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Abstract

This thesis develops various methods for the robust and stochastic model-based control of uncertain dy-

namical systems. Several different types of uncertainties are considered, as well as different mathematical

formalisms for quantification of the effects of uncertainties in dynamical systems.

For deterministic uncertain models and robust control, uncertainties are described as sets of unknowns

and every element from a set is presumed to be realizable. Stability and performance characteristics and

controlled system behaviors are required to be satisfied for any element in the set of uncertain models. This

thesis extends and expands robust control theory to tackle control problems for specific classes of structured

uncertain linear and nonlinear systems that include cone-invariant systems, descriptor systems, and Wiener

systems. The resultant analysis and control methods are proposed in terms of conic programming that

includes linear programming and semidefinite programming (SDP).

For stochastic uncertain models and stochastic control, uncertainties are described in terms of probabil-

ity distribution functions. Stability and performance characteristics and controlled system behaviors are

required to be satisfied with a desired probabilistic confidence. This thesis develops analysis and control

schemes based on a spectral methods known as generalized polynomial chaos that can be used to approximate

the propagation of uncertainties through dynamical systems. The proposed analysis and design methods

are shown to be computationally efficient and accurate alternatives to sampling-based methods, especially

when the methods are incorporated into model-based real-time control such as model predictive control.

In addition to accounting for uncertainties and disturbances, the occurrence of a system component fault

or failure can significantly degrade the ability of the control system to satisfy the desired stability and per-

formance criteria. This thesis presents an application of the robust control formalism to passively ensure the

reliability of a closed-loop system. For an active and intelligent control under presumed fault scenarios, this

thesis considers Bayesian inference and information theory that are suited for real-time model checking and

selection. To maximize the performance of statistical inference decision-making in the presence of stochastic

uncertainties, design methods for optimal probing input signals are proposed in terms of the solutions of

mathematical programs. Due to excitation nature of probing inputs, the resultant mathematical programs
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are nonconvex and a sequential SDP and convex relaxation methods are proposed to cope with such compu-

tational challenges. For real-time model checking and selection of complex distributed systems, this thesis

develops methods of distributed hypothesis testing that are based on belief propagation and optimization in

graphical models. The proposed methods are scalable and guarantee a consensus of distributed statistical

inference decision-making.
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Chapter 1
INTRODUCTION

1.1 Uncertain Systems

Uncertainties are ubiquitous in mathematical models of complex systems and can be represented as cer-

tain classes of perturbations and disturbances. A general description of uncertainty can be categorizes into

two classes: the plant perturbations and exogenous inputs. The description of plant perturbations includ-

ing parametric and nonparametric perturbations is an outcome of modeling or system identification errors

reflecting the discrepancy between the mathematical model and the actual system in operation. Typical

sources of plant-model mismatches are neglected nonlinearities, unmodelled dynamics, model reduction,

system parameter variations due to operation circumstance changes, and physical changes in system com-

ponents. Uncertain exogenous inputs include disturbances and measurement noise. There are two main

models for exogenous inputs: stochastic inputs with joint probability distributions and deterministic inputs

from a set. Stochastic modeling of inputs is the traditional method for which the inputs are assumed to be

random processes with known or estimated joint probability distributions. However, due to difficulties in

fully characterizing the resultant probability distributions of solutions of the stochastic dynamical systems,

it is typical to discuss/model only up to second-order statistics. Deterministic modeling of inputs describe

the class of input signals as unknown but bounded in some mathematical sense. A typical method for

representing the input signals is as being bounded by finite- or infinite-dimensional convex constraints.

An uncertain system is a set of mathematical models that is assumed to contain the real system as an

element, in which the uncertainties can be represented either deterministically or stochastically. For both

types of uncertainties, this thesis develops tools for the analysis and control for uncertain systems, for which

the physical characteristics of actual systems are consistently kept in their associated mathematical models.
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1.2 Robust and Stochastic Analysis and Control

Robust and stochastic analysis/control are two major directions in assessing and achieving satisfactory

stability and performance characteristics in the presence of any conceivable uncertainties. Robust analysis

and control deals with deterministic modeling of perturbations and disturbances, whereas stochastic analysis

and control use stochastic models of perturbations and disturbances, in the mathematical models of systems.

Robust control has been one of the most active research areas of system and control theory since the

1980s. A conjunction of different disciplines of mathematics such as functional analysis, convex optimization,

algebraic and differential geometry, and abstract algebra has led advances in developing theories of robust

control as well as their applications to real engineering problems. In modern robust control, common

and popular approaches use the theory of topological separation to characterize the well-posedness of the

interconnected systems and their robust stability and performance, for which convex analysis is used to

develop robustness criteria and convex optimization is applied for assessment of such criteria, equipped

with algorithmic numerical computations. Exact computations for robust analysis and control are known

to be NP-hard for general systems, whereas the associated conservative convex criteria can be evaluated

in polynomial-time, except for some special cases such as copositive programs. This thesis presents some

extensions of existing robust analysis and control methods, and applies those extended results to certain

structured uncertain linear and nonlinear systems. An overview of the computational complexity of robust

analysis and control problems is provided afterward.

Stochastic control is an area of control theory that considers stochastic disturbances and perturbations, as

well as measurement noise, in the mathematical models of systems.1 With regards to stochastic analysis, the

major task is to compute the probability distributions of solution trajectories of stochastic dynamical systems

for given stochastic disturbances and perturbations. With regards to stochastic control, the control objective

is to achieve desired probability distributions of solution trajectories of stochastic dynamical systems by

applying allowable control inputs. The main difficulties are that the resultant stochastic analysis and control

problems are to find solutions of infinite-dimensional dynamical system equations, in particular, partial

differential equations such as Fokker-Plank and Hamilton-Jackob-Bellman equations. These computational

difficulties necessitate stochastic approximation methods and this thesis investigates the use of spectral

methods as an efficient alternative to naive sampling-based approaches.

On a different requirement of control systems (in both of robust and stochastic control), constraining the

controlled system behavior in the presence of uncertainties in the mathematical models is another major

challenge. To achieve desired constrained controlled trajectories, this thesis considers the model predictive

control technique equipped with the receding horizon scheme.

1In the literature, the terminology “stochastic control” has been used to refer to control theory that deals with stochastic
uncertainty either in observations of the data or in processes that produce data. Throughout this thesis,“stochastic control”
refers to control theory that deals with both stochastic data (signals) and stochastic model uncertainty in the systems of
consideration. Alternative terms for such theory that have been used in the literature include probabilistic robust control or
stochastic robust control.
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1.3 Uncertainty Quantification

The methodology of uncertainty quantification is to characterize the effects of uncertainties on simulation

or theoretical models of actual systems. Aforementioned sources of uncertainty include parametric model

perturbations, lack of physical fidelity of models, and uncertain circumstances in system operation. The

principal objectives of uncertainty quantification and propagation include [167]:

1. Model Checking: In model-based analysis and control, models must be validated or invalidated by

assessing their consistency with measurements/observations that are available from the actual system.

Physical measurements are inherently corrupted by uncertainties (e.g., measurement noise, sensor

bias), and understanding the sources of uncertainties and modeling imperfections are indispensable to

the application of a robust control and estimation scheme.

2. Variance Analysis: The simplest way of quantifying uncertainty propagation is to compute the vari-

ance of the system response around its mean value (or expectation). This variance analysis can provide

important information and perspectives for robust design and optimization and can be used to charac-

terize the robustness of the prediction, the reachability and controllability of the system, and compute

confidence levels of associated predictions and estimations.

3. Risk Analysis: Apart from variance analysis, determining probabilities that certain system charac-

teristics exceed critical values or operation safety thresholds has significant importance in risk and

reliability assessment.

4. Uncertainty Management: In the presence of multiple sources of uncertainty, efficient robust control and

estimation requires analyses of their relative impacts on certain system performances and behaviors.

Isolating and reducing dominant sources of uncertainty are key steps for robust estimation.

Much research effort has been devoted to developing optimal and scalable uncertainty quantification methods,

including polynomial chaos, stochastic response surface, and dynamic sampling methods (e.g., Markov Chain

Monte Carlo).

For the purpose of stochastic uncertainty quantification in dynamical uncertain systems, this thesis focuses

on the use of polynomial chaos and its generalizations with intrusive projection methods, called Galerkin

projections, to identify the associated surrogate models. These methods can be considered as special types of

spectral methods to construct finite-dimensional approximations in infinite-dimensional probability measure

spaces. Surrogate models are built based on generalized polynomial chaos and used for analyzing and

quantifying uncertainty propagation and for developing stochastic control methods.

3



1.4 Reliable Control

An inevitable consequence of practical operation of control systems is that actuators and sensors can become

faulty or fail, which motivates the development of methods to evaluate the reliability of the closed-loop

system to such imperfect operations. A feedback-controlled system is said to be reliable if it is guaranteed

to retain desired closed-loop system properties while tolerating faults or failures of actuators and sensors.

Maximizing the reliability of a system concerns minimizing its potential performance degradation while

retaining closed-loop stability when a fault or failure occurs in a control and measurement channel.

This thesis provides methodologies for the design of robustly reliable decentralized control systems, for

which the structured singular value theory is applied to cope with the concurrent presence of faults, failures,

and uncertainties.

1.5 Fault Detection and Diagnosis

The complexity of devices and processes implies that faults are inevitable, and the tight interactions between

instrumentation and other components of the overall system can result in cascading effects with significant

economic, environmental, and human damages. Large amounts of data are collected in the operation of

control systems and the data can be analyzed to determine whether or not a fault has occurred in the system,

where a fault is defined as abnormal system behavior whether associated with equipment failure, equipment

wear, or extreme process disturbances. This task of determining whether a fault has occurred is called fault

detection, whereas fault diagnosis is the task of determining which fault has occurred. To properly and safely

operate the facilities and devices in real-time while preventing any unallowable behaviors of the system,

reliable FDD algorithms are needed that monitor the inputs and outputs of the system and determines

whether a fault occurs and to point to the location of the fault (aka fault diagnosis). In addition, without an

optimal integration between the monitoring and control systems, the response to faults can reduce reliability

and profit or can be overly conservative, for example, by initiating an unnecessary automated shutdown of

the facility due to false alarm. The design of FDD procedures are challenged by the presence of disturbances,

noise, and model uncertainties that can make the symptoms of faults/failures indiscernible.

The most common and popular approaches to FDD problems are to use Bayesian hypothesis tests, for

which certain system output data are monitored and collected to determine which hypothesized model is the

most probable. Performance of those statistical methods of decision-making relies on quality of monitoring

data for given exogenous and control inputs. To maximize performance of statistical FDD methods, this

thesis considers the design of probing inputs that excite or perturb the actual system so that the resultant

monitoring data are expected to have a larger discrimination between conceived hypotheses.
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1.6 Distributed Decision Making

Distributed decision making has become of increasing importance in quantitative and quantitative decision

theory and applications for complex large-scale and distributed systems. Control of complex systems is es-

sentially characterized by distributed decision making and neccessitate a share of perspectives and cognitions

among distributed decision makers. Major problems in distributed decision making are to coordinate the

local decision makers called agents and to develop efficient protocols for information exchange and perspec-

tive sharing. This thesis particularly uses graphical models that are appropriate for representing cognitive

maps of perspective sharing and information/data fusion and can be incorporated with distributed statistical

inference problems that are special classes of distributed decision making problems.

This thesis develops methods of distributed Bayesian hypothesis tests based on belief propagation and op-

timization in graphical models, for which local evidences or measurements are exchanged among distributed

agents, denoted as the nodes, via communication links, denoted as the edges, and marginal a posteriori

probability distributions called beliefs are computed.

1.7 Chapter-by-Chapter Description

This thesis consists of twelve chapters, and compromises three main parts. Part I (Chapters 2 – 6) presents

methods of robust control and absolute stability for structured uncertain systems that are further character-

ized, compared to traditional uncertain systems, and for which newly developed theories and computational

methods are incorporated with extensions of existing analysis and control schemes. Part II (Chapters 7 and

8) discusses the use of spectral methods called polynomial chaos for stochastic uncertainty propagation and

quantification and their applications to probabilistic analysis and control problems for stochastic uncertain

dynamical systems. Part III (Chapters 9 – 11) considers statistical inference problems for fault detection and

diagnosis based on Bayesian theory. In particular, optimum active probing input design for maximizing the

performance of statistical inference is discussed and methods of distributed Bayesian hypothesis tests based

on belief propagation and optimization are developed for graphical models of distributed uncertain systems.

Chapter 2 provides necessary and sufficient conditions for the stability of continuous- and discrete-time

general cone-invariant LTI systems. The proposed stability criteria are conic Lyapunov stability conditions

that are geometric algebraic conditions for the stability of an equilibrium state and established from using

the concepts of dual and polar cones. Namely, the existence of a dual variable in the interior of the dual cone

such that the adjoint operator maps the dual variable into the interior of the polar cone is a necessary and

sufficient condition for the stability of the cone-invariant LTI system, where the cone can be an arbitrary

proper cone in the state space. Another necessary and sufficient condition for stability of such a system is

the existence of a quadratic Lyapunov solution for the associated copositive Lyapunov inequality. It is shown

that the feasible solutions of the stability conditions with conic inequalities can be used to characterize the
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extreme rays of the set of solutions for copositive Lyapunov inequalities.

Chapter 3 studies the impulsive behavior and robust stability and performance of continuous-time uncer-

tain linear descriptor systems, which are described by a combination of differential and algebraic equations.

Necessary and sufficient conditions are presented for robust stability and several dissipation performance

indices of uncertain linear descriptor systems represented as generalized linear fractional transformations.

For developing unified methods of robust analysis of uncertain linear descriptor systems, the full-block S-

procedure is employed and extended for such further characterized uncertain systems. The conditions are

written as coupling of linear matrix inequalities and equalities whose feasibility can be checked in polynomial-

time by using interior-point methods. Unified and generalizable convex conditions are provided for the analy-

sis of robust stability and performance for linear descriptor systems with structured uncertainty. A necessary

and sufficient condition for robust impulse-free dynamics for structured uncertain systems is derived from

using structured singular value theory and incorporated into associated robust stability conditions.

Chapter 4 presents necessary and sufficient conditions for several forms of controlled system reliability. For

comparison purposes, past results on the reliability analysis of controlled systems are reviewed and it is shown

that several of the past results are either conservative or have exponential complexity. For systems with

real and complex uncertainties, conditions for robust reliable stability and performance are derived in terms

of the structured singular values of certain transfer functions. The conditions are necessary and sufficient

for the controller to stabilize the closed-loop system while retaining a desirable level of the closed-loop

performance in the presence of system component faults and/or failures, as well as modeling uncertainties

and external disturbances. The resulting conditions based on the structured singular value are applied to the

decentralized control for a high-purity distillation column and singular value decomposition-based optimal

control for a parallel reactor with combined precooling.

Chapter 5 considers certain classes of uncertain Wiener models that are interconnected systems of stable

linear systems followed by a static nonlinearity. A nonlinear control design procedure is presented that

provides robustness to uncertainties while being applicable to systems with unstable zero dynamics, unmea-

sured states, disturbances, and measurement noise. The design procedure combines nonlinear internal model

control with linear matrix inequality feasibility or optimization problems, such that all robust stability and

performance criteria are computable in polynomial-time using readily available software. The approach is

applied to a case study involving the control of pH in which the Wiener model is identified from experimental

data. This pH neutralization case study demonstrates the importance of taking uncertainty into account

during the design of controllers for Wiener systems. The approach is generalizable to Hammerstein and

sandwich systems, whether well- or poorly-conditioned, and to systems with actuator constraints.

Chapter 6 provides a comprehensive overview of research related to the computational complexity of

robustness margin calculations. Followed by the pioneering papers on the structured singular value (SSV),

there have been numerous efforts to develop efficient algorithms for computing for purely real, mixed real

and complex, and purely complex uncertainties. Results on the NP-hardness of the exact computation of
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SSV motivated interest on the computational complexity of and potential conservatism in the approximation

of SSV. This chapter collects together many results that are not well known in the literature, including that

the cost of SSV calculation scales by the rank of the M matrix, and that in worst case the widely used upper

bound for SSV can be arbitrarily far off. The chapter also describes approaches for the extension of past

results. The role of probabilistic randomized algorithms is also discussed, including their favorable scaling

with problem size. Polynomial chaos expansion-based methods are described as a computationally efficient

alternative for sampling-based stochastic robustness analysis and controller synthesis.

Chapter 7 considers the incorporation of generalized polynomial chaos expansions for uncertainty prop-

agation and quantification into robust control design. Generalized polynomial chaos expansions are more

computationally efficient than Monte Carlo simulation for quantifying the influence of stochastic parametric

uncertainties on the states and outputs. Approximate surrogate models based on generalized polynomial

chaos expansions are applied to design optimal controllers by solving stochastic optimizations in which the

control laws are suitably parameterized, and the cost functions and probabilistic (chance) constraints are ap-

proximated by spectral representations. The approximation error is shown to converge to zero as the number

of terms in the generalized polynomial chaos expansions increases. Several proposed approximate stochastic

optimization problem formulations are demonstrated for a probabilistic robust optimal IMC control problem.

Chapter 8 considers the model predictive control of dynamic systems subject to stochastic uncertainties

due to parametric uncertainties and exogenous disturbance. The effects of uncertainties are quantified us-

ing generalized polynomial chaos expansions with an additive Gaussian random process as the exogenous

disturbance. With Gaussian approximation of the resulting solution trajectory of a stochastic differential

equation using generalized polynomial chaos expansion, convex finite-horizon model predictive control prob-

lems are solved that are amenable to online computation of a stochastically robust control policy over the

time horizon. Using generalized polynomial chaos expansions combined with convex relaxation methods, the

probabilistic constraints are replaced by convex deterministic constraints that approximate the probabilistic

violations. This approach to chance-constrained model predictive control provides an explicit way to handle

a stochastic system model in the presence of both model uncertainty and exogenous disturbances.

Chapter 9 provides a concise introduction to methods of Bayesian hypothesis testing and generalizes some

of existing work in the literature. The main applications of consideration are change detection and fault

detection and diagnosis in stochastic dynamical systems, for which statistical inference problems based on

Bayesian theory of statistics are formulated as mathematical programs.

Chapter 10 considers optimal/suboptimal active input design problems for fault detection and diagnosis

(FDD). The design problems are formulated as optimizations in which an optimal sequence of inputs within

a prediction horizon is computed for maximizing the statistical discrimination of different models of fault

scenarios. The optimality criteria are information theoretic measures of the statistical distance between

probability distributions and constraints on the predicted controlled output trajectory are imposed for en-

suring operational safety as well as the input constraints that correspond to hardware limitations. Two
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different approaches to such constrained optimal input design problems are presented. The first scheme is

to compute an optima input sequence for maximizing discrimination between system models of fault scenar-

ios in a statistical sense. Two different measures quantifying the degree of distinguishability between two

stochastic LTI system models are considered, and their geometric properties are investigated. The presented

constrained open- and closed-loop feedback input design problems are shown to be concave programs and an

iteration algorithm to solve these special families of nonlinear programs is presented, in which semidefinite

programs are sequentially solved and a local optimum can be achieved. The second scheme is semidefinite

programming (SDP) relaxation in which three different measures for the degree of statistical discrimination

between two hypothesized stochastic dynamical system models are considered and their mathematical prop-

erties that are related to Bayesian hypothesis tests are studied. The resulting input design problems are

non-convex and associated convex relaxation methods are proposed that can be solved in polynomial time

using interior point methods. Receding horizon method is used to implement the computed inputs for both

approaches for constrained optimal probing input design. Numerical simulations with an aircraft model are

provided to illustrate and demonstrate the presented methods of optimal input design for FDD.

Chapter 11 develops distributed Bayesian hypothesis tests for fault detection and diagnosis that are

based on belief propagation and optimization in graphical models. The main challenges in developing

distributed statistical estimation algorithms are (i) difficulties in ensuring convergence and consensus for

the solutions of distributed inference problems, (ii) increasing computational costs due to lack of scalability,

and (iii) communication constraints for networked multi-agent systems. To cope with those challenges, we

consider (i) belief propagation and optimization in graphical models of complex distributed systems, (ii)

decomposition methods of optimization for parallel and iterative computations, and (iii) distributed decision

making protocols.
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Figure 1.1: The main interactions and flows between the chapters and mathematical methods. A solid
arrow connecting two boxes indicates that one chapter or mathematical method depends on the other and
a dotted arrow indicates that only the main ideas of the parent chapter or mathematical method are used
in the child chapter or mathematical method.
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Chapter 2
A Characterization of Solutions for General

Copositive Quadratic Lyapunov Inequalities

Abstract This chapter provides an answer to an open question raised in [48] with regard to checking

existence of a solution for copositive Lyapunov inequalities. This chapter considers homogeneous LTI systems

that preserve a proper cone C.1 A necessary and sufficient condition for stability of such a system is the

existence of a quadratic Lyapunov solution for the associated copositive Lyapunov inequality. This chapter

provides another necessary and sufficient condition for stability of the cone-invariant LTI system, in which

geometric algebraic conditions for the stability of an equilibrium state are established from the concepts

of dual and polar cones. The conditions are polynomial-time verifiable, provided C is a proper cone in Rn

and has a polynomial-time evaluable self-concordant barrier function. This chapter shows that the feasible

solutions of those conditions can be used to characterize the extreme rays of the set of solutions for copositive

Lyapunov inequalities.

2.1 Introduction

Mathematical models of dynamical systems in which the state trajectories remain in a cone are prevalent

in many systems and control problems [25, 80, 163] and their application to switched positive systems has

become a popular research topic [148,170]. For a continuous-time linear time-invariant (LTI) system ẋ = Ax

with an initial condition x(0) = x0, it is well-known that an equilibrium state is globally asymptotically

stable (g.a.s)2 if and only if there exists a positive definite solution P � 0 of the Lyapunov inequality

PA + ATP ≺ 0. This stability condition can be generalized for a cone-invariant LTI system, namely, the

1The cones considered in [48] were polyhedral cones, while our consideration is more general, to cover any proper cones C
such that checking the condition x ∈ C (or x /∈ C) can performed from a polynomial-time evaluable self-concordant barrier
function; see [197] for details on polynomial-time interior point methods using self-concordant barrier functions.

2The term “stable” means “g.a.s.” in many places of this chapter.
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state transition map corresponding to the system ẋ = Ax ensures that x(0) ∈ C implies x(t) ∈ C for all t ≥ 0,

where C ∈ Rn is a cone. It is straightforward to show that the aforementioned cone-invariant LTI system is

g.a.s. if and only if there exists P �C 0 such that PA+ATP ≺C 0, where P �C 0 is equivalent to xTPx > 0

for all x ∈ C \ {0} and P ≺C 0 is equivalent to −P �C 0. This stability condition for the C-invariant LTI

system is called the copositive Lyapunov inequality.

For the copositive Lyapunov inequality and function of a polyhedral cone-invariant LTI system, an open

question was raised in [48]:

Problem 2.1. Consider a matrix A ∈ Rn×n and a cone C , {x ∈ Rn : Cx ≥ 0}. Determine necessary and

sufficient conditions for the existence of a symmetric matrix P �C 0 such that PA+ATP ≺C 0.

This chapter provides an answer to the stability of general cone-invariant LTI systems, which implicitly

generalizes the answer to Problem 2.1 for which there exists a solution P satisfying the associated copositive

Lyapunov inequality if and only if the corresponding LTI system is stable over the cone C. Namely, we

establish necessary and sufficient conditions for stability of continuous- and discrete-time cone-invariant

LTI systems. Our conditions are polynomial-time verifiable, provided that there exists a polynomial-time

evaluable self-concordant barrier function to check if x ∈ C. Notice that copositive programs are convex,

but NP-hard [189]. This is because the cone K , {X ∈ Rn×n : X = XT, X �C 0} nor its dual allow

self-concordant barrier functions that can be evaluated in polynomial-time, even for the case when C is the

positive orthant, i.e., C ≡ I (see [197]). The stability conditions presented in this chapter are to check

feasibility of constraints over the cones C (not K), and its dual and polar cones. There has been some

misunderstanding about the computational complexity of checking feasibility of the copositive Lyapunov

inequality; for example, in [45] it was misstated that the feasibility problem of the copositive Lyapunov

inequality is NP-hard so that there was little hope for there to exist an efficient solution method for large-

scale systems.

A main contribution of this chapter is to provide polynomial-time checkable convex conditions for the

stability of general cone-invariant LTI systems and correct some misunderstanding of computational com-

plexity of the copositive Lyapunov inequality, for which we fully characterize quadratic Lyapunov solutions

for copositive Lyapunov inequalities. A notable discrimination is that, since stability needs to be assessed

only over a cone C, it is natural to assume that the system ẋ = Ax has a state-transition map that pre-

serves the cone C and this cone-preserving property characterized in terms of the system matrix A can be

exploited to derive polynomial-time solvable mathematical programs. The contribution of this chapter is

to characterize solutions of copositive Lyapunov inequalities as a convex hull of rank-one matrices that are

dyadic products of two vectors from a cone of the co-state satisfying semi-algebraic conditions with respect

to the cone C. We further assume that there exists a polynomial-time verifiable barrier function for the

condition x ∈ C, i.e., checking if x ∈ C can be performed in polynomial-time, e.g., polyhedral, second-order

(aka Lorentz), and semidefinite cones are such types of proper cones.
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2.2 Preliminaries

This section provides a concise overview of the theory of cones and consistency of linear inequalities. This

theory is used to establish a main result of this chapter, namely, necessary and sufficient conditions for the

cone-invariance and stability of homogeneous LTI systems.

2.2.1 Theory of Cones and Cone-preserving Matrices, and Consistency of Convex
Inequalities

There are certain classes of matrices that are related to cone-preserving operators.

Definition 2.1 (Z-matrix [110]). The set Zn ⊂ Rn×n is defined by Zn , {A ∈ Rn×n : Aij ≤ 0 for i 6= j}.

The set −Zn defines the set of Metzler matrices, which have non-negative off-diagonal entries.

Definition 2.2 (M-matrix [110]). A matrix A is called an M-matrix if A ∈ Zn and A is positive stable,

i.e., σ(A) ⊂ C+ where C+ refers to the open right-half plane in complex variable domain.

Definition 2.3 (Nonnegative matrix [109]). A matrix A is called a nonnegative matrix if it has nonnegative

entries only.

Remark 2.1. The sets of Z-, Metzler, M-, and nonnegative matrices define cones in Rn×n.

Some background on cones is provided below.

Definition 2.4 (Cone [221]). A set C ∈ Rn is called a cone if it is closed under positive scalar multiplica-

tion, i.e., λx ∈ C when x ∈ C and λ ≥ 0. This set is a union of half-lines emanating from the origin.

A cone C is pointed if C ∩ (−C) = {0} and solid if the interior of C is not empty. A cone that is convex,

closed, pointed, and solid is called a proper cone.

Definition 2.5 (Dual and polar cone [161]). The dual of a nonempty set C ∈ Rn is C• , {z ∈ Rn : 〈z, x〉 ≥

0 ∀x ∈ C}. Similarly, the polar of a nonempty set C is C◦ , {z ∈ Rn : 〈z, x〉 ≤ 0 ∀x ∈ C}.

We now come to the basic concepts for the study of topological properties of sets in the vector spaces.

Definition 2.6 (Interior of a set [161]). Let S be a subset of a normed space X . The point s ∈ S is said

to be an interior point of S if there is an ε > 0 such that all vectors x ∈ B(s, ε) ⊂ S. The collection of

interior points of S is called the interior of S and is denoted by �S.

Definition 2.7 (Closure of a set [161]). Let S be a subset of a normed space X . The point s ∈ S is said

to a closure point of S if for a given ε > 0 there exists a point x ∈ B(s, ε). The collection of all closure points

of S is called the closure of S and is denoted by ~S.
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The dual C• and polar C◦ are always closed convex cones. Duality reverses inclusion, C1 ⊆ C2 ⇒ C•2 ⊆ C•1 .

If C is a closed convex cone, then C = C••. Otherwise, C•• is the closure of the smallest convex cone that

contains C.

One of the most common matrix operators that preserve a cone is the set of nonnegative matrices. Below

is a summary of the appropriate definitions and spectral properties of nonnegative matrices.

Theorem 2.1. (Perron-Frobenius [109]) Let A ∈ Mn and suppose that A is irreducible and nonnegative.

Then

(a) ρ(A) > 0,

(b) ρ(A) is an eigenvalue of A,

(c) There is a positive vector x such that Ax = ρ(A)x,

(d) ρ(A) is an algebraically (and hence geometrically) simple eigenvalue of A.

Corollary 2.1. (Perron-Frobenius [109]) Suppose that A ∈Mn(R) is a Metzler matrix. Then

(a) ρ(A) is an eigenvalue of A and there exists a nonnegative eigenvalue x ≥ 0, x 6= 0 such that Ax = ρ(A)x,

(b) If λ ∈ σ(A) and |λ| = ρ(A) then the algebraic multiplicity of λ is not greater than the algebraic

multiplicity of the eigenvalue of ρ(A).

Krein and Rutman [150] generalized the results of the Perron-Frobenius theorem. Here, we only consider

the linear operators on a finite-dimensional real vector space, although similar results can be extended to

infinite-dimensional Banach spaces.

Theorem 2.2. (Krein-Rutman Theorem for Linear Operators on Finite-dimensional Spaces [150]) Let C be

a proper cone in a finite-dimensional real vector space V, and L be a linear operator on V for which L(C) ⊆ C.

Then the spectral radius ρ(L) is an eigenvalue and there exists a non-zero x ∈ C such that L(x) = ρ(L)x.

Furthermore, there exists a non-zero y ∈ C• such that L∗(y) = ρ(L)y.

For convex functions defined on convex sets with non-empty interiors, there is a fundamental existence

theorem represented as the form of two mutually exclusive alternatives for the associated convex level sets.

Below are the results for a special case of affine functions and inequalities.

Theorem 2.3. (Theorem of Alternatives [221]) Assume that the system 〈ai, x〉 ≤ αi for i = 1, . . . ,m is

consistent. An inequality 〈a0, x〉 ≤ α0 is then a consequence of this system if and only if there exist non-

negative real numbers λi ≥ 0, i = 1, . . . ,m, such that
∑m
i=1 λiai = a0 and

∑m
i=1 λiαi ≤ α0.

For linear functions and inequalities, the result is known as the Farkas Lemma.

Lemma 2.1. (Farkas Lemma [221]) An inequality 〈a0, x〉 ≤ 0 is a consequence of the system 〈ai, x〉 ≤ 0

for i = 1, . . . ,m if and only if there exist non-negative real numbers λi ≥ 0, i = 1, . . . ,m, such that∑m
i=1 λiai = a0.
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2.2.2 Positive Invariance of LTI Systems

Some results related to cone invariant LTI systems are now presented.

Lemma 2.2. Consider the system ẋ(t) = Ax(t) and a proper cone C. Then C is a positively invariant set

of the solution x(t) if and only if Φ(t, t0) , eA(t−t0) has property of leaving positively invariant the proper

cone, i.e., Φ(t, t0)C ⊆ C for all t ≥ t0.

Corollary 2.2. Consider the inhomogeneous system ẋ(t) = Ax(t) + v(t) and a proper cone C. Then C is a

positively invariant set of the solution x(t) if and only if Φ(t, t0)C ⊆ C for all t ≥ t0.

A special and common case of cone invariant LTI systems is a polyhedral cone that can be generated by

a finite number of real vectors from Rn.

Theorem 2.4. (Polyhedron Invariant Continuous-time LTI Homogeneous System [234,260,261]) Consider

the system ẋ(t) = Ax(t) and a polyhedral cone Cp(R) , {x ∈ Rn : Rx ≥ 0} where R ∈ Rm×n. Then Cp(R)

is a positively invariant set of the solution x(t) if and only if there exists a Z-matrix Z ∈ Rm×m such that

AR+RZ = 0. (2.1)

The above result includes the positive system that preserves the polyhedral cone Rn+.

Corollary 2.3. Consider the system ẋ(t) = Ax(t) and the closed positive orthant ~Rn+. Then ~Rn+ is a

positively invariant set of the solution x(t) if and only if A is a Metzler matrix.

Similar results can be extended to discrete-time LTI systems, which directly follow from conditions for

consistency of systems of linear inequalities.

Theorem 2.5. (Polyhedron Invariant Discrete-time LTI Homogeneous System) Consider the system xk+1 =

Axk and a polyhedral cone Cp(R) , {x ∈ Rn : Rx ≥ 0} where R ∈ Rm×n. Then Cp(R) is a positively

invariant set of the solution xk if and only if there exists a non-negative matrix P ∈ Rm×m such that

RA = PR. (2.2)

Proof. The Farkas lemma indicates that Rx ≥ 0 implies RAx ≥ 0 if and only if for each i = 1, . . . ,m, there

exists λi ∈ Rm+ such that RTλi = (RA)T
i where (RA)i refers to the ith row of the matrix RA. This equivalent

condition for the dual variables λi, i = 1, . . . ,m, can be rewritten as the matrix form RTΛ = (RA)T where

the ith column of Λ is λi. Selecting P = ΛT proves the result. QED

Corollary 2.4. Consider the system xk+1 = Axk and the closed positive orthant ~Rn+. Then ~Rn+ is a

positively invariant set of the solution xk if and only if A is a non-negative matrix.
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2.3 Necessary and Sufficient Conditions for Stability of Cone invariant LTI
systems

Here, we show that the stability of a cone invariant LTI system can be tested by the existence of a dual

variable in the interior of the associated dual cone that is mapped by the adjoint operator into the interior

of the associated polar cone.

2.3.1 Conic Lyapunov Stability: Linear Functional

For the stability analysis of cone invariant LTI systems, we propose to use a conic linear Lyapunov functional

as an alternative to copositive quadratic Lyapunov functions,3 without introducing any conservatism while

requiring less computational demand as the associated problems are convex, for which polynomial-time

self-concordant barrier functions exist [197].

2.3.1.1 Continuous-time LTI Homogeneous Systems

The next theorem uses the concept of dual cones to establish a necessary and sufficient condition for the

stability of cone invariant LTI systems. We also provide an explicit form of dual variables that define a conic

linear Lyapunov functional proving stability.

Theorem 2.6. (A Necessary and Sufficient Condition for Stability of Cone Invariant LTI Homogeneous

Systems) Consider the system ẋ(t) = Ax(t). Suppose that this linear homogeneous system is C-invariant,

i.e, x(t) ∈ C implies x(s) ∈ C for all s ≥ t, where C is a proper cone. Then the system is asymptotically

stable on C if and only if there exists p ∈ �C• such that ATp ∈ �C◦ where C• and C◦ refer to the dual and

polar cones of C, respectively, and �C denotes the interior of C, i.e., �C , C \ ∂C.

Proof. (⇒): Consider the linear Lyapunov functional V (x; p) , 〈p, x〉 where p ∈ �C• such that V (x; p) ≥ 0

for all x ∈ C and V (x; p) = 0 only for x = 0. The time derivative of this linear Lyapunov functional is

d

dt
V (x; p) =

d

dt
〈p, x〉,

= 〈p,Ax〉,

= 〈ATp, x〉,

≤ 0 (∵ ATp ∈ �C◦ ⊆ C◦),

(2.3)

where the equality holds if and only if x = 0. From Lyapunov theory, this inequality implies that the origin

3Some open problems on copositive Lyapunov functions were posed in [48]. One open problem was the derivation of necessary
and sufficient conditions for the existence of a Lyapunov function for a linear system that preserves a cone. There have been
some efforts to answer this question afterwards (e.g., [45]) and some new results on computing copositive Lyapunov functions
based on the conditions presented in this section will be provided in Section 2.4.

16



is asymptotically stable. (⇐): Suppose that A is Hurwitz stable. Define the vector

p :=

∫ ∞
0

eA
Ttqdt

for some q ∈ �C•. Then eAtC ⊆ C implies that eA
TtC• ⊆ C• for all t ≥ 0, which also implies that p ∈ �C•

since q ∈ �C•. The expression

ATp =

∫ ∞
0

ATeA
Ttqdt = −q ∈ �C◦, (2.4)

shows that asymptotic stability on C ensures the existence of a well-defined vector p ∈ C• satisfying ATp ∈

�C◦. QED

A special case of the previous results is a condition for the stability of polyhedral cone invariant LTI

systems.

Lemma 2.3. (A Necessary and Sufficient Stability Condition for Polyhedron Invariant Linear Homogeneous

Systems) Consider the dynamical system ẋ(t) = Ax(t) and the polyhedron Cp(R) , {x ∈ Rn : Rx ≥ 0}.

The system is Cp(R)-invariant and the origin is asymptotically stable on Cp(R) if and only if there exist a

Z-matrix Z ∈ Rm×m and a vector p ∈ Cp(R)• such that

AR+RZ = 0 and (AG)Tp < 0, (2.5)

where G ∈ Rn×m satisfies RG = I, i.e., the columns of G define the extreme rays of the cone Cp(R).

Proof. The set equivalences

�Cp(R)◦ = {x ∈ Rn : 〈x, y〉 < 0, ∀y ∈ Cp(R)},

= {x ∈ Rn : 〈x,Gλ〉 < 0, ∀λ ∈ Rm+},

= {x ∈ Rn : 〈GTx, λ〉 < 0, ∀λ ∈ Rm+},

= {x ∈ Rn : GTx < 0}

(2.6)

imply that the condition ATp ∈ �Cp(R)◦ is equivalent to the inequality GTATp < 0. QED

A special case of the aforementioned results is for linear positive LTI systems.

Corollary 2.5 (See [163]). Consider the system ẋ(t) = Ax(t) and the closed positive orthant ~Rn+. Then

~Rn+ is a positively invariant set of the solution x(t) and the origin is asymptotically stable on ~Rn+ if and

only if A is a Metzler matrix and there exists a vector p > 0 such that ATp < 0.

Remark 2.2. Any simplicial cones can be linear transformed into the positive orthant Rn+ by an invertible

matrix in Rn×n, which relates Lemma 2.3 and Corollary 2.5.
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2.3.1.2 Discrete-time LTI Homogeneous Systems

Similar results as the continuous-time cases can be obtained for discrete-time cone invariant LTI systems.

Theorem 2.7. (A Necessary and Sufficient Condition for Stability of Cone Invariant LTI Homogeneous

Systems) Consider the system xk+1 = Axk. Suppose that this linear homogeneous system is C-invariant, i.e,

xk ∈ C implies xs ∈ C for all s ≥ t, where C is a proper cone. Then the system is asymptotically stable on C

if and only if there exists p ∈ �C• such that (A− I)Tp ∈ �C◦ where C• and C◦ refer to the dual and polar

cones of C, respectively, and �C denotes the interior of C, i.e., �C , C \ ∂C.

Proof. (⇒): Consider the linear Lyapunov functional V (x; p) , 〈p, x〉 where p ∈ �C• such that V (x; p) ≥ 0

for all x ∈ C and V (x; p) = 0 only for x = 0. The time difference of this linear Lyapunov functional is

∆V (xk; p) = V (xk+1; p)− V (xk; p),

= 〈p, (A− I)xk〉,

= 〈(A− I)Tp, xk〉,

≤ 0 (∵ (A− I)Tp ∈ �C◦ ⊆ C◦),

(2.7)

where the equality holds if and only if x = 0. From Lyapunov theory, this inequality implies that the origin

is asymptotically stable.

(⇐): Suppose that A is Schur stable. Define the vector

p :=

∞∑
k=0

(AT)kq

for some q ∈ �C•. Then AC ⊆ C implies that ATC• ⊆ C•, which also implies that p ∈ �C• since q ∈ �C•.

The expression

(A− I)Tp = (A− I)T
∞∑
k=0

(AT)kq = −q ∈ �C◦, (2.8)

shows that asymptotic stability on C ensures the existence of a well-defined vector p ∈ C• satisfying (A −

I)Tp ∈ �C◦. QED

Lemma 2.4. (A Necessary and Sufficient Stability Condition for Polyhedron Invariant Linear Homogeneous

Systems) Consider the dynamical system xk+1 = Axk and the polyhedron Cp(R) , {x ∈ Rn : Rx ≥ 0}.

The system is Cp(R)-invariant and the origin is asymptotically stable on Cp(R) if and only if there exist a

non-negative matrix P ∈ Rm×m and a vector p ∈ Cp(R)• such that

AR = RP and ((A− I)G)Tp < 0, (2.9)
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where G ∈ Rn×m satisfies RG = I, i.e., the columns of G define the extreme rays of the cone Cp(R).

Proof. The set equivalences

�Cp(R)◦ = {x ∈ Rn : 〈x, y〉 < 0, ∀y ∈ Cp(R)},

= {x ∈ Rn : 〈x,Gλ〉 < 0, ∀λ ∈ Rm+},

= {x ∈ Rn : 〈GTx, λ〉 < 0, ∀λ ∈ Rm+},

= {x ∈ Rn : GTx < 0}

(2.10)

imply that the condition (A− I)Tp ∈ �Cp(R)◦ is equivalent to the inequality GT(A− I)Tp < 0. QED

Stability of the Rn+-invariant system (see [163]) is a special case of the results of Lemma 2.4.

Corollary 2.6. Consider the system xk+1 = Axk and the closed positive orthant ~Rn+. Then ~Rn+ is a

positively invariant set of the solution xk and the origin is asymptotically stable on ~Rn+ if and only if A is

a non-negative matrix and there exists a vector p > 0 such that (A− I)Tp < 0.

2.4 Solutions for General Copositive Lyapunov Inequalities

This section provides an answer to Problem 2.1 and fully characterizes the associated quadratic Lyapunov

solutions. Consider the copositivity condition

P �C 0, PA+ATP ≺C 0 (2.11)

and suppose that the system matrix A defines the C-invariant system ẋ = Ax. The associated cone of linear

operators (matrices) defined by

Klyap(A|C) ,
{
P ∈ Sn : P �C 0, PA+ATP ≺C 0

}
(2.12)

is a cone in Rn×n. The next lemma computes the dual cone of Klyap(A|C).

Lemma 2.5. The dual cone of Klyap(A|C) is the closure of

Klyap(AT|C•) ,
{
X : Sn : X �C• 0, AX +XAT ≺C• 0

}
, (2.13)

i.e., Klyap(A|C)• = ~Klyap(AT|C•).

Proof. From the definition of dual cone, X ∈ Klyap(A|C)• if and only if 〈X,P 〉 ≥ 0 for all P �C 0 satisfying

PA + ATP ≺C 0. It is trivial to see that 〈X,P 〉 ≥ 0 for all P �C 0 if and only if X �C• 0. Furthermore,

if X �C• 0 then 〈X,PA + ATP 〉 ≤ 0 for all P satisfying PA + ATP ≺C 0. Since 〈X,PA + ATP 〉 =
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〈P,AX + XAT〉 and P �C 0, 〈X,PA + ATP 〉 ≤ 0 for all P satisfying PA + ATP ≺C 0 if and only if

AX +XAT �C• 0. QED

The next lemma considers a generalized cone of C-copositive matrices and computes its dual cone.

Lemma 2.6. Consider the cone of C-copositive matrices defined by K+(C) , {M ∈ Sn : M �C 0}. Then

P+(C) ,

{
X ∈ Sn : X =

n∑
i=1

xix
T
i , xi ∈ C, ∀i

}
= K+(C)•.

(2.14)

Proof. Consider X ∈ P+(C). Then

〈X,M〉 =

〈
n∑
i=1

xix
T
i ,M

〉
,

=

n∑
i=1

〈xixT
i ,M〉,

=

n∑
i=1

xT
i Mxi,

≥ 0 ∀M ∈ K+(C) (∵ xi ∈ C),

(2.15)

which implies P+(C) ⊆ K+(C)•. To show the reverse inclusion, suppose that M /∈ K+(C). Then there exists

x ∈ C such that xTMx < 0, but xxT ∈ P+(C). This implies that if M /∈ K+(C) then M /∈ P+(C)•. Thus, we

have P+(C)• ⊆ K+(C), which implies the relation of inclusion K+(C)• ⊆ P+(C)••. Since P+(C) is a closed

and convex cone, P+(C)•• = P+(C) so that K+(C)• ⊆ P+(C). QED

It is straightforward to see the relations

K+(C)• = K+(C•)

K+(C)•• =

{
X ∈ Sn : X =

n∑
i=1

xix
T
i , xi ∈ C•, ∀i

}
= K+(C),

(2.16)

which follows from K+(C)•• = P+(C)•.

Definition 2.8. An extreme ray of a cone C is a subset of C∪{0} of the form {αE : α ≥ 0} where 0 6= E ∈ C

is such that E = E1 + E2, E1, E2 ∈ C implies Ei = αiE for some αi ≥ 0, i = 1, 2.

The next theorem shows that the extreme rays of solutions for the copositive Lyapunov inequalities can

be represented as the set of dyadic products of vectors that satisfy the conditions in Theorem 2.6.
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Theorem 2.8. Consider the closed convex cone

~Klyap(A|C) ,
{
P ∈ Sn : P �C 0, PA+ATP �C 0

}
(2.17)

and the cone

E(A|C) , {ppT ∈ Sn : p ∈ �C•, ATp ∈ �C◦}. (2.18)

Then ~E(A|C) defines the set of extreme rays of ~Klyap.

Proof. Let p ∈ ~E(A|C) and be non-zero. Then ppT ∈ ~Klyap. To see this, we need to show that (i)

〈x, ppTx〉 ≥ 0 for all x ∈ C and (ii) 〈x, (ppTA+ATppT)x〉 ≤ 0 for all x ∈ C. The first condition (i) is trivial.

The right-hand side of the inequality in the second condition (ii) can be rewritten as 〈x, (ppTA+ATppT)x〉 =

〈x, p〉(〈x,ATp〉 + 〈pTA, x〉) which is nonpositive for all x ∈ C. Now, suppose that ppT = P1 + P2 where

Pi ∈ ~Klyap for i = 1, 2. Let w ∈ C ⊂ Rn be orthogonal to p such that wTppTw = wT(P1 + P2)w = 0,

which implies wTPiw = 0 for all i = 1, 2. Since the space orthogonal to p has n − 1 dimension and C is

a solid cone, the matrices Pi are at most of rank 1, i.e., Pi = αipp
T for some αi ≥ 0. In reverse, suppose

that E = ppT + P is an element of an extreme ray of ~Klyap(A|C) and P is not aligned with pp∗ such that

rank(E) ≥ 2. From E �C 0, P necessarily has the form P =
∑np
i=1 pip

T
i for some pi ∈ C• that are not on the

same ray as p and np ≥ 1. Then it directly follows that E does not generate an extreme ray of ~Klyap.QED

Lemma 2.7 (Klee [147]). Any closed convex set containing no lines can be expressed as the convex hull of

its extreme points and extreme rays.

Theorem 2.9. For any P ∈ Klyap(A|C) with a proper cone C ∈ Rn, we have a semi-spectral representation

P =
∑np
i=1 pipi where np ≤ n and pi ∈ L(A|C) , {p ∈ Rn : p ∈ �C• and ATp ∈ �C◦} for all i = 1, . . . , np.

Proof. We need to show

P(A|C) , Conv(E(A|C)) ≡ Klyap(A|C),

where E(A|C) is given in (2.18). Suppose that P =
∑np
i=1 pipi with pi ∈ L(A|C) for all i = 1, . . . , np and

np ≤ n. Then it directly follows that P ∈ Klyap(A|C), which implies P(A|C) ⊆ Klyap(A|C). To show the

reverse inclusion, note that Klyap(A|C) is pointed such that it does not include a linear subspace. Lemma

2.7 implies that the convex hull of ~E(A|C) including the origin is ~Klyap. Thus, any P ∈ Klyap can be

written as P =
∑∞
i=1 ziz

T
i for some zi ∈ P(A|C) = E(A|C). But, since zi ∈ Rn, there are at most n linearly

independent vectors from the set ZE(P ) , {zi ∈ E(A|C) : i = 1, . . .}, which implies that P can be rewritten

as P =
∑np
i=1 pip

T
i where np ≤ n and pi ∈ {αz ∈ Rn : z ∈ ZE(P ), α > 0} are linearly independent for

i = 1, . . . , np. QED
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2.5 Summary and Future Work

A characterization of the solutions for copositive Lyapunov inequalities was presented. We show that the

extreme rays of solutions for copositive Lyapunov inequalities are indeed dyadic products of the co-state

corresponding to Lagrangian dual variables that satisfy semi-algebraic conditions, which are polynomial-

time verifiable under a mild assumption on the cone C. As future research directions, we are interested in

applying the presented conditions and characterizations of Lyapunov copositive solutions to verify stability

of specific cone-preserving systems such as population models and quantum systems.
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Chapter 3
Unified Analysis of Uncertain Linear

Descriptor Systems

Abstract This chapter considers the impulsive behavior and robust stability and performance of

continuous-time uncertain linear descriptor systems, which are described by a combination of differential

and algebraic equations. We present necessary and sufficient conditions for robust stability and several

dissipation performance indices of uncertain linear descriptor systems represented as generalized linear frac-

tional transformations (gLFTs). The conditions are written as linear matrix inequalities (LMIs), which are

computable in polynomial-time. Unified and generalizable convex conditions are provided for the analysis

of robust stability and performance for linear descriptor systems with structured uncertainty. A necessary

and sufficient condition for robust impulse-free dynamics for structured uncertain systems is derived from

using structured singular value (µ) theory and incorporated into associated robust stability conditions.

3.1 Introduction

Descriptor systems are represented by differential and algebraic equations and are also known as singular

systems, implicit systems, generalized state-space systems, differential-algebraic equations (DAEs), and semi-

state systems in the literature. Research interest in analysis and control of descriptor systems has been

largely motivated by applications in economic systems [162], large-scale systems [151], power systems, and

other areas in engineering [181,254]. Attempting to replace the algebraic equations by differential equations

results in a loss of information, which is the main reason that methods to directly analyze the properties of

the DAE system is of interest [187].

Considerable attention has been focused on the stability and performance analysis of descriptor systems in

the absence and presence of model uncertainties. Robust stability and performance analysis and the control

23



of descriptor systems are more complicated than for standard state-space systems, i.e., systems in which the

states are described only by differential equations. H∞-performance of a linear descriptor system was studied

in [172,285] without considering model uncertainty and in [218] with norm-bounded uncertainty that was not

fully structured. H2-optimal and LQ-optimal control algorithms have been derived [23, 258] and passivity

and the positive real lemma (and KYP lemma) have been extended to descriptor systems [47,86,95,171,303].

Results in the literature are limited in terms of allowed structure of the uncertainties.

This chapter exploits the structure of model uncertainties by employing the full-block S-procedure [233],

which is an analogy of the quadratic separator [122] and integral quadratic constraints (IQCs) [178]. These

approaches are well-developed for standard state-space systems, especially for linear parametric-varying

(LPV) systems, but such a unified approach has not existed for descriptor systems, to our knowledge. Linear

matrix equality (LME) and inequality (LMI) conditions are derived for several robust performance analyses

of uncertain descriptor systems in which the plant-model mismatches are structured. System performances

are represented as dissipation inequalities with respect to quadratic Lyapunov functions and various forms

of quadratic supply rates, which are compatible with the use of the full block S-procedure for the analysis

of robust performance. We also present convex optimization problems for which the system trajectory is

required to satisfy some constraints such as a desired decay rate, confined into an ellipsoid or a polytope, in

the presence of plant-model mismatch.

In addition to stability and performance analysis, many researchers have investigated the controllability

and observability [57, 94, 278, 300], and impulse-free conditions [67, 159, 278] for descriptor systems. This

chapter presents necessary and sufficient conditions for linear descriptor systems to be impulse-free in terms

of the structured singular value (µ) in the presence of model uncertainties. Although the exact computation

of µ is NP-hard [44], its upper and lower bounds can be computed in polynomial-time [8, 9, 308]. We also

show the incorporation of this method for assessing impulse-freeness of structured uncertain linear systems

into robustness analysis.

3.2 Preliminaries

3.2.1 Uncertain Descriptor Systems

This section describes a general representation for uncertain descriptor systems that can be interpreted as

a generalized linear parameter-varying (gLPV) system. The representation covers most classes of uncertain

descriptor systems including polynomial and rational uncertain descriptor systems.
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Consider a continuous-time descriptor system

Eẋ(t) = Ax(t) +B1wu(t) +B2wp(t),

zu(t) = C1x(t) +D11wu(t) +D12wp(t),

zp(t) = C2x(t) +D21wu(t) +D22wp(t),

(3.1)

where E,A ∈ Rn×n with rank(E) ≤ n, B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , C1 ∈ Rl1×n, C2 ∈ Rl2×n, and Dij ∈

Rli×mj for i = 1, 2 and j = 1, 2, and the input-output pair (wu(t), zu(t)) satisfies the geometric implicit

relation wu(t)

zu(t)

 ∈ Ker(∆(t)), ∆(t) ∈∆ ∀t. (3.2)

If the uncertainty ∆ is a function of the state variables then the system (3.1) is referred to as a quasi-gLPV.

The relation (3.2) is a general representation of the uncertainty in the system that includes the well-known

linear fractional transformation (LFT) [308]. For example, if the pair of signals (wu(t), zu(t)) satisfies the

input-output relation ∆u(t)zu(t) = wu(t) with a linear time-varying uncertain map ∆u : T → Rm1×l1 then

set ∆(t) :=
[
I −∆u(t)

]
. For this case, it is not difficult to see that Ker(∆(t)) = Im

∆u(t)

I

. To

simplify the presentation, the time dependence of uncertainty is not shown explicitly in the remainder of

this chapter.

3.2.2 Dissipation Inequalities

Here state-space interpretations of the small-gain and passivity approaches are briefly reviewed, with tests

for robust versions of these properties derived later in this chapter. Consider a linear descriptor system given

by

Σ(E,A,B,C,D) :

Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
, (3.3)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m with m = p.

On the space of input-output variables (u, y) ∈ U × Y ⊆ Rm × Rp, a real-valued scalar function Sr :

U × Y → R called the supply rate is defined below (see [231,289] for details).

Definition 3.1 (Dissipation inequality). A descriptor system Σ(E,A,B,C,D) is said to be dissipative with

respect to the supply rate Sr if there exists a real-valued nonnegative function V : X → R+, which is called

the storage function, such that the dissipation inequality

∫ t2

t1

Sr(u(t), y(t))dt ≥ V (x(t2))− V (x(t1)), ∀t2 ≥ t1 ≥ 0 (3.4)

holds, where x(·) ∈ X is a solution and (u(·), y(·)) ∈ U × Y is the input-output pair of the system equa-

25



tion (3.3). If the equality holds in (3.4) then the descriptor system Σ(E,A,B,C,D) is said to be lossless

with respect to Sr. For a storage function V that is differentiable with respect to time, the dissipation

inequality (3.4) can be rewritten as

Sr(u(t), y(t)) ≥ d

dτ
V (x(τ))

∣∣∣∣
τ=t

, ∀t ≥ 0. (3.5)

Remark 3.1. If the system representation Σ(E,A,B,C,D) does not have fixed values for the system ma-

trices (E,A,B,C,D), but has a set-valued uncertainty description (E(∆), A(∆), B(∆), C(∆), D(∆)) for

∆ ∈ ∆ where the support ∆ is compact, then an analogous definition of robust dissipative systems can be

defined—conditions for robust dissipative descriptor systems are presented later.

Some popular dissipation properties are defined below (see [231,289] for details).

Definition 3.2 (Dissipation inequality). A descriptor system Σ(E,A,B,C,D) is said

• to be passive if the dissipation inequality (3.4) is satisfied with Sr(u, y) = uTy;

• to be strictly input passive if the dissipation inequality (3.4) is satisfied with Sr(u, y) = uTy − δ‖u‖2

for some δ > 0;

• to be strictly output passive if the dissipation inequality (3.4) is satisfied with Sr(u, y) = uTy − δ‖y‖2

for some δ > 0;

• to have L2-gain ≤ γ if the dissipation inequality (3.4) is satisfied with Sr(u, y) = γ2‖u‖2 − ‖y‖2,

for some storage function V : X → R+.

The dissipation properties in Defn. 3.2 have quadratic supply rates that can be rewritten as

Sr(−Π) , −

u
y

T Π11 Π12

ΠT
12 Π22

u
y

 (3.6)

with a properly chosen matrix Π, which is called a supply rate matrix, where the negative sign is used for

notational convenience.

3.3 Generalized Full-Block S-Procedure

Let S be a subset of RN and V ∈ Rq×N be a full row-rank matrix with q ≤ N . Suppose that ∆ ⊂ Rp×q is

a compact set of matrices of full row rank such that Ker(∆) ⊂ Rq depends continuously on the parameter

∆ that varies in the compact path-connected set ∆. Define the family of subspaces

S(∆) , S ∩Ker(∆V ) for ∆ ∈∆. (3.7)
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This set can be equivalently rewritten as S(∆) = {ξ ∈ S : V ξ ∈ Ker(∆)} .

