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ABSTRACT

In many detection applications with battery-powered or energy-harvesting

sensors, energy constraints preclude the use of the optimal detector all the

time. Optimal energy-performance trade-off is therefore needed in such sit-

uations.

In many signal processing applications, the signal and noise power may

vary greatly over time, which can be exploited to constrain energy consump-

tion while maintaining the best possible performance.

A detector scheduling algorithm based on the signal and noise power infor-

mation is developed in this thesis. The resulting algorithm is simple due to its

threshold-test structure and can be easily implemented with almost no over-

head. A detection system with two detectors using the proposed scheduling

scheme is estimated to greatly reduce the energy consumption for a wildlife

monitoring application. Hardware implementation also consolidates the em-

pirical evidence for the effectiveness of the proposed method.
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CHAPTER 1

INTRODUCTION

“Everything should be made as simple as possible, but no simpler.”

– Albert Einstein

In many engineering systems, detection is usually the first operation that

needs to be carried out. For energy-constrained systems, the ability to per-

form energy-efficient detection is therefore very crucial. In particular, a

wildlife monitor application is considered to motivate the study of a detection

system with an energy constraint.

Specifically, bird scientists are interested in studying (1) the population

and (2) the evolution in the call spectrum of an endangered bird species

called the Golden-Cheeked Warbler (GCW) [1]. In order to study these

birds, vocalization data need to be collected by a monitoring system. The

naive approach for monitoring is to have a high sampling rate audio record-

ing system deployed in the field that runs continuously for days before the

system’s storage depletes. An estimate for a system with 16 kHz sampling

at two bytes resolution and that records for three months would require a

storage with roughly 230 GB. Such systems are very ineffective, in the sense

that they record a large amount of uninteresting data which will eventually

be discarded. An alternative approach is to process before writing the data

into the storage device. The processing can be done by introducing a mi-

crocontroller that can detect, attach a time stamp, and then capture only

the calls into memory. According to the preliminary data given to us by our

bird scientist collaborators, the GCWs are likely to be present only 10% of

the time. When they are present, their calls usually last 1.5 seconds, with

the time between calls around 10 seconds. For a period of three months, this

means only a storage of 2.5 GB of data is needed to record all bird calls. This

effectively condenses 230 GB of data into 2.5 GB of valuable information for

bird scientists.
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However, there are two problems with this approach. First, these devices

are battery powered and have limited energy available. As most birds are

seasonal breeders, these battery-powered devices should be able to last at

least the entire season without manual battery replacement. The second

issue that requires attention is the detection performance, because detection

is now a task in the new system. The purpose of this thesis therefore is

to investigate and derive a solution for the above problems. The resulting

answer turns out to be a detector scheduling algorithm that admits a simple

threshold-test structure.

This thesis is organized as follows. Chapter 2 reviews classical detection

theory and introduces standard notations that will be useful in later chapters.

Chapter 3 discusses major prior work that also looks at the similar problem

of detection systems with an energy constraint. The actual formulation and

solution is presented in Chapter 4. Then the algorithms in Chapter 5 com-

plement the theory in Chapter 4. Finally, Chapters 6 and 7 give empirical

evidences for the effectiveness of the detector scheduling algorithm by simu-

lation and actual hardware implementation, respectively.
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CHAPTER 2

BACKGROUND

“Detection is, or ought to be, an exact science, and should be treated

in the same cold and unemotional manner.”

– Sherlock Holmes, in The Sign of Four

Detection theory is briefly reviewed to introduce standard notations, ac-

cording to [2], that will be useful in later sections. For a more thorough

treatment of detection theory, the readers are recommended to see [2].

2.1 Detection Theory Fundamentals

The basic problem of binary hypothesis testing is first introduced. The goal

is to decide between two hypotheses H0 and H1 based on the observation of

a random vector Y. Assume the probability densities, f , on Y are

H0 :Y ∼ f(y|H0)

H1 :Y ∼ f(y|H1)
(2.1)

Put in the context of the Golden-Cheeked Warbler (GCW) call detection

application, H0 corresponds to no call event and H1 corresponds to a GCW

call event. In addition, the observation vector Y is the block of sampled

acoustic signals picked up by a microphone.

Once Y is given, a decision whether H0 or H1 is true needs to be made.

This is done by the decision function δ(Y) ∈ {0, 1} that maps Y to 1 when

H1 is true and to 0 when H0 is true. In other words, the observation domain

Y can be segmented into disjoint sets Y0 and Y1. Such a decision function

is chosen according to certain optimization formulations. There exist two

popular formulations which are discussed in the next section: the Bayesian

formulation and the Neyman-Pearson formulation.
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Table 2.1: Important conditional probabilities in detection theory.

Names Expressions
Detection P [Y1|H1]

False Alarm P [Y1|H0]
Miss P [Y0|H1]

Correct Rejection P [Y0|H0]

2.2 Optimal Detection Formulations

2.2.1 Bayesian Formulation

The Bayesian formulation assumes knowledge of priors probability π0 =

P [H0], π1 = P [H1] and cost function Cij with 0 ≤ i, j ≤ 1 deciding Hi

when Hj is true. The conditional Bayes risk (BR) under hypothesis Hj is

then defined as

R(δ|Hj) =
1∑
i=0

CijP [Yi|Hj]

where

P [Yi|Hj] =

∫
Yi
f(y|Hj)dy

is the associated conditional probability. Table 2.1 enumerates these terms

with their names.

The BR for the decision function δ is given by

R(δ) =
1∑
j=0

R(δ|Hj)πj

In BR formulation the above quantity is then minimized to find the optimal

decision function. It is well known [2] that the solution to BR formulation is

a likelihood ratio test of the following form

δ∗(y) =

1 if T (y) ≥ τ

0 if T (y) < τ

where

T (y) =
f(y|H1)

f(y|H0)
(2.2)
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is the test statistic and

τ =
(C10 − C00)π0
(C01 − C11)π1

(2.3)

is the threshold. Both the test statistic and the threshold take on scalar, real

values.

2.2.2 Neyman-Pearson Formulation

An alternative formulation to BR is the Neyman-Pearson (NP) formulation.

Unlike BR, NP does not assume knowledge of prior and cost function. In-

stead, its objective is to maximize the probability of detection PD(δ) =

P [Y1|H1] while satisfying some probability of false alarm PF (δ) = P [Y1|H0]

constraint γ.

max
δ

PD(δ)

s.t. PF (δ) ≤ γ

The solution to the above constrained optimization is given by the Neyman-

Pearson lemma [3]

δ∗(y) =


1 if T (y) > τ

1 or 0 if T (y) = τ

0 if T (y) < τ

(2.4)

where τ is selected according to the false alarm constraint γ, i.e. PF (τ) = γ.

2.2.3 Alternative Formulations

When the probabilistic criteria discussed in Sections 2.2.1 and 2.2.2 are not

tractable, alternative metrics must be used to quantify performance. One

such metric is the deflection or generalized signal-to-noise ratio (SNR), which

is defined as the square of the difference in the mean of T (Y) under H1 and

H0 over the variance of T (Y) under H0, i.e.

(EH1 [T (Y)]− EH0 [T (Y)])2

VarH0(T (Y))
(2.5)
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Figure 2.1: Distribution of test statistic under H0 and H1 for detection of
constant signal in AWGN. (a) has low detection performance while (b) has
high detection performance.

