
c© 2013 Ravinder Shankesi

FRIENDSOURCING TO DETECT NETWORK MANIPULATION

BY

RAVINDER SHANKESI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Doctoral Committee:

Professor Carl A. Gunter, Chair
Associate Professor Nikita Borisov
Associate Professor Matthew Caesar
Associate Professor Nick Feamster, Georgia Institute of Technology
Associate Professor Karrie G. Karahalios

Abstract

Traditionally, security on the Internet has been concerned with threats posed by
edge nodes (hosts) to other hosts and to the middle nodes of the network (routers).
An example of the former is the spread of viruses and an example of the latter
is congestion caused by packet floods. However, in recent years, we have seen
a rising number of instances in which hosts seek to defend themselves against
the middle of the network. This has been particularly evident with Internet cen-
sorship, where countries seek to suppress political unrest by closing off access
to social networks, particular web sites, or even the Internet itself. Another area
of controversy and concern arises with violations of network neutrality, in which
an Internet Service Provider (ISP) prejudices in favor of some types of packets
compared to others, typically for some commercial competitive advantage or re-
muneration. Fresh types of abuse are emerging as well, such as ISPs who alter
click traffic or advertising. All of these fall into a general category that one can
describe as network manipulation.

Many methods have been investigated to detect and circumvent network ma-
nipulation. For instance, researchers have devoted projects to determining which
words trigger various national censorship firewalls and strategies for deploying
proxies to enable tunnels that prevent such firewalls from recognizing that hosts
are accessing forbidden sites. Other research has deployed nodes that can be used
for testing network neutrality violations. One of the key challenges that faces
many of these techniques is the requirement to get “help on the inside”, that is, to
get cooperation from nodes that are subject to suspected network manipulation.
This thesis proposes to explore this specific problem with the aim of addressing it
through friendsourcing. Friendsourcing is a kind of crowdsourcing in which indi-
viduals use their social networks to gain help from their friends. For instance, if
an individual is having trouble with a network link he may ask his friend if she is
also having trouble with that link. The results could point to problems in various

ii

places, such as a server outage, a problem with a client, an accidental network
outage, or deliberate network manipulation.

Our thesis is that, social networks are an effective and efficient way for a user to

acquire a sufficiently distributed sensor network required for detecting the source

of censorship on the underlying communication network.
Proving that friendsourcing is a viable strategy to detect network manipulation

required three primary features. First, we needed to show that is possible to carry
out recruitment that finds a collection of hosts in the right network locations; we
show this through coverage and redundancy of multiple datasets. Second, we
need to prove that friendsourcing is an efficient strategy to detect network manip-
ulation; we do this through developing and validating optimizations required for
recruitment. Third, we must show that it is a practical; we show this through a
real-life field study outside a laboratory setting.

Our contributions in this thesis are:

1. We were the first to show the effectiveness of friendsourcing to detect net-
work manipulation.

2. We developed optimization algorithms that can make friendsourcing viable
in practice.

3. We showed the practicality of friendsourcing, by deploying it in a real-life
experiment which found a number of web-based manipulations in India.

iii

To my parents.

iv

Acknowledgments

I am grateful to my advisor, Carl Gunter, for his guidance, patience, and under-
standing. Even after all these years, I am still amazed at Carl’s ability to restate a
research problem precisely and succinctly. I benefited from not only his insights
and knowledge of my narrow field of research, but also from his broad under-
standing of the field. His contributions to this thesis cannot be overstated.

I would also like to thank my thesis committee members, Nikita Borisov, Matthew
Caesar, Nick Feamster, and Karrie Karahalios. Their encouragement and feedback
helped make this thesis better than it would have been otherwise.

I would also like to thank all my collaborators: Omid Fatemieh, Ralf Sasse,
Musab AlTurki, Rohit Chadha, Jose Meseguer, Mahesh Viswanathan, Zahid An-
war, Roy Campbell, Filippo Giaochin, and Wook Shin. I enjoyed all the discus-
sions I had with my lab mates in the security lab, Omid Fatemieh, Fariba Khan,
Sonia Jahid, Michael LeMay, Jianqing Zhang, Lars Olson, and Ahn Nguyen.
Staying in 4403 also meant that I fell into lively debates and discussions with An-
thony Cozzie, Matt Hicks, Hui Xue, Shuo Tang, Aparna Sasidharan, and Nathan
Dautenhahn.

I also have happy memories of all the fun and exploring I did with Rohit
Chadha, Dongyun Jin, and Sandeep Reddy.

I also appreciate all the time I spent with Alicia Schofield. Her understanding,
patience, and her belief in me have been a great comfort.

I also appreciate my family: my brother Mahender, sister-in-law Sarita, my
sister Madhavi and my brother-in-law Murali for always being there for me. My
nephew Abhiram and my niece Aashritha were both born during the course my
Ph.D. and are a constant source of joy.

Above all, I am grateful for my parents. My mother, for always been caring and
supportive. My father, who unfortunately could not see me graduate, for setting
me an example with this hard work and steadfast principles. Both of them, for
their unconditional love.

v

Table of Contents

Chapter 1 Introduction . 1
1.1 Thesis . 3
1.2 Challenges . 3
1.3 Demonstration . 5
1.4 Overview and Contributions . 7

Chapter 2 Background . 9
2.1 Communication Networks: Internet 9
2.2 Social Networks . 17

Chapter 3 Related Work . 22
3.1 Detection . 22
3.2 Circumvention . 25

Chapter 4 Design Options . 26
4.1 Conceptual Phases . 26
4.2 Desirable Features . 28
4.3 Assumptions . 30
4.4 Design Choices . 32

Chapter 5 Analysis . 37
5.1 Datasets . 37
5.2 Coverage Metrics . 40
5.3 Redundancy Metrics . 48
5.4 Optimization of Recruitment . 53

Chapter 6 Field Study . 57
6.1 Features, Assumptions, and Limitations 57
6.2 Architecture and Implementation 60
6.3 SiteViews User Interface . 65
6.4 Study Setup . 70
6.5 Web Manipulation Results . 75
6.6 Metrics of Network Manipulation 77

Chapter 7 Conclusion and Future Work 80

vi

References . 81

vii

Chapter 1

Introduction

The Internet is a large, globally distributed, network of networks that serves bil-
lions of users world-wide. These networks can communicate with each other us-
ing the standard internet protocol suite. They individual networks themselves are
managed by a variety of actors such as Internet Service Providers (ISPs), academic
and commercial organizations, and even countries, each with their own distinct
policy. Any network connection between two end hosts on the Internet, therefore,
may involve packets traversing through multiple countries, ISPs, Organizational
firewalls, as well network firewalls on end hosts. The Internet’s distributed archi-
tecture and the protocols were historically built with an assumption of unreliable,
but mutually cooperating entities. Core internet protocols (like TCP, UDP, and IP)
as well as applications that run on top of these protocols (like email, Voice-over-
IP, and the Web), therefore, are easily affected by the policies of these disparate
parties.

Recent history has shown a rise in occurrences of deliberate network interfer-
ence by many of these parties (see Chapter 2). Each of these parties has different
motivations for such manipulation: organizations may prefer to block websites
which are considered detrimental to productivity, ISPs may block protocols that
utilize a lot of network bandwidth, and countries may block websites or keywords
for religious or political considerations. This interference is referred to as net-

work neutrality violation when done by ISPs or cyber censorship [1] when done
by countries. In this thesis, we refer to such interference as network manipulation.

Determining the presence and source of such deliberate network manipulation
is not always easy and may require performing multiple network probes from
different parts of the Internet. For instance, recently, the Australian government
asked ISPs within their country to block certain websites (and IP blocks) which
were considered undesirable. This blacklist was not made public, and included
an educational website hosted in the US. Furthermore, not all the ISPs within
Australia followed the government’s orders. The Electronic Frontier Foundation

1

(EFF) collected traceroute information from nodes from a large of various ISPs [2]
to identify that blocking was occurring at certain ISPs. The EFF was able to
confirm that the blocking was due to Australian government’s censorship list (and
not say policies of a given ISP) only by talking operators of one of the ISPs. An
individual user on their own would not have the network visibility to be able to
make such inferences.

In this thesis we propose, friendsourcing as a novel way of detecting network
manipulation. Friendsourcing, is a play on ‘crowdsourcing’ where, instead of ask-
ing a random collection of people (i.e., a crowd), we ask a group of friends to help
us in some activity. Friendsourcing, as an ad hoc strategy in solving problems, is
an old idea. With the increasing use of online social networks, the effectiveness of
friendsourcing is being explored for solving problems in a more systematic man-
ner [3]. In our approach, we use a user’s friend circle as a sensor network. A
user who suspects that some party is deliberately interfering with their commu-
nications asks their friends to contact the same server by sending a probe from
their individual machine. The presence of any manipulation can be detected by
comparing the results of probes sent from different vantage points on this sensor
network. Correlating the interference of network connections with their network
attributes (i.e., organization, ISP, or country) will also give us the probable source

of the network manipulation.
The rise in network manipulation has led to a lot of research in detection and

circumvention of such manipulation (see Chapter 3 for more details). Existing
research has used two broad approaches to detect network manipulation. They
involve either active measurements or passive collection of data from end hosts.
On the active side, a common strategy is to use a large group of users to perform
a fixed suite of experiments from their individual machines. Alternately, they use
existing networking research infrastructure (such as PlanetLab or Measurement-
Lab) to perform the probing. On the passive side, we have techniques that collect
self-reported information from a crowd, or a tool that run at a user’s machine that
collect information about failing network connections.

These approaches are limited either by the fact that they perform a fixed set
of experiments and talk to fixed measurement servers, or by their reliance on the
presence of members of the crowd who run into exactly the same problem for
any given end user. These results might also be biased by the fact that they use
research infrastructure that is not subject to the same restrictions as those of end
users. In contrast, our approach using friendsourcing can perform on-demand,

2

active measurements talking to real web servers, from the vantage of real-life
users. Furthermore, instead of relying on indifferent strangers in a crowd, it relies
on the strength of a user’s social ties to get cooperation from friends to perform
the necessary measurements.

1.1 Thesis

Social networks are an effective and efficient way for a user to acquire a suffi-

ciently distributed sensor network required for detecting the presence and proba-

ble source of network manipulation on the underlying communication network.

1.2 Challenges

Validating friendsourcing as a strategy to detect network manipulation requires us
to address multiple issues. We give a list of these challenges below and show how
we addressed these challenges later in Section 1.3.

1.2.1 Proof of Effectiveness

An important requirement for the detection of network manipulation is performing
experiments from multiple sensor nodes on the communication network. Ideally,
we would like to perform the same network probing experiment from nodes which
have different network attributes, i.e., from different countries, ISPs, or organiza-
tions. For instance, if all of the user’s friends belong the same ISP (or country)
we will not be able to effectively determine whether the ISP (or country) was to
blame for loss in connectivity. Alternately, if none of the user’s friends belong to
the same ISP, we will not be able to conclusively prove that it is the ISP to blame
for any observed manipulation. For friendsourcing to be an effective strategy we
need to prove that, on average, a user’s friend circle has enough variety in such
network attributes to be able to detect the presence and probable source of network
manipulation.

A fundamental challenge with proving this property is the lack of publicly avail-
able data which comprises of both a social network and a corresponding commu-
nication network attributes. Another problem is the possible bias associated with

3

choosing any given type of social network as a basis for such an analysis. We give
a brief discussion of how we address these challenges in Section 1.3.1.

1.2.2 Resiliency

A problem with relying on friends is that, not all friends of a user may be avail-
able or willing to help the user in performing the network probes. We need to
show that friendsourcing as a strategy has enough resilience to handle lack of co-
operation from some friends. One supporting evidence for the effectiveness of
friendsourcing can be found in existing literature which shows the users are more
likely to cooperate with their friends than strangers (see Chapter 3 for more de-
tails). We would also like to prove that there is enough redundancy for a given
user in finding friends to perform their analysis. We given an overview of our
results in Section 1.3.2.

1.2.3 Efficiency

An important challenge in using friendsourcing is to make friend recruitment and
subsequent network probing efficient. Asking too few friends may result in lack of
precision when it comes to identifying the possible presence or source of network
manipulation. Choosing too many friends will result in an excessive number of
probes being sent to the end hosts as well as between the users. This would result
in our infrastructure being a unwitting source of a denial of service towards a
target web server. We give an overview of the optimizations that we developed to
minimize such occurrences in Section 1.3.3.

1.2.4 Practicality

We need to show that friendsourcing is practical and would be used by users in
real-life outside the laboratory setting. While many design architectures can be
evaluated in a laboratory setting; having a system evaluated by real, non-technical,
users requires that we have an implementation that is easy to use and is platform
independent. This means that we had to sacrifice some functionality for the sake
of wider deployment. We give a brief overview of our implementation in Sec-
tion 1.3.4.

4

1.3 Demonstration

1.3.1 Coverage

To prove the effectiveness of friendsourcing in detecting network manipulation,
we had to come up with metrics to measure coverage and evaluate it on datasets.
Informally, coverage tells us, for every user what part of their upstream entities,
who can engage in network manipulation, can be verified with the help of that
user’s friends (see Section5.2 for a more rigorous definition). A high coverage
(of 100%) indicates that a user can detect the presence and possible source of
network manipulation from all of their upstream entities. The coverage of a given
user may also increase as we go deeper into their social network (i.e., using friends
of friends as well instead of just friends). The coverage, can also be measured re-
stricted to some the network attribute. For instance, a user may only be interested
in knowing if their ISP is source of network manipulation.

We evaluated coverage metrics using four different kinds of social network
datasets: a collaboration based on authors who published papers in Arxiv in the
area of high-energy theoretical physics, two location check-in based social net-
works Gowalla and BrightKite, and a general purpose social network GooglePlus.
Not all of the network attributes for users in these datasets were directly available,
so we had to infer some of the attributes (see 5.1 for a discussion). We were able
to show good coverage for these different kinds of social networks suggesting that
friendsourcing is good strategy for acquiring sensors for a network probe. We give
more details of our datasets in Section 5.1 and coverage analysis in Section 5.2.

1.3.2 Redundancy

While a good coverage for a user shows that it is possible to acquire the neces-
sary network probes required to perform the analysis, there is no guarantee that all
of a given user’s friends may be interested or available in helping the user when
needed. In practice, it might only a fraction of a given user’s friends who respond
to a user. To demonstrate the resilience of social networks for this task, we ana-
lyzed the redundancy of a user’s social network for any given network attribute.
For instance, a user with high redundancy at the level of ISP, can find multiple
friends who can perform measurements from different ISPs. Thus, it will be pos-

5

sible for that user to detect any network manipulation by an ISP even if only a
small fraction of their friends respond to requests.

We analyzed the redundancy for ISPs as well as Countries for all the datasets.
Our analysis showed that all of the datasets had high redundancy (>5) in terms of
ISPs and Countries assuming a friendsourcing depth of 2 (i.e., when using friends
and friends-of-friends). The one exception was that a sparse dataset (Arxiv) re-
quired a larger friendsourcing depth to achieve the same redundancy. We show
the results of our analysis in Section 5.3.

1.3.3 Optimal Recruitment

Our initial analysis of a naive recruitment strategy using friendsourcing showed
that, without optimizations, it will be highly inefficient and lead to large number
of messages being passed between users, as well as, a large load on the end host
of the measurements. We show that certain optimizations can lead to significant
improvements in both messages passed and probes done, without sacrificing the
quality of the measurement.

Briefly, these optimizations rely on some pre-sharing of network attributes be-
tween users. This will allow users to recruit a much smaller subset of their friends
while performing the experiments. More details of the optimization algorithm and
analysis of its effectiveness are given in Section 5.4.

1.3.4 Field Deployment

To show the practicality of our strategy we implemented and deployed a tool
which was used by real life users. For ease-of-use, the tool was developed as a
website with Tomcat back-end. The website used signed Java Applets to perform
the actual network measurements from the perspective of end users. For reasons
of practicality, we also used a centralized web server to serve the applet based
website and to collected the results of the field study. The website maintained
the friendship relationship of the users and implemented the optimal recruitment
algorithms to choose the set of friends when performing network probing.

Although our architecture is flexible enough to detect various kinds of network
manipulation, our implementation was restricted to detecting network manipula-
tion of HTTP. It could detect manipulation of HTTP that was based on dropping

6

of packets, forging of HTTP status codes, forging of DNS replies, and modifica-
tion of the web page content. It could also identify whether the probable source
of network manipulation was the organization, the ISP, or the country. We give
more details of our implementation and the results of our field study in Chapter 6.

1.4 Overview and Contributions

The rest of the thesis is organized into the following chapters. Chapter 2 gives an
overview of network manipulation and the various actors performing network ma-
nipulation and their capabilities. It also gives an overview of the datasets we use
for our analysis. Chapter 3 gives an overview of the current state of research on de-
tection and circumvention of network manipulation. Chapter 4 gives an overview
of the various requirements, assumptions and design choices we have in imple-
menting the system. Chapter 5 gives an analysis of the coverage and redundancy
metrics of our datasets. Chapter 6 describes the architecture and implementation
of of field study. It also gives the results of experiments we conducted using the
system. Chapter 7 has some discussion on conclusions of our study and on future
extensions.

We list the contributions of this thesis below.

1.4.1 Effectiveness

We are the first study to show the effectiveness of Friendsourcing as a mecha-
nism for detecting network manipulation. To our knowledge, this is the first study
that looked at the feasibility of systematically using a social network to perform
communication network diagnostics.

In Section 5.2, we analyze the effectiveness of using social networks as a mech-
anism for acquiring network coverage. We show that a user on a social network,
by requesting only their friend neighborhood (friends and friends of friends), can
get sufficiently good coverage (i.e. more than 90%) of the underlying communi-
cation network. We also showed the resilience of a social network, by showing
that social networks we analyzed had high redundancy (>5) for detecting various
network attributes.

7

1.4.2 Efficient Recruitment

We developed optimization algorithms that will reduce the communication over-
head between friends as well as the network probe overhead in a distributed archi-
tecture for the task of detecting network manipulation. Our analysis showed that
these optimizations led to a reduction in the number of messages (and probes) by
more than (95%).

