
c© 2013 Xiaokang Qiu

AUTOMATIC TECHNIQUES FOR PROVING CORRECTNESS OF
HEAP-MANIPULATING PROGRAMS

BY

XIAOKANG QIU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Doctoral Committee:

Associate Professor Madhusudan Parthasarathy, Chair
Zisman Family Professor Rajeev Alur, University of Pennsylvania
Associate Professor Grigore Roşu
Associate Professor Mahesh Viswanathan

ABSTRACT

Reliability is critical for system software, such as OS kernels, mobile browsers,

embedded systems and cloud systems. The correctness of these programs,

especially for security, is highly desirable, as they should provide a trustwor-

thy platform for higher-level applications and the end-users. Unfortunately,

due to its inherent complexity, the verification process of these programs

is typically manual/semi-automatic, tedious, and painful. Automating the

reasoning behind these verification tasks and decreasing the dependence on

manual help is one of the greatest challenges in software verification.

This dissertation presents two logic-based automatic software verification

systems, namely Strand and Dryad, that help in the task of verification

of heap-manipulating programs, which is one of the most complex aspects of

modern software that eludes automatic verification. Strand is a logic that

combines an expressive heap-logic with an arbitrary data-logic and admits

several powerful decidable fragments. The general decision procedures can

be used in not only proving programs correct but also in software analysis

and testing. Dryad is a family of logics, including Dryadtree as a first-order

logic for trees and Dryadsep as a dialect of separation logic. Both the two

logics are amenable to automated reasoning using the natural proof strategy,

a radically new approach to software verification. Dryad and the natural

proof techniques are so far the most efficient logic-based approach that can

verify the full correctness of a wide variety of challenging programs, including

a large number of programs from various open-source libraries. They hold

promise of hatching the next-generation automatic verification techniques.

ii

To Ping.

iii

ACKNOWLEDGMENTS

The six-year scholarly pursuit of a Ph.D. in Illinois has been the greatest

challenge in my life. It is my privilege to thank all the people that have

influenced this endeavor.

I am deeply indebted to my advisor, Madhusudan Parthasarathy, who

has been a consistent source of research guidance and financial support. As

a venerable mentor, he has taught me virtually all I know of being a good

researcher. I am extremely admired for his incredible enthusiasm, deep think-

ing, broad knowledge, and sense of responsibility.

I thank other members of my doctoral committee, Rajeev Alur, Grigore

Roşu and Mahesh Viswanathan. They have all eagerly provided me with

advice on both my research and career. My research collaborator Gennaro

Parlato has been an “older brother” of mine, and taught me important and

practical lessons on conducting research, writing papers, and surviving the

Ph.D. I also thank my fellow students, including Pranav Garg, Edgar Pek,

Shambwaditya Saha, Francesco Sorrentino and Andrei Ştefănescu. They have

been a source for great conversation and feedback on my research.

I am grateful for the great staff in the Department of Computer Science.

Elaine Wilson handled my travel arrangements and reimbursements with ex-

traordinary efficiency. Shirley Finke and Jennifer Dittmar made sure I got

paid every semester. Rhonda McElroy, Mary Beth Kelly and Kara MacGre-

gor helped me get visas, write and sign important supporting letters, and

meet the coursework requirements on time.

I owe much thanks to my parents, Jianxiang Qiu and Minguang Shen.

They have unceasingly supported and encouraged me for coming to America

and being an academic. I am also very thankful to Elder Wei-Laung Hu and

brothers and sisters in the Cornerstone Fellowship, for their prayer, sharing

and encouragement in my spiritual journey in the Midwest.

iv

Finally, I especially thank my wife, Ping. I would not have finished the de-

gree without her love, support and patience. She has been with me, through

thick and thin. For all those times, this dissertation is lovingly dedicated to

her.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . x

CHAPTER 1 INTRODUCTION . 1
1.1 Summary of Contributions . 3
1.2 Organization . 4

CHAPTER 2 PRELIMINARIES . 6
2.1 Satisfiability Modulo Theories and Z3 6
2.2 Monadic Second-Order Theory and Mona 7
2.3 Separation Logic . 8

CHAPTER 3 STRAND LOGIC . 11
3.1 Overview . 12
3.2 Motivating Examples and Logic Design 13
3.3 Recursively Defined Data-Structures 17
3.4 The Logic . 23
3.5 Program Verification Using Strand 27

CHAPTER 4 DECISION PROCEDURES 39
4.1 Overview . 39
4.2 Satisfiability-Preserving Embeddings 43
4.3 A Semantically Defined Fragment 48
4.4 A Syntactically Defined Fragment 54
4.5 Experimental Evaluation . 64
4.6 Related Work . 69

CHAPTER 5 NATURAL PROOFS 71
5.1 The Dryadtree Logic . 75
5.2 Deriving the Verification Condition 82
5.3 A Decidable Fragment of Dryadtree 100
5.4 Formula Abstraction . 109

vi

5.5 Experiments . 115
5.6 Related Work . 119

CHAPTER 6 COMBINING SEPARATION AND RECURSION . . . 123
6.1 Logic Design . 124
6.2 Syntax . 127
6.3 Semantics . 129
6.4 Examples . 137
6.5 Translating to A Logic over the Global Heap 139

CHAPTER 7 NATURAL PROOFS FOR STRUCTURE, DATA,
AND SEPARATION . 147
7.1 Programs and Hoare-triples 149
7.2 Generating the Verification Condition 151
7.3 Unfolding Across the Footprint 158
7.4 Formula Abstraction . 162
7.5 Case Study . 166
7.6 Experimental Evaluation . 171
7.7 Related Work . 177
7.8 Annotation Synthesis . 179

CHAPTER 8 CONCLUSIONS . 191
8.1 Conclusions . 191
8.2 A Look Ahead . 192

REFERENCES . 194

vii

LIST OF TABLES

4.1 Results of program verification using Strand 68

5.1 Results of program verification using Dryadtree 120

6.1 Domain-exact property and Scope function 141

7.1 Results of verifying data-structure algorithms 173
7.2 Results of verifying open-source libraries 175

viii

LIST OF FIGURES

3.1 A list with head and tail . 14
3.2 l′ inherits data values from l 15
3.3 A binary tree example represented in Rbt 20
3.4 Definition of the tailorX function 22
3.5 Syntax of Strand . 24
3.6 Predicates defined for non-updating statements. 33
3.7 Predicates defined for updating statements. 34
3.8 A syntactic transformation for conditions. 35

4.1 Definition of the interpret function 49
4.2 Definition of the tailor function 51
4.3 Syntax of Strandsyn

dec . 55
4.4 A valid subset X that falsifies β 58

5.1 Syntax of Dryadtree . 77
5.2 Recursive definitions for red black trees 80
5.3 AVL-find routine . 100
5.4 Pre/post conditions and recursive definition for AVL-find . . . 100
5.5 Expanding the symbolic heap and generating the formulas . . 101
5.6 Syntax of local formulas ϕp(x) 103
5.7 Syntax of Dryaddec

tree . 104
5.8 Inductive definition of map(ϕ) 106

6.1 Syntax of Dryadsep . 128
6.2 The pure predicate for terms/formulas 131
6.3 Translation of Dryadsep terms 142
6.4 Translation of Dryadsep formulas 142

7.1 Syntax of programs . 149
7.2 Case study: Heapify . 166

ix

LIST OF ABBREVIATIONS

APF Array Property Fragment

BST Binary Search Tree

FOL First-Order Logic

ITE If-Then-Else

LCA Least Common Ancestor

MSO Monadic Second-Order

MSOL Monadic Second-Order Logic

RDDS Recursively Defined Data-Structure

SL Separation Logic

SMT Satisfiability Modulo Theories

SPE Satisfiability-Preserving Embedding

VC Verification Condition

WS1S Weak monadic Second-order theory of 1 Successor

WS2S Weak monadic Second-order theory of 2 Successors

x

CHAPTER 1

INTRODUCTION

As software systems have become indispensable in our daily lives, their re-

liability has grown to be one of the most concerned issues, especially when

deployed for critical applications and services. This includes complex embed-

ded software in avionics, vehicles and medical equipments, system software

such as operating systems and browsers, as well as today’s emerging cloud

software.

Numerous approaches have been proposed to build reliability-critical soft-

ware to satisfy its complex correctness requirements. A focus of intense re-

search in this area has been program verification using theorem provers, uti-

lizing manually provided proof annotations, such as pre- and post-conditions

for functions and loop invariants. Automatic theory solvers (e.g. SMT

solvers) that handle a variety of quantifier-free theories including arithmetic,

uninterpreted functions, Boolean logic, etc., serve as effective tools that auto-

matically discharge the validity checking of many verification conditions [18].

A key area that has eluded the above paradigm of specification and ver-

ification is heap analysis: the verification of programs that dynamically al-

locate memory and manipulate them using pointers, maintaining structural

invariants (e.g. “the nodes form a tree”), aliasing invariants, and invariants

on the data stored in the locations (e.g. “the keys of a list are sorted”).

Heap-manipulating programs are pervasive in lower-level computer systems:

garbage collectors, OS kernels, device drivers, mobile browsers, etc. The

functional correctness of these programs is highly desirable, as they should

provide a trustworthy platform for higher-level applications. Unfortunately,

due to its inherent complexity, the verification process of these programs

is typically manual/semi-automatic, tedious and painful. It usually eludes

all existing automatic techniques and tools, and poses one of the greatest

challenges in software verification.

1

Dynamically allocated heaps are difficult to reason with for several reasons.

First, the specification of proof annotations itself is hard, as the annotation

needs to talk about several intricate properties of an unbounded heap, often

requiring quantification and reachability predicates, and needs to specify

aliasing as well as structural properties of the heap. Also, in experiences

with manual verification, it has been observed that pre- and post-conditions

get unduly complex, including large formulas that say how the frame of the

heap that is not touched by the program remains the same across a function.

expressing such properties naturally and succinctly in a logical formalism has

been challenging, and reasoning with them automatically even more so.

To this end, this dissertation aims at building automatic software verifica-

tion systems, with a focus on heap-manipulating programs. An underlying

theme of this work is that for logical reasoning to succeed, two important

directions must be pursued:

1. Consider more expressive logics to allow the programmer to easily spec-

ify complex data structures; and

2. Develop decision procedures that can reason efficiently about these so-

phisticated logics.

The two directions cannot be considered in isolation. On the one hand,

when the logic becomes more powerful, e.g., separation logic with inductive

algebraic definitions, the analysis is usually manual or semi-automatic, the

latter being usually sound, incomplete, and non-terminating, and proceeds

by heuristically searching for proofs using a proof system, unrolling recursive

definitions arbitrarily. Typically, such tools can find simple proofs if they

exist, but are unpredictable, and cannot robustly produce counterexamples.

On the other hand, when the verification becomes completely automatic, e.g.,

Lisbq [46] and CSL [15], the logics are often constrained heavily on expres-

sivity. They are often not sufficiently expressive to state complex properties

of the heap (e.g. the balancedness of an AVL tree, or that the set of keys

stored in a heap does not change across a program).

The main goal of this work is to develop new program logics and method-

ologies that strike a nice balance between expressiveness and verifiability in

the area of verifying heap-manipulating programs. In particular, we present

two logics, one called Strand, and the other one called Dryad. Strand is

2

a logic that combines an expressive heap-logic with an arbitrary data-logic

and admits several powerful decidable fragments. It is one of the most pow-

erful decidable logics for complex properties combining heap structures and

data. Dryad is a family of logics that support recursive definitions and

our novel proof strategy called Natural Proofs. Tools are built based on our

logical mechanism and successfully verified the full partial correctness of a

wide variety of challenging programs, including a large number of programs

from various open source libraries. We explain our contributions in details

as follows.

1.1 Summary of Contributions

The main contributions of this dissertation are highlighted as follows:

1. The Strand logic that expresses constraints involving heap structures

and the data they contain; this logic allows quantification in limited

form and is capable of expressing complex properties of common data

structures.

2. Two decidable fragments of Strand, one semantically defined

(Strandsem
dec) and one syntactically defined (Strandsyn

dec); experi-

ments show that complex verification conditions generated from heap-

manipulating programs can be handled efficiently using the decision

procedures for Strand.

3. A novel proof strategy that calls Natural Proofs. Natural proofs are a

subclass of proofs that are amenable to completely automated reason-

ing; it is a systematic methodology that provides sound but incomplete

procedures, and that captures common reasoning tactics in program

verification.

4. Two variants of the Dryad logic that are amenable to natural proofs:

Dryadtree extends first-order logic to support recursive definitions for

trees; Dryadsep is a dialect of Separation Logic that disallows explicit

quantification but permits powerful recursive definitions. The salient

feature of Dryadsep is that it admits a quantifier-free, deterministic

3

translation to a classical logic with free set variables, which can be

handled using modern SMT solvers.

5. Exploit the Natural Proofs strategy to verify a wide variety of open-

source programs from real world; these programs include low-level C

routines from Glib, OpenBST, Linux kernel and the ExpressOS project.

6. Develop a preliminary annotation synthesizer based on natural proofs;

the natural proof strategy is encoded into ghost annotations which

tend to help semi-automatic verifiers (such as VCC) find a proof au-

tomatically. The reduced annotation burden can significantly benefit

programmers without specialist proving knowledge.

The Strand logic and its two decidable fragments were first defined in [50].

Furthermore, A dedicated, more efficient decision procedure was obtained

in [51]. Our proof methodology of natural proofs was first proposed in [52],

in the context of the logic Dryadtree which is only for tree data-structures.

In [64], aiming at providing natural proofs for general properties of struc-

ture, data, and separation, the Dryadsep logic was proposed as a dialect of

separation logic. In this paper, we developed natural proofs for Dryadsep

and reason with heaplet using classical logic over the theory of sets.

1.2 Organization

This rest of the dissertation is organized into chapters as follows:

Chapter 2 presents a technical background for the rest of the dissertation.

Chapter 3 defines the Strand logic and shows how to derive verification

conditions from Strand-annotated programs.

Chapter 4 gives decidability proofs for the two decidable fragments, and

experimentally evaluates the effectiveness of the decision procedures.

Chapter 5 illustrates the procedures for reasoning with heap-manipulating

programs using natural proofs, particularly based on the Dryadtree

logic.

4

Chapter 6 presents the Dryadsep logic and shows its conversion to a clas-

sical logic using the theory of sets.

Chapter 7 develops natural proofs for Dryadsep, and applies the strategy

to the verification of various real world programs and libraries.

Chapter 8 presents the conclusions and looks ahead to the future research

directions.

5

CHAPTER 2

PRELIMINARIES

This chapter discusses technical preliminaries required for the rest of the

dissertation.

2.1 Satisfiability Modulo Theories and Z3

A fundamental component of analysis techniques for complex programs is

logical reasoning. The advent of efficient SMT solvers (satisfiability modulo

theory solvers) have significantly advanced the techniques for the analysis of

programs.

Though it is well known that the satisfiability of First-Order Logic (FOL)

is undecidable, when the models are constrained by some background theo-

ries, the satisfiability could be decidable. In past decades, efficient decision

procedures emerged for many logical theories and fragments (e.g. integers,

arrays, theory of uninterpreted functions, etc.) that are typically useful in

computer science [18]. These theories have been standard practice in program

verification.

Moreover, by using techniques that combine theories, larger decidable the-

ories can be obtained. The Nelson-Oppen framework [60] and the Shostak

approach [70] allow generic combinations of quantifier-free theories, and has

been used in efficient implementations of combinations of theories using a

SAT solver that queries decision procedures of background theories.

SMT solvers advance several analysis techniques. They are useful in test-

input generation, where the solver is asked whether there exists an input to

a program that will drive it along a particular path; see for example [37].

SMT solvers are also useful in static-analysis based on abstract interpreta-

tion, where the solver is asked to compute precise abstract transitions, i.e.

asked whether there is a concretization of an abstract state a that transitions

6

to a concretization of another abstract state a′ (for example see Slam [4] for

predicate abstraction and Tvla [48, 80] for shape-analysis). Solvers are

also useful in classical deductive verification, where Hoare-triples that state

pre-conditions and post-conditions can be transformed into verification con-

ditions whose validity is checked by the solver; for example Boogie [5] and

ESC/Java [35] use SMT solvers to prove verification conditions.

Thank to the technical breakthrough and competition [61, 7] in recent

years, many efficient, off-the-shelf SMT solvers [6, 25, 32, 28] are available,

especially for verification. In this dissertation, we use Z3 [28] as the back-

end theorem prover. Z3 is a high-performance, state-of-the-art SMT solver

developed at Microsoft Research, and has been used in several program anal-

ysis, verification and test-case generation projects at Microsoft. It integrates

an efficient SAT solving core with decision procedures for component the-

ories such as bit-vectors, arithmetic, arrays, partial orders and tuples. Z3

also adopts several approaches to handle quantifiers, including model-based

quantifier instantiation [36] and E-matching [29]. However, in general, the

process of theorem proving is no longer a decision procedure for quantified

formulas.

2.2 Monadic Second-Order Theory and Mona

Another set of well-known decidability results stems from Monadic Second-

Order Logic (MSOL), and is related to regular languages and automata the-

ory. Second-order logic extends first-order logic with quantifiers over rela-

tions, and MSOL is just a restriction of second-order logic where all the

relational variables are unary. MSOL is a powerful logic and is capable of ex-

pressing complex properties such as ”the graph is 4-colorable” or ”the graph

is connected”. In 1960s, Büchi and Elgot created the famous connection

between MSOL and finite automata, which can be stated as:

Theorem 2.2.1 ([20, 33]). A language of finite words is recognizable by a

finite automaton iff it is definable in MSO1.

The intuition behind the translation from automata to MSO is that, the

computations of the automaton can be captured by sets. Desired formula

1The signature consists of unary relations and the successor relation.

7

needs to say that ”there is an encoding of a sequence of states that forms an

accepting computation”. Reversely, from a MSO formula, an automaton can

be constructed by structural induction on the formula. The same idea can

also be applied to finite tree automata:

Theorem 2.2.2 ([74, 31]). A set of finite trees is recognizable by a finite tree

automaton iff it is MSO-definable.

As a variation of MSO over finite words, WS1S (Weak monadic Second-

order theory of 1 Successor) is the set of formulas true in the structure (N, S2)

under the restriction that all set quantifiers range over finite sets. Since a

finite set of natural numbers can always be encoded as a finite string of {0, 1},

the decidability of WS1S immediately follows Theorem 2.2.1. WS2S (Weak

monadic Second-order theory of 2 Successors) is a generalization of WS1S

which is interpreted over infinite binary trees, and similar decidability can

be obtained by Theorem 2.2.2.

Corollary 2.2.3. The satisfiability of WS1S/WS2S is decidable.

Though the complexity of deciding WS1S/WS2S is non-elementary [56],

efficient implementations such as Mona are available. Mona encodes WS1S

and WS2S formulas as minimum DFAs (Deterministic Finite Automata) and

GTAs (Guided Tree Automata), which are represented by shared, multi-

terminal BDDs (Binary Decision Diagrams). These techniques make Mona

practically tractable and useful. Its most famous application has been the

Pale program verifier [58].

2.3 Separation Logic

In recent years, Separation Logic (SL), especially in combination with re-

cursive definitions, has emerged as a succinct and natural logic to express

properties about structure and separation [68, 63].

The primary design principle behind separation logic is the decision to

express strict specifications— logical formulas must naturally refer to heaplets

(subparts of the heap), and, by default, the smallest heaplets over which the

formula needs to refer to. This is in contrast to classical logics (such as

2S(x, y) is true if y = x+ 1.

8

First-Order Logic) which implicitly refer to the entire heap globally. Strict

specifications permit elegant ways to capture how a particular sub-part of the

heap changes due to a procedure, implicitly leaving the rest of the heap and

its properties unchanged across a call to this procedure. Separation logic is

a particular framework for strict specifications, where formulas are implicitly

defined on strictly defined heaplets, and where heaplets can be combined

using a novel spatial conjunction operator denoted by ∗.

Separation logic is interpreted over programs states consisting of a store

and a heaplet. A store s is a function mapping variables to values, which

could be data values or memory addresses; a heaplet h is a partial function

mapping memory addresses to values. Assertions in SL can be constructed

from the following constructs:

emp asserts that the heap is empty, i.e., (s, h) |= emp if Dom(h) = ∅;

t 7→ t′ relates an address t and a value t′, asserting that t maps to t′, and the

heaplet is defined only on the location of t; formally, (s, h) |= t 7→ t′ if

h(t) = t′ and Dom(h) = {t};

P ∗Q asserts that the heaplet can be split into two disjoint parts such that

one satisfies P and the other satisfies Q, i.e., (s, h) |= P ∗ Q if there

exist h1, h2 such that h1 ⊥ h2 and (s, h1) |= P and (s, h2) |= Q;

P − ∗Q asserts that extending the heaplet with a disjoint part that satisfies P

results in a heaplet that satisfies Q, i.e., (s, h) |= P − ∗Q if for any h′

such that h ⊥ h′ and (s, h′) |= P , (s, h ∪ h′) |= Q.

In addition, standard Boolean connectives are also allowed.

The Hoare-triples for SL also has the tight semantics. Given a program C

and two SL assertions P and Q, the Hoare-triple {P} C {Q} (as a partial

specification) asserts that if the initial state satisfies P , and the program

does not go wrong and terminates, then the final state will satisfy Q. Notice

that P and Q describe only a portion of the heap, and the program can only

access the locations that are asserted in the precondition and the locations

that are newly allocated.

The frame rule in SL captures the main advantage of strict specifications:

{P} C {Q}

{P ∗R} C {Q ∗R}
Mod(C) ∩ fv(R) = ∅

9

It says that if the Hoare-triple {P} C {Q} holds for some program C, then

{P ∗R} C {Q∗R} also holds (with side-conditions that the modified variables

in C are disjoint from the free variables in R). The frame rule elegantly

enables the local reasoning, which allows one to derive a global fact of a

program from a local fact of the program. Local reasoning is an important

component of reasoning with heap-manipulating programs, but in classical

logic, the frame rule is not straightforward, as it is difficult to ensure the

conjoined property does not involve the portion of the program state that

might be modified by the program.

Yang [76] showed that in general, SL is even not recursively enumerable.

However, the quantifiers are the main source of the undecidability, i.e., SL

becomes decidable when quantifiers are prohibited [21]. A small decidable

fragment of SL is given in [9] for lists with both points-to and reachabil-

ity relations. This fragment has been further extended in [17] to include a

restricted form of arithmetic.

10

CHAPTER 3

STRAND LOGIC

Several approaches to program analysis, like deductive verification, generat-

ing tests using constraint solving, abstraction, etc. have greatly benefited

from the engineering of efficient SMT solvers, which currently provide auto-

mated decision procedures for a variety of quantifier-free theories, including

integers, bit-vectors, arrays, uninterpreted functions, as well as combinations

of these theories using the Nelson-Oppen method [60]. One of the most im-

portant kinds of reasoning in program verification that has evaded tractable

decidable fragments is reasoning with dynamic heaps and the data contained

in them.

Reasoning with heaps and data seems to call for decidable combinations

of logics on graphs that model the heap structure (with heap nodes modeled

as vertices, and field pointers as edges) with a logic on the data contained in

them (like the quantifier-free theory of integers already supported by current

SMT solvers). The primary challenge in building such decidable combina-

tions stems from the unbounded number of nodes in the heap structures.

This mandates the need for universal quantification in any reasonable logic

in order to be able to refer to all the elements of the heap (e.g. to say a

list is sorted, we need some form of universal quantification). However, the

presence of quantifiers immediately annuls the use of Nelson-Oppen combi-

nations, and requires a new theory for combining unbounded graph theories

with data.

There have been a few breakthroughs in combining heap structures and

data recently. For instance, Havoc [46] supports a logic that ensures de-

cidability using a very highly restrictive syntax, and CSL [15] extends the

Havoc logic mechanism to handle constraints on sizes of structures. How-

ever, both these logics have very awkward syntaxes, that involve the domain

being partially ordered with respect to sorts, and the logics are heavily cur-

tailed so that the decision procedure can move down the sorted structures

11

hierarchically and hence terminate. Moreover, these logics cannot express

even simple properties on trees of unbounded depth, like the property that

a tree is a binary search tree. More importantly, the technique for deciding

the logic is encoded in the syntax, which in turn narrowly aims for a fast re-

duction to the underlying data-logic, making it hard to extend or generalize.

3.1 Overview

In this chapter, we propose a new fundamental technique for deciding the-

ories that combine heap structures and data, for fragments of a logic called

Strand. The technique is based on defining a notion of satisfiability-

preserving embeddings between heap-structures, and extracting the minimal

models with respect to these embeddings to synthesize a data-logic formula,

which can then be decided by an SMT solver for the data-theory.

We define a new logic called Strand (for “STRucture ANd Data”), that

combines a powerful heap-logic with an arbitrary data-logic. Strand for-

mulas are interpreted over a class of data-structures R, and are of the form

∃~x∀~yϕ(~x, ~y), where ϕ is a formula that combines a complete monadic second-

order logic over the heap-structure (and can have additional quantification),

and a data-logic that can constrain the data-fields of the nodes referred to

by ~x and ~y.

The heap-logic in Strand is derived from the rich logic tradition of de-

signing decidable monadic second-order logics over graphs, and is extremely

expressive in defining structural shapes and invariants. Strand formulas

are interpreted over a recursively defined class of data-structures R, which is

defined using a regular set of skeleton trees with MSO-defined edge-relations

(pointer-relations) between them. This way of recursively defining data-

structures is not new, and was pioneered by the Pale system [58], which

reasons with purely structural properties of heaps defined in a similar man-

ner. In fact, the notion of graph types [43] is a convenient and simple way

to define data-structure types and invariants, and is easily expressible in our

scheme. Data-structures defined over skeleton trees have enough expressive

power to state most data-structure invariants of recursively defined data-

structures, including nested lists, threaded trees, cyclic and doubly-linked

lists, and separate or loosely connected combinations of these structures.

12

Moreover, they present a class of graphs that have a decidable MSO theory,

as MSO on these graphs can be interpreted using MSO over trees, which is

decidable. In fact, graphs defined this way are one of the largest classes of

graphs that have a decidable MSO theory.

We show in this chapter, the Strand logic is well-suited to reasoning with

programs. In particular, assume we are given a (straight-line) program P , a

pre-condition on the data-structure expressed as a set of recursive structures

R, and a pre-condition and a post-condition expressed in a sub-fragment of

Strand that allows Boolean combinations of the existential and universal

fragments. We show that checking the invalidity of the associated Hoare-

triple reduces to the satisfiability problem of Strand over a new class of

recursive structuresRP . This facilitates using Strand to express a variety of

problems, including the applications of test-input generation, finding abstract

transitions, and deductive verification mentioned above.

Note that despite its relative expressiveness in allowing quantification over

nodes, Strand formulas cannot express certain constraints such as those

that constrain the length of a list of nodes (e.g., to express that the number

of black nodes on all paths in a red-black tree are the same), nor express

the multi-set of data-values stored in a data-structure (e.g., to express that

one list’s data contents are the same as that of another list). We hope that

future work will extend the results in this paper to handle such constraints.

Organization: We first present the intuitions behind the logic design of

Strand in Section 3.2. We define recursively defined data-structures (RDDS)

in Section 3.3, then introduce the Strand logic with examples in Sec-

tion 3.4. In Section 3.5, we present the VC-generation process with respect

to Strand.

3.2 Motivating Examples and Logic Design

The goal of this section is to present an overview of the issues involved in

finding decidable logics that combine heap structure and data, which sets

the stage for designing the the logic Strand that is potentially decidable,

and motivates the choices in our logic design using simple examples on lists.

13

Let us consider lists in this section, where each node u has a data-field d(u)

that can hold a value (say an integer), and with two variables head and tail

pointing to the first and last nodes of the list, respectively (see Figure 3.1).

Consider first-order logic, where we are allowed to quantify over the nodes

of the list, and further, for any node x, allowed to refer to the data-field of

x using the term d(x). Let x → y denote that y is the successor of x in the

list, and let x→∗ y denote that x is the same as y or precedes y in the list.

head

. . .

tail

Figure 3.1: A list with head and tail

Consider a formula expressing the sortedness of lists:

Example 3.2.1 (Sorted list).

ϕ1 : d(head) = c1 ∧ d(tail) = c2 ∧

∀y1∀y2((y1 →
∗ y2)⇒ d(y1) ≤ d(y2))

The above says that the list must be sorted and that the head of the list

must have value c1 and the tail must have value c2. Note that the formula

is satisfiable iff c1 ≤ c2, and in which case it is actually satisfied by a list

containing just two elements, pointed to by head and tail, with values c1

and c2, respectively.

In fact, the property that the formula is satisfiable by a two-element list

has nothing really to do with the data-constraints involved in the above

formula. Assume that we have no idea as to what the data-constraints mean,

and hence look upon the above formula by replacing all the data-constraints

using uninterpreted predicates p1, p2, . . . to get the formula:

ϕ̂1 : p1(d(head)) ∧ p2(d(tail)) ∧

∀y1∀y2((y1 →
∗ y2)⇒ p3(d(y1), d(y2)))

Now, we do not know whether the formula is satisfiable (for example, p1

may be unsatisfiable). But we still do know that two-element lists are always

14

sufficient. In other words, if there is a list that satisfies the above formula,

then there is a two-element list that satisfies it. The argument is simple: take

any list l that satisfies the formula, and form a new list l′ that has only the

head and tail of the list l, with an edge from head to tail, and with data

values inherited from l (see Figure 3.2). It is easy to see that l′ satisfies

the formula as well, since whenever two nodes are related by →∗ in the

list l′, the corresponding elements in l are similarly related: The constraints

p1(head) and p2(tail) are obviously satisfied in l′. Moreover, for any possible

valuations of y1 and y2 in l′, where y1 →∗ y2 in l′ holds, y1 →∗ y2 also holds

in l, and hence the constraint p3(y1, y2) is satisfied.

head

l . . .

tail

head

l′

tail

Figure 3.2: l′ inherits data values from l

In other words, given any arbitrarily large list satisfying the above formula,

we can always find a two-element list satisfying the formula, independent of

what the data-predicates may mean. This property, of course, does not hold

on all formulas, as we see in the example below:

Example 3.2.2 (A list counting from c1 to c2).

ϕ2 : d(head) = c1 ∧ d(tail) = c2 ∧

∀y1∀y2((y1 → y2)⇒ d(y2) = d(y1) + 1)

The above says that the values in the list increase by one as we go one

element down the list, and that the head and tail of the list have values c1

and c2, respectively. This formula is satisfiable iff c1 < c2. However, there

is no bound on the size of the minimal model that is independent of the

data-constraints. For example, if c1 = 1 and c2 = 106, then the smallest

15

list that satisfies the formula has a million nodes. In other words, the data-

constraints place arbitrary lower bounds on the size of the minimal structure

that satisfies the formula.

Intuitively, the formula ϕ2 refers to successive elements in the list, and

hence a large model that satisfies the formula is not necessarily contractible to

a smaller model. The formula ϕ1 in the sortedness example (Example 3.2.1)

refers to pairs of elements that were reachable, leading to contraction of large

models to small ones.

Above examples show the design principle of the decidable fragment of

Strand is to examine the structural constraints in a formula ϕ, and enu-

merate a finite set of structures such that the formula is satisfiable iff it one

of these structures can be populated with values to satisfy the formula. This

strategy necessarily fails for the above formula ϕ2, as there is no class of finite

structures that adequately captures all models of the formula, independent of

the data-constraints. The sortedness formula ϕ1 in the first example should

be efficiently checked using the decision procedures for Strand, while ϕ2

should be not.

We further consider the relationship between quantifiers and decidability.

Consider the following example:

Example 3.2.3 (A counting but not sorted list). Consider the formula:

ϕ3 : d(head) = c1 ∧ d(tail) = c2 ∧

∀y1((y1 6= tail)⇒ ∃y2(d(y2) = d(y1) + 1))

This formula says that for any node n except the tail, there is some node

n′ that has the value d(n)+1. Notice that the formula is satisfiable if c1 < c2,

but still there is no a priori bound on the minimal model that is indepen-

dent of the data-constraints. In particular, if c1 = 0 and c2 = 106, then

the smallest model is a list with 106 nodes. Moreover, the reason why the

bounded structure property fails is not because of the data-constraints refer-

ring to successive elements as in Example 2.2, but rather because the above

formula has a ∀∃ prefix quantification of data-variables. Formulas where an

existential quantification follows a universal quantification in the prefix sel-

dom have bounded models, and Strand hence only allows formulas with

∃∗∀∗ quantification prefixes. Note that quantification of structure variables

(variables that quantify over nodes but whose data-field is not referenced in

16

the formula) can be arbitrary, and in fact we allow Strand formulas to even

have set quantifications over nodes.

3.3 Recursively Defined Data-Structures

In this section, we define recursively defined data-structures using a formal-

ism that defines the nodes and edges using MSO formulas over a regular set

of trees. Intuitively, a set of data-structures is defined by taking a regular

class of trees that acts as a skeleton over which the data-structure will be

defined. The precise set of nodes of the tree that corresponds to the nodes of

the data-structure, and the edges between these nodes (which model pointer

fields) will be captured using MSO formulas over these trees. We call such

classes of data-structures recursively defined data-structures (RDDSs).

RDDS is very powerful mechanisms for defining invariants of data-

structures. The notion of graph types [43] is a very similar notion, where

again data-structure invariants are defined using a tree-backbone but where

edges are defined using regular path expressions. Graph types can be modeled

directly in our framework; in fact, our formalism is more powerful.

The framework of RDDS is also interesting because they define classes

of graphs that have a decidable MSO theory. In other words, given a class

C of recursively defined data-structures, the satisfiability problem for MSO

formulas over C (i.e. the problem of checking, given ϕ, whether there is some

structure R ∈ C that satisfies ϕ) is decidable. The decision procedure works

by interpreting the MSO formula on the tree-backbone of the structures. In

fact, our framework can capture all graphs definable using edge-replacement

grammars, which are one of the most powerful classes of graphs known that

have a decidable MSO theory [34].

Remark: We model heap structures as labeled directed graphs: the nodes

of the graph correspond to heap locations, and an edge from n to n′ labeled f

represents the fact that the field pointer f of node n points to n′. The nodes

in addition have labels associated to them; labels are used to signify special

nodes (like NIL nodes) as well as to denote the program’s pointer variables

that point to them.

17

3.3.1 Formal Definition

For any k ∈ N, let [k] denote the set {1, . . . , k}. A k-ary tree is a set V ⊆ [k]∗,

where V is non-empty and prefix-closed. We call u.i the i-th child of u, for

every u, u.i ∈ V , where u ∈ [k]∗ and i ∈ [k]. Let us fix a countable set of first-

order variables FV (denoted by s, t, etc.), a countable set of set-variables

SV (denoted by S, T , etc.), and a countable set of Boolean-variables BV

(denoted by p, q, etc.). The syntax of the Monadic second-order (MSO) [75]

formulas on k-ary trees is defined:

δ ::= p | succi(s, t) | s = t | s ∈ S | ϕ∨ϕ | ¬ϕ | ∃s.ϕ | ∃S.ϕ | ∃p.ϕ

where i ∈ [k]. The atomic formula succi(s, t) holds iff t is the i-th child of s.

Other logical symbols are interpreted in the traditional way.

Definition 3.3.1 (Recursively Defined Data-Structures). A class of recur-

sively defined data-structures (RDDS) over a graph signature Σ = (Lv, Le)

(where Lv and Le are finite sets of labels) is specified by a tuple R = (ψTr, ψU ,

{αa}a∈Lv
, {βb}b∈Le

), where ψTr is an MSO sentence, ψU is a unary predicate

defined in MSO, and each αa (βb) is a monadic (binary) predicate defined

using MSO, respectively, where all MSO formulas are over k-ary trees, for

some k ∈ N.

Let R = (ψTr, ψU , {αa}a∈Lv
, {βb}b∈Le

) be an RDDS and T be a k-ary

Σ-labeled tree that satisfies ψTr. Then T = (V, {Ei}i∈[k]) defines a graph

Graph(T) = (N,E, µ, ν, Lv, Le) as follows:

• N = {s ∈ V | ψU (s) holds in T}

• E = {(s, s′) | ψU(s) and ψU(s′) hold, and βb(s, s′) holds in T for

some b ∈ Le}

• µ(s) = {a ∈ Lv | ψU (s) holds and αa(s) holds in T}

• ν(s, s′) = {b ∈ Le | ψU (s) and ψU(s′) hold and βb(s, s
′) holds in T}.

In the above, N denotes the nodes of the graph, E the set of edges, µ the

labels on nodes, and ν the labels on edges. The class of graphs defined by R

is the set Graph(R) = {Graph(T) | T |= ψTr}. These graphs are interpreted

as heap structures.

18

We give two examples of modeling heap structures as recursively defined

data-structures below.

Example 3.3.2 (Binary trees). Binary trees are common data-structures,

in which two field pointers, l and r, point to the left and right children,

respectively. If a node does not have a left (right) child, then the l (r) field

points to the unique NIL node in the heap. Moreover, there is a node rt

which is the root of the tree. Binary trees can be modeled as a recursively

defined data-structure. For example, we can model the unique NIL node as

the root of the tree, and model the actual nodes of the binary tree at the

left subtree of the root (i.e. the tree under the left child of the root models

rt). The right subtree of the root is empty. Binary trees can be modeled as

Rbt = (ψTr, ψU , {αrt, αnil}, {βl, βr}) where

ψTr ≡ ∃y1.
(
root(y1)∧ 6 ∃y2.

(
succr(y1, y2)

))

ψU (x) ≡ true

αrt(x) ≡ ∃y.
(
root(y) ∧ succ l(y, x)

)

αNIL(x) ≡ root(x)

βl(x1, x2) ≡ ∃y.
(
root(y) ∧ leftsubtree(y, x1) ∧ succl(x1, x2)

)
∨(

root(x2) ∧ 6 ∃z.succl(x1, z)
)

βr(x1, x2) ≡ ∃y.
(
root(y) ∧ leftsubtree(y, x1) ∧ succr(x1, x2)

)
∨(

root(x2) ∧ 6 ∃z.succr(x1, z)
)

where the predicate root(x) indicates whether x is the root of the backbone

tree, and the relation leftsubtree(y, x) (rightsubtree(y, x)) indicates whether x

belongs to the subtree of the left (right) child of y. They can all be defined

easily in MSO. As an example, Figure 3.3a shows a binary tree represented

in Rbt.

Example 3.3.3 (Two lists). Consider modeling two disjoint lists, starting

from h1 and h2, in the heap. They share the same field pointer n and the

same NIL node. This structure can be modeled as a recursively defined data-

structure as follows. Intuitively, the two lists can be encoded as a binary tree.

The tree simply consists of two lists. One list starts at the left child of the

root and the second list at the right child of the root, and the n-pointer is

modeled as the left-child relation. The root is labeled NIL. ψTr simply says

there are no nodes other than these. Then the left child and the right child

19

NIL

rt

(a) T : a binary tree

NIL

rt

(b) S: a valid subset of T (shaded
nodes)

Figure 3.3: A binary tree example represented in Rbt

of the root can be labeled h1 and h2, respectively. The above predicates and

relations can all be described in MSOL:

ψTr ≡ ∃y1y2.
(
root(y1) ∧ succr(y1, y2) ∧

∀y3.
(
leftreach(y1, y3) ∨ leftreach(y2, y3)

))

ψU(x) ≡ true

αhead1(x) ≡ root(x)

αhead2(x) ≡ ∃y.
(
root(y) ∧ succr(y, x)

)

αtail1(x) ≡ ∃y.
(
root(x) ∧ leftreach(y, x)∧ 6 ∃z.succl(x, z)

)

αtail2(x) ≡ ∃y.
(
root(x) ∧ ¬leftreach(y, x)∧ 6 ∃z.succl(x, z)

)

αNIL(x) ≡ root(x)

βn(x1, x2) ≡
(
succl(x1, x2) ∧ ¬root(x1)

)
∨
(
root(x2) ∧ 6 ∃z.succl(x1, z)

)

where the predicate root(x) and the relation leftreach(y, x) are defined in

MSO: root(x) is defined in the same way as in Example 3.3.2; leftreach(y, x)

indicates the reachability via the left-only path from y to x.

3.3.2 Submodels

We need to define the notion of submodels of a model. The definition of a

submodel will depend on the particular RDDS we are working with, since we

want to exploit the tree-representation of the models, which in turn will play

a crucial role in deciding fragments of Strand, as it will allow us to check

20

satisfiability-preserving embeddings. In fact, we will define the submodel

relation between trees that satisfy ψTr.

We first define valid subsets of a tree, with respect to a recursive data-

structure. this will then be used to define submodels.

Definition 3.3.4 (Valid subsets). Let R = (ψTr, ψU , {αa}a∈Lv
, {βb}b∈Le

) and

T = (V, λ) be a Σ-labeled tree that satisfies ψTr, and let S ⊆ V . Then we say

S is a valid subset of V if the following hold:

• S is non-empty, and least-common-ancestor closed (i.e. for any s, s′ ∈

S, the least common ancestor of s and s′ wrt T also belongs to S);

• The subtree defined by S, denoted by Subtree(T, S), is the tree with

nodes S, and where the i-th child of a node u ∈ S is the (unique) node

u′ ∈ S closest to u that is in the subtree rooted at the i’th child of

u. (This is uniquely defined since S is least-common-ancestor (LCA)

closed.) We require that Subtree(T, S) also satisfy ψTr;

• for every s ∈ S, if ψU(s) holds in Subtree(T, S), then ψU (s) holds in T

as well;

• for every s ∈ S, for every a ∈ Lv, αa(s) holds in Subtree(T, S) iff αa(s)

holds in T .

Figure 3.3b shows a valid subset S of the binary tree representation T in

Example 3.3.2. Now we can define a submodel based on a valid subset:

Definition 3.3.5 (Submodels). A tree T ′ = (V ′, λ′) is said to be a submodel

of T = (V, λ) if there is a valid subset S of V such that T ′ is isomorphic to

Subtree(T, S).

Note that while unary predicates (αa) are preserved in the submodel, the

edge-relations (βb) may be very different than its interpretation in the larger

model. Intuitively, T ′ = (V ′, λ′) is a submodel of T = (V, λ) if the vertices

of T ′ can be embedded in T , preserving the tree-structure. The nodes of

the Graph(T ′), are a subset of the nodes of Graph(T) (because of the last

condition in the definition of a submodel), and, given a valid subset S, there

is in fact an injective mapping from the nodes of Graph(T ′) to Graph(T).

21

tailorX(succi(s, t)) = ∃s′.
(
Ei (s, s

′) ∧ s′≤ t ∧

∀t′.
(
(t′ ∈ X ∧ s′ ≤ t′)⇒ t ≤ t′

))

for every i ∈ [k].
tailorX(s = t) = (s = t)

tailorX(s ∈ W) = s ∈ W
tailorX(δ1 ∨ δ2) = tailor(δ1) ∨ tailorX(δ2)

tailorX(¬δ) = ¬tailorX(δ)
tailorX(∃s.δ) = ∃s.

(
s ∈ X ∧ tailorX(δ)

)

tailorX(∃W.δ) = ∃W.
(
W ⊆ X ∧ tailorX(δ)

)

Figure 3.4: Definition of the tailorX function

3.3.3 Interpreting Formulas on Submodels

We define a transformation tailorX from an MSO formula on trees to another

MSO formula (with a free set variable X) on trees, such that for any MSO

sentence δ on k-ary trees, for any tree T = (V, λ) and any valid subsetX ⊆ V ,

Subtree(T,X) satisfies δ iff T satisfies tailorX(δ). The transformation is given

in Figure 3.4, where we let x ≤ y mean that y is a descendent of x in the tree.

The crucial transformations are the edge-formulas, which are interpreted as

the edges of the subtree defined by X .

Now by the definition of valid subsets, we define a predicate ValidSubset(X)

using MSO, where X is a free set variable, such that ValidSubset(X) holds

in a tree T = (V, λ) iff X is a valid subset of V (below, lca(x,y,z) stands for

a MSO formula says that z is the LCA of x and y in the tree).

ValidSubset(X) ≡ ∀s, t, u.
((
s ∈ X ∧ t ∈ X ∧ lca(s, t, u)

)
⇒ u ∈ X

)

∧ tailorX(ψTr) ∧

(
∀s.
(
s ∈ X ∧ tailorX

(
ψU(s)

))
⇒ ψU (s)

)

∧
∧

a∈Lv

[
∀s.

(
s ∈ X ⇒

(
tailorX

(
αa(s)

)
⇔ αa(s)

))]

3.3.4 Elasticity

Elastic relations are relations of the recursive data-structure that satisfy the

property that a pair of nodes satisfy the relation in a tree iff they also satisfy

the relation in any valid subtree. Formally,

22

Definition 3.3.6 (Elastic relations). Let R = (ψTr, ψU , {αa}a∈Lv
, {βb}b∈Le

),

and let b ∈ Le be an edge label. Then the relation Eb (defined by βb) is elastic

if for every tree T = {V, λ} satisfying ψTr, for every valid subset S of V , and

for every pair of nodes u, v in the modelM ′ = Graph(Subtree(T, S)), Eb(u, v)

holds in M ′ iff Eb(u, v) holds in Graph(T).

For example, let R be the class of binary trees, the left-descendent relation

relating a node with any of the nodes in the tree subtended from the left

child, is elastic, because for any binary tree T and any valid subset of S

containing nodes x and y, if y is in the left branch of x in T , y is also in the

left branch of x in the subtree defined by S, and vice versa. However, the

left-child relation is non-elastic. Consider a binary tree T in which y is in the

left branch of x but not the left child of x, then S = {x, y} is a valid subset,

and y is the left child of x in Subtree(T, S).

It turns out that elasticity of Eb can also be expressed by the following

MSO formula

ψTr ⇒ ∀X ∀u ∀v.
[(

ValidSubset(X) ∧ u∈X ∧ v∈X∧

tailorX
(
ψU (u)

)
∧ tailorX

(
ψU (v)

))

⇒
(
βb(u, v)⇔ tailorX

(
βb(u, v)

))]

Eb is elastic iff the above formula is valid over all trees. Hence, we can decide

whether a relation is elastic or not, by checking the validity of the above

formula over k-ary Σ-labeled trees.

3.4 The Logic

We now introduce the Strand (“STRucture ANd Data”) logic. Strand

is a two-sorted logic parameterized by a first-order theory D of sort Data,

and an RDDS R = (ψTr, ψU , {αa}a∈Lv
, {βb}b∈Le

) the syntax of Strand is

presented in Figure 3.5. Strand is defined over the two-sorted signature

Γ(D,R) = Sig(D) ∪ Sig(R) ∪ DF, where DF is a set of functions of sort

Loc → Data. Strand formulas are of the form ∃~x∀~y.ϕ(~x, ~y), where ~x and

~y are ∃DVar and ∀DVar, respectively, of sort Loc (we also refer to both as

DVar), ϕ is a MSO formula with atomic formulas of the form either Qa(b),

23

Eb(v, v
′) or γ(e1, . . . , en), where γ(e1, . . . , en) is an atomic D-formula in which

the data carried by Loc-variables can be referred as df(x) or df(y). Note that

additional variables are allowed in ϕ(~x, ~y), both first-order and second-order,

but γ(e1, . . . , en) is only allowed to refer to ~x and ~y.

