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Abstract

As power grids transition towards increased reliance on renewable generation,

energy storage and demand response resources, an effective control architecture

is required to harness the full functionalities of these resources. Also needed

are appropriate control mechanisms that help realize the value of storage and

demand response resources as means of mitigating the impact of volatility

from renewable energy. And there is a critical need for control techniques that

recognize the unique characteristics of the different resources and exploit the

flexibility afforded by them to provide ancillary services to the grid. The work

presented in this dissertation addresses these needs.

The main contribution of this dissertation lies in the domain of control tech-

niques. New stochastic control algorithms, capable of capturing the salient

characteristics of the resources, are proposed for control synthesis. The prin-

ciple advantage of these algorithms is that they can be devised in settings for

which the precise distribution of the uncertainty and its temporal statistics

are not known. The proposed algorithms are applied to power system control

problems such as control of energy storage and demand response resources to

extract ancillary services and coordination of dispatch of multiple resources

in a power grid. Numerical studies demonstrate how these algorithms can be

driven by real world data to successfully tune the control parameters to the

underlying statistics of the system.

In addition to the development of new control techniques, this dissertation

also provides an assessment of the impacts of variable and uncertain renew-

able generation and the flexibility provided by energy storage and demand

response resources. Specifically, investigations quantifying the increased an-

cillary service needs of power grids with integrated renewable energy sources

are reported. Also, control synthesis for provision of ancillary services by en-
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ergy storage and demand response resources is discussed. Numerical studies

presented in this context further the understanding of the impacts and the

behavior of these new resources; this helps develop effective control strategies

for them.

The technical contributions of this dissertation are three-fold. First, an ar-

chitecture for analyzing approximate solutions of Markov decision processes

(MDPs) is devised: the architecture allows us to examine the stability and

performance of control policies derived from approximate MDP solutions. Sec-

ond, two new algorithms based on parameterized Q-learning are presented for

approximating solutions to MDPs. The first algorithm is based on reducing

the error in the dynamic programming equation while the second algorithm is

based on the linear programming approach to solve MDPs. Third, the connec-

tions between Q-learning and model predictive control (MPC) are established

and leveraged to devise a new control approach. The new approach, referred

to as Q-MPC, uses Q-learning to approximate the optimal terminal cost for

MPC. The Q-MPC algorithm admits a stabilizing control policy under mild

conditions and its computational efficiency is provided via numerical studies.

The control algorithms developed in this work have important practical

impacts. In particular, we argue that the Q-MPC approach may be a bet-

ter choice for economic dispatch of power grid resources as compared to the

MPC implementation typically adopted for this problem. Numerical studies

conducted on different test systems demonstrate how the computational com-

plexity of the dispatch problem can be reduced via application of Q-MPC. The

improvement in performance and greater adaptability of Q-MPC make it em-

inently suitable for large power grids with many resources and many sources

of uncertainty.

The control techniques proposed in this dissertation impose minimal as-

sumptions on the system model and allow the control to be “learned” based

on actual dynamics of the system. These techniques provide a starting step

towards the development of advanced control techniques that will be neces-

sary for future power grids. They may also be used to improve operational

decision-making tools, as demonstrated for the economic dispatch problem.
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Chapter 1

Introduction

This dissertation is concerned with the development of control-theoretic tools

for management of resources in power grids. This chapter sets the stage for the

work presented herein. It begins with a discussion on the motivation and the

background for this research so as to enable the reader to better understand

the nature of the problems of interest and the proposed solutions. A brief

description of the state of the art, from an industry and academic point of

view, is also provided to clarify which gaps this research intends to fill. The

scope of this dissertation as well as the specific contributions are summarized.

The chapter concludes with an outline of the remainder of this dissertation.

1.1 Background and Motivation

Electricity is considered the backbone of modern society. And the power grid

– which transports electricity from its point of generation to its point of end-

use consumption – is a fundamental part of the society’s infrastructure. The

electricity industry has significantly evolved over the past several decades and

much effort has been expended to ensure provision of cheap and reliable elec-

tricity to consumers [1, 2]. Indeed, widespread electrification has been identi-

fied as one of the greatest engineering achievements of the 20th century [3].

Maintaining system reliability has been and continues to be a primary con-

cern in power system operations and planning [1,4]. In the operational domain,

reliability concerns manifest themselves into four tasks [5]:

(OT1) balance supply and demand under normal and contingency conditions,

(OT2) control supply and demand to satisfy power flow constraints under
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Introduction

normal and contingency conditions,

(OT3) maintain voltages throughout the power system within prescribed lim-

its under normal and contingency conditions, and,

(OT4) restart the power system after it collapses in case any of the above

three tasks fail.

Economic considerations also play a vital role in driving operational and plan-

ning decisions in the sense that the goal is to maintain reliability at lowest

possible cost [1, 2].

The responsibility of cost-effective management of available resources to

complete the operational tasks (OT1)-(OT4) lies with a system operator. In a

vertically integrated environment, the role of the system operator is portrayed

by the single utility that owns and controls all generation, transmission and

distribution assets. The operational and planning decisions of such a monopoly

entity are subject to state and (possibly) federal regulation. In the restructured

open-access environment, the system operations are managed by non-profit

agencies such as independent system operators or regional transmission oper-

ators or transmission system operators; examples include Independent System

Operator of New England (ISO-NE), California Independent System Operator

(CAISO), Electric Reliability Council of Texas (ERCOT), Pennsylvania-New

Jersey-Maryland (PJM) Interconnection and Bonneville Power Administration

(BPA) in the United States and National Grid in the United Kingdom.

Ancillary services from generators and other resources provide the system

operators with the much-needed flexibility to manage tasks (OT1)-(OT4) [5].

In the context of this dissertation, the term ancillary services is used to en-

compass all services that are needed for supporting the delivery of electricity

from generators to consumers and the following classification is adopted for

our research:

(AS1) active power services needed to manage the supply-demand balance

at various time scales (many existing services fall under this category;

a list is provided in Table 1.1),

(AS2) reactive power services needed to maintain voltages within prescribed

limits throughout the grid, and,

(AS3) back-up reserve services needed to enable black-start of the system in
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1.1 Background and Motivation

the event of a blackout.

The ancillary services are used directly for the previously enumerated opera-

tional tasks: the first two tasks (OT1) and (OT2) are managed by service

(AS1) while the last two tasks, (OT3) and (OT4), directly correspond to

services (AS2) and (AS3) respectively.

Table 1.1: List of Ancillary Services in Category (AS1)

Cond-
ition

Response Times Typical Services
Current and
Potential Service
Providers

n
or

m
al

op
er

at
io

n

slow (several hours
to several days)

scheduling
(baseline)

nuclear, coal, hydro,
load shifting

moderate (several
minutes to couple
of hours)

load following,
energy
imbalances

hydro, gas turbines,
chillers in air
conditioners

fast (seconds to
couple of minutes)

primary
response,
regulation

governors, flywheels,
batteries, commercial
air conditioners

co
n
ti

n
ge

n
cy

op
er

ta
ti

on

moderate (several
minutes to couple
of hours)

replacement,
spinning &
non-spinning
reserves

hydro, gas turbines,
direct load control,
flexible
manufacturing

fast (seconds to
couple of minutes)

spinning reserves
gas turbines,
under-frequency load
shedding

With increased awareness of global warming and green house gas emissions,

environmental impacts of electricity production have been included within

the scope of power system planning and operations, in addition to the usual

goals of low cost and reliability. Considerable investments have been made in

wind and solar energy resources [6]. The deployment of renewable resources

presents major challenges in system operations because of the variable and

unpredictable nature of their outputs. In particular, renewable generators are

intermittent, with their outputs frequently oscillating between zero and full

capacity, as seen in Figure 1.1. Furthermore, the minute-to-minute generation

outputs as well as the average daily generation exhibit high volatility – sharp
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Introduction

fluctuations and large deviations from the mean values – as also evidenced

from Figure 1.1. And there is a significant amount of uncertainty regarding

the realized outputs, especially when predictions are taken hours or days in

advance.

Solar generation data from Iowa State University

Wind generation data from the BPA system
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Figure 1.1: Plots of wind and solar generation outputs for a typical week to
showcase the intermittent and volatile nature of renewables.

The large-scale deployment of renewable generation is expected to intro-

duce higher variability, greater uncertainty and increased dynamics in the

power grid [7–9]. The transition towards a sustainable future requires appro-

priate resources and technologies along with associated decision and control

methodologies to mitigate such impacts. Specifically, there is a need to rethink

operational practices for power systems with high penetration of renewable

generation [10–13]. Also needed are resources providing various ancillary ser-

vices that offer system operators flexibility on varying time scales to maintain

system reliability and integrity [14–16].

The most accepted, and also the most widely sought after, source of flex-

ibility today is gas turbine generators: these are often ramped up/down in
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1.1 Background and Motivation

response to the needs of the power grid [17]. However, ancillary services pro-

cured from gas turbines are neither cheap nor environmentally friendly. En-

ergy storage is a cleaner alternative and, perhaps, provides more flexibility as

well: it can be used to smooth out the high frequency variations in renewable

generation outputs as well as to store energy during periods of surplus gener-

ation and discharged to augment renewable supply during shortfalls [18–20],

thus avoiding spilling of wind/solar energy as well as purchasing of expensive

gas-turbine-based ancillary services. However, energy storage exists in limited

form today and is not always economical.

The growth in supply-side ancillary service providers is not commensurate

with the growth in renewable technologies. Hence, demand-side alternatives

are being sought. Loads which possess inherent storage-like characteristics

(for example, refrigeration systems, water heaters, air conditioners and electric

space heaters) are a useful source for ancillary services. The power consump-

tion of these loads can be manipulated around the nominal operating points

without impacting the overall end-use [21–23]. Additionally, other demand-

side resources that can ramp up or down their power consumption in response

to needs of the grid are also an important source of flexibility; examples include

agricultural farms and manufacturing plants [24,25].

Significant efforts from academic research, industry innovation and utility

pilot programs have been directed towards exploring the myriad sources of

flexibility. For instance, research on energy storage technology has seen a

boost [26, 27] along with a growth in the allied business sector [28]. Mecha-

nisms to manipulate end-use power consumption have been created and de-

ployed via so-called demand response (DR) programs1 to exploit demand-side

flexibility [30–32]. Many studies have been undertaken to determine flexibility

afforded by the different resources and to investigate the interplay of such re-

sources with variable renewable generation (see for example reports [16,20,33];

a survey is provided in Section 1.3).

Likewise, power system operational paradigms have experienced a gradual

change. Some of the changes in the operational practices have been acceler-

1DR programs encourage demand-side participation in power system operations; such
participation leads to load changes induced in response to the needs of the grid either in
lieu of incentive payments or to exploit lower electricity prices [29].
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ated by government policy. For instance, the regulatory push from renewable

portfolio standards has caused system operators to attempt to maximize us-

age of volatile renewable energy in the grid. Consequently, many operators

like BPA and CAISO have changed their scheduling and commitment policies,

adopting intra-hour or near-real-time scheduling mechanisms to ensure relia-

bility in spite of uncertain wind and solar energy usage [34,35]. Other changes

have been necessary to leverage the new resources and technologies available

to power system operators: an example includes the fast regulation service

introduced in ERCOT to harness the fast response potential of flywheels and

DR loads [36]. Operational and control practices are expected to undergo

further modifications with the availability of advanced technologies such as

phasor measurement units and smart meters.

Is changing operational practices and adding DR into the resource mix

enough to facilitate deployment of renewable generation? Most certainly not.

We argue that successful integration of renewable resources will require

• thorough accounting of ancillary service needed for power grids with a

high penetration of renewable resources;

• comprehensive assessment of the quantity, quality and types of ancillary

services that can be delivered by different resources; and

• control techniques that recognize the unique characteristics of different

resources and effectively harness their flexibility potential to provide an-

cillary services to the grid.

Our research addresses the above needs, with primary focus on control tech-

niques for future power grids with integrated renewable, storage and DR re-

sources.

This dissertation quantifies the impacts of variable and uncertain renew-

able generation and determines the flexibility provided by energy storage and

demand response resources. Specifically, preliminary investigations on the

amount of ancillary services needed for reliable integration of renewable gen-

eration are reported. Also, provision of ancillary services by storage and DR

resources is discussed and control algorithms for extracting ancillary services

from such resources are developed. And, techniques for coordinating the dis-

patch of different resources in a power grid operations are proposed.
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1.2 A Control Perspective on Grid Operations

The main contributions of the reported research lie in the domain of control

techniques. New stochastic control algorithms capable of capturing the salient

characteristics of new resources and future power grids are proposed for control

synthesis. The development of the algorithms is facilitated by recent advances

in Markov decision theory, approximate dynamic programming (ADP) and

reinforcement learning (RL). Based on numerical experiments, the proposed

control algorithms are found to be remarkably effective for practical problems

in power grids. The control algorithms developed in the course of this research

provide a starting step towards the development of advanced control techniques

that will be necessary for future power grids.

The next section discusses power grid operations from a control theory point

of view and provides some insights on developing a control architecture for

future power grids.

1.2 A Control Perspective on Grid Operations

As discussed in Section 1.1, the power system operations involve control of

resources in order to balance supply and demand, satisfy network constraints,

maintain an adequate voltage profile and ensure black-start capabilities. The

system operator has many different resources at his disposal to complete these

tasks. These resources include thermal generators, energy storage and flexible

loads/DR.

Each resource – be it a generator or a storage unit or a responsive load –

has unique operational characteristics and is subject to a range of physical

constraints. For example, all generators operate under ramping and capacity

constraints; however, their response times can be vastly different. Likewise,

battery storage systems may be capable of fast response but their operation

is subject to complex intertemporal constraints associated with their state of

charge. Also, energy usage in a building system is flexible, but it is also sub-

ject to constraints that are not fully understood today. The complexity of

the power grid with its diverse set of resources, each with its own dynam-

ical properties and constraints, makes power system operations and control

challenging.
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Baseline generation
Volatility from nature
Consumer demand (est.)

Power Consumption
Quality of Life

Power Grid 

Increasing timescale of ancillary service, measured in Hz

Governors
Flywheels

Coal Generation
Flexible Manufacturing

Distributed Data Centers

Capacitor
Banks

Hydro Generation
     Gas Turbine Generation

Heating, Ventillation & Cooling

Batteries

Figure 1.2: Power grid operations from a control theory point-of-view.

In essence, the power grid is a giant interconnection of many generators

and loads connected via wires and many power electronic interfaces. From

a control perspective, the grid can be viewed as a massive feedback control

loop system whose architecture depends on various constituent components,

as shown in Figure 1.2. The operation of these different resources such as coal

generators, gas turbines, flexible loads and so on, depends on their own dynam-

ics and constraints but can be manipulated to various degrees for supporting

the needs of the power grid. The needs of the power grid are, in themselves,

a manifestation of the needs of the producers and consumers, environment,

policy mandates and other factors. The control architecture is responsible for

translating these needs into operational commands for the various resources.

A key step towards creating the “right” architecture for future power grids –

with renewable, storage and DR resources – is to devise operational and control

policies that simultaneously optimize reliability, economic and environmental

objectives while taking into account the dynamics, uncertainties and physical

limitations of the grid and its constituent resources [10–13]. A successful ar-

chitecture will require answers to the three issues raised in Section 1.1, which
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in turn lead to a multitude of questions; some of these include:

(Q1) How to characterize the uncertainty and volatility associated with

outputs of renewable generators?

(Q2) What are the impacts of increasing penetration of renewable gener-

ation on ancillary service needs of the grid and deployment of other

resources?

(Q3) Which ancillary services can be tapped from storage and DR re-

sources? What is the quality and quantity of these services and the

associated costs?

(Q4) How can the flexibility afforded by different resources complement the

volatility of renewable generation and aid in its deployment?

(Q5) How to control different resources while balancing the possibly com-

peting goals of low cost, reliability and minimal environmental im-

pact?

(Q6) What is the information structure required for controlling the grid

and its constituent resources?

The objective of this research is to provide modeling and analytical tools to

answer these questions. An allied goal is to provide insights for designing

operational tools, guide policy development and steer long-term planning.

The following section summarizes research directed towards understanding

the questions enumerated above. Specific gaps in the current state of the art

are pointed out to emphasize the contributions of this dissertation.

1.3 Survey of the State of the Art

Renewable generators, flexible loads and energy storage are emerging as im-

portant resources in the electricity industry. Several industry developments,

regulatory initiatives and academic research and reports are instrumental in

furthering the participation of these resources in power system operations.

This section provides a brief summary of these developments along with re-

search pertaining to questions (Q1) to (Q6) listed in Section 1.2.

The move towards large-scale integration of renewable generation is mo-

tivated by environmental concerns and accelerated by government mandates

9
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that have set aggressive targets in renewable portfolio standards and/or energy

policies [37,38]. Consequently, many researchers have attempted to understand

question (Q1) – the unique characteristics of energy derived from wind and

solar resources – and a few studies are reviewed here. In an attempt to char-

acterize variability inherent to renewable generation, reference [39] proposes

the use of power spectral density of the generation outputs to determine the

fill-in power that must be provided to compensate for the output fluctuations.

A comprehensive assessment of the forecast uncertainty associated with the

outputs is contained in [40,41]. An allied concern is the impact of geographical

diversity on the variability and uncertainty of renewable generation. Studies

indicate that spatial separation can smooth out the variability in the aggre-

gate wind and solar power outputs, and also reduce the associated prediction

error [41, 42].

Many investigations have focused on question (Q2), the system-wide im-

pacts of renewable generation deployment. A fairly well-accepted conclusion

from a multitude of these studies is that as volatile renewable generation in-

creasingly contributes towards the meeting the system load, more ancillary

services – in the form of standby operational reserves as well as frequency reg-

ulation reserves – will be required to ensure system reliability (see [8,9,43,44]

and the references therein). It is argued in [45, 46] that faster responding

resources are needed to minimize the impact of renewable energy deployment.

The past decade has also witnessed the wide adoption of DR programs,

brought about by the confluence of many factors: absence of large storage

alternatives, increased ancillary service needs synonymous with renewable de-

ployments, quest for clean sources of ancillary services and regulatory push in

the form of FERC orders 7452 and 755.3 The most significant success stories

concerning DR involve bilateral contracts between utility companies and their

large industrial and commercial consumers [49,50].

The recognition of the flexibility potential of demand-side resources is not

2The 2011 FERC ruling 745 requires system operators to pay the same price for DR
capacity as they would pay for generation capacity, thus leveling the playing field for supply-
and demand-side resources [47].

3The 2011 FERC ruling 755 dictates system operators to compensate regulating resources
based on their performance, thereby encouraging participation of fast-responding storage
and DR resources in frequency regulation [48].
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new. In fact, the newer practice of DR programs finds its roots in demand-side

management practices employed by utilities during the 1980s and 1990s [51,52].

Seminal work by Schweppe et al. [53], which considers control of thermal loads

for frequency regulation, provides the first theoretical foundation for answering

question (Q3) concerned with characterization of DR-based ancillary services.

Recent academic endeavors have been focused on aggregating residential loads

such as refrigerators, air conditioners and water heaters for ancillary service

provision (see [54–58] and the references therein). Likewise, DR potential

of commercial loads has also been analyzed [59–61]. Many of these references

focus on the quantity rather than quality of services that the DR resources can

provide. In particular, little information is known of the level of uncertainty

associated with DR. The time response characteristics of DR resources are not

well understood either.

DR provides many different ancillary services to the power grid and offers

a potential means to manage the impacts of renewable resources. Indeed,

question (Q4) – dealing with the interplay between renewable generation and

flexible loads – has been the focus of many studies. For instance, the use of

price responsive demand to facilitate renewable integration has been proposed

in many studies [62–65]. Likewise, coordinating the energy consumption of

residential loads for ancillary service provision to mitigate impacts of renewable

intermittency has also been extensively studied [54,58].

Energy storage is another source of flexibility for the system operator. There

is a vast body of literature concerned with tapping this flexibility for ancillary

services in wind- and solar-integrated systems, thus making inroads towards

answering questions (Q3) and (Q4). For instance, references [18,19] provide a

comprehensive assessment of the types of services that different storage tech-

nologies can provide. Likewise, the control of a generic storage resource to

regulate wind farm outputs has been studied (see [66–68] and the references

therein). Many investigations focus on deploying specific storage technologies

in power grids with renewable resources. For example, use of storage potential

of electric vehicles for supporting renewable generation deployment is studied

in [69, 70]. Likewise, technical and economic aspects of employing advanced

storage technologies such as compressed air energy storage and hydrogen fuel
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cells in power grids have also been analyzed [71,72].

As power grids transition towards increased use of renewable resources,

the value of the flexibility afforded by different resources is expected to in-

crease [73, 74]. These studies further the understanding of question (Q4) by

proposing an quantitative framework to characterize operational flexibility.

Qualitative evaluation of operational flexibility of generation, storage and DR

resources is provided in [15], [20] and [54, 56] respectively. Modeling frame-

works that capture such flexibility potential of a resource along with the asso-

ciated dynamics and uncertainty have also been proposed [67,75].

Question (Q5) pertaining to the coordination of different grid resources and

the control architecture for the future grids has attracted considerable atten-

tion over the last decade. The reader is referred to reference [11] for a recent

survey on the control implementations for the power grid and its component

resources. Of particular interest is how to deal with the limited controllability

of renewable generators like wind turbines and solar panels; some suggestions

and requirements are outlined in [11]. Likewise, the importance of a new mod-

eling framework which captures the impacts of dynamics and uncertainty for

operational decision-making tools is stressed in [13]. Suggestions for practical

implementations of such decision support tools are proposed in [12], and ram-

ifications of multi-objective optimization to balance reliability, economic and

environmental objectives are discussed in [76].

Recent advances in communication, computing and metering technologies

may have profound impacts on the information architecture of future power

grids. However, few studies focus on the related question (Q6). The reader

is referred to references [77] and [78] for a comparative analysis of centralized,

decentralized and hierarchical architectures.

The investigations reviewed in this section provide insights on the questions

raised in Section 1.2; these insights can be applied towards developing a control

architecture for the future grid. However, one roadblock in devising such

an architecture is the limited understanding of question (Q1) pertaining to

the uncertainty and the dynamics that come into play as far as renewable

generation is concerned. This limits the development of appropriate control

strategies for these resources. The research reported in this dissertation offers
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possible solutions; the specific contributions are outlined in the next section.

1.4 Scope and Contributions

The objective of this dissertation is to provide modeling and analytical tools

to answer the questions enumerated in Section 1.2. The answers to these ques-

tions provide insights for designing operational tools, developing new policies

and long-term planning.

The principal contribution of our research is the new control techniques

for management of resources in power grids. Tools from stochastic control

are used to shed light on the questions (Q2) to (Q5) and provide a work-

around for the limited knowledge regarding question (Q1). The reported

research can be divided into two separate sets of investigations. One set of

investigations answers questions (Q2) and (Q3) by analyzing the impacts of

renewable and DR resources. The other set develops new control techniques for

investigating questions (Q4) and (Q5), in spite of the limited understanding

of the uncertainty associated with renewable generation and DR.

The scope of these investigations is limited to active power control and the

associated ancillary services; that is, services falling under category (AS1).

Extensions to reactive power control entail modeling changes; in particular,

AC power flow models and voltage dynamics need to be explicitly considered.

These extensions are left as an exercise for some future work.

