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Abstract

Combined flow, which refers to a combination of unidirectional and wave-induced oscillatory

flows, is omnipresent in natural environments and generates a range of bedforms on sandy

beds. Combined-flow bedforms are abundant in coastal and lacustrine environments, as well

as in their ancient counterparts in the rock record. However, few experimental studies have

focused on the relationship between the morphology and formative hydraulic conditions of

combined-flow bedforms. There is thus a wide range of unexplored stability conditions for

such bedforms, especially with intermediate oscillation periods. The aim of this research

is to undertake new experimental work in the Large Oscillatory Water-Sediment Tunnel

(LOWST) in order to address this gap in knowledge. The LOWST has a test section 12.5

m long, 0.8 m wide and 1.2 m high, with the oscillatory motion generated by three pistons.

Unidirectional currents were superimposed on these water oscillations using two centrifugal

pumps. Fifty-five experiments were conducted in the LOWST, both with and without an

initially flattened bed. Bedform development in a 250 µm diameter sand bed was studied

under pure oscillatory and combined flow conditions with oscillation periods of 4, 5 and

6 s. The maximum orbital velocity (Uo) was varied from 0.10 to 0.70 ms−1 while the

unidirectional component (Uu) was varied from 0 to 0.50 ms−1.

This thesis presents new experimental data on bedform initiation and development under

unidirectional, oscillatory and, more extensively, under combined flows. In particular, this

study was able to populate zones of the Terra incognita region previously defined in the

literature (Southard, 1991). In this thesis, the stable bedform configurations under a diverse

range of flow conditions were studied and divided into no motion (NM), 2D symmetric rip-
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ples (SR), 3D symmetric ripples (SR), 3D symmetric dunes (SR), 3D asymmetric ripples

(AR), 3D quasi-asymmetric ripples (QAR), 3D asymmetric dunes (AD), 3D current ripples

(CR), 3D current dunes (CD) and upper-stage plane bed (USPB). Each of these bedform

stages was described, characterized and reproduced in dimensional and dimensionless phase

diagrams. A complete re-evaluation of the nomenclature for combined flow bedforms is

proposed, which includes their planform and cross-sectional geometries in order to better

represent the bed morphologies. This new nomenclature was carefully selected in order to

integrate the bedform studies both in the unidirectional and oscillatory flow literature. One

of the main changes that allows the integration with the nomenclature used in unidirectional

flows is the reclassification of large ripples as dunes. Additionally, the introduction of the

planform and cross-sectional geometries as properties to classify bedforms leads to the defi-

nition of a stable phase space for two-dimensional symmetrical ripples and three-dimensional

quasi-asymmetrical ripples. Furthermore, the experimental data collected under unidirec-

tional flows larger than 0.30 ms−1 allows expansion of the current understanding of the bed

configurations within the Terra Incognita zone (Southard, 1991), where the phase boundary

between combined flow bedforms and current ripples was uncertain. Based on dimension-

less analysis, the oscillatory and unidirectional mobility numbers were used to represent the

dimensionless phase diagram under combined flows. This set of dimensionless numbers pro-

vides a better representation than previous studies that use a friction factor to compute the

Shields number. In addition, a quantitative analysis of the bedform cross-sectional geome-

tries has allowed development of new bedform shape predictors based on the formative flow

and sediment transport conditions. Moreover, based on the bedform initiation and devel-

opment experiments, it was concluded that the genesis and growth processes are unique for

all types of flows. This result was reflected in the same geometric pattern and development-

path of bedforms regardless of the flow conditions. Furthermore, the development-path or

bedform growth exhibit the same general trend for different bedform size (e.g., ripples vs

dunes), bedform shape (e.g., symmetric or rounded), bedform planform geometry (e.g., 2D
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vs 3D) and sediment grain sizes. The development of bed defects during the genesis of bed-

forms shows a strong relationship with the direction and magnitude of the bed shear stress

throughout the oscillation. In conditions with a symmetric bed shear stress, the defects

grew and propagated symmetrically, whereas when the bed shear stress was asymmetric, the

defects grew and propagated with a predominant downstream direction. Furthermore, for

the case of current-dominated combined flow, the maximum upstream bed shear stress was

not large enough to entrain sediment in the upstream direction, resulting in solely down-

stream migration transport. Bedform development was divided and characterized into four

main stages: (1) incipient bedforms, (2) growing bedforms, (3) stabilizing bedforms, and

(4) fully-developed bedforms, consistent with the scheme proposed by Baas (1994, 1999) for

pure unidirectional flows. Finally, a probabilistic model based on the cross-sectional bed-

form geometries is proposed in order to differentiate between unidirectional, oscillatory and

combined flows from their preserved strata. This probabilistic model provides a significant

improvement on the present tools to differentiate bedforms in the modern and ancient record.
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Chapter 1

Introduction

Coastal areas are zones of major economic importance since harbors, seaside resorts, marinas

and offshore constructions like pipelines, wind farms and oil platforms are located in these

regions. In addition, rapid population growth and tourism are increasing infrastructure

near the shore, and thus efforts to ensure the safety of such structures and/or survival of

ecosystems in such areas, are of great significance. All these activities require a better

understanding of the physical processes occurring at the coast. Tides, waves, currents, and

the combination of these flows, are periodic processes that interact with the shore. The

most general distinction between these three characteristic flows is that waves and tides

are oscillatory flows whereas currents are classified as unidirectional. Consequently, coastal

environments are characterized by a combination of unidirectional and oscillatory flows,

with the superimposition of an oscillatory flow upon a unidirectional flow being defined

as a combined flow (Figure 1.1). Combined flows are of great interest in a wide range of

disciplines (e.g. coastal engineering, sediment transport, construction, sedimentology and

stratigraphy) since the complexity of the flow is key for understanding many sedimentary

environments, such as estuaries, beaches, tidal flats, lakes and deltas. In most cases, tides

may be considered as unidirectional flows of known directional change over time (except

near the high and low water slack periods). Such a statement holds since the period of the

tides (≈ 44000 s) is more than three orders of magnitude longer than waves, even for waves

generated by open-ocean storm conditions where the period may be≈ 25 s. Such a distinction

is important, not only to define the extent of oscillatory periods that are characteristic of

the environment, but also to consider the range of angles between the waves and currents.
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Figure 1.1: Shoreline profile with the action of combined flows. WBL and CBL denote the
Wave and Current Boundary Layer respectively. After Duke (1990).

However, it is important to account for a change in flow orientation, since that reversal is

crucial in many sedimentological reconstructions.

Morphodynamic systems can be represented as a coupling between flow, sediment trans-

port and bed morphology. Spatial and temporal changes in flow conditions, sediment char-

acteristics, sediment transport, linear and non-linear mechanisms, and large and small-scale

changes in bed topography can be summarized in three main interlinked areas; fluid, sedi-

ment transport and bed morphology. Hence, all the processes linking flow, sediment trans-

port and bedform development define the sedimentological fluid dynamic (SFD) “trinity”

(Figure 1.2).

In the context of any morphodynamic system, all components of the SFD “trinity”are

connected with the others.Water in motion develops turbulent sweeps and bursts that en-

train sediment in movement (Heathershaw and Thorne, 1985; Lapointe, 1992; Cao, 1997;

Niño et al., 2003) and generates differential transport of grains, these areas of erosion and

accumulation leading to development of a bedform. Bedforms change the flow and turbu-

lence characteristics, inducing a new condition for transport, which will modify the original

bedforms. This is just one example of the many feedback loops that are continually occurring

in the vicinity of the bed.

Many of the interactions between the elements in the SFD “trinity”are inherently non-
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Figure 1.2: Inter-relationships and feedbacks between the elements of the SFD “trinity”for
the case of combined flows. Modified after Leeder (1983) and Best (1993) .

linear and time-dependent. This temporal dependence not only needs to take into account

the fact that the conditions of the SFD “trinity”change over time, but also that there may

be a lag between a change in one variable and the response of the system or hysteresis.

In other words, the different components of the SFD “trinity”have a particular time-scale

within which they react to changes. In the case of combined flows, the presence of an oscilla-

tory flow introduces a regular, but dynamically changing, time scale, to which each element

of the SFD “trinity”needs to adjust. These dynamics are reflected in the presence of two

boundary layers, one due to waves and the other due to the current alone (Mathisen and

Madsen, 1996a,b, 1999; Fredsøe et al., 1999). The boundary layer formed by wave-current

interactions is relatively thin and behaves as an additional roughness to the overall unidi-

rectional current. However, within the wave-current boundary layer, which is the closest

to the bed, the flow changes with the oscillation cycle producing characteristic sedimentary

features associated with the combined flow condition.
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Figure 1.3: Combined flow phase diagram. Experimental data for a grain diameter of 0.09
mmand a wave period of 8.5 s from Arnott and Southard (1990). Terra incognita is an area
of no experimental data.

Some work has been conducted in the study of bedforms at a range of relatively short

oscillation periods and low unidirectional flow velocities (Inman and Bowen, 1963; Harms,

1969; Brevik and Bjørn, 1979; Brevik, 1980; Arnott and Southard, 1990; Southard et al., 1990;

Yokokawa, 1995; Dumas et al., 2005; Sekiguchi and Yokokawa, 2008). The laboratory data

set from Arnott and Southard (1990) is summarized in Figure 1.3, where the unidirectional

velocity ranges from 0 to 0.26 ms−1 and the oscillatory component varies from 0 to 0.8 ms−1.

Figure 1.3 is a phase, or stability diagram that shows the regimes of existence of one or more

stable bed states. The stability of the bed can be defined when the bedform is in equilibrium

and does not change in time for the same flow condition. This invariance over time must

not be confused with a static morphology or frozen equilibrium; on the contrary, the bed

moves and adjusts in a dynamic equilibrium with the flow and the sediment transport for
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that particular condition. Despite the work of Arnott and Southard (1990), Dumas et al.

(2005) and Sekiguchi and Yokokawa (2008), the general understanding of bed morphology

generated in combined flow is rather limited. There are still areas in the phase diagram in

which there are no, or very few, data (Figure 1.3: Terra incognita).

Therefore, the aim of this thesis is to understand and characterize the bed morphology

present in wave-current conditions, with special attention to the Terra incognita region.

Thus, the thesis is divided into the following structure;

Chapter 2 briefly discusses our present knowledge on boundary layers for unidirectional,
oscillatory and combined flows.

Chapter 3 briefly discusses our present knowledge of stable bed configurations for unidi-
rectional, oscillatory and combined flows.

Chapter 4 describes the experimental facility used, the instrumentation employed and
the data acquired and processed.

Chapter 5 illustrates the different bed morphologies for combined flows and proposes two
new phase diagrams with dimensionless variables and dimensional units.

Chapter 6 analyzes the initiation of bedforms under combined flows. This study builds
on previous work conducted under unidirectional and oscillatory flows.

Chapter 7 discusses the development of bedforms from flat bed to equilibrium condi-
tions under pure oscillatory and combined flows. Relationships between the
equilibrium time and planform geometry are established for equilibrium bed
morphologies.

Chapter 8 examines the cross-sectional characteristics of the unidirectional, oscillatory
and combined flow bedforms and establishes a probabilistic model to distin-
guish between them.

Chapter 9 concludes on the principal findings of the thesis and outlines areas of future
research.
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Chapter 2

SFD trinity : Fluid Flow

2.1 Unidirectional Flows

Unidirectional flows are flows moving in only one direction through space and time. These

currents may be caused by tidal motions, density or pressure driven gradients, wind-stress

or river flows that experience friction due to the bed roughness, resulting in the development

of a boundary layer (Prandtl, 1904).

2.1.1 Unidirectional boundary layer

The velocity distribution within the boundary layer goes from zero at the bed to a maximum

value at, or near, the water surface. This velocity profile can be decomposed into two main

regions: the inner layer and outer layers (Fig. 2.1).

Inner layer

The inner layer was first described by Prandtl (1925) and is normally divided into three

sublayers:

• Viscous Sublayer : a small layer very close to the bed that is mainly dominated by

viscous forces. The flow can be characterized by

u+ = z+ (2.1)
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Figure 2.1: Theoretical velocity distribution for a unidirectional boundary layer

where u+ is a dimensionless velocity defined as

u+ =
u

u∗
(2.2)

and z+ is the dimensionless distance from the wall

z+ =
u∗
ν
z (2.3)

The thickness of the viscous sublayer (δν) is usually smaller than 5 dimensionless wall

units (z+ < 5) and is normally expressed as

δν = 5
ν

u∗
(2.4)

where u∗ =
√

τ
ρ
is the shear velocity, ν is the kinematic viscosity, ρ is the fluid density

and τ is the fluid shear stress. However, other researchers (e.g., Garćıa, 2008) define

the viscous sublayer thickness at z+ values smaller than 11.6. This difference arises
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since the linear behavior can be observed in part of the buffer layer.

• Transition Layer or Buffer Layer : the name of this layer derives from the fact that the

velocity profile in this region is transitional between two different behaviors, viscosity

dominated in the viscous sublayer to turbulent in the turbulent layer (Fig. 2.1). The

location of this layer is somewhat arbitrary but starts above the viscous sublayer

(z+ > 5 ν
u∗
) and below the turbulent layer (z+ < 30 or z < 0.044U1 δ̇/u∗), where U1

is the velocity at the outer edge of the boundary layer, κ is the von Kármán constant

and δ̇ is the displacement thickness defined as

δ̇ =

∫ ∞

0

(
1− u

U1

)
dz (2.5)

In order to obtain an analytical expression for the velocity distribution in this region,

Clauser (1956) proposed a model that assumes that the mean flow is the same as

a laminar flow, except that the kinematic viscosity should be replaced by an eddy

viscosity (ε) in Newton’s (1687) viscous stress (τ) formulation,

τ = ερ
∂ u

∂ z
(2.6)

where ε changes in the vertical

ε =


ν if 0 < z < 5 ν

u∗

κu∗ z if 5 ν
u∗
< z < 0.044 U1 δ̇/u∗

0.018U1 δ̇ if z > 0.044U1 δ̇/u∗

(2.7)

• Turbulent Layer : this was first outlined by Reynolds (1883) and later described by von

Kármán (1930) using a logarithmic velocity profile

u+ =
1

κ
ln(z+) + C =

1

κ
ln

(
z

z0

)
(2.8)
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where z0 is a non-zero constant, whose magnitude depends on the bed roughness length

(ks) and the roughness Reynolds number
(
Re∗ =

u∗ ks
ν

)

z0 =

 ν/9u∗ if δν/ks � 1 (hydraulically smooth beds)

ks/30 if δν/ks � 1 (hydraulically rough beds)

The bed roughness length, or the Nikuradse equivalent sand-grain roughness (ks), is

often assumed to be proportional to a characteristic sediment size

ks = αsDx (2.9)

Values of αs can vary between αs = 1 to 6, and the sediment size can change between
D35 to D90 depending on the characteristics of the system under study (e.g. van Rijn,
2006; Garćıa, 2008). Some of the most common expressions of Equation 2.9 are:

Meyer-Peter and Müller (1948) ks = D90

van Rijn (1982) ks = 3D90

Ikeda (1983) ks = 1.5D84

Garćıa (2008) ks = 2.5D50

Alternatively, Christoffersen and Jonsson (1985) suggested a way to estimate z0 as a

function of ks

z0 =
ks
30

(
1− e−u∗ ks/27 ν

)
+

ν

9u∗
(2.10)

A synthesized formulation of Equation 2.8 for all Re∗ was proposed by Yalin (1992)

u+ =
1

κ
ln

(
z

ks

)
+Bs

where Bs is a function of Re∗

Bs = 8.5 + (2.5 ln [Re∗]− 3) e−0.121 (ln[Re∗])
2.42
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Outer layer

Following the work of Prandtl, von Kármán (1930) described an area above the inner layer

that is characterized by inviscid forces and where the velocity profile resembles a wall-free

turbulent flow. Such a layer is generally termed the outer layer or wake layer. The logarith-

mic formulation presented in Equation 2.8 is commonly called the law of the wall and is a

good approximation for the entire velocity profile - including the outer layer (Schlichting,

1979; Nezu and Rodi, 1986). However, if a more detailed description of the velocity profile

is needed, especially in the outer layer, an additional term should be added to Equation 2.8

u+ =
1

κ
ln(z+) + C +W

(z
h

)
(2.11)

where h is the water depth and W is the wake function defined by Coles (1956) as:

W
(z
h

)
=

2W0

κ
sin2

(π
2

z

h

)
(2.12)

where W0 is the Coles wake parameter which has a mean value of 0.2 for turbulent flows.

However, Gad el Hak and Bandyopadhyay (1994) proposed that the velocity profile has a

dependence on the bed roughness and also that the structure of the velocity profile changes

as a function of the Reynolds number. Moreover, Smits et al. (2011) suggested that the true

mean velocity profile remains an open question and that the classical structure presented in

Fig. 2.1 is a robust first-order representation.

2.1.2 Bed shear stress and Reynolds stresses

The effect of the no-slip condition is not only reflected by the development of a boundary

layer, but also by the presence of a shear stress on that boundary. For a turbulent boundary
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layer, the total shear-stress can be described by the sum of two terms:

τ = τ (ν) + τ (R) (2.13)

the viscous shear stress

τ (ν) = µ
∂ u

∂ z
(2.14)

and the turbulent stress

τ (R) = ρ u′w′ (2.15)

where u′ and w′ are the fluctuations around the mean for the longitudinal and vertical

velocities. The turbulent stress is also known as the Reynolds Stress and can be theoretically

derived by using the Reynolds decomposition (Equation 2.16) of the Navier-Stokes equations,

u = u+ u′ (2.16)

where u denotes the time average of u,

u =

∫
u dt (2.17)

and u′ is the fluctuating part (or perturbations).

The bed shear stress (τ0) can also be approximated by using the friction coefficient (Cf )

τ0 = ρCf U
2

(2.18)

where U is the depth-averaged current velocity and Cf is given by

Cf =

[
1

κ
ln

(
11
h

ks

)]−2

(2.19)
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or if Equation 2.8 is approximated by a power law

U

u∗
=

1

κ
ln

(
z

z0

)
≈ 8.1

(
h

ks

)1/6

(2.20)

by

Cf =

[
8.1

(
h

ks

)1/6
]−2

(2.21)

Alternatively, several other coefficients can be used instead of Cf

Cf =
fDW

8
=

g

C2
z

=
g n2

h1/3
(2.22)

where fDW is the Darcy-Weisbach resistance coefficient, Cz is the Chezy coefficient, n is the

Manning coefficient and g is acceleration due to gravity.

2.1.3 Coherent turbulent structures

Pioneering studies by Kline et al. (1967) provided the first evidence for well-organized spa-

tially and temporally dependent structures within the “viscous sublayer”. These motions

lead to the formation of low-speed streaks that interact with the outer portions of the flow

through a process of gradual ‘lift-up’, concluding in bursting, and ejection. Bursting is as-

sociated with the lifting and stretching of vortex loops (e.g. Christensen and Adrian, 2001)

that occur in the steep velocity gradient that is immediately followed by violent mixing. On

the other hand, the sweep is associated with the intensification of near-boundary vorticity

by lateral spanwise stretching (Williams, 1996).

Fluid bursting and sweeping can be classified by quadrant analysis (Lu and Willmarth,

1973). Four quadrants can be defined based on the fluid motion relative to the mean flow:

i) Quadrant 1 - inward interactions, ii) Quadrant 2 - ejections, iii) Quadrant 3 - outward

interactions, and iv) Quadrant 4 - sweeps (Figure 2.2). Quadrant 2 and Quadrant 4 events

have significant importance since they are the dominant contributors to the Reynolds stress
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close to the bed (Willmarth and Lu, 1972).

Figure 2.2: Quadrant analysis identifying turbulent bursts and sweeps. Modified from Lu
and Willmarth (1973)

Contributions to the Reynolds stress from the four quadrants are computed from

˜u′v′(Hz)

u′v′
=

1

u′v′
lim
T→∞

1

T

∫ T

0

u′v′(t)Sj(t,H)dt for j = 1,2,3,4 (2.23)

where the subscript j refers to the jth quadrant and

Sj(t,H) =

 1 if |u′v′| > Hz

0 otherwise

where Hz is called the hole size and its function is to filter the small perturbations.

As the technology to quantify turbulence improved with time, the idea of an unmanageable

fluid motion started to disappear (Cantwell, 1981). This stochastic fluid motion (bursting
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and sweeping) with a complex multiscaled structure has a quasi-periodic repeating pattern of

coherent motion, and this finding revolutionized studies of turbulent flows (Robinson, 1991).

These temporal and spatial coherent structures (also called eddies, Adrian, 2007) can be

viewed as individual entities that live long enough to contribute significantly to time-averaged

statistics (e.g. turbulence kinetic energy, u). Recent and ongoing studies of turbulence are

providing new insights on the size, shape, energy, origin, stability, growth and development

of these structures (e.g. Green et al., 2007; Willis and Kerswell, 2008; Hertwig et al., 2011).

The quadrant analysis introduced earlier can be used to evaluate the mean values of several

relevant quantities (e.g. turbulence kinetic energy, dissipation, Reynolds stresses) but does

not provide any information on the form of such eddies or structures. Despite the initial lack

of acceptance by the research community, the hairpin or horseshoe vortex described for the

first time by Theodorsen (1952) became an elemental structure to study turbulent boundary

layers (Zhou et al., 1999; Adrian, 2007). These structures have a hairpin shape inclined

at approximately 45 degrees to the wall, with a pair of counter-rotating quasi-streamwise

vortices near the wall (Figure 2.3, Robinson, 1991; Adrian, 2007). Theodorsen’s (1952)

Figure 2.3: Idealized sketch of a set of hairpins attached to the wall. Note the presence of an
environment with several hairpin packets at different stages of growth. From Adrian et al.
(2000).

smoke visualizations showed that the hairpin structures have a small upward motion. The
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head or arch of this filament would experience higher mean flow velocity and be convected

downstream faster than its lower-lying parts, producing a stretching of the hairpin structure.

Hence, this stretching and intensification causes the lifting of the vortex from the wall into

still higher mean velocity resulting in still greater stretching (Figure 2.4, Haidari and Smith,

1994). These processes occur until the vortex is dissipated (Acarlar and Smith, 1987a,b).

Figure 2.4: Hairpin-vortex generation for Re = 354. Modified from Haidari and Smith
(1994).

The Reynolds shear stress can be obtained from the mean turbulent flow field (2.15). In

this case, the mean is given by the conditional average

〈ui (xi, t) |ui (xi,0, t) = ui,0〉 (2.24)

of the fluctuating velocity at a fixed point xi,0. Figure 2.5 represents a direct numerical

simulation of a Q2 event in a channel with Re∗ = u∗δ/ν = 300 by plotting iso-surfaces of

the turbulent swirling strength, λci, defined as the imaginary part of the complex eigenvalue

of (∇〈ui|ui,0〉)xi = λxi (Adrian and Liu, 2002). Turbulent swirling strength is a kinematic

quantity that allows a good visualization of the rotation terms of the vorticity (Adrian,

2007). The hairpin-like eddy represented in Figure 2.5 is a combination of a hairpin eddy

and two short counter-rotating quasi-streamwise vortices. Most coherent structures can
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Figure 2.5: Visualization of a direct numerical simulation of a Q2 event. a) top and b)
oblique view of a conditional average of the flow around a Q2 event in a channel flow with
Re∗ = u∗δ/ν = 300. From Adrian, 2007, after Adrian and Liu (2002).

be classified as hairpin or quasi-streamwise vortices (Johnson, 1998). The main difference

between these two turbulent structures is that quasi-streamwise vortices are primarily single

structures rather than counter-rotating pairs, which are oriented streamwise but skewed in

the spanwise direction and angled away from the wall (Figure 2.6). These two structures are

responsible for the Q2 and Q4 events (Figure 2.6b, Robinson, 1991). Near the wall, ejection

and sweep motions are associated with the quasi-streamwise vortices in the near-wall region

as single burst or sweeps, or as a burst and sweep as a pair. In the outer region, Q2 events

occurred on the upstream side of an hairpin-vortex, and Q4 events occur along the side of

the head.
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Figure 2.6: Schematic of the population of coherent flow structures in different regions of
the turbulent boundary layer and their interactions with the wall. a) Idealized schematic of
vortical-structure populations in different regions of the turbulent boundary layer. b) Con-
ceptual model proposed for low-Reynolds number boundary layers. See text for description.
Both diagrams are from Robinson (1991).

2.2 Oscillatory Flows or Waves

A pure oscillatory flow has surface waves as its only source of motion. Surface waves, in this

context, are a mechanical wave that propagates along the interface between two fluids with

different densities. In this study, waves are associated with wind-generated waves, which

occur on the free surface of oceans, seas, lakes, rivers, and canals as the result of wind

blowing over a long stretch of the fluid surface.

2.2.1 Oscillatory boundary layer

Once the water depth is smaller than half the wave wavelength (λw), the flow starts to

interact with the bed. For the case of laminar flows, the boundary layer (BL) can be solved

analytically.
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Laminar Case

The fundamental equation for flow in the BL for a uniform oscillatory flow is

∂u

∂t
= −1

ρ

∂p

∂x
+
∂τ

∂z
(2.25)

where u is the velocity in the BL, p is the pressure, and ρ and ν are the density and the

kinematic viscosity of the fluid. Moreover, if the boundary layer is very thin, the pressure in

the layer can be considered constant and equal to the pressure in the limit of the boundary

layer,

ρ
∂u0
∂t

= −∂p
∂x

(2.26)

where u0 is the longitudinal velocity outside the boundary layer given by linear Airy wave

theory

u0 =

Uo︷︸︸︷
d0ω

2
cos (ωt− k x)

= Uo cos (ωt− k x) (2.27)

where d0 is the orbital diameter outside the boundary layer defined by

d0 =
A

sinh (k h)
(2.28)

where A is the wave amplitude or height, and k is the wavenumber defined as

k =
2 π

λw
(2.29)

and ω is the angular frequency defined as

ω =
2π

T
(2.30)
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where T is the wave period. The solution above is valid for a two-dimensional, incompressible

and irrotational flow. In addition, it is assumed that the wave height (A) is small compared

with both the wavelength (λw ) and the water depth (h)

A

λw
� 1 (2.31)

Aλ2w
h3

� 1 (2.32)

Replacing Equation 2.26 in Equation 2.25, and taking into account that the flow is laminar,

the governing equation for the BL is

∂

∂t
(u− u0) = ν

∂2u

∂z2

which has a solution of the form

u = <
[
f (z) ei(ωt−kx)

]
where f (z) satisfies

∂2f

∂z2
− iω

ν
f = −iω

ν
Uo

By assuming that

u (z → ∞) = u0 = Uo cos (ω t− k x) (2.33)

u (z → 0) = 0 (2.34)

we obtain

u (x, z, t) = Uo

[
cos (ωt− k x)− e−βz cos (ωt− k x− βz)

]
(2.35)
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where β−1 is the thickness of the laminar boundary layer

1

β
= δw =

√
2ν

ω
(2.36)

that is also called the Stokes length. Figure 2.7 shows that the velocity profile given in

Equation 2.35 varies during the different phases of the wave cycle. Relating Equation 2.35

Figure 2.7: Velocity profiles in the laminar boundary layer at various phases in the wave
cycle for laminar flows. The distance from the bed (z) was normalized with the thickness of
the oscillatory boundary layer defined by Eq 2.36. The profiles were computed from Eq 2.35
with x = 0 m, T = 5 sand Uo = 0.5 ms−1 .

with the motion of free flow (Equation 2.27), it can be seen that the maximum velocity, and

therefore the bed shear stress, are out of phase.