Another metric is the divergence between H1 and H0, which is defined as the

difference in the mean of T (Y) under H1 and H0, i.e.

EH1 [T (Y)]− EH0 [T (Y)] (2.6)

The rationale behind these criteria can be understood by means of a simple

detection example. Consider the detection of a constant signal in AWGN

with unit variance. It is well known [2] that the test statistic T (Y) in this

case is Gaussian with non-zero mean under H1 and zero mean under H0.

It can also be shown analytically [2] or inferred visually from Figure 2.1

that the detection performance will increase as the distance between the

means increases and/or the variances of the two hypotheses decrease. This

fact gives the motivation for maximizing (2.5) and (2.6) as the means to

maximize detection performance in the case where probabilistic measures

are intractable [4, 5].
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2.3 Detection with Unknown Parameters

In practice, it is often the case that certain parameters X of the detection

model in (2.1) are not known. Common examples include signal amplitude,

phase, frequency, time delay, and noise variance [2]. The model that captures

this is given as

H0 :Y ∼ f(y|x, H0), x ∈ X0

H1 :Y ∼ f(y|x, H1), x ∈ X1

(2.7)

The unknown parameters can be viewed either as random, i.e. the Bayesian

viewpoint, or nonrandom, i.e. frequentist viewpoint. These two viewpoints

lead to two different approaches to address the composite hypothesis testing [2]

problem in (2.7).

2.3.1 Bayesian Approach

The Bayesian approach assumes prior knowledge of unknown parameters’

probability distributions under each hypothesis. This simplifies (2.7) back

to (2.1) by marginalization of the unknown parameters. However this falls

short in practice as prior knowledge of the distribution of the unknowns is

not always available.

2.3.2 GLRT Approach

Another approach where prior statistical knowledge of the unknown param-

eters is not required is the generalized likelihood ratio test (GLRT). This

approach substitutes the unknown parameters in (2.7) with their maximum

likelihood (ML) estimates, effectively reducing the problem to (2.1). It is

worth noting that although being a heuristic-based approach, GLRT pos-

sesses the invariance property that lends itself to widespread use in signal

processing applications [6].

2.4 Gaussian Detection Problem

The classical problem of detecting a zero mean Gaussian signal in additive

white Gaussian noise (AWGN), where the signal and noise are assumed to
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be independent, is discussed. Two cases are considered, depending on the

correlation of the signal to be detected.

2.4.1 Uncorrelated Gaussian Signal

The easier case in which the signal is uncorrelated is first considered. For a

Gaussian signal this is also equivalent to having independent samples. Hence

the detection problem is given by

H0 :Y ∼ 1

(
√

2πσ2
0)N

e−(
∑N

i=1 y
2
i )/2σ

2
0

H1 :Y ∼ 1

(
√

2πσ2
1)N

e−(
∑N

i=1 y
2
i )/2σ

2
1

(2.8)

where N is the size of observation vector Y, σ2
0 is the noise variance, and

σ2
1 = σ2

0 + σ2
s , with σ2

s being the signal variance.

The optimal detector in this case is given by

δ∗(y) =

1 if
∑N

i=1 y
2
i

N
≥ 2

σ2
0σ

2
1

σ2
s

[
log(σ1

σ0
) + log(τ)

N

]
0 if

∑N
i=1 y

2
i

N
< 2

σ2
0σ

2
1

σ2
s

[
log(σ1

σ0
) + log(τ)

N

] (2.9)

Since this detector computes the squared magnitude of the observation vec-

tor, it is commonly called the energy detector in the literature.

If the variances σ2
0 and σ2

1 of the model are unknown, the GLRT approach

discussed earlier will substitute them with their ML estimates σ̂2
0 and σ̂2

1,

where σ̂2
0 + σ̂2

1 =
∑N

i=1 y
2
i

N
, into (2.9).

2.4.2 Correlated Gaussian Signal

Next consider the case when the signal is correlated.

H0 :Y ∼ 1

(
√

2π)N |Σ0|−1/2
e−

yT Σ−1
0 y

2

H1 :Y ∼ 1

(
√

2π)N |Σ1|−1/2
e−

yT Σ−1
1 y

2

(2.10)

where Σ0 = σ2
0Σ̄0 is the noise covariance matrix and Σ1 = Σ0 + Σs, with

Σs = σ2
sΣ̄s being the signal covariance matrix. Σ̄0 and Σ̄s denote covariance

8



matrices with ones on the diagonal.

The optimal detector in this case is given by

δ∗(y) =

1 if yT (Σ−10 ΣsΣ
−1
1 )y ≥ 2 log(τ) + log(|Σ1|)− log(|Σ0|)

0 if yT (Σ−10 ΣsΣ
−1
1 )y < 2 log(τ) + log(|Σ1|)− log(|Σ0|)

(2.11)

where the expression Σ−10 ΣsΣ
−1
1 comes from algebraic manipulation of Σ−10 −

Σ−11 . Since this detector admits a quadratic form, it is commonly referred

to as the quadratic detector in the literature [7]. Another way to interpret

(2.11) is that the detector has the form of an estimator-correlator [2].

In this case, if the variances σ2
0 and σ2

1 of the model are unknown, ML

estimation cannot give a closed form expression for σ̂2
0 and σ̂2

1. Instead, the

expectation-maximization (EM) recursive procedure for finding ML estimates

can be employed [2].

This chapter concludes with the remark that traditional detection theory

does not take into account computational complexity. This ignorance be-

comes a problem for detection systems with an energy constraint, because a

more complicated detector requires more energy to operate.
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CHAPTER 3

PRIOR WORK IN ENERGY
CONSTRAINED DETECTION

“If I have seen further than others, it is by standing upon the shoul-

ders of giants.”

– Isaac Newton

3.1 Classical Detection with

Computational-Complexity Reduction

The interest in reducing the complexity of a detector’s structure, and hence

energy consumption, can be traced back to [4]. Poor [4] considers the classi-

cal detection problem of a Gaussian signal in additive white Gaussian noise

(AWGN) with block length N observations. It is well known [4] that if the

signal has no correlation, then the optimal detector structure is the simple

quadratic (energy) detector. Asymptotic complexity analysis reveals that it

only costs O(n) operations. If the signal has correlation, then the optimal

detector structure has a quadratic form but requires O(n2) operations. A

reduced-complexity structure for detection is proposed to achieve a compro-

mise between the two structures, namely, capturing the correlation in the sig-

nal at the expense of roughly O(n) operations. The proposed quadratic form

has the Toeplitz structure imposed on it, hence the name banded quadratic

form [4], so that it can be implemented by a simple linear filter. The con-

tribution of [4] is to derive the best filter coefficients so that the banded

quadratic form achieves the optimal asymptotic deflection.

An alternative approach to simplify the quadratic form in Gaussian de-

tection is studied by Scharf [5]. In [5], a rank reduction technique is used

to reduce the rank of the matrix in the quadratic form instead of imposing

Toeplitz structure [4]. The criterion for the reduced rank quadratic form

10



is that it maximizes the divergence between H1 and H0. The contribution

in [5] is the determination of which eigenvalues should be removed to achieve

a reduced rank matrix of the quadratic form.