1.4.1 Impact of Renewable and DR Resources

Investigations on questions (Q2) and (Q3) are presented in Chapter 2. These

investigations provide a preliminary assessment of the amount of ancillary

services needed for reliable deployment of renewable generation. Also, demon-

strations of how DR-based ancillary services can aid renewable integration and

participate in power system operations are provided.

The first study focuses on the operational impacts of wind generation de-

ployment and the availability of DR-based load following and load shifting ser-

vices. A unit commitment framework is adopted for analysis: the day-ahead

scheduling problem for generation and DR resources is cast as an allocation
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of resources under uncertainty and modeled as a two-stage stochastic control

problem. It is assumed that the distribution of the uncertainty is known and

that DR is available for provision of balancing as well as load shifting ancil-

lary services. A proof of concept of the effectiveness of both DR services in

facilitating wind generation deployment is provided via numerical simulations.

Also, the amount of ancillary services needed is characterized based on the

statistics of the renewable generation outputs.

The second study investigates how frequency regulation services can be ex-

tracted from heating, ventilation and air conditioning (HVAC) loads of com-

mercial buildings. A feedforward architecture is proposed to modify the HVAC

power consumption to track the regulation signal. The performance of the con-

troller is tested via simulation experiments. An important observation from

this study is that to avoid conflict with the existing temperature control system

of the building, the low frequency variations of the regulation signal should be

filtered out. Simulations demonstrate how the proposed controller has min-

imal impact on the building environment and can successfully track a high

frequency regulation signal.

1.4.2 Learning-based Control in Power Grids

The work presented in Chapter 2 assumes that the distribution of the un-

certainty is known. In the chapters 3, 5 and 6, this requirement is relaxed

and, instead, the uncertainty is learned as a part of the solution. Such control

synthesis is made possible by use of ADP- and RL-based stochastic control

techniques. The main advantage of these algorithms is that they require very

little knowledge of the underlying stochastic processes and can accommodate

real-world data. Due to this feature, the techniques are eminently suitable

for dealing with renewable generation and DR resources. Chapters 3, 5 and

6 include several examples to illustrate the application of these techniques

to practical problems. The proposed control techniques provide tools to an-

swer questions (Q4) and (Q5) raised in Section 1.2 in spite of the limited

understanding of question (Q1).

In Chapter 3, two RL techniques – SARSA and TD learning – are used

to develop control strategies for energy storage and DR resources to enable
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provision of load following and frequency regulation services. As an example,

a control scheme for an energy storage unit operating in conjunction with a

volatile wind generator is devised so that the combined resource can meet

steady as well as time-varying demand. The control problem is cast as a

Markov decision process (MDP) and solved using ADP and RL techniques.

The learning technique is employed to size storage units for real wind farm

locations so that the aforementioned objectives are met. Next, the control

schemes for heating and cooling loads to provide frequency regulation services

are examined. The resulting control problem is structurally similar to the

control problem of combined wind-storage resource operation. The numerical

examples presented here illustrate how ADP and RL can be successfully ap-

plied to devise controllers for newer generation ancillary service providers such

as storage and DR resources.

In Chapter 5, two new techniques for Q-learning are devised and applied

to an economic dispatch problem. Simulation experiments indicate that the

learning algorithms can be successfully tuned to the underlying statistics of

the system, thus avoiding the need to impose restrictive assumptions on the

uncertainties in the system model. Furthermore, the Q-learning techniques

are used to enhance the performance of model predictive control (MPC). We

argue that the combination of the two approaches, referred to as Q-MPC, is an

effective mechanism to address control problems arising in constrained power

grids with higher levels of uncertainty.

The usual implementation of the economic dispatch problem can be cast in

the MPC framework and its computational complexity can be reduced via use

of the Q-MPC approach. The numerical experiments reported in chapters 5

and 6 showcase the capabilities of the Q-MPC approach to handle large-scale

control problems associated with dispatch of resources in constrained power

networks. For the three different text systems studied in our experiments,

the Q-MPC approach expends the least computational effort as compared

to standard MPC implementations, in the sense that good performance is

obtained even for small prediction horizons. The improvement in performance

and greater adaptability of Q-MPC is of particular importance in large grids

with many resources and many sources of uncertainty.
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1.4.3 Contributions to RL and ADP

In addition to demonstrating applications of ADP- and RL-based control tech-

niques to power system control problems, our research also makes significant

contributions to the area of stochastic control. The technical contributions

of this dissertation are three-fold: an analytical architecture to examine ap-

proximate MDP solutions, two new Q-learning techniques and a proposed

improvement on the standard MPC framework.

In Chapter 4, an architecture is developed for analyzing approximate MDP

solutions that may be obtained via ADP, RL or any other technique. The cen-

tral component of this architecture is the error in the approximation: bounds

on the error are used to provide sufficient conditions for stability as well as

for establishing performance bounds. Additionally, closed form solutions for

relaxations to the MDP model are obtained; these solutions provide a starting

point for constructing an approximate solution to the MDP.

In Chapter 5, two new parameterized Q-learning algorithms are presented.

These algorithms provide a significant improvement over the standard Q-

learning technique proposed by Watkins and Dayan in [79]. Watkins and

Dayan’s algorithm requires a parameterization of all Q-functions and, hence,

fails for large state/action spaces. Q-learning based on a finite-dimensional

parameterization has been considered only in very special cases, such as op-

timal stopping [80], a particular class of queuing models [81], and a class of

deterministic models in [82].

Although MPC is a popular technique and finds many applications in power

systems, its speed and complexity leave scope for improvement. In Chapter 6,

the new Q-learning algorithms devised in the preceding chapter are used to

improve the MPC technique. Specifically, the Q-learning algorithms are used

to approximate the optimal terminal cost for the MPC implementation. The

resulting controller admits a stabilizing policy under mild conditions. Also,

guidelines for approximating the MPC terminal cost are provided.
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1.5 Dissertation Outline

The dissertation contains six additional chapters. Chapter 2 starts with a re-

view of the power system operations and discusses the impacts of wind and

DR deployments from an operational standpoint. A unit commitment frame-

work is introduced for scheduling resources in a power grid with wind energy

and DR sources. Numerical studies using this framework provide an estimate

on the increased ancillary service needs associated with wind generation de-

ployments as well as a proof of concept on how these needs can be met with

DR-based ancillary services. Additionally, a feedforward control architecture

is presented for manipulating power consumption in HVAC loads of commer-

cial building for the purposes of frequency regulation. Numerical experiments

indicate that, as long as the frequency content of the regulation signal is suit-

ably constrained, the regulation service provision has minimal impacts on the

indoor environment of the building.

Chapter 3 introduces the reader to tools from Markov decision theory, ADP

and RL. It also presents a modeling framework for the power grid. These

models and tools are applied to develop control policies for energy storage and

DR resources. In particular, the control of storage resources to smoothen the

variability of wind generation is studied. Likewise, the problem of controlling

thermal loads for frequency regulation is also studied. The control problems

presented here correspond to control synthesis on medium to fast time scales.

In Chapter 4, an analytical framework to judge the quality of approximate

solutions to MDPs is presented. An error criterion is defined in the con-

text of average cost optimization for MDPs. Relaxations to the MDP models,

called fluid models, are introduced and closed form solutions for the fluid value

function are derived to form the basis for approximating the MDP solutions.

Bounds on the error in the approximation are used to define sufficient con-

ditions for stability of the control policy derived from the approximate MDP

solutions. Performance bounds for the approximate policy are also provided.

In Chapter 5, two new techniques for approximating solutions to MDPs

are devised. Specifically, two parameterized Q-learning algorithms based on

Bellman error reduction and linear programming approach to solving MDPs

are proposed. The implementation of the algorithms for power system control
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applications is discussed via numerical examples. A specific case of economic

dispatch is considered. Our results show how Q-learning can be used to im-

prove the fluid model-based approximations for MDPs.

Chapter 6 describes the marriage of Q-learning with MPC resulting in the

new Q-MPC approach to control both stochastic and deterministic systems.

The stability of the controller is established under mild conditions. The ap-

proach is applied to the economic dispatch problem. Numerical experiments

demonstrate how Q-MPC provides close-to-optimal solutions for small predic-

tion horizons. The dissertation concludes with a summary of the research and

discussion of the avenues for future work in Chapter 7.
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Chapter 2

Operational Impacts of Wind and

DR Integration

This chapter provides an overview of the operational decision-making process

for a power system. It also includes investigations on understanding the role

of renewable generation and DR loads in power system operations.

The first investigation is concerned with the interplay between variable and

uncertain renewable generation and ancillary services from DR resources. As

an example, wind-integrated systems are considered and naive models for the

uncertain wind energy outputs are assumed. Two types of ancillary services

are considered: balancing service and load shifting. Numerical experiments

quantify the increased ancillary service needs associated with use of wind gen-

eration. They also serve to demonstrate the effectiveness of DR-based ancillary

services in meeting these needs and facilitating wind generation deployment.

The second investigation concerns the use of HVAC loads to provide fre-

quency regulation service to the power grid. A feedforward control approach

for manipulating the HVAC power consumption in commercial buildings is

proposed and tested on a detailed model of a real building. Numerical exper-

iments provide insights on how to enable effective regulation signal tracking

for the controller without compromising in the occupants’ comfort.

The two detailed examples of DR-based ancillary services presented here

correspond to two different time scales. The first investigation is concerned

with moderate time scales (minutes) while the second investigation focuses on

fast time scales (seconds).
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2.1 Overview of Power System Operations

Operational decisions in power systems are concerned with controlling the grid

resources in the most economical manner without violating the various con-

straints on the individual resources as well as the system as a whole. The time

scales for these decisions range from a few seconds to several days. This section

describes the operations corresponding to these time scales for active power

control of resources. The associated decision-making processes can viewed in

three domains: commitment, dispatch and regulation. Figure 2.1 depicts these

processes and the interactions between them.

seconds days minutes 

unit  
commit-­‐
ment  

economic  
dispatch  

automa0c  
genera0on  
control   …  

on/off   updates   regula0on  

day-­‐ahead  
forecast  

measure-­‐
ments  

minutes-­‐
ahead  
forecast  

time scale for operations 

…  

Figure 2.1: The key stages in power system operations.

The system operator schedules resources one day prior to the actual pro-

duction and delivery of energy in such a way that physical constraints are met

and supply-demand balance is maintained. As the supply and demand are not

perfectly predictable in the day-ahead decision-making process, the resource

outputs are updated during the dispatch process based on revised estimates of

real-time conditions. These updates are computed every 5 to 10 minutes. The

faster fluctuations in supply and demand are managed by regulating the re-

source outputs in response to deviations in the system frequency and scheduled

tie-line flows.

The scheduling decisions are concerned with turning ON or OFF genera-
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tion units and are determined via the unit commitment (UC) process. The

objective of UC is to determine the least cost resource schedule to meet the

predicted load demand for a specified time period while satisfying the lim-

itations imposed by the physical resources as well as those imposed by the

various operating policies. The UC process determines the energy and reserve

commitments for the system resources a day ahead of real time and is usually

performed once per day to account for the predictable, larger, slow changes

in demand. The scheduling process is performed for a day at a time, with a

rolling look-ahead horizon of up to 3 days with a half-hourly or hourly time

resolution.

The economic dispatch uses a revised load and generation forecast – minutes-

ahead or hour-ahead of real time – to fine-tune the resource schedule deter-

mined by the UC process. The dispatch process allocates the total load on the

system among the committed resources so as to minimize operational costs.

Scheduled interchanges, reserve availability and various operational and phys-

ical constraints are considered in the dispatch process. The dispatch process

is performed once every few minutes and has a look-ahead horizon of a few

hours.

The system states are continuously changing due to fluctuations in the load

and generation. The fast fluctuations manifest themselves in terms of de-

viations in the system frequency as well as tie-line flows. For stability and

reliability reasons, the impact of these deviations should be minimized within

prescribed limits; this is achieved by manipulating the operating points of a

certain set of resources through the regulation process, also referred to as au-

tomatic generation control or load frequency control. The objective of the

regulation process is to minimize frequency deviations and regulate tie-line

interchanges. Accordingly, an appropriate error signal, known as the area

control error, is computed and used to construct regulation commands that

dictate how the regulating resources should change their operating points to

minimize the consequences of the supply-demand deviations.

The operational practices outlined here have been traditionally concerned

with control of generation resources, with variations in the load and unplanned

equipment outages being the main sources of uncertainty. With increased
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(a) ERCOT load: prediction versus actual

(b) ERCOT wind generation: prediction versus
actual
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Figure 2.2: Comparing wind generation and load demand patterns.
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reliance on variable and uncertain renewable generation, these operational

practices may no longer apply as is and may require modifications.

As such, managing variability and uncertainty is not an uncommon oc-

currence for power system operators. The current operational practices are

designed to be robust, to some extent, to the uncertainty and variability in

thermal generation as well as electric loads. This is made possible, in part, by

demand exhibiting fairly well understood patterns with low prediction errors,

as seen in Figures 2.2(a) and 2.2(c). However, wind generation patterns (see

Figures 2.2(b) and 2.2(c)) are not as well understood — it is unclear whether

there exists any pattern at all. Also, with limited control on their outputs, the

role of renewable power plants in operations is ambiguous. In fact, wind gener-

ation deployments often impact thermal generation in the sense that it needs

to be ramped up or down to compensate for lower or higher wind generation,

as evidenced in Figure 2.2(c).

As more renewable resources replace conventional generation, ancillary ser-

vices from alternative sources such as DR will need to be procured. This may

necessitate changes to operating paradigms. In what follows, the interplay

between wind energy and DR is investigated.

2.2 Supporting Wind Generation with Demand

Response

A major concern in the day-ahead decision making process for systems with

high penetration of renewable resources is how to deal with the uncertainty

and variability introduced by these resources. An ad-hoc approach that has

been adopted by many system operators is to manage the volatility in renew-

able generation outputs through procurement and deployment of supply-side

reserves. This section is concerned with how DR can be effectively utilized to

compensate the need for stand-by reserves in systems with deep penetration

of renewable resources (as an example, wind generation is considered).

The determination of optimal reserve levels in a stochastic power system

model can be cast as a variant of the newsboy’s problem for optimal inventory

modeling [9,83,84]. The economic efficiency of this optimal outcome has been
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established in [9,83,84] and the references therein. The analysis in [9] concludes

that as penetration of wind resources increases, more reserves will be required

to ensure system reliability. Similar results have also been established in unit

commitment-based analysis which explicitly consider uncertainty due to wind

forecasts [43, 85]. Thus, there is the need for fast responding reserves from

both the supply- and the demand-side. While the nature and costs of supply-

side reserves are well understood, the demand-side options have not been fully

explored. With the implementation of Smart Grid technology, it is envisioned

that the demand-side will play a key role in facilitating reliable integration of

the wind resources [29,62,86–89].

In what follows, the impacts of deploying volatile wind generation and har-

nessing the flexibility in demand-side consumption are investigated. The fo-

cus is on provision of demand-side reserve capacity and leveling of the load

profile. The analysis is based on a UC model that explicitly represents the

uncertainty in the day-ahead scheduling decisions using a two-stage stochastic

control problem. Simulation results characterize the increased ancillary ser-

vice needs in terms of the variability of the wind generation. Also, a proof

of concept that DR-based reserve capacity provides an effective mechanism to

manage the volatility and uncertainty of wind resources is provided. These

results also demonstrate how load leveling relaxes the constraints imposed on

the unit commitment solution and, thus, helps accommodate renewable gen-

eration.

The analysis described here does not extend to the complex feedback loop

found in a system in which prices to consumers vary according to the current

environment, as in many DR programs such as real-time pricing mechanisms.

In fact, this work is aligned with the viewpoint propagated by Callaway and

Hiskens in [90]:

... in order to achieve full responsiveness, direct load control (as opposed to

price response) is required to enable fast time scale, predictable control oppor-

tunities, especially for the provision of ancillary services such as regulation

and contingency reserves.
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2.2.1 Scheduling of Generation and DR Resources

From the discussion in Section 2.1, it is clear that the system operator procures

energy and reserve commitments from resources the day before real time based

on predictions of the supply and demand. The resources are dispatched closer

to real time based on revised estimates of system conditions; the reserves are

deployed to manage the deviations from the promised supply and demand

energy commitments. In this section, a stochastic framework which mimics

this decision process of the operator is described.

The Setup

It is assumed that the power grid under consideration has wind resources. The

“use all wind” policy is adopted: that is, the controllable generators serve the

net-load imposed on the system after all available wind generation is absorbed

into the system. The following DR scenarios are considered:

• The availability of DR capacity as reserves from the implementation of

incentive-based DR scheme such as emergency DR program, and,

• The leveling of the demand profile brought about by the consumer re-

sponse to time-of-use prices that are known in advance, on a day-ahead

basis (or longer).

The consumer loads providing DR reserve capacity are modeled analogous

to very reliable, fast-start generators that only contribute towards system re-

serves. The amount of reserves that such consumers can provide is constrained

by the amount of load they are consuming – they can only reduce as much load

as they consume. The response of the consumers enrolled in the time-of-use

pricing scheme is modeled by modifying the demand profile. It is assumed that

implementation of time-use-rates will cause consumers to shift from high-price

to low-price hours, thereby resulting in load leveling. Furthermore, pricing

structure is assumed to induce responses in the consumption patterns of the

enrolled consumers that are perfectly predictable in the day-ahead.1 Thus,

1While such an assumption would most likely not hold for the real world, the analy-
sis without this assumption would be complicated by the representation of rationality in
consumer behavior which is far beyond the scope of this work.
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the day-ahead demand predictions are considered to be representative of the

impacts of pricing-based DR program.

Stochastic Unit Commitment Problem

The UC problem is cast as a two-stage stochastic program with recourse actions

– a special case of the multi-stage stochastic optimal control problem. Such

programs are often applied to inventory management problems [91]. The multi-

stage decision framework mimics the decision-making process of the system

operator wherein the resources are scheduled and reserves are procured in the

day-ahead while the deviations from the scheduled supply and demand in real

time are managed using the procured reserves.

In the proposed UC formulation, the determination of the day-ahead com-

mitment schedule is modeled as the first stage of the stochastic control prob-

lem. The real-time balancing operations depend on both the day-ahead com-

mitment schedule as well as the real-time conditions, which are not known in

the day-ahead. The real-time supply-demand balance is maintained by dis-

patching reserves procured in the day-ahead and/or shedding load2 subject to

the constraints on both the reserves dispatched and the load shed. The system

operator’s real-time decision-making process is modeled as a recourse action –

the second stage of the stochastic control problem.

A compact formulation of the stochastic UC problem for a power system

with I generators and J DR reserve providers for a scheduling period of T

time steps is as follows:

min
ûG,ε̂G,r̂G
ûD,r̂D

∑
t

∑
i

fGi (ûGi(t), ε̂Gi(t), r̂Gi(t)) +
∑
j

fDj (ûDj(t), r̂Dj(t)) + E [ϕ? (x̂(t))]


s.t.

∑
i

ε̂Gi(t) + ε̂totW (t) = ε̂totD (t) ∀ t (2.1a)

(ûGi, ε̂Gi, r̂Gi) ∈ XGi ∀ i (2.1b)

(ûDj , r̂Dj) ∈ XDj ∀ j (2.1c)

(ûG, ε̂G, r̂G, ûD, r̂D) ∈ XT . (2.1d)

2Such load shedding induced by the operator is not the same as the voluntary load
curtailments by the consumers enrolled in DR programs. It is typically invoked only under
extreme conditions.
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In (2.1), ûGi(t) ∈ {0, 1} is the commitment status of generator i at time

t; ε̂Gi(t) ∈ {0} ∪
[
εmin
Gi , ε

max
Gi

]
is the energy output of i with εmin

Gi and εmax
Gi as

its capacity limits; and r̂Gi(t) is its spinning reserve commitment. Similarly,

ûDj(t) ∈ {0, 1} is the commitment status of DR reserve provider j at time t

and r̂Dj(t) is its spinning reserve commitment. The boldface notations ûGi, ε̂Gi

and r̂Gi denote the trajectories of the corresponding variables. For instance,

ûGi := {ûGi(1), . . . , ûGi(T )}. The underlined boldface notations represent the

collection of trajectories for all units. For instance, ûG := {ûGi : i = 1, . . . , I}.
Constraint (2.1b) represents the supply-demand balance constraint for the pre-

dicted values of total demand ε̂totD (t) and total wind generation ε̂totW (t). The set

XGi represents the physical constraints – such as the minimum up/down time

constraints, ramping limits and capacity limits – on a generator i. Similarly,

XDj represents the constraints on DR resource j. The set XT represents the

operational constraints imposed by the transmission network. The function

fGi (·) denotes the offer function of generator i: it implicitly incorporates the

fuel charges, start-up/shut-down costs, capacity costs for reserve provision and

other operating costs. Similarly, function fDj (·) represents the offer function

of DR resource j. If the expectation term E[·] in (2.1a) is ignored, this problem

formulation is similar to the conventional unit commitment problem.

In the stochastic UC formulation, variables ûGi(t), ε̂Gi(t), r̂Gi(t), ûDj(t) and

r̂Dj(t) are the first stage decision variables. The variable x̂(t) is a shorthand

notation for the time-t first stage variables; that is,

x̂(t) := [{ûGi(t), ε̂Gi(t), r̂Gi(t) ∀ i} ∪ {ûDj(t), r̂Dj(t) ∀ j}] .

Clearly, the real-time balancing costs at time t depend on x̂(t). The func-

tion ϕ? (·) in (2.1a) represents the optimal costs of the second-stage (wherein

the real-time balancing actions are modeled) as a function of the first stage
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decisions x̂(t). It can be computed as follows:

ϕ? (x̂(t)) := min
RG(t),RD(t),L(t)

∑
i

hGi (RGi(t)) +
∑
j

hDj (RDj(t)) + υL(t)(2.2a)

s.t.
∑
i

[EGi(t)+RGi(t)]+ Etot
W (t) =Etot

D (t)−
∑
j

RDj(t)−L(t)(2.2b)

0 ≤ |RGi(t)| ≤ |r̂Gi(t)| ∀ i (2.2c)

0 ≤ |RDj(t)| ≤ |r̂Dj(t)| ∀ j (2.2d)

0 ≤ L(t) ≤ `max(t) (2.2e)

(EG(t), RG(t), RD(t), L(t)) ∈ XT|t . (2.2f)

In (2.2), the capital letters denote random variables: these capture the uncer-

tainty associated with real-time conditions. Variables RGi(t) and RDj(t) are the

dispatched reserves of generator i and DR resource j, respectively, while L(t)

represents the unserved load at time t. Note that RG(t):={RG1(t), . . . , RGI(t)};
RD(t) is analogously defined. The variables EGi(t), E

tot
W (t) and Etot

D (t) denote

the uncertain real-time realizations of the generation from conventional and

wind resources and demand respectively. Functions hGi (·) and hDj (·) represent

the real-time dispatch costs of the corresponding resources while υ is the value

of lost load (VOLL) associated with involuntary load shedding. Constraint

(2.2b) is the real-time supply-demand balance constraint while constraints

(2.2c)-(2.2e) represent the limits on the corrective balancing actions followed

by the network constraints in (2.2f).

The constraints (2.2c) and (2.2d) and the expectation term in (2.1a) ex-

plicitly represent the coupling between the first and second stage decision

variables. The solution of (2.1)-(2.2), denoted by (û?G, ε̂
?
G, r̂

?
G, û

?
D, r̂

?
D) , is the

least-cost day-ahead commitment schedule which meets the predicted demand

requirements, satisfies the physical constraints, and minimizes the expected

cost of real-time balancing operations.

