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Abstract—Actor programs are concurrent programs where
concurrent entities communicate asynchronously by exchanging
messages. Testing actor programs is challenging because the
order of message receives depends on the non-deterministic
scheduler and because exploring all schedules does not scale to
large programs. This paper presents Bita, a scalable, automatic
approach for testing non-deterministic behavior of actor pro-
grams. The key idea is to generate and explore schedules that are
likely to reveal concurrency bugs because these schedules increase
the schedule coverage. We present three schedule coverage
criteria for actor programs, an algorithm to generate feasible
schedules that increase coverage, and a technique to force a
program to comply with a schedule. Applying Bita to real-world
actor programs implemented in Scala reveals eight previously
unknown concurrency bugs, of which six have already been fixed
by the developers. Furthermore, we show our approach to find
bugs 122x faster than random scheduling, on average.

I. INTRODUCTION

Concurrent programs are becoming increasingly important
as multi-core and networked computing systems become the
norm. Testing concurrent programs is challenging because
a single input may exhibit different behavior due to non-
deterministic scheduling. A model of concurrent programming
that has been gaining popularity is the actor model [6], [23].
Actor programs consist of computing entities called actors—
each with its own local state and thread of control— that com-
municate exclusively by exchanging messages. Since actors do
not share state, the actor model reduces the potential for data
races, a common bug in the shared-memory model. The wide-
spread use of message-passing concurrency in industrial soft-
ware development [21] and the growing number of libraries
and languages that support actor-based programming [7], [8],
[22], [37], [11], [28] evidence the popularity of the actor
model.

Despite the lack of shared state, testing actor systems is
difficult because the order in which actors receive messages—
the schedule of the execution—is non-deterministic. This non-
determinism leads to race conditions at the level of messages.
For example, consider the Scala code in Listing 1, which is a
simplified version of a bug we found in the real-world actor
program Gatling [3]. There are three actor classes: Writer,
which stores information to external storage, Action, which
sends its results to the writer, and Terminator, which is
responsible for proper termination of the program. A program

has actionNum instances of Action and exactly one instance
of each Writer and Terminator.

Figure 1 shows the message sequence diagram of an
executions of a program with one action. When the action
receives an Execute message, it sends Write to the writer and
ActionDone to the terminator. When the terminator receives
the ActionDone message, it decreases the number of current
actions. If this number reaches zero, the terminator sends
Flush to the writer, which causes the writer to write all results
into external storage, to assign null to the results variable,
and to send a Flushed message to the terminator. This
execution is successful, because the writer receives Write
before Flush. However, an execution with a different schedule
may reorder Write and Flush. In this case, not only the
flushed records is incorrect but the results variable is null
and the program throws an exception.

This paper presents Bita, a scalable, automatic approach to
test different schedules of an actor program. The key idea is to
leverage schedule coverage to focus the exploration of possible
schedules on those schedules that are likely to be of interest
for exposing bugs. Schedule coverage describes the extent to
which a set of possible schedules has already been explored.
We present three schedule coverage criteria for actor programs.
Bita exploits these criteria to tests a program in three steps.
First, it runs the program to obtain an arbitrary initial schedule.
Second, it uses the initial schedule to generate schedules that
increase the coverage. Finally, it runs the program with each
generated schedule.

Existing approaches to test actor programs by exhaustively
exploring all possible schedules [31] do not scale to real-
world programs, even with advanced partial order reduction
techniques [41], [45]. Another approach is to let developers
explicitly specify which schedules to explore during test
execution [38], [26], [44]. In contrast, Bita explores interesting
schedules automatically. For testing shared-memory programs
(and not actor programs), several schedule coverage criteria
have been proposed [46], [48], [9], [33] and leveraged for
exploring schedules [24], [49]. To the best of our knowledge,
no existing work offers a scalable, automatic technique for
testing actor programs based on schedule coverage criteria.

In this paper, we take advantage of schedule coverage
criteria to propose a practical technique for automated test-
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1 class Writer extends Actor {
2 var results = ArrayBuffer[String]()
3 def receive() = { // called when a message is removed from the mail box
4 case Write(result:String) => // if the message is Write(result)
5 results.append(result)
6 case Flush => { // if the message is Flush
7 writeToExternal(results) // write the results into the external storage
8 results = null
9 sender ! Flushed // send message Flushed to the sender

10 }
11 }
12 }
13 class Action(name:String, terminator:Terminator, writer:Writer) extends Actor {
14 def receive() = { // called when a message is removed from the mail box
15 case Execute => { // if the message is Execute
16 writer ! Write(name) // send message Write to the writer
17 terminator ! ActionDone // send message ActionDone to the terminator
18 }
19 }
20 }
21 class Terminator(actionNum:Int, writer:Writer) extends Actor {
22 var curActions = actionNum
23 def receive() = { // called when a message is removed from the mail box
24 case ActionDone => { // if the message is ActionDone
25 curActions −= 1
26 if (curActions == 0) writer ! Flush // send message Flush to the writer
27 }
28 }
29 }

Listing 1. Real-world example of a message ordering bug.
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Fig. 1. Sequence diagram of an executions of the code in Listing 1 with one
action. Rectangles represent receive events.

ing of actor programs. Specifically, we make the following
contributions:

(1) Schedule coverage criteria for actor systems. We
present three schedule coverage criteria for actor programs
that address common bugs patterns and a technique for
measuring the coverage achieved by a set of schedules
(Section III).

(2) Coverage-guided schedule generation. We present a
coverage-guided approach for automatically generating
schedules based on an initial schedule of a program
(Section IV). The schedule generator guarantees that each
generated schedule is feasible and that it contributes
to higher coverage. Previous work for shared-memory
programs [49], [24] generates infeasible schedules, which
reduces the efficiency of the testing process. Instead,
our approach creates feasible schedules by considering
must-happen-before relations between messages. Gener-
ated schedules can be stored and served as a part of test
cases for reproducing bugs or for validating the absence
of a particular bug.

(3) A technique for forcing a schedule at run-time. We

present a runtime scheduler that intercepts messages to
force a specified schedule while preserving the semantics
of the actor model (Section V).

