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Abstract 
 

Variation exists in multiple levels of organization, including between and within species, 

populations, and individuals.  Fish are ideal organisms to explore questions related to the patterns 

of variation and the potential processes driving patterns.  Fish occupy different types of habitats 

that vary in several important environmental parameters, including water velocity, predatory, 

prey, and spatial heterogeneity.  Body size and shape (and associated characteristics such as fins) 

are great traits to focus on when exploring how fish may adapt to these different environmental 

pressures.  Size and shape have strong effects on an individual’s maneuverability in many 

species and, because of this, are believed to be targets for selection.  Populations occupying 

different habitats have shown differences in body size and shape, although species differ in the 

direction and magnitude of the variation and not all species show a difference between habitat 

types.   

 The following chapters demonstrate just some of the multitude of complex questions that 

can be addressed by studying phenotypic differences across habitats in fish.  Several such 

questions that are explored are: To what extent are there consistent differences in body shape and 

size between lentic and lotic habitats across different fish species?  To what extent are there 

consistent differences in body shape and size between lake and stream habitats between 

populations within a species?  What is the magnitude of variation in traits (fin shape) within a 

fish species?  Is the phenotypic variation in body shape across populations attributable to genetic 

differentiation, phenotypic plasticity, or both? 

 Here, I examine phenotypic patterns in body size and shape at multiple levels of 

biological organization- from a family-wide comparison to a with-in species and even within-in a 

particular trait (the dorsal and anal fins).  There are several broad findings.  First, there are large 



 iii 

differences between males and females in body shape as well as in the shape of anal and dorsal 

fins, and these patterns appear to be robust to differences in flow regime.  Some of these body 

shape differences may emerge simply due to the necessities of females producing eggs, but other 

shape differences cannot be attributed solely to these effects.  For F. notatus, the unpaired fins 

(dorsal, anal, and perhaps caudal) differ between the sexes, and, again, the pattern is robust to 

habitat differences.  The fact that dorsal and anal fin shape is tightly correlated along one axis, 

but that both males and females vary along that axis, suggests the possibility of interesting 

developmental constraints present.  Second, there are differences in body size and shape between 

lentic and lotic habitats in F. notatus, and these patterns are somewhat generalizable to the entire 

fundulid family.  Fish tend to be larger and deeper bodies with longer dorsal fin bases in lotic 

habitats than they are in lentic habitats.  Finally, our analyses suggest that differences in shape 

are attributable to both genetics and plasticity as a function of water flow.   

Academically, this research makes significant contributions to two major areas of 

research in evolutionary biology.  First, because environmental factors (both biotic and abiotic) 

are what ultimately result in differential survival and/or reproductive success, this research 

elucidates some potential causes of adaptive evolution in natural populations which is often 

poorly understood.  The only way to fully understand natural selection is through a detailed 

knowledge of the ecology and biology of organisms.  Second, this work helps to clarify the role 

of the environment in determining body size and shape in fishes.  While there has been 

significant interest in this topic by other researchers, there is seems to be very little consistency 

in how different environmental factors influence body size and shape.  There is a clear need to 

for additional research in new species in order to develop a more thorough understanding of 

when a particular factor should be important. 
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In addition to its scholarly value, this work may offer practical, applied knowledge.  As 

climate change progresses, extreme weather events such as spring floods and summer draughts 

are expected to increase in frequency.  Stream fish of all sorts will be faced with the dual 

problem of countering extreme water flow at some points in time while having to accommodate 

a lack of water flow at other times.  The hope is that this work provides insights as to how fish, 

in particular killifish (many species of which are widely distributed and abundant in nature, thus 

making them ecologically important, will deal with these challenges.  
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Chapter 1: General Overview 
 

 

 Variation exists in multiple levels of organization, including between and within species, 

populations, and individuals.  Fish are ideal organisms to explore questions related to the patterns 

of variation and the potential processes driving patterns.  Fish occupy different types of habitats 

that vary in several important environmental parameters.  Aquatic habitats can vary greatly in 

water velocity ranging from still/standing water habitats such as lakes and ponds (termed lentic 

habitats) to fast moving rivers and streams (termed lotic habitats).  Because water velocity 

directly alters an individual’s ability to maintain its position (Gee 1977) and its buoyancy 

(Beaver and Gee 1988), behaviors such as foraging (Webb 1984, Asaeda et al. 2005, Piccolo et 

al. 2008), mating (Nicoletto 1996), and predator evasion (Taylor and McPhail 1985) are all 

potentially affected.  Water flow also influences the potential prey, competitors, and predators 

with which an individual encounters (Aadland 1993, Jackson et al. 2001, Pouilly et al. 2006).       

 Body size and shape (and associated characteristics such as fins) are great traits to focus 

on when exploring how fish may adapt to the various environment pressures.  Size and shape 

have strong effects on an individual’s maneuverability in many species and, because of this, are 

believed to be targets for selection (Walker 1997, Fraser et al. 2011).  Changes in flow regime 

can also impact a fish’s body size and shape (Webb 1984, Pakkasmaa and Piironen 2001, 

Langerhans 2008, Sagnes and Statzner 2009).  It is often predicted that individuals in high water 

velocities should be narrower and have shallower bodies (“more streamlined”) compared to those 

in low velocities (Langerhans 2008), but these general predictions are not universal (Pakkasmaa 

and Piironen 2001, McGuigan et al. 2003, Neves and Monteiro 2003, Krabbenhoft et al. 2009).  

Additionally, life-history theory predicts that increases in size-selective predation will cause 

populations to evolve a smaller size at maturity (Charlesworth 1980, Stearns 1992). 
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 The following chapters demonstrate just some of the multitude of complex questions that 

can be addressed by studying phenotypic differences across habitats in fish.  Several such 

questions that are explored are: To what extent are there consistent differences in body shape and 

size between lentic and lotic habitats across different fish species?  To what extent are there 

consistent differences in body shape and size between lake and stream habitats between 

populations within a species?  What is the magnitude of variation in traits (fin shape) within a 

fish species?  Is the phenotypic variation in body shape across populations attributable to genetic 

differentiation, phenotypic plasticity, or both? 

 In addressing these questions, this research makes significant contributions to two major 

areas of research in evolutionary biology.  First, because environmental factors (both biotic and 

abiotic) are what ultimately result in differential survival and/or reproductive success, this 

research elucidates some potential causes of adaptive evolution in natural populations which 

MacColl (2011) notes is often poorly understood (see also Wade and Kalisz 1990, Kawekci and 

Ebert 2004).  Endler (1986) similarly mentions that the only way to fully understand natural 

selection is through a detailed knowledge of the ecology and biology of organisms.  Second, this 

work helps to clarify the role of the environment in determining body size and shape in fishes.  

While there has been significant interest in this topic by other researchers (Pakkasmaa and 

Piironen 2001, McGuigan et al. 2003, Neves and Monteiro 2003, Langerhans 2008, Krabbenhoft 

et al. 2009), there is seems to be very little consistency in how different environmental factors 

influence body size and shape.  There is a clear need to for additional research in new species in 

order to develop a more thorough understanding of when a particular factor should be important. 

 Here, I examine phenotypic patterns in body size and shape at multiple levels of 

biological organization.  In Chapter 2, I analyze broad patterns in body size/shape between lentic 
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and lotic habitats as well as sex differences between males and females across 34 species of 

North American killifish (family Fundulidae).  Phenotypic differences between habitats within 

species were present.  The largest effect was seen on body depth, where shallower bodies were 

more common in lentic habitats.  Body size also differed where fish were larger in lotic habitats 

than in lentic habitats.  Strong patterns in sexually dimorphic body shape were also present, 

particular with regard to dorsal fin position.   

 I followed up this family wide study with an investigation into the among-population 

within-species patterns in body size/shape in a single species, the blackstripe topminnow 

(Fundulus notatus) (chapter 3).  Fundulus notatus is widely abundant in Illinois and (most 

importantly for this study) is found commonly in both lake and stream habitats.  I asked whether 

there were robust patterns between lentic and lotic habitats that were consistent across drainages.  

I also examined sex-specific differences in body size/shape.  I again found differences between 

lentic and lotic habitats, but this varied somewhat with drainage.  One-year old fish were 

generally larger from lotic habitats, but this was only the case for 3 out of the 4 drainages that I 

sampled.  Lotic fish also had longer dorsal fin bases than did lentic fish.  The sexes also differed 

in body shape where males had longer dorsal and anal fin bases than did females.   

 In chapter 4, I delved into a more in-depth analysis of dorsal and anal fins.  Previous 

reports had suggested that males and females differ in the size/shape of the unpaired fins.  In 

chapter 3, we had simply used calipers to measure the length of the fin base (i.e. the length of the 

section where the fin connects with the body).  Here, I sought to examine the actual shape of the 

dorsal and anal fins.  The allure of these fins is that they are multi-functional.  That is, they are 

used in multiple biological endeavors.  Both dorsal and anal fins are used in 

swimming/maneuvering in the water column.  Males also use dorsal and anal fins in displays 
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towards females and competing males.  Anal fins also function in directing the movement of 

eggs and sperm.   

 In this study, I removed (i.e. cut off) the dorsal and anal fins from the preserved fish from 

chapter 3 and imaged them.  As with chapter 3, I found large differences between the sexes, 

particularly in one year-old fish.  Males had larger dorsal and anal fins that were more pointed 

than those of females.  There was little effect of lentic/lotic habitats on anal/dorsal fin shape.  

Most interesting was the finding that dorsal and anal fin angle (but not size) was tightly 

correlated across males and females.  The pattern held even when considering each sex 

separately.  This suggests that the shape development of these two fins may be linked.  

 In chapter 5, I returned to the question of whether the differences in size/shape between 

lentic and lotic habitats are attributable to genetic differentiation (i.e. different habitats select for 

different size/shape attributes) or phenotypic plasticity (i.e. constantly battling current alters 

growth trajectories) or some combination of the two.  To do this, I created families of fish from 

stream and lake parents and then raised the offspring in either lentic (no flow) or lotic (flow 

present) rearing environments.  For both size and shape, there was an interaction present between 

parental habitat (genetics) and rearing environment (plasticity).  The interaction occurred 

because lake offspring were plastic in development, but stream fish were not.  In the case of 

body shape, both the genetic and plastic effects "produced the right pattern" in that both the 

genetic effect and the plastic effect mirrored the pattern found in nature.  For lake fish, dorsal fin 

bases were larger when they were reared in the lotic environment but smaller when reared in the 

lentic environment.  Stream fish, regardless of the rearing environment, had large dorsal fin 

bases.  In terms of body size, the pattern was mixed.  Phenotypic plasticity among the lake fish 

produced the right pattern in that fish raised in the lotic environment were bigger than the fish 
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raised in the lentic environment.  However, on average, lake fish were larger than stream fish.  

Chapter 3 shows the opposite pattern.  

 Exactly why fish from lotic environments are larger than fish from lentic environments 

(patterns shown in chapters 2 and 3) is unclear, but it is not due to simple genetic differentiation 

among populations.  Streams and lakes differ in a number of attributes that could potentially 

result in these size differences.  Size differences could arise due to differences in food 

availability (assuming there is more food in streams which equates to bigger fish), differences in 

growing season (water temperatures rise sooner in streams than in lakes), or differences in size-

selective predation where large individuals are more likely to be preyed upon in lakes.  These 

hypotheses are readily testable and empirically tractable.  

 What broader lessons can we take from this body of work?  First, there are large 

differences between males and females in body shape as well as in the shape of anal and dorsal 

fins, and these patterns appear to be robust to differences in flow regime.  Some of these body 

shape differences may emerge simply due to the necessities of females producing eggs, but other 

shape differences cannot be attributed solely to these effects.  For F. notatus, the unpaired fins 

(dorsal, anal, and perhaps caudal) differ between the sexes, and, again, the pattern is robust to 

habitat differences.  The fact that dorsal and anal fin shape is tightly correlated along one axis, 

but that both males and females vary along that axis, suggests the possibility of interesting 

developmental constraints present.  Second, there are differences in body size and shape between 

lentic and lotic habitats in F. notatus, and these patterns are somewhat generalizable to the entire 

fundulid family.  Fish tend to be larger and deeper bodies with longer dorsal fin bases in lotic 

habitats than they are in lentic habitats.  Finally, our analyses suggest that differences in shape 

are attributable to both genetics and plasticity as a function of water flow.  In addition to its 
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academic value, we hope that this work offers practical, applied knowledge.  As climate change 

progresses, extreme weather events such as spring floods and summer draughts are expected to 

increase in frequency.  Stream fish of all sorts will be faced with the dual problem of countering 

extreme water flow at some points in time while having to accommodate a lack of water flow at 

other times.  The hope is that this work provides insights as to how fish, in particular killifish 

(many species of which are widely distributed and abundant in nature, thus making them 

ecologically important (Foster 1967; Atmar and Stewart 1972; Fleeger et al. 2008)), will deal 

with these challenges.  
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Chapter 2: Comparison of body size and shape across the 

Fundulidae family 
 

 

Abstract 

 
Body size and body shape have important fitness consequences for fish and other organisms and 

understanding what drives patterns in size and shape is a primary goal of ecomorphology studies.    

To truly understand patterns of body size and shape and the potential processes driving it, the 

effects of sex and habitat should be examined across multiple species, ideally in a phylogenetic 

framework to consider evolutionary relatedness.  Here, we explore the patterns of body size and 

shape across an entire family (the Fundulidae family).  Our goal was to examine how sex and 

aspects of the environment affect morphological variation.  We found substantial variation in 

both size and shape both within and among the various species of Fundulidae.  Those species 

that differed between habitats showed a consistent pattern where fish in lotic habitats had greater 

body depth and greater overall size than fish in lentic habitats.  Sex had large, consistent patterns 

across the phylogeny with respect to dorsal fin position.  Interestingly, most species did not show 

differences in multiple aspects of shape as a result of habitat or sex.  Determining why these 

patterns appear in some species but not others requires further work knowing whether these 

differences are due to genetic differentiation and/or phenotypic plasticity, but such studies offer 

the potential to enhance our understanding of the underlying genetic architecture that drives 

sexual dimorphism and habitat-based population divergence in body size/shape within and 

among species.         
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Introduction 

Phenotypic variation is ubiquitous in nature.  Many taxa show substantial variation in 

morphological features, including coloration, ornamentation, body size, and body shape.  The 

utilization of these traits in research can offer substantial insights into the evolutionary history of 

organisms and understanding what drives the patterns of these traits is a primary goal of 

ecomorphology studies.   

In fish, variation in body size and/or shape have important fitness consequences for an 

organism through impacts on a variety of activities such as prey capture (Rincόn et al. 2007), 

predator avoidance (Brönmark and Miner 1992, Domenici and Blake 1997, Eklov and Svanback 

2006) and reproductive success (Foster et al. 1992).  Sex-specific differences in body size and 

shape are common (Parker 1992, Georga and Koumoundouros 2010).  These typically arise due 

to the demands placed on egg production in females.  Similarly, many studies have documented 

patterns in size or shape across different habitats (Brinsmead and Fox 2002, McGuigan et al. 

2003, Keeley et al., 2005, Welsh et al. 2013).  Variation in body size or shape may represent 

local adaptation, where natural selection acts to favor different suites of traits that maximize 

fitness in different environments (Williams 1966, Kawecki and Ebert 2004).  Local adaptation is 

important because it can fuel population differentiation and could even potentially lead to 

speciation (Schluter 2001).     

 The literature on body size and shape contains inconsistent and conflicting patterns of 

differences across species, habitats and/or sexes.  For instance, Langerhans (2008) developed and 

tested a model about phenotypic differences based on flow regimes.  He found strong support for 

a prediction that individuals in high water velocities should be narrower and have shallower 

bodies (“more streamlined”) compared to those in low velocities.  However, several studies have 
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found either the opposite pattern or no effect of water velocity on body shape (Pakkasmaa and 

Piironen 2001, McGuigan et al. 2003, Neves and Monteiro 2003, Krabbenhoft et al. 2009, 

Carlson and Lauder 2011).  These incongruent patterns may be a result of the limited focus of 

past studies.  Many studies of size or shape tend to concentrate on one species across multiple 

habitats (Keeley et al. 2005) or compare multiple (often unrelated) species found in one 

particular habitat (Krabbenhoft et al. 2009). 

Patterns of body size and/or shape vary based on what specific aspect of the habitat is 

driving the differences observed.  According to theory, individuals in high water velocities 

should be narrower and have shallower bodies (“more streamlined”) compared to those in low 

velocities (Langerhans 2008), but these general predictions are not always upheld (Pakkasmaa 

and Piironen 2001, McGuigan et al. 2003, Neves and Monteiro 2003, Krabbenhoft et al. 2009).  

Smaller and deeper bodied species tend to occupy slower moving water (Wikramanayake 1990).  

Within a lotic habitat, different positions within the water column can differ with respect to water 

velocity (Westenbroek 2006).  As such, species that occupy different parts of the water column 

may also differ in morphology (Aleev 1969, Felley 1984).  Aleev (1969) noted that a dorsal fin 

closer to the center of gravity allows for more maneuverability because it acts more like a rudder 

whereas one further back toward the caudal fin would act more like a stabilizer.   

In addition to water velocity, predators can drive phenotypic differentiation in body 

size/shape.  Predation may favor body size/shape that aids either in anti-predator movements or 

that precludes consumption by the predator (i.e. predators can't get prey in their mouths) (Webb 

1984a,b, Brönmark and Miner 1992, Hendry et al. 2006).  However, similar to the influence of 

water velocity on body size and shape, predation does not always result in morphological 

differences (Young et al. 2011). 
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To truly understand patterns of body size and shape and the potential processes driving it, 

the effects of sex and habitat should be examined across multiple species.  Ideally, these studies 

would also consider phylogenetic effects of theses species, as patterns in body size and shape 

may reflect evolutionary relatedness (Guill et al. 2003).  Closely related species may more 

closely resemble each other simply because of a shared common ancestor.  Conversely, species 

not as closely related may resemble each other because traits may arise independently multiple 

times. 

Here, we explore the patterns of body size and shape across an entire family (the 

Fundulidae family).  Our goal was to examine how sex and aspects of the environment affect 

morphological variation.  We examined environmental influences both by comparing lentic and 

lotic habitats and by exploring patterns based on position in the water column.  When possible, 

we also analyzed our data in a phylogenetic framework.   

