
c© 2013 by Ali Vakilian. All rights reserved.

NODE-WEIGHTED PRIZE-COLLECTING SURVIVABLE NETWORK DESIGN PROBLEMS

BY

ALI VAKILIAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

Associate Professor Chandra Chekuri

Abstract

We consider node-weighted network design problems, in particular the survivable network design problem (SNDP)

and its prize-collecting version (PC-SNDP). The input consists of a node-weighted undirected graph G = (V,E) and

integral connectivity requirements r(st) for each pair of nodes st. The goal is to find a minimum node-weighted

subgraph H of G such that, for each pair st, H contains r(st) disjoint paths between s and t. PC-SNDP is a gen-

eralization in which the input also includes a penalty π(st) for each pair, and the goal is to find a subgraph H to

minimize the sum of the weight of H and the sum of the penalties for all pairs whose connectivity requirements

are not fully satisfied by H . We consider three types of connectivity requirements, edge-connectivity (EC), element-

connectivity (ELC) and vertex-connectivity (VC). Let k = maxst r(st) be the maximum requirement. There has been

no non-trivial approximation for node-weighted PC-SNDP for k > 1 even in edge-connectivity setup. We describe

multiroute-flow based relaxations for PC-EC-SNDP and PC-ELC-SNDP and obtain approximation algorithms for

PC-SNDP and PC-ELC-SNDP through them. The approximation ratios we obtain for PC-EC-SNDP are similar to

those that were previously known for EC-SNDP via combinatorial algorithms. Specifically, for PC-EC-SNDP (and

PC-ELC-SNDP) we obtain an O(k log n)-approximation in general graphs and an O(k)-approximation in graphs that

exclude a fixed minor. Moreover, based on the approximation algorithm of ELC-SNDP and the reduction method of

Chuzhoy and Khanna [6] we obtain O(k4 log2 n)-approximation for PC-VC-SNDP which improves to O(k4 log n)

on instances from a minor-closed families of graphs.

ii

To Father and Mother.

iii

Acknowledgment

First and foremost I would like thank my advisor, Chandra Chekuri, whose support has been invaluable during my

studies at UIUC. He introduced me to the field of network design, and this thesis would not have been possible without

his ideas, guidance and support. Chandra also helped me a lot with his useful suggestions on the presentation of the

results and the writing style.

This thesis is based on a joint collaboration with Chandra Chekuri and Alina Ene. I would like to thank both for

their contribution to this thesis.

I am also grateful of my other collaborators at UIUC, Marianne Winslett and Arash Termehchy. I am thankful for

their support and guidance during my MS studies at UIUC.

I appericate the generous award and grants supporting my study and research in UIUC. I was honored to recieve

Siebel Scholar Award for 2012-2013. In addition my research was supported by NSF grant CCF-1016684.

Last but definitely not least, I want to express my deepest gratitude to my beloved parents, Amir and Maryam, and

my dearest siblings, Mohsen and Fatemeh.

iv

Table of Contents

List of Figures . vi

List of Tables . vii

Chapter 1 Introduction . 1
1.1 Problems Statement and Previous Works . 1
1.2 Results and Organization . 3
1.3 Preliminaries and Definitions . 5

1.3.1 Connectivity models . 5
1.3.2 Biset . 5
1.3.3 Witness Families . 8

Chapter 2 PC-EC-SNDP via Multiroute Flows . 11
2.1 LP Relaxations for node-weighted PC-EC-SNDP . 11
2.2 Approximate solution to PC-Multiroute-LP . 13
2.3 Rounding a fractional solution to PC-Multiroute-LP . 15

2.3.1 Integrality gap of Multiroute-LP via Aug-LP . 17

Chapter 3 Improved Approach and Element-Connectivity . 20
3.1 Integrality gap of PC-ELC-SNDP via PC-ELC-Aug-LP . 20
3.2 Approximation Algorithm for Node-weighted PC-VC-SNDP . 30

3.2.1 LP Relaxations for node-weighted PC-VC-SNDP . 31
3.3 Integrality gap of ELC-Aug-LP . 34

References . 46

v

List of Figures

1.1 Thus the contribution of an edge e to |δF (X̂)| + |δF (Ŷ)| is at least the contribution of e to |δF (X̂ ∩ Ŷ)| +
|δF (X̂ ∪ Ŷ)|. 8

3.1 Terminals are either in A, B, C or D. 22
3.2 Undirected graph G with two types of vertices: reliable vertices and non-reliable ones. Circles denote

reliable vertices and squares denote non-reliable ones. 27
3.3 The corresponding Gstx of the graph in Figure 3.2. 27
3.4 A simple cut in Gst

x . White vertices denote the vertices in V (H`−1). 28
3.5 This figure shows the case that integrality gap of ELC-Aug-LP is unbounded. Note that the inner part of the

biset contains a non-zero weight vertex. Consider the function h that h(Ŝ) = 1 and zero for other bisets. 38

vi

List of Tables

1.1 Approximation ratios for different versions of SNDP. The ratios with no citation are from this thesis
and based on [4]. There is an Ω(log n)-hardness for all the node-weighted problems in the table for
general graphs. 3

vii

Chapter 1

Introduction

1.1 Problems Statement and Previous Works

In the Survivable Network Design Problem (SNDP) the input consists of an undirected graph G = (V,E) and a con-

nectivity requirement function specified in terms of an integer r(st) for each unordered pair of nodes st. The goal is

to find a minimum-weight subgraph H of G that contains r(st) disjoint paths for each pair st. We use EC-SNDP and

VC-SNDP to refer to the versions of SNDP depending on whether the desired paths are required to be edge-disjoint or

vertex-disjoint. An intermediate connection model is element-connectivity in which the input graph has two types of

vertices, reliable (R) and non-reliable (V −R), and the goal is to find a minimum weight subgraphH ofG that contains

r(st) element-disjoint st-paths for each s, t ∈ R where edges and non-reliable nodes are considered as elements. We

use ELC-SNDP to refer to the version of SNDP that the desired paths are required to be element-disjoint. A parameter

of interest is the maximum requirement k = maxst r(st). Several fundamental problems in combinatorial optimiza-

tion are special cases SNDP. Among them there are some polynomially solvable such as minimum spanning tree and

NP-complete problems such as Steiner tree or forest problem. Edge-weighted SNDP problems have been studied

extensively and many different approaches have developed to give an approximation for them. In the edge-weighted

version, each edge has a weight w(e) and the weight of H is the sum of the weights of the edges in H . By applying

primal-dual approach in an augmentation framework, Williamson et al. [27] obtains O(k)-approximation for edge-

weighted EC-SNDP. The ratio was improved to O(log k) by Goemans et al. via doing the augmentation in reverse [9].

Jain et al. [19] showed that primal-dual technique also gives O(log n)-approximation for edge-weighted ELC-SNDP.

Jain [18] obtained a 2-approximation for this problem via the influential iterated rounding technique that he introduced.

Later, Fleischer et al. [8] extended the approach to the element-connectivity setup and obtained a 2-approximation for

edge-weighted ELC-SNDP as well. However, the problem is much harder in vertex-connectivity setup. While EC-

SNDP and ELC-SNDP both admits a 2-approximation in edge-weighted graphs, the only non-trivial approach toward

edge-weighted VC-SNDP is due to Chuzhoy and Khanna which gives O(k3 log n)-approximation [6]. We refer the

reader to the survey [12] for much more detailed information on the different approaches toward network design prob-

lems. In this thesis we focus on the more general node-weighted case where each node v has a weightw(v); the weight

1

of H is the sum of the weights of the nodes in it1. The node-weighted version is provably harder to approximate. In

contrast to the constant factor approximation for edge-weighted EC-SNDP, the node-weighted Steiner tree problem is

already Ω(log n)-hard to approximate via a simple reduction from the Set Cover problem [22].

Klein and Ravi [22] were the first to study node-weighted network design from an approximation point of view.

They showed the hardness result mentioned above and described algorithms that achieved an 2H(n)-approximation

for the Steiner tree and Steiner forest problems where H(n) =
∑n
i=1 1/i = O(log n). Guha and Khuller improved

the ratio to (1.35 + ε)H(n) [10]. Their algorithms are based on finding a structure called spider. Nutov examined

the approximability of node-weighted SNDP [24] and obtained an O(k log n)-approximation via the augmentation

framework of Williamson et al. [27] (the connectivity requirements are met in k stages with each stage increasing the

connectivity of every unsatisfied pair by 1). His algorithm is based on a non-trivial structural result on spiders for

covering an arbitrary 0-1 uncrossable requirement function. Further, Nutov gave evidence, via a reduction from the

k-densest subgraph problem, that a dependence on k is necessary in the approximation ratio when k is large. The

algorithms of Klein and Ravi [22] and that of Nutov [24] are combinatorial. Mathematical programming relaxation

based algorithms are powerful and flexible and it is natural to ask about their efficacy for node-weighted network

design, and in particular for SNDP. Guha et al. [11] considered a natural LP relaxation for node-weighted Steiner

tree and forest and showed that its integrality gap is O(log n), matching the bound obtained via the combinatorial

algorithm; in fact, their proof uses a nice dual-fitting argument via spiders. In more recent work Demaine, Hajiaghayi,

and Klein [7] demonstrated the advantage of the LP relaxation by describing a primal-dual algorithm that achieves

an O(1)-approximation for node-weighted Steiner tree and forest when the underlying graph is planar. Furthermore,

Chekuri et al. [3] generalized the work of Demaine et al. [7] and described an O(k)-approximation for node-weighted

EC-SNDP in planar graphs. A technical point of interest is that the algorithm is not based on a single LP relaxation.

It uses the augmentation framework in which the connectivity requirements are incrementally satisfied in k phases; a

separate LP relaxation (Aug-LP) for each stage (that depends on the solution for the previous stages) is used2.

Prize-collecting SNDP (PC-SNDP): In PC-SNDP the input, in addition to that for SNDP, consists of penalties π(st)

for each pair of nodes. The goal is to find a subgraph H of G to minimize the weight of H plus the sum of the

penalties for pairs whose connectivity requirement is not satisfied by H; a pair st is not satisfied if the number of

disjoint paths in H between s and t is strictly less than r(st); this is the all-or-nothing penalty model. The prize-

collecting version of Steiner tree and Steiner forest have been studied extensively and have several theoretical and

practical applications [13, 14, 20, 26]. Previous work on prize-collecting SNDP has considered submodular penalty

1The version where both edges and nodes have weights can be easily reduced to the node-weighted version by sub-dividing each edge e and
placing a weight of w(e) on the new node.

2There is some subtlety to understanding the integrality gap of Aug-LP since it only applies to a certain restricted class of uncrossable functions
that arise from proper functions; in particular, each uncrossable function is a residual function of a node-induced subgraph of the original graph.
This is in contrast to the edge-weighted case where there is a natural cut relaxation for covering an arbitrary uncrossable function whose integrality
gap is at most 2. We refer the reader to Subsection 3.3 and [3] for more details.

2

EC-SNDP PC-EC-SNDP Elem-SNDP PC-ELC-SNDP (PC-)VC-SNDP
Gen graphs, EW 2 [18] 2.54 [15] 2 [8] 2.54 [15] O(k3 log n) [6, 15]

Planar, EW 2 [18] 2.54 [15] 2 [8] 2.54 [15] O(k3 log n) [6, 15]
Gen graphs, NW O(k log n) [24] O(k log n) O(k log n) [24] O(k log n) O(k4 log2 n) [4, 24]

Planar, NW O(k) [3] O(k) O(k) [3] O(k) O(k4 log n)

Table 1.1: Approximation ratios for different versions of SNDP. The ratios with no citation are from this thesis and
based on [4]. There is an Ω(log n)-hardness for all the node-weighted problems in the table for general graphs.

functions [15,26]; here the penalty for not connecting a set of pairs is a monotone submodular function of those pairs.

It is easy to extend our algorithms and analysis to this more general case by simply replacing the linear penalty in the

objective function of the relaxation by a Lovász-extension based convex penalty function; this is in the same fashion

as in the work of Chudak and Nagano [5].

A simple scaling technique, introduced by Bienstock et al. [2], shows how one can use an LP relaxation based

ρ-approximation algorithm for Steiner tree (and Steiner forest) to obtain an O(ρ) approximation algorithm for the

prize-collecting version. PC-SNDP for higher connectivity has been recently studied [15, 16, 23]. In [15] a technique

similar to that of Bienstock et al. is used for edge-weighted EC-SNDP (and also for ELC-SNDP and VC-SNDP).

However, [15] showed that a straightforward and natural LP relaxation has a large integrality gap, and introduced a

stronger LP relaxation. For node-weighted Steiner tree and Steiner forest there is a natural LP relaxation withO(log n)

integrality gap (and O(1) gap for planar graphs), and one can use this to obtain a corresponding approximation for the

prize-collecting version. However, as we already remarked, the algorithms for node-weighted SNDP for k > 1 have

not been based on a single LP relaxation.

1.2 Results and Organization

We formulate an LP relaxation for node-weighted EC-SNDP and PC-EC-SNDP in edge-connectivity setup via multi-

route flows [1,21]. The multi-route flow based relaxation easily allows us to apply the basic idea of Bienstock et al. [2]

to reduce the PC-EC-SNDP problem to the EC-SNDP problem. Then, we analyze the integrality gap of this relaxation

for node-weighted EC-SNDP. We obtain an upper bound on the integrality gap by relating the optimum value of the

relaxation to that of the Aug-LP relaxation [3] in each phase of the augmentation framework. Chekuri et al. [3, 4]

show that Aug-LP has an integrality gap of O(log n) for general graphs which improves to O(1) in minor-closed

families of graphs. Further we extend the approach to the element-connectivity and obtain the same approximation

guarantees for prize-collecting versions. These ingredients give us the following theorem that summarizes our results.

Theorem 1.2.1. There is an O(k log n)-approximation for node-weighted PC-ELC-SNDP in undirected graphs.

Moreover, let G be a minor-closed family of graphs. There is an O(k)-approximation for node-weighted PC-ELC-

3

SNDP on instances in which the graph is in G, where the constant only depends on the family G.

Based on the O(k log n)-approximation for Aug-LP in element-connectivity setup and the reduction method of

Chuzhoy and Khanna for VC-SNDP [6], we obtain an O(k4 log2 n)-approximation for node-weighted PC-VC-SNDP

which improves to O(k4 log n) for instances in minor-closed families of graphs.

Theorem 1.2.2. There is an O(k4 log2 n)-approximation for node-weighted PC-VC-SNDP in undirected graphs.

Moreover, let G be a minor-closed family of graphs. There is an O(k4 log n)-approximation for node-weighted PC-

VC-SNDP on instances in which the input graph is in G, where the constant only depends on the family G.

We start with the question as to why it is non-trivial to find a natural LP relaxation for the node-weighted SNDP

problem. Consider the problem where the requirement is only for a single pair st; that is, we wish to find a minimum

weight subgraph that has k edge-disjoint paths from s to t. If the weights are on the edges then this problem can be

solved easily via min-cost flow. However, if the weights are on the nodes the edge-disjoint paths from s to t may use

a node v multiple times, yet the weight of the node v counts only once. The NP-hardness of the single pair problem3

is at the heart of the difficulty of finding a relaxation for node-weighted SNDP. We write a multi-route flow based

LP that we cannot solve in polynomial time because the separation oracle for the dual requires us to solve the single

pair problem. However, this relaxation can be solved approximately within a factor of k. In Chapter 2 we give an

O(k2 log n)-approximation by solving the LP-relaxation approximately; this approach has appeared in [4]. One factor

of k from approximating the relaxation, and another factor of k from the augmentation framework. In Chapter 3,

we show that it is also possible to solve the prize-collecting instance directly in the augmentation framework; we use

the augmentation framework and solve the problem in k phases. In each phase `, we decide whether to increase the

connectivity requirement of an unsatisfied pair or pay its penalty. A separate LP relaxation (PC-Aug-LP) is used in

each stage. Via the scaling method of Bienstock et al. and the O(log n) integrality gap of Aug-LP, we show a similar

integrality gap for PC-Aug-LP. This helps us to get around solving Multiroute-LP and save a factor of k that

we missed to have an approximate feasible solution to Multiroute-LP. In Chapter 3 we consider this approach

in a more general connectivity setup, element-connectivity, and give an O(k log n)-approximation for node-weighted

PC-ELC-SNDP. This ratio improves to O(k) in minor-closed families of graphs.

3Via a reduction to the dense-k-subgraph, Nutov [24] gives an evidence that the single pair problem may not admit a polylogarithmic approxi-
mation.

4

1.3 Preliminaries and Definitions

1.3.1 Connectivity models

To define the problem first we need to know about the exact definition of different models of connections in a graph.

In an undirected graph G, two nodes s and t are k-edge (k-vertex) connected if G contains k edge-disjoint (vertex-

disjoint) paths from s to t. There is an intermediate notion of connectivity known as element-connectivity.

Definition 1.3.1. Let G = (V,E) be an undirected graph with two types of vertices: reliable and non-reliable where

R ⊆ V denotes reliable vertices. A pair of reliable nodes s, t is k-element connected iff there are k edge-disjoint

st-paths in G such that each non-reliable node appears in at most one of them (there is no restriction for reliable

nodes). In other words, we consider edges and non-reliables nodes as elements and we look for a set of paths that do

not share any element.

There is a close relation between the maximum connectivity of a pair of vertices and the minimum cut separating them

which is characterized by Menger’s theorem. Let S ⊂ V (G) be a subset of vertices in G. We denote the set of edges

crossing S by δ(S); δ(S) = {uv ∈ E(G)|u ∈ S, v /∈ S}. Moreover, we denote the set of all neighbors of S by Γ(S);

Γ(S) = {v|v /∈ S, ∃u ∈ S s.t. uv ∈ E(G)}. Menger’s theorem plays an important role in the problems dealing with

connectivity requirements. The statement of Menger’s theorem in different connection models are as follows:

Theorem 1.3.2. Edge-connectivity version of Menger’s theorem: Let G be an undirected graph. Two vertices s

and t are k-edge connected iff for each set S ⊂ V such that s ∈ S and t /∈ S, |δ(S)| ≥ k.