1.4.3 Implementation and Field Evaluation

We had a proof-of-concept implementation that used friendsourcing as viable a
strategy to detect network manipulation. Our prototype was suitable for detect-
ing blocking-based, protocol-based and DNS-based network manipulation on the
web. We performed a field study with 54 real-life users in India, all of whom were
acquired from an initial pair of users. Our field study was able to detect 64 distinct
blocked URLs within various ISPs in India, as well as various kinds of blocking
mechanisms used in 13 different ISPs in India.

8

Chapter 2

Background

In this chapter we give an overview of some background concepts on computer
networks (and the Internet in particular) and on social networks relevant to this
thesis. To avoid confusion, hereafter, we will use the term network to refer to
communication networks (or often the Internet) and the more qualified term social

network when referring to a network consisting of individual users. Online Social
Networks (OSNs) or Social Networking Sites (SNS) are online web-based plat-
forms that allow people to interact and share content with other people that belong
to their social network. These SNS are amongst the most popular web-based plat-
forms currently, with the most popular Facebook, the most popular SNS, reported
to have 1.11 billion monthly active users in early 2013 [4]. Section 2.1 gives
an overview of the relevant background on the Internet and Section 2.2 gives an
overview of various social networks and relevant research on collaboration using
social networks.

2.1 Communication Networks: Internet

The Internet, a globally distributed network of networks, relies on multiple in-
termediate nodes belonging to different administrative domains to locate hosts
and to route packets between any two end-hosts. Communication between any
two end hosts is packet oriented and uses the most commonly used protocols on
the Internet, IP at the network layer (IP) and TCP or UDP at the transport layer.
Routing packets between different Autonomous Systems (ASes i.e., networks ad-
ministered by different autonomous entities) itself is handled by routing protocols
like BGP (Border Gateway Protocol). Applications such as the World Wide Web
(WWW), email, and Voice-over-IP (VoIP), are in turn built on top of the under-
lying Internet Protocols (TCP/IP). Many of these applications also rely on other
supporting infrastructure such as the Domain Name System (DNS) for their func-

9

tionality. The lack of a central administrative authority in Internet’s distributed
architecture implies that these applications have to rely on nodes (like switches,
routers) belonging to different administrative domains to behave correctly. An
analysis done in 2011 [5], gives the weighted mean Autonomous System (AS)
count (i.e., distinct ASes traversed per path) for network paths as 3.

2.1.1 Actors on the Internet

Figure 2.1: Actors and Network Manipulation on the Internet

Figure 2.1 gives on overview of the various actors on the Internet. As shown in
the figure, any of the various entities along the path between a client on the edge
of the network and the target end server can be the possible source of network
manipulation. These entities include:

• End Hosts: These are the end hosts that individual users use to connect to
the Internet. These computers can have software installed (either by con-
cerned parents or sometimes by countries with restricted client software)
that stops the users from connecting to certain websites.

• Organizations: Organizations frequently deploy a gateway that lies along
the path between the users and the Internet. These organizations may block
content considered illegal or detrimental to productivity of their employees.
Firewalls also prevent incoming network connections to within the organi-
zation that might be considered spam or attack traffic.

• Customer-level ISP: End hosts and organizations connect to the Internet
using an ISP. Sometimes organizations may even be multi-homed (i.e., use

10

multiple ISPs). ISPs have traditionally been very active in network manipu-
lation. They have different motivations for engaging in network manipula-
tion: throttling bandwidth for certain high bandwidth protocols or applica-
tions, blocking access to websites that might host illegal content, blocking
potential spam emerging from compromised hosts within their network, and
blocking or throttling access to content that might be in commercial com-
petition with the ISP. Not all network manipulation by ISPs is considered
acceptable and there is a growing demand by various advocacy groups that
ISPs follow network neutrality.

• Backbone ISPs: Backbone ISPs (or Tier-1 ISPs) are in the middle of the In-
ternet and have peering relationships with other backbone ISPs. Customer-
level ISPs get access to the Internet through these Backbone ISPs. When
packets pass from end-hosts belonging to two different customer-level ISPs,
they may pass through one or more backbone ISPs. Backbone ISPs are also
sometimes responsible for network manipulation [6].

• Autonomous Systems: Autonomous Systems are networks with a fixed set
of IP routing prefixes under the control of a network operator. ASes have
a single routing policy. Typically, ISPs (and large organizations) come un-
der this definition with ISPs being assigned a Autonomous System Number
(ASN). ASNs are used in BGP routing protocols to identify the AS to which
a packet needs to be sent.

• Domain Name System: Domain Name System (DNS) is a distributed sys-
tem that helps in translating a human readable URL to a specific IP address.
While DNS servers do not by themselves engage in network manipulation,
responses from DNS can be manipulated to send end hosts to incorrect or
non-existent network locations.

• Countries: Country level firewalls are also a growing concern in the form
of web censorship. Countries may wish to block access to content they
consider illegal, or critical, or morally objectionable. Sometimes countries
achieve this censorship, not by themselves, but by asking ISPs within their
jurisdiction to implement it for them.

11

2.1.2 Traditional Threats to Network Communication

Traditionally, network communication problems on the Internet could be attributed
to multiple reasons. Some of these problems were anticipated from the beginning
and networking protocols had mechanisms to handle them. Over the course of
the development and growth of the Internet, newer problems arose and many new
mitigation techniques were developed to handle them. We given a broad catego-
rization of these traditional threats below:

• Capacity Issues: Capacity issues are a frequent threat to network commu-
nication. These include congestion of an intermediate network link due to
high network flows, congestion of network buffers at web servers due to
high demand. Congestion problems have been anticipated from the very
beginning and techniques, such as backoff mechanisms, are part protocols
like TCP. These backoff mechanisms lead to well-behaving users reducing
load by ‘backing off’ from making too many requests. ISPs have also de-
veloped different kinds of queuing mechanisms to ensure that a given flow
does not end up utilizing all available bandwidth. Many new techniques
such as distributed content delivery networks (such as Akamai) that allow
content replication across multiple servers have also been developed to han-
dle requests for content highly in demand.

• Equipment failures: Hardware failures such as router failures or link fail-
ures have also been anticipated from the beginning. Routing protocols can
typically handle such link failures by maintaining a list of alternate paths
to any given destination. ISPs also maintain multiple physical links from a
given point of presence (PoP) so that there is some redundancy in case of a
link failure.

• Configuration issues: Problems with configuration such as erroneous en-
tries in firewalls or improperly advertised routing table updates are harder to
handle automatically and may require manual intervention. For instance, in
a famous incident in 1997 (AS7007 [7]), a faulty configuration of a router
belonging to an Autonomous System (AS7007), led to incorrect BGP rout-
ing table updates being sent to the rest of the Internet. This caused a rout-
ing black hole, where a lot packets destined elsewhere were routed towards
AS7007 and ended up being discarded there. Network operators have since
come up with policies to mitigate propagation of erroneous routing updates,

12

and there have been many research proposals to handle BGP updates more
securely [8].

However, these proposals have not been adopted in general and it is still an
ongoing threat. For instance, recently in February 2008 [9], a faulty BGP
update was sent by AS17557 in Pakistan to the rest of the Internet, which
lead to hijacking of traffic sent to YouTube.

• Attacks: Deliberate attacks on the infrastructure are an ongoing threat
to network connectivity. One example is a distributed denial of service
(DDoS) attack where attackers use end nodes to send huge floods of packets
towards a given destination overwhelming the capacity of the target server
or the capacity of some network link along the way. Many techniques rang-
ing from over-provisioning, filtering of packets, and burdening the attacker
have been proposed and implemented to counter such DDoS attacks.

Despite these measures, DDoS is an ongoing concern. It is particularly
troublesome as DDoS attack directed towards one server may end up do-
ing collateral damage to other services. For instance, in April 2013, large
DDoS attack targeted towards SpamHaus [10] ended up also affecting other
Internet Exchanges in London and Amsterdam.

2.1.3 Emerging Threat: Network Manipulation

While many of the threats to network connectivity are either accidental or due to
deliberate actions by attackers at the edge of the network, an emerging threat is
the deliberate interference of network connections by administrative entities in the
middle of network. This increase in network manipulation has led to a push back
from various stake holders to prevent such manipulation. Advocacy groups such
as the EFF and regulatory authorities such as the FCC in the USA have tried to
limit manipulation from ISPs [11]. However, the legal situation has not yet been
clarified with the ISPs claiming that they have a right to network manipulation [12]
and the advocacy groups claiming the proposed curbs are not adequate [13]. At
the level of country-level censorship, Reporters Without Borders, observe March
12th as “World Day Against Cyber-Censorship” and give yearly reports on the
state of web censorship across different countries. Their latest report [1] noted 12
countries (including China, Saudi Arabia, and Vietnam) as Internet Enemies and a
further 14 (including Australia, India, and France) as countries under surveillance.

13

Unfortunately, HTTP and TCP/IP protocols do not provide enough diagnostics
to end users to accurately detect the presence and source of such network manip-
ulation. Due to the implicitly trusted nature of many of these protocols, it is often
possible for the actors in the middle to deceive the end users into assuming that
the server at the other end is not available, or that the content is unavailable. They
have various actions at their disposal such as dropping packets as well as sending
fake reset packets to close the connection. We describe the triggers that lead to
network manipulation in Section 2.1.4 and the mechanisms of such attackers in
more detail in Section 2.1.5.

Case-studies, Country-level blocking: Consider the following scenario which
occurred recently. The Australian government asked ISPs within their country to
block certain websites (and IP blocks) which were considered undesirable. The
list of these blacklisted URLs were not made public and included a false-positive,
an educational website hosted in the USA which fell under one of the blocked IP
ranges. To further complicate matters, only some of the ISPs followed the Aus-
tralian government’s request and blocked the blacklisted IPs whereas other ISPs
did not. An end user who is on one of the ISPs that are blocking the IP address
will not be able to know if the website is down or being blocked (if so, by whom).
In fact, it is possible for the ISPs to be more sophisticated with their blocking
and give false HTTP status codes (page not present etc.,) instead of simply drop-
ping the packet. Eventually, the Electronic Frontier Foundation (EFF) was able to
detect the presence of blocking from certain ISPs by collecting traceroutes from
network operators in Australia using different ISPs [2]. Note that technical analy-
sis alone would not have implicated Australian government as a possible cause of
network manipulation (as some ISPs within Australia were not engaging in cen-
sorship). The EFF were able to confirm that the blocking was due to Australian
government’s censorship list (and not say policies of a given ISP) only by talking
operators of one of the ISPs. An individual user on their own would not have the
network visibility to be able to make such inferences.

Case-studies, ISP level blocking: Free VoIP has made international calling
cheaper to many users across the world. This also meant that VoIP is a threat to
traditional public-switched telephony networks (PSTNs) which rely on revenue
from high costs of international calling. In many places, PSTNs also work as
customer-level ISPs. This leads to a direct conflict of interest, where free VoIP
services are seen as revenue threats. In many countries, PSTNs are also managed
by public-sector companies managed by their governments. This threat of rev-

14

enue loss lead to many countries blocking ports or network flows associated with
VoIP [14]. Blocking is also used by ISPs to present their own services as cheaper
or more reliable than those of their competitors. For instance, in 2006, a Canadian
ISP (Shaw Communications) recommended an additional fee of 10$ from their
customers who use a free VoIP service, Vonage. This lead to complaints from
Vonage that it was an anti-competitive measure [15].

2.1.4 Network Manipulation: Attacker Triggers

Network manipulation may be enabled by various triggers. We list the most com-
mon triggers discussed in literature [16].

• IP header: A simple trigger for blocking or throttling is the source or des-
tination IP addresses (or IP address blocks) of a packet. For instance, an
organization may maintain a white-list of IPs that users from within their
network can access and deny all other connections. Countries or ISPs, like-
wise, can block access to certain servers by maintaining a black-list of IPs
that are not allowed. This is a popular mechanism due to its ease of imple-
mentation. IP addresses are at fixed locations on a packet and many routers
provide efficient real-time mechanisms for blocking connections based on
IP addresses.

• Transport protocol headers: Many applications on the Internet use a de-
fault port number of communication. ISPs can use these port numbers to
block applications, such as VoIP or BitTorrent, that they consider unde-
sirable. Port numbers are also a popular trigger to block content due the
relative ease of implementation.

• Packet Payload: A more recent trigger for network manipulation is the
packet payload itself. This was initially not trivial to implement due to the
fact that examining the packet structure for content from different applica-
tions required more time and was not practical at routers which required
packet flows to be at line speed. However, advances in hardware [17] have
made it feasible to perform deep packet inspection (DPI) without sacrificing
speed. ISPs can perform DPI to identify application flows that need to be
blocked. Countries can perform DPI detect specific keywords in HTTP and
block corresponding connections.

15

• Time of the day: Another trigger for traffic differentiation can be time
of day. Customer-level ISPs see increased usages of their network during
specific times of the day and may be relatively free at other times. ISPs can
perform traffic differentiation on high bandwidth content only during those
times of heavy load, so that other customers can have a fair share of the
bandwidth.

• Network Load: ISPs may differentiate only when they are under heavy
load.

• User behavior: ISPs may block or rate-limit a user with heavy bandwidth
consumption.

2.1.5 Network Manipulation: Attacker Mechanisms

Different attackers have different capabilities for network manipulation. For in-
stance, organizations can have higher fidelity information about network identities
of individual users within their organization and therefore can have fine-grained
policies for network access from within the organization. Whereas, a country level
firewall may know nothing about the exact user making the request but can have
broad policies blocking access to large group of users. In CORDON [18], this is
referred to as the relationship between resolution of the censor and their scope of
influence. We list some of the various ways in which attackers can manipulate the
network connection.

• Dropping packets is a popular way of network manipulation, especially
when the attacker is implementing a blacklist. In this, the attacker sim-
ply does not forward packets that triggered the manipulation towards to the
target. The triggers could be IP headers, TCP headers, or even specific
keywords in the packet. This usually lead to end hosts timing out of the
connection as they do not receive any response from the target node. This
connection time-out is often perceived by end-users as the result of the tar-
get web server being off line or being unresponsive due to heavy load.

• De-prioritizing packets is a popular way for ISPs to throttle undesirable ap-
plications that their customers are running. These might be high-bandwidth
protocols such as BitTorrent or may be network connections corresponding

16

to applications that are commercially in conflict with some service the ISP
is offering (i.e., VoIP or streaming content).

• Protocol-level manipulation is a popular way for attackers to influence
the behavior of the end hosts. For instance, instead of simply dropping a
HTTP request to a web-page that they want to block, they can instead send
a fake HTTP status code back to the client that indicates that the page is
unavailable on the web-server. Instead of explicitly throttling the packet
transmission rate, the attacker can modify the TCP window sizes from the
client so that the server will send content at a reduced rate. Frequently, ISPs
may insert reset (RST) packets masquerading as a packet sent by the other
end of the connection [19]. These techniques have the advantage of being
stealthy and being hard to detect.

• Content manipulation involves attackers explicitly manipulating the con-
tent of the payload of packets. For instance, this was seen with ISPs insert-
ing their own ads into web pages requested by their customers [20]. This is
harder to detect, as often, differences in content may be due to benign rea-
sons. For instance, web servers often serve localized content to users based
on their geolocation.

2.2 Social Networks

A social network is a network made up of individuals who either know or have a
working relationship with other people in the network. It can be viewed as a graph
whose vertices correspond to users and vertices are connected by an edge when the
two corresponding individuals have some kind of relationship, often called a tie.
Vertices within one hop on the graph are friends and within two hops are friends of
friends and so on. Social network ties may be strong or weak ties [21] depending
on whether a friend is trusted or is a loose acquaintance. It was suggested that
strong ties are more likely to be reciprocal than weak ties [21].

Online social networks (OSN) such as Facebook, Twitter, LinkedIn, Google-
Plus are very popular platforms for users to keep in touch with their friends and to
share content. These platforms have shown an increasing rise in popularity, with
network effects causing people to migrate towards OSNs with large user bases.
For instance, a recent study by Facebook [22] found that, the average distance

17

between any two active users on their 721 million social network is 4.74 hops.
Even more impressively, this distance has shortened from 5.28 hops in their ear-
lier study in 2008. The median number of friends for Facebook is more than 100.

2.2.1 Types of Social Networks

There are different kinds of social networks, depending on how the ties between
different users is established. These differences mean that each social network
may have their own biases. For instance, a social network like LinkedIn is mainly
used for professional networking, whereas Facebook is more commonly used for
personal sharing. Here we give a brief discussion of various types of social net-
works:

• Sharing-based social network is the most common form of an OSN and
includes platforms such as Facebook and GooglePlus [23]. They allow users
to share their statuses, locations, photographs etc., with other friends on the
social network or even the general public. These are amongst the most
popular social networks with the largest number of users. A survey by pew
research in December 2012 [24] found that 67% of online adults in the US
used OSNs, in particular Facebook. It also found that the users are biased
towards younger population (83% of users with ages 18-29 used an OSN as
compared to only 32% of those aged 65 or more).

• Collaboration-based social network consists of a network of people with
ties between people that collaborated with each other in some task. For in-
stance, these include bibliographic networks like DBLP [25] and Arxiv [26]
where two people are connected in the social network graph if they have
co-authored a paper together. These social networks are obviously biased
in favor of users who engage in that task. They might also include other
biases, for instance users on an Arxiv based social network will consist
of academic users (mostly in the fields of mathematics, computer science,
physics etc.,) and who frequently have access to the Internet through an
academic network. The collaboration based social networks are frequently
utilized in academic research due to the fact that the data is readily available
for analysis. In our thesis, we analyze data using a particular bibliographic
network on Arxiv [27] which consists of authors who published in the field
of High-Energy Physics.

18

• Location-based social networks are another type of social network, that
allow users to share their current geographic locations with their friends.
Users are given a list of venues by the social networking website that are
nearest to geographic location of the user. The geographic location of the
user is determined by using the GPS function of a mobile phone and the
check-ins are done using either a mobile website or a mobile app. Therefore,
these social networks are likely to be biased towards people using mobile
smart phones. In our thesis, we used datasets belonging to two different
kinds of location-based OSNs, Gowalla and BrightKite [28].

