
Natjam: Eviction Policies For Supporting Priorities and Deadlines
in Mapreduce Clusters

Brian Cho1,3, Muntasir Rahman1, Tej Chajed1, Indranil Gupta1, Cristina Abad1,2, Nathan
Roberts2, and Philbert Lin1

1University of Illinois at Urbana-Champaign
{bcho2, prlin2, cabad, indy}@illinois.edu

2Yahoo! Inc.
nroberts@yahoo-inc.com

3Samsung
brian.cho@samsung.com

Abstract

This paper presents Natjam, a system that sup-
ports arbitrary job priorities, hard real-time schedul-
ing, and efficient preemption for Mapreduce clus-
ters that are resource-constrained. Our contribu-
tions include: i) smart eviction policies for jobs
and for tasks, based on resource usage, task run-
time, and job deadlines; and ii) a work-conserving
task preemption mechanism. We incorporated Nat-
jam into the Hadoop YARN scheduler framework
(in Hadoop 0.23). We present experiments from de-
ployments on a test cluster, Emulab and a Yahoo!
commercial cluster, using both synthetic traces as
well as Hadoop cluster traces we obtained from Ya-
hoo!. Our results reveal that Natjam incurs over-
heads of under 7%. Under real Hadoop workloads,
Natjam performs better than existing techniques.

1 Introduction
Today, computation clusters running engines such as
Apache Hadoop [15, 21], Dryad Linq [53], DOT [24],
Hive [49], and Pig Latin [37] are used to process a variety
of big datasets. The batch Mapreduce jobs in these clus-
ters typically fall into two classes – higher priority jobs
and lower priority jobs. Since this dual priority setting
is common, we call the high priority jobs as production
jobs and the low priority ones as research jobs. For in-
stance, a production job may process click-through logs
and decide which ads have reached their advertiser target,
and which ads are good alternatives to show. For such
jobs, it is critical to produce timely results, since it di-
rectly affects revenue. In fact, some production jobs have

hard real-time deadlines. On the other hand, a research
job may, for instance, identify more lucrative ad place-
ment patterns via a machine learning algorithm on long-
term historical click data. Research jobs affect revenue
indirectly and therefore they need to complete quickly,
but they must be treated at a lower priority than produc-
tion jobs.

A popular approach today among organizations run-
ning their own infrastructure is to provision two
physically-separate clusters, one for production jobs and
one for research jobs. Administrators tightly restrict the
workloads that are allowed on the production cluster,
perform admission control manually based on deadlines,
keep track of deadline violations via alert systems such
as pagers, and subsequently readjust job and cluster pa-
rameters manually.

Besides the intensive human involvement, the ap-
proach above suffers from: i) long job completion times,
and ii) inefficient resource utilization. For instance,
jobs in an overloaded production cluster might take
longer, even though the research cluster is underutilized
(and vice-versa). In fact Mapreduce cluster workloads
are time-varying and unpredictable, e.g., in the Yahoo!
Hadoop traces we use in this paper, hourly job arrival
rates exhibited a max-min ratio as high as 30. Thus,
there are times when the cluster is resource-constrained,
i.e., it has finite resources compared to incoming de-
mand. Since physically separate clusters cannot reclaim
resources from each other, the infrastructure’s overall re-
source utilization stays sub-optimal.

This paper addresses the goal of running a consoli-
dated Mapreduce cluster that supports all jobs, regard-
less of their priority or deadline. The benefits are high

1



cluster resource utilization, reduced capital costs and, as
we show, satisfactory completion times for all jobs.

Focusing on the dual priority setting, our first chal-
lenge is that we wish production jobs to finish quickly,
but not at the expense of extending many research jobs’
completion times. This means that smart strategies are
required in selecting which research jobs and constituent
tasks are affected by arriving production jobs.

The second challenge is how to dynamically man-
age the cluster capacity between production and research
jobs. A unified scheduler could maintain separate queues
(containing jobs) for each priority class and scale up
the fraction of the cluster allocated to each queue based
on demand [22]. However, scaling down the research
queue’s capacity requires waiting for some research tasks
to finish, which delays production jobs. One could in-
stead kill tasks of research jobs [10, 23], but this entails
repeating their work and thus prolongs research jobs. In
the deadline-based setting with multiple job priority lev-
els, all jobs belong to one queue, thus waiting for or
killing tasks may violate deadlines of their jobs. This
means that we need to implicitly and fluidly manage the
resources across different job priorities, and in a work-
conserving manner.

We present Natjam, a system that provides support for
prioritized scheduling of production jobs over research
jobs, as well as for production jobs with hard real-time
deadlines. The technical contributions of this paper are:

• Eviction policies for Jobs and Tasks: When a produc-
tion job arrives into an occupied cluster, one or more
of the research jobs’ tasks will need to be preempted
to free up resources. This is done by first selecting a
victim job (job eviction policy) and then within that
job, one or more victim tasks (task eviction policy).
We present eviction policies sensitive to: i) resources
utilized by a job, and ii) time remaining in a task.

• Deadline-based scheduling: For settings with job
deadlines, we explore eviction policies that are based
on deadlines and on laxity. Laxity accounts for both
a job’s deadline and its resource usage.

• Cheap on-demand checkpointing: Natjam is work-
conserving, and it uses a low-overhead suspend and
resume mechanism. When a task (of a research
or large-deadline job) is suspended, an on-demand
checkpoint is created. When the task resumes later it
can utilize this saved state to avoid repeating work.

• We incorporate priority and deadline scheduling into
the Hadoop YARN scheduler (Hadoop 0.23).

We discuss related work in Section 10, but briefly dis-
cuss at a high level how our work is placed. Our focus is
on batch jobs rather than streaming or interactive work-
loads [2, 12, 13, 40, 46, 47]. Some systems have looked
at preemption in Mapreduce [6], intelligent killing of

tasks [10] (including the Hadoop Fair Scheduler [23]),
and SLOs (Service Level Objectives) in generic cluster
management [1, 30, 44]. In comparison our work is the
first to study the effect of eviction policies and deadline-
based scheduling for resource-constrained Mapreduce
clusters. Our strategies can be applied orthogonally in
systems like Amoeba [6]. We are also the first to incor-
porate such support directly into Hadoop YARN. Finally,
Mapreduce deadline scheduling has been studied in infi-
nite clusters [18, 39, 50, 52] but not in finite clusters.

In this paper, we first discuss eviction policies for the
dual priority setting (production and research jobs), and
then the design and implementation of the core Natjam
system. Next we present an extension, Natjam-R, that
builds on Natjam and supports hard time deadlines for
production jobs. Our experiments use both synthetic
workloads and Hadoop workloads from Yahoo! Inc. We
present results from deployments on a test cluster, on
Emulab and on a commercial cluster at Yahoo!. Our re-
sults reveal that in the dual priority setting, Natjam incurs
overheads of under 7% for production and research jobs.
Natjam-R meets deadlines with only 20% extra laxity in
the deadline compared to the job runtime. We show that
under real Hadoop workloads, Natjam is more preferable
than existing approaches. We also evaluate Natjam’s job
and task eviction policies, and draw conclusions about
which choices yield the best performance.

2 Eviction Policies for Prioritized
Jobs

In the first part of the paper we address the dual priority
setting. When a production Mapreduce job arrives at a
constrained cluster and there are insufficient resources to
schedule it, some tasks of research Mapreduce jobs need
to be preempted. Our goals here are to minimize job
completion times both for production and for research
jobs. This section addresses the twin questions of: 1)
How is a victim job chosen so that some of its tasks can
be preempted, and 2) Within a given victim job, how are
victim task(s) chosen for preemption. We call these as
job eviction and task eviction policies respectively.

The job and task eviction policies are applied in tan-
dem, i.e., for each required task of the arriving produc-
tion job, a running research task is evicted by applying
the job eviction policy first followed by the task eviction
policy. This means that a victim job may be evicted par-
tially, i.e., some of its tasks may continue running, e.g.,
if the arriving job is relatively smaller, or if the eviction
policy also picks other victim research jobs.

A quick refresher on Mapreduce is relevant here [15,
21]. A Mapreduce job consists of two phases – map and
reduce. Each phase contains multiple parallel tasks. Map

2



tasks are embarrassingly parallel, and each outputs key-
value pairs to the reduce phase. A reduce task processes
an assigned batch of keys. Map input and reduce output
are both stored on the HDFS distributed file system. A
job completes only when all its reduce tasks finish.