To state Menger’s theorem for element-connectivity and vertex-connectivity we need to introduce some notation called

biset (see Subsection 1.3.2).

Theorem 1.3.3. Element-connectivity version of Menger’s theorem: Let G be an undirected graph. Two vertices

s and t are k-element connected iff for each bisets Ŝ ⊂ V × V such that s ∈ S and t /∈ S′ and S′ − S only contains

non-reliable vertices, |δ(Ŝ)|+ |S′ − S| ≥ k.

Theorem 1.3.4. Vertex-connectivity version of Menger’s theorem: Let G be an undirected graph. Two vertices s

and t are k-vertex connected iff for each biset Ŝ ⊂ V × V such that s ∈ S and t /∈ S′, |δ(Ŝ)|+ |S′ − S| ≥ k.

1.3.2 Biset

To deal with vertex connectivity and element connectivity problems we need to consider a pair of ordered sets. This

will help us to establish Menger’s theorem for these connection models. The definitions and notation that we use are

5

based on previous work [8, 17, 25]. We work with bisets X̂ = (X,X ′) ∈ 2V × 2V such that X ⊆ X ′. The set X is

the inner part of X̂ , X ′ is the outer part of X̂ , and X ′ −X is the boundary of X̂ .

We define a relation� on the bisets as follows. Let X̂ = (X,X ′) and Ŷ = (Y, Y ′) be two bisets. We have X̂ � Ŷ

iff X ⊆ Y and X ′ ⊆ Y ′. It is straightforward to verify that � is a partial order. We say that Ŷ contains X̂ if X̂ � Ŷ .

We also define the following operations on the bisets. Let X̂ = (X,X ′) and Ŷ = (Y, Y ′) be two bisets. The

union, intersection, and difference of X̂ and Ŷ are defined as X̂ ∩ Ŷ = (X ∩Y,X ′∩Y ′), X̂ ∪ Ŷ = (X ∪Y,X ′∪Y ′),

and X̂ − Ŷ = (X − Y ′, X ′ − Y).

Proposition 1. Let X̂ = (X,X ′) and Ŷ = (Y, Y ′) be two bisets such thatX ⊆ X ′ and Y ⊆ Y ′. We have X̂∩Ŷ � X̂

and X̂ − Ŷ � X̂ .

Definition 1.3.5. Two bisets X̂ and Ŷ are non-overlapping iff one of the following holds:

(i) X̂ � Ŷ .

(ii) Ŷ � X̂ .

(iii) The sets X ′ ∩ Y and X ∩ Y ′ are empty.

If the bisets do not satisfy any of the conditions above, we say that they are overlapping.

Similar to different types of set function, we can define submodular/supermodular functions in biset setup. Many

network design (or more generally connectivity) problems in edge-connectivity model are captured as covering a set

function via Menger’s theorem (see Theorem 1.3.2). Similarly via Menger’s theorem (see Theorem 1.3.4 and 1.3.3),

we can model the same problem in vertex-connectivity (or element-connectivity) as covering a biset function.

Definition 1.3.6. Overlapping bifamily: A biset family F is called overlapping if for any two overlapping bisets X̂

and Ŷ , all bisets X̂ ∩ Ŷ , X̂ ∪ Ŷ , X̂ − Ŷ and Ŷ − X̂ are in F .

Definition 1.3.7. Bisubmodular function: Let f : P → Z be a function defined on an overlapping bifamily P . The

function f is bisubmodular iff for any two bisets X̂ and Ŷ in P , both of the following hold:

f(X̂) + f(Ŷ) ≥ f(X̂ ∩ Ŷ) + f(X̂ ∪ Ŷ), ∀X̂, Ŷ ∈ P (1.1)

f(X̂) + f(Ŷ) ≥ f(X̂ − Ŷ) + f(Ŷ − X̂), ∀X̂, Ŷ ∈ P (1.2)

A function f is bisupermodular iff −f is bisubmodular.

6

Definition 1.3.8. Skew-bisupermodular function: Let f : P → Z be a function defined on an overlapping bifamily

P . The function f is skew-bisupermodular iff for any two bisets X̂ and Ŷ in P , one of the following holds:

f(X̂ ∩ Ŷ) + f(X̂ ∪ Ŷ) ≥ f(X̂) + f(Ŷ), ∀X̂, Ŷ ∈ P (1.3)

f(X̂ − Ŷ) + f(Ŷ − X̂) ≥ f(X̂) + f(Ŷ), ∀X̂, Ŷ ∈ P (1.4)

Definition 1.3.9. 0-1 Biuncrossable function: Let f : P → Z be a function defined on a collection of bisets P . The

function f is 0-1 biuncrossable iff for any two bisets X̂ and Ŷ in P such that f(X̂) = f(Ŷ) = 1, one of the following

holds:

X̂ ∩ Ŷ ∈ P, X̂ ∩ Ŷ ∈ P, f(X̂ ∩ Ŷ) + f(X̂ ∪ Ŷ) ≥ f(X̂) + f(Ŷ), (1.5)

X̂ − Ŷ ∈ P, Ŷ − X̂ ∈ P, f(X̂ − Ŷ) + f(Ŷ − X̂) ≥ f(X̂) + f(Ŷ), (1.6)

Proposition 2. Let f be a skew bisupermodular function and let g be a bisubmodular function on the same domain

P . Then f − g is skew bisupermodular.

Proof: Since f is a skew-bisupermodular function, for any two bisets X̂ and Ŷ in P , either f(X̂) + f(Ŷ) ≤ f(X̂ ∩

Ŷ)+f(X̂∪Ŷ) or f(X̂)+f(Ŷ) ≤ f(X̂−Ŷ)+f(Ŷ −Ŷ). Suppose that the former case holds (the other case is similar).

Since g is a bisubmodular function, g(X̂) + g(Ŷ) ≥ g(X̂ ∩ Ŷ) + g(X̂ ∪ Ŷ). Thus f(X̂)− g(X̂) + f(Ŷ)− g(Ŷ) ≤

f(X̂ ∩ Ŷ)− g(X̂ ∩ Ŷ) + f(X̂ ∪ Ŷ)− g(X̂ ∪ Ŷ). �

For a set pair X̂ = (X,X ′) such that X ⊆ X ′ and any set F of edges, we let δF (X̂) be the set of all edges of F with

one endpoint in X and the other in V −X ′. Moreover, we let ΓF (X̂) be the set of all vertices with an incident edge

in δF (X̂).

Lemma 1.3.10. For any set F of edges, the function |δF (·)| is bisubmodular.

Proof: We show that |δF (X̂)|+ |δF (Ŷ)| ≥ |δF (X̂ ∩ Ŷ)|+ |δF (X̂ ∪ Ŷ)| and the other case can be shown similarly.

Consider an edge e ∈ δF X̂ ∩ Ŷ . It has one endpoint in X ∩Y and its other endpoint is either in X ′−Y ′ (or Y ′−X ′)

or V − (X ′ ∪ Y ′) (consider e3 and e4 in Figure 1.1). In the former case, e ∈ δF (X̂) and in the latter case e is in both

δF (X̂) and δF (Ŷ).

Next, consider an edge e ∈ δF (X̂ ∩ Ŷ). It has one endpoint in V − (X ′ ∪Y ′) and its other endpoint is either in X

(or Y) or X ∩ Y) (consider e1 and e4 in Figure 1.1). In the first case, e ∈ δF (X̂) and in the second case e is in both

δF (X̂) and δF (Ŷ). Thus the contribution of an edge e to the left hand side is at least the contribution of e to the right

hand side and the equation holds. �

Lemma 1.3.11. For any two bisets X̂ and Ŷ , we have

7

X̂

Ŷ

e1

e2

e3

e4

Figure 1.1: Thus the contribution of an edge e to |δF (X̂)|+|δF (Ŷ)| is at least the contribution of e to |δF (X̂∩Ŷ)|+|δF (X̂∪Ŷ)|.

• |X ′ −X|+ |Y ′ − Y | = |(X ′ ∩ Y ′)− (X ∩ Y)|+ |(X ′ ∪ Y ′)− (X ∪ Y)|, and

• |X ′ −X|+ |Y ′ − Y | = |(X ′ − Y)− (X − Y ′)|+ |(Y ′ −X)− (Y −X)|+ 2|(X ′ ∩ Y ′)− (X ∩ Y)|.

1.3.3 Witness Families

A natural approach in covering a biset function is to consider the family of bisets that are required to be covered and

exploit their structural properties. It essentially makes sense when the underlying biset function is a 0-1 function. In

the following we define some useful concepts in this regards.

Definition 1.3.12. Feasible cover: Let f : P → Z be a function defined on a collection P of bisets on vertex set of

a graph G = (V,E). A subgraph4 H of G is a cover of f iff, for each biset X̂ ∈ P , we have |δH(X̂)| ≥ f(X̂).

Definition 1.3.13. Minimal violated bisets: Let f : P → Z be a function defined on a collection P of bisets. A biset

X̂ is a violated biset with respect to a graph H iff |δH(X̂)| ≤ f(X̂). A biset X̂ is a minimal violated biset of f iff X̂

is violated with respect to H and there does not exist a violated biset Ŷ with respect to H such that Ŷ � X̂ .

To analyze the performance of an algorithm for covering a biset function (or solving its corresponding network

design problem), a useful concept is witness sets and families. Picking an inclusion-wise minimal feasible cover M

of a set function f , Se is a witness set for e if e is the only edge in M covering Se; e is crucial to cover Se. In this

part, we extend the notion of witness sets and families to the biset setting. We use the witness biset and bifamilies in

Section 3.3 to bound the integrality gap of ELC-Aug-LP.

Definition 1.3.14. Let F be a set of edges. A set pair Ŝe = (Se, S
′
e) is an F -witness pair for an edge e iff h(Ŝe) = 1

and δF (Ŝe) = {e}.
4We sometimes abuse notation and we refer to a set of edges as a feasible cover.

8

A useful observation that we will need later is that minimal violated bisets of a biuncrossable function do not overlap

with other (not necessarily minimal) violated bisets.

Definition 1.3.15. Bilaminar family: Let F be a family of bisets. The family is bilaminar iff, for any two bisets X̂

and Ŷ in F , X̂ and Ŷ are non-overlapping.

As shown in the following lemma, we can construct a bilaminar witness family for “non-redundant” edges.

Lemma 1.3.16. Let F be a feasible cover for h. Let M ⊆ F be a subset of F such that, for each edge e ∈M , F − e

is not a feasible cover for h. There is a bilaminar family L = {Ŝe | e ∈ M} that contains an F -witness set pair

Ŝe = (Se, S
′
e) for each edge e ∈M .

In the rest of this section we prove Lemma 1.3.16.

Lemma 1.3.17. Let F be a feasible cover for biuncrossable function h. Let M ⊆ F be a subset of F such that M is a

feasible cover for h and for each edge e ∈M ,M−e is not a feasible cover for h. There is a familyF = {Ŝe | e ∈M}

that contains an M -witness biset Ŝe = (Se, S
′
e) for each edge e ∈M .

Proof: Let e be an edge of M . Since M − e is not a feasible cover for h, there is a biset Ŝe = (Se, S
′
e) such that

h(Ŝe) = 1 and δM (Ŝe) = {e}. Ŝe is an F -witness biset for e. Then F = {Ŝe | e ∈M} is the desired family. �

In order to get a laminar family of M -witness bisets, we start with a family F of witness biset that is guaranteed by

Lemma 1.3.17 and we replace overlapping bisets with non-overlapping ones. The following lemma shows that, if we

have two witness bisets Ŝe1 and Ŝe2 that overlap, we can replace them by two bisets that are also witness bisets; by

Proposition 3, the latter bisets do not overlap.

Proposition 3. Let X̂ and Ŷ be two bisets. The bisets X̂ ∩ Ŷ and X̂ ∪ Ŷ do not overlap. Additionally, the bisets

X̂ − Ŷ and Ŷ − X̂ do not overlap.

Lemma 1.3.18. Let Ŝe1 = (Se1 , S
′
e1) and Ŝe2 = (Se2 , S

′
e2) be two M -witness bisets for the edges e1 and e2,

respectively. Then one of the following must hold:

(i) The bisets Ŝe1 ∩ Ŝe2 and Ŝe1 ∪ Ŝe2 are M -witness bisets for distinct edges in the set {e1, e2}.

(ii) The bisets Ŝe1 − Ŝe2 and Ŝe2 − Ŝe1 are M -witness bisets for distinct edges in the set {e1, e2}.

Proof Sketch: Both Ŝe1 and Ŝe2 are M -witness bisets. This implies that h(Ŝe1) = h(Ŝe2) = 1. Since h is a

biuncrossable function, either h(Ŝe1 ∩ Ŝe2) = h(Ŝe1 ∪ Ŝe2) = 1 or h(Ŝe1 − Ŝe2) = h(Ŝe2 − Ŝe1) = 1.

Suppose that h(Ŝe1 ∩ Ŝe2) = h(Ŝe1 ∪ Ŝe2) = 1. Since M is a feasible cover for h, we have |δM (Ŝe1 ∩ Ŝe2)| ≥ 1

and |δM (Ŝe1 ∪ Ŝe2)| ≥ 1. Since |δM (·)| is bisubmodular, it follows from the inequality (1.1) that |δM (Ŝe1 ∩ Ŝe2)|+

9

|δM (Ŝe1 ∪ Ŝe2)| ≤ 2. Therefore |δM (Ŝe1 ∪ Ŝe2)| = |δM (Ŝe1 ∩ Ŝe2)| = 1. It is straightforward to verify that, since

Ŝe1 and Ŝe2 are witness bisets for e1 and e2, Ŝe1 ∩ Ŝe2 and Ŝe1 ∪ Ŝe2 are witness bisets for distinct edges of {e1, e2}.

The case h(Ŝe1 − Ŝe2) = h(Ŝe2 − Ŝe1) = 1 is similar and we omit it. (Here we use the fact that |δM (·)| satisfies

inequality (1.2)). �

Using the following lemma, we can show that, if we replace two overlapping witness set pairs by the witness bisets

guaranteed by Lemma 1.3.18, the number of bisets that are overlapping decreases and thus we are making progress

towards a laminar witness bifamily.

Lemma 1.3.19 (Fleischer et al. [8]). Let X̂ = (X,X ′), Ŷ = (Y, Y ′) and Ẑ = (Z,Z ′) be bisets. Suppose that

X̂ and Ŷ overlap. Then the number of pairs of {(X̂, Ẑ), (Ŷ , Ẑ)} that overlap is at least the number of pairs of

{(X̂ ∩ Ŷ , Ẑ), (X̂ ∪ Ŷ , Ẑ)} that overlap. Additionally, the number of pairs of {(X̂, Ẑ), (Ŷ , Ẑ)} that overlap is at least

the number of pairs of {(X̂ − Ŷ , Ẑ), (Ŷ − X̂, Ẑ)} that overlap.

Proof of Lemma 1.3.16: Let F be the witness bifamily guaranteed by Lemma 1.3.17. If no two bisets in F overlap,

F is the desired bifamily. Otherwise, let Ŝe1 and Ŝe2 be two bisets that overlap. By Lemma 1.3.18, we can replace

Ŝe1 and Ŝe2 by either Ŝe1 ∩ Ŝe2 and Ŝe1 ∪ Ŝe2 or by Ŝe1 − Ŝe2 and Ŝe2 − Ŝe1 . Lemma 1.3.19 implies that the resulting

bifamily is a witness bifamily for M that has fewer overlapping bisets. Thus we can repeat this process until we get a

witness bifamily in which no two bisets overlap. �

10

Chapter 2

PC-EC-SNDP via Multiroute Flows

In this chapter, we consider node-weighted PC-SNDP in edge-connectivity setup (PC-EC-SNDP) and obtain an

O(k2 log n)-approximation. In Chapter 3, we improve our method and give an O(k log n)-approximation for node-

weighted prize-collecting SNDP in a more general connectivity setup, element-connectivity.

2.1 LP Relaxations for node-weighted PC-EC-SNDP

Let s and t be two vertices of the graph and let ` be an integer. Consider a tuple p = (p1, p2, · · · , p`) such that each

pi is a path from s to t and the paths in p are edge-disjoint; we refer to such a tuple p as an `-route tuple connecting s

to t. In the following, we ignore the order in which the paths appear in the tuple; more precisely, two tuples consisting

of the same collection of paths are considered to be the same tuple. A vertex v intersects p if there exists some path in

p that contains v; we use v ∈ p to denote the fact that v intersects p. Similarly, an edge e intersects p if there exists

some path in p that contains e; we use e ∈ p to denote the fact that e intersects p.

Consider an instance of the node-weighted PC-EC-SNDP. For each unordered pair st of nodes, we let Pr(st)st

denote the collection of all r(st)-tuples that connect s to t, where r(st) is the requirement of the pair. We can write

a relaxation for the problem as follows. We have a variable x(v) for each vertex v and a variable z(st) for each pair

st of nodes with the interpretation that x(v) = 1 if v is in the solution and z(st) = 1 if the requirement of st is not

satisfied by the solution. We also have variables f(p), where p ∈ Pr(st)st , with the interpretation that f(p) = 1 if the

paths connecting s to t are the paths of p.

11

PC-Multiroute-LP

min
∑
v∈V

w(v)x(v) +
∑

st∈V×V
π(st)z(st)

s.t.
∑

p∈Pr(st)
st

f(p) = 1− z(st) ∀st

∑
p∈Pr(st)

st , v∈p

f(p) ≤ x(v) ∀v,∀st

0 ≤ x(v) ≤ 1 ∀v

0 ≤ z(st) ≤ 1 ∀st

f(p) ≥ 0 ∀p

Multiroute-LP

min
∑
v∈V

w(v)x(v)

s.t.
∑

p∈Pr(st)
st

f(p) = 1 ∀st

∑
p∈Pr(st)

st , v∈p

f(p) ≤ x(v) ∀v,∀st

0 ≤ x(v) ≤ 1 ∀v

f(p) ≥ 0 ∀p

Proposition 4. PC-Multiroute-LP is a valid relaxation for the node-weighted PC-EC-SNDP. Moreover if there

is a single pair st with non-zero requirement then the relaxation is exact.