Formula ψ ::= ∃x.ψ | ω
∀Formula ω ::= ∀y.ω | ϕ
QFFormula ϕ ::= γ(e1, . . . , en) | Qa(v) | Eb(v, v

′)
| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

| ∃z.ϕ | ∀z.ϕ | ∃S.ϕ | ∀S.ϕ
Expression e ::= df(x) | df(y) | c | g(e1, . . . , en)

∃DVar x ∈ Loc
∀DVar y ∈ Loc
GVar z ∈ Loc
Var v ::= x | y | z
SVar S ∈ 2Loc

Constant c ∈ Sig(D)
Function g ∈ Sig(D)
D-Relation γ ∈ Sig(D)
L-Relation b ∈ Sig(L)
Data Field df ∈ DF

Figure 3.5: Syntax of Strand

The Strand logic is interpreted on a structureM = (GR,MDF). GR is a

graph in Graph(R) with N as the underlying set of nodes, and MDF is set of

functions of the form MDF : N → Data. The semantics of Strand formulas

is the natural extension of R and D.

We will refer to GR as a graph-model. A data-extension of GR is a Strand

model (GR,MDF).

Then every Strand modelM can be canonically regarded as an L-model.

More precisely,

Definition 3.4.1. Given a Strand modelM = (GR,MDF), the structural-

reduct ofM is GR. We also denote it asMstr.

24

For the reverse direction, an L-model can be populated with data values

to form a Strand model:

Definition 3.4.2. Given a Strand modelM and an L-model N ,M is an

data-extension of N if N is the structural-reduct ofM.

By an abuse of language, in the rest of the dissertation, we sometimes call

a Strand model satisfies an MSO L-formula if its structural-reduct does so,

and call an L-model satisfies an Strand formula if there is a data-extension

of it does so.

3.4.1 Examples

We now show various examples to illustrate the expressiveness of Strand.

In the following examples, we assume that DF contains a single data field d.

Example 3.4.3 (Sorted list). We first revisit the motivating Example 3.2.1

presented in Section 3.2. In the formula ϕ1, y1 and y2 must be in DVar since

their data fields are referred. Thus ϕ1 can be rewritten in Strand as

ψsorted ≡ ∀y1∀y2.(d(head)=c1 ∧ d(tail) = c2 ∧

((y1 →
∗ y2)⇒ d(y1) ≤ d(y2)))

Example 3.4.4 (Min-heap). A Min-heap is a heap, which can be represented

as a binary tree, that satisfies the min-heap property, which can be stated in

Strand as

ψminheap ≡ ∀y1∀y2.((y1 →
∗ y2)⇒ d(y1) ≤ d(y2))

Both y1 and y2 are universally quantified data-variables in DVar.

Example 3.4.5 (Binary search tree). In Strand, a binary search tree

(BST) is described as a binary tree data structure with an additional key

field for each node. The keys in a BST are always stored in such a way as to

satisfy the binary-search-tree property:

• The left subtree of a node contains only nodes with keys less than the

node’s key.

25

• The right subtree of a node contains only nodes with keys greater than

the node’s key.

Let the binary trees be defined as in Example 3.3.2 and let the key field be

accessed by function d, this property can be expressed in Strand as follows:

ψbst ≡ ∀y1, y2.
((

leftsubtree(y1, y2)⇒ d(y2) < d(y1)
)
∧

(
rightsubtree(y1, y2)⇒ d(y1) ≥ d(y2)

))

where

leftsubtree(y1, y2) ≡ ∃z.(l(y1, z) ∧ z →∗ y2)

rightsubtree(y1, y2) ≡ ∃z.(r(y1, z) ∧ z →
∗ y2)

x→∗ y ≡ ∃S.
(
x ∈ S ∧ y ∈ S ∧

∀z.
(
z ∈ S → (z = x ∨ ∃u.(l(u, z) ∨ r(u, z)))

))

Note that ψbst has an existentially quantified variable z in GVar after the

universal quantification of y1, y2. However, as z is a structural quantification

(whose data-field cannot be referred to), this formula is in Strand.

Remark: The ∀∃ alternation is unavoidable to express the BST property,

but is excluded by many decidable logic fragments. However, Strand is ex-

pressive enough to allow it, because Strand allows arbitrary quantification

combinations within the ∃∀ quantifications of DVar’s, as long as the data

field of these quantified variables are not referred.

Example 3.4.6 (Two disjoint lists). In separation logic[68], a novel bi-

nary operator ∗, or separating conjunction, is defined to assert that the

heap can be split into two disjoint parts where its two arguments hold, re-

spectively. Such an operator is useful in reasoning with frame conditions in

program verification. Thanks to the powerful expressiveness of MSO logic,

the separating conjunction is also expressible in Strand. For example,

(head1 →∗ tail1) ∗ (head2 →∗ tail2) states, in separation logic, that there

are two disjoint lists such that one list is from head1 to tail1, and the other

is from head2 to tail2. Let the RDDS for two lists be as defined in Exam-

26

ple 3.3.3, then this formula can be written in Strand as:

ψ2lists ≡ ∃S1, S2.(disjoint(S1, S2) ∧ head1 ∈ S1 ∧ tail1 ∈ S1 ∧

head2 ∈ S∧tail2 ∈ S2 ∧ head1→
∗ tail1 ∧ head2→

∗ tail2) ∧

(∀z(head1→
∗ z ∧ z→∗ tail1)⇒ z ∈ S1) ∧

(∀z(head2→
∗ z ∧ z→∗ tail2)⇒ z ∈ S2)

where

disjoint(S1, S2) ≡ ¬∃z.(z ∈ S1 ∧ z ∈ S2)

Note that there are no data fields referred to in ψ2lists, i.e., it is merely an

MSO formula that describes the heap structure. This example shows that

Strand inherits the full power of MSO logic from the structure side.

Remark: In Strand, each formula can be brought into its negation normal

form by using De Morgan’s Laws to push a negation inside, and eliminating

double negations. The resulting formula remains in Strand.

3.5 Program Verification Using Strand

Strand can be used to reason about the correctness of programs, in terms of

verifying Hoare-triples where the pre- and post-conditions express both the

structure of the heap as well as the data contained in them. The pre- and

post-conditions that we allow are Strand formulas that consist of Boolean

combinations of the formulas with pure existential or pure universal quan-

tification over the data-variables (i.e. Boolean combinations of formulas of

the form ∃~x.ϕ and ∀~y.ϕ); let us call this fragment Strand∃,∀.

Given a straight-line program P that does destructive pointer-updates and

data updates, we model a Hoare-triple as a tuple (R,Pre , P,Post), where the

pre-condition is given by the data-structure constraintR with the Strand∃,∀

formula Pre, and the post-condition is given by the Strand∃,∀ formula Post

(note that structural constraints on the data-structure for the post-condition

are also expressed in Post , using MSO logic).

27

In this section, we show that given such a Hoare-triple, we can reduce

checking whether the Hoare-triple is not valid can be reduced to a satis-

fiability problem of a Strand formula over a class of recursively defined

data-structures RP . This then allows us to use Strand∃,∀ to verify pro-

grams (where, of course, loop-invariants are given by the programmer, which

breaks down verification of a program to verification of straight-line code).

Intuitively, this reduction augments the structures in R with extra nodes

that could be created during the execution of P , and models the trail the

program takes by logically defining the configuration of the program at each

time instant. Over this trail, we then express that the pre-condition holds

and the post-condition fails to hold. We also construct formulas that check

if there is any memory access violation during the run of P (e.g. free-ing

locations twice, dereferencing a null pointer, etc.).

3.5.1 Syntax of Programs

Let us define the syntax of a basic programming language manipulating heaps

and data; more complex constructs can be defined by combining these state-

ments appropriately. Let Var be a countable set of pointer variables, F be a

countable set of structural pointer fields, and data be a data field. A condi-

tion is defined as follows: (for technical reasons, negations are pushed all the

way in):

ψ ∈ Cond ::= γ(q1.data, . . . , qk.data) | ¬γ(q1.data, . . . , qk.data)

| p == q | p 6= q | p == nil | p 6= nil | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

where p, q, q1, . . . , qk ∈ Var, and γ is a predicate over data values. The set of

statements Stmt defined over Var, F , and data is defined as follows:

s ∈ Stmt ::= p := new | free(p) | assume(ψ) | p := nil

| p := q | p.f := q | p := q.f | p.data := h(q1.data, . . . , qk.data)

where p, q, q1, . . . , qk ∈ Var, f ∈ F , h is a function over data, and ψ is

a condition. A program P over Var, F , and data is a non empty finite

sequence of statements s1; s2; . . . ; sm, with si ∈ Stmt.

28

Here forward, whenever we refer to statements, programs, conditions,

graphs, recursively data-structures, and Strand formulas, we assume that

are defined over the same sets Var, F , and data.

3.5.2 Semantics of Programs

The semantics of the statements in Stmt, and hence the semantics of pro-

grams is as follows. A statement of a program P operates on graphs G

which have the following template restrictions: G = (V,E, µ, ν, Lv, Le), where

Lv = Var ∪ {xnil}, and Le = F , with the constraint that:

• Every pointer variable p ∈ Var labels exactly one node;

• Every edge is labeled by a unique symbol of F ;

• For each node v ∈ V , v has exactly one outgoing edge labeled by f , for

every f ∈ F ;

• G has a special node, called nil, which is labeled by xnil.

Node nil models an undefined area of memory. In the following whenever a

node v ∈ V is labeled by p (that is, p ∈ µ(v)), we say that p points to v.

Let R be a recursive data-structure, PreandPost be two Strand ∃,∀ for-

mulas, and P ::= s1; s2; . . . ; sm be a program. The configuration of the

program at any point is given by a heap modeled as a graph, where nodes

of the graph are assigned data values. For a program with m statements, let

us fix the configurations to be G0, . . . , Gm.

The execution of a statement s ∈ Stmt on a graph G = (V,E, µ, ν, Lv, Le)

has the effect of transformingG into another graphG′ = (V ′, E ′, µ′, ν ′, Lv, Le).

Given a statement s ∈ Stmt and a graph G, we define a relation G →֒s G
′

that capture the graph transformation according to the semantics of s, as

following:

[p := new]: G′ is obtained by G by adding a new node which is now pointed

by the variable p. All the edges outgoing from the new node will point

to nil.

29

[free(p)]: If p points to the node v ofG, which is not nil, then G′ is obtained

by G by removing v, where now all the edges and pointers that were

pointing to v now will point to nil. Conversely, if p points to nil, then

the program terminates with an error, and G 6 →֒s G
′, for any graph G′.

[p := nil]: G′ is the same as G except that p now points to nil. This

statement will never lead to an error, for any graph G.

[p := q]: G′ is the same as G with the exception that p points to the same

node as q. The statement p := q never goes wrong.

[p.f := q]: If p does not point to nil, G′ is obtained by G by modifying only

the f-edge outgoing from the node pointed by p that now points to the

same node as q (which can also be the nil node). Otherwise, p points

to nil and the execution ends with an error (G 6 →֒s G
′, for any G′).

[p := q.f]: If q does not point to xnil, G′ is structurally the same as G except

that the variable p now points to the same node as that pointed by the

f-labeled edge outgoing from the node pointed by q. Instead, if q points

to nil the execution of the statement ends with an error (G 6 →֒s G
′, for

any G′).

[assume(ψ)]:

If all pointer variables in the condition ψ point to a node which is not

nil, then (1) G′ is the same as G provided that ψ holds on G, (2) the

program gets blocked in case ψ does not hold on G. Otherwise, there

is a pointer variable of ψ that points to nil, and the execution of the

statement terminates with an error.

[p.data := h(q1.data, . . . , qk.data)]: If p and q1, . . . , qk are all not pointing

to nil in G, then G′ is the same as G except that the data-value as-

sociated to the node pointed by p is now updated with the new value

h(q1.data, . . . , qk.data), where qj.data is the data value associated to

the node pointed by qj , for every j ∈ [k].

Otherwise, if p or one among qj pointers points to nil, the execution of

the statement terminates with an error and G 6 →֒s G
′, for any G′.

30

Let P = s1; s2; . . . ; sm, be a program and G0 be a graph. Furthermore,

let P = s1; s2; . . . ; si be the program obtained by P taking only the first i

statements of P .

We define the relation G0 →֒Pi
Gi if there exists a sequence of graphs

G1, G2, . . . , Gm−1 such that Gj−1 →֒sj Gi, for every j ∈ [m]. In other words,

the relation →֒Pi
captures the effect/result (Gi) that the execution of Pi has

on the initial graph G0. Here forward, for every graph G, we denote with

GP
i the graph such that G →֒Pi

GP
i , and with GP to be the graph such

that G →֒Pm
GP which corresponds to the graph obtained at the end of the

execution of P starting with the graph G.

3.5.3 The Problem

Let R be a recursively data-structure, Pre,Post be two Strand formulas,

and P ::= s1; s2; . . . ; sm be a program. The problem we want to address is

that of checking whether there exists a graph G ∈ Graph(R) on which Pre

holds, and either (1) GP exists and Post does not hold, or (2) there exists

an index i such that GP
i exists and the execution of si+1 gives an error.

We show that such a problem is reducible to the satisfiability problem of a

Strand formula over a newly recursively data-structure RP that is defined

by R and P called the trail.

3.5.4 The Trail

The idea is to capture the entire computation starting from a particular

data-structure using a single data-structure. The main intuition is that if

we run P over a graph G0 ∈ Graph(R) then a new class of recursive data-

structures RP will define a graph Gtrail which encodes in it G0, as well as

all the graphs Gi, for every i ∈ [m]. Gtrail has the nodes of G0 plus m

other fresh nodes (these nodes will be used to model newly created nodes P

creates as well as to hold new data-values of variables that are assigned to in

P). Each of these new nodes are pointed by a distinguished pointer variable

newi. Initially, these additional nodes are all inactive in G0. We build an

MSO-defined unary predicate activei that captures at each step i the precise

set of active nodes in the heap. To capture the pointer variables at each step

31

of the execution, we define a new unary predicate pi, for each p ∈ Var and

i ∈ [0, m]. Similarly, we create MSO-defined binary predicates fi for each

f ∈ F and i ∈ [0, m], to capture structural pointer fields at step i. The heap

Gi at step i is hence the graph consisting of all the nodes x of Gtrail such that

activei(x) holds true, and the pointers and edges of Gi are defined by pi and

fi predicates, respectively.

Formally, fix a recursively defined data-structure R = (ψTr, ψU , {αp}p∈Var,

{βf}f∈F), with a monadic predicate αxnil, which evaluates to a unique NIL

node in the data-structure. Then its trail with respect to the program P is

defined as RP = (ψ′
Tr, ψ

′
U , {α

′
p}p∈Var′, {β

′
f}f∈F ′) where:

• ψ′
Tr is designed to hold on all trees in which the first subtree of the

root satisfies ψTr and the second child of the root has a chain of m− 1

nodes where each of them is the second child of the parent.

• ψ′
U holds true on the root, on all the second child descendent of the

root, and on all first child descendent on which ψU holds true.

• Var′ = {newi | i ∈ [m]} ∪ {pi | p ∈ Var, i ∈ [0, m]}, and

-(1) α′
new1

holds only on the root, and α′
newi

holds true only on the

i+1’th descendent of the second child of the root, for every i ∈ [m−1].

-(2) for every p ∈ Var and i ∈ [m], α′
p0

= αp and α′
pi

is defined as in

Figure 3.6 and Figure 3.7.

• F ′ = {fi | f ∈ F, i ∈ [0, m]}, and for every f ∈ F and i ∈ [m], β ′
f0

= βf

and β ′
fi
is defined as in Figure 3.6 and 3.7.

In Figure 3.6, the MSO formulas α′
pi
and β ′

fi
are derived from the semantics

of the non-updating statements. In Figure 3.7, similar formulas are derived

for the updating statements. All the formulas are derived in the natural

way except p.data := h(q1.data, . . . , qk.data). Although the semantics for

this statement does not involve any structural modification of the graph

(it changes only the data value associated p), we represent this operation by

making a new version of the node pointed by p in order to represent explicitly

the change for the data value corresponding to that node. We deactivate the

node pointed by pi−1 and activate the dormant node pointed by newi. All the

edges in the graph and the pointers are rearranged to reflect this exchange

of nodes.

32

[p := nil]:

α′
pi(x)

= α′
xnili−1

(x), α′
zi
(x) = α′

zi−1
(x), ∀z ∈ Var \ {p}

β ′
fi
(x, y) = β ′

fi−1
(x, y), ∀f ∈ F

activei(x) = activei−1(x), errori = false

[p := q]:

α′
pi
(x) = α′

qi−1
(x), α′

zi
(x) = α′

zi−1
(x), ∀z ∈ Var \ {p}

β ′
fi
(x, y) = β ′

fi−1
(x, y), ∀f ∈ F

activei(x) = activei−1(x), errori = false

[p := q.f]:

α′
pi(x)

= ∃ex. (α′
qi−1

(ex) ∧ β ′
fi−1

(ex, x))

α′
qi
(x) = α′

qi−1
(x), ∀q ∈ (Var \ {p})

β ′
fi
(x, y) = β ′

fi−1
(x, y)

β ′
gi
(x, y) = β ′

gi−1
(x, y), ∀g ∈ (F \ {f})

activei(x) = activei−1(x), errori = ∃x. (α
′
qi−1

(x) ∧ α′
xnili−1

(x))

[assume(ψ)]:

α′
qi
(x) = α′

qi−1
(x), ∀q ∈ Var

β ′
li
(x, y) = β ′

li−1
(x, y), ∀l ∈ F

activei(x) = activei−1(x),

errori = ∃x.
∨

p∈Var(ψ)

(α′
pi−1

(x) ∧ α′
xnili−1

(x))

where Varψ is the set of all variables occurring in ψ.

Figure 3.6: Predicates defined for non-updating statements.

In Figure 3.6 and Figure 3.7, we also define two more MSO formulas,

activei and errori, which are not part of the trail, where the first models the

active nodes at step i, and the second expresses when an error occurs due to

the dereferencing of a variable pointing to xnil, respectively.

33

[p := new]:

α′
pi
(x) = α′

newi
(x), α′

qi
(x) = α′

qi−1
(x), ∀q ∈ Var \ {p},

β ′
fi
(x, y) = β ′

fi−1
(x, y), ∀f ∈ F

activei(x) = activei−1(x) ∨ α
′
newi

(x), errori = false

[free(p)]:

α′
zi
(x) =

(
α′
zi−1

(x) ∧ (α′
xnili−1

(x) ∨ ¬α′
pi−1

(x))
)
∨

(
α′
xnili−1

(x) ∧ ¬α′
zi−1

(x)
)

β ′
fi
(x, y) =

(
β ′
fi−1

(x, y) ∧ ¬α′
pi−1

(x)
)
∨

(
α′
xnili−1

(y) ∧ ∃ex. (β ′
fi−1

(x, ex) ∧ α′
pi−1

(ex))
)

activei(x) = activei−1(x) ∧ ¬α
′
pi−1

(x)

errori = ∃x.(α′
pi−1

(x) ∧ α′
xnili−1

(x))

[p.f := q]:

α′
zi
(x) = α′

zi−1
(x), ∀z ∈ Var

β ′
fi
(x, y) = (¬α′

pi−1
(x) ∧ β ′

fi−1
(x, y)) ∨ (α′

pi−1(x) ∧ α
′
qi−1

(y))

β ′
gi
(x, y) = β ′

gi−1
(x, y), ∀g ∈ (F \ {f})

activei(x) = activei−1(x),

errori = ∃x.(α′
pi−1

(x) ∧ α′
xnili−1

(x))

[p.data := h(q1.data, . . . , qk.data)]:

α′
pi
(x) = α′

newi
(x), α′

qi
(x) = α′

qi−1
(x), ∀q ∈ Var \ {p}

β ′
fi
(x, y) =

(
β ′
fi−1

(x, y) ∧ ¬α′
pi−1

(x)
)
∨

(
α′
newi

(y) ∧ ∃ex. (β ′
fi−1

(x, ex) ∧ α′
pi−1

(ex))
)

activei(x) = (activei−1(x) ∧ ¬pi−1(x)) ∨ α
′
newi

(x)

errori = ∃x.
(∨

z ∈{p,q1,...,qk}

(α′
zi−1

(x) ∧ α′
xnili−1

(x))
)

Figure 3.7: Predicates defined for updating statements.

34

3.5.5 Handling Data Constraints

The trail RP captures all the structural modifications made to the graph

during the execution P . However, data constrains entailed by assume state-

ments and data-assignments cannot be expressed in the trail as they are not

expressible in MSO. We impose them in the Strand formula. We define a

formula ϕi for each statement index i ∈ [m], where if si is not an assume or a

data-assignment statement, then ϕi = true. Otherwise, there are two cases:

Handling assume-statements. If si is the statement assume(ψ), then ϕi

is the Strand formula obtained by adapting the constraint ϕ to the i’th

stage of the trail. We use the recursive translation ψ′ = adaptψi , defined

in Figure 3.8, to adapt the condition ψ to refer to the trail at step i − 1.

Formula ψ′ is not yet a Strand formula since there may be existential

quantifiers inside the formula that may involve data variables. However,

all the existential quantifiers are not in the scope of any Boolean negation

and hence all of them can be moved at the beginning of ψ′ (after renaming

variables, if necessary). The resulting formula ϕi is the Strand formula

associated to si.

adaptpi (x) := α′
pi−1

(x)

adapt¬pi (x) := ¬α′
pi−1

(x)

adaptp.fi (x) := ∃ex.(β ′
fi−1

(ex, x) ∧ adaptpi−1(ex))

adapt¬p.fi (x) := ∃ex. (β ′
fi−1

(ex, x) ∧ adapt¬pi−1(ex))

adaptp==q
i := ∃ex. (adaptpi−1(ex) ∧ adaptqi−1(ex))

adaptp6=q
i := ∃ex. (adaptpi−1(ex) ∧ adapt¬qi−1(ex))

adaptp==nil
i := ∃ex. (adaptpi−1(ex) ∧ xnili−1(x))

adaptp6=nil
i := ∃ex. (adaptpi−1(ex) ∧ ¬xnili−1(ex))

adaptψ1∧ψ2

i := adaptψ1

i−1 ∧ adaptψ2

i−1

adaptψ1∨ψ2

i := adaptψ1

i−1 ∨ adaptψ2

i−1

adapt
r(q1.data,...,qk.data)
i := ∃ex1, . . . , exk.

(∧
i∈[k] adapt

qj

i−1(exj)) ∧

r(data(ex1), . . . , data(exk)
)

adapt
¬r(q1.data,...,qk.data)
i := ∃ex1, . . . , exk.

(∧
i∈[k] adapt

qj

i−1(exj)) ∧

¬r(data(ex1), . . . , data(exk)
)

Figure 3.8: A syntactic transformation for conditions.

35

Handling data-assignments. The Strand formula ϕi for a data-

assignment statement p.data := h(q1.data, . . . , qk.data) is:

ϕi := ∃ex, ex1, . . . , exk. pi(ex) ∧

(
∧

i∈[k]

qji−1(exj)) ∧ data(ex) = h(data(ex1), . . . , data(exk))

which translates si into Strand making sure that it refers to the heap at

step i− 1.

3.5.6 Adapting Pre- and Post-Conditions to the Trail

The last ingredient that we need is to express the Strand ∃,∀ formulas Pre

and the negation of the Post on the trail RP . More specifically, we need to

adapt Pre to the trail for index 0, which corresponds to the original graph,

i.e. the predicates p are replaced with p0, for every p ∈ Var, and the edge

predicates f with f0, for every f ∈ F . Moreover, whenever we refer to a node in

the graph we need to be sure that node is active which can be done by using

the predicate active0(x) which holds true if x is in the first subtree of the root

and ψ′
U(x) holds. A similar transformation is done for the formula ¬Post ,

where now we consider pointers, edge labels, and active nodes at the last

step m. Let PreRP
(resp., PostRP

) be the Strand formula corresponding

to the adaptation of Pre (resp., Post).

3.5.7 Reduction to Satisfiability Problem on the Trail

It is easy to see that an error occurs during the execution of P on a graph

defined through R that satisfies Pre if the following Strand formula is

satisfiable on the trail RP :

Error =
∨

i∈[m]

(PreRP
∧
∧

j∈[i−1]

ϕj ∧ errori)

36

Similarly, the Hoare-triple is not valid iff the following Strand formula is

satisfiable on the trail:

ViolatePost = PreRP
∧ (

∧

i∈[m]

ϕi) ∧ ¬PostRP

Therefore, the main result of the section which claims that the verification

of programs defined with recursively data-structures can be reduced to the

satisfiability of a Strand formula is formally stated as follows.

Theorem 3.5.1. Let P be a program, R be an RDDS, and Pre,Post be

two Strand∃,∀ formulas over Var, F , and data. Then, there is a graph

G ∈ Graph(R) that satisfies Pre and where either P terminates with an

error or the obtained graph G′ does not satisfy Post iff the Strand formula

Error ∨ViolatePost is satisfiable on the trail RP .

Proof. Let us fix P as a basic block consisting of m statements: s0, . . . , sm−1.

Then the soundness of the VC-generation can be proved by showing:

1. Each memory-error free run of P can be represented by a model of RP

satisfying
∧
i∈[m] ϕi;

2. If a run encounters memory error at the j-th statement, it can be

represented by a model ofRP satisfying PreRP
∧
∧
j∈[i−1] ϕj ∧ errori;

3. The pre- and post-conditions of a successful run can be captured by

Pre and Post over RP , respectively.

Now we prove the three claims as follows.

Successful runs. For the i-th statement, the structural modification is

captured by the constraints on α′ and β ′ in Figure 3.6 and 3.7. For example,

if the i-th statement is p.f := q, the variable store is not modified at all,

so
∧

z∈Var

(
α′
zi
(x) = α′

zi−1
(x)
)
. For the heap, the fields other than f are also

unchanged, so
∧
g∈(F\{f})

(
β ′
gi
(x, y) = β ′

gi−1
(x, y)

)
. For the f field, β ′

fi
(x, y)

holds in two cases: either x is not pointed by p at the (i−1)-th configuration

and β ′
fi−1

(x, y) holds, or x is pointed by p at the (i− 1)-th configuration, and

y is pointed by q at the (i − 1)-th configuration. These modifications are

formally captured by the predicate definitions in Figure 3.7, and we leave

the other cases to the reader to verify.

37

The extra structural and data modifications for the i-th statement is cap-

tured by the formula ϕi. There are only two non-trivial cases: the assume-

statements and the data-assignments. The assume-statement assume(ψ)

guarantees that the ψ is satisfied at the (i−1)-th configuration. In this case,

ϕi is just the formula adaptψi defined in Figure 3.8, which inductively inter-

prets ψ in the signature of RP . In particular, for a constraint r(q1.data, . . . ,

qk.data), ϕi guesses the nodes ex1, . . . , exk that are pointed by q1, . . . qk, re-

spectively, and asserts the relation r holds over the data fields of these nodes.

As to the data-assignment p.data := h(q1.data, . . . , qk.data), where h is an

expression in the data-logic, the formula ϕi introduces ex1, . . . , exk similarly,

and the node ex for p. ex1, . . . , exk represent where q1, . . . qk point to at the

(i−1)-th configuration, and ex represents where p points to at the i-th config-

uration. Moreover, the data value of ex is equal to h(data(ex1), . . . , data(exk)).

Memory error at the j-th statement. If an memory error occurs in

the j-th statement, we assume that the previous i − 1 statements are exe-

cuted successfully. Then the memory error can be captured by the corre-

sponding formula errori defined in Figure 3.6 and 3.7. Intuitively, whenever

a variable p is dereferenced or mutated, errorj asserts that ∃x.(α′
pj−1

(x) ∧

α′
xnilj−1

(x)). In particular, for the data-assignment of the form p.data :=

h(q1.data, . . . , qk.data), in which k variables are dereferenced and one vari-

able is modified, errorj consists of k + 1 conjuncts, each for one variable.

Pre- and post-conditions. Note that each model of the RDDS RP en-

codes an execution of the basic block P , every Strand formula for every

intermediate i-th configuration can be easily interpreted on RP : simply re-

place each αp with α′
pi

and replace each βf with β ′
fi
. In particular, when

interpreting Pre on the first configuration ofRP and interpreting Post on the

last configuration of RP , the obtained formulas are just PreRP
and PostRP

,

respectively.

38

CHAPTER 4

DECISION PROCEDURES

Now that we have introduced recursively defined data-structures and the

Strand logic, we turn our attention to checking satisfiability of Strand.

4.1 Overview

In general, the satisfiability of Strand is undecidable, even if both its un-

derlying data-theories D is decidable.

Theorem 4.1.1. The satisfiability of Strand is undecidable.

Proof. We show the undecidability via a reduction from the halting problem

of 2-counter machines, which is a well-known undecidable problem [57].

Let D be linear integer arithmetic andR be the class of lists of even length.

It is easy to model an execution of a 2-counter machine using a list with

integers. Each configuration is represented by two adjacent nodes, which are

labeled by the current instruction. The data fields of the two nodes hold the

value of the two registers, respectively. The first two nodes are the initial

configuration, the last two nodes are a halting configuration, and for any two

consecutive configurations, the inbetween instruction is executed correctly.

Then a halting computation can be expressed by a Strand formula:

∃x1, x2.(head(x1) ∧ next(x1, x2) ∧ init conf(x1, x2)) ∧

∀z1, z2, z3, z4.
(
(odd(z1) ∧ next(z1, z2) ∧ next(z2, z3) ∧ next(z3, z4)) ⇒

one step exec(z1, z2, z3, z4)
)
∧

∃y1, y2.(tail(y2) ∧ next(y1, y2) ∧ terminating(x1, x2))

Hence the halting problem 2-counter machines reduces to the satisfiability of

Strand. Notice that the satisfiability of the Strand logic is undecidable,

even though the underlying logics L and D are decidable.

39

4.1.1 Two Decidable Fragments

The primary contribution of this chapter is in identifying two decidable frag-

ments of Strand: (1) a semantically defined fragment Strandsem
dec , and (2) a

syntactically defined fragment Strandsyn
dec . Both fragments admit automata-

theoretic decision procedures.

The decision procedures for Strandsem
dec are based on

a) abstracting the data-predicates in the formula with Boolean variables

to obtain a formula purely on graphs;

b) extracting the set of minimal graphs according to a Satisfiability-

Preserving Embedding (SPE) relation that was completely agnostic to

the data-logic, and is guaranteed to be minimal for the two fragments;

and

c) checking whether any of the minimal models admits a data-extension

that satisfies the formula, using a data-logic solver.

As a syntactically defined fragment that is subsumed under Strandsem
dec ,

Strand
syn
dec also admits the above decision procedures. However, we develop

a new method to solve satisfiability for Strandsyn
dec using a notion called small

models, which are not the precise set of minimal models but a slightly larger

class of models.

We also showed that the decidable fragments can be used in the verification

of pointer-manipulating programs. We implemented the decision procedures

for both Strandsem
dec and Strand

syn
dec usingMona on tree-like data-structures

for the graph logic and Z3 for quantifier-free arithmetic, and reported ex-

perimental results in Hoare-style deductive verification of certain programs

manipulating data-structures.

4.1.2 Some Intuitions

We here give some intuition behind the decision procedures presented in this

chapter.

Satisfiability-preserver embeddings: The crucial notion behind both

the two decidable fragments is called Satisfiability-Preserving Embeddings

40

(SPEs). Intuitively, for two heap structures (without data) S and S ′, S

satisfiability-preservingly embeds in S ′ with respect to a Strand formula ψ

if there is an embedding of the nodes of S in S ′ such that no matter how

the data-logic constraints are interpreted, if S ′ satisfies ψ, then so will the

submodel S satisfy ψ, by inheriting the data-values. We define the notion of

satisfiability-preserving embeddings so that it is entirely structural in nature,

and is definable using MSO on an underlying graph that simultaneously

represents S, S ′, and the embedding of S in S ′.

If S satisfiability-preservingly embeds in S ′, then clearly, when checking for

satisfiability, we can ignore S ′ if we check satisfiability for S. More generally,

the satisfiability check can be done only for the minimal structures with

respect to the partial-order (and well-order) defined by SPEs.

The semantic decidable fragment Strandsyn
dec is defined to be the class of all

formulas for which the set of minimal structures with respect to satisfiability-

preserving embeddings is finite, and where the quantifier-free theory of the

underlying data-logic is decidable. Though this fragment of Strand is

semantically defined, we show that it is syntactically checkable. Given a

Strand formula ψ, we show that we can build a regular finite representa-

tion of all the minimal models with respect to satisfiability-preserving em-

beddings, even if it is an infinite set, using automata-theory. Then, checking

whether the number of minimal models is finite is decidable. If the set of

minimal models is finite, we show how to enumerate the models, and reduce

the problem of checking whether they admit a data-extension that satisfies

ψ to a formula in the quantifier-free fragment of the underlying data-logic,

which can then be decided.

The Bernays-Schönfinkel-Ramsey class: Having motivated formulas

with the ∃∗∀∗ quantification in Section 3.2, it is worthwhile to examine this

fragment in classical first-order logic (over arbitrary infinite universes), which

is known as the Bernays-Schönfinkel-Ramsey class, and is a classical decidable

fragment of first-order logic [13].

Consider first a purely relational vocabulary (assume there are no functions

and even no constants). Then, given a formula ∃~x∀~y.ϕ(~x, ~y), let M be a

model that satisfies this formula. Let v be an interpretation for ~x such that

M under v satisfies ∀~y.ϕ(~x, ~y). Then it is not hard to argue that the submodel

obtained by picking only the elements used in the interpretation of ~x (i.e.

41

v(~x)), and projecting each relation to this smaller set, satisfies the formula

∃~x∀~y.ϕ(~x, ~y) as well [13]. Hence a model of size at most k always exists

that satisfies ϕ, if the formula is satisfiable, where k is the size of the vector

of existentially quantified variables ~x. This bounded model property extends

to when constants are present as well (the submodel should include all the

constants) but fails when more than two functions are present. Satisfiability

hence reduces to propositional satisfiability, and this class is also called the

effectively propositional class, and SMT solving for this class exists.

When the signature contains a single function symbol, the class is still

decidable [13]; since arbitrary projection to a smaller universe does not give

rise to a model (as functions have to be defined on every element), the argu-

ment is slightly more complex, and creates finite psuedo-models of bounded

size. When two or more functions are present, satisfiability of the fragment

becomes undecidable [13].

The decidable fragment of Strand is fashioned after a similar but more

complex argument. Given a subset of nodes of a model, the subset itself

may not form a valid graph/data-structure. We define a notion of submodels

that allows us to extract proper subgraphs that contain certain nodes of

the model. However, the relations (edges) in the submodel will not be the

projection of edges in the larger model. Consequently, the submodel may

not satisfy a formula, even though the larger model does.

We define a notion called satisfiability-preserving embeddings that allows

us to identify when a submodel S of T is such that, whenever T satisfies ψ

under some interpretation of the data-logic, S can inherit values from T to

satisfy ψ as well. This is considerably more complex and is the main technical

contribution of the paper. We then build decision procedures to check the

minimal models according to this embedding relation.

Organization: We first formally define the SPEs in Section 4.2, then

present the two decidable fragments and their decision procedures in Sec-

tion 4.3 and Section 4.4, respectively. We also report and evaluate an im-

plementation of the above decision procedures with experimental results in

Section 4.5. We conclude this chapter with related work in Section 4.6.

42

4.2 Satisfiability-Preserving Embeddings

Given a Strand formula ∃~x∀~y.ϕ(~x, ~y) over an RDDSR = (ψTr, ψU , {αa}a∈Lv
,

{βb}b∈Le
), we can transform this to an equisatisfiable formula ∀~x∀~y.ϕ′(~x, ~y)

over a different RDDS R′, where data-structures in R′ are data-structures

in R with new unary predicates that give a valuation for the variables in ~x.

R′ can be formally defined as = (ψ′
Tr, ψ

′
U , {α

′
a}a∈L′

v
, {β ′

b}b∈L′

e
), where

• L′
v = Lv ∪ {ai | xi ∈ ~x}

• L′
e = Le

• ψ′
Tr ≡ ψTr ∧

∧
xi∈~x
∃z.
(
ψU(z) ∧Qai(z) ∧ ∀z

′.(Qai(z
′)⇒ z = z′)

)

• ψ′
U ≡ ψU

• α′
a ≡ αa for every a ∈ Lv

• α′
ai
≡ true for every xi ∈ ~x

• β ′
b ≡ βb for every b ∈ Le

Intuitively, we modify ψTr to accept trees with extra labelings ai that give (an

arbitrary) singleton valuation of each xi ∈ ~x that satisfies ψU , and introduce

new unary predicates Vali(x) = Qai(x). Then we can define ϕ′(~x, ~y) to be

(∧

i

Vali(xi)
)
⇒ ϕ(~x, ~y)

It is easy to see there is a graph in Graph(R) that satisfies ∃~x∀~y.ϕ(~x, ~y) iff

there is a graph in Graph(R′) that satisfies ∀~x∀~y.ϕ′(~x, ~y). The latter is a

Strand formula with no existential quantification of variables whose data

is referred to by the formula. Let us refer to these formulas with no leading

existential quantification on data-variables as universal Strand formulas ;

we will now outline techniques to solve the satisfiability problem of a certain

class of universal Strand formulas.

Let ψ = ∀~y. ϕ(~y) be a universal Strand formula.

4.2.1 Structural Abstraction

Before defining SPE formally, we first define a notion calls structural ab-

straction of ψ. Let γ1, γ2, . . . , γr be the atomic relational formulas of the

43

data-logic in ϕ. Note that each of these relational formulas will be over the

data fields of variables in ~y only (since the data-logic is restricted to working

over the terms data(y), where y ∈ ~y).

Consider evaluating ψ over a particular model. After fixing a particular

valuation of ~y, notice that the data-relations γi get all fixed, and evaluate

to true or false. Moreover, once the values of γi are fixed, the rest of the

formula is purely structural in nature. Now, if ψ is to hold in the model,

then no matter how we choose to evaluate ~y over the nodes of the model, the

γi relations must evaluate to true or false in such a way that ϕ holds.

Since we want, in the first phase, to ignore the data-constraints entirely, we

will abstract ψ using a purely structural formula by using Boolean variables

b1, . . . br instead of the data-relations γ1, γ2, . . . , γr. However, since these

Boolean variables get determined only after the valuation of ~y gets deter-

mined, and since we are solving for satisfiability, we existentially quantify

over these Boolean variables and quantify them after the quantification of ~y.

Formally,

Definition 4.2.1. Let ψ = ∀~y. ϕ(~y) be a universal Strand formula, and let

the atomic relational formulas of the data-logic that occur in ϕ be γ1, γ2, . . . , γr.

Then its structural abstraction ψ̂ is defined as the pure MSO formula on

graphs:

∀~y ∃b1 . . . br. ϕ′(~y,~b)

where ϕ′ is ϕ with every occurrence of γi replaced with bi.

Remark: The definition of structural abstractions can be strengthened in

two ways. First, if γi and γj are of the same arity and over ~z and ~z′, re-

spectively, and further uniformly replacing zi with z
′
i in γi yields γ

′, then we

can express the constraint ((~zi=~zi
′) ⇒ (bi⇔ bj)), in the inner formula ϕ′.

Second, if a constraint γi involves only existentially quantified variables in

~x, then we can move the quantification of bi outside the universal quantifica-

tion. Doing these steps gives a more accurate structural abstraction, and in

practice, restricts the number of models created. We use these more precise

abstractions in the experiments, but use the less precise abstractions in the

theoretical narrative. The proofs in this section, however, smoothly extend

to the more precise abstractions.

44

Example 4.2.2. Consider the sortedness formula ψsorted from Example 3.4.3.

Then its structural abstraction can be derived as

ψ̂sorted ≡ ∀y1, y2 ∃b1, b2, b3.
(
b1 ∧ b2 ∧

(
(y1 →

∗ y2)⇒ b3
))

Note that each Boolean variable bi replaces an atomic relational formula γi,

which is some data-constraint on the data-fields of some of the quantified

variables.

The structural abstraction has not only lost the constraint, but has even

lost the precise variables whose data-fields the constraint was over. Neverthe-

less, the abstraction is enough to define the notion of satisfiability-preserving

embeddings below.

The following proposition is obvious; it says that if a universal Strand

formula ψ is satisfiable, then so is its structural abstraction ψ̂. The propo-

sition is true because the values for the Boolean variables can be set in the

structural abstraction precisely according to how the relational formulas γi

evaluate in ψ:

Proposition 4.2.3. Let ψ = ∀~y.ϕ(~y) be a universal Strand formula, and

ψ̂ be its structural abstraction. If ψ is satisfiable over an RDDS R, then the

MSO formula on graphs (with no constraints on data) ψ̂ is also satisfiable

over R.

Proof. Let R be an RDDS satisfying ψ = ∀~y.ϕ(~y), then its formula abstrac-

tion ψ̂ = ∀~y ∃b1 . . . br. ϕ′(~y,~b) is satisfied by Graph(R). Let the atomic

data-logic subformulas appearing in ψ be γ1, . . . , γr, then for each assign-

ments of ~y, simply assign each bi the same value as γi. Then the abstracted

ϕ′(~y,~b) is obviously satisfied.

4.2.2 Formal Definition

We are now ready to define satisfiability-preserving embeddings using struc-

tural abstractions. Given a model defined by a tree T = (V, λ) satisfying

ψTr, and a valid subset S ⊆ V , and a universal Strand formula ψ, we would

like to define the notion of when the submodel defined by S satisfiability-

preservingly embeds in the model. The most crucial requirement for the

45

definition is that if S satisfiability-preservingly embeds in T , then we re-

quire that if there is a data-extension of Graph(T) that satisfies ψ, then the

nodes of the submodel defined by S, Graph(Subtree(T, S)), can inherit the

data-values and also satisfy ψ. The notion of structural abstractions defined

above allows us to define such a notion.

Intuitively, if a model satisfies ψ, then it would satisfy ψ̂ too, as for every

valuation of ~y, there is some way it would satisfy the atomic data-relations,

and using this we can pull out a valuation for the Boolean variables to satisfy

ψ̂ (as in the proof of Proposition 4.2.3 above). Now, since the data-values in

the submodel are inherited from the larger model, the atomic data-relations

would hold in the same way as they do in the larger model. However, the

submodel may not satisfy ψ if the conditions on the truth- and false-hood of

these atomic relations demanded by ψ are not the same.

For instance, consider a list and a sublist of it. Consider a formula that

demands that for any two successor elements y1, y2 in the list, the data-value

of y2 is the data-value of y1 incremented by 1 (as in Example 3.2.2):

ψ ≡ ∀y1∀y2.
(
(y1 → y2)⇒ (d(y2) = d(y1) + 1)

)

Now consider two nodes y1 and y2 that are successors in the sublist but not

successors in the list. The list hence could satisfy the formula by setting the

data-relation γ : d(y2) = d(y1)+1 to false. Since the sublist inherits the data

values, γ would be false in the sublist as well, but the sublist will not satisfy

the formula ψ. We hence want to ensure that no matter how the larger model

satisfies the formula using some valuation of the atomic data-relations, the

submodel will be able to satisfy the formula using the same valuation of the

atomic data-relations. This leads us to the following definition:

Definition 4.2.4. Let ψ = ∀~y. ϕ(~y) be a universal Strand formula, and

let its structural abstraction be ψ̂ = ∀~y ∃~b. ϕ′(~y,~b). Let T = (V, λ) be a tree

that satisfies ψTr, and let a submodel be defined by S ⊆ V . Then S is said to

satisfiability-preservingly embed into T wrt ψ if for every possible valuation

of ~y over the elements of S, and for every possible Boolean valuation of
~b, if ϕ′(~y,~b) holds in the graph defined by T under this valuation, then the

submodel defined by S, Graph(Subtree(T, S)), also satisfies ϕ′(~y,~b) under the

same valuation. Moreover, S strictly satisfiability-preservingly embeds into

T if S satisfiability-preservingly embeds into T and S 6= T .

46

The SPE relation can be seen as a partial order over trees (a tree T ′

satisfiability-preservingly embeds into T if there is a subset S of T such that

S satisfiability-preservingly embeds into T and Subtree(T, S) is isomorphic

to T ′); it is easy to see that this relation is reflexive, anti-symmetric and

transitive.

It is now not hard to see that if S satisfiability-preservingly embeds into T

wrt ψ, and Graph(T) satisfies ψ, then Graph(Subtree(T, S)) also necessarily

satisfies ψ, which is the main theorem we seek.

Theorem 4.2.5. Let ψ = ∀~y.ϕ(~y) be universal Strand formula. Let T =

(V, λ) be a tree that satisfies ψTr, and S be a valid subset of T that satisfiability-

preservingly embeds into T wrt ψ. Then, if there is a data-extension of

Graph(T) that satisfies ψ, then there exists a data-extension of

Graph(Subtree(T, S))

that satisfies ψ.

Proof. The gist of the proof of the above theorem goes similar to the ar-

guments given above. Consider a data-extension of Graph(T) that satisfies

ψ. Each node u of Graph(Subtree(T, S)) corresponds to a unique node u′ in

Graph(T) (see above). Define the data-extension of Graph(Subtree(T, S)) by

assigning the data-value of each node u to the data-value of the correspond-

ing node u′ in Graph(T). For any valuation of ~y over Graph(Subtree(T, S)),

consider the corresponding valuation over T . Since the data-extension of

Graph(T) satisfies ϕ, by Proposition 4.2.3, Graph(T) must satisfy the for-

mula ϕ with its atomic data-predicates replaced by Boolean variables. Since

S satisfiability-preservingly embeds in T , the same valuation of the Boolean

variables also satisfies ϕ with its atomic data-predicates replaced by Boolean

variables. Since the data-extension of Graph(Subtree(T, S)) is derived by in-

heriting the data-values from the data-extension of Graph(T), it follows that

the data-values of ~y satisfy the same predicates γi as they did in the data-

extension of Graph(T). Hence it follows that ϕ(~y) holds in the extension of

Graph(Subtree(T, S)) as well. Since this is true for any valuation of ~y over S,

it follows that the data-extension of Graph(Subtree(T, S)) satisfies ψ.

Notice that the above theorem crucially depends on the formula being

universal over data-variables. For example, if the formula was of the form

47

∀y1∃y2.γ(y1, y2), then we would have no way of knowing which nodes are used

for y2 in the data-extension of Graph(T) to satisfy the formula. Without

knowing the precise meaning of the data-predicates, we would not be able

to declare that whenever a data-extension of Graph(T) is satisfiable, a data-

extension of a strict submodel S is satisfiable (even over lists).

The above notion of SPEs is the property that will be used to decide if a

formula falls into our decidable fragments.

4.3 A Semantically Defined Fragment

We are now ready to define Strandsem
dec . This fragment is semantically de-

fined (but syntactically checkable, as we show below), and intuitively con-

tains all Strand formulas that have a finite number of minimal models with

respect to the partial-order defined by satisfiability-preserving embeddings.

Formally, let ψ = ∀~y.ϕ(~y) be a universal Strand formula, and let T =

(V, λ) be a tree that satisfies ψTr. Then we say that T is a minimal model

with respect to ψ if there is no strict valid subset S of V that satisfiability-

preservingly embeds in T .

Definition 4.3.1. Let R be an RDDS.

A universal formula ψ = ∀~y. ϕ(~y) is in Strandsem
dec iff the number of

minimal models with respect to R and ψ is finite.

A Strand formula of the form ψ = ∃~x ∀~y ϕ(~x, ~y) is in Strand
syn
dec iff the

corresponding equisatisfiable universal formula ψ′ over set of data-structure

R′ (as defined in Section 5.1) is in Strandsem
dec .