Theorem 3.1 (Full block S-procedure [233]). (A) The condition

P ≺ 0 on S(∆), ∀∆ ∈∆ (3.8)

holds if and only if there exists a symmetric multiplier Y such that

P + V TY V ≺ 0 on S (3.9)

and

Y � 0 on Ker(∆), ∀∆ ∈∆. (3.10)

(B) Suppose that there exists a subspace S0 ⊂ S on which the matrix P is positive semidefinite, and whose

dimension is large enough to satisfy dim(V S0) + dim(Ker(∆)) ≥ q. Then (3.9) and (3.10) imply that

V So ⊕Ker(∆) = Rq, ∀∆ ∈∆. (3.11)

The proof of Thm. 3.1 is in [233]. The concatenation of the variables defining the system lie within the

family of subspaces S(∆). Any system performance that is defined by a quadratic inequality with respect

to the system variables can be represented as the matrix inequality (3.8), where the matrix P depends on a

Lyapunov matrix X and a supply rate matrix Π. With S(∆) dependent of the uncertain mapping ∆ ∈ ∆,

the feasibility of the matrix inequality (3.8) guarantees robust performance of the system. However, the

matrix inequality (3.8) is not a testable condition, since S(∆) is infinite dimensional and depends on the

uncertain mapping ∆. This motivates the introduction of the equivalent condition (3.9) with the matrix

multiplier Y satisfying the inequality (3.10). The multiplier Y characterizes the uncertain mapping ∆ ∈∆

with which the structure and knowledge of the uncertainty can be exploited. The ‘if’part of the proof may

be trivial to see by some readers as it is just a Lagrangian relaxation [222]. The ‘only if’part of the proof is

not trivial and is lengthy. Note that the sets of feasible solutions for the constraints (3.8) and (3.9)–(3.10)

are the same, i.e.,

⋃
Y ∈Y∆

{
X ∈ Rn×n : P (X) + V TY V ≺ 0 on S

}
=
{
X ∈ Rn×n : P (X) ≺ 0 on S(∆), ∀∆ ∈∆

}
,

where

Y∆ ,
{
Y = Y T : Y � 0 on Ker(∆), ∀∆ ∈∆

}
. (3.12)

This implies the following extension.
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Corollary 3.1. The feasible solution set

X ,
{
X ∈ Rn×n : U(X) � 0

}⋂{
X ∈ Rn×n : P (X) ≺ 0 on S(∆), ∀∆ ∈∆

}
is non-empty if and only if the set

{
X ∈ Rn×n : U(X) � 0

}⋂( ⋃
Y ∈Y∆

{
X ∈ Rn×n : P (X) + V TY V ≺ 0 on S

})

is non-empty.

Corollary 3.1 is used later to derive robust stability and performance conditions for uncertain descriptor

systems.

3.4 Robust Stability and Performance of Uncertain Descriptor Systems

3.4.1 Nominal Stability and Constrained State Properties of Linear Descriptor Systems

Consider the linear homogeneous descriptor system

Eẋ(t) = Ax(t). (3.13)

For convenience, assume that Eeq(E,A) = {0} and an equilibrium point at the origin could be a translation

of a nonzero equilibrium point or a translation of a nonzero solution of the system [136]. The equilibrium

point x = 0 of the system Σ(E,A) is stable if and only if σ(E,A) ∈ C−, but the computation of the

generalized eigenvalues of a matrix pencil (E,A) is known to be unreliable due to its ill-conditioning, i.e.,

a small perturbation in E or A can result in a large change in the generalized eigenvalues of the matrix

pencil (E,A). An alternative way of checking stability is the use of Lyapunov theory [136] which gives

computationally reliable tests for stability.

Theorem 3.2 ( [172, 218]). Suppose that Σ(E,A) is solvable. Then the descriptor system Σ(E,A) is stable

and impulse-free if and only if there exists a solution X ∈ Rn×n to the generalized Lyapunov inequalities

ETX = XTE � 0, ATX +XTA ≺ 0. (3.14)

The above theorem does not state the rank condition rank(ETX) = rank(E), which is automatically

satisfied by the feasibility of the condition ATX +XTA ≺ 0. In particular, if X satisfies ATX +XTA ≺ 0

then X must be nonsingular so that rank(ETX) = rank(E) holds. The condition (3.14) can be interpreted

in terms of the variables that define the system dynamics (3.13). Suppose that Σ(E,A) be solvable. The
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system in (3.13) is stable if and only if the solution x and its time-derivative ẋ satisfies the inequality

 x

Eẋ

T  0 XT

X 0

 x

Eẋ

 < 0, (3.15)

where X is a feasible solution to (3.14).

Lyapunov Exponent The Lyapunov exponent, also called the decay rate, of the system (3.13) is defined

as the largest value α such that limt→∞ eαt‖x(t)‖ = 0 holds for all solution trajectories, where ‖·‖ can be any

vector norm. Exponential stability is equivalent to the condition α > 0 and the condition V̇ (x) ≤ −2drV (x)

for all x on a differentiable Lyapunov function V (x) can be used to establish a lower bound on the decay

rate [35, 136]. The next lemma shows how to extend the concept of Lyapunov exponent to a homogeneous

linear descriptor system (3.13).

Lemma 3.1. The solvable system (3.13) is globally exponentially stable (g.e.s.) with a Lyapunov exponent

dr > 0 if there exists X ∈ Rn×n such that XTE = ETX � 0 and

 I

A

T 2drE
TX XT

X 0

 I

A

 ≺ 0. (3.16)

Proof. Suppose that X is a solution of the matrix equality and inequalities in this lemma. Then the

Lyapunov function V (x) = xTETXx satisfies the relation V̇ (x) < −2drV (x) for all x 6= 0 ∈ Rn. QED

Remark 3.2. A positive decay rate is a necessary condition for some strict dissipation inequalities such as

strict passivity and guarantees a nonzero robust stability margin for input-to-state stability (ISS) [136].

Remark 3.3. An equivalent definition for the Lyapunov exponent is

dr , max
i

lim
t→∞

1

t
‖X(t)ei‖ (3.17)

where X(t) ∈ C(T ,Rn×n) is the solution matrix (or the state-transition matrix) and ei is the ith unit vector.

Invariant Ellipsoids Quadratic stability and region of attraction can be geometrically characterized using

the concept of invariant ellipsoids. For Q � 0, an ellipsoid E(Q) , {η ∈ Rn : ηTQη ≤ 1} is centered at

the origin and said to be invariant for a system equation, for example, (3.13), if every solution trajectory x

starting from x(t0) ∈ E(Q) remains x(t) ∈ E(Q) for all future time t ≥ t0. Consider a polytope described by

its vertices, P(v) , Co{v1, · · · , vp}. The ellipsoid E(Q) , {η ∈ Rn : ηTQη ≤ 1} contains the polytope P(v)

if and only if vT
i Qvi ≤ 1 for all i = 1, . . . , p (see [35]).
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Remark 3.4. An ellipsoid defined by Ec(ETX) , {x ∈ Rn : V (x) = xTETXx ≤ c} with c > 0 has nonzero

co-dimension for a singular matrix E satisfying rank(E) = r < n and ETX = XTE � 0 for some X ∈ Rn×n.

Indeed, codim(Ec(ETX)) = n− r for all c > 0 and nonsingular X.

Below is a characterization of the smallest invariant ellipsoid that contains the polytope P(v).

Proposition 3.1. Suppose that the matrix X? solves the optimization

min
X,ξi

− log detRTETXR

s. t. XTE = ETX � 0, XTA+ATX ≺ 0,

vT
i E

TXvi ≤ 1, vi = Rξi, i =, 1 . . . , p,

(3.18)

where the columns of R ∈ Rn×r are orthonormal bases of the subspace [Ker(E)]c (the superscript c denotes

the orthogonal complement of a subspace or subset). Then E(ETX?) , {η ∈ Rn : ηTETX?η ≤ 1} ⊂

[Ker(E)]c is the invariant ellipsoid of smallest volume that contains the polytope P(v) defined with the

vertices vi, i = 1, . . . , p.

Proof. The first two inequality constraints in (3.18) guarantee that an ellipsoid Ec(ETX) with c > 0 and a

feasible solution X is invariant for the system (3.13). The feasibility of the third and fourth constraints is

equivalent to the condition that the ellipsoid E(ETX) contains the polytope P(v). The equality constraints

imply that the vertices defining the polytope P(v) must be in the subspace [Ker(E)]c that is spanned by

the columns of R. Furthermore, it is not difficult to see that E(ETX) = {ξ ∈ Rr : ξTRTETXRξ ≤ 1}.

Minimizing the volume of the ellipsoid E(ETX) containing the polytope P(v), now, corresponds to the

convex optimization problem in (3.18). QED

A similar characterization can be derived for the invariant ellipsoid of largest volume that is contained in

the polytope P(h) , {η ∈ Rn : hT
i η ≤ 1, i = 1, . . . , p}, which is a bounded intersection of half spaces. The

ellipsoid E(Q−1) is contained in the polytope P(h) if and only if hT
i Qhi ≤ 1 for all i = 1, . . . , p (see [35]),

which is equivalent to the matrix inequality condition

 1 hT
i

hi Q−1

 � 0, i = 1, . . . , p.

Proposition 3.2. Suppose that the matrix X? solves the optimization

min
X

log detRTETXR

s. t. XTE = ETX � 0, XTA+ATX ≺ 0, 1 hT
i

hi ETX

 � 0, hi = Rξi, i =, 1 . . . , p.

(3.19)

Then E(ETX?) , {η ∈ Rn : ηTETX?η ≤ 1} ⊂ [Ker(E)]c is the largest invariant ellipsoid contained in the

polytope P(h) defined with the vectors hi, i = 1, . . . , p.
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Figure 3.1: Generalized linear fractional transformations.

Proof. The proof is similar to Proposition 3.1. QED

3.4.2 Robust Stability of Uncertain Descriptor Systems

Consider the uncertain homogeneous descriptor system

Eẋ(t) = Ax(t) +B1wu(t)

zu(t) = C1x(t) +D1wu(t)

wu(t) = ∆u(t)zu(t)

(3.20)

or equivalently,

Eẋ(t) = A(∆u)x(t) (3.21)

where A(∆u) = Fu

A B1

C1 D1

 ,∆u

 = A + B1∆u(I −D1∆u)−1C1 and ∆u ∈ ∆u and the singular matrix

E is assumed to be independent of the uncertainty ∆u.

Lemma 3.2. The uncertain homogeneous descriptor system in (3.20) is robustly stable if and only if there

exists X ∈ Rn×n such that

ETX = XTE � 0 and I

A(∆u)

T  0 XT

X 0

 I

A(∆u)

 ≺ 0
(3.22)

hold for all ∆u ∈∆u.

Theorem 3.3. The uncertain homogeneous descriptor system in (3.20) is robustly stable if and only if there
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exists a matrix X ∈ Rn×n and Y ∈ Y∆ , {Y = Y T : Y � 0 on Ker([I −∆u])} such that

ETX = XTE � 0 and
I 0

A B1

0 I

C1 D1



T 
0 XT

X 0

Y11 Y12

Y T
12 Y22




I 0

A B1

0 I

C1 D1

 ≺ 0
(3.23)

hold.

Proof. Consider the conditions (3.22) in Lemma 3.2. Then the second LMI is equivalent to the

scalar inequalities ξT

 0 XT

X 0

 ξ for all ξ ∈ Im

 I

A(∆u)

, ∆u ∈ ∆u. Define an augmented vec-

tor ξ̄ ,
[
xT ẋTET wT

u zT
u

]
. Then there exists X ∈ Rn×n such that ξT

 0 XT

X 0

 ξ holds for all

ξ ∈ Im

 I

A(∆u)

, ∆u ∈ ∆u, if and only if ξ̄T


0 XT 0 0

X 0 0 0

0 0 0 0

0 0 0 0

 ξ̄ < 0 for all ξ̄ ∈ Im




I 0

A B1

0 I

C1 D1



 such

that T ξ̄ ∈ Ker
([

I −∆u

])
for all ∆u ∈∆u, where T ,

0 0 I 0

0 0 0 I

. Applying the full block S-procedure in

Theorem 3.1 (or see [233]) with Corollary 3.1, we complete the proof. QED

3.4.3 Robust Performance of Uncertain Descriptor Systems

First we consider linear inhomogeneous descriptor systems without model uncertainty for which dissipation

properties can be written in terms of LMIs. Similar to robust stability analysis, extensions to uncertain

linear inhomogeneous descriptor systems can be performed using the full block S-procedure in Thm. 3.1.

Nominal Dissipativity of Linear Descriptor Systems Consider the linear inhomogeneous descriptor

system

Eẋ(t) = Ax(t) +B2wp(t)

zp(t) = C2x(t) +D2wp(t)
(3.24)

Theorem 3.4. The linear descriptor system with input-output pair (wp, zp) in (3.24) is dissipative with

respect to a quadratic supply rate Sr(−Π) for a given symmetric matrix Π of compatible dimension if and
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only if there exists a matrix X ∈ Rn×n such that

ETX = XTE � 0 and
I 0

A B2

0 I

C2 D2



T 
0 XT

X 0

Π11 Π12

ΠT
12 Π22


︸ ︷︷ ︸

M(X,Π)


I 0

A B2

0 I

C2 D2

 � 0 (3.25)

hold.

Proof. The second LMI is equivalent to the inequality ξTM(X,Π)ξ ≤ 0 for all ξT ,
[
xT ẋTET wT

p zT
p

]
satisfying the system equation (3.24), which is a concatenation of the system signals in (3.24). Consider

a Lyapunov function V (x) = xTETXx. Then the conditions in (3.25) are equivalent to the dissipation

inequality s(−Π) ≥ V̇ (x), and V (x) ≥ 0 for all x ∈ Rn (V (x) > 0 for all x ∈ Rn − Eeq, where Eeq is the set

of equilibrium points). QED

Below is a generalized positive real lemma for linear descriptor systems (3.24).

Corollary 3.2. The transfer function G(s) is positive real if and only if there exists a matrix X ∈ Rn×n

such that its minimal realization (E,A,B2, C2, D2) satisfies the conditions in (3.25) with Π =

 0 −I

−I 0

.

Corollary 3.3. The transfer function G(s) is strictly positive real if and only if there exists a matrix X ∈

Rn×n such that its minimal realization (E,A,B2, C2, D2) satisfies the conditions in (3.25) with Π =

 0 −I

−I 0


and the upper leftmost block

 0 XT

X 0

 replaced by

εETX XT

X 0

 for some ε > 0.

Remark 3.5. Several LMI-type conditions for passivity and PR of linear descriptor systems have been

derived [86,171,303]. The well-known KYP lemma characterizes their intimate relation and has been studied

in the behavioral framework [47].

Remark 3.6. The linear descriptor system with input-output pair (wp, zp) in (3.24) is strictly input-

and output-passive (see Defn. 3.2) if and only if there exists a matrix X ∈ Rn×n such that the condi-

tions (3.25) hold with Π =

 εI −I

−I 0

 and Π =

 0 −I

−I εI

 for some ε > 0, respectively.
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Robust Performance of Uncertain Descriptor Systems Consider the descriptor system

Eẋ(t) = Ax(t) +B1wu(t) +B2wp(t),

zu(t) = C1x(t) +D11wu(t) +D12wp(t),

zp(t) = C2x(t) +D21wu(t) +D22wp(t),

(3.26)

where E,A ∈ Rn×n with rank(E) ≤ n, B1 ∈ Rn×m1 , B1 ∈ Rn×m2 , C1 ∈ Rl1×n, C2 ∈ Rl2×n, and Dij ∈

Rli×mj for i = 1, 2 and j = 1, 2, and the pair of signals (wu(t), zu(t)) satisfies the geometric implicit relation

given in (3.2). The system can be equivalently written as

Eẋ(t) = A(∆)x(t) +B(∆)wp(t),

zp(t) = C(∆)x(t) +D(∆)wp(t),
(3.27)

where A(∆) B(∆)

C(∆) D(∆)

 ,

A B2

C2 D22

+

 B1

D21

S1(∆)(S2(∆)−D11S1(∆))−1
[
C1 D12

]
(3.28)

and

S1(∆)

S2(∆)

 , Ker(∆) for each ∆ ∈∆.

Suppose that the uncertainty in the system (3.26) is assumed to be described by an implicit equation

wu(t) = ∆u(t)zu(t) with ∆u ∈∆u, without loss of generality.

Lemma 3.3. The uncertain descriptor system with input-output pair (wp, zp) given in (3.26) is dissipative

with respect to a quadratic supply rate Sr(−Π) for a given symmetric matrix Π of compatible dimension if

and only if there exists a matrix X ∈ Rn×n such that

ETX = XTE � 0 and
I 0

A(∆) B(∆)

0 I

C(∆) D(∆)



T 
0 XT

X 0

Π11 Π12

ΠT
12 Π22




I 0

A(∆) B(∆)

0 I

C(∆) D(∆)

 ≺ 0
(3.29)

hold for all ∆ ∈∆.

Theorem 3.5. The uncertain descriptor system with input-output pair (wp, zp) given in (3.26) is dissipative

with respect to a quadratic supply rate Sr(−Π) for a given symmetric matrix Π of compatible dimension if

and only if there exists a matrix X ∈ Rn×n and Y ∈ Y∆ , {Y = Y T : Y � 0 on Ker([I −∆u]), ∀∆u ∈∆u}

34



such that

ETX = XTE � 0 and

I 0 0

A B1 B2

0 I 0

C1D11D12

0 0 I

C2D21D22



T 

0 XT

X 0

Y11 Y12

Y T
12 Y22

Π11 Π12

ΠT
12 Π22





I 0 0

A B1 B2

0 I 0

C1D11D12

0 0 I

C2D21D22


≺ 0

(3.30)

hold.

Proof. Directly follows from Thms. 3.3 and 3.4. QED

The LMI formalism presented in this section includes many existing results as special cases. For example,

it is not hard to show that an LMI condition can be derived from (3.25) in Thm. 3.4 that is equivalent

to a BMI condition in [218]. The bilinear terms in [218] results from an unnecessary use of the Schur

complement lemma that produced a higher-dimensional BMI, whereas a simple congruence transformation

and a permutation give an equivalent LMI

XTA+ATX ∗ ∗ ∗ ∗

BT
1 X −λI ∗ ∗ ∗

BT
2 X 0 −I ∗ ∗

λC1 0 λD12 −λI ∗

C2 D21 D22 0 1
γ2 I


≺ 0,

which can be derived by multiplication of the matrices in condition (3.30).

3.5 Robust Impulse-Free and Stable Uncertain Descriptor Systems: µ
Approaches

Descriptor systems may undergo impulsive responses and show nonuniqueness of the solution trajectories that

cause performance degradation, damage of system components, or even completely destroy the whole system.

Such an undesirable impulsive behavior needs to be investigated and eliminated before implementation on a

real system. This section provides necessary and sufficient conditions for uncertain linear descriptor systems

for impulse-free dynamics using structured singular value theory.
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Consider the uncertain linear descriptor system

Eẋ(t) = A(∆u)x(t), (3.31)

where A(∆u) = Fu

A B

C D

 ,∆u

 = A + B∆u(I − D∆u)−1C , ∆u ∈ ∆u, and the set of matrices of

block-diagonal perturbations given by

∆u ,

{
diag (δ1Ir1 , . . . , δkIrk ,∆k+1, . . . ,∆mc) : δi ∈ C, ∆i ∈ Cri×ri ,

mc∑
i=1

ri = m

}
(3.32)

and B∆u is the set of unity norm-bounded perturbations from ∆u, which is the time-invariant version of

the uncertainty description in the previous section.

As a first property, we also need to characterize that the representation of uncertain descriptor systems

in (3.31) is well-posed, that is, the interconnection of D and ∆u has nonsingular I−D∆u for all ∆u ∈ B∆u.

Next we derive robust impulse-free and stability conditions in terms of the structured singular value

(µ) [308]: For a given matrix M ∈ Cm×m,

µ∆(M) ,

 0 if there exists no ∆ ∈∆ such that det(I−M∆) = 0

(min∆∈∆ {σ̄(∆) : det(I−M∆) = 0})−1
otherwise

(3.33)

Our subsequent results will generalize the results of [159] for diagonal non-repeated real parametric uncer-

tainty to general structured uncertainty.

3.5.1 Robust Impulse-Free Condition

Robust impulse-free descriptor systems are defined below, which is an extension of Defn. 3.3 to uncertain

systems.

Definition 3.3 (Robust impulse-free). The uncertain system (3.31) is robust impulse-free if it is impulse-

free for all ∆u ∈ B∆u.

The next result gives a necessary and sufficient condition for the uncertain system (3.31) to be robust

impulse-free.

Theorem 3.6. Suppose that the matrix pencil (E,A) is regular and impulse-free. Then the uncertain

system (3.31) is robust impulse-free if and only if

µ∆u
(CRa(LaARa)−1LaB −D) < 1, (3.34)

where La ∈ L⊥(E) and Ra ∈ R⊥(E).
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Proof. From Lemma ?? and Defn. 3.3, the uncertain system (3.31) is robust impulse-free if and only

if La(A + B∆u(I − D∆u)−1C)Ra is invertible for any ∆u ∈ B∆u, which is equivalent to the determi-

nant condition, det(La(A + B∆u(I − D∆u)−1C)Ra) 6= 0, for any ∆u ∈ B∆u. Using the matrix inver-

sion lemma (also known as the Sherman-Morrison-Woodbury formula) [109] and that the nominal sys-

tem Σ(E,A) is assumed to be impulse-free such that det(LaARa) 6= 0, this relation is equivalent to

det(La(A + B∆u(I − D∆u)−1C)Ra) = det(LaARa) det(I + (CRa(LaARa)−1LaB − D)∆u). This implies

that the uncertain system (3.31) is robust impulse-free if and only if det(I + (CRa(LaARa)−1LaB −D)∆u)

for any ∆u ∈ B∆u, which is equivalent to the µ condition (3.34). QED

3.5.2 µ Condition for Robust Impulse-Free and Stable Systems

The next result is a necessary and sufficient condition for the uncertain system (3.31) to be robust impulse-

free and stable.

Theorem 3.7. Suppose that the matrix pencil (E,A) is regular, impulse-free, and stable. Then the uncer-

tain system (3.31) is robust impulse-free and stable if and only if

µ∆̂u

Ĉ
Ra(LaARa)−1La 0

0 (jωE −A)−1

 B̂ − D̂
 < 1 (3.35)

for all ω ∈ R ∪ {∞}, where ∆̂u , {∆̂ = diag(∆,∆) : ∆ ∈ ∆u}, B̂ = diag(B,B), Ĉ = diag(C,C),

D̂ = diag(D,−D), and La ∈ L⊥(E) and Ra ∈ R⊥(E) are arbitrary.

Proof. A necessary condition for (3.35) is that the uncertain system (3.31) is robust impulse-free. Thus,

it only needs to be shown that the robust stability of the system (3.31) is equivalent to the µ condition,

µ∆u(G(jω)) ≤ 1 for all ω ∈ R ∪ {∞}, where G(s) , C(sE − A)−1B + D. The uncertain system (3.31) is

robustly stable if and only if {s ∈ C : det(sE−A−B∆u(s)(I−D∆u(s))−1C) = 0} ⊂ C− for any ∆u ∈ B∆u,

where the argument s ∈ C is explicitly shown in ∆u to emphasize that the uncertainty ∆u has LTI dynamics

in general. Using the matrix inversion lemma (aka Sherman-Morrison-Woodbury formula) [109] and that

the nominal system Σ(E,A) is assumed to be stable such that σ(E,A) ⊂ C−, this relation is equivalent to

det(sE−A−B∆u(s)(I−D∆u(s))−1C) 6= 0 if and only if det(sE−A) det(I−(C(sE−A)−1B+D)∆u(s)) 6= 0

for all s ∈ C̄+. Since det(sE − A) 6= 0 for all s ∈ C̄+, det(sE − A − B∆u(s)(I −D∆u(s))−1C) 6= 0 for all

s ∈ C̄+ and ∆u ∈ B∆u if and only if µ∆u(G(s)) < 1 for all s ∈ C̄+, which follows from the fact that G(s)

is proper (or impulse-free) and the definition of the structured singular value. QED
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3.6 Summary and Future Work

The need for unified and generalizable conditions for robust stability and performance of uncertain linear

descriptor systems motivates the systematic construction of convex optimization problems in this chapter.

The presented tests are written in terms of LMIs that are computationally tractable via existing interior-

point methods. The tests are obtained from an extension of the full block S-procedure with which a number

of matrix inequalities for unknown variables can be rewritten as one matrix inequality. Applicability of the

full block S-procedure to structured uncertain linear descriptor systems is supported. The conditions can be

considered as a unification and generalization of several existing results that are distributed in many places,

but in similar contexts. Apart from constructing the LMI conditions for robust stability and performance

of linear uncertain descriptor systems, numerically reliable tests are proposed that are written in terms of

the µ conditions for linear descriptor systems with structured uncertainty to be robust impulse-free.
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Chapter 4
Robust Reliable Control of Uncertain Systems

with Faults

Abstract This chapter provides necessary and sufficient conditions for several forms of controlled system

reliability. For comparison purposes, past results on the reliability analysis of controlled systems are reviewed

and it is shown that several of the past results are either conservative or have exponential complexity.

For systems with real and complex uncertainties, conditions for robust reliable stability and performance

are derived in terms of the structured singular values of certain transfer functions. The conditions are

necessary and sufficient for the controller to stabilize the closed-loop system while retaining a desirable level

of the closed-loop performance in the presence of actuator/sensor faults or failures, as well as plant-model

mismatches. The resulting conditions based on the structured singular value are applied to the decentralized

control for a high-purity distillation column and singular value decomposition-based optimal control for a

parallel reactor with combined precooling. Tight polynomial-time bounds for the conditions can be evaluated

by using available off-the-shelf software.

4.1 Introduction

An inevitable consequence of industrial practice is that actuators and sensors can become faulty or fail,

which motivates the development of methods to evaluate the reliability of the closed-loop system to such

imperfect operations. A feedback-controlled system is said to be reliable if it is guaranteed to retain desired

closed-loop system properties while tolerating faults or failures of actuators and/or sensors. Maximizing the

reliability of a system concerns minimizing its potential performance degradation while retaining closed-loop

stability when a fault or failure occurs in a control/measurement channel. In addition to the possibility

of actuator/sensor faults or failures, plant-model mismatches are also inevitable, which motivates their
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incorporation into reliability and integrity analysis. This chapter is motivated by the need for nonconservative

testing conditions to ensure closed-loop stability and to retain a satisfactory closed-loop performance in the

presence of both plant-model mismatches and actuator/sensor faults or failures.

This chapter primally considers decentralized controlled systems and studies their robust reliable stability

and performance in the presence of possible actuator/sensor faults or failures with consideration of the

overall plant-model mismatches that are described in terms of bounded set-valued linear operators. The

main purpose of this chapter is to derive necessary and sufficient conditions for various types of robust reliable

stability and performance of a set-valued plant model that is described by a linear fractional transformation

(LFT) with structured uncertainties [308]. It is assumed that any failure of a local controller is detected and

the controller is taken out of service whenever a failure occurs, so that any undesirable propagation of local

failures to other parts of the system can be avoided. Even though we mostly concentrate on the analysis

of decentralized control systems, the proposed approach does not depend on the structure of the selected

control schemes and can be applied to any type of linear controller and actuator-sensor selection.

Decentralized control depicted in Figure 4.1(a) is ubiquitous in industrial applications, which is a special

case of large-scale interconnected systems with interactions between subsystems and constraints on informa-

tion flows. Extensive overviews on decentralized control are available [7, 243]. For decentralized controlled

systems, actuator/sensor faults or failures can occur and the selection of a reliable actuator/sensor structure

is an important consideration [40,156]. One of the resurgent questions in systems and control theory related

to reliable decentralized control is how to study the effect and propagation of communication link failures

between several components of a networked control system (NCS) depicted in Figure 4.1(b) on the stability

and performance of the overall system [119,263,284,304]. Although studied for decades, NCSs have received

a large surge of interest in recent years. As time delays and communication losses are inevitable in an NCS,

reliability analysis in the presence of faults and failures in communication networks is also important.

In [241, 242], multi-controller systems were introduced for reliable control and since then reliable stabi-

lization problems under various failure and fault scenarios have been studied using decentralized configura-

tions [52, 101, 184, 185, 259]. In particular, the reliability of decentralized control with integral action was

investigated in terms of steady-state gain matrices in [52, 184] and existence conditions for a reliably stabi-

lizing decentralized integral controller have been derived in terms of the Niederlinski index (NI) and block

relative gain (BRG) [131]. In [101] explicit conditions for reliable decentralized control of linear systems were

derived for a two-channel decentralized feedback control configuration, and coprime factorization methods

and a design method for such controllers were proposed [102].

In addition to the aforementioned frequency-domain approaches, some researchers have suggested design

methods for reliable controllers in terms of state-space realizations of the plant and controller. Centralized

reliable state feedback controllers were suggested in [124,169] and design methods for decentralized reliable

observer-based output-feedback controllers were presented in [69, 277]. A state feedback control design for

dynamic systems in the presence of actuator failures has been proposed [306] in which robust pole placement
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Figure 4.1: Large-scale interconnected systems.

methods are adopted while requiring redundant actuators to recover the normal level of operation. The design

method of [306] was only applicable to state feedback control problems without any plant-model mismatch, so

that the proposed design methods may fail in real problems in which uncertainties are inevitable. In [236],

a simple high-gain state feedback control based on a Riccati type equation was proposed with actuator

redundancy. The model uncertainties were assumed to be time-varying, but not fully structured and no

uncertainty was allowed in the input channel matrices.

The approaches proposed in this chapter are based on the structured singular value (µ) and a standard

representation of uncertain systems known as the linear fractional transformation (LFT). Robust reliable

control problems for large-scale systems with decentralized control are reformulated in terms of robustness

analysis based on µ to model the effects of faults. Structures of interconnected sensors and actuators as

well as structures of uncertainties can be fully exploited to perform nonconservative or less conservative

analysis. Some of the results in this chapter were presented in [41] and subsequently there were many

research efforts such as the aforementioned works to develop robust reliable controllers. The main objective

of this chapter is to provide an efficient framework for the analysis and synthesis of robust reliability. Faults

and failures in process components are treated as parametric uncertainties that are compatible with µ.

Due to a resurgence of research interest in robust reliable control for systems with integral action, our

past results [41] were extended to derive conditions for robust reliable stability of decentralized systems

with integral action. Although the main focus of this chapter is on decentralized control problems, the

methodology is not restricted to decentralized control and the results can be extended to general control

structures in a straightforward manner.
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4.1.1 Reliability of Decentralized Control

For notational convenience, the controller is assumed to be fully decentralized, i.e., the controller K is

diagonal. Most of the results can be extended in an obvious manner to block-diagonal controllers and even

to centralized controllers. Usually, the square plant P is assumed to be stable; the results do not carry over

easily to systems that are open-loop unstable.

Several strong forms of reliability to failure of actuators or sensors are defined in the open literature for

systems without plant-model mismatch. Below we review those forms of reliability and extend the definitions

to uncertain systems. To simplify the presentation, we primarily focus on a discussion of reliability to

actuator faults or failures, although very similar definitions and the results can be trivially extended to the

other process equipment.

Integrity is defined as follows [41,184,185,241,242].

Definition 4.1. The closed-loop system demonstrates integrity if Kf(s) := EK(s) stabilizes P (s) for all

E ∈ E1/0 , {diag{εi} : εi ∈ {0, 1}, i = 1, . . . , n}.

A closed-loop system that demonstrates integrity to actuator failures remains stable as actuators are

arbitrarily brought in and out of service. For a system to demonstrate integrity, the nominal plant model

P (s) must be stable. To have actuator failure tolerance when the controller is unstable, the failures must

be recognized and the corresponding columns of the controller taken off-line. It is clear that the integrity of

a system can be tested through 2n stability (eigenvalue) determinations.

The following definition extends integrity to uncertain systems.

Definition 4.2. The closed-loop system demonstrates robust integrity if Kf(s) := EK(s) stabilizes P∆(s)

for all E ∈ E1/0 and all ∆u ∈∆u such that ‖∆u‖∞ ≤ 1.

An uncertain system demonstrates robust integrity to actuator failures if it remains stabilized for any plant

given by the uncertainty description, as actuators are arbitrarily brought in and out of service. For a system to

demonstrate robust integrity, the plant must be stable for all allowed perturbations. To have actuator failure

tolerance when the controller is unstable, the failures must be recognized and the corresponding columns of

the controller taken off-line, just as in the nominal case. Note that robust integrity implies integrity. It is
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clear that the robust integrity of a system can be tested through 2n nominal stability (eigenvalue) and 2n

robust stability (µ) calculations.

A very strong notion of reliability was defined by Campo and Morari [52] for decentralized controllers. The

requirement is that the nominal closed-loop system remains stable under arbitrary independent detuning

of the controller gains. For decentralized control systems, this is equivalent to arbitrary detuning of the

actuator/sensor gains to zero. Having stability with detuning allows the operators to safely change the

closed-loop speed of response depending on process operating conditions.

Definition 4.3. The closed-loop system is decentralized unconditionally stable (DUS) if Kf(s) := EK(s)

stabilizes P (s) for all E ∈ ED , {diag{εi} : εi ∈ (0, 1)}.

The closed-loop system will not be DUS if either the plant P (s) or controller K(s) has poles in the open

right-half plane (ORHP). To see this, let us consider the multivariable root locus [249] with equal detuning

εi = ε for all i. For small ε, the closed-loop poles approach the open-loop poles. Since the closed-loop poles

are a continuous function of the controller gain, if any of the open-loop poles are in the ORHP then some of

the closed-loop poles will be unstable for sufficiently small ε.

The following is the generalization to uncertain systems.

Definition 4.4. The closed-loop system is robust decentralized unconditionally stable (RDUS) if Kf(s) :=

EK(s) stabilizes P∆(s) for all E ∈ ED and all ∆u ∈∆u such that ‖∆u‖∞ ≤ 1.

By a similar argument as used for DUS, the closed-loop system will not be RDUS if any poles of the

controller K(s) or any plant given by the uncertainty description are in the ORHP. For open-loop unstable

controllers or plants, some minimum amount of feedback is required for closed-loop stability.

Actually, the definition of DUS used by Campo and Morari [52] requires that the closed-loop system be

stable for all ε ∈ [0, 1]. Here we refer to this notion as closed decentralized unconditional stability (CDUS),

with closed robust decentralized unconditional stability (CRDUS) defined similarly. These definitions of

reliability require stability under total malfunctions of some actuators and allows perfect functioning of

some actuators while other actuators are not working at all.

4.2 Analysis for Reliability of Decentralized Control using µ

This section primarily focuses on the nominal and robust fault tolerance of systems that are affected by real

parametric uncertainties and complex dynamic uncertainties. The detuned control gains of decentralized

controllers are assumed to be real constants, unknown but bounded by open or closed intervals.
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Figure 4.3: Equivalent LFTs of fault tolerance.

4.2.1 Modeling Faults using µ

Braatz [39] describes in some detail the modeling of faults with either uncertainty and/or performance

descriptions. This modeling can be combined with requirements on the stability or performance during

faulty operation to derive a µ condition that provides a test for system reliability. The following discussion

illustrates how to model actuator gain variation for two cases: (i) without additional uncertainty (i.e.,

plant/model mismatch) and (ii) with additional uncertainty.

The nominal linear dynamic output feedback controller is defined to be K(s) ∈ Cm×`. Then

the controller with gain variation can be described by K̃(s) = EK(s), where E ∈ E [εlow, εupper] ,

{diag{εi} : εi ∈ [εi,low, εi,upper]}. Any E ∈ E [εlow, εupper] can be rewritten as

E , Ē +W r∆r (4.1)

where Ē = diag(ε̄i) with ε̄i ,
εi,low+εi,upper

2 , W r = diag{ωi} with ωi ,
εi,upper−εi,low

2 , and ∆r is a diagonal

real independent uncertainty, i.e., ∆r = diag{δi} with δi ∈ [−1, 1], i = 1, . . . ,m.

Theorem 4.1. Suppose that the model of a system is represented by a transfer function matrix P (s)

without any additional uncertainty. The system remains stable under the gain variation defined with E ∈

E [εlow, εupper] if and only if

µ∆r(M̄11(jω)) < 1, ∀ω ∈ R ∪ {∞}, (4.2)

where M̄11(s) = −K(s)(I + P (s)ĒK(s))−1P (s)W r and ∆r ∈∆r , {diag{δi} : δi ∈ [−1, 1], i = 1, . . . ,m}.

Proof. The sequence of equivalent representations in Figure 4.3 is obtained with the system transfer function

matrices

G :=

0 P

I −P

 , Ḡ :=


0 0 I

PW r 0 PĒ

−PW r I −PĒ

 (4.3)
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and

M̄ := F`(Ḡ,K)

=

 0 0

PW r 0

+

 I

PĒ

K(I + PĒK)−1
[
−PW r I

]
.

(4.4)

The definition of the structured singular value [72,308] implies that the system is robustly stable under any

gain variation E ∈ E [εlow, εupper] if and only if µ∆r(M̄11(jω)) < 1 for all ω ∈ R ∪ {∞}. QED

Theorem 4.2. Suppose that the model of a system is represented by a transfer function matrix P (s)

without any additional uncertainty. The system achieves the unity (reliable) H∞ performance under the

gain variation defined with E ∈ E [εlow, εupper] if and only if

µ∆(M̄(jω)) < 1, ∀ω ∈ R ∪ {∞}, (4.5)

where ∆ ∈∆ , {diag(∆r,∆p) : ∆r ∈∆r and ∆p ∈ Cm2×`2} and the matrix transfer function

M̄(s) ,

 −K(s)(I + P (s)ĒK(s))−1P (s)W r K(s)(I + P (s)ĒK(s))−1

P (s)W r − P (s)ĒK(s)(I + P (s)ĒK(s))−1P (s)W r P (s)ĒK(s)(I + P (s)ĒK(s))−1

 . (4.6)

Proof. Applying the main-loop theorem [308, Theorem 11.9] to the matrix transfer function M̄(s) given

in (4.4) completes the proof. QED

Testing the maintainence of closed-loop stability and/or performance with respect to both actuator gain

variation and additional perturbations like plant-model mismatch involves more complicated expressions for

M and G.

Theorem 4.3. Suppose that the model of a system is represented by the standard LFT with uncertainty ∆u,

i.e., P∆ = Fu(P,∆u). The system remains stable under the gain variation defined with E ∈ E [εlow, εupper] if

and only if

µ∆a(M̄11(jω)) < 1, ∀ω ∈ R ∪ {∞}, (4.7)
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where M̄11 is the submatrix transfer function corresponding to the uncertainty block ∆a , diag{∆u,∆
r} of

the total transfer function matrix

M̄ ,


P11 − P12ĒK(I + P22ĒK)−1P21 P12W

r − P12ĒK(I + P22ĒK)−1P22W
r P12ĒK(I + P22ĒK)−1

−K(I + P22ĒK)−1P21 −K(I + P22ĒK)−1P22W
r K(I + P22ĒK)−1

P21 − P22ĒK(I + P22ĒK)−1P21 P22W
r − P22ĒK(I + P22ĒK)−1P22W

r P22ĒK(I + P22ĒK)−1

 .
(4.8)

Proof. The sequence of equivalent representations in Figure 4.4 is obtained with the system transfer function

matrices

G :=


P11 0 P12

P21 0 P22

−P21 I −P22

 , Ḡ :=


P11 P12W

r 0 P12Ē

0 0 0 I

P21 P22W
r 0 P22Ē

−P21 −P22W
r I −P22Ē

 ,

and M̄(s) is given in (4.8). which implies that the system is robustly stable for any uncertainty ∆u ∈ ∆u

and under any gain variation E ∈ E [εlow, εupper] if and only if µ∆a
(M̄11(jω)) < 1 for all ω ∈ R ∪ {∞}. QED

Theorem 4.4. Suppose that the model of a system is represented by a transfer function matrix P (s) without

any additional uncertainty. The system achieves an H∞ performance, sup‖wp‖2≤1
‖zp‖2
‖wp‖2 ≤ 1, under the gain

variation defined with E ∈ E [εlow, εupper] if and only if

µ∆(M̄(jω)) < 1, ∀ω ∈ R ∪ {∞}, (4.9)

where ∆ ∈ ∆ , {diag{∆u,∆
r,∆p} : ∆u ∈ ∆u, ∆r ∈ ∆r, and ∆p ∈ Cm2×`2 , ‖∆p‖∞ ≤ 1} and M̄(s) is

given as (4.8).

Proof. Applying the main-loop theorem [308] to the matrix transfer function M̄(s) given in (4.8) completes

the proof. QED

4.2.2 Conditions for Reliability using µ

DUS and RDUS The below necessary and sufficient conditions for DUS and RDUS can be tested ap-

proximately in polynomial time as a function of the plant dimension.

Corollary 4.1 (DUS). Suppose that K(s) is decentralized. Define ∆r to be a diagonal ∆-block with

independent real uncertainties. Then the closed-loop system is DUS if and only if M(s) is internally stable

and

µ∆r(M(jω)) ≤ 1, ∀ω ∈ R ∪ {∞}, (4.10)
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where M(s) = − 1
2K(s)(I + 1

2P (s)K(s))−1P (s).

Proof. Set Ē = W r = 1
2 I in (4.4). QED

Corollary 4.2 (RDUS). Suppose that K(s) is decentralized and the uncertain system is described by P (s)

and ∆u, i.e., P∆ := Fu(P,∆u). Define ∆r to be a diagonal ∆-block with independent real uncertainties.

Then the closed-loop system is RDUS if and only if M(s) is internally stable and

µ∆a(M(jω)) ≤ 1, ∀ω ∈ R ∪ {∞}, (4.11)

where ∆a ∈∆a = {diag{∆u,∆
r} : ∆u ∈∆u, ∆r ∈∆r} and the transfer function matrix

M(s) =

P11(s)− 1
2
P12(s)K(s)(I + 1

2
P22(s)K(s))−1P21(s) 1

2
P12(s)− 1

4
P12(s)K(s)(I + 1

2
P22(s)K(s))−1P22(s)

−K(s)(I + 1
2
P22(s)K(s))−1P21(s) − 1

2
K(s)(I + 1

2
P22(s)K(s))−1P22(s)

 .
(4.12)

Proof. Set Ē = W r = 1
2 I in (4.8). QED

CDUS and RCDUS When K(s) is stable, a necessary and sufficient test for CDUS is given by Corol-

lary 4.1, except with the condition µ < 1 replacing µ ≤ 1 in (4.10). When K(s) includes integral action

in all channels, µ in (4.10) will be equal to 1 at ω = 0, because setting the proportional gain to zero in a

controller with integral action will remove the feedback around the integrators, which will then be a limit

of instability. Thus, µ ≤ 1 in (4.10) is a tight necessary condition for CDUS. The following simple example

shows that µ ≤ 1 is not sufficient for CDUS:

Example 4.1. Consider the following plant and controller:

P (s) =
1

s+ 1

s −1

1 1

 , K(s) =
1

s
I.

It can be shown by using the Routh criterion that this system is DUS and µ ≤ 1. Loop #1 is not stable

(for any ε1) when Loop #2 is open (due to a pole-zero cancellation at s = 0), and so the system does not

possess integrity and is not CDUS.

The following more involved example illustrates that a system can possess integrity and be DUS without

being CDUS.

Example 4.2. Consider the plant and controller:

P (s) =
1

s+ 4

γ(s2+s+10)
s+α 1

1 1

 , K(s) =
1

s
I,
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where γ = (4 −
√

55 − 256)/9 and α = (62 − 8
√

55)/9. It can be shown by using the Routh criterion that

this system is DUS and µ ≤ 1. It can also be shown that the first loop is not stable for ε1 = 1/2 and ε2 = 0

though it is stable for all other εi ∈ [0, 1].

CDUS can be checked through a finite number of stability and µ tests, by using Corollary 4.1 to check

the interior of the ε-hypercube, and testing the boundary (the points, edges, faces, etc.) through additional

µ tests. The number of µ tests required grows rapidly with the number of actuators/sensors in the system.

Though the above examples show that CDUS is not equivalent to DUS, the set of plants that are DUS but

not CDUS is non-generic, i.e., any perturbation in such a plant will likely cause the plant to either become

DUS or not be DUS. Since Corollary 4.1 provides an exact condition for DUS, finding computable exact

conditions for CDUS is of diminished importance. A similar discussion applies for RDUS vs. CRDUS.

4.2.3 Sufficient Conditions for Robust Reliability of Decentralized Integral Control using µ

Now consider a special case of decentralized control in which there exists integral control action in each

control loop. Its integrity is defined as follows.

Definition 4.5 (Definition 14.2-2 in [185]). The system L(s) = P (s)C(s) is integral controllable (IC) if

there exists a k > 0 such that (a) the closed-loop system in Figure 4.5 is stable for K = kI and (b) the gains

of the loops can be reduced to Kε = εkI, ε ∈ (0, 1] without affecting the closed-loop stability.

In decentralized integral control, the integral controllability of the closed-loop system can be related to the

eigenvalues of the open-loop steady-state gain matrix.

Theorem 4.5 (Theorems 14.3-2 in [185] or [184]). Suppose that K ∈ Rm×m is a diagonal constant gain

matrix with positive entries, i.e., K = diag{ki}, ki > 0, i = 1, . . . ,m and ∆u = 0 such that P∆(s) = P22(s)

that is the lower right block transfer function of P (s). The closed-loop system is IC if the steady-state gain

matrix L(0) = P22(0)C(0) is anti-Hurwitz, i.e., σ(L(0)) ⊂ C+.

A natural extension of integral controllability to uncertain systems can be defined as follows.
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Figure 4.5: Closed-loop uncertain system with integrator and diagonal compensator.
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Definition 4.6. The system L∆(s) = P∆(s)C(s) is robust integral controllable (RIC) if there exists a k > 0

such that, for any ∆u ∈∆u, (a) the closed-loop system shown in Figure 4.5 is stable for K = kI and (b) the

gains of the loops can be reduced to Kε = εkI, ε ∈ (0, 1] without affecting the closed-loop stability.

Similar to the integral controllability, the robust integral controllability of the closed-loop system can be

related to the eigenvalues of the open-loop steady-state gain matrix of which robustness is required.

Corollary 4.3. Suppose that K ∈ Rm×m is a diagonal constant gain matrix with positive entries, i.e.,

K = diag{ki}, ki > 0, i = 1, . . . ,m, and the uncertainty ∆u ∈ ∆u. The closed-loop system in Figure 4.5 is

RIC if the steady-state gain matrix L∆(0) is anti-Hurwitz for all ∆u ∈ ∆u, i.e., σ(L∆(0)) ⊂ C+ for all

∆u ∈∆u.

The proof of Corollary 4.3 follows from the application of Theorem 4.5 to each plant in the set of uncertain

plants. The next result is a sufficient condition for RIC in terms of µ.

Theorem 4.6. Suppose that K ∈ Rm×` is a diagonal constant gain matrix with positive entries, i.e.,

K = diag{ki}, ki > 0, i = 1, . . . ,m, and the uncertainty ∆u ∈ ∆u. The closed-loop system in Figure 4.5 is

RIC if

µ∆0
u
(M(jω)) <

(
sup

∆∈∆0
u

σ̄(∆)

)−1

, ∀ω ∈ R ∪ {∞}, (4.13)

where ∆0
u , {∆u(0) : ∆u ∈∆u} and

M(s) , Fu

−P11(0)C(0) −P12(0)

P21(0)C(0) P22(0)

 , 1

s
I

 .

Proof. The steady-state gain matrix L∆(0) is anti-Hurwitz if and only if the linear system ẋ = −L∆(0)x is

globally asymptotically stable (g.a.s.) (or equivalently, globally exponentially stable (g.e.s.)). Furthermore,

L∆(0) can be rewritten as

F`

P11(0)C(0) P12(0)

P21(0)C(0) P22(0)

 ,∆u(0)

 .

Now, for each ∆u(0) ∈∆0
u, ẋ = −L∆(0)x is g.a.s. if and only if det(I+M(s)∆u(0)) 6= 0 for all s ∈ C+. From

the subharmonic property of µ and the homotopy condition on the uncertainty set ∆0
u (i.e., ∆u(0) ∈ ∆0

u

implies that τ∆u(0) ∈ ∆0
u for any τ ∈ [0, 1]), the determinant condition can be reduced to the frequency-

domain condition on µ in (4.13). QED

4.2.4 Remarks on Decentralized Detunability

Detuning a controller refers to changing some parameter in the controller or in the control synthesis procedure

so that the control action becomes less aggressive. For example, in linear quadratic (LQ) optimal control,
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detuning refers to increasing the magnitude of the weight of control action in the quadratic cost function—

exactly opposite of cheap control in which control weights are very small [237]. In decentralized internal

model control (IMC), detuning refers to increasing the IMC filter time constants (or equivalently, decreasing

the bandwidth of the IMC filter) in each single-loop controller [112, 113]. The special case of detuning the

single-loop controller gains in a decentralized controller was discussed earlier in the sections on DUS and

RDUS.

Hovd [112] introduced the following very general definition for robust decentralized detunability.

Definition 4.7. For a given design method, a closed-loop system is robust decentralized detunable (RDD)

if each single-loop controller can be detunable independently by an arbitrary amount without losing robust

stability in the closed-loop system.

Whenever a controller is detuned by varying a parameter in the controller, RDD can be tested via a µ test

where the variation in parameters is covered by real uncertainty (the real uncertainty must be independent

for arbitrary detuning). Both the robust performance and the RDD loopshaping bounds are plotted and the

most restrictive of the bounds are used in the design. The resulting controller meets robust performance and

gives a system that is RDD. This loopshaping design procedure is illustrated in Braatz [39], where interested

readers can go for details and examples.

4.3 Further Remarks

4.3.1 Review of Previous Research with Illustrative Examples

Integrity Most research on reliability analysis considers only system integrity without considering plant-

model mismatch [70, 91, 184, 185]. Controller-independent conditions that can establish necessary and suf-

ficient conditions for the existence or non-existence of a controller such that the system possesses integrity

have been derived [102,131], but these conditions are also only applicable to perfectly known LTI systems.

Fujita and Shimemura [91] state that a necessary and sufficient condition for integrity with stable con-

trollers is that all the principal minors of I + PK are minimum phase. This condition is theoretically

interesting, because this test does not require the calculation of matrix inverses. However, since the number

of principal minors of matrix grows exponentially with its dimension, the calculation required by this test

grows exponentially as a function of the plant dimension. Fujita and Shimemura [91] also provide a suffi-

cient condition for integrity when the controller is stable, in terms of the generalized diagonal dominance of

I + P (jω)K(jω). Applying the Perron-Frobenius Theorem [109] gives the following lemma (for details, see

Delich [70]).

Lemma 4.1. Assume P (s) and K(s) are stable, the diagonal elements of I+P (s)K(s) are minimum phase,
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and P (s) is irreducible. Then the closed-loop system demonstrates integrity if

ρ
(∣∣∣H(jω)

(
H̄(jω)

)−1
∣∣∣) < 2, ∀ω ∈ R ∪ {∞}, (4.14)

where H = I + PK, H̄ refers to the matrix with all off-diagonal elements of H replaced by zeros, and |A|

denotes the matrix with each element of A replaced by its magnitude.

The above assumption that P is irreducible can be removed with some added complexity in the theorem

statement [70]. The spectral radius is readily computable with polynomial growth (∼ n3) as a function of

the plant dimension. However, the lemma might be conservative as shown in the following example.

Example 4.3. Consider the closed-loop system with the plant and controller:

P (s) =
1

75s+ 1

−0.878 0.014

−1.082 −0.014

 ; K(s) =
75s+ 1

λs+ 1

− 1
0.878 0

0 − 1
0.014

 ; λ = 4.

The system demonstrates integrity but the condition in (4.14) is not satisfied for this system (ρ ≈ 2.1 < 2),

which indicates that the test (4.14) can be conservative, even for 2× 2 systems.

Robust Integrity Laughlin et al. [155] provide computationally simple tests for robust integrity that are

useful for cross-directional processes (see [273] for a review of cross-directional process control problems).

Their results do not extend to general plants and so are not further discussed here.

Decentralized Unconditional Stability Morari [184] considers stability with simultaneous detuning of

all loops, which leads to a number of computationally simple necessary conditions for DUS that are surveyed

in the monograph by Morari and Zafiriou [185]. However, all these conditions can be conservative for testing

DUS, as illustrated by numerous examples in that monograph.

CDUS Nwokah and Perez [204] considered conditions for which a system with controller K(s) = 1
s I is

CDUS, including the claim that a necessary condition for K(s) = 1
s I to provide CDUS is that the steady-

state matrix P (0) is all gain positive stable. A matrix P is all gain positive stable if P , P−1, and all their

corresponding principal submatrices are D-stable. A matrix P is D-stable if σ(PD) ⊂ C+ for all positive

diagonal matrices D. Example 4.4 shows that the condition in [204] is not necessary.

Example 4.4. Consider the plant [52]:

P (s) =


1 0 2

1
s+1 1 −4s

s+1

0 4 1

 .
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It can be shown that the Routh-Hurwitz stability criteria that the closed-loop system for the above plant is

stable for K(s) = 1
s I and remains stable with arbitrary detuning of the SISO loop gains. But, σ(P (0)) =

{±i
√

3, 3}, so P (0) is not D-stable, and P (0) is not all gain positive stable. We note here without details

that this plant also shows that all of the theorems in [204] regarding decentralized integral controllability

are also not necessary.

RDUS and RCDUS To our knowledge, it seems that RDUS and RCDUS have not been considered in

the open literature, except for a thesis [39] and the proceedings paper [41] that contains some of the results of

this manuscript. Note that it is previously shown that conditions for RDUS and RCDUS can be represented

as evaluating the SSV of the associated transfer function. Upper and lower bounds on µ are computable in

polynomial-time [8], even though its exact computation is NP-hard [44].

4.3.2 Related Topics

Fault Detection and Diagnosis For systems affected by time-varying parametric uncertainties and

time-varying detuned gain of decentralized controllers, it might be natural to discuss the design of linear

parametrically varying (LPV) controllers or gain-scheduled controllers when the time-varying parameters

are not known a priori, but are online measurable. In that control framework, faults in the actuators and/or

sensors can be detected and LPV control laws give a natural way to remedy those faults.

Reliable Networked Control Systems In a networked control system, most communication links in-

troduce variable and unpredictable time delays in the information flow, which are called network-induced

delays [304]. This application problem has motivated the analysis of the effects of time delays among in-

terconnecting elements of a decentralized or distributed network control system on the closed-loop system

stability and performance. The problem formulation and conditions for robust reliability analysis of de-

centralized control systems can be extended to the robust stability and performance analysis of networked

control systems under intermittent communication losses between distributed sensors and actuators.

4.4 Illustrative Examples: Fault-tolerant Decentralized Control

High-purity Distillation Column We now illustrate the investigation of robust stability and perfor-

mance of a decentralized controller for the high-purity distillation column under fault/failure scenarios. A

high-purity distillation column is given in [247] and discussed in more detail in [248]. The nominal model is

Pn(s) =
1

75s+ 1

−0.878 0.014

−1.082 −0.014

 ,
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Figure 4.6: The plant with input uncertainty ∆I of magnitude wI(s) and the performance specification
wP(s).

which uses distillate and boilup as manipulated inputs to control top and bottom composition using mea-

surements of the top and bottom compositions. The plant has a large condition number, so input uncertainty

strongly affects robust performance [248]. The uncertainty and performance weights are

wI(s) = 0.1
5s+ 1

0.25s+ 1
, wP(s) = 0.025

7s+ 1

7s
.

The input uncertainty includes actuator uncertainty and neglected right-half plane zeros of the plant.

The performance bound implies zero steady-state error and a closed-loop time constant of 7 minutes. The

uncertainty block ∆I is a diagonal 2× 2 matrix (independent actuators) and the performance block ∆P is a

full 2× 2 matrix.

In [39], loopshaping bounds are used to design the decentralized controller

K(s) =
75s+ 1

4s

− 1
0.878 0

0 − 1
0.014

 .
We will now analyze the closed-loop system with the designed controller to show that it satisfies integrity,

robust integrity, DUS, and RDUS.

Integrity The following four transfer functions are stable:

(ε1, ε2) = (0, 0)⇒Pn,

(ε1, ε2) = (1, 1)⇒− wIK(I + PnK)−1Pn,

(ε1, ε2) = (1, 0)⇒− wIK1(I + Pn,11K1)−1Pn,11,

(ε1, ε2) = (0, 1)⇒− wIK2(I + Pn,22K2)−1Pn,22,

so the closed-loop system has integrity.