τ0
ρ

= ν
∂u

∂z

∣∣∣∣
z=0

=
νUo

δ
[sin (ωt− kx) + cos (ωt− kx)] (2.37)

From Eqs 2.27 and 2.37, it can be seen that there is a phase shift of 45◦ between the

shear stress and the outer flow velocity. Despite the fact that Equation 2.35 is a first-order

approximation, the curve conforms with experimental results (Fig. 2.8)
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Figure 2.8: Comparison between theory (Equation 2.35) and experiments conducted in an
oscillatory wind tunnel. Modified from Hino et al. (1983).

Turbulent Case

Due to the impossibility of an analytical solution for a turbulent flow over a flat bed, sev-

eral models have been proposed in the literature with unidirectional flow assumptions (e.g.

Agnew, 1965; Jonsson, 1966; Kajiura, 1968; Bakker, 1974; Johns, 1975; Johns, 1977; Jon-

sson, 1980 and Brevik, 1981). The model proposed by Kajiura (1968) assumes an eddy

Oscillatory Models Assumption UMA1

Agnew (1965) 2 Layer Eddy Viscosity Model —

Jonsson (1966,1980) Law of the wall Model —

Kajiura (1968) 3 Layer Eddy Viscosity Model Clauser (1956)

Bakker (1974) Mixing Length Model Prandtl (1925)

Johns (1975,1977) Mixing Length Model Launder and Spalding (1972)

Grant and Madsen (1979) 1 Layer Eddy Viscosity Model —

Brevik (1981) 2 Layer Eddy Viscosity Model Simplified Clauser (1956)

Table 2.1: Incomplete list of oscillatory flow models to describe the turbulent oscillatory
boundary layer.
1 UMA = Unidirectional Flow Assumptions.
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viscosity model following the work of Clauser (1956) in unidirectional flows (Equation 2.7).

Thus, the shear stress can be expressed as

τ = ερ
∂ u

∂ z

where ε changes in the vertical.

1. Smooth beds

ε =


ν if 0 < z < 12 ν/û∗

κ û∗ z if 12 ν/û∗ < z < ∆

κ û∗∆ if z > ∆

(2.38)

2. Rough beds

ε =


0.185κ û∗ ks if 0 < z < 12 ν/û∗

κ û∗ z if 12 ν/û∗ < z < ∆

κ û∗∆ if z > ∆

(2.39)

where û∗ is the maximum value of the shear velocity (τ0/ρ)
1/2 at the bed and ∆ is the

thickness of the wall layer defined as (Kajiura, 1968)

∆ = 0.05
û∗
ω

(2.40)

Kajiura (1968) proposed that for overlapping layers the velocity can be described as

• For 0 < z < δw

u = <
[
Uo (1− eα1 z + A1 sinh (α1 z)) e

i ω t
]

(2.41)

• For z > δw

u = <
[
Uo

(
1− A2 e

−α2 z
)
ei ω t

]
(2.42)
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where

A1 =
(α1 + α2) e

α1 δw

α1 cosh (α1 δ) + α2 sinh (α1 δw)
(2.43)

and

A2 =
α1Ae

(α2−α1) δ

α1 + α2

(2.44)

• For a smooth bed

δw = 12 ν/û∗

α1 = (i ω/ν)1/2

α2 =
(
i ω2/0.05κ û2∗

)1/2 (2.45)

• For a rough bed

δw = ks/2

α1 = (i ω/0.185κ û∗ ks)
1/2

α2 =
(
i ω2/0.05κ û2∗

)1/2 (2.46)

The model of Kajiura (1968) shows a relatively good agreement with high Reynolds number

experiments, although the model is far from explaining most oscillatory flows since it assumes

an eddy viscosity that does not change with time. Figure 2.9 shows an example of how the

eddy viscosity fluctuates during the course of a cycle at two different heights. In particular,

the singularities when ∂u
∂z

= 0 are not unexpected since the turbulence, and hence Reynolds

stresses, do not instantly disappear as the velocity gradient passes through zero. In addition,

the model proposed by Kajiura (1968) has two ‘unrealistic’ assumptions; i) that the thickness

of the wave boundary layer is a time-independent quantity, and ii) that the variation in bed

shear stress is assumed to be sinusoidal.
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Figure 2.9: Variation of eddy viscosity during the wave cycle: red line measurements were
taken at z = 3.5 mm and green lines at 30 mm. Modified from Sleath (1987).

The model of Brevik (1981) follows the original idea from Kajiura (1968) with the simpli-

fication that for high values of A/ks, or wave Reynolds number

Rew =
UoA

ν
(2.47)

the inner layer may be relatively unimportant so it can be eliminated from the equation.

Therefore, for the model of Brevik (1981), Eqs 2.38 and 2.39 from the model of Kajiura (1968)

become

1. Smooth beds

ε =

 κ û∗ z if 0 < z < ∆

κ û∗∆ if z > ∆
(2.48)

2. Rough beds

ε =

 κ û∗ z if 0 < z < ∆

κ û∗∆ if z > ∆
(2.49)
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where Brevik (1981) redefines ∆ as

∆ =
δ1
2

(2.50)

where

δ1 =
1

û∗
Amp.

∫ δw

0

(u− Uo) dz

Although this approach produces some simplifications, the solutions still involve Kelvin

functions that are related to the vth order Bessel function of the first kind (see Abramowitz

and Stegun (1972) for more details) and these solutions are far from straightforward (Sleath,

1984).

On the other hand, the model of Jonsson (1966,1980) assumes, as in steady flows, a

fully developed turbulent oscillatory flow with two regions: i) a wall region in which the

velocity distribution is determined by the local conditions, and, ii) a defect layer in which

the velocities are independent of viscosity. Consequently, if the bed is assumed to be rough,

the velocity distribution would be written as

• For the wall region

u

û∗
= f

(
z

ks

)
(2.51)

• For the defect layer

u− u0
û∗

= f

(
z

δw

)
(2.52)

where δw is the thickness of the boundary layer and u0 is the velocity in the freestream

outside. If it is assumed that there is little variation in phase within the boundary layer,

and there is an overlapping region between the wall layer and the defect layer, a logarithmic

profile can be proposed:

u

û∗
=

1

κ
ln

(
z

z0

)
cos (ω t+ φ0) (2.53)

where z0 = ks/30 and φ0 is independent of height but varies with A/ks. From comparison

with experiments, Jonsson (1980) suggests φ0 = 25 ◦ for A/ks = 100 and φ0 = 11 ◦ when
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A/ks = 1000. In addition, if it is assumed that the logarithmic profile is valid for the whole

boundary layer instead of only the overlapping area, the thickness of the boundary layer for

ω t = 0 can be expressed by:

30 δw
ks

ln

(
30 δ

ks

)
= ϑ

A

ks
(2.54)

where ϑ equals 1.64, although from experimental data a value of 1.2 gives a better fit. The

success of the model of Jonsson (1980) in describing the boundary layer over a rough bed

depends on how large the overlap region is as compared with the full length of the boundary

layer. The region where the velocity distribution can be expected to be logarithmic is

generally strongly related with A/ks. Hino et al. (1983) examined the boundary layer of

an oscillatory turbulent flow using laser-Doppler velocimetry and hot-wire anemometry in a

rectangular duct. Although the experiments of Hino et al (1983) were above the limits for

overlapping conditions (Rew < 4.7 × 104), the area in which a logarithmic profile could be

fitted were small (Figure 2.10).

Bakker (1974) and Johns (1975, 1977) made use a single layer mixing length, which is not

applicable to the viscous sublayer and, from steady flow results, it seems unlikely it would

Figure 2.10: Velocity profiles in a turbulent oscillatory boundary layer. Broken curves rep-
resent the measured velocity and the heavy lines show the segments to which it was possible
to fit a logarithmic distribution. Modified from (Sleath, 1984) after Hino et al., (1983).
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apply in the wake region above the overlap layer (Sleath, 1984). In addition, measurements

by Sleath (1987) have shown that the temporal variation of the mixing length with height

are similar to that for eddy viscosity (Figure 2.9).

As discussed for unidirectional flows, the structure of the boundary layer changes as a

function of the Reynolds number (Jensen et al., 1989), with the additional complication

that such characteristics are quite different from wall turbulence that is steady in the mean.

Turbulence intensities fluctuate significantly during the course of the wave cycle. As the flow

decelerates, the maximum turbulence intensity is reached as well as the maximum Reynolds

stress (Sleath, 1987). This phenomenon was also described by Hino et al. (1983), where it

was observed that during flow acceleration bursts of turbulence are triggered by the shear

instability at a slight distance from the wall, but are suppressed and did not develop further.

However, with the beginning of flow deceleration, turbulence grows explosively and violently

and is maintained by a bursting type of motion (Hino et al., 1983).

In turbulent oscillatory flow over rough beds, turbulence intensities during the cycle show

significant variation. The root-mean-square fluctuations in the horizontal component of the

velocity vary during the course of the cycle at various heights above the grains (Figure 2.11).

The RMS values in Fig. 2.11 were measured relative to the maximum negative velocity in

the freestream. Thus, the freestream velocity is a minimum at 0 ◦, a maximum at 180 ◦, and

zero at −90 ◦, and +90 ◦. It can be seen that the maximum turbulence intensity propagates

out from the bed at a more or less constant velocity.

2.2.2 Wave friction factor

The relation between the wave conditions and the bed shear stress can be described by:

τw =
1

2
ρ fw U

2
o (2.55)
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Figure 2.11: Variation of (
√
u′2) during the course of a cycle of 4.58 seconds over a flat bed

of 1.63 mm sand. From Sleath (1987).

where τw is the wave shear stress and fw is the wave friction factor. There are several

expressions for the wave friction factor, but all can be generalized as a function of the wave

Reynolds number (Rew) and the relative roughness
(

A
ks

)

fw = f

(
A

ks
, Rew

)
(2.56)

Myrhaug (1989) proposed an implicit relationship for smooth, transitional and rough tur-

bulent flows by using Equation 2.10

0.32

fw
=

{
ln

(
6.36

Af
1/2
w

ks

)
− ln

[
1− exp

(
1− 0.0262

Rew ks f
1/2
w

A

)]
+ 4.71

A

ksRew f
1/2
w

}2

+1.64

(2.57)

For rough and transitional turbulent flow, a number of expressions can be found in the

literature:
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Swart (1974):

fw =


0.3 if A

ks
≤ 1.57

0.00251 exp

[
5.21

(
A
ks

)−0.19
]

if A
ks
> 1.57

(2.58)

Nielsen (1992):

fw = exp

[
5.5

(
A

ks

)−0.2

− 6.3

]
(2.59)

Soulsby (1997):

fw = 0.237

(
A

ks

)−0.52

(2.60)

Pedocchi and Garćıa (2009a):

1√
fw

= Gw

(
δw
ks
Lw

)
= 1.9 ln

(
1

1.5

u∗ Lw

ω ks

)
(2.61)

where Lw

Lw

(
u∗ ks
ν

)
=

{
1

7.5

[
1− exp

(
−
[
1

90

u∗ ks
ν

]2)]
+

1

2.1

ν

u∗ ks

}−1

(2.62)

2.2.3 Coherent turbulent structures

Section 2.1.3 briefly discussed the extensive literature on coherent turbulent flow structures

in unidirectional flows and the relationship with bursts and sweeps. However, the studies

that focus on coherent flow structures in oscillatory flows are less common than unidirectional

flows. Recent work by Carstensen et al. (2010) has provided some enlightenment into the

subject for oscillatory flows that show the existence of two kinds of coherent flow structures:

i) vortex tubes, and ii) turbulent spots.

Vortex tubes are a set of flow structures oriented transverse to flow that are generated as

a result of the inflectional-point in the shear field (See section 2.2.1) generated (for ω t =

135◦) due to the oscillatory nature of the flow (Figure 2.7). These vortex tubes are the

concentration of vorticity that develops in the oscillatory boundary layer (Carstensen et al.,
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2010), which is unstable due to Kelvin-Helmholtz instabilities (Blondeaux and Vittori, 1994).

During the experiment of Carstensen et al. (2010) at Rew = 2.9 × 105, the vortex tubes

first emerged at the phase value of approximately ω t ≈ 165◦, growing stronger as the

structure was convected until it gradually lost coherence at ω t ≈ 225◦ (Figure 2.12). The

spacing between adjacent vortices was of the order of 6.1 δ, and remained relatively constant

throughout the vortex lifespan. In addition, Carstensen et al. (2010) showed that these

two-dimensional vortices emerged for Rew larger than 7× 104. However, this flow structure

does not form forRew larger than 5×105. This absence of vortex tubes can be explained since,

for large Reynolds numbers, the flow becomes fully turbulent for the phases corresponding

to the inception of the vortex tubes (ω t = 150 − 170◦) and there is no inflectional-point

shear layer instability, and hence no vortex tubes are generated.

Figure 2.12: Time evolution of vortex tubes. Near the bed flow is from left to right. Several
circular hot-film probes are located at the bottom of the bed. From Carstensen et al. (2010).
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Turbulent spots are isolated areas with relatively high turbulence close to the bed (burst-

like features), in an otherwise laminar boundary-layer flow (Carstensen et al., 2010). The

influence of turbulent spots has been observed by other researchers such as Hino et al. (1983),

Jensen et al. (1989) and Fredsoe (1984) but, influenced by the ‘old bursting’ theory (Lu and

Willmarth, 1973), they did not interpret such effects as coherent structures. Carstensen

et al. (2010) classify these features as new structures, but the pictures of this structure

(Figure 2.13) looks like a localized set of quasi-streamwise vortices (i.e. Section 2.1.3).

Figure 2.13: a) Sketch of the multiple circular hot-film probes that are located at the bottom
of the bed. b-d) Time evolution of turbulent spots. Near the bed flow is from right to left.
From Carstensen et al., 2010.

The series of frames taken by Carstensen et al. (2010) (Figure 2.13) show that the turbulent

spots originate at a phase value ω t = 125◦ (Rew = 4.5×105) and evolve until their dissipation

by the time the flow reverses. These spots start as very small zones of local turbulence

(finite-length streaks) and grow in size by twisting and turning motions as they move in

the flow direction throughout half of the wave cycle (Figure 2.13). For a range of Rew

(1.5− 3 × 105), turbulent spots can occur simultaneously with vortex tubes, but there is no

clear interaction between them. Carstensen et al. (2010) propose that the turbulent spots

are generated during the laminar-to-turbulent transition throughout the wave cycle. This

assumption can be supported since the first turbulent spot structures are seen for flows with

Rew = 1.5 × 105, a value that is very close to the experimental value estimated for the
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laminar-to-turbulent transition (e.g. Sleath, 1984; Jensen et al., 1989). In addition, as the

wave Reynolds number increases, the turbulent spots emerge earlier in the cycle to values

that agree with the laminar-to-turbulent transition measured by Jensen et al. (1989).

2.3 Combined Flows or Current-Wave flows

The superimposition of an oscillatory flow upon an unidirectional flow can be defined as

a combined flow. For the rest of this thesis, the wave propagation will be assumed to be

co-linear to the mean unidirectional flow unless specified otherwise. Co-linear conditions

are common in many coastal environments but are not necessarily the only combined-flow

present in nature. Further information on non-collinear currents is given in Longuet-Higgins

and Stewart (1960), Soulsby et al. (1993), Myrhaug et al. (2001), Faraci et al. (2008) and

Hasanat Zaman and Baddour (2011). For example, the effect on the wave height (ηw) and

wavelength (λw) produced by a steady current can be described as a simple first approxima-

tion by

ηw
ηw0

=


(
1 + 2 k0 d0

sinh 2 k0 d0

)(
1− k Uu

k0 c0

)
(

k0
k
− Uu

c0

) (
1 + 2 k d

sinh 2 k d

)
+ 2 Uu

c0

1/2

(2.63)

(g k0 tanh k0 d0)
1/2 = (g k tanh k d)1/2 + k Uu (2.64)

where the subscript 0 refers to quantities in the absence of the current and Uu is the mean

free flow unidirectional velocity. Equations 2.63 and 2.64 show that when the current is in

the same direction as the wave, the height is decreased and the wavelength becomes longer

(Figure 2.14), whereas, for opposing directions, the height is increased and the wavelength

decreased. These theoretical curves are in remarkably good agreement with experiments

(Figure 2.14) despite the fact that they assume no change from the current due to the

waves.
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Figure 2.14: Variation of the wave height (right) and wavelength (left) produced by a steady
current. The subscript 0 refers to quantities in the absence of the current. Measurements
are taken from Brevik (1980) and the theoretical line is given by Equation 2.63 for the wave
height and Equation 2.64 for the wave wavelength with ko do = 0.65.

The interactions between waves and currents are manifested in various ways throughout

the water column. These complex systems have been studied by numerous researchers such

as Lighthill (1954), Bijker (1967), Peregrine (1976), Soulsby (1980), Kemp and Simons (1982,

1983), Sleath (1991), Soulsby et al. (1993), Héquette et al. (2008), Uchiyama et al. (2009),

Ojha and Mazumder (2010) and Olabarrieta et al. (2011). There appears to be a general

consensus that shows the main features of combined flows are:

• the mean velocity profile may be split into two sections: an inner region close to the

bed that is affected by the wave boundary layer, and an outer region above it that

is unaffected by waves. Hence, the mean velocity profile in the outer region can be

characterized by Equation 2.8 with a modified bed roughness length (kwc) that takes

into account the inner layer.

• The inner region can be divided into two layers: a wave-dominated layer near the bed

and a logarithmic layer.

• For rough beds, the waves reduce the mean current velocity in the outer region.

• The mean bed shear stress may increase (Uu/Uo ≤ 1 and Rew > 1.5× 105), or remain

constant (Uu/Uo ≥ 1 and Rew < 1.5 × 105), or even decrease (Uu/Uo ≤ 1 and Rew <
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1.5×105) with respect to its steady-current value (Lodahl et al., 1998). The maximum

bed shear stress may increase, or it may retain its steady current value when waves

are introduced.

Even though the previously mentioned research has provided a clear basis for the main

interactions between waves and currents in a boundary layer, relatively little is known about

the physical mechanics of these flow interactions.

2.3.1 The Laminar Case

Experiments by Lighthill (1954) concerning combined steady currents and oscillatory flows

had showed that if the frequency of the wave oscillation is high enough (δw << δc), the

interactions between waves and currents can be negligible at a first order approximation.

Following this approximation, Collins (1964) gives the velocity distribution in the vicinity

of the bed as

ucf (x, z, t) = Uo

[
cos (ωt− k x)− e−βz cos (ωt− k x− βz)

]
± U1

[
0.4 β z − 0.04 β2 z2

]
(2.65)

where U1 is the velocity of the unidirectional component at z = 5/β. Velocity profiles for

different phases (ω t) throughout the wave cycle are plotted in Figure 2.15. The oscillatory

flow condition plotted in Figure 2.15 is the same as the one plotted for the pure oscillatory

case in Figure 2.7, with the exception that a unidirectional current is superimposed. The

effect of the unidirectional component is reflected by a clear downstream ’shift’ of the profile

(i.e., weaker upstream flow and stronger downstream flows).

2.3.2 The Turbulent Case

Like unidirectional and oscillatory flows, the main problem in obtaining a solution for the

velocity profile of combined flows lies in the relationship between the fluid velocity and shear
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Figure 2.15: Velocity profiles in the laminar boundary layer at various phases in the wave
cycle. The distance from the bed (z) was normalized with the thickness of the oscillatory
boundary layer defined by Equation 2.36. The profiles were computed from Equation 2.65
with x = 0 m, T = 5 s, Uo = 0.5 ms−1 U1 = 0.2 ms−1.

stress. The simplest, and most used, model to relate the velocity field and shear stress in

combined flows is by using the eddy viscosity concept

τ = ρ ε
∂ u

∂ z
(2.66)

Like Kajiura (1968), Smith (1977) made use of an eddy viscosity for the inner layer that

does not vary with time

ε = κ (u∗ c + u∗ w) z (2.67)

where u∗ c is the shear velocity for the steady current and u∗ w is the amplitude of the

oscillatory shear velocity. On the other hand, the eddy viscosity proposed by Grant and
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Madsen (1979) is of the form

ε = κu∗ z (2.68)

where u∗ is a characteristic shear velocity representing the level of turbulence in the flow.

Both Grant and Madsen (1979) and Smith (1977) used an eddy viscosity that does not

vary with time, so the solutions to Equation 2.25 are similar. The solution obtained by

Smith (1977) is

ucf =
u2∗ c

κ (u∗ c + u∗ w)
ln

(
z

z0

)
+ Uo [(1− Φ) cosω t−Ψ sinω t] (2.69)

where

Φ =
Ker (ξ) Ker (ξ0) + Kei (ξ) Kei (ξ0)

Ker2 (ξ0) + Kei2 (ξ0)
(2.70)

Ψ =
Ker (ξ) Kei (ξ0)−Kei (ξ) Ker (ξ0)

Ker2 (ξ0) + Kei2 (ξ0)
(2.71)

where Ker and Kei are zero-order Kelvin functions (see Abramowitz and Stegun,1972) and

ξ = 2

(
ω z

κ (u∗ c + u∗ w)

)1/2

(2.72)

ξ0 = 2

(
ω z0

κ (u∗ c + u∗ w)

)1/2

(2.73)

It is important to note that, regardless of the complexity in the velocity profile in Equa-

tion 2.69, the equations still predict a logarithmic time-mean velocity distribution. These

can be easily seen in the velocity profiles plotted for different phases (ω t) throughout the

wave cycle in Figure 2.16. Grant and Madsen (1986) provided a more explicit solution for

the inner region by providing a different eddy viscosity for the two layers (Figure 2.17): the
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Figure 2.16: Velocity profiles in the turbulent boundary layer at various phases in the wave
cycle for laminar flows. The distance from the bed (z) was normalized with the thickness
of the wave-current boundary layer defined by Equation 2.75. The profiles were computed
from Equation 2.69 with x = 0 m, T = 5 s, Uo = 0.5 ms−1 Uu = 0.2 ms−1.

wave dominated layer (z < δcw) and the logarithmic layer (z > δcw)

ε =

 κu∗ cw z if z < δcw

κu∗ c z if z > δcw

(2.74)

where δcw is the wave-current boundary layer thickness defined by

δcw =
κu∗ cw

ω
(2.75)

The wave-current boundary layer thickness defines the limit of the wave-dominated layer,

which is embedded in a large-scale rotating boundary layer where both waves and currents

contribute to the turbulence. Above this height, turbulence is associated only with the
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low-frequency current in the logarithmic layer. The solutions from Grant and Madsen (1986)

are very similar to that presented in Equation 2.69. The high turbulence intensities generated

Figure 2.17: Schematic illustration of the time-averaged eddy viscosity. Using the Boussinesq
hypothesis, the momentum transfer caused by turbulent eddies can be modeled with an eddy
viscosity. Modified after Fredsøe and Deigaard (1992).

by the wave boundary layer affect the unidirectional current velocity in the outer region,

generating a higher resistance to flow that can be represented as an “apparent” higher

roughness coefficient in the logarithmic velocity profile

u =
u∗ cw

κ
ln

(
z

z0 + za

)
(2.76)

where za is the “apparent” roughness coefficient. This assumption holds for relatively low

period waves, since the time scales in which the mean velocity of the waves change are

several orders of magnitude smaller than the rate of change in the currents. The boundary

layer associated with the current is generated by the real bed roughness, and the apparent

bed roughness, which is of a larger magnitude, and is induced by the wave motion. These

results raise an unanswered question; why are waves able to change the boundary layer of

the current but not the other way around?
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2.4 General Overview

The sedimentological fluid dynamic (SFD) “trinity”, as explained in Chapter 1, is a con-

ceptual framework to study the coupling effects between flow, sediment transport and bed

morphology (Figure 1.2). This chapter had provided a brief discussion of some of the key

concepts on boundary layers for unidirectional (Section 2.1), oscillatory (Section 2.2) and

combined flows (Section 2.3). The inter-relationships and feedbacks between the elements

of the SFD “trinity”for combined flows are strictly associated with the interaction between

currents and waves. No existing model is able to quantitatively describe the individual

effects of waves and currents on the bed. However, it can qualitatively be stated that a com-

bined flow is more efficient at transporting material than waves or currents alone (Soulsby,

1997). Based on studies of pure oscillatory and unidirectional flows, waves are found to

be relatively more efficient in entraining sediment into suspension than currents (Soulsby

and Clarke, 2005). On the other hand, unidirectional currents have a higher net transport

than that generated by waves (Soulsby and Clarke, 2005). Therefore, even although there

is no evidence of linear interactions, these two sediment transport processes can be added

linearly, giving a flow which entrains and transports more than the individual components

of the flow.

In addition, one of the most important phenomena occurring in the combined flow bound-

ary layer, and a major factor in determining the bed morphology, is the interaction between

the two boundary layers (i.e., current boundary layer and wave boundary layer). One of

the most obvious, but yet crucial, factors to understanding wave-current interactions is the

simple fact that the wave boundary layer oscillates. This oscillation forces the wave velocity

to go back and forth while crossing to a zero-velocity stage. This has many important impli-

cations for the transport of sediments; for example, coarser grains that are entrained only at

the maximum velocities/bed shear stresses may settle very quickly from suspension during

the low velocity phases after the flow reversal. In addition, if a ‘Bagnoldian’ view is taken
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on how sediment is kept in suspension, the settling velocity of the sand grains (ωs) needs

to be opposed by the turbulent lift that is proportional to the shear velocity u∗ (Bagnold,

1966). However, as it has been proven by many researches (e.g. Jensen et al., 1989), the

oscillatory boundary layer is not always turbulent since flow velocity changes throughout the

wave cycle. For example, the experiments of Jensen et al. (1989) indicate that the transition

to turbulence for Rew ≈ 105 only occurs just prior to the near-bed flow reversal. Of course,

as the flow Rew is increased, more half-cycle wave phases develop a fully turbulent motion.

However, for Rew as high as 1.6×106 there are still some portions of the half-cycle (ω t < 45◦)

where the flow regime is not fully turbulent (Jensen et al., 1989), which means that if the

background turbulence is not strong enough to maintain sediment in suspension, the grains

will settle. On the other hand, the experiments of Jensen et al. (1989) were conducted under

flat bed conditions, and yet the bed roughness generated by bed topography places a very

significant role in sediment transport dynamics. Therefore, in the next chapter (Chapter 3)

a brief discussion on the present knowledge of stable bed configurations for unidirectional,

oscillatory and combined flows will be presented to fully address the SFD “trinity”.
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Chapter 3

SFD trinity : Bed Morphology

3.1 Bedform phase diagrams

Phase or stability diagrams are defined as graphs that show the regimes of existence of one

or more stable bed states. The stability of the bed can be defined when the bedform is in

equilibrium and does not change in time for the same flow condition. This invariance over

time must not be confused with a static morphology or frozen equilibrium; on the contrary,

the bed moves and adjusts in a dynamic equilibrium with the flow and sediment transport for

that particular condition. These phase diagrams (e.g. Southard, 1991) are used for two main

purposes: i) for prediction of bed states in a known flow and sediment transport condition,

and, ii) as a tool for the reconstruction of paleoenvironments from a known bed state or

sedimentary structure. Despite the great utility of such diagrams, they are very difficult to

construct, making them either incomplete or very hard to interpret. This complexity lies in

the number of variables needed to quantify the system. As an example, consider the simplest

case for a system with co-existing waves and currents in water at a fixed temperature. The

simplest representation of the system can be achieved by selecting

• the oscillation period (T ) and the maximum orbital speed (Uo) for the oscillatory

component.