4.3.1 Checking Membership in Strand
syn
dec

We now show that we can effectively check if a Strand formula belongs

to the decidable fragment Strandsem
dec . The idea, intuitively, is to express

that a model is a minimal model with respect to satisfiability-preserving

embeddings, and then check, using automata theory, that the number of

minimal models is finite.

Let ψ = ∀~y.ϕ(~y) be universal Strand formula, and let its structural

abstraction be ψ̂ = ∀~y ∃~b. ϕ′(~y,~b).

48

interpret(p) = p

interpret(Qa(s)) = ψU (s) ∧ αa(s), for every a ∈ Lv

interpret(Eb(s, t)) = ψU (s) ∧ ψU (t) ∧ βb(s, t), for every b ∈ Le

interpret(s = t) = (ψU (s) ∧ ψU (t) ∧ s = t)

interpret(s ∈ W) = ψU (s) ∧ s ∈ W

interpret(ϕ1 ∨ ϕ2) = interpret(ϕ1) ∨ interpret(ϕ2)

interpret(¬ϕ) = ¬(interpret(ϕ))

interpret(∃s.ϕ) = ∃s.(ψU (s) ∧ interpret(ϕ))

interpret(∃W.ϕ) = ∃W.((∀s.(s ∈ W ⇒ ψU(s))) ∧ interpret(ϕ))

Figure 4.1: Definition of the interpret function

We now show that we can define an MSO formula MinModelψ, such that

it holds on a tree T = (V, λ) iff T defines a minimal model with respect to

satisfiability-preserving embeddings.

Before we do that, we need some technical results and notation. Let R =

(ψTr, ψU , {αa}a∈Lv
, {βb}b∈Le

).

We first show that any (pure) MSO formula δ on (Lv, Le)-labeled graphs

can be interpreted on trees. Formally, we show that any (pure) MSO for-

mula δ on (Lv, Le)-labeled graphs can be transformed syntactically to a

(pure) MSO formula interpret(δ) on trees such that for any tree T =(V, λ),

Graph(T)) satisfies δ iff T satisfies interpret(δ).

This is not hard to do, since the graph is defined using MSO formulas on

the trees, and we can adapt these definitions to work over the tree instead.

In fact, this is the reason why MSO on recursive data-structures is decidable:

we can translate the formula to trees, and check satisfiability of the trans-

formed formula over trees that satisfy ψTr. The transformation is given by

the following function interpret; the predicates for edges, and the predicates

that check vertex labels and edges labels are transformed according to their

definition, and all quantified variables are restricted to quantify over nodes

that satisfy ψU . The interpret function is presented in Figure 4.1.

Proposition 4.3.2. For any RDDS R and for any formula δ w.r.t. R, A

(Lv, Le)-labeled graphs Graph(T) satisfies δ iff the (Lv, Le)-labeled T satisfies

interpret(δ).

49

Proof. Let us fix the (Lv, Le)-labeled tree T , and prove the proposition by

induction on the structure of δ:

[δ ≡ p] p and interpret(p) (which is just p) are obviously equisatisfiable.

[δ ≡ Qa(s)] By definition, a node s is labeled Qa in Graph(T) if and only if

s satisfies both ψU and αa in T .

[δ ≡ Eb(s, t)] Similar to the above case.

[δ ≡ s = t] s and t represent the same node in Graph(T) is and only if the

node satisfies ψU in T, i.e., ψU(s) ∧ ψU(t) ∧ s = t.

[δ ≡ s ∈ W] Similar to the above case.

[δ ≡ ϕ1 ∨ ϕ2] As an inductive hypothesis, assume the proposition is true for

both ϕ1 and ϕ2, then Graph(T) satisfies δ iff Graph(T) satisfies ϕ1 or

ϕ2, by induction, iff T satisfies interpret(ϕ1) or interpret(ϕ2), i.e., T

satisfies interpret(ϕ1) ∨ interpret(ϕ2).

[δ ≡ ¬ϕ] Similar to the above case.

[δ ≡ ∃s.ϕ] As an inductive hypothesis, assume the proposition is true on

ϕ. Now Graph(T) satisfies δ iff there exists a node s in Graph(T) s.t.

ϕ(s) is true, in other word, by induction, there exists a node s in T

satisfying ψU s.t. interpret(ϕ(s)) is true. This is exactly the case that

T satisfies interpret(∃s.ϕ).

[δ ≡ ∃W.ϕ] Similar to the above case.

Now, we give another transformation, that transforms an MSO formula δ

on trees to a formula tailorX(δ) on trees, over a free set-variable X , such that

for any tree T = (V, λ) and any valid subset S ⊆ V , Subtree(T, S) satisfies δ

iff T satisfies tailorX(δ) when X is interpreted to be S. In other words, we

can transform a formula that expresses a property of a subtree to a formula

that expresses the same property on the subtree defined by the free variable

X . The transformation is given by the function tailor presented in Figure 4.2;

the crucial transformation are the edge-formulas, which has to be interpreted

as the edges of the subtree defined by X .

The above tailor transformation leads to the following proposition:

50

tailorX(p) = p

tailorX(succi(s, t)) = s ∈ X ∧ t ∈ X ∧

∃s′ [succi (s, s
′) ∧ s′≤ t ∧

∀t′. ((t′ ∈ X ∧ s′ ≤ t′)⇒ t ≤ t′)] , for every i ∈ [k].

tailorX(s = t) = (s ∈ X ∧ t ∈ X ∧ s = t)

tailorX(s ∈ W) = s ∈ W ∧W ⊆ X

tailorX(ϕ1 ∨ ϕ2) = tailor(ϕ1) ∨ tailor(ϕ2)

tailorX(¬ϕ) = ¬(tailor(ϕ))

tailorX(∃s.ϕ) = ∃s.(s ∈ X ∧ tailor(ϕ))

tailorX(∃W.ϕ) = ∃W.(W ⊆ X ∧ tailor(ϕ))

Figure 4.2: Definition of the tailor function

Proposition 4.3.3. For any MSO sentence δ on k-ary trees, for any tree

T = (V, λ) and for any valid subset S ⊆ V , Subtree(T, S) satisfies δ iff T

satisfies tailorX(δ) when X is interpreted to be S.

Proof. Let us fix the tree T , and the valid subset S, and prove the proposition

by induction on the structure of δ:

[δ ≡ p] Obvious as p and tailor(p) are identical.

[δ ≡ succi(s, t)] If Subtree(T, S) satisfies succi(s, t), then both s and t are

in S, moreover, t is the i-th successor of s in the subtree, then by

definition, t is the closest descendant of s′, the i-th successor of s in T .

All these properties are captured by the formula tailorX(succi(s, t)) in

T . For the reverse direction, when T satisfies tailorX(succi(s, t)), both

s and t are in S and t is the i-th successor of s in Subtree(T, S).

[δ ≡ s = t] When both s and t are in X , s = t and tailor(s = t) are equi-

satisfiable.

[δ ≡ s ∈ W] Similar to the above case.

[δ ≡ ϕ1 ∨ ϕ2] As an inductive hypothesis, assume the proposition is true for

both ϕ1 and ϕ2, then Subtree(T, S) satisfies δ iff Subtree(T, S) satisfies

ϕ1 or ϕ2, by induction, iff T satisfies tailorX(ϕ1) or tailorX(ϕ2), i.e., T

satisfies tailorX(ϕ1) ∨ tailorX(ϕ2).

51

[δ ≡ ¬ϕ] Similar to the above case.

[δ ≡ ∃s.ϕ] Similar to the above case.

[δ ≡ ∃W.ϕ] Similar to the above case.

Note that the above transformations can be combined. For any MSO for-

mula δ on (Lv, Le) labeled graphs, consider the formula tailorX(interpret(δ)).

For any tree T = (V, λ) and for any valid subset S ⊆ V , Graph(Subtree(T, S))

satisfies δ iff T satisfies tailorX(interpret(δ)), where X is interpreted as S.

4.3.2 Expressing Minimal Models in MSO

Remember that we can express with an MSO formula ValidSubModel(X),

with a free set variable X , that holds in a tree T = (V, λ) iff X is interpreted

as a valid submodel of T This is easy; we express the properties of X being

LCA-closed, and also check that the subtree defined by X satisfies ψTr:

ValidSubModel(X) ≡

∀s, t, u ((s ∈ X ∧ t ∈ X ∧ lca(s, t, u))⇒ u ∈ X) ∧ tailorX(ψTr)

∧ (∀s(s ∈ X ∧ tailorX(ψU (s))) ⇒ ψU(s))

where lca(s, t, u) is an MSO formula that checks whether u is the LCA of

s and t in the tree; this expresses the requirements in Definition 3.3.4.

Now we can also define the MSO formula on k-ary trees MinModelψ that

captures minimal models. Let ψ̂ = ∀~y ∃~b ϕ′(~y,~b) be the structural abstraction

of ψ, then

MinModelψ ≡ ¬∃X.

[
ValidSubset(X) ∧ ∃s.(s ∈ X) ∧ ∃s.(s 6∈ X) ∧

∀~y ∀~p.

((
∧y∈~y

(
y ∈ X ∧ ψU(y)

)
∧ interpret(ϕ̂(~y, ~p))

)

⇒ tailorX
(
interpret(ϕ̂(~y, ~p))

))]

The above formula when interpreted on a tree T says that there does not

exists a set X that defines a non-empty valid strict subset of the nodes of T ,

52

which defines a model Graph(Subtree(T,X)) that further satisfies the follow-

ing: for every valuation of ~y over the nodes of Graph(Subtree(T, S)) and for

every valuation of the Boolean variables ~b such that the structural abstrac-

tion of ϕ holds in Graph(T), the same valuation also makes the structural

abstraction of ϕ hold in Graph(Subtree(T, S)).

Theorem 4.3.4. Given a sentence ∃~x∀~y. ϕ(~x, ~y), the membership problem

of the fragment Strandsem
dec is decidable.

Proof. Note that MinModelψ is a pure MSO formula on trees, and encodes

the properties required of a minimal model with respect to satisfiability-

preserving embeddings. Using the classical logic-automaton connection [13],

we can transform the MSO formula MinModelψ∧ψTr∧ ψ̂ to a tree automaton

that accepts precisely those trees that define data-structures that satisfy the

structural abstraction and are minimal models. Since the finiteness of the

language accepted by a tree automaton is decidable, we can check whether

there are only a finite number of minimal models w.r.t. SPEs, and hence

decide membership in the decidable fragment Strandsem
dec .

4.3.3 Deciding formulas in Strandsem
dec

We now give the decision procedure for satisfiability of Strandsem
dec formu-

las over an RDDS. First, we transform the satisfiability problem to that of

satisfiability of universal formulas of the form ψ = ∀~y. ϕ(~y). Then, using

the formula MinModelψ described above, and by transforming it to tree au-

tomata, we extract the set of all trees accepted by the tree-automaton in

order to get the tree-representation of all the minimal models. Note that

this set of minimal models is finite, and the sentence is satisfiable iff it is

satisfiable in some data-extension of one of these models.

We can now write a quantifier-free formula over the data-logic that asserts

that one of the minimal models has a data-extension that satisfies ψ. This

formula will be a disjunction of m sub-formulas η1, . . . , ηm, where m is the

number of minimal models. Each formula ηi will express that there is a data-

extension of the i’th minimal model that satisfies ψ. First, since a minimal

model has only a finite number of nodes, we create one data-variable for each

of these nodes, and associate them with the nodes of the model. It is now

not hard to transform the formula ψ to this model using no quantification.

53

The universal quantification over ~y translates to a conjunction of formulas

over all possible valuations of ~y over the nodes of the fixed model. Existential

(universal) quantified variables are then “expanded” using disjunction (con-

junction, respectively) of formulas for all possible valuations over the fixed

model. The edge-relations between nodes in the model are interpreted on

the tree using MSO formulas in R, which are then expanded to conditions

over the fixed set of nodes in the model. Finally, the data-constraints in the

Strand formula are directly written as constraints in the data-logic.

The resulting formula is a pure data-logic formula without quantification

that is satisfiable if and only if ψ is satisfiable over R. This is then decided

using the decision procedure for the data-logic.

Theorem 4.3.5. Given a sentence ∃~x∀~y. ϕ(~x, ~y) over R in Strandsem
dec , the

problem of checking whether ψ is satisfiable reduces to the satisfiability of a

quantifier-free formula in the data-logic. Since the quantifier-free data-logic

is decidable, the satisfiability of Strandsem
dec formulas is decidable.

Proof. The decidability has been shown by giving the decision procedure

described above. Every step in the procedure can be finished algorithmically.

4.4 A Syntactically Defined Fragment

The bottleneck in the decision procedure for Strandsem
dec is the phase that

computes the set of all minimal models. This is done using monadic second-

order logic (MSO) on trees, and is achieved by a complex MSO formula

that has quantifier alternations and also includes adaptations of the Strand

formula twice within it. In experiments, this phase is clearly the bottleneck

(for example, a verification condition for binary search trees takes about 30s

while the time spent by Z3 on the minimal models is less than 0.5s).

we define another decidable fragment Strandsyn
dec , which is also a fragment

of Strandsem
dec , using the notion of elastic relations. Hence Strandsyndec admits

the same decision procedure for Strandsem
dec . Given an RDDS R and a first-

order theory D, the syntax of Strandsyn
dec is presented in Figure 4.3. We

let LEe denote those edge labels b such that Eb is elastic, and LNE
e denote

other non-elastic labels. Intuitively, Strand
syn
dec formulas are of the kind

54

∃~x∀~y.ϕ(~x, ~y), where ϕ is quantifier-free and combines both data-constraints

and structural constraints, with the important restriction that the atomic

relations involving universally quantified variables be only elastic relations.

Formula ψ ::= ∃x.ψ | ω
∀Formula ω ::= ∀y.ω | ϕ
QFFormula ϕ ::= γ(e1, . . . , en) | Qa(v) | Eb(v, v′) | Eb′(x, x′)

| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

Expression e ::= df(x) | df(y) | c | g(e1, . . . , en)

∃DVar x ∈ Loc
∀DVar y ∈ Loc
Var v ::= x | y
Constant c ∈ Sig(D)
Function g ∈ Sig(D)
D-Relation γ ∈ Sig(D)
E-Relation b ∈ LEe
NE-Relation b′ ∈ LNE

e

Predicate a ∈ Lv
DataField df ∈ DF

Figure 4.3: Syntax of Strandsyn
dec

More importantly, we also present a new method to solve satisfiability for

Strand
syn
dec using a notion called small models, which are not the precise set

of minimal models but a slightly larger class of models. We show that the

set of small models is always bounded, and also equisatisfiable (i.e. if there

is any model that satisfies the Strand
syn
dec formula, then there is a data-

extension of a small model that satisfies it). The salient feature of small

models is that it can be expressed by a much simpler MSO formula that is

completely independent of the Strand
syn
dec formula! The definition of small

models depends only on the signature of the formula (in particular, the set

of variables existentially quantified). Consequently, it does not mention any

structural abstractions of the formula, and is much simpler to solve. This

55

formulation of decidability is also a theoretical contribution, as it gives a

much simpler alternative proof that the logic Strand
syn
dec is decidable.

4.4.1 Proof of Decidability

We here give another proof of decidability for Strand
syn
dec , which leads to

a more efficient decision procedure. Recall that decision procedure for

Strand
syn
dec presented in Section 4.3 works as follows. Given a Strand

syn
dec

formula ψ over a class of recursively defined data-structures R, we first con-

struct a pure MSO formula on k-ary trees MinModelψ that captures the sub-

set of trees that are minimal with respect to an equi-satisfiability preserving

embedding relation. This assures that if the formula ψ is satisfiable, then

it is satisfiable by a data-extension of a minimal model (a minimal model

is a model satisfying MinModelψ). Furthermore, this set of minimal models

was guaranteed to be finite. The decision procedure is then to do a simple

analysis on the tree automaton accepting all minimal models, to determine

the maximum height h of all minimal trees, and then query the data-solver as

to whether any tree of height bounded by h satisfies the Strandsyn
dec formula.

In the new decision procedure, we replace the notion of minimal mod-

els with a new notion called small models. Given a Strand
syn
dec formula

ψ = ∃~x∀~y.ϕ(~x, ~y) over a class of recursively defined data-structures R =

(ψTr, ψU , {αa}a∈Lv
, {βb}b∈Le

), the MSO formula SmallModel(~x) is defined on

k-ary trees, with free variables ~x. Intuitively, SmallModel(~x) says that there

does not exist a nontrivial valid subset X such that X contains ~x, and fur-

ther satisfies the following: for every non-elastic relation possibly appearing

in ϕ(~x, ~y), it holds in Graph(T) iff it holds in Graph(Subtree(T,X)). Since

the evaluations of other atomic formulas, including elastic relations and data-

logic relations, are all preserved, we can prove that SmallModel(~x) is equi-

satisfiable to the structural constraints in ψ, but has only a finite number of

56

models. The formula SmallModel(~x) is defined as follows:

SmallModel(~x) ≡ ψTr ∧
∧

x∈~x

ψU(x)

∧ ¬∃X.

(
ValidSubset(X) ∧

∧

x∈~x

(x ∈ X) ∧

∃s.(s ∈ X) ∧ ∃s.(s 6∈ X) ∧

∧

b∈LNE
e ,x,x′∈~x

(
βb(x, x

′)⇔ tailorX
(
βb(x, x

′)
)))

Note that the above formula does not depend on the Strand formula ψ

at all, except for the set of existentially quantified variables ~x.

Our proof strategy is now as follows. We show two technical results:

(a) For any ~x, SmallModel(~x) has only finitely many models (Theorem 4.4.1).

This result is independent of the fact that we are dealing with Strand

formulas.

(b) A Strand formula ψ with existentially quantified variables ~x has

a model iff there is some data-extension of a model satisfying

SmallModel(~x) that satisfies ψ (Theorem 4.4.2).

The above two establish the correctness of the decision procedure. Given a

Strand
syn
dec formula ψ, with existential quantification over ~x, we can compute

a tree-automaton accepting the set of all small models (i.e. the models of

SmallModel(~x)), compute the maximum height h of the small models, and

then query the data-solver as to whether there is a model of height at most

h with data that satisfies ψ.

We prove the two technical results as below.

Theorem 4.4.1. For any recursively defined data-structure R and any finite

set of variables ~x, the number of models of SmallModel(~x) is finite.

Proof. Fix a recursively defined data-structure R and a finite set of variables

~x. It is sufficient to show that for any model T of SmallModel(~x), the size of

T is bounded.

We first split SmallModel(~x) into two parts: let ζ be the first two conjuncts,

i.e., ψTr ∧
∧
x∈~x ψU (x), and η be the last conjunct.

57

p1

p2

(a) T with the valid subset X (shaded dark)

p1

(b) Subtree(T,X)

Figure 4.4: A valid subset X that falsifies β

Recall the classic logic-automata connection: for any MSO formula θ(~y, ~Y)

with free first-order variables ~y and free set-variables ~Y , we can construct

a tree-automaton that precisely accepts those trees with encodings of the

valuation of ~y and ~Y as extra labels that satisfy the formula θ [75].

Construct a deterministic (bottom-up) tree automaton Aζ that accepts

precisely the models satisfying ζ(~x), using this classic logic-automata con-

nection [75]. Also, for each non-elastic edge label b ∈ LNE
r , and each pair of

variables x, x′ ∈ ~x, let Ab,x,x′ be a deterministic (bottom-up) tree automaton

that accepts the models of the formula βb(x, x
′).

It is clear that T is accepted by Aζ , while Ab,x,x′, for each b, x, x′, either

accepts or rejects T . Construct the product of the automaton Aζ and all

automata Ab,x,x′, for each b, x, x
′, with the acceptance condition derived solely

from Aζ ; call this automaton B; then B accepts T .

If the accepted run of B on T is r, then we claim that r is loop-free (a

run of a tree automaton is loop-free if for any path of the tree, there are no

two nodes in the path labeled by the same state). Assume not. Then there

must be two different nodes p1, p2 such that p2 is in the subtree of p1, and

both p1 and p2 are labeled by the same state q in r. Then we can pump

down T by merging p1 and p2. The resulting tree is accepted by AT as well.

Consider the subset X of T that consists of those remaining nodes, as shown

in Figure 4.4. It is not hard to see X is a nontrivial valid subset of T . Also

for each b ∈ LNE
r and each x, x′ ∈ ~x, since the run of Ab,x,x′ ends up in the

58

same state on reading the subtree corresponding to X , βb(x, x
′) holds in T

iff βb(x, x
′) holds in Subtree(T,X). Thus X is a valid subset of T that acts

to falsify η, which contradicts our assumption that T satisfies ζ ∧ η.

Since r is loop-free, the height of T is bounded by the number of states in

B.

We now show that the small models define an adequate set of models to

check for satisfiability.

Theorem 4.4.2. Let R be a recursively defined data-structure and let ψ =

∃~x∀~y.ϕ(~x, ~y) be a Strand
syn
dec formula. If ψ is satisfiable, then there is a

model M of ψ and a model T of SmallModel(~x) such that Graph(T) is iso-

morphic to the graph structure ofM.

Proof. Let ψ be satisfiable and letM satisfy ψ. Then there is an assignment

I of ~x over the nodes ofM under which ∀~yϕ(~x, ~y) is satisfied.

Let T be the backbone tree of the graph model of M, and further let us

add an extra label over T to denote the assignment I to ~x.

Let us, without loss of generality, assume that T is a minimal tree; i.e. T

has the least number of nodes among all models satisfying ψ.

We claim that T satisfies SmallModel(~x) under the interpretation I.

Assume not, i.e., T does not satisfy SmallModel(~x) under I. Since T under

I satisfies ζ , it must not satisfy η. Hence there exists a strict valid subset

of nodes, X , such that every non-elastic relation holds over every pair of

variables in ~x the same way in T as it does on the subtree defined by X .

LetM′ be the model obtained by taking the graph of the subtree defined by

X as the underlying graph, with data at each obtained node inherited from

the corresponding node in M. We claim that M′ satisfies ψ as well, and

since the tree corresponding toM′ is a strict subtree of T , this contradicts

our assumption on T .

We now show that the graph of the subtree defined by X has a data-

extension that satisfies ψ.

In order to satisfy ψ, we take the interpretation of each x ∈ ~x to be the

node inM′ corresponding to I(x). Now consider any valuation of ~y. We will

show that every atomic relation in ϕ holds inM in precisely the same way

as it does on M′; this will show that ϕ holds in M iff ϕ holds in M′, and

hence that ϕ holds inM′.

59

By definition, an atomic relation τ could be a unary predicate, an elastic

binary relation, a non-elastic binary relation, or an atomic data-relation. If τ

is a unary predicate Qa(v) (where v ∈ ~x∪~y), then by definition of submodels

(and valid subsets), τ holds inM′ iff τ holds inM. If τ is an elastic relation

Eb(v1, v2), by definition of elasticity, τ holds inM iff βb(v1, v2) holds in T iff

βb(v1, v2) holds in Subtree(T,X) iff τ(v1, v2) holds inM
′. If τ is a non-elastic

relation, it must be of form Eb(x, x
′) where x, x′ ∈ ~x. By the properties of X

established above, it follows that Eb(x, x
′) holds inM′ iff Eb(x, x

′) holds in

M. Finally, if τ is an atomic data-relation, since the data-extension of M′

is inherited fromM, the data-relation holds inM′ iff it holds inM.

The contradiction shows thatM is a small model.

By Theorem 4.4.1, there must be a bound tree TB such that each models

of SmallModel(~x) is a prefix of TB. Such a TB is not hard to obtain by

forgetting the labels of the automaton A in the proof of Theorem 4.4.1. Then

we can transform ψ to a quantifier-free data-logic formula ψTB by unrolling

each universal (existential) quantification over the nodes of Tb. By Theorem

4.4.2, ψ and ψTB are equisatisfiable.

4.4.2 Comparison with Strandsem
dec

We now compare the new decision procedure, technically, with the previous

decision procedure for Strandsyn
dec , which was also the decision procedure for

the semantic decidable fragment Strandsem
dec .

Recall the decision procedure for Strandsem
dec . Given a Strand formula,

we first eliminate the leading existential quantification, by absorbing it into

the signature, using new constants. Then, for the formula ∀~y. ϕ, we define a

structural abstraction of ϕ, named ϕ̂, where all data-predicates are replaced

uniformly by a set of Boolean variables ~p. A model that satisfies ϕ̂, for every

valuation of ~y, using some valuation of ~p is said to be a minimal model if it

has no proper submodel that satisfies ϕ̂ under the same valuation ~p, for every

valuation of ~y. Intuitively, this ensures that if the model can be populated

with data in some way so that ∀~yϕ is satisfied, then the submodel satisfy the

formula ∀~yϕ as well, by inheriting the same data-values from the model.

It turns out that for any Strandsem
dec formula, the number of minimal mod-

els (with respect to the submodel relation) is finite. Moreover, we can capture

60

the class of all minimal models using an MSO formula of the following form:

MinModel = ¬∃X.

[
ValidSubset(X) ∧ ∃s.(s ∈ X) ∧ ∃s.(s 6∈ X) ∧

∀~y ∀~p

((
∧y∈~y

(
y ∈ X ∧ ψU (y)

)
∧ interpret(ϕ̂(~y, ~p))

)

⇒ tailorX
(
interpret(ϕ̂(~y, ~p))

))]

The above formula intuitively says that a model is minimal if there is no

valid non-trivial submodel such that for all possible valuations of ~y in the

submodel, and all possible valuations of ~p, the model satisfies the structural

abstraction ϕ̂(~y, ~p), then so does the submodel.

We can enumerate all the minimal models (all models satisfying the above

formula), and using a data-constraint solver, ask whether any of them can

be extended with data to satisfy the Strand formula. Most importantly, if

none of them can, we know that the formula is unsatisfiable (for if there was

a model that satisfies the formula, then one of the minimal models will be a

submodel that can inherit the data values and satisfy the formula).

Comparing the formula MinModel to the formula SmallModel, notice that

the latter is incredibly simpler as it does not refer to the Strand formula (i.e.

ϕ) at all! The SmallModel formula just depends on the set of existentially

quantified variables and the non-elastic relations in the signature. In contrast,

the formula above for MinModel uses adaptations of the Strand formula

ϕ twice within it. In practice, this results in a very complex formula, as

the verification conditions get long and involved, and this results in poor

performance by the MSO solver. In contrast, as we show in the next section,

the new procedure results in simpler formulas that get evaluated significantly

faster in practice.

The formula is hence much easier to evaluate, using a tool like Mona.

4.4.3 Computing the bound more efficiently

The above comparison shows that the formula SmallModel(~x) only relies on

the RDDS and the number of existential variables in the Strandsyn
dec formula

to solve, hence is easier to solve. To make the structure-solving phase even

more efficient, when an RDDS R is given, we can even pre-compute the

61

distance bounds forR and for each non-elastic b, then compute the combined

bound on sizes of the structural models analytically when the number of

existentially quantified variables is given. We first define the distance bound:

Definition 4.4.3 (Distance bound). Let R = (ψTr, ψU , {αa}a∈Lv
, {βb}b∈Le

)

be an RDDS. Then a distance bound of R is an integer k such that: for every

tree T labeled by x1 and x2, if x2 is a descendent of x1 of distance d and d > k,

then there exist two nodes y1, y2 on the path from x1 to x2 (excluding x1),

such that replacing the subtree of y1 with the subtree of y2 forms a tree T ′

that preserves the evaluation of ψTr, and every predicate αa(x1), αa(x2), and

every relation βb(x1, x2).

Remark: The length bound of R only depends on its predicate and non-

elastic relations. Consider adding an elastic relation b intoR, it is not hard to

see that its distance bound is not affected, since for whichever x1, x2-labeled

T and whichever contracted T ′, T ′ is a valid subset of T and preserves the

evaluation of βb(x1, x2) (by the elasticity).

When a distance bound is known, we can analytically compute the size

bound of the structural model with respect to a given number of existentially

quantified variables.

Proposition 4.4.4. Given an RDDS R with a distance bound B and a

Strand
syn
dec formula ψ = ∃~x∀~y.ϕ(~x, ~y), then ψ is satisfiable if and only if it

is satisfied by a model with the structural size not larger than B · (|~x|+ 1).

Proof. We only need to prove the direction from left to right. Consider a

satisfying model with a large enough underlying tree. We label the tree with

the satisfying assignment of ~x for ψ, and also label extra nodes to make the

set LCA-closed. It is not hard to prove that at most 2 · |~x| − 1 nodes are

labeled, and every path from the root to a leaf contains at most |~x| labeled

nodes. Now for each path from the root to a leaf, for each segment between

two labeled nodes, if the distance is greater than B, one can always contract

the tree and obtain a smaller model. Repeating this procedure results in a

tree model such that every two labeled nodes are of distance at most B, hence

the height of the tree is at most B · (|~x|+1). Then a model satisfying ψ can

be obtained by populating the same data values to the small tree model.

62

The distance bound of b can always be over-approximated by the tree

automaton that characterizes each predicate a and each relation b.

Proposition 4.4.5. Let R = (ψTr, ψU , {αa}a∈Lv
, {βb}b∈Le

) be an RDDS.

Let qt be the number of states for the tree automaton characterizing ψTr,

and similarly, let qa and qb be the number of states for the tree automaton

characterizing each predicate a and each relation b, respectively. Then there

is a distance bound of R:

BR = qt ·
(∏

a∈Lv

qa

)
·
(∏

b∈LNE
e

qb

)

Proof. Consider a tree T labeled by x1 and x2, if x2 is a descendent of x1

of distance d such that d is greater than BR. Then consider the run of the

product of the tree automata characterizing ψTr, each αa and each non-elastic

βb. Since d is greater than the number of states of the product automaton,

there must be two nodes y1 and y2 on the path from x1 to x2 (excluding x1)

that are labeled the same state. Then replacing the subtree of y1 with the

subtree of y2 results another tree T ′ that satisfies every formula if and only

if the original T does so. As explained above, elastic relations are always

preserved in T ′. Hence BR is a distance bound by the definition.

Example 4.4.6. Consider the simple RDDS Rbt for binary trees: both ψTr

and ψU are true; there are one unary predicate (root), two elastic rela-

tions (left-desc and right-desc) and two non-elastic relations (left-child and

right-child), all defined in MSO. It is not hard to convert the MSO defini-

tions for root to a tree automaton comprises of up to 3 states, and left-child

and right-child to tree automata comprises up to 6 states. Then by Proposi-

tion 4.4.5, we can analytically compute a distance bound Bbt = 3 ·6 ·6 = 108.

Now for arbitrary Strand
syn
dec formula ψ defined over Rbt with k existential

variables, by Proposition 4.4.4, the bound of the tree height of a satisfying

model is 108 · (k − 1).

The above example shows that when an RDDS is fixed, the bound of the

sizes of the structural models can be computed analytically, and completely

avoid the structural phase altogether, without the use of a solver. While the

bound is much larger than necessary, We can even establish smaller bounds

by analyzing the distance bound manually, for some data-structures.

63

For instance, consider Example 4.4.6 again, we claim that the minimum

distance bound is just 2. For every tree T , consider two labelings x1 and x2,

where x2 is a descendant of x1. When their distance is greater than 2, one

can simply replace the subtree of x2’s parent with the subtree of x2. The

resulting tree T ′ preserves the evaluation of every predicate or non-elastic

relation: the root property is obviously not affected; if x2 is in the right (left)

subtree of x1, the left-child (right-child) relation is not affected anyway, and

the right-child (left-child) relation is preserved as well, because the distance

between x1 and x2 is still at least 2. Therefore, by Proposition 4.4.4 again, a

Strand
syn
dec formula is satisfiable iff it is satisfiable by a tree of size at most

2 · (k + 1), where k is the number of existentially quantified variables in the

formula.

4.5 Experimental Evaluation

We demonstrate the effectiveness and practicality of the decision procedures

for Strand by checking verification conditions generated in proving proper-

ties of several heap-manipulating programs. As shown in Section 3.5, given

pre-conditions, post-conditions and loop-invariants, each linear block of state-

ments of a program yields a Hoare-triple, which is manually translated into

a Strand formula ψ over trees and integer arithmetic, as a verification

condition. These examples include list-manipulating and tree-manipulating

programs, including searching a sorted list, inserting into a sorted list, in-

place reversal of a sorted list, the bubble-sort algorithm, searching for a key

in a binary search tree, inserting into a binary search tree, and doing a left-

or right-rotate on a binary search tree.

The programs sorted-list-search and sorted-list- insert search and

insert a node in a sorted singly-linked list, respectively, while sorted-list-

insert-error is the insertion program with an intended error. The program

sorted-list -reverse is a routine for in-place reversal of a sorted singly-

linked list, which results in a reverse-sorted list, and bubblesort is the code

for Bubble-sort of a list. The routines bst-search and bst-insert search

and insert a node in a binary search tree, respectively, while the programs

left-rotate and right-rotate perform rotations (for balancing) in a bi-

nary search tree.

64

For all these examples, a set of partial correctness properties including both

structural and data requirements is checked. For example, assuming a node

with value k exists, we check if both sorted-list-search and bst-search

return a node with value k. For sorted-list-insert, we assume that the

inserted value does not exist, and check if the resulting list contains the in-

serted node, and the sortedness property continues to hold. In the program

bst-insert, assuming the tree does not contain the inserted node in the be-

ginning, we check whether the final tree contains the inserted node, and the

binary-search-tree property continues to hold. In sorted-list-reverse,

we check if the output list is a valid list that is reverse-sorted. The code

for bubblesort is checked to see if it results in a sorted list. And the

left-rotate and right-rotate codes are checked to see whether they main-

tain the binary search-tree property.

Note that each program requires checking several verification conditions

(typically for the linear block from the beginning of the program to a loop,

for the loop invariant linear block, and for the block from the loop invariant

to the end of the program).

4.5.1 Implementing Strandsem
dec

We first implement the decision procedure for the semantically defined frag-

ment Strandsem
dec . Given a Strand formula, our procedure will first deter-

mine if it is in the semantic decidable fragment, and if not, will halt and report

that satisfiability of the formula is not checkable. When given a formula in

the syntactic fragment Strand
syn
dec , this procedure will always succeed, and

the decision procedure will determine satisfiability of the formula.

The decision procedure consists of a structural phase, where we determine

whether the number of minimal models is finite, and if so, determine a bound

on the size of the minimal models. This phase is effected by using Mona [42],

a WS1S/WS2S solver over (strings and) trees. In the second data-constraint

solving phase, the finite set of minimal models, if any, are examined by the

data-solver Z3 [28] to check if they can be extended with data-values to

satisfy the formula.

Instead of building an automaton representing the minimal models and

then checking it for finiteness, we check the finiteness formula MinModelψ

65

using WS2S, which is supported by Mona, WS2S is interpreted over infinite

trees with set-quantification restricted to finite sets. By quantifying over

a finite universe U , and transforming all quantifications to be interpreted

over U , we can interpret MinModelψ over all finite trees. Let us denote this

emulation as MinModel ′
U,ψ. The finiteness condition can now be checked by

asking if there exists a finite set B such that any minimal model for ψ is

contained within the nodes of B:

∃ Bound ∀U ∀Qa(a∈Σ).
(
MinModel ′

U,ψ ⇒ (U ⊆ Bound)
)

This formula has no free-variables, and hence either holds on the infinite tree

or not, and can be checked by Mona. This formula evaluates to true iff the

formula is in Strandsem
dec .

We also follow a slightly different procedure to synthesize the data-logic

formula. Instead of extracting each minimal model, and checking if there is a

data-extension for it, we obtain a bound on the size of minimal models, and

ask the data-solver to check for any model within that bound. This is often

a much simpler formula to feed to the data-solver.

In our current implementation, the Mona constraints are encoded manu-

ally, and once the bound is obtained, we write a program that outputs the

Z3 constraints for the verification condition and the bound. The translation

from Strand to Mona formulas and the translation from Strand formulas

to Z3 formulas for any bound can be automated, and is a plan for the future.

If the finiteness condition above evaluates to true, then we first check the

satisfiability of the structural abstraction ψ̂ of ψ. If it is unsatisfiable, then

by Proposition 4.2.3, ψ is also unsatisfiable. Otherwise, we ask Mona for

the minimal Bound of minimal models, which will be a prefix-closed set of

nodes of the tree. Given Bound , ψ is manually translated into a quantifier

free formula over integer arithmetic, which is fed to Z3.

4.5.2 Implementing Strand
syn
dec

Though the decision procedure for Strandsem
dec in Section 4.3 is effective in

verifying several heap-manipulating programs, the structural solving phase

turns out to be the bottleneck for scaling up [50], because building an au-

tomaton representing the minimal models w.r.t. ψ (those models satisfying

66

MinModelψ) is inefficient and depends on the size of ψ. Our new decision

procedure for Strand
syn
dec also consists of a structural solving phase and a

data solving phase, where the structure solving is done using SmallModel(~x),

which is independent to ψ, using Mona. Then we obtain a bound for small

models by computing the longest acyclic path in the state diagram of the

automaton generated by Mona. By Theorem 4.4.1, such a bound always

exists. However, sinice the formula SmallModel(~x) is easier to satisfy, we

could obtain potentially larger bound from it than that from MinModelψ.

The data solving phase, which is the same as the old decision procedure,

checks for any model of ψ within the bound.

In the structural solving phase using Mona, when a Strand
syn
dec formula

ψ is given, we further optimize the formula SmallModel(~x) with respect

to ψ for better performance, as follows. First, a sub-formula βb(x, x
′) ⇔

tailorX(βb(x, x
′)) appears in the formula only if the atomic formula Eb(x, x

′)

appears in ψ. Moreover, if Eb(x, x
′) only appears positively, we use βb(x, x

′)⇒

tailorX(βb(x, x
′)) instead; similarly if Eb(x, x

′) occurs only negatively, then

we use βb(x, x
′)⇐ tailorX(βb(x, x

′)) instead. This is clearly sound.

4.5.3 Experiments

For the heap-manipulating programs mentioned at the beginning of this sec-

tion, all the generated verification conditions can be found at http://web.

engr.illinois.edu/~qiu2/strand . It turns out that all of our verifica-

tion conditions can be written entirely in the syntactic decidable fragment

Strand
syn
dec . Hence they definitely also fall in Strandsem

dec , which is strictly

larger than Strand
syn
dec .

In Table 4.1, we present the evaluation of our decision procedures for both

Strandsem
dec and Strand

syn
dec on checking these verification conditions. The

experiments were conducted on a 2.2GHz, 4GB machine running Windows

7. For the structural-constraint solving phase, we report the maximum BDD

sizes to represent automata, and the time taken by Mona to compute the

minimal models or small models. For the data-constraint solving phase, we

report the time spent by Z3 to check whether any structural model can be

populated with data values to satisfy the verification condition. Note that

if the formula checked by Mona is already unsatisfiable and there are no

67

Program
Verification

Minimal Model Small Model Data

condition

computation computation constraint
(Alg. in Sec. 4.3) (Alg. in Sec. 4.4) solving
Max.

Time
Max.

Time
(Z3, QF-LIA)

BDD
(s)

BDD
(s)

Sec. 4.3/4.4
size size Time (s)

sorted-
before-loop 10009 0.34 540 0.01 -

list-search
in-loop 17803 0.59 12291 0.14 -

after-loop 3787 0.18 540 0.01 -

sorted-
before-head 59020 1.66 242 0.01 0.02/0.02

list-insert
before-loop 15286 0.38 595 0.01 -
in-loop 135904 4.46 3003 0.03 -

after-loop 475972 13.93 1250 0.01 0.02/0.03
sorted-list-

before-loop 14464 0.34 595 0.01 0.02/0.02
insert-error

sorted-
before-loop 2717 0.24 1155 0.01 -

list-reverse
in-loop 89342 2.79 12291 0.14 -

after-loop 3135 0.35 1155 0.01 -
loop-if-if 179488 7.70 73771 1.31 -

bubblesort loop-if-else 155480 6.83 34317 0.48 -
loop-else 95181 2.73 7017 0.07 0.02/0.04

bst-search
before-loop 9023 5.03 1262 0.31 -
in-loop 26163 32.80 3594 2.43 0.02/0.11

after-loop 6066 3.27 1262 0.34 -

bst-insert
before-loop 3485 1.34 1262 0.34 -
in-loop 17234 9.84 1908 1.38 -

after-loop 2336 1.76 1807 0.46 -
left-/right-

bst-preserving 1086 1.59 1510 0.48 0.05/0.14
rotate

Total 98.15 7.99 0.15/0.36

Table 4.1: Results of program verification using Strand

more details at http://web.engr.illinois.edu/~qiu2/strand .

models, the data-constraint solving phase is skipped (these are denoted by

“-” annotations in the table for Z3).

All the verification conditions were successfully proved unsatisfiable, except

those for the sorted-list-insert-error program, in which we introduced

an error by removing the initial code that checks whether the inserted value

is greater than the value at the head of the list and inserts the element before

the head. The Z3 phase failed and gave as a counter-example a two-element

list, with value at head equal to 0 and the value of the inserted value as −6.

The bst-insert routine verifies without going to the Z3 phase, which means

that the correctness is independent of the data-solver entirely (not even the

transitivity of ≤ on integers is needed). The bst-search routine however

does require help from the arithmetic solver.

68

The experimental results show that natural verification conditions tend to

be expressible in the syntactic decidable fragment Strandsyn
dec . Moreover, the

expressiveness of our logic allows us to write complex conditions involving

structure and data, and yet are handled well by Mona and Z3. We believe

that a full-fledged engineering of an SMT solver for Strandsyn
dec that answers

queries involving heap structures and data is a promising future direction.

Towards this end, an efficient non-automata theoretic decision procedure (un-

like Mona) that uses search techniques (like SAT) instead of representing

the class of all models (like BDDs and automata) may yield more efficient

decision procedures.

The experiments show that the decision procedure for Strandsyn
dec is con-

siderably more efficient than the one for Strandsem
dec on this set of examples.

4.6 Related Work

The work closest to ours is Pale [58], which is a logic on heaps structures

but not data, and uses MSO and Mona [42] to decide properties of heaps.

Tasc [38] is similar but generalizes to reason balancedness in the cases of

AVL and red-black trees. First-order logics with axiomatizations of the reach-

ability relation (which cannot be expressed in FOL) have been proposed:

axioms capturing local properties [55], a logic on regular patterns that is

decidable [79], among others.

The logic in Havoc, called Lisbq [46], offers reasoning with generic heaps

combined with an arbitrary data-logic. The logic has restricted reachability

predicates and universal quantification, but is syntactically severely curtailed

to obtain decidability. Though the logic is not very expressive, it is extremely

efficient, as it uses no structural solver, but translates the structure-solving

also to the (Boolean aspect) of the SMT solver. The logic Csl [15] is defined

in a similar vein as Havoc, with similar sort-restrictions on the syntax,

but generalizes to handle doubly-linked lists, and allows size constraints on

structures. As far as we know, neither Havoc nor Csl can express the

verification conditions of searching a binary search tree. The work reported

in [12] gives a logic that extends an LTL-like syntax to define certain decidable

logic fragments on heaps.

69

The inference rule system proposed in [65] for reasoning with restricted

reachability does not support universal quantification and cannot express

disjointness constraints, but has an SMT solver based implementation [66].

Restricted forms of reachability were first axiomatized in early work by Nel-

son [59]. Several mechanisms without quantification exist, including the work

reported in [67, 3]. Kuncak’s thesis describes automatic decision procedures

that approximate higher-order logic using first-order logic, through approxi-

mate logics over sets and their cardinalities [44].

Finally, separation logic [68] is a convenient logic to express heap properties

of programs, and a decidable fragment (without data) on lists is known [9].

However, not many extensions of separation logics support data constraints

(see [53] for one that does).

70

CHAPTER 5

NATURAL PROOFS

The Strand verification framework shown in Chapter 3 and Chapter 4 is

a representative example of the automated deductive verification paradigm

for software verification that combines user written modular contracts and

loop invariants with automated theorem proving of the resulting verifica-

tion conditions. The latter process is often executed by automated logical

decision procedures supported by SMT solvers, which have emerged as ro-

bust and powerful engines to automatically find proofs. Besides Strand,

several techniques and tools have been developed [26, 5, 41] and there have

been several success stories of large software verification projects using this

approach (the Verve OS project [78], the Microsoft hypervisor verification

project using VCC [26], and a recent verified-for-security OS+browser for

mobile applications [54], to name a few).

Verification conditions do not, however, always fall into decidable theories.

In particular, the verification of properties of the dynamically modified heap,

the focus of this dissertation, is a big challenge for logical methods. The

dynamically manipulated heap poses several challenges, as typical correctness

properties of heaps require complex combinations of structure (e.g., p points

to a tree structure, or to a doubly-linked list, or to an almost balanced tree,

with respect to certain pointer-fields), data (the integers stored in data-fields

of the tree respect the binary search tree property, or the data stored in a

tree is a max-heap), and separation (the procedure modifies one list and not

the other and leaves the two lists disjoint at exit, etc.).

The fact that the dynamic heap contains an unbounded number of loca-

tions means that expressing the above properties requires quantification in

some form, which immediately precludes the use of most SMT decidable the-

ories (there are only a few of them known that can handle quantification;

e.g., the array property fragment [19] and the Strand logic presented in

Chapter 3 and 4). Consequently, expressing such properties naturally and

71

succinctly in a logical formalism has been challenging, and reasoning with

them automatically even more so.

For instance, in the Boogie line of tools (including VCC) of writing speci-

fications using FOL and employing SMT solvers to validate verification condi-

tions, the specification of invariants of even simple methods like singly-linked-

list insert is tedious. In such code1, second-order properties (reachability,

acyclicity, separation, etc.) are smuggled in using carefully chosen ghost

variables ; for example, acyclicity of a list is encoded by assigning a ghost

number (idx) to each node in the list, with the property that the numbers

associated with adjacent nodes strictly increase going down the list. These

ghost variables require careful manipulation when the structures are updated;

for example, inserting a node may require updating the ghost numbers for

other nodes in the list, in order to maintain the acyclicity property. Once

such a ghost-encoding of the specification is formulated, the validation of

verification conditions, which typically have quantifiers, are dealt with using

sound heuristics (a wide variety of them including e-matching, model-based

quantifier instantiation, etc. are available), but are still often not enough and

have to be augmented by instantiation triggers from the verification engineer

to help the proof go through.

Due to the inherent complexity and difficulty of dynamically allocated

heap, most research on program logics for functional verification of heap-

manipulating programs can be roughly divided into two classes:2

• Logics for manual/semi-automatic reasoning: The most popular

of these are the class of separation logics [63, 68], but several others exist

(see matching logic [69], for example). Complex structural properties

of heaps are expressed using inductive algebraic definitions, the logic

combines several other theories like arithmetic, etc., and uses a special

separation operator (∗) to compositionally reason with a footprint and

the frame. The analysis is either manual or semi-automatic, the latter

being usually sound, incomplete, and non-terminating, and proceeds

by heuristically searching for proofs using a proof system, unrolling

1http://vcc.codeplex.com/SourceControl/changeset/view/dcaa4d0ee8c2#vcc/

Docs/Tutorial/c/7.2.list.c
2We do not discuss abstraction-based approaches such as shape analysis here as such

approaches are geared towards less complex specifications, and often are completely auto-
matic, not even requiring proof annotations such as loop invariants; see Section 5.6.

72

recursive definitions arbitrarily. Typically, such tools can find simple

proofs if they exist, but are unpredictable, and cannot robustly produce

counter-examples.