Robust integrity Robust integrity for a 2× 2 system can be evaluated by checking the robust stability

for four conditions. Nominal stability was tested above (for testing integrity), so only the µ conditions are

tested here. The system has robust stability when all loops are turned off provided that Pn(I + wI∆I) is
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stable. Since Pn, wI, and ∆I are stable, Pn(I + wI∆I) is stable. Robust stability for the overall system is

satisfied since µ∆I
(−wIK(I + PnK)−1Pn) = 0.3 < 1. Robust stability for the cases when exactly one loop

has failed is satisfied since

(ε1, ε2) = (1, 0)⇒µ∆I,11(−wIK1(I + Pn,11K1)−1Pn,11) = 0.12 < 1;

(ε1, ε2) = (0, 1)⇒µ∆I,22(−wIK2(I + Pn,22K1)−1Pn,22) = 0.12 < 1.

Since all four µ conditions are satisfied, the system demonstrates robust integrity.

DUS and RDUS First let’s test RDUS. The transfer function matrices P , G, Ḡ, and ∆a needed to

apply Theorems. 4.3 and 4.4 are derived directly from the block diagram in Figure 4.6:

P =

 0 −wII

Pn −Pn

 , G =


0 0 −wII

wPPn 0 −wPPn

−Pn I Pn

 , Ḡ =


0 −wIW

r 0 −wIĒ

0 0 0 I

wPPn −wPPnW
r 0 −wPPnĒ

−Pn PnW
r I PnĒ

 ,

∆a = diag{∆I,∆
r}.

(4.15)

Figure 4.7(a) is the µ plot to test condition (4.7) in Theorem 4.3 for evaluating RDUS. As expected, the

value of µ approaches 1 at zero frequency due to the integrators as either of the εi approach zero. We see

that µ � 1 for all frequencies away from ω = 0. Since µ ≤ 1, the system demonstrates RDUS. Since DUS

is implied by RDUS, DUS does not need to be numerically tested for this example.

Robust performance under arbitrary detuned control gains (0 ∼ 100% of the nominal value) can also

be studied using the condition (4.9) in Theorem 4.4. Consider the analysis of robust performance under

a reduced performance defined by wP(s) = 0.025 7s+1
7s , which is 1/10 of the nominal performance specified

by [248] when there is no faults in the system. Figure 4.7(b) shows that µ∆(jω) ≤ 1 for all frequency, so

the reduced level of robust performance is achieved for the specified range of detuned control gains.

Parallel Reactors with Combined Precooling Now consider the robust stability and performance of

an SVD optimal controller for a parallel reactor with combined precooling. In [114], a simplified model of

four parallel reactors with combined precooling is

G(s) =
1

100s+ 1


1 0.7 0.7 0.7

0.7 1 0.7 0.7

0.7 0.7 1 0.7

0.7 0.7 0.7 1

 .

Consider the input and output uncertainty in the system shown in Figure 4.8. The input uncertainty ∆I

and output uncertainty ∆O are assumed to have independent diagonal and uncertainty weights given by
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wI := 0.125 5s+1
0.5s+1 I and wO := 0.125 2.5s+1

0.25s+1 I, respectively. To reject disturbances at the system output, the

weighted performance specification is ‖wPSp‖∞ < 1, where Sp is the transfer function mapping d to y, with

the performance weight wP(s) := 0.125 125s+1
125s I. An SVD optimal controller was designed using DK-iteration

and reported in [114]. This example considers the reliability of this controller design to 80% independent

detuning of the controller gains. The performance weight models partially degraded performance, compared

to the case when there is no fault or failure of controllers in [114].

Robust reliability The transfer function matrices P , G, Ḡ, and ∆a needed to apply Theorems. 4.3 and 4.4

are derived directly from the block diagram in Figure 4.8:

P =


0 0 −wII

wOPn 0 −wOPn

Pn I −Pn

 , G =


0 0 0 −wII

wOPn 0 0 −wOPn

wPPn wPI 0 −wPPn

−Pn −I I Pn

 ,

Ḡ =



0 0 −wIW
r 0 −wIĒ

wOPn 0 wOPnW
r 0 −wOPnĒ

0 0 0 0 I

wPPn wPI wPPnW
r 0 −wPPnĒ

−Pn −I −PnW
r I PnĒ


, ∆a = diag{∆I,∆O,∆

r}.

(4.16)

To assess whether the closed-loop uncertain system remains stable with up to 80% independent detuning

of the actuator/sensor/controller gains, set εi ∈ [0.2, 1] for all i and W r = 0.4I and Ē = 0.6I. The µ plot in

Figure 4.9(a) to test condition (4.7) in Theorem 4.3 shows that µ(jω) < 1 for all frequencies, which implies
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Figure 4.7: µ plots for evaluating reliability to uncertainties and reduction of actuator/sensor/controller
gains for the high-purity distillation column. The smooth red curve is the upper bound for µ and the rough
blue curve is its lower bound.

55



!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

K Pn

∆IwI ∆OwO

wPr

−1

y

d

Figure 4.8: The plant with input and output uncertainties ∆I and ∆O of magnitude wI(s) and wO(s), and
the performance specification wP(s).
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Figure 4.9: µ plots for evaluating reliability to uncertainties and up to 80% independent detuning of
controller gains for the parallel reactors with combined precooling. The smooth red curve is the upper
bound for µ and the rough blue curve is its lower bound.

that the system is robust to this degree of control detuning and to model uncertainties. This µ plot also

implies that the nominal system is reliable to 80% independent detuning of the actuator/sensor/controller

gains.

Robust performance under detuned control gains can be studied using the condition (4.9) in Theorem 4.4.

Figure 4.9(b) shows that µ∆(jω) ≤ 1 for all frequencies, so robust performance is achieved with up to 80%

independent detuning of the controller gains. Various degrees of degraded closed-loop performance could

be defined for different degrees of detuning, by plotting a different µ plot for each performance weight and

range of detuning.

4.5 Summary and Future Work

Robust reliability of closed-loop systems is an important issue in control systems engineering and for large-

scale interconnected systems. This chapter considers the analysis of the reliability of controlled systems

with and without model uncertainties. Necessary and sufficient conditions for robust fault tolerant stability

and performance under constant but unknown gain variation are derived for uncertain systems that are

56



affected by real parametric and complex dynamic uncertainties. The proposed conditions are represented in

terms of the structured singular value and are nonconservative in the sense that locations and structures of

potential faults and failures can be fully exploited, and structured plant-model mismatches are considered

to derive necessary and sufficient conditions for system reliability. Upper- and lower-bounds on µ can be

computed in polynomial-time by using off-the-shelf software [8] and provide computationally tractable tools

for verifying reliability of the controllers. Numerical case studies for high-purity distillation column and

parallel reactors with combined precooling are presented for illustration of the application of the proposed

reliability conditions.
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Chapter 5
Robust Nonlinear Internal Model Control of

Wiener Systems

Abstract Many process systems can be modeled as a stable Wiener system, which is a stable linear

system followed by a static nonlinearity. A nonlinear control design procedure is presented that provides

robustness to uncertainties while being applicable to systems with unstable zero dynamics, unmeasured

states, disturbances, and measurement noise. The design procedure combines nonlinear internal model

control with linear matrix inequality feasibility or optimization problems, such that all robust stability and

performance criteria are computable in polynomial-time using readily available software. Application to a pH

neutralization case study demonstrates the importance of taking uncertainty into account during the design

of controllers for Wiener systems. The approach is generalizable to Hammerstein and sandwich systems,

whether well- or poorly-conditioned, and to systems with actuator constraints.
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Figure 5.1: Wiener model structure where G is linear time-invariant and Γ(·) is a static (nonlinear)
operator that is included in a certain family of nonlinear functions.
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5.1 Introduction

A Wiener model consists of a linear dynamic system G followed by a static nonlinear operator Γ (see Figure

5.1). Many process systems have been described by Wiener models including distillation columns [76], heat

exchangers [76], pH neutralization [98], packed bed reactors [77], and plasma reactors [271, 272]. Various

control strategies have been developed for Wiener systems, including adaptive control [210], linearizing

feedforward-feedback control [128], and model predictive control [203, 212] strategies, many of which have

been evaluated by application to pH neutralization processes.

The static nonlinearity in a Wiener model for a practical application is always uncertain, and most existing

methods for the control of Wiener systems ignore this uncertainty. As will be demonstrated in a case study

later in this chapter, the uncertainty in the nonlinearity can have major effects on the closed-loop stability

and performance. While robust optimal controllers for Wiener systems have been designed by formulating

the optimal control problem in terms of bilinear matrix inequalities (BMIs) [271,272], a drawback of such an

approach is that optimization over BMIs is an NP-hard problem [165,266]. This section proposes an approach

that only involves convex programs that can be solved using off-the-shelf software in polynomial-time. The

proposed approach is applicable to stable Wiener systems with unstable zero dynamics, unmeasured states,

disturbances, and measurement noise. A novel aspect of the approach is that various characteristics of the

nonlinearities can be taken explicitly into account in the closed-loop stability and performance analyses.

The approach is applied to a case study involving the control of pH in which the Wiener model is identified

from experimental data. The control of pH is an important industrial problem that has been extensively

studied [12,78,123,239,292].

5.2 Theory and Methods: Stability and Performance Criteria

5.2.1 Problem Statement

Standard Nonlinear Operator Form The proposed approach employs the standard nonlinear operator

form (SNOF) in Figure 5.2, which has its roots in the 1940s Russian control literature [85, 164, 179]. The

SNOF consists of a linear system with a static nonlinear operator in feedback, where the static nonlinearities

of the operator can be further restricted to be diagonal, monotonic, and locally slope-restricted. Nearly any

arbitrary nonlinear system (including unstable zero dynamics, chaotic, and quasi-periodic behavior) can be

approximated with arbitrary accuracy by a model in standard nonlinear operator form [141]. Furthermore,

all dynamic artificial neural networks can be transformed into the SNOF, so that any of the software packages

available for fitting DANNs to experimental data1 produces models that can be written in SNOF. The static,

monotonic, and locally slope-restricted nature of the nonlinearities can be exploited to produce polynomial-

1e.g., the Matlab Neural Network toolbox
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(b) Performance Analysis

Figure 5.2: Standard nonlinear operator form for discrete-time systems. The structure for continuous-time
systems is obtained by replacing z with s, replacing xk+1 with dx/dt, and redefining the other variables to
be continuous-time.

time tools to analyze the stability and performance of these systems (e.g., see [139,140] and references cited

therein). The analysis tools can be written in terms of linear matrix inequalities (LMIs) [35], which are

computable using available software (e.g., [160, 255]), much of which can be run in Matlab. The proposed

nonlinear control design stategy, described below, weds the above analysis tools with internal model control.
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Figure 5.3: Block diagram for the nonlinear closed-loop system, with output z, disturbance d, and noise n.
The linear time-invariant and nonlinear static monotonic operators of the process are PL (assumed to be
stable) and Γ1, respectively. The linear and nonlinear internal model controllers have Γ2 = 1 and
Γ2 ≈ Γ−1

1 , respectively.

Nonlinear Internal Model Control Strategy As is standard in inversion-based control strategies for

the control of Wiener systems (e.g., see [257] and citations therein), the control structure has the form

in Figure 5.3, where Γ2 is selected to be either the identity or the inverse of the process nonlinearity

Γ1, depending on whether the overall controller is desired to be linear or nonlinear. For nonlinear Γ2, the
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controller in Figure 5.3 has the Hammerstein structure, in which a dynamic linear controller KL is augmented

with the inverse of the nonlinear operator combined with the identified parameters of the process W1 and

W2.

The remaining task is to determine the linear time-invariant controller KL based on some closed-loop

criteria. For example, an example of an L2-optimal control problem would be to determine the KL that

minimizes a weighted combination of the worst-case effects of the disturbance d and noise n on the output

z:

Problem : inf
KL

α

(
sup
‖d‖2≤1

‖z‖2

)
+ (1− α)

(
sup
‖n‖2≤1

‖z‖2

)
s.t. the closed-loop system in Figure 5.3 is stable,

(5.1)

where the weight α ∈ [0, 1]. For a linear time-invariant process (Γ1 = I), it is well known that the above

optimal control problem is equivalent to a weighted H∞-control objective, ‖wuS + wpT‖∞, where S is the

sensitivity function that maps the output disturbance d to the controlled output z, T is the complementary

sensitivity function that maps the measurement noise n to z, and wu and wp are weights that define the

tradeoff between disturbance suppression and insensitivity to measurement noise (e.g., [185,309]).

While there are several approaches available for solving L2-optimal control problems for linear time-

invariant systems, solving such problems for nonlinear systems is much more challenging [13] and would

require extensive software generation, even in the case where there is no uncertainty in the system. The

nonlinearity Γ has associated uncertainty, so that the nonlinear inversion introduces nonlinear uncertainty

into the closed-loop system. Rigorously taking that uncertainty into account while solving (5.1) results

in a nonconvex optimization over bilinear matrix inequality constraints [271, 272]. It is straightforward

to show that optimizations over bilinear matrix inequality constraints are NP-hard,2 either by reduction

to the knapsack problem [165, 266] or to an indefinite quadratic program [44]. An alternative approach

is to parameterize KL in Figure 5.3 in terms of the well-known Youla parameterization (e.g., [185, 309]),

KL = Q
1−PLQ , where the stable transfer function Q provides degrees of freedom for controller design. The

engineer can parameterize Q in any way that maintains stability, and then tune the control parameters to

optimize the objective (5.1).

Internal model control (IMC) restricts the degrees of freedom in Q so that the control tuning parameters

are few and have a direct relationship to setpoint tracking response, disturbance suppression, insensitivity

to measurement noise, and robustness to model uncertainties (e.g., [146,185]). The form for Q is selected as

a low-pass filter F in series with the inverse of a minimum-phase approximation of the linear model of the

stable process being controlled. For the notation used here, Q = P−1
L,m, where PL,m is the minimum-phase

approximation of the stable transfer function PL.

Instead of directly solving an optimization such as (5.1) for the control tuning parameters, a common

2except for very specialized matrix structures
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alternative is to tune the controller as fast as possible while satisfying all of the control objectives, such

as guaranteed closed-loop stability with respect to all uncertainties with a prescribed set, effectiveness at

disturbance suppression, or insensitivity to measurement noise (e.g., [249]). This approach avoids having to

explicitly define a performance weight, and avoids having to balance the weights with respect to each other.

The above approaches apply to both continuous- or discrete-time systems; for brevity only the discrete-

time equations will be presented below. To parametrize the controller, consider the low-pass filter

F (z) =
1(

λ z−1
z+1 + 1

)m I (5.2)

where λ specifies the response speed of the low-pass filter and m is an integer that defines the order of

the transfer function. This form for F is obtained from Tustin’s discretization [54] of the low-pass filter

F (s) = 1
(λs+1)m in the Laplace domain. The order of the low-pass filter is fixed and the control tuning

parameter is the IMC filter time constant λ > 0. If needed, this filter form can be generalized to include

numerator dynamics or different time constants in each diagonal element [24,108,185].

The closed-loop system in Figure 5.3 can be rearranged into the SNOF in Figure 5.2 by using block-

diagram algebra as described in standard textbooks [185, 249] or by using the sysic program in the Matlab

Robust Control Toolbox. The next section presents methods to quantify robust stability and performance

criteria for the closed-loop system in terms of linear matrix inequalities, which can be computed using off-

the-shelf software that have Matlab interfaces (e.g., [255]). These quantifications can be inserted into an

optimization formulation for λ using a weighted control objective such as (5.1) or can be used to determine

the minimum value for λ that satisfies all of the robust stability and performance criteria.

Remark 5.1. The authors of [75] proposed an augmentation of the nonlinear controller with a linear filter,

in which the model inverse was constructed using numerical procedures based on the contraction mapping

principle and Newton’s method. The same nonlinear IMC structure was later used [103], in which the model

inverse was determined using differential geometry. The aforementioned nonlinear control structure is very

similar to those used in these and other past publications. As described in the next section, the proposed de-

sign method will differ from past works by rigorously taking uncertainties associated with nonlinear inversion

into account.

5.2.2 Stability Analysis

This subsection describes a necessary condition and sufficient conditions for the analysis of stability of a

system in SNOF. To simplify the notation, (B,C,D) is used as a shorthand notation for (Bp, Cq, Dqp).

The following necessary condition for stability of an SNOF is obtained from linearization of a nonlinear

process model [136].
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Theorem 5.1 (Necessary Stability Condition). Consider a nonlinear system in SNOF as shown in Fig-

ure 5.2(a):

xk+1 = Axk +Bpk

qk = Cxk +Dpk

pk = Γ(qk)

(5.3)

where x ∈ Rn, p ∈ Rh, q ∈ Rh, A ∈ Rn×n, B ∈ Rn×h, C ∈ Rh×n, D ∈ Rh×h, Γ is a diagonal nonlinear

operator, n is the number of states, and h is the input-output dimension of Γ. A necessary condition for

asymptotic stability of the steady-state xss is that the eigenvalues of the matrix

AL(xss) , A+B

(
I − ∂Γ

∂q

∣∣∣∣
ss

D

)−1
∂Γ

∂q

∣∣∣∣
ss

C, (5.4)

all have magnitude less than or equal to one, i.e., ρ(AL(xss)) ≤ 1 where ρ(·) denotes the spectral radius of

a matrix.

The term ∂Γ
∂q

∣∣∣
ss

is the Jacobian of Γ evaluated at the steady-state value for the state. For a diagonal

Γ =: diag{γi}, this Jacobian has a rather simple form, ∂Γ
∂q

∣∣∣
ss

= diag

{
∂γi
∂qi

∣∣∣
x=xss

}
.

Any of the sufficient conditions for analyzing the stability of systems in SNOF using linear matrix in-

equalities (e.g., see [35, 180, 270] and citations therein) can be applied to this approach. Which stability

condition to apply depends on the assumptions made on the nonlinearities concerning the matrix structure

(e.g., full-block, block-diagonal, or diagonal) and the extent of time variation (e.g., arbitrarily fast time-

varying, arbitrarily slow time-varying, static). Which condition to use depends on the nature of the specific

problem. For example, if the assumption that the process nonlinearity is static was only an approximation

during the identification of the Wiener model, then a stability condition can be selected that allows the

uncertainty in the nonlinear to be dynamic. If the nonlinearity in the Wiener model is multivariable, then

a full-block uncertainty structure should be used. If the nonlinearities in the Wiener model are distinct and

isolated, then a diagonal uncertainty structure should be used to reduce conservatism. Few of the published

conditions, however, take into account the static, monotonic, and slope-restricted nature of most nonlin-

earities and such conditions that have been derived either require restrictive assumptions (see [139, 140] for

details). The following sufficient condition, which is computable for large-scale systems while taking into

account these characteristics of nonlinearities, will be applied in the pH control case study.

Theorem 5.2 (A Sufficient Stability Condition3). Consider a system described in Figure 5.2(a) with

xk+1 = Axk +Bpk

qk = Cxk +Dpk,
(5.5)
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and pk = Γ(qk) subject to the sector-bounded and slope-restricted conditions

γi(qk,i) [γi(qk,i)− ξiqk,i] ≤ 0, ∀qk,i ∈ R, i = 1, . . . , h (5.6)

and

0 ≤ γi(qk+1,i)− γi(qk,i)
qk+1,i − qk,i

≤ µi, ∀qk,i ∈ R, i = 1, . . . , h (5.7)

where ξi and µi is the maximum sector bound and slope of the ith nonlinearity, respectively. A sufficient

condition for global asymptotic stability is the existence of a positive-semidefinite matrix P = PT with a

positive-definite submatrix P11 = PT
11 and diagonal positive-semidefinite matrices Q, Q̃, T , T̃ , N ∈ Rnq×nq

such that the LMI

G , ATa PAa − ETa PEa + U1 + U2 − S1 − S2 − S3 < 0 (5.8)

holds, where the matrices Aa, Ea, U1, U2, S1, S2, and S3 are defined in (5.23).

Although stated as a stability condition, Theorem 5.2 is also a robust stability condition, in that the

existence of a feasible solution to the LMI (5.8) implies that the system is stable for all nonlinearities that

satisfy the sector and slope bounds (5.6) and (5.7), respectively. Uncertainties in the parameters W1 and W2

in Figure 5.3 can be combined with the uncertainty in the nonlinearity when applying the robust stability

condition.

5.2.3 Performance Analysis

The input w of the system described in Figure 5.2(b) is assumed to belong to a set of L2-norm-bounded

functions. Sufficient conditions for the L2-gain of a system in SNOF to be finite and less than some bound

have been derived in terms of convex optimizations with LMI constraints (e.g., see [35,180,270] and citations

therein). As for stability conditions, which performance condition to use depends on the assumptions made

on the uncertainty in the nonlinearity inversion. The following sufficient condition, which is applied in the

pH control case study, quantifies the performance for nonlinearities that are diagonal, static, sector-bounded,

and slope-restricted.

Theorem 5.3 (L2-gain Performance Condition). Consider the system described in Figure 5.2(b) with

xk+1 = Axk +Bppk +Bwwk

qk = Cqxk +Dqppk +Dqwwk

zk = Czxk +Dzppk +Dzwwk

(5.9)

where pk = Γ(qk) satisfies the sector-bounded and slope-restricted conditions (5.6) and (5.7), A ∈ Rn×n,

Bp ∈ Rn×h, Bw ∈ Rn×m, Cq ∈ Rh×n, Cz ∈ Rr×n, Dqp ∈ Rh×h, Dzw ∈ Rr×m, Dqw ∈ Rh×m, Dzp ∈ Rr×h, n
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is the number of states, h is the number of nonlinearities, m is the dimension of the input vector, and r is

the dimension of the output vector.

The system of the form described in Figure 5.2(b) and (5.9) is stable and has an upper bound on the

induced L2-norm (or L2-gain) η? if the optimization problem

η? = min
P,Q,Λ,Λ̃

η

s.t. P, P11 = PT
11 > 0, Q ≥ 0, Q̃ ≥ 0, T ≥ 0, T̃ ≥ 0, N ≥ 0, Ḡ ≤ 0, η > 0

(5.10)

has feasible solutions, where Q, Q̃, T , T̃ , and N are diagonal, ξ = diag(ξi), µ = diag(µi), the matrix Ḡ = ḠT

is defined by

Ḡ , ĀT
aPĀa − ĒTa PĒa + Ū1 + Ū2 − S̄1 − S̄2 − S̄3

−


0

0

0

I


[
0 0 0 I

]
+

1

η2


CT
z

DT
zp

0

DT
zw


[
Cz Dzp 0 Dzw

]
,

(5.11)

and the matrices Āa, Ēa, Ū1, Ū2, S̄1, S̄2, and S̄3 are defined in (5.24).

5.3 Application to pH Neutralization

Consider the continuous pH neutralization of an acid stream by a highly concentrated basic stream (see

Figure 5.4). The only measured signal is the controlled variable, which is the pH, and the manipulated

variable is the flow rate of basic solution. The tank has a volume of 5 liters, and the 0.01 M hydrochloric

(HCl) and 0.1 M caustic soda (NaOH) solutions are pumped from 200-liter tanks into the mixing tank.

Solutions are prepared with tap water, which contains a significant amount of dissolved carbon dioxide (in

the form of aqueous HCO−3 and CO2−
3 ). Unmeasured disturbances include the buffering species (carbonates)

computer

pH
probe

acid streampump

stream

drain

base

control

--------------------------

Figure 5.4: pH neutralization apparatus.
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Figure 5.5: Titration curve nonlinearity (W1 and W2 were determined by nonlinear least-squares fitting).
The model is the thick blue line; experimental data points are purple dots.

in the base and acid flows, nonideal mixing in the main tank, nonideal mixing in the acid and base storage

tanks, and air bubbles in the tubes through which the acid and base streams flow.

In a pH process represented as a Wiener model in Figure 5.1, the dynamic linear system describes the

mixing dynamics and the static nonlinearity describes the titration curve [127]. Other than having a different

analytical expression for the nonlinearity, the same process model was used as in [205]:

V
dY

dt
= −FY − u

pH = W2 tanh(W1Y )

(5.12)

where V is the volume of the mixing tank, u is the base flow rate, F is the acid flow rate, W1 and W2 are

weights, and Y is the dimensionless strong acid equivalent [205].

For the pH process, each term in the SNOF has clear physical meaning. The nonlinearity directly cor-

responds to the titration curve, and the linear term directly corresponds to the mixing dynamics. Figure

5.5 shows the form of the nonlinear relation between Y and pH, with some experimental data collected for

a pH experimental apparatus at the University of Illinois. The process disturbances result in significant

uncertainty in the nonlinearity, as shown in Figure 5.5.

An exact discretization [54] of (5.12) leads to:

xk+1 = e−F∆t/V xk +
1

F

(
e−F∆t/V − 1

)
uk

Yk = xk

pHk = W2 tanh(W1xk)

(5.13)

where ∆t is the sampling-time. In addition, there is a time delay θ due to the sensor location. The process
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θ Necessary (Thm. 5.1) Sufficient (Thm. 5.2)

0 0.91 0.91
2 2.08 2.08
6 4.63 4.63
10 7.17 7.17
12 8.46 8.46
16 11.00 11.00

Table 5.1: Lowest IMC filter parameter λ (in seconds) that indicates stability for the closed-loop system
with the linear IMC controller. Perfect model information is assumed. Theorem 5.2 was applied with
ξ = µ = 1. All times are in seconds.

time delay θ = 0.27 minutes (= 16 seconds) and effective time constant τ = 3 minutes were determined from

experimental data by nonlinear least-squares estimation.

The linear and nonlinear IMC structures are shown in Figure 5.3. The block diagram in Figure 5.3 can

be written directly as an SNOF.

Linear IMC design with no nonlinearity cancellation First consider the case where the IMC is linear

and the process nonlinearity Γ1 is perfectly known and equal to tanh. Closed-loop stability results for a range

of time delays are included to provide an indication as to the potential conservatism of the analysis tools

for the pH neutralization problem (see Table 5.1). The necessary and the sufficient stability analysis results

gave identical stability limits, indicating no conservatism for this closed-loop system. For this problem, the

smallest stabilizing IMC filter parameter increased linearly with the time delay.

Now the linear internal model controller was designed that minimizes the desired closed-loop response

time (λ) while requiring that the effect of worst-case disturbances d on the output y cannot be magnified by

more than a factor of 2.5. This is a direct nonlinear generalization of the linear IMC design procedure for

the specification that the peak sensitivity is less than 2.5 [185,249]. The performance measure for a range of

controller tuning parameter λ for the linear IMC controller is shown in Figure 5.6. The optimal λ is equal

to 8.5 minutes. This performance condition places a much stronger restriction on the closed-loop speed of

response than the requirement of nominal stability.

Nonlinear IMC design with perfect nonlinearity cancellation The geometric control literature

commonly assumes that the nonlinear process is perfectly known. This assumption would imply that the

controller nonlinearity Γ2 (in Figure 5.3) perfectly cancels the process nonlinearity Γ1, and the closed-loop

stability could be determined from linear stability analysis. The resulting stability conditions are exactly the

same as those used to compute the necessary condition in Table 5.1. Hence for the pH neutralization process

under the assumption of a perfect model, the stability limit for the linear IMC is equal to the stability limit

for the nonlinear IMC, which is λ = 11 seconds for the time delay θ = 16 seconds.
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Figure 5.6: Performance measure η? for the closed-loop system with the linear internal model controller
with tuning parameter λ (for a process time delay θ = 0.27 minutes).

θ Necessary (Thm. 5.1) Sufficient (Thm. 5.2)

0 1.44 1.44
2 3.71 4.28
6 8.79 9.38
10 13.88 14.49
12 16.44 17.04
16 21.52 22.17

Table 5.2: Lowest IMC filter parameter λ (in seconds) that indicates robust stability for the closed loop
system with the nonlinear IMC controller and significant uncertainty in the process nonlinearity.
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Nonlinear IMC design with robustness to uncertainty in nonlinearity inversion Nonlinear mod-

els are rarely of very high accuracy, and this is certainly true for the pH neutralization process as demon-

strated in Figure 5.5. Now a nonlinear IMC controller is designed that minimizes the desired closed-loop

response time (λ) while requiring stability to uncertainties in the cancellation of the process nonlinearity,

which is mathematically represented as deviations in Γ2Γ1 from one. Based on close inspection of Figure 5.5,

it was assumed that the maximum overall slope of Γ2Γ1 could be as high as two, while its instantaneous

slope could be off as much as a factor of four. Ensuring stability for this range of uncertainties is a nonlinear

generalization of the common objective used in the design of controllers for linear systems of providing a

gain margin of 2. Table 5.2 gives stability limits for a range of time delays to provide some indication of

potential conservatism of the stability analysis results. The minimum IMC filter parameter λ that provides

robust stability increases linearly with the time delay. The minimize filter parameter is λ ≈ 22 seconds for

the time delay θ = 16 seconds, which is twice the value computed for the nonlinear IMC design that ignored

uncertainty in the nonlinearity inversion.

5.4 Discussion

Whether a performance or stability constraint was used in the IMC design had a significant influence on

the filter parameter λ in the nonlinear IMC-based controller. For the pH neutralization process, controllers

tuned based on a nominal stability or robust stability constraint provided much faster closed-loop speed of

response than the controller based on the worst-case performance constraint. This observation indicates the

importance of carefully choosing the controller design criteria.

The sufficient stability condition in Theorem 2 was nonconservative to three significant figures for the

closed-loop system controlled by the linear internal model controller, for a range of time delays (see Table 5.1).

For the stability analysis that took the uncertainty in the nonlinearity inversion into account, the sufficient

condition could potentially be somewhat conservative, as there is a gap in the values for the minimize

allowable filter parameter λ computed from the necessary condition and sufficient conditions (see Table 5.2).

The gap is less than 0.1% for a system with no time delay and about 3% for the time delay of 16 seconds

identified in the experiments. The gap in the values of the minimum λ for the other time delays are all about

0.6 seconds (see Table 5.2). Although the limits computed from the necessary and the sufficient conditions

are not exactly equal, they are certainly close enough for practical application.

The stability analysis that took uncertainty in the nonlinearity inversion into account indicated that the

minimum stabilizing values for the filter parameter λ were twice as large as the values that were computed

that ignored the uncertainty in the nonlinearity inversion. This observation indicates that importance

of taking uncertainty during nonlinearity inversion into account when designed nonlinear inversion-based

controllers.

The approach in this chapter can be extended to nonlinear operators Γ in which each of its outputs is
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related to each of its inputs from conditions such as shown in Theorem 2. The simplest way to implement this

generalization is to rearrange the scalar nonlinearities to form a larger diagonal nonlinear operator in Figure

2. The expressions for the state-space matrices in Figure 2 are messier. The generalization to full-block or

block-diagonal nonlinear operators Γ follows the same derivations, but with much messier nomenclature.

The approach in this chapter applies to systems with larger time delays. Proposition 5.1 shows the

transformation of a system with potentially large time delay into the standard state-space system description;

this transformation is standard in the control literature. The computational cost of analyzing systems with

larger time delays is much smaller than suggested by the increase in dimensions, because the state-space

matrices for the extended system are highly sparse, and many existing LMI solvers are effective at exploiting

sparsity (e.g., [160,255]).

5.5 Summary and Future Work

A nonlinear internal model control procedure was presented for stable Wiener systems that ensures robustness

of closed-loop stability and performance to uncertainties in the inversion of the static nonlinearity, while

having polynomial-time computational cost. Several more general observations can be made based on a

pH control case study. Assuming perfect nonlinearity inversion when controlling pH processes led to overly

optimistic predictions on the achievable closed-loop performance, which indicates that the commonly made

assumption of perfect nonlinearity inversion can produce poor results in practical applications. A comparison

of pH controllers designed to satisfy robust stability or disturbance suppression constraints showed that the

closed-loop response speed could significantly change depending on the design criteria. A comparison of the

sufficient robust stability condition with a necessary condition showed that the sufficient robust stability

condition was nonconservative for this particular application.

The nonlinear IMC procedure is applicable to stable Wiener systems with unstable zero dynamics, unmea-

sured states, disturbances, and measurement noise. This is in contrast to many nonlinear control methods

that require stable zero dynamics and/or ignore disturbances and measurement noise. The generalization

of the approach to Hammerstein and Sandwich models is straightforward, and can be used to explicitly

incorporate actuator constraints into the nonlinear controller design, by combining these static nonlineari-

ties with any other static nonlinearity associated with the input to the process. The approach can also be

combined with directionality compensation, which can improve the closed-loop dynamics for ill-conditioned

processes [51,250].
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Figure 5.7: Block diagram for pH system.

Computation of SNOF for pH system Consider the block diagram in Figure 5.7 where

 Ad Bd

Cd Dd

 ,

Cd(zI−Ad)−1Bd +Dd and w = d. The system equation is given by

zk = −(pHk + wk) = −W2pk − wk

qk = W1νk

= W1 (CdYk +DdCcxk −DdDcW2pk −DdDcwk)

Yk+1 = AdYk +BdCcxk −BdDcW2pk −BdDcwk

xk+1 = Acxk −BcW2pk −Bcwk

pk = Γ(qk).

Define the concatenated vector x̂k , (Yk, xk)T, then the SNOF in Figure 5.2(b) for the pH system is given

by

x̂k+1 =

Ad BdCc

0 Ac


︸ ︷︷ ︸

A

x̂k +

−BdDcW2

−BcW2


︸ ︷︷ ︸

Bp

pk +

−BdDc

−Bc


︸ ︷︷ ︸

Bw

wk

qk =
[
W1Cd C1DdCc

]
︸ ︷︷ ︸

Cq

x̂k +
[
−W1DdDcW2

]
︸ ︷︷ ︸

Dqp

pk

+
[
−W1DdDc

]
︸ ︷︷ ︸

Dqw

wk

zk =
[
0
]

︸︷︷︸
Cz

x̂k +
[
−W2

]
︸ ︷︷ ︸
Dzp

pk +
[
−I
]

︸ ︷︷ ︸
Dzw

wk.
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Extended State-space Representation for Systems with Time-delay in Input Channels Con-

sider the discrete-time system model

xk+1 = Ad(∆t)xk +Bd(∆t)ũk(θ) (5.14)

where ∆t is the sampling interval for discretization such that xk = x(k∆t) and ũk(θ) , u(k∆t − θ) with

time delay θ. Suppose that θ = m∆t where m is an integer. Then the system equation can be written as

xk+1 = Ad(∆t)xk +Bd(∆t)uk−m (5.15)

Define the auxiliary states

ζ0
k+1 , Ad(∆t)ζ

0
k +Bd(∆t)uk,

ζ`+1
k+1 , ζ`k, ` = 0, . . . ,m− 1.

(5.16)

Then the state of the system (5.14) is the output of the extended state-space model:

ζk+1 = Ad(∆t)ζk + Bd(∆t)uk

xk = Cdζk
(5.17)

where ζ , vec(ζ0, ζ1, · · · , ζm) ∈ Rnm and4

Ad(∆t) ,



Ad(∆t) 0 · · · · · · · · · 0

I 0 · · · · · · · · · 0

0 I 0 · · · · · · 0

0 0 I 0 · · · 0
...

...
. . .

. . .
. . . 0

0 0 0 · · · I 0


,Bd(∆t) ,



Bd(∆t)

0
...
...
...

0


,

Cd ,
[

0 · · · · · · · · · 0 I
]
.

Proposition 5.1. The system (5.14) is stable if and only if the system (5.17) is stable.

Proof. (⇐): This direction is shown by observing that the state vector in (5.14) is a subset of the state

vector in (5.17), that is, ζm = x. (⇒): Suppose that the system (5.14) has a unique stable steady-state xeq.

Then, there exists a sufficiently large K ∈ Z+ such that ζmk = xeq for all k ≥ K, where it can be assumed

that K � m without loss of generality. This implies that ζ`κ = xeq, ` = 0, . . . ,m − 1 for all κ ≥ K −m,

which is equivalent to stability of the system (5.17). QED

4vec(a, b) ∈ Rn1+n2 refers to the concatenation of vectors a ∈ Rn1 and b ∈ Rn2 , i.e., its first n1 entries are equal to a and
the remaining entries are equal to b
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Proof of Theorem 5.2

Proof. Consider the Lyapunov function

V (xk) = x̄Tk Px̄k + 2

nq∑
i=1

Qii

∫ qk,i

0

φi(σ)dσ + 2

nq∑
i=1

Q̃ii

∫ qk,i

0

[ξiσ − φi(σ)] dσ,

where

x̄k ,


xk

pk

qk

 , PT = P ,


P11 P12 P13

PT12 P22 P23

PT13 PT23 P33

 ≥ 0, P11 > 0,

Qii ≥ 0, Q̃ii ≥ 0, ∀i = 1, . . . , nq,

and the subscript k indicates a sampling instance. Both pk and qk are functions of the state variable vector

xk, and the above Lyapunov function is radially unbounded and positive for all nonzero xk ∈ Rn. The

difference in the Lyapunov function between the k + 1 and k sampling instances is

∆V (xk) = ζTk (ATa PAa − ETa PEa)ζk

+ 2

nq∑
i=1

Qii

∫ qk+1,i

qk,i

φi(σ)dσ + 2

nq∑
i=1

Q̃ii

∫ qk+1,i

qk,i

[ξiσ − φi(σ)] dσ,
(5.18)

where

ζk ,


xk

pk

pk+1

, Aa ,


A B 0

0 0 I

CA CB D

, Ea ,


I 0 0

0 I 0

C D 0


Slope restrictions on the nonlinearities place an upper bound on the first integral:

2

nq∑
i=1

Qii

∫ qk+1,i

qk,i

φ(σ)dσ ≤ 2

nq∑
i=1

Qii

(φk+1,i − φk,i)(qk+1,i − qk,i)

− 1
2µi

(φk+1,i − φk,i)2


= ζTk U1ζk,

where U1 is given in (5.23). Similarly, an upper bound can be derived on the second integral:

2

nq∑
i=1

Q̃ii

∫ qk+1,i

qk,i

[ξiσ − φ(σ)] dσ = −2

nq∑
i=1

Q̃ii

∫ qk+1,i

qk,i

φ(σ)dσ + 2

nq∑
i=1

Q̃ii

∫ qk+1,i

qk,i

ξiσdσ

≤ −2

nq∑
i=1

Q̃ii

{
1

2µi
(φk+1,i − φk,i)2 + φk,i(qk+1,i − qk,i)

}

+ 2

nq∑
i=1

Q̃iiξi
[
q2
k+1,i − q2

k,i

]
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= ζTk U2ζk,

where U2 is given in (5.23).

Since the (negative) feedback-connected nonlinearity is monotonic with slope restriction in addition to

being [0, ξ] sector-bounded, i.e., φ ∈ Φ
[0,ξ]
sb ∩ Φ

[0,µ]
sr , it can be shown that the following inequalities are

satisfied at each sampling instance k and all indices i = 1, . . . , nq:

φk,i[ξ
−1
i φk,i − qk,i] ≤ 0, (5.19)

(φk+1,i − φk,i)[µ−1
i (φk+1,i − φk,i)− (qk+1,i − qk,i)] ≤ 0. (5.20)

The following notations based on (5.19) are useful when applying the S-procedure:

nq∑
i=1

2τiφk,i[ξ
−1
i φk,i − qk,i] = ζTk S1ζk, (5.21)

nq∑
i=1

2τ̃iφk+1,i[ξ
−1
i φk+1,i − qk+1,i] = ζTk S2ζk, (5.22)

where S1 and S2 are given in (5.23). A similar notation based on the inequality (5.20) is:

nq∑
i=1

2Nii(φk+1,i − φk,i)
[
µ−1
i (φk+1,i − φk,i)− (qk+1,i − qk,i)

]
= ζTk S3ζk,

where S3 is given in (5.23).

Applying the S-procedure, if the LMI G , ATa PAa−ETa PEa+U1 +U2−S1−S2−S3 < 0 is feasible then

∆V (xk) < 0 is satisfied for the specific class of feedback-connected nonlinearities φ ∈ Φ
[0,ξ]
sb ∩ Φ

[0,µ]
sr . All of

introduced matrix (decision) variables are of compatible dimensions. QED

Proof of Theorem 5.3

Proof. It is not difficult to see that the system given in (5.9) is g.a.s. and is dissipative with respect to the

supply rate

s(wk, zk) ,

wk
zk

T I 0

0 − 1
η2 I

wk
zk


and the Lyapunov function V (xk) if and only if ∆V (xk) ≤ s(wk, xk) holds for all k ∈ Z, which is equivalent

to the L2-gain performance bound, sup‖w‖2≤1 ‖z‖2 ≤ η. Consider the Lyapunov function (5.18) and the

system equation (5.9). Then the condition ∆V (xk) − s(wk, zk) ≤ 0 can be rewritten as ζ̄k
T
Ḡζ̄k where Ḡ

is given in (5.11) and ζ̄T ,
[
xT
k pT

k pT
k+1 wT

k

]
. The computation of the matrix Ḡ can be performed by

using the S-procedure and the derivation is similar to the proof of Theorem 5.2. QED
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Matrices for the Application of the S-Procedure in Theorem 5.2

U1 ,


0 −(CA− C)TQ (CA− C)TQ

∗ −Q(CB −D)− (CB −D)TQ−Qµ−1 −QD +Qµ−1

∗ ∗ −QD −DTQ−Qµ−1



U2 ,


ATCTQ̃ξCA− CTQ̃ξC ATCTQ̃ξCB − (CA− C)TQ̃− CTQ̃ξD ATCTQ̃ξD

∗

 BTCTQ̃ξCB +DTQ̃ξD

−(CB −D)TQ̃− Q̃(CB −D)− µ−1Q̃

 µ−1Q̃− Q̃D +BTCTQ̃ξD

∗ ∗ −µ−1Q̃+ 2DTQ̃ξD



S1 ,


0 −CTT 0

∗ 2ξ−1T − TD −DTT 0

∗ ∗ 0

 , S2 ,


0 0 −ATCTT̃

∗ 0 −BTCTT̃

∗ ∗ 2ξ−1T̃ − T̃D −DTT̃



S3 ,


0 −(CA− C)TN (CA− C)TN

∗ 2Nµ−1 + (CB −D)TN +N(CB −D) −2Nµ−1 + (CB −D)TN +ND

∗ ∗ 2Nµ−1 −DTN −ND

 .

(5.23)

Matrices in Theorem 5.3

Āa ,


A Bp 0 Bw

0 0 I 0

CqA CqBp Dqp CBw

 , Ēa ,


I 0 0 0

0 I 0 0

Cq Dqp 0 0

 ,

Ū1 ,



0 −(CqA− Cq)TQ (CqA− Cq)TQ 0

∗


−Q(CqBp −Dqp)

−(CqBp −Dqp)TQ

−Qµ−1


 (CqBp −Dqp)TQ

−QDqp +Qµ−1

 −QCqBw

∗ ∗


Q(CqBp −Dqp)

+(CqBp −Dqp)TQ

−Qµ−1

 QCqBw

∗ ∗ ∗ 0



,

Ū2 ,



 ATCT
q ξQ̃CqA

−CT
q ξQ̃Cq




(CqA− Cq)Tξ

·Q̃(CqBp +Dqp)

−(CqA− Cq)TQ̃


 (CqA− Cq)T

·ξQ̃Dqp

  (CqA− Cq)T

·ξQ̃CqBw



∗



2(CqBp +Dqp)
Tξ

·Q̃(CqBp +Dqp)

−Q̃(CqBp −Dqp)

−(CqBp −Dqp)TQ̃

−Q̃µ−1




(CqBp +Dqp)

T

·ξQ̃Dqp

−Q̃Dqp + Q̃µ−1




(CqBp +Dqp)
T

·ξQ̃CqBw

−Q̃CqBw



∗ ∗ 2DqpξQ̃Dqp − Q̃µ−1 DT
qpξQ̃CqBw

∗ ∗ ∗ 2BT
wC

T
q ξQ̃CqBw



,

(5.24)
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S̄1 ,


0 −CT

q T 0 0

∗ 2ξ−1T − TDqp −DT
qpT 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

 , S̄2 ,


0 −ATCT

q T̃ 0 0

∗ −BT
q C

T
q T̃ − T̃CqBp −T̃Dqp T̃CqBw

∗ ∗ 2ξ−1T̃ 0

∗ ∗ ∗ −BT
q C

T
q T̃

 ,

S̄3 ,



0 −(CqA− Cq)TN 0 0

∗


(CqBp −Dqp)TN

+N(CqBp −Dqp)

+2Nµ−1


 (CqBp −Dqp)TN

−2Nµ−1 +NDqp

 NCqBw

∗ ∗ 2Nµ−1 −DT
qpN −NDqp −NCqBw

∗ ∗ ∗ 0


.

(5.25)
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Chapter 6
Computational Complexity of Robust Control:

An Overview

Abstract The main role of feedback control is to address the effects of uncertainties, and much of the

process control literature since the 1980s has involved the analysis and design of uncertain systems. As the

complexity of the systems that are being controlled continues to increase, a practical consideration is the

computational cost of control analyses and design methods as the system size increase. This chapter reviews

results on the computational complexity of robust control problems, starting with well-known results and

then moving to lesser known results that have broad implications. This chapter ends with a look to the

future, towards stochastic robustness analysis.

6.1 Introduction

The structured singular value µ has been widely used to analyze the effects of uncertainties on the stability

and performance of multivariable systems. John Doyle [72] and Michael Safonov [228] were largely responsible

for the introduction of µ for the analysis of robust stability and robust performance margins in the early

1980s. The main advantage of µ compared to earlier approaches was its ability to explicitly take into

account the structure of the uncertainties, with the value of µ quantifying how much the magnitude of

the uncertainties can be increased until the system first becomes unstable. The µ analysis also produces

deterministic worst-case values for the uncertainties, which focuses attention on combinations of uncertain

parameters that result in the worst-case behavior of the system.

Historically, the graphical approach for the robust stability analysis of single-input single-output (SISO)

systems was already applied by the early 1960s, which mapped uncertain gains, phases, and parameters into

the Nyquist plot [111]. By mid 1960 George Zames [301, 302] had applied functional analysis to analyze
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stability for input-output problems where two elements were interconnected in a feedback loop. His conic

relation stability theorem provided conditions to ensure that the overall closed-loop system was stable.

Safonov [227,229] extended this theorem to multi-input multi-output (MIMO) systems. Zames’ and Safonov’s

proposed approaches were based on the concept of topological separation. The feedback interconnection of

two elements H1 and H2 is robustly stable if and only if the graph of H1 and the inverse graph of H2

are topologically separated for any allowed variations in H1 or H2. The main goal in this approach to

robust stability analysis was to find a separator or a set of separators that characterize the input-output

relation (i.e., graph) of either of the system elements H1 or H2. Similar approaches were investigated

and further developed by many researchers including Goh & Safonov [97, IQC separator], Megretski &

Rantzer [178,217, IQC theory], Scherer [232,233, full-block S-procedure], and Iwasaki & Hara [121, quadratic

separator], to name a few. Robust stability analysis based on topological separation can be used to compute

upper bounds on µ, and these upper bounds tend to be readily computable for systems with a fairly large

number of uncertainties.

An alternative to topological approaches for robustness analysis was the algebraic approach by Kharitonov

and others [28, 138]. A simple stability criterion was derived for uncertain polynomials in which the coeffi-

cients are allowed to independently vary within bounded intervals. Many extensions to Kharitonov’s results

were published (see [1] and references therein) whose goals were to extend the results to successively more

complicated uncertainty descriptions while retaining very high computational efficiency. The result by Man-

fred Morari and coworkers [43,44] showed that the computationally efficient algebraic approaches could not

possibly be applicable to general uncertainty descriptions, which resulted in a severe drop in interest in

algebraic approaches.

Lyapunov methods for stability analysis have a very long history and many very good introductory de-

scriptions are available [136,279]. Lyapunov methods for robustness analysis are arguably the most flexible,

and can be used to derive many of the robustness analysis tools derived using other methods. Many of the

papers in the last 20 years that employ Lyapunov methods derive robustness analysis conditions in terms of

optimizations over linear or bilinear matrix inequality constraints, the computational consequences of which

are discussed later in this chapter.

The main purpose of this chapter is to provide an overview of results related to the computational com-

plexity of robustness analysis. As the structured singular value µ is an exact measure of the robustness

of systems with structured uncertainties, numerous efforts have been made to develop efficient algorithms

for its computation. Several researchers showed that the exact calculation of µ for systems with purely

real [43,44,64,195,215], mixed real and complex [43,44], and purely complex uncertainties is NP-hard [267],

implying that its exact computation is very expensive for large-scale systems. It was also shown that the

design of µ-optimal controller for systems with purely complex uncertainties is NP-hard [267] by selection

of performance weights so that the optimal closed-loop performance objective is equal to the value for µ for

an equivalent robustness analysis problem that is NP-hard. This same proof technique can be used to show
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that the robust control design problem for any particular uncertainty class is NP-hard when its robustness

analysis problem is NP-hard for the same uncertainty class. In particular, the design of robust optimal

controllers is NP-hard for uncertainties that are purely real, purely complex, or mixed.

After the exact µ-calculation was proven to be NP-hard, it was shown that the approximation of µ within

a specified accuracy is also NP-hard for systems with purely real [88]1 and mixed real and complex [42]

uncertainties. The greater ease in the computation of upper bounds on µ motivated the analysis of their

conservatism, which was investigated by Alexandre Megretski and others [174,175,179,224,268].

The high cost of µ-calculation motivated the development of polynomial-time dimensional reduction meth-

ods [16,225,226]. The main idea behind these algorithms is to reduce the dimension of the set of uncertainties

as much as possible using polynomial-time methods, so that the subsequent robustness analysis is less costly.

The NP-hardness of µ-calculation increased interest in probabilistic randomized algorithms [137,253,262,

280–282] as computationally more efficient alternative approaches to define and compute robustness margins.

In these approaches, robustness is evaluated in a probabilistic sense, instead of trying to compute hard bounds

based on worst-case uncertainties as done in µ. The probabilistic randomized algorithms provide certain

levels of accuracy and confidence in estimates for robust stability and performance margins that depend on

a number of uncertainties that have been samplied within the set of allowable uncertainties.

The computational complexity results of [43,44] motivated many subsequent research efforts to study the

computational complexity of systems and control problems. Blondel and Tsitsiklis [33] surveyed computa-

tional complexity results in systems and control up to 2000. Of especial interest is that many important

control analysis and synthesis problems can be formulated as optimizations over bilinear matrix inequalities

(BMIs) (see [270] for a tutorial on such problems) and the problem of checking the solvability of a BMI was

also shown to be NP-hard [266]. The latter result can be proved in many ways, with one approach being to

first show that checking the existence of a Hurwitz-stable matrix in a given affine space is NP-hard, and then

showing that this problem polynomially reduces to a BMI feasibility problem [266]. A more straightforward

approach to proving that BMI optimization is NP-hard is to just write an indefinite quadratic program in

the form of a BMI optimization.

A commonly used method for the design of robust controllers is DK-iteration, in which an upper bound

of µ is computed while alternating with the solution of polynomial-time optimal control problems. The

optimization that DK-iteration attempts to solve is equivalent to a BMI problem, which suggested2 that

replacing µ by a polynomial-time upper bound in the optimization formulation of a robust control design

procedure did not necessarily produce an optimization that can be solved in polynomial time.

This section is organized as follows. A brief history of robustness analysis is followed by an introduction

to computational complexity theory. Next is a review on the computational complexity of the exact calcu-

lation of µ, and on the approximate calculation of µ, which discusses and shows connections between the

1We will later discuss how the formulation of [88] was intrinsically flawed.
2But did not prove.
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various results. These results motivate the subsequent discussion on analyses of the gap between µ and its

polynomial-time computable upper bound, and alternative approaches to robustness margin computation

such as probabilistic randomized algorithms. Then the section concludes.

Notation Define the set of matrices of block-diagonal perturbations by

∆ ,
{

diag
{
δr1Ir1 , · · · , δrkIrk , δ

c
k+1Irk+1

, · · · , δcmIrm ,∆rm+1
, · · · ,∆rmC

}
: δri ∈ R, δci ∈ C, ∆i ∈ Cri×ri ,

∑
ri = `

}
,

(6.1)

which includes real scalar perturbations, complex scalar perturbations, and complex matrix perturbations.

The real scalar perturbations can model variations in such parameters as spring constants and time constants,

and the complex perturbations can be used to represent unmodeled dynamics, in which the set of plants

described by the uncertainty description can have much higher order than the nominal process model [208,

209]. Define B∆ to be the set of unity norm-bounded perturbations with structure given by ∆.

For a given matrix M ∈ Cm×m, the structured singular value [72,79] is defined as

µ∆(M) ,

 0 if there exists no ∆ ∈∆ such that det(I−M∆) = 0

(min∆∈∆ {σ̄(∆) : det(I−M∆) = 0})−1
otherwise

(6.2)

in which more general classes of structured uncertainties can be handled without introducing any conser-

vatism. Without loss of generality, the matrix M and each subblock of ∆ have been assumed to be square.

In this context, µ∆(M) defines a measure of the smallest structured ∆? ∈∆ that destabilizes of the feedback

interconnected system depicted in Figure 6.1, and the norm of this destabilizing uncertainty ∆? is quantified

as (µ∆(M))−1.

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

∆

M

Figure 6.1: Feedback interconnected system.
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6.2 Computational Complexity of Exact µ-calculation

6.2.1 NP-hardness of Purely Real µ-calculation [43,44]

Braatz et al. [43,44] showed that, for a fixed k, the recognition problem “q?qp ≥ k” for the quadratic program

(QP)

q?qp := max
x∈X1

∣∣xTAx+ pTx+ c
∣∣ ≥ k, (6.3)

where X1 , {x ∈ Rn : bl ≤ x ≤ bu} polynomially reduces to a purely real µ recognition problem.

Theorem 6.1. [44, Thm. 2.1] Define the matrices

M r(k) ,


0 0 kw

kA 0 kAx̄

x̄TA+ pT wT x̄TAx̄+ pTx̄+ c

 , (6.4)

∆̂r
p , {diag(δr

1, · · · , δr
n, δ

r
1, · · · , δr

n, δ
c) : δr

i ∈ R, δc ∈ C}, (6.5)

∆̃r
p , {diag(δr

1, · · · , δr
n, δ

r
1, · · · , δr

n, δ
r
n+1) : δr

i ∈ R}, (6.6)

x̄ ,
1

2
(bu + bl), w ,

1

2
(bu − bl). (6.7)

Then, µ∆̂r
p
(M r(k)) = µ∆̃r

p
(M r(k)) and, for a fixed constant k > 0,

µ∆̂r
p
(M r(k)) ≥ k ⇐⇒ q?qp ≥ k (6.8)

In particular, the recognition version “q ≥ k” of the QP given in (A.2) can polynomially reduce to the

real µ recognition problem µ∆̂r(M r(k)) ≥ k with

M r(k) =


0 0 1

2ke

k(rrT − I) 0 1
2k(rrT − I)e

1
2e

T(rrT + I)− 2r0r
T 1

2e
T 1

4e
T(rrT + I)e− r0r

Te


where e = [1, · · · , 1]T ∈ Rn. Since the QP (A.2) is an NP-hard problem, this implies that µ-calculation is

NP-hard for both purely real and mixed real and complex uncertainties (see [44, Thms. 2.6 and 2.7]).

Poljak and Rohn’s Approach [215]: (Independent Real Perturbations) Poljak and

Rohn [215] considered the computational complexity of a problem concerning robust nonsingularity of ma-

trices. For a square matrix A ∈ Rn×n and a nonnegative matrix 0 � D ∈ Rn×n, the radius of nonsingularity

is defined as

d(A,D) , min{k ≥ 0 : ∃a singular matrix A0 s.t.A− kD � A0 � A+ kD}.
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Theorem 6.2. [215, Thm. 2.1] Let A ∈ Rn×n be nonsingular and 0 � D ∈ Rn×n. Then d(A,D) can be

represented as the maximal value

d(A,D) =
(
max{ρR(A−1∆1D∆2) : ∆1,∆2 ∈ B∆r}

)−1
.

The next corollary shows an explicit relation between computation of the radius of nonsingularity d(·, ·)

and the real structured singular value µ. Its proof directly follows from the definition of µ.

Corollary 6.1. Let A ∈ Rn×n be nonsingular and 0 � D ∈ Rn×n. Then the computation of d(A,D) is

equilvalent to a real µ-calculation:

d(A,D) =
(
µ∆̂r(N)

)−2

with ∆̂r , {blkdiag{∆1,∆2} ∈ R2n×2n : ∆1,∆2 ∈∆r} and N ,

 0 D

A−1 0

.