2.2.2 Numerical Results

The stochastic UC problem formulation proposed in Section 2.2.1 provides a

testing platform for the capability of DR resources in facilitating deployment
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of volatile wind generation (WG). Several simulation studies are performed to

investigate the interplay between wind generation and demand response.

The VOLL used in these studies is analogous to the cost of blackout consid-

ered in [92, 93]. Similarly, the DR reserves are similar to the DR-based load

shedding described in these references.

As such, the integer constraints and stochastic nature of the problem impose

a huge burden on the computing resources. Therefore, certain allowances

are made in the simulations studies to ensure computational tractability. In

particular,

• transmission constraints are ignored;

• generators and DR resources are assumed to be 100% available; and

• the expectation term in (2.1a) is approximated by a sample average,

where the samples are obtained through Latin hypercube sampling.

Demand and wind generation forecast errors are the main sources of uncer-

tainty modeled in the following simulation studies. The real-time demand and

wind generation are modeled as

Etot
D (t) = (1 +ND) ε̂totD (t) with NDsimN (0, σ2

D)

Etot
W (t) = (1 +NW) ε̂totW (t) with NWsimN (0, σ2

W) ,

respectively, with σW typically greater than σD. Since the focus of this exercise

is to investigate how DR can help manage WG, the assumptions imposed above

are not altogether unreasonable.

The investigations are performed on three- and ten-unit systems of [94] and

[95]. Both test systems are modified to suit the analysis: namely, availability

of wind generation and demand response reserves is assumed and suitable

parameters are adopted. For simplicity, a scheduling horizon of 8 periods is

considered. The load and wind forecast patterns are generated using data is

obtained from ISO-NE [96] and NREL [97]. The modifications are detailed

in [44].

Example A: Three Unit System

In Figure 2.3, the number of hours units 2 and 3 are committed is plotted for

the following five cases:
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• base case with a peak-valley load forecast profile (no wind generation,

no DR)

• WG case which simulates the base case system with a specified wind

generation forecast

• DR case A which simulates the WG case with DR reserves

• DR case B which simulates the WG case with a levelized load forecast

profile

• DR case which combines A & B scenarios – WG with DR reserves and

a levelized load forecast profile
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Figure 2.3: Operation of units 2 and 3 under different case scenarios for the
3-unit system.

Unit 1 is a base-load unit and is committed for all hours in all five cases.

Notice that with a levelized load profile, the operator can do away with com-

mitting unit 2, the most expensive unit in the system. This has significant

impact on the costs because when wind generation is deployed, unit 2 is kept

ON only to provide reserves.

An added benefit of load leveling is increase in the load during the night

hours when prices are typically low. This allows absorption of nighttime WG

which may otherwise need to be curtailed to manage physical limitations on

base load generators.

The economic impacts of WG and DR deployment are captured using the

following cost metrics: cost of generation based on day-ahead commitment,

start-up costs, capacity costs for generation reserves, capacity costs for DR

reserves, and finally, the expected costs of real-time operations. In Figure 2.4,
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these cost metrics for the system are presented for the five cases described

above.
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Figure 2.4: Cost metrics for different case scenarios for the 3-unit system.

With the deployment of zero-fuel-cost wind generation, the cost of gener-

ation reduces, but such cost reductions are offset by the increase in reserve

capacity costs. Furthermore, injection of all available wind generation im-

parts variability to the net load, thus increasing start-up costs. In general,

the real-time balancing costs are higher when wind generation is introduced.

Combining wind deployments with DR – either as reserves or as levelized load

profile – decreases the real-time costs, making wind resources viable for use.

Example B: Ten Unit System

When operational and economic impacts of DR resources are investigated for

the ten unit system, results similar to those on the 3 unit system are obtained.

Further studies are conducted on the ten unit system for sensitivity analysis.

First, a business case for DR reserves is posed. The UC problem is solved

for a specified load and wind generation forecast for different VOLLs υ. The

expected real-time balancing costs, cost of procuring generation reserves and

the expected load shed in real-time are plotted in Figure 2.5 for different υ. The

figure emphasizes the relationship between the VOLL and the procurement of

expensive generation reserve capacity: As VOLL falls, it is more economical

to shed load than to procure generation reserves. This exercise helps make

a case for flexible loads such as commercial refrigeration systems to be used
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Figure 2.5: Optimal procurement of generation reserves as function of VOLL.

as reserves because for such loads, a temporary loss of load is typically not

detrimental and hence the VOLL for such loads is lower than that of a critical

load such as a hospital. Indeed, loads which participate in provision of reserves

or direct load control (DLC) programs have low VOLL.

Next, impacts of increasingly uncertain wind forecasts are simulated by

varying the parameter σW. The reserve generation capacity procured for the

peak load period and the expected real-time balancing costs for different val-

ues of σW are plotted in Figure 2.6. From the figures, it is clear that while
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Figure 2.6: Impact of wind generation uncertainty on generation reserves and
real-time costs.

increasingly uncertain wind generation can result in procurement of a large

amount of reserve generation capacity and lead to higher real-time balancing

costs, such impacts can be mitigated by DR reserves procured from responsive
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loads. In this way, DR reserves provide an effective approach to managing

wind uncertainty.

Remark. The analysis described in this section is limited by two assump-

tions. One, that the quantity of load that can be shed is known in advance

for scheduling purposes. Second, that a consumer committed to provide DR

reserve in the day-ahead will indeed curtail load when asked to do so. The first

assumption has been partially addressed in [98] via proposal of establishing

appropriate baseline load consumption models and quantifying the flexibility

available in responsive demand resources. The second assumption can be jus-

tified by development of appropriate standards and/or market mechanisms for

demand response.

2.3 Frequency Regulation from Commercial Build-

ing HVACs

The proper functioning of a power grid requires continuous matching of supply

and demand, in spite of the randomness of electric loads and the uncertainty

of power generation. A direct consequence of supply-demand mismatch is a

deviation in the system frequency, which is closely monitored and controlled

as discussed in Section 2.1. An important ancillary service used in managing

the system frequency is the regulation service: it is deployed on the fastest

time scale (seconds to minute) to correct the short-term power imbalance

in load and generation to maintain system frequency within the prescribed

limits. This service has been traditionally provided by generators by tracking

a regulation signal sent by the grid operator that dictates changes in the

generators’ outputs. In this section, it is argued that (a) commercial buildings

can be tapped for ancillary services, (b) HVAC systems can be manipulated

for regulation service on faster time scales more effectively than generators,

and (c) commercial buildings can provide this service at a very low cost.

Buildings account for 75% of total electricity consumption in the U.S., with

roughly equal share between commercial and residential buildings [99]. With

growing interest in procuring ancillary services from fast responding DR re-

sources [22,100], buildings are a natural source of demand-side flexibility. The
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choice of commercial buildings is motivated by several important factors. First,

a commercial building can provide more flexibility (compared to a residen-

tial building) due to its much larger thermal inertia. Second, approximately

one third of the commercial building floor space is equipped with variable

frequency drive (VFD) that operates the HVAC equipment. It can be com-

manded to vary their speed and power consumption quickly and continuously,

instead of in an on/off manner. This is a crucial advantage for providing

regulation service, since the regulation signal to be tracked changes in the or-

der of seconds. Third, a large fraction of commercial buildings in the United

States are equipped with building automation systems (BAS). These systems

can receive regulation signals from grid operators and manipulate the control

variables needed for providing regulation service, without requiring additional

equipment such as smart meters. Ancillary services can thus be provided at

virtually no cost; these are obtained as a simple add-on to the current HVAC

control system.

Many load control mechanisms explored for commercial buildings in the cur-

rent literature are primarily concerned with low frequency changes in demand,

i.e., the changes occur over a minutes/hours time scale. Here, the focus is on

high frequency load changes in commercial buildings to provide regulation ser-

vice to the grid. This section contains preliminary results showcasing the fea-

sibility of extracting regulation service from commercial buildings. The power

consumption of the fans in the building’s HVAC system is the only source of

flexibility considered. A feedforward control architecture is proposed to ma-

nipulate fan power consumption as needed for regulation purposes. While a

simplified thermal model of a building is used for control design, the perfor-

mance of the controller is tested via simulations on a high fidelity non-linear

model. The simulations indicate that the controller performs on the complex

model as predicted by the simplified model, thus justifying the adequacy of a

simplified model for control synthesis.

Numerical experiments outlined here are performed on a model derived from

a commercial building on the University of Florida campus (Pugh Hall). Re-

sults indicate that it is feasible to use up to 15% of the total fan power for

regulation service to the grid, without noticeably impacting the building’s
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indoor environment and occupants’ comfort, provided the bandwidth of reg-

ulation service is suitably constrained. To ensure the comfort of occupants,

and to manage stress on HVAC equipment, both upper and lower bounds on

bandwidth are necessary. Based on simulation experiments, this bandwidth is

estimated to be [1/τ0, 1/τ1], where τ0 ≈ 10 minutes, and τ1 ≈ 8 seconds.

2.3.1 Control Architecture for Regulation from HVAC

loads

The regulation signal sent by the grid operator is typically a sequence of pulses

at 4 second intervals, where the magnitude of the pulse indicates the amount of

regulation required. In case of loads, the pulse’s magnitude signals the amount

of deviation in their power consumption asked by the grid operator. In what

follows, a regulation controller is designed, as an add-on to the existing BAS,

to enable provision of regulation service. It is a feedforward controller which is

configured to change the power consumption of the building so that the change

tracks the regulation signal sent by the grid operator. A high-level overview

of the controller design is discussed here (for details, see [101,102]).

BAS control architecture

A building is typically divided into several zones. At each zone, local con-

trollers manipulate certain quantities such as zone temperature while a central

controller maintains the air supply to the building at appropriate temperature

and indoor air quality within prescribed limits. The building environment

is maintained through complex interactions between the decentralized zonal

controllers and central controller. They are briefly summarized here.

The main component of the central control system is the air handing unit

(AHU). The AHU recirculates the return air from each zone and mixes it with

fresh outside air. The mixed air is drawn through the cooling coil in the AHU

by a supply fan, which cools the air and reduces its humidity. In cold/dry

climates it may also reheat and humidify the air.

The air supplied by the AHU is distributed to each zone through ducts and

controlled by actuating dampers and reheat coil in variable air volume box of
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that zone. The zonal controller manipulates the mass flow rate of air going

into the zone so that the zone temperature is maintained at a desired value.

As the zonal controllers change the damper positions in response to local

disturbances (heat gains from solar radiation, occupants and so on), the dif-

ferential pressure across the AHU fan changes. The AHU fan controller senses

this change and activates the VFD of the supply fan to change the fan speed

command u(t) correspondingly. This causes the fan speed v(t) to change in

a way such that the differential pressure is maintained at a predetermined

setpoint.

Modified BAS to Provide Regulation Service

To simplify the analysis, it is assumed that the power consumed by the furnace

supplying hot water to the VAV boxes for reheating and the chiller/cooling

tower providing chilled water to the cooling coil of the AHU are independent

of the power consumed by the fan. The first decoupling assumption holds

true since furnaces in typical HVAC systems consume natural gas instead of

electricity. The second decoupling assumption is justified if the fan power devi-

ations are of a high frequency and low magnitude, due to the large mechanical

inertia of the chiller/cooling tower equipment. In addition, if the chilled wa-

ter is supplied from a water storage tank, the decoupling assumption holds

naturally.

Suppose the building is required to provide r(t) (in kW) amount of reg-

ulation service at time t. The regulation controller perturbs the fan speed

command so that the fan’s power consumption is changed in a way such that

the deviation in consumption tracks r(t). The architecture of the control sys-

tem is shown in Fig. 2.7.

The regulation signal r(t) is transformed to a perturbation ur(t) to the fan

speed command by the regulation controller. This command is then added

to the nominal fan speed command ub(t) produced by the building’s fan con-

troller, which is purely dictated by the thermal dynamics of the building. If

pb(t) is the nominal power consumption of the fan due to the thermal load on

the building and pb+r(t) is the fan power consumption with the adjustments

imposed by the regulation controller, then the deviation in power consumed
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Figure 2.7: Modifications to the BAS control architecture to enable
regulation provision from building HVAC loads.

by the fan is ∆p(t) := pb+r(t)− pb(t). Clearly, changing the fan speed from the

nominal value determined by the building’s existing control system will change

the air flow through the building thus impacting the environment. The goal

is to design the regulation controller so that ∆p(t) tracks r(t) while causing

little change in the building’s indoor environment (measured by the deviation

of the zonal temperatures from their set points).

Regulation Signal for Commercial Buildings

A major concern in engaging commercial buildings in regulation provision is

the possibility of causing discomfort to the occupants or damaging the HVAC

equipment. It is argued that discomfort as well as equipment stress can be

avoided if the bandwidth of the regulation signal is suitably constrained. The

considerations in determining this bandwidth are discussed here along with

the control strategy implemented to extract regulation service.

The bandwidth of the regulation signal sent to buildings should be chosen

based on the following factors. First, high frequency content in fan speed

command perturbation ur(t) is desirable up to a certain upper limit. This is

because the thermal dynamics of a commercial building have low-pass char-

acteristics due to its large thermal capacitance. Consequently, high frequency

changes in the air flow cause little change in its indoor temperature. Addi-

tionally, the VFD and fan motor have large bandwidth so that high frequency

changes in the signal ur(t) lead to noticeable change in the fan speed and, con-

sequently, fan power. Both effects are desirable, since the goal is to affect the
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fan power consumption without affecting the building’s temperature. How-

ever, an extremely high frequency content in ur(t) is not desirable as it might

cause wear and tear of the fan motor. Likewise, ur(t) should not have very

low frequency content. Otherwise, even if the magnitude of ur(t) is small, it

may cause significant change in the mass flow rate, which in turn can produce

a noticeable change in the temperature of the building. Furthermore, a large

enough change in the temperature will cause the zonal controllers to try to

change air flow rate to reverse the temperature change. In effect, the building’s

existing control system will try to reject the disturbance caused by ur. Being

a feedback loop, this disturbance rejection property is already present in the

building control system.

In short, the frequency content of the disturbance ur(t) should lie in a par-

ticular band [flow, fhigh], where the gain of the closed loop transfer function

from ur to fan speed v is sufficiently large while that of the transfer function

from ur to temperature T is sufficiently small. This bandwidth may depend on

several factors like thermal capacity of the building and so on; some insights

on determining this bandwidth are provided in [101, 102]. The parameters

flow, fhigh are the key design variables to construct a suitable regulation signal

for the buildings.

2.3.2 Regulation Provision by F-building

This section outlines simulation experiments which test the performance of

the developed regulation controller for tracking a regulation signal. The BAS

operation for a fictitious (F) building comprising of 4 stories and 44 zones is

simulated for these tests. Each story has 11 zones constructed by cutting away

a section of Pugh Hall. The HVAC system for F building consists of a single

AHU and zonal controllers for each of its zones. The F building is meant to

mimic the section of Pugh Hall serviced by one of the three AHUs that services

41 zones. Thermal parameters are identified for this building and used in the

experiments.

For the purposes of simulations described in Section 2.3.2, the regulation

signal r(t) is constructed by passing raw ACE data from PJM [103] through a

fifth-order Butterworth filter with passband [1/600, 1/8] Hz. The choice of the
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passband is by trial-and-error. The filtered ACE data is then scaled so that

the magnitude of r(t) is less than or equal to 5 kW – a conservative estimate

of the regulation capacity of F-building.
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Figure 2.8: The impacts of tracking a regulation signal on fan power, fan
speed and zone temperatures.

To unambiguously determine performance of the control scheme, two sim-

ulations are performed: a benchmark simulation with ur(t) ≡ 0 to compute

the nominal fan power consumption pb(t) and another with ur(t) driven by

regulation r(t) to determine power pb+r(t) consumed and, consequently, the

deviation in fan power ∆p(t). Simulations were conducted for different sample

paths of r(t) and different initial conditions for the zone temperatures.

The results of one such experiment are depicted in Figure 2.8. The top

plot depicts how well the fan power deviation ∆p(t) tracks the regulation

signal r(t). The deviation in the fan speed caused by tracking the regulation

signal is depicted in the middle plot. Although the baseline fan speed is

time-varying, the regulation controller designed with a constant baseline speed

assumption performs well. Finally, the bottom plot depicts the deviation of

the temperatures of the individual zones from their set points. Observe that

the maximum deviations are at the beginning of the simulation; this is because

of i) initial conditions, and ii) to provide the same amount of regulation, the
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fan speed deviation from nominal speed at lower speed is larger than that

at higher speed. Nevertheless, the temperature deviations after transient are

very small, which will most likely be unnoticed by the occupants.

The passband of the bandpass filter corresponds to the bandwidth of reg-

ulation that the building can provide and is designed based on additional

simulations not reported here. These simulations emphasize how the regula-

tion reference signal that can be successfully tracked by the proposed fan speed

control mechanism is restricted in a certain bandwidth that depends on the

closed loop dynamics of the building. In case of the F-building, it was observed

that if the regulation signal contained frequencies lower than 1/600 Hz (cor-

responding to period of 10 minutes), the zonal controllers would compensate

for the indoor temperature deviations in the zones by modifying air supply

requirements, thus nullifying the speed deviation command of the regulation

controller. This resulted in a poor regulation tracking performance. The up-

per band limit was estimated to be 1/8 Hz to avoid stress on the mechanical

parts of the supply fan.

Remark. The bandwidth of regulation that the building can provide is a key

component in defining the “service” that the building provides. This band-

width along with the total capacity of regulation that can be provided should

be communicated to the grid operator. The grid operator can then construct

an appropriate regulation signal whose frequency content and amplitude re-

spect the limitations imposed by the close-loop dynamics of the building. The-

oretical underpinnings for determining these parameters are contained in [101].

2.4 Concluding Remarks

The simulation studies described in this chapter demonstrate the value of an-

cillary services from DR-based mechanisms and propose a control method to

harness ancillary services from commercial buildings. The first set of studies

characterize the ancillary service needs of wind-integrated systems and demon-

strate the effectiveness of DR-based reserve capacity to counter the volatility

and uncertainty of wind resources. Results also indicate that load leveling can

prove beneficial for systems with wind generation. A feedforward controller to

40



2.4 Concluding Remarks

extract frequency regulation service from commercial building HVAC loads is

also described. The second set of studies demonstrate that the impact of this

controller on building environment is minimal while manipulating the power

consumption to track the regulation signal.

An important takeaway for this chapter is the need to redesign operational

practices to accommodate increasing deployment of renewable and demand

response resources. The following chapters provide some control techniques

for the design of such tools.
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Chapter 3

ADP and Learning-based Control

This chapter begins with an introduction to tools from Markov decision theory,

approximate dynamic programming (ADP) and reinforcement learning (RL).

A modeling framework for the power grid and its resources is also presented.

In this dissertation, these models and tools are applied to power system con-

trol problems to obtain approximately optimal control policies. This chapter

demonstrates their application to devise control strategies for extracting an-

cillary services from flexible resources; the case of energy storage and thermal

loads is considered.

A discrete time domain is chosen for the models to reflect the nature of

the power system control architecture wherein control decisions are taken at

discrete time intervals. The focus is on time scales of the order of a few

seconds, minutes or hours; consequently governor dynamics are ignored. A

unifying control-oriented model for the different power system resources is

presented. When viewed through this modeling lens, energy storage resources

and loads with virtual storage capabilities appear to have similar structure

and underlying dynamics.

The numerical examples presented in this chapter correspond to control

on medium to fast time scales. These examples illustrate how ADP and RL

can be successfully applied to synthesize control policies for newer generation

ancillary service providers such as storage and DR resources. Examples of

control synthesis driven by real observations of the system are presented to

showcase the capabilities of RL techniques to tune the control parameters to

the statistics of the system.
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3.1 A Markovian Framework

3.1 A Markovian Framework

Markov decision processes (MDPs) provide a theoretical setting to study many

of the problems considered in this work. A brief introduction to MDPs and

the associated solution techniques is provided here.

3.1.1 Markov Decision Processes

An MDP can be thought of as modeling decision-making under uncertain

and dynamic conditions. The decisions concern a system that is evolving in

time as a result of its inherent dynamics, manifestation of different sources of

uncertainty and actions taken over time. The system condition at any given

time can be described by its “state,” which evolves with time over a state

space. Associated with each state and action is a cost function. The goal is

finding the best policy to achieve some objective with respect to the cost.

Mathematically, an MDP may be described using state space models. Adopt-

ing the notation from [104, 105], a discrete-time, controlled MDP model may

be expressed in the recursive form

X(t+ 1) = f
(
X(t), U(t),W (t)

)
(3.1)

where X is the state process, U the control process and W is the distur-

bance process which is assumed to be i.i.d. (independent and identically dis-

tributed). The states and actions evolve on the spaces denoted by X and U

spaces respectively. Furthermore, actions may be subject to state-dependent

constraints: U(x) is used to denote the set of control actions that satisfy the

state-dependent constraints when the state is x ∈ X. The controlled transition

law for the MDP is given by

Pu(x,A) = P {X(t+ 1) ∈ A |X(t) = x, U(t) = u}
= P {f (x, u,W (1)) ∈ A} ,

for arbitrary x ∈ X, u ∈ U(x), A ⊂ X (Borel measurable).
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A policy φ is a sequence of functions {φt} that define the control actions as

U(t) = φt
(
X(0), . . . , X(t− 1), X(t)

)
,

such that U(t) ∈ U(X(t)) for each t. The policy φ is Markov if φt depends only

on X(t) for each t ≥ 0. A stationary policy is a Markov policy φ such that φt =

φ is independent of t. Finally, a randomized stationary policy is a probabilistic

mapping from state to action space: For each x ∈ X, φ(x) := {φu(x) : u ∈ U}
such that when X(t) = x,

φu(x) = P {U(t) = u|X(0), . . . , X(t), U(0), . . . , U(t− 1)} t ≥ 0

with φu(x) = 0 if u /∈ U(x). Without loss of generality, control inputs are

restricted to those defined by a stationary policy, possibly randomized.

Optimality for the model is based on a one-step cost function c : X×U→ R+:

The goal is to minimize either discounted or average cost. The work described

in this chapter focuses on the discounted-cost optimal control problem. The

average-cost optimal control problem is presented in Section 4.1.1.

For the MDP model (3.1), the optimal discounted cost is defined as

g∗(x) = inf
U

∞∑
t=0

δtE [c (X(t), U(t))] , X(0) = x , (3.2)

where δ ∈ (0, 1) is the discount parameter. Under general conditions, the

minimum value function g∗ exists and satisfies the dynamic programming (DP)

equation

g∗(x) = min
u∈U(x)

{
c(x, u) + δPg∗ (x, u)

}
, (3.3)

where the DP operator P denotes the expectation,

Ph (x, u) = E [h (X(t+ 1)) |X(t) = x, U(t) = u] , (3.4)

for any x ∈ X , u ∈ U and function h : X → R. The minimizer u∗ in (3.3)

defines an optimal state feedback policy φ∗(x).

To simplify the math, the following notation is adopted: under a fixed policy
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φ, the cost and DP operator are defined as

cφ(x) := c
(
x, φ(x)

)
and Pφh (x) := Ph

(
x, φ(x)

)
. (3.5)

This notation is extensively used throughout this dissertation. Under this

policy φ, the DP equation reduces to the following form:

g(x) = cφ(x) + δPφg (x) , (3.6)

where g is the discounted cost under policy φ. This degenerate version of the

DP equation is referred to as Poisson’s equation, which finds many uses in the

theory and solution techniques for discounted cost control.