Proof: Let H be a feasible solution for the node-weighted PC-EC-SNDP on graph G with requirement function

r(st) and penalty function π(st) for each pair of vertices st. Construct a solution (x, z) to PC-Multiroute-LP

as follows. Let x(v) = 1 if v ∈ V (H) and 0 otherwise. For each pair s and t which is not connected via r(st)

edge-disjoint paths in H , let z(st) = 1; otherwise, let z(st) = 0. For each pair of vertices st with z(st) = 0, consider

a set of r(st) edge-disjoint st-paths pst and let f(pst) = 1; let f(p) = 0 for any p ∈ Pr(st)st − pst. Since for each pair

of terminals st with z(st) = 0 we have picked an r(st)-flow, pst, (x, z) satisfy the first set of constraints. Moreover,

f(p) = 1 if all vertices of p are in H . Since for each v ∈ V (H), x(v) = 1 and for each pair st one tuple has

non-zero f -value, (x, z) satisfy the second set of constraints too. Hence, PC-Multiroute-LP is a valid relaxation

for PC-EC-SNDP.

Now, consider the case that only one pair has non-zero requirement. Let s and t be the pair with non-zero require-

ment. For each p ∈ Pr(st)st , let w(p) =
∑
v∈p w(v). For each feasible solution of PC-Multiroute-LP, the value of

the solution is a linear combination of π(st) and {w(p)|p ∈ Pr(st)st } which is less than min(π(st),min
p∈Pr(st)

st
w(p)).

Since π(st) and w(p) correspond to integral solutions, the relaxation is exact in this case. �

Corollary 2.1.1. Multiroute-LP is a valid relaxation for the node-weighted EC-SNDP. Moreover if there is a

single pair st with non-zero requirement then the relaxation is exact.

We summarize at a high-level our theorems about PC-Multiroute-LP and Multiroute-LP below.

• Given a feasible solution (x, f, z) to PC-Multiroute-LP it is easy to obtain another feasible solution

(x′, f ′, z′), via the scaling method of Bienstock et al. [2], such that z′ is integral and the cost of (x′, f ′, z′)

is at most 2 times the cost of (x, f, z).

12

• The integrality gap of Multiroute-LP is O(k log n) for general graphs and O(k) for graphs from a minor-

closed family of graphs.

• PC-Multiroute-LP and Multiroute-LP are NP-hard to solve when k is part of the input. However, one

can find in polynomial time a feasible solution to them with cost at most k times the optimum solution value.

This is done by solving a compact relaxation. Combining the above three ingredients gives an O(k2 log n)

approximation for node-weighted PC-EC-SNDP and the ratio improves to O(k2) for minor-closed families of

graphs.

Remark 2.1.2. For edge-weighted problems the multi-route formulation will have a variable x(e) for each edge and

the total multi-route flow on each edge e for any pair will be bounded by x(e). This relaxation can be solved in

polynomial time since the separation oracle for the dual is the min-cost flow problem. This relaxation for PC-EC-

SNDP is equivalent (in the sense of having the same optimal value for each instance) to the cut-based relaxation

from [15].

2.2 Approximate solution to PC-Multiroute-LP

Consider the following special case of the node-weighted SNDP problem in which we are given a single pair (s, t)

and an integer k and the goal is to find a minimum weight subgraph H such that s and t are k-edge-connected in H .

We will refer to this special case as the node-weighted single-pair connectivity problem.

Multiroute-LP and PC-Multiroute-LP are exact on instances of the node-weighted single pair connectiv-

ity problem. The edge-weighted single pair connectivity problem is solvable in polynomial time but the node-weighted

problem is known to be NP-hard when k is part of the input via a reduction from the DENSEST SUBGRAPH prob-

lem [24]. Therefore we cannot solve the Multiroute-LP or the PC-Multiroute-LP relaxations exactly when

k is large. In the following, we show that we can solve the PC-Multiroute-LP relaxation approximately.

We can write a compact formulation of PC-Multiroute-LP as follows. We replace each edge uv by two

directed edges u→ v and v → u, one in each direction; we refer to u→ v and v → u as the arcs corresponding to the

edge uv. Let A denote the set of all resulting arcs. As before, we have a variable x(v) for each vertex v and a variable

z(st) for each pair st. We have a variable f(a, st) for each directed edge a and each pair st with the interpretation

that f(a, st) = 1 iff the solution satisfies the requirement of st and a is on the r(st)-tuple pst ∈ P
r(st)
st chosen for st.

For each pair st, we impose the constraint that the values f(a, st) define a flow that sends (1−z(st))r(st) units of

flow from s to t subject to the following capacity constraints. For a pair st, each vertex v has a capacity of r(st)x(v).

(As before, different pairs do not share the capacity.)

13

In the following, we use δ−(v) to denote the set of all incoming arcs of v, that is, arcs u → v. We use δ+(v) to

denote the set of all outgoing arcs of v, that is, arcs v → u.

Compact-PC-Multiroute-LP

min
∑
v∈V

w(v)x(v) +
∑

st∈V×V
π(st)z(st)

s.t.
∑

a∈δ+(s)

f(a, st)−
∑

a∈δ−(s)

f(a, st) = (1− z(st))r(st) ∀st

∑
a∈δ−(v)

f(a, st) =
∑

a∈δ+(v)

f(a, st) ∀st,∀v /∈ {s, t}

f(a, st) ≤ 1− z(st) ∀a,∀st∑
a∈δ−(v)

f(a, st) ≤ r(st)x(v) ∀st,∀v

0 ≤ x(v) ≤ 1 ∀v

0 ≤ z(st) ≤ 1 ∀st

f(a, st) ≥ 0 ∀a,∀st

Proposition 5. Compact-PC-Multiroute-LP is a valid relaxation for the node-weighted PC-SNDP.

Proof: Let H be a feasible solution for PC-SNDP. For each v ∈ V , let x(v) = 1 if v ∈ V (H) and zero otherwise.

For each pair of terminals st, let z(st) = 1 if H contains less than r(st) edge-disjoint st-paths and zero otherwise.

Moreover, for each pair st with z(st) = 0 pick a set of r(st) edge-disjoint st-paths and orient them from s to t. Let

f(a, st) = 1 if a is in the st-flow of value r(st).

(x, z) satisfy the first set of constraints since for each st either z(st) = 1 and the right hand side is zero or there

exists an st flow of value r(st). The second constraint holds since we have a valid st-flow. Consider the third set of

constraints. For a pair of terminals with z(st) = 1 we don not add any st-paths and it holds. In the case that z(st) = 0,

the right hand side is 1 and since for each a, f(a, st) ≤ 1 the constraint holds trivially. Moreover, (x, z) satisfy the

last set of constraints because for each pair of terminals st we have picked at most r(st) st-paths and thus in-degree

of each vertex v ∈ H is at most r(st) = r(st)x(v). �

In the following, we show that, given an optimal solution to Compact-PC-Multiroute-LP, we can construct

a k-approximate solution to PC-Multiroute-LP in polynomial time. More precisely, we prove the following

theorem.

Theorem 2.2.1. We can find in polynomial time a fractional solution (x, f, z) to PC-Multiroute-LP whose cost∑
v x(v)w(v) +

∑
st z(st)π(st) is at most k·OPT, where OPT is the cost of the optimal fractional solution to

PC-Multiroute-LP.

14

The following lemma allow us to decompose an edge-based flow into a multi-route flow. We refer the reader to

Lemma 2 in [1] for a proof.

Lemma 2.2.2 ([1, 21]). Let G = (V,A) be a directed network and let s and t be two vertices of V . Let k be an

integer and let ν be a non-negative real number. Let f : A → R+ be an st flow such that the value of f is kν and

f(a) ≤ ν for each arc a ∈ A. Let Pkst be the set of all k-route tuples of G that connect s to t. There is a k-route flow

g : Pkst → R+ of value ν such that g(a) ≤ f(a) for all a ∈ A, where g(a) =
∑
p∈Pk

st,a∈p
g(p). Moreover, we can

construct such a flow g in polynomial time.

Proposition 6. Given a feasible solution (x, f, z) to Compact-PC-Multiroute-LP, we can find in polynomial

time a feasible solution (x′, z′, f ′) to PC-Multiroute-LP such that

∑
v

x′(v)w(v) +
∑
st

z′(st)π(st) ≤ k

(∑
v

x(v)w(v) +
∑
st

z(st)π(st)

)
.

Proof: Let (x, f, z) be a feasible solution to Compact-PC-Multiroute-LP. Let (x′, z′, f ′) be the following

solution. For each vertex v, we set x′(v) = min{1, kx(v)}. For each pair st, we set z′(st) = z(st). Finally, for each

pair st, we apply Lemma 2.2.2 to f(· , st) in order to get an r(st)-route flow gst : Pr(st)st → R+ of value 1 − z(st),

and we set f ′(p) = gst(p) for all pairs st and all tuples p ∈ Pr(st)st . It is straightforward to verify that (x′, z′, f ′) is a

feasible solution to PC-Multiroute-LP. �

Proposition 7. Let (x, f, z) be a feasible solution to PC-Multiroute-LP. There exists a feasible solution (x′, z′, f ′)

to Compact-PC-Multiroute-LP such that

∑
v

x′(v)w(v) +
∑
st

z′(st)π(st) ≤
∑
v

x(v)w(v) +
∑
st

z(st)π(st).

Proof: We set x′ = x and z′ = z. For each pair st, we orient paths in Pr(st)st from s to t. Then, we set f ′(a, st) =∑
p∈Pr(st)

st ,a∈p f(p). It is straightforward to verify that (x′, z′, f ′) is feasible for Compact-PC-Multiroute-LP.

�

The Compact-PC-Multiroute-LP relaxation has polynomial size and therefore we can solve it in polynomial

time. Proposition 6 and Proposition 7 imply that we can find a k-approximate solution to PC-Multiroute-LP in

polynomial time via solving the corresponding instance of Compact-PC-Multiroute-LP (see Theorem 2.2.1).

2.3 Rounding a fractional solution to PC-Multiroute-LP

We use the approach of Bienstock et al. [2] to relate the integrality gap of PC-Multiroute-LP to the integrality

gap of Multiroute-LP.

15

Lemma 2.3.1. Consider an instance 〈G,w, π〉 of the node-weighted PC-EC-SNDP where the input graph G belongs

to a family G of graphs. Let (x, f, z) be a feasible fractional solution to PC-Multiroute-LP for this instance.

There is a feasible integral solution H whose cost is at most

2γ

(∑
v

x(v)w(v)

)
+ 2

(∑
st

z(st)π(st)

)
≤ 2γ

(∑
v

x(v)w(v) +
∑
st

z(st)π(st)

)
,

where γ is an upper bound on the integrality gap of Multiroute-LP on instances of the node-weighted SNDP

problem in which the input graph G is in G. Moreover, if there is a polynomial-time algorithm that rounds a fractional

solution to Multiroute-LP to an integral solution of value at most ρ times the value of the fractional solution,

then there is a polynomial time algorithm that rounds a fractional solution to PC-Multiroute-LP to an integral

solution of cost at most 2ρ times the cost of the fractional solution.

Proof: Let I = {st | z(st) > 1/2}. Consider the Multiroute-LP instance that we get from the prize-collecting

instance by setting the requirements of all the pairs in I to zero. Let J be the set of all pairs not in I . Let x′ and f ′

be the following vectors. For each vertex v ∈ V , we set x′(v) = min{1, 2x(v)}. For each pair st ∈ J and each

p ∈ Pr(st)st , we set f ′(p) = f(p)/(1− z(st)). (Note that, for each st ∈ J , z(st) ≤ 1/2.)

We can show that (x′, f ′) is a feasible solution to the Multiroute-LP instance as follows. The solution clearly

satisfies the first and third set of constraints. Therefore it suffices to verify that it also satisfies the second set of

constraints. Consider a vertex v ∈ V and a pair st ∈ J . Suppose that x′(v) = 1. We have

∑
p∈Pr(st)

st ,v∈p

f ′(p) ≤
∑

p∈Pr(st)
st

f ′(p) = 1.

Therefore we may assume that x′(v) = 2x(v). We have

∑
p∈Pr(st)

st ,v∈p

f ′(p) ≤ 2
∑

p∈Pr(st)
st ,v∈p

f(p) ≤ 2x(v) = x′(v).

The first inequality follows from the fact that z(st) ≤ 1/2 and the second inequality follows from the fact that (x, f, z)

is a feasible solution to PC-Multiroute-LP.

Therefore (x′, f ′) is a feasible solution to Multiroute-LP. Since the integrality gap of Multiroute-LP is

γ, there is a subgraph H of weight at most γ
∑
v w(v)x′(v) that satisfies the requirements of all the pairs in J . Since

H satisfies the requirements of all pairs in J , the cost of H is at most

γ
∑
v

x′(v)w(v) +
∑
st∈I

π(st) ≤ 2γ
∑
v

x(v)w(v) + 2
∑
st

z(st)π(st) ≤ 2γ

(∑
v

x(v)w(v) +
∑
st

z(st)π(st)

)
.

16

�

In Theorem 2.3.8 we show that the integrality gap of Multiroute-LP is O(k log n). Following corollaries follow

from the O(k log n) integrality gap of Multiroute-LP and the scaling method we describe in this section (see

Theorem 2.3.1).

Corollary 2.3.2. The integrality gap of PC-Multiroute-LP is O(k log n).

Corollary 2.3.3. There is an algorithm that takes as input a fractional solution (x, f, z) to PC-Multiroute-LP

and in polynomial time it constructs a feasible integral solution whose cost is at most O(k log n) times the cost of the

fractional solution.

Corollary 2.3.4. The integrality gap of PC-Multiroute-LP is O(k) in minor-closed graph families, where the

constant depends only on the family.

Corollary 2.3.5. Consider an instance of the node-weighted PC-EC-SNDP for which the input graph belongs to a

minor-closed family G. There is a polynomial time algorithm that takes as input a fractional solution (x, f, z) to

PC-Multiroute-LP and it constructs a feasible integral solution whose cost is at most O(k) times the cost of the

fractional solution, where the constant depends only on the family G.

Now we turn our attention to the problem of approximating the node-weighted PC-EC-SNDP. We start by constructing

an O(k)-approximate fractional solution to PC-Multiroute-LP; by Theorem 2.2.1, we can construct such a solu-

tion in polynomial-time. Once we have a fractional solution, we can use the algorithm guaranteed by Corollary 2.3.3

or Corollary 2.3.5 to construct a feasible integral solution. Therefore we have the following approximation guarantees

for the problem.

Theorem 2.3.6. There is an O(k2 log n)-approximation for node-weighted PC-EC-SNDP, where k is the maximum

requirement between a pair of vertices.

Theorem 2.3.7. There is an O(k2)-approximation for node-weighted PC-SNDP on minor-closed families of graphs,

where k is the maximum requirement between a pair of vertices.

2.3.1 Integrality gap of Multiroute-LP via Aug-LP

In this section, we show that the integrality gap of Multiroute-LP is O(k) times the integrality gap of Aug-LP.

In Section 3.3 we show that the integrality gap of ELC-Aug-LP which captures Aug-LP is O(log n).

Theorem 2.3.8. Let OPT be the value of the optimal fractional solution to Multiroute-LP. There is a polynomial

time algorithm that constructs a subgraph H of G such that H is a feasible solution for the node-weighted EC-SNDP

instance and the weight of H is O(k log n)·OPT.

17

By the fact that the integrality gap of ELC-Aug-LP is O(log n) we can similarly show that the integrality gap of

ELC-Multiroute-LP is O(k log n).

Theorem 2.3.9. Let OPT be the value of the optimal fractional solution to ELC-Multiroute-LP. There is a

polynomial time algorithm that constructs a subgraphH ofG such thatH is a feasible solution for the node-weighted

ELC-SNDP instance and the weight of H is O(k log n)·OPT.

Via primal-dual approach, Chekuri et al. [3] show that the integrality gap of Aug-LP that arise from instances of

EC-SNDP for which the input graph belongs to a minor-closed family G is O(1). Following theorems follow from the

O(1) integrality gap of Aug-LP in minor-closed families of graphs.

Theorem 2.3.10. Let OPT be the value of the optimal fractional solution to Multiroute-LP. If the input graph G

belongs to a minor-closed family G, there is a polynomial time algorithm that constructs a subgraph H of G such that

H is a feasible solution for the node-weighted SNDP instance and the weight of H is O(k)·OPT, where the constant

depends only on the family G.

Theorem 2.3.11. Let OPT be the value of the optimal fractional solution to ELC-Multiroute-LP. If the input

graph G belongs to a minor-closed family G, there is a polynomial time algorithm that constructs a subgraph H of

G such that H is a feasible solution for the node-weighted ELC-SNDP instance and the weight of H is O(k)·OPT,

where the constant depends only on the family G.

In order to prove Theorem 2.3.8 and Theorem 2.3.10, we use the augmentation framework that was introduced by

Williamson et al. [27] for the edge-weighted EC-SNDP problem. Note that the theorems only upper bound the inte-

grality gap of the relaxations; the algorithms for EC-SNDP are not based on solving them. The relaxations need to be

solved for PC-EC-SNDP to identify the pairs to connect and reduce to EC-SNDP.

We start by introducing some notation. A set S separates a pair st iff S contains exactly one of s, t. Let r :

2V → Z+ be the function such that r(S) is the maximum requirement of a pair separated by S. Let r` : 2V → Z+

be the function such that r`(S) = min{r(S), `} for all sets S ⊆ V . Let δH(S) be the set of all edges of H with an

endpoint in S and the other in V − S (note that H may not contain all the vertices of S). A graph H covers r iff

|δH(S)| ≥ r(S) for all sets S. By Menger’s theorem, a graph H is a feasible solution to the SNDP instance iff H

covers r (see Theorem 1.3.2).