Sayeed and Jones [8] applied the reduced-rank technique on a more gen-

eral detection scenario. [8] considered the generic Gaussian detection problem

with time and frequency shifts as unknown parameters. Since these param-

eters do not contribute to the determination of the true hypothesis, they

are often called nuisance parameters [2]. In [9], the GLRT approach is used

to substitute these nuisance parameters with their respective ML estimates,

yielding the ML-based GLRT detector. It is also argued in [9] that such

an ML-based GLRT detector can be implemented via a bank of spectro-

grams, which are the squared magnitudes of the short-time Fourier trans-

forms (STFT). The STFT implementation is significant because the STFT

is the simplest time-frequency representation (TFR) [8] that has long been

widely used in signal processing [10]. However, depending on the complex-

ity of the random signal to be detected, the number of spectrograms in the

bank can be large. The contribution in [8] is the derivation of the best, in

maximum deflection sense, reduced-size bank of spectrograms.

The idea of incremental refinement is used in [11] to systematically trade off

between computational complexity and detection performance. [11] studies

the detection problem of a complex exponential with unknown frequency and

phase in complex AWGN. It is pointed out that the GLRT detector with ML

estimation consists of a bank of correlators and envelope detectors followed

by a comparator and a slicer. It is also stated that the bank of correlators is

identical to the DFT operation, which can be efficiently implemented by the

FFT algorithm, hence the name FFT detector [11]. Because FFT is computed

in stages, early stage termination can reduce computational complexity. The

contribution of [11] is the analysis of detection performance at each stage,

assuming radix-2 decimation either in-time or in-frequency. Such information

is valuable to operators who are interested in determining when to terminate

early, once a certain performance criterion is met.

The previous approaches are optimized for generic situations and do not

take into account the existing structures of the problem. For example, in

wildlife monitoring, bird call events are rare (roughly 1% of the total time,

as discussed in Chapter 1) compared to the non-bird call events. Therefore,

it seems that even more aggressive energy saving can be achieved if this rare
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event structure can be exploited.

3.2 Detection with Rare Event: Cascade Approach

One of the seminal works in image-based object detection application [12]

serves as an epitome of such an approach. [12] studies the face detection

problem. Since a face event in an image can be considered as a rare event, a

cascade architecture is used to focus the attention and computational power

of a face detector to more potential sub-windows while quickly rejecting the

others in an image. The cascade architecture arranges simple classifiers with

small numbers of features to serve in the early stages, the later in the stage,

the more features classifiers have. If the outcome of a classifier in the cascade

is H1, then the next, more intensive classifier in the chain is triggered; if

not, the cascade terminates early with an H0 decision. Only when the last

classifier triggers does the system reach an H1 decision. Each stage in the

cascade is trained to select features using a greedy algorithm called AdaBoost

[12]. The number of features selected in each stage depends on the desired

false alarm and missed rate at each stage. The number of stages in the

cascade depends on the final desired false alarm and missed rate. The result is

a high-detection-rate face detector that was 15 times faster than any existing

system at the time. [12] also enables an extremely rich amount of research

effort to further perfect the cascade architecture.

Inspired by [12], Jun [13] studies a system with multiple detectors in cas-

cade. Again, this strategy can achieve energy efficiency if H1 is rare because

the more energy-intensive detectors are only activated by simpler detectors

for a small fraction of time. Energy consideration is explicitly taken into ac-

count by introducing the energy constraint into the classical BR and NP cri-

teria, hence formulating new optimization problems, the energy-aware Bayes

risk (EABR) and energy-aware Neyman Pearson (EANP) [13], respectively.

This constraint allows for a systematic and energy efficient way to set the

false alarm and missed rates in the cascade, which was missing in [12]. We

note that this optimization, if carried out over all the detectors’ decision

functions δ, is too difficult; hence, the problem is relaxed to the optimiza-

tion over the detectors’ thresholds τ with fixed test statistics T (Y). Such

relaxation does not make the problem trivial since without proper threshold
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management, the energy saving characteristic of the cascade will degrade

badly. For example, with a system of two detectors, if the first detector’s

threshold is so low that it triggers the second detector all the time, then the

energy saving of the cascade is lost. A case study for an optimized cascade

of two detectors, energy and FFT detector [11], is shown to outperform the

FFT detector with incremental refinement described in Section 3.1.

As mentioned in the previous paragraph, the cascade architecture can be

used as a way to save energy in detection systems with an energy constraint.

However, it is determined in this thesis that there are scenarios where the use

of the cascade is not very energy-efficient. To illustrate this point, consider

again the wildlife monitoring application. A detection system operating over

the course of time will obviously experience time-varying signal and noise

power. If the target bird is nearby and background noise is low, the decision

about H1 made by the simple energy detector could be just as accurate as

any sophisticated detector. However, if the cascade is used, such sophisti-

cated detectors still need to be triggered before the system decision can be

made. This is where energy inefficiency manifests itself. A similar story goes

for the case when the target bird is far away and background noise is high;

then running the sophisticated detector is inevitable for good performance as

a simple energy detector might falsely reject the weak signal. Thus directly

skipping the simple detector might bring about additional performance and

energy saving. This observation suggests that exploiting the time-varying

signal and noise power in the problem might be beneficial in saving energy,

and one of the related areas that studies detection in time-varying environ-

ment is the design of voice activity detector (VAD).

3.3 Detection in the Time-Varying Environment

VAD design is a research area in speech processing that focuses on detecting

the existence of noisy speech between silent periods. It has important ap-

plication in digital cellular systems due to the fact that a party is typically

only active 35% of the time in a conversation [14], i.e. the voice activity

factor is 0.35. Hence, bandwidth can be saved if transmission of the encoded

speech is triggered only when speech is actually present. In this detection

problem, the time-varying nature of the environmental noise was subjected
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to extensive investigation, because real-world noise exhibits both stationary

and non-stationary characteristics, and the worst-case SNR can even be less

than 0 dB [15].

Srinivasan and Gersho [14] extend the basic VAD used in the GSM stan-

dard [16] for two typically encountered noise types: vehicular noise, which is

stationary, and babble noise, which is non-stationary. The basic VAD used

in the GSM standard is made of an adaptive FIR noise suppression filter

with LPC coefficients [14] followed by an energy detector with an adaptive

threshold. The mobile VAD proposed by [14] adds the ability to perform

energy thresholding for four individual sub-bands. It also measures spectral

flatness at the output of the filter for better indication of speech and uses

an adaptive hangover scheme to reduce clipping at the end of speech. The

mobile VAD is experimentally shown to drastically reduce clipping in high

noise levels and is even slightly better than the standard GSM VAD in low

noise levels. The babble VAD is also proposed to address babble noise. It

consists of two VADs, the primary one that makes the decision about speech

existence and a secondary one that detects the noise-only frame to update

the thresholds used by the primary one. It is shown that this VAD indeed

outperforms the mobile VAD for babble noise background. To combine the

benefits of both VADs, a heuristic scheme is proposed to switch between mo-

bile VAD and babble VAD depending on the stationarity of the input signal.

Namely mobile VAD is used for stationary input and babble VAD is used for

non-stationary input.

Instead of switching between VADs, a fusion method studied in [15] com-

bines the outputs of the periodicity-based VAD [17] and energy-threshold-

based VAD [18], both of which are used to address non-stationary noise.