3.1.2 Algorithms

Well-known techniques for solving MDPs include algorithms such as value iter-

ation and policy iteration. For large-scale problems, approximation techniques

or learning algorithms are often employed to reduce computational complexity.

A brief review of the ADP and RL techniques used in this work is provided.

All algorithms are described in the context of the discounted cost problem

(3.2).

Value Iteration Algorithm (VIA)

Value iteration is a successive approximation technique to solve the DP equa-

tion. The algorithm is initialized with V0 : X → R+ and the value function is

successively approximated as

Vn+1(x) = min
u∈U(x)

{c(x, u) + δPVn (x, u)} x ∈ X, n ≥ 0 . (3.7)

The feedback law φ∗n : X→ U is defined to be the minimizer in (3.7).

φ∗n(x) ∈ arg min
u∈U(x)

{c(x, u) + δPVn(x, u)} , x ∈ X .
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Policy Iteration Algorithm (PIA)

In PIA, a sequence of deterministic stationary policies are obtained, with in-

creasingly improved performance, in the sense that the corresponding dis-

counted costs are non-increasing. The algorithm is initialized with a policy

φ0 and then the following operations are performed in the kth stage of the

algorithm:

(i) Given the policy φk, find the solution gk to the Poisson’s equation

cφk + δPφkgk = gk . (3.8)

(ii) Update the next policy using

φk+1(x) ∈ arg min
u∈U(x)

{c(x, u) + δPgk (x, u)} , x ∈ X , (3.9)

and return to step (i) with k = k + 1.

PIA can be conveniently integrated with the learning techniques described

next.

TD-Learning

TD-learning is a technique for approximating value functions of MDPs within

a parameterized class. Suppose {gθ} is a linearly parameterized family of

approximations, where gθ =
∑
θiϕi for basis functions {ϕi : 1 ≤ i ≤ d}.

Then, the goal is to find θ∗ that such that gθ ≈ g, where g is the discounted

cost for some policy φ. An ergodic norm defined under a fixed policy is chosen

for TD-learning with the error criterion chosen as ‖g − gθ‖2. If the norm is

defined by an “inner product,” a least-squares problem can be formulated.

The resulting least-squares TD-learning algorithm is described in [104, 105]

and can be used to successively approximate the basis weights θ∗. The TD-

learning algorithm can be used to compute the solution gk to the Poisson’s

equation (3.8) in PIA, thereby avoiding the need to explicitly solve the linear

system of equations.
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SARSA

The application of PIA is computationally difficult because of the policy up-

date formula (3.9); the computation of P g itself may be difficult if the state

space is large. The following approach can be considered to avoid integration:

Let H denote the function of two variables,

H(x, u) = c(x, u) + δPg (x, u) .

If H can be directly estimated, then the policy update can be obtained by

minimizing H(x, u) over u, for each state x ∈ X. Techniques analogous to TD-

learning can be applied to approximate H based on the following proposition.

Proposition 1. Under a fixed stationary policy φ,

(i) the state-control process Φ(t) = (X(t), U(t)) is also a Markov chain, and,

(ii) the function H solves the Poisson’s equation for the Markov chain Φ(t)

and cost function c(x, u).

Proof. Part (i) is obvious: The process {Φ(t)} evolves according to a controlled

stochastic model of the recursive form (3.1).

To see (ii), suppose g is the solution to Poisson’s equation for operator Pφ

with cost cφ. Then,

Hφ(x) :=H (x, φ(x)) = cφ(x) + δPφg(x) = g(x) .

Substituting this back into the definition of H gives

H(x, u) = c(x, u) + δPHφ(x, u) .

Thus, H solves Poisson’s equation for the state-control process. ut

The above proposition places the analysis for SARSA within the setting of

TD-learning. A natural parameterization for the approximation is of the form

Hθ = c+ θTψ ,
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where ψ : X×U→ Rd. Given a basis {ϕi : 1 ≤ i ≤ d} intended for application

in TD-learning, the SARSA basis {ψi : 1 ≤ i ≤ d} may be chosen as

ψi(x, u) = Pϕi (x, u) x ∈ X , u ∈ U . (3.10)

If the integration Pϕi is difficult to compute, then an approximation may be

used.

Q-learning

The goal of Q-learning is to learn a function on X × U analogous to SARSA.

However, unlike SARSA where the function H is learned for a fixed policy,

Q-learning learns the so-called Q-function for the optimal control policy. The

Q-function is defined as follows:

H∗(x, u) = c(x, u) + δPg∗ (x, u) .

The main difference between SARSA and Q-learning is that SARSA restricts

exploration on state-action space since learning is restricted to fixed policy

whereas Q-learning naturally calls for exploration. More details on Q-learning

are provided in Chapter 5.

3.2 Power Node Modeling Framework

Models used in the development of control policies for a power grid and its re-

sources should capture the associated reliability needs, the underlying dynam-

ics and the system uncertainties. The “power node” model of [75] – wherein

each resource connected to the grid is viewed as an abstract single lumped

unit with characteristic parameters – is adapted to develop a modeling frame-

work that captures the uncertainty and dynamics in the system. Our modeling

framework is based on control-oriented modifications to the power node model

and is used for analysis in this dissertation. A brief description of the models

is provided here.

The models described here are concerned with active power control and

provision of ancillary services under category (AS1) described in Section 1.1.
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Recall that this ancillary service category concerns the management of supply-

demand balance on time scales ranging from seconds to hours. Each system

resource – be it a generator, a load or a storage unit – provides some degrees

of freedom in managing the supply-demand balance. Based on the nature of

control offered by the resource, it is classified into the following three cate-

gories:

• controllable, where the power generation or consumption is completed

controlled, possibly in response to needs of the grid;

• curtailable, where the power generation or consumption is not directly

controlled but can be curtailed, possibly for reliability reasons; and,

• uncontrollable, where the resource has no flexibility.

For example, traditional energy sources from coal or natural gas are control-

lable whereas renewable generation from wind and solar resources is curtailable

– the turbines can be turned off. Likewise, electric demand is either control-

lable or curtailable. Resources with storage capabilities are assumed to be

inherently controllable with respect to the charging and discharging.

In the power node model, each resource – be it a generator, load, storage

unit or a combination unit such as a solar generator with thermal storage –

constitutes an abstraction of its specific unit characteristics. The modeling

abstraction is presented here followed by a detailed description of the power

node model.

The power grid is represented as an undirected graph. Directed graphs may

be useful in modeling a power grid with DC interconnects, but this extension

is not considered in present work. Each node of the graph corresponds to a

grid resource and each link represents a transmission line. There are N nodes,

indexed as {1, . . . , N}, and L transmission lines, indexed as {1, . . . , L}. The

network is assumed to be connected.

Each node interacts with the grid via its injection of power into the grid or

withdrawal of power from the grid. This injection or withdrawal depends on

control actions being employed at that node. At each time interval t, there is

at most one possible control action at a node n:

• ramping of power outputs ∆PGn(t) or consumption ∆PDn(t) for control-

lable resources,
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• curtailment of generation CGn(t) or load CDn(t) for curtailable resources,

• power PSn(t) withdrawn/injected for charging/discharging by storage re-

sources.

The associated states for these resources are outputs of controllable/curtailable

generators PGn(t), the demand of controllable/curtailable loads PDn(t) and the

energy stored by the storage resource ESn(t). The resulting dynamics are pre-

sented in Table 3.1.

Table 3.1: Simplified dynamics of typical resource-types

Resource controllability Dynamics

Generator
controllable PGn(t+ 1) = PGn(t) + ∆PGn(t)
curtailable PGn(t) = Gn(t)− CGn(t)

Load
controllable PDn(t+ 1) = PDn(t) + ∆PDn(t)
curtailable PDn(t) = Dn(t)− CDn(t)

storage controllable ESn(t+ 1) = ESn(t)− αSnPSn(t)

Note that Gn(t)/Dn(t) represents the external generation/demand at node

n; for uncontrollable resources, the curtailments CGn(t) and CDn(t) take value

zero at all times. Also, αSn represents the conversion efficiency for the storage

resource. The dynamics of a generic power node with storage, demand and

generation capabilities are described as follows:

ESn(t+ 1) = ESn(t)− αSnPSn(t) + [Gn(t)− CGn(t)]− [Dn(t)− CDn(t)] .

(3.11)

The associated N -dimensional vectors are denoted by suppressing the nodal

notation while boldface notation is used to denote sample paths. For instance,

PG(t) is the N -dimensional generation vector while P G := {PG(t) : t ≥ 0} rep-

resents sample path of generation.

The dynamics at power node n are subject to many constraints. These

constraints may be static or dynamic in nature, depending on the specific

resources at that node. The constraints include

• capacity limits, ramping constraints and minimum up/down-time limi-

tations enforced by the generation resources;
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• capacity limits, ramping constraints and limitations imposed by the end-

uses being served by the demand process; and

• charging/discharging constraints and limits on energy storage.

These constraints are compactly represented as

(ESn,P Sn,P Gn,P Dn,W Gn,W Dn) ∈ Xn . (3.12)

The nodal control actions are subject to system-wide constraints which are

collectively summarized below:

(EG,ED,W G,W D) ∈ Xsys . (3.13)

Again, equation (3.13) includes many static and dynamic constraints, which

are listed below:

• power flow limitations imposed by transmission constraints

• supply-demand balance constraint (when dealing with slower time scales)

• frequency limitations (when dealing with fast time scales)

In the special case of thermal loads such as HVACs and other heating/cooling

loads, the dynamics are similar to those of a pure storage resource. For an

air-conditioning (cooling) load, the dynamics are expressed as

Θn(t+ 1)−Θn(t) = QHn(t)−QCn(t)− τn [Θn(t)−Θn,out(t)] , (3.14)

where Θn(t) is the temperature, Θn,out(t) is the outside temperature, τn is

the heat transfer co-efficient, QHn(t) is the heat gain from solar radiation and

internal gains due to human activities while QCn(t) is the cooling provided by

the air conditioning unit at time t. Note that QCn(t) = νCnEDn(t), where νCn

and EDn(t) are the efficiency and energy consumption of the air conditioner.

The power node models can be cast in a control framework to find appro-

priate control policies for operations. Representative examples are presented

in the following sections and in future chapters.
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3.3 Coordinating Combined Wind-Storage

Resource Operations

This section provides an illustration of the control synthesis on slow to medium

time scales. A simple example is considered to show how energy storage can

be used in conjunction with volatile wind generation to meet specific demand

requirements. It is assumed that the storage resource acts as a buffer be-

tween the wind farm and the grid injecting power into the grid in a controlled

manner. The storage discharge is controlled so that the power injected into

the grid meets specific requirements. In the first study, the storage discharge

is controlled so the grid injection has low volatility, i.e., energy discharge is

nearly steady. In the second study, the storage discharge is controlled so that

the grid injection can be used to meet a time-varying exogenous demand.

The storage control problem in both examples is formulated as an MDP; its

solution provides a state feedback control policy which indicates the optimal

amount of storage discharge as a function of the state of the system. Under

assumptions on the underlying disturbance process, the optimal solution of

the MDP is computed and used as a benchmark for testing the quality of the

approximate solutions obtained from TD-learning and SARSA. Insights from

these restrictive models are then used to construct an architecture for tuning

the RL techniques with real world data. The following subsections provide

details on the problem formulation and solution schemes.

3.3.1 Smoothening Variability of Wind Generation

Since the dynamics of a single power node are under consideration here, the

node n notation is suppressed. The storage unit is charged using wind gener-

ation only. Thus, the power node model of (3.11) can be simplified as

ES(t+ 1) = ES(t)− αSU(t) + [G(t)− CG(t)]

where the control action U(t) denotes the controlled storage discharge PS(t).

The following assumptions are adopted:

• conversion efficiency αS is 1.
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• the constraint set X only consists of the storage energy capacity con-

straint.

• wind generation is curtailed only to avoid violation of the capacity con-

straint.

In the light of these assumptions, the storage dynamics can be further reduced

to the following equations:

ES(t+ 1) = min {ES(t)− U(t) +G(t), Emax
S }

CG(t+ 1) = max {ES(t)− U(t) +G(t)− Emax
S , 0}

with G representing the stochastic wind generation process and Emax
S denoting

the storage capacity.

MDP formulation

The dynamics of the node can be cast as a one-dimensional MDP by defining

the state as

X(t+ 1) := ES(t)− U(t) +G(t) .

The state process evolves according to the recursion

X(t+ 1) = min {X(t), Emax
S } − U(t) +G(t) for t ≥ 0 (3.15)

on state space X. The control actions are defined on action space U; they are

subject to state-dependent constraints since storage discharge cannot exceed

the energy stored. That is,

U(t) ≤ min {X(t), Emax
S } .

The energy stored and the curtailed wind generation at time t are recovered

from the state as min {X(t), Emax
S } and max {X(t)− Emax

S , 0}, respectively.

The control actions are restricted to stationary policies. In this way, an MDP

is defined with controlled transition law

Pu(x0, x1) := P {X(t+ 1) = x1 |X(t) = x0, U(t) = u} ,
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which can be computed based on the knowledge of the distribution of G(t).

In this problem, the discounted cost optimality criterion (3.2). The cost

function is assumed to have the following structure:

c(x, u) = cS(x) + γ (u− ū)2 . (3.16)

The state-dependent cost cS(x) can be used to capture the cost of storing en-

ergy (which may be relevant for batteries) as well as the cost of wind generation

curtailment (when x > Emax
S ). Additionally, c(x, u) penalizes the deviations

of control action u from mean storage discharge ū (which, in turn, is equal to

the mean wind energy). The optimal policy φ∗(x) is chosen as a minimizer to

the associated DP equation (3.3).

Numerical Experiments

All variables are normalized with respect to the storage capacity so that Emax
S =

1 per unit (p.u.). The penalty factor γ = 100 and the storage cost is taken

as cS(x) = 100 (x− 0.95)2
+, where (·)+ denotes the non-negative projection.

The wind generation process G is assumed to be i.i.d. with

G(t) = ḡ + NG(t) ,

where NG(t) uniformly distributed on the interval [−Emax
G /2, Emax

G /2]. The

length of the interval Emax
G and mean wind energy ḡ are used as parameters to

simulate different wind generation profiles.

A discount factor of δ = 0.95 is assumed for simulation. The MDP is solved

using VIA for different values of ḡ and Emax
G . Figure 3.1 illustrates the optimal

control policy as a function of energy stored for varying degrees of volatility

in the wind generation (characterized by the associated coefficient of variation

cv =

√
Var [G(t)]

E[G(t)]
) for mean wind energy ḡ = 0.08 p.u. Observe that the control

policy is nonlinear and minimally impacted by the variability of G.

Polynomial functions in x of the fourth order are used to construct basis ϕ

for TD-learning. The basis ψ for SARSA is obtained from the TD-learning

basis ϕ using (3.10). The TD-learning and SARSA algorithms are used with

PIA to derive approximate MDP solutions. A simple projected, linear feedback
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Figure 3.1: Optimal discharging policy as a function of level of stored energy
for different G profiles.

policy is used to initialize the PIA. The policy approximations obtained from

TD-learning and SARSA are illustrated in Figure 3.2.
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Figure 3.2: Approximations of the optimal discharging policy as a function of
level of stored energy.

The policy approximated by TD-learning is a very good approximation for

the optimal policy obtained by VIA. The SARSA approximation was con-

structed using only the knowledge of the mean ḡ of the wind generation pro-

cess G. A better approximation of control policy can be obtained if more

information is used in the SARSA construction. Furthermore, the SARSA

approximation is a good fit in the state space region corresponding to max-

imum invariant probability mass resulting in nearly identical performance of

approximate policy from SARSA as compared to that of the optimal policy
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obtained from VIA.

Experiments driven by real data

As mentioned earlier, RL algorithms can accommodate data from the real

world. In what follows, SARSA approximations combined with PIA are used

to synthesize control policy for system dynamics driven with actual wind gen-

eration data.

Scaled 5-minute wind generation data from NREL [97] is used in the SARSA

approximation to learn the value function. The performance of control policy

for storage capacity Emax
S = 2, which is 2000ḡ, is demonstrated in Figure 3.3.

From these experiments, it can be concluded that while volatile wind genera-

tion output can be transformed into a base-load type generation unit, a very

large amount of storage is needed for such a steady output.
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Figure 3.3: Appropriate control on a large storage unit can transform the
volatile wind generation into a base-load type of unit with nearly steady
output.

Under the assumption that the deviations of the storage discharge are man-

aged by dispatching ancillary service, ancillary service costs can be computed.

These are plotted in Figure 3.4 for different storage sizes. A careful considera-

tion of such trade-offs between storage capacity and ancillary service provision

can help in making investment decisions for sizing of storage units.
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Figure 3.4: Impacts of storage sizing on ancillary service requirements.

3.3.2 Meeting Exogenous Demand

Here, the problem of using wind generation and energy storage to meet demand

is considered, extending the setting considered in Section 3.3.1. That is, the

energy discharged from the storage unit is supplied to an exogenous demand

instead of providing a nearly steady grid injection as considered earlier.

MDP formulation

The control action is as before: the amount of energy discharged from the

storage resource, which has to track the exogenous demand. The dynamical

system is extended to incorporate two states: state X(t) as defined previously

with dynamics described by (3.15) and the externally driven demand D(t)

whose dynamics are assumed to modeled by an uncontrolled Markov chain

with transition probabilities

P(d0, d1) := P {D(t+ 1) = d1 |D(t) = d0} .

The objective is to find the optimal control policy that minimizes discounted

costs for the following cost structure

c ([x, d], u) = cS(x) + γ (u− d)2 . (3.17)
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Figure 3.5: Optimal policy and its TD-approximation for matching
time-varying demand.

Numerical Experiments

The case of a Markov demand process D is considered for illustrative purpose.

The demand is assumed to switch between two values {0.05, 0.15} so that the

transition probability matrix given as

P =

[
0 1

1 0

]
.

The wind generation is modeled as in Section 3.3.1. Suppose ḡ = 0.1 and

Emax
G = 0.2 while other simulation parameters remain the same. The control

policy and its TD-approximation are shown in Figure 3.5. Observe that the

approximation is a good fit for the optimal policy.

The approximation techniques can be combined with real-data as shown in

Section 3.3.1 using SARSA technique. The technique may be employed to size

storage resources for meeting time-varying demand on a renewable generator.

Further investigations are needed to explore these aspects.

3.4 Frequency Regulation from Thermal Loads

This section provides an illustration of control synthesis on fast times scales.

A simplified example of thermal loads providing frequency regulation service
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is considered. Specifically, it is assumed that an incentive is in place to en-

courage flexible thermal loads to provide corrective responses to grid frequency

deviations. The goal is to synthesize a control policy to provide the corrective

grid responses without sacrificing comfort: that is, power consumption of the

loads is manipulated to minimize frequency as well as temperature deviations.

For simplicity, only cooling loads are considered. Furthermore, all cooling

loads in the grid are assumed to be identical with respect to their thermal and

electrical characteristics. Finally, the constraint set Xsys is assumed to only

consist of constraints imposed by frequency deviations; that is, the transmis-

sion network constraints are ignored.

The frequency dynamics of the system are expressed as

F (t+ 1)− F (t) = β−1 {1TEG(t)− 1TED(t)} ,

where β represents the aggregate governor response of the entire system [75].

Each variable in the above expression can be decomposed into two parts: the

predicted component and the deviation component. For instance, the actual

frequency at time t is given by F (t) = f̂(t)+∆F (t), where f̂(t) is the predicted

frequency while ∆F (t) is the frequency deviation.

The predicted values are used in scheduling and economic dispatch algo-

rithms, which ensure supply-demand balance for the predicted conditions,

thereby maintaining f̂(t) = 60 Hz (that is, the nominal frequency) for t ≥ 0.

Therefore, the frequency dynamics can be simplified in terms of deviation

components:

∆F (t+ 1)−∆F (t) = β−1 {1T∆EG(t)− 1T∆ED(t)} .

At each node n, the deviations in grid injections can be brought about by

variations in renewable generation and/or equipment outages. On the other

hand, the deviations in the energy drawn from the grid at node n can arise

due to deviations in heating/cooling (thermal) demand at that node, denoted

by Eth
Dn, as well as deviations in the non-thermal demand, denoted by Enth

Dn .

The frequency dynamics can then be reformulated to explicitly consider the

impacts of deviations in thermal demand such that the following recursion
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holds:

∆F (t+ 1) = ∆F (t) + β−1
{

∆NF(t)− J∆Eth
Dn(t)

}
, (3.18)

where J is the number of responsive cooling loads on the system and ∆NF(t) =

1T∆EG(t) − 1T∆Enth
D (t) is used to collectively represent the excursions from

predicted supply and non-thermal demand.

Using similar mathematical development, the thermal dynamics of heating

and cooling loads can also be reduced to deviations in heat gains, ambient

temperature and so on. For a cooling load modeled by (3.14), these dynamics

take the form

∆Θn(t+ 1)−∆Θn(t) = ∆QHn(t)−∆QCn(t)− τn [∆Θn(t)−∆Θn,out(t)] .

The deviations in heat gains can be collectively represented as ∆NH(t) =

∆QHn(t) + τn ·∆Θn,out(t). Substituting this and ∆QCn(t) = νCn∆Eth
Dn(t), the

temperature deviations evolve according to the recursion

∆Θn(t+ 1) = (1− τn)∆Θn(t)− νCn∆Eth
Dn(t) + ∆NH(t) . (3.19)

MDP formulation

The dynamics in (3.18) and (3.19) can be cast as a two-dimensional MDP by

defining the state as X(t + 1) = [∆Θn(t),∆F (t)]T. The state process evolves

according to the recursion

X(t+ 1) = AX(t) +BU(t) + V (t) , (3.20)

where control U(t) in the cooling demand ∆Eth
Dn(t) and

A =

[
1− τn 0

0 1

]
, B =

[
−Jβ−1

−ηCn

]
and V (t) =

[
∆NH(t)

β−1∆NF(t)

]
.

The state and action spaces are denoted by X and U, respectively. Based on

the knowledge of the underlying distribution of V (t), the controlled transition

law Pu(x0, x1) can be computed.

The control objective is to minimize the discounted costs, with the one-step
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cost c(x, u) governed by temperature and frequency deviations and a cost for

control. In the simulations described below, the cost is assumed to be

c(x, u) = xTx+ 1
2
u2 . (3.21)

Numerical experiments

The optimal control policy for the MDP is computed using the VIA for

A =

[
0.995 0

0 1

]
and B =

[
−0.3

−0.1

]

discount factor δ = 0.95 and noise process assumed to be i.i.d. with mean-zero,

uniform distribution. The states – temperature and frequency deviations – are

measured in ◦C and 0.1 Hz, respectively.

Since δ is so close to 1, a closed form solution can be obtained for a relaxation

of the above problem. Specifically, the constraints are relaxed and the noise

process are replaced by their means, which in this case, are zero. With δ ≈ 1,

the control problem for the relaxed model is the Linear Quadratic Regulator

(LQR) problem for which closed-form solution exists [106].

In Figure 3.6, the control policies computed from the solution of both MDP

and LQR problems are shown side-by-side. Superimposed on these state-

feedback plots are the nominal trajectories of the controlled state process for

the same initial condition and noise perturbations. In spite of some differences

in the control policies, the performances of MDP and LQR solutions – as

evidenced from the sample path behavior – are nearly identical.