2.2.2 Collaboration on Social Networks

There has been research on utilizing a user’s social network to accomplish tasks.
This can be contrasted with crowdsourcing in systems like Amazon’s Mechanical
Turk [29], which allows human solvable problems to be distributed to large num-
ber of (random) users. Friendsourcing is useful when the problem to be solved
either requires data that is available only to friends (and not the public at large) or
when friends are more likely to help problem compared to random strangers.

Collabio [3] utilized friendsourcing to gather personalized tags about a user.
This tagging was presented to the user as a game with points being accumulated if
the tags given by a user to their friend matched those given by other friends. This
game mechanism allows the tags to be more accurate and increases the interest
of users in participating in tagging. The authors found that while popular tags for
a user can be found by strangers as well as friends, uncommon but accurate tags
were much more likely to be found by friends.

A recent study [30] of 624 people found that people are likely to ask their
social network, instead of a search engine, for questions that may be subjective
or require expertise. It also found that up to 37% of users listed altruism as one
of the motivations for answering the queries of their friends. It seems obvious to
suggest that in terms of altruism, people are more likely to to help their friends
as opposed to random strangers (and that closeness of a friend was motivator to
answer a question). This was also measured in a study [31] that compared altruism
as shown towards a friend versus a random stranger in a modified dictator game.
A dictator game involves a user unilaterally deciding how to split some reward
between the user itself and another participant. It is found that even amongst

19

random strangers there is some altruism, that is, users do not keep all the reward
to themselves. The authors found that users were likely to give 52% more to
friends compared to strangers. Furthermore, when the game is set up to have
future interactions, the giving to friends went up by another 24%. This suggests
that, at least for certain tasks, friends are more likely to help than strangers.

Tie-strength can also affect the quality of information received from friends.
The original study in 1974 [32] found that weak-ties are better than strong ties
in the context of users seeking jobs. This was due to the realization that users
who are weak-ties are more likely to be in diverse circles and may have more
interesting leads in terms of available jobs. However, a recent study in 2012 [33]
looked at the effect of tie-strength in the context of answering questions posed on
OSN. They found that stronger ties (as measured by the framework developed in
[34]) provided a slight increase in information compared to weaker ties.

Another study [35] has found that in human social networks cooperative behav-
ior cascades to more than one hop, to as far as three hops. Finally, an interesting
study [36] found that centrally located individuals in a social network are more
likely to be cooperative. These results suggest that we can get good cooperation
from a social network by efficiently reaching out to centrally located users. They
are a) more likely to help us, and b) because of their central location, they will
reach other more cooperative nodes.

2.2.3 Trust on Social Networks

An important consideration while using social networks is the idea of trust be-
tween users and whether there is transitivity of trust on social networks. This
is difficult to evaluate in general, as there are different notions of trust (trust in
someone’s recommendation versus trust in someone’s action etc.,) and they are
not always explicitly specified by the users.

Claims have been made that trust is not transitive [37], as well as that trust is
somewhat transitive but distrust is not [38]. In OSNs, and in particular recom-
mender systems, the assumption of trust transitivity helps in generating trust for
users who are starting with the system. The recommendations of users trusted by
a new user can be used to give recommendations to a new user. Consequently,
there have been a lot of algorithms that assume trust transitivity to generate trust
values between two users not directly connected [39, 40].

20

Transitivity of trust on a social network has also been experimentally verified
in some specific domains. In particular, algorithms that assume transitivity while
propagating trust have been very successful in predicting the opinions of the users.
For instance, [41] studied the dataset for www.epinions.com, where users
may review items, other reviews, and indicate trust and distrust of other users in
the system. The paper assumed transitivity of trust between users to perform a
matrix operation based propagation of trust between users who are not directly
connected by any existing trust relationship. The authors were able to validate
their algorithm by correctly predicting an existing hidden trust relationship around
85% of the time.

In a similar vein, [42] also tried to predict whether users trusted or distrusted
each other. Instead of matrix operation based propagation of trust, the paper used
a machine learning approach to infer the trust relationships between users who are
not directly connected. The paper used joint relationships (whether a user in the
middle trusts or distrusts two unconnected individuals) as inputs to their machine
learning algorithm. They used wikipedia moderator election data, slashdot.
org friend of foe data, and www.epinions.com trust data to evaluate their
algorithm. They had a high prediction success rate (around 80% to 90%) when
predicting an existing hidden trust relationship.

Another paper, [38] used the same datasets, but used a different mechanism for
propagation of trust. This work used a random graph as a model of users where
edge probabilities were inferred from existing trust relationships. By assuming
trust transitivity, and using a spring embedding algorithm (where users with a
shared friend are pulled together and users with a shared enemy are pushed apart),
their algorithm was able to predict 80% to 89% of the hidden trust relationships.

These results indicate that, at least in certain social networks, the notion of trust
transitivity works. These are encouraging for friendsourcing where we may want
to go beyond immediate friends when asking friends for help.

21

www.epinions.com
slashdot.org
slashdot.org
www.epinions.com

Chapter 3

Related Work

Network manipulation, in the form of network neutrality or censorship, has en-
gaged the interest of a number of researchers. Research in this domain has con-
centrated on bothtechniques for detection of the manipulation as well as in devel-
oping mechanisms to overcome it. In this Chapter, we give an overview of some
of the recent research in both these areas.

3.1 Detection

There have been many interesting approaches to detection of network manipula-
tion over the years. These approaches differed by: a) the strategy for acquiring
agents that do the analysis, b) the target suspect for manipulation (most commonly
ISPs, more recently countries), and, c) the end user involvement. In this section,
we give an overview of the various techniques and characterize them by these
aspects.

3.1.1 Crowd-sourcing using measurement-servers

A common strategy involves crowd-sourcing the measurement of network manip-
ulation, especially when the target suspects are ISPs. Often, the analysis is done
by users sending specific packets to a given a set of measurement servers corre-
sponding to the tool. BTTest [43] studied the incidence of blocking BitTorrent
protocols by ISPs. In this case, users ran a Java Applet which emulated the Bit-
Torrent protocol in talking to a measurement server. In case the connection was
closed (and was not due to RST packets sent by the measurement server), it was
concluded that there was explicit manipulation by ISPs along the way. BTTest
found evidence of relatively high amounts of blocking (8.2% of their result sets).

22

Glasnost [16] is another user-driven tool that measures certain kinds of net-
work neutrality violations by ISPs. Glasnost detects traffic differentiation based
on transport protocol headers (for instance, certain Peer-to-Peer(P2P) ports) or
packet payload (higher-level application protocol messages) by doing a differen-
tial analysis. The end user connects to a measurement server and runs a couple of
network flows. One flow is run with specific application parameters (for example,
BitTorrent) and another flow with control parameters is run with a random pay-
load. This was also implemented as an website with a Java applet performing the
set of measurements.

Netalyzer [44] is another user-driven tool (using Java Applets) that runs a set of
test-suites by contacting a set of measurement servers. It can detect port filtering,
DNS manipulations, path MTU and other features.

ShaperProbe [45] is another tool which detects traffic shaping by ISPs. Many
ISPs offer burst speeds with high bandwidth at the beginning (measured in sec-
onds) of a network connection, but will lower bandwidth later on. These bursty
speeds will help users to download short files quickly, while not giving priority
to users using long-lived flows. ShaperProbe is a platform-dependant executable,
which when run by a user sends traffic to a specified measurement servers. The
measurement servers look at the traffic flow rates to estimate at which point (in
seconds) during a network connection the ISP will implement traffic shaping to
downgrade the connection speed.ShaperProbe probe found many ISPs within the
US implementing traffic shaping (not all of whom had advertised it).

In all of the above cases, the implementation involved a tool which could talk to
a set of measurement servers belonging to the tool. Note that, as these were using
to detect manipulation of specific protocols (such as BitTorrent) by the ISPs, the
user involvement was limited to running the tool that came with a predefined set
of test suites. In particular, this strategy would be less effective when the network
manipulation is specific to a set of targets not involving the measurement servers,
as in case of a targeted website censorship.

3.1.2 Passive Aggregation and analysis

In contrast to the techniques above which involved active measurements by end
users, there have also been techniques that involve collecting data from a user and
performing an off-line analysis to detect patterns of manipulation. NANO [46]

23

performs detection of general network neutrality violations by performing causal
inference on passive data collected from a large number of agents. The measure-
ment data collected from all the nodes is analyzed to detect if packets of a given
application (or destination) face performance degradation when passing through a
particular ISP compared to other ISPs.

HerdictWeb [47] is a crowdsourcing site that allows users to report problems
with a specific web site and check if other users are facing similar problems with
that web site. It also maintains a timeline of reports for a given web site, allowing
a user to detect historical patterns in site access, say, from a given country.

3.1.3 Piggybacking on P2P networks

Another technique for acquiring users to perform the analysis involves piggyback-
ing on P2P protocols to perform the analysis. For instance, [48] utilized clients
on Gnutella to perform their analysis. In this case, they insert a rogue super-peer
which redirects normal users to try connecting to their measurement server on a
given port number. The probe requests from other participants using Gnutella to
a measurement servers with given port numbers is used to study the incidence of
blocking based on port numbers.

Dasu [49] is another approach for characterizing the performance of ISPs. Dasu
runs as a plug-in in the user’s BitTorrent client. It takes passive measurements of
the user-generated traffic to get an accurate assessment of the ISP on real-life
traffic (as opposed to measurement servers). Dasu can also do certain limited
measurements to detect some ISP manipulation such as manipulation of DNS
replies.

3.1.4 Automated Analysis

Another approach is to perform an automated analysis that involves clients run-
ning automated test suites on large distributed infrastructures (such as PlanetLab
and MeasurementLab).

NVLens [50] and NetPolice [6] analyze traffic differentiation in backbone ISPs
by sending probes with varying parameters from a distributed set of end hosts
to some selected destination nodes. Aggregate loss rates are then collated by a
central node to uncover suspect ISPs that might be responsible for the differentia-

24

tion. In contrast to HerdictWeb, which is entirely based on user reporting, Cens-
Mon [51] automates the detection of censorship to a given URL. Upon receiving
a URL, a centralized server forwards it to a distributed set of agents running on
PlanetLab in various countries. It then collects and reports the results of all the
individual agents attempting to access the URL including DNS replies, URL fil-
tering, content on the web page, and other information.

3.1.5 Other Approaches

Web Tripwires [20] is another approach that detects modification of in-flight http
packets. The authors observed in their experiments that the web pages were mod-
ified to insert advertisements, code to block pop-ups, and even malicious code.
Web Tripwires is a piece of client-based Javascript code that can execute on the
client’s browser when loaded with the page and perform basic integrity checks to
notify the user if his page was modified in flight.

3.2 Circumvention

Due to the increasing rise of censorship, a lot of recent research has also focused
on circumvention of cyber censorship. A common mechanism for circumven-
tion of censorship uses web-proxies (such as [52]). However, this leads to proxy

discovery, where the censor might be aware of the proxy locations and block it
entirely. Key space hopping [53] is a technique developed to ensure that the
client (and, therefore, a censor masquerading as a client) will only know some
small fraction of the total number of proxies. Infranet [54] uses cooperating web
servers, acting as proxies to clients, to deliver censored content to the end user. In
it, the end user uses a covert channel in the HTTP request sequence to request a
censored web site. The co-operating server replies via images which embed the
censored content using steganography. Another way of hiding censored content
using steganography was proposed in Collage [55]. In it, the authors utilize com-
monly available user-generated content sharing sites (such as photo-sharing sites)
as a cover to request and deliver censored content (using steganography). Finally,
there have been multiple recent research papers [56, 57, 58] that suggest getting
rid of end-host proxies altogether and using instead cooperating routers on the
path to act as proxies to the censored client.

25

Chapter 4

Design Options

Any user, who uses a system that relies on friendsourcing to detect network ma-
nipulation will go through a set of broad common steps. However, the actual
realization of a system, as well as the implementation of each of these individ-
ual steps, will depend greatly on the desired features from the system and the
assumptions made about the various parties involved.

In this chapter, we give an overview of these design choices and the various
factors that effect these choices. Firstly, we describe the broad steps involved
in the friendsourcing approach in Section 4.1. We describe a set of desirable
features of any such system in Section 4.2. We also list a set of assumptions that
can influence the design choices in Section 4.3. Finally, Section 4.4 describes the
various choices in design of such a system, and a discussion of how each of those
choices is affected by the features that need to be supported and the assumptions
that are made.

Our prototype implementation corresponds to only one point on this design
space. We give a description of the choices we made in our implementation in
Chapter 6.1. In our analytical evaluation in Chapter 5, however, we look at mul-
tiple design choices and look at the effects of those choices on the efficiency and
correctness of the system.

4.1 Conceptual Phases

Independent of the actual design choices, any user attempting to detect network
manipulation using friendsourcing, will go through a set of common phases. Fig-
ure 4.1 shows the various phases involved. We give a description of these phases
below.

• Registration: Although not shown in the figure above, an important part
of the system is the registration of the user to the system. Depending on

26

Figure 4.1: Conceptual steps in Friendsourcing

the design, this may involve the user going to a website, or running a tool.
This phase may also involve collection of network attributes of a user (such
as which ISP the user belongs to) either automatically, or by explicitly re-
questing the information from the user.

• Suspicion: This is the first real step in a user utilizing the detection system.
In this phase, the user suspects that there are problems with their network
connection. This may be a straightforward step invoked by the user based
on lack of network connectivity seen by the user. Alternately, it may be
trigged automatically by a tool running diagnostics on the user’s behalf. In
cases such as a degraded network connection, the user may not even be sure
that any manipulation is taking place, but only wanted to confirm that it is
not occurring.

• Recruitment: In this phase, the user requests help from their friends to
perform the probing. In the simplest case, it can be done by the user asking
all of their friends to perform the probes. Alternately, the user can decide on
a specific group of friends, depending on the various criteria; availability of
the friend, history of cooperation from a friend, or other network location
of the friend. In some designs, this choosing of a subset of friends may be

27

automated by the tool itself. The recruitment may be done by the tool using
the API of a social network.

• Probing: The recruited friends send a probe, i.e., a network request towards
the target. The results of the probe could be a simple success or failure, or
include more elaborate responses such as protocol response, timing failures,
performance metrics (such as latency). In general, these probes could be
triggered manually by the users or automatically by the tool on behalf of
the user.

• Aggregation and Analysis: In the final phase, aggregation and analysis, the
results of all the probes from all the recruited friends are gathered together.
This aggregation and analysis could be done at a centralized authority or by
collecting the probe results at the originating user who initiated the request.
The results of the analysis may give us the identity of the manipulator or
may result in the realization that more information is required to explicitly
identify the suspect. In case more data is required, the user may go through
the recruitment, probing, aggregation phases again with an expanded set of
friends to perform the analysis.

4.2 Desirable Features

Besides the basic requirement of detecting network manipulation, we also have
some features that would be desirable in any design and its implementation. Note
that some of these features may be mutually exclusive when it comes to actual
implementation.

• Ease of use: The tool should be usable by general non-technical users.
Ease of use comprises of multiple factors. Firstly, using the tool should not
require any particular technical know-how regarding computer networking.
The user should get understandable results using the tool without having
to utilize perform network diagnostics on their own. This also means that
the tool should be cross platform. If possible, the tool should not require
separate installation (or privileges for such an installation) on the user’s
machine.

28

• Generality: As far as is practical, the system should be capable of detecting
a general class network manipulations. First, the system should be able to
narrow the collection of entities likely to be responsible for violations. The
user should be able to detect if it is his/her organization, ISP, country, or any
other upstream administrative entity that is responsible.

• Extensibility: As listed in Chapter 2, traffic differentiation can occur based
on various factors including transmission protocols, application protocols,
packet payload or even the destination of the packet. Ideally, the system
should have the capability to detect a wide range of network neutrality vio-
lations. Given that the list of potential violations is unlikely to remain static,
it is desirable that the system be extensible with modules that can address
new violations as they arise over time.

• Effective Recruitment: The system should be capable of performing an
effective recruitment of a user’s friends to perform the inference. Effective
recruitment implies that the friends selected are the most useful for detecting
the presence and source of manipulation. It also implies that the friends
selected are available to help and they are most likely to help.

• Efficiency: The sensor recruitment system should be efficient. There are
different ways of measuring the efficiency of the system. The system should
minimize the number of probes being sent to the target destinations. It
should minimize the number of messages that are passed for the sake of
recruitment of friends and the number of messages the are passed to collate
the data from those recruited friends. It should also perform this network
manipulation detection efficiently.

• Graceful Degradation: The design and the implementation should allow
for a graceful degradation in case of limited capabilities of the user. This
could be in multiple aspects. Firstly, if a user cannot run the full set of tests
from the tool due to limitations of their platform, the system should still
allow the user to gather some meaningful results. Secondly, even if the user
does not have enough friends who are current participants in the network
manipulation detection system, we would like the user to have some utility
to the user. This is an especially important characteristic to have for new
users. If a new user has no benefit from using the system, it leads to a bad
network effect; new users will not joining the system as they will not get

29

any benefit from using the system and future users will be less inclined to
join the system due to the lack of other helpful users in the system.

4.3 Assumptions

Friendsourcing, as an approach to detect network manipulation, makes certain
fundamental underlying assumptions independent of the design choices. A partic-
ular design can also make further simplifying assumptions, which are not strictly
necessary for friendsourcing to work, that may make the resultant implementation
easier. Here we list both these kinds of assumptions.

• Safe Probing: We assume that a user does not have to face any repercus-
sions for making the probes. For instance, the user does not get penalized
by the ISP (or government) for checking if a given site is accessible. Also,
this implies that the very act of making a probe, does not push the user over
some network capacity quota limit that the ISP might enforce.

Note that in case of wireless mobile platform this assumption may not be
true for all users. Many users are on a metered data plan and may not be
willing to help their friends extensively due to the associated cost. Further-
more, in some countries such as Syria, users may be arrested for access-
ing websites that are considered critical of the government [59]. People
may also be unwilling to use the system in certain countries due to ex-
isting policies preventing people from circumventing the censorship. For
instance, an internet store owner was arrested in Iran [60] for selling soft-
ware that allowed circumvention of blocking within the country. Finally,
there have been attempts at laws making it a crime to access certain adult
content [61, 62]. This will lead to users not willing to risk sending probes
even for their friends.

