the-
shelf data mining techniques [11] inapplicable. First, for
program transformations, we need to mine a continuous se-
quence of code changes that are ordered by their timestamps,
without any previous knowledge of where the boundaries be-
tween patterns of transformations are. In contrast, standard
data mining techniques operate on a database of transac-
tions with well known boundaries. Second, unlike the stan-
dard frequent itemset mining [1,12,36,37], when mining fre-
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quent code change patterns, a high-level program transfor-
mation corresponding to a given pattern may contain sev-
eral instances of the same kind of code change. For example,
Rename Local Variable refactoring involves the same change
for all references of the renamed variable. Consequently, in
our mining problem, a transaction may contain multiple in-
stances of the same item kind, thus forming itembags rather
than itemsets.

In this paper, we present our novel frequent code change
patterns mining algorithm that effectively handles both chal-
lenges specific to our mining problem. We applied our novel
algorithm on a large corpus of real world data that we col-
lected during our previous user study [22], in which we accu-
mulated 1,520 hours of code development from 23 develop-
ers working in their natural settings. Our evaluation shows
that our algorithm is effective, useful, and scales well for
large amounts of data. In particular, our algorithm mined
more than half a million of item instances in less than six
hours. We analyzed some of the frequent code change pat-
terns detected by our algorithm and identified ten kinds of
popular high-level program transformations. On average,
32% of the pattern occurrences reported by the algorithm
led to high-level program transformation discoveries.

To assess the popularity of the identified high-level pro-
gram transformations, we conducted a survey study with
420 participants. More than half of our survey participants
found eight out of ten kinds of program transformations rel-
evant to their programming activities. Moreover, the ma-
jority of the participants regularly perform six transforma-
tion kinds and would like to get automated support for five
transformation kinds. These results confirm that our mining
algorithm helps identify useful and popular program trans-
formations.

This paper makes the following contributions:

• Algorithm: We designed a novel algorithm that effec-
tively addresses the challenges of frequent code change
patterns mining.

• Implementation: We implemented our algorithm as
part of CodingTracker. CodingTracker is open source
and is available at
http://codingtracker.web.engr.illinois.edu.

• Evaluation: We evaluated our algorithm on 1,520
hours of real world code development data and showed
that it is effective, useful, and scalable.

• Results: We analyzed some of the mined code change
patterns and identified ten kinds of popular high-level
program transformations.

2. MOTIVATING EXAMPLE
Figure 1 shows a code editing example in which a de-

veloper repeatedly applies a high-level program transforma-
tion. In this and all subsequent examples of program trans-
formations, we represent the changed parts of code as un-
derlined text. Figure 1 shows that the developer edits two
methods, getDistance and computeDirection. Method get-

Distance computes distance between two points, p1 and p2.
Method computeDirection computes a direction angle from
some origin point o to a given point p. In this code editing
example, the developer first renames getDistance to compute-

Distance to better reflect its meaning. Then, the developer

double getDistance(Point p1, Point p2) {
  ...
}
float computeDirection(Point o, Point p) {
  ...
}

Before

After

double computeDistance(Point p1, Point p2) {
  if (p1.equals(p2)) return 0;
  ...
}
double computeDirection(Point o, Point p) {
  if (o.equals(p)) return 0;
  ...
}

Figure 1: An example of a repeated high-level program
transformation. Changed code is underlined.

decides to increase accuracy of direction angle computation
and changes accordingly the return type of computeDirection
method from float to double. Finally, the developer im-
proves the performance of both methods — if the method’s
arguments are equal, the method returns 0 without perform-
ing any additional computations. We call the corresponding
high-level program transformation Return If Arguments Are
Equal.

Table 1 shows code changes of the code editing scenario
in Figure 1. The first column presents the relative order of
the changes. Note, however, that the ordering of changes is
partial. For example, according to the code editing scenario
in Figure 1, change 2 happened after change 1. At the same
time, the relative order of changes 3 – 9 is undefined. The
second and the third columns correspondingly show the kind
of the Abstract Syntax Tree (AST) node operation and the
affected AST node’s type. The next column presents the
content of the affected AST node (or the content’s change
for change operations). We explain the content of the last
column in the following section.

Given a sequence of code changes like the one in Table 1,
we would like to identify repetitive code change patterns that
correspond to some high-level program transformations. For
example, we would like to detect that code changes 3 –
9 and 10 – 16 represent the same code change pattern —
the pattern of high-level program transformation Return If
Arguments Are Equal. To achieve this goal, we use data
mining techniques. In the following section, we introduce
the canonical data mining problem and discuss how our ap-
proach differs from it.

3. BACKGROUND
Definition 1 (Code Change): A code change is a pair

(<operation kind>, <AST node type>).
We ignore the contents of the affected AST nodes to avoid

making our code changes too specific. Too specific represen-
tation hinders detecting similar changes, e.g., changes 9 and
16 in Table 1 would be different, if we considered the affected
nodes’ contents.

Definition 2 (Code Change Pattern): A code change pat-
tern is an unordered bag of code changes.

Note that a code change pattern is a bag rather than a set,
since the same code change might occur several times in a
pattern, e.g., (add, SimpleName) occurs three times in the
pattern of transformation Return If Arguments Are Equal.
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Table 1: Code changes of the code editing scenario in Figure 1.

Order index Operation AST node type AST node content change Item
1 change SimpleName getDistance → computeDistance a
2 change PrimitiveType float → double b
3 add SimpleName p1 c
4 add SimpleName equals c
5 add SimpleName p2 c
6 add MethodInvocation p1.equals(p2) d
7 add NumberLiteral 0 e
8 add ReturnStatement return 0 f
9 add IfStatement if (p1.equals(p2)) return 0 g
10 add SimpleName o c
11 add SimpleName equals c
12 add SimpleName p c
13 add MethodInvocation o.equals(p) d
14 add NumberLiteral 0 e
15 add ReturnStatement return 0 f
16 add IfStatement if (o.equals(p)) return 0 g

In data mining terminology, an item corresponds to our
code change and an itembag corresponds to our code change
pattern. For brevity, items are usually represented as char-
acters. The last column of Table 1 shows the items corre-
sponding to every distinct code change. For example, item c
corresponds to code change (add, SimpleName), while item
d — to code change (add, MethodInvocation).