Proof. The definitions of real µ and the real spectral radius imply that

µ∆̂r(N) = max{ρR(N∆̂r) : ∆̂r ∈ B∆̂r}

= max
∆1,∆2∈B∆r

max

|λ| : λ ∈ R, det


 λI −D∆2

−A−1∆1 λI

 = 0


= max

∆1,∆2∈B∆r
max

{
|λ| : λ ∈ R, det(λI) det(λI− 1

λ
A−1∆1D∆2) = 0

}
= max

∆1,∆2∈B∆r
max

{
|λ| : λ ∈ R, det(λ2I−A−1∆1D∆2) = 0

}
=
√

max
∆1,∆2∈B∆r

ρR(A−1∆1D∆2)

where the third equality follows from the Sylvester’s theorem for determinants (see [109], for example), λ

is assumed to be nonzero (for d(A,D) = 0, the proof is trivial.), and the last equality follows from the fact

that ∆i ∈ B∆r implies −∆i ∈ B∆r so that the real spectral radius of A−1∆1D∆2 is achieved by a positive

eigenvalue. QED

A similar result of Corollary 6.1 was presented in [42] and is summarized here in Theorem 6.5. In

order to show that the computation of d(A,D) is NP-hard, Poljak and Rohn [215] considered the special

case when D = eeT where e ∈ Rn is the vector whose entries are all ones. For this case, it is not hard

to see that the polytope B∆r can be replaced by its vertices, without changing the optimal value, i.e.,

d(A, eeT) =
(
max{zTA−1y : z, y ∈ {−1, 1}n}

)−1
.

Theorem 6.3. [215, Thm. 2.5] Let A ∈ Rn×n be a rational matrix. Then the computation of d(A,D) is

equivalent to the computation of the max-cut problem

d(A, eeT) =
(
2MC(BA−1)− eTA−1e

)−1
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where BM is the bipartite graph of a matrix M defined as the weighted bipartite BM = (Y
⋃
Z) where Y

and Z are two copies of the index set {1, . . . , n}.

Since the max-cut problem is NP-hard, computing d(A, eeT) is also NP-hard for any rational nonsingular

matrix A.

Nemirovskii’s Approach [195]: (Independent Real Perturbations) To show that it is NP-hard to

determine whether all representatives of a square interval matrix set are all nonsingular, Nemirovskii [195]

showed that the NP-complete knapsack problem A.4 can be reduced to this nonsingularity test.

Theorem 6.4. [195, Lemma 2.1] Consider the set of matrices

M(k) ,


 C z

yT 1

 : y, z ∈ Rn, ‖y‖∞ ≤ 1/k, ‖z‖∞ ≤ 1/k

 (6.9)

where C is a rational matrix. For a given constant k > 0, the task of determining whether M(k) includes a

singular matrix is NP-hard.

This approach was also applied by Braatz and Russell [42] to prove NP-hardness of the computation of µ

with independent real perturbations.

Theorem 6.5. [42, Thm. 1] For a given constant k > 0, all matrices in M(k) are nonsingular if and only

if

µ∆̂r(N) < k

where ∆̂r , {blkdiag{∆1,∆2} ∈ R2n×2n : ∆1,∆2 ∈∆r} and N ,

 0 C−1

eeT 0

.

Coxson and DeMarco’s Approach [64] (Independent Real Perturbations) Coxson and De-

Marco [64] generalized Nemirovskii’s results [195].

Theorem 6.6. [64, Prop. 1 and Thm. 1] Consider the set of matrices M(1) defined in (6.9). All matrices

in M(1) are nonsingular if and only if

max
{
yTC−1z : y, z ∈ Rn, ‖y‖∞ ≤ 1, ‖z‖∞ ≤ 1

}
≥ 1.

Furthermore, the above recognition problem above can be transformed to a max-cut problem in polynomial-

time, which implies that this problem is also NP-hard.
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6.2.2 NP-hardness of Mixed µ-calculation

Since any µ-calculation containing real uncertainty is NP-hard, NP-hardness of the real µ recognition roblem

directly implies the NP-hardness of mixed µ recognition. In other words, NP-hardness of mixed µ recognition

can be considered as a corollary of NP-hardness of real µ recognition [42, Cor. 1]. Below is a separate proof

for the NP-hardness of mixed µ recognition that can be extended to show the NP-hardness of µ for purely

complex perturbations.

Consider a QCQP of the form

q?qcqp := max
x∈X2

∣∣x∗Ax+ pTx+ c
∣∣ (6.10)

where A ∈ Rn×n, p ∈ Rn, c ∈ R, and X2 , {x ∈ Cn : 0 < bli ≤ |x∗Eix| ≤ bui , Ei = eie
T
i , i = 1, . . . ,m}.

Now, we show that for a fixed constant k > 0, the recognition problem “q?qcqp ≥ k” polynomially reduces to

a mixed µ recognition problem.

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

d y

c

x̄

A

∆r

∆r

∆c

∆c∗

pT

x̄Tw

wT

Figure 6.2: Equivalent block diagram for a QCQP.

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

dy

δc

∆r

∆r

∆c

∆c∗

0 0 0 0 w

0 0 0 I 0
I 0 0 0 x̄

0 0 A 0 0
0 wT pT x̄T c

Figure 6.3: QCQP as a robustness problem.
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dy

δr

∆r

∆r

M r(1)

(a) Repeated real uncertainties.

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

dy

δc

∆c

∆c∗

M c(1)

(b) Repeated complex uncertainties.

Figure 6.4: Pure real and complex robustness problems.

Theorem 6.7. Define the matrices

Mm(k) ,



0 0 0 0 kw

0 0 0 kI 0

kI 0 0 0 kx̄

0 0 kA 0 0

0 wT pT x̄T c


, (6.11)

∆̂m
p , {diag(δr

1:n, δ
r
1:n, δ

c
1:n, δ

c
1:n, δ

c) : δr
i ∈ R, δc ∈ C}, (6.12)

x̄ ,
1

2
(bu + bl), w ,

1

2
(bu − bl). (6.13)

For any fixed constant k > 0,

µ∆̂m
p

(Mm(k)) ≥ k ⇐⇒ q?qcqp ≥ k. (6.14)

Proof. The proof is similar to the proof of the main theorem in [44, Thm. 2.1]. The constraint set can be

rewritten as

X2 = {x ∈ Cn : x = ∆c(x̄+ ∆rw),∆r ∈ B∆r,∆c ∈ B∆c}. (6.15)

By defining dummy input and output d, y ∈ R, the QCQP (6.10) can be represented as the block diagram

in Figure 6.2 in which the optimization objective is the input-output relation between d and y. A simple

block diagram manipulation produces its equivalent linear fractional transformation (LFT) in Figure 6.3,

augmented with a performance block δc (following from the so-called main-loop theorem [208, Thm. 4.3]).

Then

q?qcqp = max
∆∈∆̂m

|Fu(Mm(1),∆)| (6.16)

where ∆̂m , {blkdiag{∆1,∆1,∆2,∆2} : ∆1 ∈ ∆r, ∆2 ∈ ∆c}. The remaining part of the proof is straight-

forward from the main loop theorem [208, Thm. 4.3]. QED

Remark 6.1. NP-hardness of mixed µ-calculation is a direct consequence of the fact that the QCQP prob-
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lem (6.10) is NP-hard.

Remark 6.2. The mixed µ-calculation problem in Theorem 6.7 reduces to the real µ-calculation problem

in Theorem 6.1 as a special case. Setting the complex uncertainty ∆c = I in Figure 6.2 gives

M r(k) =

Mm
11(k) Mm

13(k)

Mm
31(k) Mm

33(k)

+

Mm
12(k)

Mm
32(k)

 (I−Mm
22(k))−1

[
Mm

21(k) Mm
23(k)

]
, (6.17)

with the corresponding LFT in Figure 6.4(a).

6.2.3 NP-hardness of Complex µ-calculation

Toker and Özbay [267] used a similar approach as in [43,44] to show that µ computation with purely complex

uncertainties is NP-hard. More specifically, they showed that a certain recognition problem to determine

whether the inequality µ∆(M) < 1 polynomially reduces to an NP-hard complex program.

Theorem 6.8. [267, Thm. 1] Consider the matrix

M =

 P 0

0 eT




0 A 0

0 0 I

I 0 0


P−1 0

0 e

 (6.18)

where P = [e1, e3, · · · , e2n−3, e2n−1, e2, e4, · · · , e2n−2, e2n] ∈ R2n×2n and ek ∈ R2n are the standard basis

vectors. Then the following recognition problems are equivalent:

µ∆(M) < 1⇐⇒ sup
xi∈C,|xi|≤1

|xTAx| < 1. (6.19)

In [267], it was shown that a version of the NP-hard knapsack problem (see Problem A.5) can be written

in the form of the complex program in the right-hand side of (6.19), which implies that pure complex

µ-calculation is also NP-hard.

Remark 6.3. A special case of the mixed µ-calculation problem in Theorem 6.7 can be used to derive a

purely complex µ-calculation problem. Setting the real uncertainty ∆r = I gives

Mc(k) =

Mm
22(k) Mm

23(k)

Mm
32(k) Mm

33(k)

+

Mm
21(k)

Mm
31(k)

 (I−Mm
11(k))−1

[
Mm

12(k) Mm
13(k)

]

=


0 0 k(x̄+ w)

kA 0 kp

pT x̄T + wT c

 ,
(6.20)

with the corresponding block diagram in Figure 6.4(b). Setting k = 1, p = 0, c = 0, and x̄ = w = 1
2e

(corresponding to bl = 0 and bu = e) produces the same expression as the left-hand side of (6.19) but with
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the objective function replaced by |x∗Ax| in the right-hand side of (6.19). This relationship provides an

alternative route to proving that the purely complex µ-calculation problem is NP-hard.

6.3 Computational Complexity of Approximate µ-calculation

This section considers the computational complexity of the problem of approximating the value of µ. A

mathematical description of approximation problems is provided and a class of polynomial programs with

box constraints is introduced whose exact computation is NP-hard and whose arbitrarily close approximation

is also NP-hard. NP-hardness of the approximation problem for this class of polynomial programs is used

to show that approximation problems for real and mixed µ-calculations are NP-hard [42].

6.3.1 Computational Complexity of ε-approximation Problems

Suppose that the set of feasible solutions X is non-empty and compact. Following the Weierstrass theorem

[161], there exists x? ∈ X such that c? , c(x?) ≤ c(x) for all x ∈ X . The ε-approximation problem for (A.1) is

to compute a value ĉ ∈ R such that for a given ε > 0,

|c? − ĉ| ≤ ε|c? − c?|. (6.21)

This definition of ε-approximation is strongly preferred because it is invariant under translation and dilation

of the objective function, and quantifying the optimization objective in different units does not affect the

quality of the approximation as computed from (6.21) (see [18,211,276], for example).

A 0-approximation algorithm provides the exact optimal solution, while a 1-approximation algorithm

need only find any feasible point and compute its objective. Now consider the existence of polynomial-time

algorithms for computing an ε-approximation. Let n be a measure of the quantity of data needed to describe

an instance of an optimization problem. To provide the strongest results, ε will be selected to be a function

of n, which allows the consideration of algorithms for which the accuracy of the approximation degrades as

the size of the problem (measured by n) increases.

For an optimization whose exact computation is NP-hard, the ε-approximation problem may or may not

have an algorithm that computes an ε-approximation in polynomial-time as a function of problem size. An

example is the knapsack problem (Problems A.4 and A.5). There exists an algorithm such that its solution

can be approximated in polynomial-time within any factor of the optimum (see [214, Thm. 5.1] and [10, Thm.

7.4], for examples of randomized algorithms for solving the approximate knapsack problems), although its

exact computation is known to be NP-hard.

The traveling salesmans problem is NP-complete and its ε-approximation problem is NP-hard [211, Thm.
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17.10]. Another example is the class of polynomial programs with polytope (box, in particular) constraints

q?poly := max
0≤xi≤1


T∑
t=1

∏
i∈I1t

xi

∏
j∈I2t

(1− xj)

 (6.22)

where T is the number of terms in the polynomial objective, n is the number of optimization variables, and for

each t,
⋂
Iit = ∅ and

⋃
Iit = {1, . . . , n}. The exact optimization problem is NP-hard and the ε-approximation

problem is also hard. More specifically, finding a polynomial-time algorithm that approximates the optimum

within a given constant is equivalent to establishing that P6=NP as stated in the following lemma.

Lemma 6.1. [18, Thm. 3.1] There is a constant δ > 0 such that if there exists a polynomial-time algorithm

that can compute an ε-approximation for the optimization problem in (6.22) with ε = ε(n) = 1− n−δ, then

P=NP.

The general consensus in the computational community is that P 6=NP, which implies that an ε-

approximation problem for polynomial programming with box constraints is also hard. Note that the

particular form of ε(n) in Lemma 6.1 considers very weak forms of approximation, as it allows the quality

of the approximation to degrade as a function of problem size. In particular, for fixed δ and large n, ε(n)

approaches one, which only requires that the approximation algorithm be able to find a feasible point and

evaluate the corresponding objective function. Thus Lemma 6.1 indicates that the existence of even a weak

polynomial-time approximation algorithm for polynomial programs with box constraints is highly unlikely.

6.3.2 Approximate Real and Mixed µ-calculation

Braatz and Russell [42] showed that computing robust stability or performance margin within a given ε

accuracy is a computationally expensive problem. To do this, they first showed that the polynomial program

with polytope constraints in (6.22) can be represented as a skewed-µ problem.

Lemma 6.2. [42, Lemma 4] Consider the optimization problem in (6.22). For any fixed constant k > 0, the

recognition problem “q?poly ≥ k” is polynomial-time reducible to the µ recognition problem “µ∆r(M) ≥ k”

for some rational matrix M and a set of real diagonal perturbations ∆r.

The direct consequence is that the ε-approximation of robust stability or performance margins is compu-

tationally expensive.

Theorem 6.9. [42, Thm. 2] Consider the skewed-µ problem with any super set of uncertainties that includes

either (i) all real scalar uncertainties or (ii) one complex and the rest real scalar uncertainties. There is a

constant δ > 0 such that if there exists a polynomial-time algorithm that can compute an ε-approximation

for the skewed-mu with ε = ε(n) = 1− n−δ, then P=NP.
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Some parallel results were presented in the literature. In [64, Thms. 1 and 2], it was shown that there exists

some arbitrarily small ε > 0 such that the ε-approximation for real µ-calculation is NP-hard, unless P=NP.

Toker [265, Thm. 3.1] showed that computing an ε-approximation for real µ-calculation with ε(n) = 1−n−δ

for some δ > 0 is an NP-hard problem. In [88, Thm. 1.2], it was shown that for any ε > 0, the ε-

approximation for real µ-calculation is NP-hard, and its results were extended to any p-norm cases of real

uncertainty [90, Thm. 2.2].

Unfortunately, all of the above parallel results employed definitions of ε-approximation that are not prac-

tically or numerically meaningful when applied to robustness margin problems. First consider the results

of [88,90], which were based on the definition for the ε-approximation problem: |c?− ĉ| ≤ ε|c?|. The problem

with this definition is that it is not invariant to scaling and dilation [276]. It has been well understood by the

computational complexity community at least since the early 1990s that the definition of the ε-approximation

problem for continuous optimization problems must be scaling invariant to be meaningful [276]. To illus-

trate this problem, consider any particular µ problem in which a very accurate approximation is available

according to the definition |c?− ĉ| ≤ ε|c?|, let’s say |µ∆(M)− µ̂| ≈ 10−10|µ∆(M)| where µ̂ is our approximate

value for µ∆(M) and µ∆(M) ≈ 1. A mathematically equivalent µ problem can be constructed that is exactly

the same as the original µ problem, but with the matrix M modified to add a known constant of 10100 to

the value of µ∆(M). The same procedure can be employed for the approximation, which adds the same

constant to the value of µ̂. The computed accuracy for our mathematically equivalent approximation to

the µ problem is |µ∆(M) − µ̂| ≈ 10−10|µ∆(M) + 10100| ≈ 1010|µ∆(M)|. According to this definition of the

ε-approximation problem, one µ problem has a very highly accurate approximate solution with ε = 10−10

whereas a µ problem and its approximation that are completely mathematically equivalent to the original µ

problem is indicated to have a very highly inaccurate approximate solution, with ε = 1010, using the same

error definition.

While [64, 265] use a different ε-approximation definition than [88, 90], their definition also has a scaling

problem, in that an equivalent µ problem with an additive large constant causes their definition is have

vanishingly small errors regardless of the original value of ε. That is, a particular robustness margin problem

will have a vanishingly small or absurdly large value for the error ε depending on the details of how the

problem was mathematically represented rather than on the underlying problem.

6.3.3 Approximate Complex µ-calculation

Unlike real and mixed µ-calculation, it seems that there is no available affirmative results on the compu-

tational complexity of approximate complex µ-calculation. Readers are referred to [89, Prob. 22] for some

discussions about this problem.

89



6.4 Approximate BMI optimization and µ-synthesis calculations

It is straightforward to show that ε-approximation for BMI optimization problems and µ-synthesis problems

are computationally complex using the definition (6.21), following a very similar proof technique as used

by [42] for µ-calculation.

6.5 Results on the Gap between Exact and Upper-bounds of µ-calculations

This section reviews results on the gap between the exact µ and its convex upper bounds. Before studying

the conservatism of robust stability margin computation using convex upper bounds, some absolute stability

criteria are reviewed that provide sufficient conditions for robust stability and whose conservatisms have

been studied. A reason for studying absolute stability criteria and their conservatism is because they can

be also used to compute or approximate upper bounds on exact µ and give lower bounds on robust stability

margin computation.

6.5.1 Absolute Stability as Sufficient Conditions of Robust Stability

Suppose that a closed-loop system can be represented as a feedback interconnection of a linear time-invariant

(LTI) system and a structured (block-diagonal) memoryless sector-bounded nonlinear operator, denoted by

M −Γ. Its description will be the same as the M −∆ representation in Figure 6.1 where the only difference

is that the uncertain operator ∆ is now a sector-bounded memoryless (or static) nonlinear operator Γ. The

closed-loop system is said to be absolutely stable if it is globally uniformly asymptotically stable at the

origin for all memoryless nonlinearities in a given sector (see [136,279] for additional background on absolute

stability and related works). The circle and Popov criteria provide sufficient conditions for absolute stability

in terms of the strict positive realness of certain transfer functions, with these conditions representable in

terms of linear matrix inequalities (LMIs). The conditions also provide graphical tests in the Nyquist plot

for single-input single-output (SISO) systems. Note that a sufficient condition of robust stability provides a

lower bound on the robust stability margin of uncertain systems.

Circle Criterion and Its Conservatism

Lemma 6.3. [136, Thm. 7.1] Consider the nonlinear operator Γ ∈ Sector([0, ki]), ki > 0, i = 1, . . . , n.

Then the feedback interconnected system M(s)−Γ is absolutely stable if the transfer function K−1 +M(s)

is strictly positive real (SPR), where K = diag{k1, · · · , kn}.

To simplify the presentation, suppose that ki = k > 0 for all i = 1, . . . , n. Define an optimal value by

µ̂circ(M) , (max{k > 0 : I + kM(s) is SPR})−1
(6.23)
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whose inverse provides a lower bound on the robust stability margin for the M −∆ feedback interconnected

system with the nonlinear operator Γ in the place of ∆, which will be denoted by 1/µ?(M). Megretski [176,

Problem 3] posed the question of conservatism of the circle criterion and [177, 224] provided an answer.

In [224, Thm. 1], it was shown that there exists a sequence of matrices Mn whose dimension goes to infinity

as n→∞ such that

lim
n→∞

µ̂circ(Mn)

µ?(Mn)
=∞, (6.24)

which implies that the circle criterion cannot be sharp up to a constant that does not depend on the order

of a system. Note that the argument of [224] also holds for the cases when the operator Γ is replaced by

∆ ∈ ∆r or ∆c. For such cases, µ?(M) = max
{
k > 0 : µ∆

(
(2I− kM)−1M

)
≤ 1/k

}
where ∆ ∈ {∆r,∆c},

which implies that there exists a sequence of matrices Mn ∈ Cn×n such that

lim
n→∞

µ̂circ(Mn)

µ∆(Mn)
=∞, ∆ ∈ {∆r,∆c}. (6.25)

Popov Criterion and Its Conservatism The Popov criterion provides a less conservative stability test

than the circle criterion by exploiting the memoryless (static) property of the nonlinear operator Γ and an

LTI (dynamic) multiplier (I + sΛ)−1 that does not change the sector boundedness.

Lemma 6.4. [136, Thm. 7.3] Consider the nonlinear operator Γ ∈ Sector([0, ki]), ki > 0, i = 1, . . . , n.

Then the feedback interconnected system M(s) − Γ is absolutely stable if a positive-semidefinite diagonal

matrix Λ = diag{λ1, · · · , λn} such that the transfer function K−1 + (I + sΛ)M(s) is SPR, where K =

diag{k1, · · · , kn}.

To simplify the presentation, suppose that ki = k > 0 for all i = 1, . . . , n. Similar to the circle criterion,

define an optimal value by

µ̂ppv(M) ,

(
max

λi≥0, Λ=diag{λi}
{k > 0 : I + k(I + sΛ)M(s) is SPR}

)−1

. (6.26)

whose inverse also provides a lower bound on the robust stability margin for the M − ∆ feedback inter-

connected system with the nonlinear operator Γ in the place of ∆, which is denoted by 1/µ?(M). It is not

known whether there exists a sequence of matrices Mn ∈ Cn×n such that

lim
n→∞

µ̂ppv(Mn)

µ?(Mn)
=∞. (6.27)

This Popov criterion can be extended to norm-bounded real parametric uncertain matrices and provides

an upper bound on the structured singular value with real parametric uncertainties [26, 251]. From an

equivalence between the Popov criterion and the D-scaling method [117], it is provable that the limit in

(6.27) holds. Conservatism of the D-scaling upper bound will be discussed shortly in the next section.
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6.5.2 Conservatism of Upper Bounds for Complex µ-calculation

To evaluate the conservatism of convex upper bounds of µ, consider the diagonal non-repeated complex

uncertainty ∆c and the D-scaling upper bound defined as

µ̂∆c(M) , inf
{
σ̄(DMD−1) : D ∈ D∆c , D = D∗ > 0

}
(6.28)

where D∆c , {D ∈ Cn×n : D∆ = ∆D, ∀∆ ∈∆c}.

In [208], many numerical simulations were performed to estimate the ratio of µ̂∆c(M)/µ∆c(M) over wide

range of the dimension of M and [208] conjectured that this ratio is bounded by some constant that is

independent of the system dimension. This conjection was later disproved. Define the worst-case ratio of µ

and its upper bound by

rn , sup
M∈Cn×n

µ̂∆c(M)

µ∆c(M)
(6.29)

which is defined to be zero if both the numerator and denominator are zero. Megretski [175, Thm. 1] showed

that rn ≤ cn for some constant c > 0, which did not disprove or prove the conjecture. However, in [268, Thm.

1.0], it was proven that limn→∞ rn → ∞ and conjectured that the growth of rn is sublinear with problem

size n.

6.6 Alternative Approaches to Robustness Margin Computation

The above results indicate that both the exact computation of robustness margins is computationally expen-

sive in worst-case, and that the approximate computation of robustness margins is either computationally

expensive or can be conservative in worst-case. These theoretical results motivate the development of alter-

native approaches to compute or approximate robust stability margins. This section reviews two alternative

approaches to those problems: (a) deterministic polynomial-time model reduction algorithms and (b) ran-

domized algorithms using statistical learning theory.

6.6.1 Polynomial-time Model Reduction

As previously steted, the exact and approximate calculation of µ-calculation are hard problems. Furthermore,

the µ-problems tend to involve poorly conditioned matrices as the size of the problem increases [225]. For

those reasons, there have been several efforts to develop reduced models that have exactly or approximately

the same robustness margins as the original model. In [100], four dimensionality reduction methods for

uncertain systems were reviewed and their theoretical and computational characteristics were compared: (a)

singular value decomposition (SVD)-based algorithms [225]; (b) successive realization algorithms [226]; (c)

balanced truncation [15–17]; and (d) Kalman decomposition [68].
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Among the model reduction methods for uncertain systems, this section focuses on the SVD-based algo-

rithms as they behave in a numerically well-conditioned manner and are relatively easy to understand and

implement. The key idea is to apply SVDs (aka principal component analysis (PCA) [183]) to remove the

subspace components that do not affect the value of the robustness margin, or have negligible effects on

it. The only reason for the complexity in writing the algorithm is to do remove these components while

respecting the structure of the uncertainty.

6.6.2 Polynomial-time Probabilistic Randomized Algorithms

Proving that a problem is NP-complete or NP-hard avoids the investment of further futile efforts to solve

this problem algorithmically to find an exact solution in polynomial time. One alternative is to search for

an approximation to the exact solution that is plausible in polynomial time, where statistics are used to

more preicsely define what is meant by plausible. Randomized algorithms for robustness analysis have been

considered by many researchers in recent years, with a large increase in interest occurring once it was shown

that the calculation of µ is NP-hard (see [11,137,253,262,281,282], for example).

Polynomial-time randomized algorithms exist for computing approximate values for µ. Consider the

feedback interconnected uncertain system in Figure 6.1 and a set of randomly generated uncertain matrices

∆s(n) ,
{

∆(1), · · · ,∆(s(n))
}
⊂ B∆ where n denotes the dimension of the M and s(n) is the corresponding

number of samples. Define a sequence of values µ̌s(n)(M) , max
s(n)
i=1 %(M∆(i)) where %(·) = ρ(·) for complex

uncertainty set B∆, %(·) = ρR(·) for real/mixed uncertainty set B∆. The µ̌s(n)(M) are random variables

and provide lower bounds on µ, µ̌s(n)(M) ≤ µ∆(M) with probability one, for all s(n) ∈ N and n ∈ N. Define

a random sequence qs(n) ,
µ̌s(n)(M)

µ∆(M) that is nondecreasing and less than or equal to 1 with probability one.

Furthermore, lims(n)→∞ qs(n) = 1 in probability, which implies that for all ε > 0, Prob∆s(n)
[qs(n) ≥ 1−ε]→ 1

as s(n) → ∞. To estimate µ∆(M) from µ̌s(n)(M), it is required to find the minimal number of samples

S(n) such that the following inequality is satisfied:

Prob∆S(n)
[qS(n) ≥ 1− ε] ≥ 1− δ (6.30)

where ε ∈ (0, 1) and δ ∈ (0, 1) correspond to the accuracy and confidence, respectively, in the conclusion

being made, based on the computations of µ̌S(n)(M). A lower bound on such S(n) is the Chernoff bound

S(n) ≥ 1
2ε2 log 1

δ [281]. This lower bound is uniform in the sense that it does not depend on the dimension

of M , i.e., S(n) = S for any n ∈ N. Because the spectral radius and real spectral radius can be computed in

polynomial time, this implies that this lower bound grows in polynomial time with the size of the robustness

problem (that is, the dimension ofM). The detailed theoretical backgrounds on and applications of statistical

learning theory and randomized algorithms are beyond the scope of this chapter and the readers are referred

to some research monographs [262,274,280] for more information on these topics.
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Another interesting approach to stochastic robust analysis and control is a numerical approximation

method called polynomial chaos (PC) expansion that was first introduced by Wiener [288] for turbulence

modeling for uncertainties that are Gaussian random variables, which was later extended to other random

variables [294]. In the polynomial chaos expansion framework and its extensions, the main idea is to use

orthogonal basis functions to approximate the uncertainty propagation in terms of probability distributions

by projecting the functional onto the space spanned by the set of bases [96, 167, 293]. Recently, many

researchers have shown that spectral methods based on PC expansions can be computationally efficient

approaches for control systems analysis and design, in which the parametric uncertainties are treated as

random variables and the probability distributions of the system properties of consideration are approximated

by determining the coefficients of associated basis functions [82,84,115,116,142,143,191,192].

6.7 Summary and Future Work

A comprehensive overview is provided of research related to the computational complexity of robustness

margin calculations. Followed by the pioneering papers on the structured singular value (µ), there have been

numerous efforts to develop efficient algorithms for computing µ for purely real, mixed real and complex,

and purely complex uncertainties. Results on the NP-hardness of the exact computation of µ motivated

interest on the computational complexity of and potential conservatism in the approximation of µ. This

chapter collects together many results that are not well known in the literature, including that the cost of

µ calculation scales by the rank of the M matrix, and that in worst case the widely used upper bound for

µ can be arbitrarily far off. The chapter also describes approaches for the extension of past results. The

role of probabilistic randomized algorithms is also discussed, including their favorable scaling with problem

size. Polynomial chaos expansion-based methods are described as a computationally efficient alternative for

sampling-based stochastic robustness analysis and controller synthesis (aka Monte Carlo simulation).

Some open problems remain, such as the computational complexity of the ε-approximation of µ with

purely complex uncertainties, and the degree of conservatism of other convex upper bounds for µ such as

integral quadratic separators [121,178]. Much of the literature in post 1990s moved into the development of

numerical algorithms for robust control analysis and design based on linear and bilinear matrix inequalities,

but a review of those developments would require another paper.
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Part II

SPECTRAL METHODS FOR

STOCHASTIC CONTROL
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Chapter 7
Probabilistic Analysis and Control of

Uncertain Systems

Abstract Uncertainties are ubiquitous in mathematical models of complex systems and this chapter con-

siders the incorporation of generalized polynomial chaos expansions for uncertainty propagation and quan-

tification into robust control design. Generalized polynomial chaos expansions are more computationally

efficient than Monte Carlo simulation for quantifying the influence of stochastic parametric uncertainties on

the states and outputs. Approximate surrogate models based on generalized polynomial chaos expansions

are applied to design optimal controllers by solving stochastic optimizations in which the control laws are

suitably parameterized, and the cost functions and probabilistic (chance) constraints are approximated by

spectral representations. The approximation error is shown to converge to zero as the number of terms in the

generalized polynomial chaos expansions increases. Several proposed approximate stochastic optimization

problem formulations are demonstrated for a probabilistic robust optimal IMC control problem.

7.1 Introduction

Robust control theories [72, 308] analyze the stability and performance of uncertain systems against the

worst case, which may have a vanishingly small probability of occurrence [281]. Analysis or design based

on worst-case uncertainies can be too conservative to be applied in practice or may result in an overdesign

of process equipment. In a practical point of view, it is rare that an engineer can exactly quantify hard

bounds on the uncertainty, and a probabilistic description of uncertain parameters may be available instead.

For probabilistic uncertain models, the conclusions on robustness are intrinsically stochastic and can be

obtained in terms of a probability distribution or a level of confidence in estimates with probabilistic risk

of incorrectness. Research monographs are available that describe probabilistic approaches to tackle robust
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analysis and design problems for uncertain models [96,167,262,293].

Most commonly used probabilistic analysis approaches are Monte Carlo (MC) methods in which many

simulations are run with sampled uncertain parameters. The computational effort needed to propagate the

uncertainty through the system model essentially amounts to simulating a large number of individual deter-

ministic model realizations. While such an MC approach is applicable to many systems, the computational

cost can be prohibitively expensive more complex systems, especially in real-time control implementations.

The high computational cost of MC methods has motivated the development of computationally efficient

methods for uncertainty propagation and quantification that replace or accelerate MC methods [96,167,293].

This chapter considers generalized polynomial chaos (gPC) expansions as a functional approximation and

surrogate model of a mathematical model in the presence of uncertainty. Polynomial chaos expansions were

first introduced by Wiener [288] for turbulence modeling for uncertainties that are Gaussian random vari-

ables, which was later extended to other random variables [294]. Recently, many researchers have shown that

spectral methods based on PC expansions can be a computationally efficient alternative to MC approaches

for control systems design [82,84,115,116,190–192].

Although uncertainty propagation and quantification using PC expansions has been extensively studied,

the application of PC expansions to probabilistically robust and optimal controller design is a relatively

new research topic. When the system parameters are assumed to be random variables and the exogenous

disturbance are random processes, the solution and output trajectories are stochastic and controller design

reduces to solving stochastic optimization problems with probabilistic constraints, also known as chance

constraints. PC expansion approaches can be used to approximate chance constraints and we show the

convergence of the approximation. Several examples and case studies are presented to illustrate PC expansion

analysis and controller design of uncertain dynamical systems.

7.2 Probabilistic Uncertainty Quantification in Dynamic Systems

7.2.1 Uncertainty Quantification using gPC

The analysis of uncertainty propagation and quantification in models has several applications in systems

engineering. The validation (or invalidation) of models against experiment data must take into account

the effects of model uncertainties and measurement noise. In the presence of stochastic uncertainties, it

is important to determine the probabilities of the system properties exceeding specified critical values or

operation limits, and such evaluation can be used to conduct reliability and risk analyses. In a gPC approach

for addressing these problems, the system model is replaced by a surrogate model whose solutions are

represented by a gPC expansion and the surrogate model analyzed or simulated to quantify the propagation

of uncertainty through the system.
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7.2.2 Probabilistic Quantification of Uncertainty Propagation in System Performance

We study the probabilistic H∞ and H2 performances of a transfer function between the external disturbance

wp and the induced output zp.Let ∆ be the support of the uncertainty δ and define a performance index

J : ∆ → R that is assumed to be measurable. For probabilistic robust performance analysis, the goal is to

compute or approximate the probability distribution of J(δ).

Example 7.1 (Probabilistic robust performance). Consider the continuous-time linear parametric uncer-

tain system introduced in [262, Ch. 6]

d

dt
x(t) = A(δ)x(t) +Bwp

zp(t) = Cx(t)

(7.1)

with system matrices

A(δ) =

−2 + δ1 δ1δ2

0 −4 + δ2

 , B =

1

1

 , C =
[
1 0

]

with the independent random variables δ1, δ2 ∼ U([−1, 1]). Consider the quantification of uncertainty in

system performances that are specified in terms of H2- and H∞-norms of the uncertain system transfer

function G(s; δ) , C(sI−A(δ))−1B. Define the performance indices (a) J2(δ) , ‖G(s; δ)‖22 and (b) J∞(δ) ,

‖G(s; δ)‖2∞. Figs. 7.2(a) and 7.2(b) compare the Legendre PC expansion (L-PCE) approach with a heuristic

MC method, where 10,000 samples of the random vector δ was used to compute the first and second moments,

and to generate the histograms. The order of the L-PCE was set to 5 and the coefficients were determined

from non-intrusive least-squares minimization with 100 importance samples [167, Sec. 3.2]. The L-PCE is

indistinguishable from the Monte Carlo method in quantifying the PDF of the H2- and H∞-norms.

Remark 7.1. Similar approaches can be applied to the analysis of frequency-dependent specifications for

a system transfer function.

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

[

A(δ) B(δ)
C(δ) D(δ)

]wp zp

δ ∼ f∆

Figure 7.1: Probabilistic analysis of robust performance.
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Figure 7.2: PDF of system performances.

7.2.3 Spectral Analysis of Uncertainty Propagation under Differential Equations

Consider a general stochastic differential equation (SDE) of the form

L(z, t, θ; y) = g(z, t, θ) (7.2)

where z ∈ Z and t ∈ T are the spatial and temporal variables, θ ∈ Θ ⊂ Rnθ is the concatenation of the

random variables, the function g : Z × T ×Θ→ R is a forcing term, and y : Z × T → R is a solution of the

equation, which also defines a random field over the spatial and temporal spaces Z × T due to the random

variable vector θ. Suppose that there exists a bijective transformation (not necessarily diffeomorphism)

T : Θ → Ξ such that ζ(θ;ω) = T (θ(ω)) for all θ ∈ Θ and ω ∈ Ω and the transformed random variable

ζ is a standard (optimal in the sense of convergence rate) random variable for the set of polynomial basis

functions {φi}. For application of the spectral method based on polynomial chaos expansions, assume that

the solution of the SDE (A.62) has the form

y ≈ yNp ,
Np∑
i=1

yi(z, t)φi(ζ(θ;ω)) (7.3)

which is an approximation of the true solution y with Np+1 basis functions from the set {φi}. Obtaining the

approximated solution yNp requires determining the spatial- and temporal-varying deterministic coefficients

yi(z, t). To do this, substitute the approximation yNp to y of the SDE (A.62)

L

z, t, θ; Np∑
i=1

yi(z, t)φi(ζ(θ;ω))

 = g(z, t, θ) (7.4)

and solve for the spatial- and temporal-dependent coefficients yi(z, t) by intrusive or non-intrusive projections

onto the probability space of the random variable θ or ζ.

99



7.2.4 Case Study: Risk Analysis of Optimal Dynamic Portfolio Selection

Consider a capital market with n+1 risky securities with random rates of returns {ri}, where the superscript

i denotes the ith random return rate. The rate of returns of the risky securities at time instance t are denoted

by the concatenated vector rt , [r0
t , · · · , rnt ]T. Assume that the probabilistic distribution of the random

process rt is known. The wealth dynamics [310] is given as

xt+1 =

n∑
i=1

ritu
i
t +

(
xt −

n∑
i=1

uit

)
r0
t (7.5)

where xt is the wealth of the investor at time instance t and uit is the amount invested in the ith risky asset

at time instance t. The wealth dynamics (7.5) can be rewritten as

xt+1 = r0
t xt +RT

t ut (7.6)

where Rt , [r1
t − r0

t , · · · , rnt − r0
t ]

T and ut , [u1
t , · · · , unt ]T.

Further assume a stationary multiperiod process with the period tf = 4 and that the rate of return rt

is time-invariant in that period, i.e., rt = r for all t = 0, . . . , tf − 1. The probabilistic rate of return r

is assumed to be a Gaussian random variable with mean r̄ and covariance matrix Σr, i.e., r ∼ N (r̄,Σr).

Consider an investment policy given as ut = −Ktxt + vt where Kt = [1.6238 4.2907]T for all t = 0, · · · , 3

and v0 = [4.3548 11.9327]T, v1 = [5.1094 14.0004]T, v2 = [5.9948 16.4263]T, and v3 = [7.0035 19.2726]T.

Figure 7.3 shows the probabilistic uncertainty propagation of the wealth dynamics using a Monte Carlo

simulation and the PC expansion method based on the Hermite polynomial and the Galerkin projection.

The distributions are indistinguishable.
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Figure 7.3: Probabilistic distribution and time propagation of the wealth of the investor.
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7.3 Approximation of Probabilistic Bounds

7.3.1 Probabilistic (Chance) Constraints

In systems and control theory, most decision processes can be written in terms of finding feasible solutions

for constraints in the presence of uncertainty. For instance, a requirement of the system properties might be

represented as a nonlinear inequality h(x, δ) ≤ γ where x is the design variable and δ ∈ ∆ corresponds to the

concatenation of internal and environmental uncertainty. In a deterministic worst-case approach, a feasible

solution x must satisfy the constraint h(x, δ) ≤ γ for all δ ∈ ∆. This approach can be too conservative in

that it does not allow for a single realization of uncertainty δ to violate the constraint and may result in there

being no feasible solution x for the problem. Alternatively, probabilistic analysis considers the probabilistic

risk of violation of the constraints in terms of the probabilistic constraint Pr∆[h(x, δ) ≤ γ] ≥ β where δ is a

random variable with known probability distribution and β ∈ [0, 1] corresponds to the level of confidence in

feasibility of the constraint.

It is not, in general, a trivial problem to evaluate the quantity Pr∆[h(x, δ) ≤ γ] for a fixed value x ∈ X

unless the nonlinear function h : X ×∆→ R has a simple form such as a linear function in both arguments,

even though the probability distribution of δ is given. gPCE approaches can be used to approximate the

probabilistic feasibility constraint Pr∆[h(x, δ) ≤ γ] for each fixed x ∈ X . Its convergence is demonstrated

and illustrated below.

7.3.2 Approximation of Chance Constraints

The simplest approach to evaluate or approximate probabilistic constraints is Monte Carlo simulation in

which the probability of feasibility is computed from

ph(x, γ) , Pr∆[h(x, δ) ≤ γ] ≈ 1

Ns

∑
j

I{h(x,δj)≤γ} (7.7)

where Ns is the number of samplings and I{·} is the indicator function that is 1 if a sampled uncertain

parameter δj satisfies the constrained h(x, δj) ≤ γ and 0 otherwise.

An alternative to the Monte Carlo approach for the approximation of chance constraints is gPCE-based

spectral approximation in which the nonlinear uncertainty propagation is approximated by a gPCE and the

probabilistic feasibility of constraints is evaluated with a relatively cheap computational cost compared to

Monte Carlo simulation. The next theorem shows that such approximation of probabilistic bounds using

gPCEs converges to the true probability of feasibility.

Theorem 7.1. Define the function F (x, γ) , Pr∆[h(x; δ) ≤ γ]. For any γ ∈ R and h(x; ·) : ∆ → Y ⊂ R
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such that h(x; ·) ∈ L2(∆) for any x ∈ X , there exist sets of coefficients {ai} and polynomials {φi} such that

lim
n→∞

∣∣∣F (x, γ)− F̂n(x, γ)
∣∣∣ = 0 (7.8)

holds pointwisely in x ∈ X , where F̂n(x, γ) , Pr∆[hn(x; δ) ,
∑n
i=0 ai(x)φi(δ) ≤ γ].

Proof. The proof is straightforward. From Theorem A.1, for any h ∈ L2(∆), there exists a gPCE of the

form hn(x; δ) such that hn →m.s. h. The fact that m.s.-convergence implies the d-convergence (convergence

in distribution) (see [252, Ch. 6.7] for the definitions and relations of probabilistic convergence), implies that

F (x, γ)→ F̂n(x, γ) as n→∞ for any fixed x ∈ X . QED

The convergence rate depends on the smoothness (differentiability) of the function h(x; ·).

In general the computation or approximation of the probability Pr∆[h(x; δ) ≤ γ] still requires generating

random samples, since no analytical solution exists in general. A more computationally efficient approach

is to exploit a useful property of gPCE: All of the moments for a gPCE have analytical forms in terms of

the coefficients. In particular, we use the well-known Chebyshev inequality Pr[|X −E[X]| ≥ λ] ≤ Var[x]
λ2 or

Pr[X ≥ λ] ≤ Var[x]
(E[X]−λ)2 .

Example 7.2. To illustrate the proposed approach, consider the uncertain system (7.1) given in Exam-

ple 7.1. We compute the probabilities Pr∆[‖G(s; δ)‖22 ≤ γ2] and Pr∆[‖G(s; δ)‖2∞ ≤ γ∞] for γ2 = 1.00 and

γ∞ = 0.75. Table 7.1 shows the approximation of these values using different approaches for an order of 5 for

the L-PCE. For the third approach using the computed coefficients of the L-PCE, the Chebyshev inequality

gives a lower bound for the probability that is very tight for the H2-norm and somewhat less tight for the

H∞-norm.

7.4 Optimal Controller Design with Chance Constraints

7.4.1 Parameterization of Control Laws

This section introduces three different approaches to controller design using gPCE methods for parametric

uncertain systems that are illustrated for a specific application to provide a clear comparison between

approaches.

Approaches Pr∆[‖G(s; δ)‖22 ≤ γ2] Pr∆[‖G(s; δ)‖2∞ ≤ γ∞]

MC 0.9691 0.9800
PCE+MC 0.9691 0.9801

PCE+Coeff ≥ 0.9641 ≥ 0.9574

Table 7.1: Approximation of probabilistic bounds.
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Quantization of control input Parameterize an open-loop control law by

u(z, t) =

M∑
i=1

uiIχi(z, t) (7.9)

where

Iχi(z, t) ,

 1 (z, t) ∈ χi
0 (z, t) /∈ χi

(7.10)

such that
⋃
i χi = χ ⊂ Z × T is a compact set.

Example 7.3 (Control vector parameterization (CVP)). CVP is a simple and popular approach to solving

infinite-dimensional optimization problems that simultaneously optimizes multiple parameters describing a

spatial profile of control inputs (variables). Consider a model-based optimal porosity distribution control

problem that minimizes ohmic drop across a porous electrode in a lithium-ion battery. A mathematical

model of a porous electrode is [92,216]

di1
dz

= i0
F

RT

3(1− ν(z))

Rp
(h1(z)− h2(z)),

dh1

dz
= − 1

σ0(1− ν(z))b
i1(z),

dh2

dz
=

1

κ0ν(z)b

(
σ0(1− ν(z))b

dh1

dz

∣∣∣∣
z=0

− i1(z)

)
.

(7.11)

The boundary conditions for solution of these equations are given by

h1|z=0 = 1, h2|z=`p = 0, i1|z=`p = 0. (7.12)

In CVP, the control variable ν(z) is parameterized by a finite number of parameters by partitioning its values

over the spatial domain, i.e.,

ν(z) =

M∑
i=1

νiIZi(z) (7.13)

where Zi is the partition of the interval [0, `p] satisfying
⋃
iZi = [0, `p] and Zi

⋂
Zj = ∅, and IZi(z) is the

indicator function which is 1 for z ∈ Zi and 0 otherwise. This parameterization reduces the optimization to

being finite-dimensional:

min
{νi}Mi=1

J

subject to (7.11) with (7.12),

0 < νi < 1, i = 1, . . . ,M

(7.14)

where the cost function J is set are the battery design objective to be minimized and the spatially quantized
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control variable is (7.13).

For robust optimization, consider the model parameters θ , [F,R, T, i0, Rp, σ0, κ0, b] that are assumed

to be random variables. A common robust optimization objective is the weighted sum of the mean and

variance, E[J(ννν; θ)]+wVar[J(ννν; θ)], where ννν is the concatenation of the decision variables {νi}Mi=1 and w > 0

is a user-defined weight specifying the tradeoff between nominal and robust performance. Alternatively, J

in (7.14) can be replaced by E[J(ννν; θ)] and an additional constraint Var[J(ννν; θ)] ≤ βJ can be introduced

where βJ is a user-defined bound on the variance of the cost that plays the same role as w.

Spectral representation of control input Consider the open-loop control law

u(z, t) =

M∑
i=1

uiψi(z, t) (7.15)

where {ψi} is a set of appropriately chosen basis functions. Note that elements of the set {ψi} could be

neither orthogonal nor orthonormal.

Example 7.4 (CVP based on sinusoidal basis functions). Consider the same mathematical model given

in (7.11) and a spectral representation of the control variable ν(z) =
∑M
k=1 νk sin

(
2π
k z + νM+k

)
. With

this finite parameterization of the control variable as {νi}2Mi=1, formulation of the robust optimization based

on PCE is similar to Ex. 4.

Fixed structure of controllers Consider a closed-loop control law

u(z, t) = k(y(z, t);ui) (7.16)

where y denotes the measured output of the system, the mapping k : Y → U is a feedback control law,

and the ui are the parameters of the controller. With this finite parameterization of the control variable,

formulation of robust optimizations based on PCE is similar to Ex. 4.

7.4.2 Case Study: IMC-based Robust Optimal Controller Design

This section illustrates probabilistic controller design approaches based on gPC expansions to achieve ro-

bust performance and stability in the presence of parametric uncertainties. Three problem formulations for

stochastic programming are considered: (a) probabilistically guaranteed cost; (b) probabilistic cost minimiza-

tion; and (c) mean-variance optimization. We also present approximate stochastic programmings based on

gPC to handle chance constraints and probabilistic bounds on cost functions for the three different stochastic

optimizations.
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Some industrial processes are described by a first-order biproper nonminimum-phase (FBNP) model

G(s) =
k1(1− τds)

1 + τcs
(7.17)

where each parameter is assumed to be uncertain, i.e., k1 = ko1(1+ρδ1), τd = τod (1+ρδ2), and τc = τoc (1+ρδ3)

with the percentile of uncertainty ρ ∈ [0, 1] and the uncertainty δi ∈ [−1, 1], i = 1, 2, 3.

Robustness considerations can be taken into account by posing the design problem as the min-max opti-

mization:

min
C(s)

max
δ∈∆

‖W1(s)(M(s)−Gc(s))‖∞

subject to ‖W2(s)T (s)‖∞ < 1, ∀δ ∈ ∆

(7.18)

where M(s) is a reference model for the closed-loop system response, Gc(s) is the closed-loop system re-

sponse with the uncertain plant G(s) and controller C(s), W2(s) is a weighting transfer function for robust

stability, T (s) is the complementary sensitivity function, and ∆ , [−1, 1]3 is the set of parametric uncer-

tainties. The H∞-norm of the irrational transfer functions in (7.18) was computed using the third-order

Padé approximation.

For design of a controller solving the optimization (7.18), consider an internal model controller [185]

C(s) ,
J(s)

Gom(s)(1− J(s))
(7.19)

where Gom(s) , ko1
1+τoc s

is the minimum-phase part of the nominal system transfer function Go(s) ,
ko1(1−τods)

1+τoc s

and J(s) , 1
(1+τs)k

is a low-pass filter with two tuning parameters τ > 0 and k ∈ N. With this param-

eterization of controllers, the infinite-dimensional optimization (7.18) reduces to a finite-dimensional op-

timization in which the decision variables are τ and k. Now define two nonlinear functions f1(τ, k; δ) ,

‖W1(s)(M(s)−Gc(s))‖∞ and f2(τ, k; δ) , ‖W2(s)T (s)‖∞ and assume that the uncertain parameters δi are

uniformly distributed independent random variables over the support ∆.

Probabilistically guaranteed cost For this problem, the goal is to ensure a certain level of achievement

for the cost function (denoted by γ) with minimized probability of violation (denoted by 1 − β1) while

satisfying the constraint of robust stability with a given probability (denoted by β2). Its mathematical

description is given by

(P1)

max
τ>0,k∈N

β1

subject to Pr∆[f1(τ, k; δ) ≥ γ] ≤ 1− β1,

Pr∆[f2(τ, k; δ) ≥ 1] ≤ 1− β2.
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The integer variable can be removed by fixing the order of the low-pass filter k and using τ > 0 as the tuning

parameter. Now replace the nonlinear functions fj by their approximations using the multivariate Legendre

PCEs:

fj(τ ; δ) ≈ f̂j(τ ; δ) ,

Njp∑
i=0

aji (τ)Li(δ) (7.20)

where Li are the Legendre polynomials.

With this approximation of uncertainty propagation under nonlinear functions, solve an approximate

optimization

(P1′)

max
τ>0

β1

subject to ĥ1(τ ; γ) ≤ 1− β1, ĥ2(τ) ≤ 1− β2,

where ĥ1(τ ; γ) , Pr∆[f̂1(τ ; δ) ≥ γ] and ĥ2(τ) , Pr∆[f̂2(τ ; δ) ≥ 1].

Probabilistic cost minimization problem For this problem, the bound γ on the cost function is min-

imized with a user-defined probabilistic violation 1 − β1 while satisfying the constraint of robust stability

with probability β2:

(P2)

min
τ>0,k∈N

γ

subject to Pr∆[f1(τ, k; δ) ≥ γ] ≤ 1− β1,

Pr∆[f2(τ, k; δ) ≥ 1] ≤ 1− β2.

This optimization can be considered as a probabilistic relaxation of the worst-case optimization and feasible

solutions with confidence levels β1 = β2 = 1 correspond to the deterministic solutions in (7.18).

For a fixed order of the low-pass filter k, τ > 0 is the only decision variable and the multivariate Legendre

PCE (7.20) can be used to approximate the chance constraints in (P2):

(P2′)

min
τ>0

γ

subject to ĥ1(τ, γ) ≤ 1− β1, ĥ2(τ) ≤ 1− β2,

where ĥ1(τ, γ) and ĥ2(τ) are previously defined.

Mean-variance optimization In this problem, the weighted mean-variance cost is minimized while sat-

isfying the constraint of robust stability with probability β. Its mathematical description is

(P3)

min
τ>0,k∈N

E[f1(τ, k; δ)] + wVar[f1(τ, k; δ)]

subject to Pr∆[f2(τ, k; δ) ≥ 1] ≤ 1− β.
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Figure 7.4: Comparison of L-PCE and MC approaches that can be used to trade off two objectives in
stochastic optimization in Ex. 7.5.

Same as before, fix the order of the low-pass filter k and use τ > 0 as the only decision variable. The

multivariate Legendre PCE (7.20) can be used to approximate the chance constraints in (P3):

(P3′)

min
τ>0

E[f̂1(τ ; δ)] + wVar[f̂1(τ ; δ)]

subject to ĥ(τ) ≤ 1− β,

where ĥ(τ) , Pr∆[f̂2(τ ; δ) ≥ 1]. From orthonormality of the Legendre PCE, the closed form for the cost

function in (P3′) is E[f̂1(τ ; δ)] + wVar[f̂1(τ ; δ)] = a1
0(τ) + w

∑N1
p

i=1(a1
i (τ))2.

Example 7.5. Consider an FBNP model (7.17) with the nominal parameter values ko1 = τod = τoc = 1 and

30% uncertainty ρ = 0.3. The reference model is assumed to be M(s) = 1
1+s and the weighting transfer

functions are W1(s) = 1.25 1
1+
√

2s
and W2(s) = 0.125 1+0.25s

1+0.0025s . The IMC controller (7.19) is considered with

the low-pass filter J(s) = 1
(1+τs)3 . The probabilistic violation of the chance constraint Pr∆[‖W2(s)T (s)‖∞ ≥

1] using the Legendre-PCE (L-PCE) of order 5 is nearly identical to MC simulations (see Fig. 7.4).

7.5 Summary and Future Work

This chapter studies generalized polynomial chaos expansion approaches to approximate the functional

dependence of dynamical system properties on uncertainties that are random variables for stochastic control

problems as a means of replacing or facilitating MC simulation methods. Stochastic optimal control problems

were formulated using gPC in which the cost function and probabilistic constraints can be reformulated as

the constraints over the coefficients of gPC expansions. Several numerical examples and case studies were

presented to illustrate the proposed approaches. Since closed form expressions for the dependence of the

coefficients on the decision variables are unavailable in general, the optimizations may be solved by derivative-
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free or approximate gradient methods for nonlinear programming.

108



Chapter 8
Approximate Stochastic Model Predictive

Control

Abstract This chapter considers the model predictive control of dynamic systems subject to stochastic

uncertainties due to parametric uncertainties and exogenous disturbance. The effects of uncertainties are

quantified using generalized polynomial chaos expansions with an additive Gaussian random process as the

exogenous disturbance. With Gaussian approximation of the resulting solution trajectory of a stochastic

differential equation using generalized polynomial chaos expansion, convex finite-horizon model predictive

control problems are solved that are amenable to online computation of a stochastically robust control policy

over the time horizon. Using generalized polynomial chaos expansions combined with convex relaxation

methods, the probabilistic constraints are replaced by convex deterministic constraints that approximate

the probabilistic violations. This approach to chance-constrained model predictive control provides an

explicit way to handle a stochastic system model in the presence of both model uncertainty and exogenous

disturbances.

8.1 Introduction

In recent years, stochastic programming formulations for model predictive control (MPC, aka receding

horizon control) have been intensively studied in the context of many different areas of application including

robot and vehicle path planning [29–31], network traffic control [296], chemical processes [158,235,269], and

economics [60, 105, 310]. In such control problems, stochastic models are represented in terms of stochastic

differential equations (SDEs) with the stochasticity resulting from exogenous disturbances, plant/model

mismatches, and sensor noise.

Robust MPC formulations can be categorized as being either deterministic or stochastic, based on the
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representation of the uncertainties. Deterministic robust MPC (e.g., see [20,50,286] and references therein)

analyzes the stability and performance of systems against worst-case perturbations with the resulting opti-

mizations being min-max problems that are computationally demanding to solve directly and so are typically

replaced by approximate solutions that are more amenable to implementation. The worst-case perturbations

may have a vanishingly small probability of occurring in practice, but any such information on probabilities

is not taken into account in a deterministic formulation. Analysis or design based on worst-case uncertain-

ties can be too conservative to be applied in practice, may result in an overdesign of process equipment, or

can result in infeasibility during real-time optimization. From a practical point of view, it is rare that an

engineer knows exactly what value for hard bounds to specify on the uncertainty (e.g., knows that the hard

bound on uncertainty in a parameter should be exactly 10.6% instead of 11.3%), and a small perturbation

in these bounds can mean the difference because a closed-loop system being robust to the uncertainties or

being unstable.

Most parameter estimation algorithms generate models with probabilistic descriptions of the uncertain-

ties. For such models, robustness characterizations are intrinsically stochastic and can be written in terms

of a probability distribution or a level of confidence in estimates with probabilistic risk of incorrectness.