The algorithm selects a cover H of r in k phases. The algorithm maintains the invariant that the first ` phases have

selected a graph H` that covers r`. During phase `, the algorithm adds a new set of nodes to H`−1 in order to get a

graph H` that covers r`. More precisely, in phase `, we solve the following augmentation problem. It is convenient to

assume that all the nodes in H`−1 have weight zero; since we have already paid for the nodes, we can set their weight

to zero at the beginning of phase `. Let h` : 2V → {0, 1} be the function such that h`(S) = 1 iff |δH`−1
(S)| = `− 1

18

and r(S) ≥ `. Let G′` = (V,E − E(H`−1)). The goal is to select a minimum weight subgraph K` of G′` that covers

h`; once we have K`, we let H` be the subgraph of G induced by V (H`−1) ∪ V (K`).

Consider a phase `. Recall that the goal is to cover h` using a subgraph of G′`. Let ΓG′`(S) be the vertex neighbor-

hood of S; that is, the set of vertices v ∈ V − S such that there is an edge uv ∈ E(G′`), where u ∈ S. We have the

following relaxation for the augmentation problem of phase `.

Aug-LP(G′`, h`)

min
∑
v∈V

w(v)x(v)

s.t.
∑

v∈ΓG′
`
(S)

x(v) ≥ h`(S) ∀S ⊆ V

x(v) ≥ 0 ∀v ∈ V

As shown in Lemma 2.3.12, for each phase of the algorithm, the optimal value of Aug-LP is at most the optimal

value of Multiroute-LP.

Lemma 2.3.12. Let (x, f) be a feasible solution to Multiroute-LP. For any phase `, x is a feasible solution to

Aug-LP(G′`, h`).

Proof: Consider a set S ⊆ V such that h`(S) = 1. It follows from the definition of h` that S separates a pair st

with requirement at least ` and |δH`−1
(S)| = ` − 1. Consider a tuple p ∈ Pr(st)st . Since |δH`−1

(S)| = ` − 1 and p

contains at least ` edge-disjoint s-t paths, there is at least one edge e ∈ p such that e ∈ δG′`(S). Therefore, for any

tuple p ∈ Pr(st)st , there exists a vertex v ∈ ΓG′`(S) such that v ∈ p. It follows that

∑
v∈ΓG′

`
(S)

x(v) ≥
∑

v∈ΓG′
`
(S)

∑
p∈Pr(st)

st ,v∈p

f(p) ≥
∑

p∈Pr(st)
st

f(p) ≥ 1

where the first and last inequalities follow from the fact that (x, f) is feasible for Multiroute-LP and the second

inequality follows from the fact that each tuple p ∈ Pr(st)st contains a vertex of ΓG′`(v). �

Corollary 2.3.13. Suppose that for each phase `, the integrality gap of Aug-LP(G′`, h`) is at most ρ. Then the

integrality gap of Multiroute-LP is at most kρ.

TheO(log n) integrality gap of Aug-LP (see Theorem 3.1.6) together with Corollary 2.3.13 imply anO(k log n)-

approximation for EC-SNDP (see Theorem 2.3.8). Similarly, the O(k)-approximation for EC-SNDP in minor-closed

families of graphs (Theorem 2.3.10) follows from the O(1) integrality gap of Aug-LP in minor-closed families of

graphs (see Theorem 3.1.7) and Corollary 2.3.13.

19

Chapter 3

Improved Approach and
Element-Connectivity

In this chapter, we consider node-weighted PC-SNDP in element-connectivity setup, PC-ELC-SNDP. We improve the

approach introduced in Chapter 2 and give an O(k log n)-approximation for PC-ELC-SNDP. Node-weighted ELC-

SNDP is defined as follows. The input is an undirected node-weighted graphG = (V,E) (weight of node v is denoted

by w(v)) and a requirement function r(st) for each pair of nodes. The vertices of G are partitioned into two sets, R

and V − R; we refer to the vertices of R as reliable and to the vertices of V − R as non-reliable. A vertex s ∈ V

is terminal if there is some vertex t ∈ V such that r(st) > 0. Moreover, all terminals are in R. We assume that no

two reliable vertices are adjacent in G; this assumption is without loss of generality, since we can subdivide each such

edge using an element of weight zero. The goal is to find a minimum weight subgraph H of G such that H contains

r(st) element-disjoint paths between each pair s and t. We use k to denote the maximum requirement. Similar to

PC-EC-SNDP, in prize-collecting ELC-SNDP the input in addition to that of ELC-SNDP, consists of penalties π(st)

for each pair of nodes s and t. The goal is to find a subgraph H of G to minimize the weight of H plus the sum of

the penalties for pairs whose connectivity requirement is not satisfied by H; a pair st is not satisfied if the number of

element disjoint paths in H between s and t is strictly less than r(st) 1.

In Chapter 2, we described how to relate the integrality gap of Multiroute-LP to its augmentation counterpart,

Aug-LP. Here we follow the same approach for the prize-collecting variant of Aug-LP in the element-connectivity

setup which is called PC-ELC-Aug-LP. In this way, we are not required to solve the multiroute flow based relaxation

of PC-ELC-SNDP and we save a factor of k in the approximation ratio.

3.1 Integrality gap of PC-ELC-SNDP via PC-ELC-Aug-LP

In this section, we show that there exists an O(k log n)-approximation algorithm for node-weighted PC-ELC-SNDP.

The ratio improves to O(k) in minor-closed families of graphs.

Theorem 3.1.1. There is an O(k log n)-approximation algorithm for node-weighted PC-ELC-SNDP in undirected

graphs which improves to an O(k)-approximation in minor-closed families of graphs.

1We consider the all-or-nothing penalty model; one should pay the penalty even if the connectivity requirement is slightly violated.

20

In order to prove Theorem 3.1.1, we use the augmentation framework that was introduced by Williamson et al. [27]

for the edge-weighted SNDP. The algorithm constructs a feasible solution to PC-ELC-SNDP in k phases. It selects

a subgraph H of G and a set of pairs Z such that for each pair st /∈ Z, H contains r(st) element-disjoint st-paths.

The set Z denotes the set of pairs whose connectivity requirement is not satisfied by H and we choose to pay their

penalties instead.

Let r` : V × V → Z+ be the requirement function of pairs in phase `; for each pair st, r`(st) = min{`, r(st)}.

The algorithm maintains the invariant that the first `− 1 phases have selected a subgraph H`−1 and a set of pairs Z`−1

such that for each pair st /∈ Z`−1, H`−1 contains r`(st) element-disjoint st-paths. Let H0 and Z0 be empty sets. In

the first `− 1 phases we have paid the cost of all vertices in H`−1 and the penalty cost of all pairs in Z`.

Let R` be the set of pairs with connectivity requirement at least `; R` = {st|r(st) ≥ `}. In phase `, a pair st

is called “unsatisfied” iff st ∈ R` − Z`−1 and H`−1 contains exactly ` − 1 element-disjoint st-paths. In phase `,

we augment the connectivity of a set of unsatisfied pairs by at least one and pay the penalty of the rest of unsatisfied

pairs. Since we have already paid for all vertices in H`−1 and all pairs in Z`−1, it is convenient to assume that for

each v ∈ H`−1, w(v) = 0 and for each st ∈ Z`−1, π(st) = 0. Let G′` = (V,E(G) − E(H`−1)). In phase

`, the problem is to select a subgraph K` of G′` and a set of pairs Z ′` such that for each pair st /∈ Z`−1 ∪ Z ′`,

K` ∪ H`−1 contains at least r`(st) element-disjoint st-paths and the weight of K` plus the total penalty of pairs in

Z ′` is minimized. Let h` : BELC → {0, 1} be the function that h`(Ŝ) = 1 iff Ŝ separates a pair st ∈ R` − Z ′`−1 and

|A′ − A| + |δH`−1
(Ŝ)| = ` − 1. Let Z` = Z`−1 ∪ Z ′`. By Menger’s theorem on element-connectivity, the goal is to

select K` and Z ′` such that for each pair st ∈ R` − Z` and each biset Ŝ ∈ BELC that separates st, |ΓK`
(Ŝ)| ≥ h`(Ŝ).

At the end of phase `, we pay the cost of the vertices in K` and the penalty cost of the pairs in Z ′`. Moreover, we set

H` = H`−1 ∪K` and Z` = Z`−1 ∪ Z ′`.

Proposition 3.1.2. Consider phase ` of the algorithm. The function h` is a biuncrossable function.

Proof: Let X̂ and Ŷ be bisets that h`(X̂) = h`(Ŷ) = 1. This implies that r`(X̂) ≥ ` and r`(Ŷ) ≥ `. Since

X̂, Ŷ ∈ BELC and terminals are reliable nodes, terminals are either in X ∩ Y , X − Y ′, Y −X ′ or V − (X ∪ Y) (see

Figure 3.1). Let sX , tX be the pair separated by X̂ and let sY , tY be the pair separated by Ŷ . Then it is straightforward

to verify that either one of X̂∩Ŷ and X̂∪Ŷ and the other separates sY , tY or one of X̂−Ŷ and Ŷ −X̂ separates sX , tX

and the other separates sY , tY . Suppose that the former case holds (the other case is similar). By bisubmodularity of

|S′−S|+ |δH`−1
(·)| (see Lemma 1.3.10 and 1.3.11), h`(X̂) + h`(Ŷ) ≤ h`(X̂ ∪ Ŷ) + h`(X̂ ∩ Ŷ) which implies that

h`(X̂ ∪ Ŷ) = h`(X̂ ∩ Ŷ) = 1. �

In Theorem 3.1.6 and 3.1.7 we show that in phase `, we can select a feasible solution (K`, Z`) whose cost is

at most O(log n)·OPT, where OPT is the value of an optimal solution of PC-ELC-SNDP; this ratio improves to

O(1) on instances for which the input graphs is in a minor-closed family of graphs G. Thus at the end of phase k

21

A

B C D

X̂ Ŷ

Figure 3.1: Terminals are either in A, B, C or D.

we have a feasible solution to PC-ELC-SNDP such that the weight of Hk plus the total penalty of all pairs in Zk is

O(k log n)·OPT in general graphs and O(k)·OPT in minor-closed families of graphs.

Consider phase `. Let ΓG′`(Ŝ) be the vertex neighborhood of Ŝ; ΓG′`(Ŝ) = {v ∈ V − S′|∃uv ∈ E(G′`), u ∈ S}.

The LP relaxation of the augmentation problem in phase ` is as follows.

PC-ELC-Aug-LP(G′`, h`)

min
∑
v∈V

w(v)x(v) +
∑

st∈V×V
π(st)z(st)

s.t.
∑

v∈ΓG′
`
(Ŝ)

x(v) ≥ h`(Ŝ)(1− z(st)) ∀st ∈ R`,∀Ŝ ∈ BELC, s ∈ S, t ∈ V − S′

x(v) ≥ 0 ∀v ∈ V

z(st) ≥ 0 ∀st ∈ V × V

Lemma 3.1.3. PC-ELC-Aug-LP(G′`, h`) is a valid relaxation of the augmentation problem of PC-ELC-SNDP on

input graph G in phase `.

Proof: Let (H,Z) be a feasible solution for the augmentation problem of PC-ELC-SNDP in phase `. Define (x, z)

such that x(v) = 1 if v ∈ H and x(v) = 0 otherwise and z(st) = 1 if (s, t) ∈ Z and zero otherwise. Consider a

biset Ŝ that h`(Ŝ) = 1 and Ŝ separates a pair st ∈ R` − Z (not that since we set π(st) = 0 for each (s, t) ∈ Z`−1,

Z`−1 ⊆ Z). Since h`(Ŝ) = 1, r(st) ≥ ` and |S′−S|+ |δH`−1
(Ŝ)| = `− 1. Since (H,Z) is a feasible solution to the

22

augmentation problem in phase `, H contains at least ` element-disjoint st-paths. This implies that for each st ∈ R`,

∑
x∈ΓG′

`
(Ŝ)

x(v) ≥ `− |δH`−1
(Ŝ)| ≥ 1 ≥ h`(Ŝ)(1− z(st)).

�

Following lemma shows that in each phase `, the cost of an optimal solution to PC-ELC-Aug-LP(G′`, h`) is not

more than the cost of an optimal solution of PC-ELC-SNDP.

Lemma 3.1.4. Let subgraph H and set of pairs Z be a feasible solution of PC-ELC-SNDP. For each phase ` ≤ k, H

along with Z is a feasible solution to PC-ELC-Aug-LP(G′`, h`).

Proof: For each v ∈ V , let x(v) = 1 if v ∈ V (H) and zero otherwise. Similarly, let z(st) = 1 if st ∈ Z

and zero otherwise. The pair (x, z) corresponds to the solution (H,Z). Clearly (x, z) satisfy the non-negativity

constraints of PC-ELC-Aug-LP(G′`, h`). We only need to show that (x, z) satisfy the first set of constraints as

well. Consider a biset Ŝ ∈ BELC such that h`(Ŝ) = 1. Since h`(Ŝ) = 1, Ŝ separates a pair st with r(st) ≥ ` and

|δH`−1
(Ŝ)|+ |S′−S| = `− 1. If z(st) = 1 for st, the right-hand side of the corresponding constraint becomes 0 and

it trivially holds. Consider the case that z(st) = 0. Note that |δH`−1
(Ŝ)|+ |S′ − S| = `− 1 and S′ − S only contains

non-reliable vertices. Since st ∈ R` − Z, H contains ` element-disjoint st paths. Thus there is at least one edge of

δH(Ŝ) that is in δG′`(Ŝ). Therefore, |ΓG′`(Ŝ)∩ V (H)| is nonempty and it follows that for each Ŝ ∈ BELC separating a

pair st ∈ R` − Z, ∑
v∈ΓG′

`
(Ŝ)

x(v) ≥ 1.

Thus (x, z) (or equivalently H and Z) is a feasible solution to PC-ELC-Aug-LP(G′`, h`). �

Corollary 3.1.5. Let G be a node-weighted graph from a family of graphs G. Suppose that in each phase `, there is

an approximation algorithm that finds an integral ρ-approximate solution to PC-ELC-Aug-LP(G′`, h`). Then there

is a (kρ)-approximation for PC-ELC-SNDP on graphs from family G.

Thus it suffices to bound the integrality gap of PC-ELC-Aug-LP(G′`, h`). Following the scaling method of Bienstock

et al. [2] and similar to Theorem 2.3.1, in Theorem 3.1.9 we show that a λ-approximation to ELC-Aug-LP gives a

2λ-approximation to PC-ELC-Aug-LP. Thus it is enough to upper bound the integrality gap of ELC-Aug-LP. We

prove Theorem 3.1.6 in section 3.3.

Theorem 3.1.6. In each phase `, the integrality gap of ELC-Aug-LP(G′`, h`) is O(log n). Moreover, there is a

polynomial time algorithm that selects a subgraph K` of G′` that covers h` and the weight of K` is at most O(log n)

times the weight of the optimal solution to ELC-Aug-LP(G′`, h`).

23

You can find the proof of Theorem 3.1.7 in the long version of [3].

Theorem 3.1.7 (Long version of [3]). Suppose that G belongs to a minor-closed family G. In each phase `, the

integrality gap of ELC-Aug-LP(G′`, h`) is a constant that only depends on the family G. Moreover, there is a

polynomial time algorithm that selects a subgraph K` of G′` covers h` and the weight of K` is at most O(1) times the

weight of the optimal solution to ELC-Aug-LP(G′`, h`).

An important observation about the constraints of ELC-Aug-LP instances derived from ELC-SNDP is that if

h`(Ŝ) = 1 then S′ − S is a subset of zero-weight vertices, S′ − S ⊆ V (H`−1).

Lemma 3.1.8. Consider ELC-Aug-LP(G′`, h`) and let Ŝ = (S, S′) be a biset such that h(Ŝ) = 1. Then, S′ − S ⊆

V (H`−1).

Proof: Since h`(Ŝ) = 1, r(Ŝ) ≥ ` and |S′ − S| + |δH`−1
(Ŝ)| = ` − 1. Let T = (S′ − S) ∩ (V (G) − V (H`−1)).

Suppose for contradiction that T is a non-empty set and let Ŷ = (S, S′ − T). Since all terminals have zero weight,

Ŷ separates all terminal pairs separated by Ŝ and r(Ŷ) = r(Ŝ) ≥ `. Note that since the vertices of T have non-

zero weight, H`−1 does not have any edge incident to a vertex of T . Therefore δH`−1
(Ŝ) = δH`−1

(Ŷ). Thus

|S′ − S − T | + |δH`−1
(Ŷ)| = ` − 1 − |T | < ` − 1, which contradicts the fact that at the end of phase ` − 1,

|S′ − S|+ |δH`−1
(Ŝ)| ≥ `− 1 for each Ŝ ∈ P with r(Ŝ) ≥ `. �

Suppose that PC-ELC-Aug-LP(G′`, h`) is solvable in polynomial time. Then by the scaling method of Bien-

stock et al. [2], the integrality gap of PC-ELC-Aug-LP(G′`, h`) is within a constant factor of the integrality gap

of ELC-Aug-LP(G′`, h`) (see Lemma 3.1.9) and by Corollary 3.1.5 and Theorem 3.1.6, we have an O(k log n)-

approximation for node-weighted PC-ELC-SNDP. Similarly by Corollary 3.1.5 and Theorem 3.1.7, there is an O(k)-

approximation algorithm for node-weighted PC-ELC-SNDP on minor-closed families of graphs. Theorem 3.1.17

shows that we can find an optimal fractional solution to PC-ELC-Aug-LP(G′`, h`) in polynomial time.

Lemma 3.1.9. Suppose that the integrality gap of ELC-Aug-LP(G′`, h`) is α and PC-ELC-Aug-LP(G′`, h`) is

solvable in polynomial time. Then the integrality gap of PC-ELC-Aug-LP(G′`, h`) is O(α). Furthermore if there is

an algorithm that finds an integral ρ-approximate solution to ELC-Aug-LP(G′`, h`) in polynomial time, we can find

an integral solution to PC-ELC-Aug-LP(G′`, h`) in polynomial time whose cost is at most O(ρ).OPT, where OPT

is the cost of the optimal solution to PC-ELC-Aug-LP(G′`, h`).