 

Methods  

Study System:  The Fundulidae family is a group of 41 species across four genera, Fundulus, 

Lucania, Adinia, and Leptolucania, with Fundulus accounting for the vast majority of the 

species.  These fish are native mainly to North America and islands in the Caribbean with a few 

ranging as far south as Mexico, but some have also recently become invasive in Europe 

(Bernardi et al. 1995, Gisbert and Lopez 2007).  Both molecular and morphological analyses 

indicate that Fundulus is not monophyletic (Wiley 1986, Whitehead 2010).  Lucania, 

Leptolucania, and Adinia occur within the genus Fundulus. 

 

Data Collection:  Museum specimens of every species from the Fundulidae family were 

borrowed from one or more museum collections (Illinois Natural History Survey, American 
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Museum of Natural History, Texas Natural History Collection, Florida Museum of Natural 

History, and National Museum of Natural History).  To ensure all species belonging to this 

family were included, species composition of the family was verified using the Catalog of Fishes 

(Eschmeyer 2010).   

 The right side of each specimen was photographed using an 8 megapixel Nikon 

COOLPIX 8700 digital camera on a background consisting of 1 millimeter by 1 millimeter grids.  

The sex of each specimen was then determined based on sexually dimorphic black coloration 

patterns using data from one or more sources (Welsh in review). In many of these species, 

juveniles have a similar color pattern as adult females. We therefore classified individuals as 

adults based on the size at which male and female sexually dimorphic coloration was discernible 

for each species.  

As specimens were collected from a variety of habitats over a large geographic range, we 

decided to broadly group the habitats as either “lentic” (still water habitats, such as lakes, ponds, 

and swamps) or “lotic” (moving water habitats, such as streams, creeks, and rivers) based on the 

locality information available from the museum records.  While these terms reflect water 

velocity, we do not mean to imply that water velocity is the only difference between the habitats 

that could be driving any habitat-specific patterns.  Those habitats that either did not fit either of 

those categories (such as oceans, bayous, tidal areas, and others) or could not confidently be 

determined because of lack of detail in museum records were omitted.  In total, we had 

approximately 1,300 specimens from 36 species that fit our criteria (known sex from either lentic 

or lotic habitat) (Table 2.1).          

 Geometric morphometric techniques using the TPS software series 

(http://life.bio.sunysb.edu/morph) were used to determine body size and shape (reviewed in 
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Rohlf and Marcus 1993, Zelditch et al. 2012).  Geometric morphometrics allows for comparisons 

of size and shape independent of each other based on anatomical landmarks defined by Cartesian 

coordinates.  We used a series of 32 landmarks (12 homologous Type I, 20 “sliding” semi-

landmarks) that were digitally placed on the right side of the body of the fish (Figure 2.1) using 

tpsDig (v2.14).  Specimens where one or more of these landmarks were obscured were excluded 

from the analyses.  Type I landmarks are placed on distinctive, homologous features of the fish 

(i.e. center of the eye, anterior base of dorsal fin, etc.) whereas semi-landmarks are used to cover 

large regions of the body where there are no distinctive features (curves, large areas without 

homologous features, etc.) (Bookstein 1997, Mitteroecker and Gunz 2009).   

 

Assessing Size and Shape 

 A Generalized Procrustes analysis (GPA) was performed in tpsRelw (v1.49) to remove 

variation in landmark configurations that is due to differences in factors unrelated to shape, such 

as position and orientation of the specimens (Rohlf and Slice 1990).  This produced measures of 

size (centroid size) and shape (partial warp scores and uniform components) that are independent 

of each other.  Thin plate splines in tpsRelw were used to visualize the shape changes that 

occurred along each principal component axis.       

 Centroid size was used as the measure of body size.  A principal components analysis 

using the partial warp scores and uniform components in a covariance matrix was used as a 

measure of body shape.  We only considered the first four principal components because 

individually they accounted for at least 5% of the variation and together they explained over 85% 

of the variation between species.   
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Analyses 

Our first goal was to determine the effects of sex, habitat, and their interaction on body 

size and shape for each species using analysis of variance (ANOVA).  As mentioned previously, 

only samples that could be confidently sexed (i.e. no juveniles) and from habitats that could be 

classified (lentic or lotic) were included.  For both size (centroid size) and shape (PC scores), we 

considered the effects of habitat, sex, species and all of their interactions.  Habitat, sex, and the 

habitat*sex interaction were tested over their interaction with sex (i.e sex tested over 

sex*species, habitat over habitat*species, etc.).  The error degrees of freedom were generated 

using a Satterthwaite approximation, which incorporates a weighted average of the interaction 

with species and the mean square error (Sattherwaite, 1946).  We conducted the analyses for all 

39 species in which we had samples of at least one sex from at least one habitat type and then on 

a reduced data set that only those 21 species in which we had samples of both sexes from both 

habitats (see Table 2.1).  Because many species have populations in both habitats, we could not 

statistically analyze habitat or sex in a phylogenetic framework, but, rather, qualitatively 

assessed the effect of phylogeny by referencing the patterns to the phylogenetic tree.  The 

phylogeny used was the combined nuclear and mitochondrial tree created by Whitehead (2010) 

(see Figure 1A in that reference).   

Because many of our results showed interactions with species (see Results), we 

performed follow-up ANOVAs at the within-species level.  Separately for each species, we 

performed a two-way ANOVA that included the effects of sex, habitat, and the interaction 

between them.  For these separate ANOVAs, we tested over the total number of individuals and 

not by using a Sattherwaite approximation.        
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 Our second goal was to determine whether body size or shape varied due to the position 

in the water column that the species is typically found in.  As water velocity of different parts of 

the water column is only expected to differ substantially in moving water environments, we only 

considered populations in the lotic flow regime.  To do this, we first obtained information about 

their position in the water column.  This came primarily from published records (field guides, 

journal articles, and dissertations), although some information was obtained from more informal 

means, such as websites from the North American Native Fishes Association (NANFA), the 

department of natural resources of various states, and personal communications with aquarium 

hobbyists.  We then classified each species into one of two mutually exclusive categories:  

surface or beneath the surface (hereafter referred to “surface” or “beneath”, respectively) (Table 

2.1).  There were many species in which this information could not be confidently obtained, but 

we were ultimately able to assign this for 22 species.   

 The relationship between position in the water column and body size or shape was 

analyzed at the species level first using a phylogenetic ANOVA (Garland et al. 1993).  The 

Phylogenetic ANOVA works by creating a null distribution for the F-statistic based on Brownian 

motion simulation on the phylogeny.  Thus, the p-value is obtained by comparing the observed 

test-statistic to simulated test-statistics after an arbitrarily large number of simulations (in this 

case, 10,000).   In other words, a significant phylogenetic p-value for a factor (PC1, PC2, PC4, or 

Centroid Size) indicates that a consideration of the phylogeny is important when analyzing that 

particular factor.  Any significant phylogenetic p-values were then followed up with a 

phylogenetic post-hoc test between the groups using a bonferroni adjustment.  Factors with non-

significant phylogenetic p-values were analyzed with a standard ANOVA and any significant 

results from this were followed up with standard post-hoc comparisons.  Phylogenetic ANOVAs 
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and post-hoc tests were conducted in R (v. 2.15.1) using the “phylANOVA” in the “phytools” 

package.  All other analyses were conducted using SAS (v. 9.3). 

 

 

Results 

The first four principal components together explained 85.3% of the variation in shape between 

the species, however only PC 1, 2, and 4 were biologically meaningful.  PC3 explained 10.4% of 

the variation but corresponded to preservation artifact.  With fish, preservation artifact is 

indicated by the characteristic “U”-shaped bending where the head and tail bend in one direction 

and the middle of the body bend in the other (see Wund et al. 2008).  This was subsequently 

confirmed by using the “unbend specimen” module in tpsUtil, which essentially removed PC3 

(i.e. PC4 became PC3 after applying this module).    

 

Shape change along each Principal Component Axis 

PC1 explained 48.5% of the variation and was related to dorsal fin position (Figure 2.2A).  A 

more positive PC1 score indicated a more posteriorly-positioned dorsal fin (i.e. closer to the 

caudal fin) while a more negative score indicated a dorsal fin closer to the middle of the body.  

PC2 accounted for 20.9% and was related to body depth (Figure 2.2B).  Individuals ranged from 

deep bodied (more positive PC2 value) to shallow bodied.  PC4 explained 5.5% of the variation 

and was related to head position (Figure 2.2C).  Individuals ranged from a slightly more 

upturned mouth and eye (more positive PC4 value) to more centrally located mouth and eye.       
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Species Analyses- Body Shape   

Dorsal fin position (PC1) was strongly sexually dimorphic whereas habitat had strong effects on 

body depth (PC2) (Table 2.2).  Because these results were qualitatively the same whether we 

considered all 39 species or only those 21 species that had both males and females in both 

habitats (Table 2.2), we only show results for those 21 species.  Females had a smaller PC1 value 

(i.e. a dorsal fin closer to the caudal fin) than males (Figure 2.3).  Dorsal fin position also showed 

an interaction between habitat and species, where most species that showed a difference between 

habitats had a more posteriorly-positioned dorsal fin (more positive PC1 score) in lentic habitats 

(Figure 2.4).  For body depth, there was a habitat effect, but this varied based on species (as 

evidenced by the interaction between habitat and species).  For those species that showed a 

difference in depth between habitats, most had more positive PC2 values (deeper bodies) in lotic 

habitats (Figure 2.5).  There were also an interaction between sex and species, such that most 

species that showed an effect had females with more positive PC2 values (deeper bodies) than 

males (Figure 2.5).  Head position showed no effect of sex or habitat, but did there was an 

interaction between habitat and species.  For those species that showed a habitat effect, most had 

a more positive PC4 value (more upturned mouth/eye) in lentic than lotic (Figure 2.6).           

 When we considered each species separately, these results were generally the same 

(Supplemental Table 2.1).  Dorsal fin position (PC1) showed a clear and consistent pattern of 

sexual dimorphism.  Sex had a significant effect in 28 out of 34 species for PC1, and in all 

females had a smaller PC1 value (i.e. a dorsal fin closer to the caudal fin) than males.  There 

were also smaller effects of sex on body depth (PC2) and head position (PC4) (3 species each).  

The largest effect of habitat was seen on body depth (PC2).  Of the eleven species that showed 

an effect of habitat on body depth (PC2), nine had shallower bodies in lentic habitats.  Smaller 
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Patterns also emerged for dorsal fin position (PC1) and head position (PC4).  Of the eight species 

that showed a change in dorsal fin position (PC1) as a function of habitat, seven had a dorsal fin 

closer to the caudal fin in lotic habitats.  For the seven species that showed differences in head 

position (PC4) between habitats, five had a slightly more centrally located mouth and eye in lotic 

habitats.   

 Species varied in the extent to which they were sexually dimorphic and/or variable 

between lentic and lotic habitats.  Aside from the strong sex effect on PC1, the majority of 

species did not show an effect of sex or habitat.  For those species that did show a significant 

effect, very few were significantly different for multiple aspects of shape (i.e. multiple PC axes).  

One species (Fundulus dispar) varied as a function of habitat in all three components of shape 

and none varied as a function of sex in all three.  Seven species (Adinia xenica, Fundulus 

majalis, Fundulus seminolis, Fundulus zebrinus, Leptolucania ommata, Lucania goodei, and 

Lucania parva) differed between habitats in two aspects of shape and only five (Adinia xenica, 

Fundulus diaphanus, Fundulus dispar, Fundulus pulvereus, and Lucania goodei) showed sexual 

dimorphism in two of the three shape components.   

     

Position in the water column  

The relationship between dorsal fin position (PC1) and position in the water column showed a 

phylogenetic signal (Table 2.3).  Species found at the surface of the water column had a dorsal 

fin located closer to the middle of the body (more negative PC1 values) than those found beneath 

the surface (phylogenetic post-hoc p = 0.0051) (Figure 2.7).  Dorsal fin position was the only 

aspect of size or shape that showed a relationship with position in the water column.   
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Species Analyses- Body Size  

Body size varied as a function of lentic versus lotic habitats (Table 2.2).  As with body shape, 

this habitat-specific difference in size was qualitatively the same whether considering all 39 

species or only the 21 species with both sexes in both habitats and, so, we only discuss the latter.  

Habitat differences in body size exist, such that individuals in lotic habitats were larger than 

those in lentic habitats (Figure 2.8).  When analyzed on the within-species level, the results were 

qualitatively the same.   Individuals from lentic habitats were consistently smaller than those 

from lotic habitats in all eight species that showed an effect (Supplement Table 2.1).     

 

Discussion 

We documented substantial variation in body size/shape both as a function of habitat and sex.  

The unique aspect of this study is that many species of killifish occur in both lentic and lotic 

habitats.  Hence, we were able to consider habitat and sex simultaneously across an entire family.  

We were also able to document whether variation among species was attributable to location 

within the water column.  We discuss these findings below. 

 

Lentic versus Lotic Habitats 

Body size differed as a function of habitat.  Individuals from lentic habitats had a smaller body 

size than lotic habitats.  This is consistent with the pattern in standard length observed between 

lake and stream populations of Fundulus notatus (Welsh et al. 2013).  However, this pattern is 

not true for all fish species of fish (Moser et al. 2012).  Water velocity can impact body size 

through growth, although different species respond differently (Davison 1997, Grünbaum et al. 

2008, Fischer-Rousseau et al. 2010).   
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Concerning body shape, species-specific variation existed in all aspects of shape (dorsal 

fin position, body depth, and head position).  Generally, individuals in lotic habitats had a more 

centrally located dorsal fin, greater body depth, and more centrally located mouth and eye.  A 

dorsal fin further from the center of gravity (which in these species is close to the middle of the 

body) serves to act as a stabilizer and aid in sustained swimming (Aleev 1969, Rincόn et al. 

2007).  Thus, this position would assist individuals living in lotic habitats to deal with the 

challenges of constant water flow, such as maintaining themselves around favorable 

microhabitats (e.g. breeding substrate, food resources, etc.).  The results of body depth is in 

opposition to Langerhans (2008), who predicted that individuals in habitats with higher water 

velocities should have shallower bodies in order to reduce energy expenditure due to drag (i.e. 

they are more “streamlined”).  However, this prediction does not hold in other species where it 

has been explored (Pakkasmaa and Piironen 2001, McGuigan et al. 2003, Neves and Monteiro 

2003, Krabbenhoft et al. 2009).  It could be that the increased body depth allows for great muscle 

mass, thus offsetting any cost to drag that these organisms face, as all aspects of the body, 

including the caudal peduncle, got deeper (and the caudal peduncle is the site of a lot of muscle 

in fish).  The reason for the difference in mouth and eye is not clear.      

 

Effects Due to Sex 

 Sexual dimorphism in dorsal fin position was present.  Females had dorsal fins that were 

located more posteriorly than males.  This may reflect differences in the role of the dorsal fin 

during courtship and reproduction in these species.  During courtship, males in many of these 

species engage in actions such as circling around the female, both in the context of a mating 

display and as a way of directing her to a male’s territory or suitable spawning substrate, whereas 
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females do not engage in such behaviors (Foster 1967).  This likely requires a lot more 

maneuverability, which would be better aided by a more centrally located dorsal fin (Aleev 

1969).  Similarly, the males of some species exhibit territorial behavior during the breeding 

season and these actions likely require more maneuverability, as males will engage in sigmoidal 

displays in the presence of other males (Foster 1967).  This may also at least partly explain the 

pattern in sexual dimorphism in body depth.  Sex differences in body depth were mediated by the 

species, but most species showing a difference had females with deeper bodies than males.  

Trade-offs between body depth and swimming performance exist, such that deeper bodies result 

in greater drag and, so, should be more favorable for short bursts of swimming (Webb 1984a,b, 

Blake 2004).  Thus, if males engage in more swimming than females (perhaps due to courtship 

and male-male competition activities mentioned previously) then this could explain this pattern.       

   

Position in the Water Column 

The effects of lentic/lotic habitats could not be analyzed in a phylogenetic framework 

because many species had populations in both habitats.  This was not the case for position in the 

water column.  Indeed, dorsal fin position (PC1) showed a phylogenetic signal due to the fact 

that species in the starhead topminnow clade (F. blairae – F. olivaceous) were so similar.  

Despite the phylogenetic signal, there were still strong effects of water column position on PC1.  

Phylogenetic post-hoc tests to consider this non-independence revealed that species found at the 

surface of the water had a dorsal fin located closer to the middle of the body than those species 

found deeper (beneath the surface).  The dorsal fin aids in stabilization and maneuverability 

(Drucker and Lauder 2001, Standen and Lauder 2007, Chadwell and Ashley-Ross 2012) and a 

dorsal fin closer to the middle of the body is likely to be more effective for stability and 
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sustained swimming (Aleev 1969, Rincόn et al. 2007).  The shift documented here- a more 

centrally located dorsal fin beneath the surface- may reflect differences in water velocity, as it is 

often the water somewhere beneath the surface that has the fastest flow (Westenbroek 2006).  

Thus, better stability and sustained swimming ability would be more beneficial for species facing 

higher water velocities. 

For body size, there was a non-phylogenetic trend toward species in the deepest part of 

the water column being larger than those from either the surface or middle depth.  This reflects a 

general pattern among fish where larger individuals/species are generally found deeper in the 

water, for many potential reasons (more/diverse prey, thermal tolerances, etc).  

 

Why do only some species respond? 

As mentioned above, many of the interactions with sex and habitat were mediated by the 

interaction with species.  While there is often a general pattern, there are still many species that 

either show no difference or, less commonly, are opposite to the overall pattern.  Determining 

why these lentic/lotic patterns appear in some species but not others requires knowing whether 

these differences are due to genetic differentiation, phenotypic plasticity, or some combination of 

the two.  If the patterns are largely genetic in nature, then our results suggests that (1) something 

prevents local adaptation to lentic/lotic habitats or (2) there are multiple ways to deal with the 

demands of lentic/lotic environments, or (3) there are confounding environmental variables that 

obscure patterns attributable to lentic/lotic environments.   

For example, high levels of gene flow between habitat types can prevent local adaptation 

as can a lack of genetic variation.  Alternatively, animals may rely on behavioral traits such as 

choosing areas of low flow in lotic habitats thus allowing themselves to live in an effectively 
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lentic habitat even when occurring in flowing water.   Another possibility is that there may be 

genuine confounding elements of the environment.  For instance, water velocity and predation 

may act in opposing manners.  An increase in body depth, as observed here, might be a way of 

overcoming gape-limited predators (Brönmark and Miner 1992).  Indeed, the majority of 

predatory freshwater fish species are gape-limited (Zaret 1980).  However, if a deeper body 

produces greater drag, then fish in high water velocity sites may simultaneously experience 

selection for reducing drag (shallower body depth) and overcoming gape-limited predators 

(deeper body depth).   