The number of repetitions of a pattern (itembag) is called
frequency. For example, the frequency of a pattern con-
taining only item c is 6. Note, however, that our goal is
to detect full code change patterns rather than their parts
(i.e., we would like to detect a pattern with code changes 3
– 9 rather than 3 – 7 or 5 – 8, or any other subset of code
changes). Therefore, we mine closed itembags, i.e., item-
bags that are not part of an itembag with more items and
the same frequency. In other words, a closed itembag rep-
resents the maximal size code change pattern for a given
frequency.

To discuss how our problem of mining frequent code change
patterns differs from the canonical one, we first present sev-
eral definitions from the data mining domain.

Definition 3 (Transaction): A transaction is a tuple <
tid,X >, where tid is a unique transaction identifier and X
is a set of items.

Definition 4 (Transaction Database): A transaction database
D is a set of transactions.

The canonical problem of mining frequent itemsets from a
given transaction database D consists in finding all itemsets,
whose frequency is not lower than a user-specified minimum
frequency threshold. Thus, the off-the-shelf data mining al-
gorithms are designed to mine itemsets rather than item-
bags. Also, they assume that transactions are disjoint.

For code change mining, a transaction is a window in
which an algorithm looks for a pattern. The size of the win-
dow determines the maximum size of a pattern that a mining
algorithm can detect. To mine the actual code changes, we
use a time window, while for presentation purposes, we de-
fine the size of a window as the number of code changes.
For example, let’s consider that our window is of size eight.
Then, according to Table 1, we have two disjoint windows
(transactions), the first spans code changes 1 – 8, and the
second — changes 9 – 16. As a result, the pattern with
code changes 3 – 9 crosses the boundary between windows.

a  b  c  c  c  d  e  f  g  c  c  c  d  e  f  g
1   2    3    4   5    6   7    8   9   10  11 12  13 14  15 16

Transaction 1

Transaction 2

Transaction 3

Figure 2: The overlapping transactions of size eight for the
sequence of code changes from Table 1.

Consequently, an off-the-shelf mining algorithm would not
be able to correctly detect the whole pattern. To avoid this
problem, we designed a mining algorithm that uses overlap-
ping windows (transactions).

Figure 2 shows overlapping transactions of size eight for
the sequence of code changes from Table 1. The number
above each item reflects the order index of the corresponding
code change. We use these numbers as IDs that help dis-
tinguish separate occurrences of the same item in the same
transaction. For example, three occurrences of item c in the
first transaction have IDs 3, 4, and 5.

Note, however, that just overlapping transactions of size
eight is insufficient to detect code change patterns of size
eight. In particular, Figure 2 shows that the pattern with
code changes 3 – 9 still crosses the boundary between trans-
actions. Consequently, the size of a transaction should be
larger than the maximum-size pattern we are looking for.
In the following section, we present the high-level overview
of our mining algorithm and discuss handling of overlapping
transactions and itembags in more detail.

4. OUR MINING ALGORITHM OVERVIEW
Definition 5 (Vertical Data Format): The vertical data

format represents a transaction database as a set of tuples
< item, tidset >, where tidset is a set of identifiers of trans-
actions that contain the corresponding item.

Table 2 shows the transaction database in the vertical data
format for the items from Table 1 according to transactions
in Figure 2. Note that to present the basic idea of the verti-
cal data format mining algorithm, we first disregard the fact
that items in Table 1 form itembags rather than itemsets and
are shared between overlapping transactions.
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Table 2: The transaction database in the vertical data for-
mat for the items from Table 1 according to transactions in
Figure 2.

Item Tidset
a {1}
b {1}
c {1, 2, 3}
d {1, 2, 3}
e {1, 2, 3}
f {1, 2, 3}
g {2, 3}

To accommodate such properties of code change pattern
mining as overlapping transactions and itembags, it is cru-
cial to access the transaction identifiers directly while com-
puting new itemsets. The vertical data format grants such
access to a mining algorithm. Therefore, our approach is
inspired by several ideas from CHARM [37], an advanced al-
gorithm for mining data in the vertical data format, which
introduces the notion of itemset-tidset tree (IT-tree), em-
ploys several optimizations, and searches for closed itemsets,
thus considerably reducing the size of the mining result. In
particular, our algorithm extends the notion of IT-tree and
adapts several optimization insights of CHARM. We first in-
troduce the basic idea of mining data in the vertical data for-
mat and present the CHARM’s definition of IT-tree. Then,
we discuss how our approach builds upon CHARM to handle
overlapping transactions and itembags.

Definition 6 (n-itemset): An n-itemset is an itemset that
contains n items.

Definition 7 (Support of an Itemset): In a given trans-
action database D, the support of an itemset X, which we
denote as sup(X), is the number of transactions in D that
contain X. That is, sup(X) = |t(X)|.

Eclat [36] is the first algorithm for mining data in the ver-
tical data format without candidate generation. The basic
idea of the algorithm is to compute (n+ 1)-itemsets from n-
itemsets by intersecting their tidsets. The algorithm starts
with frequent 1-itemsets and finishes when no more frequent
itemsets can be found. For example, let’s consider two 1-
itemsets, {a} and {b}, from Table 2 (note that for any item
x there is a corresponding 1-itemset {x}). The algorithm
computes the tidset of a 2-itemset {a, b} by intersecting the
tidsets of {a} and {b}: t({a, b}) = t({a})∩t({b}) = {1}. The
support of the itemset {a, b} is 1: sup({a, b}) = |t({a, b})| =
1. If the minimum frequency threshold is greater than 1,
then itemset {a, b} is discarded. Otherwise, it is added to
the results and consequently, it is considered for computing
3-itemsets.