2.1 Job Eviction Policies
The choice of victim job influences completion time of
lower priority research jobs by affecting resources al-
ready allocated to them. Thus job eviction policies need
to be sensitive to current resource usage. We discuss
three resource-aware job eviction policies.
Most Resources (MR): This policy chooses as victim
the research job that is currently using the most resources
inside the cluster. In Hadoop YARN, this means the num-
ber of containers used by the job,1 while in other versions
of Mapreduce this refers to the number of cluster slots.
The approach is also extensible to finer-grained notions
of resources.

The MR policy, loosely akin to worst-fit policy in OS
segmentation, is motivated by the need to evict as few re-
search jobs as possible – a large research job may contain
sufficient resources to accommodate one large produc-
tion job or multiple small production jobs. Thus, fewer
research jobs are deferred, more of them complete ear-
lier, and average research job completion time is mini-
mized.

The downside of the MR policy is that when there is
one large research job (as might be the case with heavy
tailed distributions), it is always victimized whenever a
production job arrives. This may lead to starvation and
thus a longer completion time for large research jobs.
Least Resources (LR): In order to prevent starving
large research jobs, this policy chooses as victim that re-
search job which is currently using the least resources in-
side the cluster. The reasoning here is that small research
jobs which are preempted can always find resources if the
cluster frees up even a little in the future. However, the
LR policy can cause starvation for small research jobs if
the cluster stays overloaded, e.g., if a new production job
arrives whenever one completes, LR will pick the same
smallest jobs for eviction each time.
Probabilistically-weighted on Resources (PR): In or-
der to address the starvation issues of LR and MR, our
third policy called PR selects a victim job using a proba-
bilistic metric based on resource usage. In PR, the prob-
ability of choosing a job as a victim is directly propor-
tional to the resources it currently holds. Effectively, PR
treats all tasks identically for eviction, i.e., if the task
eviction policy were random, the chance of eviction for
each task is identical and independent of its job. The
downside of PR is that it spreads out evictions across

1To avoid fragmentation our containers are equi-sized.

multiple jobs, thus unlike MR, one incoming production
job may slow down multiple research jobs.

The latter half of this paper compares these job evic-
tion policies experimentally.

2.2 Task Eviction Policies

Once a victim job has been selected, the task eviction
policy is applied within that job to select one task that
will be preempted (i.e., suspended). We only consider
reduce tasks for eviction – Section 3.1 justifies why. A
Mapreduce research job’s completion time is determined
by its last finishing reduce task. A long tail, or even
a single task that finishes late, will extend research job
completion time. This concern implies that tasks with
shorter remaining time (for execution) must be evicted
first. However multiprocessor shortest-task-first schedul-
ing is known to be optimal [48] – in our context this
means that the task with the longer remaining time must
be evicted first. This motivates two contrasting task evic-
tion policies.
Shortest Remaining Time (SRT): Under this policy,
tasks that have the shortest remaining time are selected to
be suspended. This policy aims to minimize the impact
on the tail of a research job. Further, a task suspended
by SRT will finish quickly once it has been resumed.
Thus SRT is loosely akin to the longest-task first strategy
in multiprocessor scheduling. Rather counter-intuitively,
SRT is sometimes provably optimal:
Theorem 2.1: Consider a system where a production
job arrival affects exactly one victim job, and evicts sev-
eral tasks from it. If all these evicted tasks are resumed
simultaneously in the future, and we ignore speculative
execution, then the SRT eviction policy results in an op-
timal (lowest) completion time for that research job.
Proof: No alternative policy can do better than SRT in
two sub-metrics: i) sum of time remaining for evicted
tasks, and ii) tail (i.e., max) of time remaining among the
evicted tasks. Thus, when the evicted tasks resume si-
multaneously, an alternative eviction policy can do only
as well as SRT in terms of completion time of the re-
search job. 2

We note that the assumption, that tasks of the vic-
tim job are resumed simultaneously, is reasonable in
those real-life scenarios where production job submis-
sion times and sizes cannot be predicted.
Longest Remaining Time (LRT): In this policy, the
task with the longest remaining time is chosen to be sus-
pended earlier. This policy is loosely akin to shortest-
task first scheduling in multiprocessors. Its main advan-
tage over SRT is that it is less selfish and frees up more
resources earlier. LRT might thus be useful in scenar-
ios where production job arrivals are bursty. Consider a
victim job containing two tasks – one short and one with

3



a long remaining time. SRT evicts the the shorter task,
freeing up resources for one production task. LRT evicts
the longer task, but the shorter unevicted task will finish
soon anyway, thus releasing resources for two production
tasks, while incurring only one task suspend overhead.
However, LRT can lengthen the tail of the research job,
increasing its completion time.

The latter half of this paper compares these task evic-
tion policies experimentally.

3 Natjam Architecture

In order to understand the design decisions required to
incorporate eviction policies into a Mapreduce cluster
management system, we built Natjam into the popular
Hadoop YARN framework in Hadoop 0.23. We now de-
scribe Natjam’s architecture, focusing on the dual prior-
ity setting with production jobs and research jobs.

3.1 Preemption in Hadoop YARN

Background – Hadoop YARN Architecture: In the
Hadoop YARN architecture, a single cluster-wide Re-
source Manager (RM) performs resource management.
It is assisted by one Node Manager (NM) per node
(server). The RM receives periodic heartbeats from each
NM containing status updates about resource usage and
availability at that node. The RM runs the Hadoop Ca-
pacity Scheduler. The Capacity Scheduler maintains
multiple queues which contain jobs. An incoming job
is submitted to one of these queues. An administrator
can configure two capacities per queue – a fixed capacity
and a maximum capacity.

The basic unit of resource allocation for a task is called
a container. A container is effectively a resource slot that
contains sufficient resources (primarily memory) to run
one task – either a map, or a reduce, or a master task.
An example master task is the Application Master (AM),
which is allocated one container. One AM is assigned
to each Mapreduce job, and performs job management
functions.

An AM requests and receives, from the RM, container
allocations needed for its tasks. The AM assigns map and
reduce tasks to each container it receives, sends launch
requests to the container’s NM, and performs speculative
execution.

Further an AM sends heartbeats to the RM. The AM
also receives periodic heartbeats from its tasks. YARN
piggybacks control traffic (e.g., container requests, task
assignments) atop heartbeats.
Natjam Components: Natjam entails changes to the
Hadoop Capacity Scheduler and the AM, while the NM

preempt()[2]

job victim decision[3]

task victim decision[5]

[1] heartbeat:

allocate() [4a] heartbeat

doSuspend[6b]

heartbeat[6a]

[4b] containers

to release

saved state[8]

completed[9]

suspend task[7]

Resource Manager (RM)

Capacity

Scheduler

Preemptor

Node Manager A

Application

Node A

Task

Node Manager B

Application

Master 2 (AM2)

Node B

Task

Releaser

Master 1 (AM1)

Releaser

+State Machines +State Machines+Suspend/Resume +Suspend/Resume

Figure 1: Example: Container Suspend in Natjam.
New components are shown in bold font; others are from
YARN. AM1 is a production job, AM2 is a research job.

stays unchanged. Natjam adds the following new com-
ponents to Hadoop YARN:
1. Preemptor: The preemptor runs as part of the RM. We
configure the Capacity Scheduler to contain two queues
– one for production jobs and one for research jobs.
The preemptor makes preemption decisions by using job
eviction policies.
2. Releaser: As part of the AM, this component runs the
task eviction policies.

We will detail these in Section 3.2. We now focus on
an example of preemption, and then the checkpoint.
Natjam’s Preemption Mechanism – Example: Fig. 1
illustrates Natjam’s preemption mechanism in YARN. In
this example, a research Job 2 is initially executing and
fully occupying a cluster, when a production Job 1 re-
quires a single container.2 In the steps shown, Natjam
leverages YARN’s heartbeats for efficiency.
Step 1: On AM1’s heartbeat, it asks the RM to allocate
one container.
Steps 2, 3: The cluster is full, so RM applies the job evic-
tion policies and selects Job 2 as victim.
Step 4: The Preemptor waits for AM2’s next heartbeat,
and in response sends AM2 the number and type of con-
tainers to be released.
Step 5: The Releaser at AM2 uses the task eviction pol-
icy to select a victim task.
Step 6: When the victim task (still running) sends its next
heartbeat to AM2, it is asked to suspend.
Step 7: The victim task suspends and saves a checkpoint.
Step 8: The victim task sends checkpoint to AM2.
Step 9: The task indicates to NM-A that it has completed
and it exits, freeing the container.