The periodicity-based VAD can operate at SNRs lower than 0 dB but suffers

from false alarms due to periodic noise or interference signals. The energy-

threshold-based VAD, on the other hand, does not suffer from periodicity of

noise and interference signal, but usually requires a lower bound on SNR to

operate without a high missed rate. The fusion is done by a weighted sum of

the binary outputs of the two VADs, thresholding on 0.5 for the final deci-

sion. Hence the weighting on the two VADs can be used to trade off between

miss rate and false-alarm rate. It is shown experimentally that this fusion

results in a VAD that outperforms all previously known VAD methods.

From VAD design in time-varying environments, it seems that for consis-
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tently high performance, a scheduling or fusion method needs to be employed

to combine the benefits of different VADs that were designed specifically for

different environments. The formulation in the next chapter will be carried

out in light of this. However, unlike previous approaches which are heuristic-

based, it is attempted to rigorously optimize the combination to maximize

the total system performance.
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CHAPTER 4

FORMULATION

“For since the fabric of the universe is most perfect and the work

of a most wise Creator, nothing at all takes place in the universe in

which some rule of maximum or minimum does not appear.”

– Leonhard Euler

In order to address the limitations that were identified in previous work, a

new system block diagram is proposed (see Figure 4.1). The purpose of this

block diagram is to avoid the issues with the cascade discussed in Section

3.2, i.e. it allows the selection of an appropriate detector according to the

SNR information. In addition, the blocks are subjected to optimization in

order to overcome the sub-optimality problem with the heuristic approaches

in 3.3.

The system consists of an estimator block that estimates the signal and

noise power. For now it is assumed that the estimator is perfect and the

signal and noise power estimates are true ones. This signal and noise power

information is then fed into a scheduler block which selects an appropriate

detector for the situation. The selected detector also uses the signal and

noise power information as model parameters. The design problem is then

to find the best scheduling scheme µ and the detectors’ thresholds τU that

maximize detection performance while satisfying the energy constraint. This

chapter therefore presents the framework for solving such design problems.

Let the input information to the scheduler be the 2-tuple random process

Xn = (Pn, Qn) with Pn being the signal power and Qn being the noise power.

The output decision U ∈ {1, 2} is the detector to use, assuming for simplicity

that there are only two available detectors in the system. The scheduler

itself is then a (possibly randomized) policy µ that maps Xn to 0 if the

first detector is used and 1 if the second detector is used. From detection
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Figure 4.1: Proposed system block diagram.

theory [2], a detector can be modeled by the equation

TU(Y)
H1

≷
H0

τU

where H0, H1 are the two standard hypotheses: noise and signal plus noise,

respectively, and Y is the noisy observation vector from one of the two hy-

potheses. The function TU maps the given observation to a test statistic

which is then thresholded by τU to decide which hypothesis was true. The

test statistic for each detector is fixed so that the energy cost to compute

them can be quantified and denoted by e(U). Hence, at a particular time in-

stance n, given Xn, the scheduling policy µ, and the threshold τU , the system

risk and energy consumption (EC) can be defined as

Rsys(Xn, µ, τU) , µ(Xn)R(Xn, τ1) + (1− µ(Xn))R(Xn, τ2)

EC(Xn, µ) , µ(Xn)e(1) + (1− µ(Xn))e(2)

where R(Xn, τU) is the respective detector risk that depends on the threshold

and the signal and noise power. The goal then is to find the scheduling

policy µ and thresholds τU that minimize the average system risk subject to

an average energy consumption. Therefore, the optimization problem to be
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solved is

min
µ,τU

lim
N→∞

1

N

N∑
n=1

Rsys(Xn, µ, τU) m.s.

s.t. lim
N→∞

1

N

N∑
n=1

EC(Xn, µ) ≤ β m.s.

(4.1)

where β is the average energy constraint and the limit is taken in the mean

square (m.s.) sense.

In this work, it is assumed that the process Xn is wide-sense stationary

(WSS) and ergodic. Therefore, the risk and energy consumption of the sys-

tem are also WSS and ergodic, because the policy µ cannot affect the natural

process Xn. This assumption allows us to convert the time average in (4.1)

to the ensemble average with respect to the joint long-term statistics p(·) of

X.
min
µ,τU

E[Rsys(X,µ, τU)]

s.t. E[EC(X,µ)] ≤ β
(4.2)

Expanding (4.2) yields

min
µ,τ1,τ2

∫
dx p(x)

{
µ(x)[R(x, τ1)−R(x, τ2)] +R(x, τ2)

}
s.t.

∫
dx p(x)

{
µ(x)[e(1)− e(2)] + e(2)

}
≤ β

(4.3)

Observe in (4.3) that the thresholds only appear inside the detector risk

so that the minimization over thresholds can be moved inside. This fact

decouples (4.3) into two subproblems: optimization over thresholds and op-

timization over policy.

4.1 Detector Threshold Optimization

The first subproblem is given by

min
τU

R(x, τU), U = 1, 2
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with

R(x, τU) =π1

∫
dy f1(y)I(TU(y|x) < τU)

+π0

∫
dy f0(y)I(TU(y|x) ≥ τU)

where π1 = Pr(H1), π0 = Pr(H0), and f0(y) and f1(y) are the observation’s

densities under the two hypotheses H0 and H1, respectively. I(·) denotes the

indicator function.

Except for the special case where the ratio between observation densities

f1(y)/f0(y) is the same as the test statistic TU(y), the optimal threshold is

not the simple Bayesian threshold τ ∗U = π0/π1 [2]. In general, τ ∗U might need

to be determined empirically, especially if a reliable observation model is not

available. A technique for adaptively tracking the thresholds is discussed in

Section 5.1.

4.2 Scheduler Policy Optimization

The second subproblem is given by

min
µ

∫
dx p(x)

{
µ(x)[R(x, τ ∗1 )−R(x, τ ∗2 )] +R(x, τ ∗2 )

}
s.t.

∫
dx p(x)

{
µ(x)[e(1)− e(2)] + e(2)

}
≤ β

(4.4)

Even though the above problem is a scheduling problem, it shares exactly

the same structure as the well-known detection problem in the Neymann-

Pearson lemma [3]. Applying the same machinery (see Appendix B) yields

µ∗(x) =


0 if M(x) > λ

1 w.p.ρ if M(x) = λ

1 if M(x) < λ

(4.5)

where M(x) =
R(x,τ∗1 )−R(x,τ∗2 )

[e(2)−e(1)] denotes the scaled relative Bayesian risk be-

tween two detectors, and λ ∈ [0,∞), ρ ∈ [0, 1] are artificial variables [19].

The exact values of ρ and λ are determined from the energy constraint, as

will be shown in Section 5.2.

The fact that the optimal policy given in (4.5) is a simple threshold test
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is significant, because it implies that the addition of the scheduling module

to the system adds virtually no extra overhead.

4.3 Robust Scheduling Policy

So far it is assumed that the signal and noise power are estimated perfectly by

the estimator block (see Figure 4.1). However, in practice, the errors in signal

and noise power estimates are unavoidable. Therefore a natural question to

ask is how the estimation errors might affect the scheduling policy obtained

in (4.5). In fact, it can be shown that the optimal policy structure in (4.5)

is robust to the estimated signal and noise power. On the other hand, the

policy threshold needs to be modified to ensure that the energy constraint is

not violated even in the worst case (see Appendix C).

Encouraged by the robustness of the policy structure, a heuristic imple-

mentation of the estimator block is given in Section 5.3.
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CHAPTER 5

ALGORITHMS

“An algorithm must be seen to be believed.”