Another possibility is that differences in body shape/size reflect phenotypic plasticity 

where growth patterns differ based on whether individuals develop in lentic or lotic habitats 

(Grünbaum et al. 2007, Fischer-Rousseau et al. 2010).  If phenotypic plasticity is largely 

responsible for the patterns in lentic/lotic morphology within species, then the question arises as 

to why some species are plastic and others are not. There have been recent calls for studies 

examining the roles of genetic and environmental variation in generating patterns in body 

size/shape across populations and species (Langerhans 2008).  Future work exploring these 

possibilities would enhance our understanding of the underlying genetic architecture that drives 

sexual dimorphism and habitat-based population divergence in body size/shape within and 

among species.     
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Figures 

 

 
 

Figure 2.1.  Landmarks used for geometric morphometric analysis.  Black dots are Type I 

landmarks (12 in total) and white dots are semi-landmarks (20 in total). 
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A) 

 
B) 

 
C) 

 
 

Figure 2.2.  Thin plate spline representations of body shape changes along A) PC1, B) PC2, and 

C) PC4.  Representations on the left side of the arrow indicate positive PC scores and those on 

the right side indicate negative PC scores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 35 

 
Figure 2.3.  PC1 (dorsal fin position) as a function of sex.  Error bars are ± 1 standard error.    
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Figure 2.4.  PC1 (dorsal fin position) as a function of the interaction between species and 

habitat.  Error bars are ± 1 standard error.  Please note that 1 species, Leptolucania ommata, is 

not shown because it’s location on the tree is not known. 
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Figure 2.5.  PC2 (body depth) as a function of the interaction between species and sex (top 

graph) and species and habitat (bottom graph).  Error bars are ± 1 standard error.  Please note 

that 1 species, Leptolucania ommata, is not shown because it’s location on the tree is not known. 
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Figure 2.6.  Head position as a function of the interaction between habitat and species.  Error 

bars are ± 1 standard error.  Please note that 1 species, Leptolucania ommata, is not shown 

because it’s location on the tree is not known. 
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Figure 2.7.  Dorsal fin position as a function of position in the water column.  Error bars are ± 1 

standard error.   
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Figure 2.8.  Body size as a function of habitat.  Error bars are ± 1 standard error. 
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Tables 

Table 2.1.  Species, sample sizes, and classification of position in the water column used in the 

analyses.  Position in the water column was divided into two mutually exclusive categories (see 

Methods for further details).  Asterisks identify those 21 species with both sexes in both habitats. 

Habitat Sex Species 

Lentic Lotic Female Male 

Position in 

Water 

Column 

Adinia xenica* 79 24 38 65 surface 

Fundulus 

bermudae 

20 0 8 12 surface 

Fundulus bifax 0 7 5 2 N/A 

Fundulus 

blairae* 

16 27 20 23 N/A 

Fundulus 

catenatus 

0 27 8 19 beneath 

Fundulus 

chrysotus* 

26 19 30 15 surface 

Fundulus 

cingulatus 

0 27 18 9 beneath 

Fundulus 

confluentus* 

38 10 29 19 N/A 

Fundulus 

diaphanus* 

20 11 7 24 beneath 

Fundulus 

dispar* 

29 23 24 28 surface 

Fundulus 

escambiae 

2 4 3 3 surface 

Fundulus 

euryzonus 

0 21 10 12 surface 

Fundulus 

grandis* 

18 21 20 19 N/A 

Fundulus 

grandissimus 

0 2 2 0 N/A 

Fundulus 

heteroclitus 

0 19 10 9 N/A 

Fundulus 

jenkinsi 

10 3 9 4 N/A 

Fundulus julisia 0 4 2 2 N/A 
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Table 2.1 (cont.)  

Fundulus 

kansae* 

20 8 11 17 beneath 

Fundulus lima 0 2 1 1 beneath 

Fundulus 

lineolatus* 

14 28 19 23 surface 

Fundulus 

luciae* 

12 32 23 21 beneath 

Fundulus 

majalis* 

18 6 8 16 N/A 

Fundulus 

notatus* 

24 27 24 27 surface 

Fundulus notti* 10 51 31 30 surface 

Fundulus 

olivaceous* 

12 38 20 30 surface 

Fundulus 

pulvereus* 

17 10 12 15 N/A 

Fundulus 

rathbuni 

0 26 13 13 N/A 

Fundulus 

relictus 

57 0 18 39 N/A 

Fundulus 

rubrifrons 

0 21 5 16 N/A 

Fundulus 

sciadicus 

5 22 8 19 surface 

Fundulus 

seminolis* 

15 74 44 45 beneath 

Fundulus 

similis* 

5 62 53 15 beneath 

Fundulus 

stellifer 

0 20 12 8 beneath 

Fundulus 

waccamensis 

12 0 8 4 N/A 

Fundulus 

zebrinus* 

4 30 14 20 N/A 

Leptolucania 

ommata* 

24 19 24 19 N/A 

Lucania 

goodei* 

23 47 36 34 beneath 

Lucania 

interioris 

22 0 12 10 N/A 

Lucania parva* 27 78 67 38 beneath 
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Table 2.2.  ANOVA results for all 39 species or just the 21 species in which there were samples 

of both males and females from both lentic and lotic habitats for A) PC1, B) PC2, C) PC4, and 

D) Centroid Size.  Significant factors are in bold.   

 

A) 

 39 Species 21 Species 

Factor MS F p MS F p 

Species 0.0598 F38,1309 = 

297.30 

<0.0001 0.0963 F20,1006 = 

412.21 

<0.0001 

Sex 0.0288 F1,57.06 = 

72.56 

<0.0001 0.0207 F1,23.218 = 

35.09 

<0.0001 

Habitat 0.0053 F1,24.343 = 

2.31 

0.1416 0.0057 F1,20.545 = 

1.80 

0.1941 

Sex*Habitat 0.0002 F1,24.173 = 

0.45  

0.5084 0.0002 F1,24.804 = 

0.51 

0.4822 

Sex*Species 0.0005 F37,20.297 

= 1.16 

0.3643 0.0007 F20,20 = 

1.47 

0.1989 

Habitat*Species 0.0033 F23,21.32 = 

7.58 

<0.0001 0.0038 F20,20 = 

8.40 

<0.0001 

Sex*Habitat*Species 0.0005 F20,1309 = 

2.24 

0.0013 0.0005 F20,1006 = 

1.95 

0.0076 

Error 0.0002   0.0002   

 

B) 

 39 Species 21 Species 

Factor MS F p MS F p 

Species 0.0266 F38,1309 = 

177.60 

<0.0001 0.0378 F20,1006 = 

270.26 

<0.0001 

Sex 0.000006 F1,61.843 = 

0.02 

0.8834 0.0002 F1,23.292 = 

0.54 

0.4693 

Habitat 0.0048 F1,25.846 = 

5.72 

0.0244 0.0053 F1,20.955 = 

4.80 

0.0398 

Sex*Habitat 0.00008 F1,30.957 = 

0.55  

0.4644 0.0001 F1,30.336 = 

0.57 

0.4546 

Sex*Species 0.0003 F37,20.987 

= 2.33 

0.0213 0.0004 F20,20 = 

2.93 

0.0101 

Habitat*Species 0.0012 F23,23.321 

= 8.54 

<0.0001 0.0013 F20,20 = 

9.84 

<0.0001 

Sex*Habitat*Species 0.0001 F20,1309 = 

0.91 

0.5713 0.0001 F20,1006 = 

0.95 

0.5181 

Error 0.0001   0.0001   
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Table 2.2 (cont.)  

C) 

 39 Species 21 Species 

Factor MS F p MS F p 

Species 0.0019 F38,1309 = 

8.12 

<0.0001 0.0027 F20,1006 = 

11.49 

<0.0001 

Sex 0.0001 F1,66.156 

= 0.30 

0.5873 0.0003 F1,24.192 = 

0.66 

0.4243 

Habitat 0.0013 F1,29.306 = 

1.96 

0.1718 0.0014 F1,22.398 = 

1.93 

0.1788 

Sex*Habitat 0.000002 F1,25.49 = 

0.01  

0.9391 0.000006 F1,25.739 = 

0.02 

0.8957 

Sex*Species 0.0004 F37,20.516 

= 1.08 

0.4384 0.0005 F20,20 = 

1.35 

0.2556 

Habitat*Species 0.0009 F23,21.72 

= 2.17 

0.0373 0.0008 F20,20 = 

2.31 

0.0341 

Sex*Habitat*Species 0.0004 F20,1309 = 

1.73 

0.0237 0.0004 F20,1006 = 

1.64 

0.0368 

Error 0.0002   0.0002   

 

D) 

 39 Species 21 Species 

Factor MS F p MS F p 

Species 20626.02 F38,1309 = 

36.49 

<0.0001 24946.39 F20,1006 = 

45.54 

<0.0001 

Sex 671.41 F1,61.094 

= 0.69 

0.4107 1872.24 F1,24.459 = 

1.81 

0.1912 

Habitat 7056.86 F1,32.339 

= 6.12 

0.0188 6862.31 F1,23.243 

= 5.01 

0.0351 

Sex*Habitat 1207.80 F1,23.808 = 

0.98 

0.3327 1215.44 F1,23.675 

= 0.99 

0.3295 

Sex*Species 1238.08 F37,20.364 

= 0.91 

0.6146 1144.28 F20,20 = 

0.83 

0.6583 

Habitat*Species 1431.11 F23,21.207 

= 1.08 

0.4344 1552.96 F20,20 = 

1.13 

0.3951 

Sex*Habitat*Species 1385.11 F20,1309 = 

2.45 

0.0004 1376.59 F20,1006 = 

2.51 

0.0003 

Error 565.32   547.74   
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Table 2.3.  P-value for standard and phylogenetic ANOVA based on location in the water 

column (surface or beneath).  Significant values (p < 0.05) are highlighted in bold.   

Factor Test statistic Standard 

ANOVA 

Phylogenetic 

ANOVA 

PC1 F1,20 = 12.94 p = 0.0018 p = 0.0030 

PC2 F1,20 = 0.42 p = 0.5228 p = 0.5954 

PC4 F1,20 = 0.59 p = 0.4527 p = 0.5215 

Centroid Size F1,20 = 1.39 p = 0.2516 p = 0.3387 
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Supplemental Table 2.1.  F-values from analyses of variance for each species using adult 

specimens from 36 species for A) PC1, B) PC2, C) PC4, and D) Centroid Size.  Fundulus 

grandissimus and F. lima are not included because no comparisons could be made (only 2 

samples of each species).  N/A is for those species either not in both habitats or did not have 

samples of both sexes from a habitat.  Significant effects (p < 0.05) are highlighted in bold. 

   

A) 

Species Sex Habitat Sex*Habitat 

Adinia xenica F1, 99 = 9.71 

p = 0.0024 

F1, 99 = 56.15 

p < 0.0001 

F1, 99 = 0.94 

p = 0.3346 

Fundulus bermudae F1, 18 = 20.03 

p = 0.0003 

N/A N/A 

Fundulus bifax F1,5 = 0.01 

p = 0.9157 

N/A N/A 

Fundulus blairae F1, 39 = 28.19 

p < 0.0001 

F1, 39 = 1.37 

p = 0.2487 

F1, 39 = 0.15 

p = 0.7038 

Fundulus catenatus F1, 25 = 36.55 

p < 0.0001 

N/A N/A 

Fundulus chrysotus F1, 41 = 16.11 

p = 0.0002 

F1, 41 = 1.41 

p = 0.2419 

F1, 41 = 0.33 

p = 0.5677 

Fundulus cingulatus F1, 25 = 3.94 

p = 0.0582 

N/A N/A 

Fundulus confluentus F1, 44 = 1.90 

p = 0.1749 

F1, 44 = 2.90 

p = 0.0959 
F1, 44 = 13.49 

p = 0.0006 

Fundulus diaphanus F1, 27 = 38.03 

p < 0.0001 

F1, 27 = 0.05 

p = 0.8297 

F1, 27 = 0.40 

p = 0.5300 

Fundulus dispar F1, 48 = 60.36 

p < 0.0001 

F1, 48 = 15.50 

p = 0.0003 

F1, 48 = 39.44 

p < 0.0001 

Fundulus escambiae F1, 3 = 1.42 

p = 0.3195 

F1, 3 = 0.89 

p = 0.4141 

N/A 

Fundulus euryzonus F1, 20 = 4.70 

p = 0.0424 

N/A N/A 

Fundulus grandis F1, 35 = 14.49 

p = 0.0005 

F1, 35 = 0.41 

p = 0.5279 

F1, 35 = 0.54 

p = 0.4686 

Fundulus heteroclitus F1, 17 = 16.92 

p = 0.0007 

N/A N/A 

Fundulus jenkinsi F1, 10 = 8.06 

p = 0.0176 

F1, 10 = 1.20 

p = 0.2994 

N/A 

Fundulus julisia F1, 2 = 48.82 

p = 0.0199 

N/A N/A 

Fundulus kansae F1, 24 = 34.12 

p < 0.0001 

F1, 24 = 0.25 

p = 0.6239 

F1, 24 = 4.22 

p = 0.0510 

Fundulus lineolatus F1, 38 = 2.28 

p = 0.1390 

F1, 38 = 0.10 

p = 0.7502 

F1, 38 = 0.02 

p = 0.8926 
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Supplemental Table 2.1 (cont.) 

Fundulus luciae F1, 40 = 8.27 

p = 0.0064 

F1, 40 = 3.59 

p = 0.0653 

F1, 40 = 0.15 

p = 0.6992 

Fundulus majalis F1, 20 = 0.00 

p = 0.9949 

F1, 20 = 0.98 

p = 0.3331 

F1, 20 = 0.34 

p = 0.5636 

Fundulus notatus F1, 47 = 11.75 

p = 0.0013 

F1, 47 = 1.25 

p = 0.2698 

F1, 47 = 3.84 

p = 0.0559 

Fundulus notti F1, 57 = 4.09 

p = 0.0477 

F1, 57 = 1.49 

p = 0.2280 

F1, 57 = 0.26 

p = 0.6128 

Fundulus olivaceous F1, 46 = 0.12 

p = 0.7347 

F1, 46 = 0.52 

p = 0.4727 

F1, 46 = 0.03 

p = 0.8567 

Fundulus pulvereus F1, 23 = 5.65 

p = 0.0262 

F1, 23 = 0.11 

p = 0.7396 
F1, 23 = 4.83 

p = 0.0384 

Fundulus rathbuni F1, 24 = 48.01 

p < 0.0001 

N/A N/A 

Fundulus relictus F1, 55 = 50.94 

p < 0.0001 

N/A N/A 

Fundulus rubrifrons F1, 19 = 2.80 

p = 0.1106 

N/A N/A 

Fundulus sciadicus F1, 24 = 39.83 

p < 0.0001 

F1, 24 = 4.46 

p = 0.0453 

N/A 

Fundulus seminolis F1, 85 = 10.31 

p = 0.0019 

F1, 85 = 4.03 

p = 0.0477 

F1, 85 = 0.26 

p = 0.6091 

Fundulus similis F1, 64 = 6.58 

p = 0.0127 

F1, 64 = 0.48 

p = 0.4917 

F1, 64 = 0.19 

p = 0.6662 

Fundulus stellifer F1, 18 = 20.95 

p = 0.0002 

N/A N/A 

Fundulus waccamensis F1, 10 = 14.02 

p = 0.0038 

N/A N/A 

Fundulus zebrinus F1, 30 = 19.53 

p = 0.0001 

F1, 30 = 63.59 

p < 0.0001 

F1, 30 = 9.07 

p = 0.0052 

Leptolucania ommata F1, 39 = 1.83 

p = 0.1836 
F1, 39 = 4.15 

p = 0.0484 

F1, 39 = 1.28 

p = 0.2654 

Lucania goodei F1, 66 = 4.05 

p = 0.0482 

F1, 66 = 9.81 

p = 0.0026 

F1, 66 = 3.30 

p = 0.0736 

Lucania interioris F1, 20 = 7.69 

p = 0.0117 

N/A N/A 

Lucania parva F1, 101 = 81.22 

p < 0.0001 

F1, 101 = 22.00 

p < 0.0001 

F1, 101 = 2.16 

p = 0.1443 
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Supplemental Table 2.1 (cont.) 

B) 

Species Sex Habitat Sex*Habitat 

Adinia xenica F1, 99 = 6.94  

p = 0.0098 

F1, 99 = 8.38 

p = 0.0047 

F1, 99 = 4.17 

p = 0.0437 

Fundulus bermudae F1, 18 = 0.29 

p = 0.5958 

N/A N/A 

Fundulus bifax F1,5 = 0.55 

p = 0.4929 

N/A N/A 

Fundulus blairae F1, 39 = 1.61 

p = 0.2117 

F1, 39 = 0.00 

p = 0.9763 

F1, 39 = 0.36 

p = 0.5518 

Fundulus catenatus F1, 25 = 3.21 

p = 0.0852 

N/A N/A 

Fundulus chrysotus F1, 41 = 4.03 

p = 0.0514 

F1, 41 = 1.92 

p = 0.1728 

F1, 41 = 0.20 

p = 0.6547 

Fundulus cingulatus F1, 25 = 2.08 

p = 0.1612 

N/A N/A 

Fundulus confluentus F1, 44 = 1.96 

p = 0.1685 

F1, 44 = 0.92 

p = 0.3420 

F1, 44 = 0.29 

p = 0.5937 

Fundulus diaphanus F1, 27 = 28.73 

p < 0.0001 

F1, 27 = 0.37 

p = 0.5496 

F1, 27 = 2.15 

p = 0.1544 

Fundulus dispar F1, 48 = 1.07 

p = 0.3068 
F1, 48 = 17.49 

p = 0.0001 

F1, 48 = 0.15 

p = 0.7050 

Fundulus escambiae F1, 3 = 0.99 

p = 0.3924 

F1, 3 = 1.31 

p = 0.3348 

N/A 

Fundulus euryzonus F1, 20 = 0.07 

p = 0.7958 

N/A N/A 

Fundulus grandis F1, 35 = 0.49 

p = 0.4878 

F1, 35 = 3.92 

p = 0.0557 

F1, 35 = 0.00 

p = 0.9479 

Fundulus heteroclitus F1, 17 = 1.69 

p = 0.2114 

N/A N/A 

Fundulus jenkinsi F1, 10 = 2.44 

p = 0.1495 
F1, 10 = 16.26 

p = 0.0024 

N/A 

Fundulus julisia F1, 2 = 0.99 

p = 0.4247 

N/A N/A 

Fundulus kansae F1, 24 = 1.34 

p = 0.2589 

F1, 24 = 1.23 

p = 0.2777 

F1, 24 = 1.17 

p = 0.2896 

Fundulus lineolatus F1, 38 = 0.12 

p = 0.7262 
F1, 38 = 40.58 

p < 0.0001 

F1, 38 = 0.82 

p = 0.3714 

Fundulus luciae F1, 40 = 0.00 

p = 0.9736 

F1, 40 = 0.00 

p = 0.9597 

F1, 40 = 0.02 

p = 0.8787 

Fundulus majalis F1, 20 = 3.85 

p = 0.0638 
F1, 20 = 11.56 

p = 0.0028 

F1, 20 = 1.86 

p = 0.1872 

 

 



 49 

Supplemental Table 2.1 (cont.) 