The nodes in an IT-tree are pairs itemset : tidset. The
root of the tree represents an empty itemset, and thus, its
tidset is T , the set of all tids. The immediate children of the
root node are 1-itemsets that are computed by scanning the
transaction database. The immediate children of a non-root
node are computed by intersecting this node’s tidset with
the tidsets of the not yet considered 1-itemsets, traversing
them from left to right. If the resulting tidset’s size falls
below the minimum frequency threshold, the new node is
not added to the IT-tree. The IT-tree is completed when no
more nodes can be added to it. Figure 3 shows the partially
completed first three levels of the IT-tree for the transaction
database from Table 2. The first level of the tree consists
of the 1-itemsets from the database that are paired with

their tids, e.g., {a} : {1}, {b} : {1}, {c} : {1, 2, 3}, etc. The
following levels are computed according to the procedure
described above. For example, node {a, b} : {1} is the result
of combination of nodes {a} : {1} and {b} : {1}.

Handling overlapping transactions and itembags.
We mine frequent code change patterns from an ordered se-
quence of code changes (note that code changes are naturally
ordered according to when they happened, i.e., according to
their timestamps). To populate our transaction database,
we divide this continuous sequence into individual transac-
tions. Our code editing example in Section 2 shows that
making transactions disjoint and sizing them according to
the maximum length of a pattern, max length, does not
account for patterns that cross the boundary of two trans-
actions. Therefore, we use overlapping transactions whose
size is 2 ∗max length. The size of the overlap between two
neighboring transactions is max length. As a result, our
mining algorithm finds all patterns whose length does not
exceed max length and some patterns whose length lies in
between max length and 2 ∗max length.

Figure 2 shows overlapping transactions of size eight for
the sequence of code changes from Table 1. Such choice of
transactions ensures that the algorithm detects all patterns
whose length does not exceed four. To detect the pattern
with code changes 3 – 9, which is of size seven, the size of
the transactions should be at least 14. We specify the size
of a transaction as the number of code changes (i.e., items)
for presentation purposes only, while for the actual mining,
we set max length to five minutes, and thus, transactions
contained various numbers of items.

An important observation is that although code changes
form an ordered sequence, a code change pattern is un-
ordered because the corresponding high-level program trans-
formation may be performed in different orders. For ex-
ample, a developer who performs a Rename Local Variable
refactoring might first change the variable’s declaration and
then its references or vice versa, or even intersperse chang-
ing the declaration and the references. Thus, the order of a
transaction’s items does not matter.

Another observation is that a high-level program trans-
formation may contain several instances of the same kind of
code change. For example, Rename Local Variable refac-
toring involves the same change for all references to the
renamed variable. Section 2 presents an example of an-
other high-level program transformation, Return If Argu-
ments Are Equal, that also contains multiple instances of the
same kind of code change, (add, SimpleName). These ex-
amples show that for mining code change patterns, a trans-
action’s items form a bag rather than a set. In particular,
the first transaction in Figure 2 contains three items c.

The major difference between our frequent code change
pattern mining algorithm and the existing approaches to
mining frequent itemsets is that our algorithm handles over-
lapping transactions and itembags rather than itemsets. To
distinguish different occurrences of an item in the same trans-
action as well as the overlapped parts of two transactions,
our algorithm assigns a unique ID to each item’s occur-
rence. The first line in Figure 2 shows the IDs assigned
to the underlying items’ occurrences. For example, the first
transaction contains occurrences of item c with IDs {3, 4, 5},
the second transaction — {5, 10, 11, 12}, and the third —
{10, 11, 12}. Note that although our algorithm handles item-
bags, we continue to use the notion of itemsets throughout
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{} : {1, 2, 3}

{a} : {1} {b} : {1} {c} : {1, 2, 3} {d} : {1, 2, 3}

{a, b} : {1} {a, c} : {1} {a, d} : {1} {b, c} : {1} {b, d} : {1}

{a, b, c} : {1}

{c, d} : {1, 2, 3}...

...

... ...

{a, b, d} : {1}

...

...

Figure 3: The partially completed first three levels of the IT-tree for the transaction database from Table 2.

our presentation, since the fact that our itemsets are actu-
ally itembags is accounted for by explicitly tracking each
item’s occurrences.

Tracking an item’s occurrences. In order to track
items’ occurrences, a node in our itemset-tidset tree (IT-
tree) is defined as follows:

[item1, item2, ..., itemn] :
[tid1 : [[occurrences1], [occurrences2], ..., [occurrencesn]],
tid2 : [[occurrences1], [occurrences2], ..., [occurrencesn]],
...,

tidm : [[occurrences1], [occurrences2], ..., [occurrencesn]]]

We use square brackets to denote ordered sets. The order
of items in an itemset does not matter for a pattern, but
it helps our algorithm to track occurrences of every item in
each transaction that contains this itemset. Thus, we repre-
sent an n-itemset as an ordered set of items [item1, item2, ...,
itemn]. For a given itemset, a node in an IT-tree contains an
ordered set of tids of transactions that contain this itemset.
Ordering of transactions enables our algorithm to effectively
handle overlapping parts of the neighboring transactions.
For each transaction, the IT-tree node also tracks all oc-
currences for every item in the given itemset (in the above
representation, [occurrencesi] are all occurrences of itemi

in a particular transaction). Our algorithm also orders an
item’s occurrences to ensure the optimal result of our item-
set frequency computation technique that we discuss below.