(4) Implementation and evaluation with real-world pro-
grams. We implement the Bita approach for Akka [8],
a popular actor library for Scala, and apply it to five
real-world programs and three smaller benchmarks (Sec-
tion VI). Bita detects eight previously unknown bugs of
which six have already been fixed by the developers.
Compared to a scheduler that perturbs the execution by
introducing random delays [17], Bita finds bugs substan-
tially faster (122x on average).

II. BACKGROUND

Actors [23], [6] are concurrently executing entities that do
not share state but communicate through exchanging mes-
sages. Each actor has a mail box for incoming messages and
a message handler that determines which actions to perform
for processing messages. For example, in Akka as shown
in Listing 1, the behavior of each actor is specified by a
receive method and each case in the receive method is a
message handler.

Each step of computation is a receive event in which the
actor removes a message from its mail box and processes that
message. Upon processing a message, the actor may update
its local state, change its behavior, send more messages, or
create more actors. The message processing is performed in
an atomic step and without any interruption. This property
removes the fine-grained non-determinism and leaves the con-
currency non-determinism in the order of messages received
by the actors. In Figure 1, each rectangle indicates a receive
event.

Although the actor model is built upon asynchronous (non-
blocking) communications, it is possible to implement syn-
chronous communications by composing multiple steps of
asynchronous communications [6]. In synchronous communi-
cation, the sender actor blocks until it receives the reply form
the receiver. If a receive event is the reply of a synchronous
message sending, then we call it synchronous receive; other-
wise, we refer to it as asynchronous receive.

III. SCHEDULE COVERAGE CRITERIA FOR ACTOR
SYSTEMS

This section presents three schedule coverage criteria for
actor programs (Section III-A) and how to measure the cov-
erage achieved by a set of executions of an actor program
(Section III-B). Sections IV and V use the coverage criteria
to automatically generate and execute schedules that explore
a subset of all possible schedules that is likely to trigger bugs.

Our approach builds upon the notion of a schedule.
The schedule of a concurrent program is the order of all
concurrency-related events in the program execution. For actor
programs, the schedule is given by the sequence of receive
events. Formally, a schedule s is a finite sequence of receive
events s = 〈r1, r2, ..., rn〉 where each receive event r is
identified by the sender actor, sender(r), the receiver actor,
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rec(r), and the message, msg(r). We ignore send events and
actor creation events in the schedule because these events are
caused by receive events. That is, scheduling receive events
indirectly also schedules send and actor creation events.

There is a trade-off between the bug detection capability of
a criterion and the cost of fulfilling the criterion [33]. That
is, while satisfying a criterion that requires exploring a larger
number of schedules increases the probability to detect bugs,
it also increases the cost of the testing process and limits
scalability. To balance this trade-off, we focus on criteria that
consider pairs of asynchronous receive events of a single actor.
The rationale for this decision is threefold. First, considering
pairs of receive events is beneficial because the cost of
fulfilling these criteria is at most quadratic in the number of
concurrent events. Second, considering asynchronous receive
events is sufficient because every synchronous receive in an
actor is caused by an asynchronous receive and it happens
just after that asynchronous receive and before any other
asynchronous receive in that actor. Therefore, each ordering
of synchronous receive events can be achieved by at least one
ordering of asynchronous receive events. Third, considering
events of a single actor is beneficial because actors do not
share state, that is, only the receive events of a particular actor
change the state of the actor.

A. Coverage Requirements

The coverage requirements presented in the following are
inspired by common bug patterns of actor programs and
shared-memory programs. Each criterion defines ordering
goals to be achieved by schedules.

1) Pair of Consecutive Receives: Many concurrency bugs
are triggered when two accesses to a shared resource occur in
a particular order [10], [34]. Inspired by this observation, we
define the following coverage criterion:

Definition 1 (Pair of Consecutive Receives (PCR)): A
schedule s that contains two asynchronous receive events ri
and rj achieves the ordering goal ri →PCR rj if and only if
• rec(ri) = rec(rj) and
• ri appears before rj in s and
• there exists no asynchronous receive event rk in s so that
rec(rk) = rec(ri), and that rk appears between ri and
rj in s.

As an example, consider a program based on the code
in Listing 1 with two actions. The writer receives two Write
messages, with receive events w1 and w2, and one Flush
message, with receive event fl. The number of PCR ordering
goals for the writer actor is 6 and one of the possible sets of
schedules that covers them is: S = {〈w1, w2, f l〉, 〈fl, w2, w1〉,
〈w1, f l, w2〉, 〈fl, w1, w2〉}.

The PCR criterion relates to coverage criteria for shared
memory programs that consider pairs of accesses to a shared
object [49], [25], [33] and adapts the idea to actor programs.

2) Pair of Receives: This criterion is a less restrictive
version of PCR, in which the two receives for an actor do not
need to be consecutive. The variant of PCR is useful to detect
concurrency bugs that manifest when changing the order of

two receives in a single actor, even if the actor receives other
messages between the two receives. For example, consider an
initialization bug where a receive r initializes a field in an
actor. If a receive r′ that dereferences that field appears before
r, the invalid null value is read and leads to an exception, even
if other receive events happen between r′ and r.

Definition 2 (Pair of Receives (PR)): A schedule s that
contains two asynchronous receive events ri and rj achieves
the ordering goal ri →PR rj if and only if
• rec(ri) = rec(rj); and
• ri appears before rj in s.
While the number of ordering goals in the domain of PR

and PCR for a given program are the same, PCR may be
satisfied by fewer schedules which brings a merit for PR over
PCR. For the example in subsubsection III-A1, the number
of ordering goals for the writer actor is 6 for both PR and
PCR. However, the ordering goals of PR can be covered by
the first two schedules, 〈w1, w2, f l〉 and 〈fl, w2, w1〉, of the
four schedules required for PCR.