• Logics for completely automated reasoning: These logics stem

from the SMT (Satisfiability Modulo Theories) and automata the-

ory literature, where the goal is to develop fast, terminating, sound

and complete decision procedures, but where the logics are often con-

strained heavily on expressivity in order to reach these goals. Examples

include several logics that extend first-order logic with reachability, the

logics Lisbq [46] and CSL [15], and the logic Strand
syn
dec (see Chap-

ter 4) that combines tree theories with integer theories. The problem

with these logics, in general, is that they are often not sufficiently ex-

pressive to state complex properties of the heap (e.g. the balancedness

of an AVL tree, or that the set of keys stored in a heap do not change

across a program).

We prefer an approach that combines the two methodologies above. In this

chapter, we propose a novel proof strategy that calls natural proofs. Natural

proofs are a subclass of proofs that are amenable to completely automated

reasoning, that provide sound but incomplete procedures, and that capture

common reasoning tactics in program verification. Intuitively, the strategy

exploits a fixed set of proof tactics, keeping the expressiveness of powerful

logics, retaining the automated nature of proving validity, but giving up on

completeness (i.e., giving up decidability, retaining soundness). The idea of

natural proofs is to identify a subclass of proofs N such that (a) a large class

of valid verification conditions of real-world programs have a proof in N ,

and (b) searching for a proof in N is decidable. In fact, we would even like

the search for a proof in N to be efficiently decidable, possibly utilizing the

automatic logic solvers (SMT solvers) that exist today. Natural proofs are

hence a fixed set of proof tactics whose application is itself expressible in a

decidable logic.

In particular, we investigate two commonly exploited proof tactics:

a) identifies a class of simple and natural proofs for proving verification

conditions for heap-based programs, founded on how people prove these

conditions manually, and

73

b) builds terminating procedures that efficiently and thoroughly search

this class of proofs.

This results in a sound, incomplete, but terminating procedure that finds

natural proofs automatically and efficiently. Many correct programs have

simple proofs of correctness, and a terminating procedure that searches for

these simple proofs efficiently can be a very useful tool in program verifica-

tion. Incompleteness is, of course, a necessary trade-off to keep the logics

expressive while having a terminating procedure, and a terminating auto-

matic procedure is useful as it does not need manual help. Furthermore, as

we shall see in this proposal, such decision algorithms are particularly de-

sirable when they can be made to work very efficiently, especially using the

fast-growing class of efficient SMT solvers for quantifier-free theories.

Remark: The idea of searching for only simple and natural proofs is not

new; after all, type systems that prove properties of programs are essentially

simple (and often scalable) proof mechanisms. The class of simple and nat-

ural proofs that we identify in this chapter is, however, quite different from

those found by type systems.

When manually verifying a Hoare-triple that consists of code that manipu-

lates heaps and where properties of heaps are expressed using inductive alge-

braic definitions, a very common tactic is to unfold the recursive definitions

across the footprint, then abstract the recursively terms as uninterpreted

terms (which we call formula abstraction) and using unification, prove the

verification condition valid.

In order to illustrate the procedures for reasoning with heap-manipulating

programs using natural proofs, we consider programs manipulating trees

and develop a new recursive extension of first-order logic, called Dryadtree

that allows stating complex properties of heaps without recourse to explicit

quantification. Dryadtree combines quantifier-free first-order logic with re-

cursive definitions, and these recursive definitions, themselves expressed in

Dryadtree, can capture several interesting properties of trees, including their

height, the multiset of keys stored in them, whether they correspond to a

binary search tree (or an AVL tree), etc.

74

Organization: We present the syntax and semantics of Dryadtree in Sec-

tion 5.1 with formal definition and examples. Section 5.2 shows the main

technical contribution of this chapter: a precise VC-generation process for

tree-manipulating programs annotated with the Dryadtree logic. To reason

with the resulting VC, we identify a decidable fragment of Dryadtree in Sec-

tion 5.3. Moreover, in Section 5.4, we apply the second proof tactic, the for-

mula abstraction technique, to the Dryadtree logic, and result in a sound but

incomplete procedure. In Section 5.5, we experimentally evaluate the prac-

ticality of the natural proof strategy by verifying a set of tree-manipulating

program. Section 5.6 compares our approach with the rich literature on heap

verification, in both manual/automatic fashion.

5.1 The Dryadtree Logic

The recursive logic over trees, Dryadtree, is essentially a quantifier-free first-

order logic over heaps augmented with recursive definitions of various types

(e.g., integers, sets/multisets of integers, etc.) defined for locations that have

a tree under them. While FOL gives the necessary power to talk precisely

about locations that are near neighbors, the recursive definitions allow ex-

pressing properties that require quantifiers, including reachability, collecting

the set/multiset of keys in a tree, and defining natural metrics, like the height

of a tree, that are typically useful in defining properties of trees.

5.1.1 Syntax

Given a finite set of directions Dir, let us define PF-trees as finite trees where

every location has either |PF| children, or is the nil location, which has no

children (we assume there is a single nil location). Binary trees have two

directions: Dir = {l, r}.

The logic Dryadtree is parameterized by a finite set of directions Dir and

also by a finite set of data-fields DF. Let us fix these sets.

Let Bool = {true, false} stand for the set of Boolean values, Int stand

for the set of integers and Loc stand for the universe of locations. For any

set A, let S(A) denote the set of subsets of A, and let MS(A) denote the

set of all multisets with elements in A.

75

Remark: In this chapter, to simplify the presentation, we assume that the

data fields are of type Int, and only addition and subtraction are allowed

so that the underlying data theory (Presburger arithmetic) is decidable. In

general, the data fields could be of arbitrary type, as long as a decidable data

theory, e.g., real arithmetic, exists.

The Dryadtree logic allows four kinds of recursively defined notions for a

location that is the root of a PF-tree:

• recursively defined integer functions (Loc→ Int)

• recursively defined set-of-integers functions (Loc→ S(Int))

• recursively defined multiset-of-integers functions (Loc→MS(Int))

• recursively defined Boolean predicates (Loc→ Bool)

Let us fix disjoint sets of countable names for such functions. We will re-

fer to these recursive functions as recursively defined integers, recursively

defined sets/multisets of integers, and recursively defined predicates, respec-

tively. Typical examples of these include the height of a tree or the height

of black-nodes in the tree rooted at a node (recursively defined integers), the

set/multiset of keys stored at a particular data-field under nodes (recursively

defined set/multiset of integers), and the property that the tree rooted at

a node is a binary search tree or a balanced tree (recursively defined predi-

cates).

A Dryadtree formula consists of a pair (Def, ϕ), where Def is a set of

recursive definitions and ϕ is a formula. The syntax of Dryadtree logic is

given in Figure 6.1, where the syntax of the formulas is followed by the syntax

for recursive definitions. We require that every recursive function/predicate

used in the formula ϕ has a unique definition in Def. The figure does not

define the syntax of the base and inductive formulas in recursive definitions

(e.g. ibase, iind, etc.); we give that in the text below.

Location terms are formed using pointer fields from location variables, and

include a special location called nil. Integer terms are obtained from integer

constants, data-fields of locations, and from recursively defined integers, and

combined using basic arithmetic operations of addition and subtraction and

conditionals (ITE stands for if-then-else terms that evaluate to the second

76

dir ∈ Dir i∗ : Loc→ Int x ∈ Loc Vars
f ∈ DF si∗ : Loc→ S(Int) j ∈ Int Vars
c : Int Constant msi∗ : Loc→MS(Int) MS ∈MS(Int) Vars
q ∈ Boolean Vars p∗ : Loc→ {true, false} S ∈ S(Int) Vars

Loc Term: lt, lt1, lt2 . . . ::= x | nil | lt.dir
Int Term: it, it1, it2, . . . ::= c | j | lt.f | i∗(lt) | it1 + it2 | it1 − it2 |

ITE(ϕ, it1, it2)
S(Int) Term: sit, sit1, sit2, . . . ::= ∅ | S | {it} | si∗(lt) |

sit1 ∪ sit2 | sit1 ∩ sit2 |
sit1 \ sit2 | ITE(ϕ, sit1, sit2)

MS(Int) Term: msit,msit1, . . . ::= ∅m | MS | {it}m | msi∗(lt) |
msit1 ∩msit2 | msit1 ∪msit2 |
msit1 \msit2 | ITE(ϕ,msit1,msit2)

Formula: ϕ, ϕ1, ϕ2, . . . ::= true | q | p∗(lt) | lt1 = lt2 | it1 ≤ it2 |
sit1 ⊆ sit2 | msit1 ⊆ msit2 |
sit1 ≤ sit2 | msit1 ≤ msit2 |
it ∈ sit | it ∈ msit | ¬ϕ | ϕ1 ∨ ϕ2

Recursively-defined integer :

i∗(x)
def
= ITE(x = nil, ibase, iind)

Recursively-defined set-of-integers :

si∗(x)
def
= ITE(x = nil, sibase, siind)

Recursively-defined multiset-of-integers :

msi∗(x)
def
= ITE(x = nil, msibase, msiind)

Recursively-defined predicate :

p∗(x)
def
= ITE(x = nil, pbase, pind)

Figure 5.1: Syntax of Dryadtree

argument if the first argument evaluates to true and evaluate to the third

argument otherwise).

Terms that evaluate to a set/multiset of integers are obtained from recur-

sively defined sets/multisets of integers corresponding to a location term, and

are combined using set/multiset operations as well as conditional choices.

Formulas are obtained by Boolean combinations of Boolean variables, re-

cursively defined predicates on a location term, and using various relations

77

between set and multiset terms. The relations on sets and multisets include

the subset relation as well as the relation ≤ which is interpreted as follows:

for two sets (or multisets) of integers S1 and S2, S1 ≤ S2 holds whenever for

every i ∈ S1, j ∈ S2, i ≤ j.

The recursively defined functions (or predicates) are defined using the syn-

tax: f ∗(x) = ITE(x = nil, fbase, find), where fbase and find are themselves

terms (or formulas) that stand for what f evaluates to when x = nil (the

base-case) and when x 6= nil (the inductive step), respectively. There are

two restrictions on these terms/formulas:

• fbase has no free variables and hence evaluates to a fixed value (for

integers, it is a fixed integer; for sets/multisets of integers, it is a fixed

set; for Boolean predicates, it evaluates to true or false).

• find only has x as a free variable. Furthermore, the location terms in it

can only be x and x.pf (further dereferences are disallowed). Moreover,

integer terms x.pf.f are disallowed.

Intuitively, the above conditions demand that when x is nil, the function

evaluates to a constant of the appropriate type, and when x 6= nil, it evalu-

ates to a function that is defined recursively using properties of the location

x, which may include properties of the children of x, and these properties

may in turn involve other recursively defined functions.

We assume that the inductive definitions are not circular. Formally, let

Def be a set of definitions and consider a recursive definition of a function

f ∗ in Def. Define the sequence ψ0, ψ1, . . . as follows. Set ψ0 = f ∗(x). Obtain

ψi+1 by replacing every occurrence of g∗(x) in ψi by gind(x), where g is any

recursively defined function in Def. We require that this sequence eventually

stabilizes (i.e. there is a k such that ψk = ψk+1). Intuitively, we require that

the definition of f ∗(x) be rewritable into a formula that does not refer to a re-

cursive definition of x (by getting rewritten to properties of its descendants).

We require that every definition in Def have the above property.

5.1.2 Examples

We illustrate the syntax of Dryadtree with two examples as below. The BST

data-structure can be handled in our Strandsyn
dec logic (see Example 3.4.5),

78

but in Dryadtree, it is expressed in a recursive way, which is more intuitive.

The RBT example is more challenging and beyond the expressiveness of

Strand.

Example 5.1.1 (Binary search tree). Binary search trees are defined with

two directions Dir = {l, r}, with one data-field key, and with the following

two simple recursive definitions: one recursively definition of sets of integers

defines the set of keys of in the subtree below a node, and one recursive

Boolean predicate that identifies nodes that have binary search trees under

them.

keys∗(u)
def
= ite(u = nil, ∅, {u.key} ∪ keys∗(u.l) ∪ keys∗(u.r))

bst∗(u)
def
= ite(u = nil, true, bst∗(u.l) ∧ bst∗(u.r)∧

keys∗(u.l) ≤ {u.key} ∧ {u.key} ≤ keys∗(u.r))

Now, bst∗(x) says that x has a binary search tree under it.

Note that though a binary search tree expressed in classical logic would

require quantification over nodes, the above notation avoids this by using

recursively-defined sets of keys to gather the data under a node, and using the

S1 ≤ S2 operation that implicitly has quantification, comparing all elements

of S1 with all elements of S2.

We can also express, in our logic, various properties of binary search trees,

like

(bst∗(x) ∧ x.l 6= nil ∧ x.key = 20)⇒ x.l.key ≤ 20

and using the natural proofs outlined in this chapter, check the validity of the

above statement.

Example 5.1.2 (Red black tree). Red black trees are semi-balanced binary

search trees with nodes colored red and black, with all the leaves colored black,

satisfying the condition that the left and right children of a red node are black,

and the condition that the number of black nodes on paths from the root to

any leaf is the same. This ensures that the longest path from root to a leaf

is at most twice the shortest path from root to a leaf, making the tree roughly

balanced.

We have two directions PF = {l, r}, and two data fields, key, and color.

We model the color of nodes using an integer data-field color, which can be 0

79

black∗(x)
def
= ITE(x = nil, true, x.color = 0)

bh∗(x)
def
= ITE(x = nil, 1, ite(x.color = 0, 1, 0) +

ITE(bh∗(x.l) ≥ bh∗(x.r), bh∗(x.l), bh∗(x.r))

keys∗(x)
def
= ITE(x = nil, ∅, {x.key} ∪ keys∗(x.l) ∪ keys∗(x.r))

rbt∗(x)
def
= ITE (x = nil, true,

rbt∗(x.l) ∧ rbt∗(x.r) ∧
keys∗(x.l) ≤ {x.key} ∧ {x.key} ≤ keys∗(x.r) ∧
(x.color = 1→ (black∗(x.l) ∧ black∗(x.r)))∧
bh∗(x.l) = bh∗(x.r))

Figure 5.2: Recursive definitions for red black trees

(black) or 1 (red). We define four recursive functions/predicates: a predicate

black∗(x) that checks whether the root of the tree under x is colored black (this

is defined as a recursive predicate for technical reasons), the black height of

a tree, bh∗(x), the multiset of keys stored in a tree, keys∗(x), and a recursive

predicate that identifies red-black trees, rbt∗(x). Their formal definitions in

Dryadtree are presented in Figure 5.2.

The black∗(xx) recursive predicate asserts that the color of a nil node is

black, and the color of a non-nil node is stored in the field color. The

bh∗(t) function definition says that the black height of a tree is 1 for a nil

node (nil nodes are assumed to be black), and, otherwise, the maximum of

the black heights of the left and right subtree if the node x is red, and the

maximum of the black heights of the left and right subtree plus one, if x is

black. The keys∗(t) function says that the multiset of keys stored in a tree is

∅ for a nil-node, and the union of the key stored in the node, and the keys

of the left and right subtrees. Finally, the rbt∗(t) holds if: (1) the left and

right subtrees are valid red black trees; (2) the keys of the left subtree are no

greater than the key in the node, and the keys of the right subtree are no less

than the key in the node; (3) if the node is red, both its children are black;

and (4) the black heights of the left and the right subtrees are equal.

We can also express, in our logic, various properties of red black trees, by

including the above definitions in a formula like:

(rbt∗(t) ∧ ¬black∗(t) ∧ t.key = 20)→ 10 /∈ keys∗(t.r)

80

The above statement is valid because c∗(t) = red implies that t is not nil,

hence t.key is well defined, and since all the keys in the right are no less then

the 20, it follows that 10 cannot be one of them. The validity of the above

statement should be checkable using the procedures outlined in this chapter.

5.1.3 Semantics

The Dryadtree logic is interpreted on (concrete) heaps. Let us fix a finite set

of program variables PV. Concrete heaps are defined as follows (f : A ⇀ B

denotes a partial function from A to B):

Definition 5.1.3. A concrete heap over a set of directions PF, a set of

data-fields DF, and a set of program variables PV is a tuple

(N, nil, pf, df, pv)

where:

• N is a finite or infinite set of locations;

• nil ∈ N is a special location representing the null pointer;

• pf : (N \ {nil})× PF→ N is a function defining the direction fields;

• df : (N \ {nil})×DF→ Z is a function defining the data-fields;

• pv : PV ⇀ N ∪ Z is a partial function mapping program variables to

locations or integers, depending on the type of the variable.

A concrete heap consists of a finite/infinite set of locations, with a pointer-

field function pf that maps locations to locations for each direction pf∈PF,

a data-field function df mapping locations to integers for each data-field DF,

along with a unique constant location representing nil that has no data-

fields or pointer-fields from it. Moreover, the function pv is a partial function

that maps program variables to locations and integers.

ADryadtree formula with free variables F is interpreted by interpreting the

program variables in F according to the function pv and the other variables

being given an interpretation (hence, for validity, these other variables are

universally quantified, and for satisfiability, they are existentially quantified).

81

Each term evaluates to either a normal value of the corresponding type,

or to undef. A location term is evaluated by dereferencing pointers in the

heap. If a dereference is undefined, the term evaluates to undef. The set of

locations that are roots of PF-trees are special in that they are the only ones

over which recursive definitions are properly defined. A term of the form

i∗(lt), si∗(lt) or msi∗(lt) will evaluate to undef if lt evaluates to undef or is

not a root of a tree in the heap; otherwise it will be evaluated inductively

using its recursive definition. Other aspects of the logic are interpreted with

the usual semantics of first-order logic, unless they contain some subterm

evaluating to undef, in which case they also evaluate to undef.

Each Dryad formula evaluates to either true or false. To evaluate a for-

mula ϕ, we first convert ϕ to its negation normal form (NNF), and evaluate

each atomic formula of the form p∗(lt) first. If lt is not undefined, p∗(lt) will

be evaluated inductively using the recursive definition of p∗; if lt evaluates

to undef, p∗(lt) will evaluate to false if p∗(lt) appears positively, and will

evaluate to true otherwise. Intuitively, undefined recursive predicates can-

not help in making the formula true over a model. Similarly, atomic formulas

involving terms that evaluate to undef are set to false or true depending on

whether the atomic formula occurs within an even or odd number of nega-

tions, respectively. All other relations between integers, sets, and multisets

are interpreted in the natural way, and we skip defining their semantics.

We assume that the Dryad formulas always include a recursively defined

predicate tree that is defined as:

tree∗(x)
def
= (x = nil, true, true)

Note that since recursively defined predicates can hold only on trees and

since the above formula vacuously holds on any tree, tree∗(x) holds iff x is a

root of a PF-tree.

5.2 Deriving the Verification Condition

The main technical contribution of this chapter is to show how a Hoare-

triple corresponding to a basic path in a recursive imperative program (we

disallow while-loops and demand all recursion be through recursive function

82

calls) with proof annotations written in Dryad, can be expressed as a pair

consisting of a finite footprint and a Dryad formula. The finite footprint is

a symbolic heap that captures the heap explored by the basic block of the

program precisely. The construction of this footprint and formula calls for a

careful handling of the mutating footprint defined by a recursive imperative

program, calls for a disciplined approach to unrolling recursion, and involves

capturing aliasing and separation by exploiting the fact that the manipulated

structures are trees. In particular, the procedure keeps track of locations

in the footprint corresponding to trees and precisely computes the value

of recursive terms on the these. Furthermore, the verification condition is

accurately described by unfolding the pre-condition so that it is expressed

purely on the frontier of the footprint, so as to enable effective use of the

formula abstraction mechanism. In order to be accurate, we place several

key restrictions on the logical syntax of pre- and post-conditions expressed

for functions.

We then consider the problem of solving the validity problem for the verifi-

cation condition expressed as a footprint and a Dryadtree formula. We turn

to abstraction schemes for Dryadtree, and show how to abstract Dryadtree

formulas into quantifier-free theories of sets/multisets of integers; the latter

can then be translated into formulas in the standard quantifier-free theory

of integers with uninterpreted functions. The final formula’s validity can be

proved using standard SMT solvers, and its validity implies the validity of

the Dryadtree formula.

5.2.1 Programs

We consider imperative programs manipulating heap structures and the data

contained in the heap. In this chapter, we assume that programs do not

contain while loops and all recursion is captured using recursive function

calls. Consequently, proof annotations only involve pre- and post-conditions

of functions, and there are no loop-invariants.

The imperative programs we analyze will consist of integer operations,

heap operations, conditionals and recursion. In order to verify programs

with appropriate proof annotations, we need to verify linear blocks of code,

called basic blocks, which do not have conditionals (conditionals are replaced

83

with assume statements). Basic blocks always start from the beginning of a

function and either end at an assertion in the program (checking an interme-

diate assertion), or end at a function call to check whether the pre-condition

to calling the function holds, or ends at the end of the program in order to

check whether the post-condition holds. Basic blocks can involve recursive

and non-recursive function calls.

We define basic blocks using the following grammar, parameterized by a

set of directions PF and a set of data-fields DF:

bb :− bb′; | bb′; return u; | bb′; return j;

bb′ :− bb′; bb′ | u := v | u := nil | u := v.dir | u.dir := v |

j := u.f | u.f := j | u := new | j := aexpr |

assume (bexpr) | u := f(v, z1, . . . , zn) | j := g(v, z1, . . . , zn)

aexpr :− j | aexpr+ aexpr | aexpr− aexpr

bexpr :− u = v | u = nil | aexpr ≤ aexpr | ¬bexpr | bexpr ∨ bexpr

Since we deal with tree data-structure manipulating programs, which often

involve functions that take as input a tree and return a tree, we make certain

crucial assumptions. One crucial restriction we assume for the technical ex-

position is that all functions take in at most one location parameter as input

(the rest have to be integers). Basic blocks hence have function calls of the

form f(v, z1, . . . zn), where v is the only location parameter. This restriction

greatly simplifies the proofs as it is much easier to track one tree. We can

relax this assumption, but when several trees are passed as parameters, our

decision procedures will implicitly assume a precondition that the trees are

all disjoint. This is crucial: our decision procedures cannot track trees that

“collide”; they track only equal trees and disjoint trees. This turns out to be

a natural property of most data-structure manipulating programs.

Restrictions

We consider the basic blocks described above annotated with Dryadtree for-

mulas. However, we place stringent restrictions on annotations (pre- and

post-function) that we allow in our framework, guaranteeing that the pro-

gram always manipulates appropriate trees. These restrictions are important

for the technique in this chapter and is the price we pay for automation.

84

Recall that we allow only two kinds of functions, one returning a location

f(v, z1, . . . , zn) and one returning an integer g(v, z1, . . . , zn) (v is a location

parameter, z1, . . . , zn are integer parameters). We require that v is the root

of a PF-tree at the point when the function is called, and this is an implicit

pre-condition of the function called.

Each function is annotated with its pre- and post-conditions using anno-

tating formulas. Annotating terms and formulas are Dryadtree terms and

formulas that do not refer to any child or any data field, do not allow any

equality between locations and do not allow ite-expressions. We denote the

pre-condition as a pre-annotating formula ψ(v, z1, . . . , zn).

The post-condition annotation is more complex, as it can talk about prop-

erties of the heap at the pre-state as well as the post-state. We allow com-

bining terms and formulas obtained from the pre-heap and the post-heap

to express the post-condition. Terms and formulas over the post-heap are

obtained using Dryadtree annotating terms and formulas that are allowed

to refer to a variable old v which points to the location v pointed to in the

pre-heap. These terms and formulas can also refer to the variable ret loc or

ret int to refer to the location or integer being returned. Terms and formulas

over the pre-heap are obtained using Dryadtree annotating terms and for-

mulas referring to old v and old zi’s, except that all recursive definitions are

renamed to have the prefix old . Then a post-annotating formula combines

terms and formulas expressed over the pre-heap and the post-heap (using the

standard operations).

For a function f(v, z1, . . . zn) that returns a location, we assume that the

returned location always has a PF-tree under it (and this is implicitly as-

sumed to be part of the post-condition). The post-condition for f is either

of the form

havoc(old v) ∧ ψ(old v, old z1, . . . , old zn, ret loc)

or of the form

tree(old v)∧tree(ret loc)∧old v#ret loc∧ψ(old v, old z1, . . . , old zn, ret loc)

where ψ is a post-annotating formula. In the first kind, havoc(old v) means

that the function guarantees nothing about the location pointed to in the pre-

85

state by the input parameter v (and nothing about the locations accessible

from that location) and hence the caller of f cannot assume anything about

the location it passed to f after the call returns. In that case, we restrict

ψ from referring to r∗(oldv), where r
∗ is a recursive predicate/function on

the post-heap. In the latter kind old v#ret loc means that f , at the point

of return, assures that the location passed as parameter v now points to a

PF-tree and this tree is disjoint from the tree rooted at ret loc.

In either case, the formula ψ can relate complex properties of the returned

location and the input parameter, including recursive definitions on the old

parameter and the new ones. For example, a post-condition of the form

havoc(old v) ∧ keys∗(old v) = keys∗(ret loc) says that the keys under the

returned location are precisely the same as the keys under the location passed

to the function.

For a function g returning an integer, the post-condition is of the form

tree(old v) ∧ ψ(old v, old z1, . . . , old zn, ret int)

or of the form

havoc(old v) ∧ ψ(old v, old z1, . . . , old zn, ret int)

The former says that the location passed as input continues to point to a

tree, while the latter says that no property is assured about the location

passed as input (same restriction on ψ applies).

The above restriction that the input tree and the returned tree either point

to completely disjoint trees or that the input pointer (and nodes accessible

from it) are entirely havoc-ed and the returned node is some tree are the

only separation and aliasing properties that the post-condition can assert.

Our logical mechanism is incapable, for example, of saying the the returned

node is a reachable node from the location passed to the function. We have

carefully chosen such restrictions in order to simplify tracking tree-ness and

separation in the footprint. In practice, most data-structure algorithms fall

into these categories (for example, an insert routine would havoc the input

tree and return a new tree whose keys are related to the keys of the input

tree, while a tree-copying program will return a tree disjoint from the input

tree).

86

5.2.2 Describing the Verification Condition in Dryadtree

Given a set of recursive definitions, and a Hoare-triple (ϕpre, bb, ϕpost), where

bb is a basic block, we now show how to systematically define the verification

condition corresponding to it. Note that since we do not have while-loops,

basic blocks always start at the beginning of a function and go either till the

end of the function (spanning calls to other functions) or go up to a function

call (in order to check if the pre-condition for that call holds). In the former

case, the post-condition is a post-condition annotation. In the latter case,

we need another form:

tree(y) ∧ ψ(x̄)

where x̄ is a subset of program variables. The pre-condition of the called

function implicitly assumes that the input location is a tree (which is ex-

pressed using tree(y) above), and the pre-condition itself is adapted (after

substituting formal parameters with actual terms passed to the function) and

written as the formula ψ.

This verification condition is expressed as a combination of

a) quantifier-free formulas that define properties of the footprint the basic

block uncovers on the heap, combined with

b) recursive formulas expressed only on the frontier of the footprint.

This verification condition is formed by unrolling recursive definitions ap-

propriately as the basic block increases its footprint so that recursive prop-

erties are translated to properties of the frontier. This allows us to write

the (strongest) post-condition of ϕpre on precisely the same nodes as ϕpost

refers to, which then allows us to apply formula abstractions to prove the

verification condition. Also, recursive calls to functions that process the

data-structure recursively are naturally called on the frontier of the foot-

print, which allows us to summarize the call to the function on the frontier.

The verification condition is derived in two steps, exploiting the two spe-

cific tactics for the natural proof strategy. In the first step, we inductively

define a footprint structure, composed of a symbolic heap and a Dryadtree

formula, which captures the state of the program that results when the basic

block executes from a configuration satisfying the pre-condition. We then

incorporate the post-condition and derive the verification condition.

87

Symbolic heap. A symbolic heap is defined as follows:

Definition 5.2.1. A symbolic heap over a set of directions PF, a set of

data-fields DF, and a set of program variables PV is a tuple

(C, S, I, cnil, pf, df, pv)

where:

• C is a finite set of concrete nodes;

• S is a finite set of symbolic tree nodes with C ∩ S = ∅;

• I is a set of integer variables;

• cnil ∈ C is a special concrete node representing nil;

• pf : (C \ {cnil})×PF⇀ C ∪ S is a partial function mapping every pair

of a concrete node and a direction to nodes (concrete or symbolic);

• df : (C \ {cnil})×DF⇀ I is a partial function mapping concrete nodes

and data-fields pairs to integer variables;

• pv : PV⇀ C ∪S ∪ I is a partial function mapping program variables to

nodes or integer variables (location variables are mapped to C ∪ S and

integer variables to I).

Intuitively, a symbolic heap (C, S, I, cnil, pf, df, pv) has two finite sets of

nodes: concrete nodes C and symbolic tree nodes S, with the understanding

that each s ∈ S stands for a node that may have an arbitrary PF-tree under

it, and furthermore the separation constraint that for any two symbolic tree

nodes s, s′ ∈ S, the trees under it would not intersect with each other, nor

with the nodes in C. The tree under a symbolic node is not represented in

the symbolic heap at all. One of the concrete nodes (cnil) represents the nil

location.

The function pf captures the pointer-field pf in the heap that is within

the footprint, and maps the set of concrete nodes to concrete and symbolic

nodes. The pointer fields of symbolic nodes are not modeled, as they are

part of the tree below the node that is not represented in the footprint. The

functions df and pv capture the data-fields (mapping to integer variables)

and program variables restricted to the nodes in the symbolic heap.

88

A symbolic heap hence represents a (typically infinite) set of concrete

heaps, namely those in which it can be embedded. We define this formally

using the notion of correspondence that captures when a concrete heap is

represented by a symbolic heap.

Definition 5.2.2. Let SH = (C, S, I, cnil, pf, df, pv) be a symbolic heap and let

CH = (N, nil, pf′, df′, pv′) be a concrete heap. Then CH is said to correspond

to SH if there is a function h : C ∪S → N such that the following conditions

hold:

• h(cnil) = nil;

• for any n, n′ ∈ C, if n 6= n′, then h(n) 6= h(n′);

• for any two nodes n ∈ C \ {cnil}, n′ ∈ C ∪ S, and for any pf ∈ PF, if

pf(n, pf) = n′, then pf′(h(n), pf)) = h(n′);

• for any s ∈ S, h(s) is the root of a PF-tree in CH, and there is no

concrete node c ∈ C \ {cnil} such that h(c) belongs to this tree;

• for any s, s′ ∈ S, s 6= s′, the PF-trees rooted at h(s) and h(s′) (in CH)

are disjoint except for the nil node;

• for any location variable v ∈ PV, if pv(v) is defined, then pv′(v) =

h(pv(v));

Intuitively, h above defines a restricted kind of homomorphism between

the nodes of the symbolic heap SH and a portion of the concrete heap CH.

Distinct concrete non-nil nodes are required to map to distinct locations in

the concrete heap. Symbolic nodes are required to map to trees that are

disjoint (save the nil location); they can map to the nil location as well. The

trees rooted at locations corresponding to symbolic nodes must be disjoint

from the locations corresponding to concrete nodes. Note that there is no

requirement on the integer variables I and the map pv′ on integer variables

and the maps df and df′. Note also that for a concrete node in the symbolic

heap n, the fields defined from n in the symbolic heap must occur in the

concrete heap as well from the corresponding location h(n); however, the

fields not defined for n may or may not be defined on h(n).

A footprint is a pair (SH;ϕ) where SH is a symbolic heap and ϕ is a

Dryadtree formula. The semantics of such a footprint is that it represents

all concrete heaps that both correspond to SH and satisfy ϕ.

89

Tree-ness of nodes. The key property of a symbolic heap is that we

can determine that certain nodes have PF-trees rooted under them (i.e. in

any concrete heap corresponding to the symbolic heap, the corresponding

locations will have a PF-tree under them).

For a symbolic heap SH = (C, S, I, cnil, pf, df, pv), let the set of graph nodes

of SH be the smallest set of nodes V ⊆ C ∪ S such that:

• cnil ∈ V and S ⊆ V

• For any node n ∈ C, if for every pf ∈ PF, pf(n, pf) is defined and

belongs to V , then n ∈ V .

Now define Graph(SH) to be the directed graph (V,E), where V is as above,

and E is the set of edges (u, v) such that pf(u, pf) = v for some pf ∈ Dir.

Note that, by definition, there are no edges out of u if u ∈ S, as symbolic

nodes do not have outgoing fields.

We say that a node u in V is the root of a tree in Graph(SH) if the set of

all nodes reachable from u forms a tree (in the usual graph-theoretic sense).

The following claim follows and is the crux of using the symbolic heap to

determine tree-ness of nodes:

Lemma 5.2.3. Let SH be a symbolic heap and let CH be a corresponding

concrete heap, defined by a function h. If a node u is the root of a tree in

Graph(SH), then h(u) also subtends a tree in CH.

Proof. A proof gist is as follows. First, note that symbolic nodes and the

node cnil are always roots of trees in Graph(SH) and the locations in the

concrete heap corresponding to them subtend trees (in fact, disjoint trees

save the nil location). Turning to concrete nodes, we need to argue that if c

is a concrete node in Graph(SH), then h(c) is the root of a PF-tree in CH.

This follows by induction on the height of the tree under c in Graph(SH),

since each of the PF children of c in Graph(SH) must either be the cnil node

or a summary node or a concrete node that is a the root of a tree of less

height. The corresponding locations in CH, by induction hypothesis or by

the above observations, have PF-trees suspended from them. In fact, by the

definition of correspondence, these trees are all disjoint except for the nil

location (since trees corresponding to summary nodes are all disjoint and

disjoint from locations corresponding to concrete nodes, and since concrete

nodes in the symbolic heap denote).

90

The location corresponding to a concrete node in Graph(SH) that does not

have all PF-fields defined in SH may or may not have a PF-tree subtended

from it; this is because the notion of correspondence allows the corresponding

location to have more fields defined. In the sequel, when we use symbolic

heaps for tracking footprints, such concrete nodes with partially defined PF

fields will occur only when processing function calls (where all information

about a node may not be known).

Initial footprint. Let the pre-condition be ϕpre(u, j1, . . . , jm), where u

is the only location program variable, there is a PF-tree rooted at u, and

j1, . . . , jm are integer program variables. Then we define the initial symbolic

heap:

(C0, S0, I0, cnil, pf0, df0, pv0)

where C0 = {cnil}, S0 = {n0}, I = {i1, . . . im}, pf0 and df0 are empty func-

tions (i.e. functions with an empty domain), and pv0 maps u to n0 and

j1, ..., jm to i1, ..., im, respectively. The initial formula ϕ0 is obtained from

ϕpre(u, j1, . . . , jm) by replacing u by n0 and j1, ..., jm by i1, ..., im, and by

adding the conjunct p∗(cnil) ↔ pbase or f ∗(cnil) = fbase for all recursive pred-

icates and functions. Note that the formula is defined over the variables

S0 ∪ I0. Intuitively, we start at the beginning of the function with a single

symbolic node that stands for the input parameter, which is a tree, and a

concrete node that stands for nil. All integer parameters are assigned to

distinct variables in I.

Expanding the footprint. A basic operation on a pair, (SH;ϕ), consist-

ing of a symbolic heap, and a formula is expansion. Let SH be

(C, S, I, cnil, pf, df, pv)

and n ∈ C ∪ S be a node. We define expand
(
(SH;ϕ), n

)
= (SH′;ϕ′), where

SH′ is the tuple

(C ′, S ′, I ′, cnil, pf
′, df′, pv′)

as follows: if n ∈ C (the node is already expanded), then do nothing by

setting (SH′;ϕ′) to (SH;ϕ); otherwise:

• C ′ = C ∪ {n}, where n is the node being expanded

91

• S ′ = S ⊎ {npf | pf ∈ PF} \ {n}, where each npf is a fresh new node

different from the nodes in C ∪ S

• I ′ = I ⊎ {if | f ∈ DF}, where each if is a fresh new integer variable

• pf′ |C\{cnil}×PF= pf, and pf′(n, pf) = npf for all pf ∈ PF

• df′ |C\{cnil}×DF= df, and df′(n, f) = if for all f ∈ DF

• pv′ = pv;

The formula ϕ′ is obtained from the formula ϕ as follows:

ϕ′ = ϕ[p̄n, f̄n/p̄
∗(n), f̄ ∗(n)]

∧
∧

p∗

(
pn ↔ p̂ind(n)

)
∧
∧

f∗

(
fn = f̂ind(n)

)

∧ n 6= cnil ∧
∧

n′∈C′\{cnil},pf∈PF

(
n′ 6= npf

)

∧
∧

pf∈PF,s∈S

(
npf = s→ npf = cnil

)

∧
∧

pf1,pf2∈PF,pf1 6=pf2

(
npf1

= npf2
→ npf1

= cnil

)

where p̄n are fresh Boolean variables, f̄n are fresh term (integer, set, ...)

variables, p∗(x)
def
= ite(x = nil, pbase, pind(x)) ranges over all the recursive

predicates, and f ∗(x)
def
= ite(x = nil, fbase, find(x)) ranges over all the re-

cursive functions. Intuitively, The variables p̄n and f̄n capture the values of

the predicates and functions for the node n in the current symbolic heap.

This is possible because the values of the recursive predicates and functions

for concrete non-nil nodes are determined by the values of the functions and

predicates for symbolic nodes and the nil node. The formula p̂ind(n) is ob-

tained from pind(n), by substituting every location term of the form n.pf

with npf for every pf ∈ PF, and substituting every integer term of the form

n.f with if for every f ∈ DF. The term f̂ind(n) is obtained by the same

substitutions.

Evolving the footprint on basic blocks. Given a symbolic heap SH

along with a formula ϕ, and a basic block bb. We compute the symbolic

execution of bb using the transformation function st
(
(SH;ϕ), bb

)
= (SH′;ϕ′).

The transformation function st is computed transitively; i.e., if bb is of the

92

form (stmt; bb′) where stmt is an atomic statement and bb′ is a basic block,

then

st
(
(SH;ϕ), bb

)
= st

(
st
(
(SH;ϕ), stmt

)
, bb′
)

Therefore, it is enough to define the transformation for the various atomic

statements. Given SH = (C, S, I, cnil, pf, df, pv), ϕ and an atomic statement

stmt, we define st
(
(SH;ϕ), stmt

)
as follows by cases of stmt. Unless some

assumptions fail (in which case the transformation is undefined), we describe

st
(
(SH;ϕ), stmt

)
as (SH′;ϕ′).

As per our convention, function updates are denoted in the form of [arg ←

new val]. For example, pv[u← n] denotes the function pv except that pv(u)

maps to n. Formula substitutions are denoted in the form of [new/old].

For example, ϕ[df′/df] denotes the formula obtained from the formula ϕ by

substituting every occurrence of df with df′.

The following defines how the footprint evolves across all possible state-

ments except function calls:

(a) stmt : u := v

If pv(v) is undefined, the transformation is undefined; otherwise

SH′ = (C, S, I, cnil, pf, df, pv[u← pv(v)])

ϕ′ ≡ ϕ

(b) stmt : u := nil

SH′ = (C, S, I, cnil, pf, df, pv[u← cnil])

ϕ′ ≡ ϕ

(c) stmt : u := v.pf

If pv(v) is undefined, or pv(v) ∈ C and pf(pv(v), pf) is undefined, the

transformation is undefined. Otherwise we expand the symbolic heap:

((C ′′, S ′′, I ′′, cnil, pf
′′, df′′, pv′′);ϕ′′) = expand

(
(SH;ϕ), pv(v)

)

Now pv′′(v) must be in C ′′ \ {cnil}, and we set

SH′ = (C ′′, S ′′, I ′′, cnil, pf
′′, df′′, pv′′[u← pf′′(pv′′(v), pf)])

ϕ′ ≡ ϕ′′

93

(d) stmt : j := v.f

If pv(v) is undefined, or pv(v) ∈ C and pf(pv(v), f) is undefined, the

transformation is undefined. Otherwise we expand the symbolic heap:

((C ′′, S ′′, I ′′, cnil, pf
′′, df′′, pv′′);ϕ′′) = expand

(
(SH;ϕ), pv(v)

)

Now pv′′(v) must be in C ′′ \ {cnil}, and we set

SH′ = (C ′′, S ′′, I ′′ ⊎ {i}, cnil, pf
′′, df′′, pv′′[j ← i])

ϕ′ ≡ ϕ′′ ∧ i = df′′(pv′′(v), f)

(e) stmt : u.pf := v

If pv(u) or pv(v) is undefined, or pv(u) = cnil, the transformation is

undefined. Otherwise we expand the symbolic heap:

((C ′′, S ′′, I ′′, cnil, pf
′′, df′′, pv′′);ϕ′′) = expand

(
(SH;ϕ), pv(u)

)

Now pv′′(u) must be in C ′′ \ {cnil}, and we set

SH′ = (C ′′, S ′′, I ′′, cnil, pf
′′[(pv′′(u), pf)← pv′′(v)], df′′, pv′′)

ϕ′ ≡ ϕ′′

(f) stmt : u.f := j

If pv(u) or pv(j) is undefined, or pv(u) = cnil, the transformation is

undefined. Otherwise we expand the symbolic heap:

((C ′′, S ′′, I ′′, cnil, pf
′′, df′′, pv′′);ϕ′′) = expand

(
(SH;ϕ), pv(u)

)

Now pv′′(u) must be in C ′′ \ {cnil}, and we set

SH′ = (C ′′, S ′′, I ′′ ⊎ {i}, cnil, pf
′′, df′′[(pv′′(u), f)← i], pv′′)

ϕ′ ≡ ϕ′′ ∧ i = pv′′(j)

(g) stmt : u := new

We assume that, for the new location, every pointer initially points to

94

nil and every data field initially evaluates to 0.

SH′ = (C ⊎ {n}, S, I ⊎ {if | f ∈ DF}, cnil, pf
′, df′, pv[u← n])

ϕ′ ≡ ϕ ∧
∧
f∈DF

(
if = 0

)
∧
∧
n′∈C∪S

(
n 6= n′

)

where pf′ and df′ are defined as follows:

• pf′ |C\{cnil}×PF= pf, and pf′(n, pf) = cnil for all pf ∈ PF

• df′ |C\{cnil}×DF= df, and df′(n, f) = if for all f ∈ DF

(h) stmt : j := aexpr(k̄)

If pv is undefined on any variable in k̄, then the transformation is

undefined; otherwise

SH′ = (C, S, I ⊎ {i}, cnil, pf, df, pv[j ← i])

ϕ′ ≡ ϕ ∧ i = aexpr[pv(k̄)/k̄]

(i) stmt : assume bexpr(v̄, j̄)

If pv is undefined on any variable in pv(v̄) or in pv(j̄), then the trans-

formation is undefined; otherwise

SH′ = SH

ϕ′ ≡ ϕ ∧ bexpr[pv(v̄), pv(j̄)/v̄, j̄]

(j) stmt : return u

If pv(u) is undefined, the transformation is undefined; otherwise

SH′ = (C, S, I, cnil, pf, df, pv[ret← pv(u)])

ϕ′ ≡ ϕ

(k) stmt : return j

If pv(j) is undefined, the transformation is undefined; otherwise

SH′ = (C, S, I ⊎ {i}, cnil, pf, df, pv[ret int← i])

ϕ′ ≡ ϕ ∧ i = pv(j)

We can show that for any atomic statement that is not a function call, the

above computes the strongest post of the footprint:

95

Theorem 5.2.4. Let (SH;ϕ) be a footprint and let stmt be any statement

that is not a function call. Let (SH′;ϕ′) be the footprint obtained from (SH;ϕ)

across the statement stmt, as defined above. Let C denote the set of all

concrete heaps that correspond to SH and satisfy ϕ, and let C′ be the set of

all heaps that result from executing stmt from any concrete heap in C. Then

C′ is the precise set of concrete heaps that correspond to SH′ and satisfy ϕ′.

Proof. The proof consists of case analysis for each type of statement:

[u := v] The variable assignment makes u points to where v points to.

Hence pv(u) is updated with pv(v). Since the heap is unmodified, all

the heap domain (C and S), pointer fields (pf) and data fields (df)

remain the same. The constraints ϕ′ is also unchanged.

[u := nil] The variable assignment makes u points to nil, so pv(u) is

updated with cnil. Similar to the above case, the heap and the formula

are completely unmodified.

[u := v.pf] The dereferencing on v requires an expanding of (SH;ϕ) to

((C ′′, S ′′, I ′′, cnil, pf
′′, df′′, pv′′);ϕ′′), which is sound (the proof is omitted).

Moreover, the assignment makes u points to the pf field of v, formally

pv′′(u) is updated with the pf field of pv′′(v). Similar to the above case,

the heap and the formula are also unmodified from (SH;ϕ) to (SH′;ϕ′).

[u.pf := v] Similar to the above case, the symbolic heap and the formula

(SH;ϕ) is first expanded to ((C ′′, S ′′, I ′′, cnil, pf
′′, df′′, pv′′);ϕ′′). When u

points to a valid location in the expanded heap, the mutation makes the

pf field of it updated: pf′′(pv′′(u), pf) is updated with pv′′(v). Moreover,

the heap domain (C ′′ and S ′′) is unmodified. The other field functions

and the formula also remain the same.

[j := u.f] Similar expanding to ((C ′′, S ′′, I ′′, cnil, pf
′′, df′′, pv′′);ϕ′′). The

assignment makes u points to the f field of v, formally pv′′(u) is updated

with a fresh integer variable i, representing the f field of v. Hence, ϕ′

also extends ϕ with the assertion i = df′′(pv′′(v), f).

[u.f := j] Similar to the u.pf := v case. But again, a fresh integer

variable i which represents the current value of j, and extend ϕ with

the assertion i = pv′′(j).

96

[u := new] This statement makes u points to a freshly allocated location,

namely n. Since the new heap domain is an extension of the old one by

adding a new node n, we know that C ′ = C ⊎ {n}. By default, for n,

each pointer field initially points to nil, each data field initially stores

0. These initial values are formalized by the definition of pf′ and df′,

in which each if represents the initial value of the f field. the variable

store pv(u) is clearly updated with n. The remaining portion of the

heap (C, S, pf′ and df′) is exactly the same as before. Moreover, ϕ′ is

extended to assert that each data field value if is 0, and the new node

n is different from all existing nodes in C ∪ S.

[j := aexpr(k̄)] The statement assigns the value of aexpr(k̄), which is

expressible in our logic, to j. Hence pv(j) is updated with i, a fresh

integer variable such that i = aexpr[pv(k̄)/k̄].

[assume bexpr(v̄, j̄)] The assumed condition bexpr, which can be expressed

in our logic, must be true. So ϕ′ can simply extend ϕ with a conjunct

of bexpr, in which each variable is replaced with its value in pv. The

heap is simply unmodified.

[return u] When u is defined in pv, the statement simply copy its value

to the special variable ret. Formally the only modification to SH ′ is

updating pv(ret) with pv(u). The formula ϕ′ is unmodified.

[return j] When j is defined in pv, the statement simply copy its value

to the special variable retint. So pv(ret) in SH′ is updated with i, which

is asserted as i = pv(j) in ϕ′.

Handling function calls. Let us consider the statement u := f(v, j̄) on

the pair (SH;ϕ). Let f(w, k̄) be the function prototype and ϕpost its post-

condition. If pv(v) or any element of pv(j̄) is undefined, the transformation

is undefined. We also assume that the checking of the pre-condition for f is

successful; in particular, pv(v) and all the nodes reachable from it are roots

of trees.