– Donald Knuth

This chapter complements the discussion in Chapter 4 by describing the

algorithm used to (1) adapt the detectors’ thresholds, (2) find the optimal

policy threshold, and (3) estimate signal and noise power.

5.1 Detector Threshold Adaptation

As discussed in Section 4.1, the threshold τU of detector U might need to

be determined empirically when a reliable observation model for Y is not

available. In these situations, one approach is to refine the threshold over

time, a process called threshold adaptation, based on the stochastic approx-

imation theory [20]. The goal of this approach is to find the threshold τU

such that the resulting false alarm rate satisfies the desired level γ regard-

less of the observation model. The motivation for this goal is based on the

optimality condition of the Neyman-Pearson formulation in Section 2.2.2, in

which the optimal threshold is the one that satisfies the desired level γ. For

the rare-event case, it can be shown (see Appendix A) that the stochastic

approximation equation for threshold τU,n at time n is given by

τU,n+1 = ατU τU,n + (1− ατU )(I(TU(yn) ≥ τU,n)− γ) (5.1)

where ατU ∈ [0, 1] is the threshold smoothing constant. Hence the remaining

problem is to choose the appropriate ατU . It can also be shown that (see

Appendix A), due to the characteristic of (5.1), a necessary condition for the

resulting false alarm to converge to γ is the existence of an appropriate scaling

constant CU for the test statistic. Hence the complete update equations are
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given by

TU(yn) = CUTU(yn)

τU,n+1 = ατU τU,n + (1− ατU )(I(TU(yn))− γ)
(5.2)

5.2 Optimal Policy Threshold

Knowledge of E[EC(X,µ∗(λ))] is needed in order to find the optimal policy

threshold. One way to do that is through analysis. Without loss of generality,

assume that e(2) > e(1). Substituting the optimal policy mapping µ∗ into

the energy constraint yields

E[EC(X,µ∗(λ))] =

∫ λ

−∞
dtm(t)e(1) +

∫ ∞
λ

dtm(t)e(2)

+m(λ)
[
(1− ρ)e(1) + ρe(2)

]
wherem(t) =

∫
dxp(x)I(M(x) = t). Another way to obtain E[EC(X,µ∗(λ))],

useful when the analytical method becomes intractable, is to apply machine

learning techniques on training data.

Using either method, a sketch of E[EC(X,µ∗(λ))] is given in Figure 5.1.

From this figure, the solution for λ and ρ can be obtained using the following

algorithm. Depending on the energy constraint β,

• If β > e(2) then the average energy constraint is redundant. This

corresponds to the case β = β1, hence λ = ρ = 0.

• If e(1) ≤ β ≤ e(2) then the energy constraint can be satisfied with

equality. If there is no point mass, i.e. β = β2, then λ = λ∗2 and ρ = 0.

If there is point mass, i.e. if β = β3, then λ = λ∗3 and ρ = ρ∗. The λ∗

and ρ∗ can be found using any root-finding method, i.e. if the function

is monotonic, then bisection search can be used.

• If β < e(1) then the energy constraint is so stringent that it cannot be

satisfied.
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Figure 5.1: Solution of λ∗ and ρ.

5.3 Signal and Noise Power Estimation

Signal power Pn and noise power Qn are estimated using recursive averaging

[21]. By modeling the signal and noise power as variances, i.e. P = σ2
s and

Q = σ2
0, the ML estimates for signal and noise variances discussed in Section

2.4.1 can be used to estimate signal and noise power. Thus the desired update

equations for noise power with smoothing coefficient αQ can be given by

Hn
0 : Qn+1 = αQQn + (1− αQ)‖Yn‖2

Hn
1 : Qn+1 = Qn

(5.3)

and the equations for the signal power with smoothing coefficient αP by

Hn
0 : Pn+1 = Pn

Hn
1 : Pn+1 = αPPn + (1− αP )

[
‖Yn‖2 −Qn

] (5.4)

whereHn
0 andHn

1 are the hypotheses decided by the system and thus different

from the true hypotheses H0 and H1.
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Let πn1 = Pr(Hn
1 ), then the update equation for πn1 with smoothing coeffi-

cient απ is

πn1 = αππ
n−1
1 + (1− απ)I(Hn

1 )

Hence the two equations in (5.3) can be combined into

Qn+1 = α̃nQQn + (1− α̃nQ)‖Yn‖2

where α̃nQ = αQ + (1− αQ)πn1 . Similarly for (5.4)

Pn+1 = α̃nPPn + (1− α̃nP )
[
‖Yn‖2 −Qn

]
where α̃nP = 1− (1− αP )πn1 .

In the case when the signal-to-noise-ratio (SNR) estimate at time n is

desired, it can be given by the ratio between Pn and Qn.
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CHAPTER 6

DETECTION OF GOLDEN-CHEEKED
WARBLER: SIMULATION

“Anyone who attempts to generate random numbers by determinis-

tic means is, of course, living in a state of sin.”

– John von Neumann

In this chapter we present the experimental performance of a detection

system using the scheduling algorithm developed in Section 4.2. The target

of detection is the call of an endangered bird species named the Golden-

Cheeked Warbler (GCW) [1]. The observations are collected in blocks with

the presumed size N . The system employs two detectors. The first detec-

tor is the energy detector described in Section 2.4.1. It has relatively low

complexity, namely O(N) multiply-accumulate (MAC) operations [7]. The

second detector is the quadratic detector described in Section 2.4.2. Its im-

plementation requires O(N2) MAC operations [7]. Therefore their respective

costs e(1) and e(2) can be assigned to be N and N2.

Figure 6.1 illustrates the system’s operation on five hours of real GCW

data, recorded by Professor Rama Ratnam from the Biology Department at

the University of Texas at San Antonio [1]. The first window shows the data

re-sampled at 16 kHz, since all of the bird call spectrum is below 8 kHz, and

processed in frames of size N = 128. It is then manually labeled as shown in

the second window from the top of Figure 6.1. It is worth noting that because

the detectors make decisions on individual frames while labels are given in

multiple frames for each call, post-processing is required to evaluate bird call

detection. Namely, in our experiment, if more than 25 % of the frame in a

call is labeled as detected, then the whole call is considered detected. The

third window shows the tracked SNR by using the algorithm in Section 5.3

and label information; that is, we assume perfect SNR estimates. The two

detectors with Bayesian thresholds are managed by the scheduling algorithm

described in Section 4.2. As can be seen from the fourth window, the second
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Figure 6.1: Optimal detector scheduling on sample GCW data.

detector is run only when SNR is low while the first detector runs in the

remaining time. The fraction of time between running the second detector

and the first detector is determined by the energy budget. The operating

point used in this case is labeled in Figure 6.2.

The optimal energy-performance curve is shown in Figure 6.2 as the solid
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Figure 6.2: Comparison between optimal scheduling and random scheduling
over various energy budgets.

line. The energy-performance curve of a random scheduling system, which

is a straightforward but naive approach for this application, is shown in the

dashed line. In this figure, the labeled points together illustrate the gap in

the energy budget required between the optimal scheduling system and the

random scheduling system for the same level of desired performance. Recall

that for these simulations, the energy cost is assumed to be proportional

to the number of MAC operations. Namely, the optimal scheme is 3.5x

more energy efficient than the random scheme at the same level of detection

probability. The number is 2x for false alarm probability. Furthermore, the

optimal scheduling system’s performance scales gracefully over an order of

magnitude of the energy constraint.