3) Pair of Behavior Change and Receive : The behavior
of an actor may be changed during its lifetime by changing
the actor’s message handler. Sending a message to an actor
that does not have a compatible handler for the message is
a common bug pattern in actor programs [13]. Depending
on the actor system, such unsuccessful receives may lead to
different kinds of unexpected program behavior. For example,
in Erlang [7] and Scala Actors [22], the message will stay in
the mailbox, which may lead to mailbox overflow; in Akka
1.3, an exception is thrown; in Akka 2.x, the message will be
discarded, which may confuse the sender because it assumes
that the receiver has received the message [8]. We define the
following criterion aimed at detecting this kind of potential
error:

Definition 3 (Pair of Behavior Change and Receive
(PBR)): For each receive event r, let cb(r) denotes whether
r changes the actor behavior or not. A schedule s with two
asynchronous receive events ri and rj achieves the ordering
goal ri →PBR rj if and only if
• rec(ri) = rec(rj); and
• cb(rj) = true or cb(ri) = true; and
• there exists no asynchronous receive event rk in s such

that rk appears between ri and rj in s, rec(rk) = rec(i),
and cb(rk) = true.

The domain of PBR is a subset of the domain of PCR and
therefore, the cost of satisfying PBR is smaller than PCR.
For the example in subsubsection III-A1, suppose the writer
changes its behavior when it receives the Flush message.
The set of PBR ordering goals for the writer actor would be
achieved by two schedules of 〈w1, w2, f l〉 and 〈fl, w1, w2〉.

B. Measuring Coverage

The following describes how to quantify the coverage
achieved by a set of schedules for the criteria explained
in Section III-A. In general, it is impractical to compute the
coverage domain of a criterion—all possible ordering goals for
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a given program and input—because it requires exploring all
possible schedules. Instead, we compute the coverage achieved
by different sets of schedules and compare them to each other.

Definition 4 (Coverage of a Set of Schedules ): For a
coverage criterion cr, a set S of schedules covers a pair
(ri, rj)cr of receive events if and only if there exist schedules
s1, s2 ∈ S such that s1 covers ri →cr rj and s2 covers
rj →cr ri.

That is, to increase coverage, one must cover both possible
orders of a pair: ri →cr rj and rj →cr ri. The rationale
for this definition is that we are interested in detecting non-
deterministic bugs that may manifest only with one of the two
orders.

To measure the coverage achieved by a set of schedules, we
must match equivalent receive events across multiple execu-
tions. A simple approach would be to match equivalent receive
events based on the source code location of message handlers.
Unfortunately, this approach is very imprecise because a single
message handler may execute many times. For example, in a
program in which the actor receives thousands of messages of
type M , all of the receive events would be identical and hence
the coverage for this actor would be equal to another program
in which the actor receives one message of type M .

To address the problem of precisely identifying receive
events across executions, we compute a hash value for each
actor and each message, and identify a receive event via its
sender hash value, receiver hash value, and message hash
value. By assuming that the application entry point is a receive
event with the hash value of zero, we can compute the hash
value of all receive events in an execution. The hash value of
an actor A is computed based on A’s dynamic type, the hash
value of the receive event r that creates A, and the number
of actors that r has created before A. Similar, the hash value
of a message M is computed based on M ’s dynamic type,
the hash value of the receive event r that sends M , and the
number of messages that r has sent before M .

IV. COVERAGE-GUIDED SCHEDULE GENERATION

Bita leverages the coverage criteria from Section III to auto-
matically explore potentially bug-revealing schedules. There-
fore, it combines a technique for automatically generating
schedules, explained in this section, with a run time scheduler
that forces a test execution into a specified schedule, explained
in Section V. The basic idea of the schedule generator is to
capture the schedule of an arbitrary execution of the program,
called the initial schedule, and to create new schedules by
modifying the initial schedule.

The schedule generation approach provides two guaran-
tees. First, each generated schedule increases the coverage
compared to the already generated schedules. Second, each
generated schedule is feasible, that is, there exists at least
one execution of the program that satisfies all the ordering
constraints of the schedule. These guarantees are based on
the assumption that the program does not have any other
sources of non-determinism except for message ordering.
More formally, let s = 〈r1, r2, ..., rn〉 be a schedule and

s′ = 〈r′1, r′2, ..., r′n′〉 be a schedule captured from an execution
of the program. We say s′ satisfies s iff
• for all ri ∈ s, ∃r′j ∈ s′ such that ri = r′j ; and
• let s′s be the sequence obtained from s′ by retaining only

the events in s, then s′s = s.
A schedule does not need to contain all events of an

execution to be feasible. For example, in Figure 1, the schedule
〈w, fl〉 is a feasible schedule although it contains only two
events. However, the schedule 〈fd, ad〉 which requires the
receive of message Flushed to happen before the receive
of message ActionDone in the terminator is infeasible. The
reason is that the receive of ActionDone triggers the Flush
message which itself triggers the Flushed message. The
schedule generator in Bita avoids producing such infeasible
schedules by analyzing the ordering constrains of all events.

A. Overview of Schedule Generation

The schedule generation algorithm is shown in Algorithm 1.
An initial schedule s and the coverage criterion cr are the
inputs of the algorithm. The algorithm uses s as the foundation
to construct other schedules. The list of generated schedules
are kept in S and the set of ordering goals that have been
achieved by s and S are held in a global set O. The algorithm
updates O whenever it adds a schedule to S.

For each pair of receives ri and rj in s, the algorithm checks
(line 5) if the events are related to the coverage metric cr and
whether swapping them yields a feasible schedule, that is, ri
is not required to happen before rj . These two conditions are
explained in detail in Section IV-B and Section IV-C.

If these conditions hold, the algorithm tries to achieve both
ordering goals related to ri and rj . It checks whether any of
the goals ri →cr rj (line 6) and rj →cr ri (line 10) has
not yet been achieved by the schedules in S and the initial
schedule s, that is, whether the goal is not yet in O. Although
ri appears before rj in s, the ordering goal ri →cr rj may
not be covered by s if the criterion is PCR or PBR and
if the events are not consecutive. For an ordering goal that
has not yet been achieved, the algorithm calls schedule to
generate a new schedule that achieves the goal (details in
Section IV-D). The fourth argument of schedule indicates
whether the events should be swapped. After generating a new
schedule, the algorithm updates the list of generated schedules
S and the covered ordering goals O.