This ends the Natjam-specific steps. For complete-
ness, we list below the remaining steps taken by default
YARN to give AM1 the new container.
Step 10: NM-A’s heartbeat sends container to RM.
Step 11: AM1’s next RM heartbeat gets container.

2For simplicity we assume AM1 already has a container.

4



Step 12: AM1 sends NM-A task request.
Step 13: NM-A launches the task on the container.
To Preempt: Maps or Reduces? While preemption
can be applied to both map and reduce tasks, Natjam fo-
cuses on preemption only for reduce tasks. This is the
more challenging case because maps execute each input
line independently while reduces execute their inputs in
batches (i.e., based on the keys). This focus is also moti-
vated by use case studies which revealed that reduces are
substantially longer than maps and thus have a bigger ef-
fect on the job tail. For instance, in Facebook workloads
the median map task time is 19 s while the median re-
duce task takes 231 s [55]. While 27.1 map containers
are freed per second, only 3 (out of 3100) reduce con-
tainers are freed per second. Thus a small production job
with 30 reduces would wait on average 10 s, and a large
job with 3000 reduces waits 1000 s.
Checkpoint Saved and used by Natjam: When Nat-
jam suspends a research job’s reduce task, an on-demand
checkpoint is saved containing the following items: i) An
ordered list of past suspended container IDs, one for each
attempt, i.e., each time this task was suspended; ii) Key
counter, i.e., number of keys that have been processed so
far; iii) Reduce input paths, i.e., local file path; iv) Host-
name of last suspended attempt: this is useful for pre-
ferrably resuming the research task on the same server.

Additionally, Natjam relies on intermediate task data
already available via Hadoop [29]. This includes: v) Re-
duce inputs, stored at a local host, vi) Reduce outputs,
stored on HDFS.
Task Suspend: We modify YARN so that the reduce
task keeps track of two pieces of state: paths to files in
the local filesystem which hold reduce input, and the key
counter, i.e., number of keys that have been processed by
the reduce function so far. This (and in general Natjam)
does not require any changes to the Hadoop application
code, or any end-programmer involvement.

When a suspend request is received from the AM, if
the reduce task is in the middle of processing a particular
key, it first finishes that key. Second it writes the input
file paths to a local log file. Third, Hadoop maintains a
partial output file per reduce attempt, in the HDFS dis-
tributed file system. This holds the output so far from that
attempt. We name this partial output file so it includes the
container id. When a task suspends this partial output file
is closed. Finally the reduce compiles its checkpoint and
sends this to its AM. Then the reduce task exits.
Task Resume: The Preemptor is in charge of resum-
ing suspended research tasks. On a resume, the task’s
AM sends the saved checkpoint state as launch parame-
ters to the NM. When selecting a node to resume on, the
RM prefers the old node on which the last attempt ran
(available from the hostname field in the checkpoint). If
the resumed task is assigned to the same old node, the

reduce input can be read without network overhead – re-
duce input files are just read from local disk. If resumed
on a different node, the reduce input is assembled from
map task outputs, akin to a new task.

Next the reduce task creates a new partial output file
in HDFS. It skips over those input keys that the check-
point’s key counter field indicates have already been pro-
cessed. It starts execution as a normal reduce task.
Commit after Resume: When a previously suspended
reduce task finishes, it needs to assemble its partial out-
put. It does so by first finding, in HDFS, all its past
partial output files by using the ordered list of past sus-
pended container ids from its checkpoint. It then accu-
mulates their data into output HDFS files named in that
order. This order is critical so that the output is indistin-
guishable from a reduce task that was never suspended.

3.2 Implementation Issues

This section first describes how we modify the AM state
machines. We then detail the Preemptor and Releaser.
For efficiency, our implementation leverages existing
Hadoop mechanisms such as heartbeats.
Application Master’s State Machines: For job and task
management, Hadoop YARN’s AM maintains separate
state machines per job, per task, and per task attempt.
Natjam does not change the job state machine – we
only enabled this state machine to handle the checkpoint.
Thus suspend and resume both occur during the Running
state in this state machine.

We modify the task state machine minorly. When the
AM learns that a task attempt has been suspended (from
Step 8 in Fig 1), the task state machine goes ahead and
creates a new task attempt to resume the task. The task
attempt state machine then takes over.

The task attempt state machine is used by YARN to
assign the container, set up execution parameters, moni-
tor progress, and commit output. Natjam adds two states
to the task attempt state machine, as shown in Fig. 2:
Suspend-Pending and Suspended. The task attempt has
a state of Suspend-Pending when it wishes to suspend a
task but has not received suspension confirmation from
the local task (Steps 5-7 from Fig. 1). The state becomes
Suspended when the saved checkpoint is received (Step
8) – this is a terminal state for that task attempt.

The new transitions for suspension in Fig. 2 are:

• S1: AM asks task to suspend, and requests its check-
point.

• S2: AM receives task checkpoint; saves in task at-
tempt state machine.

A resuming reduce task starts from the New state in
the task attempt state machine. However, our modified
transitions distinguish it from a new (non-resuming) task

5



SUSPENDED 

NEW 

SUCCEEDED 

UNASSIGNED 

SUCCESS 
CONTAINER 

CLEANUP 

RUNNING 

ASSIGNED 

COMMIT 
PENDING 

R1 

R2 

S2 

SUSPEND 
PENDING 

S1 
C1 

Figure 2: Modified Task Attempt State Machine: At
Application Master. Failure states are omitted.

attempt:

• R1: Like for any reduce task attempt, every heartbeat
from the AM to RM requests a container for the re-
suming reduce. If the RM cannot satisfy the request,
it ignores it (the next heartbeat resends it). When re-
sources free up (e.g., when production jobs subside),
we make the RM prefer responding to a resuming
reduce’s request, over one from a non-resuming re-
search reduce. The AM to RM requests also carry
the hostname field from the task checkpoint – the RM
then prefers container allocation at that hostname.

• R2: Once the AM receives a container from the RM,
it launches a task attempt on the allocated container.
For resuming reduces, the AM also sends the saved
checkpoint to the container.

• C1: On commit, the AM moves output from the par-
tial output files to the final output files in HDFS, as
outlined earlier in Section 3.1.

Preemptor: Recall that Natjam sets up the RM’s Ca-
pacity Scheduler with two queues – one for production
jobs and one for research jobs. The Preemptor is im-
plemented as a thread within the Capacity Scheduler. In
order to reclaim resources from the research queue for
use by the production queue, the Preemptor periodically
runs a reclaim algorithm, with sleeps of 1 s in between
runs. A run generates reclaim requests, each of which
is sent to some research job’s AM to reclaim a container
(this is Step 4 in Fig 1). Intuitively, a reclaim request is a
production job’s intention of acquiring a container.

Initially, we generated a reclaim request whenever: (1)
the cluster is full, and (2) the production queue has pend-
ing container requests (i.e., requests that have been to the
RM, but have not yet been satisfied). However, we dis-
covered that this resulted in a large number of reclaim
requests. There is a delay of several seconds between
suspension of a container and its subsequent allocation
to a job. During this delay the Preemptor ran multiple
times and created a duplicate reclaim request each time.

We avoid duplicate reclaim requests by keeping track
of a per-job reclaim list at the production queue, and de-
ciding when to send reclaim requests based on this list.
The reclaim list is maintained as follows: When a re-
claim request is sent, it is added to the job’s reclaim
list. When a container is allocated to that job the old-
est reclaim request is removed from the reclaim list. Fi-
nally, we changed the second rule for when the Preemp-
tor sends reclaim requests to instead be: (2′) the number
of pending container requests is greater than the number
of requests in the reclaim list.

In extreme cases, the Preemptor may need to kill a
container, e.g., if the AM has remained unresponsive for
too long. Our threshold to kill a container is when a re-
claim request has remained in the reclaim list for longer
than a killing timeout (12 s). A kill request is sent di-
rectly to the NM to kill the container. This bypasses the
AM, ensuring the container will indeed be killed. When
a kill request is sent, the reclaim request is now added to
an expired list, and remains there for an additional time
interval (2 s), when it is assumed the container is dead,
and the request is thus removed. With these timeouts, we
never observed any tasks killed during any of our runs in
any cluster deployment.