Similarly to CHARM [37], we compute our IT-tree by
traversing the 1-itemsets from left to right and intersect-
ing the tidset of a particular itemset with the tidsets of the
not yet considered 1-itemsets to generate new IT-tree nodes.
The major difference from the CHARM’s approach is that
our algorithm tracks items’ occurrences, and thus, whenever
a new item is added to an itemset, the item’s occurrences
are appended to the set of occurrences of every transaction
in the corresponding IT-tree node. Table 3 shows several
examples of itemsets and their corresponding IT-tree nodes
for the sequence of code changes from Figure 2. The third
row presents the IT-tree node for itemset {c}. The node con-
sists of the itemset itself, [c], followed by tids of transactions
that this itemset appears in — 1, 2, 3. For each transac-
tion, the node tracks all occurrences of item c: transaction
1 contains occurrences 3, 4, 5, transaction 2 — 5, 10, 11, 12,
and transaction 3 — 10, 11, 12. Note that storing an item’s
occurrences in every IT-tree node that contains this item is
not only redundant, but also prohibitively expensive. In-
stead, our algorithm stores occurrences of individual items
and then just refers these occurrences from the containing

Table 3: Examples of itemsets and their corresponding IT-
tree nodes for the sequence of code changes from Figure 2.

Itemset IT-tree node
{a} [a] : [1 : [[1]]]
{b} [b] : [1 : [[2]]]
{c} [c] : [1 : [[3, 4, 5]], 2 : [[5, 10, 11, 12]], 3 : [[10, 11, 12]]]
{a, c} [a, c] : [1 : [[1], [3, 4, 5]]]

IT-tree nodes. We inline the referred occurrences for pre-
sentation purposes only.

Computing the frequency of an itemset. Due to
overlapping transactions and multiple occurrences of an item
in the same transaction, our algorithm cannot compute the
frequency of an itemset as the number of transactions that
contain this itemset (as it is done in the existing frequent
itemset mining techniques). Instead, we devised our own
itemset frequency computation technique that accounts for
the particularities of our mining problem. In a given trans-
action k:

tidk : [[occurrences1], [occurrences2], ..., [occurrencesn]]

the frequency of the corresponding itemset is:

fk = min
i=1..n

|[occurrencesi]| (1)

That is, fk is the number of occurrences of an itemset’s
item that appears the least number of times. The overall
frequency of an itemset that is contained in m transactions
is:

F =

m∑
k=1

fk (2)

If an item occurrence is shared between two neighbor-
ing transactions, k and l, the algorithm should count this
occurrence only once, either as part of fk or as part of
fl. In an ordered set of transactions, two transactions,
k and l, are neighboring if and only if |k − l| = 1 and
|tidk − tidl| = 1. That is, the neighboring transactions
follow each other both in the ordered set and in the orig-
inal sequence of code changes. For example, in Figure 2
transactions of the ordered set [1, 2] are neighboring, while
transactions of the ordered set [1, 3] are not neighboring.

Let’s denote [occurrenceski ] the ordered set of occurrences
of itemi in a transaction k. Let’s denote oj an occurrence
o with the index j in the ordered set of occurrences. To
compute the frequency of an n-itemset that is contained in m
transactions, our algorithm visits each pair of transactions k
and k + 1, where 1 ≤ k < m. First, our algorithm computes
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fk using formula (1). Then, if transactions k and k + 1
are neighboring, our algorithm visits every occurrence oj ∈
[occurrenceski ], where 1 ≤ i ≤ n. If o ∈ [occurrencesk+1

i ],
then our algorithm checks whether the shared occurrence o
should be removed from the transaction k or k+1. If j ≤ fk,
then o is removed from the transaction k + 1. Otherwise,
it is removed from the transaction k. Note that removing
shared occurrences never affects the initially computed fk.
Finally, our algorithm computes the overall frequency using
formula (2).

For the best performance of our algorithm, we order an
item’s occurrences such that those that happened earlier in
time appear earlier in the ordered set. Since occurrences’ IDs
are generated incrementally (see Figure 2), such ordering is
easily achieved by sorting occurrences in ascending order of
their IDs. Consequently, the occurrences that are shared be-
tween transactions k and k+1 are placed at the end of the or-
dered set of all occurrences for the transaction k. Hence, our
algorithm computes the maximal possible frequency for the
transaction k employing the shared occurrences only when
needed, while the unused part of them is attributed to the
subsequent transaction k+1, thus maximizing its frequency
too. Going through each pair of transactions k and k + 1,
1 ≤ k < m, our algorithm propagates this maximization,
thus computing the optimal overall frequency F .

More details about our mining algorithm, including opti-
mizations to handle large amounts of data, computation of
closed itemsets, and establishing the frequency thresholds
can be found in our technical report [21].

5. EVALUATION
In our evaluation, we would like to answer these questions:

• Q1(scalability): Is our algorithm scalable to handle
large amounts of data?

• Q2(effectiveness): Does our algorithm mine code change
patterns that simplify identification of high-level pro-
gram transformations?

• Q3(usefulness): Are there useful high-level program
transformations among the mined code change pat-
terns?

To answer these questions, we applied our frequent code
change pattern mining algorithm on a large corpus of real
world data. In the following, we first describe how we col-
lected the data and performed the evaluation of the algo-
rithm. Then, we present our results.

5.1 Experimental Setup
To evaluate our mining algorithm, we first applied it on

the previously collected code development data. We ana-
lyzed the mining results and identified ten kinds of high-
level program transformations. Then, we performed a sur-
vey study to assess the popularity of the identified transfor-
mation kinds.

5.1.1 Mining Code Changes
We applied our algorithm on the data collected during our

previous user study [22], which involved 23 participants: 10
professional programmers who worked on different projects
in domains such as marketing, banking, business process
management, and database management; and 13 Computer

Table 4: Grouping of item kinds by their frequency. Col-
umn NK shows the number of item kinds in each group.
Columns AFT and DT show the values of the absolute fre-
quency threshold and dynamic threshold.