B. Identifying Coverage-related Events

To ensure that each generated schedule increases coverage
compared to the already generated schedules, Algorithm 1
checks whether two events ri and rj are related to the coverage
criterion cr. To contribute to the PR and PCR criteria, the
events must have the same receiver; to contribute to the PBR
criterion, the events must have the same receiver and at least
one of them must change the receiver’s behavior. Function
isCrRelated(ri, rj , cr) implements this check as follows:
• If cr = PR or cr = PCR, it returns true if and only if
rec(ri) = rec(rj).

4



Algorithm 1 generateSchedules(s, cr)

Input: Initial schedule s, coverage criterion cr
Output: List S of generated schedules

1: S ← ∅
2: O ← cr-ordering goals achieved by s
3: for all ri in s so that 0 < i < |s| do
4: for all rj in s so that i < j ≤ |s| do
5: if isCrRelated(ri, rj , cr) and (ri, rj) /∈ mustHB

then
6: if ri →cr rj 6∈ O then
7: s′ ←cr schedule(s, i, j, false)
8: S ← S ∪ {s′}
9: O ← O ∪ cr-ordering goals achieved by s′

10: if rj →cr ri 6∈ O then
11: s′ ←cr schedule(s, i, j, true)
12: S ← S ∪ {s′}
13: O ← O ∪ cr-ordering goals achieved by s′

14: return S

• If cr = PBR, it returns true if and only if rec(ri) =
rec(rj) and if either cb(ri) or cb(rj).

C. Must-Happen-Before Constraints

To avoid creating infeasible schedules, Algorithm 1 checks
whether two events can be reordered or whether the first
must happen before the second. For this purpose, we compute
the mustHB relation by considering all ordering constraints
that exist in actor programs. A pair of events (ri, rj) is in
mustHB(s) if ri must happen before rj based on the ordering
constraints inferred from s. The following explains two kinds
of ordering constraints in actor programs and how we compute
must happen before relations from them.

1) Causality Constraints: If one receive event causes an-
other, then these two events cannot be reordered. In actor
programs, such causality constraints occur in two cases. First,
a message receive ri directly causes another message receive
rj if executing ri sends the second message or creates the
receiver of the second message. Second, a message receive
ri may indirectly cause another message receive rj if there
is a third message receive rk between ri and rj that has the
same receiver as ri and if rk directly causes rj . The second
case implies causality because executing ri may change the
receiver’s state in a way that causes rk to send the message
of rj .

Definition 5 (Causality Constraints): The causality con-
straints mustHBcausality(s) of a feasible schedule s contain
all pairs (ri, rj) with 0 < i < j ≤ |s| for which one of the
following conditions holds:

• msg(rj) ∈ sent(ri)
• rec(rj) ∈ created(ri)
• ∃k : i < k < j so that rec(ri) = rec(rk) and msg(rj) ∈
sent(rk)

• ∃k : i < k < j so that rec(ri) = rec(rk) and rec(rj) ∈
created(rk)

For the example in Figure 1, mustHBcausality =
{(ex,w), (ex, ad), (ad, fl), (fl, fd), (w, fd)}.

2) Sender-Receiver Constraints: Some actor systems, in-
cluding the system we use for the evaluation [8], guarantee
that for a given pair of actors, messages sent from the first to
the second will not be received out-of-order.

Definition 6 (Sender-Receiver Constraints): The sender-
receiver constraints mustHBsendRec(s) for a feasible sched-
ule s contain all pairs (ri, rj) with sender(ri) = sender(rj)
and rec(ri) = rec(rj).

These constraints only concern the order of messages be-
tween a pair of actors. Messages received from different actors
can be reordered unless this violates a causality constraint.

For the example in Figure 1, mustHBsendRec is empty.
However, suppose an extension of the example where handling
the Execute message triggers two Write messages w1 and
w2. In this case, mustHBsendRec = {(w1, w2)}.

3) Computing Must-Happen-Before Constraints: Based on
the constraints imposed by causality and by sender-receiver
message ordering, we compute the set of all must-happen-
before constraints as the transitive closure of the union of these
constraints.

Definition 7 (Must-Happen-Before Constraints):
For a feasible schedule s, the must-happen-before
constraints are mustHB(s) = (mustHBcausality(s) ∪
mustHBsendRec(s))

+

Our approach extracts these ordering constraints from
the initial schedule and when writing mustHB we mean
mustHB(s), where s is the initial schedule. In addition
to causality constraints and sender-receiver constraints, our
implementation also considers ordering constraints imposed
by synchronous communication between actors. Details are
omitted for lack of space.

D. Generating a Feasible Schedule that Increases Coverage

Once the schedule generator has determined that bringing
two events ri and rj in a particular order is feasible and
that doing so achieves a not yet achieved ordering goal, the
schedule generator creates a new schedule to achieve this goal
(lines 7 and 11 in Algorithm 1). Our approach to schedule
generation addresses two important challenges. First, to create
a schedule with enough information for the runtime scheduler
to guarantee that it will succeed in forcing the schedule.
Second, to create a schedule that achieves not only a single
new ordering goal but multiple new ordering goals.

To illustrate these challenges, consider the sequence dia-
gram in Figure 2, which is an extended version of Figure 1.
For the extended example, suppose that if the writer receives
a Write message and the results variable is null, it sends an
Error message to the terminator. Moreover, the terminator
accepts an additional message CheckForError from the
application entry point, which checks whether the terminator
knows about an error. Figure 2 shows an execution where the
writer sends an Error message and where the check for errors
occurs before the terminator receives this Error message.
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Fig. 2. Sequence diagram that shows an execution of the code in Listing 1
with some extensions in which the terminator accepts a CheckForError
message and the writer sends an Error message to the terminator if results
is null.

Suppose that, based on the execution in Figure 2, the
schedule generator tries to reorder ch and er, so that the
CheckForError occurs after the terminator has received the
Error message. A naı̈ve approach would be to create a sched-
ule that specifies only the two events 〈er, ch〉. Unfortunately,
this schedule does not address the two challenges. First, the
schedule does not contain enough information for the runtime
scheduler to force the schedule. Since there is no constraint
on the order of fl and w, they may happen in the order of
〈w, fl〉, which results in no Error message and hence no er
event. Previous work shows that this problem can significantly
reduce the efficiency of the testing process [49], [24]. Second,
the schedule achieves only a single additional ordering goal.
Instead, a longer schedule can achieve multiple additional
goals at once. For example, a schedule 〈w, fl, ch, fd〉 for PR
covers the two ordering goals w →PR fl and ch→PR fd.