From the identical performance evidenced from the plots, it can be inferred

that the control policy for the fluid model may indeed be used to control the

MDP with marginal loss in performance. Naturally, fluid approximations can

serve as good candidates for constructing TD and SARSA approximations

[105,107].
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Figure 3.6: Plots of state-feedback control policies obtained from MDP and
LQR solutions and the corresponding sample path trajectories for the same
initial conditions and noise perturbations.

3.5 Concluding Remarks

This chapter presents two examples to illustrate application of ADP and RL

techniques to power system control problems. Numerical studies provide a

proof of concept on how RL techniques driven by real-world data are suc-

cessfully applied to tune to the underlying statistics. Thus, the need to adopt

artificial assumptions regarding the uncertainties inherent to such control prob-

lems can be avoided.

ADP and RL can be successful provided the approximation architecture

employed is a reasonably good fit for the problem. In other words, a good

basis is needed for successful approximation. In the examples considered in

this chapter, relaxations of the MDP model where used to construct a basis

for approximation.

In more complex settings such as power networks, the choice of the basis

functions can be more challenging. In the following chapters, a solution is

proposed, which combines the best features of ADP/RL and MPC. The future

chapters discuss this combination of control approaches.
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Chapter 4

Stability and Approximate

Optimality

When dealing with approximate solutions to MDPs, the following concerns

need to be addressed: (a) How good is the quality of the approximation? (b)

Does the approximation provide a stabilizing control policy? (c) How does

the system perform under this control policy? This chapter closely examines

the above issues under the average cost optimality criterion for MDPs. The

average cost optimization framework is considered since Lyapunov techniques

can be used to address the stability issues in this context. Also, the criterion

naturally extends to total cost optimization.

The Bellman error provides a quantification of the mismatch in an approxi-

mation to the DP equations. This error is used to characterize stability of the

control policies associated with the approximation. Furthermore, the Bellman

error is used to establish performance bounds for the control policy.

The chapter begins with a definition of the Bellman error for average cost

optimization for MDPs. Fluid model-based approximations for MDPs are

introduced and bounds on the Bellman error associated with such approxi-

mations are established in Theorem 6. Also, closed form solutions to value

function for a special class of linear MDPs are obtained in Proposition 4. A

stability criterion based on the Bellman error is proposed in Theorem 9. Fi-

nally, performance bounds for the control policy from the approximations are

established in Theorem 11.
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4.1 Bellman Error

This section concerns with approximate solutions to an MDP that may be

obtained from either ADP or RL or any other technique. Our concern lies

in the Bellman error associated with these approximate MDP solutions. It is

shown how the approximate MDP solutions solve the DP equation exactly for

the cost function perturbed by the Bellman error.

4.1.1 Average Cost Optimality for MDPs

As in Chapter 3, the system dynamics are modeled as evolving in discrete

time. Recall that X ⊆ R`x and U ⊆ R`u denote the state and control input

spaces, respectively; lower case notation is used for deterministic variables;

their stochastic counterparts are denoted by upper case and boldface notation

is used to denote the respective sample paths.

To simplify analysis, an additive-noise is assumed for the MDP.

Assumption 4.1. The system dynamics are as follows:

X(t+ 1) = f (X(t), U(t)) +W (t) , (4.1)

whereX is the state process, U the control process andW is an i.i.d. sequence

that takes values on W ⊆ R`x , with zero mean and finite covariance ΣW .

The set U(x) denotes the set of feasible inputs when state is x ∈ X. The

controlled transition law for the MDP is given by

Pu(x,A) = P {f(x, u) +W (1) ∈ A} ,

for arbitrary x ∈ X, u ∈ U(x), A ⊂ X (Borel measurable).

A fluid model associated with the stochastic model (4.1) can be obtained

by setting

f̄(x, u) = E [X(t+ 1) | X(t) = x, U(t) = u] .

Under assumption 4.1, it follows that f̄(x, u) = f(x, u) and the fluid model

dynamics can be described by the following nonlinear state-space model de-
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scribed as below:

x(t+ 1) = f (x(t), u(t)) , (4.2)

with x and u representing state and input trajectories. The fluid model may

be used to approximate MDP solutions [104,105].

The optimality for either the stochastic or fluid model is based on the cost

function c defined on the state-action space. Stability of the optimal policies

is guaranteed under the following assumption:

Assumption 4.2. The function c(x, u) is non-negative. Further, the function

inf
u
c( · , u) is coercive. That is, each sub-level set Sn ⊂ X is bounded, where

Sn = {x : c(x, u) ≤ n for some u}, n ≥ 1.

For the MDP model (4.1), the optimal long-run average cost is defined as

η∗ := inf
U

{
lim sup
T→∞

1

T

T−1∑
t=0

E [c (X(t), U(t))]

}
, (4.3)

which, under general conditions, is unique and independent of the initial con-

dition [104]. The associated average cost optimality equation (ACOE) is ex-

pressed as follows:

h∗(x) + η∗ = min
u∈U(x)

{
c(x, u) + Ph∗ (x, u)

}
. (4.4)

Recall the DP operator P is as defined in (3.4):

Pg (x, u) = E [g (X(t+ 1)) |X(t) = x, U(t) = u] , (4.5)

for some x ∈ X, u ∈ U and g : X → R. The function h∗ : X → R is called

the relative value function and is typically unique up to a constant [104]. The

minimizer u∗ in (4.4) defines an optimal state feedback policy φ∗(x).

The total cost optimality criterion is often employed for the fluid model

(4.2). The associated infinite-horizon value function is defined as follows:

J∗(x) = min
u

∞∑
t=0

c (x(t), u(t)) , x(0) = x ∈ X . (4.6)

65



Stability and Approximate Optimality

If the value function is finite valued on X, it satisfies the following DP equation

J∗(x) = min
u∈U(x)

{
c(x, u) +KJ∗ (x, u)

}
, (4.7)

where the DP operator K is defined as in MDP theory: For any function

g : X→ R, Kg denotes the function on X× U given by

Kg (x, u) = g(f̄(x, u)) , x ∈ X , u ∈ U . (4.8)

The minimizing control input u∗ in (4.7) defines an optimal state feedback

policy φ̄∗(x). Under certain conditions, total cost optimal solutions for the

fluid model may be used to approximate average cost optimal solutions for the

MDP model.

4.1.2 Approximate MDP Solutions

In this section, a pair (h, η) which approximately solves the ACOE (4.4) is

considered. The state feedback policy associated with this approximation is

denoted by φ and obtained using

φ(x) ∈ arg min
u∈U(x)

{c(x, u) + Ph (x, u)} , x ∈ X . (4.9)

The Bellman error is a measure of the mismatch in the DP equation with

approximate solutions plugged in place of the optimal solution. It is defined

as follows.

Definition 2. For any (h, η) where h : X → R and η ∈ R, the Bellman error

EBE is defined as error in the ACOE:

EBE(x) := h(x) + η −min
u
{c(x, u) + Ph (x, u)} . (4.10)

Simple algebraic manipulations allow us to use the Bellman error to con-

struct another cost function such that the approximations (h, η) are optimal

solutions to the ACOE corresponding to this cost function. In other words,

the following proposition holds:
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Proposition 3. Given any pair (h, η) such that h : X → R and η ∈ R, the

ACOE is solved for the perturbed cost function ĉ = c+ EBE.

In the following sections, the role of Bellman error in understanding the sta-

bility and performance of the approximate MDP solutions is more concretely

defined.

4.2 ACOE for Fluid Models

Many of the problems considered in this dissertation can be modeled as an

MDP with linear dynamics:

X(t+ 1) = AX(t) +BU(t) + w̄ +W (t) , (4.11)

and quadratic costs. In the examples considered in this dissertation, w̄ is

non-zero and the constraint set U(x) is convex for each state x ∈ X. The

corresponding fluid model is a linear system subject to a constant disturbance,

x(t+ 1) = Ax(t) +Bu(t) + w̄ . (4.12)

Under certain relaxations, a closed form solution for the fluid model optimal

control problem can be found. This solution is a special case of the LQR

problem and provides a starting point in constructing value function approxi-

mations for MDPs of the form (4.11).

4.2.1 Exact Solution for ACOE

In this section, a closed form solution for the fluid model problem is obtained by

relaxing the input constraints. In fact, optimal solution satisfies the following

DP equation:

h∗0(x) + η∗0 = min
u

{
c(x, u) +Kh∗0 (x, u)

}
, (4.13)

which is precisely the ACOE (4.4) for the MDP without noise; that is, ΣW = 0.

The subscript 0-notation for the relative value function and average cost of the

fluid model is chosen to emphasize the absence of noise.
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The average-cost optimal control problem corresponding to the ACOE (4.13)

provides an analytical platform to study fluid models for which the infinite-

horizon value function J∗(x) is infinite. Equivalently, the deterministic system

does not have an equilibrium in the conventional sense:

(C1) There exist no xe ∈ X and ue ∈ U(xe) for which

xe = Axe +Bue + w̄ and c(xe, ue) = 0 .

With the input constraints are relaxed, U(x) = U = R`u . The ACOE (4.13)

admits a solution under the following mild conditions:

(C2) The cost is quadratic: c(x, u) = xTQx + uTRu, with matrices Q ≥ 0,

R > 0 of appropriate dimensions.

(C3) The matrix Q can be expressed as Q = CTC for a matrix C which

satisfies:

(A,B) is stabilizable, and (A,C) is detectable .

Proposition 4. Under conditions (C1)-(C3), the optimal control problem

for the fluid model of (4.12) admits a solution to the ACOE (4.13) in which

(i) The optimal average cost is a solution to the quadratic program,

η∗0 = min
{x,u}

c(x, u)

s.t. x = Ax+Bu+ w̄ .
(4.14)

(ii) The relative value function is quadratic,

h∗0(x) = xTM∗x+mT

∗x , (4.15)

with M∗ ≥ 0 being the solution to the algebraic Riccati equation (ARE)

obtained with w̄ = 0:

M∗ = Q+ ATM∗A− ATM∗B (R +BTM∗B)−1BTM∗A . (4.16)
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On denoting K∗ as the usual optimal Kalman gain, the vector m∗ is the

unique solution to

m∗ = (A−BK∗)Tm∗ + 2(A−BK∗)TM∗w̄ . (4.17)

The proof of the proposition is based on consideration of the finite-horizon

control problem,

J∗T (x) = min
uT−1
0

T−1∑
t=0

c(x(t), u(t)) + J0(x(T )) , (4.18)

where uT−1
0 = {u(0), u(1), . . . , u(T − 1)}, x(0) = x and J0 represents the

terminal cost satisfying:

(C4) J0 is quadratic: J0(x) = xTM0x+mT
0x+ a0.

The sequence of value functions can be recursively defined through value-

iteration:

J∗T+1(x) = min
u

{
c(x, u) +KJ∗T (x, u)

}
. (4.19)

Proposition 5. For each T ≥ 0, the finite-horizon value function J∗T is

quadratic,

J∗T (x) = xTMTx+mT

Tx+ aT ,

with the parameters satisfying the recursion

MT+1 = Q+ ATMTA− ATMTBZTB
TMTA ,

mT+1 = AT

TmT + 2AT

TMT w̄ ,

aT+1 = aT + ηT ,

(4.20)

where

ZT = (R +BTMTB)−1 ,

KT = ZTB
TMTA ,

AT = A−BKT ,

and, ηT = w̄TMTATA
−1w̄ +mT

TATA
−1w̄ − 1

4
mT

TBZTB
TmT .

(4.21)
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Proof. The proof is by induction. It is true by assumption for T = 0 since

J∗0 = J0. Assume J∗T is of the same form as J0 for any T ≥ 1; that is,

J∗T (x) = xTMTx+mT

Tx+ aT .

On substitution in the DP equation (4.19), J∗T+1(x) can be computed as

J∗T+1(x) = min
u

{
xTQx+ uTRu+ (Ax+Bu+ w̄)TMT (Ax+Bu+ w̄)

+mT

T (Ax+Bu+ w̄) + aT
}
.

The minimizing input u∗ is found as affine state feedback,

u∗ = −KTx−
[
KTA

−1w̄ + 1
2
ZTB

TmT

]
. (4.22)

Substituting u∗ in (4.19) gives the desired result. ut

The update equation for MT in (4.20) is precisely the Riccati equation up-

date [108]. Therefore, under condition (C3),

(i) The sequence of matrices {MT} converges to the unique positive-semi-

definite solution, M∞, to the ARE obtained with w̄ = 0.

(ii) The sequence of gains {KT} converges to a limiting gain K∞ and {ZT}
converges to a limiting matrix Z∞.

(iii) The closed loop system matrix (A−BK∞) is stable with all eigenvalues

strictly within the unit circle [108].

These conclusions are applied to prove Proposition 4.

Proof of Proposition 4: Take M∗ = M∞, so that K∗ = K∞. Stability

of (A−BK∗) implies that under the control obtained as the minimizer in

(4.13), the resulting input-state trajectory (u∗(t), x∗(t)) converges to a con-

stant. Finite-horizon optimality can be used to show that the constant must

be a solution to (4.14).

To establish the ACOE (4.13), the finite-horizon relative value function is

considered: For x ∈ X , T ≥ 0 by, define

hT (x) = J∗T (x)− J∗T (0) = xTMTx+mT

Tx .
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The sequence of functions {hT} is convergent and (4.19) implies that its limit

solves the ACOE (4.13). ut

A salient characteristic of the DP equation (4.13) is that it holds even for

the case where the infinite-horizon value function J∗(x) is finite, that is, if the

fluid model has an equilibrium xe ∈ X and ue ∈ U(x) such that c(xe, ue) = 0.

In this case, ACOE admits a solution which satisfies

η∗0 = 0 and h∗0(x) = J∗(x) for x ∈ X .

In other words, the solution to the ACOE satisfies the total cost optimality

equation (4.7). Therefore, the ACOE (4.13) can be used as the DP equation

under both average and total cost optimality for fluid models.

Concrete examples and applications of Proposition 4 for approximating

MDP solution are presented in Section 4.5. The application of the closed

form solution in Proposition 4 for constructing basis for RL is discussed in

chapters 5 and 6.

4.2.2 Fluid Model-Based Approximations for MDPs

Since the fluid value function may be used as an approximation for the MDP

solution, the associated Bellman error is studied in this section. In particular,

the objective here is to find bounds on the Bellman error associated with this

approximation.

Theorem 6. Consider an MDP satisfying assumptions 4.1 and 4.2. Suppose

(h∗0, η
∗
0) solves the ACOE (4.13) for the corresponding fluid model. If the second

derivative of h∗0 is uniformly bounded, then the Bellman error for the pair

(h∗0, η
∗
0) is bounded as follows:

inf
(x,u)

1
2

tr
[
∇2h∗0 (f(x, u)) · ΣW

]
≤ EBE(x) ≤ sup

(x,u)

1
2

tr
[
∇2h∗0 (f(x, u)) · ΣW

]
.

(4.23)

Proof. To prove the desired, a Taylor series approximation is used to bound the

difference between Pg and Kg for a C2 function g : X→ R. Using definition
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(4.5) and assumption 4.1, for any (x, u) ∈ X× U,

Pg (x, u) = E [g (X(t+ 1) |X(t) = x, U(t) = u)] = E [g (f(x, u) +W (1))]

= g (f(x, u)) +∇g (f(x, u))T E [W (1)] + 1
2

tr
[
∇2g (f(x, u)) · ΣW

]
+ . . .

Applying mean value theorem gives

|Pg (x, u)−Kg (x, u)| ≤ sup
(x,u)

1
2

tr
[
∇2g (f(x, u)) · ΣW

]
. (4.24)

The Bellman error for the pair (h∗0, η
∗
0) is

EBE(x) = h∗0(x) + η∗0 −min
u

{
c(x, u) + Ph∗0 (x, u)

}
.

Plugging in (4.13) and using inequality (4.24) for the function h∗0 establishes

the desired upper bound. Analogous treatment is used to obtain a lower

bound. ut

The bounds established in Theorem 6 provide a quantification of the “good-

ness of fit” for using fluid model-based approximations to MDP solutions.

4.3 Stability

Two formulations of stability are used in the dissertation. The first is based

on average cost and the second is based on total cost.

Definition 7. A policy φ is ac-stabilizing if for each initial conditionX(0) = x,

the average cost,

η(x) = lim sup
T→∞

1

T

T−1∑
t=1

E[c(X(t), U(t))] , (4.25)

is finite.

Definition 8. The policy is tc-stabilizing if η ≡ 0 and, moreover, the total
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cost J is finite for each initial condition X(0) = x, where

J(x) =
∞∑
t=1

E[c(X(t), U(t))] . (4.26)

We do not expect J to be finite valued unless ΣW = 0, in which case tc-

stability is a property of the fluid model. The focus of the dissertation is on

ac-stability, so the prefix “ac” will be dropped if there is no risk of confusion.

It follows from the Comparison Theorem of [109] that a policy φ is ac-

stabilizing for the stochastic model (4.1) if there exists a function V : X→ R+

and finite constant η̄ such that the Poisson’s inequality holds

PφV (x) ≤ V (x)− cφ(x) + η̄ . (4.27)

In this case, η(x) ≤ η̄ for each x.

In the following theorem, bounds on the Bellman error are used to establish

sufficient conditions for stability of policy obtained from ADP, RL or other

approximation techniques.

Theorem 9. Consider the pair (h, η) satisfying h : X → R+ and η < ∞ as

approximate solution to the ACOE (4.4) for the MDP model (4.1). Suppose φ

is the resulting control policy obtained using (4.9). If there exists a finite ε > 0

and n <∞ such that the Bellman error for the approximate solution satisfies

the following condition:

EBE(x)

cφ(x)
≥ −1 + ε , for ‖x‖ ≥ n . (4.28)

Then the Poisson’s inequality holds under policy φ.

Proof. Observe that for each finite n

EBE(x)

cφ(x)
≥ −1 + ε =⇒ cφ(x) + EBE(x) ≥ εcφ(x) for ε > 0 .

The Bellman error defined in (4.10) can be expressed in terms of the policy φ

as follows:

EBE(x) = h(x) + η − cφ(x)− Pφh (x) .
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Then, rearranging and invoking (4.28) gives

Pφh (x) ≤ h(x) + η − εcφ(x) .

Thus, Poisson’s inequality (4.27) holds for V = ε−1h and η̄ = ε−1η. ut

Theorem 9 defines a stability criterion for control policies associated with

approximate MDP solutions. The conditions in this theorem extend to the

specific case of a fluid model by setting ΣW = 0. In particular, a Bellman

error for an approximate solution to the ACOE (4.13) is defined in a manner

analogous to (4.10)

EBE0 (x) := h(x) + η −min
u
{c(x, u) +Kh (x, u)} . (4.29)

Bounds on this error provide sufficient conditions for the stability of the fluid

model, as stated below.

Corollary 10. Consider the pair (h, η) satisfying h : X → R+ and η < ∞ as

approximate solution to the ACOE (4.13) for a fluid model (4.2). Let φ denote

the resulting control policy and EBE0 denote the associated Bellman error. If

there exists finite ε > 0 for each n < ∞ such that the Bellman error for the

approximate solution satisfies the condition

EBE0 (x)

cφ(x)
≥ −1 + ε for ‖x‖ ≥ n , (4.30)

then policy φ is ac-stabilizing for the given dynamics.

Recall that in the context of total cost optimality for the fluid model, the

ACOE is solved for the pair (J∗, 0). Then, the Poisson’s inequality takes the

following form: A policy φ is tc-stabilizing for the fluid model (4.2) if there

exists a function V : X→ R+ such that

KφV (x) ≤ V (x)− cφ(x) . (4.31)

The Poisson’s inequality in the above form is used to provide a tc-stability

criterion for the fluid model.
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Stability of the control policies resulting from the approximation is of par-

ticular importance if the approximate value function is used as a terminal cost

in a receding horizon, predictive control framework. The precise connections

between the stabilizing properties of the approximation techniques and those

of predictive controllers are established in Chapter 6.

4.4 Performance Bounds

The performance of a control policy φ obtained from ADP or RL and applied

to the stochastic model (4.1) may be characterized in terms of the resulting

invariant distribution and the associated costs. In this section, the steady-state

mean of c under the policy φ is used as a measure for the control performance.

It is expressed as

ηφ = Eφ [c(X,U)] ,

where (X,U) denotes the stationary realization under the invariant distribu-

tion for the given policy φ.

Our interests lie in comparing the expected cost ηφ of the policy φ with the

optimal average costs η∗, which can be expressed as the steady-state mean of

c under the optimal policy φ∗:

η∗ = Eφ
∗

[c(X,U)] .

In the following theorem, bounds on the Bellman error are used to establish

bounds on the comparative performance of ηφ with respect to η∗.

Theorem 11. Suppose φ and φ∗ denote the policies obtained from the approx-

imate and optimal solutions to the ACOE (4.4) respectively. Furthermore,

suppose the Bellman error EBE for the approximate MDP solution satisfies the

following conditions:

• EBE(x)/cφ̂(x) is uniformly bounded over X for φ̂ = φ and φ∗; and,

• for some ε1, ε2 > 0

−1 + ε1 ≤
EBE(x)

cφ̂(x)
≤ −1 + ε2 for cφ̂(X) ≤ n , φ̂ = φ and φ∗ . (4.32)

75



Stability and Approximate Optimality

Finally, if the following condition holds for some large n:

E
[
c(X,U)I{c(X,U)>n}

]
≤ o(1) under policies φ, φ∗ , (4.33)

then the following bound holds true:

ηφ ≤
ε2
ε1
η∗ . (4.34)

Proof. To get the desired result, (4.33) is used to bound expected cost under

policy φ as follows:

ηφ = Eφ [c(X,U)]

= Eφ
[
c(X,U) I{c(X,U)≤n}

]
+ Eφ

[
c(X,U) I{c(X,U)>n}

]
≤ Eφ

[
c(X,U) I{c(X,U)≤n}

]
+ o(1) .

Then, using (4.32),

ηφ ≤
1

ε1
Eφ
[
(c+ EBE)I{c(X,U)≤n}

]
+ o(1) .

Observe that (c+EBE)I{c(X,U)≤n} ↑ (c+EBE) as n→∞. Furthermore, ε1 > 0

implies c + EBE ≥ 0. Thus, the monotone convergence theorem applies, and

therefore, Eφ
[
(c+ EBE)I{c(X,U)≤n}

]
→ Eφ

[
(c+ EBE)

]
as n → ∞. Therefore,

taking the limit as n→∞ on both sides of the second inequality

ηφ ≤
1

ε1
Eφ
[
(c+ EBE)

]
.

Optimality of the policy φ for the ACOE with the perturbed cost c + EBE
follows from Proposition 3. Therefore,

ηφ ≤
1

ε1
Eφ

∗ [
(c+ EBE)

]
=

1

ε1
Eφ

∗ [
(c+ EBE)I{c(X,U)≤n}

]
+ Eφ

∗ [
(c+ EBE)I{c(X,U)>n}

]
.
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Again, using the bounds in (4.32) and (4.33) gives

ηφ ≤
ε2
ε1
Eφ

∗ [
c(X,U) I{c(X,U)≤n}

]
+ o(1) +

1

ε1
Eφ

∗ [EBE(X)I{c(X,U)>n}
]
.

Since EBE(x)/cφ̂(x) is uniformly bounded over the state space, applying the

dominated convergence theorem gives the desired result. ut

Theorem 11 characterizes the performance of the approximate policy in

terms of the expected costs under the optimal policy. If the error thresholds ε1

and ε2 are sufficiently tight, then the system performance under the approxi-

mate control policy is sufficiently close to that under the optimal policy.