• the water depth (h) and the mean velocity (Uu) for the unidirectional component.

• the angle γ between the waves and the current to quantify the wave-current interaction.

• the median grain size (D50) to quantify the sediment.
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This yields five variables for the flow and one for the sediment. To simplify the case even

more, consider that the waves and the currents are co-linear and the change in water eleva-

tion, h, is so small that it can be neglected. Despite the fact that this approximation holds

for only a limited number of scenarios, four-variables are needed to describe the problem

(considering equilibrium conditions only). Therefore, in order to plot the simplest phase

diagram, a non-intuitive four-dimensional graphic is needed. Nevertheless, two possible so-

lutions are proposed in the literature: dimensionless quantities (e.g., flow Reynolds number

[Re = U L
ν
], Einstein parameter [θ = τb

ρgRD50
], dimensionless particle size [Rep =

√
gRD50D50

ν
])

or fixed parameters (e.g., D50 = 250 µm, h = 0.5 m, T = 10 s).

The use of dimensionless parameters for the axis of phase diagrams is generally used by

the engineering community (e.g., Figure 3.1a). Such quantities are a combination of relevant

variables that describe a characteristic process of the system. In this way, the diagram is able

to include more than two of the relevant variables while quantifying a significant process.

Dimensionless diagrams can be applied to a wide range of conditions even if there is no data

available on such states (e.g., change in D50). On the other hand, geologists have often used

Figure 3.1: Unidirectional bedform diagrams. (a) Shear Reynolds number (dimensionless
shear velocity) versus Bonnefille parameter, D∗ (dimensionless grain size), where u∗ is the
shear velocity, ks is a skin friction coefficient and ν is the dynamic viscosity. After Bonnefille-
Pernecker (from Bechteler et al., 1991) (b) Velocity [m s−1] versus mean diameter [mm] for
a fixed water depth of 0.25-0.40 m. Modified after Southard and Boguchwal (1990).
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phase diagrams with a number of fixed variables (e.g., Figure 3.1b). Such simplification

allows the use of standard variables on the axes, making it easier to relate with natural

conditions (more intuitive but more restrictive). In addition, zones of the phase diagram

can be defined for a single morphological stage (data collapse). In general, this holds true

in all dimensional diagrams, but it is not the case for dimensionless diagrams. The data

collapse in the non-dimensionless diagrams is achieved by the lack of variability in the data

generated by the fact that some of the parameters are fixed. It is important to note that the

dimensions used in the phase diagrams proposed by Southard and colleagues (e.g., Southard

and Boguchwal, 1990; Arnott and Southard, 1990; Dumas et al., 2005) are standardized to

an arbitrary water temperature (10◦C). This standardization was accomplished by multi-

plying the variables in the axes to the ratio of the dynamic viscosities (µ) at the reference

temperature (10◦C) and the actual temperature

d10 = d
(

µ10

µ

)2/3
U10 = U

(
µ10

µ

)1/3
D10 = D

(
µ10

µ

)2/3 (3.1)

where d10, U10 and D10 are the standardized water depth, velocity and grain size respectively.

Both approaches have been used to obtain phase diagrams for unidirectional, oscillatory

and combined flows (e.g. Liu, 1957; Simons et al., 1965; van Rijn, 1984b; Southard, 1991;

Garćıa, 2008). However, there are still many controversies on what the bed states are, how

they may be classified and where the transitions are between each stage (e.g., Ashley, 1990).

Therefore, it is important to define the bed configuration for each flow condition. The fol-

lowing subsection will present a brief overview of the bedforms formed under unidirectional,

oscillatory and combined flows.
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3.2 Unidirectional Flows

3.2.1 Initiation of Bedforms

Bedforms generated in aqueous flows are omnipresent in many environments (e.g., fluvial,

glaciofluvial, deltaic and deep sea), although there is still some debate on how they develop.

The initiation of bedforms have two - not mutually exclusive - models: defect initiation

and instantaneous initiation (e.g. Best, 1992; Coleman and Melville, 1996; Venditti et al.,

2005a). The defect theory proposes that the turbulent sweeps that are generated in tur-

bulent flows (Willmarth and Lu, 1972; Lu and Willmarth, 1973) entrain sediment (Grass,

1983) that upon deposition generates defects in a non-cohesive material. These deposits

then propagate downstream via a flow separation process, thus developing bedform fields.

Furthermore, Best (1992) suggested that the origin of the defects is linked to packets of

hairpin vortex structures. These coherent turbulent flow structures give rise to entrainment

corridors on the mobile bed, forming grain lineations that interact with the low-speed streaks

generating an agglomeration of grains. Once a critical height of grains is reached, flow sep-

aration occurs over the new structure. Sediment will be eroded close from the reattachment

point and deposited downstream creating a new defect. This new defect will thus induce

formation of another defect and the process will continue, propagating downstream while

the accumulations of grains quickly evolve into small bedforms (Figure 3.2).

In general, the defect propagation theory plays a bigger role at low sediment transport

rates since for high rates defects maybe washed away and bedforms generally initiated across

the entire bed spontaneously (Venditti et al., 2005a, 2006). Venditti et al. (2005a) report

that instantaneous initiation begins with the formation of a cross-hatch pattern, which leads

to chevron-shaped forms that migrate independently of the pattern structure. This chevron-

like structure reorganizes to form the future crest lines of the bedforms (Figure 3.2). Venditti

et al. (2006), based on the earlier model by Liu (1957), proposed that instantaneous initia-

tion is a manifestation of an interfacial hydrodynamic instability of Kelvin-Helmholtz type
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Figure 3.2: Initiation of bedforms under unidirectional flows. 1) Evolution of bedforms from
a negative defect. 2) Evolution of the bed through instantaneous initiation of bedforms.
Grid spacing is 0.115 m, and flow is left to right. After Venditti et al. (2005a).

between a highly active pseudofluid sediment layer and the fluid above it. In addition, Ven-

ditti et al. (2005a) imply that there is no linkage between the instantaneous initiation and

coherent turbulent flow structures, since spatially- and temporally-random events should

lock in place to generate the cross-hatch pattern. Moreover, there is no clear explanation of

the effect of turbulence in the formation of bedforms since bedforms may also occur under

laminar flows (e.g., Coleman and Eling, 2000;Devauchelle et al., 2010). It is important to

note, that laminar-generated bedform studies used the temporally-averaged flow conditions

to determine the degree of turbulence, indicating Reynolds number in the laminar regime.

However, instantaneous process, such as burst and sweeps, which are infrequent at low

Reynolds number but still present, can be the driving mechanisms to generate the bedforms.

The generation of bedforms in laminar flows is still a topic of debate within the scientific

community, since if true, it suggests that there should be other processes for defect devel-
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opment other than the one suggested by Best (1992). This alternative model for bedform

development at low sediment transport rates should explain the generation of defects and

bedforms for cases where the flow is not turbulent.

3.2.2 Current Ripples

Current ripples are more or less regularly-spaced flow-transverse bedforms with height (η)

generally smaller than 50 mm and length (λη) up to 0.5 m. In addition to η and λη, a set of

dimensionless parameters can be defined for description of bedform geometry:

RI = λη η
−1 Ripple Index

RSI = λs λ
−1
l Ripple Symmetry Index

RRI = λ0.5 s λ
−1
s Ripple Roundness Index

(3.2)

where λs is the length of the stoss side, λ0.5 s is the length from crest to stoss at half the height

of the bedform and λl is the length of the lee side (Figure 3.3). The set of dimensionless

Figure 3.3: Ripple index measured in an outcrop, Rio Negro Formation, Argentina. Ripple
indices are obtained using Equation 3.2.

numbers defined in Equation 3.2 are generally called ripple indices but can be applied to
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larger bedforms such as dunes. For the case of unidirectional ripples, the range of ripple

indices are (Tanner, 1967, 1965, 1964; Yokokawa, 1995; Dumas et al., 2005)

10 ≤ RI ≤ 60

RSI ≥ 5

RRI ≈ 0.5

(3.3)

In addition, ripples are characterized by an angle-of-repose (20− 35 ◦) leeside and a more

gentle stoss side (5 − 10 ◦). Ripples are stable for sediment sizes smaller than 0.7 mm and

for a range of low flow velocities (Southard and Boguchwal, 1990). The geometry of current

ripples has been proposed to have a strong relationship with grain size

λ = 1000D50 Yalin, 1964

λ = 75.4 logD50 + 197 Baas, 1993

λ = 245D0.35
50 Raudkivi, 1997

(3.4)

but no evident relationship with flow strength or flow depth.

Another characteristic feature of fully developed current ripples is a three-dimensional

planform geometry (Figure 3.4). Experimental work by Baas (1994, 1999) has shown that

there are four stages in the development of current ripples starting from a flat bed: a very

early (α) stage where a few grains are transported in patches, or incipient ripples a few grains

in height and a few cm long. These incipient ripples gradually grow up to 10 mm in height and

0.1 m in wavelength, forming straight and sinuous ripples in the β stage. As the height and

wavelength keep increasing in size, the bedforms become more three-dimensional reaching a

more linguoid shape (γ stage). Once the γ stage is reached, the planform geometry stays

in a three-dimensional linguoid shape. The main difference between ripples in the γ and δ

stages is that ripples in the γ stage are still growing (non-equilibrium). Once the equilibrium

height and wavelength are reached, the ripples are in the δ stage. Experimental work by Baas
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Figure 3.4: Conceptual model of planform geometry development for unidirectional flow
ripples. See text for description on the stages of development (α − δ). The dotted lines
illustrate the overall time where the transition between stages occurs. Modified from Baas
(1994, 1999)

(1994, 1999) shows that two-dimensional (straight and sinuous ripples) are non-equilibrium

bedforms for a wide range of flow velocities. Venditti et al. (2005b) found a similar result for

dunes. Furthermore, Venditti et al. (2005b) describe that the origin of three-dimensionality

is produced by the abundance of deficiencies of sand, or crest defects that are passed from

one bedform crest to another. The bedform field is capable of absorbing some small number

of those defects but, once the number grows, the constant change in the crestline leads to

the disruption of the continuous crest, therefore generating three-dimensionality.

In addition, the flow must adjust to the presence of a geometry in the bed; as the flow

moves over the stoss side of the current ripple, it accelerates and becomes detached from the

bed at the brinkpoint of the ripple forming a separation zone and a shear layer (Figure 3.5) in

the leeside. The generation of such shear layers is characterized by the presence of vortices.

Four quadrants can be defined from the fluctuations in horizontal velocity, u = ū + u′, and

vertical velocity, v = v̄ + v′: quadrant 1 [+u’ +v’], quadrant 2 [-u’ +v’], quadrant 3 [-u’

-v’], and quadrant 4 [+u’ -v’], where an overbar indicates the time-averaged value of this
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component of velocity and the prime denotes the instantaneous variations from that mean

(see Section 2.1.3). Positive values of vertical flow indicate flow upward and away from the

Figure 3.5: A conceptual model of flow over a ripple. From Fernandez et al. (2006), after
Bennett and Best (1996) . τ and τ0 represent the bed shear stress and threshold bed shear
stress for sediment entrainment, respectively. Q2 and Q4 (arrows) denote quadrant 2 and 4
events. d̄ is the flow depth and h bedform height.

bed, with the vortices generated along the shear layer and at flow reattachment being largely

manifested as quadrant 2 events. In addition, the near-bed flow is decelerated and reversed

in the flow-separation zone. In the internal boundary layer that develops on the stoss side of

the downstream ripple (Figure 3.5), the near-bed velocity increases progressively from the

flow-reattachment zone towards the bedform crest. Ripples do not interact with the water

surface, generating a zone between the shear layer and the water surface where flow can be

assumed to be free of the individual structures generated by the bed. However, the flow

still feels an average roughness that is a function of all the individual ripples and their flow

structures (Figure 3.5).

3.2.3 Dunes

Dunes are also sometimes mistakenly called megaripples due to their similar shape but larger

size compared with ripples (e.g., Allen, 1982; Ashley, 1990; Gallagher, 2003; Passchier and
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Kleinhans, 2005). However, ripples and dunes are different bedforms, that differ not only in

size but also in their interaction with the flow, hence with each element of the SFD “trinity”.

Dunes generally have a wavelength larger than 0.6 m and heights greater than 40 mm, with

a relatively higher RI than ripples, varying from 40 to 100. No previous work was found to

address the characteristic values for RRI or RSI. However, it can be assumed that the values

should not differ much from these for current ripples. Dunes form in sediments ranging from

0.1 mm up to gravels, with moderate to strong flows with Froude numbers (Fr2 = U2

g h
) lower

than unity (these range of flow conditions depend strongly on the water depth). Unlike

ripples, most researchers agree that equilibrium dunes do not scale with the grain size, but

rather with water depth (h) where their size increases with flow depth;

λ ≈ [1− 16]h (3.5)

η ≈ [0.025− 0.16]h (3.6)

where numbers in the brackets indicate the range of valid values for the relations (Allen,

Figure 3.6: Height and length of dunes as a function of water depth. From Bridge and
Demicco (2008, Page 164).
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1982). However, due to the large scatter in the relationships between water depth and

dune size, several studies have raised the question if dunes really scale with water depth.

Following this argument, recent work proposed by Bartholdy et al. (2005) suggests that

dunes are primarily controlled by grain size and flow strength and are independent of flow

depth. Furthermore, Bartholdy et al. (2005) infer that, for small enough water depths, the

limitation of the flow depth will influence any bedform (including current ripples) making

it a scaling factor. On the other hand, it has been proposed that dunes actually scale with

the bedform-generated-boundary-layer (Southard, 1991). Nevertheless, there is also a large

Figure 3.7: Idealized representation of hysteresis loops expected for dune wavelength and
height, due to variations in water depth and current speed. The red line in each section
is the equilibrium relationship predicted from Equation 3.6. The black line in each section
represents the idealized behavior of the dunes by changing flow depth (a and c) or flow speed
(b and d). From Dalrymple and Rhodes (1995).
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scatter in the boundary layer dune size relationships. The majority of the scatter could

be associated to the difficulties of measuring a single height or wavelength in a generally

very three-dimensional environment that has a dune size distribution instead of a single

value (Paola and Borgman, 1991; Leclair et al., 1997). In addition, unstable dune fields -

which do not scale with water depth - might be left from a previous short-duration stronger

flow condition due to the large lag between flow and morphological changes (e.g., Allen and

Friend, 1976; Allen, 1976; Dalrymple and Rhodes, 1995). This lag is called bedform hysteresis

and can easily be seen by plotting dune height or wavelength against a flow parameter that

is changing (Figure 3.7). If the bedform size were fully developed and in equilibrium with

the flow, all points would follow a single path (red lines in Figure 3.7). However, due to

hysteresis, paths can follow a wide range of pathways depending on changes in the flow

(black lines in Figure 3.7).

Nevertheless, even though dunes might not scale with water depth, it has been shown that

the presence of dunes produces a distinct flow structure throughout the entire flow depth

(Figure 3.8), often generating large-scale turbulence that erupts on the water surface as

‘boils’ or a ‘kolk-boil vortex’ (e.g., Coleman, 1969; Jackson, 1976; Best, 2005). Dunes that

have an angle-of-repose leeside will have a well-developed separation zone (Figure 3.8) of

permanent recirculating flow, a very high turbulence intensity shear layer (Figure 3.8) and

the near-bed velocity will accelerate from the flow-reattachment point to the downstream

crest (e.g., Kostaschuk, 2000). However, such overall flow structure is not characteristic of all

dunes. Recent field studies, especially in large sand bed rivers, have shown that a common

feature is either more symmetrical dunes that have a gently sloping lee/stoss sides without

flow separation or low-angle asymmetrical dunes with intermittent to no separation (e.g.,

Kostaschuk and Villard, 1996; Best and Kostaschuk, 2002). The ‘symmetric’ dunes have

stoss and lee sides of similar length, stoss and lee slope angles lower than 8 ◦, and rounded

crests, whilst asymmetric dunes have sharp crests, stoss sides longer than their lee sides,

stoss side slopes lower than 3 ◦ and straight lee side slopes up to 19 ◦, and generally have
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Figure 3.8: A conceptual model of flow over a dune. From Fernandez et al. (2006), after
Bennett and Best (1996). τ and τ0 represent the bed shear stress and threshold bed shear
stress for sediment entrainment, respectively. Q2 and Q4 (arrows) denote quadrant 2 and 4
events, respectively (Q2: -u’, +w’ ; Q4: +u’, -w’).

superimposed small dunes or ripples on their stoss sides. Crestal rounding of the bedforms is

associated with high sediment transport rates and high near-bed velocities (Figure 3.9). This

type of dune cannot be classified as a traditional dune which assumes a highly asymmetric

shape, sharp crest and lee side flow separation (e.g., Bennett and Best, 1995; Kostaschuk,

2000). However, there is presently no better classification scheme other than calling dunes

a bedform that is characteristic of unidirectional flows, that are larger than ripples when

fully developed, can be three-dimensional, asymmetrical, with flow-separation and with flow

depth as a scaling parameter. On occasion, dunes can be more two-dimensional, symmetrical,

without permanent flow-separation and possess a bedform geometry that is independent of

flow depth.

3.2.4 Upper-stage plane beds

Ripples and dunes transition to upper-stage plane beds (USPB) as the bed shear stress and

sediment-transport rate are increased. As ripples and dunes get closer to the transitional

zone, the increase in shear stress makes the bedform become more rounded and smaller in
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Figure 3.9: Flow structure for angle-of-repose leeside (a) and low-angle dunes (b). a) Contour
maps of time-averaged downstream velocity from flume experiments. Vertical exaggeration
is 1.3 x. After Bennett and Best (1995). b) Mean horizontal velocity over a low-angle dune
in the Fraser River, Canada. After Best and Kostaschuk (2002).

height compared with their length (Figure 3.10). In addition, the previous brink point of

the dune will gradually move downstream of the slip face until no flow separation occurs

(Saunderson and Lockett, 1983). As dunes become rounded in the transition to USPB,

the horizontal and vertical turbulent motions in the troughs decrease progressively while

horizontal turbulence intensities increase near the bed on the dune backs (similar to low-angle

dunes, Figure 3.9b). As the bed shear stress rises during the transition, the suspended

and bedload concentrations increase progressively and the near-bed transport rate decreases
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Figure 3.10: Types of experimental dunes and their internal structures formed near the
transition to upper-stage plane beds. From Saunderson and Lockett (1983).

in the vicinity of the dune crests relative to the region immediately downstream of flow

reattachment (Saunderson and Lockett, 1983). The increase in sediment transport near the

reattachment zone has been linked to suppression of upward-directed turbulence by increased

sediment concentration (Bridge and Best, 1988). In addition, upper-stage plane beds are

rarely completely flat, and low-relief bedforms several millimeters in height and meters in

length are present. These bedforms are asymmetrical in the flow direction, but the lee slope

rarely approaches the angle of repose. The mean length/height ratio of these bedforms is

similar to that of curved-creasted dunes, suggesting that these low-relief bedforms are dunes

that cannot grow in height.
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3.3 Oscillatory Flows

Bagnold (1946) classified bedforms produced by oscillatory flows into two main groups :

rolling grain ripples and vortex ripples. Vortex ripples are bedforms with a height-to-length

ratio large enough to form vortices in the lee of the crest, and those that are too small

for vortex formation are called rolling grain ripples. Most researchers have been concerned

principally with vortex ripples, although there is an agreement on using the name ripple

to refer to any bedform that has been produced by an oscillatory flows (Bagnold, 1946;

Stokes, 1950; Davis, 1965; Komar, 1974; Lofquist, 1978; Allen, 1979; Clifton and Dingler,

1984; Southard, 1991; Wiberg and Harris, 1994; Sekiguchi and Sunamura, 2004; Cummings

et al., 2009; Pedocchi and Garćıa, 2009b,c). In the following subsections, the most common

bed morphologies for wave ripples will be discussed.

3.3.1 Initiation of Bedforms

Experiments on bedform initiation under oscillatory flows have shown the same two mecha-

nisms as unidirectional flows: defect initiation and instantaneous initiation (Lofquist, 1978).

Unlike unidirectional flow research, these two models lack a detailed study such as that con-

ducted by Venditti et al. (2005a, 2006). However, it has been observed that a slight local

elevation or depression on the sand surface of a flat bed enhances the formation of ripples

in that locality (Figure 3.11) and, once begun, the ripples spread out over the surface while

growing in size (Bagnold, 1946; Lofquist, 1978). Lofquist (1978) proposed that there is a

critical maximum orbital velocity, not defined, at which spontaneous ripples form. Lofquist

(1978) suggested that spontaneous generation occurs since the instantaneous ripples develop

faster than those generated by local perturbations. Figure 3.11 shows the formation of vor-

tex ripples. Away from the defect, development begins with the generation of a low height

to length ratio, transient bedforms, that are called rolling grain ripples.

56



Figure 3.11: Initiation of bedforms under oscillatory flows from a positive defect. I) Evolution
of bedform field after a few wave oscillations have occurred. The defect begins to propagate
whilst small rolling grain ripples (red lines) form from the flat bed. II) Later evolution of the
bed, with the original defect now evolving to a more developed bedform, and the presence
of rolling grain ripples has decreased significantly. After Bagnold (1946).

3.3.2 Rolling grain ripples

Rolling-grain ripples are the first bedforms to appear on an initially plane bed when oscilla-

tory flows start entraining sediment. As described above, the most characteristic feature of

rolling grain ripples is that, due to the low height-to-length ratio (about 0.1), this bedform

does not form vortices in the lee side of the crest. Andersen (2001) proposed a simple model

for the formation of rolling grain ripples by evolving an equation of motion for each particle.

In the model of Andersen (2001), the particles originally represent grains, but as the single

grains quickly merge, the particles in the model represent a larger amount of grains which

can be considered ripples. Based on this model, Andersen (2001) proposes that the final

distance between the ripples is proportional to (θ − θc)
0.5, where θ is the Shields param-

eter and θc is the critical Shields parameter. On the other hand, experiments conducted

by Lofquist (1978) with 0.18 and 0.21 mm sand grains produced bedforms resembling the

rolling-grain ripples reported by Bagnold (1946). However, such bedforms were not present
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Figure 3.12: Rippled bed consisted of rolling grain ripples (bottom) and vortex ripples (top).
Sand size has a median diameter of 0.2 mm. From Andersen (2001).

in experiments conducted with 0.55 mm sand grains (Lofquist, 1978).

3.3.3 Vortex ripples

The essential feature of vortex ripples is the presence of recirculating cells of fluid in the

leeside of each crest. For this reason, a brief description on the formation of vortex eddies

will be discussed. For the case of small height-to-length ratios, explicit analytical solutions

for a pure oscillatory flow can be obtained from the governing equations. It is convenient to

define a curvilinear coordinate system (χ, ζ)

χ = x+
η

2
e−kζ sin (kχ) (3.7)

ζ = z − η

2
e−kζ cos (kχ) (3.8)

where z is measured from the mean bed level (Figure 3.13). If the bed is taken to be ζ = 0,the

bottom profile is

z =
η

2
cos (kχ) (3.9)
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Figure 3.13: Sketch for the ripple profile defined by Eqs (3.7) and (3.8). After Sleath (1984).

When the height (η) to length (λη) ratio is very small, the bed profile is sinusoidal, but, as it

gets larger, the crest becomes more pointed and the troughs become flatter. Consequently,

assuming that Equation 2.35 uses ζ instead of z to represent the flow displacement per unit

of time for this bed profile, a first approximation of the velocity profile is:

u = U∞
[
cos (ωt− kx)− e−βζ cos (ωt− kx− βζ)

]
(3.10)

If the solution of the velocity is carried to higher orders of η/λη, Equation (3.10) not only

becomes more complex, but the result also has terms that are independent of time. These

steady currents are reflected in recirculating cells of fluid over the bedform (Figure 3.14).

For small values of βλη, there are only two recirculating cells for each ripple, but if βλη

becomes larger, which is the general case, four vortices are produced by the flow conditions.

Kaneko and Honji (1979) were able to demonstrate experimentally that when the ratio of the

wavelength of the wavy wall to the thickness of the Stokes layer becomes larger than about

βλ ∼= 26, the streaming that has two recirculating cells transforms into a double structure

consisting of regions of upper and lower pairs of recirculation cells (Figure 3.14).

These mechanisms are of vital importance in the growth and stability of bedforms in

pure oscillatory flows. Such oscillation will cause equal eddies in each side of the ripple,

which eventually will form very regular straight-crested ripples. In contrast with the rela-

tive paucity of work conducted on rolling grain ripples, numerous experiments have studied

vortex ripples (Field : Komar (1974); Dingler (1974); Doucette (2002); Xu (2005), Experi-

mental : Bagnold (1946); Carstens et al. (1969); Mogridge and Kamphuis (1972); Sato (1987);
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Figure 3.14: Streamlines above vortex ripples of glass beads in a viscous fluid visualized by
dye. Scale bar: 20 mm. Note the presence of standing vortices. From Honji et al. (1980).

Southard (1991); Wiberg and Harris (1994); Ribberink and Al-Salem (1994); Earnshaw and

Greated (1998); Traykovski et al. (1999); Sekiguchi and Sunamura (2004); Cummings et al.

(2009); Pedocchi and Garćıa (2009b,c) Theoretical : Kennedy and Falcon (1965); Clifton

and Dingler (1984)). Following the work done by Yalin and Russell (1962), Carstens et al.

(1969), Mogridge and Kamphuis (1972) and Dingler (1974), Pedocchi and Garćıa (2009b)

introduced three dimensionless numbers to characterize the oscillatory boundary layer and

therefore geometry of vortex ripples:

√
g RD50D50

ν
,

UoD50

ν
,

T ν

D2
50

(3.11)

where
√
g RD50D50/ν is a dimensionless particle size, Rep (Garćıa, 2008), UoD50/ν is a

a dimensionless maximum oscillation velocity written as a Reynolds number, and T ν/D2
50

is a dimensionless oscillation period (Yalin and Karahan, 1979). Based on Equation 3.11,

Pedocchi and Garćıa (2009b) produced a diagram that provides insight on the hydrodynamics

of oscillatory boundary layer flows (Figure 3.15). Figure 3.15 provides a good representation

of the hydraulic conditions that would prevail for different sediment sizes. Data plotted in

Figure 3.15 is a compilation of several studies with Uo varying between 0.2 and 2.0 ms−1 and
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T varying between 2.5 and 20 s for three sand sizes 500, 250 and 100 µm (references of the

studies used are given in Pedocchi, 2009). For medium and small sand grains (D50 = 100 and

250µm) the diagrams predicts that, depending on the flow conditions, there will be a region

where the boundary layer is laminar, a region where the boundary layer is hydraulically

smooth, and a region of transition. However, for the case of D50 = 500µm, the flow can be

either transitional or fully rough without a smooth regime.