Our schedule generation approach addresses both chal-
lenges. First, to create a schedule that contains enough infor-
mation for the runtime scheduler to enforce it, the approach
uses the must-happen-before constraints to include all events
necessary to make a pair of events happen. Second, to achieve
multiple not yet achieved goals in a single schedule, the
scheduler does not focus on only two events, but it searches
through all remaining events and reorders them to increase
coverage.

Algorithms 2 and 3 summarize our approach for generating
a schedule. The approach consists of two parts, the first of
which is described in Algorithm 2. As its input, the algorithm
takes a schedule s, two indices i and j, and a flag swap that
indicates whether to swap the events at i and j. The algorithm
computes a schedule that brings ri and rj in the desired order
by scheduling all events that must happen before these two
events and by appending ri and rj in the desired order.

For example, consider a program based
on Listing 1 with two actions and a schedule
s = 〈ex1, w1, ex2, w2, ad1, ad2, f l, fd〉. The other inputs are
i = 1, j = 3, cr = PR, and swap = true, that is, the goal
is to swap w1 and w2 to achieve an additional PR ordering
goal. At first, the algorithm copies all the events before ri to
the generated schedule s′ (line 2), giving s′ = ex1. Next, it
searches through all events between i and j in s and copies

Algorithm 2 schedule(s, i, j, swap, cr)

Input: feasible schedule s, indices i, j of events to schedule,
flag swap that indicates whether to swap these events,
coverage criterion cr

Output: feasible schedule s′ in which the event at j comes
before the event at i if and only if swap is true

1: s′ ← empty list
2: append all rk with 0 < k < i to s′

3: for k = i+ 1 to j − 1 do
4: if (rk, rj) ∈ mustHB then
5: append rk to s′

6: if swap then
7: append rj , ri to s′

8: else
9: append ri, rj to s′

10: tail←compute tail of s′

11: return scheduleTail(s′, tail, cr)

those events that must happen before rj to s′ (lines 3 to 5),
which gives s′ = 〈ex1, ex2〉. At this point, all events required
for ri and rj to happen have been added to s′. Now, the
algorithm copies either ri, rj (line 7) or rj , ri (line 9) to s′,
resulting in s′ = 〈ex1, ex2, w2, w1〉.

After creating a scheduling that brings two events in a
particular order, Algorithm 2 invokes Algorithm 3 (line 11),
which considers the remaining events and tries to order
them in a way that achieves additional ordering goals. The
tail of events (line 10) contains all events that are not yet
scheduled, excluding events rk with (ri, rk) ∈ mustHB or
(rj , rk) ∈ mustHB. It is crucial to exclude such events from
the tail because these events may not be valid anymore after
reordering ri and rj . Depending on the coverage criterion, the
tail also contains the last event of the so far generated schedule
s′. For PCR and PBR, ri and rj must be consecutive, that
is, they should not be reordered as part of the tail. For PR,
ri and rj need not be consecutive, that is, the second of the
two events can be reordered is part of the tail.

For the example, the tail of events to reorder is
〈w1, ad1, ad2, f l〉. Event w1 is part of the tail because we
consider the PR criterion, which does not require w2 and w1

to be consecutive. Event fd is excluded from the tail because
(w1, fd) and (w2, fd) are in mustHB.

Algorithm 3 takes a prefix p of scheduled events, the tail
t, and the coverage criterion cr as its input. The basic idea
is to append the tail to the generated schedule s′ and to
try to reorder the events in the tail to increase coverage as
much as possible. The algorithm uses an approach similar
to Algorithm 1 for finding pairs of events to reorder. Once
such a pair of events is found, the algorithm reorders them
by passing the concatenation p + t of the prefix and the tail
to Algorithm 2. Since Algorithm 2 generates a schedule in
which all events before the first event to schedule have the
same order as the given schedule, calling Algorithm 2 for the
tail events guarantees that the events in the prefix remain in
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Algorithm 3 scheduleTail(p, t, cr)

Input: schedule prefix p, tail t, coverage criterion cr
Output: feasible schedule that appends the tail events to p

1: for ri in t so that 0 < i < |t| do
2: for rj in t so that i < j ≤ |t| do
3: if isCrRelated(ri, rj , cr) and (ri, rj) /∈ mustHB

then
4: if ri →cr rj 6∈ O then
5: s′ ← schedule(p+ t, i+ |p|, j + |p|, false)
6: return s′

7: else if rj →cr ri 6∈ O then
8: s′ ← schedule(p+ t, i+ |p|, j + |p|, true)
9: return s′

10: return p

the given order. If the algorithm does not find any tail events
to reorder, then it omits the tail from the schedule, that is, the
schedule does not specify the order of events in the tail.

Algorithms 2 and 3 recursively call each other until the
tail does not contain any events to reorder. Since the tail is
becoming shorter for each recursive invocation of Algorithm 3
this recursion is guaranteed to terminate for every finite initial
schedule.

For our example, the first call to Algorithm 3 selects
w1 and fl for reordering and calls Algorithm 2 to cre-
ate a schedule where fl precedes w1. This call results in
〈ex1, ex2, w2, ad1, ad2, f l, w1〉. After this step, the tail is
empty and Algorithm 2 returns the generated schedule. This
schedule achieves two new ordering goals w2 →PR w1 and
fl→PR w1.

The schedule generation (Algorithm 1) guarantees that each
generated schedule increases the coverage compared to the
already covered schedules and that each generated schedule is
feasible. The first property holds because the algorithm only
generates a new schedule for an ordering goal if the goal has
not been covered yet. After generating each new schedule, it
adds all the orderings covered in the schedule to the current
covered orderings. Therefore, it will never generate a schedule
for an ordering that has been already covered. The second
property holds because the schedule generator respects all
must-happen-before relations. For each event ri that it adds to
the schedule, it also adds all the events that must happen before
ri. Moreover, when it reschedules an event ri in the schedule,
it eliminates all the events rj that require ri to happen before
them in specific order, i.e., (ri, rj) ∈ mustHB.