4.5 Approximations for the PNNL Model

This chapter introduces Bellman error as a metric to quantify the goodness of

the approximation, as well as a tool to analyze the stability and the perfor-

mance for a control policy obtained from approximate solutions to MDPs. In

this section, numerical results on a test system illustrate how the metric may

be applied to practical power system control problems. As an example, the

dispatch problem for a representative power system – the PNNL model – is

considered.

4.5.1 The PNNL Model

PNNL has developed a microgrid test system model in the DIgSILENT soft-

ware. The schematic in Figure 4.1 depicts the system: it is derived from the

IEEE 34 bus test feeder. The IEEE distribution system is modified to accom-

modate detailed dynamic models of households, diesel generators, wind turbine

generators and a battery energy storage system(BESS). The modifications are

listed in [110].

The numerical studies described in this chapter, as well as the next chapters

5 and 6, use a simplified model of the PNNL test system. The PNNL model

used in this dissertation is assumed to consist of a diesel generator, a BESS,

a wind power plant and a mix of residential loads which constitute the total
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Figure 4.1: The PNNL microgrid testbed.

demand. The wind plant data is obtained from [97] and an aggregate load of

1500 houses is generated using [111].

The charging/discharging of BESS compensates for variability in the net

load (total load minus wind generation) and is governed by a threshold policy:

The BESS is charged if the net load is less than the threshold and discharged

if it is greater than the threshold. Indeed, the threshold value can be viewed

as power demanded by the net load and BESS. It is supplied by the diesel

generator. In the event of a shortfall or surplus, an expensive balancing service

is deployed.

The diesel generator’s fuel costs are assumed to be quadratic. The BESS

operational costs are cast as proxy costs which penalize deviations of its state

of charge (SOC) from a specified reference value. The balancing service is

assumed to be procured from an expensive ancillary service resource, whose

operation is independent of the other resources in the system. This resource

can be thought of either as the microgrid’s interaction with a larger intercon-

nected power network or as fast-responding generation source/load sink which

is run only to manage the shortfalls/surpluses in system generation. In either

case, economics dictate minimum reliance on this service.

The capacity and ramping limits of the resources are simulation parame-

ters that are varied to study control synthesis in constrained environments.

The specific values used are discussed in sections describing the corresponding

numerical results.
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4.5.2 Problem Formulation

The control objective in the numerical studies is to find the least-cost control

strategies for determining the outputs of the diesel generator and BESS so as

to meet the net load demand on the system. Factors such as system losses and

frequency/voltage dynamics are disregarded and simplified cost structures are

adopted for generation and storage resources. The goal is control synthesis,

for which a simplified model is frequently justifiable.

The problem formulation is adapted from [112]. The state of the system

X(t) at time t is described by the output of the diesel generator PG(t), the

threshold of BESS Pthr(t), its SOC ξS(t) and the amount of balancing service

required Pbal(t) at that time. That is,

X(t) = [PG(t), Pthr(t), ξS(t), Pbal(t)]
T .

The control actions U(t) available at this time are the ramping in the genera-

tion output ∆PG(t) and change in the BESS threshold ∆Pthr(t):

U(t) = [∆PG(t),∆Pthr(t)]
T .

The main sources of uncertainty are the output of the wind plant G(t) and

the residential load D(t). These impact the power supplied by the BESS:

PS(t) = D(t)−G(t)− Pthr(t) ,

where PS(t) > 0 indicates discharging of the BESS and PS(t) < 0 indicates

its charging. For the balancing service, Pbal(t) > 0 indicates excess generation

while Pbal(t) < 0 indicates a generation deficit.

System dynamics: The changing set-points result in the following dynam-

ics:
PG(t+ 1) = PG(t) + ∆PG(t) ,

Pthr(t+ 1) = Pthr(t) + ∆Pthr(t) ,

ξS(t+ 1) = ξS(t)− αS

(
D(t)−G(t)− Pthr(t)

)
,

Pbal(t+ 1) = PG(t+ 1)− Pthr(t+ 1) ,

= PG(t)− Pthr(t) + ∆PG(t)−∆Pthr(t) .

(4.35)
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Here, the parameter αS represents the conversion factor for the BESS with

αS =
νS
Emax

S

∆t ,

where νS and Emax
S denote the efficiency and energy capacity of the storage

device and ∆t represents the time step duration in hours. The dynamics in

(4.35) can be cast in a linear form as

X(t+ 1) = AX(t) +BU(t) +DV (t) , (4.36)

where V (t) =
[
G(t), D(t)

]T
is the disturbance process. This model resembles

the MDP model described in (4.11).

The states and inputs are constrained so that

Xmin ≤ X(t) ≤ Xmax and Umin ≤ U(t) ≤ Umax (4.37)

for each t where the limits Xmin, Xmax, Umin and Umax are determined by

capacity and ramping limits as follows:

Xmin :=
[
Pmin

G , Pmin
thr , ξ

min
S , Pmin

bal

]T
,

Xmax := [Pmax
G , Pmax

thr , ξ
max
S , Pmax

bal ]T ,

Umin :=
[
∆Pmin

G ,∆Pmin
thr

]T
,

Umax := [∆Pmax
G ,∆Pmax

thr ]T .

The parameters defining the constraints on states and actions for the nu-

merical results presented here are described in Table 4.1.

Cost function: The dispatch problem is set up to minimize the fuel costs

of generators, deviations of SOC from a reference value ξrefS , balancing service

needed, and the mechanical wear and tear on generators caused by ramping.

A cost function is formulated to take into account these diverse costs and takes

the form of a weighted sum,

c
(
X(t), U(t)

)
= γ1

(
aP 2

G(t) + bPG(t) + c
)

+ γ2

(
ξS(t)− ξrefS

)2

+ γ3P
2
bal(t) + γ4∆P 2

G(t) + γ5∆P 2
thr(t) ,

(4.38)
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4.5 Approximations for the PNNL Model

Table 4.1: Simulation parameters for PNNL model

Resource Constraint specifications

Diesel generator Pmin
G = 0, Pmax

G = 5 GW,

∆Pmin
G = −∞, ∆Pmax

G =∞ GW

BESS Pmin
thr = −∞, Pmax

thr =∞ ξS ∈ [0, 1],

Emax = 3.6 GWh

Disturbances E [D(t)] = 2.27 GW , E [G(t)] = 0.27 GW

where the weight γi determines the relative importance of the ithobjective and∑
i γi = 1. The cost can reformulated in a quadratic form,

c
(
x, u
)

= (x− xref)TQ(x− xref) + uTRu+ some constant , (4.39)

where xref is a reference state.

The usual objective for the dispatch problem is to minimize the cost defined

in (4.39) over a specified time horizon, subject to system dynamics (4.36) and

state/input constraints (4.37). For the purposes of control synthesis, the time

horizon in the dispatch problem is taken to be infinite and the performance of

the resulting control policies is studied.

4.5.3 LQR-based Approximate Solution

A fluid model corresponding to the MDP model (4.36) is obtained as follows:

x(t+ 1) = Ax(t) +Bu(t) +Dv̄ . (4.40)

The linear dynamics in (4.40) are in the exact same form as (4.12) with w̄ =

Dv̄. Since the costs incurred are quadratic in nature, the fluid model obtained

by relaxing the constraints on the states and control inputs corresponds to the

LQR model described in Section 4.2.1.

In the numerical results reported here, a closed form solution for the LQR

relative value function h∗0(x) and the average cost η∗0, obtained from Proposi-

tion 4, is used to approximate the optimal value function h∗(x) and optimal
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average cost η∗ for the MDP model. The control policy corresponding to the

approximation is an affine state feedback of the form (4.22), with the gain KT

and matrix ZT replaced by their limiting values K∗ and Z∗ respectively.

The Bellman error EBE(x) for this approximate MDP solution is computed

and studied to investigate the stability and performance when the LQR control

policy is applied to the MDP model (4.40). Figure 4.2 shows a plot of the ratio
EBE(x)

cφ(x)
as a function of the norm ‖x‖ for the state values observed under the

LQR policy. Observe that the LQR control policy satisfies the conditions of

9 and is, hence, stabilizing for the MDP model. However, its performance is

not good, and leaves scope for improvement.

EBE(x)

cφ(x)

‖x‖
0 2 4 6 8 10 12

x103

1

-1

-5

5

Figure 4.2: Bellman error ratio for the LQR-based approximate MDP
solution.

In the next chapter, it is shown how the LQR-based approximation can be

improved by using RL techniques.

4.6 Concluding Remarks

In this chapter, an analytical framework is introduced to study the perfor-

mance of approximate solutions to the MDP and fluid models. The Bellman

error, defined as a mismatch in the DP equation as a result of the approx-

imation, is a key component in the analysis. Theorems 9 and 11 show how

bounds on the Bellman error can be used to establish sufficient conditions for

the stability as well as performance bounds for the control policy.
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4.6 Concluding Remarks

Another important aspect discussed in this chapter is the use of fluid model-

based approximations for solving MDPs. Theorem 6 provides bounds on the

resulting Bellman error. A practical example considered in Section 4.5 illus-

trates how the fluid model may be constructed from the MDP model, but it

also emphasizes the need to improve fluid model-based approximations using

techniques from RL. In the next chapter, Q-learning algorithms are devised

and deployed for this purpose.
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Chapter 5

Parameterized Q-learning

Algorithms

In this chapter, RL techniques are devised to approximately solve the DP

equations. One concern in RL applications is the issue of exploration. The

ergodic norm used to define the approximation error criterion in TD learning

or SARSA algorithms is for a fixed policy. This precludes the possibility of

exploring the state-action space. The Q-learning algorithm provides a work-

around regarding this: a randomized stationary policy is employed to sample

the state-action space and, thus, allow exploration.

In this chapter, two parameterized Q-learning algorithms are devised for

the control of nonlinear state space models under the average cost optimality

criterion. These algorithms overcome the curse of dimensionality associated

with Watkin’s original Q-learning technique. The first Q-learning algorithm

is a discrete-time counterpart of the Q-learning algorithm devised in [82]: an

approximation criterion based on Bellman error is used for learning. The

second algorithm is devised based on linear programming approach to solve

an MDP; it is an RL variant of the ADP algorithm of [113].

The choice of basis plays an important role in obtaining a good approxi-

mation. Simplified models (e.g., fluid or diffusion model) are employed for

basis construction in this dissertation. The Q-learning algorithms are devel-

oped based on the fluid model approximation of MDP. This relaxation allows

us to employ a stochastic approximation of the steepest descent algorithm to

recursively estimate the basis weights for the parameterized Q-function.

Practical applications of the proposed Q-learning algorithms for power sys-

tem control purposes are provided via numerical studies on test systems.
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Specifically, the dispatch problem for the PNNL model introduced in Sec-

tion 4.5 is revisited. Issues such as the choice of basis for the parameterization

and tuning the algorithm parameters are illustrated via this example. Fi-

nally, the performance of the control policies obtained from the Q-learning

algorithms is compared against LQR feedback policy studied in Section 4.5.

Simulation results demonstrate how the control performance can be improved

when the Q-function is approximated as a combination of the fluid value func-

tion and penalty functions that take into account state/action constraints.

5.1 Q-learning for Deterministic Systems

The Q-function used in Q-learning is a real-valued function defined on X×U.

For average cost optimization, it is defined as the function appearing in the

braces of the ACOE.

Recall the MDP modeled under assumptions 4.1 and 4.2:

X(t+ 1) = f (X(t), U(t)) +W (t) ,

and the corresponding ACOE:

h∗(x) + η∗ = min
u∈U(x)

{
c(x, u) + Ph∗ (x, u)

}
.

Then, the Q-function for the MDP model is defined as

H∗(x, u) := c(x, u) + Ph∗ (x, u) . (5.1)

The goal of Q-learning is to approximate this function H∗.

A fluid model approximation of the MDP is used in algorithm development.

Recall that the fluid model dynamics take the form

x(t+ 1) = f (x(t), x(t)) ,

and the associated ACOE is given as

h∗0(x) + η∗0 = min
u

{
c(x, u) +Kh∗0 (x, u)

}
.
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Then, the Q-function for the fluid model is defined by

H∗0 (x, u) := c(x, u) +Kh∗0 (x, u) . (5.2)

This chapter provides Q-learning algorithms to approximate H∗0 . The approx-

imation is with respect to a specific norm. The details for the approximation

are described below.

Approximation architecture: Similar to [82], a parameterized family of

real-valued functions on X× U, denoted by {Hθ(x, u) : θ ∈ Rd, x ∈ X, u ∈ U},
is considered. The goal of Q-learning is to find parameters θ so that Hθ ≈ H∗0 .

A natural parameterization for Hθ is of the form

Hθ(x, u) = c(x, u) + θTψ(x, u) , (5.3)

where ψ : X× U→ Rd is the basis and θ ∈ Rd is the parameter to be learned.

Given a basis {ϕi : 1 ≤ i ≤ d} intended for TD learning, a basis for Q-learning

may be chosen as the functions on X× U,

ψi(x, u) = Kϕi (x, u) = ϕi (f(x, u)) for 1 ≤ i ≤ d . (5.4)

For average cost optimization, an additional parameter η̂ that approximates

the optimal average cost η∗0 is also used.

Ergodic environment for learning: As mentioned in the introduction, the

usual Q-learning algorithms for MDPs apply a randomized stationary policy to

allow sufficient sampling of the state-action space [114]. Similar assumptions

are adopted here so that the fluid model dynamics provide a stationary and

ergodic realization.

In the context of this dissertation, ergodicity implies as T →∞

1

T

∫
F (x(t), u(t)) dt→

∫
F (x, u)$(dx, du)

Ergodicity for the fluid model is achieved by design: control actions are “ran-

domly” chosen by perturbing a stabilizing state-feedback policy φ with an

excitation signal ζ. The following is assumed:
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Assumption 5.1. The input is of the form

u(t) = φ̄
(
x(t)

)
+ ζ(t) . (5.5)

The controlled system admits a stationary and ergodic realization (X,U) with

marginal distribution $.

A Hilbert-space setting is adopted for approximation, based on the corre-

sponding ergodic norm. For measurable functions F,G : X×U→ R, the inner

product and norm are defined as follows:

〈F,G〉 :=

∫
F (x, u)G(x, u)$(dx, du) ,

‖F‖2 :=

∫
F 2(x, u)$(dx, du) .

In terms of the stationary realization (X,U),

〈F,G〉 = E$[F (X(t), U(t))G(X(t), U(t))] ,

where the expectation is independent of time. Under the ergodicity assump-

tion, these expectations can be approximated from a sample path trajectory

on the X× U space.

The discussion in this section and the algorithm development in the following

sections can be extended to total cost optimality criterion. We stick to average

cost optimization.

5.2 Bellman Error-Based Q-learning

A natural criterion for choosing the parameter θ is to minimize the actual

error ‖H∗0 −Hθ‖, which is the viewpoint taken in TD-learning. However, this

criterion is intractable. Hence, the Bellman error minimization criterion is

adopted for the first Q-learning algorithm.

On denoting

H∗0(x) = min
u∈U(x)

H∗0 (x, u) , (5.6)
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the DP equation implies that H∗0 = h∗0 + η∗0. The DP equation is thereby

transformed into a fixed point equation in H∗0 :

H∗0 (x, u) = c(x, u) +KH∗0 (x, u)− η∗0 . (5.7)

The Bellman error is defined to be the error in the fixed point equation (5.7).

The Q-learning algorithm devised here minimizes the mean-square Bellman

error, which is defined as

Emse(θ, η̂) := 1
2
‖Hθ −

(
c+KHθ − η̂

)
‖2 (5.8)

= 1
2
E
[(
Hθ
(
X(t), U(t)

)
−
[
c
(
X(t), U(t)

)
+Hθ

(
X(t+ 1)

)
− η̂
])2]

,

where the function Hθ : X→ R is defined analogous to (5.6):

Hθ(x) = min
u∈U(x)

Hθ(x, u) . (5.9)

If Emse(θ∗, η̂∗) = 0, then the fixed point equation (5.7) holds in a mean-square

sense. Consequently, the DP equation (4.13) is solved a.e. [$].

The Q-learning algorithm devised here to minimize Emse is a stochastic ap-

proximation algorithm intended to approximate the steepest descent. First,

an expression for the gradient is obtained. The function Hθ(x, u) defined in

(5.3) is affine in θ with

∇Hθ(x, u) = ψ(x, u) .

Letting u∗x,θ denote the minimizer in (5.9),

∇Hθ(x) := ψθ(x) := ψ(x, u∗x,θ) .

The gradient of Emse with respect to θ is thus

∇θ Emse(θ, η̂) = 〈Hθ −
(
c+KHθ − η̂

)
, ψ −K ψθ〉

= E [∆(X,U ; θ, η̂)] ,
(5.10)
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where

∆(X,U ; θ, η̂) =
[
Hθ (X(t), U(t))− c (X(t), U(t))−Hθ

(
X(t+ 1)

)
+ η̂
]

×
[
ψ
(
X(t), U(t)

)
− ψθ

(
X(t+ 1)

)]
.

Justification of the interchange of derivative and expectation operations is

possible under general conditions (e.g., if $ has compact support and Hθ is

continuously differentiable).

The steepest descent algorithm is thus

θ(t+ 1) = θ(t)− γ(t)∇θ Emse(θ, η̂) ,

where the gradient is defined in (5.10). The stochastic approximation algo-

rithm is obtained to recursively estimate θ∗ by removing the expectation in

(5.10):

θ(t+ 1) = θ(t)− γ(t)∆ (x(t), u(t); θ(t), η̂(t)) . (5.11)

The gain sequence {γ(t)} is chosen such that standard conditions for stochastic

approximation are satisfied [115,116]. A typical form of {γ(t)} is

γ(t) =
(1 + t)−1

1 + ‖θ‖p ,

where p is chosen such that
∆(x, u; θ, η)

1 + ‖θ‖p is Lipschitz.

The update equation from η̂(t) is derived based on the first order optimality

conditions for (θ∗, η̂∗): For a fixed θ, the optimizing η̂ satisfy

η̂∗(θ) = E
[
c (X(t), U(t)) +Hθ (X(t+ 1))−Hθ (X(t), U(t))

]
.

Thus, it is convenient to adopt a two-time-scale approach to minimize Emse.

The Q-learning algorithm updates θ(t) using (5.11) while the update equation
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for η̂(t) is then taken to be the sample mean:

η̂(t) =
1

t

t∑
τ=1

[
c(x(τ), u(τ)) +Hθ(τ)(x(τ + 1))−Hθ(τ)(x(τ), u(τ))

]
. (5.12)

This approach is used in the numerical results reported in this dissertation.

5.3 Linear Programming-Based Q-learning

A major concern in the Q-learning algorithm described in Section 5.2 is that

the objective function appearing in (5.8) is not convex. The linear program-

ming approach to ADP [81,113] provides insights on how to construct a convex

Q-learning algorithm.

The average cost optimality problem can be cast as a linear program (LP)

as follows:

max η0 s.t. c(x, u) +Kh0 (x, u) ≥ h0(x) + η0 , for all x, u . (5.13)

This is an infinite dimensional LP for a general state space, where the variables

are η0 ∈ R and h0 : X → R. In [113], a parameterized family {hθ} is used for

ADP based on the following LP formulation:

max η0 s.t. c(x, u) +Khθ0 (x, u) ≥ hθ0(x) + η0 , for all x, u .

If the parameterization is linear hθ0 = θTϕ, then this is an LP in the variables

(η0, θ). In the present work, a Q-function representation is sought.

Proposition 12. The LP formulation of the ACOE in (5.13) is equivalent to

the following convex program in (η0, H0):

max η0 s.t. c(x, u) +KH0 (x, u) ≥ H0(x, u) + η0 , for all x, u , (5.14)

where H0 : X× U→ R and H0 is defined as in (5.6):

H0(x) = min
u∈U(x)

H0(x, u)
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Proof. Observe that the LP in (5.13) can be recast as an LP in (η0, h0, H0):

max η0 s.t. c(x, u) +Kh0 (x, u) ≥ H0(x, u) + η0

and H0(x, u) ≥ h0(x) , for all x, u .

Defining H0 and substituting it in place of h0 in the first constraint allows

us to relax the second constraint. This way, the LP in (η0, h0, H0) can be

reformulated as convex program (5.14) in variables (η0, H0). ut

The convex optimization problem (5.14) provides the foundation to con-

struct a convex Q-learning algorithm. A parameterization of the form Hθ

defined in (5.3) is considered as candidate approximation to H∗0 , the solution

to the LP (5.14). The corresponding approximate LP is

max η̂ s.t. c(x, u) +KHθ (x, u) ≥ Hθ(x, u) + η̂ , for all x, u ,

for the variables η̂ ∈ R and θ ∈ Rd. A relaxation of the approximate LP is

used to construct an error criterion for the convex Q-learning algorithm:

min
η̂,θ

{
− η̂ + 1

2
κ
∑
(x,u)

$(x, u)
[
Hθ(x, u) + η̂ −

(
c(x, u) +KHθ (x, u)

)]2
+

}
,

where $ is the invariant distribution on X × U, [·]+ denotes a non-negative

projection of the argument and κ is a penalty parameter. For any κ > 0, this

is a convex function of θ since Hθ is concave in θ. Then, the following error

criterion is adopted for the convex Q-learning algorithm:

Ealp(θ, η̂) := −η̂ + 1
2
κ E
{[
Hθ + η̂ − (c+KH0 )

]2
+

}
, (5.15)

= −η̂ + 1
2
κ E
{[
Hθ (X(t), U(t)) + η̂ −

(
c (X(t), U(t)) +Hθ (X(t+ 1))

)]2
+

}
.

A steepest descent or Newton-Raphson algorithm can be devised to compute

(θ∗, η̂∗) that minimizes Ealp.
Here, a stochastic approximation of the steepest descent algorithm is used

to recursively estimate (θ∗, η̂∗) that minimize Ealp for a given value of κ. The
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gradients of interest are

∇θEalp = κ E
{[
Hθ + η̂ − (c+KHθ )

]
+
· (ψ −Kψθ )

}
= κE [∆θ (X,U ; θ, η̂)] , (5.16)

∇η̂Ealp = −1 + κ E
{[
Hθ + η̂ − (c+KHθ )

]
+

}
= −1 + κE [∆η̂ (X,U ; θ, η̂)] , (5.17)

where

∆θ(X,U ; θ, η̂) =
[
Hθ (X(t), U(t)) + η̂ − c (X(t), U(t))−Hθ

(
X(t+ 1)

)]
+

×
[
ψ
(
X(t), U(t)

)
− ψθ

(
X(t+ 1)

)]
,

∆η̂(X,U ; θ, η̂) =
[
Hθ (X(t), U(t)) + η̂ − c (X(t), U(t))−Hθ

(
X(t+ 1)

)]
+
.

Then, analogous to the stochastic approximation algorithm in (5.11), (θ∗, η̂∗)

can be estimated using the following update equations:

θ(t+ 1) = θ(t)− γ1(t)κE [∆θ (x(t), u(t); θ(t), η̂(t))] (5.18)

η̂(t+ 1) = η̂(t)− γ2(t)
(
− 1 + κE [∆η̂ (x(t), u(t); θ(t), η̂(t))]

)
. (5.19)

As before, the gain sequences {γ1(t)} and {γ2(t)} are chosen such that the

resulting difference equations for θ and η̂ satisfy standard conditions [115,116].