Fundulus notatus F1, 47 = 0.04 

p = 0.8453  
F1, 47 = 23.93 

p < 0.0001 

F1, 47 = 0.35 

p = 0.5573 

Fundulus notti F1, 57 = 2.44 

p = 0.1237 

F1, 57 = 2.85 

p = 0.0968 

F1, 57 = 3.15 

p = 0.0815 

Fundulus olivaceous F1, 46 = 3.88 

p = 0.0548 
F1, 46 = 4.06 

p = 0.0498 

F1, 46 = 0.49 

p = 0.4889 

Fundulus pulvereus F1, 23 = 3.58 

p = 0.0713 

F1, 23 = 0.17 

p = 0.6879 

F1, 23 = 0.65 

p = 0.4277 

Fundulus rathbuni F1, 24 = 0.00 

p = 0.9888 

N/A N/A 

Fundulus relictus F1, 55 = 0.16 

p = 0.6923 

N/A N/A 

Fundulus rubrifons F1, 19 = 0.59 

p = 0.4506 

N/A N/A 

Fundulus sciadicus F1, 24 = 0.61 

p = 0.4429 

F1, 24 = 0.00 

p = 0.9621 

N/A 

Fundulus seminolis F1, 85 = 1.61 

p = 0.2086 
F1, 85 = 24.78 

p < 0.0001 

F1, 85 = 0.50 

p = 0.4809 

Fundulus similis F1, 64 = 0.46 

p = 0.4984  

F1, 64 = 2.18 

p = 0.1445 

F1, 64 = 0.59 

p = 0.4439 

Fundulus stellifer F1, 18 = 2.58 

p = 0.1255 

N/A N/A 

Fundulus waccamensis F1, 10 = 0.00 

p = 0.9817 

N/A N/A 

Fundulus zebrinus F1, 30 = 0.01 

p = 0.9211 
F1, 30 = 28.40 

p < 0.0001 

F1, 30 = 0.89 

p = 0.3533 

Leptolucania ommata F1, 39 = 0.02 

p = 0.8977 
F1, 39 = 35.72 

p < 0.0001  

F1, 39 = 2.38 

p = 0.1307 

Lucania goodei F1, 66 = 5.43 

p = 0.0229 

F1, 66 = 2.71 

p = 0.1042 

F1, 66 = 1.51 

p = 0.2241 

Lucania interioris F1, 20 = 0.47 

p = 0.5015  

N/A N/A 

Lucania parva F1, 101 = 2.99 

p = 0.0871 
F1, 101 = 7.54 

p = 0.0071 

F1, 101 = 0.02 

p = 0.9020 

 

C) 

Species Sex Habitat Sex*Habitat 

Adinia xenica F1, 99 = 2.41  

p = 0.1235 

F1, 99 = 0.70 

p = 0.4060 

F1, 99 = 0.03 

p = 0.8553 

Fundulus bermudae F1, 18 = 0.93 

p = 0.3470 

N/A N/A 
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Fundulus bifax F1,5 = 0.09 

p = 0.7805 

N/A N/A 

Fundulus blairae F1, 39 = 0.16 

p = 0.6946 
F1, 39 = 5.12 

p = 0.0293 

F1, 39 = 1.45 

p = 0.2351 

Fundulus catenatus F1, 25 = 3.46 

p = 0.0745 

N/A N/A 

Fundulus chrysotus F1, 41 = 2.37 

p = 0.1313 
F1, 41 = 6.14 

p = 0.0174 

F1, 41 = 3.79 

p = 0.0583 

Fundulus cingulatus F1, 25 = 10.81 

p = 0.0030 

N/A N/A 

Fundulus confluentus F1, 44 = 3.92 

p = 0.0539 

F1, 44 = 0.05 

p = 0.8284 

F1, 44 = 3.57 

p = 0.0653 

Fundulus diaphanus F1, 27 = 0.18 

p = 0.6773 

F1, 27 = 1.44 

p = 0.2408 

F1, 27 = 0.93 

p = 0.3439 

Fundulus dispar F1, 48 = 23.05 

p < 0.0001 

F1, 48 = 54.29 

p < 0.0001 

F1, 48 = 7.30 

p = 0.0095 

Fundulus escambiae F1, 3 = 0.24 

p = 0.6587 

F1, 3 = 0.09 

p = 0.7891 

N/A 

Fundulus euryzonus F1, 20 = 0.89 

p = 0.3574 

N/A N/A 

Fundulus grandis F1, 35 = 0.10 

p = 0.7575 

F1, 35 = 2.65 

p = 0.1126 

F1, 35 = 0.03 

p = 0.8726 

Fundulus heteroclitus F1, 17 = 0.04 

p = 0.8482 

N/A N/A 

Fundulus jenkinsi F1, 10 = 0.58 

p = 0.4644 

F1, 10 = 1.91 

p = 0.1972 

N/A 

Fundulus julisia F1, 2 = 0.23 

p = 0.6801 

N/A N/A 

Fundulus kansae F1, 24 = 0.60 

p = 0.4475 
F1, 24 = 6.05 

p = 0.0215 

F1, 24 = 2.85 

p = 0.1046 

Fundulus lineolatus F1, 38 = 0.06 

p = 0.8023 

F1, 38 = 0.02 

p = 0.8789 

F1, 38 = 0.03 

p = 0.8551 

Fundulus luciae F1, 40 = 0.01 

p = 0.9253 

F1, 40 = 0.20 

p = 0.6584 

F1, 40 = 0.22 

p = 0.6404 

Fundulus majalis F1, 20 = 1.27 

p = 0.2736 
F1, 20 = 7.58 

p = 0.0123 

F1, 20 = 0.02 

p = 0.8987 

Fundulus notatus F1, 47 = 0.04 

p = 0.8422 

F1, 47 = 0.48 

p = 0.4936 

F1, 47 = 0.37 

p = 0.5433 

Fundulus notti F1, 57 = 3.17 

p = 0.0802  

F1, 57 = 0.03 

p = 0.8694 

F1, 57 = 3.63 

p = 0.0619 

Fundulus olivaceous F1, 46 = 2.01 

p = 0.1625  

F1, 46 = 0.10 

p = 0.7560 

F1, 46 = 0.16 

p = 0.6891 

Fundulus pulvereus F1, 23 = 8.22 

p = 0.0087 

F1, 23 = 7.39 

p = 0.0122 

F1, 23 = 1.02 

p = 0.3227 
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Fundulus rathbuni F1, 24 = 0.73 

p = 0.4019 

N/A N/A 

Fundulus relictus F1, 55 = 3.27 

p = 0.0761 

N/A N/A 

Fundulus rubrifons F1, 19 = 0.45 

p = 0.5125 

N/A N/A 

Fundulus sciadicus F1, 24 = 2.61 

p = 0.1193 

F1, 24 = 0.49 

p = 0.4900 

N/A 

Fundulus seminolis F1, 85 = 0.89 

p = 0.3470 

F1, 85 = 2.09 

p = 0.1522 

F1, 85 = 0.55 

p = 0.4595 

Fundulus similis F1, 64 = 0.90 

p = 0.3466  

F1, 64 = 0.99 

p = 0.3230 

F1, 64 = 0.41 

p = 0.5235 

Fundulus stellifer F1, 18 = 1.20 

p = 0.2868 

N/A N/A 

Fundulus waccamensis F1, 10 = 0.14 

p = 0.7174 

N/A N/A 

Fundulus zebrinus F1, 30 = 0.31 

p = 0.5813 

F1, 30 = 2.03 

p = 0.1648 

F1, 30 = 0.02 

p = 0.8807 

Leptolucania ommata F1, 39 = 2.84 

p = 0.1000 

F1, 39 = 1.18 

p = 0.2836  

F1, 39 = 0.70 

p = 0.4086 

Lucania goodei F1, 66 = 0.10 

p = 0.7531 
F1, 66 = 7.74 

p = 0.0070 

F1, 66 = 0.45 

p = 0.5067 

Lucania interioris F1, 20 = 1.38 

p = 0.2542 

N/A N/A 

Lucania parva F1, 101 = 1.45 

p = 0.2307 

F1, 101 = 0.94 

p = 0.3347 
F1, 101 = 5.03 

p = 0.0272 

 

D) 

Species Sex Habitat Sex*Habitat 

Adinia xenica F1, 99 = 0.79  

p = 0.3753 
F1, 99 = 40.90 

p < 0.0001 

F1, 99 = 0.42 

p = 0.5166 

Fundulus bermudae F1, 18 = 2.43 

p = 0.1364 

N/A N/A 

Fundulus bifax F1,5 = 0.76 

p = 0.4226 

N/A N/A 

Fundulus blairae F1, 39 = 0.02 

p = 0.8963 

F1, 39 = 0.40 

p = 0.5297 

F1, 39 = 2.32 

p = 0.1362 

Fundulus catenatus F1, 25 = 4.37 

p = 0.0469 

N/A N/A 

Fundulus chrysotus F1, 41 = 0.18 

p = 0.6743 
F1, 41 = 22.53 

p < 0.0001 

F1, 41 = 0.54 

p = 0.4682 
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Fundulus cingulatus F1, 25 = 3.60 

p = 0.0694 

N/A N/A 

Fundulus confluentus F1, 44 = 3.84 

p = 0.0564 

F1, 44 = 0.55 

p = 0.4613 

F1, 44 = 1.30 

p = 0.2596 

Fundulus diaphanus F1, 27 = 66.51 

p < 0.0001 

F1, 27 = 6.05 

p = 0.0206 

F1, 27 = 0.23 

p = 0.6379 

Fundulus dispar F1, 48 = 0.50 

p = 0.4831 
F1, 48 = 95.53 

p < 0.0001 

F1, 48 = 0.30 

p = 0.5873 

Fundulus escambiae F1, 3 = 0.17 

p = 0.7067 

F1, 3 = 9.40 

p = 0.0547 

N/A 

Fundulus euryzonus F1, 20 = 0.43 

p = 0.5215 

N/A N/A 

Fundulus grandis F1, 35 = 2.98 

p = 0.0931 

F1, 35 = 0.20 

p = 0.6614 
F1, 35 = 12.43 

p = 0.0012 

Fundulus heteroclitus F1, 17 = 1.23 

p = 0.2821 

N/A N/A 

Fundulus jenkinsi F1, 10 = 2.09 

p = 0.1789 

F1, 10 = 4.54 

p = 0.0589 

N/A 

Fundulus julisia F1, 2 = 0.01 

p = 0.9204 

N/A N/A 

Fundulus kansae F1, 24 = 3.64 

p = 0.0685 

F1, 24 = 0.06 

p = 0.8140 

F1, 24 = 0.14 

p = 0.7131 

Fundulus lineolatus F1, 38 = 3.16 

p = 0.0834 

F1, 38 = 1.05 

p = 0.3111 

F1, 38 = 0.08 

p = 0.7844 

Fundulus luciae F1, 40 = 1.73 

p = 0.1958 

F1, 40 = 0.17 

p = 0.6853 
F1, 40 = 6.14 

p = 0.0175 

Fundulus majalis F1, 20 = 2.63 

p = 0.1206 

F1, 20 = 2.44 

p = 0.1337 

F1, 20 = 0.03 

p = 0.8607 

Fundulus notatus F1, 47 = 0.77 

p = 0.3854 
F1, 47 = 4.61 

p = 0.0369 

F1, 47 = 2.85 

p = 0.0979 

Fundulus notti F1, 57 = 1.60 

p = 0.2115 

F1, 57 = 2.09 

p = 0.1538 

F1, 57 = 3.50 

p = 0.0664 

Fundulus olivaceous F1, 46 = 7.14 

p = 0.0104  

F1, 46 = 0.52 

p = 0.4740 

F1, 46 = 0.85 

p = 0.3614 

Fundulus pulvereus F1, 23 = 1.06 

p = 0.3132 

F1, 23 = 0.72 

p = 0.4051 

F1, 23 = 1.61 

p = 0.2170 

Fundulus rathbuni F1, 24 = 0.05 

p = 0.8198 

N/A N/A 

Fundulus relictus F1, 55 = 8.74 

p = 0.0046 

N/A N/A 

Fundulus rubrifons F1, 19 = 0.00 

p = 0.9482 

N/A N/A 
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Fundulus sciadicus F1, 24 = 0.50 

p = 0.4876 

F1, 24 = 1.16 

p = 0.2929 

N/A 

Fundulus seminolis F1, 85 = 0.67 

p = 0.4140 
F1, 85 = 9.67 

p = 0.0026 

F1, 85 = 0.52 

p = 0.4743 

Fundulus similis F1, 64 = 0.03 

p = 0.8722  

F1, 64 = 1.38 

p = 0.2451 

F1, 64 = 0.03 

p = 0.8722 

Fundulus stellifer F1, 18 = 0.10 

p = 0.7503 

N/A N/A 

Fundulus waccamensis F1, 10 = 0.85 

p = 0.3793 

N/A N/A 

Fundulus zebrinus F1, 30 = 0.80 

p = 0.3771 

F1, 30 = 2.81 

p = 0.1042 

F1, 30 = 0.00 

p = 0.9611 

Leptolucania ommata F1, 39 = 5.07 

p = 0.0301 

F1, 39 = 38.43 

p < 0.0001 

F1, 39 = 0.48 

p = 0.4944 

Lucania goodei F1, 66 = 1.18 

p = 0.2822 

F1, 66 = 0.04 

p = 0.8381 
F1, 66 = 6.01 

p = 0.0168 

Lucania interioris F1, 20 = 0.00 

p = 0.9772 

N/A N/A 

Lucania parva F1, 101 = 8.58 

p = 0.0042 

F1, 101 = 7.21 

p = 0.0085 

F1, 101 = 1.33 

p = 0.2511 
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Chapter 3: Comparison of body size and shape in Fundulus notatus
1
 

 

 

Abstract 

Lake and stream habitats pose a variety of challenges to fishes due to differences in variables 

such as water velocity, habitat structure, prey community, and predator community.  These 

differences can cause divergent selection on size/shape.  Here, we measured sex, age, length, and 

eight different morphological traits of the blackstripe topminnow, Fundulus notatus, from 

nineteen lake and stream populations across four river drainages in central Illinois. Our goal was 

to determine whether body size and shape differed consistently between lake and stream habitats 

across drainages.  We also considered the effects of age and sex as they may affect size and 

morphology.  We found large differences in body size of age 1 topminnows where stream fish 

were generally larger than lake fish.  Body shape mainly varied as a function of sex.  Adult male 

topminnows had larger morphological traits (with the exception of body width) than females, in 

particular, longer dorsal and anal base lengths.  Subtle effects of habitat were present.  Stream 

fish had a longer dorsal fin base than lake fish.  These phenotypic patterns may be the result of 

genetic and/or environmental variation.  As these lakes are human-made, the observed 

differences, if genetic, would have had to occur relatively rapidly (within about 100 years).   

 

 

 

 

 

 
1
This chapter appeared in the Biological Journal of the Linnean Society and is referred to in other chapters of this 

dissertation as “Welsh et al. 2013”.  Full citation:  Welsh D. P., M. Zhou, S. M. Mussmann, L. G. Fields, C. L. 

Thomas, S. P. Pearish, S. L. Kilburn, J. L. Parker, L. R. Stein, J. A. Bartlett, C. R. Bertram, T. J. Bland, K. L. 

Laskowski, B. C. Mommer, X. Zhuang, R. C. Fuller.  2013.  The effects of age, sex, and habitat on body size and 

shape of the blackstripe topminnow, Fundulus notatus (Cyprinodontiformes: Fundulidae) (Rafinesque 1820).  

Biological Journal of the Linnean Society 108: 784-789.   
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Introduction 

Lake and stream habitats differ in many ecologically important characteristics including both 

biotic (predator and prey assemblages) and abiotic (spatial complexity and water velocity) 

factors (Jackson et al. 2001).  Rivers/streams have a faster water velocity, are generally more 

heterogeneous habitats (Eadie et al. 1986) and contain lower predator abundances (Larimore and 

Bayley 1996) than lakes.  Studies comparing lakes and streams have found differences in fish 

body size and shape (Hendry et al. 2002, Collin and Fumagalli 2011).  The general prediction is 

that individuals will be more “streamlined” in river/stream habitats (Langerhans 2008), but there 

is evidence that this is not universally true (Brinsmead and Fox 2002, McGuigan et al. 2003).  

Differences in size and shape may also arise from intrinsic factors, such as sex or age (Parker 

1992, Simonovic et al. 1999, Hendry et al. 2006, Spoljaric and Reimchen 2011).  

Our goal was to explore body size and shape differences of the blackstripe topminnow, 

Fundulus notatus, between lake and stream populations across two ages and both sexes.  We also 

examine the consistency of such patterns by utilizing populations from four different river 

drainages.  Drainage was found to be important in determining the body shape of F. notatus in 

another study, although that study was only conducted in rivers (Schaefer et al. 2011).  Gene 

flow is likely higher between populations within a drainage than between populations across 

drainages and, thus, examining patterns across multiple drainages allows for an assessment of the 

generality and consistency of the pattern.  Consistent correlations between an organism’s 

phenotype and their environment provide potential clues as to the adaptive significance of these 

traits (Reznick and Travis 1996).   
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Materials and Methods 

A total of 572 blackstripe topminnows were collected with seines and dipnets from eight sites 

(four lakes and four streams) in 2008 and seventeen (seven lakes and ten streams) in 2010, of 

which five sites were sampled in both years.  The data from the two years were analyzed 

together.  The sites were chosen so that at least one lake and one stream were from each of 4 

different river drainage systems in central Illinois (Table 3.1, Supplemental Figure 3.1).   