V. RUN-TIME SCHEDULER

This section describes the third part of Bita which is the run
time scheduler that runs the program with a given schedule.
The inputs of the scheduler are the program, the test input,
and a feasible schedule. We instrument the actor system to
intercept all calls to the actor system for sending, receiving,
actor creation, and behavior change. For each such call, the
scheduler updates its information about the program execution
and forces the execution to follow the schedule. To force a

specific schedule, the scheduler interferes with the send events
and delivers messages one by one according to the schedule.
For each receiver actor, the scheduler holds the next message
until the last sent message—whose receive event is the head
of the schedule—is processed by the actor.

For sending messages, the scheduler is called when the
message is going to be placed in the mail box. When the
schedule is not empty, it compares the corresponding receive
of the message with the receive event at the head of the
schedule. If it matches, the scheduler allows the message to be
placed in the receiver mail box; otherwise it keeps the message
in a pool of held messages to be delivered later. Note that even
if the message is not placed in the mail box, the sender actor
does not block for sending messages.

Upon receiving messages, the scheduler compares the re-
ceive event with the head of the schedule. If it matches, the
scheduler updates the current schedule by removing the head
of the schedule. After each receive event, the scheduler com-
pares the current head of the schedule with the corresponding
receive events of the messages held in the pool. If any held
message is eligible to be sent, it delivers them to the receiver.

In addition to forcing schedules, we leverage the infras-
tructure of the scheduler to measure coverage and to gather
information for computing ordering constraints.

VI. EVALUATION

To evaluate the effectiveness of our approach, we have im-
plemented it for Akka [8], a popular, commercially supported
actor library for Scala, and apply it to five real-world actor
programs and three smaller actor programs. In summary, we
have the following results:
• Bita detects twelve bugs, including eight previously un-

known bugs. Six of seven bugs that we reported to the
developers have already been fixed.

• Bita is more effective in finding bugs than existing
approaches: it finds bugs 122x faster than a random
scheduler and 656x faster than the default scheduler.

• Within a given time, Bita gives higher coverage than ex-
isting approaches, for example, 3x higher PR coverage.

A. Experimental Setup

1) Programs: Table I lists the programs used in the ex-
periments. The first five programs are open-source, real-world
programs. For Fyrie Redis, we use two independent branches
of the program. The other three programs are implementations
of classical actor problems and the translation of a program
used in earlier work [15]. For two of the real-world programs
we use the same inputs provided in the test suites of the source
repository and for the others we use variants of the inputs
in the test suites. The test oracle checks for crashes in the
program with a valid input.

Bita relies on the assumption that the tested programs’ only
source of non-determinism is message ordering. To match this
assumption, we must deal with programs that interact with
external entities, such as an HTTP server or the actor system
scheduler, or that have time-dependent behavior. For example,
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Program LOC Description

Gatling–v1.4 (Ga) 11,902 Stress testing tool for HTTP servers [3]
GeoTrellis–v0.9 (Geo) 20,706 Geographic data processing engine [4]
Fyrie Redis–v1.2 (FR1) 3,517 Redis client written in Scala [2]
Fyrie Redis–v2.0(FR2) 2,788 Redis client written in Scala [2]
SignalCollect–v2.1(SC) 6,315 Framework for scalable graph computing [5]

Barber (Ba) 329 Sleeping barber problem
Messenger (Ms) 197 Instant messaging application
ProcReg (PR) 322 Translation of process registry in Erlang [15]

TABLE I
PROGRAMS USED IN THE EXPERIMENTS.

some actors in SignalCollect send messages depending on
the time passed between the last receive and the current
receive. To deal with programs that interact with external
entities we extend Bita so that for each external entity, we can
define artificial actors as the senders of the external messages.
As a result, Bita can treat the external messages as regular
messages. To deal with time-dependent behavior, we introduce
a logical time and replace checks for the system time by
checks for the logical time. The logical time is a counter that
is increased when a message is received.

2) Baselines: We compare our approach with two other
ways to explore the schedules of an actor program: (i) repeated
execution with a scheduler that adds random delays before
delivering a message, similar to what [17] describes for shared-
memory programs, and (ii) repeated executions with Akka’s
default scheduler. The random scheduler respects message
ordering constraints when it chooses the delay value. For
example, to respect sender-receiver constraints for a particular
pair of sender and receiver the scheduler always delays a later
messages long enough to arrive after an earlier message. The
effectiveness of the random scheduler depends on the range
from which delays are taken. We experiment with delays in the
range [0, dmax] for three values of dmax: 100ms, 200ms, and
300ms. Larger delays are impractical because of the timeout
of synchronous communications.

B. Bug Detection

1) Real-World Bugs: Applying Bita to the programs in
Table I reveals twelve bugs, as shown in the first column of
Table II. We experiment with four known bugs and Bita finds
all of them. For example, the developers of the known bug
SC3 mention that “In rare cases the test fails in the following
way [...]“ [1], which means they cannot reproduce the bug
easily but they occasionally observed the bug. Bita finds this
bug in every experiment and takes 176 seconds, on average.
Since Bita stores the schedules, bugs can be easily reproduced
and their absence can be verified after fixing them.

In addition to previously known bugs, Bita detect eight pre-
viously unknown bugs: four in Gatling, two in SignalCollect,
one in Fyrie Redis, and one in Barber. Except for the bug that
we found in Barber, which is implemented by the authors, we
reported these bugs to the respective developers in the form
of six issues. All but one bug has already been confirmed and
fixed by the developers.

2) Comparison with Baselines: To compare our approach
with random scheduling and Akka’s default scheduler, we
measure for each bug how long each approach takes to find it.
For each approach, we stop testing if the bug is found or after
a timeout of one hour. For programs that contain more than
one bug, such as Gatling, we fix all but one bug at a time.

The schedules generated by Bita depend on the schedule
from the initial execution. To address this source of non-
determinism, we run Bita ten times for each bug. Similar,
the random scheduler depends on a random seed and the
default scheduler may be influenced by various system effects.
We repeat each experiment ten times, giving different random
seeds to the random scheduler.