• Communication Path: We assume that users on a social network have
some framework by which they can communicate, both for the purpose of
recruitment as well as for sharing results. We also assume that the network
service providers do not interfere with the social network messaging of the
users.

This particular assumption also affects the actual implementation. For in-
stance, if each individual user needs to run a program to listen to their

30

friends, it may not be practical as many ISPs do not allow their users to
run services which can be reached via incoming connections. Instead, us-
ing mechanisms from an OSN to perform this communication will be more
practical.

• Consistent Policies for Manipulation: We assume that the various manip-
ulators consistently apply their policies for manipulation across their do-
main. For instance, we assume that if an ISP is blocking connections to a
website, it will not apply the blocking only to some users and not the others.

• Stable Path: A reasonable, but not necessary, assumption that can be made
is that a packet always takes the same path to its destination. More accu-
rately, it can be assumed that a packet always passes through the same set
of outgoing administrative domains of a user. We may also assume that the
user has a way of recognizing these administrative domains. This assump-
tion is generally a reasonable one. While packets on the Internet may take
various paths to reach a server, the set of possible outgoing administrative
domains that they traverse through are generally fixed.

This is particularly true when we consider the possible sources of network
manipulation. The organizational firewalls, network service provider and
the country of a given node on the network are likely to be very stable. We
will treat a user using multiple computers on different networks separately.

In case of multi-homed organizations with multiple ISPs, however, this as-
sumption may not be true. In such cases, we may need multiple probe
requests to correctly identify the problem.

• Trustworthy Social Network: Another simplifying assumption is that a
user’s social network is trustworthy and does not consist of malicious friends
who might be sending incorrect results to mislead the user. In reality, there
might be many sybil users on the social network. These are users who are
created by the attacker with forged identities. However, unlike in crowd-
sourcing, subverting the analysis results is not straight forward for sybil
users of the system. The users affected are only those who are closely con-
nected to the sybil network via their social network ties. In particular, if all
the friends within a maximum hop-count radius of the originating user are
honest, the system will give accurate replies. Other techniques have been

31

developed recently which make it easier to detect sybil networks within so-
cial networks [63].

4.4 Design Choices

As discussed earlier, there are many different design choices in implementing
friendsourcing to detect network manipulation. In this section we discuss many
of these choices and how they affect the various phases in friendsourcing

4.4.1 Coordinated versus Decentralized

Broadly, we can realize our friendsourcing approach with two different strate-
gies. We could have a decentralized system with friends as distributed nodes and
friendship ties as the connections between these nodes. In this approach, we do
not have any centralized authority which collects or analyzes the presence of net-
work manipulation. The system can use the infrastructure of an OSN to actually
propagate the probe requests to friends and to analyze responses from such probes.
There is no central authority to store results or to perform the aggregated analy-
sis. We analyzed the effectiveness of a distributed friendsourcing architecture in
Section 5.4.

Figure 4.2 gives an overview of such a system. As shown in the figure, a user
initiates the friendsourcing when they cannot accesses a particular web server.
In this example, the network connection is being blocked by the firewall of the
organization to which this user belongs. The user recruits friends (who in turn
ask their friends) to perform the probes. The results of these probes are passed
back through the friendship ties to the originating user. This user can collect and
perform a local analysis to figure out the cause of the network manipulation.

Alternately, we could use a centralized coordinated architecture which utilizes
a trusted trusted entity in charge of collection of data, analysis of detection, and
recruitment of friends. This approach has its central weakness,i.e., being a sin-
gle point of failure. However, it also has many advantages including ease of de-
ployment, ease of use, and efficiency for end users. Consequently, it is the most
common approach seen in literature [16, 46, 44]. Note that although we mention a
centralized architecture, it may actually be implemented as a distributed collection
of servers which are conceptually performing the role of a centralized coordinator.

32

Figure 4.2: Distributed Design for Friendsourcing

Figure 4.3: Coordinator based design for Friendsourcing

Figure 4.3 gives us an overview of the various components involved in such an
approach. As shown in the figure, a user initiates the friendsourcing when they
cannot accesses a particular web server. This request is sent to the (conceptually)
centralized coordinator. In this example, the network connection is being blocked

33

by the firewall of the organization to which this user belongs. The coordinator re-
cruits friends which it considers likely to help the user (either due to their network
locations or due their previous history of interaction with the originating user).
These friends perform the probes and sent the results back to the coordinator. The
coordinator performs the aggregation and analysis and sends the results of the
analysis back to the originating user.

We discus how this design choice affects the various phases below:

• Recruitment In a completely decentralized system, recruitment follows the
friendship ties directly. This can be implemented in different ways. In a
purely distributed environment, we can imagine every user running a dae-
mon listening to incoming requests from their friends. This is not always
practical due to policies by ISPs blocking such incoming requests to users.
Alternately, we can use the services of an OSN which have APIs [64] to al-
low communication between friends. This strategy while being more prac-
tical and usable, will be vulnerable to an attacker blocking OSN communi-
cation. In contrast, in a coordinator based approach, the recruitment is done
by the coordinator choosing the set of friends to ask for help.

Another aspect to consider is the overhead involved in recruitment. This
overhead occurs in both the number of messages being sent as well as in the
time taken for these messages to be sent to all the users. Absent a global
coordinator, a simple strategy for recruitment is to ask all friends who may
in turn ask other friends for help. This simple strategy, however, is not
very practical as the size of modern OSNs results in a huge number of such
requests even when simply restricting ourselves to friends of friends (Face-
book, has on average 20,000 friends of friends per user). Also, because of
a lack of coordinator, mutual friends of an originating user may be receive
multiple requests adding to the messaging overhead. Also, because each
request may be forwarded to friends of friends and so on, we have also have
a timing overhead proportional to the depth of recruitment. In a coordinated
design, the coordinator can, in one step send requests to all those friends
(and friends of friends) in one single step. This gets rid of the multiple
stage recruitment that needs to occur in a purely distributed architecture. It
also gets rid of the inefficiency of sending the same request multiple times
to mutual friends of an originating user.

34

Finally, a design choice that needs to be made is whether the recruitment is
automated by the tool or done manually by the user. A user may not always
have the best knowledge of the network characteristics of their friends and
therefore may not perform optimal recruitment for the task. Alternately,
however, a user is likely the best judge of the strength of friendship. There-
fore, they will select friends who are more likely to respond to their requests.

• Aggregation In a decentralized system, the probe results need to be sent
back to the originating user for analysis. This will typically follow in in-
verse order of the messages sent for recruitment. This has all the messaging
and timing overheads associated with recruitment. In a coordinated design,
the results of the probe are sent by the users back to the coordinator. The
coordinator can perform the aggregation and analysis and send the results
back to the originating user.

This increases the efficiency in multiple ways. Firstly, there is less overhead
in the direct aggregation of the results using a centralized coordinator. More
importantly, results of an analysis may be stored and, if recent, given to
further requests from other users. This can have a significant improvement
in efficiency if, for e.g., a popular website is suddenly inaccessible. Instead
of multiple users making requests which result in a large number of probes
being sent, the coordinator can share the analysis of the failure (and possible
source) to subsequent users (within a short time period).

A decentralized approach has many apparent advantages. The most important
one is the fact that there are centralized targets for the attackers. An attacker who
wants to block the detection system, cannot do so by simply blocking access to the
system. In Chapter 5 we give our analysis of evaluating a distributed architecture
as well as some optimizations that can improve the efficiency of such a system.

Although, a centralized system is vulnerable to being blocked by an attacker,
as discussed it has many advantages in terms of implementation, ease of user, and
efficiency for end users. In our prototype evaluated with real-life users, we there-
fore used a centralized coordinator approach. We describe our implementation in
more detail in Chapter 6.

35

4.4.2 On-demand versus Tool-driven analysis

Another design choice we need to made is to choose whether we have a design
supporting an on-demand analysis where the users can dynamically choose the
analysis to perform, or a tool-driven analysis where the tool keeps listening to
network connections and uses friendsourcing when it sees potential problems. An
on-demand analysis will allow a user to use the system whenever the user suspects
there is a manipulation. This is especially useful when there is reason for a user to
suspect that there is content manipulation occurring in the system. A tool-driven
analysis may not have the necessary context to detect that there is any problem
with the network connection as it sees no flaws in the network connection. On
the other hand, a tool-driven analysis may be more accurate at detecting subtle
network manipulation such as those that involve traffic-shaping which may not be
readily apparent to the human user.

4.4.3 Using measurement-servers versus real-life servers

One design choice is to use measurement servers under the control of the tool
to contact when performing the analysis. This has the advantage of being more
accurate as we can measure the transmission characteristics at both ends of the
connection and therefore attribute problems in throughput to the middle of the
network. For this reason, it is a popular approach [16, 44, 43] when measuring
network neutrality violation or traffic shaping. However, this may also not detect
all the problems in real-life as the attacker may only be manipulating on certain
real life website while not affecting connections to any other destination including
those of the measurement servers.

36

Chapter 5

Analysis

The effectiveness of friendsourcing as an approach for detecting network manip-
ulation can be measured both with analytical evaluation of data sets as well as
field studies using real users. Analytical evaluation will help in proving whether
friendsourcing as an idea is feasible. It will also help us in studying the effects of
various design choices and optimizations on system performance.

In this chapter, we give coverage and redundancy analysis of multiple OSN
data sets to measure the feasibility of friendsourcing to detect network manipu-
lation. We also describe evaluation of a simulated system using this data set and
describe optimizations that improve the performance numbers of the simulations.
Section 5.1 describes the various data sets we use in our evaluation and their char-
acteristics. Section 5.2 gives a definition of the various coverage metrics. It also
gives the coverage metrics of the data sets we study. Section 5.3 gives a definition
of the various redundancy metrics. It also gives the redundancy metrics of the data
sets. Finally, Section 5.4 describes the optimizations we can use for friendsourc-
ing and their effects on simulations of a distributed friendsourcing architecture.

5.1 Datasets

To study the effectiveness of friendsourcing in detecting network manipulation,
we evaluated it using simulations on three real-life social networks. A critical
aspect of our evaluations depends on the network coverage that users can expect
from their social networks. We can only use datasets which consist of both so-
cial networks and the network location of those users. Unfortunately, there are
few publicly available social network datasets that give them both. It is also dif-
ficult or impossible to infer these attributes (especially the ISP I) from crawling
through publicly available attributes in a social network. To get an accurate eval-

37

uation of the coverage given by friendsourcing, we used three real-life datasets
with different characteristics.

Arxiv: We used the dataset [27] consisting of a collaboration network of au-
thors who have published on Arxiv [26] in the field of high-energy theoretical
physics on or before 2003 consisting of 8392 users with 40774 connections (col-
laborating links) belonging to 2149 unique domains. This has the advantage of
high fidelity, as the authors in all of the cases were associated with a particular
educational institution. Each author on a paper is considered a friend of any of
the other coauthors of the paper. Each author is associated with the network lo-
cation of his university domain. In case of an author with multiple affiliations,
we chose the affiliation associated with the latest published paper. A problem
with this dataset, however, is that it is very sparse. The average user has less
than 10 friends (in contrast to online social networks like Facebook where 100
is the norm) and many users have exactly one friend or are the only person from
within their administrative domain. Another problem was that many of the authors
(25.7%) were lone authors, i.e., they did not collaborate with any other author. For
these reasons, we also analyzed the results with those users excluded.

Gowalla: Gowalla was a location-based social network where users ‘checked
in’ at different geographic locations to be shared with their friends. We used data
from the location-based social network taken from [28]. This consisted of 196,591
users with 950,327 edges (friendship links) between them. The dataset consists of
6,442,890 check-in locations given as pair of latitude and longitude coordinates,
with multiple check-ins per user. We used an off line reverse geocoding lookup to
infer the city and country attributes from the check-in locations. We used the most
common city and country values as the home location of the user. This follows
the methodology in the paper [28] where the users are assigned a home location as
the average of the check-ins in the 25km by 25km grid containing most check-ins.
In our case, as we are not concerned with the exact home address, we simply take
the most frequently occurring city. We verified the accuracy of our off line reverse
geocoding lookup by verifying a sample of the locations with an accurate online
reverse geocoding web service [65].

BrightKite: We also used data from another location-based social network
taken from [28]. This consisted of 58,228 users with 214,078 edges (friendship
links) between them. It consisted of 4,491,143 check-in locations, with multi-
ple check-in locations per user. Similar to the Gowalla dataset, we used reverse
geocoding to get an home location for a user.

38

Note that, while Gowalla and BrightKite datasets give us good metrics to mea-
sure the coverage over a geographical area (including the country), we cannot
directly infer the ISP (or organization attributes) of the user. To fill the ISP at-
tribute, we randomly assigned all the users in a given city randomly into 3 or
more ISPs. This assignment was based on the number of users in a given admin-
istrative location. We assigned a minimum of 3 ISPs for any given location with
a user population of less than 1000. We assigned more ISPs (4,5,6) for locations
with 2000, 4000, and more users. This choice of the number of ISPs per cities
is an heuristic assignment that was determined based on a estimates of customer
subscriber numbers for different ISPs [66].

Figure 5.1: Average number of friends per user (at a social network depth) for
Arxiv, Gowalla, and BrightKite

Figure 5.1 gives the average number of friends per user in both of these net-
works as function of social network distance. Note that the y-axis is log scale. We
can clearly see that the average number of friends at depth 2 and more is much
larger for Gowalla and BrightKite as compared to Arxiv. Furthermore, a good
percentile (22%) of the Arxiv dataset consists of ‘lone’ authors who have not
published with other authors. We explicitly account for this by giving the average

39

number of friends at a depth excluding those users as well. In terms of the average
number of friends available at depth 2, both Gowalla and BrightKite networks are
more representative of a general purpose OSN like Facebook than Arxiv. In fact,
an analysis [22] on Facebook showed that the median number of friends for a user
was 99, while a user with 100 friends had 27,500 friends-of-friends. Both of these
are values for Facebook are higher than the values we see in either BrightKite or
Gowalla.

5.2 Coverage Metrics

A user should be able to verify the possibility of network manipulation by any
party on its network path. In this work, we concentrate on the four parties most
likely to manipulate: Countries (C), ISPs (I), Organizations (O), and the user’s
own Machine M. While it is possible for other network entities to cause problems
(such as badly configured wireless routers), the C,I,O,M entities would account
for most of the current deliberate manipulation.

To study this, we calculate the coverage of these network attributes C,I,O,M,
by a user’s social network. A high coverage by a user’s social network will result
in more of a possibility of detecting the exact source of network manipulation. If
network attributes were uniformly distributed amongst all users, we can see that
social networks such as Gowalla and BrightKite by virtue of having a much larger
number of friends at depths greater than 2 will have higher coverage than that
of Arxiv. However, this may not necessarily be the case and the user’s network
attributes may be correlated with that of their friends resulting in a poor coverage.

We illustrate the coverage concepts with a running example of the configuration
shown in Figure 5.2. It shows 6 users U1, .., U6, two organizations O1, O2 for
users U1, U6 respectively, three ISPs I1, I2, I3 and two countries C1, C2. Note that
the communication links are logical. The communication links are in the direction
from downstream manipulators to the upstream manipulators (i.e., the countries
are upstream of the ISPs and the ISPs are upstream of the organizations). The
social network links connect users with their immediate friends.

We define the terminology that we use to measure coverage here:

Definition: A network attribute A is a logical administrative entity that is found
along a user’s network path. We denote the value of a network attribute A for any
given user U as Attr(A,U)

40

Figure 5.2: Example social and communication network

In our case, as mentioned earlier, we are only concerned with the network at-
tributes C,I,O,M. Often, such as when the user is connected from their home,
the organization attribute O is empty. In the example in Figure 5.2, we have
Attr(I, U3) = I2 and Attr(C,U3) = C1.

Definition: We denote A → B to mean that the attribute B is immediately up-

stream of attribute A. The attribute hierarchy is given as M → O → I → C, with
the attribute for machine, M, at the bottom and the attribute for country, C, at the
top. An attribute B is upstream of A, if A → B or there is an attribute C such that
C → B and C is upstream of A.

In our example, by definition, ISPs are immediately upstream of a user’s or-
ganization. ISPs are upstream of both organization and machine. Countries are
upstream of all the other network attributes, I,O,M.

Definition: A user U covers a network attribute A, at depth d, if there is a friend
f within d hops of u on the social network such that:
a) Attr(A,U) 6= Attr(A, f), and

41

b) for all attributes Aup upstream of A, Attr(Aup, U) = Attr(Aup, F)

We denote the set of all attributes covered by U at depth d as AttrCoveredAt(U,d).

In the example 5.2, user U3 can ‘cover’ her machine within depth 1. This is
because she has an immediate friend U4, who shares all upstream network at-
tributes (i.e., I2, C1), but can verify from an independent machine. This would
enable her to attribute the blame on her machine if she cannot access the tar-
get web server from her machine but see that U4 can. Similarly, U3 can cover
her ISP (I2) within depth 1, because her immediate friend U2 can send a probe
through another ISP I2 but with the same upstream country C1. However, U3 can-
not cover her country within depth 1. She can cover the country at depth 2 through
user U5 via her immediate U1. Therefore, AttrCoveredAt(U3, 1) = {I,M} and
AttrCoveredAt(U3, 2) = {C, I,M}.

Similarly, user U3 is country-covered at depth 2 through the paths U3 → U4 →
U6 and U3 → U1 → U6. U3 is ISP-covered at depth 1 through user U2.

Definition: Attribute-coverage of network attribute A at any given depth k, is the
percentile of users in a dataset that are covered for A at depth k.

For instance, ISP-coverage at depth 2, gives the percentile of users in a dataset
who are ISP-covered at depth 2. In our example, U1, U2, U3 are ISP-covered at
depth 1, i.e., they all have another immediate friend who can check the target web
server through another ISP. Therefore, we have an ISP-coverage of 3/6 or 50% at
depth 1.