Recall that certain nodes of the symbolic heap can be determined to point

to trees (as discussed earlier). For any node n ∈ C ∪ S, let us define

97

reach nodes(SH, n) to be the subset of C ∪ S that is reachable from n in

Graph(SH). Let

NC = (reach nodes(SH, pv(v)) ∩ C) \ {cnil}

NS = reach nodes(SH, pv(v)) ∩ S

Intuitively, NC and NS are the concrete non-nil and the symbolic nodes

affected by the call. Let nret be the node returned by f . Let N ′ be the

set of nodes generated by the call: N ′ = {nret, pv(v)} if ϕpost does not

havoc old w, and N ′ = {nret} otherwise. The resulting symbolic heap is

(C ′, S ′, I ′, cnil, pf
′, df′, pv′), where:

• C ′ = C \NC

• S ′ = (S \NS) ∪N ′

• I ′ = I

• pf′ |D= pf |D, and pf′(n, pf) is undefined for all the pairs (n, pf) ∈

(C ′ \ {nil} ×PF) \D, where D ⊆ (C ′ \ {nil})×Dir is the set of pairs

(n′, pf′) such that pf(n′, pf′) ∈ C ′ ∪ S ′

• df′ = df |C′\{cnil}×DF

• pv′ = pv[u← nret]

Intuitively, the concrete and symbolic nodes affected by the call are removed

from the footprint (and get quantified in the Dryadtree formula), with the

possible exception of pv(v) (if ϕpost does not havoc old w, pv(v) becomes a

symbolic node). The returned node is added to S. The pf and df functions

are restricted to the new set of concrete nodes, and all the directions and

program variables pointing to quantified nodes become undefined.

Let ψpost be the post-annotating formula in ϕpost, we define the following

formulas
ϕ1 ≡ ϕ[pre call rn/r∗(n)]

∧
∧

n∈NC ,r∗

(
pre call rn = r̂ind(n)

)

ϕ2 ≡ ψpost[pv(v)/old w][pv(j)/old k][nret/ret]

[pre call rpv(v)/old r
∗(pv(v))]

98

where n ranges over NC ∪ NS, r
∗ ranges over all the recursive predicates

and functions; pre call rn are fresh logical variables; r̂ind(n) is obtained from

rind(n) by replacing n.pf with pf(n, pf) and n.f with df(n, f) for all pf ∈

PF, f ∈ DF, and then by replacing r∗(n′) with pre call rn′ for all n′ ∈ NC ∪

NS; r∗(n) is the vector of all the recursive predicates and functions on all

n ∈ NC ∪ NS. Intuitively, in ϕ1 we add logical variables that capture the

values of the recursive predicates and functions for the nodes affected by the

call. In ϕ2 we replace the program variables in the ψpost with the actual

nodes and integer variables, and we replace the old version of the predicates

and functions on old w with the variables capturing those values. Then the

resulting formula is

ϕ′ ≡ ϕ1 ∧ ϕ2

The case of j := g(v, k̄) is similar.

Example 5.2.5 (Search in AVL trees). The above procedure expands the

symbolic heap and generates formulas, we present it working on the search

routine of an AVL tree. Figure 5.3 shows the find routine, which searches

in an AVL tree t and returns true if a key v is found. The pre-condition

ϕpre, post-condition ϕpost, and user-defined recursive sets and predicates are

shown in Figure 5.4. In Figure 5.5, we present graphically how the symbolic

heap evolves for a particular execution path of the routine. At each point of

the basic block, we also formally show the updated symbolic heap SH and the

corresponding formula ϕ.

Incorporating the postcondition. Finally, after capturing the program

state after execution bb by a pair (SH;ϕ), we incorporate the post-condition

ϕpost, which contains the annotating formula ψ, and generate a verification

condition. We should verify that:

(1) the nodes required by ϕpost to be tree roots are indeed tree roots; and

(2) For every pair of symbolic nodes n1 and n2, the reachable nodes from

n1 and n2 are disjoint; and

(3) (SH;ϕvc)→ ψvc, that is, the constraints on the current states imply the

constraints required by ψ.

99

int find(node t, int v)

{

if (t = NULL) return false;

tv := t.value;

if (v = tv)

return true;

else if (v < tv) { w := t.left;

r := find(w, v); }

else { w := t.right;

r := find(w, v); }

return r;

}

Figure 5.3: AVL-find routine

ϕpre ≡ avl∗(t)
ϕpost ≡ avl∗(t) ∧ keys∗(t) = keys∗(old_t) ∧ h∗(t) = h∗(old_t)∧

ret 6= 0↔ v ∈ keys∗(t)

avl∗(x)
def
= ite(x = nil, true, avlind(x))

avlind(x)
def
= avl∗(x.left) ∧ avl∗(x.right) ∧ x.hight = h∗(x)∧

keys∗(x.left) ≤ {v.value} ∧ {v.value} ≤ keys∗(x.right)∧
−1 ≤ h∗(x.left)− h∗(x.right)∧
h∗(x.left)− h∗(x.right) ≤ 1

keys∗(x)
def
= ite(x = nil, ∅, keysind(x))

keysind(x)
def
= keys∗(x.left) ∪ {x.value} ∪ keys∗(x.right)

h∗(x)
def
= ite(x = nil, 0, hind(x))

hind(x)
def
= 1 +max(h∗(x.left), h∗(x.right))

Figure 5.4: Pre/post conditions and recursive definition for AVL-find

The first two are readily checkable. The last one asserts that any concrete

heap that corresponds to the symbolic heap SH and satisfies ϕvc must also

satisfy ψvc. Checking the validity of this claim is non-trivial (undecidable)

and we examine procedures that can soundly establish this.

5.3 A Decidable Fragment of Dryadtree

Given verification conditions of the form (SH;ϕvc) → ψvc, where SH is a

symbolic heap and ϕvc and ψvc are Dryadsep formulas, the validity problem

100

Graphical repre-
Formal representation of SH Formula ϕ

sentation of SH

!
"
#

C = {cnil}, S = {n0}, I = {i1}
pf = ∅, df = ∅
pv = {t 7→ n0, v 7→ i1}

avl∗(n0)

assume (t 6= nil);

!
"
#

C = {cnil}, S = {n0}, I = {i1}
pf = ∅, df = ∅
pv = {t 7→ n0, v 7→ i1}

avl∗(n0) ∧ n0 6= cnil

tv := t.value;

!
"
#

!
$
#!

%
#

&# C = {cnil, n0}, S = {n1, n2}, I = {i1, i2, i3, i4}
pf = {(n0, left) 7→ n1, (n0, right) 7→ n2}
df = {(n0, value) 7→ i2, (n0, height) 7→ i3}
pv = {t 7→ n0, v 7→ i1, tv 7→ i4}

avln0
∧ n0 6= cnil ∧

avln0
↔
(
avl∗(n1) ∧ avl∗(n2) ∧ i3 = hn0

∧ keys∗(n1) ≤ {i2}∧

{i2} ≤ keys∗(n2) ∧ −1 ≤ h∗(n1)− h∗(n2) ∧ h∗(n1)− h∗(n2) ≤ 1
)
∧

keys
n0

= keys∗(n1) ∪ {v} ∪ keys∗(n2) ∧
hn0

= 1 +max(h∗(n1), h
∗(n2)) ∧

n0 6= cnil ∧ n0 6= n1 ∧ n0 6= n2 ∧ (n1 = n2 → n1 = cnil) ∧ i4 = i2
assume (tv 6= v); assume (tv < v); w := t.left;

!
"
#

!
$
#!

%
#

&#
C = {cnil, n0}, S = {n1, n2}, I = {i1, i2, i3, i4}
pf = {(n0, left) 7→ n1, (n0, right) 7→ n2}
df = {(n0, value) 7→ i2, (n0, height) 7→ i3}
pv = {t 7→ n0, v 7→ i1, tv 7→ i4,

w 7→ n1}

avln0
∧ n0 6= cnil ∧

avln0
↔
(
avl∗(n1) ∧ avl∗(n2) ∧ i3 = hn0

∧ keys∗(n1) ≤ {i2}∧

{i2} ≤ keys∗(n2) ∧ −1 ≤ h∗(n1)− h∗(n2) ∧ h∗(n1)− h∗(n2) ≤ 1
)
∧

keys
n0

= keys∗(n1) ∪ {v} ∪ keys∗(n2) ∧
hn0

= 1 +max(h∗(n1), h
∗(n2)) ∧

n0 6= cnil ∧ n0 6= n1 ∧ n0 6= n2 ∧ (n1 = n2 → n1 = cnil) ∧ i4 = i2
∧ i4 6= i1 ∧ i4 < i1

r := find(w, v); return r;

!
"
#

!
$
#!

%
#

&#

C = {cnil, n0}, S = {n1, n2}
I = {i1, i2, i3, i4, i5, i6}
pf = {(n0, left) 7→ n1, (n0, right) 7→ n2}
df = {(n0, value) 7→ i2, (n0, height) 7→ i3}
pv = {t 7→ n0, v 7→ i1, tv 7→ i4,

w 7→ n1, r 7→ i5, ret_loc 7→ i6}

avln0
∧ n0 6= cnil ∧

avln0
↔
(
pre call avln1

∧ avl∗(n2) ∧ i3 = hn0
∧

pre call keys
n1
≤ {i2} ∧ {i2} ≤ keys∗(n2)∧

−1 ≤ pre call hn1
− h∗(n2) ∧ pre call hn1

− h∗(n2) ≤ 1
)
∧

keys
n0

= pre call keys
n1
∪ {v} ∪ keys∗(n2) ∧

hn0
= 1 +max(pre call hn1

, h∗(n2)) ∧
n0 6= cnil ∧ n0 6= n1 ∧ n0 6= n2 ∧ (n1 = n2 → n1 = cnil) ∧ i4 = i2
i4 6= i1 ∧ i4 < i1 ∧ avl∗(n1) ∧ keys∗(n1) = pre call keys

n1
∧

h
∗(n1) = pre call hn1

∧ i5 6= 0↔ i1 ∈ keys
∗(n1) ∧ i6 = i5

Figure 5.5: Expanding the symbolic heap and generating the formulas

101

is in general undecidable. However, a decision procedure is desirable in many

situations. For example, when a program does not satisfy its specifications,

the decision procedure could disprove the program, and confirm it with a

counterexample, which helps programmers debug the code. In this section,

we identify a decidable, yet practically useful fragment, called Dryaddec
tree.

We present that if ϕvc and ψvc belong to Dryaddec
tree, the validity problem is

decidable by showing it can be expressed in Strand
syn
dec , an expressive logic

that combines theories of trees with arithmetic, and that admits efficient

decision procedures (see Chapter 4).

5.3.1 Definition of Dryaddec
tree

Let us fix a set of directions Dir and a set of data-fields DF . Dryaddec
tree

does not only restrict the syntax of Dryadsep, but also restricts the recursive

integers/sets/multisets/predicates that the users can define. We first describe

the ways allowed in Dryaddec
tree to define recursions as follows:

• Recursive integers are disallowed;

• For each data field f ∈ DF, a recursive set of integers fs∗ can be defined

as

fs∗(x) = ite
(
x = nil, ∅, {x.f} ∪

⋃

pf∈PF

fs∗(x.pf)
)

• For each data field f ∈ DF, a recursive multiset of integers fms∗ can

be defined as

fms∗(x) = ite
(
x = nil, ∅m, {x.f}m ∪

⋃

pf∈PF

fms∗(x.pf)
)

• Recursive predicates can be defined in the form of

p∗(x) = ite
(
x = nil, true, ϕp(x) ∧

∧

pf∈PF

p∗(x.pf)
)

where ϕp(x) is a local formula with x as the only free variable. The syntax

of local formulas is presented in Figure 5.6. Intuitively, p∗(x) is evaluated to

true if and only if every node y in the subtree of x satisfies the local formula

102

ϕp(y), which can be determined by simply accessing the data fields of y and

evaluating the recursive sets/multisets for the children of y.

The exclusion of recursive integers prevents us from expressing heights/-

cardinalities (which are required by a considerable number of data struc-

tures). There are however interesting algorithms on inductive data struc-

tures, like binary heaps, binary search trees and treaps, whose verification

can be expressed in Dryaddec
tree. For example, to describe treaps, let DF be

{key, priority} and PF be {l, r}, then we can describe the recursive predicate

treap∗ as follows:

treap∗(x) = ite
(
x = nil, true, treap∗(x.l) ∧ treap∗(x.r)

∧ keys∗(x.l) ≤ {x.key} ≤ keys∗(x.r)

∧ {x.priority} ≤ priorities∗(x.l)

∧ {x.priority} ≤ priorities∗(x.l)
)

With a set of recursive predicates defined as above, the syntax of Dryaddec
tree

is presented in Figure 5.7. Intuitively, Dryaddec
tree does not allow to refer to

any child or any data field, for any location, i.e., terms of the form lt.pf

or lt.f are disallowed. Difference operations and subset relations between

sets/multisets are also disallowed. For example, for the insert routine for

treaps, one can still express that the returned tree is still a treap. However,

one cannot state that the set of keys has the expected property.

ϕ ::= ψ | sit1 ≤ sit2 | msit1 ≤ msit2
| it /∈ sit | it /∈ msit | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

ψ ::= true | it1 ≤ it2 | ¬ψ
it ::= c | x.f | it1 + it2 | it1 − it2
sit ::= ∅ | {it} | fs∗(x.dir) | sit1 ∪ sit2 | sit1 ∩ sit2

msit ::= ∅m | {it}m | fms∗(x.dir) | msit1 ∪msit2 | msit1 ∩msit2

pf ∈ PF f ∈ DF c : Int Constant

Figure 5.6: Syntax of local formulas ϕp(x)

103

q ∈ Boolean Vars x ∈ Loc Vars j ∈ Int Vars

S ∈ MS(Int) Vars MS ∈ MS(Int) Vars c : Int Constant

Int Term : it, it1, it2, . . . ::= c | j | it1 + it2 | it1 − it2
S(Int) Term : sit, sit1, sit2, . . . ::= ∅ | S | {it} | fs∗(x) |

sit1 ∪ sit2 | sit1 ∩ sit2
MS(Int) Term : msit,msit1, . . . ::= ∅m | MS | {it}m | fms∗(x) |

msit1 ∪msit2 | msit1 ∩msit2
Formula : ϕ, ϕ1, ϕ2, . . . ::= true | q | p∗(x) | x1 = x2 | x = nil

| it1 ≤ it2 | sit1 ≤ sit2
| msit1 ≤ msit2
| it ∈ sit | it ∈ msit | ¬ϕ | ϕ1 ∨ ϕ2

Figure 5.7: Syntax of Dryaddec
tree

5.3.2 Proof of Decidability

It is clear that (SH;ϕvc)→ ψvc is valid if and only if (SH;ϕvc∧¬ψvc) is unsat-

isfiable. We now prove that the satisfiability of (SH;ϕ) is decidable, where

ϕ ∈Dryaddec
tree. The idea is, to characterize SH with variable assignments as

a class of recursively-defined data structures RSH, and characterize ϕ as a

Strand formula strand(ϕ), then the satisfiability of (SH;ϕ) is reduced to the

satisfiability of of strand(ϕ) over RSH. We outline the translation as follows.

Let SH = (C, S, I, cnil, pf, df, pv). Consider a concrete heap CH correspond-

ing to SH, which consists of two portions: the portion that SH is isomorphic

to, including h(c) for every c ∈ C and the tree under s for every s ∈ S, and

the portion not represented in SH. With the satisfiability preserved, we can

assume that there is a particular node in the the second portion such that

any pointer to/from the second portion is to/from this particular node. Let

Vars be a finite but large enough set of variables of various sorts (Loc/In-

t/Set/MSet). CH with variable assignments for Vars can be encoded as a

tree with data fields as follows. The root of the tree has three children:

• the subtree of the leftmost child (T1) models the portion of CH that

SH is isomorphic to;

• the subtree of the middle child (T2) models the portion of CH that is

not represented by SH;

104

• the subtree of the rightmost child (T3) models the non-location variable

assignments for Vars.

T1 has two children: the subtree of the left/right child models concrete/sym-

bolic nodes, respectively. The subtree of the left child consists of only the

nodes in the leftmost path, which is of length |C|, such that each concrete

node in C is modeled as a specific node in the path. In the subtree of the

right child, the leftmost path is of length |S|. For each symbolic node in

S, the corresponding tree in CH is modeled as the right subtree of a spe-

cific node in the path. T2 is of arbitrary shape, but each node in T2 should

corresponds to a node in CH that is not represented by SH.

The leftmost path of T3 is of length |Vars|, such that each non-location

variable assignment is modeled as the right subtree of a specific node in the

path. For example, let i 7→ 1 be an integer-variable assignment, then its

corresponding subtree consists of a single node n with n.f = 1; let S 7→

{1, 2, 3} be a set-variable assignment, then its corresponding subtree consists

of three nodes, such that the set of integers in their f fields is {1, 2, 3}.

Hence, the class concrete heaps corresponding to SH can be represented as

a class of recursively-defined data structures, called RSH. We introduce an

elastic relation→∗. x→∗ y means that y is a descendent of x. Moreover, for

each variable v ∈ Vars, we introduce a new predicate pv, such that pv(y) is

evaluated to true if and only if y is the node that models v. These predicates

are also definable in RSH.

With the above setting, we now show that there is a mapping strand from

Dryaddec
tree formulas to Strand

syn
dec formulas over RSH, such that if a concrete

heap satisfies ϕ with a set of variable assignments, its corresponding model

in RSH satisfies strand(ϕ), and vice versa. Since efficient decision procedures

for Strand
syn
dec exist (see Chapter 4), the satisfiability of Dryaddec

tree is also

decidable. We first split the appearances of integer terms in set/multiset

terms by substituting every occurrence of {it} in {it} or {it}m in ϕ with the

newly introduced integer variable iit, and adding a conjunct iit = it. The

resulting formula is denoted as ϕsplit. Then for each variable v appears in

ϕ, we introduce an existentially quantified location variable with the same

name in the mapped Strand
syn
dec formula, and add a conjunct pv(v), which

intuitively says v does appear in the heap (in T1 or T2). Let the occurred

105

map(true) = true

map(q) = q.value = 0
map(p∗(x)) = ∀w .

(
x 6→∗ w ∨map(ϕp(w))

)

map(x1 = x2) = x1 = x2
map(x = nil) = x = cnil
map(it1 ≤ it2) = it1[~i.f/~i] ≤ it2[~i.f/~i]

map(sit1 ≤ sit2) = ∀w1, . . . , wm+n .
(
w1.f ≤ wm+1.f ∨

¬wtns(sit1)(w1, . . . , wm) ∨
¬wtns(sit2)(wm+1, . . . , wm+n)

)

map(msit1 ≤ msit2) = ∀w1, . . . , wm+n .
(
w1.f ≤ wm+1.f ∨

¬wtns(msit1)(w1, . . . , wm) ∨
¬wtns(msit2)(wm+1, . . . , wm+n)

)

map(it ∈ sit1) = ∃w1, . . . , wm .
(
it[~i.f/~i] = w1.f ∧

wtns(sit1)(w1, . . . , wm)
)

map(it ∈ msit1) = ∃w1, . . . , wm .
(
it[~i.f/~i] = w1.f ∧

wtns(msit1)(w1, . . . , wm)
)

map(¬ϕ) = ¬map(ϕ)
map(ϕ1 ∧ ϕ2) = map(ϕ1) ∧map(ϕ2)
map(ϕ1 ∨ ϕ2) = map(ϕ1) ∨map(ϕ2)

wtns(∅) = false

wtns(∅m) = false

wtns({i}) = w1 = i
wtns({i}m) = w1 = i
wtns(fs∗(x)) = x→∗ w1

wtns(fms
∗(x)) = x→∗ w1

wtns(sit1 ∪ sit2) = wtns(sit1)(w1, . . . , wm) ∨ wtns(sit2)(w1, . . . , wn)
wtns(msit1 ∪msit2) = wtns(msit1)(w1, . . . , wm) ∨ wtns(msit2)(w1, . . . , wn)

wtns(sit1 ∩ sit2) = wtns(sit1)(w1, . . . , wm) ∧
wtns(sit2)(wm+1, . . . wm+n) ∧ w1.f = wm+1.f

wtns(msit1 ∩msit2) = wtns(msit1)(w1, . . . , wm) ∧
wtns(msit2)(wm+1, . . . wm+n) ∧w1.f = wm+1.f

where m = width(sit1) or width(msit1)
n = width(sit2) or width(msit2)
ϕp(x) is the local formula for p∗

width(∅) = 0
width(∅m) = 0
width({i}) = 1

width({i}m) = 1
width(fs∗(x)) = 1

width(fms∗(x)) = 1
width(sit1 ∪ sit2) = max

(
width(sit1),width(sit2)

)

width(msit1 ∪msit2) = max
(
width(msit1),width(msit2)

)

width(sit1 ∩ sit2) = width(sit1) + width(sit2)
width(msit1 ∩msit2) = width(msit1) + width(msit2)

Figure 5.8: Inductive definition of map(ϕ)

106

variables be ~v, then

strand(ϕ) = ∃~v.
(
map(ϕsplit) ∧

∧

v∈~v

pv(v)
)

where map(ϕsplit) is defined inductively as shown in Figure 5.8. For each set

sit or multiset msit, there is an auxiliary formula wtns(sit)/wtns(msit) with

free variables ~x, saying that ~x witnesses an element in sit/msit. We denote |~x|

as width(sit)/width(msit), which can be computed inductively. For simplicity,

we assume that f is the only data field.

Proposition 5.3.1. For any Dryaddec
tree formula ϕ, strand(ϕ) is a Strand

syn
dec

formula.

Proof. Note that ϕsplit is quantifier-free, and the translation of each atomic

formula in ϕsplit introduces only universal or existential quantifiers, map(ϕsplit)

has a ∃∀-prefix after converting to the prenex normal form. Similarly, for

each v, pv(v) also admits the ∃∀-prefix. Hence strand(ϕ) is a Strand for-

mula. Moreover, the only structural relation introduced in the translation is

the reachability →∗, which is elastic. Then by the definition, strand(ϕ) falls

in the fragment Strandsyn
dec .

Note that for any recursive predicate p∗ with local formula ϕp, map(ϕp) is

a universal Strandsyn
dec formula. Then for any Dryaddec

tree formula ϕ, map(ϕ)

is well defined: if ϕ is an atomic formula, by definition it is clear that map(ϕ)

is an existential Strandsyn
dec formulas or a universal Strandsyn

dec formula; if ϕ

is a Boolean combination of atomic formulas, map(ϕ) is a Boolean combina-

tion of corresponding existential/universal Strandsyn
dec formulas, and is still

a Strand
syn
dec formula.

Theorem 5.3.2. For any symbolic heap SH and any Dryaddec
tree formula

ϕ, (SH;ϕ) is satisfiable if and only if the Strand
syn
dec formula strand(ϕ) is

satisfiable over RSH.

Proof. The equisatisfiability is also built inductively by investigating the

semantics of the mapping formula for each atomic case. Notice that the

Dryaddec
tree formulas are quantifier-free, and the translation preserves all

Boolean operators, it suffices to discuss the translation of each case of atomic

Dryaddec
tree formulas.

107

[true] Obvious.

[x1 = x2] The translation is identical, so x1 = x2 is satisfied over SH iff

both x1 and x2 are real nodes in the model of RSH, namely pv(x1) ∧

pv(x2), and x1 = x2.

[x1 = nil] Similar to the above case.

[q] The Boolean variable q in Dryaddec
tree is interpreted as a node with

integer value of either 0 (true) or 1 (false). Hence q is satisfied in

Dryaddec
tree iff q.value = 0 is satisfied in Strand

syn
dec .

[p∗(x)] Since p∗(x) can only be defined in a restricted form in Dryaddec
tree

with respect to a local formula ϕp(x), intuitively p
∗(x) holds if and only

if for every node y reachable from x, ϕp(y) holds. This semantics can

be expressed using universal quantifiers in Strand
syn
dec : ∀w .

(
x 6→∗

w∨map(ϕp(w))
)
(based on the hypothesis that map(ϕp(w)) is sound).

[it1 ≤ it2] When both it1 and it2 are integer terms, the translation is

similar to the above identity cases. However, each integer variable i

is replaced with the data field of the same-name location variable i,

namely i.f .

[other formulas containing set/multiset terms] When set/multiset

terms are involved, there are basically two kinds of relations: ≤ and

∈. Note that ≤ can be encoded into ∈ with quantifiers. For example,

sit1 ≤ sit2 can be intuitively translated to

∀w1, w2. (w1 ≤ w2 ∨ w1 /∈ sit1 ∨ w2 /∈ sit2)

Now to encode ∈ into Strand, an auxiliary mapping wtns is used.

Given an integer set term sit with the width m, wins(sit) is a for-

mula with m free integer variables: w1, . . . , wm. Intuitively, wins(sit)

guesses the auxiliary variables w2, . . . , wm and encodes the formula

w1 ∈ sit. The soundness of such encodings can be proved by induction

on the structure of sit. It is worth mentioning that in the definition of

wtns(sit1 ∩ sit1), w1 and wm+1 are the witnesses of sit1 and sit2, respec-

tively, and the conjunct w1.f = wm+1.f guarantees that w1 witnesses

both sit1 and sit2. In a similar way wtns(msit1 ∩msit1) is defined.

108

The above reduction immediately implies the decidability of Dryaddec
tree.

Corollary 5.3.3. The satisfiability of Dryaddec
tree is decidable.

Proof. By Theorem 5.3.2, the satisfiability of Dryaddec
tree reduces to the sa-

tiability of Strandsyn
dec , which is decidable, by Theorem 4.3.4.

5.4 Formula Abstraction

Overall, Dryaddec
tree is the most powerful fragment of Dryadtree that we could

find that embeds into a known decidable logic, like Strand
syn
dec . However, it

is not powerful enough for the heap verification questions that we would

like to solve. This motivates the second proof tactics for the natural proof

strategy: formula abstraction. We turn to the abstraction schemes for unre-

stricted verification conditions, and show how to soundly reduce verification

conditions to a validity problem of quantifier-free theories of sets/multisets

of integers, which is decidable using state-of-the-art SMT solvers.

Before describing how the formula abstraction technique works for

Dryadtree, we roughly describe its idea and motivation as below.

5.4.1 Motivation

When reasoning with formulas that have recursively defined terms, which

can be unrolled forever, a key idea is to use formula abstraction that makes

the terms uninterpreted. Intuitively, the idea is to replace recursively defined

predicates, sets, etc. by uninterpreted Boolean values, uninterpreted sets,

etc.

The idea of formula abstraction is extremely natural, and utilized very

often in manual proofs. For instance, let us consider a binary search tree

(BST) search routine searching for a key k on the root node x. The verifica-

tion condition of a path of this program, typically, would require checking:

(bst(x) ∧ k ∈ keys(x) ∧ k < x.key)⇒ (k ∈ keys(x.left))

109

where bst() is a recursive predicate defined on trees that identifies binary

search trees, and keys() is a recursively defined set that collects the multiset

of keys under a node. Unrolling the definitions of keys() and bst() gives the

following formula (below, i < S means that i is less than every element in

S):

bst(x.left) ∧ bst(x.right) ∧ keys(x.left) < x.key ∧ keys(x.right) > x.key ∧

k ∈ (keys(x.left) ∪ keys(x.right) ∪ {x.key}) ∧ k < x.key)⇒ (k ∈ keys(x.left))

Now, while the above formula is quite complex, involving recursive definitions

that can be unrolled ad infinitum, we can prove its validity soundly by viewing

bst() and keys() as uninterpreted functions that map locations to Booleans

and sets, respectively. Doing this gives (modulo some renaming and modulo

theory of equality):

(
b1 ∧ b2 ∧K1 ≤ xkey ∧K2 > xkey ∧ k ∈ (K1 ∪K2 ∪ {xkey}) ∧ k < xkey

)

⇒ (k ∈ K1)

Note that the above formula is a quantifier-free formula over integers and

multisets of integers, and furthermore is valid (since k < xkey and K2 > xkey,

k must be in K1). Validity of quantifier-free formulas over sets/multisets of

integers with addition is decidable (they can be translated to quantifier-free

formulas over integers and uninterpreted functions), and can be solved using

SMT solvers efficiently. Consequently, we can prove that the verification

condition is valid, completely automatically. Note that formula abstraction

is sound but incomplete.

This idea has been explored in the literature. For example, Suter et al. [72]

have proposed abstraction schemes for algebraic data-types that soundly (but

not necessarily completely) transform logical validity into much simpler de-

cidable problems using formula abstractions, and developed mechanisms for

proving functional programs correct.

5.4.2 Formula Abstraction for Dryadtree

To prove a verification condition (SH;ϕ)→ ψ using formula abstraction, we

drop SH, and we replace recursive predicates on symbolic nodes by uninter-

110

preted Boolean functions, replace recursive integer functions as uninterpreted

functions that map nodes to integers, and replace recursive set/multiset func-

tions with functions that map nodes to arbitrary sets and multisets. Let us

denote the uninterpreted definition using the same name without ∗. For ex-

ample avl∗ is replaced with avl. Notice that the constraints regarding the

concrete and symbolic nodes in SH were already added to ϕ, during the

construction of the verification condition. The formula resulting via abstrac-

tion is a formula ϕabs → ψabs such that: (1) if ϕabs → ψabs is valid, then

so is (SH;ϕ) → ψ (the converse may not necessarily be true); (2) check-

ing ϕabs → ψabs is decidable, and in fact can be reduced to QF UFLIA, the

quantifier-free theory of uninterpreted functions and arithmetic.

Proposition 5.4.1 (Soundness). Let SH be a symbolic heap and ϕ, ψ be

Dryadtree formulas, and let ϕabs and ψabs be the uninterpreted version of ϕ

and ψ, respectively. Then if ϕabs → ψabs is valid, then so is (SH;ϕ)→ ψ.

Proof. Prove by contradiction. Assume (SH;ϕ)→ ψ is not valid, then there

is a concrete heap CH that corresponds to SH and satisfied ϕ ∧ ¬ψ. Then

we can construct a model CH′ satisfying ϕabs ∧¬ψabs as well. CH
′ consists of

the same set of locations N that form CH, and for each recursive definition

r, simply interpret it as the same way that r∗ is interpreted in CH. The

counterexample CH′ contradicts the validity of ϕabs → ψabs and concludes

the proof.

We point out that while the formula abstraction is sound, it is not com-

plete. For example, consider two recursively defined functions: height of a

binary tree, height∗(t), and size of the same binary tree (the number of nodes

in the respective tree), size∗(t). The two functions respect the following re-

lationship: size∗(t) < 2height
∗(t), for any tree t. For a symbolic node t, the

formula ¬(height∗(t) = 2 ∧ size∗(t) = 10) is valid. However, the abstracted

formula is trivially invalid, as the height and the size are abstracted into

unrelated uninterpreted functions.

5.4.3 Decision procedure for ordered sets and multisets

The validity of the abstracted formula ϕabs → ψabs over the theory of unin-

terpreted function, linear arithmetic, and sets and multisets of integers, is

111

decidable. The fact that the quantifier free theory of ordered sets is decidable

is well known. In fact, Kuncak et al. [45] showed that the quantifier-free the-

ory of sets with cardinality constraints is NP-complete. Since we do not need

cardinality constraints, we use a slightly simplified decision procedure that

reduces formulas with sets/multisets using uninterpreted functions that cap-

ture the characteristic functions associated with these sets/multisets, which

is described as follows.

In this section, we describe a simple decision procedure for quantifier free

ordered sets, and we show how to adapt this decision procedure for quantifier

free ordered multisets.

Formally, let (D,≤) be a domain with a partial order relation. The syntax

for formulas of ordered sets over the domain D is given below:

ϕ ::= true | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ

| e1 = e2 | e1 ≤ e2 | e ∈ S | S1 ⊆ S2 | S1 ≤ S2

S ::= ∅ | {e} | S1 ∪ S2 | S1 ∩ S2 | S1 \ S2

where e, e1, e2 are constants in D. We interpret set membership and set

inclusion in the usual way. The interpretation of the order on sets is given

by

S1 ≤ S2 ⇔ (∀x1, x2 ∈ D) (x1 ∈ S1 ∧ x2 ∈ S2)⇒ x1 ≤ s2

Note that the ordering on sets is not a partial order relation. In particular,

for any sets S1 and S2, both S1 ≤ ∅ and ∅ ≤ S2 hold trivially, regardless

of whether S1 ≤ S2. Set equality S1 = S2 is just syntactic sugar for S1 ⊆

S2 ∧ S2 ⊆ S1

We associate to each set S its characteristic predicate χS, which is defined

such that for any x in D, χS(x) holds iff x ∈ S. Then we have the following

equivalences for set atomic formulas:

e ∈ S ⇔ χS(e)

S1 ⊆ S2 ⇔ (∀x ∈ D) χS1
(x)→ χS2

(x)

S1 ≤ S2 ⇔ (∀x1, x2 ∈ D) χS1
(x1) ∧ χS2

(x2)→ x1 ≤ x2

112

and for set terms:

(∀x ∈ D) χS1∪S2
(x) ↔ χS1

(x) ∨ χS2
(x)

(∀x ∈ D) χS1∩S2
(x) ↔ χS1

(x) ∧ χS2
(x)

(∀x ∈ D) χS1\S2
(x) ↔ χS1

(x) ∧ ¬χS2
(x)

For each quantifier-free ordered sets formula ϕ we construct a quantifier

free formula ϕD such that the only atomic formulas in ϕD are of the form

e1 = e2, e1 ≤ e2, or χS(e), where e, e1, e2 are constants in D. We begin by

converting ϕ to its negation normal form, such that ϕ is constructed only

with conjunction and disjunction from positive or negative atomic formulas.

Then we express all the set terms and atomic formulas in terms as described

above, and we replace any negative occurrence of a universally quantified

formula (∀X) ψ with the positive occurrence (∃X) ψ. We call the resulting

formula ϕ∃∀D. So far we have a formula, ϕ∃∀D, which equivalent to ϕ, does not

use the set atomic formulas anymore, but has both existential and universal

quantification.

Next, we proceed to eliminate all the existential quantification from ϕ∃∀D.

We replace each occurrence of the formula (∃x) ψ(x) with ψ(e), where e is a

fresh constant. Similarly, we replace each occurrence of (∃x1, x2) ψ(x1, x2)

with ψ(e1, e2) where e1 and e2 are fresh constants. Thus, we have witnesses

for each existential formula. We call the resulting formula ϕ∀D. It is easy

to see that ϕ∀D is satisfiable iff ϕ∃∀D is satisfiable. Each model of ϕ∀D is

a model of ϕ∃∀D, as the existential quantifiers can be instantiated with the

freshly created constants. On the other hand, from a model of ϕ∃∀D we can

create a model of ϕ∀D by interpreting the extra constants to be the elements

use to instantiate the existential quantifiers.

Finally, we proceed to eliminate the universal quantification from ϕ∀D.

Let {e1, e2, . . . , en} be the set of constants appearing in the formula. We

construct the formula ϕD by replacing each occurrence of a formula (∀x) ψ(x)

with the formula
∧
i ψ(ei), and each occurrence of (∀xy) ψ(x1, x2) with

∧
i, j ψ(ei, ej). It follows trivially that any model of ϕ∀D is also a model of

ϕD. Let M be a model of ϕD. We construct the model M′ from M by

setting the χS(x) to false for all the elements of D that are not the image

of a constant (that are not equal to any of the ei), and preserving everything

else. It follows that M′ satisfies a formula (∀X) ψ iff M satisfies it, and

113

we can conclude that from any model for ϕD we can construct a model for

ϕ∀D. Hence ϕD is satisfiable iff ϕ∀D is satisfiable. Moreover, ϕD is satisfiable

iff the original formula ϕ is satisfiable. That is, ordered sets over (D, ≤) is

decidable iff (D, ≤) itself is decidable.

Similarly, we can reduce the decidability of ordered multisets over (D, ≤)

to the decidability of (D, ≤) combined with Presburger arithmetic. The

main difference it that instead of a characteristic function χS, we associate

with each multiset S a counting function νS such that for any x in D, νS(x) is

equal with the multiplicity of x in S. Then we have the following equivalences

for multiset atomic formulas:

e ∈ S ⇔ νS(e) > 0

S1 ⊆ S2 ⇔ (∀x ∈ D) νS1
(x) ≤ νS2

(x)

S1 ≤ S2 ⇔ (∀x1, x2 ∈ D) νS1
(x1) > 0 ∧ νS2

(x2) > 0→ x1 ≤ x2

and for multiset terms:

(∀x ∈ D) νS1∪S2
(x) = νS1

(x) + νS2
(x)

(∀x ∈ D) νS1∩S2
(x) = min(νS1

(x), νS2
(x))

(∀x ∈ D) νS1\S2
(x) = max(νS1

(x)− νS2
(x), 0)

For each ordered multisets formula ϕ we construct the quantifier free formula

ϕD like we do for sets. The main difference is that for multisets, ϕD also

contains Presburger arithmetic.

The size of the ϕ∀D formula is the same as the size of ϕ. The size of the ϕD

formula is at most n2 times bigger than the size of ϕ, where n is the number

of constants in ϕ∀D. The number n of constants is the number of constants in

ϕ plus the number of constants added during the existential quantification

elimination phase. As each atomic formula contributes with at most two

fresh constants, n is at most linear in the size of ϕ, and the size of ϕD is at

most cubic in the size of ϕ. However, in our experiments, as described in

Section 5.5, the number of constants is small, in the range between 5 and 15,

and are handled efficiently by SMT solvers.

Proposition 5.4.2. The validity of the abstracted formula ϕabs → ψabs is

decidable.

Proof. The formula is quantifier-free and falls in the theory of uninterpreted

function, linear arithmetic, and the ordered-set theory described above. The

114

decidability has been shown by giving the decision procedure described above.

5.5 Experiments

We demonstrate the effectiveness and practicality of the Dryadtree logic and

the natural proof strategy developed in this chapter by verifying standard

operations on several inductive data structures. Each routine was written

using recursive functions and annotated with a pre-condition and a post-

condition, specifying a set of partial correctness properties including both

structural and data requirements. For each basic block of each routine, we

manually generated the verification condition (SH;ϕ) following the procedure

described in Section 5.2. Then we examined the validity of ϕ using the

procedure described in Section 5.4. We employ Z3 [28], a state-of-the-art

SMT solver, to check validity of the generated formula ϕD formula in the

quantifier-free theory of integers and uninterpreted functions QF UFLIA.

5.5.1 The Data-Structures, Routines, and Verified Properties

The set of benchmarks is an almost exhaustive list of algorithms on tree-based

data-structures covered in a first undergraduate course on data-structures [27].

Lists are trees with a singleton direction set. Sorted lists can be recursively

defined as either an empty list, or a head node followed by a sorted list with

all its keys not less than the key of the head, and hence expressed in Dryad.

The routines insert and delete insert and delete a node with key k in a

sorted list, respectively, in a recursive fashion. The routine insertion-sort

takes a singly-linked list and sorts it by recursively sorting the tail of the list,

and inserting the key of the head into the sorted list by calling insert. We

check if all these routines return a sorted list with the multiset of keys as

expected.

A binary heap is recursively defined as either an empty tree, or a binary tree

such that the root is of the greatest key and both its left and right subtrees are

binary heaps. The routine max-heapify is given a binary tree with both its

left and right trees are binary heaps. If the binary-heap property is violated

by the root, it swaps the root with its greater child, and then recursively

115

max-heapifies that subtree. We check if the routine returns a binary heap

with same keys as that of the input tree.

The treap data-structure is a class of binary trees with two data fields for

each node: key and priority. We assume that all priorities are distinct and

all keys are distinct. Treaps can also be recursively defined in Dryad. It

is defined as either an empty tree, or a binary tree with both its left and

right subtrees as treaps, and the key of the root obeys the binary-search-tree

property, and the priority of the root obeys the min-heap order property. The

remove-root routine deletes the root of the input treap, and joins the two

subtrees descending from the left and right children of the deleted node into

a single treap. If the left or right subtree of the node to be deleted is empty,

the join operation is trivial; otherwise, the left or right child of the deleted

node is selected as the new root, and the deletion proceeds recursively. The

delete routine simply searches the node to be deleted recursively, and deletes

it by calling remove-root. The insert routine recursively inserts the new

node into an appropriate subtree to keep the binary-search-tree property,

then performs rotations to restore the min-heap order property, if necessary.

We check if all these routines return a treap with the set of keys and the set

of priorities as expected.

An AVL tree is a binary search tree that is balanced: for each node, the

absolute difference between the height of the left subtree and the height of the

right subtree is at most 1. The recursive predicate avl∗(t) is defined as either

the empty tree, or a binary tree such that: (1) the key stored in the root is

no less than any key in stored in the left subtree, and no greater than any

key stored in the right subtree; (2) the difference between the heights of the

left and right subtree is between -1 and 1; and (3) both the left and the right

subtree satisfy the avl∗ predicate. The main routines for AVL are insert

and delete. The insert routine recursively inserts a key into an AVL tree

(similar to a binary search tree), and as it returns from recursion it checks

the balancedness and performs one or two rotations to restore balance. The

delete routine recursively deletes a key from an AVL tree (again, similar to

a binary search tree), and as it returns from the recursion ensures that the

tree is indeed balanced. For both routines, we prove that they return an AVL

tree, that the multiset of keys is as expected, and that the height increases

by at most 1 (for insert), can decrease by at most 1 (for delete), or stays

the same.

116

Red-black trees are BSTs that are more loosely balanced than the AVL

trees, and were described in Section 5.1.2. The height of the left subtree

is between half and twice the height of the right subtree. We consider the

insert and delete routines. The insert routine recursively inserts a key

into a red-black subtree, and colors the new node red, possibly violating

the red-black tree property. As it returns from recursion, it performs several

rotations to fix the property. If the root of the whole tree is red, it is recolored

black, and all the properties are restored. The delete routine recursively

deletes a key from a red-black tree, possibly violating the red-black tree

property. As it returns from recursion, it again performs several rotations to

fix it. In the end, it is possible to decrease the black height of the whole

tree, and all the properties are restored. For both routines, we prove that

they return a red-black tree, that the multiset of keys is as expected, and the

black height increases by at most 1 (for insert), decreases by at most 1 (for

delete), or does not change.

The B-tree is a data structure that generalizes the binary search tree in

that for each non-leaf node the number of children is one more than the

number of keys stored in that node. The keys are stored in increasing order,

and if the node is not a leaf, the key with index i is no less than any key stored

in the child with index i and no more then all the keys stored in the child

with index i+1. For each node except the root, the number of keys is in some

range (typically between T − 1 and 2T − 1). A B-tree is balanced in that for

each node, the heights of all the children are equal. To describe the B-tree in

our logic, we need three mutually recursive predicates: one that describes a

B-subtree, and two that describe a list of keys and children. The b-subtree∗(t)

states that the number of keys stored in the node is in the required range,

and that keys and children list satisfies either the key-child-list∗(l) predicate

(if the node is not a leaf) or the key-list∗(l) predicate (if the node is a leaf).

The key-child-list∗(l) states that either the list has only one element, and

the child satisfies the b-subtree∗(t) predicate, or the list has at least two

elements, the key in the head of the list is no less than all the keys stored in

the child and no greater than the keys stored in the tail of the list, the child

satisfies b-subtree∗(t), and the height of the child is equal to the height of the

tail (the height of a list is defined as the maximum height of a child). The

predicate key-list∗(l) is similarly defined. We consider the find and insert

routines. The find routine iterates over the list of keys, and recurses into

117

the appropriate child, until it finds the key or it arrives to a leaf. The insert

procedure is more complex, as it assumes that the node it is inserting into

is non-full, and prior to recursion it might need to split the child. For both

routines, we check that the tree after the call is a B-tree, that the multiset of

keys has the expected value, and that the height of the tree stays the same,

or increases by at most 1 (for insert).

As an advanced data structure, the binomial heap is described by a set of

predicates defined mutually recursively: binomial-tree∗, binomial-heap∗ and

full-list∗. We represent a binomial heap as follows. Briefly, a binomial-heap

of order k consists of a binary-tree of order k and a binary-heap of order less

than k. A binomial-tree of order k is an ordered tree defined recursively: the

root contains the minimum key, and its children compose a binomial-heap of

order k − 1, satisfying the full-list property. A full-list of order k consists of

a tree of order k and a full-list of order k − 1. The left-child, right-sibling

scheme represents each binomial tree within a binomial heap. Each node

contains its key; pointers to its leftmost child and to the sibling immediately

to its right; and its degree. The roots of a binomial heap form a singly-linked

list (also connected by the sibling pointer). We access the binomial heap by

a pointer to the first node on the root list.

The find-minimum routine expects a nonempty binomial heap, and moves

the tree containing the minimum key to the head of the list. It returns the

original heap if it is a single tree. Otherwise, it calls find-minimum on its

tail list, and appends the returned list to the head tree; then if keys of the

roots of the first two trees are unordered, swaps the two trees. We check that

find-minimum returns a binomial tree followed by a binomial heap, such that

the root of the tree contains the minimum key, and the head of the binomial

heap is either the first or the second root of the original heap. The merge

routine merges two binomial heaps x and y into one. If one of the two heaps

is empty, it simply returns the other one. Otherwise, if the heads of the two

heaps are of the same order, it merges the two head trees into one, merges the

two tail lists recursively, and returns the new tree followed by the new heap; if

not, say, x.order > y.order, then it merges x.sibling and y, concatenates

the head tree of x and the new heap in an appropriate way satisfying the

binomial-heap property. We check that merge returns a binomial heap such

that the keys are the union of the two input binomial heaps, and the order

increases up to 1. The delete-minimum routine is non-recursive. It simply

118

moves the minimum tree m to the head by calling find-minimum, and obtains

two binomial heaps: a list of the siblings of m, and a list of the children of m.

Finally it merges the two heaps by merge. We check that delete-minimum

returns a binomial heap with the multiset of keys as expected.

5.5.2 Experimental Results

Table 5.1 summarizes our experiments, showing the results of verifying 147

basic blocks across these algorithms. All the verified programs can be found

at http://www.cs.illinois.edu/~qiu2/dryad . The experiments were

conducted on a dual-core, 3.2GHz, 8GB machine, running Windows 7 and

Z3 2.19. For each data structure, we report the number of integers, sets,

multisets and predicates defined recursively. For each routine, we report the

number of basic blocks, the number of nodes in the footprint, the time taken

by Z3 to determine validity of all generated formulas, and the validity result

proved by Z3.

We are encouraged by the fact that all these verification conditions that

were deterministically generated by the methodology set forth in this chapter

were proved by Z3 efficiently; this proved all these algorithms correct. To the

best of our knowledge, this is an efficient terminating automatic mechanism

that can prove such a wide variety of data-structure algorithms written using

imperative programming correct (in particular, binomial heaps and the B-

trees presented here have not been proven automatically correct).

The experimental results show that Dryadtree is a very expressive logic

that allows us to express natural and recursive properties of several complex

inductive tree data structures. Moreover, our sound procedure tends to be

able to prove many complex verification conditions.

5.6 Related Work

There is a rich literature on program logics for heaps. We discuss the work

that is closest to ours. In particular, we omit the rich literature on general

interactive theorem provers (like Coq [40]) as well as general software ver-

ification tools (like Boogie [5]) that are not particularly adapted for heap

verification.

119

Data
#Ints #Sets #MSets #Preds Routine #BB

Max. Total Avg. VC

Structure
#Nodes in Time Time (s) proved
Footprint (s) per VC valid?