Figure 3.15: Dimensionless diagram showing the different dimensionless parameters con-
trolling the hydrodynamics of the oscillatory boundary layer over a sediment bed. From
Pedocchi and Garćıa (2009b).

Unlike unidirectional ripples, vortex ripples have a well-defined and stable two-dimensional

planform geometry. Ongoing debate exists as to the role of grain size on the planform ge-

ometry of vortex ripples. Southard (1991) observed that for D50 > 0.5 mm, vortex ripples

tend to be more two-dimensional. This value was later modified by O’Donoghue and Clubb
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(2001) and O’Donoghue et al. (2006) to D50 > 0.3 mm. In addition, O’Donoghue and Clubb

(2001) and O’Donoghue et al. (2006) observed that for normal to large water excursions,

sands finer than 0.2 mm always developed three-dimensional vortex ripples. Several pre-

dictors for vortex ripple planform geometry can be found in the literature (Carstens et al.,

1969; Lofquist, 1978; Vongvisessomjai, 1984; Sato, 1987; Pedocchi and Garćıa, 2009b) but

none are fully able to predict the influence of grain size. Sato (1987) proposed that ripples

are three-dimensional if

d

D50

> 1550 and θ > 0.9

(
d

D50

)−1/4

(3.12)

On the other hand, Vongvisessomjai (1984) suggests that vortex ripples become three-

dimensional when

AUo√
g RD50D50

> 5500 (3.13)

However, recent work by Pedocchi and Garćıa (2009b) proposed a much clearer division

between two and three dimensional ripples (Figure 3.16:a). For coarse sands (Rep > 13 from

Equation 3.11) ripples become two-dimensional if

Rep > 0.06
√
Rew (3.14)

when Rew is the wave Reynolds number. However, for values of Rep smaller than 9, a

mixed behavior is observed and the division is no longer clear. Equations 3.13 and 3.14

mainly associate the change in planform geometry to a change in grain size (D50) and wave

amplitude (A). However, the experimentally-obtained phase diagram of Southard (1991)

(Figure 3.16:b) proposes that the 2D-3D transition depends strongly on wave period. The

diagram predicts regular and straight-crested ripples (two-dimensional ripples) at low oscil-

latory speeds and small period and irregular (three-dimensional) ripples at high oscillatory

speeds and long periods.
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Figure 3.16: Planform geometry phase diagrams for oscillatory flows. a) Dimensionless
prediction for vortex ripples. Notice the change of behavior for fine materials (Rep < 9).
Rew is the wave Reynolds number. After Pedocchi and Garćıa (2009b). b) Velocity versus
oscillation period diagram. Modified after Southard (1991).

Another method of ripple classification is to relate the characteristic parameters of the

ripple with those of the flow. In particular, the relationship between the water orbital diam-

eter d0 (Equation 3.15) near the bed and the ripple wavelength λ (Figure 3.17) is important.

Komar (1974) compiled several experimental data sets (Figure 3.18) and concluded that for

Figure 3.17: Three key controls on vortex-ripple shape and size: orbital diameter (d0),
maximum oscillatory velocity (Uo) and sediment grain size (D50). From Cummings et al.
(2009).
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shallow water of low period, the orbital diameter and the ripple length had a linear relation

of the form

λη = 0.8 d0 (3.15)

With the incorporation of new data, Equation 3.15 has been updated to (e.g. Clifton, 1976;

Pedocchi and Garćıa, 2009b):

λη = 0.65 do (3.16)

However, at larger orbital diameters, this relation ceases to exist and ripple size decreases

(a) From Komar (1974). (b) The two lines correspond to ‘orbital’ λη =
0.65 do and ‘anorbital’ λη = 0.075 m trends. From
Pedocchi (2009).

Figure 3.18: Experimental data relating d0 with the wave ripple spacing.

until it appears to approach a value that is stable for each particular grain size (denoted by

the question marks in Figure 3.18a). Clifton and Dingler (1984) were able to demonstrate

that different bedforms exist in different regions of a λη/D vs d0/D phase diagram and

that all of these areas overlapped (Figure 3.19). Hence, following the divisions presented in

Figure 3.19, wave ripples can also be classified as orbital, suborbital or anorbital. Orbital

ripples are those that are described by λη = 0.65 d0 and where there is one orbital wave

motion per ripple. On the other hand, the wavelength of anorbital ripples is independent of
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Figure 3.19: Plot of ratio of ripple spacing to grain size against ratio of orbital diameter to
grain size. From Clifton and Dingler (1984).

d0, and many ripples can be present under a single orbital diameter. Suborbital ripples are

a transitional stage between orbital and anorbital ripples. Wiberg and Harris (1994) were

also able to classify these different modes according to the relation between ripple height

and the water orbital diameter.

d0
η
< 20 Orbital ripples (3.17)

20 <
d0
η
< 100 Suborbital ripples (3.18)

d0
η
> 100 Anorbital ripples (3.19)

On the other hand, Nielsen (1981) proposes that there is not a constant relationship between

the water orbital diameter and the ripples geometries, but a dependence on the wave mobility

number ψw,

ψw =
ρf U

2
ob

(ρs − ρf ) g D50

(3.20)
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Hence, Nielsen (1981) proposes that for regular waves

λ

d0
= 4.4− 0.69ψ−0.34

w (3.21)

η

d0
= 0.55− 0.044ψ0.5

w (3.22)

and for irregular waves

λ

d0
= 2 exp

[
693− 0.37 ln7 ψw

1000 + 0.75 ln8 ψw

]
(3.23)

η

d0
= 42ψ−1.85

w (3.24)

The presence of orbital or anorbital ripples on a sandy bed is strongly modulated by grain

size (Cummings et al., 2009; Pedocchi, 2009). Orbital ripples can be formed in all grain sizes,

but recent work by Cummings et al. (2009) has shown that anorbital ripples do not occur in

coarse sands (Figure 3.20). In addition, the slope of the flanks of larger ripples (wavelength

> 0.3 m) changes with grain size, with coarse grains having steeper leesides angles (> 15 ◦)

than very fine grains (< 15 ◦).

3.3.4 Hummocks

Most stratigraphers and sedimentologies prefer to use dimensional diagrams, like Southard’s

(1991) phase diagram where oscillation period is plotted against the maximum orbital veloc-

ity (Figure 3.16b). The diagram presents two abrupt transitions: no ripple-2D vortex ripples

and 2D vortex ripples-3D vortex ripples and a gradual transition: vortex ripples-plane bed.

The phase diagram of Southard (1991) predicts that for a fixed oscillation period, as the

maximum orbital velocity increases, then the bedforms will gradually become smaller un-

til a high-transport plane stage is reached. However, experimental work by Pedocchi and

Garćıa (2009c) has shown that there is an intermediate state (maximum orbital velocity

≥ 0.5ms−1) where the wavelength of the oscillatory bedform is approximately double (from
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Figure 3.20: Schematic diagram of equilibrium bed configuration generated for very fine
and coarse sand under oscillatory flows as the maximum orbital velocity is increased. From
Cummings et al. (2009).

0.5 m to 1-1.5 m) before the transition to a plane bed occurs. This intermediate state is as-

sociated with a change in the crest shape of the ripple, which becomes rounder as the orbital

velocity increases. The understanding of these rounded large ripples is restricted, but there

is enough information to suggest that they are a stable configuration between vortex ripples

and plane bed. It has been proposed that these rounded features are ‘hummocks’ (Dumas

et al., 2005; Dumas and Arnott, 2006; Cummings et al., 2009) that have been well-described

in the sedimentological literature (Figure 3.21a).

Hummocks and Hummocky Cross-Stratification (HCS) were first described by Harms et al.

(1975), although it had been earlier reported under different names: truncated wave-ripple

laminae (Campbell, 1966), crazy bedding (Howard, 1971) or truncated megaripples (Howard,

1972). Hummocky morphology (Figure 3.21) is characterized by convex upward (hummocks)

and concave upward (swales) laminae with bounding surfaces gently dipping in different

directions (generally less than 10◦). The hummocks have wavelengths ranging from fractions

(0.2-0.5) to several (1-2 m) meters with heights between 0.1 and 0.5 meters (e.g., Harms et al.,

1975; Dumas et al., 2005). Hummocks are present in fine-grained sediments (Figure 3.22b;
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e.g., Dott and Bourgeois, 1982; Brenchley, 1985; Swift et al., 1987). However, coarser grains

can be present in the strata but in a significantly smaller percentage (Cheel and Leckie,

1993). Following Campbell (1966), Dott and Bourgeois (1982), Bourgeois (1980), Brenchley

(1985) and Cheel and Leckie (1993), three hierarchies of surface can be established:

First-order surfaces are surfaces that are nearly flat and erosional (scratches, grooves, prod-
marks might occur), although some relief might be present. The surfaces might
bound HCS cosets or beds containing a sequence of various structures.

Second-order surfaces are normally the surfaces where the classic, laterally-alternating, swales
and hummocks are generally preserved.

Third-order surfaces are surfaces with laminae that tend to pinch and swell laterally and are
most commonly thin in the antiforms (hummocks) and thicker in the synforms
(swales).

Since 1975, the presence of hummocks or HCS has been proposed to be the single most diag-

nostic sedimentary structure to represent the deposits of paleo-storms in relatively shallow

marine or lake environments (e.g. Harms et al., 1975; Swift et al., 1983; Duke et al., 1991;

Ito et al., 2001). However, there is still a great debate regarding the hydraulic conditions

that lead to their formation. Researchers have associated their structure with pure oscilla-

tory flows (e.g. Dott and Bourgeois, 1982), combined flows (e.g. Hamblin et al., 1979; Allen,

Figure 3.21: Morphology of Hummocky Cross-Stratification (HCS). a) Original block dia-
gram of HCS presented by Harms et al. (1975). b) Characteristic strata found in HCS. From
Cheel and Leckie (1993).
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1985; Duke et al., 1991; Dumas et al., 2005; Tinterri, 2011) or purely unidirectional flows

(e.g. Prave and Duke, 1990; Mulder et al., 2009). However, there is almost total consensus

that strong waves ( Uo & 0.5ms−1, Figure 3.22) are the key process in hummock genesis and

the presence of a unidirectional current might be secondary (e.g. Greenwood and Sherman,

1986).

(a) From Dumas et al. (2005). (b) Velocity thresholds for initiation of motion for dif-
ferent wave periods (2,5,10 and 15 sec). From Dott
and Bourgeois (1982) based on Clifton (1976).

Figure 3.22: Different stability fields proposed for hummocky beds.

Greenwood and Sherman (1986) described HCS structures from the surf zone of Lake

Huron, Canada at water depths of less than 2 m. On the other hand, other researchers had

associated HCS with deep marine environments (water depths up to approximately 180 m;

e.g., Tillman, 1985; Cheel and Leckie, 1993; Smith and Jacobi, 2001). Therefore, hummocks

or HCS strata can be found in different environments ranging from the intertidal zone and

lacustrine to the outer shelf.
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3.3.5 Plane Bed or Sheet Flow

Similar to unidirectional flows (Section 3.2.4), there is a high regime stage where oscillatory

ripples transition to a plane bed (PB) or sheet flow as the bed shear stress and sediment-

transport rate are increased. This stable configuration is characterized by a highly mobile

active layer of the order of 10 mm in thickness (McLean et al., 2001) and a suspended sedi-

ment layer which is confined to a few centimeters above the bed (Ribberink and Al-Salem,

1994). There is no consensus on when such conditions are achieved or what the relevant

threshold criteria is to characterize the phenomenon; some of the most widely used threshold

conditions are:

Kennedy and Falcon (1965)

A

D50

= 8000 (3.25)

Carstens et al. (1969)

A

D50

= 1700 (3.26)

Komar and Miller (1975)

θ = 0.413D
−2/5
50 (3.27)

where D50 is measured in cm. Dingler and Inman (1976) proposed a threshold condition to

a plane bed using a wave mobility number ψw,

ψw =
ρf U

2
ob

(ρs − ρf ) g D50

= 240 (3.28)

Nielsen (1979) proposed a Shields number criteria

θ = 0.83 (3.29)
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However, a few years later Nielsen updated the conditions to Nielsen (1981)

θ = 1 & ψw = 240 (3.30)

Li and Amos (1999b) proposed a dual criterion for θ and ψw depending on D50

θ = 0.172D−0.376
50 & ψw = 12.13D−0.707

50 (3.31)

where D50 is measured in cm.

3.4 Combined Flows

As previously stated, the information concerning the bed morphology generated under com-

bined flows is rather limited. Some work has been conducted in the laboratory to study

bedforms at a range of relatively short oscillation periods (. 12 s) and low unidirectional

flow velocities (. 0.3 ms−1) (Inman and Bowen, 1963; Harms, 1969; Brevik and Bjørn,

1979; Brevik, 1980; Arnott and Southard, 1990; Southard et al., 1990; Yokokawa et al.,

1995; Dumas et al., 2005; Sekiguchi and Yokokawa, 2008). The absence of data at higher

unidirectional velocities and longer oscillation periods is due to the great expense involved

in construction, and maintenance, of a facility capable of producing both flows at the same

time.

The laboratory data set for combined flows from Arnott and Southard (1990) is summa-

rized in Figure 3.23, where the unidirectional velocity ranges from 0 to 0.26 ms−1 and the

oscillatory component varies from 0 to 0.8 ms−1. The oscillation period was 8.5 s and the

mean sediment size used was 90 µm. The equilibrium stages of the bed observed were no

motion, small or large ripples and a plane bed. No criteria were given in this study to dis-

criminate between large and small ripples. However, if such a classification is compared with

the data of Dumas et al. (2005), it can be assumed that the ripple classification was based
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Figure 3.23: Combined flow bedform phase diagram. Experimental data for D50 = 90µm
and T = 8.5 s. Terra incognita is an area of no experimental data. Modified after Arnott
and Southard (1990) and Southard (1991).

on the wavelength (λ), where small ripples are those with wavelengths smaller than 0.30 m

and large ripples have wavelengths larger than 1 m. One of the major problems described

by Arnott and Southard (1990) was the lack of accuracy in their flow measurements. The

absence of any flow meter resulted in the characterization of the flow being achieved by the

tracking and measurement of buoyant particles through the viewing windows. Despite the

lack of accuracy, this bedform phase diagram is still the most widely used in the literature due

to its simplicity and good description of bedforms in the area of wave-dominated conditions

(Uu . 30 ms−1). Following the work and suggestions proposed by Arnott and Southard

(1990), Dumas et al. (2005) investigated the same range of unidirectional conditions (less
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than 0.25 ms−1), but increased the oscillatory velocity to 1.25 ms−1. Two different grain

sizes (110 and 170 µm) and two wave periods (9.4 and 7 s) were used to quantify the effect

of grain size and oscillation period (Figure 3.24). The equilibrium stages of the bed were

similar to those found by Arnott and Southard (1990) with the difference being that Dumas

et al. (2005) make a distinction between symmetrical and asymmetrical ripples. Taking this

symmetry into account, the bed can be described in terms of:

No Motion (NM) is characterized by a plane bed with the absence of sediment movement.

Symmetrical Small Ripples (SSR) are characterized by a symmetrical profile (RSI < 3) with

sharp and narrow crests. Wavelength varies between 70 and 110 mm and the ripple height

between 5 to 20 mm. The average lee side has an angle of 14◦.

Asymmetrical Small Ripples (ASR) are characterized by an asymmetrical profile (RSI > 3).

The angle of the lee side is in the range of 10◦ to 20◦. The ripple wavelength ranges between

0.11 and 0.21 m and the ripple height between 12 to 30 mm.

Symmetrical Large Ripples (SLR) are generally formed by increasing the oscillatory velocity

over the SSR. The ripple wavelength varies between 1.11 and 2.24 m and the ripple height

between 0.06 to 0.27 m. The average lee slope angle is 16◦.

Asymmetrical Large Ripples (ALR) are characterized by both sharp crests, deep troughs,

and round stoss sides (RRI > 0.4). The angle of the lee side varies between 10◦ to 30◦, but

in general it is close to the angle-of-repose (≈ 32◦). These large bedforms have a wavelength

ranging between 1 to almost 5 m with a ripple height between 0.1 to 0.4 m.
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Figure 3.24: Combined flow bedform phase diagram. (a) Phase diagram 1 - D50 = 110µm and T = 9.4 s . (b) Phase diagram
2 - D50 = 110 µm and T = 7 s.. For phase description see text. Modified after Dumas et al. (2005)
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Reverse Large Ripples (RLR) are characterized by ripple migration in the direction opposite

to their sense of asymmetry. This is explained by sediment being eroded on the short, steep,

lee side due to the high velocities generated when the wave and current are in the same

direction and deposited along the longer and gently-dipping stoss side when the current and

wave are in opposite directions. The ripple wavelength varies between 2 and 5 m and the

ripple height between 0.3 to 0.4 m.

Plane Bed (PB) is characterized by a flat bed generated by intense sediment movement.

In addition to the laboratory research mentioned above, some work has been conducted in

the field by Amos et al. (1988, 1999) where flow and bed measurements were taken during a

range of oscillatory and tidal flows. Amos et al. (1988, 1999) recorded mean current velocity,

statistics on near-bed wave motion, wave height, period and time-lapse photographs of the

seabed (Figure 3.25) over 12 days in 22 m of water on Sable Island Bank, Scotian Self.

Oscillatory flows throughout the 12 days recorded oscillation periods between 6 and 11 s and

maximum orbital velocity ranged from 0 to 0.4ms−1 with an average value of ∼ 0.2ms−1.

On the other hand, unidirectional velocities changed between 0 and 0.13ms−1 with an

average value of ∼ 0.06ms−1. Based on the time-lapse photographs, Amos et al. (1988)

distinguished eight bed types over the 0.23 mm bottom sand: (1) wave ripples (Figure 3.25b);

(2) straight-crested current ripples (Figure 3.25a); (3) linguoid current ripples; (4) wave and

current ripples (Figure 3.25c); (5) transitional wave ripples; (6) transitional current ripples;

(7) poorly developed ripples; and (8) flat bed (Figure 3.25d). Amos et al. (1988) describe

the different bedforms as:

Straight-crested current ripples are characterized by straight and continuous crests through-

out the whole photograph. Brink points were estimated to be sharp and slipfaces appeared

to be tabular. Wavelengths varied between 0.12 to 0.17 m. Based on the asymmetrical

(RSI > 3) and the propagation direction (same as tidal current direction) these ripples are

interpreted to have been formed by unidirectional flows.
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Figure 3.25: Time-lapse photographs of the seabed on Sable Island Bank, Scotian Self. a)
straight-crested or linguoid ripples, b) wave-formed ripples, c) wave and current ripples and
d) flattened bed

Linguoid current ripples are characterized by sharply-defined brink points and slipfaces. The

wavelength and shape changed across the frames between 0.10 and 0.27 m and different

linguoid shapes. Like their straight-crested current ripples, their origin is associated with

unidirectional flows based on the asymmetry (RSI > 3) and the similarity between the tides

and the propagation direction.

Wave ripples had regularly-spaced crests oriented normal to the direction of wave propagation.

The ripples are characterized by sharp symmetrical-crested bedforms (RSI < 2). Once ripples

were fully developed, the wavelength remained stationary through time at approximately 0.20

m in wavelength.

Wave and current ripples showed ‘distinct’ superimposed patterns of current and wave ripples.
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Wave ripples are characterized by sharp and discontinuous crests, whilst current ripples are

characterized by a triangular planform geometry. These ripples migrated in the direction of

the tidal flow, whereas wave ripples were stationary.

Transitional current ripples are characterized by current ripples with superimposed wave rip-

ples. The bed was dominated by well-developed, active, current ripples. Symmetrical wave

ripples were present intermittently in their troughs. Crestlines of wave ripples were discon-

tinuous, broken by the current ripple crests. Current ripples migrated, whereas the wave

ripples were stationary.

Transitional wave ripples are characterized by wave ripples with superimposed current ripples.

Wave ripples were predominant, but small (40 mm in wavelength), asymmetric, straight-

crested current ripples were seen in wave ripple troughs.

Poorly developed ripples are characterized by rounded brink points and substantial biodegra-

dation.

Flat beds are characterized by the absence of bedforms and by recognizable biodegradation.

3.5 General Overview

The sedimentological fluid dynamic (SFD) “trinity”, as explained in Chapter 1, is a con-

ceptual framework to study the coupling effects between flow, sediment transport and bed

morphology (Figure 1.2). The present chapter provided a brief discussion on the bed mor-

phologies generated under unidirectional (Section 3.2), oscillatory (Section 3.3) and com-

bined flows (Section 3.4). Despite the extensive work studying unidirectional bedforms over

several centuries, there is no standard classification or nomenclature to unambiguously define

a particular bed feature (i.e. dunes vs megaripples, Section 3.2.3). In addition, researchers

studying oscillatory and combined flow bedforms term all bed features ripples, making it

a very difficult task to directly compare results between bidirectional and unidirectional
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flows. Moreover, the very limited data on combined flows still lacks statistical validation of

any of the relevant characteristics of the bedforms (e.g., the effects of oscillation period or

grain size on bed morphology). Therefore, it is essential for any bedform study to clearly

define the bedform nomenclature that will be used. An ideal nomenclature or classification

scheme should address the characteristic changes in bedform structure or geometry (e.g.,

planform, height, wavelength) and functionality (e.g., type of flow, flow separation, grain or

depth dependence) for all the potential bed morphologies. Despite the fact that both the

structure and functionality of bedforms are strictly related to one another (SFD “trinity”),

the information necessary to fully characterize each of the SFD “trinity”products are differ-

ent and generally not reported (e.g. Dumas et al., 2005). Therefore, based on the limited

data on combined flow bedforms, and the lack of a consistent nomenclature on oscillatory

and unidirectional flows, a new nomenclature has been proposed to produce a geometrical-

process based bedform classification (Table 3.1). The nomenclature consists of several terms,

including the following:

Flow Type

Laii Unidirectional FlowFlow Uu 6= 0 and Uo = 0.

Oscillatory FlowFlowFlo Uu = 0 and Uo 6= 0.

Combined FlowFlowFloi Uu 6= 0 and Uo 6= 0

Liia Wave-Dominated Combined Flow

Liia Maximum shear stress at flow reversal (maximum oscillatory velocity in the upstream

direction) larger than the critical shear stress for sediment entrainment (|θ(−)
max| > θc).

Current-Dominated Combined Flow

Liia Maximum shear stress at flow reversal smaller than the critical shear stress for sediment
entrainment (|θ(−)

max| < θc).

Bedform Type

LAa No Motion θ < θc and flat bed

Ripple λη < 0.5 m and η < 0.05 m

Dunes λη > 0.5 m and η > 0.05 m

Lower-Stage Bed iii θ ≈ θc and flat bed

Upper-Stage Bed iii θ � θc and flat bed
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The methodology to differentiate ripples from dunes in the absence of a free surface was

based on the classification proposed by Ashley (1990). However, a slight modification was

made: λη = 0.5 m was used instead of λη = 0.6 m as the bedform wavelength threshold

between ripples and dunes, since this value better represented the separation of the two

bedform sizes.

Planform Geometry

Liia Two Dimensional (2D)

Liia Bedform crestline is continuous and straight (Figure 3.26a).

Two and a half Dimensional (2.5D)

Liia Bedform crestline is either continuous or straight (Figure 3.26b).

Three Dimensional (3D)

Liia Bedform crestline is neither continuous or straight (Figure 3.26c).

Figure 3.26: Planform Geometry Classification: differences between 2D, 2.5D and 3D bed-
forms. (a) Two dimensional (2D); bedform crestline is continuous and straight. (b) Two
and a half dimensional (2.5D); bedform crestline is either not continuous and straight (up-
per case) or continuous and not straight (lower case). (c) Three Dimensional (3D); bedform
crestline is not continuous and not straight.
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Cross-Section Form Geometry

Liai AsymmetricFlowiiiiii BSI > 1.5 Quasi-asymmetric BSI ∼ 1.3− 1.5

SymmetricFloiiiiiiiiii BSI < 1.5

RoundedFloiiiFliiiiii BRI ≥ 0.6 iii Not-rounded BRI < 0.6

Low-angledFloiiioiiii BI < 3.

where

BI = λη η
−1 Bedform Index

BSI = λs λ
−1
l Bedform Symmetry Index

BRI = λ0.5 s λ
−1
s Bedform Roundness Index

(3.32)

Therefore, if a bedform is two-dimensional with a wavelength of 0.3 m, a BSI = 1.2 and if

it is produced under oscillatory flow, it would be termed a 2D symmetric oscillatory ripple.
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Chapter 4

Experimental Facility,
Instrumentation and Data Processing

4.1 Experimental Apparatus

4.1.1 Description

Experiments were conducted in the Large Oscillatory Water Sediment Tunnel (LOWST) at

the Ven Te Chow Hydrosystems Laboratory, University of Illinois at Urbana Champaign,

which enables a combination of oscillatory and unidirectional flow velocities of up to 2

and 0.55 ms−1 respectively. The tunnel is U-shaped, with one leg containing three pistons

generating the water oscillation and the other leg forms an open reservoir (Figure 4.1).

The pistons move inside cylinders of 0.78 m diameter with a maximum nominal stroke of

2.1 m that is generated by three servo motors controlled by a computer. The unidirectional

component of the flow is generated by two centrifugal pumps. In addition, flow straighteners

Figure 4.1: Sketch of the Large Oscillating Water-Sediment Tunnel (LOWST)
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are located at both ends of the main test section to reduce the flow distortion produced by

the “elbow type” entrance of the pumped water. Finally, gravel is located at both ends of

the sediment bed to prevent local erosion.

The tunnel has a working cross-section 0.8 m wide by 1.2 m deep and 12.5 m long. Two

large windows (0.6 m high by 0.7 m wide) are located in each side of the central region and

allow observation of the interior of the tunnel. In addition, twenty-eight smaller windows

(0.6 m high by 0.2 m wide) are equally spaced on both sides of the rest of the working

section. On the top of the tunnel, three access hatches and fifteen 0.2 m diameter circular

ports give access to the inside of the tunnel. These circular ports give direct access to the

bed and provide an easy way to insert instrumentation for the measurement of bed and flow

properties.

4.1.2 Operational range

The LOWST was designed to produce a wide range of wave-current flows with oscillatory

periods ranging between 2 to 20 s. However, not all oscillatory conditions can be achieved for

every period (Figure 4.2). The limits given by the black line in Figure 4.2 are produced by

the physical limitation of the system, e.g. maximum water displacement driven by the piston

0.8 m3s−1, maximum nominal velocity 2.0 ms−1 and maximum nominal piston acceleration

2.1 ms−2. Moreover, to prolong the lifetime of the facility and minimize the creation of any

potential malfunction, an empirical curve (Figure 4.2: Green line) is proposed to be the safe

limit for the operational range. Such a curve is consistent with the experiments conducted

during this work and that of Pedocchi (2009).