Releaser: The Releaser runs at the AM and decides
which tasks to suspend. Since the task eviction poli-
cies of Section 2.2 (e.g., SRT, LRT) use time remain-
ing at the task, the Releaser needs to estimate this.
We use Hadoop’s default exponentially smoothed task
runtime estimator which relies on the task’s observed
progress [54]. However, calculating this estimate on-
demand can be expensive due to the large numbers of
tasks. Thus the AM only periodically estimates the
progress of all tasks in the job (once a second), and uses
the latest complete set of estimates for task selection.
While these might be stale, our experiments show that
this approach works well in practice.

Interaction with Speculative Execution: The discus-
sion so far has ignored speculative execution. Hadoop
uses speculative execution to replicate straggler task at-
tempts. Natjam does not change speculative execution
and works orthogonally, i.e., speculative task attempts
are candidates for eviction. When all attempts of a task
are evicted, the progress rate calculation of that task is
not skewed. This is because speculative execution tracks
progress of task attempts rather than tasks themselves.
While this interaction could be optimized further, we find
that this approach works well under real workloads.

6



4 Natjam-R: Deadline-based Evic-
tion

We present Natjam-R, an extension of Natjam, targeted
at production jobs that have hard and fixed real-time
deadlines. While Natjam supported inter-queue preemp-
tion (with two queues), Natjam-R adds a layer of intra-
queue preemption. Thus all jobs can be put into one
queue; there is no need for a research queue.
Eviction Policies: Firstly, for job eviction, we explore
two deadline-based policies. These are inspired by clas-
sical real-time literature [16, 32] and they are Maximum
Deadline First (MDF) and Maximum Laxity First (MLF).
MDF chooses as victim that running job which has the
highest deadline. MLF evicts the job with the highest
laxity, where laxity = deadline minus job’s projected
completion time. For MLF we extrapolate Hadoop’s re-
ported job progress rate to calculate the job’s projected
completion time.

While MDF is a static scheduling policy that accounts
only for deadlines, MLF is a dynamic policy that also ac-
counts for a job’s resource needs. MLF may give a job,
which has unsatisfactory progress rate, more resources
closer to its deadline. It may do so by evicting small
jobs with large deadlines. While MLF may run some
large-deadline-high-resource jobs, MDF might starve all
large-deadline jobs equally. Further, MLF is fair in that
it allows many jobs with similar laxities to make simul-
taneous progress. However, this fairness can be a short-
coming in scenarios with tight deadlines – MLF results
in many deadline misses, while MDF would meet at least
some deadlines. Section 7 expands on this issue.

Our task eviction policies remain the same as before
(SRT, LRT). This is because the deadline is for the job,
not for individual tasks.

In addition to the job and task eviction policies, we
need to have a job selection policy. When resources free
up, this policy selects a job from among suspended ones
and gives it containers. Possible job selection policies are
Earliest deadline first (EDF) and Least laxity first (LLF).
In fact we implemented these, but discovered thrashing-
like scheduling behavior if the job eviction policy was
inconsistent with the new job selection policy. For in-
stance, if we used MDF job eviction and LLF new job
selection, a job selected for eviction by MDF would soon
after be selected for resumption by LLF. We concluded
that the new job selection policy needed to be dictated
by the job eviction policy, i.e., MDF job eviction implies
EDF new job selection, and MLF implies LLF.
Implementation: The main changes in Natjam-R com-
pared to Natjam are in the RM (Resource Manager). The
RM now keeps one Capacity Scheduler queue sorted by
priority. For MDF and MLF, the priorities are respec-
tively deadline and laxity. The Preemptor periodically

Job # Reduces Avg Time (s)
Research-XL 47 192.3
Research-L 35 193.8
Research-M 23 195.6
Research-S 11 202.6
Production-XL 47 67.2
Production-L 35 67.0
Production-M 23 67.6
Production-S 11 70.4

Figure 3: Microbenchmark Settings.

(once a second) examines the queue and selects the first
job (say Ji) that still has tasks waiting to be scheduled.
Then it considers job eviction candidates from the queue,
starting with the lowest priority up to Ji’s priority. If it
encounters a job that still has allocated resources, it is
picked as victim, otherwise no further action is taken.
Then the Releaser from Natjam uses the task eviction
policy to free a container. Thereafter checkpoints, sus-
pend, and resume work the same way as in Natjam (Sec-
tion 3).

5 Microbenchmarks

Experimental Plan: We present four sets of experi-
ments, increasing in complexity and scale. This sec-
tion presents microbenchmarking results for a small Nat-
jam cluster. Section 6 evaluates a small Natjam deploy-
ment driven by real Hadoop traces. Section 7 evaluates
Natjam-R. Finally, Section 8 presents a large Natjam de-
ployment under real Hadoop traces.
Microbenchmark Setup: We first evaluate the core
Natjam system that supports a dual priority workload,
i.e., research and production jobs without deadlines. Our
microbenchmarks address the following questions: i)
How beneficial is Natjam over existing techniques? ii)
What is the overhead of the Natjam suspend mechanism?
iii) What are the best job eviction and task eviction poli-
cies?

Our test cluster had 7 servers running on a 1 GigE net-
work. Each server had two quad-core processors and 16
GB of RAM, of which 8 GB were configured to run 1
GB-sized Hadoop containers (thus 48 containers were
available in the cluster). One server acted as Resource
Manager while the other six were workers. Each entity
(AM, map task, and reduce task) used one container.

Our experiments inject a mix of research and produc-
tion jobs, as shown in Fig. 3. To mimic use case stud-
ies [55], each job had a small map execution time, and
was dominated by reduce execution time. To model vari-
ance in task running times, reduce task lengths were se-
lected uniformly from the interval (0.5,1.0], where 1.0
is the normalized largest reduce task. To emulate com-

7



Figure 4: Natjam vs. Existing Techniques. At t=0s
Research-XL job submitted; at t=50s Production-S job
submitted.

putations, we used SWIM [9] to create random keys and
values, with thread sleeps called in between keys. Shuf-
fle and HDFS traffic were incurred as usual.

The primary metric is job completion time. Each of
our datapoints show an average and standard deviation
over five runs. Unless otherwise noted, Natjam used MR
job eviction and SRT task eviction policies.
Natjam vs. Existing Techniques: Fig. 4 compares Nat-
jam against several alternative settings: i) vs. an ideal
setting, ii) vs. two existing mechanisms in the Hadoop
Capacity scheduler, and iii) vs. pessimistically killing
tasks instead of saving the cheap checkpoint. The ideal
setting (i) measures each job’s completion time when it
is executed on an otherwise empty cluster; thus it ig-
nores resource sharing and context switch overheads. For
(ii) we chose the Hadoop Capacity Scheduler because
it represents approaches that we might take with two
physically-separate clusters sharing the same scheduler.
Finally, killing of tasks (iii) is akin to approaches like
[10] and the Hadoop Fair Scheduler [23].

A Production-S job was submitted 50s after a
Research-XL job. Killing tasks might be attractive be-
cause it avoids the overhead of checkpointing. However,
the repeated work at each task restart dominates – killing
tasks prolongs research jobs by 23% compared to the
ideal. Production jobs are unaffected, as expected.

The two Hadoop Capacity Scheduler settings – called
Hard cap and Soft cap – are configured with the research
queue set to 75% capacity (36 containers) and production
queue to 25% capacity (12 containers) – these capacities
gave the best performance. In the Hard cap variant, these
capacities are provided as a hard limit for both the re-
search queue and the production queue. In the Soft cap
approach, both queues are allowed to expand to the full
cluster if there are unused resources, but cannot scale
down without waiting for the scheduled tasks to finish.
We observe that with Hard cap, the research job takes
52% longer than ideal, while the production job stays
unaffected. Under Soft cap, the production job can ob-
tain containers only when the research job frees them –

this results in a 85% increase in the production job com-
pletion time, while the research job stays unaffected.