Proof: Let (x, z) be a feasible fractional solution to PC-ELC-Aug-LP(G′`, h`). Let I = {st | z(st) > 1/2}.

Consider the ELC-Aug-LP(G′`, h
′
`) instance that we get from the prize-collecting instance by setting the requirement

of the pairs in I to zero. Let J be the set of all pairs not in I . h′`(Ŝ) = 1 iff h`(Ŝ) = 1 and Ŝ separates a pair st ∈ J

and zero otherwise. Similar to h`, we can show that h′` is a biuncrossable function. Let x′ be the following vector. For

each vertex v ∈ V , we set x′(v) = min{1, 2x(v)}.

24

We can show that x′ is a feasible solution to ELC-Aug-LP(G′`, h
′
`). The solution clearly satisfies x′(v) > 0 for

all v ∈ V (G′`). Therefore it suffices to verify that it covers h′`. Consider a biset Ŝ ∈ BELC and an unsatisfied pair

st ∈ J . Since (x, z) is a feasible solution for the prize-collecting instance,

∑
v∈ΓG′

`
(Ŝ)

x(v) ≥ h`(Ŝ)(1− z(st)).

If for a node v ∈ ΓG′`(Ŝ), x′(v) = 1 then,

∑
v∈ΓG′

`
(Ŝ)

x′(v) ≥ 1 ≥ h′`(Ŝ).

Therefore we may assume that x′(v) = 2x(v) for all v ∈ ΓG′`(Ŝ). We have

∑
v∈ΓG′

`
(Ŝ)

x′(v) =
∑

v∈ΓG′
`
(Ŝ)

2x(v) ≥ 2h`(Ŝ)(1− z(st)) ≥ h`(Ŝ) ≥ h′`(Ŝ).

The first inequality follows from the fact that (x, z) is a feasible solution to PC-ELC-Aug-LP(G′`, h`) and the

second inequality follows from the fact that z(st) ≤ 1/2 for all st ∈ J . Therefore x′ is a feasible solution to

ELC-Aug-LP(G′`, h
′
`). This implies that the integrality gap of PC-ELC-Aug-LP(G′`, h`) is at most 2α. If there

exists an algorithm that finds an integral ρ-approximate solution of ELC-Aug-LP(G′`, h
′
`), there is a subgraph H of

weight at most ρ
∑
v w(v)x′(v) that satisfies the connectivity requirements of all pairs in J . Thus the cost of H plus

the penalty of the pairs in I is at most

ρ
∑
v

x′(v)w(v) +
∑
st

π(st) ≤ 2ρ
∑
v

x(v)w(v) + 2
∑
st

z(st)π(st) ≤ 2ρ

(∑
v

x(v)w(v) +
∑
st

z(st)π(st)

)
.

Thus the subgraph H along with the set I is an O(ρ)-approximation solution for PC-ELC-Aug-LP(G′`, h`). �

Next, we show that PC-ELC-Aug-LP is solvable in polynomial time. In general, PC-ELC-Aug-LP has expo-

nentially many constraints and to solve it in polynomial time we need to design a separation oracle and apply ellipsoid

method. First we describe a separation oracle for ELC-Aug-LP and then we show how to modify the oracle so that

it works for PC-ELC-Aug-LP as well.

Theorem 3.1.10. Consider phase ` of the augmentation framework. There is an algorithm that finds an optimal

fractional solution to ELC-Aug-LP(G′`, h`) in polynomial time.

25

ELC-Aug-LP(G′`, h`)

min
∑
v∈V

w(v)x(v)

s.t.
∑

v∈ΓG′
`
(Ŝ)

x(v) ≥ h`(Ŝ) ∀Ŝ ∈ BELC

x(v) ≥ 0 ∀v ∈ V

Given a fractional solution x to ELC-Aug-LP(G′`, h`), we define the function g` as follows. For each biset Ŝ ∈ BELC,

let g`(Ŝ, x) = |δH`−1
(Ŝ)|+ |S′−S|+

∑
v∈ΓG′

`
(S) x(v). By the constraint of ELC-Aug-LP, a biset Ŝ is violated w.r.t.

x if g`(Ŝ, x) < r`(Ŝ). To decide whether x is a feasible solution to ELC-Aug-LP(G′, h`) we need to check whether

there exists a biset Ŝ ∈ BELC such that g`(Ŝ, x) < r`(Ŝ). The idea is to construct a directed graph Gstx for each pair

st with r(st) ≥ ` such that the value of st-min-cut in Gstx is equal to minŜ∈P,s∈S,t∈V−S′ g`(Ŝ, x). This implies that

there is a polynomial time algorithm to check whether x is a feasible fractional solution of PC-ELC-Aug-LP(G′`, h`)

and report a violated constraint if there exists any.

We assume that 0 ≤ x(v) ≤ 1 for each v ∈ V (G); otherwise, we can simply find a violated constraint. Since

w(v) = 0 for each v ∈ V (H`−1), we can assume that x(v) = 1 for each v in H`−1. For each pair st with r(st) ≥ `,

we construct a directed graphGstx with edge capacities as follows. Each edge uv ∈ E(G) is replaced with two directed

arcs u → v and v → u both with unit capacity (c(u → v) = c(v → u) = 1). Moreover, we replace each vertex

v ∈ V −{s, t} with two nodes vi and vo such that vi serves as the entrance gate and vo serves as the exit gate of v (all

incoming arcs of v are incident to vi and all outgoing arcs of v are incident to vo) and an arc vi → vo connects vi to

vo. The capacity of each arc vi → vo is defined as follows.

c(vi → vo) =


x(v) if v ∈ V (G)− V (H`−1)

∞ if v ∈ V (H`−1) ∩R

1 if v ∈ V (H`−1)−R

There are two types of arc in Gstx : the arcs representing nodes of G, vi → vo, and the arcs representing edges of G,

vo → ui. We call the first type, “node” arcs and the other one, “edge” arcs. In the following, we use δ−(S) to denote

the set of all incoming arcs of S, that is, arcs u → v where u /∈ S, v ∈ S. We use δ+(S) to denote the set of all

outgoing arcs of S, that is, arcs v → u where u /∈ S, v ∈ S.

For a set S ⊂ V (Gstx), c(S) denote the value of the cut induced by S in Gstx which is equal to
∑
a∈δ+

Gst
x

(S) c(a).

Remark 3.1.11. Note that we consider terminal s (and similarly t) as a node representing both entrance and exit

gates of s; s = si = so.

26

s

t

Figure 3.2: Undirected graph G with two types of
vertices: reliable vertices and non-reliable ones. Cir-
cles denote reliable vertices and squares denote non-
reliable ones.

s

t

Figure 3.3: The corresponding Gstx of the graph in
Figure 3.2.

In following, we define simple st-cut in Gstx . In addition, we show that for each violated biset Ŝ ∈ BELC w.r.t. x

that separates s and t there exists a simple st-cut Sx in Gstx such that c(Sx) = g`(Ŝ, x).

Definition 3.1.12. In directed graph Gstx , an st-cut S is a simple st-cut if:

1. If vi → vo crosses S and v ∈ V (H`−1), then v is a non-reliable node.

2. If vo ∈ S then vi is in S too.

3. If vo → ui crosses S, both u and v are zero-weight.

4. If vi → vo crosses S and v /∈ V (H`−1), there exists a node uo ∈ S such that uovi ∈ E(Gstx).

In the following proposition we show that there exists an st-min-cut of Gstx that is a simple st-cut.

Proposition 8. Let Gstx be the directed graph corresponding to a pair of nodes st and a fractional solution x to

ELC-Aug-LP(G, h). There exists a simple st-cut S′ that is an st-min-cut of Gstx . Morover, we can find a simple

st-min-cut in ploynomial time.

Proof: We assume that Gstx has a finite cut; otherwise, the proposition trivially holds. Consider an st-min-cut of Gstx ,

S. We show that in polynomial time we can construct a simple st-cut S′ such that c(S′) = c(S).

1. Since the capacity of a “node” arc representing a zero-weight reliable node is infinity, no such arc crosses S.

2. Suppose that there exists a node v ∈ V (G) such that vo ∈ S and vi /∈ S. Consider S − {vo}. Since the only

incoming arc of vo is vivo and vi /∈ S, c(S − {vo}) = c(S). Let S1 = S − {vo|vo ∈ S, vi /∈ S}; c(S1) = c(S)

and S1 satisfies properties 1 and 2.

3. Then, we continue with S1. Suppose that there exists an arc voui crossing S1 such that at least one of v and u

is not in V (H`−1). Assume that v /∈ V (H`−1); the other case is similar. Since the second property of simple

27

s

t

Figure 3.4: A simple cut in Gst
x . White vertices denote the vertices in V (H`−1).

cuts holds for S1, vi ∈ S1 too. Since the capacity of an “edge” arc is one and the capacity of a “node” arc

corresponding to a vertex v /∈ V (H`−1) is x(v) ≤ 1, c(S1 − {vo}) ≤ c(S1) (in the case that u /∈ V (H`−1),

we have c(S1 ∪ {u}) ≤ c(S1)). Since vi is not a zero-weight vertex, this update does not violate properties

1 and 2. Note that each time we perform this step the number of “edge” arcs of the cut decreases; thus this

update terminates in a polynomial time. We keep on performing this update until we reach a set S2 such that

c(S2) ≤ c(S1) and S2 satisfies properties 1 to 3.

4. Now, we proceed with set S2. Suppose that there exists an arc vivo crossing S2 that v ∈ V (G)− V (H`−1). If

there exists no uo ∈ S2 such that uovi ∈ E(Gstx), c(S2 − {vi}) ≤ c(S2); we can remove vi from S2 without

increasing the cut value. We repeat this update until we obtain a set S3 that satisfies properties 1 to 4 and

c(S3) ≤ c(S2). Note that since vi is removed from S2 only if vo /∈ S2 and vi /∈ δGst
x

(S2), this update does not

violate the properties 1 and 3. Moreover, since each time we perform this update the value of |S2| decreases,

this step terminates in polynomial time.

The set S′ = S3 is a simple st-cut such that c(S′) ≤ c(S). Our approach implies that we can find a simple st-min-cut

in polynomial time. �

Now, we are ready to prove the main lemma that leads to a separation oracle for ELC-Aug-LP(G′, h`). Lemma 3.1.13

and 3.1.14 shows that the value of an st-min-cut in Gstx determines whether there exists a violated biset Ŝ w.r.t. x

separating s and t.

Lemma 3.1.13. Consider phase ` of the algorithm and let x be a fractional solution to ELC-Aug-LP(G′`, h`). For

each violated biset Ŝ = (S, S′) w.r.t. x, there exists a pair st and a simple st-min-cut Sx such that c(Sx) = g`(Ŝ, x).

Proof: Since Ŝ is a violated biset w.r.t. x, h`(Ŝ) = 1 and it separates a pair st with r(st) ≥ `. We assume that s ∈ S

and construct Sx as follows. Let S1
x = {vi, vo|v ∈ S − {s}}, S2

x = {vi|v ∈ S′ − S} ∪ {vi|v ∈ ΓG′`(Ŝ)}. We define

Sx = S1
x ∪ S2

x ∪ {s}.

28

First we show that Sx is a simple st-cut. An arc vi → vo crosses Sx if v ∈ S′ − S or v ∈ ΓG′`(Ŝ). Since Ŝ is a

violated biset w.r.t. x, ΓG′`(Ŝ) contains no reliable node; moreover, S′ − S only contains non-reliable nodes (Ŝ ∈ P).

Thus v is not a zero-weight reliable vertex and the first property holds. Our construction insures the second property;

vi ∈ Sx if vo ∈ Sx. Moreover, if vi → vo crosses Sx and v is not a zero-weight vertex, then v is either in S′ − S or

ΓG′`(Ŝ). Since S′ − S consists of zero-weight vertices (Lemma 3.1.8), v ∈ ΓG′`(Ŝ). Thus there exists a node u ∈ S

such that uv ∈ E(G′`) and property 4 holds. Finally suppose that an arc vo → ui crosses Sx. This implies that v ∈ S,

u ∈ V − (S′ ∪ ΓG′`(Ŝ)). Since v ∈ S and u ∈ ΓG(Ŝ)− ΓG′`(Ŝ). Thus both u and v are zero-weight (u ∈ ΓH`−1
(Ŝ))

and the third property holds too. Hence Sx is a simple st-cut.

Next, we show that c(Sx) = g`(Ŝ, x). Since Sx is a simple st-cut, it only contains three types of arc:

uo → vi where both u and v have zero weight ⇐⇒ uv ∈ ΓH`−1
(Ŝ)

vi → vo where v is a zero-weight non-reliable vertex ⇐⇒ v ∈ S′ − S

vi → vo where v ∈ ΓG′`(Ŝ) and v has non-zero weight ⇐⇒ v ∈ ΓG′`(Ŝ)

For the first type, if uo ∈ Sx and vi ∈ V (Gstx) − Sx we can conclude that u ∈ S and v ∈ V (G) − S′ and since

both have zero weight, uv ∈ δH`−1
(Ŝ). Furthermore, for each uv ∈ δH`−1

(Ŝ) the arc uovi crosses Sx. Since uo → vi

is an “edge” arc and the capacity of “edge” arcs is one, |δH`−1
(Ŝ)| =

∑
uo→vi∈δGst

x
(Sx) c(uo → vi).

For the second type, by Lemma 3.1.8, for each v ∈ S′ − S, v is a zero-weight non-reliable node and vi → vo

crosses Sx. Since c(vi → vo) = 1 for all zero-weight non-reliable vertices, |S′ − S| =
∑
vi→vo∈δGst

x
(Sx)

w(v)=0

c(vi → vo).

And for the last type, if vi → vo crosses Sx and it corresponds to a non zero-weight vertex v, v ∈ ΓG′`(Ŝ).

Moreover, for each v ∈ ΓG′`(Ŝ), vi ∈ Sx and vo ∈ V (Gx) − Sx. Since Ŝ is a violated biset w.r.t. x, v is a non-zero

weight vertex. Thus
∑
v∈ΓG′ (Ŝ) x(v) =

∑
vivo∈δGst

x
(Sx)

w(v)6=0

c(vivo).

These all together imply that c(Sx) = g`(Ŝ, x). �

Lemma 3.1.14. Consider phase ` of the algorithm. For each finite simple st-cut Sx in Gstx where r(st) ≥ `, there

exists a biset Ŝ such that h`(Ŝ) = 1 and g`(Ŝ, x) = c(Sx).

Proof: Consider a simple st-cut Sx where r(st) ≥ `. Construct the biset Ŝ = (S, S′) as follows. Let S = {v|vi, vo ∈

Sx} ∪ {s} and let Sbdy = {v|vi ∈ Sx, vo /∈ Sx, w(v) = 0}. Define S′ = S ∪ Sbdy . Since Sx is a simple st-cut, the

first property of simple cuts implies that Sbdy only contains zero-weight non-reliable vertices (see Definition 3.1.12).

By a similar argument to the proof of Lemma 3.1.13, we can show that |δH`−1
(Ŝ)| =

∑
voui∈δGst

x (Sx)
c(voui), |S′ −

S| =
∑
vivo∈δGst

x
(Sx)

w(v)=0

c(vivo) and
∑
v∈ΓG′

`
(Ŝ) x(v) =

∑
vivo∈δGst

x
(Sx)

w(v)6=0

c(vivo). Thus c(Sx) = g`(Ŝ, x) �

Now, we are ready to present a polynomial time separation oracle for ELC-Aug-LP relaxation.

29

Lemma 3.1.15. ELC-Aug-LP(G′`, h`) has a polynomial time separation oracle.

Proof: We assume that 0 ≤ x(v) ≤ 1 for each v ∈ V in the given fractional solution x; otherwise we can simply find

a violated constraint. Furthermore we can assume that x(v) = 1 for all zero-weight vertices in G′`.

By the definition of g`, if there exists a violated biset Ŝ w.r.t. x then g`(Ŝ, x) < `. For each pair st with r(st) ≥ `

we construct Gstx . If for each Gstx the value of st-min-cut is not less than ` then x is a feasible solution (Lemma 3.1.13

and Proposition 8). Otherwise, if there exists a pair st such that the value of an st-min-cut in Gstx is `′ < `, by

Proposition 8 we can find a simple st-cut whose value is `′. Furthermore, Lemma 3.1.14 implies that a biset Ŝ such

that g`(Ŝ, x) = `′ < `. Consequently, the corresponding constraint of Ŝ is violated w.r.t. x. Since the number of st

pairs is O(n2) and for each pair we run a polynomial time algorithm, the whole algorithm runs in a polynomial time.

�

Thus we can solve ELC-Aug-LP(G′`, h`) via ellipsoid method by the separation oracle guaranteed in Lemma 3.1.15.

Similarly, we are able to find an optimal fractional solution to PC-ELC-Aug-LP(G′`, h`) in polynomial time.

Lemma 3.1.16. PC-ELC-Aug-LP(G′`, h`) has a polynomial time separation oracle.

Proof: A fractional solution x is a feasible solution to PC-ELC-Aug-LP(G′, h`) iff 0 ≤ x(v) ≤ 1 for all v ∈

V (G′) and for each biset Ŝ where h`(Ŝ) = 1 and Ŝ separates s and t,
∑
v∈ΓG′ (Ŝ) x(v) ≥ 1 − z(st). The non-

negativity constraints can be easily checked in polynomial time. Thus it is enough to check the constraints of type∑
v∈ΓG′ (Ŝ) x(v) ≥ 1 − z(st) for each Ŝ with h`(Ŝ) = 1 that separates a terminal pair st with r(st) ≥ `. Similar

to Lemma 3.1.13, x is a feasible solution if for each pair st with r(st) ≥ `, the value of st-min cut in Gstx is at least

`− z(st). By Lemma 3.1.14 and similar to the proof of Lemma 3.1.15, we can output a violated biset Ŝ if Ŝ is not a

feasible solution w.r.t. x. Since the number of st pairs is O(n2) and for each pair we run a polynomial time algorithm,

the whole algorithm runs in a polynomial time. �

Theorem 3.1.17. Consider phase ` of the augmentation framework. There is an algorithm that finds an optimal

solution to PC-ELC-Aug-LP(G′`, h`).