4.1.3 Sand

Half of the flume working area was filled with 250 µm diameter quartz sand (D10 = 185µm

andD90 = 373µm; Figure 4.3). The total volume occupied by sand was 6 m3 ( ∼ 5.2 tonnes),
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Figure 4.2: Desired operational range of the LOWST for oscillatory flows. The tunnel
was designed to operate below the black curve. However, set by empirical results, it is
recommended to run conditions below the green curve.

although for most experiments around 1 m3 (∼ 0.9 tonnes) was mobilized. Sediment traps

are located at both ends of the test section to collect the sediment that has been transported

as bedload. For a typical experiment, the average amount of sand transported to the ends of

the flume and retained in the sand traps was around 150 kg, but for high sediment transport

experiments the traps held up to 300 kg. In addition, for the case of combined flows, the

downstream trap contained up to 5 times more sand than the one upstream.
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Figure 4.3: Grain size distribution obtained by different researchers using the same facility
for the same sand.

4.2 Experimental Description

Each experiment could be divided into three main steps: pre-experiment, experiment and

post-experiment.

• The pre-experiment stage : this generally began with clearing sediment from the two

sediment traps that are at both ends of the test section. This sediment was placed

in the tunnel and at the same time a cart was pulled by a winch to flatten the bed

(Figure 4.4: a-c). The cart was composed of two blades that covered the entire width

of the tunnel (Figure 4.4: b), and it was pulled back and forward along the tunnel in

order to redistribute the wet sand and leave a smooth and flat sand surface (Figure 4.4:

d-f). Small defects of the order of a few grain diameters were present after the bed

was flattened, but there is no clear association between such defects and the location

where bedforms were initiated.
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Figure 4.4: a-c) Sand redistribution as the cart is pulled by the winch. d-f) Resulting flat
bed for three different experiments.

• During the experimental stage : a maximum orbital velocity and period were set on

the computer and the unidirectional velocity was set on the pump controller to ob-

tain the desired combined flow conditions. Once the experiment was started, the

pistons increased their motion amplitude in about 5 to 10 oscillations until the de-

sired condition was reached. Meanwhile, measurements were begun. The tunnel was

equipped with a micro Acoustic Doppler Velocimeter (ADV), Ultrasonic Doppler Ve-

locity Profiler (UDVP), a custom-designed sonar system, pressure transducers, a peri-

staltic pump to extract suspended sediment samples and a digital camera (Figure 4.5).

Two-dimensional bathymetric data (Section 4.3.2) and side-view webcam photographs

(Section 4.3.4) were taken every 3 s and 5 s respectively, throughout the whole exper-

iment. At least one UDVP and sediment sample measurement were synchronized to

later correlate the sediment in suspension with the UDVP backscatter intensity (Sec-

tion 4.3.3). The beginning of each ADV and UDVP measurement was synchronized

with the motion of the piston with a electrical circuit in order to start the measure-

ments at the same phase of the oscillation period. For more detailed information on

the equipment and data recorder, see Section 4.3).
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Figure 4.5: a) micro Acoustic Doppler Velocimeter measuring the three components of veloc-
ity. b) Custom-designed sonar system measuring two-dimensional bed profiles. c) Ultrasonic
Doppler Velocity Profiler on the left measuring velocity profiles and web-camera obtaining
images at a set frequency.

• Once the bed configuration reached equilibrium, the experiment was stopped and the

post-experiment analysis was conducted. Detailed sketches of the experimented stratig-

raphy and morphology were conducted with measurement of the height and wavelength

of the bedforms.

4.3 Instrumentation

4.3.1 Acoustic Doppler Velocimeter

A SonTek micro acoustic Doppler velocimeter with a 1.01 cm3 sampling volume was used to

measure three-dimensional flow velocities using the Doppler shift principle. The instrument

consists of a sound emitter, three sound receivers, and a signal conditioning electronics

module (Figure 4.6). The sound emitter generates an acoustic signal at a known frequency

f (up to 50 Hz), which is reflected back by sound-scattering particles present in the water,

which are assumed to move at the velocity of the water. The scattered sound signal is

detected by the receivers and used to compute the Doppler phase shift, from which the flow

velocity in the radial or beam direction is calculated using

ui =
C

4 π f

∆φ

∆t
(4.1)
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where ∆φ is the phase shift, ∆t is the measurement period and C is the speed of sound

(McLelland and Nicholas, 2000). The micro-ADV is attached to a Velmex BiSlide posi-

tioning system which allows three-dimensional point velocity measurements with a vertical

movement accuracy of 0.5 mm. Velocity measurements were taken in the fifth circular port

from the open reservoir (Figure 4.1). A detailed list of flow conditions under which velocity

was measured can be found in Table 4.1. Consequently, the velocity field in the vertical

could be determined with great precision (Kraus et al., 1994; Voulgaris and Trowbridge,

1998; Lopez and Garćıa, 2001; Garćıa et al., 2004, 2005).

Figure 4.6: ADV Beam Geometry. From Sontek (2011)

Data Acquisition

The sampling frequency f was selected following Pedocchi (2009)

f =
2n

2m T
(4.2)
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Table 4.1: Summary of flow parameters for the morphology experiments with velocity mea-
surements

#a Init.b T Uo do Uu ADVc UVDPd Bedforme

Cond. (s) (ms−1) (m) (ms−1) (m) Type

01 00 04 0.25 0.32 0.00 - 2 SR
02 00 04 0.25 0.32 0.10 - 1 QAR
03 00 04 0.25 0.32 0.20 0.05, 0.1, 0.15, 0.2, 0.35 1 AR
04 00 04 0.25 0.32 0.30 - 1 ARR
05 00 04 0.25 0.32 0.40 - 1 ARD
06 04 04 0.25 0.32 0.40 - 1 ARD
08 00 05 0.20 0.32 0.00 0.05. 0.1, 0.2, 0.35 2 SR
11 00 05 0.20 0.32 0.10 0.35 2 QAR
13 01 05 0.20 0.32 0.20 - 1 QAR
14 09 05 0.20 0.32 0.20 - 1 QAR
15 00 05 0.20 0.32 0.30 0.1, 0.35 3 ARR
16 00 05 0.20 0.32 0.40 0.02, 0.1, 0.35 2 ARD
17 00 05 0.20 0.32 0.50 0.1, 0.35 3 ARD
18 00 05 0.40 0.64 0.00 - 3 SR
19 00 05 0.40 0.64 0.10 0.05, 0.1, 0.35 3 QAR
20 00 05 0.40 0.64 0.20 - 2 QARR
21 00 05 0.40 0.64 0.30 0.1, 0.35 2 QARR
23 17 05 0.40 0.64 0.40 - 1 ARD
24 00 05 0.40 0.64 0.50 0.05, 0.1, 0.35 1 USPB
25 00 05 0.50 0.80 0.40 0.1, 0.35 1 ARD
26 41 06 0.10 0.19 0.20 0.02, 0.35 13C AR
27 00 06 0.10 0.19 0.50 0.02, 0.05, 0.1, 0.35 8C CR
28 28 06 0.15 0.29 0.40 0.02, 0.05, 0.35 11C AD
29 39 06 0.20 0.38 0.00 0.35 20C SR
30 00 06 0.25 0.48 0.00 0.05, 0.1, 0.35 3 SR
31 00 06 0.25 0.48 0.05 0.1, 0.35 3 SR
32 00 06 0.25 0.48 0.10 0.35 2 QAR
33 00 06 0.25 0.48 0.20 0.35 2 QAR
34 00 06 0.25 0.48 0.30 0.35 4 ARR

a Experiment Number
b Initial condition of the sediment bed at the beginning of the experiment: 00 indicates flat bed, other

numbers indicate the number of the experiment run before.
c Distance away from the bed where velocity was measured.
d Number of velocity profiles measured when the bed morphology was in equilibrium with the flow

condition. C Measurements taken during evolution of the bed.
e S-R = Symmetric Ripples, SR-R = Symmetric Rounded Ripples, S-D = Symmetric Dunes, SR-D =

Symmetric Rounded Dunes, A-R = Asymmetric Ripples, AR-R = Asymmetric Rounded Ripples, QA-R
= Quasi-Asymmetric Ripples, QAR-R = Quasi-Asymmetric Rounded Ripples, A-D = Asymmetric Dunes,
AR-D = Asymmetric Rounded Dunes, USPB = Upper Stage Plane Bed and CR = Current Ripples.
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Table 4.1: continued from previous page

#a Init.b T Uo do Uu ADVc UVDPd Bedforme

Cond. (s) (ms−1) (m) (ms−1) (m) Type

35 00 06 0.25 0.48 0.40 0.35 2 ARD
36 00 06 0.25 0.48 0.50 - 2 ARD
37 16 06 0.30 0.57 0.00 0.02, 0.05, 0.35 - SR
38 40 06 0.30 0.57 0.10 0.01, 0.04, 0.06, 0.35 13C QAR
39 42 06 0.30 0.57 0.20 0.01, 0.05, 0.1, 0.15, 0.35 12C QAR
40 44 06 0.40 0.76 0.20 0.02, 0.05, 0.1, 0.35 13C ARR
41 45 06 0.40 0.76 0.30 0.01, 0.35 - ARD
42 00 06 0.50 0.95 0.00 0.15, 0.2 - SR
43 29 06 0.50 0.95 0.30 0.02, 0.05, 0.35 5 ARD
44 00 06 0.60 1.15 0.40 0.1, 0.35 1 USPB
46 29 06 0.80 1.53 0.20 0.2, 0.35 1 SD
47 00 06 1.00 1.91 0.50 0.01, 0.05, 0.35 2 USPB
49 00 - - - 0.10 0.01, 0.35 1 NM
50 00 - - - 0.20 0.01, 0.35 1 NM
52 00 - - - 0.30 0.01, 0.35 1 NM
53 00 - - - 0.40 - 1 CR
55 00 - - - 0.50 0.02, 0.05, 0.07, 0.1, 0.35 3 CR

and the criteria proposed by Garćıa et al. (2005)

f > 20
U

L
(4.3)

where 2n is the total number of samples, 2m is the number of periods to be sampled, T is the

flow period, U is the maximum convective velocity and L is the length scale of the energy

containing eddies. By selecting f as described by Equation 4.2, the error that is introduced

in the energy peaks when performing Fast Fourier Transform (FFT) is minimized, whereas

by following Equation 4.3 the Doppler noise (low-pass filtering) generated by the ADV is

reduced. In addition to improving the quality of the data, selecting an f which conforms to

Equation 4.2 allows study of the turbulence statistics by ensemble averaging. For oscillatory

and combined flows, the turbulence statistics should be computed by phase averaging, which

makes it necessary to have several realizations of the same data point at the same time along
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the oscillation (Figure 4.7).

Figure 4.7: Oscillatory Condition: Uo = 0.50ms−1 and T = 5 s. Unidirectional Condition:
Uu = 0.40ms−1. a) Streamwise velocity as a function of time. Each individual symbol
will be averaged to produce a single data point in the phase average data. b) Streamwise
phase-averaged mean velocity along the oscillation cycle. c) Phase-averaged Shields number.

Despite the benefits of using Equations 4.2 and 4.3, the accuracy of these measurements

91



from the ADV will still have three main sources of uncertainty

∆v =
√
σ2
M + σ2

D + σ2 (4.4)

where σ is the standard deviation, σM is a systematic sampling error due to instrument

uncertainties to resolve the phase shift (Equation 4.1) and σD is the Doppler-noise or er-

ror due to random scatterer motions within the sample volume (Nikora and Goring, 1998;

Voulgaris and Trowbridge, 1998; McLelland and Nicholas, 2000). van Rijn (1986) assumed

that ∆v was approximately 1 % of the reading value. However, recent studies conducted by

Voulgaris and Trowbridge (1998) estimated σM by still water measurements with errors up

to 3mms−1. In addition, the experiments of Voulgaris and Trowbridge (1998) showed that

ADV measurements were within 1 % of those measured with an LDV.

Velocity and Shear Stress Computations

The SonTek micro-ADV was used to capture three-dimensional flow measurements at several

control volume locations above the bed. In particular, the measurements at 10 mm from

the flat bed were used to compute shear stresses. For simplicity, an index notation will be

used to describe the three components of the instantaneous velocity, ui(t). From now on,

the index i will be assumed to go from 1 to 3, where i = 1 is the longitudinal direction (x),

i = 2 is the transverse direction (y) and i = 3 is the vertical direction (z). The Reynolds

triple-decomposition (Hussain and Reynolds, 1970) is used to the characterize ui(t) as

ui(t) = ui + ũi(t) + u′i(t) (4.5)
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where ui is the mean value, ũi(t) is the periodic component of the velocity and u′i(t) are the

turbulent fluctuations. The mean velocity, ui, is computed as

ui =
1

N

N∑
k=1

[ui(t)]k (4.6)

and the periodic velocity ũi(t), is calculated as the difference of the phase-averaged velocity,

〈ui(t)〉, and the mean velocity ui.

ũi(t) = 〈ui(t)〉 − ui (4.7)

The phase-averaged velocity can be computed as

〈ui(t)〉 =
1

Nc

Nc∑
k=1

ui(t+ k T ) (4.8)

where T (e.g., 5 s) is the period and Nc (e.g., 32 cycles) are the number of cycles measured.

Introducing the Reynolds triple-decomposition to the Navier-Stokes equations and doing a

Reynolds averaging, it can be shown that the Reynolds stresses of the background turbulence

can be written as

Rij(t) =
〈
u′i(t)u

′
j(t)
〉
− u′i(t)u

′
j(t) (4.9)

which can be transformed to a dimensionless shear stress or near-bed Shields number θuw(t),

by

θuw(t) =
τuw(t)

(ρs − ρf ) g D50

(4.10)

where g is the acceleration due to gravity, τuw is the Reynolds shear stresses for i = 1 and

j = 3,

τij = −ρf Rij(t) (4.11)

and ρs and ρf are the sediment and fluid density.
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4.3.2 Sonar

A custom-designed sonar system capable of performing fast three-dimensional surveys of

the sand bed during an experiment was installed in the tunnel (Figure 4.5b). An L-shaped

Imagenex 881L Digital Multi-Frequency Profiling Sonar, produced by Imagenex Technology

Corp., Canada, was installed on a Velmex B4800TS motorized rotatory table with Velmex

VXM controller, produced by Velmex Inc., USA. A mechanical system which allowed the

combination of both the Imagenex pencil beam sonar and the Velmex Bislide positioning

system was built by the Civil and Environmental Engineering Machine Shop at the Univer-

sity of Illinois at Urbana Champaign (Pedocchi, 2009). In addition, Pedocchi and Oberg1

developed software to control the motion and acquisition of the backscatter data (Pedoc-

chi, 2009). The combination of the pencil beam sonar and the positioning system with the

mechanical system and system software allowed the sonar to be rotated over two axes: i)

a horizontal axis that allows the sonar to cover a fan-shaped region contained in a vertical

plane where the bed can be surveyed, and ii) a vertical axis that, by rotating along this axis,

allows several crossing lines to be acquired to give a complete survey of the bed.

The spatial resolution of the system is controlled by: a) the angle between the ultrasound

beam and the sediment bed; b) the opening of the ultrasound beam; c) the angular resolution

given by the angular steps of both positioning systems, and d) the distance from the sonar

to the bed. The combined system has a 2 mm radial resolution along the ultrasound beam

and a 0.3◦ minimum angular step over the horizontal axis. In addition, to prevent acoustic

returns coming from the tunnel walls, the opening angle of the fan was adjusted to between

70◦ and 100◦.

Two-dimensional bed surveys

The single beam sonar was set in the longitudinal direction along the center of the tunnel

to measure ‘continuous’ longitudinal profiles during the experiments. These longitudinal

1Nils Oberg, Software Engineer, UIUC. noberg@illinois.edu
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sonar data were obtained every 3 s to measure the bed morphology and its spatio-temporal

development. In order to eliminate errors due to suspended sediment, several profiles at

different phases of the oscillation were averaged. This process averaged out the suspended

sediment, leaving just the bed elevation as a function of time (Pedocchi, 2009; Pedocchi and

Garćıa, 2012).

From this data set three critical observations can be made:

• ‘Synthetic stratification’ is an semi-empirical model achieved by superimposing the

successive longitudinal profiles of the bedforms with a vertical spacing set by a given

aggradation rate (Figure 4.8a). This synthetic stratification methodology was initially

implemented by Corea (1978) and continues to be employed by many researchers (e.g.,

Corea, 1978, 1981; Southard et al., 1990; Dumas et al., 2005; Dumas and Arnott, 2006;

Pedocchi, 2009). Of course, it is unlikely that such stratification would be exactly the

same as if the bed had actually aggraded; however, it is an intuitive tool to quantify

the aggradation of the bed.

• ‘Bed evolution’ can be achieved by measuring bedform properties such as wavelength,

height (Figure 4.8b), bed elevation (Figure 4.8c) as a function of time.

• ‘Bedload transport per unit width’ qs is determined by

qs = βbf (1− λp)Cbf η (4.12)

(Simons et al., 1965), where λp is the bed porosity (λp ≈ 0.3, Table 4.2), βbf is the

bedform shape factor defined as the ratio between the bedform cross-sectional area Abf

and η λ (Rubin and Hunter, 1982)

βbf =
Abf

η λ
(4.13)

and Cbf is the mean bedform celerity. The bedform porosity λp was estimated for
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three experiments (Table 4.2) by measuring the difference between the dry and wet

weight of sand collected from an end-of-experiment bedform, instantaneously after the

flume water was drained but whilst the bedform was still wet. The bedform porosity,

λp, for all three cases was close to 0.3, and this value was assumed to be true for all

experiments.

The mean bedform celerity Cbf was computed by time-averaging the instantaneous

bedform migration velocity Cbf (t) for t > te

Cbf =
∑
t>te

Cbf (t). (4.14)

Cbf (t) was recorded by tracking the crest displacement (e.g., Coleman, 1969; Dinehart,

2002) ∆x = x2 − x1 over the time interval ∆t = t2 − t1 (Figure 4.8:d). The results of

Qs, Abf and Cbf are shown in Table 4.3.

Table 4.2: Bedform Porosity Measurements

# Init. T Uo Uu ηe λe
Cond. (s) (ms−1) (ms−1) (mm) (m)

λp

15 00 05 0.20 0.30 27.6 0.27 0.29 ± 0.1
35 00 06 0.25 0.40 68.3 0.65 0.32 ± 0.1
55 00 - - 0.50 18.1 0.21 0.28 ± 0.1
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Figure 4.8: Different results generated with the two-dimensional bed elevation surveys; (a) Synthetic stratification, (b) Bedform
height and wavelength as a function of time, (c) Evolution of the bed elevation profiles as a function of time. (d) Sketch showing
how the bedform migration velocity was computed, where Cbf is the bedform celerity, ∆x = x2 − x1 and ∆t = t2 − t1.
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Table 4.3: Summary of flow parameters and bedform development characteristics for exper-
iments.

#a T Uo Uu ηe
b λe

b Abf
c βbf

d Cbf
e qs

f te
g tf

h Bedformi

(s) (ms−1) (ms−1) (mm) (m) ×103 (m3) (mms−1) (cm2 s−1) (hr) (hr) Type

1 4 0.25 0.00 34.8 0.22 3.63 0.48 0.128 14.94 2.21 5.07 SR
2 4 0.25 0.10 20.5 0.15 2.45 0.79 0.250 28.33 2.22 13.30 QAR
3 4 0.25 0.20 21.1 0.18 2.37 0.62 0.364 33.54 2.81 18.00 AR
4 4 0.25 0.30 26.9 0.23 3.74 0.62 0.413 47.90 1.10 12.50 ARR
5 4 0.25 0.40 35.6 0.51 5.36 0.30 0.221 16.27 9.45 42.20 SR
8 5 0.20 0.00 35.3 0.21 3.72 0.50 0.140 17.19 4.15 37.70 SR
11 5 0.20 0.10 36.4 0.15 2.98 0.53 0.199 27.04 3.80 18.10 QAR
12 5 0.20 0.20 27.3 0.22 2.46 0.42 0.360 28.75 2.60 20.20 QAR
15 5 0.20 0.30 27.6 0.27 3.09 0.41 0.880 70.41 0.73 9.70 ARR
16 5 0.20 0.40 30.3 0.60 9.92 0.55 1.350 156.30 0.58 7.30 ARD
17 5 0.20 0.50 44.6 0.88 17.60 0.45 1.500 210.00 0.30 2.30 ARD
18 5 0.40 0.00 22.0 0.20 2.36 0.53 0.340 27.74 0.67 15.20 SR
19 5 0.40 0.10 23.0 0.17 2.24 0.58 0.730 67.81 0.49 7.50 QAR
20 5 0.40 0.20 20.7 0.21 2.34 0.53 1.360 104.39 0.79 6.20 QARR
21 5 0.40 0.30 61.3 0.58 21.16 0.60 1.300 333.59 0.41 1.65 QARR
22 5 0.40 0.40 98.3 1.02 58.58 0.58 1.870 751.09 0.17 2.20 ARD
25 5 0.50 0.40 153.0 1.23 143.02 0.76 1.500 1220.93 0.50 2.20 ARD
27 6 0.10 0.50 35.5 0.49 5.60 0.32 1.490 119.29 0.93 3.80 CR
30 6 0.25 0.00 32.1 0.20 3.24 0.51 0.140 16.07 4.23 14.49 SR
31 6 0.25 0.05 26.6 0.18 3.70 0.78 0.147 21.36 1.97 17.04 SR
32 6 0.25 0.10 17.2 0.19 2.25 0.70 0.335 28.23 4.27 5.69 QAR
33 6 0.25 0.20 17.6 0.17 1.37 0.45 0.671 37.13 1.53 9.74 QAR
34 6 0.25 0.30 23.3 0.25 3.14 0.54 1.100 97.56 1.14 12.71 ARR
35 6 0.25 0.40 68.3 0.65 26.95 0.61 1.263 366.53 1.31 5.90 ARD
36 6 0.25 0.50 123.0 1.30 115.24 0.72 1.500 930.75 0.31 1.23 ARD
42 6 0.50 0.00 32.3 0.28 5.69 0.62 0.630 88.33 0.55 2.13 SR
55 - - 0.50 18.1 0.21 2.99 0.77 1.200 117.10 0.82 3.28 CR

a Experiment number. b Equilibrium height (ηe) and equilibrium wavelength (λe).
c Bedform cross-sectional area. d Bedform shape factor (Equation 4.13).
e Mean bedform celerity (Equation 4.14). f Bedload transport per unit width (Equation 4.12)
g Time until flow-bedform equilibrium. h Duration of experiment.
i S-R = Symmetric Ripples, SR-R = Symmetric Rounded Ripples, S-D = Symmetric Dunes, SR-D =

Symmetric Rounded Dunes, A-R = Asymmetric Ripples, AR-R = Asymmetric Rounded Ripples, QA-R
= Quasi-Asymmetric Ripples, QAR-R = Quasi-Asymmetric Rounded Ripples, A-D = Asymmetric Dunes,
AR-D = Asymmetric Rounded Dunes, USPB = Upper Stage Plane Bed and CR = Current Ripples.
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Three-dimensional bed surveys

Following the same operation as the two-dimensional bed surveys, the single beam sonar

was rotated over the vertical axis to obtain a complete 360◦ survey. The minimum angular

step over the vertical axis (controlled by the rotatory table) was set to 1 deg. In addition,

the angular position around the vertical axis was varied between −100◦ and +100◦, with the

zero aligned with the centerline of the tunnel. The digital acquisition of the bed morphology

allows a detailed analysis of the bed geometry (e.g., wavelength, height, three dimensionality)

for each individual flow (Figure 4.9). The complete 360◦ survey took around seven to ten

minutes; hence, the flow was stopped in different stages for the measurement to be conducted.

Previous work has shown that equilibrium bedform geometry for a given flow is independent

of the initial configuration (Doucette and O’Donoghue, 2006; Perillo et al., 2009). Hence, it

can be assumed that stopping the flow to take these measurements did not affect the final

stage of the bed morphology as long as the flow was run long enough to reach equilibrium

(Doucette and O’Donoghue, 2006; Perillo et al., 2009).

Errors associated with the sonar measurements were computed as the addition of the

square-root of the standard deviations (e.g., ση) and the instrument error (σi)

∆η =
√
σ2
η + σ2

i (4.15)

Equation 4.15 takes into account two main sources of discrepancy. The standard deviations

(e.g., ση) account for the natural variation of the physical phenomenon introduced by the

constant motion of the bedforms and their three-dimensionality, and the second term is

associated with the measurement errors from the equipment, which are mainly attributed

to the vertical instrument resolution ( ± 2 mm).
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Figure 4.9: Three-dimensional bed elevation surveys for a) Oscillatory Condition: Uo =
0.40 ms−1 and T = 5 s. Unidirectional Condition: Uu = 0.50 ms−1. b) Oscillatory
Condition: Uo = 0.25 ms−1 and T = 4 s. Unidirectional Condition: Uu = 0.30 ms−1. The
hole in the data at the center, corresponds to the blind region below the sonar head. Color
Bar is cm.

4.3.3 Ultrasonic Doppler Velocity Profiler

The Ultrasonic Doppler Velocity Profiler (UDVP) produced by Met-Flow SA consists of

a UDVP-Duo system that was controlled by a computer connected via Ethernet and a

set of three UDVP transducers. UDVP had been used successfully used to quantitative

flow field in a wide range of studies (e.g., Takeda, 1991; Takeda et al., 1994; Best et al.,

2001b,a,c; Best and Kostaschuk, 2002; Pedocchi and Garćıa, 2012. Similar to the ADV, the

UDVP relies on the use of pulsed sound - in this case in the range of ultrasound (emitting

frequency = 1 MHz) - to measure both velocity and suspended sediment profiles. As the

pulse propagates in the water column, the UDVP transducer receives the echoes returning

from the naturally-buoyant particulars (needed in the absence of sediment) or sediment in
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suspension along the acoustic path. The scattered sound signal is detected by the receivers

and used to compute the Doppler phase shift, from which the flow velocity in the radial or

beam direction is calculated by:

ur =
FD

2

c

F
(4.16)

where FD is the measured Doppler shift, F is the emitted ultrasound frequency (1 MHz) and

c is the sound speed of the transmitting medium. From the measurements of FD and the

delayed time (δt) between the emission and reception of ultrasonic signal

δt =
2 r

c
(4.17)

the UDVP computes the components of the particle velocities inside the measuring volumes

Figure 4.10: UDVP Beam Configuration. The ultrasound beams from the three transducers
cross at 5 cm above the flat sediment bed. Where α = 30◦. From Pedocchi (2009)

at a distance r from the transducer along the sound axis. Following the same methodology

proposed by Pedocchi (2009), three UDVP sensors were installed (Figure 4.10) in order to

obtain the mean streamwise and vertical fluid velocities (u, w)

u =
ur1 − ur3

2 sinα
(4.18)
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v = −ur1 + ur3
2 cosα

(4.19)

and the mean turbulent fluctuations (u′
2
, w′2, u′w′)

u′
2
=
u′ 2r1 + u′ 2r3 − 2u′ 2r2 cos2 α

2 sin2 α
(4.20)

w′2 = u′ 2r2 (4.21)

u′w′ =
u′ 2r3 − u′ 2r1
2 sin2 α

(4.22)

where ur1, ur2 and ur3 are the instantaneous radial velocities measured by each of the

three sensors and α = 30◦ (Figure 4.10). A sampling volume with a diameter of about

60 mm was achieved with a half-angle divergence of 3.4◦ for the 1 MHz UDVP transducer

(Met-Flow, 2002). The uncertainties introduced by selecting α = 30◦ on the Reynolds

stresses are acceptable (Tropea, 1983). However, errors associated by the returned sound

by particles contained inside a finite sampling volume and uncertainties in the computation

of the Doppler shift are present (Lhermitte and Lemmin, 1994; Voulgaris and Trowbridge,

1998). In addition, the accuracy of the measurements close to the bed was reduced since the

ultrasound beam forms an angle with the vertical. The resulting inclined measuring volume

was about 3 cm along the vertical direction.