The last pair of bars shows that when using Natjam,
the production job’s completion time is 7% worse (5.4 s)
than ideal, and 77% better than Hadoop Capacity Sched-
uler Soft cap. The research job’s completion time is
only 2% worse (4.7 s) than ideal, 20% better than that
of Killing, and 49% better than Hadoop Hard cap. We
study the reasons for this performance benefit in the next
paragraphs.
Suspend overhead: We measured Natjam’s suspend
overhead on a fully loaded cluster. We observed that it
took an average of 1.35 s to suspend a task and 3.88 s to
resume a task. Standard deviations were low. In com-
parison, Hadoop took an average 2.63 s to schedule a
task on an empty cluster. From this it might appear that
Natjam incurs a total overhead of 5.23 s per task attempt.
However, in practice the effective overhead is lower – for
instance, Fig. 4 showed only a 4.7 s increase in research
job completion time. This is because typically task sus-
pends occur in parallel and in some cases task resumes
do too. Thus these time overheads are parallelized rather
than aggregated.
Task eviction policies: We now compare the two
task eviction policies (SRT, LRT) from Section 2.2
against each other, and against a random eviction strat-
egy that we also implemented. We performed two sets
of experiments, one with Production-S and another with
Production-L. This production job was injected 50 s after
the Research-XL job.

Fig. 5 tabulates the results. In all cases the produc-
tion job incurred similar overhead compared to an empty
cluster. Thus we discuss only research job completion
time (last column). In the top half of the table, a ran-
dom task eviction strategy results in a 45 s increase in
completion time compared to ideal – we observed that a
fourth of the tasks were suspended, leading to a long job
tail. Evicting the longest remaining task (LRT) incurs a
higher increase of 55 s – once again, this is because LRT
prolongs the tail. Evicting the shortest remaining task
(SRT) emerges as the best policy and is only 4.7 s worse
than ideal. This is because SRT respects the job tail.

In the lower half of the table, a larger production job
causes more suspensions. The research job completion
times by the random and LRT eviction policies are sim-
ilar to the top half – this is because its tail was already
long with a small production job, and does not grow
much for this case. SRT is worse than with a small
production job, yet it outperforms the other two eviction
strategies.

We conclude that SRT is the best task eviction pol-
icy, especially when production jobs are smaller than re-
search jobs. We believe this is a significant use case since
research jobs run for longer periods of time and over

8



Task Eviction Policy Production Job Mean (s.d.) run time, in s Research Job Mean (s.d.) run time, in s
Random Production-S 76.6 (3.0) Research-XL 237.6 (7.8)
LRT Production-S 78.8 (1.8) Research-XL 247.2 (6.3)
SRT Production-S 75.6 (1.5) Research-XL 197.0 (5.1)
Random Production-L 75.0 (1.9) Research-XL 244.2 (5.6)
LRT Production-L 75.8 (0.4) Research-XL 246.6 (6.8)
SRT Production-L 74.2 (1.9) Research-XL 234.6 (3.4)

Figure 5: Task Eviction Policies: At t=0s, a Research-XL job is submitted; at t=50s the production job is submitted.
Job completion times are shown. The ideal job completion times are 192.3 s for research and and 70.4 s for production.

Job Eviction Policy Research Job Mean (s.d.) run time, in s Research Job Mean (s.d.) run time, in s
PR Research-M 195.8 (1.3) Research-M 201.2 (0.8)
MR Research-M 196.2 (1.3) Research-M 200.6 (2.1)
LR Research-M 200.6 (1.3) Research-M 228.8 (12.7)
PR Research-L 201.6 (8.3) Research-S 213.8 (18.8)
MR Research-L 195.8 (1.1) Research-S 204.8 (2.2)
LR Research-L 195.8 (0.4) Research-S 252.4 (9.3)

Figure 6: Job Eviction Policies: At t=0s two research jobs are submitted (two Research-M’s, or Research-S and
Research-L); at t=50s Production-S job submitted. Only research job completion times shown.

more data, while production jobs are typically small due
to the need for faster results.
Job eviction policies: We next compare the three job
eviction policies of Section 2.1. Based on the previous
results, we always used SRT task eviction. We initially
submitted two research jobs, and 50 s later a small pro-
duction job. We examine two settings – one where the
initial research jobs are comparable in size and another
where they are different. We observed the production job
completion time was close to ideal so we only show the
research job completion times in Fig. 6.

The top half of Fig. 6 shows that when research
job sizes are comparable, probabilistically weighing job
evictions by resources (PR) and evicting the job with the
most resources (MR) perform comparably – research job
completion times stay within 2 s (0.5%) of each other.
This is desirable due to the matching job sizes. How-
ever, evicting the job with the least resources (LR) per-
forms worst because it causes starvation in one of the
jobs – once tasks start getting evicted from a research job
(which may be picked randomly by LR at first if all jobs
have the same resource usage), LR will subsequently al-
ways pick that job for eviction until it is fully suspended.

This behavior of LR is even more pronounced on small
research jobs when research jobs have varying sizes, as in
the bottom half of Fig. 6. The Research-S job is picked as
victim by PR less often than by LR, and thus PR outper-
forms LR. PR penalizes the Research-L job slightly more
than LR since PR evicts more tasks from a larger job.
Even so, PR and MR are within 10 s (5%) of each other
– any differences are due to the variable task lengths, and
the effectiveness of the SRT task eviction policy. We ob-
served that MR evicted no tasks at all from the Research-
S job.

We conclude that when using the best task eviction
policy (SRT), the PR and MR job eviction policies are
more preferable over LR, with MR especially good under
variable research job sizes.

6 Small-scale Deployment

This section presents experiments that answer the fol-
lowing questions under real Hadoop workloads for the
dual priority setting: i) What is Natjam’s realistic bene-
fit? ii) How does Natjam compare to the Hadoop Capac-
ity scheduler Soft cap, and to Killing of tasks? iii) How
does Natjam impact production job completion times?
Setup: We obtained traces from two of Yahoo’s Hadoop
clusters containing several hundreds of servers. While
we cannot reveal details of these traces, we discuss them
briefly. The traces cover thousands of job submissions
over several hours. They include job submission times,
job sizes, number of maps, number of reduces, and other
information. The jobs are of different sizes, the arrivals
are bursty, and the load varies over time – thus this trace
captures a realistic mix of conditions. We injected 1 hour
of traces with about 400 jobs into our 7-server test cluster
(Section 5) configured with 72 containers (12 for each
worker). Natjam used MR job eviction and SRT task
eviction.

Since the traces are from a larger cluster, we scaled
down the number of tasks in each job to make the work-
load overload the target cluster. We used different scal-
ing factors for the production and research traces. The
production scaling factor was chosen to prevent the pro-
duction jobs from just overloading the cluster at its peak.
The research job scaling factor was chosen so the clus-

9



Figure 7: Small Deployment: Natjam vs. Soft Cap.
Negative values imply Natjam is better.

Figure 8: Small Deployment: Natjam vs. Killing.

ter was overloaded. Jobs were then submitted at the time
indicated by the trace. The tasks were emulated using
SWIM [9], incurring the usual shuffle and HDFS traffic.

Natjam’s main goals are fast job completion times and
high resource utilization. Our approach with scaling fac-
tors allows us to hold the cluster utilization high, and thus
use job completion time as the main metric.

The results are depicted in Fig. 7 to 9. Each plot com-
pares Natjam vs. an alternative strategy A. We calcu-
lated, for each job ji the quantity = (Completion time for
ji in the Natjam cluster) minus (Completion time for ji
in the A cluster). We then plot the CDF of this quantity.
Negative values on the CDF imply Natjam completes the
job earlier than the alternative strategy.
Natjam vs. Soft Cap: We configured the Hadoop Ca-
pacity Scheduler Soft cap with 80% capacity for produc-
tion and 20% for research jobs – recall that this mech-
anism allows the allocated capacities for each class to
scale up. Fig. 7 shows that compared to the Soft cap
approach, with Natjam 40% of production jobs finish at
least 5 s earlier, 20% finish 35 s earlier, and 10% finish
60 s earlier. Only 3% of jobs perform 5 s or worse with
Natjam. In fact, 60% of research jobs are delayed 30 s or
less. We believe this is a reasonable tradeoff to accom-
modate production jobs.
Natjam vs. Killing: Fig. 8 shows that compared to the
cheaper approach of killing research jobs, saving their
checkpoint in Natjam tremendously improves research
job completion times. 36% of research jobs finish at least
1000 s earlier. In fact we observed that in the Killing set-
ting, many research jobs finished well after the last job

Figure 9: Small Deployment: Natjam vs. Production
Only.

was submitted.
Natjam does not affect production jobs much, com-

pared to Killing. The mean and median are within a sec-
ond of each other, and the absolute decrease and increase
in performance at the 1st percentile and 99th percentile
are within 2 s. We conclude that under realistic work-
loads, checkpointing is still preferable to killing tasks.
Natjam vs. Production Only: To evaluate Natjam’s
effect on production jobs, we compared two clusters – a
Natjam cluster receiving the production + research trace
as above, and a Hadoop cluster (Soft Cap) receiving only
the production job part of the trace (labeled Production
Only). Fig. 9 shows that for production jobs, the median
Natjam job is within 3 s of Production Only’s median,
while the mean is within 4.5 s of Production Only.