Definition: A user U is fully covered at depth d if:
For each network attribute A, U can cover A within depth d.

Consider the user U3 in Figure 5.2. To cover the machine on which U3 is
working, i.e., to see if it was her machine that was causing the problem, there
needs to be a probe that can be sent through all the upstream network attributes of
U3 (i.e., both I2 and C1) but from a different machine. U3 can do this by contacting
her immediate friend U4 at 1-hop. To cover the ISP I2, U3 needs some one with
a different ISP, but the same country. U1 can do this by contacting her immediate
friends U1, U2, both of whom use ISP I1. However, none of her immediate friends
can cover for her country C1. To check if the target web server is indeed accessible
from a different country, U3 will have to traverse two hops on her social network.

42

This she can do by either contacting U6 through U4 or by contacting U5 through
U1. Thus U3 is fully covered at depth 2.

Note that, by this definition, some users will never be fully covered at any depth.
Consider, U1 in Figure 5.2. U1 will never be able to cover her machine. This is
because there is no other user at any depth on the social network who has all the
same network attributes upstream of her machine. In particular, there is no other
user who is of the same organization O1. Therefore, U1 will never be able to know,
using the currently available friends on the social network, if it is her machine or
her organization O1 doing the manipulation.

Definition: Complete coverage,at a given depth d, is the percentile of users in a
dataset that are fully covered at depth d.

In the example given in Figure 5.2, U3 and U4 are the only users who are fully

covered at depth 2. Thus, the complete coverage at depth 2 for this example is
33%. U2 will also be fully covered at depth 3, when she will be able to get a probe
from another country C2 (via the paths U3 → U4 → U6 and U3 → U1 → U5).
Thus the complete coverage at depth 3 for this example dataset is 50%. Note that,
due to both U1 and U6 not being fully covered at any depth, this dataset will not
have a 100% coverage at any depth.

Definition: A user u has best possible coverage depth d if:
∀ k > d, AttrCoveredAt(U,d) = AttrCoveredAt(U, k).

Coverage metrics for every user are monotonically nondecreasing over the depth
parameter. The number of network attributes that can be covered for any user is
finite. Thus for every user, we will have a depth d beyond which there is no fur-
ther improvement in the number of network attributes that can be covered. The
user may be fully covered at this depth d, but it is not a necessity.

Consider for instance the user U1 in Figure 5.2. The user has a best possible
coverage depth of 2 at which point she can cover her ISP and her country. How-
ever, she will never be able to cover organization O1, as there is no other user who
also has that organization in their upstream at any social network depth from the
user U1. Conversely, the best possible coverage depth for user U5 is 4 as she can
cover the ISP I3 through 4 hops (U5 → U1 → U3 → U4 → U6).

Definition: Best possible coverage at depth d, is the percentile of users in a
dataset that have a best possible coverage depth of d or smaller.

43

For the example in Figure 5.2, U1, U3, U4 have a best possible coverage depth
of 2. Hence the best possible coverage at depth 2 is 3/6, i.e., 50%. U2 has a best
possible coverage depth of 3, therefore the best possible coverage at depth 3 is
4/6 or 66.6%.

5.2.1 Complete Coverage Results

Figure 5.3: Complete coverage results

Figure 5.3 shows the complete coverage results for all three of our datasets.
As we can see, the Arxiv network has relatively poor complete coverage results
compared to the other two OSN. This was because a large number (25.7%) of
users were lone authors who did not have any collaborators. This means that
these users will not be able to acquire help from other friends to help perform their
coverage analysis. We see that the complete coverage results improve slightly for
Arxiv, once we remove these lone authors.

On both the Gowalla and BrightKite networks we get complete coverage for
a high proportion (70%) within two hops. This is a direct consequence of the

44

much larger number of friends available at depth 2 on these networks compared to
Arxiv as seen in Figure 5.1. A larger pool of friends in both these cases, therefore,
implies a greater chance of finding someone with different network attributes.
This is an encouraging result, as general purpose OSNs like Facebook are more
similar to Gowalla and BrightKite than Arxiv.

5.2.2 Best-possible Coverage Results

Figure 5.4: Best-possible coverage results

Figure 5.4 shows the best possible coverage results for all three of our datasets.
Note that the best possible coverage results for all the datasets (including Arxiv)
are high (80%) within two hops. In particular, this is a huge improvement for
Arxiv dataset.

This suggests that the reason we had poor complete coverage was because of
the sparsity of the Arxiv dataset, i.e., lack of users who had the relevant network
attributes, and not due to lack of coverage of the social network itself. That is,
if a user was unable to cover for their ISP or country, it was because there were

45

no other users who were within that country or ISP, and not because they were
available but not within the reach of friendsourcing. Note also that almost all of
the users in the Gowalla and BrightKite get their best possible coverage results
within 3 hops.

5.2.3 ISP Coverage Results

Figure 5.5: ISP coverage results

Figure 5.5 shows the ISP coverage results for all three of our datasets (as well
as the Arxiv data set excluding the lone authors). Firstly, we see that there is high
coverage for ISP coverage even at depth 1. This indicates that a large percentile
of the population (around 80% for Gowalla and BrightKite and around 60% for
Arxiv(excluding lone authors)) have an immediate friend who can verify if a tar-
get web server is accessible from another ISP. ISP-coverage which only looks at
finding a friend with a different ISP is a more suitable metric to look at when
we are worried exclusively about network neutrality violations by ISPs. The high
ISP-coverage numbers, even at depth 1, indicate that friendsouring is a good strat-

46

egy for the large majority of users when they want to verify network neutrality
violations by ISPs.

The smaller ISP-coverage numbers for Arxiv (at depth 1) are indicative of the
fact that there are many authors who only published with other authors from the
same university in the dataset (i.e., all of their friends belong to the same ISP)
or, alternately, they have only published with authors in other countries. These
authors will therefore not be able to get ISP coverage at depth 1. However, if one
of their friends has published with other authors in a different ISP (but the same
country), they will be able get ISP-coverage at depth 2, which is what we notice.

5.2.4 Country Coverage Results

Figure 5.6: Country coverage results

Figure 5.6 shows the country coverage results for all three of our datasets. Note
that unlike the ISP coverage numbers at depth 1, the country coverage numbers
for Gowalla and BrightKite are smaller, at around 30%, compared to the Arxiv
dataset which is very high at around 70%. For Arxiv, this is an indication that

47

70% of the users have co-authored with people who are from different countries.
This is not surprising in case of academic users.

BrightKite and Gowalla, consisting of more general purpose users will not have
same coverage. Even so, the country coverage at depth 1 shows that 30% of these
users have a immediate friend in another country. The country coverage numbers
at depth 2 are much higher (at around 75% and 80%) for Gowalla and BrightKite.
This is a consequence of the relatively denser connectivity in both these networks.
A denser connectivity in the datasets will lead to a user finding one of these 30%
of users as a friend of friend. These numbers are very encouraging for friend-
souring, especially because general purpose OSN like Facebook are denser than
the BrightKite and Gowalla datasets we studied. It also gives us depth 2 as a
good baseline for friendsourcing recruitment depth when trying to uncover coun-
try based censorship.

5.3 Redundancy Metrics

For friendsourcing to be successful in real life, it is not enough to prove that we
have high coverage. For instance, it is possible that a user has high coverage of the
network with the help of their friends, but may not be successful as some of their
friends are not cooperative (or available). To measure the resiliency of a social
network to perform network detection, we study a metric related to coverage,
which we call redundancy.

Definition: A user U has n-redundant cover over a network attribute A, at depth
d, if a user has n distinct friends f1, .., fn within d hops of U such that:
a) ∀1≤i≤nAttr(A,U) 6= Attr(A, fi), and
b) for all attributes Aup upstream of A, ∀1≤i≤nAttr(Aup, U) = Attr(Aup, fi)

We denote the set of all attributes n-redundant covered by U at depth d as
RedundantCoveredAt(U,d,n).

For example, in figure 5.2, user U2 has a 2-redundant cover over the ISP at
depth 2. This is because she has two distinct users, U3 at depth 1 and U4 at depth
2 (via U3) that have a different ISP attribute value (I2), but the same attribute
values upstream of ISP (i.e., they belong to the same country). In this case, U2

has two friends who can help her verify that it is the her ISP (and not her country)
that are responsible for any network manipulation done by ISP I1.

48

We can define many of the coverage metrics as n-redundant, analogous to the
n-redundant cover definition above. Wive some of these definitions here.

Definition: A user U is n-redundant fully covered at depth d if:
For each network attribute A, U can n-redundant cover A within depth d.

Definition: n-redundant Attribute-coverage of network attribute A at any given
depth k and redundancy n, is the percentile of users in a dataset that are n-
redundant covered for A at depth k.

Definition: n-redundant complete coverage, at depth d and redundancy n, is the
percentile of users in a dataset that are n-redundant fully covered at depth d.

Definition: A user U has n-redundant best possible coverage depth d for a given
redundancy n if:
∀ k > d, RedundantCoveredAt(U,d, n) = RedundantCoveredAt(U, k, n).

Definition: Best possible n-redundant coverage at depth d and redundancy n, is
the percentile of users in a dataset that have a n-redundant best possible coverage
depth of d or smaller.

For instance, a 10-redundant fully covered user at depth 2 user, has 10 dis-
tinct users for every network attribute that can disambiguate all their network
attributes.That is, for each one of O,I,C, the user has 10 other friends within
2 hops, who can help them disambiguate those attributes. Similarly, a 50% 5-
redundant ISP coverage, at depth 1, tells us, that 50% of users have five or more
friends who belong to a different ISP (but are within the same country of the
user). A higher percentile of users with highly-redundant coverage, implies that
users can get meaningful results even when most of their friends are not available
or are uncooperative.

5.3.1 Redundant Complete Coverage

Figure 5.7 shows redundant complete coverage metrics for various values of re-
dundancy. Recall that complete coverage requires us to cover for every single
network attribute that the user has (including the user’s own machine). As seen
earlier in figure 5.3, the Arxiv dataset has smaller complete coverage when com-
pared to both Gowalla and BrightKite datasets. We see that for high-redundancy

49

(a) Arxiv (b) Arxiv (excluding lone authors)

(c) Gowalla (d) BrightKite

Figure 5.7: Redundant Complete Coverage Metrics

values in Arxiv 5.7(a), we get much poorer results in terms of complete coverage.
In contrast, both BrightKite 5.7(d) and Gowalla 5.7(c) are relatively robust even
at higher redundancy numbers.

This can be explained by the sparseness of the Arxiv dataset compared to the
other datasets. As we have seen in figure 5.1, there is an order of magnitude dif-
ference in the number of friends at depth 2 and higher in BrightKite and Gowalla
as compared to Arxiv. This leads a much larger pool of friends for every network
attribute in the BrightKite and Gowalla datasets compared to the Arxiv dataset,
and consequently leads to higher redundancy numbers.

5.3.2 Redundant Best Possible Coverage

Figure 5.8 shows the best possible coverage metrics for various values of redun-
dancy. Recall that best-possible coverage metrics are less restricted compared to
complete coverage metrics. We consider a user to have a best possible coverage at
depth d, if there is no other user at depth greater than d who can improve the cov-
erage for the user. Once again we see that Arxiv(in figure 5.8(a) and figure 5.8(b))

50

(a) Arxiv (b) Arxiv (excluding lone authors)

(c) Gowalla (d) BrightKite

Figure 5.8: Redundant Best Possible Coverage Metrics

degrades much faster for higher values of redundancy compared to both Gowalla
and BrightKite.

More interestingly, we see that at depth 3 both Gowalla and BrightKite have
best-possible coverage for 100% of the users even with a high 10-redundancy.
This means that in both these datasets, the user has very high resiliency in terms
of coverage when we are willing to recruit up to depth 3. It also means that there is
very little benefit to to beyond depth 3 for any network manipulation experiments.

5.3.3 Redundant ISP Coverage

Figure 5.9 shows the ISP coverage in the various datasets for various redundancy
values. Once again, we see that for the Arxiv dataset, we get less redundancy for
ISPs (or less ISP coverage numbers for high redundancy values). Both BrightKite
and Gowalla have higher redundant coverage of ISPs. In particular, both of them
have more than 65% of their users with ISP coverage at 10 redundancy at depth
2. This means that more than 65% of their users will have 10 users within friends

51

(a) Arxiv (b) Arxiv (excluding lone authors)

(c) Gowalla (d) BrightKite

Figure 5.9: Redundant ISP Coverage Metrics

of friends who will be able to help with any network neutrality violation measure-
ments targeting their ISP.

Furthermore, if we are willing to recruit friends at depth 3, we get a 10-redundant
coverage for more than 85% of the users. In case of Arxiv, coverage at high re-
dundancy numbers is much lower. This is easier to explain when we refer to the
number of friends per user at any given depth. To get a 10 redundant ISP coverage
at depth 2, a user should have at least 10 friends or friends of friends who belong
to the same country but are of a different ISP from the user. Since the average
number of friends in Arxiv at depth 2 is only 36.3 (see Figure 5.1), we have fewer
number of users who can satisfy that criteria.

5.3.4 Redundant Country Coverage

Figure 5.10 shows the country coverage metrics for various redundancy values.
This shows that the Arxiv datasets are much more suitable for getting country
coverage. In particular we see in, figures 5.10(a) and 5.10(b), that at depth 1

52

(a) Arxiv (b) Arxiv (excluding lone authors)

(c) Gowalla (d) BrightKite

Figure 5.10: Redundant Country Coverage Metrics

Arxiv (with and without lone authors) Arxiv datasets have better country coverage
when compared to Gowalla and BrightKite.

Gowalla and BrightKite do have good redundant country coverage at depth 2.
In particular, around half of the users in Gowalla and BrightKite has at least 10
friends or friends of friends who belong to a different country. If we consider
friends at depth 3, all the datasets have a very high (> 80%) 10-redundant cover-
age of the country. This means that if we do recruit at depth 3, the vast majority
of users will be able to have at least 10 people in their friend circle to send probes
from a different country.

5.4 Optimization of Recruitment

A simple way of performing a recruitment in a distributed friendsourcing architec-
ture is to simply ask all friends (and ask them in turn to forward it to their friends).
This flooding of requests can be bounded by giving a limit on the hop count, which
is reduced every time a friend forwards a request to their other friends. As dis-
cussed in 4, a simple flooding of requests to friends is not always optimal. We are

53

likely to get redundant results from friends who are located in the same underly-
ing physical network. Furthermore, there is also an overhead of messages that are
sent to various friends and probes being performed against the target web servers.

We analyzed simple optimization protocol which increased the efficiency of
recruitment considerably. In this optimization, we pre-share network attributes
amongst immediate friends to enable us to choose the friends to be contacted for
any new probe request. This approach may be viewed similar to a how routing
table updates are managed. Periodically, users exchange the list of their upstream
network attributes that belong to them (i.e., their organizations, ISP, country).
A user will keep a list of network attributes that are reachable from each of its
neighbors. After the first exchange of these network attributes, each user will
know, for every friend which of the network attributes can be covered using that
immediate friend. For instance, a friend with the same country but different ISP
can be used to cover a user’s ISP. In the second round, the user share the collected
information (its own attributes at depth 1 and the attributes of its neighbors at
depth 2) with its neighbors.

After a few iterations, this information will give for every friend, the list of
network attributes it can cover for a given depth. So we might have a friend who
can only clarify whether a server is reachable or not at depth 1, but at depth 2 (that
is using her friends), she might be able to distinguish all the possible upstream
network attributes along our path. This serves two purposes. In case the list of
attributes with a given friend is mutually exclusive, the friend cannot be a good
sensor for that particular request (other than to verify if the server is accessible
at all). This will reduce the number probe requests to a subset of the friend list.
If the list of upstream domains disambiguated is identical for one or more of the
friends, we only need to send the probe request to one of them. This will reduce
the total number of messages in the system.

We evaluated the result of these optimizations on a simulated distributed system
with users from the Arxiv dataset. We show the results of our optimizations on
both the load on the target web server as well as the overhead on the system itself
(in terms of users visited etc.,) below:

Load on the Target Web server: Figure 5.11(a) shows the average number of
friends visited per single inference request. Since each friend visited also sends a
single probe, it is also a measure of the load on the target server due to a single
manipulation detection request by a user. Note that the y-axis is in log scale. As
we can see, the unoptimized version is very inefficient in terms of the number

54

(a) Average number of friends visited (and
probes sent) per single inference request as
measured against depth of recruitment

(b) Percentile reduction in friends visited per
user request

Figure 5.11: Friends visited per original user request on Arxiv dataset

 1

 10

 100

 1000

 10000

 1 2 3 4 5A
v
er

ag
e

N
u
m

b
er

 o
f

M
es

sa
g
es

 S
en

t

Social Network Depth

Baseline
Optimized

(a) Total messages sent on the network on av-
erage per single probe request as measured
against depth of recruitment

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5P
er

ce
n
ti

le
 r

ed
u
ct

io
n
 i

n
 m

es
sa

g
es

 s
en

t

Social Network Depth

(b) Percentile reduction in total messages
sent on the network per single inference re-
quest between baseline and optimized ver-
sions

Figure 5.12: Messages sent during friendsourcing on Arxiv dataset

of messages taken. This also explains the large number of messages exchanged
between users for every single inference request that we noted in Figure 5.12(a).
We note that, on average, each user on our social network has 5 friends. However,
within just 3 hops, the average user’s friend circle grows up to 240 and reaches
2,130 for depth 5. Figure 5.11(b) shows the percentile reduction in the number of
friends visited and, consequently, probes sent to the target by those friends as a
result of our optimizations. As shown, we see a huge drop (more than 90%) in the
number of probes sent starting at two hops. Note that this effect would be even
more pronounced in densely connected networks (such as Gowalla).

Number of Messages: Figure 5.12(a) shows the average number of messages
sent per one original network neutrality request in the system. In this we count

55

the number of messages sent between friends on the social network that were
originated due to a single original probe request sent by a randomly chosen user.
Note that the y-axis is on a log-scale. As we can see, the baseline version is
very inefficient when compared against the optimized version. On average, a
single inference request with a hop-count of 3 resulted in close to 470 messages
exchanged between the users. This was because we simply sent the request to all
possible friends on the social network within a hop-count of 3. Furthermore, the
results of the probes need to be collated along the social network path, merged
and returned back until we get the final result at the originating user.