The strength of the backscattered signal can be used to estimate the sediment concentra-

tion. The echo pressure, p, scattered by sediment particles in the water column is:

p =
as fs p0 r0D(θ)2

2 r2
exp [ω t− 2 r(k − i αa)] (4.23)

where as is the equivalent particle radius, fs is the form function that describes the scattering

properties of the particle, p0 is the reference pressure at r0, D(θ) is the sensor directivity

that is a function of the angle with the transducer axis θ, r is the distance from the sensor
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and αa is the sum of the sediment attenuation (αs)

αs =
1

r

∫ r

0

ξ M(r) dr (4.24)

and the water attenuation (αw), where M(r) is the concentration profile and ξ is the sediment

attenuation constant. It can be proved that the pressure wave is governed by the Rayleigh

probability distribution as long as there are enough scatterers (Bendat and Piersol, 2000).

In addition, if N particles are assumed to be randomly distributed in a measuring volume

V , if αs is relatively small and r is much larger than the sound wavelength the probability

distribution of the pressure wave can be represented by the voltage intensity 〈V 2〉(Thorne

et al., 2002) reported by the UDVP as

〈
V 2
〉
=
KsKt

r ψ
M e−4 αa r (4.25)

where Ks is a function of the scattering properties of the suspended sediment and Kt is a

constant for the ultrasound system and ψ accounts for the departure of the backscattered

signal from the spherical spreading in the near field. In order to obtain a relationship between

the backscattered signal and the sediment concentration for each experiment (Figure 4.11b),

suspended sediment samples were extracted at two different depths by a peristaltic pump.

These two suspension samples were used to calibrate the relationship of the voltage inten-

sity 〈V 2〉 with the suspended sediment concentration, and then used in Equation 4.25 as the

calibration curve for the rest of the profile. Once the calibration was done, the backscatter

intensity data was used to calculate the suspended sediment concentration as a function of

time at the same time the velocity profile was measured. Measurements by any ultrasound

backscatter instrument introduce a number of uncertainties. However, if sufficient temporal

averaging is done (e.g., Lemmin and Rolland, 1997 suggest 32 instantaneous samples for

oscillatory flows) reliable estimations of the suspended sediment concentration can be ob-
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tained. On other other hand, the advantage of the UDVP as compared to other types of

sensor is that it provides a non-intrusive methodology to acquire two-dimensional velocity

measurements and, at the same time, allows estimation of the sediment concentration. Such

Figure 4.11: Oscillatory Condition: Uo = 0.25 ms−1and T = 6 s. Unidirectional Condition:
Uu = 0.30 ms−1. a) Streamwise velocity profiles along the oscillation cycle. b) Inverted
suspended sediment concentration profiles for different phases along the oscillation cycle.
The bold line corresponds to the mean concentration profile over the cycle that is adjusted
to the measured concentration values, indicated by the two dots. c) Contours of streamwise
velocity profiles along the oscillation cycle. d) Contours of suspended sediment concentration
profiles along the oscillation cycle.
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a data set is key to characterize suspended sediment transport and its relation with the flow

velocity. In addition, the nature of the experiments conducted in this study did not require

the addition of any artificial seeding in order to use the UVDP.

Velocity, Shear Stress and Sediment Concentration Computations

Velocity profiles were obtained using the UDVP installed in the LOWST using a sampling

frequency that satisfied Equations 4.2 and 4.3. The maximum Shields number θ was obtained

by

θ =
τ

(ρs − ρf ) g D50

(4.26)

where the shear stress τ was computed by

τ = −ρf u2∗ (4.27)

where the shear velocity u∗ was obtained by fitting a logarithmic profile to the velocity profile

(Figure 4.12c; Nezu and Nakagawa, 1993; Kemp and Simons, 1982)

u =
u∗
κ

ln
z

zo
(4.28)

All the fits had a R2 larger than 0.99. The u∗, zo/D50, τ and maximum value of the Shields

number (Equation 4.26) are reported in Table 4.4. Computed values of u∗ are compared with

the widely used models of Grant and Madsen (1979) (GM79) and Soulsby (1997) (S97). Both

models were able to predict the shear velocity with more than ∼ 93% accuracy (Figure 4.13),

yet S97 does a slightly better job with almost a 99% precision. Although the fitting of the

logarithmic profile to the velocity profile provided good results to obtain the maximum value

of the Shields number, it was very difficult to use this technique to compute the shear stress

and zo throughout the oscillatory cycle. The computations were made difficult due to the

absence of a clear logarithmic zone during some of the oscillation faces and the change of
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Figure 4.12: UDVP data from experiment 11. Oscillatory Condition: Uo = 0.40ms−1 and
T = 5 s. Unidirectional Condition: Uu = 0.40ms−1. a) Streamwise phase-averaged velocity
along the oscillation cycle at z = 0.28 m. These outer flow values are those used to define
Uo and Uu . b) Contours of streamwise phase-averaged velocity profiles along the oscillation
cycle. The solid black line corresponds to z = 0.28 m (plotted in a) and the solid gray
line corresponds to T = 4.896 s where the maximum shear stress occurred (plotted in c).
The gray-scale bar units are ms−1. c) Logarithmic fit for the velocity profile. White dots
indicate the limits of the fitting data.

accuracy of the bottom 5% of the velocity profile data due to changes in sediment suspension

in the oscillation.

The depth-averaged unidirectional velocity was computed by integrating over the depth

on the time-averaged velocity profile

UH =
1

H

∫ H

0

u(t, z) dz (4.29)

where H = 0.3 m and u(t, z) is computed with Equation 4.6 for each value of z. In ad-

dition, in order to characterize the near-bed concentrations and flow velocity, the near-bed
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Figure 4.13: Comparison between the measured shear stress with that predicted using the
methods of Grant and Madsen (1979) and Soulsby (1997).

depth-averaged combined flow velocity Uhwc was computed as

Uhwc = UH + ŨH (4.30)

where UH is computed using Equation 4.29, and ŨH

ŨH = max ũH(t) =
1

H

∫ H

0

ũ(z, t) dz (4.31)

The mean sediment concentration, Cx, is computed by a double-averaging process. First, a

temporal-average through the wave-cycle:

C(z) =
1

N

N∑
j

C(t, z) (4.32)

and then a depth-average over the bottom x m of the flow:

Cx =
1

H

∫ H

0

C(z) dz (4.33)
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4.3.4 Digital camera

A Canon EOS 7D single-lens reflex (SLR) digital camera with a Canon EF 35mm f/2 wide

angle lens was mounted on one of the circular ports located on the top of the tunnel (Fig-

ure 4.1). The 18.0 Megapixel digital camera was used to record high-definition and high

relative speed (1920 × 1080 at 30 fps and 1280/720 at 60 fps) videos for planform visual-

ization of the bed evolution. The calibrations between pixel distance and metric distance

were achieved by taking a picture of a centimetric spaced target that was then compared

to the size of a pixel with the scale in the target. The calibration resulted in 1 pixel being

approximately equivalent to 270 µm, which is 1.07D50. In addition, a Logitech Webcam Pro

9000 with a video capture resolution of 1600× 1200 pixels was connected to a computer to

record the bed evolution from the central side window. These images have been used solely

for visualization purposes.
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Chapter 5

Combined Flow Phase Diagram

5.1 Introduction

Subaqueous bedforms are ubiquitous in most sedimentary environments (e.g., deltas, rivers,

lagoons, deep and shallow marine) and, depending on the setting, the bedforms or bed

features can be generated by currents (unidirectional flows), waves (oscillatory flows) or a

combination of both (combined flows). Much laboratory, field and theoretical work has been

conducted over several centuries trying to understand bedform genesis, equilibrium, shapes

and strata (e.g., Du Buat, 1786; Blasius, 1910; Kennedy, 1969; Harms et al., 1975; Allen,

1983; Southard, 1991; Baas, 1994; Kleinhans, 2001; Doucette and O’Donoghue, 2006; Reesink

and Bridge, 2009). However, due to the complexity of the system, there are many aspects

that are still barely understood (e.g., scaling relationships, preservation potential, Southard,

1991). This poor understanding of the basic characteristics of bedforms is especially severe

for combined flow conditions. Some work has been conducted under combined flows at a

range of relatively short oscillation periods and low unidirectional flow velocities (Inman

and Bowen, 1963; Harms, 1969; Brevik and Bjørn, 1979; Brevik, 1980; Arnott and Southard,

1990; Southard et al., 1990; Yokokawa, 1995; Dumas et al., 2005; Sekiguchi and Yokokawa,

2008; Perillo et al., 2009). Despite these early attempts, there are still a broad range of

combined flow bedforms that have never been investigated (Southard, 1991). Nevertheless,

stratigraphers have used this limited set of information as the main tool for paleoenviron-

mental reconstruction when combined flow bedforms are present in the field (e.g., Basilici

et al., 2012; Myrow and Southard, 1991; Myrow et al., 2002). Therefore, to address this gap
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in our knowledge of combined flow bedforms, fifty-five experiments were conducted using the

LOWST. These experiments permitted production of a set of tools that will allow researchers

to better understand and predict environments using bedform geometries, especially those

formed made by combined flows.

5.2 Terminology

There is no standard terminology to describe pure oscillatory and combined flow bedforms.

Thus, it is essential for any bedform study to clearly define the bedform nomenclature that

will be used. An ideal nomenclature or classification scheme should address the characteristic

changes in bedform structure or geometry (e.g., planform, height, wavelength) and function-

ality (e.g., type of flow) for all the potential bed morphologies. Despite the fact that both

the structure and functionality of bedforms are strictly related to one another (SFD “trin-

ity”), the information necessary to fully characterize each of the SFD “trinity”products are

different and generally not reported (e.g. Dumas et al., 2005). Therefore, based on the data

available on combined flow bedforms, and the lack of a consistent nomenclature on oscillatory

and unidirectional flows, a new nomenclature is proposed to produce a geometrical-process-

based bedform classification. The detailed discussion of the proposed classification can be

found in Section 3.5.

5.3 Experimental Data

Fifty-five experiments were conducted in the LOWST, both with and without an initially

flattened bed. These experiments are divided into four sets, three of them are organized

based on the period of oscillation chosen (T = 4, 5 and 6 s) and the additional set included

only the pure unidirectional conditions. The period and maximum orbital velocity for the

oscillatory and combined flow conditions were selected in order to conform with the criterion
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of Miche (1951)

Hb

h
= 0.142

L

h
tanh

(
2 π h

L

)
(5.1)

and Airy theory (Komar, 1976)

H

h

(
L

h

)2

< 32 π2/3 (5.2)

H

h

[
L

h
tanh

(
2π h

L

)]−1

< 0.0625 (5.3)

A graphical representation of Equations 5.1-5.3 and the experimental data can be found in

Figure 5.1.

5.3.1 Experiments 1-7 (Period = 4 sec)

Bedform initiation and development in a 250 µm sandy bed was studied under combined

flow conditions with an oscillation period (T) of 4 seconds (Table 5.1). The oscillatory

component was set constant to two maximum orbital velocities (Uo): 0.25 and 0.3 ms−1,

while the unidirectional component (Uu) was varied in 0.1 ms−1 increments from 0 to 0.4

ms−1 for the case of Uo = 0.25ms−1. The data set includes an additional experiment with

a maximum orbital velocity and unidirectional velocity of 0.25 and 0.4 ms−1 respectively

(experiment 06). For this additional experiment, the bed did not develop from a flat bed but

from the flow conditions of experiment 05. Run times ranged from 1 to 42 hr, with water

temperatures ranging between 18 to 25 ◦C (Table 5.1).
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Figure 5.1: Experimental data of the present study plotted versus the criterion of Miche
(1951) and Airy valid zone. The experimental data lies right on the valid zone represented
by Equations 5.1-5.3.
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Table 5.1: Summary of flow parameters and bedform characteristics with T = 4 s.

#a Init.b T Uo do Uu λ η λ/do Temp Eq. Timec Durationd

Cond. (s) (ms−1) (m) (ms−1) (m) (mm) (◦C) (hr) (hr)

01 00 04 0.25 0.32 0.0 0.22 34.8 0.68 18.0 2.20 05.2
02 00 04 0.25 0.32 0.1 0.15 20.5 0.48 18.5 0.22 13.3
03 00 04 0.25 0.32 0.2 0.18 21.1 0.57 17.5 2.91 18.0
04 00 04 0.25 0.32 0.3 0.23 26.9 0.71 19.0 1.23 12.5
05 00 04 0.25 0.32 0.4 0.51 35.6 1.60 20.0 0.15 02.0
06 04 04 0.25 0.32 0.4 0.52 36.0 1.63 21.5 - 01.1
07 00 04 0.30 0.38 0.0 0.20 31.0 0.52 25.0 9.45 42.2

#a Init.b T Uo Uu BIe BSIe BRIe 2D/3Df A/Sg nR/Rh Bedformi

Cond. (s) (ms−1) (ms−1) Type

01 00 04 0.25 0.0 06.3 0.96 0.40 2D S nR SR
02 00 04 0.25 0.10 07.4 1.39 0.45 2.5D S nR QARφ

03 00 04 0.25 0.2 08.6 1.53 0.54 2.5D A nR ARς

04 00 04 0.25 0.3 08.4 1.66 0.61 3D A R ARRς

05 00 04 0.25 0.4 14.3 2.36 0.72 3D A R ARDς

06 04 04 0.25 0.4 14.4 2.14 0.71 3D A R ARDς

07 00 04 0.30 0.0 06.5 1.04 0.41 3D S nR SR

a Experiment number: s at the end of the name indicate that smaller bedforms were observed superim-
posed on the larger ones.

b Initial condition of the sediment bed at the beginning of the experiment: 00 indicates flat bed, other
numbers indicate the number of the experiment run before.

c Time until flow-bedform equilibrium.
d Experiment duration. eBI = λη η−1, BSI = λs λ

−1
l and BRI = λ0.5 s λ

−1
s , equation 3.32.

f 2D indicates two-dimensional bedforms, 2.5D indicates the presence of two-dimensional, and three-
dimensional or wavy bedforms and 3D indicates three-dimensional bedforms. The superscript 1 indicates
that the width of the flume was not large enough for bedforms to fully develop their planform geometry.

g A stands for asymmetric (BSI > 2) and S for symmetric (BSI < 2)
hnR stands for not-rounded (BRI < 0.6) and R stands for rounded (BRI > 0.6).
i SR = Symmetric Ripples, AR = Asymmetric Ripples, ARR = Asymmetric Rounded Ripples, QAR

= Quasi-Asymmetric Ripples and ARD = Asymmetric Rounded Dunes. φ = Wave-Dominated Combined
Flows and ς = Current-Dominated Combined Flows.

5.3.2 Experiments 8-25 (Period = 5 sec)

Experiments under combined flow conditions with an oscillation period (T) of 5 seconds

(Tables 5.2 and 5.3) were conducted with durations ranging from 1 to 38 hours, with water

temperatures ranging between 11 and 21◦C. The unidirectional component (Uu) was varied
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and superimposed over two maximum orbital velocities (Uo = 0.2 and 0.4ms−1) in 0.1ms−1

increments from 0 to 0.5 ms−1. The only experiment that does not follow this description

is Experiment 25 that has a maximum orbital velocity of 0.5 ms−1 and a unidirectional

velocity of 0.4 ms−1.

Table 5.2: Summary of flow parameters and bedform characteristics with T = 5 s.

#a Init.b T Uo do Uu λ η λ/do Temp Eq. Timec Durationd

Cond. (s) (ms−1) (m) (ms−1) (m) (mm) (◦C) (hr) (hr)

08 00 05 0.20 0.32 0.00 0.21 35.30 0.67 21.0 03.3 37.7
09 13 05 0.20 0.32 0.00 0.19 33.10 0.58 13.0 - 08.8
10 11 05 0.20 0.32 0.00 0.16 23.60 0.51 14.0 - 28.6
11 00 05 0.20 0.32 0.10 0.15 36.40 0.46 14.0 03.8 18.1

#a Init.b T Uo Uu BIe BSIe BRIe 2D/3Df A/Sg nR/Rh Bedformi

Cond. (s) (ms−1) (ms−1) Type

08 00 05 0.20 0.00 6.01 0.97 0.36 2D S nR SR
09 13 05 0.20 0.00 5.59 1.00 0.39 3D S nR SR
10 11 05 0.20 0.00 6.86 0.98 0.42 3D S nR SR
11 00 05 0.20 0.10 4.01 1.17 0.52 3D S nR QARφ

a Experiment number: s at the end of the name indicate that smaller bedforms were observed superim-
posed on the larger ones.

b Initial condition of the sediment bed at the beginning of the experiment: 00 indicates flat bed, other
numbers indicate the number of the experiment run before.

c Time until flow-bedform equilibrium.
d Experiment duration. eBI = λη η−1, BSI = λs λ

−1
l and BRI = λ0.5 s λ

−1
s , equation 3.32.

f 2D indicates two-dimensional bedforms, 2.5D indicates the presence of two-dimensional and three-
dimensional or wavy bedforms and 3D indicates three-dimensional bedforms. The superscript 1 indicates
that the width of the flume was not big enough for bedforms to fully develop their planform geometry.

g A stands for asymmetric (BSI > 2) and S for symmetric (BSI < 2)
h nR stands for not-rounded (BRI < 0.6) and R stands for rounded (BRI > 0.6).
i SR = Symmetric Ripples, AR = Asymmetric Ripples, ARR = Asymmetric Rounded Ripples, QAR =

Quasi-Asymmetric Ripples, QARR = Quasi-Asymmetric Rounded Ripples, ARD = Asymmetric Rounded
Dunes and USPB = Upper Stage Plane Bed. φ = Wave-Dominated Combined Flows and ς = Current-
Dominated Combined Flows.
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Table 5.3: Summary of flow parameters and bedform characteristics with T = 5 s (cont’d).

#a Init.b T Uo do Uu λ η λ/do Temp Eq. Timec Durationd

Cond. (s) (ms−1) (m) (ms−1) (m) (mm) (◦C) (hr) (hr)

12 00 05 0.20 0.32 0.20 0.22 27.30 0.68 13.0 02.6 20.2
13 01 05 0.20 0.32 0.20 0.20 30.00 0.63 18.5 - 08.3
14 09 05 0.20 0.32 0.20 0.21 29.30 0.66 18.5 - 05.2
15 00 05 0.20 0.32 0.30 0.27 27.60 0.85 11.0 01.5 09.7
15s 00 05 0.20 0.32 0.30 0.12 14.60 0.38 11.0 - 09.7
16 00 05 0.20 0.32 0.40 0.60 30.30 1.89 18.5 00.6 07.3
16S 00 05 0.20 0.32 0.40 0.24 20.10 0.76 18.5 - 07.3
17 00 05 0.20 0.32 0.50 0.88 44.60 2.78 21.0 00.3 02.3
17s 00 05 0.20 0.32 0.50 0.27 21.20 0.84 21.0 - 02.3
18 00 05 0.40 0.64 0.00 0.24 22.00 0.38 13.0 00.6 15.2
19 00 05 0.40 0.64 0.10 0.22 23.00 0.35 16.0 00.4 07.5
19s 00 05 0.40 0.64 0.10 0.13 10.60 0.21 16.0 - 07.5
20 00 05 0.40 0.64 0.20 0.21 20.70 0.33 16.0 00.8 06.2
21 00 05 0.40 0.64 0.30 0.42 61.30 0.66 18.0 00.4 01.7
21s 00 05 0.40 0.64 0.30 0.17 16.30 0.27 18.0 - 01.7
22 00 05 0.40 0.64 0.40 1.02 98.30 1.60 18.5 00.2 02.2
23 16 05 0.40 0.64 0.40 1.05 102.30 1.65 17.0 - 00.8
24 00 05 0.40 0.64 0.50 - - - 16.0 - 01.4
25 00 05 0.50 0.80 0.40 1.23 153.00 1.55 13.0 00.5 02.2

#a Init.b T Uo Uu BIe BSIe BRIe 2D/3Df A/Sg nR/Rh Bedformi

Cond. (s) (ms−1) (ms−1) Type

12 00 05 0.20 0.20 7.91 1.34 0.54 3D S nR QARς

13 01 05 0.20 0.20 6.73 1.32 0.53 3D S nR QARς

14 09 05 0.20 0.20 7.13 1.28 0.55 3D S nR QARς

15 00 05 0.20 0.30 9.75 1.96 0.61 3D A R ARRς

15s 00 05 0.20 0.30 8.36 1.70 - 3D A nR ARς

16 00 05 0.20 0.40 19.83 2.29 0.78 3D A R ARDς

16S 00 05 0.20 0.40 12.04 1.63 - 3D A nR ARς

17 00 05 0.20 0.50 19.82 3.20 0.88 3D A R ARDς

17s 00 05 0.20 0.50 12.59 2.3 - 3D A nR ARς

18 00 05 0.40 0.00 10.86 1.11 0.43 3D S nR SR
19 00 05 0.40 0.10 9.65 1.31 0.32 3D S nR QARφ

19s 00 05 0.40 0.10 12.36 1.2 - 3D S nR SR
20 00 05 0.40 0.20 10.14 1.31 0.68 3D S R QARRφ

21 00 05 0.40 0.30 6.88 1.22 0.73 3D S R QARRς

21s 00 05 0.40 0.30 10.55 1.2 - 3D S nR SR
22 00 05 0.40 0.40 10.39 4.20 0.89 2D1 A R ARDς

23 16 05 0.40 0.40 10.29 4.16 0.92 2D1 A R ARDς

24 00 05 0.40 0.50 - - - - - - USPB
25 00 05 0.50 0.40 8.05 3.10 0.63 2D1 A R ARDς

a,b,c,d,e,f,g,h,i See Table 5.4
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5.3.3 Experiments 26-47 (Period = 6 sec)

A wide range of combined flow conditions with an oscillation period (T) of 6 seconds (Ta-

bles 5.4 to 5.6) were conducted with maximum orbital velocities (Uo) between 0.1 and 1.0

ms−1 and unidirectional velocities between 0.0 and 0.5 ms−1. Times ranged from approxi-

mately 0.5 to 43 hours with water temperatures ranging between 18 to 24◦C (Tables 5.4 to

5.6).

Table 5.4: Summary of flow parameters and bedform characteristics with T = 6 s.

#a Init.b T Uo do Uu λ η λ/do Temp Eq. Timec Durationd

Cond. (s) (ms−1) (m) (ms−1) (m) (mm) (◦C) (hr) (hr)

26c 41 06 0.10 0.19 0.20 0.22 23.20 1.15 24.0 - 28.4
26c 41 06 0.10 0.19 0.20 0.15 12.10 0.76 24.0 - 28.4
27 00 06 0.10 0.19 0.50 0.49 35.50 2.56 19.0 0.74 03.9
27s 00 06 0.10 0.19 0.50 0.21 15.10 1.11 19.0 0.74 03.9
28 28 06 0.15 0.29 0.40 0.56 37.90 1.97 20.0 - 07.7
28s 28 06 0.15 0.29 0.40 0.21 18.80 0.73 20.0 - 07.7

#a Init.b T Uo Uu BIe BSIe BRIe 2D/3Df A/Sg nR/Rh Bedformi

Cond. (s) (ms−1) (ms−1) Type

26c 41 06 0.10 0.20 09.5 1.97 0.53 3D A nR AR
26c 41 06 0.10 0.20 12.02 1.78 0.51 3D A nR AR
27 00 06 0.10 0.50 13.77 1.72 0.52 3D A nR CRς

27s 00 06 0.10 0.50 13.99 1.60 0.51 3D A nR CR
28 28 06 0.15 0.40 14.87 3.26 0.58 3D A nR AD
28s 28 06 0.15 0.40 11.17 2.30 0.46 3D A nR AR

a Experiment number: s at the end of the name indicate that smaller bedforms were observed superim-
posed on the larger ones.

b Initial condition of the sediment bed at the beginning of the experiment: 00 indicates flat bed, other
numbers indicate the number of the experiment run before.

c Time until flow-bedform equilibrium.
d Experiment duration. eBI = λη η−1, BSI = λs λ

−1
l and BRI = λ0.5 s λ

−1
s , equation 3.32.

f 2D indicates two-dimensional bedforms, 2.5D indicates the presence of two-dimensional and three-
dimensional or wavy bedforms and 3D indicates three-dimensional bedforms. The superscript 1 indicates
that the width of the flume was not big enough for bedforms to fully develop their planform geometry.

g A stands for asymmetric (BSI > 2) and S for symmetric (BSI < 2)
h nR stands for not-rounded (BRI < 0.6) and R stands for rounded (BRI > 0.6).
i SR = Symmetric Ripples, SRR = Symmetric Rounded Ripples, SD = Symmetric Dunes, SRD =

Symmetric Rounded Dunes, AR = Asymmetric Ripples, ARR = Asymmetric Rounded Ripples, QAR =
Quasi-Asymmetric Ripples, QARR = Quasi-Asymmetric Rounded Ripples, AD = Asymmetric Dunes, ARD
= Asymmetric Rounded Dunes, USPB = Upper Stage Plane Bed and CR = Current Ripples. φ = Wave-
Dominated Combined Flows and ς = Current-Dominated Combined Flows.
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Table 5.5: Summary of flow parameters and bedform characteristics with T = 6 s (cont’d).