5.4 Q-learning for the PNNL Model

The practical applications of the Q-learning algorithms devised in this chapter

are demonstrated for the purpose of coordinating the dispatch of resources in

a representative power system. The numerical studies reported in this section

are conducted on the PNNL test system.

5.4.1 Overview of the PNNL Model

The PNNL model used in our studies consists of a diesel generator, a BESS,

a wind power plant and a group of residential loads. Real world wind power
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data from [97] and simulated load demand from [111] are used in our numerical

studies. The control objective is to find the least-cost dispatch strategies for

the diesel generator and BESS so as to meet the net load demand on the

system.

The state of the system X(t) at time t is described by the output of the

diesel generator, the threshold of BESS, the SOC and the balancing service

required at time t while the control input U(t) is described by the ramping

in the generation output and change in the BESS threshold at time t. The

system dynamics follow the recursion

X(t+ 1) = AX(t) +BU(t) +DV (t) , (5.20)

and are subject to state-action constraints:

Xmin ≤ X(t) ≤ Xmax and Umin ≤ U(t) ≤ Umax

for each t. The constraint parameters are specified in Table 4.1 (on page 81).

Optimality is based on a quadratic cost,

c
(
x, u
)

= (x− xref)TQ(x− xref) + uTRu+ some constant , (5.21)

where xref is a reference state. The objective for the dispatch problem is to

minimize this cost over a specified time horizon, subject to system dynamics

(5.20) and state/input constraints (4.37). In the context of control synthesis,

the time horizon is taken to be infinite and Q-learning techniques are used to

find the control policies for this system.

5.4.2 Implementation of Q-learning

In the numerical experiments reported in the following sections, Q-learning

algorithms devised in sections 5.2 and 5.3 were applied to two separate system

models. First, Q-learning was conducted on a fluid model constructed from

a mean-field approximation of the MDP model (5.20) to gain insights on the

structure of the problem. The dynamics of the fluid model are assumed to
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follow the recursion:

x̄(t+ 1) = Ax̄(t) +Bū(t) +Dv̄ , (5.22)

where v̄ is the mean of the disturbance process, and, x̄(t) and ū(t) are the states

and control actions of the mean-field model which are subject to state-action

constraints:

Xmin ≤ x̄(t) ≤ Xmax and Umin ≤ ū(t) ≤ Umax (5.23)

Q-learning was also performed on the MDP model, where the model dynam-

ics were simulated using sample path trajectories of the disturbance process

constructed from actual measured data.

Basis selection: Three functions are used to construct the basis ψ for Q-

learning on both models. The basis functions are obtained using the approach

(5.4). That is,

ψi(x, u) = ϕi (Ax+Bu+Dv̄) for i = 1, 2, 3 ;

where {ϕi : 1 ≤ i ≤ 3} is the basis used for TD-learning. The functions ϕi are

obtained by using fluid value functions and penalty functions: the fluid value

functions are computed by solving the optimality equations for a simpler ideal-

ized system model (much like the approach taken in Section 3.4 and [82,105])

while the penalty functions take into account the state/action constraints ig-

nored in the fluid model approximations (similar to basis construction adopted

in Section 3.3).

Specifically, in this example, one fluid value function and two penalty func-

tions are used to construct the basis {ϕi}. An LQR-relaxation of the MDP

model is considered: the dynamics take the form (5.22), costs are quadratic

in nature as seen in (5.21) and state/action constraints in (5.23) are relaxed.

The value function for this fluid model is computed using Proposition 4, as

shown in Section 4.5. The LQR-like fluid value function h∗0(x) thus computed

is used as the first basis function ϕ1(x). The other two basis functions take

into account the capacity constraints on diesel generation and battery SOC.
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That is, the second basis ϕ2 is designed to penalize movement of the state

trajectory towards the generation boundary. And the third basis ϕ3 models

the higher overall costs anticipated when the SOC approaches its capacity

constraints. The Q-learning algorithm optimizes the weights associated with

these functions to approximate the Q-function.

Excitation input: For Q-learning on both the fluid and MDP model, the

randomized policy is constructed as described in (5.5) with the stabilizing

policy φ̄ obtained by projecting the LQR state-feedback policy, solution of

(4.13), onto the constrained action space. The excitation signal ζ is obtained

through a quasi-Monte-Carlo approach [116] with

ζ(t) =
n∑
j=1

γj sin(ωjt) ,

where {γj} are constants, {ωj} are various frequencies and n is an integer. In

the numerical results reported here, n = 5.

The choices of the basis and excitation signal are fine-tuned to ensure ap-

propriate sampling of the state-action space and reduction in the Bellman

error.

5.4.3 Numerical Experiments on the Fluid Model

In this section, the numerical results from applying the two Q-learning algo-

rithms to the dispatch problem for the fluid model in (5.22) are discussed. The

performance of the resulting control policies is also compared.

Bellman error-based Q-learning: Many numerical experiments were con-

ducted for different choices of excitation ζ and boundary penalty functions ϕ2

and ϕ3. The quality of each of the resulting approximations was judged based

on mismatch in the fixed point equation (5.7) for the different sampled state-

action pairs as well as the Bellman error EBE0 , defined in (4.29), associated with

the approximate value function.

The choice of parameters for the excitation signal impacts the quality of

the approximation. The parameters {Aj} and {ωj} should be chosen in such

a way that the state space is appropriately sampled. The plots in Figure 5.1
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(a)  States sampled during the learning process

(b)  Mismatch in the fixed point equation

(c)  Sample path of basis weights
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Figure 5.1: Comparing the results from Q-learning for a choice of low versus
high amplitude excitation signal.

motivate this observation. The plots show the sampled state space, error in

the fixed point equation and the sample paths of the basis weights {θi} for

two different choices of ζ – the plots corresponding to a low amplitude ζ are

shown on the left while those for high amplitude ζ are on the right. Inadequate

sampling of the state space – as evidenced from Figure 5.1(a) – results in a

higher mismatch in the fixed point equation as shown in Figure 5.1(b). In

fact, the insufficient sample of state space due to low exploration can hamper

the learning of basis weights: observe the absence of tuning for parameter θ3

in Figure 5.1(c).
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The final choices for the exploration parameters {Aj} and {ωj} and basis

functions {ϕi} were found by trial-and-error such that the resulting approxi-

mations have negligible Bellman error.

Linear programming-based Q-learning: Similar to the first Q-learning

algorithm, the LP-based Q-learning algorithm was applied to the fluid model

under different choices of excitation ζ and boundary penalty functions ϕ2 and

ϕ3. As seen with the Bellman error-based Q-learning, the excitation param-

eters {Aj} and {ωj} have significant impact on the quality of the resulting

approximations, which was quantified by the Bellman error and the mean-

square mismatch in the fixed point equation.

In addition to choice of excitation parameters and basis functions, the qual-

ity of the approximation in LP-based Q-learning also depends on the penalty

parameter κ. Figure 5.2 emphasizes the convergence of the basis weights {θi}
for higher κ, as would be expected from a typical barrier penalty method in the

non-linear programming. Convergence was observed for κ ≥ 100. The qual-
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Figure 5.2: Convergence of basis weights θi’s for large values of penalty
factor κ.

ity of the approximation, as judged by the Bellman error, also improved with

higher κ. Figure 5.3 emphasizes this point by demonstrating the decrease
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in the average cost and the mean square Bellman error for approximations

corresponding to higher values of κ.
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Figure 5.3: Impact of choice of κ on mean-square Bellman error and average
cost.

One concern in using stochastic approximation algorithm defined in (5.18)

and (5.19) is the high gain introduced in the algorithm for higher values of

κ. This can lead to high variance and slow down the algorithm. In our ex-

periments, introducing a scaling by 1/κ in the update equations improved

convergence. Additionally, the averaging scheme proposed by Polyak and Ju-

ditsky in [117] was also used to accelerate convergence. A comparison of the

resulting sample paths for {θi} and their average {θ̄i} is shown in Figure 5.4.
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Figure 5.4: Sample path of θi’s and the associated running averages θ̄i’s for
the Polyak averaging scheme.
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Table 5.1: Performance Comparison for the Fluid Model

Control policy η
LQR state feedback 0.041
Bellman error-based Q-learning 0.060
LP-based Q-learning (κ = 1000) 0.040

Comparing performance of controllers: The performances of the control

policies obtained from the two Q-learning algorithms are compared against

that of the control policy of the unconstrained fluid model, that is, the LQR

state feedback policy. The running costs for different state-input trajectories

corresponding to many different initial conditions are computed and averaged

to estimate the average cost for each policy; Table 5.1 lists these average

costs for the three policies. The control policy obtained from the LP-based

Q-learning algorithm (κ = 1000) provides the least-cost performance.

The Bellman error defined in (4.29) is used to study the quality of approxi-

mation and stability of the controller. In Figure 5.5, the ratio
EBE0 (x)

cφ(x)
is plotted

against the norm of the state for state trajectories corresponding to the same

initial condition but controlled under the three different approximate control

policies. The ratio is plotted for the observed state values based on the policy

being applied to the system. As prescribed in Corollary 10, stability is guar-

anteed if
EBE0 (x)

cφ(x)
> −1 for large values of ‖x‖. From the plot, it can be seen

that the all control policies satisfy this condition and are, hence, stabilizing.

However, the LQR-policy does not result in a low Bellman error nor does the

ratio of EBE0 (x)/cφ(x) under this policy provide the tight bounds necessary for

near-optimal performance, as prescribed in Theorem 11.

5.4.4 Numerical Experiments on the MDP Model

The Q-learning algorithms devised in this chapter are also applied to the

stochastic system model. That is, for the purposes of learning, the dynamics

are assumed to follow the recursion:

x(t+ 1) = Ax(t) +Bu(t) +Dv(t) ,
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Figure 5.5: Bellman error ratio for three approximations applied to the
mean-field model.

where v(t) correspond to actual measurements of the disturbances obtained

from real data. The convergence of the algorithms for this model is not

guaranteed but many of our experiments did exhibit convergence. In Fig-

ure 5.6, the sample paths of the basis weights for one such experiment with

Q-learning based on Bellman error reduction are shown. The Polyak averaging

scheme [117] was found to be quite useful in these experiments.
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Figure 5.6: Sample path of θi’s and the associated running averages θ̄i’s for
the Polyak averaging scheme.

The Bellman error defined in (4.10) provides a means to study the quality
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of approximation, stability of the controller and its performance. As seen in

the case of fluid model, the quality of approximation can be improved through

appropriate choice of exploration signal parameters and basis functions. In

Figure 5.7, the ratio
EBE(x)

cφ(x)
is plotted against ‖x‖ for state trajectories corre-

sponding to the same initial condition but controlled under the four different

control policies:

• LQR state feedback policy from the unconstrained fluid model relaxation

• policy obtained from Bellman error-based Q-learning for the fluid model

• policy obtained from LP-based Q-learning for the fluid model

• policy obtained from Bellman error-based Q-learning for the stochastic

model

LQR approximation
Non−convex QL (w/o noise)
Convex QL (w/o noise)
Non−convex QL (w noise)

EBE(x)
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‖x‖
0
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Figure 5.7: Bellman error ratio for the three approximations applied to the
stochastic system.

From the plot in Figure 5.7, it can be seen that the ratio EBE0 (x)/cφ(x)

for the different control policies satisfies the sufficient conditions of stability

established in Theorem 9. That is,
EBE0 (x)

cφ(x)
> −1 for large x and hence stability

is guaranteed for all four policies considered here. However, the Bellman error

is low only for policy corresponding to the Bellman error-based Q-learning on

the fluid model. The average costs for different control policies are tabulated
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Table 5.2: Performance Comparison for Stochastic System

Control policy η
LQR state feedback (unconstrained fluid model) 0.0751
Bellman error-based Q-learning (fluid model) 0.1123
LP-based Q-learning (κ = 1000) (fluid model) 0.0720
Bellman error-based Q-learning (MDP model) 0.1801

in Table 5.2. The control policy obtained from the LP-based Q-learning (κ =

1000) on the fluid model provides the least-cost performance.

5.5 Concluding Remarks

In this chapter, two new Q-learning algorithms are introduced for the control

of non-linear state space models under the average cost optimality criterion.

A practical application of the algorithm to the dispatch problem on the PNNL

model is illustrated. Implementation issues such as choice of basis and impacts

of exploration on the quality of the approximation are discussed.

The performance of the control policies obtained from the two Q-learning

algorithms is compared against the policy obtained from the LQR solution,

as described in Section 4.5. Based on our experiments, it can be inferred that

the control performance can be improved if the Q-function is approximated as

a combination of the fluid value function and penalty functions that take into

account constraints on the states and actions.

The Q-learning algorithms devised in this chapter can be integrated into

a predictive control framework for improving performance of the predictive

controller. The precise connections are established in the next chapter.
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Chapter 6

Q-MPC for Control in Power

Networks

The previous chapters apply RL algorithms for controlling resources in a power

grid. However, the basis selection for RL applications in a network setting can

be particularly challenging. A possible solution is to use RL techniques in

conjunction with other controllers. In this chapter, the Q-learning algorithms

devised in the previous chapter are used in a model predictive control (MPC)

framework to control resources in a power network.

MPC is a popular approach due to its ability to handle complex constraints

on states and inputs [118]. It has recently been recommended as a control

mechanism to dispatch resources in power grids due to its flexibility in incor-

porating complex inter-temporal constraints on resources, along with short-

term forecasts of renewable supply and electricity demand [76,112]. However,

MPC may not be effective without careful design. In particular, an inappro-

priate choice for the terminal cost function can result in poor performance or

even an unstable closed-loop system. Although a large prediction horizon can

offset these effects, it comes at the expense of correspondingly higher com-

putational cost. It is well known that all these drawbacks are resolved if the

infinite-horizon value function that solves the DP equations is chosen as the

terminal cost function [118,119]. An approximation of this value function can

also improve performance for short prediction horizons [120,121].

The Q-learning algorithms devised in Chapter 5 are used to approximate the

infinite-horizon value function and, thus, define the terminal cost for MPC. The

marriage of these two control approaches results in a new Q-MPC approach to

control for both stochastic and deterministic systems. It admits a stabilizing
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policy under mild conditions, regardless of the time horizon. This chapter

presents the theoretical underpinnings of the Q-MPC approach.

The computational efficiency of Q-MPC is investigated via its application

to the economic dispatch problem in power networks. The numerical results

reported here conclusively demonstrate the computational efficacy of Q-MPC

as compared to other typical MPC implementations in the sense that good

performance is obtained even for small time-horizons.

6.1 Model Predictive Control

This section surveys aspects of MPC that will impact the design of the Q-MPC

approach introduced later. Design aspects that guarantee stability, improve

performance and reduce computational complexity by reducing the required

time horizon T are discussed.

6.1.1 MPC for Deterministic Systems

Recall the fluid model introduced in Section 4.1.1:

x(t+ 1) = f (x(t), u(t)) , (6.1)

with x and u representing state and input trajectories. The MPC algorithm

applied to this model minimizes, at each time step τ , the finite-horizon cost

JT (x) =
T−1∑
t=0

c
(
x(t), u(t)

)
+ J0

(
x(T )

)
, (6.2)

where T is the prediction horizon, J0 is the terminal cost and x(0) = x = x(τ);

that is, x is the state measured at the current time step. The optimization

is subject to system dynamics (6.1) and state/action constraints which are

compactly represented as

x(t) ∈ X and u(t) ∈ U (x(t)) for each t = 0, 1, . . . , T − 1.
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Suppose the resulting minimizing control sequence is
{
u∗(0), u∗(1), . . . , u∗(T −

1)
}

. Then, the first element u∗(0) of this sequence is implemented at the cur-

rent time step τ and the algorithm proceeds to next time step. This procedure

defines a state-feedback control law φ̄∗T (x), which maps the state x to u∗(0).

It is stabilizing under general conditions on J0, c and f ; see [118] for a survey.

Our concern lies with how the terminal cost J0 impacts the stability of the

controller.

Recall from the discussion on tc-stability in Section 4.3, that a policy φ̄ is

stabilizing for the fluid dynamics (6.1) if there exists a function V : X → R+

for which the Poisson’s inequality is satisfied:

Kφ̄V (x) ≤ V (x)− cφ̄(x) . (6.3)

This fact is used to establish stability for a MPC feedback law. The following

theorem provides sufficient conditions on the terminal penalty function J0 to

lead to stable MPD feedback law.

Theorem 13. Suppose J0 : X→ R+ satisfies the Poisson’s inequality for some

policy φ̄0. Then, the MPC policy φ̄∗T is tc-stable for any T ≥ 1.

Proof. The central idea is to show that the MPC value function φ̄∗T satisfies

(6.3) for the feedback policy φ̄∗T . Since J0 satisfies the Poisson’s inequality for

the policy φ̄0,

Kφ̄0J0 (x) ≤ J0(x)− cφ̄0(x) . (6.4)

Recall that the DP equation for a control horizon of T ≥ 1 is

J∗T (x) = min
u

{
c(x, u) +KJ∗T−1 (x, u)

}
,

with J∗0 = J0. Substituting the minimizing control action, which is also the

MPC feedback policy φ̄∗T (x), gives

J∗T (x) = cφ̄∗T (x) +Kφ̄∗T J
∗
T−1 (x) . (6.5)

Then, rearranging the terms gives

Kφ̄∗T J
∗
T (x)− J∗T (x) + cφ̄∗T (x) = Kφ̄∗T J

∗
T (x)−Kφ̄∗T J

∗
T−1 (x) .
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To show that J∗T is satisfies (6.3), it suffices to show that J∗T ≤ J∗T−1. This can

be proved using induction if J∗1 ≤ J∗0 . Substituting T = 1 in (6.5),

J∗1 (x) = cφ̄∗1(x) +Kφ̄∗1J
∗
0 (x) ≤ cφ̄0 (x) +Kφ̄0J∗0 (x) ≤ J∗0 (x) ,

where the last inequality follows from (6.4) and the definition J∗0 = J0. Thus,

J∗T ≤ J∗T−1 for any T ≥ 1 so that

Kφ̄∗T J
∗
T (x)− J∗T (x) + cφ̄∗T (x) ≤ 0 ,

which implies that J∗T is satisfies condition (6.3) for the MPC policy φ̄∗T . Hence,

policy φ̄∗T is tc-stable. ut

Thus, from Theorem 13 it can be inferred that if the terminal cost satisfies

Poisson’s inequality, then the MPC policy for each prediction horizon T is

stabilizing. The next theorem concerns the choice of J0.

Theorem 14. Suppose J∗ is the infinite-horizon value function given by

J∗(x) = min
u

∞∑
t=0

c (x(t), u(t)) , x(0) = x ∈ X ,

and assumed to be finite valued on X. If J∗ is chosen as the terminal cost

function J0, then the resulting feedback law φ̄∗T is tc-stabilizing for the given

dynamics. Furthermore, φ̄∗T is independent of T .

Proof. Recall that J∗ satisfies the DP equation

J∗(x) = min
u∈U(x)

{
c(x, u) +KJ∗ (x, u)

}
,

and the minimizing control input defines the optimal policy φ̄∗. Clearly, J∗

satisfies (6.3) for the minimizing policy φ̄∗. Then, stability follows from The-

orem 13.

It follows from the principle of optimality that for any T ,

J∗(x) = min
uT−1
0

(T−1∑
t=0

c(x(t), u(t)) + J∗(x(T ))
)
,
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and in this minimization, the optimizing u∗(0) is independent of T . Conse-

quently, the MPC policy φ̄∗T is independent of T if J0 = J∗. ut

Thus, the choice of J∗ as terminal cost J0 results in a stable control policy

and leads to reduced computational complexity. Such desirable features also

exist for the relative function h∗0 if average cost optimality for the deterministic

model is being considered. In the MPC applications considered in this chapter,

approximations of J∗ or h∗0 are used to define J0 in an attempt to ensure

stability and simultaneously reduce the time horizon in MPC.

6.1.2 MPC for Stochastic Systems

This section concerns with MPC applied to a stochastic system. For simplicity,

the MDP model introduced in Section 4.1.1 is adopted for analysis. That is,

the system dynamics are assumed to follow the recursion

X(t+ 1) = f (X(t), U(t)) +W (t) , (6.6)

whereX is the state process, U the control process andW is an i.i.d. sequence

with zero mean and finite covariance ΣW taking values on W ⊆ R`x . The MPC

algorithm applied to this system minimizes, at each time step τ , the expected

cost over a finite horizon:

VT (x) = E
[ T−1∑

t=0

c
(
X(t), U(t)

)
+ V0

(
X(T )

) ]
. (6.7)

Here, V0 denotes the terminal cost and X(0) = x, state at time τ . As before,

the minimization is subject to the system dynamics and the constraints on the

states and actions. The solution admits a state feedback policy φ∗T (x) similar

to the deterministic case.

Similar to the deterministic case, the stability of the MPC for stochastic sys-

tems hinges on the choice of the terminal cost V0. Again, Poisson’s inequality

is used to establish the stability for a stochastic MPC feedback policy. Recall

that a policy φ is stabilizing if there exists a function V : X→ R+ that satisfies
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the Poisson’s inequality

PφV (x) ≤ V (x)− cφ(x) + ε , (6.8)

for some constant ε.

Theorem 15, the stochastic counterpart of Theorem 13, provides conditions

on the terminal cost V0 to ensure stability of the MPC feedback policy for the

stochastic model of (6.6).

Theorem 15. If there exists a policy φ0 and a finite constant ε̄ such that

Poisson’s inequality holds for the terminal cost V0:

Pφ0V0 (x) ≤ V0(x)− cφ0(x) + ε̄ , (6.9)

then the MPC policy φ∗T is ac-stable for any T ≥ 1.

The result is proved by establishing that the MPC value function V ∗T−1

satisfies Poisson’s inequality for the MPC policy φ∗T for each T ≥ 1. The proof

is based on manipulating the recursion

V ∗T+1(x) = min
u
{c(x, u) + PV ∗T (x, u)}

= cφ∗T+1
(x) + Pφ∗T+1

V ∗T (x) , (6.10)

which holds for T ≥ 1 with V ∗0 = V0. The proof uses arguments similar to

those employed by Chen and Meyn in [119]: progressively tighter bounds are

obtained for the differences in successive value functions,

εT (x) := V ∗T+1(x)− V ∗T (x) ,

and these bounds are used to establish the desired result. The following lemma

establishes the bounds on εT .

Lemma 16. For each T ≥ 0,

(i) εT+1(x) ≤ Pφ∗T+1
εT (x) for all x ∈ X.

(ii) Let ε̄T = supx∈X = εT (x). Then, ε̄T+1 ≤ ε̄T ≤ ε̄.
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Proof. To prove (i), the definition of εT+1(x) is invoked:

εT+1(x) = V ∗T+2(x)− V ∗T+1(x)

= cφ∗T+2
(x) + Pφ∗T+2

V ∗T+1 (x)− V ∗T+1(x)

≤ cφ∗T+1
(x) + Pφ∗T+1

V ∗T+1 (x)− V ∗T+1(x)

≤ cφ∗T+1
(x) + Pφ∗T+1

(V ∗T + εT ) (x)− V ∗T+1(x) .

Using (6.10) gives εT+1(x) ≤ Pφ∗T+1
εT (x). Result (ii) follows from (i):

ε̄T+1 = sup
x∈X

εT+1(x) ≤ sup
x∈X
Pφ∗T+1

εT (x) .