Figure 5.12(b) shows the percentile reduction in the total number of messages
per request of the optimized design when comparing it to the baseline design.
We see tremendous reduction in the total number of messages sent per single
verification request especially after depth 2. This is due to the reduction in number
of friends being contacted at larger depths. The optimized version, on the other
hand, only sends a request to a handful of users on the social network graph by
looking at the shared upstream information corresponding to friends. A users is
chosen only if it can ‘cover’ a new node along the originating user’s upstream
path.

56

Chapter 6

Field Study

While simulations and analysis can give us an estimate of the feasibility of friend-
sourcing as a strategy to detect network manipulation, a realistic evaluation of
our strategy requires testing it in the presence of real-life users, testing real-life
network manipulations. To this end, we implemented SiteViews, a web-browser
based implementation to detect manipulation of web-based traffic. We performed
a study with a total of 54 real unpaid users over a period of two weeks in India.
All of these users were acquired through us contacting two individuals at the be-
ginning of the study. Our study found a number of instances of manipulation in
India that were both ISP-specific as well as country-wide. We describe the results
of this evaluation in this chapter.

Section 6.1 gives an overview of the assumptions and goals that affected our de-
sign choices. It also gives an overview of the limitations of our implementation.
Section 6.2 describes the architecture and implementation details of SiteViews.
Section 6.3 shows the user interface of SiteViews and describes some of its func-
tionality. Section 6.4 gives details of the study group that was acquired during
the course of the study. Our study found evidence of a large amount of network
manipulation of websites in India. Section 6.5 gives the analysis of the network
manipulations: including the types of manipulation, the sources of manipulation,
and the possible motivations.

6.1 Features, Assumptions, and Limitations

As described in Section 4.2, there are many desirable features from any design that
uses friendsourcing. We give a discussion those features that we could incorporate
and the effects of implementing those features on our design choices.

57

6.1.1 Ease of use

This was our biggest consideration when designing SiteViews. We wanted the
tool to be usable without requiring installation or detailed knowledge of network-
ing from the users. This also meant that our user interface was designed to be
automated with minimal interactions from the user. To achieve this goal, we im-
plemented SiteViews as a publicly accessible website that can be accessed on any
platform (without having to be developed and tailored for each individual desktop
or mobile OS).

The actual task of sending the probes and aggregation of the results of the
probes can be done manually or in an automated fashion. To reduce the burden
of overhead on users (and to decrease the possibility of misdiagnosis by users),
we chose to do automated probing and aggregation. Because of our choice to go
with an automated architecture, we had to use a mechanism for active probing
at the client end on web-based platforms. In our implementation, this was per-
formed automatically with the help of a signed Java Applet. In this aspect, our
design choice is very similar to many other popular tools such as Glasnost [16],
Netalyzer [44]. The use of a web-based app meant that users were able to access
the tool without having to install it on their own machines.

Limitations: This centralized web-site based design with Java Applets, does
have its drawbacks. The chief drawback of which is the fact that, the website itself
may be blocked by any attacker to prevent such an analysis. We do note however,
that this architecture can be implemented as an app on a SNS. In such cases, it
might be difficult for the attacker to block access to just the app without blocking
access to other features on a SNS.

6.1.2 Generality and Extensibility

Our design is able to detect web-based manipulation by countries, ISPs, and op-
tionally organizations. This is done by correlating detected network failures from
multiple locations with their network attributes. Our tool infers the country and
ISP of a user during their registration using publicly available geolocation and
whois data [67, 68]. The user is asked to enter an organization (if any) and can
also correct the inferred country and ISP attributes. These attributes are also veri-
fied every time the user starts a new session from a different location. This archi-

58

tecture allows us to extend the functionality by implementing additional features
in our applet.

Limitations: Due to the limitations of the applet based platform as described
earlier in Section 6.1.1, our tool will not be able to detect all the kinds of net-
work manipulation that a native application may be able to measure. Applets do
not have access to precise network level information from the underlying system,
and can only get access to the status of the network communication at the level
of abstraction provided by the Java platform. This is not a big problem in the
domain of web-based manipulation as we were able to access the HTTP status in-
formation. However it will not be feasible, for instance, to implement something
like [43] which detects insertion of RST packets by ISPs. That approach relies on
detecting the fact that a packet train arrives from the destination later than the fake
RST packet inserted by the ISP. In our case, we will simply report it as a loss of
connection and expect to find that the ISP is a possible cause, through inference
from a group of measurements.

6.1.3 Effective Recruitment and Efficiency

We use a centralized coordinator based approach to improve efficiency and effec-
tiveness of recruitment. The network attributes of each user are collected at the
time of registration of the user (and verified at the beginning of a new session of
a user). The coordinator will look at the network attributes of all of the avail-
able friends of a given user to choose the best possible subset of users to recruit.
This also has the advantage of being more efficient than a purely distributed de-
sign. Firstly, there will be a reduction in the number of messages being sent to
the users. Also, the system can cache probing results for use by other users of the
system. This has the advantage of reducing the load on a target servers as well.

Limitations: A centralized coordinator approach has the limitation of being
easily blocked, as described in Section 6.1.1. Another limitation of our imple-
mentation, but not the architecture, is that we currently do not use the history
of a user when choosing users to recruit. This is because of the fact that in our
architecture the actual probing is done automatically by the applet.

59

6.1.4 Graceful Degradation

Our system supports graceful degradation in case of limited capabilities of a user.
Firstly, we use web-proxies as friends for users who have limited number of
friends. This allows them to perform some analysis, even if it is limited by the
number of web-proxies. Finally, Java Applets are not supported on most mobile
platforms, which meant that we would not able perform automated probing or ag-
gregate data from those platforms. In such cases, we chose to present the results
from analysis of other friends without actually getting the data from the user itself.
This meant that the user would, for instance, be able to detect if their country was
the cause of network manipulation, but not if their mobile service provider was
causing the network manipulation.

6.2 Architecture and Implementation

Figure 6.1: Architecture overview

SiteViews is accessible to users as a website with signed Java applets taking
place of probing modules. In terms of the design choices described in Section 4.4,
we use a coordinated, on-demand tool which measures network manipulation of
real-life web servers. We use nginx 1.2.5 [69] to host the server. Figure 6.1 gives

60

an overview of the major components in our prototype implementation. While a
general purpose application is more capable of taking measurements, we believe
that a website based tool is more suitable for our design choices (i.e., generality,
ease of use). A general, non-technical user is likely to be more used to visiting a
web page than downloading a tool and running it off line. This also helps general-

ity, as we do not need to develop executables to specific OS and mobile platforms.
Furthermore, in case the user cannot run the Java Applets (due to permission set-
tings or lack of availability on mobile platforms) we have a graceful degradation,
in the sense that a user can get information about the accessibility of the website
from other vantage points without being able to contribute any information from
its own machine.

We give a short overview of the major components in the implementation of
SiteViews.

Result Cache: The result cache consists of analysis done for previous requests
from users. It also contains the contents of the web page along with the time, ISP,
and Country from which the web page was accessed. In case a user requests a
page available in the cache (and it is also not stale), we provide the results from
the cache. Note that caching of results for failures is only done after a minimum
number users have made identical observations of failure. For ease of implemen-
tation, this threshold was set in our case to 3. This criteria can be certainly be
improved upon to include, for instance, the past history of user in reporting accu-
rately.

User Attributes: The user attributes table stores the following details about
the user: list of friends, home ISP, home country. In case the user is seen to be
checking in from a different location, we treat them as a new user with the same
list of friends. These attributes are populated when the user is first registered to
SiteViews. In particular, users can invite other friends, who are added to the user’s
friend circle when they register. The attributes, including the list of friends, can
be modified by the user in subsequent visits. Users have an incentive to increase
their friend circle, as it helps them perform detection sooner.

Public Proxies: We maintained a small list of public http proxies, to perform
requests to websites on behalf of the user. This was done so that we include results
from a country outside India (in our case the US), as our study was limited to
India. We also had 3 proxies in India so that a new user can get some meaningful
results at the beginning. This choice of public web servers was made to ensure
graceful degradation in case of new users who do not yet have any cooperating

61

friends. We also realized that, at least for the initial field testing of the prototype
implementation, there will not be enough participants in the system. Once there
are larger number of participants, we can reduce the reliance on such third party
resources.

Recruitment: The recruitment module is used when the result of a user re-
quest is not available from within our Result Cache. This is used to select a subset
of friends, public proxies which would be the most optimal to request probing.
This was done as a result of our analysis in Section 5.4. A straightforward, ask all
friends and friends of friends, approach will result in too many requests being sent
to the target web server. These selections are based on their network locations as
well as availability. The intuition behind the algorithm is to find for every net-
work element (country, ISP, and optionally organization) of a given user, another
active user within the friend circle who does not share one of those attributes. The
recruitment algorithm is listed in Section 6.2.1.

Probe: The probe module is used to forward the requests to the targets selected
by the Recruitment module. It performs two different operations in SiteViews.
In case the target is a public web proxy, it fetches the target website using the
proxy. In case the target is friend (or friend of friend), the request is put in a queue
maintained by the SiteViews server. This queue is polled by applets running on the
users of SiteViews at frequent intervals. The signed applets will fetch the website
and the results are sent back to the aggregation module.

Aggregation: The aggregation module performs an analysis of the results from
all the different sources for a given request. In case of failure to fetch a web page,
we perform a simple correlation to determine the probable cause of the failure.
These results (along with the successful, if any, web page content) are stored in
the Result Cache and sent to the originating user. In case of website content, the
aggregation module stores a single copy of identical web pages in the cache.

6.2.1 Optimizations

The most natural friendsourcing approach would be to request all the friends to
fetch a given target, collate the results, and send it back to the originating user.
While this would be the easier to implement, our analysis showed that this lead
to many inefficiencies (see Section 5.4). A big problem with the flooding based
approach, had to do with over-recruitment of users. In general, many of the probes

62

done by friends were redundant as they gathered information about the same
network attributes multiple times. For instance, an analysis by Facebook [70],
showed that the median number of friends for a user was 99, while a user with
100 friends had 27,500 friends-of-friends. To improve the efficiency of our ar-
chitecture, we had to improve the propagation of the probe requests through the
social network. We describe the list of optimizations that we perform below.

Shared Upstream Information: Upon registering to SiteViews we collect the
upstream information for every user (i.e., organization O, ISP I, and country C).
The ISP and country information can be inferred from the user’s IP address. The
user is prompted to also give, optionally, the name of the organization. Periodi-
cally, we update for each user the list of network attributes (i.e., O,I,C) reachable
from itself and its neighbors. We also update this information to include the list
of network attributes available at depth 2, i.e., friends-of-friends. Note that, in our
implementation, the publicly available proxies are added as friends of all users.

This information gives, for every friend, the list of upstream domains it can
disambiguate for a given depth. So, we might have a friend who can only clarify
whether a server is reachable or not at depth 1, but at depth 2 (that is using her
friends), she might be able to distinguish all the possible upstream domains along
our path. We give the pseudo code for generating this information here.

s t r u c t u p s t r e a m {
s e t<use r> c o u n t r y ; / / f r i e n d s o u t s i d e c o u n t r y
s e t<use r> ISP ; / / f r i e n d s o u t s i d e ISP
s e t<use r> Org ; / / f r i e n d s o u t s i d e org
s e t<use r> c o l l e a g u e ;

} ;
s t r u c t u s e r {

s t r c o u n t r y ; / / Country o f t h e u s e r
s t r ISP ; / / ISP o f t h e u s e r
s t r Org ; / / O r g a n i z a t i o n (p o s s i b l y empty)
s e t<use r> f r i e n d s ; / / s e t o f immed ia t e f r i e n d s
u p s t r e a m up ;

} ;
p o p u l a t e u p s t r e a m (u s e r a)
{

/ / p o p u l a t e f r i e n d s , f r i e n d s o f f r i e n d s
f o f f = s e t () ;
f o r e a c h x i n a . f r i e n d s {

f o f f . add (x) ;
f o f f . add (x . f r i e n d s) ;

63

}
f o f f . e r a s e (a) ;

f o r e a c h x i n f o f f {
i f a . c o u n t r y != x . c o u n t r y

a . up . c o u n t r y . add (x) ;
e l s e i f a . ISP != x . ISP

a . up . ISP . add (x) ;
e l s e i f a . Org != ” ” && a . Org != x . Org

a . up . Org . add (x) ;
e l s e

a . up . c o l l e a g u e . add (x)
}

}

Optimal Selection of Friends: Once we have the shared upstream information
of users, we can utilize it to optimally select a subsection of users to recruit. In
case the list of upstream domains with a given friend is mutually exclusive, the
friend cannot be a good sensor for that particular request (other than to verify if
the server is accessible at all). This will reduce the number probe requests to a
subset of the friend list. If the list of upstream domains disambiguated is identical
for one or more of the friends, we only need to send the probe request to one of
them. This also reduces the total number of messages in the system. We give the
algorithm for optimal selection of friends in Directed Probing.

Directed Probing: Frequently, users have a suspicion of the possible suspects
and need only to clarify their suspicion. In our implementation, we allow users
to give parameters specifying which of the administrative domains they want to
verify. The recruitment module selects the necessary friends based on the user
arguments. For instance, the user may only wish verify if the website is accessible
from outside the country based on the assumption that a country level firewall is
blocking access to content. In such cases, the algorithm will be called with only
the C attribute set. By default all the C,I,O attributes for a given user are set
while recruiting friends for that user.

r e c r u i t m e n t (u s e r a , s t r C , s t r I , s t r O)
{

s e t<use r> rec , x ;
i f c o u n t r y != ” ” {

/ / and −−> s e t i n t e r s e c t
x = a . up . c o u n t r y and l i v e u s e r s ;
r e c . add (p i c k o n e (x)) ;

64

}
i f ISP != ” ” {

x = a . up . ISP and l i v e u s e r s ;
r e c . add (p i c k o n e (x)) ;

}
i f Org != ” ” {

x = a . up . Org and l i v e u s e r s ;
r e c . add (p i c k o n e (x)) ;

}
x = a . up . c o l l e a g u e and l i v e u s e r s ;
r e c . add (p i c k o n e (x)) ;
re turn r e c ;

}

Caching Probe Results: We perform limited caching at every node of the pos-
sible suspect results. In our implementation we implement caching of requests in
two separate lists. We keep a long-lived list of entities, when the results of earlier
probes have identified some form of network manipulation by those entities. We
also keep a short-lived list of a successful result (along with the web page content).

The intuition behind keeping a long-lived list of violating entities is simple.
If a given entity (an ISP or organization or country for example) is performing
some kind of network manipulation, it is likely that a larger number of users from
within that administrative entity will request checks. Hence, caching any possible
failures will speed up any further requests coming from those users.

6.3 SiteViews User Interface

In this section, we describe the user interface of SiteViews and some of its func-
tionality.

Settings: Figure 6.2 shows the initial settings screen that a user sees after they
create a user name and password to log into SiteViews. As we can see, the country
attribute was set to India for the study. We infer the ISP of the user using publicly
availably IP registry information. However, as these publicly available informa-
tion can be sometimes incorrect, this inferred ISP can be edited by the user. There
is also an optional ‘Organization’ attribute that the user can set to indicate their
company or organization.

We also allow users to edit two important settings. By default, we use a friend-
sourcing depth of 2, i.e., we ask friends as well as friends of friends. This was

65

Figure 6.2: Network Settings for SiteViews

due to the coverage results in section 5.2 and redundancy results in section 5.3.
Both the analytical results suggested that we get a large improvement in both cov-
erage and redundancy when using depth 2 as opposed to depth 1. However, the
user can disable this to limit themselves to just friends. Another attribute, that
improves the efficiency is to cache results from previous users. This allows us to
quickly respond to the user without putting undue load on the target web servers.
However, the user can explicitly disable this as well. Note that this setting page
is show again to the user, if we see them login from a different ISP. In case the
user keeps using the same machine however, we redirect the user to the welcome
screen bypassing the settings page.

Welcome Screen: Figure 6.3 shows the initial screen the user ‘Alice’ sees after
logging in to SiteViews. The users have a simple interface to enter any URL
they want to check. When the user submits a URL, we try connecting to the URL
from within the Alice’s browser using a signed applet. Results of this probe from
the user’s point of view are sent back to SiteViews for storing. SiteViews also
connects the Alice’s friends and friends of friends who are current online to get
complete coverage. As we did not use any users outside of India, we used a proxy
from within US to get coverage of the country.

66

Figure 6.3: Initial Screen for SiteViews

After analysis of the status and data from all the probes from the recruited users,
we analyze the results to determine the source of the network manipulation, if any.
We redirect the user an analyzed page showing the results of the probe.

Analysis: Figure 6.4 shows the results of a user checking the website www.
bbc.co.uk using SiteViews. The important information to the user is given
at the bottom. It correctly identifies that there was no blocking from within the
user’s machine or the user’s ISP. It also recognizes that there was a difference in
content see from within the country and from the proxy in US. This is indicated by
a differently colored status message (‘Country: content changed’) from the other
two cases. In case the user had indicated an optional organization, we will have
another status for the organization coverage result as well.

The search box and checked options at the top allow a user to ’Re-Check’ the
probes using different users, if available. This allows a user, who may not trust
the results from the automatically recruited friends chosen by SiteViews to get
another data point from other friends. Note also that we allow a user to gather
information on a per attribute basis. For instance, the user can select the option
‘Check ISP’ while ignoring the option ‘Check Country’, if all they care about is
ISP-coverage.

The user can click on any of the status messages at the bottom to get the data
the led to that status from SiteViews. For instance, the user can click on the
‘ISP-OK’ message shown in figure 6.4 to see the resultant web page from the

67

www.bbc.co.uk
www.bbc.co.uk

Figure 6.4: www.bbc.co.uk as seen by a user in India using SiteViews

user’s friend that led to this analysis. In this particular instance, the user will not
see any difference between the two different screen shots because there was no
manipulation done by the ISP. However, the user is likely to be curious about how
the web page is different as seen from outside the country. This she can do by
clicking on the status ‘Country: content changed’.