Using the same setup, but with adaptive thresholds (see Section 5.1) in-

stead of Bayesian thresholds for the detectors, the energy-performance curves

of the optimal scheduling scheme and the cascade scheme, discussed in Sec-

tion 3.2, are compared in Figure 6.3. The cascade is implemented using the

state-of-the-art algorithm in [22], with the energy detector serving as the first
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Figure 6.3: Comparison between optimal scheduling and cascading over
various energy budgets.

stage to trigger the quadratic detector. The target false alarm is set to be

equal to the prior probability of H1.

As illustrated by the labeled points in Figure 6.3, the probability of de-

tection using the optimal scheduling scheme is significantly better than the

one using the cascade scheme at a very low energy budget. The reason is

because in the cascade, the H1 decision can only be made after executing the

quadratic detector, which is not possible under a stringent energy budget. On

the other hand, the optimal scheduling scheme has higher false-alarm rate.

In fact, the false-alarm rate of any scheduling scheme cannot be lower than

that of the cascade because the quadratic detector is uniformly better [22]

than the energy detector. However, this might not be a problem for rare

event detection, in which high detection probability is often more desirable

at the expense of a reasonable false alarm rate. For example, in studying the

evolution in the call spectrum of the GCW, it is important that the call data

are collected intact. Missing too many calls during the collection process

might lead to incorrect inference about the evolution in the call spectrum
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Figure 6.4: Zoom-in on probability of detection between optimal scheduling
and cascading.

over time.

A closer look at the detection probability when the energy budget is not

so tight, as illustrated by the labeled points in Figure 6.4, reveals that the

optimal scheduling strategy can achieve the same performance as the cascade

strategy at 2x reduction in energy budget.

This chapter concludes with the remark that the optimal scheduling is al-

ways better than a random scheduling. Furthermore, the optimal scheduling

strategy can outperform the cascade strategy in the detection rate, espe-

cially at an extremely stringent energy budget, but not in the false alarm

rate. Depending on the application, one might prefer to use one over the

other. For rare-event detection, in which high detection rate is important,

optimal scheduling might be preferable.
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CHAPTER 7

DETECTION OF GOLDEN-CHEEKED
WARBLER: EFM32TG IMPLEMENTATION

“Machines take me by surprise with great frequency.”

– Alan Turing

Early empirical evidence for the validity of the method developed in Chap-

ter 4 was obtained through computer simulation in Chapter 6. However,

simulation is usually not enough to fully characterize all the tradeoffs arising

in a real system implementation. Hardware implementation, on the other

hand, will be able to affirm the practical validity of the proposed method.

Furthermore, system realization also provides realistic power numbers that

will be useful for estimating the battery life of the system once deployed.

7.1 STK 3300 and EFM32TG840F32

The platform of choice for implementation is the Starter Kit (STK) 3300

from Energy Micro [23], which comes with the EFM32TG840F32 Tiny Gecko

series microcontroller unit (MCU). The advantages of using this MCU over

other off-the-shelf competitors in the market such as TI MSP430 is that

it has (1) very low energy consumption thanks to specialized peripherals

[24] and (2) convenient, software-based energy debugging support [25]. The

specialized peripherals will be extremely useful for implementing the ultra

low-power energy detector, as can be seen in Section 7.2. The software-based

energy debugging tool allows a quick and accurate [25] interface for current

measurement of the EFM32TG840F32. Since supply voltage is known and

fixed at 3.3 V, power consumption is simply current times voltage.

Additional features can also be added on the board. Due to limited sen-

sors available on the STK 3300, an additional microphone and preamp circuit

board for acoustic sensing is added through the expansion headers. The cir-

cuit is designed by Texas Instruments and is used in the MSP-EXP430F5438
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Figure 7.1: Low-power peripherals setup for data acquisition. The sine
wave represents the analog signal while the square wave represents the
digital signal and/or trigger.

experimenter board [26]. Another desirable feature is the voltage-scaling

capability instead of a fixed 3.3 V supply voltage. This feature is recently

demonstrated in [22] as having significant impact on energy saving. However,

this is more appropriate for the next step in the development process when a

dedicated PCB is fabricated because the STK 3300 does not allow the supply

wire to be exposed by any headers. Hence dynamic voltage-scaling remains

future work to be done.

The EFM32TG840F32 MCU is based on an ARM Cortex M-3 core with

32 KB of Flash and 4 KB of RAM. It also possesses standard MCU peripher-

als such as the analog-to-digital converter (ADC), real time counter (RTC),

direct memory access (DMA), etc., plus specialized peripherals from Energy

Micro such as the analog comparator (ACMP) and the low-energy sensor

interface (LESENSE), etc. Since the MCU is targeted for low-power appli-

cation, it does not have a floating point unit and hence all signal processing

is done in fixed point arithmetics.

The MCU is configured for audio signal processing. The block diagram is

illustrated in Figure 7.1 and includes the following components:

• The RTC is configured to run on a low-frequency crystal clock source

of 32.768 kHz and has a variable trigger rate. It triggers at the rate of
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16.384 kHz when the ADC is used, i.e. sampling rate of 16.384 kHz,

and 128 Hz when ACMP is used. The reason for this is discussed in

more detail in Section 7.2.

• The ACMP is configured as part of the implementation of the energy

detector, which is discussed in detail in Section 7.2.

• The ADC is configured to provide the quadratic detector with 12-bit-

resolution samples. Whenever triggered by the MCU, the ADC con-

verts the input analog signal and return with a digitized value. This is

done instead of employing the service of a DMA because on this plat-

form, for a slow sampling rate, i.e. less than 20 kHz, running DMA

actually consumes more power [27].

• The ARM Cortex-M3 core is configured to be in deep-sleep mode [28]

most of the time. When awakened, it runs on the high-frequency crystal

clock source of 32.768 MHz. The MCU executes either the energy

detector or the quadratic detector for a time period of 1/128 seconds

and accumulates the test statistic. Detailed implementation of the

energy detector and the quadratic detector are discussed in Section

7.2 and 7.3, respectively. Each detector’s threshold is adapted using

the algorithm in Section 5.1. Then the decision about the presence or

absence of a bird call is made at the end of each period.

The MCU also decides which detector to schedule for the next period

by comparing directly the SNR estimate, which is updated using the

algorithm in Section 5.3, with a policy threshold λ that was determined

experimentally. The justification for this can be based on the discussion

in Section 2.2.3, in which a probabilistic criterion such as risk (see

Section 4.2) can be substituted by a more amenable SNR criterion. It

is also worth noting that the overhead for the scheduler in this case is

merely an “if · · · else” statement which incurred zero overhead. Figure

7.2 summarizes the discussion by a software flowchart.

Due to the limited memory capacity of the starter kit STK 3300, the

preliminary performance evaluation of the system is done using an eight-

minute sample of the recorded data mentioned in Chapter 6. This sample

data, shown in Figure 7.3, is a concatenation of representative sections across
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Figure 7.2: The flowchart of the software implemented on the MCU.

the five-hour data. Table 7.1 shows the performance of two configurations

for the quadratic and the energy detector, respectively.

Table 7.1: Performance evaluation of the two detectors using the sample
data in Figure 7.3, which contains a total of 42 GCW calls. Recall that
there are 128 decisions made per second, and a call is detected once a
significant number of correct detection decisions are made.