Prior to measurement, fish were euthanized with an overdose of MS-222, preserved in 

formalin, and then stored in 70% ethanol.  Following the methods of Grünbaum et al. (2007), 

fish were measured for body size (standard length) and eight standard linear morphometric 

measurements: body height, body width, caudal peduncle height, dorsal fin base, anal fin base, 

head height, head width, and eye diameter (Supplemental Figure 3.2).  All measurements were 

made to the nearest 0.1 mm using Vernier calipers. Fish were aged to the nearest year using 

growth rings on their scales observed under light microscopy (DeVries and Frie 1996).  Sex was 

determined visually by examining lateral stripe patterning and fin ray length (Carranza and Winn 

1954).   

 

Statistical Analysis 

Individuals were classified into age classes corresponding to the number of full years they 

completed (i.e. age 0 are those individuals less than 1 year of age, age 1 are individuals over 1 

but less than 2, etc.).  We used a Chi-square analysis to test for differences in the age distribution 

as a function of habitat as well as to test for differences in the distribution of the sexes between 

the two habitat types.   
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We analyzed size and shape separately.  For all analyses, we only considered individuals 

in age classes 0 and 1 because many populations only contained these two ages (see Table 3.1).  

To examine patterns in size, we compared body size between age-classes and sexes using a 

general linearized model.  To examine patterns in shape, we regressed each of the 8 

morphometric traits on body size and then analyzed the residuals in a principal components 

analysis using the correlation matrix.  We focused on the first four principal components because 

together they accounted for almost 90% of the overall variation (Table 3.2).   

For both the size and shape analyses, the main terms were tested using either population 

or sex*population as the level of replication.  We modeled the effects of habitat, drainage, sex, 

habitat*drainage, and population nested within the interaction of habitat*drainage.  We consider 

drainage and population(habitat*drainage) to be random.  We analyzed the data separately for 

each age class and only included those populations that had at least 2 individuals of both sexes 

for a particular age.  All analyses were performed in SAS V.2 (Cary, NC).  All raw data have 

been deposited in Dryad (Dryad data repository doi:10.5061/dryad.j7th2). 

 

Results 

Age and Body Size 

Lakes consisted of 59% age 0 individuals, 39% age 1, and 2% age 2, while streams consisted of 

57% age 0, 37% age 1, 5% age 2, and 1% age 3 individuals (Table 3.1).  The age distribution did 

not differ between habitat types, regardless of whether we excluded age 3 ( X2

2  = 3.8332, p = 

0.1471) or combined ages 2 and 3 into one age class ( X2

2  = 5.4417, p = 0.0658).  The latter 

analysis trended toward a pattern where lakes were shifted towards a younger age-distribution 

and streams towards an older distribution.  The number of individuals of each sex did not differ 
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between habitat types, as both lakes and streams consisted of 56% males and 44% females ( 2

1X  

= 0.0391, p = 0.8432).   

 Body size did not differ between the two sexes, but did differ among habitat types and 

drainages (Table 3.3).  For age class 0, body size differed among habitat types, but the pattern 

depended on drainage, such that stream fish were larger in the Vermilion and Kaskaskia 

drainages and lake fish were larger in the Embarras and Sangamon drainages (F3,8 = 2.19, p = 

0.0138).  In age class 1, stream fish were significantly larger than lake fish (F1,8 = 7.86, p = 

0.0228) (Figure 3.1).   

 

Body Shape  

The first four principal components together accounted for 88.5% of the variation (Table 3.2).  

The first principal component accounted for 61.5% of the variation.  All traits with the exception 

of body width loaded positively onto PC1.  In age class 1, males were more “robust” (i.e. had 

more positive PC scores) than females (F1,8 = 7.69, p = 0.0223) (Figure 3.2).  The drainages 

which flow into the Ohio River (Vermillion and Embarras) had more robust age 1 fish than those 

which flow into the Mississippi River (F3,8 = 8.56, p = 0.0066) (Table 3.4). 

     PC2 was positively associated with body and head width (Table 3.2).  We found no effect 

of habitat, drainage, sex, or any of their interactions for either age class (Table 3.5).   

PC3 was positively associated with eye diameter and negatively associated with dorsal 

fin base length (Table 3.2).  Lake individuals had larger PC3 scores (i.e. larger eye diameter and 

smaller dorsal fin base length) than stream individuals in both age 0 (F1,8 = 15.03, p = 0.0043) 

and age 1 (F1,8 = 5.69, p = 0.0435).  For age class 1, females had larger eyes and smaller dorsal 

fin base length than males (F1,8 = 5.32, p = 0.0454) (Table 3.6).  
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PC4 was positively associated with anal and dorsal fin base lengths and negatively 

associated with head width (Table 3.2).  For age class 1, males had greater PC4 values (i.e. larger 

anal and dorsal fin base lengths and smaller head widths) than females (F1,8 = 14.09, p = 0.0047) 

(Table 3.7).         

 

Discussion 

Our goals were to explore body size and shape differences of the blackstripe topminnow, 

Fundulus notatus, between lake and stream populations across two ages and both sexes and to 

examine the consistency of such patterns.  Body size was driven by habitat, but differences in 

shape primarily resulted from sexual dimorphism.  These differences mainly appeared in the later 

age class and were largely consistent across the four river drainages.  We discuss these results in 

more detail below.    

Adult (age class 1) stream fish were generally larger than adult lake fish.  This may be 

explained by differences in predation and/or water velocity between lakes and streams.  The lake 

sites sampled for this study are often stocked with predatory game fish (Larimore and Bayley 

1996).  High predation on larger fish/adults would select for smaller size at maturation 

(Charlesworth 1980, Conover and Munch 2002).  Water velocity also affects body size through 

growth, although different species respond differently (Davison 1997, Bhagat et al. 2006, 

Grünbaum et al. 2008, Fischer-Rousseau et al. 2010).   

There was an effect of sex on three of the four principal component axes, suggesting that 

there is substantial sexual dimorphism in body shape of topminnows, particularly in the older age 

class.  This is not surprising, as sexual dimorphism in body shape is common among many fish 

species (Parker 1992).  In general, male topminnows have larger traits, in particular greater anal 
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and dorsal fin base lengths, than females.  Differences in the fins had previously been 

qualitatively described and were attributed to the sex-specific roles of these fins in courtship and 

spawning (Carranza and Winn 1954). 

There was an effect of habitat on body shape, where individuals from lakes had a larger 

eye diameter and smaller dorsal fin base length than those from streams.  Dorsal fins aid 

maneuvering and stabilization in the water column (Standen and Lauder 2007) and this is 

presumably more important for fish facing higher water velocities.  However, there is 

interspecific variation in the use of the dorsal fin under different swimming speeds (Drucker and 

Lauder 2005) and, thus, it is unknown whether the differences observed here are related to water 

velocity or some other environmental difference between lakes and streams.  Interpreting the eye 

pattern is also difficult, as some fish have large eyes when they occur in clear water for picking 

zooplankton out of the water column (Huber et al. 1997) while others have larger eyes when 

living in low light environments (Warrant and Locket 2004).  Either of these scenarios could 

apply to lake topminnows, as they spend most of their time at the water surface but overwinter in 

deeper water (Carranza and Winn 1954).   

It is unknown whether these phenotypic patterns are the result of genetic and/or 

environmental variation.  Because all of our lake sites are human-made and less than 100 years 

old, the observed differences among populations within drainages, if genetic, would have had to 

develop fairly quickly.  Impounding streams to form lakes is starting to be recognized as a 

potentially important driver of morphological change (Haas et al. 2010, Franssen 2011).  Our 

study was not designed to explicitly test this, as only four of our lake sites were created through 

impoundments, however rapid evolution has been documented in many taxa (Thompson 1998, 
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Simberloff et al. 2000, Reznick and Ghalambor 2005) including another cyprinodontiform 

(Collyer et al. 2007).   
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Figures 

 
Figure 3.1.  Standard length of fish from age class 1 as a function of habitat.  Error bars are ± 1 

standard error. 
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Figure 3.2.  Principal Component 1 of fish from age class 1 as a function of sex.  Error bars are 

± 1 standard error. 
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Supplemental Figure 3.1.  Map of the river system of Illinois with the four river drainages used 

in this study labeled.  Enlarged sections show the counties in east-central Illinois and the sites 

used in this study (triangles are lakes, rectangles are streams).  Two pairs of sites (Homer 

Lake/Homer Dam and Clear Lake/Long Lake) are grouped together because of close geographic 

proximity.  Numbers refer to the “map number” in Table 1.  The star indicates the location of the 

University of Illinois. 
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Supplemental Figure 3.2.  Morphometric traits measured.  Body width and head width are not 

shown. 
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Tables 

Table 3.1.  Habitat type and number of specimens collected at each site.  Map number 

corresponds to the number on Supplemental Figure 1.  For the lakes, the approximate year built 

is included in parentheses.  For streams, the cumulative drainage area (CDA) is provided as a 

descriptor of stream size and local hydrology.        
Map 

Number 

Site Habitat 

Type 

(Built) 

CDA 

(km
2
) 

River 

Drainage 

Total 

Specimens 

Age Sex 

      0 1 2 3 Male Female 

1 Homer 

Dam 

Lake 

(1967) 

- Vermilion 10 9 1 0 0 4 6 

1 Homer 

Lake 

Lake 

(1967) 

- Vermilion 39 29 9 1 0 20 19 

2 Clear 

Lake, 

Kickapoo 

State Park 

Lake 

(1940s) 

- Vermilion 15 8 5 2 0 9 6 

2 Long 

Lake, 

Kickapoo 

State Park 

Lake 

(1940s) 

- Vermilion 21 5 15 1 0 13 8 

3 Philips 

Tract 

Stream 204 Vermilion 41 25 13 3 0 21 20 

4 Horse 

Pasture  

Stream 20 Vermilion 20 10 9 1 0 14 6 

5 Salt Fork  Stream 619 Vermilion 38 20 17 1 0 22 16 

6 Richter 

Site 

Stream 1194 Vermilion 13 4 3 6 0 7 6 

7 1
st 

 & 

Windsor 

Lake 

(1980s) 

- Embarras 40 34 5 1 0 18 22 

8 Curtis 

Creek 

Stream 17 Embarras 13 11 2 0 0 8 5 

9 Nanney 

Site 

Stream 20 Embarras 75 28 39 5 3 50 25 

10 Kaufman 

Park 

Lake 

(1960s) 

- Kaskaskia 25 11 14 0 0 11 14 

16 Nursing 

Creek 

Stream 51 Kaskaskia 18 10 8 0 0 5 13 

17 Antique 

Creek 

Stream 939 Kaskaskia 30 23 7 0 0 18 12 

11 Clinton 

Lake 

Lake 

(1970s) 

- Sangamon 35 15 20 0 0 25 10 

12 Weldon 

Springs 

State Park 

Lake 

(1900s-

1920s) 

- Sangamon 34 22 12 0 0 21 13 

13 Lake 

Decatur 

Lake 

(1920s) 

- Sangamon 11 3 8 0 0 8 3 

14 Kickapoo 

Creek 

Stream 194 Sangamon 42 28 14 0 0 18 24 

15 Steven’s 

Creek  

Stream 39 Sangamon 52 36 16 0 0 28 24 
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Table 3.2.  Results from principal component analysis on the size-regressed traits using the 

correlation matrix.  Eigenvectors of each morphometric trait for the first four principle 

component axes are shown.  Eigenvalues and the proportion of variation accounted for are listed 

below.   

Variable PC1 PC2 PC3 PC4 

body width -0.06 0.90 0.09 0.26 

body height 0.40 -0.01 -0.07 -0.28 

head width 0.33 0.42 -0.11 -0.36 

head height 0.43 -0.01 -0.05 -0.18 

anal fin base 0.40 -0.05 -0.14 0.34 

dorsal fin base 0.36 -0.09 -0.31 0.69 

caudal peduncle height 0.40 0.00 -0.11 -0.28 

eye diameter 0.33 -0.07 0.92 0.15 

eigenvalue 4.92 1.12 0.53 0.50 

proportion variation 0.6146 0.1401 0.0668 0.0630 
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Table 3.3.  F-values from analyses of variance on standard length of (A) age 0 and (B) age 1 

individuals.  Significant (p<0.05) factors are indicated in bold.  Habitat type refers to lake or 

stream.  Superscript refers to the term used in conjunction with the mean square error to generate 

the Satterthwaite approximation error degrees of freedom to calculate the F-value for that factor.  

 

A:  Age 0  

Term # Factor DF MS F P 

1 habitat type (HT)
8
 1 26.53 0.49 0.5039 

2 drainage (D)
8
 3 125.52 2.19 0.1673 

3 HT x D
8
 3 400.71 6.90 0.0138 

4 sex
9
 1 24.59 1.20 0.2975 

5 sex x HT
9
 1 19.21 0.94 0.3551 

6 sex x D
9
 3 10.10 0.50 0.6901 

7 sex x HT x D
9
 3 3.25 0.16 0.9179 

8 population (HT x D)
9
 8 56.96 2.84 0.0806 

9 sex x population (HT x D)
9
 8 20.06 0.84 0.5673 

10 error  282 23.86   
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Table 3.3 (cont.) 
B:  Age 1 

Term # Factor DF MS F P 

1 habitat type (HT)
8
 1 1285.07 7.86 0.0228 

2 drainage (D)
8
 3 358.99 2.21 0.1642 

3 HT x D
8
 3 599.40 3.62 0.0642 

4 sex
9
 1 1.14 0.04 0.8463 

5 sex x HT
9
 1 36.26 1.25 0.2949 

6 sex x D
9
 3 15.38 0.53 0.6735 

7 sex x HT x D
9
 3 8.43 0.29 0.8325 

8 population (HT x D)
9 

 8 169.33 5.74 0.0116 

9 sex x population (HT x D)
9
 8 29.48 1.56 0.1395 

10 error  179 18.89   
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Table 3.4.  F-values from analyses of variance on PC1 of (A) age 0 and (B) age 1 individuals.  

Significant (p<0.05) factors are indicated in bold.  Habitat type refers to lake or stream.  

Superscript refers to the term used in conjunction with the mean square error to generate the 

Satterthwaite approximation error degrees of freedom to calculate the F-value for that factor.  

 

A:  Age 0  

Term # Factor DF MS F P 

 

1 habitat type (HT)
8 

1 51.39 2.05 0.1895 

2 drainage (D)
8
 3 49.99 1.85 0.2170 

3 HT x D
8
 3 21.96 0.79 0.5307 

4 sex
9
 1 0.00 0.00 0.9729 

5 sex x HT
9
 1 0.83 0.44 0.5219 

6 sex x D
9
 3 3.58 1.89 0.2099 

7 sex x HT x D
9
 3 0.42 0.22 0.8784 

8 population (HT x D)
9
 8 26.91 14.26 0.0005 

9 sex x population (HT x D)
10

 8 1.89 1.14 0.3375 

10 error  278 1.66   
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Table 3.4 (cont.) 
B: Age 1 

Term # Factor DF MS F P 

1 habitat type (HT)
8
 1 0.34 0.03 0.8603 

2 drainage (D)
8
 3 88.95 8.56 0.0066 

3 HT x D
8
 3 6.52 0.62 0.6218 

4 sex
9
 1 52.61 7.69 0.0223 

5 sex x HT
9
 1 7.71 1.11 0.3227 

6 sex x D
9
 3 4.21 0.60 0.6298 

7 sex x HT x D
9
 3 9.88 1.41 0.3086 

8 population (HT x D)
9
 8 10.71 1.50 0.2884 

9 sex x population (HT x D)
10

 8 7.12 1.99 0.0505 

10 error  179 3.58  
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Table 3.5.  F-values from analyses of variance on PC2 of (A) age 0 and (B) age 1 individuals.  

Significant (p<0.05) factors are indicated in bold.  Habitat type refers to lake or stream.  

Superscript refers to the term used in conjunction with the mean square error to generate the 

Satterthwaite approximation error degrees of freedom to calculate the F-value for that factor.  

 

A:  Age 0  

Term # Factor DF MS F P 

1 habitat type (HT)
8
 1 4.54 0.62 0.4547 

2 drainage (D)
8
 3 2.44 0.31 0.8202 

3 HT x D
8
 3 10.94 1.35 0.3262 

4 sex
9
 1 1.99 2.96 0.1156 

5 sex x HT
9
 1 0.92 1.36 0.2723 

6 sex x D
9
 3 0.67 0.99 0.4436 

7 sex x HT x D
9
 3 1.04 1.55 0.2797 

8 population (HT x D)
9
 8 7.90 11.72 0.0011 

9 sex x population (HT x D)
9
 8 0.67 1.02 0.4229 

10 error  278 0.67   
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Table 3.5 (cont.) 
B:  Age 1 

Term # Factor DF MS F P 

1 habitat type (HT)
8
 1 21.64 3.71 0.0898 

2 drainage (D)
8
 3 4.94 0.85 0.5034 

3 HT x D
8
 3 4.74 0.80 0.5258 

4 sex
9
 1 0.09 0.13 0.7244 

5 sex x HT
9
 1 2.55 3.92 0.0800 

6 sex x D
9
 3 0.43 0.66 0.5973 

7 sex x HT x D
9
 3 0.13 0.19 0.8983 

8 population (HT x D)
9
 8 6.04 9.31 0.0024 

9 sex x population (HT x D)
9
 8 0.65 0.93 0.4929 

10 error  179 0.70   
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Table 3.6.  F-values from analyses of variance on PC3 of (A) age 0 and (B) age 1 individuals.  

Significant (p<0.05) factors are indicated in bold.  Habitat type refers to lake or stream.  

Superscript refers to the term used in conjunction with the mean square error to generate the 

Satterthwaite approximation error degrees of freedom to calculate the F-value for that factor.  