Sorted List 0 0 1 1
insert 4 3 0.24 0.06 Yes
delete 3 3 0.17 0.06 Yes

insertion-sort 3 4 0.11 0.04 Yes
Binary Heap 0 0 1 1 max-heapify 5 8 1.89 0.38 Yes

Treap 0 2 0 1
insert 7 6 4.06 0.58 Yes
delete 6 4 0.81 0.14 Yes

remove-root 7 8 2.96 0.42 Yes

AVL Tree 1 0 1 1
insert 11 8 1.45 0.13 Yes
delete 18 7 2.13 0.19 Yes

Red-Black Tree 1 0 1 1
insert 19 8 1.93 0.11 Yes
delete 24 7 3.22 0.14 Yes

B-Tree 2 0 1 2
insert 12 6 0.40 0.03 Yes
find 8 3 0.12 0.02 Yes

Binomial Heap 1 0 1 3
delete-minimum 3 7 0.29 0.10 Yes
find-minimum 4 6 1.81 0.45 Yes

merge 13 7 17.38 1.37 Yes
Total 147

Table 5.1: Results of program verification using Dryadtree

more details at http://web.engr.illinois.edu/~qiu2/dryad .

120

Separation logic [63, 68, 10] is one of the most popular logics for verifica-

tion of heap structures. Many dialects of separation logic combine separation

logic with inductively defined data-structures. While separation logic gives

mechanisms to compositionally reason with the footprint and the frame it

resides in, proof assistants for separation logic are often heuristic and incom-

plete [10], though a couple of small decidable fragments are known [53, 9]. A

work that comes very close to ours is a paper by Chin et al. [23], where the

authors allow user-defined recursive predicates (similar to ours) and build

a terminating procedure that reduces the verification condition to standard

logical theories. While their procedure is more general than ours (they can

handle structures beyond trees), the resulting formulas are quantified, and

result in less efficient procedures. Bedrock [24] is a Coq library that aims at

mostly automated (but not completely automated) procedures that requires

some proof tactics to be given by the user to prove verification conditions.

In manual and semi-automatic approaches to verification of heap manipu-

lating programs [68, 69, 10], the inductive definitions of algebraic data-types

is extremely common, and proof tactics unroll these inductive definitions, do

extensive unification to try to match terms, and find simple proofs. Our work

in this chapter is very much inspired by the kinds of manual heap reasoning

that we have seen in the literature.

The work by Zee et al. [81, 82] is one of the first attempts at full functional

verification of linked data structures, which includes the development of the

Jahob system that uses higher-order logics to specify correctness properties,

and puts together several theorem provers ranging from first-order provers,

SMT solvers, and interactive theorem provers to prove properties of algo-

rithms manipulating data-structures. While many proofs required manual

guidance, this work showed that proofs can often be derived using simple

tactics like unrolling of inductive definitions, unification, abstraction, and

employing decision procedures for decidable theories. This work was also

an inspiration for our work, but we chose to concentrate on deriving proofs

using completely automatic and terminating procedures, where unification,

unrolling, abstraction, and decidable theories are systematically exploited.

One work that is very close to ours is that of Suter et al. [72] where decision

procedures for algebraic data-types are presented with abstraction as the

key to obtaining proofs. However, this work focuses on sound and complete

decision procedures, and is limited in its ability to prove several complex data

121

structures correct. Moreover, the work limits itself to functional program

correctness; in our opinion, functional programs are very similar to algebraic

inductive specifications, leading to much simpler proof procedures.

There is a rich and growing literature on completely automatic sound,

complete, and terminating decision procedures for restricted heap logics.

The logic Lisbq [46] offers such reasoning with restricted reachability pred-

icates and quantification. While the logic has extremely efficient decision

procedures, its expressivity in stating properties of inductive data-structures

(even trees) is very limited. There are several other logics in this genre,

being less expressive but decidable [15, 12, 65, 66, 59, 67, 2]. Strand, as

shown earlier in this dissertation, is a recent logic that can handle some

data-structure properties (at least binary search trees) and admits decidable

fragments by combining decidable theories of trees with the theory of arith-

metic, but is again extremely restricted in expressiveness. None of these

logics can express the verification conditions for full functional verification of

the data-structures explored in this chapter.

122

CHAPTER 6

COMBINING SEPARATION AND

RECURSION

As mentioned in Chapter 1, it is well known that heap analysis and verifica-

tion is notoriously difficult. In recent years, Separation Logic (SL), especially

in combination with recursive definitions, has emerged as a succinct and

natural logic to express properties about structure and separation [68, 63].

However, the validation of verification conditions resulting from separation

logic invariants are also complex, and has eluded automatic reasoning and

exploitation of SMT solvers (even more so than tools such as Boogie that use

classical logic). Again, help from the user in proving the verification condi-

tions are currently necessary— the tools Verifast [41] and Bedrock [24],

for instance, admit separation logic specifications but require the user to

write lower-level lemmas and proof tactics to guide the verification. For ex-

ample, in verifying an in-place reversal of a linked list1, Bedrock would

require several lemmas and a hint package be supplied at the level of the

code in order for the proof to go through.

On the other hand, as proposed in Chapter 5, the natural proof strategy

is a novel attempt to combine expressive logics and automated reasoning.

Exploiting natural proofs results in successful verification of a wide variety

of tree-manipulating programs. The natural proofs developed in Chapter 5

were too restrictive, however, handling only single trees, with no scope for

handling multiple or more complex data-structures and their separation.

We believe the two nice techniques complement each other: the succinct-

ness of SL in reasoning with framing and separation, and the efficient de-

cidability of natural proofs. Hence, the aim of this chapter is to provide

natural proofs for general properties of structure, data, and separation. Our

contributions are:

1http://plv.csail.mit.edu/bedrock/Tutorial.html

123

a) we propose Dryadsep, a dialect of separation logic for heaps, with

no explicit (classical) quantification but with recursive definitions, to

express second-order properties;

b) show that Dryadsep is both powerful in terms of expressiveness, and

that the strongest postcondition of Dryadsep specifications with re-

spect to bounded code segments can be formulated in Dryadsep;

c) show how Dryadsep has been designed so that it can be systematically

converted to classical logic using the theory of sets, allowing us to

connect the more natural and succinct specifications to more verbose

but classical logic.

Organization: In the rest of this chapter, we introduce the design prin-

ciples of the new logic in Section 6.1. After that we present our logic

Dryadsep, a quantifier-free heaplet logic augmented with recursively defined

predicates/functions, ini terms of its syntax and its disciplined semantics in

Section 6.2 and , respectively. We also clarify the difference between SL and

Dryadsep via examples in Section 6.4. Section 6.5 is dedicated to a formal

translation from Dryadsep to a classical logic extended with set theory.

6.1 Logic Design

In this section, we elaborate the two key ingredient of our logic Dryadsep,

and explain why they are amenable to our natural proof strategy set forth

in Chapter 5.

6.1.1 Deterministic Scope

The primary design principle behind separation logic is the decision to ex-

press strict specifications— logical formulas must naturally refer to heaplets

(subparts of the heap), and, by default, the smallest heaplets over which

the formula needs to refer to. This is in contrast to classical logics (such

as FOL) which implicitly refer to the entire heap globally. Strict specifica-

tions permit elegant ways to capture how a particular sub-part of the heap

changes due to a procedure, implicitly leaving the rest of the heap and its

124

properties unchanged across a call to this procedure. Separation logic is a

particular framework for strict specifications, where formulas are implicitly

defined on strictly defined heaplets, and where heaplets can be combined us-

ing a spatial conjunction operator denoted by ∗. The frame rule in separation

logic captures the main advantage of strict specifications: if the Hoare-triple

{P}C{Q} holds for some program C, then {P ∗ R}C{Q ∗ R} also holds

(with side-conditions that the modified variables in C are disjoint from the

free variables in R).

While the above motivation for separation logic based on strict specifica-

tions is worthy in itself, separation logic syntax gives another distinct ad-

vantage to our goals of building natural proofs for generalized structural

properties. Going from handling tree structures in Chapter 5 to more gen-

eral structures expressed in logic, a primary concern is how the structural

property of the heap is expressed. Consider, for example, expressing that

the location x is the root of a tree. This is a second-order property and

formulations of it in classical logic using set or path quantification are quite

complex and not easily amenable to automated verification. We prefer induc-

tive definitions of structural properties without any explicit quantification.

The separation logic syntax with recursive definitions and heaplet semantics

allows simple quantifier-free formulas to express structural restrictions; for

example. tree-ness can be expressed simply as:

tree(x) :: (x = nil ∧ emp) ∨ (x 7−→ (l, r) ∗ tree(l) ∗ tree(r))

We first define a new logic, Dryadsep, that permits no explicit quantifica-

tion, but permits powerful recursive definitions to define integers, sets/mul-

tisets of integers, and sets of locations, using least fixed-points. The logic

Dryadsep furthermore has a heaplet semantics and allows the spatial con-

junction operator ∗. However, a key design feature of Dryadsep is that the

heaplet for recursive formulas is essentially determined by the syntax as op-

posed to the semantics. In classical SL, a formula of the form α ∗β says that

the heaplet can be partitioned into any two disjoint heaplets, one satisfying

α and the other β. In Dryadsep, the heaplet for a (complex) formula is

determined and hence if there is a way to partition the heaplet, there is pre-

cisely one way to do so. We have found that most uses of separation logic to

express properties can be written quite succinctly and easily using Dryadsep

125

(in fact, it is easier to write such deterministic-heap specifications). The

key advantage is that this eliminates implicit existential quantification the

separation operator provides. In a verification condition that combines the

pre-condition in the negative and the postcondition in the positive, the clas-

sical semantics for SL invariably introduces universal quantification in the

satisfiability query for the negation of the verification condition, which in

turn is extremely hard to handle.

In Dryadsep, the semantics of a recursive definition r(x) (such as tree

above), requires that the heaplet be determined and defined as the set of all

locations reachable from the node x through a set of pointer-fields f1, . . . , fk

without passing through a set of locations (given by a set of location terms

t1, . . . tn). While our logical mechanisms can be extended beyond this no-

tion (in deterministic ways), we have found that this captures most common

properties required in proving data-structure manipulating programs correct.

The above formulation lends well to the natural proof methodology — it

doesn’t use quantification (the implicit quantification on l and r are special

since they are uniquely determined by x) and it is amenable to unfolding

across a footprint, and hence amenable to natural proofs, provided we can

only handle the separation logic semantics in a decidable theory.

6.1.2 Deterministic Translation

The second key step in our paradigm is a technique to bridge the gap from

separation logic to classical logic in order to utilize efficient decision pro-

cedures supported by SMT solvers. We show that heaplet semantics and

separation logic constructs of Dryadsep can be effectively translated to clas-

sical logic where heaplets are modeled as sets of locations. We show that

Dryadsep formulas can be translated into classical logic with free set vari-

ables that capture the heaplets corresponding to the strict semantics. This

translation does not, of course, yield a decidable theory yet, as recursive

definitions are still present (the recursion-free formulas are in a decidable

theory). The carefully designed Dryadsep logic with determined heaplet se-

mantics ensures that there is no quantification in the resulting formula in

classical logic. The heaplets of recursively defined properties, which are de-

126

fined using the set of all reachable nodes, are translated to recursively defined

sets of locations.

6.2 Syntax

Let us fix a finite set of pointer-fields PF and a finite set of data-fields DF. A

record consists of a set of pointer-fields from PF and a set of data-fields from

DF. Our logic also presumes that locations refer to entire records rather than

particular fields, and that address arithmetic is precluded. We will use the

term locations hence to refer to these records. We assume that every field

is defined at every location, i.e., all memory records have the same layout

(to simplify the presentation); our logic can easily be extended with record

types.

Let Bool = {true, false} stand for the set of Boolean values, Int stand

for the set of integers and Loc stand for the universe of locations. For any set

A, let S(A) denote the set of all finite subsets of A, and letMS(A) denote

the set of all finite multisets with elements in A.

The Dryad logic allows expressing quantifier-free first-order properties

over heaps/heaplets augmented with recursively defined notions for a location

to express second-order properties, denoted as a function r : Loc→ D. The

codomain D can be IntL, S(Loc), S(Int),MS(Int)L or Bool, where IntL and

MS(Int)L extend Int andMS(Int) to lattice domains, respectively, in order

to give least fixed-point semantics (explained later in this section). Typical

examples of these recursive definitions include the definitions of the height of

a tree or the height of black-nodes in the tree rooted at a node (recursively

defined integers), the set of nodes reachable from a location following cer-

tain pointer fields (recursively defined sets of locations), the set/multiset of

keys stored at a particular data-field under nodes reachable from a location

(recursively defined set/multiset of integers), and the property that the tree

rooted at a node is a binary search tree or a balanced tree or just a tree

(recursively defined predicates).

A Dryadsep formula ϕ is quantifier-free, but parameterized by a set of re-

cursive definitions Def ∆. The syntax of Dryad logic is given in Figure 6.1,

where the syntax of formulas is followed by the syntax for recursive defini-

tions. Most symbols in Dryadsep are common and self-explanatory. Note

127

i∆ : Loc→ IntL j ∈ IntL Vars x ∈ Loc Vars
sl∆ : Loc→ S(Loc) L ∈ S(Loc) Vars c : IntL Constant
si∆ : Loc→ S(Int) S ∈ S(Int) Vars pf ∈ PF
msi∆ : Loc→MS(Int)L MS ∈MS(Int)L Vars df ∈ DF
p∆ : Loc→ Bool q ∈ Bool Vars

Loc Term: lt ::= x | nil
IntL Term: it ::= c | j | i∆−→

pf ,~v
(lt) | it+ it | it− it

S(Loc) Term: slt ::= ∅l | L | {lt} | sl
∆
−→
pf ,~v

(lt) |

slt ∪ slt | slt ∩ slt | slt \ slt
S(Int) Term: sit ::= ∅s | S | {it} | si∆~pf,~v(lt) |

sit ∪ sit | sit ∩ sit | sit \ sit
MS(Int)L Term: msit ::= ∅m | MS | {it}m | msi∆~pf,~v(lt) |

msit ∪msit | msit ∩msit | msit\msit

Positive Formula: ϕ ::= true | false | q |

p∆−→
pf ,~v

(lt) | emp | lt
−→
pf ,

−→
df
7−→ (~lt, ~it) |

lt = lt | lt 6= lt | it ≤ it | it < it |
sit ≤ sit | sit < sit |
msit ≤ msit | msit < msit |
slt ⊆ slt | slt 6⊆ slt | lt ∈ slt | lt 6∈ slt |
sit ⊆ sit | sit 6⊆ sit |
msit ⊑ msit | msit 6⊑ msit |
it ∈ sit | it 6∈ sit | it ∈ msit | it 6∈ msit |
ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ∗ ϕ

Formula: ψ ::= ϕ | ψ ∧ ψ | ψ ∨ ψ | ¬ψ

Recursive function : f∆
−→
pf ,~v

(x,~v)
def
=

(
ϕf1(x,~v, ~s) : t

f
1(x,~s) ;

. . . ;

ϕfk(x,~v, ~s) : t
f
k(x,~s) ;

default : tfk+1(x,~s)
)

Recursive predicate : p∆−→
pf ,~v

(x,~v)
def
= ϕp(x,~v, ~s)

Figure 6.1: Syntax of Dryadsep

that the inequality (< or ≤) between integer sets/multisets indicates that

any integer in the left-hand side is less-than/not-greater-than any integer

in the right-hand side. It is also noteworthy that the separating conjunc-

tion (∗) from separation logic is also allowed, but only if it is not above any

negation (¬). We require that every recursive function/predicate used in

128

the formula ϕ has a unique definition in Def ∆. Each recursive function is

parameterized by a set of pointer fields
−→
pf and a set of program variables ~v,

denoted as f∆
−→
pf ,~v

. The subscripts are used in defining the semantics of recur-

sive functions in Section 6.3. We usually simply use f∆ when the subscripts

are not relevant in the context. Similarly, recursive predicates are denoted

as p∆−→
pf ,~v

or simply p∆. The recursive functions are defined using the syntax:

(
ϕf1(x,~v, ~s) : t

f
1(x,~s) ; . . . ; ϕfk(x,~v, ~s) : t

f
k(x,~s) ; default : tfk+1(x,~s)

)

where ϕfu(x,~v, ~s)/t
f
u(x,~s) is a formula/term in our logic with ~s implicitly

existentially quantified. The recursively defined predicates are defined using

the syntax: ϕp(x,~v, ~s), which is a formula in our logic with ~s implicitly

existentially quantified. The recursive function syntax above expresses a case-

split, with the function evaluating to the first term whose guard evaluates to

true. The restrictions on the recursive definitions are:

• Subtraction, set-difference, and negation are disallowed;

• Every variable in ~s should appear in the right hand side of a points-to

relation binding it to x exactly once.

For examples of recursive functions and predicates, see the definitions keys∆−→
pf
(x)

and mheap∆−→
pf
(x) in Figure 7.2, respectively. The set of program variables ~v

parameterizing the definitions is empty in both these definitions and the set

of implicitly existentially-quantified variables ~s is {k, l, r}.

6.3 Semantics

Our logic is interpreted on models that are program states :

Definition 6.3.1. A program state is a tuple C = (R, s, h) where

• R ⊆ Loc \ {nil} is a finite set of locations;

• s : Vars→ Int ∪ Loc is a store mapping program variables to locations

or integers (of appropriate type);

• h : R × (PF ∪ DF) → Int ∪ Loc is a heaplet mapping non-nil locations

and each pointer-field/data-field to values of the appropriate type.

129

Note that the set of locations is, in general, larger than the state R and

hence R defines a subset of heap locations. The store maps variables to

locations (not necessarily in R), but the heaplet h gives interpretations for

pointer and data-fields only for elements in R.

Given a heaplet h, for every pointer field pf, we denote the projection of h

on R× (PF \ {pf}∪DF) as h ∤ pf; similarly, for every data-field df, we denote

the projection of h on R× (PF ∪DF \ {df}) as h ∤ df. Also, for every subset

S ⊆ R, we denote the projection of h on S × (PF ∪ DF) as h | S.

A term/formula with free variables F is interpreted by interpreting the free

variables in F using the map s from variables to values. The semantics of

Dryadsep is similar to that of classical Separation Logic (SL). In particular,

a term/formula without recursive definitions is interpreted exactly in the

same way in Dryadsep and SL. Hence we first give the semantics of the

non-recursive part, followed by the semantics of recursive definitions.

Before defining the semantics of formulas, we define the pure property for

terms/formulas. Intuitively, a term/formula is pure if it is independent of

the heap. Syntactically, a term/formula is pure if it does not contain emp,

7−→ or any recursive definition. Note that in SL all terms are pure, but in

Dryadsep, a term can be impure if it contains a recursive function f∆.

Given a term t we define pure(t) inductively in Figure 6.2. The f ∗ func-

tion refers to any recursive integer/set/multi-set definition; the op and ∼

operators stand for appropriate operators. Note that formulas with recursive

definitions are not heapless, nor is any formula with separating conjunction ∗.

We are now ready to define the semantics under a model C = (R, s, h).

6.3.1 Terms

Each T -term evaluates to either a normal value of type T , or to undef, which

is only used in interpreting recursive functions (will be explained later). As a

special value, undef will be propagated throughout the formula: if a formula

ϕ contains a sub-term that evaluates to undef, then ϕ will evaluate to false

if it appears positively, and will evaluate to true otherwise. Intuitively,

undef cannot help in making the formula true over a model.

The Loc terms are evaluated as follows:

130

pure(var) = true

pure(c) = true

pure(f ∗(lt)) = false

pure({t}) = pure(t)
pure(t op t′) = pure(t) ∧ pure(t′)

pure(true) = true

pure(p∗(lt)) = false

pure(emp) = false

pure(lt
−→
pf ,

−→
df
7−→ (~lt, ~it)) = false

pure(t ∼ t′) = pure(t) ∧ pure(t′)
pure(ϕ ∧ ϕ′) = pure(ϕ) ∧ pure(ϕ′)
pure(ϕ ∨ ϕ′) = pure(ϕ) ∧ pure(ϕ′)
pure(¬ϕ) = pure(ϕ)
pure(ϕ ∗ ϕ′) = false

Figure 6.2: The pure predicate for terms/formulas

JxKC = s(x)

JnilKC = nil

For any binary operator op, t op t′ is evaluated as follows:

Jt op t′KC =

JtKC op Jt′KC if t or t′ is pure

JtKC|R1
op Jt′KC|R2

else if there exist R1, R2 such that

R = R1 ∪ R2, JtKC|R1
6= undef

and Jt′KC|R2
6= undef

undef otherwise

where op is interpreted in the natural way.

For singletons, {it} will evaluate to ∅ if it evaluates to −∞ or ∞:

J{it}KC =

undef if JitKC = undef

∅ if JitKC = −∞ or ∞

{JitKC} otherwise

Similarly, {it}m will evaluate to ∅m if it evaluates to −∞ or ∞:

131

J{it}mKC =

undef if JitKC = undef

∅m if JitKC = −∞ or ∞

{JitKC} otherwise

and {lt} will evaluate as follows:

J{lt}KC =

{
undef if JltKC = undef

{JltKC} otherwise

6.3.2 Formulas

The formula true is always interpreted to be true:

(R, s, h) |= true

The formula emp asserts that the heap is empty:

(R, s, h) |= emp iff R = ∅

The formula lt
−→
pf ,

−→
df
7−→ (~lt, ~it) asserts that the heap contains exactly one

record consisting of fields
−→
pf and

−→
df , at address lt, with values ~lt and ~it,

respectively. Formally, the semantics of this formula is given as:

(R, s, h) |= lt
−→
pf ,

−→
df
7−→ (~lt, ~it) iff R = {JltKR,s,h} and

h(JltKR,s,h, pfi) = JltiKR,s,h for corresponding pfi and lti,

h(JltKR,s,h, dfi) = JitiKR,s,h for corresponding dfi and iti.

Note that, as in separation logic, the above has a strict semantics— the

heaplet must be a singleton set and cannot be a larger set.

For binary relations t ∼ t′ between integers, sets, and multisets, including

equality, the pure property plays an important role. Remember that in SL

all terms are pure. To be consistent with SL, if both t and t′ are pure, it

is interpreted in the normal way. Otherwise, t ∼ t′ is only defined on the

minimum heaplet required by t and t′, more concretely the union of the

heaplet associated with t and t′.

132

(R, s, h) |= t ∼ t′ iff t or t′ is pure and JtKC ∼ Jt′KC

or t and t′ are impure and there exist R1, R2 s.t. R = R1 ∪ R2

and JtKC|R1
6= undef, Jt′KC|R2

6= undef and JtKC|R1
∼ Jt′KC|R2

where ∼ is interpreted in the natural way.

The semantics of the disjoint conjunction operator ∗ is defined as follows.

The formula ϕ0 ∗ϕ1 asserts that the heap can be split into two disjoint parts

in which ϕ0 and ϕ1 hold respectively:

(R, s, h) |= ϕ0 ∗ ϕ1 iff there exist R0, R1 s.t. R0 ∩ R1 = ∅ and

R0 ∪ R1 = R and (R0, s, h |R0
) |= ϕ0 and (R1, s, h |R1

) |= ϕ1

Boolean combinations are defined in the standard way:

(R, s, h) |= ϕ0 ∧ ϕ1 iff (R, s, h) |= ϕ0 and (R, s, h) |= ϕ1

(R, s, h) |= ϕ0 ∨ ϕ1 iff (R, s, h) |= ϕ0 or (R, s, h) |= ϕ1

(R, s, h) |= ¬ϕ iff (R, s, h) 6|= ϕ

6.3.3 Recursive Definitions

The main semantical difference between Dryadsep and SL is on recursive

definitions. We would like to deterministically delineate the heap domain for

any recursive definition, so that the heap domain required by any Dryadsep

formula can be syntactically determined. Given a recursive definition rec∆−→
pf ,~v

,

the subscripts
−→
pf and ~v play a role in delineating the heap domain. Intu-

itively, the heap domain for rec∆−→
pf ,~v

(l) is the set of locations reachable from

l using pointer-fields in
−→
pf , but without going through the locations ~v. In

other words, we want to take the set of locations that lie in between l and ~v.

Precisely, this set is determined by a location l and a program state (R, s, h).

We denote it as reachset−→
pf ,~v

(l, (R, s, h)). Formally it is the smallest set of

locations L satisfying the following two conditions:

1. l is in the set L if l is not in ~v and l 6= nil;

133

2. for each c in L, with c ∈ R, and for each pointer pf, if h(c, pf) is not in

~v and is not nil, then h(c, pf) is also in L.

Remark: Even though the reach set is defined with respect to the edges

in the heaplet, we can determine whether R includes all nodes reachable

from l without going through ~v in the global heap by checking whether R =

reachset−→
pf ,~v

(l, (R, s, h)).

For each recursive definition rec∆−→
pf ,~v

, we usually simply denote reachset−→
pf ,~v

as reachsetrec, as the subscripts are implicitly known.

We first give some intuition on the semantics of recursive definitions. Given

a program state C = (R, s, h) and a recursive function/predicate rec∆, the

semantics on a location l depends on whether the heap domain R is exactly

the required reach set reachsetrec(l, (R, s, h)). If this is not true, we simply

interpret it as undef or false. If the heap domain matches the reach set

(i.e., R = reachset−→
pf ,~v

(l, (R, s, h))), the semantics is defined in the natural

way (using least fixed-points).

In order to give least fixed-point semantics for recursive definitions in the

logic, we extend the primitive data types to lattice domains. Bool with the

order false ⊑ true forms a complete lattice, and S(Loc) and S(Int) ordered

by inclusion, with join as union and meet as intersection, form complete

lattices. Integers and multisets are extended to lattices. Let (IntL,≤) denote

the complete lattice, where IntL = Int ∪ {−∞,∞}, and where the ordering

is ≤, join is max, meet is min. Also, MS(Int)L,⊑ denote the complete

lattice constructed fromMS(Int), whereMS(Int)L =MS(Int) ∪ {⊤}, and

⊑ extends the inclusion relation with S ⊑ ⊤ for any M ∈ MS(Int). It is

easy to see that (IntL,⊑) and (MS(Int)L,⊑) are complete lattices.

Formally, let Def consists of definitions of integer functions I, set-of-

locations functions SL, set-of-integers functions SI, multiset-of-integers func-

tions MSI and predicates P . Since these definitions could rely on each other,

we evaluate them altogether as a function vector

r∆ = (
−→
i∆ ,
−→
sl∆,

−→
si∆,

−−→
msi∆,

−→
p∆)

Let selectrec(r
∆), for each recursive definition rec∆, denote the selection of

the coordinate for rec∆ in r∆. Then the semantics of each single function rec∆

is just selectrec(r
∆). Since (IntL,⊑), (S(Loc),⊑), (S(Int),⊑), (MS(Int)L,⊑)

134

and (Bool,⊑) are all complete lattices, for each domain Lock and each type

C, we can define a structure (Lock → C,⊑), where ⊑ is defined as follows: for

any two functions r, r′ : Lock → C, r ⊑ r′ if and only if for any (l1, . . . , lk) ∈

Lock, r(l1, . . . , lk) ⊑ r′(l1, . . . , lk). Then the product of (Lock → Crec,⊑)

for all rec∆ also forms a complete lattice, where ⊑ is the product order of

all the component ⊑. Let each rec be a mapping from Drec to Crec, then(∏
rec(Drec → Crec), ⊑

)
is just the Cartesian product of all the component

compete lattices, and is still complete.

Proposition 6.3.2.
(∏

rec(Drec → Crec), ⊑
)
is a complete lattice.

Proof. By the fact that the Cartesian product of complete lattices is still a

complete lattice.

Now, to give the least fixed-point semantics to r∆, we first need to define

an operator UC over
∏

rec(Drec → Crec). Since the codomain of UC is just a

product of functions from Drec → Crec for each recursive definition rec∆, it

suffices to define each component operator

Urec :
∏

rec

(Drec → Crec) →
(
Drec → Crec)

Then simply

UC(V)
def
=

∏

rec

(Urec(V)
)

where V ∈
∏

rec(Drec → Crec).

Let C = (R, s, h) be a computation state, let r be a function vector in
∏

rec(Drec → Crec), to define Urec(r), consider two cases: rec∆ is a recursive

function; or rec∆ is a recursive predicate.

Consider a recursively defined function

f∆(x,~s)
def
=
(
ϕf1(x,~v, ~s) : t

f
1(x,~s) ; . . . ;

ϕfk(x,~v, ~s) : t
f
k(x,~s) ; default : tfk+1(x,~s)

)

we first translate the colon-separated definition into a nested if-then-else

(ITE) operator. Formally,

Deff
def
= ITE

(
ϕf1(x,~v, ~s), t

f
1(x,~s), ITE(ϕ

f
2(x,~v, ~s), t

f
2(x,~s), . . . t

f
k+1(x,~s) . . .)

)

135

Secondly, we compute the scope D = reachsetf(x,~s, h). Now we define

Uf(r)(x,~v) = J Deff(x,~v, x(~s)) K(
R∩D, x(~s), h|D

)

where x(~s) replaces each s with corresponding dereference of x.

The above evaluation could involve evaluating some Jff(lt)KC′ or Jpp(lt)KC′

where C ′ = (R′, s′, h′) such that R′ ⊆ R, s′ = s(~v), and h′ = h|R′. Jff(lt)KC′

will be evaluated as follows:

Jff(lt)KR′,s′,h′ =

{
selectff

(
r
)
(JltK′C) if R′ = reachsetff(JltKC′ , h′)

undef otherwise

Jpp(~lt)K′C will be evaluated similarly:

Jpp(lt)KR′,s′,h′ =

{
selectpp

(
r
)
(JltK′C) if R′ = reachsetpp(JltKC′ , h′)

false otherwise

Similarly, consider a recursively defined predicate p∆(x,~s)
def
= ϕp(x,~v, ~s),

we first compute the scope D = reachsetp(x,~s, h). Then we define

Up(r)(x,~v) = J ϕp(x,~v, x(~s)) K(
R∩D, x(~s), h|D

)

Theorem 6.3.3. For each computation state C, UC admits a least fixed-

point w.r.t. ⊑.

Proof. Note that we disallow negative operations (subtraction, set-difference

and negation) in defining recursive definitions. This syntactical restriction

guarantees that for each recursive definition rec and for each r ∈
∏

rec(Drec →

Crec), selectrec(r) ⊑ Urec(r). Since UC is just the product of all Urec, it is clear

that selectC(r) ⊑ Urec(r), i.e., Urec is monotonic w.r.t. ⊑. By Knaster-Tarski

theorem, UC admits a least fixed-point.

Now we can formally define the semantics of recursive definitions. For any

configuration C, the semantics of a recursive function f∆ is defined as:

136

Jf∆(lt, ~st)KC =

selectf
(
lfp(UC)

)
(JltKC , J~stKC)

if R = reachsetf (JltKC , J~stKC , C)

undef otherwise

and the semantics of a recursive predicate p∆ is defined as

Jp∆(lt, ~st)KC =

selectp
(
lfp(UC)

)
(JltKC , J~stKC)

if R = reachsetp(JltKC , J~stKC , C)

false otherwise

6.4 Examples

In this section, we give several examples to show how Dryadsep can char-

acterize data-structures recursively, and its subtle difference from classical

SL.

A max-heap is a binary tree such that for each node n the key stored at n

is greater than or equal to the keys stored at each of its children. Heaps are

often used to implement priority queues. As below, we express the property

that a location x points to a max-heap using recursive definitions keys∆−→
pf
(x)

and mheap∆−→
pf
(x), with

−→
pf ≡ {left, right}.

mheap∆
−→

pf
(x)

def
=

((
x = nil ∧ emp

)
∨

(
x

key,left,right
7−→ (k, l, r)

∗ (mheap∆−→
pf
(l) ∧ {k} ≥ keys∆−→

pf
(l))

∗ (mheap∆−→
pf
(r) ∧ {k} ≥ keys∆−→

pf
(r))

))

keys∆
−→

pf
(x)

def
=

(
x = nil ∧ emp : ∅ ;

x
key,left,right
7−→ (k, l, r) ∗ true : keys∆−→

pf
(l) ∪ {k} ∪ keys∆−→

pf
(r) ;

default : ∅
)

For a location x, the recursive definition keys∆−→
pf
(x) returns the set of keys

at the nodes of the tree rooted at x: if x is niland the heaplet is empty,

137

then the empty-set; otherwise, the union of the key stored at x and the keys

stored in the left and right subtrees of x. Similarly, the recursive definition

mheap∆−→
pf
(x) states that x points to a max-heap if: x is nil and the heaplet is

empty; or x and the heaplets of the left and right subtrees of x are mutually

disjoint (x points to a tree) and the key at x is greater than or equal to the

keys of the left and right subtrees of x.

Note that the definition of a max-heap is precisely defined on the heaplet

that includes the underlying tree nodes of the max-heap only, as the heaplet

for a recursive definition is the set of all reachable nodes according to the

two pointers.

To clarify the difference between Dryadsep and SL, consider now this

recursive definition:

p∆{l,r}(x)
def
= (x = nil ∧ emp) ∨

[
(x

l,r
7−→ y, z) ∗

(
p∆{l,r}(y) ∨ p

∆
{l,r}(z)

)]

Consider a global heap that has a tree rooted at x with pointer fields l

and r. The above recursive formula, in separation logic, will be true on any

heaplet that contains the nodes of a path in this tree from x to nil. However,

in Dryadsep, we require that the heaplet must satisfy the heap constraints

of the formula and also be the precise set of locations reachable from x using

the pointer fields l and r. Consequently, if the tree pointed to by x has more

than one path, the Dryadsep formula will be false for any heaplet.

The above example shows the advantage of Dryadsep. while nondeter-

mined heaplets are inherent in SL, in Dryadsep, the heap domain is pre-

cisely determined, and we can avoid quantification. This quantifier-free fea-

ture is very useful when we check a verification condition along the lines

of p∗(x) ∧ . . . ⇒ p∗(t) (a precondition implying a postcondition), the cor-

responding satisfiability query would be p∗(x) ∧ . . . ∧ ¬p∗(t). The negated

formula ¬p∗(t) hence requires a universal quantification over paths in the

tree if we went with the usual separation logic semantics, which is very hard

to handle automatically. In contrast, we have not found natural examples

where an undetermined heaplet semantics helps in specifying properties of

heaps.

Consequently, in our semantics, the heap domain for recursive definitions

is syntactically determined to be a fixed set, based only on its signature,

138

making Dryadsep amenable to being translated to quantifier-free classical

logic.

Dryadsep can express structures beyond trees. The main restriction we

do impose is that we allow only unary recursive definitions, as this allows

us to find simpler natural proofs since there is only one way to unfold the

definition across a footprint. However, Dryadsep can express structures like

cyclic lists and doubly-linked lists.

A cyclic-list is captured as (v 7→ y) ∗ lseg∆next,v(y). Here, v is a program

variable which denotes the head of the cyclic-list and lseg∆next,v(y) captures

the list segment from y back to the head v, where the subscripts next and

v indicate that the heaplet of the list segment is the locations that can be

reached using the field next, but without going through v:

lseg∆next,v(y)
def
= (y = v ∧ emp) ∨

(
(y

next
7→ z) ∗ lseg∆next,v(z)

)

Another interesting example is a doubly-linked list. We define a doubly-

linked list as the following unary predicate:

dll∆next(x) = (x = nil ∧ emp) ∨ (x
next
7→ nil) ∨(

x
next
7→ y ∗

(
(y

prev
7→ x ∗ true) ∧ dll∆next(y)

))

The first two disjuncts in the definition cover the base case when x is nil

or the location next to x is nil; otherwise, let y be the location next to x,

then the prev pointer at y points to x and location y is recursively defined as

a doubly-linked list.

6.5 Translating to A Logic over the Global Heap

We now show one of the main contributions of this chapter— a translation

fromDryadsep logic to classical logic with recursive predicates and functions,

but over the global heap. The formulation of separation logic primitives

in the global heap allows us to express complex structural properties, like

disjointness of heaplets and tree-ness, using recursive definitions over sets of

locations, which are defined locally, and are amenable to unfolding across the

footprint and hence amenable to natural proofs.

139

For example, consider the formula mheap∆(x) ∗mheap∆(y), where mheap∆

is defined in Section 7.5. Since the heaplets for mheap∆(x) and mheap∆(y)

are precise, it can get translated to an equivalent formula with a free set

variable G that denotes the global heap over which the formula is evaluated:

mheap(x) ∧mheap(y) ∧ (reachmheap(x) ∩ reachmheap(y) = ∅)

∧ (reachmheap(x) ∪ reachmheap(y) = G)

where mheap and reachmheap are corresponding recursive definitions in clas-

sical logic, which will be defined later in this section. Note that we use italics

and remove the ∆ superscript to show the difference from their counterpart

in Dryadsep.

Since these theories can be handled by present SMT solvers, this transla-

tion leads to a robust way of deciding separation logic formulas in an auto-

matic and a terminating manner by making calls to the underlying theory

solvers.

6.5.1 Preprocessing

We assume the Dryadsep formula to be translated is in disjunctive normal

form, i.e., ∨ operators should be above all ∗ and ∧ operators. This is not

a real restriction as one can always push the disjunction out. This normal

form ensures that for all occurrences of the separation operator in a formula,

there exists a unique way of splitting the heap so as to satisfy the ∗ separated

sub-formulas. Also, it ensures that this unique heap-split can be determined

syntactically from the structure of those sub-formulas.

In our translation, we model the heaplets associated with a formula or a

term as a set of locations and all operations on these heaplets are modeled as

set operations like set union, set intersections, etc. over set-of-location vari-

ables. For example the separating conjunction P ∗Q is translated to the fol-

lowing set constraint: the intersection of the sets associated with the heaplets

in the formulas P and Q is empty. Given a formula ϕ in Dryadsep and its

associated heap domain modeled by a set variable G, we define an inductive

translation T into a classical logic formula T (ϕ, G) in the quantifier-free

theory of finite sets, integers and uninterpreted functions. The translated

140

Construct Domain-exact Scope
var/const false ∅
{t}/{t}m dom-ext(t) scope(t)
t op t′ dom-ext(t) ∨ dom-ext(t′) scope(t) ∪ scope(t′)

f∆(lt) true reachsetf(lt)
true/false false ∅

emp true ∅

lt
~pf,~df
7−→ (~lt, ~it) true {lt}
p∆(lt) true reachsetp(lt)
t ∼ t′ dom-ext(t) ∨ dom-ext(t′) scope(t) ∪ scope(t′)
ϕ ∧ ϕ′ dom-ext(ϕ) ∨ dom-ext(ϕ′) scope(ϕ) ∪ scope(ϕ′)
ϕ ∗ ϕ′ dom-ext(ϕ) ∧ dom-ext(ϕ′) scope(ϕ) ∪ scope(ϕ′)

Table 6.1: Domain-exact property and Scope function

formula is not interpreted on a heaplet, but interpreted on a global heap

(i.e., with the heap domain Loc).

The translation uses an auxiliary domain-exact property and an auxiliary

scope function. The domain-exact property indicates whether a term evalu-

ates to a well-defined value or a positive formula evaluates to true on a fixed

heap domain or not. This is different from the property pure; a pure formula

or term is not domain-exact but the reverse implication is not true, in gen-

eral. For example, the formula (lt 7−→ it) ∗ true is not domain-exact but is

also not pure. The scope function maps a term to the minimum heap domain

required to evaluate it to a normal value, and maps a positive formula to the

minimum heap domain required to evaluate it to true. The domain-exact

property and the scope function are defined inductively in Table 6.1. Note

that both are defined only for terms and formulas without disjunction and

negation. A formula is assumed in its disjunctive normal form.

6.5.2 Translating Terms and Formulas

We describe the logic translation of Dryadsep terms and formulas in Fig-

ure 6.3 and Figure 6.4, respectively. The ITE expression used in the transla-

tion is short for ”if-then-else”. It is just a conditional expression defined as

follows: ITE(φ, t1, t2) evaluates to t1 if φ is true, otherwise evaluates to t2.

In general, our translation restricts an impure term/formula to be evalu-

ated only on the syntactically determined heap domain according to the se-

141

T (var / const, G) ≡ var / const
T ({t} / {t}m, G) ≡ {t} / {t}m
T (t op t′, G) ≡ T (t, G) op T (t′, G)

T (f∆(lt), G) ≡ ITE
(
reachf(lt) = G, f(lt), undef

)

T (true / false, G) ≡ true / false

T (emp, G) ≡ G = ∅

T (lt
~pf,~df
7−→ (~lt, ~it), G) ≡ G = {lt} ∧

∧
pfi

pfi
(
T (lt, G)

)
= T (lti, G)

∧
∧

dfi
dfi
(
T (lt, G)

)
= T (iti, G)

T (p∆(lt), G) ≡ p(lt) ∧G = reachp(lt)

T (t ∼ t′, G) ≡

{
t ∼ t′ if t ∼ t′ is not domain-exact

t ∼ t′ ∧G = scope(t ∼ t′) otherwise

T (ϕ ∧ ϕ′, G) ≡ T (ϕ,G) ∧ T (ϕ′, G)
T (ϕ ∨ ϕ′, G) ≡ T (ϕ,G) ∨ T (ϕ′, G)

T (¬ϕ, G) ≡ ¬T (ϕ,G)

Figure 6.3: Translation of Dryadsep terms

T (ϕ ∗ ϕ′, G) ≡

T
(
ϕ, scope(ϕ)

)
∧ T

(
ϕ′, scope(ϕ′)

)

∧ scope(ϕ) ∪ scope(ϕ′) = G
∧ scope(ϕ) ∩ scope(ϕ′) = ∅

if both ϕ and ϕ′ are domain-exact

T
(
ϕ, scope(ϕ)

)
∧ T

(
ϕ′, G \ scope(ϕ)

)

∧ scope(ϕ) ⊆ G if only ϕ is domain-exact

T
(
ϕ′, scope(ϕ′)

)
∧ T

(
ϕ, G \ scope(ϕ′)

)

∧ scope(ϕ′) ⊆ G if only ϕ′ is domain-exact

T
(
ϕ, scope(ϕ)

)
∧ T

(
ϕ′, scope(ϕ′)

)

∧ scope(ϕ) ∪ scope(ϕ′) ⊆ G
∧ scope(ϕ) ∩ scope(ϕ′) = ∅

if neither ϕ nor ϕ′ is domain-exact

Figure 6.4: Translation of Dryadsep formulas

142

mantics of Dryadsep. In particular, when evaluating a recursive formula or

predicate p∆, we ensure that the heaplet is precisely the reach set reachp(lt).

For the formula emp evaluated on heaplet G, the translation asserts that G

is the empty set of locations. Similarly, for the atomic formula lt
~pf,~df
7−→ (~lt, ~it),

the classical logic formula asserts that G is the singleton set consisting of the

location lt. For the atomic formula t ∼ t′, the translation to classical logic

depends on whether this formula is tight or not. If the formula is not tight,

then it can be evaluated on any heaplet. Otherwise, the heaplet is restricted

to the scope of t ∼ t′. If the formula ϕ∨ϕ′ is evaluated on a heaplet G, then

either the sub-formula ϕ is true on the heaplet G or ϕ′ is true on G. The

case when the formula is a conjunction ϕ∧ϕ′ is handled similarly. When the

formula has negation as its top-level operator ¬ϕ, the formula is true over

a heaplet G if the positive sub-formula ϕ evaluates to false over the same

heaplet G.

For a formula ϕ ∗ ϕ′, translation to classical logic depends on whether the

sub-formulas ϕ and ϕ′ are domain-exact or not. If a sub-formula is domain-

exact then it is evaluated on its scope. If it is not domain-exact, then it is

evaluated on the rest of the heaplet. Specifically, if neither ϕ nor ϕ′ is tight,

the translated classical logic formula requires the scopes of ϕ and ϕ′ to be

disjoint from each other such that their disjoint union is the heaplet G.

6.5.3 Translating Recursive Definitions

Recursive definitions in Dryadsep are also translated to recursive definitions

in classical logic. Translating a recursive definition rec∆ uses the correspond-

ing definitions rec and reachrec, both of which are defined recursively in clas-

sical logic. The set reachrec represents the domain of the required heaplet

for evaluating rec∆, and the ∆-eliminated definition rec captures the value

of rec∆ when the heaplet is restricted to reachrec. Formally, suppose rec∆ is

a recursive definition w.r.t. pointer fields ~pf and stopping locations ~v, then

reachrec is recursively defined as the least fixed-point of

reachrec(x,~v)
def
= ITE

(
x = nil ∨ x ∈ ~v, ∅, {x} ∪

⋃

pf∈~pf

(
reachrec(pf(x))

))

143

For each recursive predicate p∆ defined as p∆(x)
def
= ϕp(x,~v, ~s), we define

p(x,~v)
def
= T

(
ϕp(x,~v, ~s), reachp(x,~v)

)

Similarly, for each recursive function f∆ defined as

f∆(x,~v)
def
=
(
ϕf1(x,~v, ~s) : t

f
1(x,~s) ; ϕ

f
2(x,~v, ~s) : t

f
2(x,~s) ;

. . . ; default : tfk+1(x,~s)
)

we define

f(x,~v)
def
= ITE

(
T
(
ϕf1(x,~v, ~s), reach

f (x)
)
, tf−∆

1 (x,~s)

ITE
(
T
(
ϕf2(x,~v, ~s), reach

f(x)
)
, tf−∆

2 (x,~s)

. . . , tf−∆
k+1 (x,~s)

)
. . .
))

where tf−∆
i (x,~s) is just the classical logic counterpart of tfi (x,~s), when

interpreted in a heap domain within reachf(x). Formally it is short for

ITE
(
scope(tfi (x,~s)) ⊆ reachf(x), T

(
tfi (x,~s), scope(t

f
i (x,~s))

)
, undef

)

Now for each set of recursive definitions Def ∆ in Dryadsep, we can trans-

late it to a set of recursive definitions Def in classical logic. The semantics

of the definitions in Def is the least fixed point of the combination of the

equations in each definition, similar to the semantics of Def ∆. The follow-

ing lemma shows that each definition in Def precisely interprets the heaplet

semantics (defined only on the reachable locations) of the corresponding def-

inition in Def ∆.

Lemma 6.5.1. Let Def ∆ be a set of recursive definitions in Dryadsep,

and let Def be the set of translated recursive definitions in classical logic.

Let p∆ be an arbitrary recursive predicate and f∆ be an arbitrary recursive

function in Def ∆. Then for every program state (Loc, s, h), for every loca-

tions x and ~v, (Loc, s, h) |= p(x,~v) if and only if (Rp, s, h|Rp) |= p∆(x,~v),

and Jf(x,~v)K(Loc,s,h) = Jf∆(x,~v)K(Rf ,s,h|
Rf), where R

p = reachp(x,~v), Rf =

reachf (x,~v).

144

Proof. Since both the definitions in Def and Def ∆ has the least-fixed-point

semantics, the proof intuitively consists of two steps: first show the semantics

at the bottom of the two lattices are equivalent; then show the equivalence

is preserved in each iteration of applying the recursive operator.

For the first step, notice that for each predicate p, p(x,~v) and p∆(x,~v) are

always interpreted as false (no matter p∆ interpreted on which heaplet).

Similarly, for each function f , both p(x,~v) and p∆(x,~v) (interpreted on Rf)

are defined as the bottom of the corresponding lattice.

For each iteration that transits the predicate p to p′, and transits p∆ to p′∆.

Assume that the p and p∆ are equivalent. Then for every locations x and

~v, (Loc, s, h) |= p′(x,~v) iff ~v, (Loc, s, h) |= T
(
ϕp(x,~v, x(~s)), reachp(x,~v)

)
.