MCU configuration
Detection rate
(%)

False alarm rate
(%)

RTC + ACMP +
85.71 20.97

Core(estimator, energy detector)
RTC + ADC +

100 4.7
Core(estimator, quadratic detector)

Table 7.2 shows the average current consumption of the above setup, whose

gap between two detector configurations is significantly larger than the stan-

dard setup in Table 7.3. The standard setup is the one in which both energy

detector and quadratic detector require samples from the ADC, as illustrated

in Figure 7.4. In the standard setup, the gap is small because, as current

consumption analysis of individual components in Table 7.41, 2 reveals, the

1RTC current measurement is configuration-independent, and is taken from the
datasheet.

2Table 7.3 and Table 7.4 are consistent up to 1 µA of measurement error.
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Figure 7.3: Spectrogram of the sample data with 512-sample window size,
50% overlap and 16.384 kHz sampling rate. Energy spikes in the range of
4.5 kHz to 7.5 kHz indicate the GCW calls. This sample data is
concatenated from four representative sections. (a) has high SNR, (b) has
low SNR, (c) has high noise power, and (d) has high SNR with interference
from other bird calls.

Table 7.2: Current drawn by the MCU using the specialized peripherals.

MCU configuration Average current drawn
RTC + ACMP +

33.93 µA
Core(estimator, energy detector)

RTC + ADC +
2.915 mA

Core(estimator, quadratic detector)

current consumption of the RTC, ADC, and Core with estimator and en-

ergy detector in Figure 7.4 is dominated by the current consumption of the

ADC. This small gap dwarfs the need for scheduling in the standard setup.

Hence an implementation of the energy detector without ADC, which is the

topic of Section 7.2, is important both to reduce the total system current

consumption, and to motivate the need for scheduling.
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Table 7.3: Current drawn by the MCU with standard data acquisition
setup.

MCU configuration Average current drawn
RTC + ADC +

673.215 µA
Core(estimator, energy detector)

RTC + ADC +
2.915 mA

Core(estimator, quadratic detector)

Figure 7.4: Standard peripheral setup for data acquisition. The sine wave
represents the analog signal while the square wave represents digital signal
and/or trigger.

7.2 Low-Power Implementation of the Energy Detector

The analog comparator (ACMP) is a specialized peripheral by Energy Micro

[29] that can be used to replace the ADC in the implementation of the energy

detector, using the setup in Figure 7.1.

The ACMP is configured with two reference voltages, a positive and a

negative one. Every time the input voltage crosses the boundary specified

by the two reference voltages, the ACMP triggers an interrupt. By reading

the difference in the RTC’s counter values at different ACMP triggers, the

amount of time that the input signal overshoots or undershoots can be cal-

culated. If the two reference voltages are both fixed at the same level, then

the energy of the input signal during the overshoot and undershoot time can

be approximated as the square of that voltage level times the overshoot or
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Table 7.4: Current drawn by individual components in the MCU.

Components Average current drawn
RTC 100 nA
ADC 513.82 µA

Core(estimator, energy detector) 160.075 µA
Core(estimator, quadratic detector) 2401.18 µA

Figure 7.5: Approximation of the energy detector.

undershoot time. This approximation is illustrated in Figure 7.5, where the

shaded areas represent the integrated time. The partial energy is accumu-

lated during the elapsed time between RTC triggers. The final energy value

is the test statistic. It is worth mentioning that the RTC trigger period needs

to be 128 Hz for this test statistic to be consistent with the decision rate of

128 Hz of the system.

As can be seen from Table 7.2, this new configuration drastically reduces

the current drawn by the MCU. The ratio in the current drawn, and hence

the power consumption, between the two configuration is 86x, thus validating

the motivation for doing scheduling.
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7.3 Lattice Wave Digital Filter Implementation of the

Quadratic Detector

The quadratic detector can be approximately implemented as a filter followed

by an energy detector [4]. Since the GCW calls only occupy the frequency

spectrum from 4.5 kHz to 7.5 kHz, a bandpass filter with the above passband

can be used to filter out noise in other bands.

As all arithmetic operations are carried out in fixed-point representation, it

is desirable to implement a lattice wave-digital filter (LWDF) [30] for numer-

ical stability. This is because all the multiplications inside this filter operate

on coefficients which are always positive and less than 0.5 [30]. Furthermore,

the LWDF is a class of IIR filter, hence it has relatively a smaller order

compared to a stable FIR filter with the same performance [30].

The implementation of a LWDF is assisted by two intermediate programs.

The LWDF filter-design program that comes with [30] takes in the above

passband specification, along with the sampling rate of 16.384 kHz, and

generates a filter coefficients file. This file is then fed into an automated

code generator that outputs the assembly code that realizes the specified

filter. 3 Then this assembly code can then be called from the main routine,

using the calling convention of the compiler, to process blocks of N = 128

samples before making a detection decision.

3The source code, written in C, for this LWDF code generator is open source, although
at the time of this thesis it only supports MSP430 and ARM Cortex-M3 assembly lan-
guages.
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CHAPTER 8

CONCLUSION

In detection problems with an energy constraint, information about the time-

varying signal and noise power can be used to optimally elect between the

high-performance but sophisticated detector and a simple but inexpensive

one. The machinery to exploit this information by an optimal scheduler is

simple and hence almost no overhead cost is added. The result is a system

that consumes much less energy while preserving adequate performance.

On the other hand, the technique offered in this thesis also has several

drawbacks. Firstly, it will not be able to offer much energy-saving in con-

stant signal and noise power environment. Secondly, it will not work reliably

in non-stationary signal and noise power environment. One way to address

this problem is to extend the model of the signal and noise power random

processes from WSS to piecewise-stationary using the Hidden Markov Model.

For example, in the wildlife monitoring application, the hidden states can be

the seasons in a year and different seasons specify different stationary distri-

butions of the observable signal and noise power random processes. Thirdly,

the simple constant energy consumption model of a detector in this thesis

might be too restrictive to be true in practice. Therefore a straightforward

extension of this work can be about more general energy consumption models

of a detector. Finally, as mentioned in Chapter 6, scheduling architectures,

which interconnect detectors in parallel, usually suffer from higher false alarm

rates than the cascade architectures, which interconnect detectors in serial.

An interesting extension of this work is to consider a generalized intercon-

nection of detectors that includes both parallel and serial interconnection to

achieve the best performance in energy-limited systems.
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APPENDIX A

DERIVATION OF THE ADAPTIVE
DETECTOR THRESHOLD EQUATION

Equation (5.1) is derived using stochastic approximation theory and the rare

event assumption. Under the rare event assumption, the probability of event

H1 occurring is much lower compared to the probability of event H0 occur-

ring. Hence most of the system triggers can be attributed to false alarm,

i.e. P [TU(Y) ≥ τU |H0] ≈ P [TU(Y) ≥ τU ]. Given a false-alarm level γ, the

threshold τU that results in such false alarm can be found by finding the root

of the equation

P [TU(Y) ≥ τU ]− γ = E[I(TU(Y) ≥ τU)− γ] = 0 (A.1)

If the knowledge about the density of Y was available, then (A.1) could be

solved using the following recursion.