  

A:  Age 0  

Term # Factor DF MS F P 

1 habitat type (HT)
8
 1 15.93 15.03 0.0043 

2 drainage (D)
8
 3 1.44 1.28 0.3450 

3 HT x D
8
 3 2.84 2.49 0.1355 

4 sex
9
 1 0.78 1.17 0.3066 

5 sex x HT
9
 1 0.52 0.76 0.4059 

6 sex x D
9
 3 0.85 1.19 0.3747 

7 sex x HT x D
9
 3 0.83 1.14 0.3903 

8 population (HT x D)
9
 8 1.12 1.57 0.2685 

9 sex x population (HT x D)
9
 8 0.71 2.08 0.0374 

10 error  278 0.34   
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Table 3.6 (cont.) 
B:  Age 1 

Term # Factor DF MS F P 

1 habitat type (HT)
8
 1 7.67 5.69 0.0435 

2 drainage (D)
8
 3 0.68 0.51 0.6888 

3 HT x D
8
 3 1.30 0.96 0.4571 

4 sex
9
 1 2.28 5.32 0.0454 

5 sex x HT
9
 1 0.92 2.15 0.1784 

6 sex x D
9
 3 0.72 1.67 0.2430 

7 sex x HT x D
9
 3 1.48 3.45 0.0688 

8 population (HT x D)
9 

 8 1.39 3.22 0.0592 

9 sex x population (HT x D)
9
 8 0.43 1.04 0.4072 

10 error  179 0.41   
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Table 3.7.  F-values from analyses of variance on PC4 of (A) age 0 and (B) age 1 individuals.  

Significant (p<0.05) factors are indicated in bold.  Habitat type refers to lake or stream.  

Superscript refers to the term used in conjunction with the mean square error to generate the 

Satterthwaite approximation error degrees of freedom to calculate the F-value for that factor.  

 

A:  Age 0  

Term # Factor DF MS F P 

1 habitat type (HT)
8
 1 1.50 0.74 0.4156 

2 drainage (D)
8
 3 3.79 1.73 0.2375 

3 HT x D
8
 3 2.05 0.92 0.4740 

4 sex
9
 1 0.66 1.49 0.2530 

5 sex x HT
9
 1 0.02 0.04 0.8399 

6 sex x D
9
 3 0.05 0.11 0.9497 

7 sex x HT x D
9
 3 0.14 0.28 0.8364 

8 population (HT x D)
9
 8 1.12 1.57 0.2685 

9 sex x population (HT x D)
9
 8 2.18 4.62 0.0222 

10 error  278 0.47   
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Table 3.7 (cont.) 
B:  Age 1 

Term # Factor DF MS F P 

1 habitat type (HT)
8
 1 0.29 0.12 0.7422 

2 drainage (D)
8
 3 3.32 1.35 0.3258 

3 HT x D
8
 3 3.13 1.25 0.3551 

4 sex
9
 1 10.23 14.09 0.0047 

5 sex x HT
9
 1 1.30 1.76 0.2201 

6 sex x D
9
 3 0.19 0.26 0.8518 

7 sex x HT x D
9
 3 0.34 0.45 0.7216 

8 population (HT x D)
9 

 8 2.57 3.41 0.0511 

9 sex x population (HT x D)
9
 8 0.75 1.82 0.0761 

10 error  179 0.41   
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Chapter 4: Fin size and shape in Fundulus notatus 
 

 

Abstract 

In fish, the anal and dorsal fins serve multiple functions, including those related to 

swimming, mate attraction, and reproduction.  As such, they are likely to be targets of 

both natural and sexual selection.  Many fish species occupy different habitats, yet how 

environmental differences influence these “multi-use” traits is largely unknown.  Here, 

we examine the size and shape of the anal and dorsal fin in the blackstripe topminnow, 

Fundulus notatus, from lake and stream habitats across multiple ages and sexes, this 

allowing us to simultaneously examine the effects of habitat, sexual selection (as 

indicated by sexual dimorphism), and age on fin size and shape.  Our results found no 

effect of habitat.  Rather, the size and shape of anal and dorsal fins is a result of sexual 

dimorphism.  Males have a longer and more pointed anal fin and longer, larger, and a 

more pointed dorsal fin than females and these appeared almost exclusively in the older 

age class.  Additionally, the angle of these fins are tightly correlated among both males 

and females suggesting that these fins follow a similar growth trajectory as individuals 

become sexually mature.  Together these results suggest that, despite the multiple roles of 

these fins, sexual selection is the predominant force determining fin size and shape 

differences in F. notatus.   
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Introduction 

Many species possess traits that serve several functions.  The colored dewlaps in some 

anoles, for instance, are involved in both species recognition and mate attraction (Ng et 

al. 2013).  The size and shape of such traits often reflect the diverse tasks in which they 

are used.  Tail feather size was originally shaped by natural selection acting on flying 

ability, although it was then increased through mate choice (Rowe et al. 2001).  

Similarly, tail shape in hummingbirds seems to be impacted by both natural and sexual 

selection (Bleiweiss 2009).  Thus, studies exploring variation in such traits can offer rich 

insights into the functional and adaptive significance of multi-use traits. 

The anal and dorsal fins are two traits in fish that may be particularly enlightening 

because they serve multiple functions that likely have strong fitness consequences.  First, 

these fins are typically involved in fish movement and stability.  Fish actively manipulate 

the size and shape of the dorsal and anal fins to aid in stabilization and maneuverability 

(Drucker and Lauder 2001, Webb 2006, Standen and Lauder 2007).  Second, the dorsal 

and anal fins also frequently function in mate attraction and competitive displays.  Males 

of many species often flare or flash their fins as part of their courtship activities or during 

male-male interactions (Foster 1967, Robinson et al. 2011).  Finally, the fins play a role 

in reproductive success by assisting in fertilization.  Some species contain modified fin 

rays that essentially act like hooks, allowing a male to cling to a female (Kottelat and Lim 

1999).  In other species, the two sexes will fold their anal fins in such a way as to create a 

“funnel” that is believed to help place the eggs on a substrate or ensure that sperm 

fertilize the eggs (Carranza and Winn 1954, Foster 1967).        
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   Despite these multiple roles, surprisingly little is known about the variation that 

exists in these fins or how differences in environmental factors may affect them.  Lake 

and stream habitats are ideal for pursuing such a question because fish in these 

environments likely face very different selective pressures due to differences in several 

ecological characteristics (Jackson et al. 2001).  Streams have faster water velocities than 

lakes, which has strong implications for movements/maneuverability and stabilization.  

Many lakes- including those in this study- contain higher predator abundances because of 

stocking programs that introduce large piscivorous game fish into lakes (Larimore and 

Bayley 1996).  This may impose strong selection on a fin size or shape that could enable 

fish to perform “fast start” responses (Tytell and Lauder 2008, Blake et al. 2009), which 

is often used to avoid predators (Webb 1984).  

Here, we examine the size and shape of the anal and dorsal fin in the blackstripe 

topminnow, Fundulus notatus, from lake and stream habitats.  We examined both males 

and females.  The original species description of F. notatus indicates that males and 

females differ in anal and dorsal fin shape with males having pointed anal and dorsal fins 

and females having rounded fins.  In another morphometric study, we measured and 

compared anal and dorsal fin base lengths (but not fin shape and size) and found that the 

base lengths differed between the sexes and age-classes, but did not differ as a function of 

habitat (Welsh et al. 2013).   

Our study here allows us to examine the effects of habitat, sexual selection (as 

indicated by sexual dimorphism), and age on anal and dorsal fin size and shape.  If 

aspects of the habitat (water velocity, predation, etc.) are an important source of selection 

on the size or shape of the anal and dorsal fins, then we would expect to see a significant 
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difference between lake and stream populations.  Similarly, if courtship/fertilization is an 

important source of selection on fin size or shape, we would expect to see a significant 

difference between the sexes.  An interaction between sex and habitat would be 

consistent with different environments altering the direction of sexual selection.  We also 

examined the effect of age to determine if these patterns differ as a function of 

development.  Finally, we examined correlations between anal and dorsal fin traits to 

determine whether the two are tightly integrated or whether they vary independently of 

one another.  

 

Methods 

Study system and field collection 

Blackstripe topminnows were collected from stream and man-made lake sites in east 

central Illinois.  Lake Decatur, Weldon Springs State Park, and Homer Lake are 

reservoirs (that is, they were constructed by impounding adjacent streams/rivers and 

contain a dam that periodically releases water).  The other lakes were pits created for 

human activity (drainage, mining, etc.) and then later filled in with water.  While we do 

not know the exact year most of these were created, there were no lakes in central Illinois 

until the construction of the first reservoirs in the early 1900s (Smith 2002), and, thus, all 

of the sites were filled with water within the past 100 years (most likely within the past 

50 years).  To minimize the potential for gene flow between lake and stream populations 

to confound results, we tried to avoid sampling where the two habitat types met (i.e. 

below a dam or at the inlet/outlet of a lake).  In total, twelve sites (six lakes and six 

streams) were sampled (Table 4.1).  Topminnows were collected with seines and dip nets 

from late August until mid October in 2010.    
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Measurements 

Upon returning from the field, fish were euthanized with an overdose of MS-222, 

preserved in formalin, and later transferred to 70% ethanol.  After all sites were visited, 

individuals were measured for body size, aged, and sexed.  Size was determined using 

standard length measured to the nearest tenth of a millimeter with Vernier calipers, aging 

was done to the nearest year using growth rings on their scales observed under light 

microscopy (DeVries and Frie 1996), and sex determination was done visually by 

examining lateral line patterning and black markings on the fins: males have more 

pronounced vertical black barring along their sides and more small black spots 

(“speckles”) on their fins than females (Carranza and Winn 1954, Welsh in review).    

 Anal and dorsal fins were carefully removed from each specimen by cutting along 

the base of the fin as close to the body as possible using dissection scissors.  Each fin was 

then photographed using a Zeiss AxioCam ICc1 camera connected to a dissecting 

microscope.  Each photograph contained a grid of 1 mm x 1 mm lines in the background 

for calibration.  From each photograph, size and shape measurements of both the anal and 

dorsal fins were then determined using Zeiss AxioVision (v. 4.8.2) or ImageJ (v. 1.44).  

Three separate traits were measured on each fin (Figure 4.1):  (1) the length of the fin 

base, which was measured as a straight line from the front of the first (most anterior) fin 

ray to the back edge of the last (most posterior) ray, (2) the surface area of the fin, as 

measured by tracing around the entire fin using the “outline” feature, and (3) the angle 

between the longest fin ray and the adjacent ray on either side (anterior and posterior to 

the longest ray).  The angle is used as a quantitative description of the “pointedness” of 

the fin (which has up until now only been qualitatively described as “pointed” or 
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“rounded”- see Carranza and Winn 1954): a smaller (more acute) angle is more pointed 

than a larger (more obtuse) angle.   

 

Statistical Analysis 

Individuals were classified into age classes corresponding to the number of full years 

they completed (i.e. age 0 are those individuals less than 1 year of age, age 1 are 

individuals over 1 year of age but less than 2, etc.).  Throughout all analyses, we only 

considered individuals in age classes 0 and 1 because only about half of the populations 

contained individuals beyond the age 2 year class.  Also, all individuals less than about 

32 mm were excluded from the analysis. Below this size it is difficult to distinguish 

immature males from females (Welsh in review) (see Table 4.1 for sample sizes).    

Because these traits are influenced by the size of an individual, we first accounted 

for body size by regressing base length, surface area, and angle against standard length.  

We then analyzed the residuals separately in a generalized linear model.  We modeled the 

effects of sex, habitat, and population nested within habitat, and all their interactions.  

Because fish from the same population may not be independent samples, we used 

population or the interaction with population as the error term to test effects.  In other 

words, habitat was tested over population and the effects of sex and its interactions with 

the other effects were tested over sex*population(habitat).  Rather than delete many 

populations from an analysis in order to include age as a factor, we chose to analyze the 

data separately for each age class.  To be conservative, we only considered those 

populations that had at least 2 individuals of both sexes for a particular age; however, the 

results are robust enough that they are qualitatively the same even if analyses were 
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expanded to populations containing at least 1 individual of both sexes for a particular age.  

This caused us to delete 4 populations (Lake Decatur, Long Lake, Kaufman Park, and 

Nursing Creek) from the anal and dorsal fin age class 0 analyses, 1 population (Philip’s 

Tract) from the anal fin age class 1 analysis, and 3 populations (Long Lake, Lake 

Decatur, and Philip’s Tract) from the dorsal fin age class 1 analysis. 

We also considered the extent to which traits were correlated with one another.  

We measured Pearson correlation coefficients amongst all the individuals we had 

measured for both the raw trait values and the size-corrected traits.  We then compared 

correlations among size-corrected traits for each age and sex.  Because of tight 

correlations between angles for both fins (see Results below), we also calculated the 

coefficient of variation (CV) for the raw dorsal and anal fin angles to see if these 

correlations have resulted in low variability.  CV is the ratio of the standard deviation to 

the mean and describes the dispersion (variability) of a trait.  CV was calculated 

separately for each sex and age class.  All analyses were performed in SAS V.2 (Cary, 

NC).   

 

Results 

Effects of Sex, Habitat, and Population on Individual Traits 

Habitat had no effect on any aspect of anal or dorsal fin size or shape.  Instead, 

differences were a result of sexual dimorphism, primarily among the older age class (i.e. 

age class 1) (Tables 4.2-4.7).  Specifically, males had a longer anal fin base length and 

smaller (more acute) anal fin angle than females.  Similarly, for the dorsal fin, males had 

a longer base length, larger surface area, and smaller angle (Figure 4.2).  Differences in 
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the angle were the only trait that appeared in the earlier age class and the pattern was the 

same as for age class 1 (i.e. males had a smaller angle than females).   

 

Correlations Among Traits 

There were strong correlations among raw trait values that were mediated by size.  Table 

4.8 shows the raw correlations among all individuals.  Anal fin base length, anal fin 

surface area, dorsal fin base length, and dorsal fin area were positively correlated with 

size.  In contrast, neither anal fin angle nor dorsal fin angle were tightly correlated with 

size, but they were tightly correlated with one another.   

 After controlling for standard length, functional within-trait relationships 

remained.  For example, dorsal fin surface area was generally positively correlated with 

dorsal fin base length.  More interesting was the relationship that emerged between dorsal 

and anal fin angles.  Even after controlling for standard length, dorsal fin and anal fin 

angle remained tightly correlated with one another (Table 4.9, Figure 4.3).  The tight 

correlation emerged both among age 1 males and females suggesting that the relationship 

arises due to variation among individuals within each sex as opposed to arising simply 

due to variation among the sexes  (Figure 4.4, age Class 1 - males: R = 0.677, p = 0.0001, 

n = 27; females: R = 0.709, p = 0.0003, n = 21).  For age class 0, the relationship between 

dorsal and anal fin angle was positive for females but not statistically significant (R = 

0.201, p = 0.510, n = 13).  For males, the relationship differed between habitats.  In 

streams, anal fin angle and dorsal fin angle tended to be positively correlated (R = 0.385, 

p = 0.272, n = 10).   However, there was a negative correlation between dorsal angle and 



 90 

anal angle for age 0 males from the lake habitat (Figure 4.4a, R = -0.974, p = 0.0010, n = 

6).  

 

Coefficient of Variation 

Males had a higher variability (i.e. greater coefficient of variation) in both anal and dorsal 

fin angle (Table 4.10).  Interestingly, the amount of variation differed between the sexes 

across the two age classes- male variation was greater in the older age class whereas 

female variation decreased with age.  This pattern was consistent for both fins.   

 

Discussion 

The size and shape of anal and dorsal fins of the blackstripe topminnow is a result of 

sexual dimorphism.  Differences in size and shape appeared almost exclusively in the 

older age class (age class 1).  Males have a longer and more pointed anal fin and longer, 

larger, and a more pointed dorsal fin than females.  Differences between the sexes in both 

of these fins are known from other species, and are often hypothesized to exist because of 

either male-male competition or to attract mates and enhance reproductive success 

(Oliveira and Almada 1995, Kottelat and Lim 1999, Hankison et al. 2006, McGrath and 

Hilton 2011).  In F. notatus, these differences are believed to be due to their sex-specific 

uses in courtship and spawning (Carranza and Winn 1954, Foster 1967).  

The shape of the dorsal and anal fins (i.e. the angle) is tightly correlated, 

particularly among age 1 individuals.  This is present among both males and females 

suggesting that it is genuine and not simply due to large discrepancies between males and 

females.  This suggests that anal and dorsal fins follow a similar growth trajectory as 

individuals become sexually mature, which likely reflects the strong developmental 
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integration of endo- and exoskeletal patterning that exists in fishes (Mabee et al. 2002).  

There were no other consistently strong relationships between elements of different fins.  

These two fins are correlated in triggerfish as well, although the aspects of shape in 

triggerfish are primarily due to the length and height of the fins and not the angle 

(Dornburg et al. 2011).  Whether tight correlations are a general principle of fish fins is 

unknown, as very few studies have explicitly examined for correlations between anal and 

dorsal fins.      

Despite the strong correlations between anal and dorsal fin angles in F. notatus, 

these traits still exhibit substantial variation, as evidenced by the coefficients of variation.  

Males had higher amounts of variation than females and their variation increased with 

age (whereas it decreased with age for females).  Coefficients of variation have been used 

to infer the potential for the traits to respond to selection in the future (Houle 1992).  The 

correlation between dorsal and anal fin angle could conceivably result from either (a) 

correlated selection favoring pointed dorsal and anal fins or (b) a common genetic basis 

such as pleiotropy.  Selection analyses and breeding studies are required to resolve these 

options.   