3.2 Approximation Algorithm for Node-weighted PC-VC-SNDP

In this section we show that there is anO(k4 log2 n)-approximation for node-weighted PC-VC-SNDP which improves

to O(k4 log n) in minor-closed families of graphs. Chuzhoy and Khanna [6] show that in order to solve an instance

of VC-SNDP, it is enough to solve O(k3 log n) instances of ELC-SNDP obtained from the VC-SNDP instance. In

this section, we combine the scaling method of Bienstock et al. [2] and Chuzhoy’s and Khanna’s reduction to give an

O(k4 log2 n)-approximation for node-weighted PC-VC-SNDP.

30

Similar to the initial step of the algorithms we proposed for PC-SNDP and PC-ELC-SNDP earlier in Section 2.3

and Section 3.1, first we reduce the given node-weighted PC-VC-SNDP instance to a non prize-collecting instance

by solving an LP-relaxation of node-weighted PC-VC-SNDP. The relaxation we consider for the node-weighted

PC-VC-SNDP (and VC-SNDP) is based on multiroute flows and we refer it as PC-VC-Multiroute-LP (and

VC-Multiroute-LP). In Chapter 2, we proved that Multiroute-LP is NP-hard and we instead worked with

a k-approximate feasible solution. However, in Lemma 3.2.2 we show that PC-VC-Multiroute-LP is solvable

in polynomial time. Moreover, Corollary 3.2.3 implies that given a ρ-approximation to VC-Multiroute-LP, we

can design an O(ρ)-approximation for PC-VC-Multiroute-LP. Following Chuzhoy’s and Khanna’s method,

we decompose the given instance of node-weighted VC-SNDP into O(k3 log n) instances of ELC-SNDP such that

the union of their feasible solution is a feasible solution to the VC-SNDP instance. Since the integrality gaps of

ELC-Multiroute-LP is O(k log n) (see Theorem 2.3.9) and a feasible solution to the VC-Multiroute-LP is a

feasible solution to the ELC-Multiroute-LP instances arise from Chuzhoy’s and Khanna’s decomposition (Propo-

sition 10), the integrality gap of VC-Multiroute-LP is O(k4 log2 n). Moreover since VC-Multiroute-LP is

solvable in polynomial time, by Lemma 3.2.1, the integrality gap of PC-VC-Multiroute-LP is O(k4 log2 n) too

(see Corollary 3.2.3).

3.2.1 LP Relaxations for node-weighted PC-VC-SNDP

Let s and t be two terminals and let ` be an integer. Consider a tuple p = (p1, p2, · · · , p`) such that each pi is a path

from s to t and the paths in p are vertex-disjoint; we refer to such a tuple p as an `-route tuple connecting s to t. A

vertex v intersects p if there exists a path in p that contains v; we use v ∈ p to denote the fact that v intersects p.

Consider an instance 〈G, r, π〉 of node-weighted PC-VC-SNDP. For each pair st, we let Pr(st)st denote the collec-

tion of all r(st)-tuples that connect s to t, where r(st) is the connectivity requirement of the pair. We can write a

relaxation for the problem as follows. We have a variable x(v) for each vertex v and a variable z(st) for each pair

st of nodes with the interpretation that x(v) = 1 if v is in the solution and z(st) = 1 if the requirement of st is not

satisfied by the solution. We also have variables f(p), where p ∈ Pr(st)st , with the interpretation that f(p) = 1 if the

paths connecting s to t are the paths of p.

31

PC-VC-Multiroute-LP

min
∑
v∈V

w(v)x(v) +
∑

st∈V×V
π(st)z(st)

s.t.
∑

p∈Pr(st)
st

f(p) = 1− z(st) ∀st

∑
p∈Pr(st)

st , v∈p

f(p) ≤ x(v) ∀v,∀st

0 ≤ x(v) ≤ 1 ∀v

0 ≤ z(st) ≤ 1 ∀st

f(p) ≥ 0 ∀p

VC-Multiroute-LP

min
∑
v∈V

w(v)x(v)

s.t.
∑

p∈Pr(st)
st

f(p) = 1 ∀st

∑
p∈Pr(st)

st , v∈p

f(p) ≤ x(v) ∀v,∀st

0 ≤ x(v) ≤ 1 ∀v

f(p) ≥ 0 ∀p

Proposition 9. PC-VC-Multiroute-LP is a valid relaxation for node-weighted PC-VC-SNDP.

Proof: Consider a feasible solution H of PC-VC-SNDP. Let I be the set of all pairs st such that there are less than

r(st) vertex-disjoint paths in H from s to t; differently said, I is the set of all pairs whose requirement is not satisfied

by H . Note that the cost of H is
∑
v∈V (H) w(v) +

∑
st∈I π(st).

We construct a solution (x, f, z) to PC-VC-Multiroute-LP as follows. For each vertex v, we set x(v) = 1

if v is in H and we set x(v) = 0 otherwise. For each pair st, we set z(st) = 1 if st is in I and we set z(st) = 0

otherwise. For each pair st not in I , we select a tuple p ∈ Pr(st)st such that all the vertices of p are in H , and we set

f(p) = 1. For each tuple p such that f(p) is undefined, we set f(p) = 0.

The solution (x, f, z) clearly satisfies the first set of constraints and the last three sets of constraints. Therefore it

suffices to verify that the solution satisfies the second set of constraints. Consider a vertex v and a pair st. If v is not

in H , there does not exist a tuple p such that v ∈ p and f(p) = 1. Now suppose that v is in H . Note that x(v) = 1.

Since we selected at most one tuple p ∈ Pstst for the pair st, there is at most one tuple p such that v ∈ p and f(p) = 1.

�

We design an approximation algorithm for node-weighted PC-VC-SNDP as follows. Following the scaling technique

of Bienstock et al., given a feasible solution (x, f, z) to PC-VC-Multiroute-LP it is easy to obtain another feasible

solution (x′, f ′, z′) such that z′ is integral and the cost of (x′, f ′, z′) is at most 2 times the cost of (x, f, z). The proof

of the following lemma is similar to the proof of Lemma 2.3.1 and we skip it.

Lemma 3.2.1. Consider an instance 〈G,w, π〉 of the node-weighted PC-VC-SNDP problem where the input graph G

belongs to a family G of graphs. Let (x, f, z) be a feasible fractional solution to PC-VC-Multiroute-LP for this

32

instance. There is a feasible integral solution H whose cost is at most

2γ

(∑
v

x(v)w(v)

)
+ 2

(∑
st

z(st)π(st)

)
≤ 2γ

(∑
v

x(v)w(v) +
∑
st

z(st)π(st)

)
,

where γ is an upper bound on the integrality gap of VC-Multiroute-LP on instances of the node-weighted VC-

SNDP in which the input graph G is in G. Moreover, if there is a polynomial-time algorithm that finds an integral

solution to VC-Multiroute-LP of value at most ρ times the value of the optimal solution, then there is a polynomial

time algorithm that finds an integral solution to PC-VC-Multiroute-LP of cost at most 2ρ times the cost of its

optimal solution.

Lemma 3.2.2. PC-VC-Multiroute-LP(G, r, π) is solvable in polynomial time.

Proof: For each pair of terminals st, we need to check whether there exists (1 − z(st))r(st) vertex-disjoint st-

paths in G or not. It is equivalent to compute max st-flow in node-capacitated graph G′ where the node capacity

of each vertex v is x(v). For each pair st, this can be computed in polynomial time via a max-flow algorithm. Thus

PC-VC-Multiroute-LP has a separation oracle and we can find an optimal solution to PC-VC-Multiroute-LP

in polynomial time via ellipsoid method. �

Lemma 3.2.1 together with Lemma 3.2.2 imply that there is an O(ρ)-approximation to PC-VC-Multiroute-LP if

VC-Multiroute-LP admits a ρ-approximation.

Corollary 3.2.3. Suppose that the integrality gap of VC-Multiroute-LP on instance of node-weighted VC-SNDP

in which the input graph belongs to a family G of graphs is γ. Then the integrality gap of PC-VC-Multiroute-LP

on instances of node-weighted PC-VC-SNDP in which the input graph belongs to G is O(γ). Moreover, there is a

polynomial time algorithm that finds an integral O(ρ)-approximation to PC-VC-Multiroute-LP if there exists an

algorithm that finds an integral ρ-approximation to VC-Multiroute-LP in polynomial time.

Following technical lemma follows form Chuzhoy’s and Khanna’s reduction [6].

Lemma 3.2.4. Given an instance 〈G, r〉 of VC-SNDP, in polynomial time we can construct a family terminals T =

{T1, T2, · · · , Tp} of size O(k3 log n) such that the union of the feasible solutions to ELC-SNDP instances on each Ti

is a feasible solution to the VC-SNDP instance. For each Ti, the ELC-SNDP 〈G, ri〉 is defined as follows. Vertices of

Ti are considered as reliable and the rest are considered as non-reliable. Moreover, ri(st) = r(st) if s, t ∈ Ti and

zero otherwise.

It is straightforward to verify the following proposition.

Proposition 10. Consider an instance 〈G, r〉 of VC-SNDP. Let 〈G, ri〉 be an instance of ELC-SNDP that arises from on

terminal set Ti generated by Chuzhoy’s and Khanna’s reduction. A feasible solutionH to VC-Multiroute-LP(G, r)

33

is a feasible solution to ELC-Multiroute-LP(G, ri).

Lemma 3.2.4 and Proposition 10 and the fact that the integrality gap of ELC-Multiroute-LP is O(k log n) in

general graphs an O(k) in minor-closed families of graphs (see Theorem 2.3.9 and Theorem 2.3.11) imply that the

integrality gap of VC-Multiroute-LP is O(k4 log2 n).

Theorem 3.2.5. There is an algorithm that constructs a feasible integral solution of VC-Multiroute-LP in

polynomial time with cost at most O(k4 log2 n)OPT where OPT is the cost of the optimal fractional solution of

VC-Multiroute-LP. This ratio improves to O(k4 log n) on instances for which the input graph belongs to a

minor-closed family G where the constant only depends on the family G.

Corollary 3.2.3 and Theorem 3.2.5 show that there exists an O(k4 log2 n)-approximation for node-weighted PC-VC-

SNDP.

Theorem 3.2.6. There is an algorithm that finds an O(k4 log2 n)-approximate solution of PC-VC-SNDP in polyno-

mial time. This ratio improves to O(k4 log n) on instances for which the input graph belongs to a minor-closed family

G where the constant only depends on the family G.

Chuzhoy and Khanna [6] also showed the following result that improves the approximation ratio for Rooted VC-SNDP

in which in addition to the input graph G we are given a root vertex r ∈ V (G) and r(st) = 0 if s 6= r.

Lemma 3.2.7. Given an instance 〈G, r〉 of Rooted VC-SNDP with root s, in polynomial time we can construct a

family terminals T = {T1, T2, · · · , Tp} of size O(k2 log n) such that the union of the feasible solutions to Rooted

ELC-SNDP instances on each Ti is a feasible solution to the Rooted VC-SNDP instance. For each Ti, the Rooted

ELC-SNDP instance 〈G, ri〉 is defined as follows. Vertices of Ti are considered as reliable and the rest are considered

as non-reliable. Moreover, ri(st) = r(st) if t ∈ Ti and zero otherwise.

Remark 3.2.8. Similar to our approach we described for node-weighted PC-VC-SNDP and by Lemma 3.2.7, There

is an O(k3 log2 n)-approximation for node-weighted Rooted PC-VC-SNDP. The ratio improves to O(k3 log n) on

minor-closed families of graphs. By Corollary 3.2.3, we have an O(k3 log2 n)-approximation for node-weighted

Rooted PC-VC-SNDP which improves to O(k3 log n) on instances in which the input graph belongs to a minor-closed

families of graphs.

3.3 Integrality gap of ELC-Aug-LP

In this section, we prove Theorem 3.1.6 that upper bounds the integrality gap of ELC-Aug-LP. In order to simplify

notation, we let G′ = G′` and h = h`; our goal is to select a minimum-weight subgraph K of G′ that covers h. As we

have already seen in section 3.1, we have the following LP relaxation for this problem.

34

ELC-Aug-LP(G′, h)

min
∑
v∈V

w(v)x(v)

s.t.
∑

v∈ΓG′ (Ŝ)

x(v) ≥ h(Ŝ) ∀Ŝ ∈ BELC

x(v) ≥ 0 ∀v ∈ V

Dual of ELC-Aug-LP(G′, h)

max
∑
Ŝ∈P

y(Ŝ)h(Ŝ)

s.t.
∑

Ŝ:v∈ΓG′ (Ŝ)

y(Ŝ) ≤ w(v) ∀v ∈ V

y(Ŝ) ≥ 0 ∀Ŝ ∈ BELC

Our proof uses the concept of a (generalized) spider that was introduced by Nutov [24] which we will define shortly.

While Nutov uses a combinatorial algorithm to find a spider we find one via a primal-dual algorithm and relate its

density to the solution of the LP relaxation. We start with some notation and some definitions that are based on [24,27].

Recall that we are working with a 0-1 biuncrossable function h : BELC → {0, 1}. We can also view h as a family

consisting of all bisets Ŝ such that h(Ŝ) = 1. Following Nutov, we let F = {Ŝ | h(Ŝ) = 1} be the bifamily

corresponding to h. We refer to each biset in F as a violated biset and we refer to the inclusion-wise minimal bisets

of F as min-core. Let C be the set of all min-core of F . The min-cores in C are non-overlapping and we can compute

the collection C in polynomial time for the function h that arises in ELC-SNDP [19]. Additionally, by Lemma 3.3.1 if

Ŝ is a violated biset and Ĉ is a min-core, Ĉ and Ŝ are non-overlapping.

Lemma 3.3.1. Consider a biuncrossable family F . Let Ŝ be a biset in F and Ĉ be a min-core of F . Then, Ĉ and Ŝ

are non-overlapping. In particular, the inner part of the min-cores of F are pairwise disjoint.

Proof: Suppose that Ŝ and Ĉ are overlapping. Since F is a biuncrossable family either Ĉ ∩ Ŝ or Ĉ − Ŝ is in F which

contradicts the minimality of Ĉ. Thus Ŝ and Ĉ are non-overlapping. In particular, since no min-core contains a biset

of F , the inner part of the min-cores of F are pairwise disjoint. �

A biset Ŝ = (S, S′) ∈ F is a core of F iff Ŝ contains exactly one min-core of F ; we refer to a core Ŝ that contains

the min-core Ĉ ∈ C as a Ĉ-core. Let A ⊆ C and let u be a vertex. Let S(A, u) ⊆ F be the family consisting of all

bisets Ŝ ∈ F such that Ŝ is an Â-core for some Â ∈ A and u /∈ S′. We refer to the bifamily S(A, u) as a spider

bifamily. We refer to the min-cores in A as the feet of S(A, u) and we refer to u as the center of S(A, u). A set

F ⊆ E(G′) of edges covers a family F ′ of bisets iff for each biset Ŝ ∈ F ′, there is at least one edge of F leaving Ŝ;

more precisely, we have |δF (Ŝ)| ≥ 1 for each biset Ŝ ∈ F ′. If F ′ is a spider bifamily, we refer to F as a spider cover.

Nutov [24] introduced the notions of spider families and covers as a generalization to the concept of spiders that play

an important role in the algorithm of Klein and Ravi [22] for the node-weighted Steiner tree problem; we refer the

reader to [24] for more details. We remark that there are subtleties when thinking about spiders for biuncrossable

functions since a spider cover F can be disconnected.

35

The algorithm for covering F . Nutov extended the algorithm of Klein and Ravi to the problem of covering an

uncrossable family F as follows. We find a spider bifamily S(A, u) and a cover F of S(A, u). Let F ′ = {Ŝ | Ŝ ∈

F , δF (Ŝ) = ∅} be the subfamily of F that is not covered by F ; the residual family F ′ is uncrossable as well (see

Proposition 3.1.2). Let G′′ = (V,E(G′) − F). We recursively construct a cover F ′ ⊆ E(G′′) for F ′ and we return

F ∪ F ′ as our cover of F .

Nutov gave a polynomial time algorithm to find a spider cover whose weight (in terms of nodes) is “comparable”

to the weight of the optimal integral solution; here the comparison is in the sense of density which is the weight

divided by the number of min-cores that are removed by the addition of the cover. We show that we can find a spider

cover whose weight is “comparable” to the weight of the optimal fractional solution for ELC-Aug-LP(G′, h). More

precisely, we show the following theorem.

Theorem 3.3.2. There is a spider bifamily S(A, u) of F and a cover F of S(A, u) with the following properties. Let

F ′ = {Ŝ | Ŝ ∈ F , δF (Ŝ) = ∅} be the subfamily of F that is not covered by F , and let C′ be the collection of all

minimal bisets of F ′. We have |C′| < |C| and w(V (F)) (total weight of the nodes in F) is O
(
(|C| − |C′|)/|C|

)
times

the value of the optimal fractional solution to ELC-Aug-LP(G′, h). Moreover, we can find the feet A, the center u,

and the cover F of S(A, u) in polynomial time.

Once we have Theorem 3.3.2, we can find a cover of h using a greedy algorithm. If the collection C of all minimal

violated bisets is empty, we return an empty cover. Otherwise, let S(A, u) and F be the spider bifamily and spider

cover guaranteed by Theorem 3.3.2. Let H ′ be the selected subgraph and h′ be the 0-1 function corresponding to the

residual family F ′ (h′(Ŝ) = 1 if Ŝ ∈ F ′ and zero otherwise), and let G′′ = (V,E − E(H ′)). We recursively find a

cover F ′ of h′ and we return F ∪ F ′.