Contrary to deterministic robust MPC, stochastic robust MPC incorporates such probabilistic uncertainties

and probabilistic violations of constraints, and allows for specified levels of risk during operation. Commonly

used probabilistic analysis approaches are Monte Carlo (MC) methods, in which many simulations are run

with sampled random variables or random sequences. The effects of uncertainty on the closed-loop system

are quantified by simulating a large number of individual deterministic model realizations. While such MC

approaches are applicable to most systems, the computational cost can be prohibitively expensive, especially

in real-time optimal control algorithms such as MPC. Apart from simulation-based methods, convex approx-

imations for a receding horizon method of the constrained discrete-time stochastic control are considered

in [55], in which convexity of the resultant optimization is carried out in the basis of robust optimiza-

tion [22, 27] that includes robust linear programs and more generally robust convex programs (see [21] for

details of robust convex optimization). However, such robust optimization formulations of chance constraints

are not applicable to the cases when the stochastic dynamical system has nonlinear parametric uncertainties,

whereas this paper can manage the system model that is linear parameter-varying Gaussian, for which the

system matrices have nonlinear dependence of random variables and there are additive Gaussian random

processes corresponding to external disturbance and measurement noise.

The high computational cost of simulation-based methods has motivated the development of computa-

tionally efficient methods for uncertainty analysis that replace or accelerate MC methods [96,167,293]. The

MPC formulation in this chapter uses generalized polynomial chaos (gPC) expansions, which is a spectral

method to approximate the solution of an SDE that has stochastic parametric uncertainties and exogenous

disturbances. Polynomial chaos expansions were first introduced for turbulence modeling with the uncer-

tainties being Gaussian random variables [288], with later extensions considering other types of common

110



probability distributions [294]. Recently, many researchers have demonstrated the use of (generalized) poly-

nomial chaos expansions as a computationally efficient alternative to MC approaches for the analysis and

control of uncertain systems [82,115,116,143,191,192]. In [83,84], the gPC expansion is applied to formulate

optimal trajectory generation problems in the presence of random uncertain parameters.

This chapter also presents several probabilistic collision conditions that are functions of the mean and

covariance of the trajectory. We show that a gPC expansion that is an approximation of the solution of

an SDE, in which both system parameters and exogenous disturbances are stochastic, converges in the

mean-square sense as the number of terms in the expansion increases. The proposed approximation results

in a convex optimization for the control policy that does not use any sampling and is amenable to online

computation.

8.1.1 Problem Statement

Consider a stochastic discrete-time linear parameter-varying system:

xt+1 = A(δ)xt +Bu(δ)ut +Bw(δ)wt, (8.1)

where δ ∈ ∆ denotes the concatenation of the parametric uncertainties and A : ∆→ Rn×n, Bu : ∆→ Rn×m,

and Bw : ∆ → Rn×nw are uncertain system matrices. Assume that w ∈ R is a Gaussian white noise

process with known distribution, and the initial state x0 and uncertainty δ are random variables with known

probability density functions (pdfs). Under this stochasticity of parameters and disturbance, the solution

trajectory of the system (8.1) is a random process for which the main goal of analysis is to compute or

approximate the statistical properties and the main goal of synthesis is to drive the random process xt to

have a desirable statistic.

In finite-horizon stochastic MPC, the goal is to determine a control policy µT , (u0, · · · , uT ) that solves

the optimization

min
µT

J(x̄0,Σx0 , µT )

s.t. xt+1 = A(δ)xt +Bu(δ)ut +Bw(δ)wt,

yt = Cxt, Pr[yt /∈ Fy] ≥ β,

ut ∈ U , for t = 0, · · · , T,

wt ∼ fw, δ ∼ fδ, x0 ∼ fx0
,

(8.2)

where Fy denotes the forbidden region for the output yt and β is a lower bound of probabilistic collision

avoidance.1

1Fy and β can be time-varying, where the forbidden region might correspond to moving objectives and time-varying β can
be used to assign different risk of collision in different time sequences in the predicted motions.
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8.2 Feasibility of Chance Constraints: Probabilistic Collision Checking

This section presents four different ways of formulation of chance constraints corresponding to probabilistic

collision avoidance. In particular, for a motion-planning problem for a mobile system it is necessary to

impose constraints on the (controlled) state or output variables and such constraints have the form η(x) ≤ 0

where x ∈ X ⊂ Rn refers to the state variables and the function η : Rn → Rm is of vector-value. Due to

stochastic nature of the state variables, it is natural to introduce the so-called chance constraints that are

of the form Pr[η(x) ≤ 0] ≥ α where α ∈ (0, 1) denotes a level of confidence. For a probabilistic collision

avoidance problem, the formulation of chance constraints depends on the representation of obstacles and

mobile agents that have stochastic uncertainty.

8.2.1 Obstacles as Point Masses in a Large Work Space

The probability of collision to obstacles at time t and in the work space W ⊂ Rns , ns ≤ 3, can be defined

as [154,264]

P ct ,
∫
xv

∫
xa
Ic(x

v
t , x

a
t )dFva(xvt , x

a
t ), (8.3)

where Fva(·, ·) is the joint cumulative distribution function (cdf), the indicator function for collision is defined

by

Ic(x
v, xa) ,

 1, for Xv(xv)
⋂
Xa(xa) 6= ∅,

0, otherwise,

Xv(xv) and Xa(xa) are the regions occupied by the vehicle and the obstacle whose global reference coordinates

are xv and xa, respectively. Equipped with this definition of probabilistic collision, the chance constraint

Pr[yt /∈ Fy] ≥ β in (8.2) can be rewritten as P ct ≤ 1 − β. Consider the obstacles as point masses, which

occurs when the volume of Xv(xv) is much smaller than the work space W for all xv ∈ W and the volume

of Xa(xa) is 0 for all xa ∈W .

Lemma 8.1 (Lemma 1 in [264] ). For obstacles as point masses, suppose that xv ∼ N (x̄v,Σxv ) and xa ∼

N (x̄a,Σxa) are independent Gaussian random variables. Then P c ≤ 1−β can be rewritten as the constraint

on (x̄v,Σxv , x̄
a,Σxa):

(x̄v − x̄a)TΣ−1
x (x̄v − x̄a) ≥ −2 ln

(
1− β
Vv

√
det(2πΣx)

)
, (8.4)

where Σx = Σxv + Σxa and Vv is the volume of the vehicle.

The constraint (8.4) is not convex in (x̄v, x̄a) even for a fixed β, but is concave in (x̄v, x̄a) due to positive

definiteness of the inverse covariance matrix Σ−1
x . However, a method of semidefinite programming (SDP)

relaxation can be used to check its feasibility and solve related optimizations approximately.
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Convex relaxation: Suppose that x̄v is affine in the control input u, i.e., x̄v = Mu+b with an appropriate

matrix M and a vector b of compatible dimensions. Then the inequality (8.4) can be rewritten as

 1

u

T

Q

 1

u

 ≥ γ ⇐⇒ Tr

Q
 1

u

 1

u

T
 ≥ γ

⇐⇒ Tr(QU) ≥ γ, U � 0, U11 = 1, Rank(U) = 1

(8.5)

where Q � 0 and γ can be appropriately computed from (8.4). Suppose that a convex quadratic constraint

of the form uTQ1u+ qT
1 u+ q10 ≤ 0 with Q1 � 0 is imposed on the control input. Minimizing the probability

of collision under that quadratic constraint can be represented as the optimization

max
U

Tr(QU)

s.t. Tr(Q1U) ≤ 0, U � 0, U11 = 1, Rank(U) = 1

(8.6)

where the symmetric matrix Q1 satisfies the relation

 1

u

T

Q1

 1

u

 = uTQ1u + qT
1 u + q10. It is well

known that removing the rank constraint Rank(U) = 1 in this particular optimization does not change

the optimum value, i.e, the corresponding SDP relaxation is exact [198]. Next, consider a similar problem

with the box-type constraints |ui| ≤ 1 for i = 1, . . . nu in the place of the quadratic constraint on u. Then

minimization of the probability of collision can be represented as the optimization

max
U

Tr(QU)

s.t. Uii ≤ 1, i = 2, . . . , nu + 1,

U � 0, U11 = 1, Rank(U) = 1.

(8.7)

The associated primal SDP relaxation is the same as the optimization (8.7) without the rank constraint,

and its suboptimality is bounded by

γ? ≤ γ?sdp ≤
π

2
γ? (8.8)

where γ? refers to the optimal value of (8.7) and γ?sdp refers to the optimal value of the primal SDP

relaxation [196,198].

8.2.2 Probabilistic Safety Regions

Instead of quantifying the probability of safety by 1−Pc, consider the dual definition of probability of safety:

P st ,
∫
xv

∫
xs
Is(x

v
t , x

s
t )dFvs(x

v
t , x

s
t ), (8.9)
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where xs is a global reference coordinate that characterizes a virtual safety region Xs(xs) and the joint cdf

Fvs and the indicator function Is follow similar definitions as in the previous section. With this definition

of probabilistic safety regions, the chance constraint Pr[yt /∈ Fy] ≥ β in (8.2) can be rewritten as P st ≥ β.

Consider the obstacles as point masses, which is a case when the volume of Xv(xv) is much smaller than the

work space W for all xv ∈W and the volume of Xs(xs) defines a point in W .

Lemma 8.2. For point-mass obstacles, suppose that xv ∼ N (x̄v,Σxv ) and xs ∼ N (x̄s,Σxs) are independent

Gaussian random variables. Then Ps ≥ β can be rewritten as the constraint on (x̄v,Σxv , x̄
s,Σxs):

(x̄v − x̄s)TΣ−1
x (x̄v − x̄s) ≤ −2 ln

(
β

Vv

√
det(2πΣx)

)
, (8.10)

where Σx = Σxv + Σxs and Vv is the volume of the vehicle.

The constraint (8.10) is convex in (x̄v, x̄s) for a fixed β ∈ [0, 1].

8.2.3 Obstacles as Linear Constraints in a Work Space

Consider the lifted system output yt. The forbidden region for the system output can be defined as a union

of N linear inequality constraints that is a nonconvex polyhedral set

Fy ,
N⋃
i=1

{
y : hT

i y ≥ bi
}
. (8.11)

Assume that y ∼ N (ȳ,Σy) and define ηi , hT
i y, which is a univariate Gausian random variable with mean

η̄i = hT
i ȳ and variance Σηi = hT

i Σyhi. The idea of risk allocation proposed by [29,207] can be used to derive

a conservative convex condition for the constraint (8.11).

Lemma 8.3 (Lemmas 1, 2, and 3 in [29] ). Consider a chance constraint Pr[y /∈ Fy] ≥ β or the equivalent

condition Pr[y ∈ Fy] ≤ 1− β where Fy is defined in (8.11). Then the feasibility of the constraint

Pr[ηi ≥ bi] ≤ εi, εi ∈ (0, 1), and
∑
i

εi = 1− β (8.12)

implies the feasibility of the constraint Pr[y /∈ Fy] ≥ β. Furthermore, Pr[ηi ≥ bi] ≤ εi ⇔
1

2

(
1− erf

(
bi − η̄i√

2Σηi

))
≤ εi, and the constraint (8.12) is convex in (η̄i, εi) for β ≥ 0.5.

Alternatively, consider the forbidden region for the system output defined as an intersection of N linear

inequality constraints that is a convex polyhedral set

F ′y ,
N⋂
i=1

{
y : hT

i y ≤ bi
}
. (8.13)
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In this case, the nonconvex chance constraint Pr[y /∈ F ′y] ≥ β can be replaced by the relaxation

Pr[ηi > bi] ≥ εi, εi ∈ (0, 1), for i = 1, . . . , N (8.14)

where εi are appropriately defined functions of β.

Lemma 8.4. With the condition εi ≥ 0.5 incorporated into the constraint (8.14), the combined constraint

is convex in (η̄i, εi).

Proof. Pr[ηi > bi] is a concave function in η̄i ≥ bi, and for εi ≥ 0.5, the feasibility of the constraint (8.14)

necessarily requires η̄i ≥ bi. Thus, if (η̄1
i , ε

1
i ) and (η̄2

i , ε
2
i ) are feasible solutions of the constraint (8.14) and

εji ≥ 0.5, j = 1, 2, then (η̄λi , ε
λ
i ) is also a feasible solution for all λ ∈ [0, 1] where the superscript λ refers to

the λ-convex combination of the feasible solutions with the superscripts 1 and 2. QED

Imposing additional linear constraints on εi does not change the convexity of the combined constraint. For

example, additional constraints εi ≥ `(β) could be introduced in which ` : β 7→ [0.5, 1) is a nondecreasing

function. However, the most practically useful functional form for the ` is not obvious. One functional form

that may be useful is `(β) = N
√
β, in which case β ≥ 0.5N would satisfy the constraint εi ≥ 0.5.

8.3 Efficient Approximation of Feasibility of Probabilistic Constraints

In the previous section, we presented the methods of formulating chance constraints for probabilistic collision

avoidance under stochastic uncertain circumstance and model uncertainty. Under the assumption that

the state (or output) variables are jointly Gaussian random variables, the resultant chance constraints

are to impose the constraints on the mean and covariance of the state. However, the state of the system

model (8.1) is not Gaussian and even computations of its mean and covariance can necessitate sampling-based

evaluation such as Monte Carlo simulation. This section presents and analyzes methods of approximating

uncertainty propagation in a stochastic dynamical system (8.1) that are in the basis of generalized polynomial

chaos expansions. The methods provides numerically tractable computations of the mean and covariance of

controlled state variables for which closed-forms of approximate mean and covariance can be obtained and

the associated chance constraints can be efficiently evaluated.

8.3.1 Approximation of Uncertainty Propagation

Consider the concatenated parametric uncertainty θ := [xT
0 , δ

T]T. Suppose that there exists a diffeomorphism

T : Ξ → Θ = ∆ × X such that θ = T (ζ) and ζ ∈ Ξ is a standard random variable. For application of the
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spectral method based on gPC expansions, assume that the solution of the SDE (8.1) has the form

xt ≈ x̂t ,
p−1∑
i=0

φi(ζ)Xi
t (8.15)

which is an approximation of the true solution x with p basis functions from the set {φi}. Obtaining the

approximate solution x̂ involves determining the time-varying deterministic coefficients Xi
t . To do this,

substitute the approximation x̂ into x of the SDE (8.1) and solve for the Xi
t by intrusive or non-intrusive

projections onto the probability space of the random variable ζ whose cdf is given by Fζ . In particular,

applying Galerkin projection [167] results in another SDE

Xt+1 = GXXt +Guut +Gwwt, (8.16)

where Xt := col(Xi
t) ∈ Rnp, the initial condition Xi

0 = 〈φi(ζ), x0(ζ)〉, and the matrices G(·) are computed

from the inner product (A.41) defined on a measure space (Ξ,M, Fζ) for the Galerkin projection. The lifted

variables of interest over the time-horizon satisfy the equation

X0:T = HXX0 +Huu0:T +Hww0:T , (8.17)

where X0:T := col(X0, · · · , XT ) and the matrices H(·) have closed forms in terms of the matrices G(·)

in (8.16). From the assumption of Gaussian white noise wt, the lifted coefficients Xt is a Gaussian random

process resulting in a Gaussian random variable X0:T with mean and covariance

X̄0:T = HXX0 +Huu0:T +Hww̄0:T ,

ΣX0:T
= HXΣX0H

T
X +HwΣw0:T

HT
w .

(8.18)

The following proposition shows that the mean and covariance of the approximate solution x̂t have closed-

forms with respect to the mean and covariance of the coefficients of a generalized polynomial chaos expansion

given in (8.18).

Proposition 8.1. The lifted approximation of the solution x̂0:T satisfies

E[x̂0:T ] = KXX0 +Kuu0:T +Kww̄0:T , (8.19)

where the matricesK(·) are functions ofG(·) andH(·), and there exists an affine surjective map Ω : Snp(T+1) →

Sn(T+1) such that

Σx̂0:T
= Ω(ΣX0:T

). (8.20)

Proof. The proof is straightforward. Consider an approximate solution using a polynomial expansion
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(8.15). Due to independence of the random parameter θ and the random process wt, its expectation is

E[x̂t] = E[φ(ζ)T ⊗ In]E[Xt] where the first expectation is computed w.r.t. the random vector ζ and the

second expectation is computed w.r.t. the random process wt. Since the coefficient Xt is linear and has affine

dependence on the control input ut and the external disturbance wt, the lifted approximate state E[x̂0:T ]

is of the form given in (8.19). Similarly, the variance of the approximate state E[x̂tx̂
T
t ] can be rewritten as

E[(φ(ζ)T⊗In)XtX
T
t (φ(ζ)T⊗In)T] or equivalently, E[Xtφ(ζ)φ(ζ)TXT

t ] = E[XtΦXT
t ] where Φ , E[φ(ζ)φ(ζ)T]

and Xt ,
[
X0
t , · · · , X

p−1
t

]
∈ Rn×p. From orthonormality of the basis functions, let Φ = Ip without loss of

generality. The (k, `) element of the matrix E[x̂tx̂
T
t ] = E[XtX

T
t ] is

∑p−1
j=0 X

j
t,kX

j
t,` and Xj

t,kX
j
t,` is an element

of the matrix E[XtX
T
t ]. Therefore, E[x̂tx̂

T
t ] is an affine function of E[XtX

T
t ], which is equivalent to the

lifted covariance matrix Σx̂0:T
being an affine function of ΣX0:T

. The corresponding mapping is a projection

that is surjective. QED

The random process Xt is Gaussian such that the mean and covariance given by (8.18) exactly characterize

the probability distribution of Xt for all t, whereas the approximation x̂t to the solution xt is not necessarily

Gaussian, due to the additional randomness of the parameters (x0, δ). However, the mean and covariance

of xt can be approximated by the mean and covariance of x̂t given by (8.19) and (8.20). More precisely, the

next proposition shows the convergence of the approximation error in the mean-square sense.

Proposition 8.2. Consider the solution trajectory xt of the system (8.1) and its approximation x̂t using a

gPC expansion given by (8.15) whose coefficients Xt solve (8.16). Assume that the random variables (x0, δ)

are independent of the random process wt and Xt is a second-moment process.2 Then ‖xt − x̂t‖ →m.s. 0

pointwisely in t as p→∞, where ‖ · ‖ can be any vector p-norm.

Proof. An approximation x̂t can be explicitly rewritten as
∑p−1
i=0 φi(ζ(x0, δ))X

i
t(w0:t−1). From Thm. A.1,

for any realization of the random variable w0:t−1 ∈ Wt, where W is the support of wt and ε̄ is greater than

zero, there exists p̄ ∈ N such that
∫
Ξ
‖xt −

∑p−1
i=0 φi(ζ)Xi

t(w0:t−1)‖2dµζ(ζ) ≤ ε̄ for all p ≥ p̄, where µζ is

the probability measure of ζ. The ε̄ is a function of w0:t−1. Due to the linear dependence of xt and Xi
t on

w0:t−1, which follows from (8.1) and (8.16), ε̄ = εwT
0:t−1w0:t−1 where ε > 0 is an arbitrary constant that is

independent of w0:t−1. This implies that the mean-square approximation error is bounded above:

∫
Wt

∫
Ξ

∥∥∥∥∥xt −
p−1∑
i=0

φi(ζ)Xi
t(w0:t−1)

∥∥∥∥∥
2

dµζ(ζ)dµw(w0:t−1) ≤ ε
∫
Wt

wT
0:t−1w0:t−1dµw(w0:t−1) ≤ εM,

where µw is the corresponding probability measure of the random variable w0:t−1 and M < ∞ whose

boundedness follows from the second-moment assumption of the random process wt. Since ε > 0 is arbitrary,

the convergence is ensured. QED

Furthermore, if the system matrices are analytic functions of the random variables (x0, δ) then the conver-

gence rate of the approximation error ‖xt − x̂t‖ to 0 in mean-square is exponential, which follows from the

2Consider the time interval [0, T ] in which Xt is a second-moment process.
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solution trajectory xt being an analytic function of (x0, δ) under those assumptions.

8.3.2 Gaussian Approximation and Convexifications of Chance-constrained MPC:
Information Theoretic Justification

For a Gaussian random process yt (or xt), we previously showed that the chance constraint corresponding

to probabilistic collision avoidance Pr[yt /∈ Fy] ≥ β can be rewritten as conditions in terms of its mean ȳt

and covariance Σyt . In particular, the conditions (8.10), (8.12), and (8.14) are jointly convex in yt (or xt)

and the other decision variables (εi), under some mild assumptions.

However, the solution xt of the system dynamics (8.1) and its spectral approximation x̂t given in (8.15) are

not generally Gaussian random processes, which make the optimization (8.2) difficult to solve in the sense

that the chance constraint does not have a closed-form expression and its feasibility is hard to check. To

avoid the use of any sampling or simulation-based methods to evaluate the feasibility of the chance constraint

Pr[yt /∈ Fy] ≥ β, the approximate solution x̂t is substituted in the place of xt and Gaussian fitting of the

random variables under consideration is applied. More specifically, assume that x̂t ∼ N (¯̂xt,Σx̂t), for which

there are closed-form expressions given by (8.19) and (8.20).3 A theoretical justification of this assumption

x̂t ∼ N (¯̂xt,Σx̂t) can be made from the principle of maximum entropy [61, Chap. 12]. Maximum entropy can

be used to determine or approximate a probability distribution that incorporates only known information.

If only the first and second moments of x̂t are used to approximate its probability distribution then the

maximum entropy distribution has the form N (¯̂xt,Σx̂t), i.e., a Gaussian distribution. Furthermore, since

x̂t converges to xt in the mean-square sense as the number of basis functions increases, the approximate

probability distribution N (¯̂xt,Σx̂t) can be made arbitrarily close to the probability distribution of xt that

maximizes entropy subject to the constraints corresponding to the first and second moments.

Proposition 8.3. Consider the solution trajectory xt of the system (8.1) and its approximation x̂t using a

gPC expansion given by (8.15) whose coefficients Xt solve (8.16). Assume that the random variables (x0, δ)

are independent of the random process wt and Xt is a second-moment process (for notation convenience,

the subscript t is dropped from here on). Suppose that a probability density f? solves the optimization

max
f
−
∫
S

f(x) log f(x)dx

s.t. f(x) ≥ 0,

∫
S

f(x)dx = 1,

∫
S

f(x)xidx = Mi, i = 1, 2,

(8.21)

where S denotes the support for the random variable x, and M1 and M2 correspond to the given first and

second moments, respectively. Then an approximate Gaussian distribution f̂2 , N (¯̂x,Σx̂) obtained from

3The computation of deterministic constant matrices K(·) and ΣX0:T
(or Σx̂0:T ) can be performed off-line.
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the solution of (8.16) converges to f? as p→∞ in the L1-norm sense, i.e.,

lim
p→∞

∫
S

∣∣∣f?(x)− f̂2(x)
∣∣∣ dx = 0.

Proof. Due to limited space, consider the scalar case (the extension to the multivariable case is straightfor-

ward). From the principle of maximum entropy, a unique f? has the form of eλ0+λ1x+λ2x
2

that corresponds

to a Gaussian distribution. Similarly, f̂2 is a unique maximum entropy distribution that solves the opti-

mization (8.21) with given approximate moments M̂i, i = 1, 2, in the place of Mi and can be rewritten

as eλ̂0+λ̂1x+λ̂2x
2

for some constants λ̂j , j = 0, 1, 2. Since convergence in mean-square implies conver-

gence in distribution and M̂i can be arbitrarily close to Mi as p → ∞ from Prop. 8.2, this implies that

limp→∞maxj |λj − λ̂j | = 0. Therefore, for any arbitrary constant ε > 0, there exists p̄ ∈ N such that

min{eε, e−ε} ≤ f̂2(x)/f?(x) ≤ max{eε, e−ε} uniformly in x ∈ S for all p ≥ p̄. This implies that f̂2 converges

to f? in the L1-norm sense as p→∞. QED

Remark 8.1. The above Gaussian approximation is a suboptimal way to estimate the probability distribu-

tion of xt, which produces convex chance constraints that are more computationally tractable by ignoring

the extra information in the higher-order moments of x̂t. This method of approximation has the same char-

acteristics as the extended Kalman filter (EKF) and unscented Kalman filter (UKF) that are widely used

in practical applications although there are no theoretical guarantees that those estimation methods will

always work well or even converge.

Using the Gaussian approximation, the design problem reduces to finding a control policy µT (or u0:T )

that solves the optimization

min
µT

J(x̄0,Σx0 , µT )

s.t. ¯̂x0:T = KXX0 +Kuu0:T +Kww̄0:T ,

Σx̂0:T
= Ω(ΣX0:T

),

x̂0:T ∼ N (¯̂x0:T ,Σx̂0:T
), y0:T = (⊕Ti=0C)x̂0:T ,

(ȳ0:T ,Σy0:T ) ∈ F(β) or (ȳ0:T ,Σy0:T , ε) ∈ F(β),

u0:T ∈ UT+1,

(8.22)

where the matrices K(·) and ΣX0:T
, and the injection map Ω are precomputed, ⊕Ti=0C , diag(C, · · · , C),

and the constraints F(β) can be one of the sets:

{(y,Σy) : Eq. (8.10), x̄v = y, Σxv = Σy} ; (8.23)

{(y,Σy, ε) : Eq. (8.12), η̄ = y, Ση = Σy} ; (8.24)
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{(y,Σy, ε) : Eq. (8.14), η̄ = y, Ση = Σy, ε ≥ 0.5} , (8.25)

where ε = col(εi), β ≥ 0.5 is required for the second feasible solution set to be convex in (y, ε), and the first and

the third sets are convex in y and (y, ε), respectively. With the standard performance specification that the

objective function J is convex quadratic in µT and the set U is a convex polytope, the optimization (8.22) is

a convex quadratically constrained quadratic program (QCQP) when F(β) is given by (8.23) and a convex

nonlinear program when F(β) is given by (8.24) or (8.25).

8.3.3 A Demonstration Example

This section compares the accuracy of the proposed gPC-based MPC formulations for a numerical example.

Consider the parametric uncertain linear time-invariant system

xt+1 =

0.9 + ρ1δ1 0.1

0.1 0.85

xt +

0.25− ρ2δ2

0.75 + ρ2δ2

ut +

 1

0.5

wt
with initial condition x0 = [20, 10]T, ρ1 = 0.001 and ρ2 = 0.05 are weights on normalized standard random

variables δ1 ∼ N (0, 1) and δ2 ∼ N (0, 1), respectively, and the exogenous process noise wt ∼ N (0, 0.001) is

assumed to have autocorrelation E[wtws] = 0 for all t 6= s. This example computes the control inputs by

solving the optimization (8.28), for which the covariance constraints are imposed based on the 99% level

of confidence for collision avoidance, and comparing the probability of collisions obtained from different

methods presented in the paper. Consider Qt = diag{100, 100} and Rt = 1 for all t, a prediction horizon

of T = 4, and input constraint ut ∈ [−0.5, 0.5]. The constraints are constructed from the obstacle shown

in Fig. 8.1. The resultant controlled system trajectory generated by a system model with fixed parameters

δ = [0.01, 0.05] and randomly chosen exogenous disturbances wt is shown in Fig. 8.1, which avoids the

obstacle as desired. Fig. 8.2 shows Monte Carlo simulations with 5000 samples of (δ, w), which indicates

that the stochastic MPC algorithm was effective in avoiding the obstacle while allowing the closed-loop

trajectory to become rather close to the obstacle so as to optimize the closed-loop performance objective.

Fig. 8.3 compares the computed probabilities of collision using the methods presented in this chapter with the

probabilities quantified by the Monte Carlo simulations. At each time the probability of collision obtained

by the gPC expansion is very close to the value computed using either Monte Carlo applied to the original

system or Monte Carlo applied to the convex relaxation. The approximate probabilities of collision follow

nearly identical trends to the true probabilities while enabling the optimal control problem at each time

instance of MPC to be computed from a convex program that can be solved in polynomial-time.4

4In particular, the computational complexity using a standard interior-point method [36] is at most O(`M4 logM) where
M = npT (n is the dimension of the state variables, p is the number of basis functions for a gPC expansion, T is the length of
prediction horizon), and ` denotes the number of probabilistic polyhedral constraints. The average computation time at each
sampling instance was ≈ 0.36 CPU seconds for n = 2, p = 3, and T = 5. This computation time includes the computation of
the optimization data, i.e., the time for computing matrices associated with the objective function and constraints, as well as
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Figure 8.1: A controlled trajectory produced by the proposed stochastic MPC formulation.
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Figure 8.2: Monte Carlo simulations: the red dots correspond to simulated states at each 4th sampling
instance for 5000 samples.

To further assess the accuracy of the gPC expansion, let Σmc
x (t) and Σpce

x (t) be the computed covariance of

the controlled system trajectory obtained from Monte Carlo simulations with 5000 samples of (δ, w) and the

polynomial chaos expansion with a specified order of Hermite polynomials, respectively. Table 8.1 compares

the worst-case deviation of max0≤t≤60 ‖Σmc
x (t) − Σpce

x (t)‖F , where ‖ · ‖F denotes the Frobenius norm, for

different degrees of Hermite polynomials. The approximation error of the covariance matrix is small and, as

expected from the theoretical analysis, the error in the state covariance matrix decreases as the number of

terms in the polynomial expansion increases.

the time for solving the resulting constrained optimization. Optimization is performed by the CVX toolbox [99] on a MacBook
Pro laptop (2.53 GHz Intel Core 2 Duo, 4GB DDR3).
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Figure 8.3: A comparison of the computed probability of collision for the true system and the
approximation using a gPC expansion, estimated using Monte Carlo (MC) simulations where the error bars
were obtained from 1000 Monte Carlo simulations with different sets of 5000 samples. The blue circle refers
to the MC simulation result and the red box refers to the collision probability that is obtained from the
MC simulations with the convex relaxation (8.12). For both computations, the corresponding error bars
were generated at the 95% confidence level. The widths of the computed confidence intervals were smaller
than 10−7, which is negligible compared to collision probability. The black star refers to the collision
probability obtained from the presented gPC method that incorporates with the convex relaxation (8.12).

Table 8.1: Covariance approximation errors for different degrees of Hermite polynomial expansions.

Degree of Hermite polys. max
0≤t≤60

‖Σmc
x (t)− Σpce

x (t)‖F

1st ≈ 1.0001× 10−3

2nd ≈ 6.0878× 10−4

3rd ≈ 5.3627× 10−4

4th ≈ 2.8365× 10−4

8.3.4 Discussions and Further Remarks

Approximate Solution using Spectral Methods with the KL Expansions This section consider two

sources of uncertainties: (a) parametric uncertainty and (b) exogenous disturbance. Uncertainty propaga-

tions induced by parametric uncertainty are approximated by using a gPC expansion and additive exogenous

disturbances affect the coefficients of the resultant gPC expansion. Another possible approach to the same

problem is to use a KL expansion to approximate the random process wt, that is, replace the random process

wt by its principal component approximation with random variables and solve a larger dimension determinis-

tic ordinary differential equation (ODE) to approximate the true solution xt. This approach requires higher

online computational expense as the dimension of a deterministic ODE increases, even though the system

data for such an ODE can be precomputed.

Heuristic Convexification Methods for Chance Constraints with Stochastic Parametric Un-

certainty Here the convexification methods are illustrated for the prototypical stochastic MPC problem
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min
u0:T−1

E

[
T∑
t=1

xT
t Qtxt + uT

t−1Rt−1ut−1

]
s.t. xt+1 = A(δ)xt +B(δ)ut,

Pr∆[Htxt ≥ bt] ≤ εt,

umin,t ≤ ut ≤ umax,t,

(8.26)

with the stochastic uncertainties δ (the incorporation of the external noise perturbation is straightforward as

described in the theoretical parts of this chapter but not included in this example to shorten the presentation).

The constraints are defined over the time interval [1, T ] for xt and [0, T − 1] for ut, and this time interval

consideration is omitted here for notational convenience and will always be clear from the context. The

optimization (8.26) is further simplified by replacing the chance constraint Pr∆[Htxt ≥ bt] ≤ εt by HtE[xt] ≤

bt − βt where βt > 0 is an additional decision variable. By doing this, the optimization (8.26), in which the

dynamic constraint is an SDE, reduces to the deterministic optimization

min
u0:T−1, β1:T

T∑
t=1

(
XT
t Q̄tXt + uT

t−1Rt−1ut−1

)
− γ

T∑
t=1

`(βt)

s.t. Xt+1 = FXt +Gut,

c0HtX
0
t + βt ≤ bt, βt > 0,

umin,t ≤ ut ≤ umax,t,

(8.27)

where xt in the constraint of the optimization (8.26) is approximated by x̂t in (8.15), Q̄t ,

E
[
(φ(ζ)⊗ In)TQt(φ(ζ)⊗ In)

]
, c0 , 〈1, φ0(ζ)〉, φ(ζ) , col(φi), γ > 0 is a user-defined weight in the optimiza-

tion that corresponds to the maximization of the feasibility of the chance constraint Pr∆[Htxt ≥ bt] ≤ εt,

and `(βt) is an incentive for decision variables to maximize the feasibility of the chance constraint

Pr∆[Htxt ≥ bt] ≤ εt; a typical choice can be
∑m
i=1 βt,i or maxi βt,i that is linear in βt, where βt,i is

the ith entry of βt.
5 The constrained optimization (8.27) is a convex QP that can be solved efficiently.6

For a different formulation of constraints, consider constraints on the deviation of the solution trajectory

5To be a convex program, ‖βt‖2 cannot be used, since it results in a concave function term in the objective function in a
minimization problem.

6By efficiency, it is meant that there is a numerical algorithm whose convergence is guaranteed and that provides an
infeasibility certificate. Convex programs are such cases.
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from the expectation:

min
u0:T−1

T∑
t=1

XT
t Q̄tXt + uT

t−1Rt−1ut−1

s.t. Xt+1 = FXt +Gut,

c0HtX
0
t ≤ bt,

(X̄i
t)

TWX̄i
t − (c0X

0
t,i)

2 ≤ σ2
t,i,

umin,t ≤ ut ≤ umax,t,

(8.28)

where Q̄t and c0 are the same as defined before, W , diag(‖φi‖2), and X̄i
t denote the concatenation of coef-

ficients of the polynomial expansion for the ith state. The constant vector c0 and matrix W can be assumed

to be normalized to be 1n and In without loss of generality. The constrained optimization (8.28) is a convex

QCQP that can be solved efficiently. More precisely, it is not hard to see that the optimization (8.28) can

be rewritten as

min
u
Q0(u) s.t. Qi(u) ≤ 0, i = 1, . . . ,mq (8.29)

where u , u0:T−1 and Qi are convex quadratic forms for all i = 0, 1, . . . ,mq. From [179],7 if the constraints

Qi ≤ 0 are regular, i.e., satisfy a constraint qualification such as Slater’s condition [36, Sec. 5.2.3], then the

static optimization (8.29) has the same optimum as the optimization

max
λ≥0

min
u
Q0(u) +

mq∑
i

λiQi(u) (8.30)

for which fixing arbitrarily large λi > 0 results in the same optimal solution u∗ as obtained from solving the

constrained optimization (8.29).

The conceptual picture of a constrained trajectory in Fig. 8.4 shows how the constraints in (8.28) can be

used to impose desired bounds on the controlled trajectory.

8.3.5 The Use of Concentration-of-Measure Inequalities for Probabilistic Validation
Certificates of Joint Chance Constraints

This subsection shows that the Boole inequality can be incorporated into some well-known concentration-

of-measure inequalities to provide probabilistic validation certificates for joint chance constraints. Consider

the constraint HTX ≤ b, or equivalently hT
i X ≤ bi for i = 1, . . . ,m where X is a random vector and

hi denotes the ith column of the matrix H. The associated probabilistic constraint can be written as

Pr[HTX > b] = Pr
[
∪mi=1{hT

i X > bi}
]
. The Boole inequality gives an upper bound on this probabilistic

7They applied a method of relaxation called the S-procedure [295]. Our case is a special case in which all the quadratic forms
are convex, whereas [179] considered more general cases where some of quadratic forms might be nonconvex. They proposed
a sufficient condition for the set of quadratic form constraints to be lossless, i.e., the resultant relaxation obtained from the
S-procedure gives an exact optimum.
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Figure 8.4: A schematic cartoon of constrained state trajectories with semi-chance constraints.

violation of constraints:

Pr

[
m⋃
i=1

{hT
i X > bi}

]
≤

m∑
i=1

Pr
[
hT
i X > bi

]
. (8.31)

Suppose that bi > 0 for all i = 1, . . . ,m without loss of generality. Some concentration-of-measure inequalities

can be used for upper bounds on the right-hand side of (8.31) [34]:

◦ The Chernoff’s bound: Pr
[
hT
i X > bi

]
≤ E[esih

T
i X ]

esibi
where si > 0 for all i = 1, . . . ,m.

◦ The generalized Markov inequality: Pr
[
hT
i X > bi

]
≤ E[φi(h

T
i X)]

φi(bi)
where φi : R→ R+ for all i = 1, . . . ,m.

◦ The Chebyshev inequality: Pr
[
|hT
i X −E[hT

i X]| > ti
]
≤ Var(hT

i X)

t2i
=

hT
i Var(X)hi

t2i
.

Here we use the Chebyshev inequality.

Proposition 8.4. If the random vector X satisfies the constraints on its expectation and variance

hT
i X ≤ bi, hT

i Var(X)hi ≤ t2i εi, i = 1, . . . ,m (8.32)

then the inequality HTX ≤ b+ t is satisfied with at least probability 1−
∑m
i=1 εi, i.e., Pr

[
HTX ≤ b+ t

]
≥

1−
∑m
i=1 εi.

Fig. 8.5 illustrates the outer polytopic certificate (colored in red) for the associated chance constraint

Pr[HTX > b] ≤ ε with
∑m
i=1 εi ≤ ε. The polytope colored in blue corresponds to the constraints on the

expectation of the trajectories. Such certificates can be computed from the results in Prop. 8.4.

From (8.18) and the results in Prop. 8.1, gPC expansions can provide closed forms for the expectation and

variance of the controlled predicted state and output trajectories. This implies that any chance constraints

of polyhedral inequalities can be certificated by deterministic polyhedral inequalities that are obtained from
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Figure 8.5: A cartoon of the outer bound that can be obtained from the Boole inequality and
concentration-of-measure inequalities.

incorporating gPC expansions into the Boole inequality and the Chebyshev inequality of the form presented

in Prop. 8.4.

8.3.6 Affine Feedback Control Policy

The aforementioned methods for computation of a suboptimal control policy use the new measurements

to compute a control action as well as to initialize the state-transition constraint in the optimizations at

each step of prediction. In the presence of model/plant mismatch and external disturbances, the predicted

control trajectory at time k can significantly deviate from the true controlled trajectory and the variance

of the trajectory can increase such that the optimization is feasible only for a short time horizon, which

is undesirable in terms of closed-loop stability. This situation can be avoided by incorporating a feedback

control in each step of solving the optimization, as has been done in many deterministic robust MPC

formulations (e.g., see [149]). For example, the affine control law ut = Ktzt + νt can be inserted into the

optimization, where zt is an estimated state or measured output. For a precomputed Kt (or a stationary

control gain K), the resultant problem is exactly same as the open-loop feedback control in which νt is the

only decision variable in each step of optimization. If Kt is considered as an additional decision variable in

each step of optimization, then the resulting optimization will retain the same degree of convexification as

for ut considered before.
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8.3.7 Time-varying Uncertain Parameters

Consider the system dynamics given in (8.1) where the uncertain parameter vector δ ∈ ∆ (or θ = (δ, x0) ∈ Θ,

if the initial condition is considered to be uncertain) is assumed to be an unknown constant vector. In the

aforementioned MPC formulations, the uncertain parameters were assumed to be fixed only in the prediction

step. The approaches can also be applied to slowly time-varying uncertain parameters, that is, when the

prediction horizon multiplied by the sampling interval is less than the time interval of significant parameter

variation. A more accurate study of time-varying uncertain parameters can be performed by considering a

large dimensional space of uncertain parameters. In particular, for the time-varying uncertain parameter

vector δt ∈ ∆, consider the stacked vector δ0:T−1 , [δ′0, · · · , δ′T−1]′ ∈ ∆T where the superscript ′ denotes

the transpose and T denotes the prediction horizon. Then the approximation based on a polynomial chaos

expansion is represented in terms of the stacked uncertain parameter vector δ0:T−1. This approach requires

more basis functions for the corresponding spectral representation, but the time-dependent coefficients cor-

responding to the uncertain parameters in future can be set to zeros, which reduces the computation of

projections to determine the coefficients of the gPC expansion.

8.4 Summary and Future Work

This chapter considers a new approach for stochastic MPC problems in the presence of both parametric model

uncertainty and exogenous stochastic disturbances. To approximate the solution of a stochastic differential

equation and solve the corresponding stochastic MPC problem, a spectral method known as generalized

polynomial chaos expansion is applied and constraints corresponding to the probability of safety/collision

are imposed on the approximately predicted controlled trajectories, based on the model of a stochastic dif-

ferential equation. The first and second moments of the approximate solution were exploited to estimate

the probability distribution of the true solution. Under these technical assumptions, the chance constraints

were replaced by convex constraints for the mean and covariance of the trajectory that are analytically com-

puted from the gPC expansion. It was also shown that concentration-of-measure inequalities combined with

the Boole inequality can provide conservative probabilistic certificates for chance constraints of polyhedral

inequalities, for which applications of the gPC expansions are straightforward. Further studies to follow are

to apply the presented methods to more complicated case studies and compare the heuristic convexification

methods to convex nonlinear programs in terms of the tradeoff between complexity and accuracy.
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Chapter 9
Bayesian Hypothesis Tests: An Overview

Abstract This chapter provides a concise introduction to methods of Bayesian hypothesis testing and

generalizes some of the existing work in the literature. For details on Bayesian theory and its applications

to statistical hypothesis testing, readers are referred to [166, 220], for example. The main applications of

consideration are change detection and fault detection and diagnosis in stochastic dynamical systems, for

which statistical inference problems based on the Bayesian theory of statistics are formulated as mathe-

matical programs. Computational tractability, scalability, reliability, and robustness of general Bayesian

hypothesis tests for large-scale inference problems are active research topics. Simulation results are pre-

sented to illustrate a certain type of Bayesian hypothesis testing known as likelihood ratio tests, for which a

non-interacting two-tanks model is considered with several fault scenarios. In addition, some open research

directions for robust Bayesian hypothesis tests and integrated model-based real-time optimal control in the

presence of system component faults are discussed.

9.1 Bayesian Hypothesis Testing

Hypothesis testing has been extensively studied in signal processing, communications, biological statistics,

observational astronomy, and so on. This area can be considered as a devision of decision science in which

a choice needs to be made among multiple hypotheses on the basis of limited and noisy data. Developing a

method of hypothesis tests is to provide a decision rule for the selection among multiple probable hypotheses

in some principled or optimal criterion (e.g., minimization of decision error, minimization of expected cost

or risk in the mismatched estimation, etc.).
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9.1.1 Optimum Decision Rules

Consider the set of hypotheses H , {H0, H1, · · · , Hm} in which the ith hypothesis Hi corresponds to a model

to explain the observed data z ∈ Z. A Bayesian hypothesis testing problem is to find an optimal hypothesis

H? that is most consistent with the observed data z in the sense that it maximizes the associated posterior

distribution pH|z(h(z)|z) where h : Z → H is a deterministic decision rule. This problem can be formulated

as the optimization

H?(z) := arg max
Hi∈H

pH|z(Hi|z), (9.1)

which is known as the maximum a posteriori (MAP) decision rule.

For a more general problem formulation, a similar optimization can be written as

min
h(·)∈H

EH|z[C(H, f(z))|z = z]︸ ︷︷ ︸
J̃(H:z)

= min
Hi∈H


m∑
j=0

C(Hj , Hi)pH|z(Hj |z)


= c min

Hi∈H


m∑
j=0

C(Hj , Hi)pz|H(z|Hj)pH(Hj)


(9.2)

and

H?(z) = arg min
Hi∈H


m∑
j=0

C(Hj , Hi)pz|H(z|Hj)pH(Hj)

 (9.3)

where C : H × H → R+, C(H,h(·)) refers to the cost of deciding that the hypothesis is h(·) when the

correct hypothesis is H, c =
∑m
k=0 pz|H(z|Hk)pH(Hk) denotes the normalization factor that is independent

of the hypothesis, and pz|H(z|Hj) and pH(Hj) (shortly, pj) are the likelihood function and prior distribution

associated with the hypothesis Hj , respectively.

For measurement-independent optimum decision rules, consider the average cost of deciding that the

hypothesis is f that is defined by

J(h) , EH,z[C(H, f(z))]

= Ez

[
EH|z[C(H, f(z))|z = z]

]
=

∫
Z
J̃(h(z) :z)pz(z)dz

=
∑
i,j

C(Hj , Hi) Pr [h(z) = Hi|H = Hj ]︸ ︷︷ ︸
δji(h)

pj

(9.4)

which is called the Bayes risk, where h : Z → H can be any type of deterministic decision rules, in general.
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The quantities δji(h) can be called the discrimination probabilities of the decision rule h(·) and can be

rewritten as

δji(h) =

∫
Zi(h)

pz|H(z|Hj)dz (9.5)

where the sets Zi(h) are the decision regions corresponding to the values of z for which the decision for an

optimal hypothesis is Hi, i.e., h(z) = Hi, and can be written as

Zi(h) , {z ∈ Z : h(z) = Hi} (9.6)

These sets are disjoint, i.e., Zi(h)
⋂
Zj(h) = ∅ for all i 6= j and

⋃
iZi(h) = Z, for any deterministic decision

rule h(·).

9.1.2 Related Work

Generalized Likelihood Ratio Test Kalman filtering and generalized likelihood ratio (GLR) tests have

been used for the detection and estimation of jumps (or switches) in dynamical systems [230,240,290,291].

The GLR tests for online detection of faults and parameter changes in control systems have been further

developed for the optimal/suboptimal choice of threshold and the monitoring window size [153], multi-

ple hypothesis testing problems [14] have been considered, and information-theoretic bounds for detection

performance have been obtained [152]. In addition, particle filtering techniques based on simulations and

samplings have been incorporated into real-time fault and parameter change detections [3, 6, 157].

Two-ellipsoid Overlap Test for Real-time Fault Detection As an alternative to GLR tests, a simple

geometric test for two-ellipsoid overlap was considered [133–135, 311, 312] which is also called a chi-squared

test for fault detection. In particular, [133–135, 311] consider two confidence regions of ellipsoidal cross

section that are associated with the (monitoring) state trajectory of the normal (no-failure) operation and

the Kalman estimate computed from the online observables, while [312] consider two confidence regions of

ellipsoidal cross section that are associated with the (monitoring) system parameters of the normal (no-

failure) operation and the recursive least squares (RLS) estimate computed from the online observables.

Hybrid Automata and Mode Estimation In [106, 107, 193], the so-called hybrid estimation problem

was introduced to detect the onset of subtle faults or failures. A hybrid estimation problem is that, for given

a probabilistic hybrid automaton (PHA) (see [104,107] for details of PHA), compute the most likely hybrid

state together with the associated system mode at the time instance t which is inferred from a sequence of

control inputs {u0, · · · , ut−1} and measurement outputs {y0, · · · , yt}.

Adaptive Filtering for State Estimation Performance of a model-based state estimator can highly rely

on the accuracy of the model. In other words, the closer model to the true system, the better the performance
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of state estimation. For this purpose, system mode estimation can be embedded in a state estimator such

as Kalman filtering or moving horizon estimation (MHE) that uses a system model to estimate the state

variables, and using a more accurate model for the true plant dynamics can achieve a better state estimation

performance [246].

9.2 Performance Analysis of Bayesian Hypothesis Tests

9.2.1 Operating Characteristic

Operating Characteristic of the LRT Consider a binary hypothesis test, i.e., H = {H0, H1}. To

quantify the performance of a decision rule h(·), the associated discrimination probabilities (9.5) are

Pd(h) := δ11(h) and Pf(h) := δ01(h), (9.7)

which are also referred to as the detection and false-alarm probabilities, respectively. The so-called proba-

bilities of error of the first and second kind are defined respectively as

P 1
e (h) := Pf(h) = δ01(h) and P 2

e (h) := 1− Pd(h) = δ10(h). (9.8)

Neyman-Pearson Criterion In many applications, it might not be obvious to assign the costs C(Hj , Hi)

for the pairs of (i, j) and it is often unrealistic to assume that prior probabilities are known. The classi-

cal Neyman-Pearson criterion [199] is to choose the decision rule h(·) to maximize Pd(h) while Pf(h) is

constrained to be smaller than a certain value:

max
h(·)∈H

Pd(h)

s.t. Pf(h) ≤ α
(9.9)

where α > 0 is a user-defined threshold. It is not difficult to see that the optimization (9.9) can be equivalently

represented by

max
h(·)∈H

α1Pd(h)− α2Pf(h) (9.10)

for some appropriate positive constants α1 and α2 such that the decision rules based on (9.9) and (9.10)

have the same optimal decision. From the definitions of P ie , another equivalent decision rule is

min
h(·)∈H

2∑
i=1

wiP
i
e(h) (9.11)
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where wi > 0 are user-defined weights for each error kind that can chosen to be functions of α such that the

decision rules based on (9.9) and (9.11) have the same optimal decision.

Generalized Neyman-Pearson Criterion The aforementioned Neyman-Pearson criterion can be ex-

tended to multiple hypotheses. To maximize the ability of detecting the true hypothesis Hi while requiring

the false-alarm probabilities is smaller than certain values (αj > 0), solve the optimization

max
h(·)∈H

δii(h) subject to δji(h) ≤ αj , j 6= i. (9.12)

An alternative decision rule can be obtained from minimizing the weighted-sum of probabilities of errors:

min
h(·)∈H

m∑
j=0

∑
i 6=j

wjiδji(h) (9.13)

where wji > 0 for j 6= i are the user-defined weights.

9.2.2 The Bayes Risk Error

Bayesian hypothesis tests that find a decision rule minimizing the Bayes risk (9.4) rely on precise knowledge

of the prior probabilities of the hypotheses, which implies that the optimal decision is sensitive to the choice

of the prior probabilities. To analyze the sensitivity of the decision rule to the prior probabilities, consider

the mismatched Bayes risk defined as

J̃(p, p̄) ,
∑
i,j

C(Hj , Hi) Pr
[
ĥ(z, p) = Hi|H = Hj

]
︸ ︷︷ ︸

δji(h)

p̄j
(9.14)

where the decision rule ĥ(·, p) refers to the hypothesis minimizing the virtual Bayes risk J̃(p, p) with the

virtual prior probability p while the true prior probability is p̄. Define the Bayes risk error as

ϕ(p, p̄) , J̃(p, p̄)− J̃(p̄, p̄). (9.15)

The Bayes risk error (9.15) has the following properties [275]:

i. ϕ(p, q) ≥ 0 for all p, q ∈ P where P ,
{
p ∈ Rm+1

+ :
∑
i pi = 1, pi ∈ [0, 1], ∀i

}
;

ii. ϕ(p, q) is strictly convex in q ∈ P and quasi-convex in p ∈ P for deterministic LRT;

iii. ϕ(p, q) = J̃(p, p) − J̃(q, q) − 〈p − q,∇1J̃(q, q)〉 where ∇1 denotes the partial derivative with respect to

the first argument of a function.

Note that this function is not symmetric, i.e., ϕ(p, q) 6= ϕ(q, p) for p, q ∈ P, in general.
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(a) Decision rule for a likelihood ratio test
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z1

z2
pz|H(z|H0) ≤ γ0

pz|H(z|H1) ≤ γ1

γ
0
≤ pz|H(z|H0) ≤ γ̄0

(b) Bayes risk error with respect to level set descrptions

Figure 9.1: A likelihood ratio test, the Bayes risk, and sensitivity of the associated Bayesian hypothesis
test: Statistical distance measure can be used for quantification of the Bayes risk and the sensitivity of the
associated test with respect to the choice of prior probabilities and the costs of decision errors.

9.3 A Case Study of Two Tanks in Series

This section presents simulation results for the two-tank configuration in Figure 9.2, in which several fault

scenarios are presumed and generalized likelihood ratio tests1 are applied for model selection and checking.

The system in the disturbance-free and fault-free case is governed by the material balance equations

Ac1
dh1

dt
= Fi − c1h1

Ac2
dh2

dt
= c1h1 − c2h2

(9.16)

where Ac1 and Ac2 are the cross-sectional areas of Tanks 1 and 2, h1 and h2 are the liquid levels for Tanks

1 and 2, c1 and c2 are constants which depend on the valves, and Fi is the measured inlet flow rate. The

outlet flow rates are Fo1 and Fo2 are measured, and are nominally equal to c1h1 and c2h2, respectively.

Eq. (9.16) can be rewritten in state-space form

dx

dt
(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

(9.17)

where

A =

− c1
Ac1

0

c1
Ac2

− c2
Ac2

 , B =

 1
Ac1

0

 , C =

c1 0

0 c2

 ,
u = Fi, y = [Fo1, Fo2]T, and x = [h1, h2]T.

1It is known that every aforementioned Bayesian hypothesis test can be equivalently transformed into a likelihood ratio test
with a properly chosen value of threshold [220]. Due to this equivalence, the focus of this simulation study is on the use of
likelihood ratio tests for detection of changes and faults.
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Consider the case where process and measurement noise are explicitly introduced into the state-space

equation (9.17) and the corresponding state-space form is

dx

dt
(t) = Ax(t) +Bu(t) + Ew(t)

y(t) = Cx(t) + Fv(t)

(9.18)

where E = F = I, and w(t) and v(t) are independent zero-mean Gaussian white noise having correlation

matrices Σw and Σv, respectively, i.e., wt ∼ N (0,Σw) and vt ∼ N (0,Σv) for all t, and E[wtw
T
s ] = 0 = E[vtv

T
s ]

for t 6= s. Consider discrete-time system dynamics for which the first-order hold discretization method is

applied to 9.18 and the control inputs are assumed piecewise linear over the sampling period ts = 0.1 seconds.

The likelihood ratio tests are applied for the following fault scenarios:

S1) A leak in the injet flow: In this fault scenario, suppose that there is a leak in Stream 1 entering Tank 1

(see Figure 9.2). Due to this leak, the inlet flow to the upper tank decreases by 30%, compared to the

normal operation case. Figures 9.3(a) and 9.3(b) show the corresponding output trajectories and log

likelihood ratio tests, respectively.

S2) A biased output measurement: Another probable fault is a sensor fault in which the sensor measuring

the output flow rate Fo2 is malfunctioning and shows a bias. Figures 9.4(a) and 9.4(b) show the

corresponding output trajectories and log likelihood ratio tests, respectively.

S3) Two competing fault scenarios (S1 vs. S2): In this scenario, suppose that two aforementioned fault

scenarios S1 and S2 are presumed to be a current fault and compared with respect to likelihood ratio

tests. Figures 9.5(a) and 9.5(b) show the corresponding output trajectories and log likelihood ratio

tests, respectively.

S4) Three competing fault scenarios (normal operation vs. S1 vs. S2): For the final test, compare and assess

three fault scenarios, viz., the normal operation, and the faults scenarios S1 and S2. Figures 9.6(a) and

9.6(b) show the corresponding output trajectories and log likelihood ratio tests, respectively.

For the (log) likelihood ratio tests in the simulations presented in this chapter, the moving monitoring window

with a length of 10 sampling intervals is used. The longer window length, the longer delay in fault detection

using likelihood ratio tests. For given hypothesis model, the corresponding likelihood function depends on

the measurements that are realizations of random processes from unknown probability distributions and is

indeed a random process, same as the associated likelihood ratio test, which implies that the fault detection

instance—the time instance when the likelihood ratio curve crosses the threshold bar—also has a probabilistic

nature.

The likelihood ratio tests correctly identify the change in the dynamic behavior in all of the scenarios,

with a short detection delay.
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Figure 9.2: Two non-interacting flow tanks in series.

9.4 Discussions

This section discusses (i) a generalization of Bayesian hypothesis tests in which discrete hypotheses are

parameterized by continuous uncertain random variables, and (ii) incorporation of fault detection and diag-

nosis based on Bayesian hypothesis tests into real-time model-based (sub-)optimal control known as model

predictive control and approximate dynamic programming. The discussions are somewhat intuitive and

abstract. The objective of presenting these discussions is not to present a concrete support for the ideas,

but to provide some open discussions for future research directions.

9.4.1 Parameterized Bayesian Hypothesis Testing

It is straightforward that establishing an estimate for a continuous random variable involves carrying out a

hypothesis test for a continuum of hypotheses, rather than discrete hypotheses, with principled or optimal

decision rules. For fault scenarios in which there are a finite number of discrete hypothesized models of

candidates, an optimal decision rule is constructed such that the associated optimality criterion is evaluated

for such discrete hypotheses. However, it is often difficult to know precise models corresponding to certain

fault scenarios and it is necessary to parameterize models of hypotheses to capture variations of faults.