Surprisingly, habitat did not strongly affect the size and shape of either fin.  There 

was no difference in either fins’ size or shape between lakes and streams.  Blackstripe 

topminnows may respond behaviorally such that they are not faced with high water 

velocities.  Other species are known to alter their activity in response to changes in flow, 

often by seeking out refugia (reviewed in Liao 2007).  In the field, topminnows are 

almost never seen in the main stem of streams and rivers but, rather, are primarily 

observed in shallow pools and side coves (personal observations).  This microhabitat 
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preference may also help them avoid the predatory fish, as these larger fish tend to be 

found in deeper water.  Therefore, while lakes and streams differ in many potential 

selective pressures, F. notatus may have overcome these differences through behavioral 

responses.  Alternatively, differences between habitats may show up on “real-time” 

analyses (i.e. using high speed video recordings of live fish).  Several species of fish have 

found that they are actively able to alter the shape of their fins while swimming (Lauder 

and Drucker 2004) and, thus, it may be that effects of habitat would appear in 

biomechanical studies of living individuals.  This would be an interesting area to pursue 

for future studies, but would not explain the lack of a difference found in the size of the 

fins.   
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Figures 

 
Figure 4.1.  Traits measured on each fin.  Surface area not shown. 
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Figure 4.2.  Sexual dimorphism of (A) residual base length, (B) residual surface area, 

and (C) residual angle of the anal and dorsal fins in age class 1.  Error bars are ± 1 

standard error.  Please note the change in y-axis scale.  All comparisons are significant 

except for the residual surface area of the anal fin.   
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Figure 4.3.  The relationship between residual dorsal fin angle and residual anal fin 

angle.   
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Figure 4.4.   The relationship between residual dorsal fin angle and residual anal fin 

angle for each combination of age and habitat.   
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Tables 

Table 4.1.  Number of specimens collected at each site that was of the appropriate size 

for use in the analyses.  Note that for some specimens, not every measurement of the fin 

was possible because of damage to the fins and, thus, sample sizes for a population for a 

particular analysis may be lower than the numbers shown here. 
Site Habitat Type 

 

Total Specimens Age Class Sex 

   0 1  Male Female 

Homer 

Lake 

Lake 

 

15 7 8  8 7 

Clear 

Lake, 

Kickapoo 

State Park 

Lake 

 

15 8 5  9 6 

Long Lake, 

Kickapoo 

State Park 

Lake 

 

12 1 11  9 3 

Philip’s 

Tract 

Stream 9 6 3  6 3 

Salt Fork  Stream 13 9 4  6 7 

Kaufman 

Park 

Lake 

 

13 0 13  5 8 

Nursing 

Creek 

Stream 9 1 8  5 4 

Antique 

Creek 

Stream 15 1

1 

4  10 5 

Weldon 

Springs 

State Park 

Lake 

 

27 1

5 

12  18 9 

Lake 

Decatur 

Lake 

 

11 0 8  5 3 

Kickapoo 

Creek 

Stream 19 8 11  8 11 

Steven’s 

Creek  

Stream 20 7 13  9 11 
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Table 4.2.  Analyses of variance on residual anal fin base length of (A) age 0 and (B) age 

1 individuals.  Significant (p<0.05) factors are shown in bold.  Superscript refers to the 

term used in conjunction with the mean square error to generate the Satterthwaite 

approximation error degrees of freedom to calculate the F-value for that factor.  

 

A)  Age 0  

Term # Factor df  MS F P 

1 habitat type (HT)
4
 1 0.240 0.10 0.7659 

2 sex
5
 1 1.427 2.96 0.1553 

3 sex x HT
5
 1 0.872 1.82 0.2473 

4 population (HT)
5
 5 2.273 4.66 0.0584 

5 sex x population (HT)
6
 5 0.488 0.84 0.5289 

6 error 49 0.582   

 

B)  Age 1 

Term # Factor df  MS F P 

1 habitat type (HT)
4
 1 0.008 0.03 0.8667 

2 sex
5 

 1 5.078 18.40 0.0010 

3 sex x HT
5
 1 0.0001 0.00 0.9875 

4 population (HT)
5
 8 0.260 1.03 0.4821 

5 sex x population 

(HT)
6
 

8 0.252 0.55 0.8134 

6 error 53 0.454   
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Table 4.3.  Analyses of variance on residual anal fin surface area of (A) age 0 and (B) 

age 1 individuals.  Significant (p<0.05) factors are shown in bold.  Superscript refers to 

the term used in conjunction with the mean square error to generate the Satterthwaite 

approximation error degrees of freedom to calculate the F-value for that factor.  

 

A)  Age 0  

Term # Factor df  MS F P 

1 habitat type (HT)
4
 1 12.169 0.28 0.6169 

2 sex
5
 1 1.183 0.05 0.8300 

3 sex x HT
5
 1 26.899 1.15 0.3350 

4 population (HT)
5
 5 39.483 1.81 0.2660 

5 sex x population (HT)
6
 5 21.855 4.89 0.0011 

6 error 48 4.469   

 

B)  Age 1 

Term # Factor df  MS F P 

1 habitat type (HT)
4
 1 38.935 3.16 0.1078 

2 sex
5 

 1 13.687 1.26 0.2890 

3 sex x HT
5
 1 2.089 0.19 0.6707 

4 population (HT)
5
 8 12.819 1.15 0.4257 

5 sex x population (HT)
6
 8 11.181 1.34 0.2397 

6 error 67 8.347   
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Table 4.4.  Analyses of variance on residual anal fin angle of (A) age 0 and (B) age 1 

individuals.  Significant (p<0.05) factors are shown in bold.  Superscript refers to the 

term used in conjunction with the mean square error to generate the Satterthwaite 

approximation error degrees of freedom to calculate the F-value for that factor.  

 

A)  Age 0   

Term # Factor df  MS F P 

1 habitat type (HT)
4
 1 222.965 0.63 0.5012 

2 sex
5
 1 16435 48.59 0.0049 

3 sex x HT
5
 1 1678.425 5.16 0.1122 

4 population (HT)
5
 5 453.035 1.34 0.4238 

5 sex x population (HT)
6
 4 365.326 0.32 0.8619 

6 error 33 1138.343   

 

B)  Age 1 

Term # Factor df  MS F P 

1 habitat type (HT)
4
 1 1160.993 3.41 0.0899 

2 sex
5 

 1 50236 59.43 <0.0001 

3 sex x HT
5
 1 1135.940 1.34 0.2752 

4 population (HT)
5
 8 300.377 0.36 0.9175 

5 sex x population (HT)
6
 8 844.531 0.99 0.4571 

6 error 50 855.326   
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Table 4.5.  Analyses of variance on residual dorsal fin base length of (A) age 0 and (B) 

age 1 individuals.  Significant (p<0.05) factors are shown in bold.  Superscript refers to 

the term used in conjunction with the mean square error to generate the Satterthwaite 

approximation error degrees of freedom to calculate the F-value for that factor.  

 

A)  Age 0  

Term # Factor df  MS F P 

1 habitat type (HT)
4
 1 0.005 0.01 0.9316 

2 sex
5
 1 0.328 0.31 0.6041 

3 sex x HT
5
 1 1.127 1.06 0.3614 

4 population (HT)
5
 5 0.624 0.62 0.6945 

5 sex x population (HT)
6
 5 1.009 1.49 0.2122 

6 error 44 0.689   

 

B)  Age 1 

Term # Factor df  MS F P 

1 habitat type (HT)
4
 1 0.024 0.04 0.8415 

2 sex
5 

 1 6.327 11.14 0.0135 

3 sex x HT
5
 1 0.128 0.22 0.6511 

4 population (HT)
5
 6 0.548 0.95 0.5230 

5 sex x population (HT)
6
 6 0.575 1.27 0.2889 

6 error 53 0.454   
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Table 4.6.  Analyses of variance on residual dorsal fin surface area of (A) age 0 and (B) 

age 1 individuals.  Significant (p<0.05) factors are shown in bold.  Superscript refers to 

the term used in conjunction with the mean square error to generate the Satterthwaite 

approximation error degrees of freedom to calculate the F-value for that factor.  

 

A)  Age 0  

Term # Factor df  MS F P 

1 habitat type (HT)
4
 1 20.148 0.89 0.3904 

2 sex
5
 1 7.649 0.55 0.4953 

3 sex x HT
5
 1 13.790 0.96 0.3763 

4 population (HT)
5
 5 20.128 1.54 0.3224 

5 sex x population (HT)
6
 5 13.030 3.16 0.0164 

6 error 41 4.122   

 

B)  Age 1 

Term # Factor df  MS F P 

1 habitat type (HT)
4
 1 8.241 0.55 0.4853 

2 sex
5 

 1 132.326 28.34 0.0010 

3 sex x HT
5
 1 2.439 0.53 0.4911 

4 population (HT)
5
 6 15.244 3.40 0.0812 

5 sex x population (HT)
6
 6 4.490 0.58 0.7429 

6 error 55 7.711   
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Table 4.7.  Analyses of variance on residual dorsal fin angle of (A) age 0 and (B) age 1 

individuals.  Significant (p<0.05) factors are shown in bold.  Superscript refers to the 

term used in conjunction with the mean square error to generate the Satterthwaite 

approximation error degrees of freedom to calculate the F-value for that factor.  

 

A)  Age 0  

Term # Factor df  MS F P 

1 habitat type (HT)
4
 1 3612.96 5.54 0.0769 

2 sex
5
 1 6603.643 12.62 0.0226 

3 sex x HT
5
 1 1335.220 2.59 0.1847 

4 population (HT)
5
 5 680.908 1.24 0.4108 

5 sex x population (HT)
6
 5 550.813 0.47 0.7932 

6 error 20 1169.013   

 

B)  Age 1 

Term # Factor df  MS F P 

1 habitat type (HT)
4
 1 308.511 1.18 0.3137 

2 sex
5 

 1 16427 12.53 0.0149 

3 sex x HT
5
 1 54.665 0.04 0.8458 

4 population (HT)
5
 5 231.504 0.17 0.9608 

5 sex x population (HT)
6
 5 1324.597 1.35 0.2693 

6 error 33 983.331   
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Table 4.8.  Overall correlations between standard length (SL), anal fin angle, anal fin base length, anal fin surface area, dorsal fin 

angle, dorsal fin base length, and dorsal fin surface area. Pearson's correlation coefficients, p-values, and sample sizes are listed.  P-

values less than 0.0001 are listed in bold. 

  SL 

Anal 

Angle 

Anal Base 

Length 

Anal 

Surface 

Area 

Dorsal 

Angle 

Dorsal 

Base 

Length 

Dorsal 

Surface 

Area 

1 -0.11716 0.76248 0.8849 -0.21991 0.67616 0.74029 
SL 

  (0.2064) (<.0001) (<.0001) (0.0313) (<.0001) (<.0001) 

  118 158 153 96 146 141 

  1 -0.2089 -0.1447 0.58535 -0.12391 -0.14826 
Anal Angle 

    (0.0238) (0.1196) (<.0001) (0.1971) (-0.1275) 

   117 117 77 110 107 

    1 0.76708 -0.23431 0.64758 0.64283 Anal Base 

Length       (<.0001) (0.0223) (<.0001) (<.0001) 

    153 95 144 139 

      1 -0.22833 0.64272 0.74697 Anal Surface 

Area         (0.026) (<.0001) (<.0001) 

     95 141 136 

        1 -0.30247 -0.30984 
Dorsal Angle 

          (0.003) (0.0022) 

      94 95 

          1 0.81093 Dorsal Base 

length             (<.0001) 

       139 

      1 Dorsal 

Surface Area               
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Table 4.9.  Correlations among size corrected anal fin angle, anal fin base length, anal fin 

surface area, dorsal fin angle, dorsal fin base length, and dorsal fin surface area across all 

individuals.  Pearson's correlation coefficients, (p-values), and sample sizes are listed. P-values 

less than 0.0001 are listed in bold. 

  
anal angle 

residual 

anal base 

length 

residual 

anal 

surface 

area 

residual 

dorsal 

angle 

residual 

dorsal base 

length 

residual 

dorsal 

surface 

area 

residual 

1 -0.19119 -0.09579 0.58195 -0.11357 -0.13336 

 (0.0389) (0.3042) (<.0001) (0.2375) (0.1709) 

anal angle 

residual 

 117 117 77 110 107 

 1 0.2671 -0.10674 0.27102 0.18161 

  (0.0008) (0.3032) (0.001) (0.0324) 

anal base 

length 

residual     153 95 144 139 

    1 -0.08093 0.13211 0.31404 

   (0.4356) (0.1184) (0.0002) 
anal surface 

area residual 
      95 141 136 

      1 -0.22254 -0.22043 

    (0.0311) (0.0318) 
dorsal angle 

residual 
        94 95 

        1 0.62514 

     (<.0001) 
dorsal base 

length 

residual           139 

          1 dorsal 

surface area 

residual 
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Table 4.10.  Coefficients of variation (CV) of the angle of each fin for both sexes across the two 

age classes. 

Fin Sex Age CV 

Anal Female 0 24.98 

 
 

 1 17.17 

 Male 0 33.85 

  1 40.00 

Dorsal Female 0 24.89 

  1 16.73 

 Male 0 33.19 

  1 38.91 
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Chapter 5: Genetics and water velocity on size and shape of 

Fundulus notatus 

 

 

Abstract 

Phenotypic differences between populations of the same species occupying different habitats are 

common and could reflect phenotypic plasticity and/or genetic differentiation between different 

populations.  Body size and shape are common phenotypic differences in fish that vary among 

habitats.  Here, we explored whether body size and in the blackstripe topminnow, Fundulus 

notatus, is a result of genetic differentiation and/or phenotypic plasticity.  We created families 

from lake and stream parents and reared offspring under both moving water (lotic) and still water 

(lentic) conditions to explore the role of genetics and water velocity on size and shape.  We 

found that both genetics and sex-specific responses to water velocity influence body size.  Dorsal 

fin length showed a complex interaction between genetics and water velocity that was 

independent of sex.  Both genetics and phenotypic plasticity result in pattern where stream fish 

(regardless of rearing environment) and lake fish raised in the lotic environment have a longer 

dorsal fin base than lake fish raised in the lentic environment.  The caudal fin aspect ratio was 

the only aspect of body shape that showed a difference among the sexes.  Interestingly, lake fish 

exhibit greater phenotypic plasticity than stream fish.  These patterns offer new sights into the 

processes driving phenotypic differences in fish.                 
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Introduction 

Phenotypic differences between populations of the same species occupying different habitats are 

common.  These differences could reflect phenotypic plasticity and/or genetic differentiation.  

Plasticity, which is the ability of an organism to express different phenotypes depending on the 

environment it is in, is a widespread occurrence in nature (Travis 1994).  Sex-specific differences 

in phenotypic plasticity are also known in several taxa (Stillwell and Davidowitz 2010).  

However, not all traits may show phenotypic plasticity, as the ability to be plastic may have 

fitness related costs (Relyea 2002).  As such, differences that exist can be due simply to genetic 

divergence between different populations.   

Fish body size and shape are good traits to focus on when examining phenotypic 

plasticity and genetic differences.  Many species grow faster under moving water (Nicoletto 

1996, Azuma et al. 2002, Grünbaum et al. 2007), suggesting plasticity.  However, differences in 

body size and shape due because of genetic differences have also been found between stream and 

lake habitats in several species of fish (Skúlason et al. 1996, Thompson et al. 1997, Albert et al. 

2008).  Body size and shape in fish may reflect adaptation to the environment.  Both size and 

shape have strong effects on an individual’s maneuverability in many species and, because of 

this, are believed to be targets for selection (Walker 1997, Fraser et al. 2011).   

Changes in flow regime impact a fish’s body size and shape (Webb 1984, Pakkasmaa and 

Piironen 2001, Langerhans 2008, Sagnes and Statzner 2009).  Many studies have documented 

differences in body size and/or shape between lakes and streams (Hendry et al. 2002, McGuigan 

et al. 2003, Neat et al. 2003, Collin and Fumagalli 2011, Welsh et al. 2013).  As mentioned 

previously, water velocity is known to affect fish body size through impacts on growth, although 

the results seem to be inconsistent- some fish reared under moving water growing faster (and 
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attained larger body size) than those raised in still water (Davison 1997, Grünbaum et al. 2007) 

whereas other studies have shown no effect (or a negative effect) of stream speed on growth rates 

(Bhagat et al. 2006, Páez et al. 2008, Fischer-Rousseau et al. 2010).  With regard to body shape, 

individuals in high water velocities are predicted to be narrower and shallower (“more 

streamlined”) when compared to those in low velocities (Langerhans 2008).  Again, however, 

other species either show no difference in shape or the opposite pattern (Pakkasmaa and Piironen 

2001, McGuigan et al. 2003, Neves and Monteiro 2003, Krabbenhoft et al. 2009).  The caudal 

fin is predicted to vary based on flow regime, with a larger aspect ratio (larger ratio of height to 

surface area) in high flow environments because it aids in thrust while minimizing drag, which is 

beneficial for prolonged periods of swimming (Langerhans 2008) and research in other fish 

species have found evidence that water velocity induces changes that are a result of phenotypic 

plasticity (Imre et al. 2002).  The dorsal and anal fins may also vary, as biomechanical studies 

have found them to be utilized during swimming for stabilization and maneuverability (Lauder 

and Drucker 2004, Standen and Lauder 2007), and water velocity alters the development of 

median fin development in newly hatched salmonids (Cloutier et al. 2010).    

 In the blackstripe topminnow, Fundulus notatus, fish differ in body size (and to a lesser 

extent shape) between lakes and streams (Welsh et al. 2013).  In particular, individuals from 

streams have a larger body size.  This pattern was substantiated in a comparative study 

examining the Fundulidae family (Chapter 2).  Differences in body shape are mainly due to 

sexual dimorphism, but stream fish were found to have a longer dorsal fin base than lake fish.  

Such across population patterns are highly intriguing for evolutionary ecologists because they 

raise two questions.  The first question is what ultimate (i.e. selective) forces gave rise to these 

patterns.  Lakes and streams differ in a number of attributes including water velocity, predation, 
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and prey types that might generate selection on body size/shape.  The second question that arises 

is whether population differences are due to genetic differentiation, phenotypic plasticity, or a 

combination of the two?  This study addresses the latter question.  Specifically, the goals of this 

experiment are to determine the extent to which variation in body size and shape in the 

blackstripe topminnow is affected by genetics and/or water velocity and whether these patterns 

are consistent across the sexes.   

 

Methods 

Experimental Design 

Wild caught individuals from one lake (Long Lake in Kickapoo State Park) and one stream (a 

tributary of the Salt Fork of the Vermilion River) were collected in May and June of 2012.  Ten 

lake and ten stream families were then created by placing one male and one female from the 

same location into a 20 L tank containing a sponge filter and 4-6 yarn “mops” for spawning 

substrate.  Two or three mops were attached to PVC pipe to let it sink to the bottom of the tank 

and the others were attached to small Styrofoam balls to act as floating substrate.  To encourage 

egg production, fish were fed ad libitum 1-2 times per day with a mixture of Tetramin flake food 

and frozen brine shrimp (Artemia spp).  Each tank was checked 1-2 times per day for eggs.  The 

eggs were then placed into a small, labeled plastic container with water.  Pairs were kept together 

until about 20 eggs were obtained or no new eggs were produced for five successive days.   

 Once eggs hatched, offspring (fry) were kept in the plastic container until the yolk was 

fully absorbed and they started to feed exogenously (usually 7-10 days after hatching).  Fry were 

fed live brine shrimp nauplii ad libitum once per day.  Once the fry were feeding exogenously, 

ten of each family were haphazardly collected and assigned to one of two water velocity 

treatments: lentic (still water) or lotic (moving water).  The lentic treatment was created by 
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setting up 10 L aquaria with a sponge filter but otherwise no water flow.  The lotic treatment was 

created by setting up 10 L aquaria with a sponge filter and a Maxi-Jet 600 power head to 

generate water flow.  This power head was chosen because it has an output of 160 gallons per 

hour (605 liters per hour), resulting in the strongest current of about 0.4 cm/s (as measured by a 

Hontzsch HFA flow meter), which is similar to the highest water velocity experienced by 

topminnows in the streams in the area.  The power head contained a pre-filter sponge over the 

intake to reduce fry mortality due to the suction of the power head.    