#a Init.b T Uo do Uu λ η λ/do Temp Eq. Timec Durationd

Cond. (s) (ms−1) (m) (ms−1) (m) (mm) (◦C) (hr) (hr)

29 39 06 0.20 0.38 0.00 0.25 42.00 0.66 20.0 - 16.0
30 00 06 0.25 0.48 0.00 0.20 32.10 0.42 20.5 2.83 15.5
31c 00 06 0.25 0.48 0.05 0.18 26.60 0.38 20.0 2.57 17.7
31c 00 06 0.25 0.48 0.05 0.14 17.36 0.29 20.0 2.57 17.7
32 00 06 0.25 0.48 0.10 0.19 17.20 0.39 19.0 1.09 11.3
33 00 06 0.25 0.48 0.20 0.17 17.60 0.36 18.0 1.39 10.6
34 00 06 0.25 0.48 0.30 0.25 23.30 0.52 21.0 1.09 06.9
35 00 06 0.25 0.48 0.40 0.65 68.30 1.36 19.5 1.13 06.2
36 00 06 0.25 0.48 0.50 1.30 123.00 2.72 22.0 0.31 01.2
37 16 06 0.30 0.57 0.00 0.22 39.40 0.38 19.0 - 42.8
37s 16 06 0.30 0.57 0.00 0.14 17.00 0.24 19.0 - 42.8
38 40 06 0.30 0.57 0.10 0.17 18.45 0.30 20.0 - 09.5
39 42 06 0.30 0.57 0.20 0.30 38.80 0.53 20.0 - 08.4
39s 42 06 0.30 0.57 0.20 0.16 14.50 0.28 20.0 - 08.4
40 44 06 0.40 0.76 0.20 0.32 48.60 0.42 19.0 - 05.0
40s 44 06 0.40 0.76 0.20 0.17 13.70 0.23 19.0 - 05.0
41 45 06 0.40 0.76 0.30 0.74 84.16 0.97 20.0 - 03.4
42 00 06 0.50 0.95 0.00 0.28 32.30 0.29 21.0 0.72 06.4
43 29 06 0.50 0.95 0.30 0.56 31.00 0.58 23.5 - 01.2

#a Init.b T Uo Uu BIe BSIe BRIe 2D/3Df A/Sg nR/Rh Bedformi

Cond. (s) (ms−1) (ms−1) Type

29 39 06 0.20 0.00 6.02 1.04 0.37 2D S nR SR
30 00 06 0.25 0.00 6.23 1.08 0.42 2D S nR SR
31c 00 06 0.25 0.05 6.77 1.37 0.43 2.5D S nR SRφ

31c 00 06 0.25 0.05 8.02 1.20 0.39 2.5D S nR SRφ

32 00 06 0.25 0.10 10.86 1.44 0.40 3D S nR QARφ

33 00 06 0.25 0.20 9.84 1.45 0.45 3D S nR QARς

34 00 06 0.25 0.30 10.64 2.79 0.72 3D A R ARRς

35 00 06 0.25 0.40 9.52 3.15 0.64 3D A R ARDς

36 00 06 0.25 0.50 10.57 3.69 0.82 3D A R ARDς

37 16 06 0.30 0.00 5.57 1.15 0.45 2.5D S nR SR
37s 16 06 0.30 0.00 7.96 1.02 0.42 2.5D S nR SR
38 40 06 0.30 0.10 9.34 1.37 0.44 3D S nR QAR
39 42 06 0.30 0.20 7.84 1.46 0.51 3D S nR QAR
39s 42 06 0.30 0.20 11.14 1.53 0.55 3D A nR AR
40 44 06 0.40 0.20 6.63 1.63 0.63 3D A R ARR
40s 44 06 0.40 0.20 12.74 1.63 0.56 3D A nR AR
41 45 06 0.40 0.30 8.80 2.17 0.72 3D1 A R ARD
42 00 06 0.50 0.00 8.67 1.14 0.41 3D S nR SR
43 29 06 0.50 0.30 17.96 3.33 0.71 3D A R ARD

a,b,c,d,e,f,g,h,i See Table 5.4
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Table 5.6: Summary of flow parameters and bedform characteristics with T = 6 s (cont’d).

#a Init.b T Uo do Uu λ η λ/do Temp Eq. Timec Durationd

Cond. (s) (ms−1) (m) (ms−1) (m) (mm) (◦C) (hr) (hr)

43s 29 06 0.50 0.95 0.30 0.18 14.00 0.19 23.5 - 01.2
44 00 06 0.60 1.15 0.40 - - - 20.0 - 00.4
45c 00 06 0.70 1.34 0.00 0.71 50.08 0.53 18.0 0.23 21.0
45c 00 06 0.70 1.34 0.00 0.36 19.80 0.27 18.0 0.23 21.0
46 29 06 0.80 1.53 0.20 0.73 71.00 0.48 20.0 - 00.5
47 00 06 1.00 1.91 0.50 - - - 23.0 - 00.4

#a Init.b T Uo Uu BIe BSIe BRIe 2D/3Df A/Sg nR/Rh Bedformi

Cond. (s) (ms−1) (ms−1) Type

43s 29 06 0.50 0.30 12.64 2.10 0.55 3D A nR AR
44 00 06 0.60 0.40 - - - - - - USPB
45c 00 06 0.70 0.00 14.18 0.91 0.38 3D S nR SD
45c 00 06 0.70 0.00 18.19 1.12 0.42 3D S nR SR
46 29 06 0.80 0.20 10.28 1.20 0.50 3D S nR SD
47 00 06 1.00 0.50 - - - - - - USPB

a,b,c,d,e,f,g,h,i See Table 5.4

5.3.4 Experiments 48-55 (Unidirectional Flows)

A limited number of pure unidirectional flow conditions were investigated (Table 5.7). Sed-

iment entrainment occurred for flow velocities larger than 0.3 ms−1, and hence there were

not any bedforms in experiments 48 to 53 (Table 5.7).
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Table 5.7: Summary of flow parameters and bedform characteristics pure unidirectional
flows.

#a Init.b T Uo do Uu λ η λ/do Temp Eq. Timec Durationd

Cond. (s) (ms−1) (m) (ms−1) (m) (mm) (◦C) (hr) (hr)

48 00 - - - 0.05 - - - 16.00 - 8.0
49 00 - - - 0.10 - - - 17.00 - 6.0
50 00 - - - 0.15 - - - 18.00 - 0.5
51 00 - - - 0.20 - - - 18.00 - 3.3
52 00 - - - 0.30 - - - 18.50 - 5.0
53 52 - - - 0.40 - - - 18.50 - 4.6
54 00 - - - 0.40 0.20 17.6 - 17.00 9.4 18.0
55 00 - - - 0.50 0.21 18.1 - 18.50 0.8 3.3

#a Init.b T Uo Uu BIe BSIe BRIe 2D/3Df A/Sg nR/Rh Bedformi

Cond. (s) (ms−1) (ms−1) Type

48 00 - - 0.05 - - - - - - NM
49 00 - - 0.10 - - - - - - NM
50 00 - - 0.15 - - - - - - NM
51 00 - - 0.20 - - - - - - NM
52 00 - - 0.30 - - - - - - NM
53 52 - - 0.40 - - - - - - CR
54 00 - - 0.40 11.36 2.21 0.51 3D A nR CR
55 00 - - 0.50 11.84 2.36 0.49 3D A nR CR

a Experiment number
b Initial condition of the sediment bed at the beginning of the experiment: 00 indicates flat bed, other

numbers indicate the number of the experiment run before.
c Time until flow-bedform equilibrium.
d Experiment duration. eBI = λη η−1, BSI = λs λ

−1
l and BRI = λ0.5 s λ

−1
s , equation 3.32.

f2D indicates two-dimensional bedforms, 2.5D indicates the presence of two-dimensional and three-
dimensional or wavy bedforms and 3D indicates three-dimensional bedforms. The superscript 1 indicates
that the width of the flume was not big enough for bedforms to fully develop their planform geometry.

gA stands for asymmetric (BSI > 2) and S for symmetric (BSI < 2)
hnR stands for not-rounded (BRI < 0.6) and R stands for rounded (BRI > 0.6).
iNM = No Motion and CR = Current Ripples.
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5.4 Phase Diagrams

As discussed in chapter 3, phase diagrams are graphs that show the regimes of existence of

one or more stable bed states. Before plotting different phase diagrams, it is important to

discuss the relevant variables that characterize the system.

5.4.1 Relevant Variables

For the case of a system with co-existing waves and currents in the absence of any bed

topography, a complete representation can be achieved by selecting:

• the oscillation period (T ), the maximum orbital speed (Uo), the wave amplitude (A)

and the wave orbital diameter (d0) for the oscillatory component.

• the water depth (h) and the mean velocity (Uu) for the unidirectional component.

• the angle (γ) between the waves and the current to quantify the wave-current interac-

tion.

• the mean grain size (D50) and the sediment density (ρs) to quantify the sediment.

• the fluid viscosity (ν) and the fluid density (ρ) to quantify the fluid flow.

In addition to these variables, the acceleration due to gravity (g) is needed to fully char-

acterize the system. This yields seven variables for the flow and five for the sediment and

fluid. Further analysis of the physics of wave-current interactions allows choice of the most

relevant variables that will characterize the system. As mentioned before, in this particular

study the waves and currents are co-linear, and therefore γ = 0◦. Furthermore, if the water

oscillation is assumed sinusoidal, the difference between the wave amplitude and the wave

orbital diameter is a factor of 2,

d0 = 2A =
Uo T

π
(5.4)
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Figure 5.2: The wave orbital diameter, do, plotted against the maximum orbital velocity, Uo.
Lines of constant period, T , are also plotted. Although the variables should be independent
of eachother, the data suggests the opposite. Modified from Pedocchi and Garćıa (2009b).

Therefore, in order to characterize the oscillatory flow, only two of the three variables (d0,

T , Uo) are needed, since the third can be computed using equation 5.4. However, recent

studies by Pedocchi and Garćıa (2009b) have suggested that there is no true independence

between these three characteristic variables (d0, T and Uo; Figure 5.2). Figure 5.2 shows

that there is a correlation between the variables, where short excursions tend to take place

with weak oscillatory velocities and short periods and long excursions over longer periods

and stronger velocities. However, the same short or long excursions do not happen over long

or short periods since the velocity necessary to achieve such values do not occur in natural

environments. Therefore, it is very important to address this dependence, when using d0, T

122



or Uo, to obtain relationships that characterize oscillatory and combined flows. Nevertheless,

keeping in mind this dependence, two of the variables are used here to characterize the

oscillatory component of the combined flow, reducing the relevant variables from twelve to

nine. In addition, in combined flow as in oscillatory flows, the flow depth does not play a

significant role and is assumed to be shallow enough that the waves and sea-bed interact

(Pedocchi, 2009). Including this simplification, the number of variables is then reduced from

nine to eight

• the oscillation period (T ), the maximum orbital speed (Uo) or the wave orbital diameter

(d0) for the oscillatory component.

• the mean velocity (Uu) for the unidirectional component.

• the mean grain size (D50) and the sediment density (ρs) to quantify the sediment.

• the fluid viscosity (ν) and the fluid density (ρ) to quantify the fluid flow.

• acceleration due to gravity g.

In order to reduce the system to a manageable set of variables, two possible solutions are

proposed in the literature: fixed parameters or dimensionless quantities.

5.4.2 Fixed Parameters: Dimensional Phase Diagram

Fixed parameters have often been used by geologists to generate phase diagrams with a

number of fixed variables (e.g., Arnott and Southard, 1990; Dumas et al., 2005). Such

simplification allows the use of standard variables on the axes, making it intuitively easier to

relate with natural conditions, but more restrictive. From the previous section (section 5.4.1),

eight variables were stated as needed to characterize the system. These variables can be

reduced to a more manageable quantity if there is more information about the particular

system. The bedforms studied in this chapter were generated under an acceleration due
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to gravity of ≈ 9.8ms−2, and the range of water temperatures occurring in shallow-marine

environments is not great enough to have significant variations in the fluid viscosity (ν ≈ 1×

10−6m2 s−1) and density (ρ ≈ 1000 kg m−3). In addition, despite the presence of many types

of grains, in general the density of the grains can be assumed to be ρs ≈ 2650 kg m−3, which

is the density of quartz. Therefore, the system can now be described by four variables, the

oscillation period (T ), the maximum orbital velocity (Uo), the mean unidirectional velocity

(Uu) and the mean grain size (D50).

Following the approach described above, the existence field for various combined-flow

bedforms is plotted on a phase space of oscillatory velocity versus unidirectional velocity

with a fixed grain size (D50 = 0.25 mm) and a fixed period of T = 4 (Table 5.1, Figure 5.3),

5 (Tables 5.2 & 5.3, Figure 5.4a) and 6 s (Tables 5.4 to 5.6, Figure 5.4b). In the range of flows

studied, the equilibrium stages of the bed observed were no motion (NM), 2D symmetric

ripples (2D SR), 3D symmetric ripples (3D SR), 3D symmetric dunes (SD), 3D asymmetric

ripples (AR), 3D quasi-asymmetric ripples (QAR), 3D asymmetric dunes (AD), 3D current

ripples (CR), 3D current dunes (CD) and upper-stage plane bed (USPB). The partitioning

of the phase space for each of the bed states was decided and traced as equidistant lines

from experimental points located on adjacent states (Figures 5.3 and 5.4). However, for

some scenarios (e.g., Experiment 34 or Experiment 44) the middle line did not represent

a realistic case since one of the experimental points showed a significant proximity to the

transition zone, and thus the limit was shifted to the proximity of such a value. In addition,

the transitions were described as gradual or sharp based on the continuous or abrupt change

of the bedform characteristics as they change bed state. The transition limits presented in

Figures 5.3 and 5.4 are an attempt to identify regions with distinctive bed geometry and are

not meant to imply that the transition occurs precisely along the plotted line. In order to

define the ‘absolute’ location and the physical reason of any of these transitions a large effort

should be made in a very localized zone to delimit the transition, but this was outside the

scope of this project. Nevertheless, the differences between the bedforms from the different
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regions are real and substantial, and the transition line provides a good first approximation

of what should be the true limits of the bed states.

Figure 5.3: Dimensional phase diagram for combined-flow bed-phase stability fields in a plot
of U0 vs Uu with grain sizes D50 = 0.25 mm and period T = 4 s. + and × signs represent
symmetrical and rounded bedforms, all other bedforms are asymmetric and non-rounded.
The vertical dark line represents the limits of the experimental data. NM = No Motion,
SR = Symmetric Ripples, SD = Symmetric Dunes, AR = Asymmetric Ripples, QAR =
Quasi-Asymmetric Ripples, AD = Asymmetric Dunes, USPB = Upper Stage Plane Bed, CR
= Current Ripples and CD = Current Dunes. Dashed line represents a gradual transition
among different bed states, whereas a solid line denotes a sharp transition. Transition lines
with question marks indicate that there is no knowledge about the nature of the transition.
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(a) Oscillation period T = 5 s. (b) Oscillation period T = 6 s.

Figure 5.4: Dimensional phase diagram for combined-flow bed-phase stability fields in a plot of U0 vs Uu with grain sizes
D50 = 0.25 mm. + and × signs represent symmetrical and rounded bedforms, all other bedforms are asymmetric and
non-rounded. The vertical-dark line represents the limits of the experimental data. NM = No Motion, SR = Symmetric
Ripples, SD = Symmetric Dunes, AR = Asymmetric Ripples, QAR = Quasi-Asymmetric Ripples, AD = Asymmetric Dunes,
USPB = Upper Stage Plane Bed, CR = Current Ripples and CD = Current Dunes. Dashed line represents a gradual transition
among different bed states, whereas a solid line denotes a sharp transition. Transition lines with question marks indicate that
there is no knowledge about the nature of the transition.
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The transitions of bed phases observed in the three diagrams (Figures 5.3 and 5.4) show

remarkable similarities, which shows that a small change in oscillatory period (from 4 to 5 or

6) does not change the bed configuration dramatically. A combined dimensional phase dia-

gram for all periods (T = 4, 5 and 6 s) is plotted in Figure 5.5. The small differences in the

phase boundaries are associated with the relative narrow range of periods. The transitions

along the Uu axis (x-axis in Figure 5.3 and 5.4) are well known and follow the same trend

observed in many pure unidirectional flow studies (eg., Southard, 1991): no movement (NM),

current ripples (CR), current dunes (CD) and upper-stage plane bed (USPB). Likewise, the

sequence of bed configurations seen in the Uo axis (y-axis in Figures 5.3 and 5.4) follows the

trend of pure oscillatory flow bedforms (eg., Pedocchi and Garćıa, 2009c): no motion (NM),

2D symmetrical ripples (2D SR), 3D symmetrical ripples (3D SR), symmetrical dunes (3D

SD, previously named large 3D ripples or hummocks) and upper-stage plane bed (USPB,

previously named plane bed). In the interior of the graph, the bed configuration is mainly

dominated by 3D quasi-asymmetric and asymmetric ripples and 3D asymmetric dunes (Fig-

ures 5.3 and 5.4). Figures 5.3 and 5.4 show a very small domain where two-dimensional

ripples can be generated; however, such conditions are very common in fair weather condi-

tions in most shallow-marine and lacustrine environments (e.g., Komar, 1976), and relicts

of these bedforms are commonly found in many outcrops (e.g., Komar, 1974).

On the other hand, despite the fact that bedforms exhibit different characteristics for

different flow conditions, there is a range of flows where the differences in the characteristics

of the bed are insignificant. These areas where the different flow conditions produce similar

bedforms are called bedform phases and are described in detail below.

No Motion (NM)

No motion (NM) is characterized by a plane bed with an absence of sediment movement.

A minimal number of experiments under pure oscillatory and pure unidirectional flows were

conducted in order to determine the minimum velocity needed to entrain sediment. In
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Figure 5.5: Dimensional phase diagram for combined-flow bed-phase stability fields in a plot
of U0 vs Uu with grain sizes D50 = 0.25 mm and periods T = 4, 5 and 6 s. + and ×
signs represent symmetrical and rounded bedforms, all other bedforms are asymmetric and
non-rounded. The vertical dark line represents the limits of the experimental data. NM = No
Motion, SR = Symmetric Ripples, SD = Symmetric Dunes, AR = Asymmetric Ripples, QAR
= Quasi-Asymmetric Ripples, AD = Asymmetric Dunes, USPB = Upper Stage Plane Bed,
CR = Current Ripples and CD = Current Dunes. Dashed line represents a gradual transition
among different bed states, whereas a solid line denotes a sharp transition. Transition lines
with question marks indicate that there is no knowledge about the nature of the transition.

addition, no study was performed to determine what combination of combined flow velocities

could mobilize the sediment. Therefore, the stability field proposed for NM is drawn as a

straight line between the entrainment value for pure oscillatory and pure unidirectional flows.

Despite the lack of data supporting the exact shape of the curve, the NM field is generally
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consistent with other studies of initiation of motion under unidirectional (e.g. Shields, 1936),

oscillatory (e.g. Pedocchi, 2009) and combined (e.g. Li and Amos, 1999a) flows.

Figure 5.6: Bedform phase state: No Motion. Flow Conditions: Oscillatory Condition:
none. Unidirectional Condition: Uu = 0.10ms−1. The window on the back of the picture is
0.60 m wide.

2D Symmetric Ripples (2D SR)

2D symmetric ripples can be unambiguously characterized by well defined, regular bed con-

figurations with straight and laterally continuous sharp crests oriented perpendicular to the

flow (Figure 3.26). These two-dimensional bedforms have a very clear symmetrical cross-

sectional shape (BSR = 1, Figure 5.7). The stability field for 2D SR lies just above the

threshold of motion, with relatively weak oscillatory velocities (Uo . 0.3 ms−1) and non-

existent unidirectional flows (Uu . 0.01 ms−1; Figures 5.3-5.4). For any increment in

both the unidirectional and oscillatory velocities, the bed transitioned gradually to a three-

dimensional planform geometry (Figures 5.3-5.4). The mean equilibrium bedform wave-

length was λη = 0.23 ± 0.02 m and the mean equilibrium height was η = 37 ± 4 mm. In

addition, the mean bedform indices for 2D SR were BI = 6.12±0.09, BSI = 1.01±0.05 and
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BRI = 0.38± 0.02. Due to the clear cross-sectional symmetry, there was no large difference

between the lee and stoss side angle, αl = 20± 2◦ and αs = 19± 2◦.

Figure 5.7: Bedform phase state: 2D Symmetric Ripples. Flow Conditions: Oscillatory
Condition: Uo = 0.25ms−1 and T = 4 s. Unidirectional Condition: Uu = 0.00ms−1. The
window on the back of the picture is 0.60 m wide.

3D Symmetric Ripples (3D SR)

Three-dimensional symmetrical ripples are the immediate bed-state forming after any veloc-

ity increment over the 2D SR bed configuration (Figures 5.3-5.4). These ripples have very

similar characteristics to the 2D SR, with the exception of a three-dimensional planform

geometry (Figure 5.8). Previous studies of oscillatory and combined flows have proven that

for a given grain size and oscillation period, larger oscillatory velocities (Uo) generate three-

dimensional bedforms (Figure 3.16; Southard, 1991; Pedocchi, 2009). Furthermore, Arnott

and Southard (1990) observed that increments of the unidirectional component of combined

flows also produced three-dimensionality. At equilibrium, the mean bedform wavelength was

λη = 0.21± 0.04 m and mean height η = 31± 6 mm. In addition, the mean bedform indices

for 3D SR were BI = 7 ± 2, BSI = 1.1 ± 0.1 and BRI = 0.42 ± 0.02. Similar to the
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two-dimensional symmetric ripples, there was little difference between the lee and stoss side

angles, αl = 16± 5◦ and αs = 16± 4◦.

Figure 5.8: Bedform phase state: 3D Symmetric Ripples. Flow Conditions: Oscillatory
Condition: Uo = 0.50ms−1 and T = 6 s. Unidirectional Condition: Uu = 0.00ms−1. The
window on the back of the picture is 0.60 m wide.

3D Symmetric Dunes (3D SD)

Combined flow dunes, previously named large ripples (Dumas et al., 2005), were classified as

bedforms that have wavelengths larger than 0.5 m. Previous studies under combined flows

(e.g., Arnott and Southard, 1990; Dumas et al., 2005), defined larger ripples as bedforms

with wavelength larger or equal than 1 m, since no bedforms were recorded with wavelengths

between 0.3 and 0.99 m. This was not the case in the present study, where a gradual size

transition was observed as the velocity was increased (for more details, see section 8.3.1). In

the case of 3D symmetrical dunes, the stability field was found at larger oscillatory velocities

below USPB conditions (Figure 5.3-5.4). These three-dimensional, symmetric, bedforms

exhibited the same characteristics as 3D SR with the exception that the bedforms were larger

(Figure 5.9). Mean wavelength and height were λη = 0.72 ± 0.01 m and η = 60 ± 1 mm
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respectively. Mean bedform indices wereBI = 11±4, BSI = 1.1±0.2 andBRI = 0.44±0.08.

Similar to the other symmetric bed configuration, the lee and stoss side angles were very

similar, αl = 18± 3◦ and αs = 17± 2◦.

Figure 5.9: Bedform phase state: 3D Symmetric Dunes. Flow Conditions: Oscillatory
Condition: Uo = 0.80ms−1 and T = 6 s. Unidirectional Condition: Uu = 0.20ms−1. The
window on the back of the picture is 0.60 m wide.

3D Asymmetric Ripples (3D AR)

Three-dimensional asymmetric ripples are bedforms that are characterized by a 3D asym-

metric (BSI & 1.5) form with a relatively wide range of sizes and shapes (Figure 5.10).

3D AR have a mean wavelength of λη = 0.22 ± 0.07 m but values ranged from 0.14 to

0.42 m. Similar to the wavelength, the height of the 3D AR shows some variability, the

mean height was η = 25 ± 9 mm with values ranging from 16 to 50 mm. The lee and

stoss side angle were αl = 21 ± 4◦ and αs = 11 ± 3◦ respectively. The stability field of

three-dimensional asymmetric ripples exists for 0.15 . Uo . 0.5 ms−1 and 0.08 . Uu . 0.35

ms−1 (Figure 5.3-5.4).

3D AR were first described by Dumas et al. (2005) who named them asymmetrical small
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Figure 5.10: Bedform phase state: 3D Asymmetric Ripples. Flow Conditions: Oscillatory
Condition: Uo = 0.30ms−1 and T = 6 s. Unidirectional Condition: Uu = 0.20ms−1. The
window on the back of the picture is 0.60 m wide.

ripples (ASR) as a moderately asymmetric bedform (BSI ∼ 1.5) with a rounded profile

(BRI ∼ 0.6). However, this description does not address all of the geometric variability

that characterizes this complex bed morphology. In addition to the variability of bedform

sizes, 3D AR have a gradual change in asymmetry and roundness as the unidirectional flow

is increased (Figure 5.11). 3D AR are then a key bed configuration to illustrate the effects

of unidirectional flow on the bed morphology at relatively low orbital velocities (Uo . 0.5

ms−1). When the unidirectional component of a combined flow is very small (Uu ≈ 0ms−1),

the bed configuration at equilibrium is a 2D and symmetric bedform (2D SR, Figure 5.3-5.4).

However, if the unidirectional is slightly increased (Uu . 0.08 ms−1), the bed configuration

becomes 3D while still preserving the symmetric cross-sectional geometry (2D SR to 3D SR).

The transition between symmetrical ripples to asymmetrical ripples occurs gradually as the

unidirectional flow is increased for a given oscillatory flow (Figure 5.11a). This transition

can be divided in three stages: symmetric (BSI ≈ 1, light-orange in Figure 5.11a-b), quasi-

asymmetric (BSI ≈ 1.3 − 1.5, pink in Figure 5.11a-b) and fully asymmetric (BSI > 1.5,
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red, blue and yellow in Figure 5.11a-b) ripples. A simple linear regression analysis showed

that the relationship between BSI and Uu is

BSI = 4.40Uu + 1.0 (5.5)

Despite the relative good R-squared fit (R2 = 0.68 and p-value = 0.036, Appendix B.1)

of Equation (5.5) to the experimental data, the fitted function does not predict the clear

dispersion present in the data, shown by the the large majority of the values outside the

95% confidence interval of the fitted equation (gray-shaded area in Figure 5.11a). However,

Equation (5.5) can be used to predict the overall effects of the unidirectional component

of the combined flow on the cross-sectional bedform geometry: the transition to a fully

asymmetric morphology (BSI = 1.5) occurs at Uu ≈ 0.11ms−1 and for Uu = 0ms−1 →

BSI = 1, which implies a fully symmetric bedform, these results match the experimental

observations. It is important to note that the ASR described by Dumas et al. (2005) could

be redefined as quasi-asymmetric ripples, since the BSI was equal or slightly less than 1.5,

a value that was selected as the transitional value for the symmetric-asymmetric transition

(section 5.2). The use of the term quasi-asymmetric bedform is employed instead of the

‘moderately’ asymmetric term applied by Dumas et al. (2005). In addition to the 2D to 3D

and the symmetric to asymmetric transition, this bedform becomes more rounded as the

unidirectional flow increases (see section 8.3.3). However, this transition is more gradual

BRI = 0.64Uu + 0.42 (5.6)

Similar to Equation (5.5), Equation (5.6) provides a good predictive power, despite the large

experimental dispersion (R2 = 0.62, p-value = 0.042 and large majority of values outside the

95% confidence interval; gray-shaded area in Figure 5.11c). The general trend shows that

BRI ≈ 0.4 for Uu = 0ms−1 and non-rounded to rounded transition at Uu = 0.28ms−1.
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Figure 5.11: (a) Bedform symmetry index as a function of the unidirectional component
of the flow velocity. (b) Graphical scheme that represents the range of unidirectional ve-
locities for different type of bed states. (c) Bedform roundness index as a function of the
unidirectional component of the flow velocity. The gray-shaded area represents the 95%
confidence interval of the fitted functions (Equations 5.5 and 5.6). SR = Symmetric Ripples
(light-orange), AR = Asymmetric Ripples (red), QAR = Quasi-asymmetric Ripples (pink),
AD = Asymmetric Dunes (blue), and CR = Current Ripples (yellow). Experimental data
from Dumas et al. (2005) and the present study. Error bars are ploted for the experimental
data of this study and they are mainly associated with the range of variability of the index
(standar deviation).
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3D Asymmetric Dunes (3D AD)

Three-dimensional asymmetric dunes exhibit the same characteristics to 3D AR with the

exception that the bedforms are larger (AD size = 350% AR size), fully asymmetric (BSI >

1.5, Figure 5.11a) and generally rounded (BRI > 0.6, Figure 5.11c). The three dimension-

ality of these bedforms was difficult to assess since in most cases the width of the flume was

smaller than the bedform wavelength (W/λη < 1). This is a problem because the presence

of the wall may limit the space available for the bedforms to fully develop and, hence stay

as 2D or 2.5D features when the equilibrium stage might have a three-dimensional plan-

form geometry (Southard et al., 1990). However, for some cases (e.g., Figure 5.12) the bed

exhibited a three-dimensional planform geometry despite the fact that the W/λη ratio was

smaller than one.