The maximum difference in completion time is 36
s. This value is high due to two factors. First is Nat-
jam’s overhead for suspending tasks (Section 5). Sec-
ond is an implementation bottleneck arising out of Nat-
jam’s Hadoop integration where concurrent requests for
starting AMs are serialized. These factors were ampli-
fied because of the small cluster size – they disappear in
Section 8 where a large cluster leads to a higher rate of
containers becoming free.

7 Natjam-R Evaluation
We now evaluate the real-time support of our Natjam-R
extension (Section 4). Our experiments address the fol-
lowing questions: i) How do MDF and MLF job eviction
strategies compare? ii) How good is Natjam-R at meet-
ing deadlines? iii) Do Natjam-R’s benefits hold under
realistic Hadoop workloads?

For diversity, we use a different target cluster in this
section. We use 8 Emulab servers [17], each with 8 core
Xeon processors and 250 GB disk space. One of the
servers is the Resource Manager, and each of the other
seven servers runs 3 containers of 1 GB each (thus 21
containers total).
MDF vs MLF: We injected three identical jobs, Job 1 to
Job 3, each with 8 maps and 50 reduces (each job took 87

10



(a) (b)

Figure 10: Natjam-R: (a) MDF vs. (b) MLF. Lower index jobs have lower deadline but arrive later.

s on an empty cluster). They were submitted in that order
starting at t=0 s and 5 s apart, thus overloading the clus-
ter. Since MDF and MLF will both meet lax deadlines,
we chose tight deadlines. The deadlines of Job 1 to Job
3 were set as 200 s, 190 s and 180 s respectively – this
order forced preemption. Our conclusions would apply
to different deadlines as long as they were 10 s apart.

Fig. 10 depicts the progress rate for the MDF cluster
and the MLF cluster. Our first observation is that while
MDF allows the small deadline jobs to run earlier and
thus satisfy all deadlines, MLF misses all deadlines in
Fig. 10b. In MLF, jobs proceed in lockstep after a while
in the reduce phase – this occurs because when a lower
laxity job (e.g., Job3) has run for a while in lieu of a
higher laxity job (e.g., Job1), their laxities become com-
parable. Thereafter, each job alternately preempts the
other. Breaking ties, e.g., by using deadline, does not
eliminate this behavior. In a sense, MLF tries to be fair
to all jobs allowing them all to make progress simultane-
ously, but this fairness is in fact a drawback.

Secondly, MLF takes longer to finish all three jobs,
i.e, 239 s compared to MDF’s 175 s. This indicates that
MLF’s lockstep behavior incurs a high context switch
overhead. We conclude that MDF is preferable to MLF,
especially under tight deadlines.
Varying the Deadline: We submitted a job (Job 1), and
5 s later an identical job (Job 2) with a lower deadline.
For each job we measured its clean compute time as the
time to run the job in an empty cluster. Then, we set
its deadline = submission time + (clean compute time ×
(1+ε)). Fig. 11 shows the effect of ε on a metric called
margin. We define a job’s margin = (deadline) minus
(job completion time). A negative margin implies a dead-
line miss. We observe that an ε as low as 0.8 still meets
both deadlines, while an ε as low as 0.2 misses one dead-
line (the higher deadline). This means that given one crit-
ical job with a very low deadline, Natjam-R can satisfy
it if it has at least 20% more time than the job’s clean
compute time – this percentage estimates the overhead
of Natjam-R. We also performed experiments which var-
ied the second job’s size as a fraction of the first job from
0.4 to 2.0, but we saw no effect on margin.

Figure 11: Natjam-R: Effect of Deadlines: Margin =
Deadline - Job completion time, thus a negative margin
implies a deadline miss. Job 2 has a lower deadline and
is submitted 5 s after Job 1.

Trace-Driven Experiments: We used the Yahoo!
Hadoop traces earlier from Section 6 to evaluate Natjam-
R’s deadline satisfaction. We used only the production
cluster trace, with a scaling factor selected so as to over-
load the target cluster. Since the original system did not
support deadline scheduling, no deadlines were available
from the traces. Thus we chose ε randomly for each job
from the interval [0,2.0], and used this to set its deadline
forward from its submission time. A given job’s deadline
was selected to be the same in all runs.

We compare Natjam-R against Hadoop Soft cap.
Fig 12 shows the CDF of the difference in the margins
of these two approaches – a negative difference implies
Natjam-R is better. Natjam-R’s margin is better than Soft
cap for 69% of the jobs. The largest improvement in mar-
gin was 366 s. The plot is biased by one outlier job that
took 1000 s longer in Natjam-R; the second-highest neg-
ative difference is only -287 s. This outlier job suffered
in Natjam-R because the four jobs submitted just before
it and one job right after had much tighter deadlines. In
comparison, Soft cap scheduled this outlier job in order.
Yet the conclusion is positive – among the 400 jobs with
variable deadlines, there was only one such outlier. We
conclude that overall, Natjam-R satisfies deadlines well.

11



Figure 12: Natjam-R: Effect of real Yahoo! Hadoop
Trace: Margin = Deadline - Job completion time. Neg-
ative values imply Natjam-R is better.

Figure 13: Large-scale Deployment: Natjam vs.
Hadoop Soft Cap. Negative values imply Natjam is bet-
ter.

8 Large-scale Deployment
Finally, we return to the dual priority Natjam, and eval-
uate it on a real Yahoo datacenter. We address the
same questions as Section 6 but for a larger deployment
setting. The target Yahoo datacenter consisted of 250
servers which we configured to run a total of 2000 con-
tainers. We used the Yahoo! Hadoop traces of Section 6
with scaling factors for production jobs so as to just fit
within the target cluster, and for research jobs so as to
overload the target cluster. The total shuffle traffic was
measured at about 60 GB, and HDFS incurred 100 GB
read and 35 GB write.

The results are shown in Fig. 13 to 15. The trends are
similar to those we saw in Section 6 but the distributions
are different. This is due to the larger cluster and the
resultant higher rate of containers becoming free.
Natjam vs. Soft Cap: Fig. 13 shows that for production
jobs, Natjam completes 53% of jobs earlier than Hadoop
Soft cap. Further, 12% of these jobs finish at least 5 s
earlier than in Soft cap, and fewer than 3% jobs finish 5 s
or later. In fact we observe that at the 5th percentile jobs
finish 20 s or earlier, at the 2nd percentile 60 s or ear-
lier, and at the 1st percentile 80 s or earlier. The largest
improvement over Soft cap is more than 150 s.

For research jobs, Natjam completes 63% of jobs ear-
lier than Soft cap. The top right part of the curve is due to
only two outlier jobs that were 260 s and 390 s slower un-
der Natjam. We conclude that compared to Hadoop Soft

Figure 14: Large-scale Deployment: Natjam vs.
Killing.

cap, Natjam improves completion times for a significant
fraction of production and research jobs.
Natjam vs. Killing: Fig. 14 shows that compared to
killing research jobs, Natjam’s checkpointing improves
research job completion times by over 100 s for 38% of
jobs, and at the 5th percentile Natjam is almost 750 s
faster. The largest improvement observed was 1880 s.
Natjam does not affect production jobs much – comple-
tion times for the two approaches are within 1 s of each
other at the 99th and 1st percentiles.
Natjam vs. Production Only: Fig. 15 shows the me-
dian Natjam job completion time is within 40 ms of Pro-
duction Only, while the mean is within 200 ms. Thus
Natjam’s checkpointing has minimal impact on produc-
tion jobs.

We conclude that even in a large datacenter with 250
servers and under a realistic workload, Natjam provides
benefits over existing approaches.