Such further parameterization can be referred to as fault-parameterization or fault-parameters and this

parameterization has essential importance in robust fault detection and diagnosis in the presence of additional

uncertainty in hypotheses, as well as disturbances and measurement noise.
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Figure 9.3: Fault scenario 1: A leak in Stream 1 occurs at t = 10.0 sec.
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Figure 9.4: Fault scenario 2: The output Fo2 gives a biased reading that occurs at t = 10.0 sec.

A set-valued model representation is

Mk
Θk

, {Mk(θk) : θk ∈ Θk}

where Θk denotes the set of fault-parameters for the kth hypothesis. For given measures y and fixed

hypothesis of model k, the maximum likelihood estimation is to find an optimal solution for

max
θk∈Θk; k=0,··· ,m

Lk(θk; y).

For designating the robustly most probable model explaining the measurements y, determine an index k?
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Figure 9.5: Fault scenario 3: A fault switching from Fault 1 to Fault 2 at t = 15.0 sec.

satisfying the robust optimality relation

sup
θk?∈Θk?

Lk?(θ; y) ≥ sup
θk∈Θk

Lk(θk; y) for all k 6= k?.

A resultant optimal solution among families of fault-parameter sets

θ?k? , arg max
θk?∈Θk?

Lk?(θk? ; y)

can be used to determine the associated most likely system mode

Mk?(θ?k?) ∈Mk?

Θk?
.

9.4.2 Integrated Real-time Model-based Optimal Control

Consider the discrete-time linear time-varying stochastic system

xt+1 = Atxt +Btut + Etwt

yt = Ctxt +Dtut + Ftvt

(9.19)

where w and v are independent Wiener processes, i.e., wt ∼ N (µw,Σw), vt ∼ N (µv,Σv) for all t, E[wtw
T
s ] = 0

and E[vtv
T
s ] = 0 for all t 6= s, and E[wtv

T
s ] = 0 for all t and s.

Suppose that there are m scenarios of faults and the model associated with the ith fault scenario is given
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t

yit = Citx
i
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i
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i
t

(9.20)

where the superscript i refers to the occurrence of the ith hypothesized fault. Roughly speaking, a procedure

of fault detection and diagnosis is to find the most probable model from the set of hypothesized models

M , {M0, · · · ,Mm} and Bayes’ rule is applied to quantified probabilistic confidence levels as functions of

the measurements for all the hypothesized models.

For a control strategy, consider the standard stochastic model predictive control (MPC) problem for a

discrete-time linear time-varying system (10.1):

min
u0:h−1

E

[
h∑
t=1

(
xT
t Qtxt + uT

t−1Rt−1ut−1

)]
s.t. xt+1 = Atxt +Btut + Etwt,

yt = Ctxt +Dtut + Ftvt,

Pr[Hy,tyt +Hu,tut ≤ bt] ≥ βt,

wt ∼ pw, vt ∼ pv, x0 ∼ px0
,

(9.21)

where the constraints are imposed for all t from 0 to h − 1 or h whose commitment is clear from the

context and its explicit description is omitted for notational convenience. Note that t = 0 is the time at

which a new (current) measurement is obtained and a new prediction step for optimization starts. For the

sake of simplicity and without loss of generality, always consider the interval [0, h] in the remainder of this

thesis. As a standard receding-horizon control scheme, only the first step of the computed control strategy
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is implemented. The calculations are repeated starting from the current measured output and estimated

state, yielding a new control and new predicted output and state paths. The prediction horizon keeps being

shifted forward.

Figure 9.7 represents an integrated real-time control scheme in which model-based real-time predictive

control incorporates or is combined with fault detection and diagnosis (FDD), and a state estimator. Fig-

ure 9.8 is an extension of an integrated control scheme in which an additional active probing input design

mechanism is included to increase the performance of statistical inference associated with FDD. Each com-

ponent in such an integrated real-time control scheme shares continuous and/or discrete signals that include

information required for the components to achieve their own functionality to maintain the integrity and

operational objectives of the overall system. Table 9.1 shows signal flows through the components of overall

closed-loop system.

The associated MPC problem can be written as an optimization

min
u0:h−1

E[Ji?(x0, u0:h−1)]

s.t. xjt+1 = Ajtx
j
t +Bjtut + Ejtw

j
t ; j = 0, . . . ,m,

yjt = Cjt x
j
t +Dj

tut + F jt vtj ; j = 0, . . . ,m,

Pr[Hi?

y,ty
i?

t +Hi?

u,tut ≤ bi
?

t ] ≥ βi
?

t ,

E[Jj(x0, u0:h−1)] ≤ γjt ; j 6= i?,

wjt ∼ pjw, v
j
t ∼ pjv, x0 ∼ px0

; j = 0, . . . ,m,

(9.22)

where the index i? refers to the system mode corresponding the most probable model determined from a

decision process in the FDD procedure and

Jj(x0, u0:h−1) ,
h∑
t=1

(
xjTt Qjtx

j
t + uT

t−1R
j
t−1ut−1

)

denotes the performance criterion related to the jth system mode. An estimated initial condition x0 of each

receding horizon problem is assumed to be available from a state estimator and is considered as a random

variable without loss of generality.

Types (Outputs\Inputs) State Estimator FDD Active FDD MPC Command Output

State Estimator s ua u y
FDD p ua u y
Active FDD x̂ q
MPC x̂ q r
Plant ua u

Table 9.1: Signal flows.
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Remark 9.1. The constraint E[Jj(x0, u0:h−1)] ≤ γjt for j 6= i? is used to impose the expected outputs of the

jth system mode on a compact level set corresponding to its performance criterion, and a feasible solution

enables the state trajectory of the jth system mode to be kept inside a feasibility set. Similar to the chance

constraint on the output trajectory of the (primary) i? system mode, this constraint could be replaced by a

chance constraint Pr[Hj
y,ty

j
t +Hj

u,tut ≤ b
j
t ] ≥ β

j
t for all t ∈ [1, h] and for j 6= i?.

9.5 Summary and Remarks

This chapter provides a concise overview of Bayesian hypothesis testing, and discusses some open research

directions for robust hypothesis tests and model-based real-time reliable optimal control methods integrating

estimation and control tools. A Bayesian hypothesis test is a statistical method for making an optimal

decision that reduces to finding a decision rule that minimizes the Bayes risk. The Bayes risk is sensitive to

a specific choice of the prior probabilities and the performance of a decision rule based on Bayesian hypothesis

testing depends on the statistical properties of the hypotheses. The next chapter considers design problems

of optimal probing inputs for maximizing the performance of Bayesian hypothesis testing, in particular for

fault detection and diagnosis of stochastic LTI dynamical systems.
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Figure 9.7: An integration of state estimator, fault detection and diagnosis algorithm, and model
predictive control.
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ū

]

q

x̂

ū
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Figure 9.8: A general integration of state estimator, fault detection and diagnosis algorithm, and model
predictive control, equipped with active probing input design.
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Chapter 10
Optimal Probing Inputs for Statistical FDD

Abstract This chapter considers optimal/suboptimal active input design problems for fault detection and

diagnosis (FDD). The design problems are formulated as optimizations in which an optimal sequence of

inputs within a prediction horizon is computed for maximizing the statistical discrimination of different

models of fault scenarios. The optimality criteria are information theoretic measures of the statistical

distance between probability distributions and constraints on the predicted controlled output trajectory

are imposed for ensuring operational safety as well as the input constraints that correspond to hardware

limitations. Two different approaches to such constrained optimal input design problems are presented. The

first scheme is to compute an optima input sequence for maximizing discrimination between system models

of fault scenarios in a statistical sense. Two different measures quantifying the degree of distinguishability

between two stochastic LTI system models are considered, and their geometric properties are investigated.

Their connection to the generalized likelihood ratio tests are also presented. The resultant constrained

open- and closed-loop feedback input design problems are shown to be concave programs and an iteration

algorithm to solve these special families of nonlinear programs is presented, in which semidefinite programs

are sequentially solved and a local optimum can be achieved. The second scheme is semidefinite programming

(SDP) relaxation in which three different measures for the degree of statistical discrimination between two

hypothesized stochastic dynamical system models are considered and their mathematical properties that

are related to Bayesian hypothesis tests are studied. The resulting input design problems are non-convex

and we propose associated convex relaxation methods that can be solved in polynomial time using interior

point methods. In addition, an upper bound on the sub-optimality of the proposed convex relaxation is

presented for the case when there is only the input amplitude constraint, and randomized algorithms are

presented to compute a suboptimal solution from an optimal solution of the convex relaxation problem.

Receding horizon method is used to implement the computed inputs for both approaches for constrained

optimal probing input design. Numerical simulations with an aircraft model are provided to illustrate and

demonstrate the presented methods of optimal input design for FDD.
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10.1 Introduction

The complexity of devices and processes implies that faults are inevitable, and the tight interactions between

instrumentation and other components of the overall system can result in cascading effects with significant

economic, environmental, and human damages. To properly and safely operate the facilities and devices

in real-time while preventing any unallowable behaviors of the system, reliable FDD algorithms are needed

that monitor the inputs and outputs of the system and determines whether a fault occurs and to point

to the location of the fault (aka fault diagnosis). In addition, without an optimal integration between the

monitoring and control systems, the response to faults can reduce reliability and profit or can be overly

conservative, for example, by initiating an unnecessary automated shutdown of the facility due to false

alarm.

The design of FDD procedures are challenged by the presence of disturbances, noise, and model uncertain-

ties that can make the symptoms of faults/failures indiscernible. Classical passive FDD methods monitor

the observables of the system and make a decision on whether and where a fault has occurred, whereas active

FDD approaches intentionally intervene in the operations and attempt to excite or perturb the observables

such that abnormal behaviors are exhibited [49, 132, 200, 244, 305]. There have been many research efforts

to suggest systematic methods for such auxiliary input design, both in the stochastic system setting [32]

and in the deterministic uncertain system setting [201, 202, 245]. The effects of feedback in terms of the

performance of FDD and quadratic cost optimality criteria have been investigated [4,5], as have been finite-

or infinite-horizon control methods for the design of active input signals for FDD [32,244,245].

This chapter considers three different measures for the difference between two hypothesized dynamical

system models. A measure for difference between two hypothesized dynamical system models is to quantify

the difference between two probability distribution functions associated with random processes that are the

solutions of stochastic differential (or difference) equations. The optimality criteria for design problems are

information theoretic measures of the statistical distance between probability distributions and controlled

state constraints are imposed for ensuring operational safety as well as the input constraints that correspond

to hardware limitations. The active input design problems are formulated as optimizations for which an

optimal input or a sequence of inputs is computed to maximize distinguishability (or discrimination) of

different models of fault scenarios. To quantify discrimination of two stochastic dynamical system models,

we use information theoretic measures that compute statistical distances between the solutions of the asso-

ciated stochastic differential equations. The resultant optimizations are non-convex (more precisely, concave

programs) that are NP-hard. Two different approaches to such constrained optimal input design problems

are presented. The first approach is to compute open- and closed-loop feedback input sequences from solving

concave nonlinear programs, for which a sequential method of semidefinite programs (SDPs) is applied. It is

observed that the approximate distance measure using geometric properties of Gaussian distributions can be

compatible with a closed-loop static state feedback controller that might outperform open-loop input design
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methods, whereas the direct use of the KL-divergence might not be trivial. An a byproduct, we investigate

the properties of the two approximate measures of statistical distance between probability distributions as-

sociated with two different fault scenario models. The second approach is to use semidefinite programming

relaxations for those non-convex optimizations, which provide suboptimal solutions for active input design

problems with guaranteed bounds of performance degradation for certain special cases (e.g., when there

are only box constraints on the inputs).1 In both approaches to constrained optimal probing input design

problems, an underlying assumption considered in this chapter is that the procedures of FDD are based

on a statistical decision that solves Bayesian inference problems for which the measurements of observables

are used to infer a hidden process. In this chapter, robustness is considered with respect to stochastic

uncertainties, disturbances, and noises. Robust FDD can be considered as maximizing the confidence of

a binary decision (for fault detection) and locating a correct hypothesis (for fault diagnosis) among many

candidate fault scenarios in the presence of uncertainty in a given data set. The objective of active input

design for FDD is to facilitate the associated statistical decision and maximize its robustness. In addition,

as theoretical contributions for the problem formulation of optimum input design for FDD, we investigate

the relations of the proposed measures of statistical distance to the generalized likelihood ratio tests and

justify the use of such measures of statistical distance for quantifying the degree of discrimination between

two hypothesized models.

Bayesian Inference for FDD using Multiple Models of Fault Scenarios In this chapter, we consider

the discrete-time linear time-varying stochastic system

xt+1 = Atxt +Btut + Etwt

yt = Ctxt +Dtut + Ftvt

(10.1)

where w and v are independent Wiener processes, i.e., wt ∼ N (µw,Σw), vt ∼ N (µv,Σv) for all t, E[wtw
T
s ] = 0

and E[vtv
T
s ] = 0 for all t 6= s, and E[wtv

T
s ] = 0 for all t and s.

Suppose that there are m fault scenarios and the model associated with the ith fault scenario is given by

Mi :

xit+1 = Aitx
i
t +Bitu

i
t + Eitw

i
t

yit = Citx
i
t +Di

tu
i
t + F it v

i
t

(10.2)

where the superscript i refers to the occurrence of the ith hypothesized fault. Roughly speaking, a procedure

of fault detection and diagnosis is to find the most probable model from the set of hypothesized models

M , {M0, · · · ,Mm} and Bayes’ rule is applied to quantify probabilistic confidence levels as functions of the

measurements for all the hypothesized models.

1Similar convex relaxation methods have been applied to the optimal experiment design for system identification [144,145,
168].
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10.2 Statistical Distance Measures for Hypothesis Testing

10.2.1 Distance Measure Between Gaussian Hypotheses

A measure of distance between two Gaussian hypotheses can be used to characterize the performance limi-

tation of the decision process based on the Bayesian approach.

Symmetrized Relative Entropy as a Distance Measure A common measure for the statistical dis-

tance between two probability distributions is the relative entropy, which is also called the Kullback-Leibler

distance (or divergence).

Definition 10.1 (See also [61] for details). For two probability density functions f and g, relative entropy

is defined by

dKL(f ||g) ,
∫
Rn
f(x) ln

f(x)

g(x)
dx. (10.3)

For two probability mass functions f and g, relative entropy is defined by

dKL(f ||g) ,
∑
x∈X

f(x) ln
f(x)

g(x)
, (10.4)

where the support set X is assumed to be countable. For a probability mass function f and a probability

density function g, relative entropy is defined by (10.4). For a probability density function f and a probability

mass function g, relative entropy is defined by (10.3) and its value is indeed infinity, since the integrand is

finite only if the support of f is contained in the support of g.2

This measure of distance between two probability distribution is not symmetric, i.e., dKL(f ||g) 6=

dKL(g||f), in general. For example, consider two different Gaussian distribution functions f : Rn → [0, 1]

and g : Rn → [0, 1]. In particular, f = N (µ1,Σ1) and g = N (µ2,Σ2). Then the KL distances are

dKL(f ||g) = 1
2

(
ln det Σ2 − ln det Σ1 + Tr Σ−1

2 Σ1 +(µ1 − µ2)TΣ−1
2 (µ1 − µ2)− n

)
(10.5)

and

dKL(g||f) = 1
2

(
ln det Σ1 − ln det Σ2 + Tr Σ−1

1 Σ2 +(µ1 − µ2)TΣ−1
1 (µ1 − µ2)− n

)
. (10.6)

They are the same if Σ1 = Σ2, but not the same in general.

2Definitions for relative entropy of two probability distributions of different types of supports, i.e., continuous and discrete
support sets, were not studied in classical information theory. However, relative entropy is defined with a measure function f(·)
for both of the continuous support case (10.3) and the discrete support case (10.4) so that it is natural to follow the support
of f for definition, provided that the other probability distribution g(·) is well-defined over that support.
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For a symmetric distance measure, consider one of the followings:

ρmin
KL (f, g) , min{dKL(f ||g), dKL(g||f)},

ρmax
KL (f, g) , max{dKL(f ||g), dKL(g||f)},

ρave
KL(f, g) ,

1

2
(dKL(f ||g) + dKL(g||f)) .

(10.7)

We now show the relations between the KL-divergence and the likelihood ratio test. For notational

convenience, rewrite the likelihood function corresponding to the kth model of the hypothesis Hk as

Lk(z) = pz|H(z|Hk)

where z refers to the concatenation of all observables. Define the ratio of two likelihood functions by

Ri,j(z) ,
Li(z)
Lj(z)

and define the (probability) measure-dependent quantity

Ti,j(µ
′) ,

∫
Z

ln(max{Ri,j(z), Rj,i(z)})dµ(z) (10.8)

where µ′ denotes the first-order derivative of the measure µ, provided it is differentiable. Note that since

max{Ri,j(z), Rj,i(z)} ≥ 1 for all z ∈ Z, Ti,j(µ
′) ≥ 0 for any measure satisfying µ′(z) ≥ 0 for all z ∈ Z. It is

straightforward to show that

Ti,j(pz|H(z|Hi)) = d(pz|H(z|Hi), pz|H(z|Hj)),

Ti,j(pz|H(z|Hj)) = d(pz|H(z|Hj), pz|H(z|Hi)),
(10.9)

which also implies

ρmin
KL (pz|H(z|Hi), pz|H(z|Hj)) = min

{
Ti,j(pz|H(z|Hi)), Ti,j(pz|H(z|Hj))

}
. (10.10)

Therefore, the symmetric measure using the KL divergence ρmin
KL can be interpreted as the expectation of

the logarithm of the likelihood ratio with respect to the likelihood function corresponding to the minimum

value. Similarly, we have the following relations:

ρmax
KL (pz|H(z|Hi), pz|H(z|Hj)) = max

{
Ti,j(pz|H(z|Hi)), Ti,j(pz|H(z|Hj))

}
(10.11)
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and

ρave
KL(pz|H(z|Hi), pz|H(z|Hj)) =

1

2

(
Ti,j(pz|H(z|Hi)) + Ti,j(pz|H(z|Hj))

)
. (10.12)

Bhattacharyya Bound as an Upper Bound on the Bayes Risk A Bayesian hypothesis test has a

finite probability of selecting the incorrect model, which is called the Bayes risk, given by

perr ,
∑
i

∑
j 6=i

∫
Rj
pz|H(z|Hi)p(Hi)dz (10.13)

where Rj , {z ∈ Z : pH|z(Hj |z) > pH|z(Hk|z), ∀k 6= j} is the region in which the hypothesis Hj is the most

probable. Computing the exact perr requires high computational demand that corresponds to sums of many

multi-dimensional integrals. Computation can be relaxed by using the Bhattacharyya bound that provides

an upper bound on the Bayes risk and is defined as

ēBhat(Hi, Hj) , pij

∫ √
pz|H(z|Hi)pz|H(z|Hj)dz (10.14)

where pij ,
√
p(Hi)p(Hj) are constants related to the prior distributions of the hypotheses Hi and Hj .

Define a distance measure between two probability distributions f = N (µ1,Σ1) and g = N (µ2,Σ2) by

ρBhat(f, g) ,
1

2

(
ln

det(Σ1 + Σ2)

det Σ1 det Σ2
+ n ln

1

2
+

1

2
(µ1 − µ2)T (Σ1 + Σ2)

−1
(µ1 − µ2)

)
. (10.15)

Consider the set of linear hypothesized models M given in (10.2) that are associated with the set of hy-

potheses H. Then, the Bhattacharyya bound (10.14) has the following relation with the distance measure

given in (10.15):

ln ēBhat(Hi, Hj) ≤ ln pij − ρBhat(pz|H(z|Hi), pz|H(z|Hj))).

Geometric Interpretations of Relative Entropy for Gaussian Distributions From a geometric

point of view, dKL(f ||g) and dKL(f ||g) for Gaussian distributions f and g can be interpreted as measures of

geometric disagreement between two ellipsoids associated with each distribution. To see this, the first two

terms in (10.5) and (10.6)

ln det Σ−1
1 − ln det Σ−1

2 = ln
det Σ−1

1

det Σ−1
2

ln det Σ−1
2 − ln det Σ−1

1 = ln
det Σ−1

2

det Σ−1
1

(10.16)
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are the volume ratio of the two ellipsoids E1(Σ1, 1) , {x ∈ Rn : xTΣ−1
1 x ≤ 1} and E2(Σ2, 1) , {x ∈ Rn :

xTΣ−1
2 x ≤ 1}. In addition, the quantities Tr Σ−1

2 Σ1 − n and Tr Σ−1
1 Σ2 − n are the projections of differences

(Σ1 − Σ2) and (Σ2 − Σ1) onto Σ−1
2 and Σ−1

1 , respectively:

Tr Σ−1
2 Σ1 − n = Tr Σ−1

2 (Σ1 − Σ2),

Tr Σ−1
1 Σ2 − n = Tr Σ−1

1 (Σ2 − Σ1).
(10.17)

Furthermore, an optimum minimizing the sum of those values

(Σ∗1,Σ
∗
2) , arg min

Σ1�0,Σ2�0
Tr
(
Σ−1

1 Σ2 + Σ1Σ−1
2

)
(10.18)

satisfies the relation Σ∗1 = Σ∗2, which follows from Lem. 10.1. Therefore, Tr(Σ−1
1 Σ2 + Σ1Σ−1

2 ) can be

interpreted as a degree of disagreement between Σ1 and Σ2, which is measured in the Hilbert subspace of

Sn++ equipped with the inner product 〈A,B〉 , Tr(AB).

Lemma 10.1. For X ∈ Sn++, Tr(X +X−1) ≥ 2n. Furthermore, equality holds if and only if X = I.

The last terms

(µ1 − µ2)TΣ−1
2 (µ1 − µ2) and (µ1 − µ2)TΣ−1

1 (µ1 − µ2) (10.19)

are the Euclidean distances between the points µ1 and µ2 with respect to Σ−1
2 and Σ−1

1 , respectively, i.e.,

they are weighted matrix 2-norms denoted by ‖µ1 − µ2‖2Σ−1
2

and ‖µ1 − µ2‖2Σ−1
1

, respectively.

For a symmetric distance measure, define

ρKL(f, g) , min{dKL(f ||g), dKL(g||f)} (10.20)

such that ρKL(f, g) = ρKL(g, f). For pedagogical purposes to see how this measure of distance between two

probability distribution can be used for estimation or hypothesis testing problems, consider two Gaussian

distributions f and g. For a given Gaussian distribution f = N (µ1,Σ1), solve the minimization problem

min
g∈G

dKL(f ||g) (10.21)

where G , {N (µ,Σ) : µ ∈M, σ ∈ S} with the convex compact setsM⊂ Rn and S ∈ Sn++. More explicitly,

the minimization problem is written as

min
(µ,Σ)∈M×S

− ln det Σ−1 + Tr Σ−1Σ1 + (µ1 − µ)TΣ−1(µ1 − µ). (10.22)
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Assume further that S−1 , {S : S = Σ−1,Σ ∈ S} ⊂ Sn++ is also a convex compact set. Then an equivalent

optimization is

min
t≥0,(µ,X)∈M×S−1

− ln detX + TrXΣ1 + t

s.t. (µ1 − µ)TX(µ1 − µ) ≤ t
(10.23)

which is also equivalent to

min
t≥0,(µ,X)∈M×S−1

− ln detX + TrXΣ1 + t

s.t.

 t (µ− µ1)TX

X(µ− µ1) X

 � 0

(10.24)

If there is no constraint on the choice of mean µ, i.e., M ≡ Rn, then the minimization can be rewritten as

the SDP

min
t≥0,ζ,X∈S−1

− ln detX + TrXΣ1 + t

s.t.

 t ζT − µT
1 X

ζ −Xµ1 X

 � 0,

(10.25)

provided S−1 can be represented by a positive-semidefinite cone.

Geometric Distance Measure Between Two Gaussian Distributions Consider two ellipsoids

E1(µ1,Σ1, γ) and E2(µ2,Σ2, γ) where the positive constant γ corresponds to the scaling factor of the volume of

the corresponding ellipsoid. For these confidence ellipsoids for two Gaussian random variables x ∼ N (µ1,Σ1)

and y ∼ N (µ2,Σ2), the following conditions are equivalent:

i. The intersection of two ellipsoids E1(µ1,Σ1, γ) , {x ∈ Rn : (x − µ1)TΣ−1
1 (x − µ1) ≤ γ} and

E2(µ2,Σ2, γ) , {x ∈ Rn : (x− µ2)TΣ−1
2 (x− µ2) ≤ γ} is empty;

ii. There exists a separating hyperplane between two ellipsoids E1(µ1,Σ1, γ) and E2(µ2,Σ2, γ);

iii. The optimal value of the semidefinite program (SDP)

min
t,x,y

t

s.t.

 γ (x− µi)T

(x− µi) Σi

 � 0, i = 1, 2,

 t (x− y)T

(x− y) I

 � 0

(10.26)
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is strictly positive.

To quantify the statistical distance between two Gaussian distributionsN (µ1,Σ1) and N (µ2,Σ2), compute

the largest value of γ > 0 such that E1(µ1,Σ1, γ)∩E2(µ2,Σ2, γ) = ∅, which can be formulated as the two-stage

SDP

max
γ

γ

s.t. 0 < min
t,x,y

t

s.t.

 γ (x− µi)T

(x− µi) Σi

 � 0, i = 1, 2,

 t (x− y)T

(x− y) I

 � 0.

(10.27)

The optima in this optimization are not actually achieved since the sets E1(µ1,Σ1, γ) and E2(µ2,Σ2, γ) are

compact for all 0 ≤ γ <∞, provided Σi � 0 for i = 1, 2. This problem can be arbitrarily accurately solved

by using a bisection method for which each step reduces to a recognition problem to check if t∗ > 0 and

a stopping criterion can be used to impose an allowed error of approximation. For an alternative way to

compute the largest value of γ > 0 such that E1(µ1,Σ1, γ) ∩ E2(µ2,Σ2, γ) = ∅, consider the SDP

min
γ,x

γ

s.t.

 γ (x− µi)T

(x− µi) Σi

 � 0, i = 1, 2.
(10.28)

Then for any γ < γ∗ where γ∗ is the optimal solution for (10.28), E1(µ1,Σ1, γ)∩ E2(µ2,Σ2, γ) = ∅. Further-

more, for Σ1,Σ2 ∈ Sn++, E1(µ1,Σ1, γ) ∩ E2(µ2,Σ2, γ) is a unique singleton. Define the distance measure for

two Gaussian distributions f and g

ρgeo(f, g) , γ∗ (10.29)

where f = N (µ1,Σ1), g = N (µ2,Σ2), and γ∗ is the optimal value of the SDP (10.28).

This geometric measure has several interesting relations with some existing distance metrics.

Remark 10.1. The measure of distance ρgeo(f, g) for two Gaussian distributions f and g is related to the

Minkowski functional of a convex set K ∈ X (0 ∈ intK) defined as

ρMk(x,K) , inf{r :
x

r
∈ K, r > 0}

which is a kind of measure of distance from the origin to the point x in a normed linear vector space X

measured with respect to K—it is the scaling factor by which K needs to be expanded so as to include x
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(see [161] for details). The explicit relation is that, for f = N (µ1,Σ1) and g = N (0,Σ2),

lim
‖Σ1‖→0

ρgeo(f, g) = ρMk(µ1, E2(0,Σ2, 1)),

where ‖ · ‖ can be any arbitrary matrix norm.

Remark 10.2. Another related distance measure is n/2 times the so-called Mahalanobis distance between

two points µ1 and µ2 that is defined by

ρMh(µ1, µ2|Σ) ,
n

2
(µ1 − µ2)TΣ−1(µ1 − µ2).

This measure of distance satisfies the relation ρMh(µ1, µ2|Σ) = ρMk(µ1 − µ2, E(0,Σ, 2/n)).

Remark 10.3. The measure of distance defined by (10.28) and (10.29) can be unbounded for covariances

with infinite condition number. For example, consider µ1 6= µ2, Σ1 = [1, 0; 0, ε1], and Σ2 = [1, 0; 0, ε2] where

0 < ε1, ε2 � 1. Then limmax{εi}→∞ ρgeo(f, g) =∞, where f = N (µ1,Σ1), g = N (µ2,Σ2).

Remark 10.4. ρgeo(f, g1) <∞ and ρgeo(f, g2) <∞ does not imply ρgeo(g1, g2) <∞. For example, consider

f = N ([0; 0], I), g1 = N ([0; 1], [1, 0; 0, ε1]), and g2 = N ([0;−1], [1, 0; 0, ε2]). Then limεi→∞ ρgeo(f, gi) = 1 for

i = 1, 2, but limmax{εi}→∞ ρgeo(g1, g2) =∞.

In spite of such improper cases, we have experienced some success in well-posed problems in which the

shape of the probability distributions to be compared are neither drastically ill-conditioned nor have very

large distance.

Statistical Robust Fault Detectability The statistical distance of a trajectory induced by a fault from

the no-fault trajectory can be measured by ρKL or ρgeo.

Lemma 10.2. Consider the probability mass function f(x) = 1 for x = µ and f(x) = 0 otherwise. Then

for any probability distribution g(x),

ρKL(f, g) = dKL(f ||g) = − ln g(µ).

Proof. From the definition of the KL divergence in Def. 10.1, dKL(f ||g) = − ln g(µ) and dKL(g||f) = ∞.

From the definition of ρKL(f, g) in (10.20), ρKL(f, g) = dKL(f ||g). QED

Lemma 10.3. Consider the probability mass function f(x) = 1 for x = µ and f(x) = 0 otherwise and the

Gaussian distribution g = N (ν,Σ). Then ρKL and ρgeo satisfy the relation

ρKL(f, g) =
n

2
ln 2π − 1

2
ln det Σ−1 +

1

2
ρgeo(f, g)
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where ρgeo(f, g) = (ν − µ)TΣ−1(ν − µ).

Proof. From Lem. 10.2, ρKL(f, g) = − ln g(µ) = n
2 ln 2π − 1

2 ln det Σ−1 + 1
2 (ν − µ)TΣ−1(ν − µ) for g =

N (ν,Σ). QED

Remark 10.5. Note that the difference between ρKL and ρgeo/2, i.e., n
2 ln 2π − 1

2 ln det Σ−1 = 1
2 ln (2π)n

det Σ−1 ,

is the logarithm of the volume ratio of the n-dimensional sphere to the ellipsoid E(0,Σ, 1) , {x ∈ Rn :

xTΣ−1x ≤ 1}.

10.2.2 Gaussian m-array Hypothesis Testing for FDD

To formulate an optimization problem for Bayesian hypothesis testing, there are three elementary com-

ponents that are required to be predetermined for multiple hypothesis tests (or m-array hypothesis

tests) [166,220]:

• m-array hypotheses with associated priors: Define m hypotheses. Without loss of generality, include

the null hypothesis H0 that corresponds to the normal operation, i.e., non-faulty model, for FDD. The

total number of hypotheses to be tested are m+1. The corresponding a priori probability distributions

are given by Pi , Pr[H = Hi].
3

• Penalties for wrong decisions: Assign the penalty Cij ≥ 0 that corresponds to the cost to pay when

the decision is Ĥ = Hi, but the truth is H = Hj .

• Likelihood functions: Specify the closed-form of the propagation of hypothesis to the observables

pz|H(z|Hi)
4 for each hypothesis Hi.

For FDD using a set of multiple models {M0, · · · ,Mm}, each hypothesis is assigned to each associated model,

i.e., H = Hi ⇔ M = Mi. For abuse of notation, M = Mi is also used to refer to the associated hypothesis

H = Hi.

The resulting optimization has the cost

J(Hi, z) =

m∑
j=0

Cij Pr[H = Hj |z = z]

= c

m∑
j=0

Cijpz|H(z|Hj)Pj

(10.30)

where c ,
∑m
j=0 pz|H(z|Hj)Pj is the marginal probability that is independent of Hi and depends only on the

(observable) data z. For a fixed realization z of the random variable z, an optimal decision for hypothesis

3The choice of prior probability distributions might be essentially subjective and the best Pi is, in general, hard to determine
in an objective way.

4The observable vector z is assumed to consist of the variables that can be used for hypothesis testing, e.g., the inputs,
measurements, and controlled outputs.
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selection is

Ĥ(z) = arg min
Hi:i=0,··· ,m

J(Hi, z), (10.31)

which is a finite-state optimization for which a set of hypotheses are assessed and compared with each other.

This hypothesis testing is called Series of games for Bayesian hypotheses (SGBH). The required number of

comparisons or tests increases as O(m(m+ 1)/2) where m is the number of hypotheses to be assessed.

In dynamical systems, such Bayesian hypothesis testing is more likely comparing the predictions of the

observables for multiple competing fault models (e.g., models given in (10.2)). For simplicity, assume that z =

y, i.e., the measurement outputs are the only observables for hypothesis testing. The posterior distribution

of the predicted output at time t with the system model Mk is

Pr[M = Mk, η0:t−1|yt] = Pr[yt|η0:t−1,M = Mk] Pr[Mk]

= Pr[yt|ηt−1,M = Mk] Pr[Mk]

where η , (x, u) and the last equality is due to the Markovian property induced by whiteness of process

noise wt and measurement noise vt. Suppose that each hypothesized fault scenario has the system dynamics

given by (10.2). Then the closed-forms of the likelihood functions Pr[yt|ηt−1,M = Mk] can be computed,

provided the previous system information compressed into ηt−1 (or more precisely, its distribution p(ηt−1))

can be accessed to every hypothesized model of a fault. In addition, we assume reasonable accuracy of a

state estimator such as Kalman filter or moving-horizon estimator (MHE).

To improve reliability of a Bayesian hypothesis testing, we can use a finite-time monitoring in which a finite

sequence of the measurements is used to compute the posteriori distribution or more precisely to compute the

likelihood function. Consider the monitoring window of length `m for which the sequence of the measurements

{yt, yt−1, · · · , yt−`m+1} is monitored. The posterior distribution of the predicted measurements in this

monitoring window with the system model Mk is

Pr[M = Mk, x0:t−`m , u0:t−1|yt−`m+1:t]

= Pr[yt−`m+1:t|x0:t−`m , u0:t−1M = Mk] Pr[Mk]

= Pr[yt−`m+1:t|xt−`m , ut−`m:t−1,M = Mk] Pr[Mk].

Assume that Pr[Mk] = 1/(m + 1) for all k = 0, . . . ,m. Formally, the likelihood function for the kth model

Mk is defined as

Lk(y) = Pr[yt−`m+1:t = y|xt−`m , ut−`m:t−1,M = Mk] (10.32)
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where y ∈ Rny×`m refers to the measurements during the time interval corresponding to the monitoring

window. Therefore,

k?(y) := arg max
k=0,··· ,m

Lk(y)

where the argument y is explicitly represented to emphasize its dependence on the measurements that are

indeed realizations of a random process in a finite interval.

Remark 10.6. When the monitoring window is moved forward, the previous (normalized) likelihood func-

tions may be used as the prior distributions. In this case, there can be a longer delay in fault detection and

diagnosis, but the probability of false alarm can decrease.

Remark 10.7. Consider the assumption that the initial condition at the starting point of the monitoring

window and the applied control inputs are the same for all the system modes. Then the likelihood func-

tion can be rewritten as Lk(y;xt−`m , ut−`m:t−1) and the corresponding optimal system mode rewritten as

k?(y;xt−`m , ut−`m:t−1).

10.3 Optimal Input Design for FDD: Approximation Methods

It can occur that two or more hypotheses are almost equally probable so are not distinguishable from the

current observable data because their predicted (hypothesized) distributions are quantitatively very close.

To resolve such difficult decision-making situations, consider optimal input design problems for which the

control input maximizing detectability of faults is constructed while retaining desirable system behaviors or

minimizing degradation of system performance incurred by active FDD. Many of the existing fault diagnosis

methods are passive in the sense that those diagnostic procedures are based on the observed data for given

inputs. Input design for fault diagnosis presented in this chapter is an active approach to determine the

true fault. For two different models corresponding to two different fault scenarios, the sensitivity of the

observables’ statistics to input changes can be substantially different from each other. Consider varying

the inputs within an allowable range of operation so that the resultant statistics of observables predicted

by different fault scenarios are notably different and the more probable fault scenario in a likelihood ratio

hypothesis test is diagnosed as an estimated fault. A quantified measure of distinguishability between two

models of fault scenarios is

δij(z) , ρ(pH|z(Hi|z), pH|z(Hj |z)) = δji(z)

where ρ(·, ·) denotes a certain (symmetric) measure of distance between two probability distributions. We

consider the previously defined two measures of statistical distance ρKL and ρgeo to quantify distinguishability

of faults. Suppose that the input constraint u ∈ U is defined over a convex compact set U such as a polytope

or ellipsoid.
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10.3.1 Method Based on the Measure ρKL

Consider the measure of statistical distance ρKL between two Gaussian distributions. Maximizing ρKL can

be formulated as the optimization

max
u∈U

min{γ1, γ2}

s.t.
1

2

(
ln det Σ2 − ln det Σ1 + Tr Σ−1

2 Σ1 +(µ1 − µ2)TΣ−1
2 (µ1 − µ2)− n

)
≥ γ1,

1

2

(
ln det Σ1 − ln det Σ2 + Tr Σ−1

1 Σ2 +(µ1 − µ2)TΣ−1
1 (µ1 − µ2)− n

)
≥ γ2,

(10.33)

where the mean and covariance are convex functions of the control input u. However, neither optimization

(10.33) is not convex, even for the case when the expectations µ1 and µ2 are linearly dependent on u ∈ U ,

and the covariances Σ1 and Σ2 are independent of u ∈ U .

10.3.2 Method Based on the Measure ρgeo

Consider the measure of statistical distance ρgeo between two Gaussian distributions. Maximizing ρgeo can

be formulated as the max-min problem

max
u∈U

min
µ,γ

γ

s.t.

 γ (µ− µ1(u))T

(µ− µ1(u)) Σ1(u)

 � 0,

 γ (µ− µ2(u))T

(µ− µ2(u)) Σ2(u)

 � 0,

(10.34)

where µi and Σi are the mean and covariance corresponding to the ith Gaussian distribution for i = 1, 2,

which are functions of the control input u. This max-min problem can be rewritten as

min
u∈U

max
µ,γ

− γ

s.t.

 γ (µ− µi(u))T

(µ− µi(u)) Σi(u)

 � 0, ı = 1, 2.
(10.35)

Lemma 10.4. Suppose that µi : U → Rn is an affine function and Σi : U → Sn+ is an affine or concave

quadratic function for each i = 1, 2. Then, the optimization (10.35) is a convex-constrained concave program,

i.e., the objective function is concave and the constraint set is convex.

Since the optimization (10.35) has a concave objective function and the constraint set is convex and

compact, a global optimum is achieved on the boundary of the closed convex constraint set, i.e., u? ∈ ∂U

where ∂U refers to the boundary of U , or must be constant over U . An iteration algorithm is described in
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Algorithm 1. Furthermore, if the input constraint set U is a polytope then an global optimal solution u? is

in the set of vertices, denoted by Uv. This implies that for a polytope U , we only need to compare a finite

number of candidates for optimal inputs:

u? = arg max
u∈Uv

ρgeo(N (µ1(u),Σ1(u)),N (µ2(u),Σ2(u))).

10.3.3 One-step Maximization Detectability or Distinguishability of Two Competing
Faults Using ρgeo

Consider two competing fault models Mi (i = 1, 2) in (10.2) and assume perfect information of the state

variables5 and that the output transition maps are dropped for simplicity (the extension to the general case

is straightforward). Suppose that the current state of the true process has a known Gaussian distribution

N (x̄t,Σxt), the dimensions of xi are the same as the true state’s, and xt = xit for i = 1, 2. Due to linearity

of the state transition map of models Mi, the one-step lookahead trajectories of the models Mi (i = 1, 2)

corresponding to two hypothesized faults are also Gaussian, provided an affine state feedback or open-loop

control ut. An optimal input design can be formulated as an optimization of finding u ∈ U maximizing

ρgeo(N (x̄f1t+1,Σxf1t+1
),N (x̄f2t+1,Σxf2t+1

)). Consider an affine state feedback control

ut = Ktxt + νt. (10.37)

5By perfect information, we mean that the state vector is measurable and its distribution is known or an unbiased estimation
can be obtained with the associated computable error covariance.

Algorithm 1 Iteration algorithm for solving (10.34) and (10.35).

Input: µi(·),Σi(·); i = 1, 2, u(0), and {δ(j)} ⊂ R++.
Onput: û∗, γ̂∗, and δ.

Step 0: Set j = 0.
Step 1: For u := u(j), solve the minimization part in (10.35) and assign its optimal value by γ(j) := γ∗.
Step 2: Set u := u(j) + du.
Step 3: Solve the minimization

min
u∈U,µ,γ

γ

s.t.

[
γ (µ− µi(u))T

(µ− µi(u)) Σi(u)

]
� 0, i = 1, 2.

γ ≥ (1 + δ(j))γ(j).

(10.36)

if (10.36) has a feasible optimal solution (γ∗, du∗, µ∗) then
Assign the optimum and optimal value by u(j+1) := u(j) + du∗ and γ(j+1) := γ∗. Set j := j + 1 and
go to Step 2.

else
Set û∗ := u(j), γ̂∗ := γ(j), and δ := δ(j).

end if
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max
Kt,νt

min
µ,γ

γ

s.t.

[
γ (µ− (Ait +BitKt)x̄t +Bitνt)

T

(µ− (Ait +BitKt)x̄t +Bitνt) (Ait+B
i
tKt)Σxt(A

i
t+B

i
tKt)

T+EitΣw(Eit)
T

]
� 0,[

Σmax
u,t Kt

KT
t Σ−1

xt

]
� 0, bu,t −Hu,tKtx̄t −Hu,tνt ≥ 0.

(10.40)

max
Kt,νt

min
µ,γ

γ

s.t.

[
γ (µ− (Ait +BitKt)x̄t +Bitνt)

T

(µ− (Ait +BitKt)x̄t +Bitνt) (Ait+B
i
tKt)Σxt(A

i
t+B

i
tKt)

T+EitΣw(Eit)
T

]
� 0,[

Σmax
x,t − EitΣw(Eit)

T (Ait +BitKt)
(Ait +BitKt)

T Σ−1
xt

]
� 0, bx,t −Hx,t(A

i
t +BitKt)x̄t −Hx,tB

i
tνt ≥ 0,[

Σmax
u,t Kt

KT
t Σ−1

xt

]
� 0, bu,t −Hu,tKtx̄t −Hu,tνt ≥ 0.

(10.41)

Then, the mean and covariance of the one-step lookahead state of the model Mi are

x̄it+1= (Ait+B
i
tKt)x̄t+B

i
tνt

Σxit+1
= (Ait+B

i
tKt)Σxt(A

i
t+B

i
tKt)

T+EitΣw(Eit)
T

(10.38)

for each i = 1, 2. For input constraints, consider Ut , {u ∈ Rnu : Hu,tE[u] ≤ bu,t and Var[u] � Σmax
u,t } where

the subscript t denotes time dependence and Σmax
u,t refers to an upper bound on the covariance of interest.

For an affine state feedback control (10.37), ut ∈ Ut if and only if Kt and νt satisfy the inequalities

Hu,tKtx̄t +Hu,tνt ≤ bu,tΣmax
u,t Kt

KT
t Σ−1

xt

 � 0
(10.39)

that are convex in (Kt, νt). The resulting optimization for an optimal input design with the input con-

straint (10.39) is given by (10.40).

In addition to input constraints, to avoid instability and performance degradation of the closed-loop sys-

tem, the state constraints for xit+1 (i = 1, 2) should also be considered. Since the predicted state trajectories

are essentially stochastic, the corresponding state constraints are written in terms of chance constraints.

Similar to input constraints, consider Xt , {x ∈ Rn : Hx,tE[x] ≤ bx,t and Var[x] � Σmax
x,t }. From (10.38),
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xit+1 ∈ Xt if and only if

Hx,t(A
i
t +BitKt)x̄t +Hx,tB

i
tνt ≤ bx,tΣmax

x,t − EitΣw(Eit)
T (Ait +BitKt)

(Ait +BitKt)
T Σ−1

xt

 � 0.
(10.42)

that are convex in (Kt, νt). The resulting optimization for an optimal input design with the input and state

constraints (10.39) and (10.42) is given by (10.41).

Remark 10.8. The convex constraints (10.39) and (10.42) are the intersections of a polytope and a positive-

semidefinite cone (basically, a mixed linear-conic constraint).

Algorithm 1 cannot be directly applied to solve the optimization problems (10.40) and (10.41) for the

decision variable (Kt, νt). However, if a state feedback gain Kt is fixed then Algorithm 1 can be used to

solve those optimizations for νt. Computing a state-feedback gain Kt in the optimizations (10.40) and (10.41)

can be performed separately by solving the LMIs in (10.39) and (10.42), respectively. Note that solutions

of such convex constraints are not generally unique. To resolve this non-uniqueness of feasible solutions

Kt, the associated symmetric matrices defining the LMIs could be forced to be close to the extreme rays

of positive-semidefinite cone, which is the set of rank-one symmetric matrices. This could be achieved by

minimizing the rank of the resulting symmetric matrices and there are several ways to approximately perform

rank-minimization using smooth approximation to the rank operator for positive-semidefinite matrices. For

example, − log det(X), which is convex in X ∈ Sn++ (or X ∈ Sn+),6 or Tr(X) which is linear can be used.

10.3.4 A Separate Design Method of State Feedback using H2 Optimal Control

Consider the fault scenario models (10.2) for i = 1, 2, where the measurement noise vit is ignored without

loss of generality.7 Since the H2 norm can be interpreted as the maximum output variance excited by white

noise of the unit L2 norm, a natural way to compute a state feedback control gain Kt for a fixed t ≥ 0

satisfying the constraints on the variance is H2-optimal control [73]. Utilizing the LMI conditions for state

feedback H2 synthesis,8 for each time instance t ≥ 0, design of a state feedback gain Kt can be performed

by the following procedure.

6If we consider Sn+ as the domain of the function − log det(·) then an extended real line is considered as the range of
− log det(·), i.e., − log det : Sn+ → (−∞,∞].

7The perturbation or variation due to vit is not controllable by using a state feedback controller.
8See [73] for details on H2-synthesis problems.
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S1. Solve the following SDP for Z, X, and W : Minimize η subject to

[
Ait B

i
t

]X
Z

+
[
X ZT

]AiT
t

BiT
t

+ EitE
iT
t ≺ 0,

 X (Cit +Di
tZ)T

(Cit +Di
tZ) W

 � 0,

Tr(W ) < η,

X � 0.

(10.43)

Define the optimal solutions as Z?, X?, and W?.

S2. Solve the following SDP for Z and W : Minimize η subject to

[
Ait B

i
t

]X?

Z

+
[
X? Z

T
]AiT

t

BiT
t

+ EitE
iT
t ≺ 0,

 X? (Cit +Di
tZ)T

(Cit +Di
tZ) W

 � 0,

Tr(W ) < η,Σmax
u,t Z

ZT X?Σ
−1
xt X?

 � 0,

Σmax
x,t − EitΣw(Eit)

T (AitX? +BitZ)

(AitX? +BitZ)T X?Σ
−1
xt X?

 � 0,

(10.44)

for i = 1, 2. Define the optimal solutions as Z? and W ?.

S3. Compute the state feedback control gain Kt = Z?X−1
? .

Once the state feedback gain Kt is fixed, the remaining problem is to determine the affine term νt solving

the constrained optimization (10.40) or (10.41), which can be performed, again, by using Algorithm 1.

10.3.5 Multi-step Maximization of Discrimination between Multiple Competing Faults
Using ρgeo

Extension to when there are more than two probable fault scenario models is more complicated. One

strategy is to compute an optimal input uj for the jth pair of faults and consider a convex combination

uλ =
∑np
j=1 λju

j where np = p(p − 1)/2 refers to the number of pairs from p(≥ 2) models of faults under

consideration, and λjs satisfy λj ≥ 0 and
∑np
j=1 λj = 1. Due to convexity of the input constraint set U ,

uλ ∈ U for every λj satisfying λj ≥ 0 and
∑np
j=1 λj = 1. If the objective function is replaced by a weighted
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sum of distances γ∗j of the jth pair, then a new objective is to find an optimal coefficients λj ’s satisfying

the convexity condition for uλ. For notational convenience, consider a simpler form of optimization (10.35).

The resulting optimization of an optimal input design for maximizing fault isolation (discrimination) is

max
λj ; j=1,...np

np∑
j=1

ωjγ
∗
j

γ∗j := min
µj ,γj

γj

s.t.

 γj (µj − µj1(uλ))T

(µj − µj1(uλ)) Σj1(uλ)

 � 0,

 γj (µj − µj2(uλ))T

(µj − µj2(uλ)) Σj2(uλ)

 � 0,

uλ =

np∑
j=1

λju
j ;

np∑
j=1

λj = 1, λj ≥ 0,

(10.45)

where ωj is the user-defined weight on the jth distance γ∗j for each j = 1, . . . , np, and the subscripts j1 and j2

refer to the quantities associated with the jth pair of two Gaussian distributions. The optimization (10.45)

can be solved by a similar iteration algorithm as Algorithm 1.

Remark 10.9. Extension to multi-step lookahead input design is not difficult and the receding horizon

method can be applied. For the state feedback gains Kt in the multi-step prediction, the same aforementioned

design method can be used with which Kt is independent of Ks for all s > t such that the sequence of feedback

gains Kt can be successively designed, since the open-loop input νt does not change the variance of the state

and the output. However, note that time-varying state feedback can have high computational demand as

the number of decision variables increases linearly in the length of the prediction horizon.9

10.4 Optimal Input Design for FDD: Convex Relaxation

There can be situations when two or more hypotheses are nearly equally probable and so are not distinguish-

able from the current observable data because their predicted (hypothesized) distributions are quantitatively

very close. To resolve such difficult decision-making situations, we consider optimal input design problems

for which the control input maximizing detectability of faults is constructed while retaining desirable system

behaviors or minimizing degradation of system performance incurred by FDD. Most of the existing fault

diagnosis methods are passive in the sense that those diagnostic procedures are based on the observed data

for given inputs. The input design for fault diagnosis considered here is an active approach to facilitate

statistical decision location of the true fault. For two different models corresponding to different faults,

9Note that computing Kt using the method presented in Section 10.3.4 requires to solve LMIs and can be done in polynomial-
time. This implies that time-varying state feedback can be computed in real-time with a moderate size of the state variables
and the prediction horizon.
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sensitivity of the observables’ statistics to input changes can be substantially different from each other. The

inputs are changed within an allowable range of operation so that the resultant statistics of observables

predicted from different fault scenarios are notably different and the more probable fault scenario obtained

from hypothesis testing is diagnosed as a most likely estimated fault. The distinguishability between two

models of fault scenarios can be quantified by

δij(z) , ρ(pz|H(z|Hi), pz|H(z|Hj)) = δji(z) or

δij(z) , ρ(pH|z(Hi|z), pH|z(Hj |z)) = δji(z)
(10.46)

where ρ(·, ·) refers to a certain (symmetric) measure (ρKL or ρgeo) of distance between two probability

distributions.

10.4.1 Constraints on Predicted Controlled Trajectories

The constraints U and Y are assumed to be convex and several classes of those constraints considered here

are

U1(γu1 ) , {u : ‖u‖1 ≤ γu1 },

U∞(umin, umax) , {u : umin ≤ u ≤ umax},

U2(γup ) , {u : ‖u‖2 ≤ γup},

Uδ(δumin, δumax) , {u : δumin ≤ ui+1 − ui ≤ δumax},

(10.47)

and

Y∞(ymin, ymax) , {y : ymin ≤ y ≤ ymax},

Y2(γyp) , {y : ‖y‖2 ≤ γyp},

Yδ(δymin, δymax) , {y : δymin ≤ yi+1 − yi ≤ δymax}.

(10.48)

The constraint sets U and Y can also be intersections of the constraints in (10.47) and (10.48), respectively.

Remark 10.10. The constraint Uδ is also known as the plant-friendly constraint in literature [58, 81, 219,

307], which is mostly studied in the literature of optimal input design for system identification. The methods

in this chapter can handle the plant-friendly constraint in the time domain in its original form, which does

not introduce any further conservatism.

Remark 10.11. The `1-norm constraint on the control input, defined by ‖u‖1 =
∑Nh
i=1 |ui|, can be imposed

to restrict or minimize the number of applied control actions. This can be considered as a convex relaxation of

the nonconvex constraint ‖u‖0 =
∑Nh
i=1 ι{0}(ui) where ι refers to the indicator function defined by ιC(x) = 1

if x ∈ C and ιC(x) = 0 otherwise. This is called a parsimonious input constraint that corresponds to
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minimizing unnecessary interruption to process operation.

Constrained Optimization for Maximizing Model Discrimination Consider two models of faults

Mi and Mj corresponding to hypotheses Hi and Hj . The goal is to find optimum data z that solve the

constrained optimization

max
z∈U×Y

ρ(pz|H(z|Hi), pz|H(z|Hj)) (10.49)

where U and Y refer to the input and output constraints, respectively, given in Section 10.4.1.

Lemma 10.5. Suppose that the control input u is independent of the output y, i.e., u is an open-loop

control. Then ρ(pz|H(z|Hi), pz|H(z|Hj)) is convex in z, or equivalently in u, for any distance measure

ρ ∈ {ρmin
KL , ρ

ave
KL, ρBhat}.

10.4.2 Multi-step Lookahead Maximization of Distinguishability between Two Competing
Hypothesized Models

Consider the LTI system models (10.2). Then the concatenated output trajectory within the time interval

of prediction horizon [κ+ 1, κ+mh] is

yiκ,mh = F iuuκ,mh + F ixxκ + F iwwi
κ,mh

+ F ivviκ,mh (10.50)

where yiκ,mh = yiκ+1:κ+mh
, uκ,mh = uκ:κ+mh−1, wi

κ,mh
= wiκ:κ+mh−1, viκ,mh = viκ+1:κ+mh

.

The corresponding mean and covariance of the predicted controlled output trajectory are given by

µiκ,mh , E[yiκ,mh ] (10.51)

and

Σiκ,mh , E
[
(yiκ,mh − µ

i
κ,mh

)(yiκ,mh − µ
i
κ,mh

)T
]
. (10.52)

The covariance is independent of the control input sequence uκ,mh provided that it is open-loop control. For

notational convenience, rewrite

µiκ,mh = Giuuκ,mh + giκ. (10.53)

For optimality criteria for the control input maximizing the statistical distance between two hypothesized

system models, consider

Jij(uκ,mh ; ρ) = (µ̃ijκ,mh)TPijρ (µ̃ijκ,mh) (10.54)
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where µ̃ijκ,mh , µiκ,mh − µ
j
κ,mh

and each Pijρ is defined by one of the positive-definite matrices:

 (Σiκ,mh)−1 + (Σjκ,mh)−1 for ρ = ρave
KL,

(Σiκ,mh + Σjκ,mh)−1 for ρ = ρBhat.
(10.55)

Similarly, consider

Jij(uκ,mh ; ρmax
KL ) = max

k∈{i,j}
(µ̃ijκ,mh)TΣkκ,mh(µ̃ijκ,mh),

Jij(uκ,mh ; ρmin
KL ) = min

k∈{i,j}
(µ̃ijκ,mh)TΣkκ,mh(µ̃ijκ,mh),

(10.56)

which can be rewritten as the quadratic form

J(uκ,mh ; ρ) , uT
κ,mh
Qρuκ,mh + qT

ρ uκ,mh + qρ,0 (10.57)

where the super- and subscripts ij are dropped due to simplify notation. With this general form of optimality

measure, the resultant constrained optimization can be represented as

min
uκ,mh

− J(uκ,mh ; ρ)

s.t. uκ,mh ∈ U ,

Giuuκ,mh + giκ ∈ Y,

(10.58)

where the output constraints are imposed on the expected output trajectory within the prediction horizon

interval [κ + 1, κ + mh]. The symmetric matrix Qρ in J(uκ,mh ; ρ) is positive definite for all ρ under con-

sideration, which implies that the optimization problem (10.58) is nonconvex since the objective function is

concave in uκ,mh .

10.4.3 Semidefinite Relaxation

The optimization problem (10.58) can be rewritten as

min
uκ,mh

− Tr(QρUκ,mh)− qT
ρ uκ,mh − qρ,0

s.t. Uκ,mh = uκ,mhu
T
κ,mh

,

uκ,mh ∈ U ,

Gkuuκ,mh + gkκ ∈ Y, k ∈ {i, j},

(10.59)
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where a dummy matrix variable Uκ,mh is introduced and the first equality corresponds to the only nonconvex

relation. More general and explicit form of the optimization can be written as a (nonconvex) QCQP

min
x

xTQx

s.t. xTA`x ≥ 0, ` = 1, . . . ,mq,

Bx ≥ 0,

x = [1 uT
κ,mh

]T,

(10.60)

where Q ,

 −qρ,0 −1/2qT
ρ

−1/2qρ −Qρ

, and the matrices A` and B can be explicitly obtained from the constraint

sets U and Y and the system matrices associated with the hypothesized models indexed by k ∈ {i, j}. This

(nonconvex) QCQP can be rewritten as

min
X

Tr(QX)

s.t. Tr(A`X) ≥ 0, ` = 1, . . . ,mq,

BXe1 ≥ 0,

BXBT ≥ 0,

eT
1 Xe1 = 1,

X � 0,

rank(X) = 1,

(10.61)

where e1 denotes the first standard basis vector in Rmh+1.