Blocked Websites: Figure 6.5 shows the results of a user trying to access a
blocked website www.wapindia.net from within her ISP. This is a mobile
based website that gives free content, such as songs and ring tones, for mobile
phones. This may consist of illegal content. Furthermore, many ISPs in India are
also wireless mobile service providers and may have an incentive to block free
available content that competes with their own stores.

In this case, the Indian Music Industry (IMI) filed a suit against a large num-
ber of these web servers and had a court order (from a regional court) to block
these sites [71], which included www.wapindia.net. However, this blocking

68

www.wapindia.net
www.wapindia.net

Figure 6.5: www.wapindia.net as seen by a user in India using SiteViews

was not uniformly applied by all the ISPs in India. Therefore we see in the fig-
ure 6.5that the site is accessible from outside the India as well as from other ISPs.
The user can click on either of the statuses ‘ISP: Blocking’ or ‘Country: US’ to
check how the website looks from another country or from a non-blocking ISP
within India.

Figure 6.6 shows the user’s interface after they click on the ‘Country: US’ status
in figure 6.5. This allows the user to verify that the website is actually working
as intended. In particular, this method of allowing a user to see the websites from
their friend’s, or in this particular case from the proxy’s, perspective has many
benefits. Firstly, it engages the user to explore which of her network providers
are actually engaged in network manipulation. As a side effect, this also helps
us gather information from multiple users to be stored in our cache. Secondly, it
is often difficult to detect if there is any subtle content-level manipulation done
by web servers or countries. Automated mechanisms will generate a lot of false

69

Figure 6.6: www.wapindia.net SiteViews

positives, such as different ads or benign localization done by web servers. By
allowing the users to explore manipulation, we can let them judge the purpose of
the manipulation on their own. Finally, by engaging users to stay on the website,
we can ensure that they are available to help other users who may be trying to
detect manipulation at the same time.

6.4 Study Setup

We give the results of field evaluation using real-life users on our prototype imple-
mentation of SiteViews. Our evaluation consisted of two small studies involving
a group of 54 users, over a two week period in India. The users were recruited
through word-of-mouth (with us starting by contacting two people). The choice

70

of India as a case-study was for two reasons: a) India had seen a spike in Internet
censorship in the last year both imposed by the government and by ISPs, b) We
would be reasonably sure of the safe probing assumption in Chapter 4.

Figure 6.7: User Locations for the study

The users came from 11 major metropolitan cities across India (Figure 6.7). A
possible reason for the bias towards the major cities is that the initial set of users
using the system are people working in the IT industry. The IT industry in India
is concentrated among a few big cities (and their satellite cities), which is where
the users live.

Figure 6.8 gives us the distribution of users over the ISPs we have seen in
the study. As we can see 4 ISPs had the vast majority of the users in our study
setup (55 out of the 64 users). This split can be explained by the relative size
of customer bases for ISPs in India. A recent report [66], in July 2012, by the
Telecom Regulatory Authority of India, gives the number of distinct broadband
ISPs in India as 156. However, around 87% of the customer base belonged to just
4 ISPs.

71

Figure 6.8: User distribution over ISPs

Figure 6.9: Average size of a user’s friend-circle within given number of hops
from the user

72

In our field-study, the maximum number of friends a user had was 12 (with 16
users having the minimum of just 1). As seen in Figure 6.9, however most users
quickly get to the maximum clique sizes within 4 hops. This is a well-known
characteristic of social networks, where people are within a few hops of the hubs
in the social network. We added 4 proxies (1 outside India, 3 within India) as
friends to every user to support users during the boot-strapping phase.

6.4.1 Coverage Metrics

Figure 6.10: Percentage of users with complete and best-possible coverage at a
given social network depth

As we discussed earlier in Section 5.2, complete coverage tells us, for any given
social network depth, the percentile of users who can exactly detect the ‘source’
of network manipulation at that depth. Some users will never achieve complete
coverage because there is no other user in the system (even at the maximum pos-
sible depth) that can disambiguate some network attribute. Figure 6.10 shows the
coverage metrics of the users with regards to the social network depth. As shown,
many users (89%) will to get their best possible coverage within just 2 hops of
their social network. The lower percentile for the complete coverage is because

73

of users who have manually specified an organization (and do not have any other
user from within that organization within the social network depth).

6.4.2 Redundancy Metrics

Figure 6.11: Best-possible (redundant) coverage at a given social network depth

As discussed earlier in Section 5.3, redundancy n tells us, for any given social
network depth, the percentile of users who can have coverage with at least n num-
ber of users within the friend circle available for disambiguating the result. This
is a useful metric when measuring the resiliency of a social network in detecting
some network manipulation. For instance, a 90% of users with 5 redundant best-
possible coverage at depth 2 tells that 90% of users have at least 5 users within
two hops in the social network for each network attribute required to determine
best-possible coverage.

Figure 6.11 gives us the best-possible coverage redundancy numbers for our
study group. This shows that around half of the users had at least 2 different
people for all network attributes, and around 25% of users had at least 3 within
two hops. Note that this is a hard criteria to satisfy, because we need users for each
network attribute. For a 3-redundancy coverage, we need to have 3 people with

74

the same ISP (and, optionally, same organization) as well as 3 people outside the
ISP. This would be essential to clarify, for example, that the problem is not with
the ISP but with the user’s computer. Frequently, however, the users may only be

Figure 6.12: ISP (redundant) coverage at a given social network depth

concerned about a particular network attribute, say the ISP. Figure 6.12 gives us
various ISP redundancy values. We see a high redundancy number for ISPs in our
study group. This indicates that friends are not clustered together within a single
ISP. The results for ISP coverages were 100% for 5-redundancy(at depth 2). Even
at 10 redundancy, 46% of users satisfy ISP coverage at depth 2.

6.5 Web Manipulation Results

Our field evaluation was able to find different kinds of manipulation by ISPs of
web content. In total we found 64 distinct blocked URLs within the country. On
average users checked 15 distinct URLs per person. However, we found that both
in terms of blocked URLs and in terms of total URLs being checked, there was
a highly skewed distribution with top 6 users accounting for finding 51 of the
blocked URLs (not uniquely, however). Many blocked URLs were also checked

75

for by a large group of users. We give more details of these URLs in Section 6.6.
Most of the popularly checked for content pertained to media and torrent sites.

We were able to correlate some of the detected blocked URLs to court or-
ders [71]. However, even in these mandated cases, not all ISPs blocked the web-
sites uniformly. These manipulations differed by ISP, by target type, and motiva-
tion. We give an overview of some of our findings here.

6.5.1 Targets for censorship

We found that in India, the targets of censorship were varied. We categorized
these blocked URLs in to broad categories, which were manually assigned.

• Media Content and mobile: Many sites hosting Indian media content
(videos, songs) were blocked by ISPs. However, we found a good deal
of variation amongst ISPs with regards to their interference. One particular
ISP (ISP-G), which happens to own a significant media-empire (and an ex-
tensive mobile network), blocked more media content websites as well as
websites advertising free mobile tunes compared to other ISPs.

• Political or religious content: Other common targets were websites that
were seen as libelous or politically charged or liable to inflame religious
conflict. Note that, around the time period of our study, there were in-
stances of communal violence [72] in northeastern parts of India. The In-
dian government, purportedly, to prevent inflammatory religious content or-
dered censorship of a lot of content on the Internet.

However, there was a lot of discussion in India complaining about the fact
that other content from journalists and news articles were also being blocked.
This meant that many of the URLs were being discussed in social networks
and news articles at the time of the study, which may have led to us see-
ing some instances of these URLs in our results. We were able to correlate
many blocked websites with court orders directing all ISPs in India to block
those websites[71]. We also found that most of ISPs blocked these web-
sites, but the some of the blocked websites were accessible from a few ISPs
within India.

• Torrent sites: Websites which provide links to torrents were frequently
(and universally) blocked by all the major ISPs in our study. In many cases,

76

the users are also given an explicit web page which warns them that these
pages are blocked.

6.5.2 Types of network manipulation

We found multiple ways in which ISPs chose to implement network manipulation.
We give a list of these below:

• Timeout: This was amongst the most popular mechanism that we observed.
Many ISPs resorted to dropping the packets altogether, resulting in a time-
out at the client. This was seen being applied to whole domains, as well as,
only to specific web pages within otherwise allowed domains.

• HTTP Protocol based manipulation: HTTP protocol based errors were
another popular way of modifying the content. In many cases, we saw
HTTP 403 (Forbidden), or, HTTP 503 (Service Unavailable) for specific
web pages. This would normally be interpreted as the browser (and the
user) as a legitimate error from the web server at the other end. Note that
these web pages were verified to be working properly from other ISPs (or
outside India). Some other errors were seen as HTTP protocol errors by the
Java networking stack and API.

• Content modification: Some ISPs resorted to showing a different content
from that of the actual web page. We saw on instance of a web page that
simply served ads in place of a blocked web page. Two ISPs, in particu-
lar, performed their censorship by simply returning a empty web page con-
sisting of just the following content to the user <BODY></BODY>. There
were also many instances of web pages that explicitly indicated that they
were blocked by the ISP. Figure 6.13 shows a media content site www.

desisong.com being blocked by one of the ISPs.

6.6 Metrics of Network Manipulation

In this section, we look at analysis of the various blocked URLs, ISP mechanisms
for blocking, categorize the blocked URLs by their type.

77

www.desisong.com
www.desisong.com

(a) Website as seen originally (b) Website blocked

Figure 6.13: Coverage and False-Positive Rates

isp OK timeout Error 403 401 504 502 503
ISP-A 35 19 0 0 0 0 0 0
ISP-B 33 19 0 0 2 0 0 0
ISP-C 51 1 0 2 0 0 0 0
ISP-D 25 1 0 20 0 0 0 8
ISP-E 26 24 0 0 0 4 0 0
ISP-F 51 2 1 0 0 0 0 0
ISP-G 25 5 1 0 0 0 23 0

Table 6.1: Table showing incidences of blocking mechanism used per ISP

6.6.1 Blocking mechanisms by ISP

Table 6.1 shows how the various blocked URLs are treated by different ISPs. As
shown in the figure, there was no uniformity in blocking the URLs by all the ISPs.
The OK, column corresponds to URLs that we accessible (with or without mod-
ification) by the user. The timeout is the most popular mechanism for blocking.
This was an indication that the packets were dropped by the ISP. HTTP status
codes 403 (forbidden web-page) and 502 (bad gate-way) were the other popular
blocking messages sent by the ISPs.

Note that although some of these ISPs (ISP-F and ISP-C) appear to be more
permissive, in reality these web pages delivered to the users were not always the
ones sent by the web servers. In many of these cases, the web pages were either of
empty content or with the modified content <BODY> </BODY>. Some ISPs also
gave a warning web page explicitly indicating that the website was blocked(see
Figure 6.13).

78

ISP file-hosting mobile political blog media adult religious torrent
ISP-A 1 1 2 3 5 1 2 5
ISP-B 2 0 1 3 10 2 2 3
ISP-C 0 0 1 0 1 2 1 0
ISP-D 2 2 2 2 12 1 2 6
ISP-E 1 2 2 2 14 1 3 3
ISP-F 0 0 0 1 0 1 0 2
ISP-G 1 5 1 2 17 0 2 1

Table 6.2: Table showing frequency of types of content blocked by URLs per ISP

6.6.2 Blocked URLs categories by ISP

Table 6.1 shows the various how the frequencies various blocked categories
of URLs by different ISPs. These categories were assigned to the urls, by us,
manually. Most of the category labels were self-evident; for instance, a free file-
hosting site was something that allow uploading and storing of content, a religious
content website was something that contained content specifically praising (or
criticizing) some religion etc.,.

As is evident, quite a bit of the blocking that we detected was to media content
which consisted of sites which contained music or video files of popular (mostly
Indian) content. Torrent sharing sites were also a popular target. While the number
of instance of adult websites that were seen to be blocked were minimal, this may
have been due the fact that users did not feel comfortable using our tool to check
for those website.

79

Chapter 7

Conclusion and Future Work

Network manipulation is a growing concern for a variety of reasons. Many ap-
proaches have been presented in recent past to detect and circumvent such inter-
ference. A fundamental challenge in many such approaches is the procurement of
large collection of end nodes to perform the measurements. End users who want to
perform customized checks for detecting manipulation on specific end targets do
not have the capabilities to develop such a collection easily and on demand. Au-
tomated analysis using publicly available infrastructure on the web, while useful,
provides only relatively limited coverage.

We have demonstrated the feasibility of using friendsourcing, a process in
which a user can use the capabilities of their social network to perform an on-
demand investigation of network manipulation. We developed, a prototype tool
SiteViews, that was able to detect various kinds of network manipulation in India
and was able to attribute them to their likely actors. We also showed the scalability
of our approach using evaluations done on data taken from three different kinds
of real-life social networks.

There are multiple possible directions for future work. Firstly, we can make
our measurement Java Applet more generic to measure new kinds of manipula-
tion. Secondly, we can measure the effectiveness of the approach compared to
crowdsourcing. Our current implementation of the tool, gave the users a quid pro

quo, i.e., they will receive help from their friend circle in exchange for providing
the same. However, it is also interesting to measure whether, users will be willing
to help random strangers with their queries. Existing research on cooperation on
social networks suggests that users will likely help their friends more than random
strangers, but even limited cooperation might turn out to be valuable. Finally, we
can also apply existing research on handling malicious or unreliable users on the
social network to our implementation. While it was not a large concern in our
prototype implementation, with users being limited to friends-of-friends, it will
be bigger concern once we start accepting help from less trusted users.

80

References

[1] Reporters Without Borders, “Beset by online surveillance and content fil-
tering, netizens fight on,” http://en.rsf.org/beset-by-online-surveillance-and-
12-03-2012,42061.html, March 2012, [Accessed June 9, 2013].

[2] Electronic Frontier Foundation, “Australian Networks Censor Commu-
nity Education Website,” https://www.eff.org/deeplinks/2013/04/australian-
networks-censor-community-education-site, April 2013, [Accessed June 9,
2013].

[3] M. S. Bernstein, D. Tan, G. Smith, M. Czerwinski, and E. Horvitz,
“Personalization via friendsourcing,” ACM Trans. Comput.-Hum. Interact.,
vol. 17, pp. 6:1–6:28, May 2008. [Online]. Available: http://doi.acm.org/10.
1145/1746259.1746260

[4] TechCrunch, “Facebooks Growth Since IPO In 12 Big Numbers,” http:
//techcrunch.com/2013/05/17/facebook-growth/.

[5] S. P. Kasiviswanathan, S. Eidenbenz, and G. Yan, “Geography-based anal-
ysis of the internet infrastructure,” in INFOCOM, 2011 Proceedings IEEE.
IEEE, 2011, pp. 131–135.

[6] Y. Zhang, Z. M. Mao, and M. Zhang, “Detecting traffic differentiation in
backbone ISPs with NetPolice,” in Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, ser. IMC’09. ACM, 2009,
pp. 103–115.

[7] CNET, “Router glitch cuts Net access,” http://news.cnet.com/2100-1033-
279235.html, [Accessed May 30, 2013].

[8] K. Butler, T. R. Farley, P. McDaniel, and J. Rexford, “A survey of BGP
security issues and solutions,” in Proceedings of the IEEE, vol. 98, no. 1.
IEEE, 2010, pp. 100–122.

[9] RIPE, “YouTube Hijacking: A RIPE NCC RIS case study,” http:
//www.ripe.net/internet-coordination/news/industry-developments/youtube-
hijacking-a-ripe-ncc-ris-case-study, March 2008, [Accessed 1 June 2013].

81

http://en.rsf.org/beset-by-online-surveillance-and-12-03-2012,42061.html
http://en.rsf.org/beset-by-online-surveillance-and-12-03-2012,42061.html
https://www.eff.org/deeplinks/2013/04/australian-networks-censor-community-education-site
https://www.eff.org/deeplinks/2013/04/australian-networks-censor-community-education-site
http://doi.acm.org/10.1145/1746259.1746260
http://doi.acm.org/10.1145/1746259.1746260
http://techcrunch.com/2013/05/17/facebook-growth/
http://techcrunch.com/2013/05/17/facebook-growth/
http://news.cnet.com/2100-1033-279235.html
http://news.cnet.com/2100-1033-279235.html
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

[10] ArsTechnica, “Police arrest suspect accused of unprecedented DDoS
attack on Spamhaus,” http://arstechnica.com/security/2013/04/police-arrest-
spamhaus-attacker-accused-of-unprecedented-ddos-attack/, April 2013,
[Accessed 1 June 2013].

[11] ArsTechnica, “US net neutrality rules finalized, in effect Novem-
ber 20,” http://arstechnica.com/tech-policy/news/2011/09/us-net-neutrality-
rules-finalized-in-effect-november-20.ars, September 2011, [Accessed June
8, 2013].

[12] ArsTechnica, “Verizon sues to halt FCC’s net neutrality rules,”
http://arstechnica.com/tech-policy/news/2011/10/verizon-sues-to-halt-
fccs-net-neutrality-rules.ars, October 2011, [Accessed June 8, 2013].

[13] ArsTechnica, “Net neutrality supporters file lawsuit against net neutral-
ity rules,” http://arstechnica.com/tech-policy/news/2011/09/net-neutrality-
backers-file-lawsuit-against-net-neutrality-rules.ars, September 2011, [Ac-
cessed June 8, 2013].

[14] VoIP Solutions and conferencing reviews, “10 ISPs and countries known
to have blocked VoIP,” http://www.voip-sol.com/10-isps-and-countries-
known-to-have-blocked-voip/, January 2007, [Accessed June 9, 2013].

[15] ArsTechnica, “Vonage claims unfair ”tax” by Canadian ISP,” http://
arstechnica.com/old/content/2006/03/6339.ars, March 2006, [Accessed May
31, 2013].

[16] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi, R. Mahajan, and
S. Saroiu, “Glasnost: enabling end users to detect traffic differentiation,”
in Proceedings of the 7th USENIX conference on Networked systems design
and implementation, ser. NSDI’10. USENIX, 2010, pp. 405–418.