9 Discussion
We now discuss possible extensions to our system.
Rack-level Locality: Currently in Natjam, a resumed
task can reuse reduce input files only when it is resumed
on the same server as its last task attempt. Otherwise,
network transfers are required from all map tasks. This
can be ameliorated by using HDFS to save the reduce
checkpoint. Globally accessible reduce input will allow
a reduce to resume efficiently on any server. To decide
where a task attempt resumes, a multi-level preference
order can be used: first prefer the server of the last at-
tempt, then a server in the same rack, and then any server.
To lower overhead, HDFS can be modified to store only
one replica of the checkpoint. In case of failure, reduce
input can be obtained again from map tasks. HDFS can
store this at the writing node itself, thus invoking only a
local disk write.
Suspending Stateful Reduces: As described so far,
Natjam does not require any changes to the user’s
Hadoop code. However, some Mapreduce tasks have
stateful reduce tasks, i.e., the task saves state across

12



Figure 15: Large-scale Deployment: Natjam vs. Pro-
duction Only.

keys. Natjam can support this via serialize and deseri-
alze methods. When a task is suspended, inter-key state
datastructures are serialized and copied to HDFS. When
the task resumes, Natjam deserializes the checkpoint and
skips to the current key counter. These two methods
are application-dependent, hence the Hadoop program-
mer needs to write them. We believe that in most cases
these can be written in such a way as to maintain small
checkpoints. For instance, consider [31] which computes
relative frequency across word co-occurrences. Reduce
input keys are word pairs (w,Σ) so that all (w,∗) pairs
occur together. Thus for each given w, the reduce main-
tains a running sum for the (w,∗) pairs seen so far. The
serialize and deserialize methods would merely maintain
an integer field to store this sum.
Chained Jobs: Data analysis frameworks [37, 49] and
workflow schedulers [38] create chains or DAGs of
Hadoop-like jobs, which might be associated with one
deadline. For constrained clusters, Natjam can be used
to solve this problem by leveraging critical path-based
algorithms [18, 43] to calculate deadlines of constituent
Hadoop jobs, and ParaTimer [34] to estimate progress
rate.

10 Related Work

OS mechanisms: Sharing finite resources among
applications is a fundamental issue in Operating Sys-
tems [48]. Not surprisingly, Natjam’s eviction policies
are analogous to multiprocessor scheduling techniques
(e.g., shortest task first), and to eviction policies for
caches and paging systems. However, our results are dif-
ferent because Mapreduce jobs need to have all tasks fin-
ish. We clarify that Natjam does not rely on priorities at
the OS level. This would require tight and prohibitive in-
tegration between the OS and Hadoop scheduling. PAC-
man [4] looks at eviction policies for caches in Mapre-
duce clusters, and it can be used orthogonally with Nat-
jam.
Preemption: Amoeba, a system built in parallel with

ours, provides instantaneous fairness with elastic queues,
and uses a checkpointing mechanism [6]. The main dif-
ferences in Natjam compared to Amoeba are: i) we fo-
cus on job and task eviction policies, ii) we focus on jobs
with hard deadlines, and iii) our implementation works
directly with Hadoop 0.23, while Amoeba requires the
prototype Sailfish system [41]. Further, Sailfish was built
on Hadoop 0.20 – since then, Hadoop 0.23 has addressed
many relevant bottlenecks, e.g., using read-ahead seeks,
Netty [36] to speed up shuffle, etc. Finally, we wish to
note that our eviction and scheduling policies can be im-
plemented orthogonally in Amoeba.

Delay scheduling [55] avoids killing map tasks while
achieving data locality. In comparison, Natjam focuses
on reduce tasks as they are longer than maps, and they
release resources slower – this makes our problem more
challenging. Global preemption [10] selects tasks to kill
across all jobs. However killing tasks is suboptimal as
we showed experimentally.

Compared to our previous short work [35], this paper
explores eviction policies and deadlines.
Real-time Scheduling: ARIA [50] and Conductor [52]
estimate how a Hadoop job needs to be scaled up to meet
to its deadline, e.g., based on profiles of past executions
or a constraint satisfaction problem. They do not tar-
get clusters with finite resources. Real-time constraint
satisfaction problems were solved analytically [39], and
Jockey [18] addressed DAGs of data-parallel jobs – how-
ever eviction policies or Hadoop integration were not
fleshed out. Statistics-driven approaches have been used
for cluster management [19] and for Hadoop [28]. Much
work has also been done in speeding up Mapreduce envi-
ronments by tackling stragglers, e.g., [5, 54]. However,
these do no not support job priorities and deadlines.

Dynamic proportional share scheduling [42] allows
applications to bid for resources, but is driven by eco-
nomic metrics rather than priorities or deadlines. Data
transfer within a data center can be prioritized to speed
up time-sensitive jobs [11], and Natjam can be used or-
thogonally.

Natjam focuses on batch jobs rather than stream pro-
cessing or interactive queries. Stream processing in the
cloud has been looked at intensively, e.g., Hadoop On-
line [12], Spark [46], Storm [47], Timestream [40] and
Infosphere [25]. BlinkDB [2] and MeT [13] optimize in-
teractive queries for SQL and NoSQL systems.

Finally, classical work on real-time system has pro-
posed a variety of scheduling approaches including clas-
sical EDF and rate monotonic scheduling [32, 33],
priority-based scheduling of periodic tasks [20], laxity-
based approaches [16], and handling task DAGs [43] –
Natjam is different in that we focus on Mapreduce work-
loads.
Fairness: Providing fairness across jobs has been a re-

13



cent focus in cloud computing engines. This includes
Hadoop’s Capacity Scheduler [22] and Fair Sched-
uler [23], which provide fairness by allowing an admin-
istrator to configure queue capacities and job priorities.
Quincy [26] solves an optimization problem to provide
fairness in DryadLinq [53]. None of these works al-
low resource preemption [27]. Finally, there has been
recent focus on satisfying SLAs [7] and satisfying real-
time QoS [3] but they do not target Mapreduce clusters.
Cluster Management with SLOs: Recently several
cluster management systems have targeted SLOs, e.g.,
Omega [44], Cake [51], Azure [8], Centrifuge [1] and
Albatross [14]. Mesos [30] uses dominant resource fair-
ness across applications sharing a cluster, and Pisces [45]
looks at multi-tenant fairness in key-value stores.

11 Summary

This paper presented Natjam and Natjam-R, which
provide support for dual priorities and hard-real time
scheduling, for jobs in constrained Mapreduce clusters.
Among several eviction policies we found that the MR
(Most Resources) job eviction and SRT (shortest remain-
ing time) task eviction policies are the best for the dual
priority setting. For the hard-real time setting, the MDF
(maximum deadline first) job eviction policy performed
the best. Natjam incurs only a 2-7% context switch over-
head. Natjam-R meets deadlines with only 20% extra
laxity in deadline. Under real Hadoop workloads and
for a variety of cluster sizes, compared to existing tech-
niques, Natjam improves completion times for both pro-
duction and research jobs, and Natjam-R satisfies more
job deadlines.

References

[1] A. Adya, J. Dunagan, and A. Wolman. Cen-
trifuge: Integrated lease management and partition-
ing for cloud services. In Proc. Usenix Symposium
on Networked Systems Design and Implementation
(NSDI), 2010.

[2] S. Agarwal, A. Panda, B. Mozafari, H. Milner,
S. Madden, and I. Stoica. BlinkDB: queries with
bounded errors and bounded response times on
very large data. In Proc. ACM European Confer-
ence on Computer Systems (Eurosys), 2013.

[3] M. Amirijoo, J. Hansson, and S.H. Son. Algorithms
for managing QoS for real-time data services using
imprecise computation. Real-Time and Embedded
Computing, pages 136–157, 2004.

[4] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and I. Stoica.
PACMan: coordinated memory caching for paral-
lel jobs. In Proc. Usenix Symposium on Networked
Systems Design and Implementation (NSDI), 2012.

[5] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining
in the outliers in map-reduce clusters using Mantri.
In Proc. Usenix Symposium on Operating Systems
Design and Implementation (OSDI), 2010.

[6] G. Anantharanayanan, C. Douglas, R. Ramakrish-
nan, S. Rao, and I. Stoica. True elasticity in multi-
tenant clusters through Amoeba. In Proc. ACM
Symposium on Cloud Computing (SoCC), 2012.

[7] A. Andrzejak, D. Kondo, and S. Yi. Decision
model for cloud computing under SLA constraints.
In Proc. IEEE Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), pages 257–266, 2010.

[8] B. Calder, A. Ogus J. Wang, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Kha-
tri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. Fahim ul Haq, M. Ikram ul Haq,
D. Bhardwaj, S. Dayanand, A. Adusumilli, M. Mc-
Nett, S. Sankaran, K. Manivannan, and L. Rigas.
Windows Azure Storage: A highly available cloud
storage service with strong consistency. In Proc.
ACM Symposium on Operating Systems Principles
(SOSP), pages 143–157, 2011.