By removing the (nonconvex) rank constraint, rank(X) = 1, the corresponding primal SDP relaxation is

min
X

Tr(QX)

s.t. Tr(A`X) ≥ 0, ` = 1, . . . ,mq,

BXe1 ≥ 0,

BXBT � 0,

eT
1 Xe1 = 1,

X � 0,

(10.62)
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where e1 denotes the first standard basis vector in Rmh+1. Its dual problem can be written as

max
γ,λ,µ,Y

γ

s.t. Q � γe1e
T
1 +

mq∑
`=1

λ`A` + BTµeT
1 + e1µ

TB + BTYB,

λ` ≥ 0, ` = 1, . . . ,mq,

µ ≥ 0,

Y � 0,

Yii = 0, i = 1, . . . ,ml.

(10.63)

Remark 10.12. The semidefinite program (10.63) is the Lagrangian dual of the QCQP (10.60).

Using different measures defined in (10.56), the objective function in the SDP relaxation (10.62) can

be replaced by minX maxk∈{i,j}Tr(QkX) or minX mink∈{i,j} Tr(QkX) where the symmetric matrices Qk

can be computed from (10.56) and the associated system matrices for the hypothesized models indexed by

k ∈ {i, j}. Notice that maxk∈{i,j}Tr(QkX) is convex whereas mink∈{i,j}Tr(QkX) is concave, which indicates

a preference for ρmin
KL instead of ρmax

KL .

Lemma 10.6 ( [196]). Consider a hypercube constraint U = U∞(·, ·) and Y = RNh . The performance

bounds achieved by the SDP relaxation is

J?sdp ≤ J?qcqp ≤
π

2
J?sdp.

Claim 10.1. For any constraints given in (10.47) and (10.48), there exists a constant c > 010 such that

J?sdp ≤ J?qcqp ≤ cJ?sdp.

10.4.4 Optimality Criteria for Model Discrimination with Multiple Hypotheses

Suppose that there are more than two candidate fault scenarios including the nominal operation, HN ,

{H1, · · · , HN}. For an optimality criterion that quantifies information included in the predicted input-

output data z ∈ U × Y, we propose to consider one of the following:

i. Maximizing the minimum statistical distance among the hypothesized models

max
z∈U×Y

min
{j>i,i=1,...,N}

ρij(z); (10.64)

10We observe that the constant c could depend on the number of ellipsoidal constraints.

166



ii. Maximizing the average statistical distance of the hypothesized models

max
z∈U×Y

N−1∑
i=1

N∑
j>i

ρij(z); (10.65)

iii. Maximizing the weighted average statistical distance of the hypothesized models

max
z∈U×Y

N−1∑
i=1

N∑
j>i

γijρij(z), γij ∈ [0, 1],

N−1∑
i=1

N∑
j>i

γij = 1, (10.66)

where ρij(z) , ρ(pz|H(z|Hi), pz|H(z|Hj)) with ρ ∈ {ρmin
KL , ρ

ave
KL, ρBhat}.

Remark 10.13. Note that if ρij(·) are concave for all indices then the aforementioned optimizations (10.64),

(10.65), and (10.66) are all convex, provided that the constraint U × Y is convex.

10.4.5 Randomized Algorithms: Suboptimal Solutions

A randomized algorithm for computing a rank 1 solution from the optimal solutions X?
` , ` = 1, . . . , N , of

the SDP relaxation (10.62) is presented in [196,198]. Using a Cholesky factorization PX?
`P

T = ST
` S`,

11

x̃` := Dsgn(ST
` ξ),

where ξ is a Gaussian random vector whose distribution is N (0, I) and D > 0 is the diagonal scaling matrix

such that x̃ satisfies the constraints in (10.60). An optimal scaling matrix may be defined by the convex

optimization

max ‖diag(D)‖p

s.t. x̃` = Dsgn(ST
` ξ), x̃` ∈ C

(10.67)

where p ∈ [1,∞] refers in the vector p-norm, C is the intersection of the quadratic and linear constraints

given in (10.60), and ξ is a realization from the distribution N (0, I). Another method for computing a rank

1 solution from the optimal solutions X?
` of the SDP relaxation (10.62) is a biased randomized algorithm:

x̃` := x̄` +Dsgn(ST
` ξ)

where x̄` is the singular vector corresponding to the largest singular value of PX?
`P

T. Another method for

computing a rank 1 solution from the optimal solutions X?
` of the SDP relaxation (10.62) is

x̃` := x̄′` +Dsgn(ST
` ξ)

11PX?
`P

T is the matrix obtained by removing the first row and column of X?
` .

167



where x̄′` = (X?
` )2:Nh,1 is the vector obtained from the first column vector of X?

` from which the first element

is excluded.

Remark 10.14. Since D depends on the random vector ξ ∼ N (0, I), it is also a stochastic matrix.

By generating Ns samples {ξn}Ns
n=1 of ξ from the distribution N (0, I), compute an approximate suboptimal

solution

x̂ := arg min
n=1,··· ,Ns

 1

x̃n

T

Q

 1

x̃n

 (10.68)

where x̃n is a feasible solution for the constraints in (10.60) associated with the nth sample ξn. The notation

x̂(Ns) can be used to denote its dependence on the number of samples.

10.5 Discussion

10.5.1 Simulation Results

To illustrate and compare the input design methods, consider fault scenarios for an aircraft system. The

numerical data are adopted from [32]. Consider a discretized dynamical system model for the longitudinal

aircraft dynamics, in which the sampling time is 0.5 sec. The state variables are x = [Vy, Vx, ω, θ, L]T

where Vy, Vx, ω = θ̇, θ, and L refer to the vertical velocity, horizontal velocity, pitch rate, pitch angle, and

altitude, respectively. The measurable outputs are y = [Vy, ω]T. For nominal operation without any faults

corresponding to the hypothesis H0, the resulting system matrices are

A0 =



0.9985 0.1950 0 −0.161 0

−0.0325 0.8405 3.87 0 0

0.01 −0.0505 0.7855 0 0

0 0 0.5 1.0 0

0.5 0 0 0 1.0


, B0 =



0.005

−0.09

−0.58

0

0


, E0 = I5,

C0 =

1 0 0 0 0 0

0 0 1 0 0 0

 , D0 =

0

0

 , F 0 = I2.

Consider three different types of fault scenarios of the hypotheses and the associated system matrices given

by the followings:

◦ H1: Failure of the vertical velocity sensor

- M1 = (A1, B1, C1, D1, E1, F 1) where A1 = A0, B1 = B0, D1 = D0, E1 = E0, F 1 = F 0, and C1 =0 0 0 0 0 0

0 0 1 0 0 0

;
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◦ H2: Failure of the pitch rate sensor

- M2 = (A2, B2, C2, D2, E2, F 2) where A2 = A0, B2 = B0, D2 = D0, E2 = E0, F 2 = F 0, and C2 =1 0 0 0 0 0

0 0 0 0 0 0

;

◦ H3: Failure of the elevator actuator

- M3 = (A3, B3, C3, D3, E3, F 3) where A3 = A0, C3 = C0, D3 = D0, E3 = E0, F 3 = F 0, and B3 = 05×1.

The inputs are assumed to be bounded in amplitude, U∞(−1/2, 1/2).

Example 10.1. Consider the two hypotheses H = {H0, H1}. Fig. 10.1 shows the trajectories of inputs that

are computed from solving the associated convex relaxations of optimal input design problems with different

objective functions of statistical distance measures. Fig. 10.2 presents the resultant trajectories of Vy. Two

input designs induce an oscillation about the nominal value whereas one input design induces a bias.
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Figure 10.1: Input sequences obtained from the three design methods for H = {H0, H1}.
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Figure 10.2: The expected trajectory of Vy generated by the input design methods for H = {H0, H1}.
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Example 10.2. Consider the two hypotheses H = {H0, H2}. Fig. 10.3 shows the trajectories of inputs

that are computed from solving the convex relaxations of the optimal input design problems with different

objective functions of statistical distance measures. Fig. 10.4 presents the resulting trajectories of ω.

Example 10.3. Consider the two hypotheses H = {H0, H3}. Fig. 10.5 shows the input trajectories com-

puted from solving the associated convex relaxations of optimal input design problems with different statis-

tical distance measures. Figs. 10.6 and 10.7 present the resulting trajectories of Vy and ω, respectively. The

optimal solutions obtained from the three different methods are identical for this example.

Example 10.4. Consider H = {H0, H1, H2, H3}. Fig. 10.8 shows the input trajectories computed from

solving the associated convex relaxations of optimal input design problems with different statistical distance

measures. Since there are more than two models of hypotheses to compare, we solve a mini-max problem

for which an optimal solution minimizes the maximum among the statistical distance measures of each pair

of hypotheses. The number of pairs is N(N + 1)/2 where N is the number of system models (or modes) for

hypotheses, which implies that the associated convex relaxation for a multiple hypotheses test can be still
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Figure 10.3: Input sequences obtained from the design methods for H = {H0, H2}.
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Figure 10.5: Input sequences obtained from the design methods for H = {H0, H3}.
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Figure 10.6: The expected trajectory of Vy generated by the input design methods for H = {H0, H3}.
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Figure 10.7: The expected trajectory of ω generated by the input design methods for H = {H0, H3}.
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Figure 10.8: Input sequences obtained from the design methods for multiple hypotheses
H = {H0, H1, H2, H3}.
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Figure 10.9: The expected trajectory of Vy generated by the input design methods for multiple hypotheses
H = {H0, H1, H2, H3}.

solved in polynomial-time. Figs. 10.9 and 10.10 present the resulting trajectories of Vy and ω, respectively,

in which sharp distinctions between the four models can be observed for all three input design methods. The

output Vy shows the distinct behaviors for the models M0 and M2 whereas the models M1 and M3 have the

same trajectory. The output ω shows the different behaviors for the models M1 and M3 whereas the models

M0 and M2 have the same trajectory.

10.6 Summary and Future Work

In this chapter, we considered optimal active input design problems for fault detection and diagnosis based

on Bayesian inference. The resulting optimization for input design is to maximize statistical discrimination

between models of hypotheses corresponding to fault scenarios, while requiring the controlled state/output
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Figure 10.10: The expected trajectory of ω generated by the presented design methods for multiple
hypotheses H = {H0, H1, H2, H3}.

trajectories as well as the inputs remain certain bounds. Each model of a fault scenario characterizes a

random process of the measurable outputs and, to quantify the quality of the measurable data for FDD,

three different measures for the statistical distance between two random processes and two approximate

measures of them are considered. With such statistical distance measures, the original optimization is non-

convex even without any constraints, which would be computationally expensive, especially for multiple

hypothesis tests. First, we proposed a sequential SDP method to find a local optimum that can be further

improved by using multiple shooting or warm starts. In addition, closed-loop state feedback input design

problems are proposed, for which semi-chance constraints are introduced to impose bounds on the expected

controlled trajectories and their variances. Second, Convex relaxation methods were proposed that compute

approximate solutions for which the potential degree of sub-optimality is known in some special cases.

Simulation results are included to demonstrate the proposed active input design methods for FDD.
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Chapter 11
Belief Propagation and Optimization for

Distributed Fault Detection and Diagnosis

Abstract This chapter develops distributed Bayesian hypothesis tests for fault detection and diagnosis that

are based on belief propagation and optimization in graphical models. The main challenges in developing

distributed statistical estimation algorithms are (i) difficulties in ensuring convergence and consensus for

solutions of distributed inference problems, (ii) increasing computational costs due to lack of scalability,

and (iii) communication constraints for networked multi-agent systems. To cope with those challenges, this

chapter considers (i) belief propagation and optimization in graphical models of complex distributed systems,

(ii) decomposition methods of optimization for parallel and iterative computations, and (iii) distributed

decision-making protocols. This chapter discusses further research directions for efficient and proper use of

the proposed methods in distributed statistical inference.

11.1 Introduction

Stochastic inference using graphical models [63, 283] have been important research topics in a variety of

disciplines that include signal processing [256], machine learning [87], and artificial intelligence [213]. For

the use of graphical models in statistical inference problems, optimal fusion of information and/or data over

networked agents that are individual decision makers or processors and the design of compromised inference

methods for distributed decision makers have far significant importance.

Pearl [213] referred to belief propagation (BP) as a message-passing algorithm for which local evidences

are exchanged as messages that are used to update local beliefs and to find fixed-points of iterations, corre-

sponding to marginal probability distributions of the node states. In a standard BP method for statistical

inference in a graphical model, agents on the nodes exchange messages with neighboring agents connected
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over the edges. The BP algorithm is known to provide exact marginal distributions when the graphical

model are tree-structured, i.e., of no cyclic loops [213]. In the presence of cyclic loops in a graphical model,

neither convergence nor optimally of BP methods can be, in general, guaranteed, although some empirical

studies on performance of loopy BP [188] and conversion to equivalent cycle-free graphical models [62] are

available.

The main challenges in the development of BP algorithms with general Markov and Bayesian graphical

models are

(i) Convergence Analysis: As previously mentioned, message-passing algorithms of BP do not generally

converge to a fixed point in the presence of cyclic loops.

(ii) Scalability: In a tree-structured graphical model, BP algorithms can find a fixed point in O(n) itera-

tions, where n is the diameter of the graph. However, calculation of posterior marginal probabilities on

nodes in an arbitrary Bayesian network is known to be NP-complete [59,238] and even an approximate

computation of posterior marginal probabilities is NP-hard [66].

(iii) Communication Constraints: Message-passing or information exchange over communication net-

works are not necessarily reliable, and communication bandwidth and energy constraints are typical

sources of degrading performance of networked inference algorithms [53].

To cope with the aforementioned difficulties confronted to BP methods for statistical inference in graphical

models, consider

→(i) Belief Optimization: In [299], it was shown that BP fixed points correspond to the stationary

points of the Bethe free energy approximation for a factor graph. The associated constrained mini-

mization is called belief optimization (BO). This chapter presents statistical inference methods based

on the same principle that the joint probability distribution of the node states in a graphical model

is a minimizer of the free energy, and the beliefs, corresponding to marginal probabilities of the node

states, can be computed from minimizing approximate free energy such the mean field and Bethe free

energies. The resultant statistical inference problems are formulated as constrained minimizations.

→(ii) Decomposition Methods of Optimization: Belief optimization is large-scale constrained mini-

mization that becomes intractable and non-scalable as the number of nodes and cardinality of the

node states increase. Since the coupling between marginal probabilities to be determined are con-

strained on the edges in graphical models, natural ways of reducing computational demand are to

use decomposition methods for optimization.

→(iii) Distributed Decision Processes: In the presence of communication constraints, decision processes

and information exchange need to be localized and distributed for reliable statistical inference over

graphical models.
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The main applications of BP/BO methods of interest in this chapter are in the derivation of distributed

hypothesis tests for fault detection and diagnosis (FDD) in large-scale distributed dynamical systems. De-

veloping automatic monitoring, detection, and diagnosis of system faults has rapidly growing importance as

the size and complexity of systems increase. Most of existing methods for model-based FDD are centralized

schemes in the sense that the central decision maker can access all measurements and the decision goal is

to decide whether faults occur and determine the types and locations of faults. Distributed FDD is suit-

able for large-scale interconnected and networked dynamical systems such as multi-agent systems and power

grids. Furthermore, since not all measurements are accessible to local processors and computation nodes,

centralized FDD schemes may not be applicable to distributed systems. Belief propagation and optimization

provide naturally suitable ways of distributed statistical inference and decision making, for which graphical

models are used for representation of interconnections and networks of local sensors (measurements) and

processors (data/information processing), and belief consensus constraints are required to be satisfied by

exchanging messages for BP and by imposing public variable constraints for BO.

11.2 Belief Propagation in Graphical Models

BP algorithms are developed for graphical models. This section provides a concise discussion of graphical

representations and the corresponding BP methods for distributed inference problems. There are two types

of graphical models that are used to represent probabilistic and informational dependencies of random

variables—Markov networks and Bayesian networks. A Markov network is defined with an undirected graph

whose nodes correspond to random variables and the edges correspond to their probabilistic and information

dependencies. A Bayesian network is defined with a directed graph whose nodes correspond to random

variables and the arrows are used to denote causality constraints or class-property relations. Since a focus

on developing distributed Bayesian hypothesis tests for FDD using BP/BO, this chapter only considers

Markov network models. Many research monographs are available that provide a tutorial on graphical

models (see [56,63,283], for example).

11.2.1 Pairwise MRF

Markov networks (aka Markov random field (MRF) models) are suitable for representing conditional depen-

dencies of the node states.

Definition 11.1 (MRF). The random vector X is Markov with respect to the graph G = (V,E) if, for

any partition of the node set V into disjoint sets A, B, C in which B separates A and C, the degen-

erate random vectors XA, XB , XC corresponding to each node set are conditionally independent in the

sense that PAB|C(xa, xb|xc) = PA|B(xa|xb)PC|B(xc|xb), or equivalently PA|BC(xa|xb, xc) = PA|B(xa|xb) (or

symmetrically, PC|AB(xc|xa, xb) = PC|B(xc|xb)).
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The Hammersley-Clifford theorem provides a sufficient (and necessary) condition for which the joint

probability distribution of the node states can be represented as an MRF.

Theorem 11.1 (Hammersley-Clifford Theorem (see [56, 213])). The random vectorX is Markov w.r.t. the

graph G if (and only if for strictly positive probability distributions) its distribution can be factorized by a

product of variables restricted to cliques, i.e., the joint probability can be factorized as

P (x) = γ
∏
C∈C

ψC(xc) (11.1)

where γ = (
∑
x

∏
C∈C ψC(xc))

−1 and C refers to the set of cliques in G.

The ψC(xc) are called the compatibility functions that correspond to the marginal probabilities, and their

negative logarithms are referred to as potentials or potential functions, VC(xc) := − lnψC(xc) ≥ 0. The

factorization (11.1) can be rewritten as

P (x) = γ

(∏
k∈V

ψk(xk)

) ∏
(i,j)∈E

ψij(xi, xj)

 ∏
C∈C\V,E

ψC(xc)

 . (11.2)

Assumption 11.1 (Pairwise Potentials). Assume that either

(i) there is no clique with more than two nodes in the graph G, or

(ii) the potentials are only defined by the variable as a single node in V or by the two variables as a pair

of nodes on an edge in E.

Under Assumption 11.1, there is no contribution of the last term in (11.2), i.e.,

P (x) ≡ P̂ (x) , γ

(∏
k∈V

ψk(xk)

) ∏
(i,j)∈E

ψij(xi, xj)

 (11.3)

where P̂ (x) can be interpreted as an approximation of the joint probability distribution P (x) of the random

variable X that is Markov w.r.t. G = (E, V ), up to the 2-cliques.

11.2.1.1 Graphical Models for Distributed Inference

The rest of this chapter assumes that there are local measurements (or evidences) yk ∈ Yk that are associated

with the node k ∈ V . For any non-loopy graph, i.e, graphical models on trees, the compatibility functions

can be represented in terms of the marginal probabilities up to the 2-cliques: ψk(xk) = pk(xk)p(yk|xk)

for k ∈ V and ψij(xi, xj) = pij(xi, xj)p(yi, yj |xi, xj)/pi(xi)p(yi|xi)pj(xj)p(yj |xj) for (i, j) ∈ E. With this
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representation of the compatibility functions, P̂ (X) can be rewritten as

P̂ (x) = γ

(∏
k∈V

pk(xk)p(yk|xk)

) ∏
(i,j)∈E

pij(xi, xj)p(yi, yj |xi, xj)
pi(xi)p(yi|xi)pj(xj)p(yj |xj)

 (11.4)

or

P̂ (x) = γ

(∏
k∈V

p(xk|yk)

) ∏
(i,j)∈E

p(xi, xj |yi, yj)
p(xi|yi)p(xj |yj)

 (11.5)

where, with a minor abuse of notation, γ might not be the same as the γ in (11.3), but can be considered

as an equivalent partition function (value).

For the purpose of distributed statistical inference in a graphical model, a goal is to estimate the posterior

marginal probabilities, for which messages from the neighboring nodes are required to have sufficient statistics

of local measurements that can be considered as realizations from unknown probability distributions.

Problem 11.1. Consider an undirected graph G = (V,E). Compute (or approximate) the posterior

marginal probabilities

pk(xk|y1, · · · , yN ), k ∈ V (11.6)

where N = |V |.

To exactly solve Problem 11.1, the required property of a BP method is the relation of sufficient statistics

pk(xk|y1, µk) ≡ pk(xk|y1, · · · , yN ), k ∈ V (11.7)

where µk refers to the total messages delivered to the agent at the node k.1

11.2.1.2 Distributed Belief Propagation

In the aforementioned BP algorithms, there are slightly different methods of computing messages to be

transmitted, which have different interests [299]: (a) the max-product BP message is to obtain a global state

that is most probable in the Bayesian sense and consists of a local state maximizing the local belief, and

(b) the sum-product BP message is to compute marginal posterior probabilities, given the total evidence or

measurements that are available in the system. Their properties are clarified below.

The Max-Product BP A goal of a belief propagation algorithm for Bayesian estimation, particularly for

maximum a posteriori estimation, can be to achieve the relation

βk(xk) = αk max
x−k

pk (xk, x−k|y1, · · · , yN ) , ∀xk, ∀k ∈ V, (11.11)

1Agent k refers to a processor or decision maker at the node k.
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In a belief propagation algorithm, the belief at the node k in its state xk is

βk(xk) ∝ ψk(xk)
∏

`∈N (k)

µ`→k(xk) (11.8)

and the message from the node ` to the node k about the state xk can be either the sum-product BP message

µ`→k(xk) ∝
∑
x`

ψ`k(x`, xk)ψ`(x`)
∏

u∈N (`)\{k}

µu→`(x`) (11.9)

or the max-product BP message

µ`→k(xk) ∝ max
x`

ψ`k(x`, xk)ψ`(x`)
∏

u∈N (`)\{k}

µu→`(x`), (11.10)

where conditional dependence of the beliefs and messages on measurements Y = {yi}ni=1 is dropped to
simplify the notation.

for given total measurement data {yk} ∈ Y , where each αk is a positive constant that is independent of

the value of xk and results in βk(·) ∈ [0, 1]. Alternatively, a slightly weaker relation is that, for given

measurement data {yk},

βk(x) ≤ βk(z) ⇒ max
x−k

pk (x, x−k|y1, · · · , yN ) ≤ max
x−k

pk (z, x−k|y1, · · · , yN ) , (11.12)

for all nodes k ∈ V . Note that this relation ensures marginal maximum a posteriori (m-MAP) estimation,

i.e.,

x?k = arg max
x

βk(x)

= arg max
x

pk
(
x, x?−k|y1, · · · , yN

) (11.13)

and results in the joint MAP (j-MAP) estimator satisfying the relation

{x?k} = arg max
{xi}

p (x1, · · · , xN |y1, · · · , yN ) . (11.14)

The Sum-Product BP Similar to the max-product BP algorithm, the goal of the sum-product BP is to

achieve the relation

βk(xk) = αk
∑
x−k

pk(xk, x−k|y1, · · · , yN ), ∀k ∈ V, (11.15)

where the summation is computed for all realizations of the compound random vector x−k and each αk is a

positive constant that is independent of the value of xk and results in βk(·) ∈ [0, 1]. This algorithm estimates

the marginal posterior probabilities, for given total measurements.

Remark 11.1. A notable discrimination of the sum-product BP against the max-product BP is that the

combination of optimal m-MAP estimators x?k = arg maxx βk(x), where the beliefs are obtained from the
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sum-product BP, is not necessarily an optimal j-MAP estimation.

Iterative Message-Passing and Fixed Points The following algorithm is a standard asynchronous

iterative message-passing algorithm for belief propagation.

The belief at the node k in its state xk at time t is

β
(t)
k (xk) ∝ ψk(xk)

∏
`∈N (k)

µ
(t)
`→k(xk) (11.16)

and the message from the node ` to the node k about the state xk at time t can be either the sum-product
BP message update

µ
(t)
`→k(xk) ∝

∑
x`

ψ`k(x`, xk)ψ`(x`)
∏

u∈N (`)\{k}

µ
(t−1)
u→` (x`) (11.17)

or the max-product BP message update

µ
(t)
`→k(xk) ∝ max

x`
ψ`k(x`, xk)ψ`(x`)

∏
u∈N (`)\{k}

µ
(t−1)
u→` (x`). (11.18)

11.3 Belief Optimization in Graphical Models

11.3.1 Bethe Peirerls Approximation to the Free Energy

In [297–299], it was shown that the fixed points of BP and its generalization are associated with extrema of

the Bethe and Kikuchi free energies, respectively. Below is a concise overview of some useful results from

statistical physics. In particular, the observation that statistical inference problems can be represented as

minimization of (approximate) free energy (see also [297, 299]) motivates the study of various approximate

free energies.

11.3.1.1 Gibbs Free Energy in Statistical Physics

In statistical physics, the Boltzmann distribution law indicates that, for the energy E(x) associated with

some state or condition x of a system, the probability distribution of its occurrence is given by

p(x) =
1

Z
exp(−E(x)/T ) (11.19)

where Z denotes the partition function (constant) and T is the temperature that can be set to be 1

without loss of generality. Comparing this expression to the factorization (11.1) gives γ = 1/Z and

E(x) = −
∑
C∈C lnψC(xc) =

∑
C∈C VC(xc), i.e., the total energy is the sum of the potentials over the

system. To compute the distance between the belief β(x) and the true joint probability distribution, use the
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Kullback-Leibler (KL) distance defined by

D(β||p) =
∑
x

β(x) ln
β(x)

p(x)

=
∑
x

β(x)E(x) +
∑
x

β(x) lnβ(x) + lnZ

(11.20)

such that D(β||p) = 0 if and only if β ≡ p and D(β||p) ≥ 0 for all β ∈ ∆ where ∆ refers to the set of

probabilities. Define the Gibbs free energy by

G(β) ,
∑
x

β(x)E(x) +
∑
x

β(x) lnβ(x) = U(β)−H(β) (11.21)

such that D(β||p) = G(β) − F where F , − lnZ is called the Helmholtz free energy, and U(β) and H(β)

refer to the average energy and the entropy, respectively.

11.3.1.2 Approximate Free Energy

Previously, it was assumed that the joint probability p(x) is a function of the total energy function E(x).

Suppose that the system is of a pairwise MRF with the graph G(V,E) in which there is no potential related

to cliques with more than two nodes. Then the corresponding energy of such a configuration is

E(x) = −
∑
k∈V

lnψk(xk)−
∑

(i,j)∈E

lnψij(xi, xj). (11.22)

A. The Mean Field Free Energy In mean-field theory, the joint distribution β(x) is approximated by

complete factorization, i.e,

β(x) ≈
∏
k∈V

βk(xk). (11.23)

With this approximate joint distribution under a pairwise MRF configuration, the mean-field average energy

is

Ũ({β`}`∈V ) = −
∑
k∈V

∑
xk

βk(xk) lnψk(xk)−
∑

(i,j)∈E

∑
xi,xj

βi(xi)βj(xj) lnψij(xi, xj) (11.24)

and similarly the mean-field entropy is

H̃({β`}`∈V ) = −
∑
k∈V

∑
xk

βk(xk) lnβk(xk). (11.25)

Note that the mean field free energy G̃ = Ũ − H̃ is a function of the separate one-node beliefs βk(·).
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B. The Bethe Free Energy For more general approximation, the joint distribution β(x) can be approximated

by the factorization with one- and two-node beliefs, viz.,

β(x) ≈
∏

(i,j)∈E βij(xi, xj)∏
k∈V βk(xk)qk−1

(11.26)

where qk = |N (k)|. With this approximate joint distribution under a pairwise MRF configuration, the Bethe

average energy is

Ũ({βk}k∈V , {βij}(i,j)∈E) =−
∑
k∈V

∑
xk

βk(xk) lnψk(xk)

−
∑

(i,j)∈E

∑
xi,xj

βij(xi, xj) lnψij(xi, xj)
(11.27)

and similarly the Bethe entropy is

H̃({βk}k∈V , {βij}(i,j)∈E) =
∑
k∈V

(qk − 1)
∑
xk

βk(xk) lnβk(xk)

−
∑

(i,j)∈E

∑
xi,xj

βij(xi, xj) lnβij(xi, xj).
(11.28)

Remark 11.2. In contrast to mean-field energy, the Bethe free energy is not generally an upper bound on

the true Gibbs free energy [299].

11.3.2 Belief Optimization

Consider the discrete random variables Xk ∈ Xk , {xk1, xk2, · · · , xknk} with probability one and |Xk| = nk

for each k ∈ V . For the sake of notation, assume that all the nodes have the same cardinality of their

supports, i.e., nk = n for all k ∈ V . Define the probability vector and matrix by

βk ,


βk(xki)

...

βk(xkn)

 , for k ∈ V (11.29)

and

βij ,


βij(xi1, xj1) · · · βij(xi1, xjn)

...
. . .

...

βij(xin, xj1) · · · βij(xin, xjn)

 , for (i, j) ∈ E, (11.30)

respectively. The Belief Optimization (BO) is to find {βk}k∈V minimizing G̃ for the mean-field free energy

approximation or ({βk}k∈V , {βij}(i,j)∈E) minimizing G̃ for the Bethe free energy approximation.
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11.3.2.1 Minimization of The Mean Field Free Energy

A popular method of approximating a free energy is the aforementioned mean-field approach for which

an optimal configuration of beliefs, that is, an approximation of joint probability distribution, can be ob-

tained as a factorization (11.23) and the associated factors {βk}k∈V are optimal solutions of the constrained

minimization

min G̃ = Ũ − H̃

s.t. eTβk = 1, k ∈ V

0 ≤ βk ≤ 1, k ∈ V

(11.31)

where Ũ and H̃ are given by (11.24) and (11.25), respectively. This optimization can be explicitly rewritten

as

min −
∑
k∈V

βk
T lnψk −

∑
(i,j)∈E

βi
T lnψij βj +

∑
k∈V

βk
T lnβk

s.t. βk ∈ ∆, k ∈ V
(11.32)

where ∆ , {p ∈ Rn : eTp = 1, pi ∈ [0, 1], ∀i}.

11.3.2.2 Minimization of The Bethe Free Energy

Similar to minimization of the mean-field free energy, an optimal configuration of beliefs, that is, an ap-

proximation of joint probability distribution, can be obtained as a factorization (11.26) and the associated

factors ({βk}k∈V , {βij}(i,j)∈E) are optimal solutions of the constrained minimization

min G̃ = Ũ − H̃

s.t. eTβk = 1, k ∈ V

0 ≤ βk ≤ 1, k ∈ V

eTβij = βj
T, βije = βi, (i, j) ∈ E

(11.33)
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where Ũ and H̃ are given by (11.27) and (11.28), respectively. The optimization can be explicitly rewritten

as

min −
∑
k∈V

βk
T lnψk −

∑
(i,j)∈E

[βij ◦ lnψij ]

+
∑
k∈V

(1− qk)βk
T lnβk +

∑
(i,j)∈E

[βij ◦ lnβij ]

s.t. βk ∈ ∆, k ∈ V

eTβij = βj
T, βije = βi, (i, j) ∈ E

(11.34)

where [A ◦B] = Tr(ATB) refers to entry-wise sum of the Hadamard (aka Schur) product A ◦B.

11.3.2.3 Minimization of The TAP Free Energy

The TAP (Thouless-Anderson-Palmer) approach that is used to approximate free energy in statistical

mechanics has been adopted to robust decoding and statistical inference based on belief propagation

(see [65, 125, 126], for example). An optimal configuration of beliefs, that is, an approximation of joint

probability distribution, can be obtained as a factorization (11.23) and the associated factors {βk}k∈V are

optimal solutions of the constrained minimization

min G̃ = Ũ − H̃ − T̃

s.t. βk ∈ ∆, k ∈ V
(11.35)

where T̃ refers to the TAP-correction to the mean field free energy. This belief optimization based on the

TAP free energy approximation is similar to the mean-field free energy approach for which the marginal

probability distributions are assumed to be independent. In addition, the TAP free energy approach can be

considered as an approximation of the Bethe free energy approach up to the second order moment [287].

Due to its similarity to the mean-field energy approach and lack of accuracy compared to the Bethe free

energy approach, this chapter focuses only on using the mean field and the Bethe free energy approaches

and solving the corresponding constrained minimization problems.

11.4 BP/BO Approaches to Decentralized/Distributed FDD

This section develops decomposed methods to solve the optimizations in Section 11.3.2. In particular,

methods of dual decomposition (see Appendix B.1) that solve the associated large-scale optimization are

used for decentralized/distributed computations.
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11.4.1 Decentralized FDD: Dual Decomposition

11.4.1.1 Minimization of The Mean Field Free Energy

Consider the constrained minimization (11.32). This large-scale optimization over a graphical model can be

decomposed into separated constrained minimizations for which Agent i solves the optimization

min
βi, {βj}j∈N(i)

− βiT lnψi −
∑

j∈N (i)

βi
T lnψij βj + βi

T lnβi

s.t. βi ∈ ∆,

βj = βi, ∀j ∈ N (i),

(11.36)

where the second constraint corresponds to the consensus between the agents on edges connecting the node

of Agent i and N (i) refers to the set of agents neighboring Agent i.

For fault detection and diagnosis with multiple hypotheses, assume that each agent has the same bank of

hypothesized models and the objective of resultant distributed decision-making is to obtain optimal marginal

beliefs {βi}i∈V that achieve consistency in localized estimations, i.e.,

Marginal Belief Consensus I: βi(x) = β(x), ∀x ∈ Xi, ∀i ∈ V, (11.37)

which can be rewritten as

βi = β, ∀i ∈ V, for some β ∈ ∆. (11.38)

Incorporating the consensus requirement (11.38) into (11.36) results in a decomposed optimization for which

Agent i solves

min
βi, β

− βiT lnψi + βi
TMiβi + βi

T lnβi

s.t. βi = β ∈ ∆,

(11.39)

where Mi , −
∑
j∈N (i) lnψij are nonnegative matrices since their entries correspond to compatibility func-

tions or constraints and can be normalized to be in the interval [0, 1] without deforming configuration of the

free energy with respect to the beliefs. Notice that the β is a global variable that is required to be the same

in all of the decomposed optimizations.

Case 1: [For Mi � 0] If the pairwise compatibility matrixMi is positive semidefinite then the optimization

(11.46) is convex and can be solved by using iterative dual decomposition methods, for which computations

are decentralized for each Agent i and belief consensus is achieved by iterations to find an optimal Lagrange

multipliers. For details of the use of dual decomposition methods and underlying theories, see Appendix

B.1.
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Case 2: [For Mi �∆ 0] If the pairwise compatibility matrix Mi is conditionally positive semidefinite over

the standard simplex ∆ then the optimization (11.46) is convex, but checking if Mi �∆ 0 is NP-hard [189].

If a prior knowledge of Mi �∆ 0 is available, then the same dual decomposition methods can be used as in

Case 1. If there is no condition Mi �∆ 0 a priori, then semidefinite programming relaxation can be used, in

the same manner as described in Case 3 below.

Case 3: [Indefinite Mi] The optimization (11.46) can be rewritten as

min
βi, β, Bi

− βiT lnψi + 〈Mi, Bi〉+ βi
T lnβi

s.t. βi = β ∈ ∆,

βi βi
T = Bi,

(11.40)

where 〈X,Y 〉 = Tr(XTY ). Since for any βi ∈ ∆,

βi βi
T = Bi ⇐⇒ Bie = βi, Bi � 0, rank(Bi) = 1, eTBie = 1, (11.41)

a convex relaxation of (11.40) can be

min
βi, β, Bi, B

− βiT lnψi + 〈Mi, Bi〉+ βi
T lnβi

s.t. βi = β ∈ ∆,

Bie = βi, e
TBie = 1, Bi = B � 0,

(11.42)

where the rank constraint is not imposed and B is a variable that all agents share, i.e., it is a global variable

that is required to be the same in the all of the decomposed optimizations. The optimization (11.42) provides

a suboptimal solution for (11.40) and the corresponding suboptimal value is a lower bound on the optimal

value of (11.40). The resultant optimization (11.42) is convex and can be efficiently solved to find suboptimal

solutions βi
? = β for all Agents i ∈ V , such as by using dual decomposition methods (see Appendix B.1).
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11.4.1.2 Minimization of The Bethe Free Energy

Consider the constrained minimization (11.34). This large-scale optimization over a graphical model can be

decomposed into separated constrained minimizations for which Agent i solves the optimization

min
βi, βij

− βiT lnψi −
∑

j∈N (i)

[βij ◦ lnψij ]

+ (1− qi)βiT lnβi +
∑

j∈N (i)

[βij ◦ lnβij ]

s.t. βi ∈ ∆,

βije = βi, j ∈ N (i)

(11.43)

where the second constraint corresponds to the marginal probability constraint for the agents on edges

connecting the node of Agent i.

Similar to the mean-field energy approach, for fault detection and diagnosis with multiple hypotheses,

assume that each agent has the same bank of hypothesized models and the objective of the resultant dis-

tributed decision-making is to obtain optimal marginal and pairwise marginal beliefs ({βk}k∈V , {βij}(i,j)∈E)

that achieve the consistency in localized estimations, i.e.,

Marginal Belief Consensus II: βi(x) = β(x), ∀x ∈ Xi, ∀i ∈ V

βij(x, y) = b(x, y), ∀x ∈ Xi, ∀y ∈ Xj , ∀(i, j) ∈ E,
(11.44)

which can be rewritten as

βi = β, ∀i ∈ V, for some β ∈ ∆

βij = B, ∀(i, j) ∈ E for some B ∈ Ω
(11.45)

where Ω , {A ∈ Rn×n+ : Ae = p and eTA = q for some p, q ∈ ∆}.

The use of Bayesian hypothesis tests for FDD needs special attention, for which the hypotheses at the nodes

are homogeneous. The pairwise marginal distributions {βij}(i,j)∈E are required to satisfy the conditions

βij(x, y) = 0 for all x 6= y for all (i, j) ∈ E, which implies that the off-diagonal entries of βij are zeros for all

(i, j) ∈ E, or equivalently, the matrix B in (11.45) is a diagonal matrix.

Incorporating the consensus requirement (11.45) into (11.43) results in a decomposed optimization for

which Agent i solves

min
βi, β

− βiT lnψi − βiTai + βi
T lnβi

s.t. βi = β ∈ ∆,

(11.46)
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where ai ,
∑
j∈N (i) ln(diag[ψij ]) and diag[A] denotes the vector whose elements are the diagonal entries

of A in order. The resultant optimizations (11.46) are convex and can be efficiently solved to find global

consensus optima βi
? = β for all Agents i ∈ V , such as by using dual decomposition methods (see Appendix

B.1).

11.5 Discussion

This section discusses several issues on the use of belief propagation for distributed statistical inference, and

presents some open questions that are not fully answered in this chapter. The purpose of these discussions

is to suggest future research directions for extensions and applications of BP/BO methods.

11.5.1 Unresolved Problems

For proper usage of belief propagation and optimization to tackle distributed statistical inference problems,

some underlying assumptions of BP/BO methods need to be further investigated.

11.5.1.1 Correlated Measurements

Most of research works in the literature of belief propagation assume that each local measurement is condi-

tionally independent given the other states at V (even given the states at its neighborhood). In other words,

the likelihood functions have the relations

p(yk|xk, x−k) = p(yk|xk), ∀k ∈ V. (11.47)

This assumption would be valid only for some special cases such as when the sensors are static (memoryless)

and each source of uncertainty is localized. To see the role of this assumption of conditional independence

in belief propagation, consider the next example of sensor fusion.

Example 11.1. Consider the Markov network model of sensor fusion depicted in Figure 11.1. Messages

from Agents 2 and 3 to Agent 1 are computed by

µj→1(x1) ∝
∑

xj∈Xj

p(x1|xj)p(xj |yj), for j = 1, 2, (11.48)

where {yj} are the local measurements that are available to Agents j. Note that this is a marginalization

and results in

µj→1(x1) ∝ p(x1|yj), for j = 1, 2, (11.49)
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with the resultant belief

β1(x1) ∝ p(x1|y1)µ2→1(x1)µ3→1(x1)

∝ p(x1|y1)p(x1|y2)p(x1|y3).
(11.50)

Under the assumption of conditional independence (11.47), the belief can be rewritten as

β1(x1) ∝ p(x1|y1, y2, y3) (11.51)

that is, the marginal probability of the state of Agent 1 for given total measurements. The marginal

probabilities of Agents 2 and 3 can be computed in similar ways, viz., β2(x2) ∝ p(x2|y1, y2, y3) and β3(x3) ∝

p(x3|y1, y2, y3).

In the previous example, notice that without assuming or guaranteeing conditional independence, the mes-

sages µj→i(xi) for i 6= j = 1, 2, 3 result in the beliefs βi(xi) ∝
∏3
j=1 p(xi|yj) that are not the same as the

desired relations βi(xi) ∝ p(xi|y1, y2, y3).

Fortunately, for the case of homogeneous hypotheses in graphical models, the likelihood functions (11.47)

have the relations

p(yk|xk, x−k) = p(yk|xk)

n∏
j=1

δ(xk, xj), ∀k ∈ V, (11.52)

where δ(x, y) refers to the standard scalar Dirac delta function. This fact implies that, for Example 11.1,

the message-passing algorithms (11.48) achieve the correct beliefs (11.51) only if they satisfy the additional

conditions of marginal belief consensus, viz., β1(x) = β2(x) = β3(x) for all x ∈ X .

11.5.1.2 Pre vs. Post Data Processing and Information Fusion

The primary goal of message-passing algorithms is to provide sufficient statistics for computations of marginal

probabilities. In the context of belief propagation, sufficient statistics of messages are properties that ensure

the relations

βi
(
xi|yi, {µj→i}j∈N (i)

)
= p
(
xi|Y = {yj}nj=1

)
, ∀xi ∈ Xi, ∀i = 1, · · · , n. (11.53)

Message-passing algorithms can be considered as post data processing for information fusion, whereas trans-

mitting raw data, not subject to any data processing, is a naive method for computations of marginal

probabilities. Due to communication bandwidth limitations and cost of data storage, transmission of raw

data is not practical nor efficient.

In belief propagation algorithms based on graphical networked models, reducing communication costs

is of primary interest. Reducing the size of transmitting messages with guaranteed exactness of resultant
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Figure 11.1: A schematic of a Markov network for sensor fusion. The solid arrows correspond to
communication links and the dotted arrows correspond to measurement mechanism. S: Sensor, P:
Processor, S: Receiver, T: Transmitter, and E: Evidence (or Observational Event).

statistical inference is to compute the smallest sufficient statistics.

11.5.1.3 Suboptimality of Consensus Algorithms

There was much research effort that studies convergence of message-passing algorithms in terms of properties

of the graph G = (V,E) (see [2, 182, 206], for example). Notice, however, that convergence does not imply

optimality in general. Furthermore, such suboptimality can result in an arbitrarily bad decision whenever

the estimation problem is connected to an optimal control problem, in which inaccurate belief can deviate

the resultant decision from an optimal decision such that the achieved performance can be significantly

worse off. In [206], the average-consensus algorithm and a belief propagation method are combined—such

an algorithm was refereed to as belief consensus. This belief consensus has many benefits such as scalability

and convergence under varying network topology. However, [206] did not provide any analysis of optimality

and sub-optimality of their methods for distributed hypothesis tests. Notice that convergence or consensus

of beliefs or messages does not necessarily imply optimality of the resultant hypothesis testing.

11.5.2 MAP Consensus

In Section 11.4, belief consensus constraints—conditions of (11.37) for the mean-field energy minimization

and conditions of (11.44) for the Bethe free energy minimization—are incorporated into belief optimization

to reach agreement in marginal and pairwise marginal probability distributions of multiple hypotheses for

given total measurements.

A popular statistical inference problem is to find a state that is the most probable from a probability
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distribution for given measurements. For graphical models of distributed hypothesis testing, such a state

can be obtained from m-MAP or j-MAP estimation. Recall that an m-MAP estimator is a process to

find state variables associated with the nodes in a graphical model such that the corresponding marginal

posterior probabilities have maximum values for given total measurements. Similarly, but slightly differently,

a j-MAP estimator is a process to find a configuration of state variables in a graphical model such that the

corresponding joint posterior probability is a maximum for given total measurements. For this purpose of

inference, the aforementioned max-product BP algorithms can be beneficial—using the max-product BP can

reduce the communication costs, while the computational burdens of local processors would increase.

11.6 Summary and Future Work

This chapter has developed methods for distributed Bayesian hypothesis testing, particularly, for applica-

tions to distributed fault detection and diagnosis in large-scale networked systems. The presented methods

are based on belief propagation and optimization and use graphical models to represent the systems of con-

sideration. The resultant estimation problems reduce to the solution of distributed optimization for which

the idea of belief optimization is adopted to use the concept of minimization of free energy to find an optimal

probabilistic configuration of the state variables in Markov random fields. For distributed computations of

the associated constrained minimization problems, dual decomposition methods are used, which provide

benefits of scalability and convergence.

Several issues in the efficient and proper use of belief propagation and optimization for distributed statisti-

cal inference problems are discussed. Future research directions would be (a) to develop further generalization

of belief optimization using the concepts of region-based free energy representations, which are extensions

of pairwise potential energy descriptions, and (b) to evaluate exactness and compute approximation errors

of an estimator that is obtained from minimizing an approximate free energy.
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Chapter 12
CONCLUSIONS

This thesis has developed several model-based analysis, control, and estimation methods for both deter-

ministic and stochastic uncertain dynamical systems. Part I extended and customized existing theoretical

developments to delve further into the analysis and control of certain structured and characterized deter-

ministic uncertain systems having additional properties that can be exploited. Part II employed spectral

methods known as generalized polynomial chaos expansions for approximate quantification of stochastic

uncertainties that are propagated through stochastic dynamical systems. In Part III, statistical inference

problems in the basis of Bayesian theory were considered for the purpose of fault detection and diagnosis,

for which multiple hypotheses of stochastic dynamical systems are assessed to find an optimally probable

model of an event of faults, based on available observations and monitoring processes.

Chapter 2 presented a characterization of the solutions for copositive Lyapunov inequalities. It was

shown that the extreme rays of solutions for copositive Lyapunov inequalities are indeed dyadic products

of the co-state corresponding to Lagrangian dual variables that satisfy semi-algebraic conditions, which are

polynomial-time verifiable under a mild assumption on the cone.

Chapter 3 considered uncertain linear descriptor systems of which unified and generalizable conditions for

robust stability and performance were developed. The presented tests were coupled linear matrix inequalities

and equalities that are computationally tractable via existing interior-point methods. Applicability of the

full block S-procedure and its extensions to structured uncertain linear descriptor systems was supported.

Chapter 4 considered the reliability analysis of controlled systems with and without model uncertainties

and provided necessary and sufficient conditions for robust fault-tolerant stability and performance under

constant but unknown gain variation for uncertain systems that are affected by real parametric and complex

dynamic uncertainties. The proposed conditions were represented in terms of the structured singular value

whose upper- and lower-bounds can be computed in polynomial-time by using existing numerical methods.

For illustration of the application of the proposed reliability conditions, numerical case studies for high-purity

distillation column and parallel reactors with combined precooling were provided.
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Chapter 5 presented a nonlinear internal model control scheme for stable Wiener systems that ensures

robustness of closed-loop stability and performance to uncertainties in the inversion of the static nonlinearity.

The proposed nonlinear IMC procedure was shown to be computationally tractable and applicable to stable

Wiener systems with unstable zero dynamics, unmeasured states, disturbances, and measurement noise. The

generalization of our approach to Hammerstein and Sandwich models is straightforward, and can be used to

explicitly incorporate actuator constraints into the nonlinear controller design.

Chapter 6 provided a comprehensive overview of research related to the computational complexity of

robustness margin calculations. This chapter collected together many results that are not well known in

the literature, including that the cost of the structured singular value calculation scales by the rank of the

nominal matrix, and that in worst case the widely used upper bound for the structured singular value can

be arbitrarily far off. The chapter also represented approaches for the extension of past results, including

randomized algorithms and polynomial chaos.

Chapter 7 considered generalized polynomial chaos (gPC) expansion approaches that can be used to

approximate the functional dependence of dynamical system properties on uncertainties that are random

variables for stochastic control problems as a means of replacing or facilitating MC simulation methods.

This chapter presented stochastic optimal control problems by using gPC in which the cost function and

probabilistic constraints can be reformulated as the constraints over the coefficients of gPC expansions.

Chapter 8 developed a new approach for stochastic model predictive control (MPC) problems in the

presence of both parametric model uncertainty and exogenous stochastic disturbances. To approximate

the solution of a stochastic differential equation and solve the corresponding stochastic MPC problem, gPC

expansions were applied and constraints corresponding to the probability of safety/collision were imposed on

the approximately predicted controlled trajectories, based on the model of a stochastic differential equation.

It was also shown that concentration-of-measure inequalities combined with the Boole inequality can provide

conservative probabilistic certificates for chance constraints of polyhedral inequalities, for which applications

of the gPC expansions can be straightforward.

Chapter 9 presented a concise overview of Bayesian hypothesis testing, and discussed some open research

directions for robust hypothesis tests and model-based real-time reliable optimal control methods that in-

tegrate estimation and control tools. Due to sensitivity of Bayesian hypothesis tests against lack of precise

knowledge of the priors and proper choice of misdecision penalties, careful assessment of performance of the

resultant statistical inference and decision is required.

Chapter 10 developed optimal active input design methods for fault detection and diagnosis (FDD) of

Bayesian inference. The proposed design of optimal probing inputs was to maximize statistical discrimination

between models of hypotheses corresponding to fault scenarios, while requiring the controlled state/output

trajectories as well as the inputs remain within certain bounds. Different measures of the statistical discrim-

ination between random processes or stochastic dynamical systems were considered. The first approach to

design optimal probing inputs for FDD was to use a sequential SDP method to find a local optimum that
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can be further improved by using multiple shooting or warm starts. The second approach was to use convex

relaxation methods that compute approximate solutions for which the potential degree of sub-optimality is

known in some special cases.

Chapter 11 developed methods for distributed Bayesian hypothesis testing in consideration of applications

to distributed fault detection and diagnosis in large-scale networked systems. The methods were developed

in the basis of belief propagation and optimization in which graphical models were used to represent the

systems of consideration. For distributed computations of the proposed constrained minimization problems

to find an optimum hypothesis or achieve belief consensus in probabilities of hypotheses, dual decomposition

methods are used, which provide benefits of scalability and convergence.

As a concluding remark, the main research themes of this thesis were to exploit characteristics and

properties of uncertainties in dynamical system models to construct computationally efficient analysis and

control methods for the actual systems that are presumed to be in the set of uncertain models, without

changing their fundamental physical nature.
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Appendix A
Mathematical Backgrounds

A.1 Background on Computational Complexity Theory

This Appendix provides a compact introduction to computational complexity theory. Computational com-

plexity theory allows a characterization of the inherent difficulty of calculating the solution for a problem

under study. Problems (or equivalent versions of the same problem) are generally characterized as being

in one of two classes: P or NP-hard. The class P refers to problems in which the exact time needed to

solve the problem can always be bounded by a single function that is polynomial in the amount of data

needed to define the problem. Such problems are said to be solvable in polynomial time. Although the exact

consequences of a problem being NP-hard is still a fundamental open question in the theory of computational

complexity, it is generally accepted that a problem being NP-hard means that its solution cannot be com-

puted in polynomial time in the worst case. It is important to understand that being NP-hard is a property

of the problem itself, not of any particular algorithm. It is also important to understand that having a

problem be NP-hard does not imply that practical algorithms are not possible. Practical algorithms for

NP-hard problems exist and typically involve approximation, heuristics, branch-and-bound, or local search.

Determining whether a problem is polynomial-time or NP-hard informs an engineer working on large-

scale systems of the computational efficiency that can be expected by the best algorithms, and what kinds

of algorithms to investigate for providing practical solutions to the problem.

A.1.1 Optimization Problems

An instance is defined to be all of the information needed to define a computational problem, whereas the

size of the problem can be defined in a number of ways, such as the number of elements in a vector that

contains all of the input data for the problem, or the number of rows in a matrix which contains most of the
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data. Consider the optimization problem defined by

sup
x∈X

c(x) (A.1)

where each instance is a pair (X , c) and X is the set of feasible solutions and c is a cost function c : X → R.

Assume that X is non-empty and compact.

From this assumption and the Weierstrass theorem [161], the supremum is achieved by at least one x ∈ X

so that the supremum can be replaced by the maximum.

A maximization problem can be written in one of the following versions [211, Chapter 15]:

P1. The optimization version: Find an optimal solution x? ∈ X such that c(x) ≤ c(x?) for all x ∈ X .

P2. The evaluation version: Compute the optimal value c? = c(x?) of an optimal solution.

P3. The recognition version: Given k, determine whether there is a feasible solution x ∈ X such that

c(x) ≥ k.

The recognition version is important for studying the complexity of an optimization problem, since it is

the type of problem traditionally studied by the theory of computation [211, Ch. 15]. Unlike the first two

versions, the recognition version is a question, which is answered by true (1) or false (0). Namely, difficulty

of solving problems are ordered as P3 ≤ P2 ≤ P1.

A.1.1.1 The Classes P and NP

The definition of the recognition version of optimization problems allows the classification of the kinds of

problems according to their computational complexity. The class P denotes the class of recognition problems

that can be solved by a polynomial-time algorithm, i.e., given an instance, there is an efficient way for telling

whether the answer is true or false. NP is a seemingly richer class of recognition problems and, for a

problem to be in NP, it is not required that it can be answered in polynomial-time by an algorithm. It is

only required that, for a yes instance of x, there exists a concise certificate for this x such that it can be

checked in polynomial-time for validity [211, Chapter 15.3]. This condition is referred to as polynomial-time

verifiability and this definition naturally implies that P is a subset of NP, i.e., P⊂NP, and it is believed

that this relation is strict, i.e., P 6=NP. The complement of NP is denoted by co-NP and a co-NP problem

would be related to the optimization problem to determine c(x∗) < k for a given constant k. It can be only

answered when the optimal value c(x∗) is evaluated. This problem appears to be more difficult than verifying

if the recognition version is in NP. For this reason, researchers believe that NP6=co-NP. Figure A.1 shows

the relations between complexity classes of recognition problems.
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Figure A.1: Relations between complexity classes [211, Fig. 16.1].

A.1.1.2 Polynomial-time Reductions

It might be the case that solving an optimization problem becomes easy once an efficient algorithm is

available for solving another problem.

Definition A.1. [211, Defn. 15.2] Let R1 and R2 be recognition problems. Then R1 is said to reduce in

polynomial time to R2 if there exists a polynomial-time algorithm for R1 that uses an algorithm for R2 in a

subroutine.

If R1 reduces to R2 and there is a polynomial-time algorithm for R2 then there is a polynomial-time algorithm

for R1 too. Next consider the concept of polynomial-time transformation.

Definition A.2. [211, Defn. 15.3] A recognition problem R1 polynomially transforms to another recognition

problem R2, if, for a given instance x, a new instance y for R2 can be constructed within polynomial time

(in the size of x) such that x yields a true instance of R1 if and only if y gives a true instance of R2.

A.1.1.3 NP-complete and NP-hard Problems

NP-complete problems are the hardest problems in NP. Examples of problems that are NP-complete are

the traveling salesman problem, the max-cut problem, and the indefinite quadratic programming problem.

Essentially everyone familiar with computational complexity believes that NP-complete problems are harder

than P problems.1 Any problem that is at least as hard as an NP-complete problem is said to be NP-

hard. An NP-hard problem can refer to much broader classes of problems than recognition problems. In

particular, if the recognition version of an optimization is NP-complete, then the corresponding evaluation

and optimization versions are NP-hard.

A.1.2 Three Well-known Example Problems that are NP-complete or NP-hard

In order to establish NP-hardness of a problem P, it suffices to demonstrate that a certain problem Pc
that has been proven to be NP-complete can be reduced to the problem P in polynomial time. Some well-

1Although there is no formal proof.
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known NP-hard and NP-complete problems are described that are useful in showing that robustness margin

problems are NP-hard.

A.1.2.1 Indefinite QPs and QCQPs

This section defines the real quadratic program (QP), real quadratically constrained quadratic program

(QCQP), and complex QCQP.