To prevent overly stressing the fry, the flow was gradually introduced into the tank by 

connecting the power head to a timer.  The introduction consisted of 5 days of no flow (to ensure 

that they were feeding in their tanks and no mortality occurred from the transfer into the tank) 

followed by 3 week periods of increasing duration of flow (1 hour, 2 hours, 4 hours, 6 hours, 12 

hours).  This was designed to mimic the natural exposure that this species likely faces, as eggs 

and fry in both lakes and streams are typically found in shallow, side pools/coves that are fairly 

stagnant (Welsh personal observation, Foster 1969) and even adults are not typically found in the 

parts of a stream with the strongest velocity (Welsh personal observation, Carranza and Winn 

1954, Foster 1969).  Fry were fed a diet that changed as they grew, starting with live brine 

shrimp nauplii and then transitioning to frozen Daphnia and, eventually, frozen brine shrimp and 

flake food.  In order to try to minimize size differences between tanks and treatments simply due 

to differences in amount of food, food was given in set amounts of 1.5 mL of the food per fish in 

the tank once per day.  To assess how many fish were in the tank (i.e. account for any mortality), 

a quick “head count” was done during every feeding and a more thorough consensus was 

performed every 1-2 months.                 
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 Offspring were maintained in the lab under the rearing conditions for 7 months.  This 

duration was chosen because this was the time it took them to reach about 32 mm in size 

(standard length), which is the smallest size at which sexually dimorphic morphometric traits 

typically appear (mainly the pattern on the black stripe on the side and on the fins- see Carranza 

and Winn 1954, Welsh in review).  Once offspring reached 7 months of age, they were removed 

from their tank, sexed, and their right side photographed on a 1 mm by 1 mm grid background 

using a 12.1 megapixel Nikon Coolpix L110.   

 

Body Size and Shape  

Geometric morphometric techniques were used to determine the body size and shape of 

individuals based off of the digital photographs (reviewed in Rohlf and Marcus 1993, Zelditch et 

al. 2012).  These techniques allow for comparisons of size and shape independent of each other 

based on anatomical landmarks defined by Cartesian coordinates.  Using the TPS software series 

(http://life.bio.sunysb.edu/morph), we placed a series of 30 landmarks (10 homologous Type I, 

20 “sliding” semi-landmarks) (Figure 5.1) on each photograph using tpsDig (v2.14).  Type I 

landmarks are placed on distinctive, homologous features of the fish (i.e. center of the eye, 

anterior base of dorsal fin, etc.) whereas semi-landmarks are used to cover large regions of the 

body where there are no distinctive features (curves, large areas without homologous features, 

etc.) (Bookstein 1997, Mitteroecker and Gunz 2009).  The “unbend” module was used in tpsUtil 

to compensate for bending of specimens. 

 A Generalized Procrustes analysis (GPA) on the “unbent” landmarks was performed in 

tpsRelw (v1.49) to remove variation in landmark configurations that is due to differences in 

factors unrelated to shape, such as size, position, and orientation (Rohlf and Slice 1990).  This 
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produced measures of size (centroid size) and shape (partial warp scores and uniform 

components) that are independent of each other.  Thin plate splines in tpsRelw were used to 

visualize the shape changes that occurred along each principal component axis.       

 Centroid size was used as the measure of body size.  A principal components analysis 

using the partial warp scores and uniform components in a covariance matrix was used as a 

measure of body shape.  We only considered the first three principal components because 

individually they accounted for at least 10% of the variation and together they explained over 

65% of the variation.   

 We also measured caudal fin aspect ratio.  This was done to test the general prediction by 

Langerhans (2008) that fish in high flow environments should have a higher aspect ratio.  Aspect 

ration was measured from the digital pictures using ImageJ (v.1.44p) (using the 1 mm grid as 

calibration).  We calculated caudal fin aspect ratio as h
2
/s, where “h” is the height of the fin and 

“s” is the surface area (Pauly 1989).  Height was measured by a straight vertical line from one 

edge of the caudal fin to the other edge, and surface area was calculated by tracing around the 

entire fin (excluding the caudal peduncle) with the “polygon selection” tool.        

 

Analyses 

To explore whether body size and shape is affected by genetics and/or water velocity, we used an 

analysis of variance (ANOVA) that considers the main effects of parental habitat (i.e. genetic 

differences based on where the parents were from- lake or stream), rearing habitat (i.e. effects 

due to water velocity- lentic or lotic), and sex (male or female), as well as all interactions 

between these main effects.  Because individuals within a particular tank cannot be considered 

independent samples, we conducted all analyses using the tank means.  Separate ANOVAs were 
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conducted for body shape (PC1, PC2, PC3), body size (centroid size) and caudal fin aspect ratio.  

Each analysis first began with a consideration of sex by including it, and all interactions with 

sex, using the mean for each sex in each tank.  If sex or any interactions were strongly non-

significant (p>0.3), we removed those effects and re-ran the analysis using the mean for each 

tank with the sexes combined.  Because of uneven mortality between different treatments and 

different families, we also tested whether there was an effect of density on body size, shape, or 

caudal fin.  We did this by including the number of fish in the tank at the end of the experiment 

as a term in the model.  As above, this term was removed if non-significant.  The final model for 

each analysis above (body size, body shape, and caudal fin) was first run on every family.  

However, because of uneven mortality, we then compared this analysis to one using just those 

families that had surviving offspring in both treatments (lentic and lotic).  All analyses were 

conducted using SAS (v. 9.3). 

 

Results 

Body Size 

Parental habitat and the interaction between sex and rearing habitat had effects on body size 

(Table 5.1).  Males were much smaller than females when raised under lotic conditions, but 

trended toward being larger under lentic conditions (Figure 5.2).  Regardless of sex, fish from 

stream parents were smaller than fish from lake parents.  There was also a trend toward fish from 

lake parents to be larger when raised under lotic conditions than lentic conditions (F1,27 = 3.61, p 

= 0.0680) (Figure 5.3).  There was no effect of density on body size (F1,21 = 0.00, p = 0.9627).  

These results were qualitatively the same when analyzing just those families with offspring in 

both rearing habitats.   

 



 118 

Body Shape and Caudal Fin Aspect Ratio 

PC1 was related to eye position and dorsal fin length.  In particular, a negative PC1 value 

corresponded to a more centrally located eye and shorter dorsal fin whereas a positive PC1 value 

corresponded to a more ventrally placed eye and a longer dorsal fin (Figure 5.4).  PC1 did not 

differ between sexes, but, rather, varied as a function of the interaction between parental habitat 

and rearing habitat (Table 5.1).  Stream offspring had high values for PC1 regardless of whether 

they were raised in lentic or lotic treatments.  Lake offspring were similar to stream offspring 

when raised under the lotic treatment (i.e. in flowing water), but differed when raised in the 

lentic treatment (i.e. still water).  Specifically, lake offspring had a negative PC1 value (i.e. a 

centrally located eye and a shorter dorsal fin) when raised in the lentic treatment (Figure 5.4).  

PC1 was the only component of shape that showed any significant effects of parental habitat, 

rearing habitat, or sex (or their interactions) (results not shown).  However, there these effects 

disappeared when considering just those families with offspring under both treatments (all p > 

0.3), although this could be due to low sample size (n = 14 tanks).  There was no effect of 

density on PC1 (F1,21 = 2.31, p = 0.1437).   

There was pronounced sexual dimorphism in the caudal fin aspect ratio, where males had 

a larger aspect ratio than females (Figure 5.5).  There was no effect of density on aspect ratio 

(F1,21 = 0.20, p = 0.6620).  As with body shape, this result was qualitatively the same when we 

only considered those families with offspring in both rearing habitats.   

 

Discussion 

The goals of this experiment were to determine the extent to which genetics and/or water 

velocity influence body size and shape in the blackstripe topminnow and whether these patterns 
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are consistent across the sexes.  We found that both genetics and sex-specific responses to water 

velocity influence body size.  Dorsal fin length showed a complex interaction between genetics 

and water velocity that was independent of sex.  The caudal fin aspect ratio was the only aspect 

of body shape that showed a difference among the sexes.  Despite only using families from one 

lake and one stream, the results were generally similar to those described for this family (chapter 

2) and for this species (chapter 3).  We discuss the findings of this study in more detail below. 

 

Genetic Effects and Phenotypic Plasticity 

In nature, one-year old F. notatus are larger in streams than in lakes and have longer dorsal fin 

bases (chapter 3).  A phylogenetic analysis across the family indicated a similar pattern where 

fish are larger in lotic habitats than they are in lentic habitats (chapter 2).  The phylogenetic study 

also duplicated the earlier finding for size in F. notatus where animals from lotic habitats were 

larger than those lentic habitats.  Here, we sought to determine whether these patterns were likely 

attributable to phenotypic plasticity and/or genetic differentiation.   

 For size, there is an interaction between parental habitat (i.e. genetics) and rearing habitat 

(i.e. phenotypic plasticity) (Figure 5.3).  The interaction is attributable to the fact that lake 

offspring differ in size between rearing habitats but stream offspring do not.  Considering only 

the direction of plasticity in the lake fish, our results are consistent with previous studies in that 

fish in flowing water are larger.  However, the lack of plasticity in the stream fish results in a 

pattern where the genetic signature contradicts previous findings because stream fish are, on 

average, smaller than lake fish.  This result is not simply due to any idiosyncrasies from the fish 

used as parents, as the parents from the stream were, indeed, larger than those from the lake (F1,24 

= 5.25, p = 0.0310).  
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 A somewhat similar pattern can be seen for shape (PC1).  Here, PC1 corresponds to the 

length of the dorsal fin base length.  In chapter 3, we showed a slight effect where stream fish 

had slightly longer dorsal fin bases than did lake fish.  Figure 5.4 shows the effects of parental 

environment and rearing environment on PC1.  Again, lake offspring were plastic in their 

development whereas stream fish were not.  Plasticity in lake fish again produces this same 

pattern, because fish raised in the lotic environment had a larger dorsal fin base than did fish 

raised in the lentic environment (which matches the patterns documented in chapter 3).  

However, unlike with size, the genetic signature for PC1 is also consistent with previous results 

because stream fish, on average, had greater values for PC1. 

 The motivating question for this chapter is whether genetics and/or environment produces 

the phenotypic patterns seen in size and shape across population in F. notatus.  We can answer 

this somewhat for size.  Simple genetic differentiation among populations does not cause stream 

fish to be larger than lake fish.  Does phenotypic plasticity cause the pattern?  This question is 

more difficult to assess.  If both populations had showed enhanced growth in lotic treatments, 

then this would unequivocally implicate phenotypic plasticity.  However, the heterogeneous 

response to rearing environment prevents such a conclusion.  Other factors that might result in 

the across population pattern include possible differences in food availability (assuming there is 

more food in streams which equates to bigger fish), differences in growing season (water 

temperatures rise sooner in streams than in lakes), or differences in size-selective predation 

where large individuals are more likely to be preyed upon in lakes.  Phenotypic plasticity is not 

always present (Pigliucci 1997) and, even when it is, there can be population-level differences in 

plasticity (Donohue et al. 2000, Lind and Johansson 2007).  
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 While we may be unable to resolve the question of genetics versus plasticity for body 

size, we are able to answer this question for body shape.  Both genetics and phenotypic plasticity 

result in pattern where stream fish (regardless of rearing environment) and lake fish raised in the 

lotic environment have a longer dorsal fin base than lake fish raised in the lentic environment.  

Hence, both genetics and environment contribute to these subtle changes in body shape 

documented between lakes and streams. 

 An intriguing question raised by this work is why the lake fish are more plastic with 

respect to water velocity than are the stream fish.  It has been suggested that different levels of 

plasticity in different populations are due to differences in either genetic drift or selection on 

plasticity and not because of the costs of plasticity, itself (Steiner and Van Buskirk 2008, Lind 

and Johansson 2009).  We currently have no information about the level of gene flow between 

populations or of any genetic differences between populations, so we cannot make inferences 

whether genetic drift explains the difference in plasticity.  If the plasticity difference is due to 

selection due to environmental differences, one possible abiotic factor is water flow.  Lakes have 

little in the way of moving water whereas streams vary both spatially and temporally in water 

flow.  Spatially, water flow varies where flow is greatest in the middle of the stream compared to 

the sides where nooks and crannies along the stream bank provide areas of low flow.  Flow also 

varies temporally with rainfall.  Illinois streams frequently flood in the spring, but have reduced 

water flow in late summer/early fall.  In the summer of 2012, many streams stopped flowing 

altogether.  However, given this variation, one would hypothesize that stream fish would be 

more plastic in their growth than lake fish. 

 Growth may be canalized for stream fish.  Wimberger (1994) suggested that 

polymorphisms (in morphology and other features) are less likely to occur in streams than lakes 
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because they have less temporal stability.  Canalization in streams assumes that responding 

plastically to every alteration in water flow is actually bad and, instead, fish develop in such a 

way as to buffer themselves from this environmental variation.  While intriguing, this hypothesis 

does not explain why lake fish are plastic.  It is also unknown whether this finding can be 

generalized to all lake populations in this species.  F. notatus is found in many lakes and streams 

throughout central Illinois (Welsh et al. 2013), so this is a great system to explore the 

“repeatability” of such patterns.  The lake population may be also an ideal system for future 

research related to the costs of phenotypic plasticity- which, as Lind and Johansson (2009) have 

noted, has been very difficult to find in natural populations- as they have suggested that efforts 

devoted to identifying costs should focus on highly plastic populations.       

 

Effects Due to Sex 

 In comparison to the other chapters, this study found relatively mild differences between 

males and females.  In chapters 2 and 3, body shape differences were often dominated by effects 

of sex.  However, here, the only aspect of the body shape that showed sexual dimorphism was 

the caudal fin aspect ratio.  Males had a larger caudal fin aspect ratio than females.  Interpreting 

these results in the light of the previous chapters is more challenging, as the previous chapters 

did not investigate caudal fin aspect ratio. Why sex-specific differences should exist in the 

caudal fin aspect ratio is unclear.  A large caudal fin aspect ratio is believed to be important for 

maintaining long periods of steady swimming while a smaller ratio is more important for short 

bursts and quick maneuvers (Webb 1984).  Foster (1967) does report that males seem to engage 

in more swimming overall, both in terms of steady swimming and maneuvers.  Hence, an 
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adaptive explanation for this pattern is that the extra swimming demand in males may favor the 

emergence of sexual dimorphism in caudal fin aspect ratio. 

The effect of sex on size found here is fairly consistent with the patterns described in the 

previous chapters.  Chapter 2 found a subtle pattern across the family where females were larger 

than males provided that there were differences between the sexes, although F. notatus did not  

show this effect in either the comparative study (chapter 2) or the field survey (chapter 3).  Here, 

we found that females were larger than males when raised in lotic treatments, but there were no 

such difference for the lentic treatment.  Sex-specific differences in body size due to phenotypic 

plasticity is known in a small number of other species, including insects (Stillwell and 

Davidowitz 2010, Stillwell et al. 2010) and turtles (Fonseca 2010).  A larger size due to water 

velocity has been attributed to several factors in other fish species, including enhanced food 

conversion efficiency, changes in aerobic metabolism, and reduced agonistic behavior (Davison 

1997).  All of these factors could differ between the sexes in F. notatus, resulting in the 

interaction between water velocity and sex.  In fact, males are known to engage in more agonistic 

interactions than females (Carranza and Winn 1954, Foster 1967).  Why this pattern is not 

observed in streams in nature is unclear, but may be related to their behavior.  Both sexes of the 

blackstripe topminnow are only very rarely observed in the strongest parts of a stream, so it may 

be that females simply do not experience strong water velocities consistently enough to generate 

the differences observed in the lab (where they experienced more consistency in water velocity).  

Studies on microhabitat use between sexes within a stream would be needed to explore this 

possibility further.        
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Figures 

 
Figure 5.1.  Landmarks used for geometric morphometric analysis.  Black dots refer to 

homologous Type I landmarks and white dots denote semi-landmarks. 
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Figure 5.2.  Body size as a function of the interaction between sex and rearing habitat.  Error 

bars are ± 1 standard error. 
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Figure 5.3.  Body size as a function of parental habitat and rearing habitat.  Error bars are ± 1 

standard error. 
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Figure 5.4.  PC1 as a function of the interaction between parental habitat and rearing habitat.  

Error bars denote 1 standard error.  Thin plate splines are shown to illustrate the shape changes 

along PC1.   
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Figure 5.5.  Caudal fin aspect ratio as a function of sex.  Error bars are ± 1 standard error. 
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Tables 

Table 5.1.  F-values from analyses of variance on (A) Centroid Size, (B) PC1, and (C) Caudal 

Fin Aspect Ratio.  For PC1, sex was removed from the analysis because it was strongly non-

significant (p>0.3).  For all, any interactions that were strongly non-significant (p>0.3) were 

removed.  Significant (p<0.05) factors are indicated in bold.   

 

A)  Centroid Size 

Factor DF MS F P 

 

parental habitat
 

1 246434.1 7.26 0.0120 

rearing habitat 1 105240.8 3.10 0.0896 

parental habitat x rearing habitat 1 122710 3.61 0.0680 

sex 1 83726.6 2.47 0.1280 

sex x rearing habitat 1 235070 6.92 0.0139 

error  27 33952.1   

 

B) PC1 

Factor DF MS F P 

 

parental habitat
 

1 0.00068 4.16 0.0535 

rearing habitat 1 0.00021 1.29 0.2682 

parental habitat x rearing habitat 1 0.00072 4.43 0.0469 

error  22 0.00016   

 

 

 

 

 

 



 136 

Table 5.1 (cont.) 

C)  Caudal Fin Aspect Ratio 

Factor DF MS F P 

parental habitat
 

1 0.031 0.88 0.3600 

rearing habitat 1 0.013 0.37 0.5478 

parental habitat x rearing habitat 1 0.048 1.39 0.2531 

sex 1 0.310 8.93 0.0076 

sex x parental habitat 1 0.105 3.01 0.0988 

error  19 0.035   

 