Moreover, (Rp, s, h|Rp) |= p′∆(x,~v) iff (Rp, s, h|Rp) |= ϕp(x,~v, x(~s)). Hence it

suffices to prove inductively that (Loc, s, h) |= T
(
ϕp(x,~v, x(~s)), reachp(x,~v)

)

iff (Rp, s, h|Rp) |= ϕp(x,~v, x(~s)).

Similarly, assuming that the f and f∆ are equivalent, the same iteration

transits them to f ′ and f ′∆, which should also be equivalent. Formally, let

the transitions be f ′∆(x,~v) = DryadDeff and f ′(x,~v) = GlobalDeff , then

the goal is to show JDryadDeff(x,~v)K(Loc,s,h) = JGlobalDeff(x,~v)K(Rf ,s,h|
Rf)

With the assumption that p and p∆ (f and f∆) are equivalent, both

the two goals can be proved together, by induction on the structure of ϕp

(DryadDeff). For each construct from Dryadsep, its heaplet semantics is

equivalenty translated to the classical logic. We omit the details and leave the

reader to verify. In particular, when DryadDeff is of the form
(
ϕf1(x,~v, ~s) :

tf1(x,~s) ; . . . ; default : . . .
)
, by induction, (Rp, s, h|Rp) |= tf1(x,~s) if and

only if (Loc, s, h) |= tf−∆
1 (x,~s). When it is the case,

JDryadDeff (x,~v)K(Loc,s,h)

= JT
(
ϕf1(x,~v, ~s), reach

f(x)
)
K(Loc,s,h)

= Jϕf1(x,~v, ~s)K(Rf ,s,h|
Rf)

= JGlobalDeff (x,~v)K(Rf ,s,h|
Rf)

Otherwise, we can similarly proceed to prove the equivalence between the

second cases, so on and so forth.

We have shown the translation of the recursive definitions is sound, now

it is straightforward to show the main result of this chapter: the translation

of arbitrary Dryadsep formula to the classical logic is sound.

145

Theorem 6.5.2. Let ϕ be a Dryadsep formula w.r.t. a set of recursive

definitions Def ∆. For every program state (Loc, s, h) and for every heaplet

G ⊆ Loc\ {nil}, (Loc, s, h) |= T (ϕ, G) w.r.t. Def if and only if (G, s, h |G) |=

ϕ w.r.t. Def ∆.

Proof. The proof is by induction on the structure of ϕ. For the basic con-

structs, the proof is very similar to the inductive proof in the second step of

proving Lemma 6.5.1. We only prove the recursive predicate case here.

When ϕ is a recursive predicate p∆(lt), T (p∆, G) = p(lt) ∧G = reachp(lt),

so (Loc, s, h) |= T (p∆(lt), G) iff (Loc, s, h) |= p(lt) and (Loc, s, h) |= G =

reachp(lt). By Lemma 6.5.1 and the induction hypothesis, the condition is

equivalent to (Rp, s, h|Rp) |= p∆(lt), where Rp = reachp(lt) = G. In other

word, (G, s, h|G) |= p∆(lt).

146

CHAPTER 7

NATURAL PROOFS FOR STRUCTURE,

DATA, AND SEPARATION

The natural proof methodology has been proposed in Chapter 5, but was

exclusively built for tree data-structures. In particular, this work could

only handle recursive programs, i.e., no while-loops, and even for tree data-

structures, imposed a large number of restrictions on pre/post conditions for

methods— the input to a procedure had to be only a single tree, the method

can only return a single tree, and even then must havoc the input tree given

to it. The lack of handling of multiple structures means that even simple pro-

grams like mergesort (that merges two lists), cannot be handled, and simple

programs that manipulate two lists or two trees cannot be reasoned with.

Also, structures such as doubly-linked lists, trees with parent pointers, etc.

are out of scope of this work.

On the other hand, in Chapter 6, we have carefully designed Dryadsep, a

dialect of separation logic, which seems an ideal logic with the scope for han-

dling real-world programs handling multiple or more complex data-structures

and their separation.

Therefore, the goal of this chapter is to exploit Dryadsep in verifying

practical programs with natural proofs. Technically, we aim at handling

user-defined structures expressible in separation logic, multiple structures

and their separation, programs with while-loops, etc., because of our logical

treatment of separation logic using classical logic.

We develop natural proofs for Dryadsep by showing a natural proof mech-

anism for the equivalent formulas in classical logic, utilizing in part the trans-

lation defined in Section 6.5. We exploit the two tactics for natural proofs set

forth in Chapter 5: in the first step, utilize the idea of unfolding across the

footprint to strengthen the verification condition; in the second step, prove

the validity of the VC soundly using the technique of formula abstraction.

The resulting formula falls in a logic over sets and integers, which is then

147

decided using the theory of uninterpreted functions and arrays using SMT

solvers.

The basic proof tactic that we follow is not just dependent on the for-

mula embodying the verification condition, but also on the precise footprint

touched by the program segment being verified. The key feature is that

heaplets and separation logic constructs, which get translated to recursively

defined sets of locations, are unfolded along with other user-defined recursive

definitions and formula-abstracted using this uniform natural proof strategy.

While our proof strategy is roughly as above, there are many technical

details that are complex. For example, the heaplets defined by pre/post

conditions intrinsically specify the modified locations of the heap, which have

to be considered when processing procedure calls in order to ensure which

recursively defined metrics on locations continue to hold after a procedure

call. Also, the final decidable theories that we compile our conditions down

to does require a bit of quantification, but it turns out to be in the array

property fragment which admits automatic decision procedures.

Our proof mechanisms are essentially a class of decidable proof tactics that

result in sound but incomplete validation procedures. To show that this class

of natural proofs is effective in practice, we provide a prototype implemen-

tation of our technique, which handles a low-level programming language

with pre-conditions and post-conditions written in Dryadsep. We show, us-

ing a large class of correct programs manipulating lists, trees, cyclic lists,

and doubly linked lists as well as multiple data-structures of these kinds,

that the natural proof mechanism succeeds in proving the verifications con-

ditions automatically. These programs are drawn from a range of sources,

from textbook data-structure routines (binary search trees, red-black trees,

etc.) to routines from Glib low-level C-routines used in GTK+/Gnome to

implement file-systems, from the Schorr-Waite garbage collection algorithm,

to several programs from a recent secure framework developed for mobile

applications [54]. Our work is by far the only one that we know of that can

handle such a large class of programs, completely automatically. Our ex-

perience has been that the user-provided contracts and invariants are easily

expressible in Dryadsep, and the automatic natural proof mechanisms work

extremely fast. In fact, contrary to our own expectations, we also found that

the tool is useful in debugging : in several cases, when the annotations sup-

148

P :− P ;P | stmt
stmt :− u := v | u := nil | u := v.pf | u.pf := v

| j := u.df | u.df := j | j := aexpr
| u := new | free u | assume bexpr
| u := f(~v, ~z) | j := g(~v, ~z)

aexpr :− int | j | aexpr+ aexpr | aexpr− aexpr
bexpr :− u = v | u = nil | aexpr ≤ aexpr

| ¬bexpr | bexpr ∨ bexpr

Figure 7.1: Syntax of programs

plied were incorrect, the model provided by the SMT solver for the natural

proof was useful in detecting errors and correcting the invariants/program.

Organization: Section 7.1 defines a simple programming language and

the corresponding Hoare-triple with respect to Dryadsep. Section 7.2 shows

that the VC for the Hoare-triple can be captured by a Dryadsep. Section 7.3

and 7.4 formally presents the natural proofs for Dryadsep in two steps: un-

folding across the footprint and formula abstraction, respectively. After that,

we give some intuition to the reader through a case study of verifying the

heapify routine for max-heap in Section 7.5. Section 7.6 evaluates natu-

ral proofs for Dryadsep through a wide variety of open-source programs,

and Section 7.7 compares our work with other state-of-the-art techniques in

verification.

7.1 Programs and Hoare-triples

We consider straight-line program segments that do destructive pointer-

updates, data-updates and procedure calls. Parameterized by a set of pointer

fields PF and a set of data-fields DF, the syntax of the programs is defined

in Figure 7.1, where pf ∈ PF, f ∈ DF, u and v are program variables of

type location, j and z are program variables of type integer, int is an integer

constant. To simplify the presentation, we assume all program variables are

local and are either pre-assigned or assigned once in the program.

We allow two kinds of recursive procedures, one returning a location f(~v, ~z)

and one returning an integer g(~v, ~z). Each procedure/program is annotated

with its pre- and post-conditions in Dryad. The pre-condition is denoted as

149

a formula ψpre(~v, ~z,~c), where ~v and ~z are variables as the formal parameter-

s/program variables, ~c is a set of implicitly existentially quantified compli-

mentary variables (e.g., variable K in the pre-condition ϕpre in Figure 7.2).

The post-condition is denoted as a formula ψpost(ret, ~v, ~z,~c), where ret is the

variable representing the returned value, of corresponding type, ~v and ~z are

program variables, ~c is a set of complimentary variables that have appeared

in the pre-condition ψpre.

Now consider a Hoare-triple, i.e., a straight-line program with its pre- and

post-conditions: {ψpre} P {ψpost}, we define its partial correctness without

considering memory errors1: P is partially correct iff for every normal execu-

tion (memory-error free) of P , which transits state C to state C ′, if C |= ψpre,

then C ′ |= ψpost.

Given a Hoare-triple {ψpre} P {ψpost} as defined above, a set of recursive

definitions and a set of annotated procedure declarations are presented here.

Assume that P consists of n statements, then consider a normal execution E ,

which can be represented as a sequence of program states (C0, . . . , Cn), where

each Ci = (Ri, si, hi) represents the program state after executing the first i

statements. The verification condition is just a formula interpreted on a state

sequence (C0, . . . , Cn). Let pfi : Loc → Loc be the function mapping every

location l to its pf pointer, i.e., pfi(l) = hi(l, pf) for every location l. Similarly,

dfi : Loc → Int is defined such that dfi(l) = hi(l, df) for every l. Recall that

every program variable is either pre-assigned or assigned once in the program,

each si is an expantion of the previous one, and sn is the store with all

program variables defined. Hence we simply use v to denote sn(v). Moreover,

every recursive predicate/function is also indexed by i. For example, pi is

the recursive predicate such that pi(l) is true iff Ci |= T (p∆(l), reachsetp(l)).

Now for every formula ϕ and every index i, we can give the index i to all the

pointer fields, data fields and recursive definitions. We denote the indexed

formula as ϕ[i].

1We exclude memory errors in order to simplify the presentation. Memory errors can
be handled using a similar VC generation for assertions that negate the conditions for
memory errors to occur.

150

7.2 Generating the Verification Condition

We now algorithmically derive the verification condition ψVC corresponding

to it in classical logic with recursive definitions on the global heap.

Assume there are m procedure calls in P , then P can be divided into m+1

basic segments (subprograms without procedure calls):

S0 ; g1 ; S1 ; . . . ; gm ; Sm

where Sd is the d+ 1-th basic segment and gd is the d-th procedure call.

For each d ∈ [m], let the d-th procedure call in P be the td-th statement

(we also extend the index d to −1, 0 and m + 1 such that t−1 = t0 = 0

and tm+1 = n + 1). Note that E requires that a portion of the state Ctd−1

satisfies the precondition of the call, and a portion of the state Ctd satisfies the

postcondition of the call. We denote the two required portions Ctd−1 |Calld

and Ctd |Returnd, respectively, where Calld ⊆ Rtd−1 and Returnd ⊆ Rtd are

two sets of records.

Let all the location variables appearing in P be LVars. We call a location

variable v dereferenced if v appears on the left-hand side of a dereferencing

operator “.” in P . We call a location variable v modified if v appears in a

statement of the form v.pf := u or v.df := j in P . Then we can extract the

set of dereferenced variables Deref and the set of modified variables Mod.

Note that a modified variable is always dereferenced, i.e., Mod ⊆ Deref. For

each basic segment Sd, let the dereferenced and modified variables within the

segment be Dereftd and Modtd , respectively.

For the d-th procedure call, let the pre- and post-condition associated

with the procedure be ψdpre(~v, ~z,~c) and ψ
d
post(ret, ~v, ~z,~c), respectively. Since E

is a normal execution, we have Ctd−1 |= T (ψdpre(~vd, ~zd, ~cd),Calld) and Ctd |=

T (ψdpost(u, ~vd, ~zd, ~cd),Returnd) (assume the procedure call returns a location

to u), where ~vd and ~zd are the actual parameters of the procedure call, ~cd are

the complimentary variables with fresh names.

Now we are ready to define the verification condition corresponding to P .

We first derive a formula expressing that E does not involve null pointer

dereference:

NoNullDereference ≡
∧

v∈Deref

v 6= nil

151

For each i ∈ [n], we show the effect as per statement on the verification

condition generated as follows.

[u := v]

ϕi ≡ u = v ∧ Ri = Ri−1 ∧ FieldsUnmod(PF ∪ DF, i, i− 1)

[u := nil]

ϕi ≡ u = nil ∧ Ri = Ri−1 ∧ FieldsUnmod(PF ∪ DF, i, i− 1)

[u := v.pf]

ϕi ≡ v ∈ Ri−1 ∧ u = pfi−1(v) ∧Ri = Ri−1

∧ FieldsUnmod(PF ∪DF, i, i− 1)

[u.pf := v]

ϕi ≡ u ∈ Ri−1 ∧ pfi = pfi−1{v ← u} ∧Ri = Ri−1

∧ FieldsUnmod(PF ∪ (DF \ {pf}), i, i− 1)

[j := u.df]

ϕi ≡ u ∈ Ri−1 ∧ j = dfi−1(u) ∧Ri = Ri−1

∧ FieldsUnmod(PF ∪DF, i, i− 1)

[u.df := j]

ϕi ≡ u ∈ Ri−1 ∧ dfi = dfi−1{j ← u} ∧ Ri = Ri−1

∧ FieldsUnmod((PF \ {df}) ∪DF, i, i− 1)

[j := aexpr]

ϕi ≡ j = aexpr ∧Ri = Ri−1 ∧ FieldsUnmod(PF ∪ DF, i, i− 1)

152

[u := new]

ϕi ≡ newi 6= nil ∧ u = newi ∧ newi /∈ Ri−1 ∧ Ri = Ri−1 ∪ {newi}

∧
∧

pf

(
pfi = pfi−1{nil← newi}

)
∧
∧

df

(
dfi = dfi−1{0← newi}

)

[free u]

ϕi ≡ u ∈ Ri−1 ∧Ri = Ri−1 \ {u} ∧ FieldsUnmod(PF ∪DF, i, i− 1)

[assume bexpr]

ϕi ≡ bexpr ∧Ri = Ri−1 ∧ FieldsUnmod(PF ∪DF, i, i− 1)

[u := f(~v, ~z)]

ϕi ≡ T
(
ψdpre(~v, ~z, ~cd),Calld

)
[i− 1] ∧ T

(
ψdpost(u,~v, ~z, ~cd),Returnd

)
[i]

∧ (Ri−1 \ Calld) ∩ Returnd = ∅ ∧ Ri = (Ri−1 \ Calld) ∪ Returnd

where d is the index such that td = i

[j := g(~v, ~z)]

ϕi ≡ T
(
ψdpre(~v, ~z, ~cd),Calld

)
[i− 1] ∧ T

(
ψdpost(j, ~v, ~z, ~cd),Returnd

)
[i]

∧ (Ri−1 \ Calld) ∩ Returnd = ∅ ∧ Ri = (Ri−1 \ Calld) ∪ Returnd

where d is the index such that td = i

where FieldsUnmod(F, i, j) is short for
∧

field∈F (fieldi = fieldj).

As shown above, each statement’s strongest post condition is captured in

the logic, and for procedure calls, the heaplet manipulated by the procedure is

carefully taken into account to update the heap at the caller. The conjunction

of these formulas captures the modification made in E :

Modification ≡
∧

i∈[n]

ϕi

153

Finally, we can define two formulas to capture the pre- and post-conditions:

Pre ≡ T (ψpre, R0)[0]

Post ≡ T (ψpost, Rn)[n]

Now the validity of {ψpre} P {ψpost} can be captured by the following for-

mula:

ψVC ≡
(
Pre ∧NoNullDereference ∧Modification

)
→ Post

Theorem 7.2.1. Given a Hoare-triple {ψpre} P {ψpost}, assume that each

procedure call in P satisfies its associated pre- and post-conditions. Then the

triple is valid if the formula ψVC derived above is valid. Moreover, when P

contains no procedure calls, the triple is valid iff ψVC is valid.

Proof. We prove the soundness by contradiction. Assume the Hoare-triple

{ψpre} P {ψpost} is not valid. Assume P consists of n statements, then there

is an execution E , which can be represented as a state sequence (C0, . . . , Cn)

where each Ci = (Ri, si, hi), such that (C0, R0) satisfies ψpre[0], (Cn, Rn)

satisfies ψpost[n], and the whole execution is memory error free. Then by the

definitions of Pre, Post and NoNullDereference, and the definition of

ψVC, E |= Pre ∧ NoNullDereference ∧ Post, it suffices to show that

E |= Modification, in which case E dissatisfies ψVC. The contradiction will

conclude the proof.

Since Modification ≡
∧
i∈[n] ϕi, we just need to prove E |= ϕ〉 for each

i ∈ [n], by case analysis on the type of the i-th statement in P :

[u := v]

ϕi ≡ u = v ∧ Ri = Ri−1 ∧ FieldsUnmod(PF ∪ DF, i, i− 1)

The variable assignment makes u points to where v points to. Hence

u = v. Since the heap is unmodified from Ci−1 to Ci, the heap domain

remains the same (Ri = Ri−1), and all the field functions remain the

same (FieldsUnmod(PF ∪ DF, i, i− 1)).

154

[u := nil]

ϕi ≡ u = nil ∧ Ri = Ri−1 ∧ FieldsUnmod(PF ∪ DF, i, i− 1)

The variable assignment makes u points to nil, so u = nil. Similar to

the above case, the heap is also unmodified from Ci−1 to Ci.

[u := v.pf]

ϕi ≡ v ∈ Ri−1 ∧ u = pfi−1(v) ∧Ri = Ri−1

∧ FieldsUnmod(PF ∪DF, i, i− 1)

The dereferencing on v implies that v points to a valid location at

timestamp i − 1, i.e., v ∈ Ri−1. Moreover, the assignment makes u

points to the pf field of v at timestamp i − 1, formally u = pfi−1(v).

Similar to the above case, the heap is also unmodified from Ci−1 to Ci.

[u.pf := v]

ϕi ≡ u ∈ Ri−1 ∧ pfi = pfi−1{v ← u} ∧Ri = Ri−1

∧ FieldsUnmod(PF ∪ (DF \ {pf}), i, i− 1)

Similar to the above case, u points to a valid location at timestamp i−1

(u ∈ Ri−1). the mutation makes the pf field at timestamp i updated

from that at timestamp i − 1: pfi = pfi−1{v ← u}. Moreover, the

heap domain is unmodified, so Ri = Ri−1. The other field functions

also remain the same, which is captured by FieldsUnmod(PF ∪ (DF \

{pf}), i, i− 1).

[j := u.df]

ϕi ≡ u ∈ Ri−1 ∧ j = dfi−1(u) ∧Ri = Ri−1

∧ FieldsUnmod(PF ∪DF, i, i− 1)

Similar to the u := v.pf case.

155

[u.df := j]

ϕi ≡ u ∈ Ri−1 ∧ dfi = dfi−1{j ← u} ∧ Ri = Ri−1

∧ FieldsUnmod((PF \ {df}) ∪DF, i, i− 1)

Similar to the u.pf := v case.

[j := aexpr]

ϕi ≡ j = aexpr ∧Ri = Ri−1 ∧ FieldsUnmod(PF ∪ DF, i, i− 1)

The statement assigns the value of aexpr, which is expressible in our

logic, to j. Hence j = aexpr. The rest is similar to other variable

assignment cases.

[u := new]

ϕi ≡ newi 6= nil ∧ u = newi ∧ newi /∈ Ri−1 ∧ Ri = Ri−1 ∪ {newi}

∧
∧

pf

(
pfi = pfi−1{nil← newi}

)
∧
∧

df

(
dfi = dfi−1{0← newi}

)

This statement makes u points to a freshly allocated location, namely

newi in E . So it is clear that newi 6= nil ∧ u = newi. Since the heap

domain at timestamp i is an extension of that at timestamp i − 1 by

adding newi, we know that newi /∈ Ri−1 ∧ Ri = Ri−1 ∪ {newi}. By

default, for newi, each pointer field initially points to nil, each data

field initially stores 0. The remaining portion of the heap is exactly the

same as Ci−1. Hence

∧

pf

(
pfi = pfi−1{nil← newi}

)
∧
∧

df

(
dfi = dfi−1{0← newi}

)

[free u]

ϕi ≡ u ∈ Ri−1 ∧Ri = Ri−1 \ {u} ∧ FieldsUnmod(PF ∪DF, i, i− 1)

This statement removes the location pointed by u from the heap. So

the old heap contains this location, and the new heap can be obtained

156

by subtracting it from the old heap: u ∈ Ri−1 ∧Ri = Ri−1 \ {u}. Since

the domain is shrinked, the field function can be simply unchanged.

[assume bexpr]

ϕi ≡ bexpr ∧Ri = Ri−1 ∧ FieldsUnmod(PF ∪DF, i, i− 1)

The assumed condition bexpr, which can be expressed in our logic, must

be true. The heap is simply unmodified.

[u := f(~v, ~z)]

ϕi ≡ T
(
ψdpre(~v, ~z, ~cd),Calld

)
[i− 1] ∧ T

(
ψdpost(u,~v, ~z, ~cd),Returnd

)
[i]

∧ (Ri−1 \ Calld) ∩ Returnd = ∅ ∧ Ri = (Ri−1 \ Calld) ∪ Returnd

where d is the index such that td = i

As assumed, this call is the d-th procedure call in P , and Ci−1 satisfies

the associated precondition by the heaplet defined by Calld, and Ci

satisfies the associated postcondition by the heaplet defined by Returnd.

Then formally we have

T
(
ψdpre(~v, ~z, ~cd),Calld

)
[i− 1] ∧ T

(
ψdpost(u,~v, ~z, ~cd),Returnd

)
[i]

being satisfied by E .

Due to the framing property of the separation semantics, the portion

of Ci−1 that is not required by ψpre remains unchanged, and is disjoint

from Returnd (since the returned location is assigned to u, the variable

ret can be replaced with u). This property can be expressed as

(Ri−1 \ Calld) ∩ Returnd = ∅ ∧ Ri = (Ri−1 \ Calld) ∪ Returnd

[j := g(~v, ~z)]

ϕi is defined in the same way as the above case,

except replacing u with j.

The proof is also similar to the case of [[u := f(~v, ~z)]].

157

7.3 Unfolding Across the Footprint

The verification condition obtained above is a quantifier-free formula involv-

ing recursive definitions and the reachable sets of the form reachp(x), which

are also defined recursively. While these recursive definitions can be unfolded

ad infinitum, we exploit a proof tactic called unfolding across the footprint.

Intuitively, the footprint is the set of locations explored by the program ex-

plicitly (not including procedure calls). More precisely, a location is in the

footprint if it is dereferenced explicitly in the program. The idea is to unfold

the recursive definitions over the footprint of the program, so that recursive

definitions on the footprint nodes are related, as precisely as possible, to

the recursive definitions on frontier nodes. This will enable effective use of

the formula abstraction mechanism, as when recursive definitions on frontier

nodes are made uninterpreted, the unfolding formulas ensure tight conditions

that the frontier nodes have to satisfy.

Furthermore, to enable effective frame reasoning, it is also necessary to

strengthen the verification condition with a set of instances of the frame

rule. More concretely, we need to capture the fact that a recursive definition

(or a field) on a location is unchanged during a segment or procedure call of

the program, if the reachable locations (or only the location itself) are not

affected by the segment or procedure call.

We incorporate the above facts formally into the verification condition. Let

us introduce a macro function fp that identifies the location variables that are

in (or aliased to something in) the footprint. The footprint of P , FP, is the

set of dereferenced variables in P (we call a location variable dereferenced if

it appears on the left-hand side of a dereferencing operator “.” in P). Then

fp(u) ≡
∨
v∈FP(u = v).

Now we state the unfoldings and framings using a formula; we denote it

as UnfoldAndFrame. Assume there are m procedure calls in P , then P

can be divided into m + 1 basic segments (subprograms without procedure

calls): S0 ; g1 ; S1 ; . . . ; gm ; Sm where Sd is the (d+ 1)-th basic segment

and gd is the d-th procedure call. Then

158

UnfoldAndFrame ≡
∧

rec

∧

0≤d≤m

∧

u∈LVars∪{nil}

[

((
fp(u) ∨ u=nil

)
⇒
(
Unfoldrec

d (u) ∧ FieldUnchangedd(u)
))
∧

((
¬fp(u) ∨ u=nil

)
⇒ RecUnchangedrec

d (u)

)]

The formula enumerates every recursive definition rec and every index d,

and for each location u that is either pointed to by a location variable or is

nil, the formula checks if u is in the footprint, and then unfolds it or frames

it accordingly. If u is in the footprint, then we unfold rec for the timestamps

before and after Sd (represented by the formula Unfoldrec
d (u)); moreover,

all fields of u are unchanged if it is not affected during calling gd (represented

by the formula FieldUnchangedd(u)). If u is not in the footprint, i.e., in

the frontier, then rec and its corresponding reach set reachrec are unchanged

after executing Sd, if Sd does not modify any location in reachrec; they are

also unchanged if reachrec is not affected by calling gd. These frame assertions

are represented by the formula RecUnchangedrec
d (u).

Now we formulate the subformulas mentioned above. Let u be a location

variable in LVars∪ {nil} and let i be an timestamp such that 1 ≤ i ≤ n. For

each recursive definition rec∆ whose ∆-eliminated version defined as rec(x)
def
=

defrec(x,~t, ~v) and whose reach set defined as reachrec(x)
def
= reachdef rec(x),

we can derive a formula Unfoldrec(i, u) for unfolding both rec∆ and its

corresponding reach set on u at timestamp i, provided that u is allocated

at the current timestamp (u ∈ Ri). Note that in def rec(x,~t, ~v), x will be

renamed as u, and ~t will not be renamed as they are program variables,

but ~v are existentially quantified and should be replaced with fresh variable

names. Due to the restrictions on the recursive definitions, every v is unique

and can be determined by dereferencing u on the corresponding pointer fields,

say pf rec,v. Hence we can replace each v in ~v distinctly as u rec v i. Let the

renamed formula be defrec(u,~t, ~vfresh), then we can derive

159

UnfoldAtrec(i, u) ≡

(
reachreci (u) = reachdef rec

i (u)

)
∧

(
u ∈ Ri →

((
reci(u)↔ defreci (u,~t, ~vfresh)

)
∧
∧

v∈~v

(
pf rec,v
i (u) = u rec v i

)))

Now the footprint unfolding is just unfolding u at the beginning and end of

each program segment (for the d-th segment, the timestamp td and td+1− 1,

respectively):

Unfoldrec
d (u) ≡ UnfoldAtrec(td, u) ∧ UnfoldAtrec(td+1 − 1, u)

In UnfoldAndFrame, we simply make the conjunction of all these un-

foldings, for each dereferenced variable, for every timestamp at the beginning

and the end and the program, as well as before/after each procedure call. As

a special location, nil is also unfolded with respect to each recursive definition

and each timestamp.

The formula FieldUnchangedd(u) describes that, in the d-th procedure

call, if the location u is not nil, then for each field pf (or df), pftd−1(u) and

pftd(u) are the same if u itself is not affected during the call:

FieldUnchangedd(u) ≡

((
u 6= nil ∧ u /∈ Calld

)
→

(∧

pf

(
pftd−1(u) = pftd(u)

)
∧
∧

df

(
dftd−1(u) = dftd(u)

)))

Finally, to define RecUnchangedrec
d (u), we first define a formula express-

ing that a recursive definition and its corresponding reach set on a location

are unchanged between two timestamps:

UnchangedBetweenrec(u, i, i′) ≡

reci(u) = reci′(u) ∧ reachreci (u) = reachreci′ (u)

For each non-footprint location variable u and for each recursive predicate

rec∆, the formula RecUnchangedd just captures the fact that rec(u) and

reachrec(u) are unchanged in two cases:

160

1. in the d-th segment of the program (between timestamp td and td+1−1),

they are unchanged if reach set is not modified; or

2. in the d-th procedure call (between the timestamp td− 1 and td) if the

reach set is not affected during the call.

Moreover, it also incorporates the fact that the reach set on u contains u

itself. Formally,

RecUnchangedrec
d (u) ≡(

(reachrectd (u) ∩Modtd = ∅)→ UnchangedBetweenrec(u, td, td+1 − 1)
)

∧
(
(reachrectd (u) ∩ Calld = ∅)→ UnchangedBetweenrec(u, td − 1, td)

)

∧
(
u 6= nil→

(
reachrectd (u) ∩ reachrectd+1−1(u)

))

For each variable u that is not in the footprint and for the special location

{nil}, we apply RecUnchangedrec
d (u).

Now we can strengthen the verification condition by incorporating the

derived formula above:

ψ′
VC ≡ ψVC ∧UnfoldAndFrame

Since the incorporated formula is implied by the verification condition, we

can reduce the validity of ψVC to the validity of ψ′
VC.

Theorem 7.3.1. Given a Hoare-triple {ψpre} P {ψpost}, its verification con-

dition ψVC is valid if and only if ψ′
VC is valid.

Proof. Notice that ψ′
VC strengthens ψVC with a set of conjuncts represented

as UnfoldAndFrame, it suffices to show that UnfoldAndFrame is a

tautology for arbitrary execution of the program. In other word, for every

recursive definition rec, for every timestamp d, and for every location u, we

need to show:

•
(
fp(u) ∨ u=nil

)
⇒
(
Unfoldrec

d (u) ∧ FieldUnchangedd(u)
)

•
(
¬fp(u) ∨ u=nil

)
⇒ RecUnchangedrec

d (u)

161

For the first assertion, if u is dereferenced or is nil, then the unfolding formula

Unfoldrec
d (u) is true as every recd and its corresponding reachsetrecd are fix-

points; and the formula FieldUnchangedd(u) is true as no field will be

modified if u is not affected during the call.

For the second assertion, if u is not dereferenced (including the nil case),

then the formula RecUnchangedrec
d (u) is true, as it just enumerates the

possible cases that recd and reachsetrecd are unchanged.

7.4 Formula Abstraction

While checking the validity of the strengthened verification condition ψ′
VC

is still undecidable, as we argued before, it is often sufficient to prove it

by assuming that the recursive definitions are arbitrary, or uninterpreted.

Moreover, the uninterpreted formula falls in the array property fragment [19],

whose satisfiability is decidable and is supported by modern SMT solvers such

as Z3 [28]. This tactic roughly corresponds to applying unification in proof

systems.

To prove ψ′
VC, we first replace each recursive predicate recd with an unin-

terpreted predicate ˆrecd, and replacing the corresponding reach-set function

reachrecd with an uninterpreted function ˆreach
rec

d . Let the result formula be

ψabs
VC. This conversion, called formula abstraction, is sound:

Proposition 7.4.1. if ψabs
VC is valid, so is ψ′

VC.

Proof. We prove by contradiction. Assume that ψabs
VC is valid but ψ′

VC is

not, then there is a model M satisfying ψ′
VC. We can construct a similar

model M′ that consists of the same elements from M. For each recursive

definition recd, M′ interprets the uninterpreted ˆrecd and ˆreach
rec

d just using

the interpretation of recd and reachrecd in M. Then M′ satisfies ψabs
VC and

contradicts the assumption.

When a proof for ψabs
VC is found, we call it a natural proof for ψ′

VC (and also

for ψVC).

Remark: Obviously the natural proof scheme is incomplete since the for-

mula abstraction throws the semantics of the recursive definitions away and

162

treats them as arbitrary. When the natural proof fails, there exists some spu-

rious counterexample that satisfies ψ′
VC but not ψabs

VC, as the counterexample

interprets some recursive definition incorrectly. The incorrect interpretation

may fall into one of the two following cases.

In the first case, the interpretation is not a fixed point of the propagation

function with respect to the recursive definitions. In this case, the interpreta-

tion must be incorrect on some non-footprint locations, as we have precisely

unfolded the recursive definitions on the footprint. The impreciseness on

non-footprint location is reasonably expected, and is not guaranteed in the

natural proof scheme.

The second case is more subtle, which is when the interpretation is a non-

least fixed point. In this case, the interpretation may still be incorrect even if

all locations are in the footprint. While we don’t have any specific mechanism

to avoid this situation, in practice, the user may exclude this case by giving

recursive definitions such that the fixed point is unique. First, it is notewor-

thy that we can define a recursive set-of-locations as an overapproximation

of the reach set. Moreover, using this recursive function we can precisely

describe whether a location is within a cycle or not. Secondly, typical recur-

sive definitions recursively reduce the definition on a location to that of its

neighbors, till nil is reached. For these definitions, we can modify them so

that it is defined recursively on a location l only if l is not in a cycle (which

is expressible in Dryad), otherwise a default value is given. It is not hard to

prove inductively that the fixed point is unique for the modified definitions.

7.4.1 Deciding the Abstracted Formula

The formula abstraction step is the only step that introduces incompleteness

in our framework, but helps us transform the verification condition to a

decidable theory. Formula abstraction (combined with unfolding recursive

definitions across the footprint) discovers recursive proofs where the recursion

is structural recursion on the definitions of the data-structures. The use of

these tactics comes from the observation that such programs often have such

recursive proofs (see [72] also for use of formula abstractions).

Our goal now is to check the satisfiability of ¬ψabs
VC in a decidable theory.

Note that ¬ψabs
VC is mostly expressible in the quantifier-free theory of arrays,

163

maps, uninterpreted functions, and integers: Loc can be viewed as an un-

interpreted sort; each pointer field pf can be viewed as an array with both

indices and elements of sort Loc; each data field df can be viewed as an array

with indices of sort Loc and elements of sort Int; each integer set (or multiset)

variable S can be viewed as an array with indices of sort Int and elements

of sort Bool (or Int). Moreover, each array update operation of the form

array{elem← key} can be viewed as a read-over-write operation in the array

property fragment, and each set-operation (union, intersection, etc.) can be

viewed as a mapping function applying a Boolean operation (∧, ∨, etc.) to

the range of arrays.

The only construct in ¬ψabs
VC that escapes the quantifier-free formulation is

the ≤ relation between integer sets/multisets; but this can be encoded using

the Array Property Fragment (APF), which is decidable [19]. We explain the

encoding as follows.

For each atomic formula of the form S1 < S2, if S1 and S2 are sets of

integers, we can be replace the formula with a universally quantified formula

as follows:

∀i1, i2.
(
i1 ≤ i2 → (¬S2[i1] ∨ ¬S1[i2])

)

Similarly, if S1 and S2 are integer multisets, we can replace the formula with

∀i1, i2.
(
i1 ≤ i2 → (S2[i1] = 0 ∨ S1[i2] = 0)

)

The formula S1 ≤ S2 where S1 and S2 are sets of integers can also be trans-

lated to

∀i.
(
(S1[i]→ i ≤ k) ∧ (S2[i]→ k ≤ i)

)

where k is an additional existential integer variable, serving as the pivot for

splitting S1 and S2. Similarly, when S1 and S2 are integer multisets, the

formula is translated to

∀i.
(
(S1[i] > 0→ i ≤ k) ∧ (S2[i] > 0→ k ≤ i)

)

Moreover, the negation of the above relations between sets/multisets can

always be expressed using two existential integer variables k1, k2 that witness

164

the violation of the inequality. For instance, S1 6< S2 can be expressed as

k1 ∈ S1 ∧ k2 ∈ S2 ∧ k2 ≤ k1.

We hence obtain a formula ψAPF in the array property fragment combined

with the theory of uninterpreted functions, maps, and arithmetic.

Theorem 7.4.2. Given a Hoare-triple {ψpre} P {ψpost}, if the derived array

formula ψAPF is unsatisfiable, then the Hoare-triple is valid.

Proof. By Theorem 7.3.1, the Hoare-triple is valid iff ψ′
VC is valid, we can

simply show the validity of ψ′
VC. Moreover, by Lemma 7.4.1, the formula

abstraction is obviously sound, i.e., if ψabs
VC is valid, so is ψ′

VC. Hence, it

suffices to show that ψabs
VC is valid, or its negation is unsatisfiable.

Now the only difference between ¬ψabs
VC and ψAPF is the encoding of leq

between integer sets/multisets into APF, which is precise. The reader can

easily verify that ¬ψabs
VC and ψAPF are equivalent and conclude the proof.

7.4.2 User-Provided Axioms

While natural proofs are often effective in finding recursive proofs that unfold

recursive definitions and do unification, they are not geared towards finding

relationships between various recursive definitions themselves. We hence

require the user to provide certain obvious relationships between the different

recursive definitions as axioms. For example, lseg(x, y) ∗ list(y) ⇒ list(x) is

such an axiom saying that a list segment concatenated with a list yields a

list. Note that these axioms are not program-dependent, and hence are not

program-specific tactics that the user provides. These axioms are necessary

typically to relate partial data-structure properties (like list segments) to

complete ones (like lists), especially in iterative programs (as opposed to

recursive ones), and we can fix them for each class of data-structures. We

also allow the use of the separating implication, −∗, from separation logic

while specifying these axioms. User-defined axioms are instantiated, using

the natural proof philosophy, on precisely the footprint nodes uniformly, and

get translated to quantifier-free formulas.

165

void heapify(loc x) {

if (x.left = nil)

s := x.right;

else if (x.right = nil)

s := x.left;

else {

lx := x.left

rx := x.right;

if (lx.key < rx.key)

s := x.right;

else

s := x.left;

}

if (s =/= nil)

if (s.key > x.key) {

t := s.key;

s.key := x.key;

x.key := t;

heapify(s);

}

}

ϕpre ≡
(
x

key,left,right
7−→ (k, l, r)

∗ mheap∆−→
pf
(l) ∗mheap∆−→

pf
(r)
)

∧ keys∆−→
pf
(x) = K

ϕpost ≡ mheap∆−→
pf
(x) ∧ keys∆−→

pf
(x) = K

assume x.left0 6= nil
assume x.right0 6= nil
lx := x.left0
rx := x.right0
assume lx.key0 < rx.key0
s := x.right0
assume s 6= nil
assume s.key0 > x.key0
t := s.key0
s.key1 := x.key0
x.key2 := t
heapify(s)

mheap∆
−→

pf
(x)

def
=
(

x = nil ∧ emp

∨
(
x

key,left,right
7−→ (k, l, r)

∗ (mheap∆−→
pf
(l) ∧ {k} ≥ keys∆−→

pf
(l))

∗ (mheap∆−→
pf
(r) ∧ {k} ≥ keys∆−→

pf
(r))

))

keys∆
−→

pf
(x)

def
=
(

x = nil ∧ emp : ∅ ;

x
key,left,right
7−→ (k, l, r) ∗ true :

keys∆−→
pf
(l) ∪ {k} ∪ keys∆−→

pf
(r) ;

default : ∅
)

Figure 7.2: Case study: Heapify

7.5 Case Study

In this section we give intuition into our verification approach through a case

study. We consider the max-heap data-structure. Recall that a max-heap is

a binary tree such that for each node n the key stored at n is greater than or

equal to the keys stored at each of its children. We have defined max-heap

in Dryadsep in Section 6.4. In Figure 7.2, in the lower right corner, we give

the recursive definitions for keys∆−→
pf
(x) and mheap∆−→

pf
(x) again.

The method heapify in Figure 7.2 is at the heart of the procedure for

deleting the root from a max-heap (removing the node with the maximum

priority). If the max-heap property is violated at a node x while satisfied by

166

its descendants, then heapify restores the max-heap property at x. It does

so by recursively descending into the tree, swapping the key of the root with

the key at its left or right child, whichever is greater.

The figure also presents the pre and post conditions of the method, ϕpre

and ϕpost respectively. The precondition ϕpre binds the free variable K to the

set of keys of x. The postcondition states that after the procedure call, x

satisfies the max-heap property and the set of keys of x is unchanged (same

as K).

7.5.1 Translation

One of the main aspects of our approach is to reduce reasoning about heaplet

semantics and separation logic constructs to reasoning about sets of locations.

We use set operations like union, intersection and membership to describe

separation constraints on a heaplet satisfying a formula. This translation

from Dryadsep formulas, like those in Figure 7.2, to formulas in classical

logic with recursive predicates and functions has been formally presented

in Chapter 6. Intuitively, we associate a set of locations to each (spatial)

atomic formula, which is the domain of the heaplet satisfying that formula.

Dryadsep requires that this heaplet is syntactically determined for each for-

mula. In this example, the heaplet associated to the formula x 7→ . . . is

the singleton {x}; for recursive definitions like mheap∆−→
pf
(x) and keys∆−→

pf
(x),

the domain of the heaplet is reach{left,right}(x), which intuitively is the set of

locations reachable from x using the pointer fields left and right, and can be

defined recursively.

As shown in Figure 7.2, ϕpre is a conjunction of two formulas. If Gpre

is the domain of the heaplet associated to ϕpre, then the first conjunct re-

quires Gpre to be the disjoint union of the sets {x}, reach{left,right}(left(x)) and

reach{left,right}(right(x)), that is,

Gpre = {x} ∪ reach{left,right}(left(x)) ∪ reach{left,right}(right(x))

The second conjunct requires Gpre = reach{left,right}(x). From these heaplet

constraints, we can translate ϕpre to the following formula in classical logic

167

over the global heap:

Gpre = {x} ∪ reach{left,right}(left(x)) ∪ reach{left,right}(right(x))

∧ x 6∈ reach{left,right}(left(x)) ∧ x 6∈ reach{left,right}(right(x))

∧ reach{left,right}(left(x)) ∩ reach{left,right}(right(x)) = ∅ ∧ x 6= nil

∧ mheap(left(x)) ∧mheap(right(x))

∧ Gpre = reach{left,right}(x) ∧ keys(x) = K

Similarly, we translate ϕpost to

Gpost = reach{left,right}(x) ∧mheap(x) ∧ keys(x) = K

Note that the recursive definitions mheap and keys without the “∆” super-

script are in the classical logic (without the heaplet constraint). Hence the

recursive predicate mheap satisfies

mheap(x) ↔ x=nil∧reach{left,right}(x) = ∅
)

∨
(
x 6=nil∧x 6∈reach{left,right}(left(x))∧x 6∈reach{left,right}(right(x))

∧ reach{left,right}(left(x)) ∩ reach{left,right}(right(x)) = ∅

∧
(
reach{left,right}(x) = {x} ∪ reach{left,right}(left(x))

∪reach{left,right}(right(x))
)

∧ mheap(left(x)) ∧ {key(x)} ≥ keys(left(x))

∧ mheap(right(x)) ∧ {key(x)} ≥ keys(right(x))
)

Notice that in the translation of mheap∆−→
pf
, we express all heaplet constraints

on reachset set directly, since in Dryadsep the domain of the heaplet associ-

ated with a recursive predicate is syntactically determined to be the reachset

set. The recursive funtion keys is also defined recursively in the same fashion

and skipped in this section.

All these conditions involving heaplets, reach-sets, scoping, modified-sets,

etc., can be formulated in logic using set theory, and Section 6.5 describes this

in detail. Finally, the verification condition is written using a logic over the

global heap, but referring only to the footprint, and the recursive definitions

are formula-abstracted, resulting in a formula in a decidable theory, whose

proof is then attempted.

168

7.5.2 VC Generation

To illustrate how natural proofs work in the heapify example, let us take a

closeup look at one particular paths. The right side of Figure 7.2 presents

a basic path from method heapify, corresponding to the case when both

children of x are not nil and the key of the right child is greater than the keys

of the left child and the root. The subscript of a pointer/data field denotes

the timestamp. Corresponding to the case when both children of x are not nil

and the key of the left child is greater than the key of the right child and the

root. A key insight is that any basic path touches a finite number of locations

and may call some recursive procedures. We refer to the touched locations as

the footprint, and to the adjacent locations which are not part of the footprint

as the frontier. For this example, let subscript 0, 1, 2 indicate the recursive

definitions at the start, just before the call to heapify, and after the function

call returns, respectively. Then the footprint is { x, lx, rx } (s is known to be

equal with rx) and the frontier is { left0(lx), right0(lx), left0(rx), right0(rx) }.

We capture the effect of the path until the call to heapify by

left0(x) 6= nil ∧ right0(x) 6= nil ∧ lx = left0(x) ∧ rx = right0(x)

∧ key0(lx) < key0(rx) ∧ s = right0(x) ∧ s 6= nil

∧ key0(s) > key0(x) ∧ t = key0(s)

∧ key1 = key0{s← key0(x)} ∧ key2 = key1{x← t}

To get the verification condition for the entire path, we conjunct the pre-

condition ϕpre, the effect of the path before the function call, the effect of

the function call and the formulae that computes the recursive definitions for

the footprint in terms of the values at the frontier locations, and check if it

implies the postcondition ϕpost. This procedure has been formally described

in Section 7.2.

7.5.3 Natural Proofs

Once we have expressed the verification condition in classical logic with re-

cursive definitions over the global heap, we prove it using the natural proof

methodology. A key issue is tracking the recursive predicates and functions

across a basic path. We need to evaluate these recursive definitions at the

beginning and the end of the path, and also before and after every procedure

169

call to incorporate the effect of the procedure call. We “compute” these by

expressing the definitions of them on nodes within the footprint using their

recursive definitions. Furthermore, at frontier locations, we know that if the

corresponding reach set from that location hasn’t changed due to the basic

path working on the footprint (i.e., the reach sets from the location do not

involve footprint nodes), then the recursive definitions on the frontier does

not change. Similarly, if a procedure is called and its pre-condition defines a

heaplet that is disjoint from the reach-set of a location, then we can retain

the value for a recursive definition for that location across a call to the proce-

dure; otherwise it will have to be updated conservatively taking into account

the pre/post condition of the called procedure.

Technically, we unfold the recursive definitions mheap(x), keys(x) and

reach{left,right}(x) for x, lx and rx (the footprint), thus evaluating them in

terms of their values on left0(lx), right0(lx), left0(rx) and right0(rx) (the fron-

tier). The call to heapify preserves the recursive definitions on locations

reachable from lx, and modifies those on rx according to the pre/post condi-

tion.

If mheapi, keysi and reachi are the recursive definitions at the ith instance,

then we can compute the values of mheapi, keysi and reachi for the locations

in the footprint by instantiating their definitions given above, in terms of the

values of the recursive definitions at the frontier. For frontier locations, we

notice that the basic path till the call to heapify only modifies the fields of

locations x and s. If neither of x and s is reachable from a frontier location

l, then the value of the recursive definitions at l remains unchanged across

the path. Then for any frontier location l

{x, s} ∩ reach0(l) = ∅

⇒ mheap1(l) = mheap0(l) ∧ keys1(l) = keys0(l) ∧ reach1(l) = reach0(l)

In our example, the left-hand-side of the implication is true for all frontier

locations because ϕpre states that x points to a tree.