Problem A.1 (QP). Given a real symmetric matrix A ∈ Rn×n, a real vector p ∈ Rn, a real scalar c ∈ R,

and real vectors bl and bu with bl ≤ bu, determine whether there exists x ∈ Rn such that bl ≤ x ≤ bu and∣∣xTAx+ 2pTx+ c
∣∣ ≥ k for a fixed constant k > 0.

Problem A.2 (QCQP). Given real symmetric matrices Qi ∈ Rn×n, complex vectors qi ∈ Rn, and complex

scalars di ∈ R for i = 0, . . . ,m, determine whether there exists x ∈ Rn such that bl ≤ xTQix+2qT
i x+di ≤ bu

for all i = 1, . . . , n, and
∣∣xTQ0x+ 2qT

0 x+ d0

∣∣ ≥ k for a fixed constant k > 0.

Problem A.3 (Complex QCQP). Given complex hermitian matrices Qi ∈ Cn×n, complex vectors qi ∈ Cn,

and complex scalars di ∈ C for i = 0, . . . ,m, determine whether there exists x ∈ Cn such that bl ≤

|x∗Qix+ q∗i x+ di| ≤ bu for all i = 1, . . . , n, and |x∗Q0x+ q∗0x+ d0| ≥ k for a fixed constant k > 0.

Remark A.1. No “complex QP” problem is defined since any constraint on the magnitude of a complex

vector x ∈ Cn or a linear combination of its entries reduces to a quadratic constraint on x, resulting in a

complex QCQP.

Remark A.2. Notice that Problem A.1 is not a special case of Problem A.3, since they have different fields,

R and C, respectively. The complexity of decision problems can be switched from NP to P or from P to NP,

when the underlying field is changed.

Lemma A.1. The QP problem A.1 is NP-hard.

Proof. Consider an indefinite real quadratic program

q := max
0≤xi≤1

(
n∑
i=1

rixi − r0

)2

+

n∑
i=1

xi(1− xi) (A.2)

where ri ∈ Q for i = 0, . . . , n. Murty and Kabadi [189, Lemma 1] show that the recognition problem “q ≥ k”

for a fixed constant k is NP-hard. Since this problem is a special case of Problem A.1, Problem A.1 is

NP-hard. QED

Lemma A.2. The QCQP problem A.2 is NP-hard.
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Proof. Consider an indefinite real quadratic program

q := max
0≤xi≤1

(
n∑
i=1

rixi − r0

)2

subject to xi(1− xi) = 0, i = 1, . . . , n

(A.3)

where ri ∈ Q for i = 0, . . . , n. This problem is indeed NP-hard, since it is polynomially equivalent to

(A.2) [211]. The quadratic equality constraint xi(1 − xi) = 0 is equivalent to two quadratic inequalities

xi(1 − xi) ≤ 0 and xi(1 − xi) ≥ 0. Therefore, this NP-hard problem can be reformulated as a QCQP in

polynomial time, which implies that the real QCQP problem A.2 is also NP-hard [36,211]. QED

Lemma A.3. The complex QCQP problem A.3 is NP-hard.

Proof. Consider an indefinite complex quadratic program

q := max
|xi|≤1,xi∈C

|x∗Ax| (A.4)

where A ∈ Cn×n. Toker and Özbay [267, Lemma A.3] show that the knapsack problem, which is NP-hard,

can be written as problem (A.4). This observation implies that the recognition problem “q ≥ k” for a

fixed constant k is NP-hard, which implies that the more general complex QCQP in Problem A.3 is also

NP-hard. QED

A.1.2.2 Knapsack Problems

Define the following two knapsack problems.2

Problem A.4 (Knapsack 1). Given a positive integer n and a rational positive vector a ∈ Rn with ‖a‖2 ≤

0.1, determine whether the equation
∑n
i=1 aixi = 0 has a solution with x ∈ {−1, 1}n.

Problem A.5 (Knapsack 2). Given a positive integer n and a positive integer vector a ∈ Zn, determine

whether the equation
∑n
i=1 aixi = 0 has a solution x ∈ {−1, 1}n.

Lemma A.4. Problems A.4 and A.5 are NP-complete.

Proof. See [93, Sec. 3.2] for proofs. QED

A.1.2.3 Max-cut Problem

Another well-known NP-complete problem is the max-cut problem. Let G = (V,E) be a graph with vertices

V and edges E, and w : E → R be a weight function defined on the edges of the graph. For a given subset

2These problems are also known as subset sum problems.
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of vertices, N ⊂ V , the maximum cut in the graph with respect to the weight function w is defined as

MC(G) = maxS⊂N w(δS), where δS is the set of edges with one vertex in S and the other vertex in N\S,

and w(D) :=
∑
d∈D w(d) for a subset D ⊂ E.

Problem A.6 (Max-cut). Given a graph G = (V,E) and a weight function w : E → R, compute MC(G).

The max-cut problem is known to be NP-hard [93].

A.2 Generalized Copositive Programs in Control and Systems Theory

This appendix collects mathematical results associated with a promising research direction on the use of

copositive programming in systems and control theory. In particular, we focus on mathematical programs

related to tests of conditional definiteness of given matrices. Computational challenges of checking cone-

positive definiteness motivates development of convex relaxation in the basis of copositive programming.

However, the associated copositive programs still remain to be NP-hard and polynomial-time computable

semidefinite programming (SDP) relaxation can be considered as an efficient certificate, while the resultant

conservatism needs to be further investigated.

A.2.1 Generalized Copositive Programming

Copositive programming is a class of conic programming that generalizes linear programming and semidefi-

nite programming, A copositive program is optimization over the cone of the so-called copositive matrices.

Similar to semidefinite programming, copositive programming has particular importance in application to

combinatorial and quadratic optimization (see [38,74,194], for example).

The set of copositive matrices defines a cone.

Definition A.3 (Cone of copositive matrices). The cone of copositive matrices is defined as the set of

matrices whose quadratic form takes nonnegative values on the positive orthant Rn+, viz.,

K(Rn+) ,
{
A ∈ Sn×n : xTAx ≥ 0,∀x ∈ Rn+

}
. (A.5)

The dual cone of K(Rn+) is obtained by

K(Rn+)• = Conv
{
xxT : x ∈ Rn+

}
. (A.6)

Let define the cone of positive semidefinite matrices and the cone of nonnegative matrices in Sn×n as

S+ and P+, respectively. It is straightforward to see that these two cones are self-dual, i.e., S•+ = S+ and

P•+ = P+, whereas the cone K(Rn+) is not self-dual, but indeed satisfies the relation K(Rn+)• ⊂ K(Rn+). In
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particular, we have the relations

K(Rn+)• ⊆ (S+ ∩ P+) and S+ + P+ ⊆ K(Rn+) (A.7)

where the subset relations are known to be strict for n ≥ 5, while we have the equality in the above relations

for n ≤ 4 [173].

Definition of the aforementioned cone of copositive matrices can be generalized to define a cone of matrices

whose quadratic form takes nonnegative values on the cone C ⊂ Rn, namely,

K(C) , {A ∈ Sn×n : xTAx ≥ 0,∀x ∈ C} (A.8)

and its dual is similarly obtained as

K(C)• = Conv{xxT : x ∈ C}. (A.9)

A cone program is a linear optimization problem in matrix variables of the standard form

min 〈C,X〉

s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ K

(A.10)

where K refers to a cone. With regard to the types of the cone K, we have the hierarchy relations

LP ⊂ SOCP ⊂ SDP ⊂ COP ⊂ g-COP ⊂ CP (A.11)

where classifications of cone programming follow

LP: (A.10) with K = P+,

SOCP: (A.10) with K = S2,

SDP: (A.10) with K = S+,

COP: (A.10) with K = K(Rn+),

g-COP: (A.10) with K = K(C),

CP: (A.10) with K

(A.12)

with Sp , {(x, r) ∈ Rn−1 × R : ‖x‖p ≤ r} known as the Lorentz cone or ice cream cone (for p = 2) and the

cone K considered in CP can be any one of types of aforementioned cones or, more generally, a Cartesian

product of aforementioned cones.
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The dual program of a cone program that can be straightforwardly obtained from the Lagrangian approach

is a cone program having the form

min

m∑
i=1

biyi

s.t. C −
m∑
i=1

yiAi ∈ K•
(A.13)

where K• refers to the dual cone of K.

With regard to the use of interior-point methods to solve the primal (A.10) and dual (A.13) optimization

of cone programming, the associated optimization is polynomial-time solvable only if there exists a self-

concordant barrier function, that can be evaluated in polynomial-time, for the cones K and K• (see [197] for

further details of polynomial-time interior-point methods for convex optimization).

A.2.1.1 Tests for Conditionally Definite Matrices

This subsection presents several results related with conditional definite matrices. The readers are further

referred to [118] for an extensive survey on the results related with conditionally definite matrices and

[129,130] for tests of copositiveness of symmetric matrices.

Definiteness on a Subspace Consider a subspace S(B) ⊂ Rn defined by

S(B) , {x ∈ Rn : Bx = 0} (A.14)

where B ∈ Rm×n with m < n and Rank(B) = m.

Definition A.4. A matrix P ∈ Sn×n is said to be S(B)-positive definite and denoted by P �S(B) 0 if

〈x, Px〉 > 0, ∀x ∈ S(B) \ {0}. (A.15)

Similarly, if

〈x, Px〉 ≥ 0, ∀x ∈ S(B) (A.16)

then P ∈ Sn×n is said to be S(B)-positive semidefinite.

Lemma A.5 (Finsler’s Lemma [19]). Consider a symmetric matrix P ∈ Sn×n and a subspace S(B) ∈ Rn

defined above. Then the following statements are equivalent:

i) The matrix P is S(B)-positive definite, i.e., 〈x, Px〉 > 0 for all x 6= 0 such that Bx = 0.

ii) (B⊥)
′
PB⊥ � 0 where BB⊥ = 0.
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iii) There exists a constant ρ0 > 0 such that P + ρBTB � 0 for all ρ ≥ ρ0.

iv) There exists a matrix X ∈ Rn×m such that P +XB +BTXT � 0.

Definiteness on an Affine Set Consider an affine set A(B, b) ⊂ Rn defined by

A(B, b) , {x ∈ Rn : Bx = b} (A.17)

where B ∈ Rm×n with m < n and Rank(B) = m, and b ∈ Rm.3 Suppose that the affine set A(B, b) is

nonempty.4 Then there exists x0 ∈ Rn such that Bx0 = b.

Lemma A.6. Consider a symmetric matrix P ∈ Sn×n and an affine set A(B, b) ∈ Rn defined above. The

matrix P is A(B, b)-positive definite, i.e., 〈x, Px〉 > 0 for all x such that Bx = b, if and only if

〈x0|Px0〉 〈Px0|

|Px0〉 P

 �S(B̄) 0, B̄ ,
[
0 B

]
, (A.18)

where x0 ∈ A(B, b) can be an arbitrary finite vector and the bra-ket notation is used to refer to the inner

product of two vectors for convenience.

Remark A.3. For a given symmetric matrix P ∈ Sn×n, the tests for S(B) and A(B, b) definiteness are

polynomial-time solvable, which follows from Finsler’s lemma and the existence of polynomial-time evaluable

self-concordant barrier function for the positive semidefinite and definite cones of symmetric matrices.

Definiteness on a Positive Orthant Motzkin [186] introduced the concept of a copositive matrix (see

Definition A.3). For a copositive matrix P ∈ Sn×n denoted as P ∈ K(Rn+), use the notation P �Rn+ 0. For

abuse of notation, a copositive matrix P is said to be Rn+-positive semidefinite.

Testing whether a given matrix P is not a copositive matrix involves the decision problem with

Instance : P ∈ Sn×n,

Question : Is there a x ≥ 0 such that 〈x, Px〉 < 0?
(A.19)

This decision problem can be naturally answered from the optimal value of the quadratic program

min 〈x, Px〉

s.t. x ≥ 0.
(A.20)

This QP is known to be NP-hard [189, Thm. 1] and a test for copositive matrices is indeed NP-complete [189,

Thm. 3].

3Every affine set can be represented in this way for properly chosen–may not be unique–parameters B and b [221, Thm.
1.4].

4Note that the affine set A(B, b) is nonempty if and only if b ∈ Image(B).
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Definiteness on a Polyhedral Cone Consider a nonempty polyhedral cone C(B) ⊂ Rn defined by

C(B) , {x ∈ Rn : Bx ≥ 0} (A.21)

where B ∈ Rm×n. A matrix P ∈ Sn×n is said to be C(B)-positive semidefinite if P ∈ K(C(B)) (see (A.8) for

the definition of K(C(B))) and denoted by P �K(C(B)) 0.

Testing whether a given matrix P is not a copositive matrix involves the decision problem with

Instance : P ∈ Sn×n, B ∈ Rm×n,

Question : Is there a x ∈ Rn satisfying Bx ≥ 0 such that 〈x, Px〉 < 0?
(A.22)

This decision problem can be naturally answered from the optimal value of the quadratic program

min 〈x, Px〉

s.t. Bx ≥ 0.
(A.23)

This QP is known to be NP-hard [189, Thm. 2] and a test for C(B)-positive semidefinite matrices is indeed

co-NP-complete [189, Thm. 4].

Definiteness on a Cone Consider a nonempty cone C ⊂ Rn. A matrix P ∈ Sn×n is said to be C-positive

semidefinite if P ∈ K(C) (see (A.8) for the definition of K(C)) and denoted by P �K(C) 0.

Testing whether a given matrix P is not a copositive matrix involves the decision problem with

Instance : P ∈ Sn×n, C ⊂ Rn,

Question : Is there a x ∈ C such that 〈x, Px〉 < 0?
(A.24)

This decision problem can be naturally answered from the optimal value of the quadratic program

min 〈x, Px〉

s.t. x ∈ C.
(A.25)

This QP is NP-hard, since it includes the QPs (A.20) and (A.23) as special cases. Furthermore, it is

straightforward that the QP (A.25) is equivalent5 to the completely cone positive program (CCPP)

min 〈P,X〉

s.t. X ∈ K(C)•,
(A.26)

for which the optimal value is zero if and only if P ∈ K(C) that directly follows from the definition of the

5Here, equivalence between two programs implies that their optimal solutions or optimal values have a one-to-one relation.
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dual cone. Note that a minimum of the above optimization (A.26) is achieved at an extreme point of the

convex cone K(C)•, i.e., an optimal solution is a rank-one matrix X? = xxT with some x ∈ C. Therefore,

the optimization (A.26) is an exact convex relaxation of (A.25).

A.2.1.2 Copositive Programs as Convex Relaxations

Copositive Programming Relaxation for Standard QP Consider a quadratic program whose sup-

porting cone is the positive orthant:

min 〈x,Cx〉

s.t. e′x = 1, x ≥ 0,
(A.27)

where e denotes the all-ones vector in Rn. We refer to the optimization of the form (A.27) as pos-QP. This

QP can be equivalently rewritten as

min 〈C,X〉

s.t. 〈E,X〉 = 1, X ∈ K(Rn+)•, Rank(X) = 1,
(A.28)

where E = eeT is the all-ones rank-one matrix in Rn×n. It is not hard to see that the rank constraint does

not change the optimal value nor the optimal solution of (A.28). In other words, the convex relaxation

(A.28) without the rank constraint is exact. The resultant convex relaxation is still a hard problem, but can

be further relaxed from replacing the completely positive cone by its superset S+ ∩ P+, namely,

min 〈C,X〉

s.t. 〈E,X〉 = 1, X ∈ S+ ∩ P+.
(A.29)

Since the constraint X ∈ P+ can be rewritten as the constraints Lk(X) ∈ S+ with linear operators Lk :

Sn×n → Sn×n for k = 1, . . . , n(n+1)
2 , the optimization (A.29) is a semidefinite program and can be solved in

polynomial-time by using interior-point methods. Alternatively, but equivalently, one can rewrite (A.29) by

min 〈C,X〉

s.t. 〈E,X〉 = 1,

〈Ek, X〉 = zk, k = 1, . . . ,m,

X � 0, z ≥ 0,

(A.30)

where Ek = eie
T
j with the standard basis vectors ei in Rn and i ≤ j such that there exists an injective

mapping from a pair (i, j) to an index k, and m = n(n+1)
2 .
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For more general QP, consider the optimization

min 〈x,Cx〉

s.t. b−Ax ≥ 0, x ≥ 0,
(A.31)

which can be equivalently rewritten as

min 〈C,X〉

s.t. bbT −AxbT − bxTAT +AXAT ∈ K(Rn+)•, X ∈ K(Rn+)•, X = xxT.
(A.32)

A natural convex relaxation can be

min 〈C,X〉

s.t. bbT −AxbT − bxTAT +AXAT ∈ K(Rn+)•,

X ∈ K(Rn+)•, X − xxT ∈ K(Rn+),

(A.33)

and an associated SDP relaxation can be

min 〈C,X〉

s.t. bbT −AxbT − bxTAT +AXAT ≥ 0,

bbT −AxbT − bxTAT +AXAT � 0,X x

xT 1

 � 0, X ≥ 0, x ≥ 0.

(A.34)

Copositive Programming Relaxation for Standard QCQP Consider a quadratically constrained

quadratic program (QCQP) whose supporting cone is the positive orthant:

min 〈x,Cx〉

s.t. 〈x,Ax〉 = 1, x ≥ 0,
(A.35)

where A ∈ Rn×n. This QCQP can be equivalently rewritten as

min 〈C,X〉

s.t. 〈A,X〉 = 1, X ∈ K(Rn+)•, Rank(X) = 1.
(A.36)

Lemma A.7. For the QCQP of the form (A.35), the following convex relaxation

min 〈C,X〉

s.t. 〈A,X〉 = 1, X ∈ K(Rn+)•
(A.37)
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is exact.

Proof. It is not hard to see that there must be an optimal solution X? that is an extreme ray of the

closed convex set {X ∈ Sn×n : 〈A,X〉 = 1, X ∈ K(Rn+)•}–it can be proved by contradiction–such that

Rank(X?) = 1. To show this rigorously, suppose that X? can be decomposed as X? = λξξT + (1− λ)Y for

some λ ∈ [0, 1] where ξ ∈ Rn+ satisfies 〈ξ, Aξ〉 = 1, Y ∈ K(Rn+)• satisfies 〈A, Y 〉 = 1, and Y −ρξξT 6= 0 for any

ρ ≥ 0. Then 〈C,X?〉 = 〈C, λξξT +(1−λ)Y 〉 = λ〈ξ, Cξ〉+(1−λ)〈C, Y 〉 ≥ min{〈ξ, Cξ〉, 〈C, Y 〉} ≥ OPT(A.35)

where OPT(·) refers to the optimal value of the associated optimization. Due to the relaxation nature,

OPT(A.35) ≡ OPT(A.36) ≥ OPT(A.37). Thus, we have OPT(A.35) ≡ OPT(A.37). QED

For more general QCQP, consider the optimization

min 〈x,Cx〉

s.t. 〈x,Aix〉 ≤ bi, , i = 1, . . . ,m,

x ≥ 0,

(A.38)

which can be equivalently rewritten as

min 〈C,X〉

s.t. 〈Ai, X〉 ≤ bi, i = 1, . . . ,m,

X ∈ K(Rn+)•, Rank(X) = 1.

(A.39)

A natural SDP relaxation can be

min 〈C,X〉

s.t. 〈Ai, X〉 ≤ bi, i = 1, . . . ,m,

X ≥ 0, X � 0.

(A.40)

A.3 Background on Spectral Methods for Uncertainty Quantification

This Appendix provides a review for fundamentals of stochastic spectral methods using polynomial expan-

sions for the system states or outputs with random system parameters and inputs. To do this, we start from

representing important characteristics of certain polynomials that are used for spectral methods.

A.3.1 Orthogonal Polynomials

Polynomial approximations are almost always used when implementing functions on a computing system

and the basic assumption on this discipline is that a finite sum of polynomials can accurately approximate
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a function of interest. For polynomial approximations, orthogonal polynomials play a crucial role and we

briefly review their properties.

A.3.1.1 Orthogonality

Consider a measure space (X ,M, µ) where X is a nonempty set equipped with a σ-algebraM and a measure

µ. A set or orthogonal polynomials {φn(s)} for x ∈M is defined by their orthonormality relation

〈φn, φm〉 ,
∫
X
φn(x)φm(x)dµ(x) =

 1 if n = m,

0 otherwise.
(A.41)

We might use a short notation for this relation: 〈φn, φm〉 = δnm where δnm is the Kronecker delta function.

For each family of orthogonal polynomials there is a corresponding integration rules with different measures.

Table A.1 shows several common orthogonal polynomials and their measures.

A.3.1.2 Recurrence Relation

It is know that any set of orthogonal polynomials {φn(s)} on the real iine satisfies a three-term recurrence

formula

xφn(x) = an+1φn+1(x) + bnφn(x) + anφn−1(x) (A.42)

for n = 0, 1, . . . ,. Along with φ−1(x) = 0, this formula holds consistently and φ0 is always a constant. This

recurrence formula can be also represented by a matrix equation

x



φ0(x)

φ1(x)
...

φp−2(x)

φp−1(x)


=



b0 a1

a1 b1 a2

. . .
. . .

. . .

ap−2 bp−2 ap−1

ap−1 bp−1





φ0(x)

φ1(x)
...

φp−2(x)

φp−1(x)


+



0

0
...

0

apφp(x)


. (A.43)

Cooperating the recurrence formula (A.42) or (A.43) with numerically stable algorithms we can produce

a set of orthogonal polynomials.

Polynomial Support Measure (µ(x))

Legendre (−1, 1) 1
Laguerre (0,∞) xαe−x

Hermite (−∞,∞) e−x
2

Chebyshev (−1, 1) (1− x2)−1/2

Jacobi (−1, 1) (1− x)α(1 + x)β

Table A.1: Supports and measures of common orthogonal polynomials.
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A.3.2 Parameterization of Random Inputs

In this section, we introduce how to properly characterize a stochastic model to study uncertainty propagation

in an input-output static and dynamic system models, where inputs include system parameters and external

inputs to the system. For any analysis of a stochastic system model based on simulations and/or experiments,

a critical step is to specify and characterize random inputs appropriately. To reduce an infinite-dimensional

probability space to a finite-dimensional space of random inputs, we parameterize the probability space by

a set of random variables that might be required to be mutually independent for accuracy and convenience

of analysis.

A.3.2.1 Random Variables

For a state-space parameterized system model, the parameterization of the probability space (Ω,F , P ) is

straightforward. Consider the concatenated system parameter vector θ : Ω → Θ ⊆ Rnθ that is a random

variable defined on the events Ω, where the set Θ is assumed to be also known and the true system parameter

θ∗ that is a realization of a random variable θ is supposed to be in the set. We also suppose that the statistics

of the random variable θ is known, i.e., the joint probability distribution of θ is given. For a given probability

distribution of random parameter of a system, the first step of analysis using polynomial chaos is to transform

the parameters to a set of independent random variables and normalize them. We might call such transformed

random variables standard random variables [120]. Our objective is to find a diffeomorphism T : Ξ→ Θ such

that θ = T (ζ) for ζ ∈ Ξ and the resulting state/output variables of a stochastic model x have equivalent

representations x(z, t; θ(ω)) = x(z, t; ζ(ω)).

Gaussian parameters Suppose that the system parameter vector θ is Gaussian: θ ∼ N (b, C). Then an

affine transformation T (ζ) , Aζ+b of the standard random variable ζ ∼ N (0, I), where A ∈ Rnθ×nθ satisfies

AAT = C, yields a reparameterization of θ in terms of the standard random variable ζ.

Non-Gaussian parameters Rosenblatt [223] suggested a simple transformation of an absolute continuous

random variable θ ∈ Ω → Rnθ into the uniform distribution on the nθ-dimensional hypercube [0, 1]nθ .

Furthermore, in some cases the uncertainty in a system input θ is specified by an empirical cumulative

distribution function (cdf). Let θ = (θ1, · · · , θnθ ) be a random vector with cdf Fθ(θ
1, · · · , θnθ ). Define a

transformation T : Θ→ [0, 1]nθ by

ζ1 = P [θ1 ≤ θ1] = F1(θ1),

...

ζnθ = P [θnθ ≤ θnθ |θ1 = θ1, · · · , θnθ−1 = θnθ−1] = Fnθ (θ
nθ |θ1, · · · , θnθ−1).

(A.44)

Then, ζi ∼ U(0, 1) for all i and {ζi} are independent.
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Distribution Type of θ ∈ Θ Transformation: T : Ξ→ Θ Transformation: T−1 : Θ→ Ξ

Uniform (a, b) a+ (b− a)
(
1
2

+ 1
2
erf(ζ/

√
2
) √

2erf−1
(

2θ−(b+a)
b−a

)
Normal (µ, σ) µ+ σζ θ−µ

σ

Lognormal (µ, σ) exp(µ+ σζ) ln θ−µ
σ

Gamma (a, b) ab
(
ζ
√

1
9a

+ 1− 1
9a

)3 √
9a

(
3

√
θ
ab

+ 1
9a
− 1

)
Exponential (λ) − 1

λ
log
(
1
2

+ 1
2
erf(ζ/

√
2)
) √

2erf−1 (2 exp(−λθ)− 1)

Weibull (a) y1/a, where y is Exponential(1) θa

Extreme Value − log(y), where y is Exponential(1) exp(−θ)

Table A.2: Transformation between the standard normal random variable ζ and several common univariate
distributions θ.

Transformation of random variables Some transformations from common univariate distributions to

the standard normal random variables were presented by Devroye [71] and extended by [120]. Table A.2 shows

a list of transformations for some probability distributions commonly used in system analysis.

Remark A.4. A transformation of random input variables might result in a high-order or non-polynomial

representation of spectral representation (e.g. polynomial chaos expansions). For example, consider a

standard uniform random variables θ ∼ U(0, 1) and transform θ to the standard normal random variable

ζ ∼ N (0, 1) using Table A.2. Then the first order polynomial p1(θ) , a0 + a1θ becomes a non-polynomial

function of ζ: p1(ζ) = a0 + a1

√
2erf−1 (2ζ − 1).

A.3.2.2 Random Sequences

It is common that the stochastic inputs of a system are random processes. The Karhunen-Loeve (KL)

expansion has proved to be useful to represent the stochastic input quantities in the stochastic system

models and be compatible to spectral methods of system identification and analysis using polynomial chaos–

it is because that the KL expansion gives a natural way to parameterize the random process inputs so that

such a parameterization can be exploited in the spectral analysis to construct basis functions.

An essential idea behind the KL decomposition is to represent a stochastic process by a spectral decom-

position of its correlated function. Consider a spatially or temporally varying random filed α(z, t, ω) over a

the spatial domain Z and time domain T with the mean ᾱ(z, t) and covariance function Cα(η1, η2) where

η , (z, t). Then the KL expansion of the random process α(η, ω)is given by

α(η, ω) = ᾱ(η) +

∞∑
i=0

√
λiφi(η)αi(ω) (A.45)

where φi are the orthogonal eigenfunctions corresponding to the eigenvalues λi of the integral operator TCα

defined as

TCαφ(η) ,
∫
Z×T

Cα(η, s)φ(s)dµ(s) (A.46)

210



with a properly chosen measure µ : Z × T → R. The set of random variables {αi(ω)} is defined over the

event ω ∈ Ω are jointly uncorrelated and have zero means, i.e., E[αi] = 0 and E[αiαj ] = δij . It can be

computed by the following equation using the orthogonality of {φi}:

αi(ω) =
1√
λi

∫
Z×T

(α(η, ω)− ᾱ(η))φi(η)dµ(η) (A.47)

for each i ∈ N. Relying on principal component analysis (PCA), the truncated series after a finite number

of terms, we use an approximate representation of the KL expansion

αN (η, ω) , ᾱ(η) +

N∑
i=0

√
λiφi(η)αi(ω) (A.48)

where N+1 is the number of basis functions and the sequence of eigenvalues {λi} is assumed to be chosen as

being non-increasing. It is known that the truncated KL expansion is the finite spectral representation with

the minimal mean-square error over any finite number of basis functions. We also note that the probability

space is decoupled from the deterministic spatial and temporal spaces in the KL expansion for the random

field α(η, ω), which is important for our approaches to analysis and synthesis problems of stochastic system

models and experiments using polynomial chaos.

Remark A.5. It is important to note that in the KL expansion (A.45) of a random field α(η, ω), the set of

parameterized random variables {αi(ω)} is not jointly independent, but uncorrelated. For Gaussian random

processes, they are equivalent. However, independence and uncorrelatedness are not equivalent in general.

it should be mentioned that uncorrelated random variables are used in generalized polynomial chaos, even

though it is not a theoretically rigorous approach. In many practical situation, this assumption (or heuristic

justification) might be fine.

A.3.3 Generalized Polynomial Chaos Expansions

Here, we discuss the PC expansion and its generalization to other types of orthogonal polynomials called

generalized PC (gPC) expansions.

A.3.3.1 Universal Approximation Property of PC expansion

The homogeneous chaos expansion was first proposed by Wiener [288]. It employs the Hermite polynomials

in terms of Gaussian random variables. It was shown that it can approximate any functionals in L2 and

converges in the L2 sense [46] (see Theorem A.1). Therefore, Hermite polynomial chaos (H-PC) expansion

has a universal approximation property for expanding second-order random processes in terms of orthogonal

polynomials. Second-order random processes are processes with finite variance, and this applies to most
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physical process [294].

X(ω) =

Np∑
i=0

âiψi(ζ(ω)) (A.49)

X(ω) = a0H0 +

Np∑
i1

ai1H1(ζi1(ω)) +

Np∑
i1

i1∑
i2

ai1i2H2(ζi1(ω), ζi2(ω))

+

Np∑
i1

i1∑
i2

i2∑
i3

ai1i2i3H3(ζi1(ω), ζi2(ω), ζi3(ω)) + · · ·

(A.50)

where

Hn(ζi1 , · · · , ζin) = e1/2ζTζ(−1)n
∂n

∂ζi1 · · · ∂ζin
e−1/2ζTζ

denotes the H-PCE of order n in the variable (ζi1 , · · · , ζin), i.e., the Hn are Hermite polynomials in terms

of the standard Gaussian random vector ζ ∼ N (0, I).

Definition A.5. A function f : Θx → Θy is said to be in a Hilbert space GL2(Θx) with the inner product

defined as 〈f, f〉µ ,
∫

Θx
f∗(x)f(x)dµ(x), if 〈f, f〉µ <∞.

Theorem A.1 (Cameron-Martin Theorem [46]). For any functional F (x) ∈ GL2(Θx),

lim
N→∞

∫
Θx

F (x)−
N∑
j=0

âjψj(x)

2

ρ(x)dx = 0 (A.51)

where âj is obtained from the Galerkin projection, i.e., âj :=
〈F,ψj〉
‖ψj‖2GL2

.

A.3.3.2 Generalized PC expansion: The Wiener-Askey Polynomial Chaos

In order to deal with more general random variables, the Wiener-Askey polynomial chaos expansion has

been introduced [294] as a generalization of the original Wiener chaos expansion.

X(θ) =

Np∑
i=0

ĉiφi(ζ(θ)) (A.52)

X(θ) = c0I0 +

Np∑
i1

ci1I1(ζi1(θ)) +

Np∑
i1

i1∑
i2

ci1i2I2(ξi1(θ), ζi2(θ))

+

Np∑
i1

i1∑
i2

i2∑
i3

ci1i2i3I3(ζi1(θ), ζi2(θ), ζi3(θ)) + · · ·

(A.53)
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Random Variables ζ Wiener-Askey Polynomial Chaos ζ Support

Continuous Gaussian Hermite PCE (−∞,∞)
Gamma Laguerre PCE [0,∞)

Beta Jacobi PCE [a, b]
Uniform Legendre PCE [a, b]

Discrete Poisson Charlier PCE {0, 1, 2, · · · }
Binomial Krawtchouk PCE {0, 1, · · · , N}

Negative Binomial Meixner PCE {0, 1, 2, · · · }
Hypergeometric Hahn PCE {0, 1, · · · , N}

Table A.3: Types of gPC expansions and the corresponding standard random variables.

where In(ζi1 , · · · , ζin) denotes the Wiener-Askey polynomial chaos of order n in terms of the random vector

ζ = (ζi1 , · · · , ζin) and it is not restricted to Hermite polynomials but rather can be all types of the orthogonal

polynomials from the Askey scheme (see [294] for details).

A.3.3.3 Extensions to Heterogeneous Random Variables

We consider a function of random variables X : Θ1×Θ2 → Θx where the two random variables θ1 ∈ Θ1 and

θ2 ∈ Θ2 are independent and have different types of probabilistic distributions. For example, θ1 is uniformly

distributed in a bounded hypercube and θ2 is a Gaussian random vector, θ2 ∼ N (θ̄2,Σθ2).

X(θ1, θ2) = X1(θ1)X2(θ2)

=

(
N1∑
i=0

âiψi(ξ(θ1))

) N2∑
j=0

ĉjφi(ζ(θ2))


=

N1∑
i=0

N2∑
j=0

âiĉjψi(ξ(θ1)φi(ζ(θ2))

=

Np∑
l=0

b̂lΓl(ξ(θ1), ζ(θ2))

(A.54)

where Np = N1N2 and the b̂l and Γl are defined as the followings with an one-to-one index mapping

ι : {0, · · · , N1} × {0, · · · , N2} → {0, · · · , Np}:

b̂l := âiĉj

Γl(ξ(θ1), ζ(θ2)) := ψi(ξ(θ1))φj(ζ(θ2))
(A.55)

where the indices (i, j, l) satisfies ι(i, j) = l.

Proposition A.1. The new polynomial basis {Θl} forms a complete orthogonal basis on the Hilbert space
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L2(Θ), where Θ , Θ1 ×Θ2, with the inner product defied by

〈f, g〉 ,
∫

Θ1

∫
Θ2

f(x1, x2)g(x1, x2)ρ1(x1)ρ2(x2)dx1dx2 for f, g ∈ L2(Θ)

In other words, these polynomials also have the orthogonal property:

〈Γm,Γn〉 = ‖Γm‖2L2
δmn. (A.56)

Proof. The proof is straightforward:

〈Γm,Γn〉 = 〈ψimφjm , ψinφjn〉 where ι(im, jm) = m and ι(in, jn) = n,

= 〈ψim , ψin〉〈φjm , φjn〉,

= (‖ψim‖2L1
2
δimin)(‖φjm‖2L2

2
δjmjn),

= ‖ψim‖2L1
2
‖φjm‖2L2

2
δmn (∵ ι is one-to-one),

= ‖Γm‖2L2
δmn.

(A.57)

The next proposition is only for a multilinear map. For general nonlinear map F (x1, x2), the proof for being

uniform approximation might be not simple.

Proposition A.2. Same as Cameron-Martin Theorem, for any functional F (x1, x2) = (F1 ⊗ F2)(x1, x2) ∈

L2(Θ1 ×Θ2), where ⊗ denotes the tensor product of two functionals F1 : Θ1 → X1 and F3 : Θ2 → X2,

lim
N→∞

∫
Θ1

∫
Θ2

|F (x1, x2)−
N∑
j=0

b̂jΓj(x1, x2)|2ρ1(x1)ρ2(x2)dx1dx2 = 0

where b̂j is obtained from the Galerkin projection, i.e., b̂j :=
〈F,Γj〉
‖Γj‖2L2

.

Proof. Proof is easy. Noting the relation X1X2 − X̂1X̂2 = (X1 − X̂1)X2 + (X2 − X̂2)X̂1,

∫
Θ1

∫
Θ2

|F (x1, x2)−
N∑
j=0

b̂jΓj(x1, x2)|ρ1(x1)ρ2(x2)dx1dx2,

=

∫
Θ1

∫
Θ2

|F1(x1)F2(x2)− F̂1(x1)F̂2(x2)|ρ1(x1)ρ2(x2)dx1dx2,

=

∫
Θ1

∫
Θ2

|(F1(x1)− F̂1(x1))F2(x2) + (F2(x2)− F̂2(x2))− F̂1(x1)|ρ1(x1)ρ2(x2)dx1dx2,

≤
∫

Θ2

(∫
Θ1

|F1(x1)− F̂1(x1)|ρ1(x1)dx1

)
|F2(x2)|ρ2(x2)dx2,

+

∫
Θ1

(∫
Θ2

|F2(x2)− F̂2(x2)|ρ2(x2)dx2

)
|F̂1(x1)|ρ1(x1)dx1

→ 0 as N →∞( in the sense previously explained).

(A.58)
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We implicitly suppose that N →∞ means N1 →∞ and N2 →∞, i.e., both of degrees of basis polynomials

for L1
2 and L2

2 are increased at the same rate, at least in the asymptotes.

A.3.4 Determination of Coefficients: Eigendecomposition

Once we select an appropriate (optimal in the convergence rate) set of basis functions, then the next step in

stochastic spectral methods is to find a set of coefficients a , {ai} minimizing the distance between the true

function y(x) and its approximator ŷ(x) =
∑NP
i=0 aiφi(x). For sake of simplicity, we only consider a scalar

output y ∈ R, but extensions to higher dimensional cases are not difficult. It is also important to select a

proper definition for the distance between two functions and to project the true solution onto the space of

spectral expansions.

A.3.4.1 Non-intrusive Projection: The Least-Squares Fitting

Standard Least-Squares Least-squares fitting is a simple and popular method in parameter estimation

where one seeks system (model) parameters minimizing the sum of the squares of the residuals from a

set of measurements or observations. To do this, we first choose a set of fitting data points, {xi}Nsi=1 and

{ȳi}Nsi=1, where ȳi = y(xi) and construct the input matrix Φ ∈ RNs×(Np+1) whose elements are defined as

Φij = Φj(xi). Now, we need to solve the least-square problem

min
a∈RNp+1

‖Φa− ȳ‖2 (A.59)

where a , [a0, · · · , aNP ]T is the concatenation of the coefficients and ȳ , [y1, · · · , yNs ]T is the concatenation

of the measurements corresponding to the set of input data {xi}Nsi=1. The unique optimal solution is obtained

as a? = (ΦTΦ)−1ΦTȳ, provided ΦTΦ is invertible. More generally, a? = (ΦTΦ)†ΦTȳ where † denotes the

Moore-Penrose pseudoinverse.

Remark A.6. There might be no assumption on the parameter x, possibly except for its support. For

the Bayesian approach, one might have (a priori) information (guessed or by intuition) on the probabilistic

distribution of x. However, if this a priori information is not really close to the true probability distribution of

x, then a least-squares fitting might not be successful. For example, suppose that x ∼ N (0, 1), but we use the

uniform distribution x ∈ [xl, xu] as a priori distribution. Then the set of test data {(xi, yi), · · · , (xNs , yNs)}

might end up with a poor estimation, in the sense that it minimizes the error in the finite dimensional space

constructed from the selected and observed data points. This can happen because the importance weights

of the training data are misplaced and it is also related with the well-known Runge phenomenon.

Regularized Least-Squares When the measurements or observations are corrupted by noise or distur-

bance, regularization methods must be applied to prevent over-parameterization. To do this, we solve the
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optimization problems in Table A.4 where the matrix of reproducing kernels K ∈ RNs×Ns has the elements

Kij ,
∑Np
s=0 φs(xi)φs(xj) = Kji and for the indirect regularization approach, an optimal coefficient vector

a? can be reconstructed as ΦTb?. When p = 2, it is also called the Tikhonov regularization and analytical

solutions for each optimization problems can be obtained. For p = 1,∞, one needs to rely on numerical

computations to compute optimal solutions.

A.3.5 Non-Intrusive Interpolation: The Principle of Collocation

Unlike non-intrusive regression methods based on least-squares, the collocation methods are not minimizing

the residual between the true system and the surrogate model based on PCEs, but rely on interpolation of the

properly chosen input-output data points. The approximation is exact at the chosen Ns collocation points

{xi}Nsi=1, i.e., an approximation ŷ is required to satisfy ŷ(xi) = y(xi) for each i = 1, . . . , Ns, and the resulting

approximate solution is a linear combination of the interpolation polynomials with the coefficients {y(xi)}Nsi=1,

i.e., ŷ(x) =
∑Ns
i=1 y(xi)Ii(x) where Ii(xj) = δij for i, j = 1, . . . , Ns. Since a set of nodes (or collocation points)

are defined in a random space, we might label this collocation method as probabilistic polynomial collocation

method (PPCM). There are several techniques to determine an interpolation polynomial {Ii(s)}Nsi=1 and we

refer the readers to research monographs [167,293], for detailed discussion of numerical computations.

A.3.6 Non-intrusive Spectral Decomposition

Unlike the previously introduced methods, the non-intrusive spectral decomposition does not exploit any

input-output data, but computes the projected coefficients of random model output y(x) on a finite dimen-

sional subspace that is spanned by the set of basis functions, i.e., Span{φi}
Np
i=0 ∈ L2(X ). Suppose that the

output is a second-order random variable, i.e., ‖y‖L2
< ∞, then the approximation of y in the subspace

Span{φi}
Np
i=0 is represented as

yNP (x) ,
Np∑
i=0

aiφi(x) (A.60)

Classification Optimization Problem Analytic Solution for p = 2

Direct min
a∈RNp+1

1

Ns

Ns∑
i=1

‖Φa− ȳ‖22 + λr‖a‖p a? = (ΦTΦ +NsλrΦ)−1ΦTȳ

Indirect min
b∈RNs

1

Ns

Ns∑
i=1

‖Kb− ȳ‖22 + λr‖b‖p b? = (KTK +NsλrK)−1KTȳ

Table A.4: Direct and indirect regularization methods with the p-norm regularization term.
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Integration methods Examples

Simulation based approaches Monte Carlo method
Improved sampling strategies

Deterministic Approaches Quadratic formulas
Tensor product
Sparse grid cubatures
Adaptive sparse grids

Table A.5: Numerical integration methods.

where the projection coefficients ai are given by

ai ,
〈y, φi〉
〈φi, φi〉

, i = 0, . . . , Np (A.61)

and the inner product is defined as the integration
∫
X y(x)φi(x)dµ(x) =

∫
X y(x)φi(x)ρ(x)dx. Table A.5 shows

different computation schemes of multivariable integration that have been proposed to numerically estimate

the inner products.

A.3.7 Intrusive Galerkin Projection

Consider a general stochastic differential equation (SDE) of the form

L(z, t, θ; y) = g(z, t, θ) (A.62)

where z ∈ Z and t ∈ T are the spatial and temporal variables, θ ∈ Θ ⊂ Rnθ is the concatenation of the

random variables, the function g : Z × T ×Θ→ R is a forcing term, and y : Z × T → R is a solution of the

equation, which also defines a random field over the spatial and temporal spaces Z × T due to the random

variable vector θ.

Suppose that there exists a bijective transformation (not necessarily diffeomorphism) T : Θ→ Ξ such that

ζ(θ;ω) = T (θ(ω)) for all θ ∈ Θ and ω ∈ Ω and the transformed random variable ζ is a standard (optimal in

the sense of convergence rate) random variable for the set of polynomial basis functions {φi}.

For application of the spectral method based on polynomial chaos expansions, we assume that the solution

of the SDE given in (A.62) has the form

y ≈ yNp ,
Np∑
i=1

yi(z, t)φi(ζ(θ;ω)) (A.63)

which is an approximation of the true solution y with Np+1 basis functions from the set {φi}. To obtain the

approximated solution yNp , we need to determine the spatial- and temporal-varying deterministic coefficients
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yi(z, t). To do this, substitute the approximation yNp to y of the SDE (A.62)

L

z, t, θ; Np∑
i=1

yi(z, t)φi(ζ(θ;ω))

 = g(z, t, θ) (A.64)

and solve it for the spatial- and temporal-dependent coefficients yi(z, t) by intrusive or non-intrusive projec-

tions onto the probability space of the random variable θ or ζ. In particular, a Galerkin projection for the

above equation can be conducted such that the approximation error is orthogonal to the functional space

that is spanned by the finite dimensional bases {φi}:

〈
L

z, t, θ; Np∑
i=1

yi(z, t)φi(ζ(θ;ω))

 , φk(ζ(θ;ω))

〉
= 〈g(z, t, θ), φk(ζ(θ;ω))〉 (A.65)

for each k = 1, . . . , Np. The resulting equations are the governing equations for the coefficients yi(z, t), which

are deterministic.

We provide a detailed treatment of an elementary example using intrusive Galerkin projection method for

a gPCE.

Example A.1. consider the system equation given by

d

dt
x(t) + kx(t) = umh(t), x(0) = x0 (A.66)

where 1/k corresponds to the time-constant of the equation, um is the magnitude of the Heaviside step input

h(t), and x0 is the initial condition for the solution x. It is not difficult to see that the unique analytical

solution has the form

x(t) =

(
x0 −

1

k
um

)
e−kt +

1

k
um. (A.67)

Suppose that the parameters x0. k, and um are random variables and there exist bijective transformation

si such that θi = si(ζi) such that ζi ∼ Uniform(−1, 1) for each i = 1, 2, 3 and θ1 := x0, θ2 := k, and

θ3 := um. In particular, we consider x0 = x̄0(1 + ρζ1), k = k̄0(1 + ρζ2), and um = ūm0(1 + ρζ3) where x̄0,

k̄0, and ūm0 are the nominal values of system parameters, and ρ = 0.5 denotes 50% uncertainty in system

parameters. Consider an approximation xNp(t) ,
∑Np
i=0 xi(t)φi(ζ) to the solution x(t). Substituting xNp(t)

into x(t) of (A.66) yields

d

dt

Np∑
i=0

xi(t)φi(ζ) + s2(ζ2)

Np∑
i=0

xi(t)φi(ζ) = s3(ζ3)h(t), (A.68)

where the initial condition is rewritten as x(0) = s1(ζ1). Then we apply the Galerkin projection to determine
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the coefficients {xi(t)}:

〈φj(ζ),Eq. (A.68)〉

⇒ 〈φj(ζ), φj(ζ)〉 ddtxj(t) +

Np∑
i=0

〈φj(ζ), s3(ζ3)φi〉xi(t) = 〈φj(ζ), s2(ζ2)〉h(t); x(0) = 〈φj(ζ), s1(ζ1)〉 .

The resulting deterministic ordinary differential equation (ODE) for the coefficients {xi(t)} becomes

EẊ(t) +AX(t) = Bh(t), X(0) = C (A.69)

where X(t) , (x0(t), · · · , xNp(t)) ∈ RNp+1 and

E = [Eij ], Eij , 〈φi(ζ), φj(ζ)〉;

A = [Aij ], Aij , 〈φi(ζ), s3(ζ3)φj(ζ)〉;

B = [Bi], Bi , 〈φi(ζ), s2(ζ2)〉;

C = [Ci], Ci , 〈φi(ζ), s1(ζ1)〉.

Indeed, E = diag (〈φi(ζ), φi(ζ)〉) is diagonal and invertible and each element of the matrices above are

polynomial such that the inner products that correspond to multivariate integrals can be computed exactly

by using Gaussian quadrature-rules.
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Appendix B
Decomposition Methods for Optimization

B.1 Iterative Dual Decomposition

This section primarily focuses on two problems. The first problem is a standard form of decomposable

optimization with linear consistency (or complicating) constraints and the second problem has separable

costs and constraints with coupled linear inequalities. The mathematical formulation of the first class of

decomposable optimization is the following.

Problem B.1. Consider an optimization with the separable payoff function, separable constraints, and

equality consistency constraints of the form

maximize J(x,y) =

N∑
k=1

`k(xk, yk)

subject to (xk, yk) ∈ Fk, k = 1, . . . , N,

yk = Ckz, k = 1, . . . , N,

(B.1)

where (xk, yk) is the kth pair of separable decision variables that correspond to the separated convex cost

functions `k(xk, yk), Fk denotes the kth constraint for the separated decision variable pair (xk, yk), and

yk = Ckz for k = 1, . . . , N are the consistency constraints, which are the only coupled constraints over the

separated decision variables.
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B.1.1 Lagrangian Method and Decomposition

Consider the optimization (B.1). An associated augmented Lagrangian to relax the consistency constraint

is given by

L(x,y, z,v) =

N∑
k=1

`k(xk, yk)−
N∑
k=1

〈vk, yk − Ckz〉

=

N∑
k=1

(`k(xk, yk)− 〈vk, yk〉) +

N∑
k=1

〈C∗kvk, z〉

(B.2)

where x = [x1, · · · , xN ]T, y = [y1, · · · , yN ]T, v = [v1, · · · , vN ]T,1 and the superscript refers to the associated

adjoint operator.

Finding a saddle point that is a global optimal solution requires solving the two-stage optimization

inf
v

sup
(x,y)∈F, z

L(x,y, z,v) (B.3)

where F = F1 × · · · × FN refers to the product set of local (i.e., subsystem) constraints. From (B.2), the

optimization (B.3) can be rewritten as

inf
v

sup
(x,y)∈F, z

(
N∑
k=1

(`k(xk, yk)− 〈vk, yk〉) + 〈C∗kvk, z〉

)
︸ ︷︷ ︸

inf
v

sup
(x,y)∈F

(
N∑
k=1

(`k(xk, yk)− 〈vk, yk〉)

)
if C∗v = 0

+∞ otherwise

= inf
CTv=0

sup
(x,y)∈F

(
N∑
k=1

(`k(xk, yk)− 〈vk, yk〉)

)

= inf
CTv=0

N∑
k=1

(
sup

(xk,yk)∈Fk
(`k(xk, yk)− 〈vk, yk〉)

)

(B.4)

where CT = [CT
1 , · · · , CT

N ].

The optimization (B.3) can be decomposed into two convex programs:

Slave Problem: sup
(xk,yk)∈Fk

(`k(xk, yk)− 〈vk, yk〉)︸ ︷︷ ︸
Sk(xk,yk|vk)

(B.5)

for k = 1, . . . , N , and

Master Problem: inf
CTv=0

N∑
k=1

Sk(x?k, y
?
k|vk)︸ ︷︷ ︸

Qk(vk)

(B.6)

1The bold refers to global variables while the non-bold refers to local variables.
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where (x?k, y
?
k) refers to the optimal solution pair for the Slave Problem (B.5) for given vk.

B.1.2 Projection-(Sub)gradient Method

The Master Problem (B.6) can be solved using a first-order (sub-)gradient projection method, whereas

the Slave Problem (B.5) is of much smaller size and can be accurately and efficiently solved by a second-

order method such as an interior-point algorithm [37,197]. Consider that the Master Problem (B.6) can be

rewritten as

inf
CTv=0

N∑
k=1

Qk(vk) (B.7)

where Qk(vk) is convex in vk for all k = 1, . . . , N . Define a linear subspaceM , {v ∈ R• : CTv = 0}, which

is the null-space of the matrix CT. The optimization (B.7) can be solved using a subgradient-projection

method:

v(n+1) := PM(v(n) − αng(n)(v(n))) (B.8)

where PM : R• →M refers to the projection on the subspace M, g(n) : R• → R• denoted the subgradient,

i.e., g ∈ ∂v

∑
Qk(vk), and αn is a step size that can be selected in any of standard ways (e.g., constant,

diminishing, etc.). The sub-differential can be represented as

∂v

(
N∑
k=1

Qk(vk)

)
= ∂v1Q1(v1)× · · · × ∂vNQN (vN )

= {−y?}

(B.9)

where y? denotes the concatenation of optimal solutions of the Slave Problem (B.5) for a given sequence

{vk}. In other words, local subsystems are required to sequentially report the computed public variables to

the supervisor (or price-planner). Therefore, the update rule for the subgradient-projection method (B.8)
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Figure B.1: Iterative dual decomposition of sequentially reporting public variables {g(n)
k } and assigning

prices {v(n)
k }. The superscript (n) refers to the iteration sequence.
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can be rewritten as

v(n+1) := PM
(
v(n) + αny(n)

)
(B.10)

where the superscript ? of y is removed for notational convenience. Furthermore, it is not hard to see that

PM(z) =
(
I− C(CTC)−1CT

)
z, (B.11)

so that

v(n+1) :=
(
I− C(CTC)−1CT

) (
v(n) + αny(n)

)
:= v(n) + αn

(
I− C(CTC)−1CT

)︸ ︷︷ ︸
U

y(n) (B.12)

where the computation of the matrix U needs to be performed only once and can be done offline (before

performing optimization).

B.1.3 Separable Cost with Coupled Inequalities

Problem B.2. Consider an optimization with the separable payoff function, separable constraints, and

coupled inequality constraints of the form

maximize J(x) =

N∑
k=1

`k(xk)

subject to xk ∈ Fk, k = 1, . . . , N,

Cx ≥ 0

(B.13)

where xk is the kth separable decision variable that corresponds to the separated convex cost functions

`k(xk), Fk denotes the kth constraint for xk, and Cx =
∑N
k=1 Ckxk for k = 1, . . . , N are coupled inequality

constraints.

An associated augmented Lagrangian is

L(x,v) =

N∑
k=1

`k(xk)− 〈v,Cx〉 =

N∑
k=1

`k(xk)−
N∑
k=1

〈v, Ckxk〉 (B.14)
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where v ≥ 0. The constrained optimization (B.13) can be decomposed into the two-stage optimization

inf
v≥0

sup
x∈F

L(x,v) = inf
v≥0

(
sup
x∈F

(
N∑
k=1

`k(xk)−
N∑
k=1

〈v, Ckxk〉

))

= inf
v≥0


N∑
k=1

sup
xk∈Fk

(`k(xk)− 〈v, Ckxk〉)︸ ︷︷ ︸
Qk(v)


(B.15)

where F = F1 × · · · × FN refers to the product set of local (i.e., subsystem) constraints. The optimiza-

tion (B.15) can be decomposed into two convex programs:

Slave Problem: sup
xk∈Fk

(`k(xk)− 〈v, Ckxk〉)︸ ︷︷ ︸
Sk(xk|v)

(B.16)

for k = 1, . . . , N , and

Master Problem: inf
v≥0

N∑
k=1

Sk(x?k|v)︸ ︷︷ ︸
Qk(v)

(B.17)

where x?k refers to the optimal solution pair for the Slave Problem (B.16) for given v. A similar projection-

subgradient method as aforementioned can be used to solve this problem.

Projection-(Sub)gradient Method: Starting from a feasible dual variable v(0) ≥ 0, the sequences of

primal-dual solutions can be computed as follows:

x
(n)
k := arg max

xk∈Fk

(
`k(xk)− 〈v(n), Ckxk〉

)
(B.18)

and

v(n+1) :=

(
v(n) + αn

N∑
k=1

Ckx
(n)
k

)
+

(B.19)

where (a)+ has the ith element defined as ai if ai ≥ 0 and 0 otherwise.

B.1.4 An Application: Overlapped Data Processing with Redundant Sensors

Consider the constrained least-squares estimation problem

min
θ
‖b−Aθ‖22

s.t. ` ≤ θ ≤ u
(B.20)

224



where the matrix A has a coupled-structure of the form

A =



A11 A12 0 0 · · · 0 A1N

A21 A22 A23 0
. . . · · · 0

0 A21 A22 A23 0
. . .

...

. . .
. . .

. . .
. . .

. . .
. . .

...

... 0 0 • • • 0

0
...

. . .
. . . • • •

AN1 0 · · · · · · 0 ANN−1 ANN



. (B.21)
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Figure B.2: Circularly interconnected sensor network

Rewrite Aθ by

Aθ =



A11θ1 +A12θ2 +A1NθN

A22θ2 +A21θ1 +A23θ3

...

AN−1N−1θN−1 +AN−1N−2θN−2 +AN−1NθN

ANNθN +ANN−1θN−1 +AN1θ1


=



A11 θ1︸︷︷︸
x1

+ [A12 A1N ]

 θ2

θN


︸ ︷︷ ︸
y1

...

AN−1N−1 θN−1︸ ︷︷ ︸
xN−1

+ [AN−1N−2 AN−1N ]

θN−2

θN


︸ ︷︷ ︸
yN−1

ANN θN︸︷︷︸
xN

+ [AN1 ANN−1]

 θ1

θN−1


︸ ︷︷ ︸

yN



.

(B.22)
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Using the reparameterization (lifting) of the decision variables (B.22), the optimization (B.20) can be

rewritten as

min
θ̂, z

N∑
i=1

∥∥∥bi − Âiθ̂i∥∥∥2

2

s.t. ˆ̀
i ≤ θ̂i ≤ ûi, i = 1, . . . , N,

yi = Ciz, i = 1, . . . , N,

(B.23)

where θ̂T
i = [xT

i , y
T
i ], z is a dummy variable that will eventually vanish in dual decomposition,

Âi ,
[
Aii Aii−1 Aii+1

]
for i = 1, . . . , N (B.24)

with setting the indices 0 := N and N + 1 := 1, and Ci is the ith row-block of the matrix A with replacing

its ith diagonal term by the zero matrix of compatible dimension.
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