Frequency, F NK AFT DT Mining time
10, 000 ≤ F 23 30 10,000 15 minutes

300 ≤ F < 10, 000 81 30 300 5.2 hours
5 ≤ F < 300 32 5 5 7.7 seconds

Science graduate students and senior undergraduate sum-
mer interns who worked on a variety of research projects
from six research labs at the University of Illinois at Urbana-
Champaign.

According to the responses of our participants, 1, 4, 11,
and 6 of them had 1 – 2, 2 – 5, 5 – 10, and more than 10
years of programming experience, respectively. In the course
of our study, we collected code evolution data for 1,520 hours
of code development with a mean distribution of 66 hours
per developer and a standard deviation of 52.

The participants of our study installed the CodingTracker

plug-in in their Eclipse IDEs. Throughout the study, Cod-

ingTracker recorded the detailed code evolution data rang-
ing from individual code edits up to the high-level events
like automated refactoring invocations. CodingTracker up-
loaded the collected data to our centralized repository using
the existing infrastructure [32].

We first applied our AST node operations inference al-
gorithm [22] on the collected raw data to represent code
changes as add, delete, and update operations on the un-
derlying AST. Next, we represented distinct kinds of code
changes as combinations of the operation and the type of
the affected AST node. For example, (add, IfStatement),
(delete, IfStatement), and (add, InfixExpression) are
three different kinds of code changes. The instances of code
change kinds serve as input to our frequent code change pat-
tern mining algorithm. That is, in our mining algorithm, a
code change kind is an item and an instance of a code change
kind is an item’s occurrence.

For each mined code change pattern, our algorithm re-
ports all occurrences of the pattern in the input sequence of
code changes. We use CodingTracker’s replayer to man-
ually investigate these occurrences. We replay the code
changes of a particular occurrence to detect the correspond-
ing high-level program transformation.

Since the mining result is huge, we order the mined pat-
terns along three dimensions: by frequency of the pattern
(F ), by size of the pattern (S), and by F ∗ S. Then, we
output the top 1,000 patterns for each dimension and inves-
tigate them starting from the top of the list.

We noticed that some items (i.e., atomic AST node op-
erations like (add, IfStatement)) are much more frequent
than the others. Thus, using fixed threshold values to an-
alyze our data is not practical. If these values are too low,
our algorithm’s scalability would degrade, while the output
would become disproportionately big. On the other hand,
too high values would hinder the mining of patterns that
involve less frequent items. Therefore, we divided the input
items into three groups, applying different threshold values
to each. Table 4 shows all three groups as well as the corre-
sponding thresholds and the mining time. We performed all
mining on a quad-core i7 2GHz machine with 8GB of RAM.

We observed that some AST node operations are too fre-
quent to be considered at all. For example, adding and
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deleting SimpleName accompanies any code change that de-
clares or references a program entity. Consequently, mining
items that represent such AST node operations would only
add noise to the detected code change patterns. Therefore,
before applying our algorithm, we filtered out the noisy item
kinds, thus reducing the number of item kinds from 162 to
138. According to Table 9, the total number of the consid-
ered item kinds is 136, which means that two item kinds
were too infrequent to be part of any group.

5.1.2 Survey Study
To assess the popularity of the identified transformations,

we conducted a survey study with 420 participants. To re-
cruit our participants, we promoted the survey on Twitter
and Google+ feeds that are mainly read by developers. We
also released our survey on checkbox.io, a platform for soft-
ware engineering empirical research.

For each transformation, our survey contains three ques-
tions — the first and the third are multiple-choice, while the
second is Likert scale:

• Do you find this kind of change interesting, relevant, or
applicable to your programming activities?

• How often have you manually performed this kind of change?

• Would you like your IDE to provide automated support
for this change?

Tables 5, 6, 7, and 8 show that the majority of the devel-
opers who participated in our survey study are from indus-
try, have more than five years of programming experience,
and often employ refactoring and code completion features
of their IDEs. The column IDK abbreviates the “I do not
know” answer of our participants.

Table 5: Programming experience in years (%).

0 - 2 2 - 5 5 - 10 10 - 15 15 - 20 more than 20
2.87 21.05 31.34 25.60 7.18 11.96

Table 6: Software project type (%).

Open Source Personal/Class Proprietary Research
7.18 10.77 76.32 5.74

Table 7: Usage of IDE refactoring features (%).

IDK Never Very rarely Sometimes Often
0.24 4.55 8.37 31.10 55.74

5.2 Results
Table 9 summarizes performance statistics of our experi-

ment. Our algorithm mined more than half a million item
occurrences in less than six hours, and thus, the answer
to the first question is that our mining algorithm is
sufficiently scalable to handle large amounts of data
with the appropriate threshold values.

The frequent patterns mined by our algorithm helped us
identify ten new kinds of program transformations. Note
that among the mined patterns we encountered those that
pointed to different kinds of refactorings (predominantly Field
Rename, Method Rename, and Change Method Signature),
but we disregarded them in this evaluation, since our goal
was to focus on new transformation kinds. Table 10 shows

Table 8: Usage of IDE code completion features (%).

IDK Never Very rarely Sometimes Often
0.48 2.63 3.35 10.29 83.25

Table 9: Performance statistics of our experiment.

Item
Transactions

Item Total
kinds occurrences mining time

136 7,927 549,184 5.5 hours

the identified kinds of program transformations grouped ac-
cording to their scope. The last two columns of the table
show the number of pattern occurrences that we investi-
gated and the number of pattern occurrences that led to
the discovery of the corresponding program transformations.
Overall, 32% of pattern occurrences were fruitful. Hence,
our answer to the second question is that our al-
gorithm is effective — it mines patterns that often
lead to discovery of new high-level program trans-
formations.

Table 10: Identified kinds of program transformations.
Column I shows the number of the investigated pattern oc-
currences. Column F shows the number of pattern occur-
rences that were fruitful.