To handle the call to heapify, let G1 andG2 be the domains of the heaplets

of ϕpre and ϕpost when instantiated with the actual call argument s. Also,

let key3, left1 and right1 be the data and the pointer fields after the call. If a

footprint location l is not in the domain of the precondition i.e. G1, then it

is not affected by the function call. Also it is not present in the domain of

170

the postcondition G2:

l 6∈ G1

⇒l 6∈ G2 ∧ key3(l) = key2(l) ∧ left1(l) = left0(l) ∧ right1(l) = right0(l)

Similarly, if the set of reachable nodes of a frontier location l does not inter-

sect with the domain of the call, then the values of its recursive definitions

are unchanged across the call:

G1 ∩ reachset0(l) = ∅

⇒ mheap2(l) = mheap1(l) ∧ keys2(l) = keys1(l) ∧ reach2(l) = reach1(l)

Finally, we abstract the recursive definitions on the frontier with uninter-

preted functions, and encode the relations between integer sets into APF:

left0(x) 6= nil ∧ right0(x) 6= nil ∧ lx = left0(x) ∧ rx = right0(x)

∧ ∀i1, i2.
(
i1 ≤ i2 → (¬key0(rx)[i1] ∨ ¬key0(lx)[i2])

)

∧ s = right0(x) ∧ s 6= nil

∧ ∀i1, i2.
(
i1 ≤ i2 → (¬key0(s)[i1] ∨ ¬key0(x)[i2])

)

∧ t = key0(s)

∧ key1 = key0{s← key0(x)} ∧ key2 = key1{x← t}

We decide the resulted formula (which is in a decidable logic) using an SMT

solver. This process has been described in detail in Section 7.4.

7.6 Experimental Evaluation

We have implemented a prototype of the natural proof methodology for

Dryadsep presented in this chapter. The prototype verifier takes as input a

set of user-defined recursive definitions, a set of procedure declarations with

contracts, and a set of straight-line programs (or basic blocks) annotated with

a pre-condition and a post-condition specifying a set of partial correctness

properties including structural, data and separation requirements. Both the

contracts and pre-/post-conditions are written in Dryadsep. For each basic

block, the verifier automatically generates the abstracted formula ψAPF as

described in Section 7.3 and 7.4, and passes ψAPF to Z3 [28], a state-of-the-

art SMT solver, to check the satisfiability in the decidable theory of array

171

property fragment. The front-end of our verifier is based on ANTLR and our

tool is around 4000 lines of C# code.

7.6.1 Standard Routines

Using the verifier, we successfully proved the partial correctness of 59 routines

over a large class of programs involving heap data structures like sorted

lists, doubly-linked lists, cyclic lists and trees. data-structures including

sorted lists, doubly-linked lists, cyclic lists and trees. Experimental details

are available at http://web.engr.illinois.edu/~qiu2/dryad .

We conducted the experiments on a machine with a dual-core, 2.4GHz

CPU and 6GB RAM. The first part of our experimental results is tabulated in

Table 7.1. In general, for every routine, we checked the properties formalizing

the complete verification of the routines— capturing the precise structure of

the resulting heap-structure, the precise change to the data stored in the

nodes and the precise heaplet modified by the respective routines.

For every routine, the suffix rec or iter indicates if the routine was imple-

mented recursively or iteratively using while loops. The names for most of the

routines are self-descriptive. Routines like find, insert, delete, append,

etc. are the natural implementations of the corresponding data structure

operations. The routine delete all for singly-linked lists, sorted lists and

doubly-linked lists recursively deletes all occurrences of a particular key in

the input list. The max-heap routine heapify accepts an almost max-heap in

which the heap property is violated only at the root, both of whose children

are max-heaps, and recursively descends the tree to restore the max-heap

property. The routine remove root for binary search trees and treaps is an

auxiliary routine which is called in delete. Similarly, the routines leftmost

for AVL-trees and RB-trees and delete fix and insert fix for RB-trees

are also auxiliary routines.

Schorr-Waite is a well-known graph marking algorithm which marks all

the reachable nodes of the graph using very little additional space. The

algorithm achieves this by manipulating the pointers in the graph such that

the stack of nodes along the path from the root is encoded in the graph

itself. The Schorr-Waite algorithm is used in garbage collectors and it is

traditionally considered as a challenging problem for verification [39]. The

172

Data-structure Routine
Time (s)

/ Routine

Singly-
find rec, insert front,

< 1s
Linked List

insert back rec, delete all rec,

copy rec, append rec, reverse iter

Sorted List

find rec, insert rec, merge rec,

< 1sdelete all rec, insert sort rec,

reverse iter, find last iter

insert iter 1.4
quick sort iter 64.8

Doubly-
insert front, insert back rec,

< 1s
Linked List

delete all rec, append rec,

mid insert, mid delete, meld

Cyclic List
insert front, insert back rec,

< 1s
delete front, delete back rec

Max-Heap heapify rec 8.8

BST

find rec, find iter, insert rec,
< 1s

delete rec, remove root rec

insert iter 72.4
find leftmost iter 4.7
remove root iter 65.6

delete iter 225.2

Treap
find rec, delete rec < 1s

insert rec 12.7
remove root rec 9.5

AVL-Tree

balance, leftmost rec < 1s
insert rec 4.1
delete rec 13.9

RB-Tree

insert rec 73.9
insert left fix rec 8.1
insert right fix rec 5.1

delete rec 12.1
delete left fix rec 7.6
delete right fix rec 5.5

leftmost rec < 1s

Binomial find min rec 1.1
Heap merge rec 152.7

Schorr-Waite
marking iter < 1s

(for trees)

Tree
inorder tree to list rec 2.4

Traversals
inorder tree to list iter 42.7

preorder rec, postorder rec < 1s
inorder rec 3.76

Table 7.1: Results of verifying data-structure algorithms
more details at http://web.engr.illinois.edu/~qiu2/dryad .

173

routine marking is an implementation of Schorr-Waite for trees [49] and we

check the property that the resulting output tree is well-marked.

The routines inorder tree to list construct a list consisting of the keys

of the input tree, which is traversed inorder. The iterative version of this

algorithm achieves this by maintaining a worklist/stack of sub-trees which

remain to be processed at any given time. The routines inorder, preorder

and postorder number the nodes of an input tree according to the inorder,

preorder and postorder traversal algorithm, respectively.

7.6.2 Open-Source Libraries

Additionally, we pit our natural proofs methodology against real-world pro-

grams and successfully verified, in total, 47 routines from different projects

including the list and queue implementations in the Glib open source library,

the OpenBSD library, the Linux kernel and the memory regions and the page

cache implementations from two different operating systems.

Table 7.2 shows the results of applying natural proofs to the verification

of various other real world programs and libraries. Glib is the low-level C

library that forms the basis of the GTK+ toolkit and the GNOME desktop

environment, apart from other open source projects. Using our prototype

verifier, we efficiently verified Glib implementation of various routines for

manipulating singly-linked and doubly-linked lists. We also verified the queue

library which forms part of the OpenBSD operating system.

ExpressOS is an operating-system/browser implementation which provides

security guarantees to the user via formal verification [54]. The module

cachePage maintains a cache of the recently used disc pages. The cache is

implemented as a priority queue based on a sorted list. We prove that the

methods add cachepage and lookup prev (both called whenever a disc page

is accessed) maintain the sortedness property of the cache page.

In an OS kernel, a process address space consists of a set of intervals of

linear addresses represented as a memory region. In the ExpressOS imple-

mentation, a memory region is implemented as a sorted doubly-linked list

where each node of the list with a start and an end address represents an

interval included in the address space. We also verified some key components

of the Linux implementation of a memory region, present in the file mmap.c.

174

Example Routine
Time (s)

/ Routine

glib/gslist.c

free, prepend, concat,

< 1s

Singly

insert before, remove all,

Linked-List

remove link, delete link,

LOC: 1.1K

copy, reverse, nth,

nth data, find, position,

index, last, length

append 4.9
insert at pos 11.4

remove 3.1
insert sorted list 16.6
merge sorted lists 6.1

merge sort 3.0

glib/glist.c free, prepend, reverse,

< 1s
Doubly nth, nth data, position,

Linked-List find, index, last,

LOC: 0.3K length

OpenBSD/queue.h

simpleq init,
< 1s

Queue

simpleq remove after

LOC: 0.1K

simpleq insert head 1.6
simpleq insert tail 3.6
simpleq insert after 18.3
simpleq remove head 2.1

ExpressOS/cachePage.c lookup prev 2.4
LOC: 0.1K add cachepage 6.4

ExpressOS/ memory region init < 1s
memoryRegion.c create user space region 3.6

LOC: 0.1K split memory region 5.8

linux/mmap.c
find vma, remove vma,

< 1s
LOC: 0.1K

remove vma list

insert vm struct 11.6

Table 7.2: Results of verifying open-source libraries
more details at http://web.engr.illinois.edu/~qiu2/dryad .

175

In Linux, a memory region is represented as a red-black tree where each

node, again, represents an address interval. We proved methods which find,

remove and insert a vma struct (vma is short for virtual memory address)

into a memory region.

7.6.3 Evaluation

Note that our natural proof mechanism presented in Chapter 5 can only

prove tree properties, and further, is restricted to extremely stringent condi-

tions of pre- and post-conditions (for example, two trees cannot be given as

parameters for a procedure, a procedure cannot modify the input node and

return another tree, etc.).

However, on the tree data-structure examples, the algorithm in Chapter 5

perform better as it has been honed to work only for trees, where graph

algorithms on footprints check the tree property as opposed to the logical

mechanism dealing with it. The technique in this chapter is more general,

and can handle arbitrary separation property expressed in Dryadsep.

The results for Dryadtree do suggest that for certain structural properties,

moving their check to a simpler graph algorithm outside of logic may be

more efficient in practice. Another big difference is that Dryadtree can only

handle functional recursion and does not support while-loops. In contrast,

Dryadsep supports both recursive and iterative programs. In fact this paper

extends the natural proof methodology to partial heap-structures like list

segments or partial trees which is essential for the verification of many while-

loop programs. It is important to note that most of the routines in Figure 7.2

are implemented iteratively.

It also worth mentioning that in the process of experiments, we did make

some unintentional mistakes, in writing both the basic blocks and the annota-

tions. For example, forgetting to free the deleted node, or using ∧ instead of

∗ in the specification between two disjoint heaplets, were common mistakes.

In these cases, Z3 provided counter-examples to the verification condition

that captured the essence of the bugs, and turned out to be very helpful for

us to debug the specification. These debugging hints are usually not available

in other incomplete proof systems.

176

Our experiments show that the natural proof methodology set forth in this

paper is successful in efficiently proving full-functional correctness of a large

variety of algorithms. Most of the VCs generated for the above examples were

discharged by Z3 in a few seconds. To the best of our knowledge, this is the

first automatic mechanism that can prove such a wide variety of algorithms

correct, handling such complex properties of structure, data and separation.

7.7 Related Work

There is a rich literature on analysis of heaps in software. We omit discussing

literature on general interactive theorem provers (like Isabelle [62]) that

require considerable manual guidance. We also omit a lot of work on ana-

lyzing shape properties of the heap [53, 77, 22, 30, 8], as they do not handle

complex functional properties.

There are several proof systems and assistants for separation logic [68, 63]

that incorporate proof heuristics and are incomplete. However, [9] gives a

small decidable fragment of separation logic on lists which has been further

extended in [17] to include a restricted form of arithmetic. Symbolic execu-

tion with separation logic has been used in [11, 10, 14] to prove structural

specifications for various list and tree programs. These tools come hardwired

with a collection of axioms and their symbolic execution engines check the

entailment between two formulas modulo these axioms. VeriFast [41], on

the other hand, chooses flexibility of writing richer specifications over com-

plete automation, but requires the user to provide inductive lemmas and

proof tactics to aid verification. Similarly, Bedrock [24] is a Coq library

that aims at mostly automated (but not completely automated) procedures

that requires some proof tactics to be given by the user to prove verification

conditions. The idea of using regions (sets of locations) for describing heaps

in our work also extends to describing frames for function calls, and the

use for the latter is similar to implicit dynamic frames [71] in the literature.

The crucial difference in our framework is that the implicit dynamic frames

are syntactically determined, and amenable to quantifier-free reasoning. A

work that comes very close to ours is a paper by Chin et al. [23], where the

authors allow user-defined recursive predicates (similar to ours) and build

a terminating procedure that reduces the verification condition to standard

177

logical theories. However, their procedure does not search for a proof in a

well-defined simple and decidable class, unlike our natural proof mechanism;

in fact, the resulting formulas are quantified and incompatible with decidable

logics handled by SMT solvers.

In all of the above cited work and other manual and semi-automatic ap-

proaches to verification of heap-manipulating programs like [69], inductive

definitions of algebraic data-types is extremely common for capturing second-

order data-structure properties. Most of these approaches use proof tactics

which unroll inductive definitions and do extensive unification to try to match

terms to find simple proofs. Our notion of natural proofs is very much in-

spired by such kinds of semi-automatic and manual heap reasoning that we

have seen in the literature.

There is also a variety of verification tools based on classical logics and

SMT solvers. Dafny [47] and VCC [26] compile to Boogie [5] and generate

VCs that are passed to SMT solvers. This approach requires significant ghost

annotations, and annotations that explicitly express and manipulate frames.

The Jahob system [81, 82] is one of the first attempts at full functional

verification of linked data structures, which integrates a variety of theorem

provers, including SMT solvers, and makes the process mostly automated.

However, complex specifications combining structure, data and separation

usually require more complex provers such as Mona [42], or even interactive

theorem provers such as Isabelle [62] in the worst case. The success of the

proof search also relies on users’ manual guidance.

The idea of unfolding recursive definitions and formula abstraction also

features in the work by Suter et al. [72, 73], where a procedure for alge-

braic data-types is presented. However, this work focuses on soundness and

completeness, and is not terminating for several complex data structures like

red-black trees. Moreover, the work limits itself to functional program cor-

rectness; in our opinion, functional programs are very similar to algebraic

inductive specifications, leading to much simpler proof procedures.

There is also a rich literature on completely automatic decision proce-

dures for restricted heap logics, some of which combine structure-logic and

arbitrary data-logic. These logics are usually FOLs with restricted quan-

tifiers, and usually are decided using SMT solvers. The logics Lisbq [46]

and CSL [15, 16] offer such reasoning with restricted reachability predicates

and quantification; see also the logics in [12, 65, 66, 59, 67, 3]. Strand

178

presented in this dissertation is a relatively expressive logic that can handle

some data-structure properties (like BSTs) and admits decidable fragments,

but is again not expressive enough for more complex properties of inductive

data-structures. None of these logics can express the class of VCs for full

functional verification explored in this paper.

7.8 Annotation Synthesis

In this chapter, we have presented how to build an automatic verifier, which

encodes the natural proof strategy forDryadsep into logical formulas that can

be handled by SMT solvers. However, we believe natural proofs, as a novel

and fundamental methodology, should not only lead to dedicated, stand-

alone verifiers, but also benefit existing verification frameworks and tools.

For example, in recent years, a number of tools have been developed with the

aim of making the verification process mostly automated. These tools varies

in the logics they support (e.g., classical logic [26, 47] or SL [41]), in their

underlying proving engine (e.g., SMT solvers [26, 47] orMona/Isabelle [81,

82]), but they all rely on user-provided lemmas and/or ghost code. The

programmer may provide hints or proof heuristics through these additional

annotations. This task could be very challenging and tedious for ordinary

programmers, and make the verification process much less automatic. See

why through an motivating example as follows.

7.8.1 An Motivating Example

Let us consider an BST example verified by VeriFast2:

#include "stdlib.h"

#include "assert.h"

struct tree{

int value;

struct tree *left;

2http://people.cs.kuleuven.be/~bart.jacobs/verifast/examples/

sorted bintree.c.html

179

struct tree *right;

};

predicate tree(struct tree *t,bintree b)

requires switch(b){

case empty: return t==0;

case tree(a,bl,br): return t->value |-> ?v &*&

t->left |-> ?l &*& t->right |-> ?r &*&

malloc_block_tree(t) &*& tree(l,bl) &*& tree(r,br)

&*& t!=0 &*& a==v ;

}&*& inorder(b)==true;

inductive bintree = |empty |tree(int,bintree,bintree);

fixpoint bool t_contains(bintree b, int v) {

...

}

fixpoint bintree tree_add(bintree b, int x) {

...

}

fixpoint int max(bintree b){

...

}

fixpoint int min(bintree b){

...

}

fixpoint bool inorder(bintree b){

...

}

lemma void max_conj_add(bintree l,int v,int x)

requires x < v &*& (max(l)<v||l==empty) &*& inorder(l)==true;

ensures max(tree_add(l,x))<v &*& inorder(l)==true;

{

switch(l){

case empty:

180

case tree(a,b,c):if(x < a){

max_conj_add(b,a,x);

}

if(a < x){

max_conj_add(c,v,x);

}

}

}

lemma void min_conj_add(bintree r,int v,int x)

requires v < x &*& (v < min(r)||r==empty) &*&

inorder(r)==true;

ensures v < min(tree_add(r,x)) &*& inorder(r)==true;

{

switch(r){

case empty:

case tree(a,b,c):

if(a < x){

min_conj_add(c,a,x);

}

if(x < a){

min_conj_add(b,v,x);

}

}

}

lemma void tree_add_inorder(bintree b, int x)

requires inorder(b)==true &*& t_contains(b,x)==false;

ensures inorder(tree_add(b,x))==true &*&

t_contains(tree_add(b,x),x)==true;

{

switch (b) {

case empty:

case tree(v,l,r):

if(x < v){

max_conj_add(l,v,x);

tree_add_inorder(l,x);

181

}

if(v < x){

min_conj_add(r,v,x);

tree_add_inorder(r,x);

}

}

}

void add(struct tree *t, int x)

//@ requires tree(t,?b) &*& b!=empty &*&

false==t contains(b,x) &*& inorder(b)==true;

//@ ensures tree(t,tree add(b,x)) &*&

inorder(tree add(b,x))==true;

{

//@ open tree(t,b);

int v=t->value;

struct tree *l=t->left;

//@ open tree(l,?bl);

//@ close tree(l,bl);

struct tree *r=t->right;

//@ open tree(r,?br);

//@ close tree(r,br);

if(x < v){

if(l!=0){

add(l,x);

//@ tree_add_inorder(b,x);

//@ close tree(t,tree(v,tree_add(bl,x),br));

}else{

struct tree *temp=init_tree(x);

t->left=temp;

//@ open tree(l,bl);

//@ close tree(t,tree(v,tree(x,empty,empty),br));

//@ tree_add_inorder(b,x);

}

}else{

if(v < x){

182

if(r!=0){

add(r,x);

//@ tree_add_inorder(b,x);

//@ close tree(t,tree(v,bl,tree_add(br,x)));

}else{

struct tree *temp=init_tree(x);

t->right=temp;

//@ open tree(r,br);

//@ close tree(t,tree(v,bl,tree(x,empty,empty)));

}

}

}

}

The BST consists of structured nodes of type tree. The add function

inserts a new node with value x into a tree with root pointed by t. The

requires and ensures clauses specify the partial correctness of add: the

expected inputs are a non-empty tree pointed by t and an integer x, and the

keys in the tree form an inorder bintree structure b that does not contain

x; upon the end of the program, the keys stored under t still form an inorder

bintree structure tree(t,tree_add(b,x)). The above specification relies

on the definition of a recursive predicate tree(t,b) and an inductive data

type bintree.

To verify this particular function, the programmer instruments 14 ghost

annotations in 3 categories: the open clause, the close clause, and the

tree_add_inorder lemma. Intuitively, the open and close manually un-

fold or fold the recursive definitions with respect to a particular node, re-

spectively. The tree_add_inorder lemma asserts the relation between b

and tree_add(b,x). This lemma is described as a function and proved by

verifying the lemma function. Furthermore, proving tree_add_inorder in

turn relies on two additional lemmas: max_conj_add and min_conj_add. In

addition, these lemmas use 5 pure functions which are recursively defined:

t_contains, tree_add, max, min and inorder. There definitions are omitted

here.

The VeriFast tool successfully verifies this program against such complex

specifications, in a completely automatic fashion. Nevertheless, the price to

183

pay is all the ghost annotations, lemmas and functions, which is literally

at least three times longer than the minimal portion that implements the

functionality. Writing these extra annotations also far exceeds the capability

of any ordinary programmer without specific training.

Therefore, our goal is to extricate programmers from the extra burden of

developing their own proof heuristics and encoding them into the daunting

ghost annotations/lemmas. In particular, we hope the natural proofs, as a

pre-defined tactic that is practically useful for many correct programs, can

be automatically encoded as a set of ghost annotations, and leave only the

necessary coding task to the programmer: the program itself as well as pre-

/post-conditions.

7.8.2 Recursive Definitions for VCC

In this section, we consider Dryadsep, and implement natural proofs for

C programs by automatically encoding natural proof tactics into carefully

crafted ghost-code annotations on a C program using classical logical anno-

tations that ensure verification conditions fall into decidable logics. These

automatic annotations then help the tool VCC to carry out an automatic

proof of the C program, completely freeing the engineer from guiding proofs.

We implement our annotation synthesis as an extension of VCC, and the pre-

liminary results show that a class of challenging heap-manipulating programs

can be automatically verified.

We now show how the ”VCC + Natural Proof” mechanism works through

a simple example: reversing a sorted list. First, the programmer writes the

program as well as the Dryadsep annotations:

#include "sll.dryad"

Node * reverse_sorted(Node * l)

_(requires _dryad_srtl^(l))

_(ensures _dryad_rsrtl^(\result))

_(ensures _dryad_keys^(\result) == \old(_dryad_keys^(l)))

{

Node * r = NULL;

184

while(l != NULL)

_(invariant _dryad_srtl^(l) * _dryad_rsrtl^(r))

_(invariant \old(_dryad_keys^(l)) ==

\intset_union(_dryad_keys^(l), _dryad_keys^(r)))

{

Node * t = l->next;

l->next = r;

r = l;

l = t;

}

return r;

}

The annotations above are written in Dryadsep and just consist of neces-

sary parts: pre-/post-conditions, and loop invariants. The _dryad_srtlˆ and

_dryad_rsrtlˆ are recursive predicates for sorted list and reverse-sorted list,

respectively; and the _dryad_keysˆ is the recursive function getting the set

of keys stored. All these definitions along with their corresponding reach set

definitions are defined in a separate head file sll.dryad.

As a preprocessing step, our transformer translates the Dryadsep defini-

tions and annotations into classical logical formulas in the form recognized

by standard VCC, following the procedure described in Section 6.5. First,

the transformer generates a head file sll.h, which mimics every recursive

definition in sll.dryad using a set of ghost pure functions. For example,

given the predicate _dryad_srtlˆ which is recursively defined as

define pred dryad_srtl^(x):

(

((x l= nil) & emp) |

((x |-> loc next: nxt; int key: ky) *

(dryad_srtl^(nxt) & (ky lt-set dryad_keys^(nxt)))

)

) ;

185

the sll.h file declares both _dryad_srtl and its corresponding reach set

_dryad_N, and defines how they should be unfolded:

_(ghost _:pure \bool _dryad_srtl(struct node * head)

_(reads \universe())

;)

_(ghost _:pure \objset _dryad_N(struct node *head)

_(reads \universe())

;)

_(pure \bool _dryad_unfold_srtl(struct node * x)

_(reads \universe())

_(ensures \result == (_dryad_srtl(x) == (

(x == NULL && _dryad_N(x) == {}) ||

(x \in \universe() && _dryad_srtl(x->next) &&

_dryad_N(x->next) \union _dryad_N(x->next)

== _dryad_N(x->next) &&

\intset_lt_set(x->key, _dryad_keys(x->next)) &&

dryad_N(x->next) \union _dryad_N(x->next)

== _dryad_N(x->next) &&

{x} \union _dryad_N(x->next) \union _dryad_N(x->next)

== _dryad_N(x))

)))

;)

_(pure \bool _dryad_unfold_N(struct node * hd)

_(reads \universe())

_(ensures \result == (

(hd == NULL && _dryad_N(hd) == {}) ||

(hd != NULL &&

_dryad_N(hd) == ({hd} \union _dryad_N(hd->next)))

));)

We omit the similar definitions for _dryad_rsrtl, _dryad_unfold_rsrtl,

_dryad_keys and _dryad_unfold_keys.

186

Secondly, the transformer replaces each Dryadsep-style specification with

a VCC-style specification. For instance, the loop invariant

_(invariant _dryad_srtl^(l) * _dryad_rsrtl^(r))

gets translated to the following ones:

_(invariant _dryad_srtl(l))

_(invariant _dryad_rsrtl(r))

_(invariant \disjoint(_dryad_N(l), _dryad_N(r)))

7.8.3 Natural Proofs for VCC

After the above translation, instead of the generating the VC and apply the

natural proofs in steps as we set forth in chapter, our annotation synthesizer

simply instrument assumptions at the beginning and the end of each basic

block. These assumptions encode the known facts about the current program

states: unfoldings and framings. These assumptions are essentially the same

as the formula UnfoldAndFrame formulated in Section 7.4, but written in

the VCC-specification format. To this end, we also define several macros in

sll.h to make the instrumentation succinct and intuitive. In this particular

example, these macros are defined as:

_(ghost _:pure \bool _dryad_unfoldAll(\object o)

_(reads \universe())

_(ensures _dryad_unfold_N(o))

_(ensures _dryad_unfold_keys(o))

_(ensures _dryad_unfold_srtl(o))

_(ensures _dryad_unfold_rsrtl(o))

;)

_(logic \bool _dryad_recUnchanged(struct node * x,

struct node * y, \state enter, \state exit) =

((! (x \in \at(enter, _dryad_N(y)))) ==>

\at(enter, _dryad_N(y)) == \at(exit, _dryad_N(y)))

&& ((! (x \in \at(enter, _dryad_N(y)))) ==>

\at(enter, _dryad_keys(y)) == \at(exit, _dryad_keys(y)))

&& ((!(x \in \at(enter, _dryad_N(y)))) ==>

187

\at(enter, _dryad_srtl(y)) == \at(exit, _dryad_srtl(y)))

&& ((!(x \in \at(enter, _dryad_N(y)))) ==>

\at(enter, _dryad_rsrtl(y)) == \at(exit, _dryad_rsrtl(y)))

&&

(\disjoint(\at(enter, _dryad_N(x)),

\at(enter, _dryad_N(y))) ==>

\at(enter, _dryad_N(x)) == \at(exit, _dryad_N(x)))

&& (\disjoint(\at(enter, _dryad_N(x)),

\at(enter, _dryad_N(y))) ==>

\at(enter, _dryad_keys(x)) == \at(exit, _dryad_keys(x)))

&& (\disjoint(\at(enter, _dryad_N(x)),

\at(enter, _dryad_N(y))) ==>

\at(enter, _dryad_srtl(x)) == \at(exit, _dryad_srtl(x)))

&& (\disjoint(\at(enter, _dryad_N(x)),

\at(enter, _dryad_N(y))) ==>

\at(enter, _dryad_rsrtl(x)) ==

\at(exit, _dryad_rsrtl(x)))

;)

Let c be the current program state, then intuitively, _dryad_unfoldAll

unfolds each recursive definition (including reach sets) at c,

_dryad_recUnchanged mimics the formula RecUnchangedrec
c for each

recursive definition rec.

When sll.h is included, the instrumented program is generated as below:

#include "sll.h"

struct node* reverse_sorted(struct node* l)

requires _dryad_srtl(l);

ensures _dryad_rsrtl(result);

ensures unchecked==(_dryad_keys(result),

old(@prestate, _dryad_keys(l)));

{

// --- Dryad annotated function ---

_math \objset _dryad_G0;

_math \objset _dryad_G1;

188

@spec(@=(_dryad_G0, _dryad_N(l)))

@spec(@=(_dryad_G1, _dryad_G0))

struct node* l;

{

assume _dryad_unfoldAll((checked \object)l);

struct node* r;

assume mutable_list(l);

@=(r, (checked struct node*)(checked void*)0)

@while(@loop_contract(assert _dryad_srtl(l);

, assert _dryad_rsrtl(r);

, assert \disjoint(_dryad_N(l), _dryad_N(r));

, assert @ite(unchecked!=((checked void*)l,

(checked void*)0), \intset_ge(*((l->

key)), _dryad_keys(r)), true);

, assert unchecked==(old(@prestate, _dryad_keys(l)),

\intset_union(_dryad_keys(l), _dryad_keys(r)));

, assert mutable_list(l);

), unchecked!=((checked void*)l, (checked void*)0), {

assume _dryad_unfoldAll((checked \object)r);

assume _dryad_unfoldAll((checked \object)l);

struct node* t;

assume unfoldMutable(l);

{

assume _dryad_unfoldAll((checked \object)l);

@=(t, *((l->next)))

assume _dryad_unfoldAll((checked \object)l);

}

{

_math \state _dryad_S0;

@spec(@=(_dryad_S0, @_vcc_current_state))

@=(*((l->next)), (checked struct node*)r)

assume _dryad_unfoldAll((checked \object)l);

_math \state _dryad_S1;

@spec(@=(_dryad_S1, @_vcc_current_state))

assume _dryad_fieldUnchanged(l, t, _dryad_S0, _dryad_S1);

assume _dryad_fieldUnchanged(l, r, _dryad_S0, _dryad_S1);

189

}

{

@=(r, (checked struct node*)l)

}

{

@=(l, (checked struct node*)t)

}

}

)

return r;

skip;

}

}

These automatically generated annotations help VCC find a natural proof.

When the unfoldings and framings are explicitly stated, the built-in engine

of VCC automatically finished the rest of the verification in a few seconds.

This example shows the salient feature of the annotation synthesis from

natural proofs: reducing most extra burden on writing proof annotations.

Besides the program itself, the programmer just needs to write the minimum

specification which is unavoidable, including pre-/post-conditions and loop

invariants. In many cases, the synthesized annotations are already enough

to carry out an automatic proof. Otherwise, if the verifier does not finish

the proof immediately, What left to the programmer is usually only a few

hints or lemmas that are specific to the program, so that the programmer

can focus on the most creative part of the verification. In either case, we

believe our annotation synthesizer paves the way for tractable analysis of

separation logic for C programs manipulating heaps using the idea of natural

proofs, and makes the deductive verification more approachable to ordinary

programmers.

190

CHAPTER 8

CONCLUSIONS

This chapter first presents the conclusions of this dissertation, followed by a

look ahead of future research directions.

8.1 Conclusions

For several decades, automated reasoning for program verification has been

an intense research topic. Most people today are aware of a fact: there is no

one-size-fits-all solution to the problem of buggy programs. Computer sys-

tems is used in so many different contexts that each different technique could

be potentially useful. few programmers are willing to write extra annotations

for less-critical software. However, for software systems whose reliability is

highly critical, it may be justifiable to do so if highly automated techniques

and tools are available to help the user.

This dissertation focuses on heap-manipulating programs and spans sev-

eral important aspects of heap analysis and verification: data-structures,

decidability, theorem proving, separation, and recursion. A key theme in

this work is to develop new program logics and methodologies that strike a

nice balance between expressiveness and verifiability in the area of verify-

ing heap-manipulating programs. We have defined two logical framework,

one called Strand (in Chapter 3 and 4), and the other one called Natural

Proofs (in Chapter 5, 6 and 7). Strand is so far one of the most powerful

decidable logical frameworks for complex properties combining heap struc-

tures and data. The natural proof scheme is an efficient terminating proof

methodology that can automatically verify the full correctness of a wide va-

riety of challenging programs, including a large number of programs from the

GTK library, the OpenBSD library and the Linux kernel.

191

The two approaches complement each other: Strand sticks to the decid-

ability, and can be used in not only proving programs correct but also in

software analysis and software testing; Natural proofs aim at expressiveness,

and could alleviate the programmers burden, making the proof technology

more feasible to ordinary programmers.

We believe that this work paves the way for deductive verification technol-

ogy to be used by programmers who do not (and need not) understand the

internals of the underlying logic solvers, significantly increasing their applica-

bility in building reliable systems. By combining these different approaches,

we envision the emerging of innovative techniques that can help the user to

build reliable software in a natural and efficient way, and hold promise of

hatching the next-generation automatic verification techniques.

8.2 A Look Ahead

To make software development easier, more reliable, and more productive,

several promising research directions can be explored in the future.

One major direction for future research is software repair and debugging.

An interesting observation is that, when the natural proof strategy succeeds,

the proof is usually very similar to the program itself. We believe when

the natural proof strategy discovers errors in a portion of a high-assurance

program, if the bug is due to some particular statements in the program,

there should be a method that automatically suggests some way to repair

it. In particular, the counterexample from the failed proof may suggest some

revisions of the program, which may carry a natural proof. We envision such

a tool will reduce programmers burden drastically toward developing reliable

software.

Another important direction ahead is to express and synthesize loop in-

variants. Real-world programmers tend to write programs with loops rather

than recursion. Imperative programs with while-loops usually have very com-

plex loop invariants that are challenging to even express. For example, the

loop invariant for traversing a tree talks about a partial-tree structure that

consists of nodes before the current node in preordering. To express such an

invariant, one usually has to use some higher-order logics on graphs. Two

tasks are involved in this direction: first, developing a logical framework that

192

is amenable to succinctly expressing invariants; then, developing automatic

invariant synthesis techniques based on such a logical framework.

193

REFERENCES

[1] Computer Aided Verification, 21st International Conference, CAV 2009,
Grenoble, France, June 26 - July 2, 2009. Proceedings (2009), vol. 5643
of LNCS, Springer.

[2] Balaban, I., Pnueli, A., and Zuck, L. D. Shape analysis by pred-
icate abstraction. In VMCAI’05 (2005), vol. 3385 of LNCS, Springer,
pp. 164–180.

[3] Balaban, I., Pnueli, A., and Zuck, L. D. Shape analysis of single-
parent heaps. In VMCAI’07 (2007), vol. 4349 of LNCS, Springer, pp. 91–
105.

[4] Ball, T., Majumdar, R., Millstein, T., and Rajamani, S. K.

Automatic predicate abstraction of C programs. In PLDI’01 (2001),
ACM, pp. 203–213.

[5] Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., and

Leino, K. R. M. Boogie: A modular reusable verifier for object-
oriented programs. In FMCO’05 (2005), vol. 4111 of LNCS, Springer,
pp. 364–387.

[6] Barrett, C., Conway, C. L., Deters, M., Hadarean, L., Jo-

vanovic, D., King, T., Reynolds, A., and Tinelli, C. CVC4. In
CAV (2011), vol. 6806 of LNCS, Springer, pp. 171–177.

[7] Barrett, C., Deters, M., de Moura, L. M., Oliveras, A., and

Stump, A. 6 years of SMT-COMP. J. Autom. Reasoning 50, 3 (2013),
243–277.

[8] Berdine, J., Calcagno, C., Cook, B., Distefano, D.,

O’Hearn, P. W., Wies, T., and Yang, H. Shape analysis for com-
posite data structures. In CAV’07 (2007), vol. 4590 of LNCS, Springer,
pp. 178–192.

[9] Berdine, J., Calcagno, C., and O’Hearn, P. W. A decidable
fragment of separation logic. In FSTTCS’04 (2004), vol. 3328 of LNCS,
Springer, pp. 97–109.

194

[10] Berdine, J., Calcagno, C., and O’Hearn, P. W. Small-
foot: Modular automatic assertion checking with separation logic. In
FMCO’05 (2005), vol. 4111 of LNCS, Springer, pp. 115–137.

[11] Berdine, J., Calcagno, C., and O’Hearn, P. W. Symbolic exe-
cution with separation logic. In APLAS’05 (2005), vol. 3780 of LNCS,
Springer, pp. 52–68.

[12] Bjørner, N., and Hendrix, J. Linear functional fixed-points. In
CAV’09 [1], pp. 124–139.

[13] Börger, E., Grädel, E., and Gurevich, Y. The Classical Decision
Problem. Springer, 2001.

[14] Botinčan, M., Parkinson, M., and Schulte, W. Separation logic
verification of C programs with an SMT solver. ENTCS 254 (2009), 5
– 23.

[15] Bouajjani, A., Drăgoi, C., Enea, C., and Sighireanu, M. A
logic-based framework for reasoning about composite data structures.
In CONCUR’09 (2009), vol. 5710 of LNCS, Springer, pp. 178–195.

[16] Bouajjani, A., Drăgoi, C., Enea, C., and Sighireanu, M. On
inter-procedural analysis of programs with lists and data. In PLDI’11
(2011), ACM, pp. 578–589.

[17] Bozga, M., Iosif, R., and Perarnau, S. Quantitative separation
logic and programs with lists. In IJCAR’08 (2008), vol. 5195 of LNCS,
Springer, pp. 34–49.

[18] Bradley, A. R., and Manna, Z. The Calculus of Computation.
Springer, 2007.

[19] Bradley, A. R., Manna, Z., and Sipma, H. B. What’s decidable
about arrays? In VMCAI’06 (2006), vol. 3855 of LNCS, Springer,
pp. 427–442.

[20] Buchi, J. R. Weak second-order arithmetic and finite automata. Z.
Math. Logik Grundl. Math. 6 (1960), 66–92.

[21] Calcagno, C., Yang, H., and O’Hearn, P. W. Computability and
complexity results for a spatial assertion language for data structures.
In FSTTCS (2001), vol. 2245 of LNCS, Springer, pp. 108–119.

[22] Chang, B.-Y. E., and Rival, X. Relational inductive shape analysis.
In POPL’08 (2008), ACM, pp. 247–260.

195

[23] Chin, W.-N., David, C., Nguyen, H. H., and Qin, S. Automated
verification of shape, size and bag properties via user-defined predicates
in separation logic. Science of Computer Programming 77, 9 (2012),
1006 – 1036.

[24] Chlipala, A. Mostly-automated verification of low-level programs in
computational separation logic. In PLDI’11 (2011), ACM, pp. 234–245.

[25] Cimatti, A., Griggio, A., Schaafsma, B. J., and Sebastiani,

R. The MathSAT5 SMT solver. In TACAS (2013), vol. 7795 of LNCS,
Springer, pp. 93–107.

[26] Cohen, E., Dahlweid, M., Hillebrand, M. A., Leinenbach, D.,

Moskal, M., Santen, T., Schulte, W., and Tobies, S. VCC:
A practical system for verifying concurrent C. In TPHOLs’09 (2009),
vol. 5674 of LNCS, Springer, pp. 23–42.

[27] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.

Introduction to Algorithms, third ed. MIT Press, 2009.

[28] de Moura, L. M., and Bjørner, N. Z3: An efficient SMT solver.
In TACAS’08 (2008), vol. 4963 of LNCS, Springer, pp. 337–340.

[29] Detlefs, D., Nelson, G., and Saxe, J. B. Simplify: a theorem
prover for program checking. J. ACM 52, 3 (2005), 365–473.

[30] Distefano, D., O’Hearn, P. W., and Yang, H. A local shape
analysis based on separation logic. In TACAS’06 (2006), vol. 3920 of
LNCS, Springer, pp. 287–302.

[31] Doner, J. Tree acceptors and some of their applications. Journal of
Computer and System Sciences 4, 5 (1970), 406 – 451.

[32] Dutertre, B., and de Moura, L. The Yices SMT solver. Tech.
rep., SRI International, 2006.

[33] Elgot, C. C. Decision problems of finite automata design and related
arithmetics. Trans. AMS 98 (1961), 21–52.

[34] Engelfriet, J. Context-free graph grammars. In Handbook of Formal
Languages, vol. 3. Springer, 1997, pp. 125–214.

[35] Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G.,

Saxe, J. B., and Stata, R. Extended static checking for Java. In
PLDI’02 (2002), ACM, pp. 234–245.

[36] Ge, Y., and de Moura, L. M. Complete instantiation for quantified
formulas in satisfiabiliby modulo theories. In CAV [1], pp. 306–320.

196

[37] Godefroid, P., Klarlund, N., and Sen, K. DART: directed au-
tomated random testing. In PLDI’05 (2005), ACM, pp. 213–223.

[38] Habermehl, P., Iosif, R., and Vojnar, T. Automata-based veri-
fication of programs with tree updates. Acta Informatica 47, 1 (2010),
1–31.

[39] Hubert, T., and Marché, C. A case study of C source code ver-
ification: the Schorr-Waite algorithm. In SEFM’05 (2005), IEEE-CS,
pp. 190–199.

[40] INRIA. The Coq Proof Assistant Reference Manual. Available at
http://coq.inria.fr/.

[41] Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Pen-

ninckx, W., and Piessens, F. Verifast: A powerful, sound, pre-
dictable, fast verifier for C and Java. In NFM’11 (2011), vol. 6617 of
LNCS, Springer, pp. 41–55.

[42] Klarlund, N., and Møller, A. MONA. BRICS, Department of
Computer Science, Aarhus University, January 2001. Available from
http://www.brics.dk/mona/.

[43] Klarlund, N., and Schwartzbach, M. I. Graph types. In
POPL’93 (1993), ACM, pp. 196–205.

[44] Kuncak, V. Modular Data Structure Verification. PhD thesis, Mas-
sachusetts Institute of Technology, 2007.

[45] Kuncak, V., Piskac, R., and Suter, P. Ordered sets in the calculus
of data structures. In CSL’10 (2010), vol. 6247 of LNCS, Springer,
pp. 34–48.

[46] Lahiri, S., and Qadeer, S. Back to the future: revisiting precise
program verification using SMT solvers. In POPL’08 (2008), ACM,
pp. 171–182.

[47] Leino, K. R. M. Dafny: An automatic program verifier for functional
correctness. In LPAR-16 (2010), vol. 6355 of LNCS, Springer, pp. 348–
370.

[48] Lev-Ami, T., and Sagiv, S. Tvla: A system for implementing static
analyses. In SAS’00 (2000), vol. 1824 of LNCS, Springer, pp. 280–301.

[49] Loginov, A., Reps, T. W., and Sagiv, M. Automated verification
of the Deutsch-Schorr-Waite tree-traversal algorithm. In SAS’06 (2006),
vol. 4134 of LNCS, Springer, pp. 261–279.

197

[50] Madhusudan, P., Parlato, G., and Qiu, X. Decidable logics com-
bining heap structures and data. In POPL’11 (2011), ACM, pp. 611–
622.

[51] Madhusudan, P., and Qiu, X. Efficient decision procedures for
heaps using STRAND. In SAS’11 (2011), vol. 6887 of LNCS, Springer,
pp. 43–59.

[52] Madhusudan, P., Qiu, X., and Ştefănescu, A. Recursive proofs
for inductive tree data-structures. In POPL’12 (2012), ACM, pp. 123–
136.

[53] Magill, S., Tsai, M.-H., Lee, P., and Tsay, Y.-K. THOR: A tool
for reasoning about shape and arithmetic. In CAV’08 (2008), vol. 5123
of LNCS, Springer, pp. 428–432.

[54] Mai, H., Pek, E., Xue, H., King, S. T., and Madhusudan,

P. Verifying security invariants in ExpressOS. In ASPLOS’13 (2013),
ACM, pp. 293–304.

[55] McPeak, S., and Necula, G. C. Data structure specifications via
local equality axioms. In CAV’05 (2005), vol. 3576 of LNCS, Springer,
pp. 476–490.

[56] Meyer, A. R. Weak monadic second order theory of succesor is not
elementary-recursive. In Logic Colloquium (1975), vol. 453 of Lecture
Notes in Mathematics, Springer, pp. 132–154.

[57] Minsky, M. L. Computation: finite and infinite machines. Prentice-
Hall, Inc., 1967.

[58] Møller, A., and Schwartzbach, M. I. The pointer assertion logic
engine. In PLDI’01 (2001), ACM, pp. 221–231.

[59] Nelson, G. Verifying reachability invariants of linked structures. In
POPL’83 (1983), ACM, pp. 38–47.

[60] Nelson, G., and Oppen, D. C. Simplification by cooperating deci-
sion procedures. ACM Trans. Program. Lang. Syst. 1, 2 (1979), 245–257.

[61] Nieuwenhuis, R., Oliveras, A., and Tinelli, C. Solving SAT and
SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T). J. ACM 53, 6 (2006), 937–977.

[62] Nipkow, T., Paulson, L. C., and Wenzel, M. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic, vol. 2283 of LNCS. Springer,
2002.

198

[63] O’Hearn, P. W., Reynolds, J. C., and Yang, H. Local reasoning
about programs that alter data structures. In CSL’01 (2001), vol. 2142
of LNCS, Springer, pp. 1–19.

[64] Qiu, X., Garg, P., Ştefănescu, A., and Madhusudan, P. Natu-
ral proofs for structure, data, and separation. In PLDI’13 (2013), ACM,
pp. 231–242.

[65] Rakamarić, Z., Bingham, J. D., and Hu, A. J. An inference-rule-
based decision procedure for verification of heap-manipulating programs
with mutable data and cyclic data structures. In VMCAI’07 (2007),
vol. 4349 of LNCS, Springer, pp. 106–121.

[66] Rakamarić, Z., Bruttomesso, R., Hu, A. J., and Cimatti,

A. Verifying heap-manipulating programs in an SMT framework. In
ATVA’07 (2007), vol. 4762 of LNCS, Springer, pp. 237–252.

[67] Ranise, S., and Zarba, C. A theory of singly-linked lists and its
extensible decision procedure. In SEFM’06 (2006), IEEE-CS, pp. 206–
215.

[68] Reynolds, J. Separation logic: a logic for shared mutable data struc-
tures. In LICS’02 (2002), IEEE-CS, pp. 55–74.

[69] Rosu, G., Ellison, C., and Schulte, W. Matching logic: An
alternative to Hoare/Floyd logic. In AMAST’10 (2010), vol. 6486 of
LNCS, Springer, pp. 142–162.

[70] Shostak, R. E. Deciding combinations of theories. J. ACM 31, 1
(1984), 1–12.

[71] Smans, J., Jacobs, B., and Piessens, F. Implicit dynamic frames.
ACM Trans. Program. Lang. Syst. 34, 1 (2012), 2:1–2:58.

[72] Suter, P., Dotta, M., and Kuncak, V. Decision procedures for
algebraic data types with abstractions. In POPL’10 (2010), ACM,
pp. 199–210.

[73] Suter, P., Köksal, A. S., and Kuncak, V. Satisfiability modulo
recursive programs. In SAS’11 (2011), vol. 6887 of LNCS, Springer,
pp. 298–315.

[74] Thatcher, J. W., and Wright, J. B. Generalized finite automata
theory with an application to a decision problem of second-order logic.
Mathematical Systems Theory 2, 1 (1968), 57–81.

[75] Thomas, W. Languages, automata, and logic. In Handbook of Formal
Languages. Springer, 1997, pp. 389–456.

199

[76] Yang, H. Local Reasoning for Stateful Programs. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, 2001.

[77] Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Dis-

tefano, D., and O’Hearn, P. W. Scalable shape analysis for sys-
tems code. In CAV’08 (2008), vol. 5123 of LNCS, Springer, pp. 385–398.

[78] Yang, J., and Hawblitzel, C. Safe to the last instruction: auto-
mated verification of a type-safe operating system. In PLDI’10 (2010),
ACM, pp. 99–110.

[79] Yorsh, G., Rabinovich, A. M., Sagiv, M., Meyer, A., and

Bouajjani, A. A logic of reachable patterns in linked data-structures.
In FoSSaCS’06 (2006), vol. 3921 of LNCS, Springer, pp. 94–110.

[80] Yorsh, G., Reps, T. W., and Sagiv, M. Symbolically comput-
ing most-precise abstract operations for shape analysis. In TACAS’04
(2004), vol. 2988 of LNCS, Springer, pp. 530–545.

[81] Zee, K., Kuncak, V., and Rinard, M. C. Full functional verifica-
tion of linked data structures. In PLDI’08 (2008), ACM, pp. 349–361.

[82] Zee, K., Kuncak, V., and Rinard, M. C. An integrated proof
language for imperative programs. In PLDI’09 (2009), ACM, pp. 338–
351.

200