It is straightforward to verify that the weight of the optimal fractional solution to ELC-Aug-LP(G′′, h′) is at most

the weight of the optimal fractional solution to ELC-Aug-LP(G′, h). This observation together with a standard set

cover analysis gives us that the total weight of the cover constructed by the algorithm above is O(log |C|) times the

weight of the optimal fractional solution to ELC-Aug-LP(G′, h).

Therefore, in order to complete the proof of Theorem 3.1.6, it suffices to prove Theorem 3.3.2. In the following,

we give the algorithm for constructing the spider bifamily S(A, u).

Primal-dual algorithm for constructing the spider bifamily. Consider the dual of the ELC-Aug-LP(G′, h). The

algorithm selects a set X ⊆ V (G′) of nodes as follows. The algorithm also maintains a solution y that is feasible for

the dual of ELC-Aug-LP(G′, h); the solution y is implicitly initialized to zero.

We proceed in iterations. Consider iteration i and let Xi−1 be the nodes selected in the first i − 1 iterations; X0

is the set of all zero-weight nodes. A biset Ŝ is violated with respect to a set Z of nodes iff h(Ŝ) = 1 and δG′[Z](Ŝ)

36

is empty. Recall that C is the collection of all minimal violated bisets of h; note that C is also the collection of all

minimal bisets that are violated with respect to X0. Let Ci−1 be the collection of minimal violated bisets with respect

to Xi−1. For each biset Ĉ ∈ Ci−1, we have C ′ ⊆ Xi−1; furthermore, C ′ − C ⊆ X0 (see Lemma 3.1.8 and 3.3.3).

Since the components of Ci−1 are non-overlapping and two components Ĉ ∈ C and Ĉ ′ ∈ Ci−1 do not overlap, we have

|Ci−1| ≤ |C|. If |Ci−1| is strictly less than |C|, we return the set X = Xi−1 and the dual solution y, and we terminate

the algorithm. In other words, we stop the algorithm when at least two of the min-cores in C merge and are part of

the same minimal violated biset of Ci−1. Otherwise, we increase the dual variables {y(Ĉ)}Ĉ∈Ci−1
uniformly until a

dual constraint for a vertex becomes tight. (Note that it is possible that the increase was zero if there was already a

tight vertex at the beginning of the iteration; any vertex that was already tight is not in Xi−1.) Let v be a vertex that

became tight; if there are several such vertices, we pick one of them arbitrarily. We add v to X and we proceed to the

next iteration (note that we have Xi = Xi−1 ∪ {v}).

The primal-dual algorithm described above is not well-defined for an arbitrary biuncrossable function h. However,

by Lemma 3.1.8 and the following lemma, primal-dual works on biuncrossable function arise in ELC-SNDP instances.

Lemma 3.3.3. Let Ĉ = (C,C ′) be a biset in Ci−1. Then C ′ is a subset of Xi−1.

Proof: By Lemma 3.1.8, C ′ − C is contained in X0. Therefore it suffices to show that C is a subset of Xi−1. Let

S = C ∩ Xi−1. Suppose for contradiction that S is a proper subset of C. Note that S contains all of the terminals

of C, since terminals have zero weight and let Ŷ = (S, S ∪ (C ′ − C)). Since C − S contains no terminal, we have

r(Ĉ) = r(Ŷ) . Therefore r(Ŷ) ≥ `. Note that H`−1 does not have any edges incident to C − S, since the vertices in

C − S have non-zero weight. Therefore δH`−1
(Ŷ) = δH`−1

(Ĉ). It follows that Ŷ is violated, which contradicts the

minimality of Ĉ. �

Following lemma shows that primal-dual is well-defined for ELC-Aug-LP on biuncrossable functions arise in

ELC-SNDP instances.

Lemma 3.3.4. Consider iteration i in the phase ` of the augmentation problem of ELC-SNDP. The dual solution y

constructed by the primal-dual algorithm satisfies the primal complementary slackness conditions. More precisely,

for each vertex v ∈ X , we have
∑
Ŝ:v∈ΓG′ (Ŝ) y(Ŝ) = w(v).

Proof: We can prove the lemma by induction on the number of iterations of the primal-dual algorithm. Initially, y

is zero and X0 consists of all zero-weight vertices. Thus the complementary slackness conditions are satisfied at the

beginning of the algorithm. Now consider iteration i > 0. By Lemma 3.3.3, none of the vertices in Xi−1 are adjacent

in G′ to the minimal violated components of Ci−1. Thus, at the end of iteration i, we have
∑
Ŝ:v∈ΓG′ (Ŝ) y(Ŝ) = w(v)

for each vertex v ∈ Xi−1. Additionally, the vertices in Xi − Xi−1 became tight in iteration i. Thus, at the end of

iteration i, we have
∑
Ŝ:v∈ΓG′ (Ŝ) y(Ŝ) = w(v) for each vertex v ∈ Xi −Xi−1 as well. �

37

w(v) = 0

w(u) = 1

Ŝ

Figure 3.5: This figure shows the case that integrality gap of ELC-Aug-LP is unbounded. Note that the inner part of the biset
contains a non-zero weight vertex. Consider the function h that h(Ŝ) = 1 and zero for other bisets.

Remark 3.3.5. The integrality gap of ELC-Aug-LP(G′`, h`) is unbounded when h` is an arbitrary 0-1 uncrossable

function (Figure 3.5). However, the functions h` that arise from instances of the node-weighted ELC-SNDP in the

augmentation framework have additional properties that guarantee a bounded integrality gap.

Let X be the set of nodes selected by the algorithm. Let i∗ denote the last iteration of the algorithm which adds

a node. Let Ĉ = ∪i≤i∗Ci−1 be the collection of all bisets that were minimal violated bisets throughout the history of

the primal-dual algorithm before merging happens at the end of iteration i∗. Let u be the node that was added to X

in iteration i∗. Intuitively, the addition of u merged some of the cores. We formally identify the min-cores associated

with the merged cores as follows. Let A = {Ĉ ∈ C | there is D̂ ∈ Ci∗−1 such that Ĉ � D̂ and u ∈ ΓG′(D̂)}. The

family S(A, u) is the desired spider bifamily. In order to describe the reverse delete and analyze the cost of the selected

nodes we need to establish some properties of bifamily Ĉ formally. Following lemma implies that the collection Ĉ is

a non-overlapping union of non-empty chains {LĈ}Ĉ∈C , where each chain LĈ consists of Ĉ-cores.

Lemma 3.3.6. The collection Ĉ has the following properties:

(a) Ĉ is a laminar bifamily.

(b) For each min-core Ĉ ∈ C and each iteration i of the primal-dual algorithm, there is a biset D̂ ∈ Ci−1 such that

Ĉ � D̂.

(c) Each biset in Ĉ is a core of h.

Consider the collection LĈ consisting of all bisets of Ĉ that contain the min-core Ĉ ∈ C. By the theorem above,

LĈ is a laminar bifamily. Since the bisets of LĈ are Ĉ-cores, they form a chain. The lemma above follows from

Proposition 12, Proposition 13, and Proposition 14.

Proposition 11. Consider an iteration i of the primal-dual algorithm. The bisets of Ci−1 are non-overlapping. Addi-

tionally, each biset of Ci−1 contains a min-core of C.

38

Proof: The fact that the components of Ci−1 are non-overlapping follows from Lemma 3.3.1. Moreover, each violated

biset contains a min-core of C and therefore each biset of Ci contains a min-core of C. �

Proposition 12. The collection Ĉ is a laminar bifamily.

Proof: Consider two bisets D̂i ∈ Ci and D̂j ∈ Cj . Without loss of generality, i ≤ j. The set D̂i is a minimal violated

biset with respect to Xi and D̂j is a violated biset with respect to Xj ⊇ Xi. Thus it follows from Lemma 3.3.1 that

D̂i and D̂j do not overlap. �

Proposition 13. Consider an iteration i of the primal-dual algorithm. For each min-core Ĉ ∈ C, there exists a biset

D̂ ∈ Ci−1 such that Ĉ � D̂.

Proof: Since C0 = C, the claim holds for the first iteration. Therefore we may assume that i ≥ 2. Suppose for

contradiction that there is a min-core Ĉ ∈ C such that there does not exist a biset D̂ ∈ Ci−1 that contains Ĉ. We claim

that |Ci−1| < |C|. It follows from Proposition 11 that each biset of Ci−1 contains at least one min-core of C. Since the

bisets of Ci−1 are non-overlapping and Ĉ is not contained in any of the bisets of Ci−1, it follows that |Ci−1| < |C|. But

then the algorithm should have terminated at the end of iteration i− 1 instead of i∗. �

Proposition 14. Each biset D̂ ∈ Ĉ is a core of h.

Proof: Suppose for contradiction that there is a biset D̂ ∈ Ci−1 that is not a core; thus D̂ contains at least two min-

cores of C. By Proposition 11, the bisets of Ci−1 are non-overlapping and each biset of Ci−1 contains a min-core of C.

Therefore |Ci−1| ≤ |C|. Since D̂ contains at least two min-cores of C, we have |Ci−1| < |C|. But then the algorithm

should have terminated at the end of iteration i− 1 instead of i∗. �

Each vertex v ∈ X − (X0 ∪ {u}) is added in some iteration of the primal-dual algorithm. Since none of the chains

merged until u was added, we have the property that v is adjacent to only bisets in a single chain in Ĉ. Moreover,

by definition u is adjacent to all of the chains whose min-cores are in A. We let YĈ be the set of all the nodes in

X − (X0 ∪ {u}) that are adjacent to some Ĉ-core in Ĉ. The following lemma shows that {YĈ}Ĉ∈C is a partition of

X − (X0 ∪ {u}). Let YĈ,v be the set of all vertices of YĈ that were added to X before v.

Lemma 3.3.7. For each vertex v ∈ X − (X0 ∪ {u}), the collection {D̂ | D̂ ∈ Ĉ, v ∈ ΓG′(D̂)} is a subset of a single

chain LĈ of Ĉ. Additionally, if D̂ is a biset in Ĉ such that u ∈ ΓG′(D̂), then D̂ is an Â-core for some foot Â ∈ A.

The lemma follows from Proposition 17 and Proposition 18.

Proposition 15. Consider a Ĉ-core D̂ such that v ∈ ΓG′(D̂). Suppose that v is added to X in iteration i. Then

D̂ ∈ Cj for some j ≤ i− 1.

Proof: Suppose for contradiction that D̂ ∈ Cj for some j ≥ i and thus D̂ is violated with respect to Xj . By

Lemma 3.3.3, we have D ⊆ Xj . Additionally, v ∈ Xi ⊆ Xj . Therefore the edge of G′ connecting v to D is in

G′[Xj], which contradicts the fact that D̂ is violated with respect to Xj . Therefore j ≤ i− 1. �

39

Proposition 16. Consider a min-core of Ĉ ∈ C and let v be a vertex in YĈ that is added to X in iteration j. There

exists a Ĉ-core D̂ ∈ Cj such that v ∈ D.

Proof: Since v /∈ X0, v became tight in some iteration of the primal-dual algorithm. Let i denote the iteration in

which v became tight; note that i ≤ j < i∗ (we have j < i∗ because v 6= u). Since v became tight in iteration i and

v ∈ YĈ , Proposition 15 implies that there is a Ĉ-core Ŝ ∈ Cj−1 such that v ∈ ΓG′[Xi−1∪{v}](Ŝ). Since j < i∗, there

is a Ĉ-core T̂ ∈ Cj (by Proposition 13). Additionally, Ŝ � T̂ , since Ĉ is a laminar pair family (by Proposition 12).

Since T̂ is violated with respect to Xj and v ∈ Xj , we have v ∈ T ′. Since v /∈ X0, Lemma 3.1.8 implies that v ∈ T .

Therefore D̂ = T̂ is the desired biset. �

Proposition 17. Let v be a vertex in X − (X0 ∪ {u}) that is added to X in iteration i. The collection {D̂ | D̂ ∈

Ĉ, v ∈ ΓG′(D̂)} consists of cores containing the same min-core of C.

Proof: The claim is clearly true if there is at most one biset D̂ ∈ Ĉ such that v ∈ ΓG′(D̂). Now consider two bisets

D̂1 and D̂2 in Ĉ such that v ∈ ΓG′(D̂1) and v ∈ ΓG′(D̂2). By Proposition 12, D̂1 and D̂2 are non-overlapping.

Proposition 15 implies that D̂1 ∈ Cj for some j ≤ i− 1. Similarly, D̂2 ∈ C` for some index ` ≤ i− 1.

Suppose for contradiction that neither D̂1 � D̂2 nor D̂2 � D̂1; D̂ is a Ĉ1-core and D̂2 is a Ĉ2 core where Ĉ1 and

Ĉ2 are different min-cores of C. Thus it follows from Proposition 16 that there are a Ĉ1-core Ŵ1 ∈ Ci and a Ĉ2-core

Ŵ2 ∈ Ci such that v ∈ W1 ∩W2. Since Ŵ1 and Ŵ2 are cores of different min-cores, W1 and W2 are overlapping;

however, by Proposition 12 the collection Ĉ is a laminar bifamily and it is a contradiction. �

Proposition 18. Consider a biset D̂ ∈ Ĉ such that u ∈ ΓG′(D̂). Then D̂ is an Â-core for some foot Â ∈ A.

Proof: Suppose for contradiction that D̂ is a B̂-core where B̂ /∈ A. Let Ŝ ∈ Ĉ be a maximal B̂-core. Note

that Ŝ /∈ Ci∗−1, since otherwise B̂ would be in A. It follows that none of the bisets in Ci∗−1 contain B̂ But then

|Ci∗−1| < |C| (by Proposition 11). Therefore the algorithm should have terminated in iteration i ≤ i∗ − 1. �

The following lemma says that, during iteration i, the minimal violated bisets contain only vertices of X0 and

vertices of their chain that were added so far.

Lemma 3.3.8. Let D̂ be the unique Ĉ-core in Ci−1. Then D ⊆ (YĈ ∩Xi−1) ∪X0.

Proof: By Lemma 3.3.3, we have D ⊆ Xi−1. Suppose for contradiction that there exists a vertex v ∈ D such that

v /∈ YĈ ∪ X0. Then v ∈ YĈ′ for some min-core Ĉ ′ ∈ C such that Ĉ 6= Ĉ ′. Since v /∈ X0, it was added to X by

a Ĉ ′-core. By Proposition 16, there is a Ĉ ′-core D̂′ ∈ Ĉ that contains v in its inner part. But then D̂ and D̂′ are

overlapping, which contradicts the fact that Ĉ is a laminar bifamily (see Proposition 12). �

We consider each foot Â ∈ A separately. An important observation is that G′[YÂ ∪X0 ∪ {u}] covers S({Â}, u).

Following lemma proves this observation.

Lemma 3.3.9. Consider a min-core Â ∈ A, one of the feet. The graph G′[YÂ ∪X0 ∪ {u}] covers the spider bifamily

S({Â}, u).

40

Proof: Let D̂u be the maximal biset in LÂ. Since Â ∈ A, u is adjacent to D̂u, that is, u ∈ ΓG′[X](D̂u). By

Lemma 3.3.8, we have Du ⊆ (YÂ ∩ Xi∗−1) ∪ X0 = YÂ ∪ X0. Let Ŝ be a biset in S({Â}, u) that is not covered

by YÂ ∪ X0 ∪ {u}. Since D̂u is the minimal violated pair with respect to X − u, Ŝ is not contained in D̂u. If D̂u

is contained in Ŝ, we have u ∈ ΓG′[YÂ∪X0∪{u}](Ŝ). Therefore we may assume that Ŝ and D̂u overlap. Since h is

biuncrossable and Ŝ and D̂u are both Â-cores, we have h(Ŝ∩D̂u) = h(Ŝ∪D̂u) = 1. The biset D̂u∩ Ŝ is not violated

with respect to X − u (for otherwise D̂u would not be a minimal violated biset at that stage) and therefore there is

an edge e ∈ δG′[X−u](D̂u ∩ Ŝ). Since e /∈ δG′[X−u](D̂u), e has one endpoint in Du ∩ S and the other in D′u − S′.

By Lemma 3.3.3, D′u ⊆ YÂ ∪X0 and this implies that both endpoints of e are in YÂ ∪X0. Since both endpoints of

e are in YÂ ∪ X0 and the edge e is leaving Ŝ, Ŝ is covered by G′[YÂ ∪ X0]. Therefore G′[YÂ ∪ X0 ∪ {u}] covers

S({Â}, u). �

Finally, we perform the following reverse-delete step on the set X of nodes in order to identify a subset of nodes that

cover S(A, u). For each foot Â, we select a set ZÂ ⊆ YÂ such that G′[ZÂ ∪X0 ∪ {u}] covers S({Â}, u) as follows.

We start with ZÂ = YÂ. We consider the nodes of ZÂ in the reverse of the order in which they were added to X . Let

v be the current node. If the graph G′[(ZÂ ∪X0 ∪ {u}) − {v}] covers the spider bifamily S({Â}, u), we remove v

from ZÂ. We set Z = ∪Â∈AZÂ and we output the family S(A, u) and the cover G′[Z ∪X0 ∪ {u}].

In the following we prove that the spider family S(A, u) and the cover G′[Z ∪ X0 ∪ {u}] have the properties

required by Theorem 3.3.2. As before we let C = C0 be the set of all min-cores of h. LetH ′ = G[V (H)∪Z∪X0∪{u}].

Let C′ be the collection of all min-cores with respect to H ′.

In the following, we relate the cost of the nodes in Z to the cost of ELC-Aug-LP(G′, h). Let ∆i be the amount

we increased the dual variables in iteration i of the primal-dual algorithm, and let ∆ =
∑i∗

i=1 ∆i.