Scope Identified program transformation I F
Statement Convert Element to Collection 5 2

Loop Add a Loop Collector 3 1
Wrap Loop with Timer 2 1

Method Add Null Check for a Parameter 5 1

Class

Add a New Enum Element 2 1
Change and Propagate Field Type 3 1

Change Field to ThreadLocal 2 1
Copy Field Initializer 2 1

Create and Initialize a New Field 4 1
Move Interface Implementation to Inner Class 6 1

In the following, we present the discovered transformation
kinds in more detail.

Convert Element to Collection. This is a statement-
level transformation in which a developer converts a field,
parameter, or a local variable of a certain type into a collec-
tion (e.g., list, set, array, etc.) of that type. All references
to the element need to be updated accordingly.

Before After

void start(Car car){
car.start();

}

void start(List<Car> cars){
for(Car car : cars)

car.start();
}

Add a Loop Collector. This is a transformation in
which a developer introduces a new variable that collects or
aggregates the data processed in a loop.

Before After

for (Task t : tasks){
t.execute();

}

Set<TaskResult> results = new HashSet<>();
for (Task t : tasks){

t.execute();
results.add(t.getResult());

}

Wrap Loop with Timer. A developer applies this
transformation to compute the execution time of a loop.
The developer surrounds the loop with variables that hold
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the time before and after the loop execution and outputs the
time difference.

Before After

for(i = 0; i < 1000; i++)
if (isPrime(i)) println(i);

long start = System.currentTimeinMillis();
for(i = 0; i < 1000; i++)

if (isPrime(i)) println(i);
long end = System.currentTimeinMillis();
long totalTime = end – start;

Add Null Check for a Parameter. This is a transfor-
mation in which a developer adds null precondition checks
to all methods of a class that receive a particular parame-
ter such that the methods’ bodies are not executed if the
parameter is null.

Before After

void addPerson(Person p){
…
registry.add(p);
…

}

Record retrieveRecordsFor(Person p){
… 
registry.retrieveRecords(p);
… 

}

void addPerson(Person p){
if (p == null) return;
…
registry.add(p);
…

}

Record retrieveRecordsFor(Person p){
if (p == null) return null;
… 
registry.retrieveRecords(p);
… 

}

Add a New Enum Element. Adding a new element to
enum triggers a ripple of changes such as adding new switch

cases, if-then-else chains, and dealing with any duplicated
code that uses the updated enum.

Before After

enum EventType {START, STOP};

switch (e) {
  case START: ...
  case STOP: ...
}

if (e.isStart()) { ... }
if (e.isStop()) { ... }

EventDescriptor createDescriptor() {
  EventDescriptor ed = new EventDescriptor();
  ed.add(EvenType.START);
  ed.add(EvenType.STOP);
  return ed;
}

enum EventType {START, STOP, PAUSE};

switch (e) {
  case START: ...
  case STOP: ...
  case PAUSE: ...
}

if (e.isStart()) { ... }
if (e.isStop()) { ... }
if (e.isPause()) { ... }

EventDescriptor createDescriptor() {
  EventDescriptor ed = new EventDescriptor();
  ed.add(EvenType.START);
  ed.add(EvenType.STOP);
  ed.add(EvenType.PAUSE);
  return ed;
}

Change and Propagate Field Type. This is a trans-
formation in which a developer changes the type of a field.
As a result, the developer also has to update the type of some
local variables as well as the return type of some methods.

Before After

int mileage;

int getCurrentMileage(){
return mileage;

}

void updateMileage(int newMiles){
mileage += newMiles;

}

long mileage;

long getCurrentMileage(){
return mileage;

}

void updateMileage(long newMiles){
mileage += newMiles;

}

Change Field to ThreadLocal. To improve thread
safety of an application, a developer may decide to convert
some fields to ThreadLocal. Besides changing the type and
the initialization of the converted field, the developer also
has to modify all field’s accesses such that they use get()

and set() of ThreadLocal.

Before After

Cache c = new Cache();

void putInfo(String key, String value){
c.add(key, value);

}

ThreadLocal<Cache> c = new ThreadLocal<>(){

protected Cache initialValue() {
return new Cache();

}
}

void putInfo(String key, String value){
c.get().add(key, value);

}

Copy Field Initializer. This is a transformation in
which a developer copies the same initializer to several fields.

Before After

class Cars {
   List<Car> compacts;
   List<Car> sedans;
   ...
}

class Cars {
   List<Car> compacts = new ArrayList<>();
   List<Car> sedans = new ArrayList<>();
   ...
}

Create and Initialize a New Field. When a developer
adds a new field, it has to be properly initialized alongside
the already present fields in constructors and other initial-
ization places (e.g., static initialization blocks).

Before After

class Car {
   private List<Valve> valves;

   public Car() {
      valves = new ArrayList<>();
      ...
   }
   ...
}

class Car {
   private List<Valve> valves;
   private List<Wheel> wheels;

   public Car() {
      valves = new ArrayList<>();
      wheels = new ArrayList<>();
      ...
   }
   ...
}

Move Interface Implementation to Inner Class. This
is a transformation that describes a scenario in which a de-
veloper moves the implementation of an interface from a
class to its newly created inner class.

Before After

class FolderNode implements SelectionListener{

   public void selected() {
      ...
   }
   ...
}

class FolderNode {

   class SelectionBehaviour 
implements SelectionListener{

      public void selected() {
         ...
      }
   }
   ...
}

The mined code change patterns helped us identify ten
kinds of interesting program transformations whose scopes
range from individual statements to whole classes. Thus,
our answer to the third question is that our algo-
rithm is useful.

5.2.1 Survey Study Results
Table 11 ranks ten transformation kinds identified by our

mining algorithm according to the percentage of our survey
participants who reported them as relevant. More than half
of our participants recognized eight out of ten transforma-
tions as relevant to their programming activities.