[17] Cisco, “Cisco SCE 2000 Series Service Control Engine,” http://www.cisco.
com/en/US/products/ps6151/index.html, [Accessed June 9, 2013].

[18] T. Elahi and I. Goldberg, “CORDON–A Taxonomy of Internet Censorship
Resistance Strategies,” University of Waterloo, Tech. Rep., 2012.

[19] Electronic Frontier Foundation, “Packet Forgery By ISPs: A Report
on the Comcast Affair,” https://www.eff.org/wp/packet-forgery-isps-report-
comcast-affair, November 2007, [Accessed on June 7, 2013].

[20] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver, “Detecting In-Flight
Page Changes with Web Tripwires,” in Proceedings of the 5th USENIX Sym-
posium on Networked Systems Design and Implementation, ser. NSDI’08.
USENIX, 2008, pp. 31–44.

82

http://arstechnica.com/security/2013/04/police-arrest-spamhaus-attacker-accused-of-unprecedented-ddos-attack/
http://arstechnica.com/security/2013/04/police-arrest-spamhaus-attacker-accused-of-unprecedented-ddos-attack/
http://arstechnica.com/tech-policy/news/2011/09/us-net-neutrality-rules-finalized-in-effect-november-20.ars
http://arstechnica.com/tech-policy/news/2011/09/us-net-neutrality-rules-finalized-in-effect-november-20.ars
http://arstechnica.com/tech-policy/news/2011/10/verizon-sues-to-halt-fccs-net-neutrality-rules.ars
http://arstechnica.com/tech-policy/news/2011/10/verizon-sues-to-halt-fccs-net-neutrality-rules.ars
http://arstechnica.com/tech-policy/news/2011/09/net-neutrality-backers-file-lawsuit-against-net-neutrality-rules.ars
http://arstechnica.com/tech-policy/news/2011/09/net-neutrality-backers-file-lawsuit-against-net-neutrality-rules.ars
http://www.voip-sol.com/10-isps-and-countries-known-to-have-blocked-voip/
http://www.voip-sol.com/10-isps-and-countries-known-to-have-blocked-voip/
http://arstechnica.com/old/content/2006/03/6339.ars
http://arstechnica.com/old/content/2006/03/6339.ars
http://www.cisco.com/en/US/products/ps6151/index.html
http://www.cisco.com/en/US/products/ps6151/index.html
https://www.eff.org/wp/packet-forgery-isps-report-comcast-affair
https://www.eff.org/wp/packet-forgery-isps-report-comcast-affair

[21] M. S. Granovetter, “The Strength of Weak Ties,” American journal of soci-
ology, pp. 1360–1380, 1973.

[22] Facebook, “Anatomy of Facebook,” https://www.facebook.com/notes/
facebook-data-team/anatomy-of-facebook/10150388519243859, Novem-
ber 2011, [Accessed June 9, 2013].

[23] Google, “Google Plus,” https://plus.google.com.

[24] Pew Internet, “Pew Internet: Social Networking,” http://pewinternet.
org/Commentary/2012/March/Pew-Internet-Social-Networking-full-
detail.aspx, December 2012, [Accessed June 13, 2013].

[25] “DBLP,” http://www.informatik.uni-trier.de/∼ley/db/.

[26] “Arxiv,” ”http://www.arxiv.org”.

[27] “KDL Dataset,” ”http://kdl.cs.umass.edu/data/hepth/hepth-info.html”.

[28] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user move-
ment in location-based social networks,” in Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, ser. KDD’11. ACM, 2011, pp. 1082–1090.

[29] Amazon, “Amazon Mechanical Turk,” https://www.mturk.com/mturk/
welcome.

[30] M. R. Morris, J. Teevan, and K. Panovich, “What Do People Ask Their So-
cial Networks, and Why?: A Survey Study of Status Message Q&A Behav-
ior,” in CHI’10: Proceedings of the 28th international conference on Human
factors in computing systems, ser. CHI’10. ACM, 2010, pp. 1739–1748.

[31] S. Leider, M. M. Mbius, T. Rosenblat, and Q.-A. Do, “Directed Altruism and
Enforced Reciprocity in Social Networks,” vol. 124, no. 4, pp. 1815–1851,
2009.

[32] M. S. Granovetter, Getting a job: A study of contacts and careers. Harvard
University Press (Cambridge, Mass), 1974.

[33] K. Panovich, R. Miller, and D. Karger, “Tie strength in question & answer
on social network sites,” in Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work, ser. CSCW’12. ACM, 2012, pp.
1057–1066.

[34] E. Gilbert and K. Karahalios, “Predicting Tie Strength with Social Media,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI’09. ACM, 2009, pp. 211–220.

83

https://www.facebook.com/notes/facebook-data-team/anatomy-of-facebook/10150388519243859
https://www.facebook.com/notes/facebook-data-team/anatomy-of-facebook/10150388519243859
https://plus.google.com
http://pewinternet.org/Commentary/2012/March/Pew-Internet-Social-Networking-full-detail.aspx
http://pewinternet.org/Commentary/2012/March/Pew-Internet-Social-Networking-full-detail.aspx
http://pewinternet.org/Commentary/2012/March/Pew-Internet-Social-Networking-full-detail.aspx
http://www.informatik.uni-trier.de/~ley/db/
"http://www.arxiv.org"
"http://kdl.cs.umass.edu/data/hepth/hepth-info.html"
https://www.mturk.com/mturk/welcome
https://www.mturk.com/mturk/welcome

[35] J. H. Fowler and N. A. Christakis, “Cooperative behavior cascades in human
social networks,” in Proceedings of the National Academy of Sciences, vol.
107, no. 12. National Academy of Sciences, 2010, pp. 5334–5338.

[36] P. Brañas-Garza, R. Cobo-Reyes, M. P. Espinosa, N. Jiménez, J. Kovářı́k,
and G. Ponti, “Altruism and social integration,” vol. 69, no. 2. Elsevier,
2010, pp. 249–257.

[37] B. Christianson and W. Harbison, “Why Isn’t Trust Transitive?” in Security
Protocols, ser. LNCS’97. Springer-Verlag, 1997, pp. 171–176.

[38] T. DuBois, J. Golbeck, and A. Srinivasan, “Predicting Trust and Distrust in
Social Networks,” in SocialCom/PASSAT’11. IEEE, 2011, pp. 418–424.

[39] U. Kuter and J. Golbeck, “Using Probabilistic Confidence Models for Trust
Inference in Web-based Social Networks,” in ACM Transactions on Internet
Technology, ser. TOIT’10. ACM, 2010, pp. 8:1–8:23.

[40] C.-N. Ziegler and G. Lausen, “Spreading Activation Models for Trust Prop-
agation,” in e-Technology, e-Commerce and e-Service, 2004. EEE’04. 2004
IEEE International Conference on. IEEE, 2004, pp. 83–97.

[41] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation of Trust
and Distrust,” in Proceedings of the 13th international conference on World
Wide Web, ser. WWW’04. ACM, 2004, pp. 403–412.

[42] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting Positive and
Negative Links in Online Social Networks,” in Proceedings of the 19th in-
ternational conference on World Wide Web, ser. WWW’10. ACM, 2010,
pp. 641–650.

[43] M. Dischinger, A. Mislove, A. Haeberlen, and K. P. Gummadi, “Detecting
BitTorrent Blocking,” in Proceedings of the 8th ACM SIGCOMM conference
on Internet measurement, ser. IMC’08. ACM, 2008, pp. 3–8.

[44] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Illuminating
the Edge Network,” in Proceedings of the 10th annual conference on Internet
measurement, ser. IMC ’10. ACM, 2010, pp. 246–259.

[45] P. Kanuparthy and C. Dovrolis, “ShaperProbe: End-to-End Detection of ISP
Traffic Shaping using Active Methods,” in Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference, ser. IMC’11.
ACM, 2011, pp. 473–482.

[46] M. B. Tariq, M. Motiwala, N. Feamster, and M. Ammar, “Detecting Network
Neutrality Violations with Causal Inference,” in Proceedings of the 5th inter-
national conference on Emerging networking experiments and technologies,
ser. CoNEXT’09. ACM, 2009, pp. 289–300.

84

[47] Herdict Web, “OpenNet Initiative’s Herdict Web,” http://www.herdict.org/,
[Accessed 31 May 2013].

[48] R. Beverly, S. Bauer, and A. Berger, “The Internet Is Not a Big Truck: To-
ward Quantifying Network Neutrality,” in Passive and Active Network Mea-
surement, ser. PAM’07. Springer-Verlag, 2007, pp. 135–144.

[49] M. A. Sánchez, J. S. Otto, Z. S. Bischof, and F. E. Bustamante, “Dasu -
ISP characterization from the edge: a BitTorrent implementation,” in Pro-
ceedings of the ACM SIGCOMM 2011 conference on SIGCOMM, ser. SIG-
COMM’11. ACM, 2011, pp. 454–455.

[50] Y. Zhang, Z. Morley, and M. M. Zhang, “Ascertaining the Reality of Net-
work Neutrality Violation in Backbone ISPs,” in In Proc. 7th ACM Workshop
on Hot Topics in Networks, ser. HotNets’08, 2008.

[51] A. Sfakianakis, E. Athanasopoulos, and S. Ioannidis, “CensMon: A Web
Censorship Monitor,” in FOCI11, USENIX Workshop on Free and Open
Communications on the Internet. USENIX, 2011.

[52] Anonymizer, “Anonymizer,” http://www.anonymizer.com.

[53] N. Feamster, M. Balazinska, W. Wang, H. Balakrishnan, and D. Karger,
“Thwarting Web Censorship with Untrusted Messenger Discovery,” in Pri-
vacy Enhancing Technologies, ser. PET’03, March 2003, pp. 125–140.

[54] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and D. Karger,
“Infranet: Circumventing web censorship and surveillance,” in Proceedings
of the 11th USENIX Security Symposium. USENIX, 2002, pp. 247–262.

[55] S. Burnett, N. Feamster, and S. Vempala, “Chipping Away at Censorship
Firewalls with User-Generated Content,” in Proceedings of the 19th USENIX
conference on Security, ser. USENIX Security’10. USENIX, 2010, pp.
463–468.

[56] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman, “Telex: Anticen-
sorship in the Network Infrastructure,” in Proceedings of the 20th USENIX
Security Symposium, August 2011.

[57] A. Houmansadr, G. T. Nguyen, M. Caesar, and N. Borisov, “Cirripede: Cir-
cumvention Infrastructure using Router Redirection with Plausible Denia-
bility,” in Proceedings of the 18th ACM conference on Computer and com-
munications security, ser. CCS’11. ACM, 2011, pp. 187–200.

[58] J. Karlin, D. Ellard, A. W. Jackson, C. E. Jones, G. Lauer, D. P. Mankins,
and W. T. Strayer, “Decoy Routing: Toward Unblockable Internet Commu-
nication,” in Proceedings of the USENIX Workshop on Free and Open Com-
munications on the Internet, ser. FOCI’11. USENIX, August 2011.

85

http://www.herdict.org/
http://www.anonymizer.com

[59] atthegrapevine, “North Korea, Syria and Iran - just three of the places where
the Internet goes to die,” http://www.atthegrapevine.com/politics/north-
korea-syria-and-iran-just-three-of-the-places-where-the-internet-goes-to-
die, 2013, [Accessed on June 29,2013].

[60] ncr-iran.org, “Iranian regime arrests man for selling Internet filtering
software,” http://www.ncr-iran.org/en/news/human-rights/13354-iranian-
regime-arrests-man-for-selling-internet-filtering-software.html, [Accessed
on June 29,2013].

[61] Guardian, “New laws on porn ’will criminalise thousands’,”
http://www.guardian.co.uk/artanddesign/2008/oct/26/photography-
pornography-law, [Accessed on June 29,2013].

[62] KSL, “Bill Would Make Viewing Porn on School Computers a Crime,” http:
//www.ksl.com/?nid=148&sid=804683, [Accessed on June 29,2013].

[63] G. Danezis and P. Mittal, “SybilInfer: Detecting Sybil Nodes using Social
Networks,” in Proceedings of the Network and Distributed System Security
Symposium, ser. NDSS’09, 2009.

[64] Facebook, “Graph API,” https://developers.facebook.com/docs/reference/
api/.

[65] Google, “Google Maps API,” https://developers.google.com/maps/, [Ac-
cessed on June 20, 2013].

[66] Telecom Regulatory Authority of India, “The Indian Telecom Services
Performance Indicators,” http://www.trai.gov.in/WriteReadData/PIRReport/
Documents/Indicator%20Reports%20-%20Jun-12.pdf, October 2012, [Ac-
cessed June 1,2013].

[67] “Whois,” http://en.wikipedia.org/wiki/Whois.

[68] “ip2location,” http://www.ip2location.com/.

[69] Nginx, “Nginx,” http://nginx.org.

[70] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The Anatomy of the
Facebook Social Graph,” in arxiv.org/CoRR, 2011.

[71] ArsTechnica, “SOPA masala: 387 Indian ISPs must block 104 piratical web-
sites,” http://arstechnica.com/tech-policy/2012/03/sopa-masala-indian-isps-
must-block-104-piratical-websites/, [Accessed May 30,2013].

[72] wikipedia, “2012 Assam Violence,” http://en.wikipedia.org/wiki/2012
Assam violence, [Accessed on June 15, 2013].

86

http://www.atthegrapevine.com/politics/north-korea-syria-and-iran-just-three-of-the-places-where-the-internet-goes-to-die
http://www.atthegrapevine.com/politics/north-korea-syria-and-iran-just-three-of-the-places-where-the-internet-goes-to-die
http://www.atthegrapevine.com/politics/north-korea-syria-and-iran-just-three-of-the-places-where-the-internet-goes-to-die
http://www.ncr-iran.org/en/news/human-rights/13354-iranian-regime-arrests-man-for-selling-internet-filtering-software.html
http://www.ncr-iran.org/en/news/human-rights/13354-iranian-regime-arrests-man-for-selling-internet-filtering-software.html
http://www.guardian.co.uk/artanddesign/2008/oct/26/photography-pornography-law
http://www.guardian.co.uk/artanddesign/2008/oct/26/photography-pornography-law
http://www.ksl.com/?nid=148&sid=804683
http://www.ksl.com/?nid=148&sid=804683
https://developers.facebook.com/docs/reference/api/
https://developers.facebook.com/docs/reference/api/
https://developers.google.com/maps/
http://www.trai.gov.in/WriteReadData/PIRReport/Documents/Indicator%20Reports%20-%20Jun-12.pdf
http://www.trai.gov.in/WriteReadData/PIRReport/Documents/Indicator%20Reports%20-%20Jun-12.pdf
http://en.wikipedia.org/wiki/Whois
http://www.ip2location.com/
http://nginx.org
http://arstechnica.com/tech-policy/2012/03/sopa-masala-indian-isps-must-block-104-piratical-websites/
http://arstechnica.com/tech-policy/2012/03/sopa-masala-indian-isps-must-block-104-piratical-websites/
http://en.wikipedia.org/wiki/2012_Assam_violence
http://en.wikipedia.org/wiki/2012_Assam_violence

	Chapter 1 Introduction
	1.1 Thesis
	1.2 Challenges
	1.2.1 Proof of Effectiveness
	1.2.2 Resiliency
	1.2.3 Efficiency
	1.2.4 Practicality

	1.3 Demonstration
	1.3.1 Coverage
	1.3.2 Redundancy
	1.3.3 Optimal Recruitment
	1.3.4 Field Deployment

	1.4 Overview and Contributions
	1.4.1 Effectiveness
	1.4.2 Efficient Recruitment
	1.4.3 Implementation and Field Evaluation

	Chapter 2 Background
	2.1 Communication Networks: Internet
	2.1.1 Actors on the Internet
	2.1.2 Traditional Threats to Network Communication
	2.1.3 Emerging Threat: Network Manipulation
	2.1.4 Network Manipulation: Attacker Triggers
	2.1.5 Network Manipulation: Attacker Mechanisms

	2.2 Social Networks
	2.2.1 Types of Social Networks
	2.2.2 Collaboration on Social Networks
	2.2.3 Trust on Social Networks

	Chapter 3 Related Work
	3.1 Detection
	3.1.1 Crowd-sourcing using measurement-servers
	3.1.2 Passive Aggregation and analysis
	3.1.3 Piggybacking on P2P networks
	3.1.4 Automated Analysis
	3.1.5 Other Approaches

	3.2 Circumvention

	Chapter 4 Design Options
	4.1 Conceptual Phases
	4.2 Desirable Features
	4.3 Assumptions
	4.4 Design Choices
	4.4.1 Coordinated versus Decentralized
	4.4.2 On-demand versus Tool-driven analysis
	4.4.3 Using measurement-servers versus real-life servers

	Chapter 5 Analysis
	5.1 Datasets
	5.2 Coverage Metrics
	5.2.1 Complete Coverage Results
	5.2.2 Best-possible Coverage Results
	5.2.3 ISP Coverage Results
	5.2.4 Country Coverage Results

	5.3 Redundancy Metrics
	5.3.1 Redundant Complete Coverage
	5.3.2 Redundant Best Possible Coverage
	5.3.3 Redundant ISP Coverage
	5.3.4 Redundant Country Coverage

	5.4 Optimization of Recruitment

	Chapter 6 Field Study
	6.1 Features, Assumptions, and Limitations
	6.1.1 Ease of use
	6.1.2 Generality and Extensibility
	6.1.3 Effective Recruitment and Efficiency
	6.1.4 Graceful Degradation

	6.2 Architecture and Implementation
	6.2.1 Optimizations

	6.3 SiteViews User Interface
	6.4 Study Setup
	6.4.1 Coverage Metrics
	6.4.2 Redundancy Metrics

	6.5 Web Manipulation Results
	6.5.1 Targets for censorship
	6.5.2 Types of network manipulation

	6.6 Metrics of Network Manipulation
	6.6.1 Blocking mechanisms by ISP
	6.6.2 Blocked URLs categories by ISP

	Chapter 7 Conclusion and Future Work
	References