τU,n+1 = ατU τU,n + (1− ατU )(E[I(TU(Y) ≥ τU,n)]− γ)

Stochastic approximation theory, which is widely used in adaptive filtering

[10], proposes a recursive method to solve (A.1) even without the knowledge

about the density of Y. Instead, a sample path yn of Y is needed for the

recursion. The central idea is to replace the terms inside the expectation

with their sample path. Namely,

τU,n+1 = ατU τU,n + (1− ατU )(I(TU(yn) ≥ τU,n)− γ)

which is simply a restatement of (5.1).

Observe that if

• The target γ is strictly less than 1 or greater than 0, and

• TU(yn) is always greater or less than γ

then the false-alarm rate resulting from the recursion in (5.1) might not
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converge to γ. The goal of the remainder of this section is a derivation of a

necessary condition to guarantee the convergence of the false-alarm rate using

(5.1). The analysis of the recursion in (5.1) reveals an important character-

istic that is useful to ensure such convergence. First consider the following

lemma.

Lemma A.0.1 τU,n ∈ [−γ, 1− γ], ∀n

Proof Consider the case when H1 is always decided. Assuming the conver-

gence of the threshold, i.e. τU,n
n→∞−−−→ τU , the asymptotic recursion in this

case becomes
τU = ατU τU + (1− ατU )(1− γ)

⇔ τU = (1− γ)

This is the upper bound on the value of τU . Similar analysis in the case H0

is always decided yields the lower bound on the value of τU .

τU = ατU τU + (1− ατU )(0− γ)

⇔ τU = −γ

Therefore τU,n ∈ [−γ, 1− γ], ∀n. �

Because τ lies in a bounded interval, TU(Y) must also be bounded in an

appropriate sense, as discussed in the following theorem, for the resulting

false alarm to converge to γ.

Theorem A.0.2 A necessary condition for the convergence of the false-

alarm rate P [(TU(Y) ≥ τU)] to γ ∈ (0, 1) is E[TU(Y)] ∈ (−γ, 1− γ).

Proof From Lemma A.0.1 it is known that τU ≤ 1− γ. Therefore

P [(TU(Y) ≥ 1− γ)] ≤ P [(TU(Y) ≥ τU)]

A necessary condition for convergence requires that

P [(TU(Y) ≥ τU)] = γ < 1

Considering the case when the test statistic TU(Y) is nonnegative and

applying Markov’s inequality yields

P [(TU(Y) ≥ 1− γ)] ≤ E[TU(Y)]

1− γ
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Therefore, the upper bound on the expected value of the test statistic is

given by E[TU(Y)] < 1−γ. Similarly for the case when TU(Y) is non-positive.

Namely,

P [(TU(Y) ≥ −γ)] ≥ P [(TU(Y) ≥ τU)] > 0

and
P [(TU(Y) ≥ −γ)] = P [(−TU(Y) ≤ γ)]

= 1− P [(−TU(Y) ≥ γ)]

≥ 1− E[−TU(Y)]

γ

implies E[TU(Y)] > −γ. �

Theorem A.0.2 suggests the use of a test statistic scaling constant CU de-

scribed in Section 5.1. Namely, CU should be selected so that E[CUTU(Y)] ∈
(−γ, 1− γ). For example, CU can be 1 for the detector in Section 2.4.1, and

‖Σ−10 ΣsΣ
−1
1 ‖2 1 for the one in Section 2.4.2.

1‖ · ‖2 denotes the operator induced or spectral norm.

41



APPENDIX B

DERIVATION OF THE OPTIMAL
SCHEDULING POLICY

The optimization problem over policy in (4.4) is a continuous constrained

optimization problem. It is well known from Lagrangian theory [19] that to

solve for the optimal policy µ, we can solve a related unconstrained opti-

mization problem that includes an additional, artificial Lagrange multiplier

λ. The Lagrangian is given by

L(µ, λ) =

∫
dxp(x)µ(x)

{
[R(x, τ ∗1 )−R(x, τ ∗2 )]+λ[e(1)−e(2)]

}
+const (B.1)

Applying the Karush-Kuhn-Tucker (KKT) conditions, which establish the

first-order necessary conditions for the optimality of constrained optimization

problems, yields 
µ∗ = arg min

µ
L(µ, λ∗)

λ∗(E[EC(X,µ∗)]− β) = 0

(B.2)

As the set of all randomized policies is trivially convex, these are also

sufficient conditions. Using (B.1) and the first equation in (B.2), min
µ
L(µ, λ∗)

is equivalent to

µ∗(x) =


0 if M(x) > λ∗

1 w.p. ρ if M(x) = λ∗

1 if M(x) < λ∗

where M(x) =
R(x,τ∗1 )−R(x,τ∗2 )

[e(2)−e(1)] denotes the relative risk between two detectors

and ρ is yet another artificial variable that lies in [0, 1]. The complementary

slackness condition, i.e. the second equation in (B.2), plays an important

role in determining the exact value of ρ∗ and λ∗. Solving this condition is

equivalent to the algorithm described in Section 5.2.

It is worth pointing out that the analysis in this section is analogous to
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the Neymann-Pearson lemma [3] with the optimal policy replaced by the

randomized threshold test.
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APPENDIX C

SOLUTION TO A ROBUST
FORMULATION

Assume that the estimated signal and noise power has a joint long-term

statistic g(·) that is different from the true p(·). For accuracy, g(·) needs to

be modeled in (4.3), and a contaminated model [2] is proposed. For a given

tolerance ε > 0, this model assumes that the estimated signal and noise

power are correct (i.e. drawn from the true density p(·)) with probability

1− ε and incorrect (i.e. drawn from some bad density h(·)) with probability

ε [31]. Namely,

g(x) = (1− ε)p(x) + εh(x)

It is desirable to design a robust scheduling policy µR that can safeguard

against the least favorable density gL, i.e.

min
µ

max
g

∫
dxg(x)

{
µ(x)[R(x, τ ∗1 )−R(x, τ ∗2 )] +R(x, τ ∗2 )

}
s.t.

∫
dxg(x)

{
µ(x)[e(1)− e(2)] + e(2)

}
≤ β

(C.1)

Before finding the solution to (C.1) we need to verify that it exists.

• The policy µ lies in the convex set that is compact with respect to the

infinity norm, i.e. ‖µ‖∞ = supx∈X µ(x) ≤ 1.

• The density g(·) lies in a convex, compact set by construction.

• The objective function of (C.1) is linear in both µ and g(·), and hence

is convex in µ and concave in g(·).

Therefore according to von Neumann’s minimax theorem [2], there exists

a saddle-point (µR, gL(·)) that will solve (C.1). Now observe that for any

density g, the robust policy structure is still given by (4.5), i.e. µR = µ∗.

In other words, the optimal policy in (4.5) is robust to estimated signal and

noise power. The robust policy threshold λR, however, depends on the least
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favorable density that is yet to be found. Finding the least favorable gL is

the same as finding the least favorable hL. This is equivalent to solving

max
h

∫
dxh(x)

{
µ(x)[R(x, τ ∗1 )−R(x, τ ∗2 )] +R(x, τ ∗2 )

}
(C.2)

Define all the terms inside the curly bracket in (C.2) to be f(x). Applying

Schwarz’s inequality to the integral in (C.2) reveals that the least favorable

hL(x) is proportional to f(x). Since hL is a density, it is given by hL(x) =

f(x)/
∫
f(t)dt. Using this least favorable density, a robust policy threshold

can be found using the approach in Section 5.2. The purpose of the robust

policy threshold is to ensure that the energy constraint is not violated even

in the least favorable case.
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