Table 11: Ranking of transformation kinds according to
the percentage of our survey participants who reported them
as interesting, relevant, or applicable to their programming
activities.

Change Field Type 93.15
Create and Initialize a New Field 86.68
Add Precondition Checks for a Parameter 76.64
Add a New Enum Element 75.91
Wrap Code with Timer 60.77
Add a Loop Collector 60.49
Copy Field Initializer 56.97
Convert Element to Collection 55.23
Move Interface Implementation to Inner Class 38.40
Change Field to ThreadLocal 28.15

Table 12 shows that more than 50% of developers who
completed our survey regularly (columns Sometimes and
Often) applied six out of ten transformation kinds.
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Table 12: The fraction of our survey study participants
who applied the identified transformation kinds with differ-
ent frequency (%).

IDK Never Very rarely Sometimes Often
Create and Initialize ... 0.49 2.93 10.76 30.07 55.75
Change Field Type 0.00 1.23 12.07 37.19 49.51
Add Precondition ... 0.49 4.90 22.30 25.98 46.32
Add a New Enum ... 1.23 6.63 31.94 34.89 25.31
Copy Field Initializer 1.00 12.75 35.25 30.75 20.25
Add a Loop Coll ... 1.49 10.95 33.83 34.83 18.91
Wrap Code with ... 0.49 10.95 41.36 28.95 18.25
Convert Element ... 0.98 9.80 52.94 27.45 8.82
Move Interface Impl ... 2.01 34.92 37.19 19.35 6.53
Change Field to Thr ... 1.75 40.15 44.39 11.22 2.49

Table 13 shows that more than 50% of our survey study
participants would like to see five out of ten transformation
kinds automated in their IDEs.

Table 13: Survey study participants’ preference for auto-
mated IDE support (%).

Change Field Type 86.42
Create and Initialize a New Field 74.33
Add a New Enum Element 60.20
Add Precondition Checks for a Parameter 60.10
Wrap Code with Timer 57.32
Copy Field Initializer 44.22
Convert Element to Collection 43.52
Add a Loop Collector 42.12
Move Interface Implementation to Inner Class 33.42
Change Field to ThreadLocal 24.69

6. THREATS TO VALIDITY
In our experiment, we used the output of the AST node

operations inference algorithm [22] to prepare the input to
our frequent code change pattern mining algorithm. Con-
sequently, imprecisions in the inferred AST node operations
could negatively affect our mining results. Note, however,
that our approach to mining frequent code change patterns
is independent of the way its input is produced.

We investigated the mined patterns manually, and thus,
might have missed some of their corresponding high-level
program transformations. Also, we investigated only a frac-
tion of the mining results. However, our experiment did not
aim at discovering all program transformations performed
by our participants. Instead, our goal was to show that
our algorithm mines patterns that effectively point to high-
level program transformations, and we believe that discov-
ering several such transformations in a reasonable amount
of time (identifying and documenting these transformations
took just a couple of days) supports this claim.

In our study, we collected code evolution data from devel-
opers who use Eclipse for Java programming. Consequently,
the identified high-level program transformations might not
be generalizable to other programming environments and
languages. Nevertheless, our approach to identifying such
transformations is orthogonal to the way developers make
their code changes.

Our dataset is not publicly available due the nondisclosure
agreement with our participants.

7. RELATED WORK

7.1 Mining Frequent Itemsets
The major challenge in mining frequent itemsets is to de-

velop scalable algorithms that can effectively handle large
transaction databases. One of the fundamental distinctions
between different approaches to mining frequent itemsets is
whether mining is performed with or without candidate gen-
eration. Agrawal et al. [1] observed that an n-itemset is fre-
quent only if all its subsets are also frequent. Their mining
algorithm, Apriori, leverages this property by using frequent
n-itemsets to generate (n + 1)-itemset candidates. Apriori
checks the newly generated candidates against the transac-
tion database to establish those of them that are frequent.
The algorithm starts with detecting frequent 1-itemsets di-
rectly from the transaction database and proceeds iteratively
until no more frequent itemsets can be found.

Mining with candidate generation has two major draw-
backs: a) it generates redundant itemsets that are found to
be infrequent; b) it repeatedly scans the transaction database
while progressing through the iterations. Mining without
candidate generation addresses both these limitations. Such
mining can be broadly divided into mining using horizon-
tal data format and mining using vertical data format. The
horizontal data format represents a transaction database as
a set of tuples < TransactionID, itemset >. Han et al. [12]
suggested to mine frequent itemsets without candidate gen-
eration using horizontal data format. Their frequent-pattern
growth (FP-growth) algorithm first scans the database to
detect frequent 1-itemsets. The algorithm uses these 1-
itemsets to construct FP-tree, an extended prefix-tree struc-
ture. Then, the algorithm expands the initial FP-tree by
growing pattern fragments in a recursive fashion.

Zaki [36] proposed a different approach to mining fre-
quent itemsets without candidate generation. His algorithm,
Eclat, explores the vertical data format, which explicitly
stores transactions’ identifiers (tidsets) for every itemset.
Eclat computes (n + 1)-itemsets from n-itemsets by inter-
secting their tidsets. The algorithm collects the initial set
of frequent 1-itemset by scanning the transaction database.

Subsequently, Zaki [37] developed CHARM, a more ad-
vanced algorithm for mining data in the vertical data for-
mat. The algorithm is based on the same idea of intersecting
itemsets’ tidsets to produce new itemsets, but it specifies
the search problem using the notion of itemset-tidset tree
(IT-tree). Also, CHARM introduces several optimizations,
including the search for closed itemsets.

All the approaches above operate on a database with dis-
joint transactions, each containing a set of items. On the
contrary, our frequent code change pattern mining algorithm
handles overlapping transactions and itembags rather than
itemsets, which are the two major challenges specific to fre-
quent code change pattern mining from continuous sequence
of code changes.