Our first observation is that, since in each iteration the number of minimal violated bisets is |C| and we grew each

biset by the same amount, the value of the dual solution is ∆|C|. Therefore the optimal cost of ELC-Aug-LP(G′, h)

is at least ∆|C|. Our second observation — which is the main ingredient of the analysis — is that we can charge the

vertices of Z to the growth of the chains; for each foot Â ∈ A, we can charge the vertices in ZÂ to the chain of Ĉ

whose min-core is Â. More precisely, we show in Lemma 3.3.11 that the total weight of Z is O(|A|∆). Finally, since

Z ∪ X0 covers the spider family S(A, u), after we add Z each new minimal violated biset that contains a foot also

contains an additional min-core of C. This observation gives us that the number of minimal violated bisets decreases

by Ω(|A|).

Proposition 19. The dual solution y constructed by the primal-dual algorithm is a feasible solution such that

∑
Ŝ

y(Ŝ)h(Ŝ) = |C|∆.

41

Proof: Note that the dual variable of each component in Ci increases by ∆i in iteration i. Therefore the total increase

of the dual variables in iteration i is ∆i|Ci−1|. For each iteration i ≤ i∗, we have |Ci−1| = |C|, and the proposition

follows. �

By weak duality, the weight of the optimal fractional solution for ELC-Aug-LP(G′, h) is at least the value of the

dual solution y constructed by the primal-dual algorithm. Therefore we have the following corollary.

Corollary 3.3.10. The weight of the optimal fractional solution to ELC-Aug-LP(G′, h) is at least |C|∆.

The following lemma relates the weight of Z ∪ {u} to the total increase ∆, and it is the main component of our

analysis. The main idea behind the proof of the lemma is that, for each foot A, each component of the chain LÂ has

at most one neighbor in Z (see Lemma 3.3.12).

Lemma 3.3.11. The total weight of the nodes in Z is at most |A|∆. The weight of u is at most |A|∆.

By Lemma 3.3.7, if v is a vertex of ZÂ, all of the components Ĉ ∈ Ĉ that have v as a neighbor are in S({Â}, u).

Therefore we can consider each foot Â ∈ A separately. As shown in Lemma 3.3.12, each biset in the chain of Ĉ

containing the foot Â has only a constant number of neighbors in ZÂ. The lemma allows us to charge the weight of

the vertices of ZÂ to the dual growth of the chain containing Â.

Lemma 3.3.12. Consider a foot Â ∈ A and let D̂ be an Â-core in Ĉ. We have |ΓG′(D̂) ∩ ZÂ| ≤ 1.

Before proving Lemma 3.3.12, we show that it implies Lemma 3.3.11 via the standard primal-dual argument.

Proof of Lemma 3.3.11: Let LÂ be the collection of all bisets of Ĉ that are Â-cores. Note that the bisets of LÂ form

a chain, since Ĉ is a laminar bifamily (by Proposition 12). Therefore we have

∑
Ĉ∈LÂ

y(Ĉ) = ∆.

Consider a vertex v ∈ Z. Since v /∈ X0, v became tight in some iteration of the primal-dual algorithm and therefore

w(v) =
∑

Ŝ: v∈ΓG′ (Ŝ)

y(Ŝ).

The node v is in ZÂ for some foot Â ∈ A. We claim that, if v ∈ ΓG′(Ŝ) and y(Ŝ) is non-zero, then Ŝ is in LÂ. Note

that the only bisets Ŝ that have a non-zero dual variable y(Ŝ) are in Ĉ. By Lemma 3.3.7, Ŝ is an Â-core, and the claim

follows. Therefore

w(v) =
∑

Ŝ: Ŝ∈LÂ,v∈ΓG′ (Ŝ)

y(Ŝ).

42

Thus

w(ZÂ) =
∑
v∈ZÂ

∑
Ŝ: Ŝ∈LÂ,v∈ΓG′ (Ŝ)

y(Ŝ) ≤
∑
Ŝ∈LÂ

y(Ŝ) ≤ ∆.

The second to last inequality follow from Lemma 3.3.12. It follows that w(Z) ≤ |A|∆.

Finally, consider the vertex u. Since u is not in X0, we have

w(u) =
∑

Ŝ: Ŝ∈Ĉ,u∈ΓG′ (Ŝ)

y(Ŝ).

By Proposition 18,

w(u) ≤
∑
Â∈A

∑
Ŝ: Ŝ∈LÂ,u∈ΓG′ (Ŝ)

y(Ŝ) ≤ |A|∆.

�

We devote the rest of this section to the proof of Lemma 3.3.12. Let q : 2V × 2V → {0, 1} be a biuncrossable

function. Let F be a set of edges. A biset Ŵe is a F -witness biset for an edge e iff q(Ŵe) = 1 and δF (Ŵe) = {e}

(see Subsection 1.3.3). Similar the result of [27] for sets system, we have the following lemma.

Lemma 3.3.13. Let F be a feasible cover for q and M ⊆ F be an inclusion-wise minimal cover for q. There is a

laminar bifamily L = {Ŵe | e ∈M} such that Ŵe is an M -witness biset for e.

We will need the following lemma to prove Lemma 3.3.12.

Lemma 3.3.14. Let Â ∈ A and let D̂ ∈ LÂ. Let QD̂ be the family consisting of all bisets Ŝ ∈ S({Â}, u) such that

D̂ � Ŝ. For any two bisets Q̂1 and Q̂2 in QD̂, we have Q̂1 ∩ Q̂2 ∈ QD̂ and Q̂1 ∪ Q̂2 ∈ QD̂. Additionally, the graph

K = G′[D ∪ ZÂ ∪X0 ∪ {u}] covers QD̂ and, for each vertex v ∈ ΓG′(D̂) ∩ ZÂ, the graph K − v does not cover

QD̂.

Proposition 20. Consider a min-core Ĉ ∈ C and let v be a vertex in YĈ . Suppose that v was added to X in iteration

j. There exists a Ĉ-core D̂v ∈ Cj−1 such that v ∈ ΓG′[YĈ,v∪X0∪{v}](D̂v). Additionally, Dv ⊆ YĈ,v ∪X0 and D̂v is

a minimal violated biset with respect to YĈ,v ∪X0.

Proof: Since v /∈ X0, v became tight in some iteration i ≤ j of the primal-dual algorithm. Therefore there exists

a biset D̂ ∈ Ci−1 such that v ∈ ΓG′[Xi−1∪{v}](D̂). By Proposition 13, there is a biset Ŝ ∈ Cj−1 that contains Ĉ.

Additionally, D̂ � Ŝ, since Ĉ is a laminar bifamily (see Proposition 12). Therefore v ∈ ΓG′[Xj−1∪{v}](Ŝ). By

Lemma 3.3.8, we have S ⊆ (YĈ ∩Xj−1) ∪X0 = YĈ,v ∪X0. Therefore D̂v = Ŝ is the desired biset. �

Proof of Lemma 3.3.14: Let Q̂1 and Q̂2 be two bisets in QD̂. Note that Q̂1 ∩ Q̂2 and Q̂1 ∪ Q̂2 both contain D̂ and

they are in S({Â}, u). Therefore Q̂1 ∩ Q̂2 and Q̂1 ∪ Q̂2 are in QD̂.

43

Consider a vertex v ∈ ΓG′(D̂)∩ZÂ. Let D̂v be the set guaranteed by Proposition 20. We claim that D̂ � D̂v . Note

that one of D̂ and D̂v is contained in the other, since Ĉ is bilaminar (see Proposition 12). Suppose for contradiction

that D̂v is contained in D̂. Let j denote the iteration in which v was added to X . Then D̂v ∈ Cj−1. Additionally, by

Proposition 16, there exists an Â-core Ŵ ∈ Cj such that v ∈W . Since Ĉ is laminar, Ŵ contains both D̂v and D̂. Since

W contains v and D does not contain v, it follows that D̂ ∈ Ci for some i ≤ j−1, which is a contradiction. Therefore

D̂ � D̂v . Since G′[ZÂ ∪ X0 ∪ {u}] covers S({Â}, u), K covers QD̂. Now consider a vertex v ∈ ΓG′(D̂) ∩ ZÂ.

Since we could not remove v in the reverse-delete step, there is a biset Q̂v ∈ S({Â}, u) that is violated with respect

to (ZÂ − {v}) ∪ YÂ,v ∪X0 ∪ {u}. Since D ⊆ Dv ⊆ YA,v ∪X0, K − v does not cover Q̂v . Since D̂v is a minimal

violated biset with respect to YÂ,v ∪ X0, we have D̂v � Q̂v (see Lemma 3.3.1). Since D̂ � D̂v , the biset Q̂v is in

QD̂. Therefore K − v does not cover QD̂. �

Now we are ready to prove Lemma 3.3.12.

Proof of Lemma 3.3.12: Let QD̂ and K be as in the statement of Lemma 3.3.14. Let M be an edge-minimal subset

of E(K) that covers the bifamily QD̂. Note that, for each vertex v ∈ ΓG′(D̂) ∩ ZÂ, there is at least one edge of M

that is incident to v, since K − v is not a feasible cover for QD̂. Let {Ŵe | e ∈ M} be the laminar witness bifamily

guaranteed by Lemma 3.3.13. Note that the witness family {Ŵe | e ∈M} is a chain. The set M contains at least one

edge ea such that ea ∈ δM (D̂). Let a be the endpoint of ea that is not in D′. Note that a ∈ ZÂ ∪ {u}. Additionally,

if a = u then D̂ has no neighbors in ZÂ because ea itself covers QD̂. Therefore we may assume that a 6= u.

Suppose for contradiction that there exists a vertex b ∈ ΓG′(D̂) ∩ ZÂ such that b 6= a. Since K − b does not

cover QD̂, there is at least one edge eb ∈ M that is incident to b; if there are several such edges, we choose eb to be

the edge with the maximal witness biset Ŵeb . Note that a is inside W ′eb , since D̂ � Ŵeb and Ŵeb is a witness biset

for an edge eb 6= ea. Since a /∈ X0, by Lemma 3.1.8, a ∈ Web . Additionally, each edge of M with an endpoint in

a has both endpoints in W ′eb unless that edge is ab. Since K − a does not cover QD̂, there is a biset Q̂ ∈ QD̂ such

that δK−a(Q̂) = ∅. We claim that b is in Q′ for otherwise the edge of G′ connecting D to b will cover Q̂ in K − a

(since D̂ � Q̂). Since b /∈ X0, by Lemma 3.1.8, b ∈ Q. Additionally, all the edges of M − {ab} that are incident to b

have both endpoints in Q′. (We use ab to denote the edge ab; note that the edge may not exist in G′.) It follows that

all the edges of M that have an endpoint in the set {a, b} have both endpoints in W ′eb ∪ Q
′. Note that Ŵeb ∩ Q̂ and

Ŵeb ∪ Q̂ are both in QD̂. Therefore there is an edge e ∈ M such that e ∈ δM (Ŵeb ∪ Q̂). Since a is not an endpoint

of e, e /∈ δM (Q̂) and thus we must have e ∈ δM (Ŵeb). But since b is not an endpoint of e, e 6= eb, which contradicts

the fact that Ŵeb is a witness biset for eb.

Therefore there is at most one vertex in ΓG′(D̂) ∩ ZÂ. �

The following proposition follows essentially from [25].

Proposition 21. We have |A| ≥ 1 and |C| − |C′| ≥ |A|/3.

44

Proof: Note that, since u /∈ X0, there is at least one component Ĉ ∈ Ci∗−1 such that u ∈ ΓG′(Ĉ). Therefore |A| ≥ 1.

Suppose that |A| = 1. Since |C′| < |C| and |C| − |C′| is an integer, we have |C| − |C′| ≥ 1 = |A|. Therefore we may

assume that |A| ≥ 2. In the following, we show that |C| − |C′| ≥ (|A| − 1)/2, which implies the proposition.

The components of C′ are non-overlapping and each biset of C′ contains at least one biset of C. Moreover, since

G′[Z ∪X0 ∪ {u}] covers the spider bifamily S(A, u), if Ĉ = (C,C ′) ∈ C′ contains a foot of A then either u ∈ C ′

or Ĉ is not a core of a foot (contains at least two bisets of C). Since u /∈ X0, u ∈ C ′ implies that u ∈ C and there is

at most one biset Ĉ ∈ C′ that contains u in its inner part. Thus |C| − |C′| ≥ (|A| − 1)/2 and for |A| ≥ 2, we have

|A| − 1 ≥ 2|A|/3. �

Corollary 3.3.15. The total weight of the nodes in Z ∪ {u} is O
(
(|C| − |C′|)/|C|

)
times the weight of the optimal

fractional solution to ELC-Aug-LP(G′, h).

Proof: By Proposition 21, we have |C|− |C′| ≥ |A|/3. Thus it follows from Lemma 3.3.11 that the weight of Z ∪{u}

is O(|C| − |C′|)·∆. �

Theorem 3.3.2 follows by combining the preceding corollary with Corollary 3.3.10 and Proposition 21.

45

References

[1] C. C. Aggarwal and J. B. Orlin. On multiroute maximum flows in networks. Networks, 39(1):43–52, 2002.

[2] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. P. Williamson. A note on the prize collecting traveling
salesman problem. Mathematical programming, 59(1-3):413–420, 1993.

[3] C. Chekuri, A. Ene, and A. Vakilian. Node-weighted network design in planar and minor-closed families of
graphs. In Automata, Languages, and Programming, pages 206–217. Springer, 2012.

[4] C. Chekuri, A. Ene, and A. Vakilian. Prize-collecting survivable network design in node-weighted graphs. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 98–109.
Springer, 2012.

[5] F. A. Chudak and K. Nagano. Efficient solutions to relaxations of combinatorial problems with submodular
penalties via the lovász extension and non-smooth convex optimization. In Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 79–88, 2007.

[6] J. Chuzhoy and S. Khanna. AnO(k3 log n)-approximation algorithm for vertex-connectivity survivable network
design. Theory of Computing, 8:401–413, 2012.

[7] E. D. Demaine, M. Hajiaghayi, and P. N. Klein. Node-weighted Steiner tree and group Steiner tree in planar
graphs. In Automata, Languages and Programming, pages 328–340. 2009.

[8] L. Fleischer, K. Jain, and D. P. Williamson. Iterative rounding 2-approximation algorithms for minimum-cost
vertex connectivity problems. Journal of Computer and System Sciences, 72(5):838–867, 2006.

[9] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, E. Tardos, and D. P. Williamson. Improved approx-
imation algorithms for network design problems. In Proceedings of the fifth annual ACM-SIAM symposium on
Discrete algorithms, pages 223–232, 1994.

[10] S. Guha and S. Khuller. Improved methods for approximating node weighted steiner trees and connected domi-
nating sets. Inf. Comput., 150(1):57–74, 1999.

[11] S. Guha, A. Moss, J. S. Naor, and B. Schieber. Efficient recovery from power outage. In Proceedings of the
thirty-first annual ACM symposium on Theory of computing, pages 574–582, 1999.

[12] A. Gupta and J. Könemann. Approximation algorithms for network design: A survey. Surveys in Operations
Research and Management Science, 16(1):3–20, 2011.

[13] S. Gutner. Elementary approximation algorithms for prize collecting Steiner tree problems. Information Pro-
cessing Letters, 107(1):39–44, 2008.

[14] M. Hajiaghayi and K. Jain. The prize-collecting generalized Steiner tree problem via a new approach of primal-
dual schema. In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages
631–640, 2006.

[15] M. Hajiaghayi, R. Khandekar, G. Kortsarz, and Z. Nutov. Prize-collecting steiner network problems. ACM
Transactions on Algorithms (TALG), 9(1):2, 2012.

46

[16] M. Hajiaghayi and A. A. Nasri. Prize-collecting Steiner networks via iterative rounding. In LATIN 2010:
Theoretical Informatics, pages 515–526. Springer, 2010.

[17] S. Vempala J. Cheriyan and A. Vetta. Network design via iterative rounding of setpair relaxations. Combinator-
ica, 26(3):255–275, 2006.

[18] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica,
21(1):39–60, 2001.

[19] K. Jain, I. I. Mandoiu, V. V. Vazirani, and D. P. Williamson. A primal-dual schema based approximation algo-
rithm for the element connectivity problem. J. Algorithms, 45(1):1–15, 2002.

[20] D. S. Johnson, M. Minkoff, and S. Phillips. The prize collecting steiner tree problem: theory and practice. In
Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms, pages 760–769, 2000.

[21] W. Kishimoto. A method for obtaining the maximum multiroute flows in a network. Networks, 27(4):279–291,
1996.

[22] P. N. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted Steiner trees. J.
Algorithms, 19(1):104–115, 1995.

[23] C. Nagarajan, Y. Sharma, and D. P. Williamson. Approximation algorithms for prize-collecting network design
problems with general connectivity requirements. In Approximation and Online Algorithms, pages 174–187.
2009.

[24] Z. Nutov. Approximating Steiner networks with node-weights. SIAM Journal on Computing, 39(7):3001–3022,
2010.

[25] Z. Nutov. Approximating minimum-cost connectivity problems via uncrossable bifamilies. ACM Transactions
on Algorithms (TALG), 9(1):1, 2012.

[26] Y. Sharma, C. Swamy, and D. P. Williamson. Approximation algorithms for prize collecting forest problems
with submodular penalty functions. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1275–1284, 2007.

[27] D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani. A primal-dual approximation algorithm for
generalized Steiner network problems. Combinatorica, 15(3):435–454, 1995.

47

	List of Figures
	List of Tables
	Chapter 1 Introduction
	Problems Statement and Previous Works
	Results and Organization
	Preliminaries and Definitions
	Connectivity models
	Biset
	Witness Families

	Chapter 2 PC-EC-SNDP via Multiroute Flows
	LP Relaxations for node-weighted PC-EC-SNDP
	Approximate solution to PC-Multiroute-LP
	Rounding a fractional solution to PC-Multiroute-LP
	Integrality gap of Multiroute-LP via Aug-LP

	Chapter 3 Improved Approach and Element-Connectivity
	Integrality gap of PC-ELC-SNDP via PC-ELC-Aug-LP
	Approximation Algorithm for Node-weighted PC-VC-SNDP
	LP Relaxations for node-weighted PC-VC-SNDP

	Integrality gap of ELC-Aug-LP

	References