[9] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz.
The case for evaluating Mapreduce performance
using workload suites. In Proc. IEEE Sympo-
sium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MAS-
COTS), pages 390–399, july 2011.

[10] L. Cheng, Qi Q. Zhang, and R. Boutaba. Mitigat-
ing the negative impact of preemption on heteroge-
neous Mapreduce workloads. In Proc. Conference
on Network and Service Management (CNSM),
pages 189–197, 2011.

[11] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan,
and I. Stoica. Managing data transfers in computer
clusters with Orchestra. In Proc. ACM Confer-
ence on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIG-
COMM), pages 98–109, 2011.

[12] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sear. Mapreduce online.

14



In Proc. Usenix Symposium on Networked Systems
Design and Implementation (NSDI), 2010.

[13] F. Cruz, F. Maia, M. Matos, R. Oliveira, J. Paulo,
J. Pereira, and R. Vilaca. MeT: workload aware
elasticity for NoSQL. In Proc. ACM European
Conference on Computer Systems (Eurosys), 2013.

[14] S. Das, S. Nishimura, and D. Agrawal. A. El Ab-
badi. Albatross: lightweight elasticity in shared
storage databases for the cloud using live data mi-
gration. In Proc. Conference on Very Large Data
Bases (VLDB), pages 494–505, 2010.

[15] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications
of the ACM (CACM), 51:107–113, January 2008.

[16] M. L. Dertouzos and A. K. Mok. Multiprocessor
on-line scheduling of hard-real-time tasks. IEEE
Transactions on Software Engineering, 15(12),
1989.

[17] Emulab. http://emulab.net.

[18] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin,
and R. Fonseca. Jockey: guaranteed job latency
in data parallel clusters. In Proc. ACM European
Conference on Computer Systems (EuroSys), pages
99–112, 2013.

[19] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Pat-
terson. Statistics-driven workload modeling for the
cloud. In Proc. International Workshop on Self
Managing Database Systems (SMDB), pages 87–
92, 2010.

[20] J. Goossens, S. Funk, and S. Baruah. Priority-
driven scheduling of periodic task systems on mul-
tiprocessors. Real-time systems, 2(3), 2003.

[21] Hadoop. http://hadoop.apache.org/.

[22] Hadoop Capacity Scheduler. http:

//hadoop.apache.org/docs/stable/

capacity_scheduler.html, 2013.

[23] Fair Scheduler. http://hadoop.apache.org/

docs/stable/fair_scheduler.html, 2013.

[24] Y. Huai, R. Lee, S. Zhang, C. H. Xia, and X. Zhang.
Dot: a matrix model for analyzing, optimizing and
deploying software for big data analytics in dis-
tributed systems. In Proc. ACM Symposium on
Cloud Computing (SoCC), 2011.

[25] IBM Infosphere Platform. http://www-01.ibm.
com/software/data/infosphere/, 2013.

[26] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: Fair Schedul-
ing for Distributed Computing Clusters. In Proc. of
ACM Symposium on Operating Systems Principles
(SOSP), pages 261–276, 2009.

[27] HADOOP-5726 JIRA: Remove pre-emption
from the capacity scheduler code base.
https://issues.apache.org/jira/browse/

HADOOP-5726, 2009.

[28] K. Kambatla, A. Pathak, and H. Pucha. Towards
optimizing Hadoop provisioning in the cloud. In
Proc. Usenix Workshop on Hot Topics in Cloud
Computing (HotCloud), 2009.

[29] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. Mak-
ing cloud intermediate data fault-tolerant. In Proc.
Symposium on Cloud Computing (SoCC), pages
181–192, 2010.

[30] A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos:
a platform for fine-grained resource sharing in
the data center. In Proc. Usenix Symposium on
Networked Systems Design and Implementation
(NSDI), 2011.

[31] J. Lin and C. Dyer. Data-intensive text processing
with Mapreduce. Morgan & Claypool Publishers,
2010.

[32] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environ-
ment. Journal of the ACM (JACM), 20:46–61, Jan
1993.

[33] J. S. Liu. Real-time systems. Prentice Hall, 2000.

[34] K. Morton, M. Balazinska, and D. Grossman. Para-
timer: a progress indicator for Mapreduce DAGs.
In Proc. ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 507–
518, 2010.

[35] Anonymous, details omitted for double-blind re-
viewing. 2013.

[36] Netty. http://netty.io/, 2013.

[37] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: a not-so-foreign language
for data processing. In Proc. of ACM SIGMOD
International Conference on Management of Data
(SIGMOD), pages 1099–1110, 2008.

[38] Oozie. http://oozie.apache.org/, 2013.

15



[39] L. Phan, Z. Zhang, B. Loo, and I. Lee. Real-time
MapReduce scheduling. Technical Report MS-
CIS-10-32, University of Pennsylvania, Feb 2010.

[40] Z. Qian, Y. He, C. Su Z. Wu, H. Zhu, T. Zhang,
L. Zhou, Y. Yu, and Z. Zhang. Reliable stream
computation in the cloud. In Proc. ACM European
Conference on Computer Systems (Eurosys), 2013.

[41] S. Rao, R. Ramakrishnan, A. Silberstein,
M. Ovsiannikov, and Damian Reeves. Sail-
fish: a framework for large scale data processing.
In Proc. ACM Symposium on Cloud Computing
(SoCC), 2012.

[42] T. Sandholm and K. Lai. Dynamic proportional
share scheduling in Hadoop. In Proc. Conference
on Job Scheduling Strategies for Parallel Process-
ing (JSSPP), pages 110–131, 2010.

[43] I. Santhoshkumar, G. Manimaran, and C. Siva Ram
Murthy. A pre-run-time scheduling algorithm for
object-based distributed real-time systems. Journal
of Systems Architecture, 45(14), 1999.

[44] M. Schwarzkopf, A. Konwinski, M. Abd el Malek,
and J. Wilkes. Omega: Flexible, scalable sched-
ulers for large compute clusters. In Proc. ACM
European Conference on Computer Systems (Eu-
rosys), 2013.

[45] D. Shue, M. J. Freedman, and A. Shaikh. Perfor-
mance isolation and fairness for multi-tenant cloud
storage. In Proc. Usenix Symposium on Operating
Systems Design and Implementation (OSDI), pages
349–362, 2012.

[46] Spark: Lightning-fast cluster computing. http://
spark-project.org/,2013.

[47] Storm. http://storm-project.net/, 2013.

[48] A. S. Tanenbaum. The Operating System as a Re-
source Manager. In Modern Operating Systems,
chapter 1.1.2. Pearson Prentice Hall, 3rd edition,
2008.

[49] A. Thusoo, J. Sen Sarma, N. Jain, Z. Shao,
P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and
R. Murthy. Hive: a warehousing solution over
a Mapreduce framework. Proc. Very Large Data
Base Endowment (PVLDB), 2:1626–1629, August
2009.

[50] A. Verma, L. Cherkasova, and R. H. Campbell.
ARIA: automatic resource inference and alloca-
tion for mapreduce environments. In Proc. In-
ternational Conference on Autonomic Computing
(ICAC), 2011.

[51] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz,
and I. Stoica. Cake: enabling high-level SLOs on
shared storage systems. In Proc. ACM Symposium
on Cloud Computing (SoCC), 2012.

[52] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues.
Orchestrating the deployment of computations in
the cloud with Conductor. In Proc. Usenix Sym-
posium on Networked Systems Design and Imple-
mentation (NSDI), 2012.

[53] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlings-
son, P. K. Gunda, and J. Currey. DryadLINQ: a
system for general-purpose distributed data-parallel
computing using a high-level language. In Proc.
Usenix Symposium on Operating Systems Design
and Implementation (OSDI), pages 1–14, 2008.

[54] M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz,
and I. Stoica. Improving Mapreduce performance
in heterogeneous environments. In Proc. Usenix
Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 29–42, 2008.

[55] M. Zaharia, D. Borthakur J. Sen Sarma, Khaled
K. Elmeleegy, S. Shenker, and I. Stoica. Delay
scheduling: A simple technique for achieving lo-
cality and fairness in cluster scheduling. In Proc.
ACM European Conference on Computer Systems
(Eurosys), pages 265–278. ACM, 2010.

16