7.2 Mining Source Code
Source code mining research has a long history. Here, we

present several representative examples.
Michail [20] applied data mining techniques to detect how

a library is reused in different applications. The mined li-
brary reuse patterns, represented as association rules, facil-
itate the reuse of the library components by developers.

Li et al. [18] employed frequent itemset mining to extract
programming rules from the source code of an application.
They also showed that source code fragments that violate
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the extracted rules are likely to be buggy.
Holmes et al. [14] matched the structural context of the

edited source code against a code repository to present a
developer with the examples demonstrating the relevant API
usage. Similarly, Bruch et al. [2] proposed to improve the
IDE’s code completion systems by making them learn from
code repositories.

Hovemeyer et al. [15] developed FindBugs, a tool that
detects a variety of bug patterns in an application by stati-
cally matching bug pattern descriptions against the under-
lying source code. Lin et al. [19] proposed an approach to
search for a specific kind of bug patterns — violations of
check-then-act idioms.

All these approaches mine the application’s source code,
while our algorithm mines fine-grained code changes.

Another direction of research is mining source code change
patterns from the Version Control System (VCS) history of
an application. Ying et al. [34] and Zimmermann et al. [38]
apply data mining techniques on the application’s revision
history to detect software artifacts (e.g., methods, classes,
etc.) that are usually changed together. The mined associa-
tion rules predict what other source code locations a devel-
oper needs to consider while performing a particular change.
Uddin et al. [31] proposed to mine VCS histories of client
applications to study how their use of APIs evolves over
time, which is helpful both to developers and users of the
libraries’ APIs. Canfora et al. [3, 4] and Thummalapenta et
al. [29] used VCS snapshots to study and track the evolution
of different software entities such as source lines, bugs, and
clones. More recently, Nguyen et al. [24] extracted method-
level code changes from revision histories of Java projects
and studied their within-project and cross-project repeti-
tiveness. In the domain of software testing, Zaidman et
al. [35] mined software repositories to explore how produc-
tion and test code co-evolve.

Mining VCS snapshots of an application is exposed to the
limited nature of VCS data. In our previous study [22],
we showed that data stored in VCS is imprecise, incomplete,
and makes it impossible to perform analysis that involves the
time dimension inside a single VCS snapshot. Also, similarly
to other source code mining techniques, these approaches
mine static source code, while our algorithm mines dynamic
code changes.

7.3 Automated Inference of Refactorings
Early work by Demeyer et al. [6] inferred refactorings by

comparing two different versions of source code using heuris-
tics based only on low-level software metrics — method size,
class size, and inheritance levels. Kim et al. [17] used a func-
tion similarity algorithm to detect methods that have been
renamed. More recent refactoring inference approaches de-
tect refactorings depending on how well they match a set
of characteristic properties that are constructed from the
differences between two consecutive versions of an applica-
tion. Dig et al. [7] employed references of program entities
like instantiation, method calls, and type imports as its set
of characteristic properties. Weißgerber and Diehl [33] used
characteristic properties based on names, signature analysis,
and clone detection. Prete et al. [27] developed Ref-Finder,
a tool that can infer the widest variety of refactorings to date
— up to 63 of the 72 refactorings cataloged by Fowler [9].
Their set of characteristic properties involved accesses, calls,
inherited fields, etc.

All these approaches infer refactorings from VCS snap-
shots, and thus, suffer from the limitations of VCS data.
Also, they mine static source code and consider refactorings
only.

Recently, Ge et al. [10] and Foster et al. [8] proposed tools
that continuously monitor code changes to detect and com-
plete manual refactorings in real-time. Although this di-
rection of research is very promising, the proposed tools are
limited to a single kind of program transformations — refac-
torings, and detect a small subset of already known refactor-
ings. On the contrary, our algorithm is not restricted to any
specific kind of program transformations and is designed to
detect previously unknown code change patterns.

Wit et al. [5] performed live monitoring of the clipboard to
detect clones. Their tool tracked the detected clones, offer-
ing several resolution strategies whenever the clones were
edited inconsistently. Our approach of detecting similar
changes to different parts of the code is complementary to
detecting different changes to the similar parts of the code.

8. FUTURE WORK
The closest future work based on our results is to auto-

mate the identified ten kinds of program transformations.
Besides immediately benefiting developers, such automa-
tion would enable researchers to perform empirical studies
on how developers apply automated refactoring and non-
refactoring program transformations.

Another line of future work is to continue investigating
the mined code change patterns to create a comprehensive
catalog of the most popular non-refactoring program trans-
formations. Novice developers could use the catalog to learn
the common program transformation practices, while IDE
designers could use the catalog as a source of transforma-
tions to automate.

Our algorithm takes as input a continuous sequence of
code changes, and thus, could be applied either on the his-
torical data as in our evaluation or on-the-fly. In the latter
case, our algorithm could be incorporated into tools that
would assist developers while a program transformation is
in progress. Such tools would automatically finish a transfor-
mation that a developer started manually or would check its
correctness if the developer decided to complete the trans-
formation manually.

9. CONCLUSIONS
Although mining frequent code change patterns has a long

research history, we are the first to present an algorithm that
mines previously unknown patterns from a fine-grained se-
quence of code changes. Our algorithm effectively handles
overlapping transactions that contain multiple instances of
the same item kind — the major challenge that distinguishes
our approach from the existing frequent itemset mining tech-
niques.

To evaluate our algorithm, we used 1,520 hours of real
world code changes that we collected from 23 developers.
Our experiment showed that our mining algorithm is scal-
able, effective, and useful. Analyzing some of the mining
results, we identified ten popular kinds of high-level pro-
gram transformations. To assess the popularity of the iden-
tified transformations, we conducted a survey study with
420 participants. More than half of the survey participants
recognized the relevance of eight out of ten transformation
kinds in their daily development activities.
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