Given the three coverage criteria, which criterion should
developers use when testing with Bita? We prioritize crite-
ria based on their cost, which is the number of generated
schedules. Based on the discussion in Section III and initial
experiments, the number of generated schedules for PR and
PBR are usually smaller than for PCR. The number of gen-
erated schedules for PR and PBR may not be comparable.
We configure Bita to obtain an initial schedule and to use at
first PR, then PBR, and finally PCR until a bug is found.
The bug detection time is the sum of the time for obtaining
the initial schedule, the time for generating schedules, and the
time for executing the program with the generated schedules
until the bug is found or timeout is reached.

Table II summarizes how long each approach requires to
find each bug. For all measured values, we give the arithmetic
mean and confidence intervals (95% confidence level). All
times are in seconds. “TO“ means the approach does not
find the bug before timeout in any of our experiments. If an
approach finds a bug in some but not all runs, we compute
the average time by optimistically using the timeout value for
the runs that do not detect the bug. This situation happened
only for PR and the default scheduler. The “Tried Criteria“
column shows the set of criteria tried by Bita until it finds
the bug. For programs where PBR is not applicable because
these programs do never change the behavior of an actor, Bita
skips PBR and uses PCR after PR. The “Schedule“ column
indicates the number of schedules tested by Bita. The “Exec“
column for the baselines shows the number of executions until
the bug is detected or until the timeout is reached.

The results show that Bita finds all bugs within a time that
is reasonable for an automatic testing tool, whereas the other
approaches miss most bugs within the one hour timeout. The
best configurations of the random scheduler, dmax = 200ms
and dmax = 300ms, detect only three bugs. The default
scheduler finds only one out of twelve bugs. Bita finds ten of
the twelve bugs with the first criterion, PR, and by running
the program with at most three schedules. The PCR and
PBR criteria each detect one bug missed by PR. The small
confidence intervals for Bita and the large confidence intervals
for the baselines show the stability of Bita in detecting bugs.

The bottom of Table II summarizes the results for all twelve
bugs and for all ten repetitions per bug. For each approach,
we give four values: (i) the total time that the approach spends
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Bita Random Scheduler Default Scheduler

Bug Issue dmax=100ms dmax=200ms dmax=300ms
Tried Criteria Time Schedule Time Execs Time Execs Time Execs Time Execs

Ga1(U) 1019 PR 36±1 1 TO 219 TO 204 TO 191 TO 265
Ga2(U) 1018 PR 37±1 1 1,448±672 90±48 137±56 8±3 163±75 8±4 TO 269
Ga3(U) 1018 PR 26±1 1 860±671 53±41 104±64 6±4 100±40 6±2 TO 270
Ga4(U) 1116 PR 25±1 1 TO 216 1,321±515 75±29 326±98 18±5 TO 270
SC1(U) 80 PR 102±15 2±1 TO 181 TO 177 TO 158 TO 182
SC2(U) 81 PR 86±32 2±1 TO 120 TO 111 TO 104 TO 219
SC3(K) 58 PR 176±29 3±1 TO 99 TO 91 TO 90 TO 257
FR11(U) 13 PR 43±6 1 TO 192 TO 181 TO 206 TO 225
FR12(K) 12 PR 36±1 1 TO 495 TO 476 TO 471 TO 594
Ba(U) PR,PBR 250±43 28±5 TO 334 TO 295 TO 263 TO 532
Ms(K) PR 14 1 TO 832 TO 878 TO 703 TO 1788
PR(K) PR,PCR 263±151 32±21 TO 282 TO 256 TO 235 2,268±782 557±180

Summary of all bugs with ten repetitions per bug: Total time – Total bugs – Avg. time to detect a bug – Slowdown

10,939 – 120 – 91 – 1x 371,543 – 20 – 18,577 – 203x 339,622 – 30 – 11,320 – 124x 335,903 – 30 – 11,196 – 122x 419,020 – 7 – 59,860 – 656x

TABLE II
BUGS DETECTED AND COMPARISON OF OUR APPROACH TO OTHER APPROACHES. TIMES ARE IN SECONDS. ABBREVIATIONS: “U” MEANS UNKNOWN

AND “K“ MEANS KNOWN BUG; “TO“ MEANS TIMEOUT.
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Fig. 3. Pairwise comparison of the four configurations.

when trying to find each of the twelve bugs ten times; (ii) the
number of times the approach finds a bug; (iii) the average
time to find a bug; (iv) the slowdown of the approach relative
to Bita. The results show that Bita clearly outperforms the
other approaches. Compared to the best configuration of the
random scheduler, Bita finds bugs 122x faster. Compared to
the default scheduler, Bita is even 656x faster.

3) Comparison of Coverage Criteria: To compare the three
coverage criteria to each other, we measure how long Bita
takes to find the bugs in Table II if it generates schedules
for only one criterion. For each bug, Bita obtains an initial
schedule, analyzes the program with each of the three criteria,
and measures the time to detect the bug, using a timeout of one
hour. We run this experiment for all twelve bugs and repeat
it ten times. Figure 3 compares pairs of criteria to each other.
Each point (x, y) corresponds to one experiment. The x and y
values respectively show the time in which the bug is detected
by the criterion at the X axis and the criterion at the Y axis.
Points on the dashed line are runs where a criterion does not
detect the bug due to timeout. That is, if most of the dots are
in the upper-left part of the graph, the criterion at the X axis
is better, and if most of the dots are in the lower-right part of
the graph, the criterion at the Y axis is better.

Figure 3 shows that both PR and PBR perform much
better than PCR. Because most programs do not change actor
behavior at runtime, PBR is not applicable for them, and
there are fewer points in the plots for PBR. For the programs

Progr. PR PCR PBR

Time Bita Rand Impr. Time Bita Rand Impr. Time Bita Rand Impr.

Ga 732 5,106 525 9.7 1,552 4,158 450 9.2 201 27 1 27
Geo 2,851 2,740 2,039 1.3 3,483 2,557 2,097 1.2 N/A N/A N/A N/A
SC 2,654 55,759 17,422 3.2 3,525 4,814 2,974 1.6 N/A N/A N/A N/A
FR2 674 9,288 4,324 2.1 1,134 10,885 6,992 1.6 N/A N/A N/A N/A

GeoM 3.0 2.3 27
TABLE III

COMPARISON OF THE COVERAGE ACHIEVED BY BITA AND RANDOM
SCHEDULING WITH dmax = 300ms. TIMES ARE IN SECONDS. THE LAST
COLUMN OF EACH CRITERION SHOWS THE IMPROVEMENT OF BITA OVER

RANDOM SCHEDULING. THE LAST ROW IS THE GEOMETRIC MEAN.
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Fig. 4. Comparison of coverage achieved by Bita and random scheduling
with dmax = 300ms.

that change actor behavior at runtime, PR and PBR perform
similarly. In summary, the results suggest that among all three
criteria, PR is the most effective criterion for detecting bugs.