Clearly, ε̄T is an upper bound for the RHS, which implies ε̄T+1 ≤ ε̄T . Finally,

using T = 0 in (6.10) gives

V ∗1 (x) = cφ∗1(x) + Pφ∗1V
∗

0 (x)

≤ cφ0(x) + Pφ0V ∗0 (x)

≤ V0(x) + ε̄ ,

where the last inequality follows from (6.9). By invoking definition, ε0(x) ≤ ε̄

for all x and result (ii) is proved. ut

The bounds in Lemma 16 are used in proving Theorem 15.

Proof of Theorem 15: Subtracting V ∗T (x) from both sides of (6.10) and invoking

the definition of εT (x) and ε̄T gives

Pφ∗T+1
V ∗T (x) = V ∗T (x)− cφ∗T+1

(x) + εT (x)

≤ V ∗T (x)− cφ∗T+1
(x) + ε̄T .

Since Lemma 16 establishes that ε̄T is finite for each T ≥ 0, MPC policy φ∗T+1

satisfies Poisson’s inequality for V = V ∗T for each T ≥ 0. The desired result

follows. ut

Under certain conditions, a function that satisfies Poisson’s inequality (6.3)

for the fluid model may satisfy its counterpart (6.8) for the stochastic model
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and, hence, provide a suitable terminal cost for the stochastic MPC problem.

The conditions are outlined in the theorem below.

Theorem 17. Consider an MDP model satisfying assumption 4.1. Suppose J

satisfies (6.3) for some policy φ̄. Furthermore, suppose J has bounded second

derivative. Then, J satisfies Poisson’s inequality (6.8). ut

The theorem is proved by considering a Taylor series approximation for

the stochastic DP operator P and using mean value theorem to bound this

approximation by the deterministic DP operator K .

Proof. To establish that J satisfies (6.8), a Taylor series approximation of

stochastic DP operator P is considered. Recall (4.24) under assumption 4.1

with J plugged in as g so that for some (x, u) ∈ X× U,

PJ (x, u) = J (f(x, u)) 1
2

tr
[
∇2J (f(x, u)) · ΣW

]
+ . . . .

Using the mean value theorem to bound the approximation gives

PJ (x, u) ≤ J (f(x, u)) + 1
2

tr
[
∇2J (f(x̄, ū)) · ΣW

]
, (6.11)

where (x̄, ū) = arg max tr
[
∇2J (f(x, u)) · ΣW

]
. Since J satisfies (6.3) for a

policy φ̄,

Kφ̄J (x) ≤ J (x)− cφ̄ (x) .

Then, modifying (6.11) for the specific policy φ̄ gives

Pφ̄J (x) ≤ J (x)− cφ̄ (x) + 1
2

tr
[
∇2J (f(x̄, ū)) · ΣW

]
,

which is precisely the condition (6.8) due to boundedness of ∇2J and ΣW . ut

Theorems 15 and 17 indicate that a function satisfying the Poisson inequality

for the fluid model is indeed a good candidate for the terminal cost V0 under

some general conditions. Indeed, J∗ defined in (4.6) is one such candidate

function, provided the derivative bound is met.

In summary, the infinite-horizon fluid value function J∗ may be a good

candidate for both J0 and V0 from a stability and computational efficiency
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perspective. Although computation of J∗ is intractable in most cases, an ap-

proximation of J∗ may result in a stabilizing and computationally efficient con-

troller (see [119] for theory and [120, 121] for examples). Learning techniques

described in Chapter 5 may be used for such value function approximations.

6.2 Q-MPC Algorithm

Q-learning gives an approximation Hθ∗
0 (x, u) to the Q-function H∗0 (x, u) and,

consequently, Hθ∗(x) which approximates the infinite-horizon value function

– the optimal terminal cost function for MPC. This links the two solution

techniques, giving birth to the Q-MPC approach. In the deterministic case,

Q-MPC uses the following modified objective:

J∗T (x) = min
uT−1
0

T−1∑
t=0

c
(
x(t), u(t)

)
+Hθ∗

(
x(t)

)
. (6.12)

An analogous expression for the stochastic case can be derived.

In this way, Q-learning is integrated into the MPC framework to enhance

the performance of the control algorithm and guarantee stability even for small

prediction horizons.

Stability is guaranteed by design. For example, by construction, it can be

assumed that Hθ satisfies (6.3) for each θ ∈ Rd
+ satisfying mini θi ≥ 1. The

Q-learning algorithm can then be modified to include a projection of θ onto

this domain.

Furthermore, the Q-learning algorithm is amenable to online tuning. The

approximate, optimal terminal cost can be periodically updated to adapt to

any changes in the system environment, since such changes are typically on

time scales slower than that of the actual dynamics of the system.

6.3 MPC for the PNNL Model

The Q-MPC approach was applied to the economic dispatch problem for the

PNNL model. Simulation results are described here, providing a comparison

of the Q-MPC approach against three other MPC implementations.
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6.3.1 Overview of the PNNL Model

Recall that the PNNL system consists of a diesel generator and a BESS with

an expensive ancillary service support to manage supply-demand mismatch.

These resources are deployed to meet the net residential load demand. The

objective for the economic dispatch problem is to find the least-cost control

strategies for the diesel generator and BESS to meet the net load demand on

the system.

Recall that the states for the PNNL model are the diesel generator output,

the threshold of BESS, the SOC and the balancing service deployed at time

t. The control actions at that time are the ramping in the generation output

and change in the BESS threshold. The dynamics for the PNNL system are

in a linear form

X(t+ 1) = AX(t) +BU(t) +DV (t) , (6.13)

and are subject to state-action constraints:

Xmin ≤ X(t) ≤ Xmax and Umin ≤ U(t) ≤ Umax

for each t. The constraint parameters are specified in Table 4.1 (on page 81).

Optimality is based on a quadratic cost,

c
(
x, u
)

= (x− xref)TQ(x− xref) + uTRu+ some constant , (6.14)

where xref is a reference state. The objective for the dispatch problem is to

minimize this cost over a specified time horizon, subject to system dynamics

(5.20) and state/input constraints (4.37). For Q-learning, the time horizon

is taken to be infinite, but for MPC, time horizon is treated as a simulation

parameter to investigate computational complexity of the Q-MPC approach.

6.3.2 MPC Implementation

A predictive model for the system dynamics is defined as follows:

x̂(t+ 1) = Ax̂(t) +Bû(t) +Dv̂(t) . (6.15)
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At each step, the actual values of the state x and the disturbances v measured

from the system are used to initialize these dynamics at x̂(0) and v̂(0). Pre-

dictions for the disturbances for the horizon, v̂T−1
1 := {v̂(1), . . . , v̂(T − 1)}, are

obtained using autoregressive integrated moving average (ARIMA) models for

wind generation and aggregate load.

Given predictions v̂T−1
1 , the deterministic MPC algorithm described in Sec-

tion 6.1.1 is employed to compute the feedback law φ̄∗T subject to the dynamics

in (6.15) and constraints in (4.37). Then, the control action φ̄∗T (x) is applied

to the system at current time step. In the numerical experiments, the system

evolves according to dynamics in (4.36), so that X(t + 1) is defined and the

procedure is repeated to obtain U(t+1). More details on the MPC set-up and

the forecasting techniques used are available in [112].

6.3.3 Numerical Results

In the numerical results reported here, three implementations of MPC are

considered:

• benchmark MPC with J0(x) = 0,

• LQR-based MPC with J0(x) = h∗0(x), and,

• Q-MPC with J0(x) = Hθ∗

0 (x).

The first choice of terminal cost is used to motivate the importance of J0 by

inducing its absence: this is chosen as the benchmark for comparison. The

second choice of J0 is motivated by the fluid model approximation described

in Section 4.5 and is referred to as the LQR-MPC approach. Finally, the last

choice of J0 used the value function approximation obtained from the Bellman

error-based Q-learning and is the promised Q-MPC approach.

The numerical studies use control steps of 10 minutes over a simulation

period of 24 hours so that T sim = 144. The performance of each algorithm is

compared in terms of total cost

J∗tot =
T sim∑
t=1

c
(
x∗(t), u∗(t)

)
,

where x∗(t) and u∗(t) are based on the MPC state-feedback policy.
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The three MPC algorithms are applied to dispatch resources in two modi-

fications of the PNNL model, with the associated capacity and ramping con-

straints defined in Table 6.1. Observe that system B is more constrained than

system A, with twice the wind generation capacity.

Table 6.1: Test system description

System P max
G ∆P max

G Emax
S

A 5 MW n/a 3.6 MWh

B 3 MW 1 MW 3.6 MWh

Figure 6.1 illustrates some of results obtained from numerical studies, all

based on data obtained in a typical summer day. In all cases, the Q-MPC

algorithm outperforms the other three MPC algorithms, irrespective of the

choice of T . In fact, for very low values of T < 4, the cost of the Q-MPC

algorithm is nearly 1
6

that of the benchmark MPC implementation for sys-

tem A. In general, the benchmark MPC results in very high costs for T < 5,

demonstrating the need to choose J0 appropriately.

2 4 6 8 10
2

6

10

14

18

prediction horizon

to
ta

l c
os

t

system A

2 4 6 8 10
4

6

8

10

12

14

16

18

prediction horizon

system B

 

 

 Benchmark MPC
 LQR−based MPC
 Q−MPC

Figure 6.1: Total costs as a function of the prediction horizon for each of the
test cases.

A comparison of the performances of the three MPC-based dispatch algo-

rithms across different days allows us to test the effectiveness of Q-MPC for
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different load and wind generation patterns, which can vary significantly de-

pending on weather and other external factors. Qualitatively similar results

are obtained after simulating dispatch for different days: the Q-MPC is a clear

winner for small prediction horizons, particularly for T ≤ 4.

6.4 Control in Network Settings

The Q-MPC algorithm has practical impact on how the economic dispatch is

usually implemented in a power network. This connection is established here

and Q-MPC is applied to dispatch resources in constrained power networks.

Numerical experiments based on two test systems are reported here. In both

systems, the network impacts are modeled by DC power flow model [1].

6.4.1 Economic Dispatch Problem Formulation

This section casts the usual economic dispatch problem solved by systems

operators in the MPC framework. For the purposes of illustration, a case

of controllable generation and uncertain demand is considered. That is, the

generators are the only controllable resources available to the operator to meet

the exogenous demand.

Recall the power node model of Section 3.2: PGn(t) denotes generation at

node n while PDn(t) is the demand at that node. The usual economic dispatch

problem is formulated as a cost minimization problem over a finite horizon:

min
{PGn(t)}

τ+T∑
t=τ

∑
n∈N

CGn (PGn(t))

s.t.

∑
n

PGn(t) =
∑
n

P̂Dn(t)

Pmin
Gn ≤ PGn(t) ≤ Pmax

Gn

∆Pmin
Gn ≤ PGn(t+ 1)− PGn(t) ≤ ∆Pmax

Gn

Fmin ≤ H (PG(t)− PD(t)) ≤ Fmax



for t = τ,

τ + 1, . . . ,

τ + T

(6.16)
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where P̂Dn(t) is the predicted demand at time t. The first constraint corre-

sponds to the supply-demand balance constraint while the second and third

constraints represent the capacity and ramping limits on the generators. The

last constraint models the power flow limitations imposed by thermal limits on

transmission lines: DC power flow models are used for this purpose, with H

representing the injection shift factor matrix which correlates nodal injections

to line flows [1] and
[
Fmin, Fmax

]
represent the line flow limits.

To view the economic dispatch problem in (6.16) as a control problem, a

choice of states and actions needs to be specified. Suppose the net nodal

injections are chosen to define the state X(t) of the system and the ramping

of the generators constitutes the action U(t) for the same. Then, in the MPC

framework, the usual economic dispatch problem of (6.16) is equivalent to

solving an MPC cost minimization problem with prediction horizon T + 1

and terminal cost J0 = 0. That is, the usual economic dispatch problem is

the benchmark case shown to be computationally expensive for the PNNL

model in Section 6.3. Since Q-MPC was effective for the PNNL system, it is

applied to solve the economic dispatch problem for two other test systems in

the following sections.

6.4.2 Three-bus System/Texas Model

The three-bus model considered in present work is the simplest loop network

that can be studied. As shown in Figure 6.2, it consists of two thermal gen-

erators at nodes 1 and 2 along with a group of residential loads and a wind

power plant at node 3. The residential load data is generated in [111] while

the wind plant data is obtained from [97].

Problem formulation: The control objective is to find the least-cost dis-

patch of the two generators such that generation and transmission constraints

are met with supply equal to demand. Adopting notation of the power node

model introduced in Section 3.2, PGi(t) and ∆PGi(t) are used to denote the

output and ramping of the generator at node i at time t for i = 1, 2. And

PD3(t) is used to denote the net load at node 3.
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Figure 6.2: The three-bus/Texas model.

The dynamics of the system are described as follows:

PG1(t+ 1) = PG1(t) + ∆PG1(t) ,

PG2(t+ 1) = PG2(t) + ∆PG2(t) ,

PD3(t) = D3(t)−G3(t) .

(6.17)

where the D3(t) and G3(t) represent the externally driven disturbances pro-

cesses dependent on the residential demand and wind power generation, re-

spectively.

The net power injection at each node at time t is used to describe the state

of the system at that time, so that

X(t) = [PG1(t), PG2(t),−PD3(t)]T .

The control actions are the ramping of the generators’ outputs,

U(t) = [∆PG1(t),∆PG2(t)]T .

The dynamics of the system can be described by the linear MDP model:

X(t+ 1) = AX(t) +BU(t) +W (t) , (6.18)

where the disturbance process takes the form

W (t) = [0, 0,−D3(t) +G3(t)]T .
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In addition to the usual constraints on states and actions imposed by the

capacity and ramping limits on generation, the states and actions are also

subject to network constraints. The constraints are represented as follows:

Xmin ≤ X(t) ≤ Xmax

Umin ≤ U(t) ≤ Umax

1T
X(t) = 0

HX(t) ≤ Fmax ,

(6.19)

where the equality in the third constraint is a consequence of the supply-

demand balance while the last constraint represents the transmission con-

straints. The matrix H is the injection shift factor matrix whose element in

the `th row and ith represents the fraction of the power injection at node i that

is diverted via line `. The vector Fmax represents line capacity limits.

A quadratic cost structure is adopted for generation and ramping costs are

imposed. Then,

c(x, u) =
(
a1p

2
G1 + b1pG1 + c1

)
+
(
a2p

2
G2 + b2pG2 + c2

)
+ γ1∆p2

G1 + γ2∆p2
G2

= (x− xref)TQ(x− xref) + uTRu+ some constant , (6.20)

where xref is a reference state.

In this way, the MDP model is defined using the dynamics in (6.18), the

constraints in (6.19) and the costs in (6.20).

Q-learning for the 3-bus system: The Q-learning architecture described

in Section 5.4.2 is applied to approximate the value function for the MDP de-

fined above. Again, a fluid model is used for learning. The basis functions are

also adopted in a manner analogous to that employed in Section 5.4.2, with

one addition: more basis functions are introduced to consider the impacts of

transmission constraints. Two basis architectures are considered. In the first

basis, a separate penalty function for each transmission constraint is consid-

ered. In the second basis, an aggregate penalty function for all transmission

constraints is considered; the parameters for the aggregate penalty are tuned

to reduce the Bellman error in the approximation.

MPC for the 3-bus system: The MPC architecture described in Sec-
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tion 6.3.2 is also applied to the economic dispatch problem for the 3-bus sys-

tem. Four implementations of MPC are considered:

• Benchmark MPC with J0(x) = c(x, 0),

• LQR-MPC with J0(x) = h∗0(x),

• Q-MPC with J0(x) = Hθ∗

0 (x) derived using the extended basis, and,

• Q-MPC with J0(x) = Hθ∗

0 (x) derived using the aggregate basis.

Control steps of 10 minutes are used in the simulations. As before, the total

dispatch costs are computed for different values of the prediction horizon T for

typical summer day. The plot in Figure 6.3 emphasizes how the Q-MPC ap-

proaches provide close-to-optimal solutions for low values of T . Furthermore,

the performance of the two Q-MPC control policies does not change much if

an extended basis is used instead of an aggregate basis.
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Figure 6.3: Total costs for different prediction horizons for dispatch of the
3-bus system.

6.4.3 Twelve-bus System/NYISO Model

The Q-MPC approach is also applied to the 12-bus system of [76] shown in

Figure 6.4, with two minor modifications:

• the nodes with the renewable and solar power plants in the system are

assumed to possess energy storage, and,
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• generators incur ramping costs which need to be considered in the dis-

patch.

Figure 6.4: The twelve-bus system.

The MDP model for this system can be derived in much the same form as

the PNNL and 3-bus system. The Q-learning implementation described in

Section 5.4.2 is applied to a reduced order model of the system, wherein all

the disturbances at a group of buses are clubbed together for computational

tractability. The basis for Q-learning uses an aggregate penalty function to

model the impacts of transmission constraints.

The MPC implementation follows the steps outlined in Section 6.3.2. Three

MPC implementations are considered:

• Benchmark MPC with J0(x) = c(x, 0),

• LQR-MPC with J0(x) = h∗0(x), and,

• Q-MPC with J0(x) = Hθ∗

0 (x).

Control steps of 15-minutes are used in the simulations. The total dispatch

costs are computed for different values of the prediction horizon T for typi-
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Figure 6.5: Total costs for different prediction horizons for dispatch of the
3-bus system.

cal summer day and plot in Figure 6.5. The plot serves to demonstrate the

computational efficacy of the Q-MPC approach.

6.5 Concluding Remarks

MPC is a popular approach to control for constrained systems. It is shown here

that performance and computation complexity can be improved significantly

by applying new techniques from RL. These insights lead to the genesis of

Q-MPC, a seamless integration of Q-learning algorithms devised in Chapter 5

with the standard MPC framework.

The computational efficacy of Q-MPC is examined in the context of the

economic dispatch problem: our results indicate that the usual implementation

of economic dispatch is computationally less efficient the proposed Q-MPC

solution. Indeed, from simulations of the economic dispatch problem for three

different test systems, it is observed that the Q-MPC solution provides least-

cost dispatch strategies, especially for low values of prediction horizon. In

conclusion, the Q-MPC may indeed be a better alternative than the usual

MPC approach employed for economic dispatch.
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Chapter 7

Conclusions

The main contributions of the dissertation are summarized here, along with

proposed extensions and future research.

7.1 Summary

The main contribution of the research presented in this dissertation is the de-

velopment of new techniques that can contribute towards an advanced control

architecture for the future power grid. The need for advances in control for the

power grid has increasingly become more critical. Many new resources such as

renewable generation and flexible loads are being deployed in the power grid.

Simultaneously, new communication and metering technology is also being put

into practice. Effective use of these new resources and technologies will neces-

sitate changes to the operational paradigms for the power system. The control

techniques proposed in this thesis provide a platform for development of new

operational decision-making tools.

An advantage of the two Q-learning algorithms presented in Chapter 5 is

that they can be applied for control synthesis in settings for which the pre-

cise distribution of the uncertainty and its temporal statistics are not known.

Our examinations of RL techniques like SARSA driven by real-world data

in Chapter 3 have borne out remarkable success. The Q-learning algorithms

proposed in this thesis have also been tuned to underlying statistics based

on actual measurements of different test systems. Our techniques along with

other popular RL techniques can be effective for control synthesis for power

grids with wind and solar resources as well as flexible loads and DR, for which

122



7.2 Future Work

the distribution of uncertainty and temporal statistics are often not known,

but a great deal of energy data is available.

In addition to practical applications, the dissertation also makes important

theoretical contributions towards the fields of Markov decision theory, ap-

proximate dynamic programming and reinforcement learning. The analytical

architecture described in Chapter 4 provides a platform to examine stability

and performance of approximate solutions to the average cost optimization

in MDPs. Also, the two new parameterized Q-learning algorithms presented

in Chapter 5 are a significant improvement over Watkin’s Q-learning and are

effectively applied to construct approximate solutions to MDPs modeled on

power grid control problems. Finally, a new lens from Markov theory is used

to examine the stability of MPC. In this setting, sufficient conditions for the

stability of stochastic MPC implementation are provided; a result hitherto

unknown to the MPC community. And the Q-learning algorithms are used

to enhance the performance of the standard MPC algorithm: the marriage

of these two techniques gives birth to the Q-MPC algorithm. The algorithm

admits a stabilizing control policy under mild conditions. Its computational

efficiency is proved via simulation studies: numerical results reported in this

thesis demonstrate how Q-MPC provides close-to-optimal solutions for small

prediction horizons.

7.2 Future Work

The research presented in this dissertation provides a different perspective on

control synthesis in power grids: we argue for the use of control techniques that

do not impose restrictive assumptions on the underlying system dynamics and

statistics such as uncertain wind energy forecasts or demand response models.

The techniques introduced here, along with other standard techniques from

ADP and RL, serve as a starting point for the development of more advanced

control architecture for future grids. However, several more questions need to

be answered in order to design the best possible architecture to manage the

grid and its component resources. These questions open up many avenues for

future research; a few are listed here.

123



Conclusions

Control Synthesis In Network Settings: Applications of ADP and RL

techniques to complex network settings lead to several concerns regarding the

selection of basis functions. This is a consequence of the fact that analysis

of detailed network models is computationally intractable and complicated by

the following factors:

• realistic model of a power transmission network is highly complex, and,

• power flows across transmission lines are subject to strict constraints.

One possible solution for handling network constraints is to employ model

reduction techniques. Aggregation techniques such as lumping together nodes

on the basis of geographical proximity and/or similar resource characteris-

tics are commonly used in power system studies [122]. Workload relaxations

approximate complex networks by simpler workload models of reduced dimen-

sionality; these techniques have been successfully applied for manufacturing

systems and queuing networks [104] and, to a limited extent, to power grids as

well [83]. These techniques may provide an architecture to construct a basis

for RL techniques. The use of model reduction techniques for learning-based

control merits further investigations.

Distributed Control for Power Grids: Increasing use of distributed re-

sources such as small renewable generators may necessitate future power grids

to move towards a more distributed control architecture. Such a move is sup-

ported by the Smart Grid vision [123], which places a greater emphasis on use

of advanced communication, metering and information technologies in power

grid operations and control. However, applications of RL to control synthesis

in a distributed network setting require further investigation.

MPC has been applied to distributed control of generation for load frequency

regulation [124]. In order to use Q-MPC for such applications, the issue of basis

selection for distributed control must be dealt with. A possible solution is to

use mean-field games framework to derive basis for distributed Q-learning, as

applied in [82]. Likewise, ad-hoc policies like the max-weight policies [125]

may be used to construct the basis for learning.

An important question in the context of distributed control is the informa-

tion architecture. Reliance on too much global information introduces com-

plexity, thus defeating the purpose of distributed control, and also increases
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security risks, since the information can be manipulated more easily to cre-

ate instability in the grid. On the other hand, too little global information

and a heavy reliance on local information can have disastrous consequences as

well: for instance, the “wave” phenomenon observed due to electromechanical

oscillations [126].

Theoretical Advances in ADP and RL: Although the RL algorithms

proposed in this dissertation have successfully been tuned using real world

data, convergence for the learning process in the most general case remains

open. Convergence properties of the proposed algorithms in settings where the

i.i.d. assumption and stationarity of W may not hold, need to be examined.

This may be of particular interest if Q-learning is to be driven by real-world

data, as was done in the numerical experiments described in chapters 3 and

5. Likewise, implementation in a time-inhomogeneous environment can be

examined and it will require modifications to the proposed approach.
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