C. Coverage

To evaluate Bita’s effectiveness in increasing schedule cov-
erage, we experiment with non-buggy versions of the real-
world programs, excluding FR1 because the developers have
not yet provided a fixed version. For each criterion, we run a
program with Bita and measure the coverage achieved by all
schedules generated for the criterion, and the time Bita needs
for testing all of them. Then, we repeatedly run the test with
random scheduling and with the default scheduler for the same
amount of time and measure the achieved coverage.
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Table III compares the average over five runs of coverage
achieved by Bita and random scheduling with dmax = 300ms.
We only report the best configuration for random scheduling
and omit the default scheduler, which performs worse. On
average, Bita achieves at least twice the coverage of random
scheduling for all three criteria. For PR, which is the most
effective criterion in detecting bugs, Bita gains coverage three
times faster than random scheduling. Figure 4 illustrates the
coverage achieved by Bita and random scheduling for two
programs and two criteria. The figure illustrates that Bita
achieves coverage much faster than random scheduling.

The coverage improvement of Bita over random schedul-
ing is smaller than the improvement in bug finding ability
(Table II) because Bita’s coverage domain is smaller. There
are two reasons. First, our approach is based on a single
initial schedule, whereas random scheduling can discover
additional ordering goals in later executions. Second, our ap-
proach conservatively considers must-happen-before relations
and therefore may miss feasible ordering goals. Despite the
smaller coverage domain, Bita clearly outperforms random
scheduling in both coverage and bug finding ability.

VII. RELATED WORK

A. Exploring Schedules of Concurrent Programs

One baseline for our evaluation are random delays of mes-
sage delivery, which is similar to existing work that introduces
random delays before thread synchronization points [17].
Other random-based approaches schedule threads based on the
partial order of events [39] or based on heuristics [10].

Software model checkers, for shared memory pro-
grams [47], [16] or for actor programs [41], [19], [31], [45]
explore all possible schedules exhaustively, possibly optimized
through partial order reduction to avoid redundant schedules.
In contrast to exhaustive exploration, our scheduling approach
scales to large programs. To reduce the complexity of exhaus-
tive exploration, one can bound the search space, for example,
by bounding the number of preemptions [34]. We are not
aware of a bounded model checker for actor programs.

Active testing combines an analysis that finds potential
concurrency bugs with schedule generation aimed at exposing
these potential bugs [27]. The idea has been applied to data
races [40], [12], deadlocks [27], atomicity violations [12],
[35], [42], [30], memory-related errors [51], concurrent access
anomalies [25], and other errors [50], [20]. In contrast, our
approach is not focused on a particular kind of error, but it
generates schedules to increase coverage. Another stream of
work forces shared memory programs into unusual schedules
under the assumption that these schedules are not tested
sufficiently [36], [18]. Adapting the ideas of these approaches
to actors is subject to future work. Several testing frameworks
have been developed for both shared-memory programs [32],
[38], [26] and actor programs [44] that run the tests with a
schedule given by the programmers. In contrast, our approach
automatically generate the schedules of interest without re-
quiring the programmers to write the schedules.

Finally, the idea to use coverage to guide schedule gen-
eration has recently been proposed for shared memory pro-
grams [49], [24]. Hong et al. generate schedules based on
synchronization-pair coverage [24]. Yu et al. consider multiple
interleaving idioms to construct a coverage domain [49]. Sim-
ilar to our work, both approaches define ordering goals based
on one or more initial runs. Our work differs by considering
actor programs instead of shared memory programs, and by
generating only feasible schedules.

B. Coverage of Concurrent Programs
Measuring coverage is widely accepted to assess the ef-

fectiveness of tests and to guide the creation of a test suite.
Taylor et al. are the first to propose to apply coverage criteria
to concurrent programs [46]. Yang et al. adapt all-definition-
use pair coverage to concurrent programs and show how
to measure it [48]. Synchronization coverage is a set of
coverage criteria focused on synchronization primitives of
shared memory programs [9]. Lu et al. propose a hierarchy
of seven schedule coverage criteria and theoretically analyze
the cost of each criterion [33]. Krena et al. propose a set
of saturation-based coverage metrics that are derived from
dynamic analyses to find concurrency errors [29]. In contrast
to all the above approaches, this paper addresses the problem
of coverage for actor programs.

Souza et al. propose structural coverage criteria for MPI
(Message Passing Interface) programs [43]. Their coverage
criteria are based on MPI synchronization primitives and can-
not be directly applied to actor programs. In contrast to their
work, we leverage coverage criteria for schedule generation.

C. Debugging Actor Programs
Claessen et al. propose to detect bugs in actor programs by

automatically generating tests and by using the linearizations
of a concurrent execution as an oracle for the concurrent
execution [15]. In contrast to our approach, their technique
relies in finite state models that formally specify how the
program under test should behave. Christakis and Sagonas
describe a static analysis of Erlang programs to find message
passing errors based on four common bug patterns [14]. In
contrast to their analysis, which suffers from false positives,
our approach guarantees that each detected bug is feasible and
our approach is not limited to particular bug patterns.

VIII. CONCLUSION

This paper presents Bita, an automatic testing approach
to efficiently explore the non-deterministic behavior of ac-
tor programs. Guided by three novel coverage criteria, the
approach automatically generates schedules and forces the
program execution to follow these schedules. Each generated
schedule is feasible and achieves coverage goals not achieved
by previous schedules. Applying the approach to real-world
actor programs shows that it finds bugs substantially faster
than random scheduling and than repeated execution with
the default scheduler. Bita reveals eight previously unknown
concurrency bugs, six of which have already been fixed by the
developers in reaction to our bug reports.
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