Figure 5.12: Bedform phase state: 3D Asymmetric Dunes. Flow Conditions: Oscillatory
Condition: Uo = 0.25ms−1 and T = 6 s. Unidirectional Condition: Uu = 0.50ms−1. The
window on the back of the picture is 0.60 m wide.

3D A-D occurred gradually as the flow velocity was increased. The stability field of

three-dimensional asymmetric dunes exists for a wide range of combined flow conditions

(0.1 . Uo . 0.8 ms−1 and 0.15 . Uu . 0.7 ms−1, Figure 5.3-5.4). Mean wavelength and
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height were λη = 0.8±0.2 m and η = 74±39 mm respectively. The relatively large variation

for the mean wavelength and height are 0.51 to 1.30 m in wavelength and 3.1 to 15 mm in

height. The mean bedform indices do not show such a high dispersion as the wavelength

and height, and BI = 12 ± 3, BSI = 3.1 ± 0.7 and BRI = 0.7 ± 0.1. Similar to the other

asymmetric bed configuration, the lee and stoss side angle were αl = 22±5◦ and αs = 11±4◦.

Upper-stage Plane Bed (USPB)

An upper-stage plane bed is characterized by a flat bed generated by intense sediment

movement (Figure 5.13). The term USPB is used instead of Plane Bed in a attempt to merge

the unidirectional nomenclature with that of oscillatory and combined flows. Similar to pure

unidirectional (section 3.2.4) and oscillatory (section 3.3.5) flows, this bed configuration

is generated under very high bed shear stress and sediment-transport rates. This stable

configuration is characterized by a highly mobile active sediment transport layer of the

order of 10 mm in thickness and a suspended sediment layer which is confined to only a few

centimeters above the bed.

3D Current Ripples (3D CR)

A small number of experiments were conducted in order to characterize current ripples since

a large amount of information can be found in the literature (e.g., Allen, 1962; Baird, 1962;

Richards, 1980; Baas, 1994; Raudkivi, 1997). However, it was of interest to investigate at

what unidirectional and oscillatory flow conditions they emerged. As expected, current rip-

ples form under very weak to non-existent oscillatory flows (Uo < 0.15 ms−1) and relatively

strong unidirectional flows (Uu > 0.2 ms−1). Current ripples were characterized by a fully

three-dimensional and asymmetric morphology (Figure 5.14). There was a large dispersion

in the wavelength and height values, even at stable equilibrium. Mean wavelength and height

were λη = 0.35± 0.03 m and η = 15± 5 mm, respectively.
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Figure 5.13: Bedform phase state: Upper-stage Plane Bed. Flow Conditions: Oscillatory
Condition: Uo = 0.40ms−1 and T = 5 s. Unidirectional Condition: Uu = 0.50ms−1. The
window on the back of the picture is 0.60 m wide.

Figure 5.14: Bedform phase state: 3D Current Ripples. Flow Conditions: Oscillatory Con-
dition: none. Unidirectional Condition: Uu = 0.50ms−1. The window on the back of the
picture is 0.60 m wide.
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3D Current Dunes (3D CD)

3D Current Dunes were not observed for the range of flow conditions that can be run in the

LOWST with a grain size of D50 = 0.25 mm (see section 4.1). It is assumed that at larger

unidirectional flow velocities, the current ripple to current dune transition would occur.

Phase Diagram Comparison

Several studies have conducted experimental work under combined flows with fixed oscil-

lation period, T , and grain size, D50, with variable orbital velocity, Uo, and unidirectional

velocity, Uu (Arnott and Southard, 1990; Southard et al., 1990; Yokokawa, 1995; Dumas

et al., 2005; Sekiguchi and Yokokawa, 2008). One of the most cited studies is the laboratory

data set from Arnott and Southard (1990), where the unidirectional velocity ranges from 0 to

0.26 ms−1 and the oscillatory component varies from 0 to 0.8 ms−1. The oscillation period

was 8.5 s and the D50 was 90 µm. Dumas et al. (2005) investigated the same range of unidi-

rectional conditions as Arnott and Southard (1990) (less than 0.25 ms−1), but increased the

oscillatory velocity to 1.25 ms−1. Two different grain sizes (110 and 170 µm) and two wave

periods (9.4 and 7 s) were used to quantify the effect of grain size and oscillation period

(Figure 5.15). The equilibrium stages of the bed were similar to those found by Arnott

and Southard (1990), with the principal difference being that Dumas et al. (2005) made the

distinction between symmetrical and asymmetrical ripples. These two studies, as well as

Sekiguchi and Yokokawa (2008), had targeted the bed morphologies generated in relatively

fine sediments (D50 < 200 µm) and low unidirectional flow velocities (Uu < 0.40 ms−1). The

overall bed states from these studies are no motion, symmetric small ripples, symmetric large

ripples, asymmetric small ripples, 3D asymmetric large ripples and plane bed.

In general, the results of Arnott and Southard (1990), Yokokawa (1995), Dumas et al.

(2005) and Sekiguchi and Yokokawa (2008) and the results presented herein are consistent,

except for several differences in terminology; the small ripples, large ripples and plane bed

of previous researchers equate to ripples, dunes and upper-stage plane bed respectively in

139



Figure 5.15: Combined flow bedform diagram after Dumas et al. (2005). (a) Phase diagram
1 - D50 = 110µm and T = 9.4 s. (b) Phase diagram 3 - D50 = 170 µm and T = 9.4 s. For
phase description see section 3.4.

the nomenclature of this thesis (section 5.2). Despite these similarities, there are some

remarkable differences. First, the present study considers the addition of the planform ge-

ometry as vital to properly classify the bedforms (i.e., 2D or 3D). Hence, an individual

zone where two-dimensional symmetric ripples are stable is generated. Second, the bound-

ary between the small-scale and large-scale ripples of previous studies is horizontal across

the whole phase space, but it was found that there is a transition between ripples (small-

ripples) and dunes (large-ripples) for higher unidirectional flow velocities. Third, because

the LOWST facility allowed conditions under which current ripples were generated under

combined flows, the phase boundary between combined flow bedforms and current ripples

is experimentally constrained instead of estimated. Fourth, the present study was able to

distinguish between fully asymmetric ripples (AR; BSI > 1.5) and quasi-asymmetric rip-
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ples (QAR; 1.3 < BSI < 1.5). The experimental work of Dumas et al. (2005) was also not

able to generate such differences since the unidirectional to oscillatory shear stress was not

asymmetric enough to see the fully asymmetric bedforms (section 8.3.2). Finally, although

there was not enough data to fully define a bed state, rounded (BRI > 0.6) bedforms have

been demarcated to fully understand this geometrical transition.

Based on these new insights, a new generalized phase diagram is proposed and plotted

on a phase space of oscillatory velocity versus unidirectional velocity (Figure 5.16a). Such

a diagram should be evaluated with a fixed grain size and a fixed period, but in order to

illustrate the differences of variable grain size and period, all the available data has been

plotted. Figure 5.16b presents the same figure without the data symbols. Figure 5.16a

clearly shows that such a diagram is not perfect, displaying a large variability between the

experimental data and the bed states proposed, and such variability should be expected.

Finer sediments are mobilized at lower velocities than coarser sediments, and at the same

time oscillation period has a large effect on the bed morphology (e.g., as the period becomes

larger, T → ∞, the bedforms become similar to one generated under unidirectional flows).

It is important to note that for some cases the relative position of each of these bed phases

will remain the same (e.g., low velocities 2D SR, then with increased velocity a transition to

3D SR), yet the precise boundary between each of these bedform states will vary depending

on which parameter is changed. Furthermore, these changes in boundaries can lead to the

disappearance of stable bedforms, as occurs for current ripples (D50 > 0.7 mm) or current

dunes (D50 < 0.12 mm).
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(a) Data from Arnott and Southard (1990); Yokokawa (1995); Amos et al.
(1988); Dumas et al. (2005); Sekiguchi and Yokokawa (2008); Pedocchi
(2009) and Tables 5.1-5.7. Sample size = 264.

(b) Schematic dimensional phase diagram.

Figure 5.16: Dimensional phase diagram for combined flows. Relationships of combined-flow bed-phases stability fields in a
plot of Uo vs Uu with grain sizes D50 between of 0.09-0.25 mm and periods T between 1.5-25 s. All the data was collected
from flume experiments. + and * signs represent symmetrical bedforms and two-dimensional planform geometries, all other
bedforms are asymmetric and three-dimensional.
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5.4.3 Dimensionless Quantities: Dimensionless Phase Diagram

There is still no general agreement on which dimensional variables are relevant for the

determination of the bed configuration under any type of flow, and this is especially true

for the case of combined flows. A dimensionless analysis was performed in order to find

the relevant variables in order to explain the bed morphologies for combined flows and to

reconstruct the bedforms under pure oscillatory and pure unidirectional flows as particular

cases (i.e. pure oscillatory flows are a combined flow with zero unidirectional velocity). By

using the Buckingham Pi Theorem, seven dimensionless parameters, Πζ , associated with the

sedimentological variable ζ can be obtained:

Πζ = f

(
U2
u

g RD50

,
U2
o

g RD50

,
Tν

D2
50

,
g1/3R1/3

ν2/3
D50,

ρs
ρ
,
Uu√
g h

,
h

D50

)
(5.7)

The ratio of the sediment and water density ρs/ρ is generally given as the submerged specific

density R = ρs/ρ− 1, (Garćıa, 2008), and for natural siliciclastic sands this can be assumed

to possess a constant value of R ≈ 1.65 (Vanoni, 2006). Furthermore, as discussed in

section 5.4.1, h by itself is not a relevant variable for the present problem, so h/D50 and

Uu/
√
g h can be neglected. Hence, Equation 5.7 can be reduced to

Πζ = f (ψw, ψc, T∗, D∗) (5.8)

where

ψo =
U2
o

g RD50

ψu =
U2
u

g RD50

T∗ =
Tν

D2
50

D∗ =

(
g R

ν2

)1/3

D50

(5.9)

Hence, similar to section 5.4.2, an existence field for combined-flow bedforms is produced

and plotted, but now in a dimensionless phase space using Equation 5.8 (Figure 5.17). Fig-

ure 5.17 shows the stability field for all the bed states classified herein: no motion (NM), 2D

symmetric ripples (SR), 3D symmetric ripples (SR), 3D symmetric dunes (SR), 3D asym-
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metric ripples (AR), 3D quasi-asymmetric ripples (QAR), 3D asymmetric dunes (AD), 3D

current ripples (CR), 3D current dunes (CD) and upper-stage plane bed (USPB). A detailed

description of each of the bed stages has been given in section 5.4.2. The relative location

and distribution of the different bed stages in the dimensionless phase space (Figure 5.17)

remains unchanged from the locations displayed on the dimensional diagram (Figure 5.16).

Therefore, similar to the defined transitions in Section 5.4.2, the transitions for Figure 5.17

are also an attempt to identify regions with distinctive bed geometry and are not meant to

imply that the transition occurs precisely along the plotted line. However, in order to char-

acterize the phase boundaries between stable configurations, instead of tracing equidistant

lines between bed states, a set of functions were found to describe the limits between bed

states;

1 - Initiation of Motion

(ψu + 1.41)2 + (ψo + 43.08)2 = 46.102 (5.10)

2 - Oscillatory Ripples to Oscillatory Dunes

ψo − 0.009ψ3
u + 0.35ψ2

u − 0.38ψu = 77.02 for ψu < 3.8 (5.11)

3 - Combined Flow Ripples to Combined Flow Dunes

ψo − 0.009ψ3
u + 0.35ψ2

u − 0.38ψu = 77.02 for ψu < 25 (5.12)

4 - Symmetric Bedforms to Asymmetric Bedforms

7.05ψ2
u − 1.53ψu = 23.3− ψo for 2 < ψu < 6 (5.13)

5 - Upper-Stage Plane Bed

(ψu − 548.44)2 + (ψo − 322.00)2 = 554.542 for ψu < 90

Interpretative (Figure 5.17) ψu > 90
(5.14)
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Figure 5.17: Dimensionless phase diagram for combined-flow bed-phase stability fields in a plot of ψu vs ψo. + and × signs
represent symmetrical and rounded bedforms, all other bedforms are asymmetric and non-rounded. The vertical-dark line
represents the limits of the experimental data. Data from Arnott and Southard (1990); Yokokawa (1995); Amos et al. (1988);
Dumas et al. (2005); Sekiguchi and Yokokawa (2008); Pedocchi (2009) and Tables 5.1-5.7. Dashed line represents a gradual
transition among different bed states, whereas a solid line denotes a sharp one. Numbers 1 to 7 denoted the different transition
curves, see text for details (Equations 5.10 to 5.16 ). NM = No Motion, SR = Symmetric Ripples, SD = Symmetric Dunes,
AR = Asymmetric Ripples, QAR = Quasi-Asymmetric Ripples, AD = Asymmetric Dunes, USPB = Upper Stage Plane Bed,
CR = Current Ripples and CD = Current Dunes. Sample size = 264.
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6 - Combined Flow Bedforms to Current Bedforms

ψo − 0.0015ψ2
u − 0.03ψu = 0.3143 for 14 < ψu < 90 (5.15)

7 - Current Ripples to Current Dunes

ψu = 90 (5.16)

These set of equations are consistent with previous work under pure unidirectional and

oscillatory flows. For the CR-CD transition, Equation 5.12 predicts ψu(ψo = 0) ∼ 99 →

Uu ∼ 0.59ms−1, which is very similar to Uu ∼ 0.58ms−1 from the work of Southard

and Boguchwal (1990). In addition, Equation 5.14 predicts ψu(ψo = 0) ∼ 300 → Uu ∼

1.10ms−1 for the CD-USPB transition, whereas Southard and Boguchwal (1990) propose

Uu ∼ 0.96ms−1. Furthermore, Dingler and Inman (1976) proposed a threshold condition to

plane bed at ψo = 240 for pure oscillatory flows, the same value is predicted by Equation 5.14

(ψu → 0, ψo = 239.9).

In order to compare the present work with dimensionless diagrams proposed in other

studies, it is necessary to utilize them in another set of variables.

Πζ = f (θo, θu, D∗, T∗) (5.17)

where

θo =
ρf u

2
∗,o

(ρs − ρf ) g D50

θu =
ρf u

2
∗,u

(ρs − ρf ) g D50

(5.18)

where

u2∗,o = fo U
2
o

u2∗,u = fu U
2
u

(5.19)

where fo and fu are the wave and current friction coefficient respectively (see Chapter 2).
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Hence, Equation 5.17 can be related back to Equation 5.9 using Equation 5.19

θo = fo ψo

θu = fu ψu

(5.20)

The use of a dimensionless shear stress to plot the combined flow phase-diagram was first

proposed by Amos et al. (1988), and was followed by further studies with new data that

was used to adjust boundaries or bed state types (Amos et al., 1996, 1999). Kleinhans

(2005) presented a literature review of phase diagrams for unidirectional, oscillatory and

combined flows, showing that for combined flows the diagram originally proposed by Amos

et al. (1988) can be used to capture the initiation of motion and transition to upper-stage

plane beds. The use of shear stress as a variable depends strictly on the accuracy of the

friction coefficient used, and although the friction coefficient might do a good job estimating

the shear stress, it is a source of uncertainty that can be avoided by using the formulation

proposed in the present study (Equation 5.9). Nevertheless, if the right friction coefficients

are used Figure 5.17 can be represented by the shear stress instead of the mobility number

(Figure 5.18). Figure 5.18 shows a combined flow phase diagram in a θu vs θo phase space

with the phase boundaries proposed by Kleinhans (2005). The experimental data was plotted

using the unstratified, three-layer eddy viscosity friction factors of Madsen and Grant (1976).

The phase boundaries proposed by Kleinhans (2005) were estimated based on a similar data

set, but using the friction factors of van Rijn (1984a) for the unidirectional component and

Soulsby (1997) for the oscillatory flow. The phase boundaries proposed by Kleinhans (2005)

do a fair job predicting the experimental data, however the most notorious mismatch is the

lack of prediction for the symmetrical dunes (purple in Figure 5.18) and the underestimation

of the stability field of current bedforms (yellow and white in Figure 5.18). Therefore, the

present study states that the mobility number should be used instead of the Shields number,

since it provides a better representation of the system.
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Figure 5.18: Dimensionless phase diagram for combined-flow bed-phase stability fields in a plot of θu vs θo. + and × signs
represent symmetrical and rounded bedforms, all other bedforms are asymmetric and non-rounded. Data from Arnott and
Southard (1990); Yokokawa (1995); Li and Amos (1999b,a); Amos et al. (1988); Dumas et al. (2005); Sekiguchi and Yokokawa
(2008); Pedocchi (2009) and Tables 5.1-5.7. The different phase boundaries are those proposed by Kleinhans (2005). NM = No
Motion, SR = Symmetric Ripples, SD = Symmetric Dunes, AR = Asymmetric Ripples, QAR = Quasi-Asymmetric Ripples,
AD = Asymmetric Dunes, USPB = Upper Stage Plane Bed, CR = Current Ripples and CD = Current Dunes. Sample size
= 304.
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5.5 Conclusions

The stable bedform configuration under a diverse range of unidirectional, oscillatory and

combined flow conditions was studied and divided into no motion (NM), 2D symmetric rip-

ples (SR), 3D symmetric ripples (SR), 3D symmetric dunes (SR), 3D asymmetric ripples

(AR), 3D quasi-asymmetric ripples (QAR), 3D asymmetric dunes (AD), 3D current ripples

(CR), 3D current dunes (CD) and upper-stage plane bed (USPB). Each of these stages was

described, characterized and reproduced in a dimensional and dimensionless phase diagram.

The present study proposed a new nomenclature to name combined flow bedforms; bed

states previously named small ripples, large ripples and plane bed are now refer as ripples,

dunes and upper-stage plane bed respectively. In addition, the introduction of the plan-

form and cross-sectional geometries as properties to classify bedforms leads to the definition

of stable phase space for two-dimensional symmetrical ripples and three-dimensional quasi-

asymmetrical ripples. Moreover, the experimental data collected under unidirectional flows

larger than 0.30 ms−1 allows expansion of the current understanding of the bed configu-

ration within the Terra Incognita zone, where the phase boundary between combined flow

bedforms and current ripples was experimentally constrained. On the other hand, based

on dimensionless analysis, the oscillatory and unidirectional mobility numbers were used to

represent the dimensionless phase diagram under combined flows. This set of dimensionless

numbers provides a better representation than previous studies that use a friction factor to

compute the Shields number.
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Chapter 6

Bedform Initiation

6.1 Introduction

The hydrodynamics and morphodynamics involved in the initiation of motion and transport

of different sediment sizes, and the resulting geometric shapes (i.e., bedforms) generated by

both bedload and near-bed suspended-load sediment transport, has sparked intrigue amongst

researchers from different disciplinary fields over centuries (Du Buat, 1786; Deacon, 1894;

Blasius, 1910). This fascination has led to a large number of studies on unidirectional (e.g.

Shields, 1936), oscillatory (e.g. Komar and Miller, 1975) and, more recently, combined flows

(e.g. Li and Amos, 1999a). Although there is a good understanding of the hydrodynamic

conditions that will lead to the development of bedforms (e.g. Raudkivi, 1963; Gyr and

Schmid, 1997; Coleman and Nikora, 2011), there still exists a large knowledge gap regarding

the specific mechanisms that transform a featureless bed to one with bedforms. The limited

amount of research that has explored the intricate details involved in bedform genesis under

unidirectional (e.g. Liu, 1957; Gyr and Schmid, 1997; Venditti et al., 2005a), and oscillatory

(e.g. Darwin, 1884; Bagnold, 1946; Lofquist, 1978; Allen, 1979) flows has not yet fully detailed

the major driving mechanisms within this process, thus leaving much debate over exactly

how a flat sediment-laden bed transitions into an irregular morphologic surface populated

with ubiquitous bedforms through time. The competing ideas or models are the following:

(i) linear stability theory and perturbations upon a flat bed (Kennedy and Falcon, 1965;

Richards, 1980), (ii) instabilities within the flow (Folk, 1976) or bed (Liu, 1957) and (iii)

development and propagation of bed defects (Raudkivi, 1963; Williams and Kemp, 1971).
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Despite its widespread use to predict the initial wavelength of bed morphologies, linear

stability theory cannot be addressed experimentally like the other two models, and hence will

not be tested in this chapter. Consequently, a simple set of experiments were conducted that

were aimed to quantitatively explore the initiation of ripples under unidirectional, oscillatory

and combined flow conditions. These sets of experiments investigated the development of

the bed when the initial bed configuration for each experiment had a small negative defect

(Figure 6.1), providing a nucleus for the initiation of ripples in the test section.

Figure 6.1: Initial bed configuration with a small negative defect. Unidirectional flow is from
right to left.

6.2 Experimental Procedures

Bedform initiation and development in flat bed conditions were studied under pure unidi-

rectional, pure oscillatory and combined flow conditions with artificially generated defects

(Table 6.1). The average initial defect was made by compacting the flat bed generating a

negative defect with a length ≈ 0.08 m, a width ≈ 0.1 m and height ≈ 0.03 m. Four sets

of experiments were conducted: (1) pure oscillatory conditions, which consisted of four os-

cillation periods, T = 5, 10, 15 and 20 s, at a fixed oscillatory velocity, Uo = 0.30 ms−1; (2)

wave-dominated combined flows that conserved the flow conditions of experiment (1) but

with the superimposition of a unidirectional current (Uu) of 0.10ms
−1; (3) current-dominated
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combined flows that used a wave period of T = 15 s, an oscillatory velocity Uo = 0.30 ms−1

and three unidirectional flow velocities of Uu = 0, 0.10 and 0.20 ms−1, and (4) pure unidi-

rectional conditions which consisted of three unidirectional velocities Uu = 0.10, 0.20 and

0.30 ms−1. Experiments are referred to as S#E#, where the first value corresponds with the

experimental set and the second with the experimental number (Table 6.1). For example,

S1E3 refers to experiment 3 of set 1 with T = 15 s, Uo = 0.30 ms−1 and Uu = 0 ms−1.

Different from all other experiments in this thesis, the bedform initiation experiments

were not conducted until bed equilibrium, and once the bed was fully covered with bedforms

the experiments were stopped (Table 6.1). The goal of these initiation experiments was not

to analyze the development or final equilibrium of the bedforms, but to capture the first

stages of bedform generation under defect propagation. For each experiment, time-lapse

photographs were taken from above the test section (Section 4.3.4). The time-lapse pho-

tographs were manually analyzed by measuring the perimeter of the defect as it developed

in time (Figure 6.2). Human errors associated with the selection of the defect edge were

estimated by measuring the same picture several times during different days. The differ-

ence between the measurements (15 measurements from 4 different pictures) were always

less than 1% of the measured value. From these measurements, the geometrical center was

computed, and from it the downstream (λDS) and upstream (λUS) distance to the edge of

the defect (Figure 6.2). The geometrical center and active defect area were computed using

the MATLABR©(R2012a) algorithm polygeom.m (Sommer, 2008). In addition, during the

experiments, velocity profiles were measured with an Ultrasonic Doppler Velocity Profiler

(UDVP, Section 4.3.3). Following the same methodology as Section 4.3.3, the Shields num-

ber was computed for the maximum and minimum shear stress throughout the wave cycle

(Table 6.1).
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Figure 6.2: Defect perimeter at time = 57 seconds into experiment S3E1. Flow condition;
Uo = 0.3m s−1, T = 15 s and Uu = 0.10m s−1. Green dots are the manually-measured
defect perimeter and the blue lines are the distance from the geometrical center to the edge
of the defect. Area of view ≈ 0.34 m long and ≈ 0.23 m wide.

6.3 Bedform Genesis

A characteristic geometric pattern was observed in all the experiments independent of the

flow conditions (i.e., different periods and flow velocities; Figure 6.3). This geometric pattern

is generated from the propagation by erosion of the edge of the original defect, and develop-

ment of a crest and twin scour pits or ‘horns’ (Figure 6.4). These geometrical features were

previously described also under bedform initiation with artificially-generated defects under

unidirectional (Southard and Dingler, 1971; Venditti et al., 2005a) and oscillatory (Bagnold,

1946) flows. Hence, it can be concluded that this geometrical signature is independent of

the type of flow. However, the main distinction between flows is the propagation direction of

the initial feature. For the case of unidirectional and combined flows (Figure 6.4), the two-

lobed horns initially propagated downstream, whereas for oscillatory flows, the migration

was either downstream or upstream. Figure 6.4 shows the evolution of the defect propaga-

tion under combined flow conditions (S02E01), 33 s after the initiation of the experiment

where a clear downstream propagation took place (i.e., red-shaded area is much larger than
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Figure 6.3: Bedform initiation under different flows by defect initiation mechanisms, where
T = period, Uo = maximum oscillatory velocity and Uu = mean free-flow unidirectional
velocity. Unidirectional flow is from right to left. The area of view for each individual image
is ≈ 0.34 m long and ≈ 0.23 m wide.
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Figure 6.4: Downstream (III) and upstream (I) twin scour pits or ‘horns’ resulting from the
bedform genesis mechanisms with an artificially generated defect (II) in a combined flow
experiment (S02E01, Time = 33 s). It is important to note the relatively large asymmetry
of bedform propagation; the downstream propagation (red-shaded area) is much larger than
the upstream one (golden-shaded area). Unidirectional flow is from right to left. Area of
view is ≈ 0.20 m long and ≈ 0.15 m wide.

the golden-shaded one). The reason why the shape is the same lies in the same fluid-flow

processes occurring at the edge of the defect. Despite the fact that no flow data was mea-

sured over the defect, it can be deduced by looking at the recorded movies (video Ch06 -

01:T05O30U00 Genesis.avi from Appendix A.1.1), that the flow separates from the defect

edge, generating a zone of high instantaneous bed shear stresses large enough to move the

sediment, mainly as bedload. As sediment gets transported both downstream and laterally,

the two-lobed horns form in the bed. Over time, the newly-formed feature becomes the new

edge of the defect generating flow separation, which causes scour and development of a new

feature; this process is repeated to form a train of defects in the direction of propagation.

Unfortunately, due to the natural limitation of the facility, the area of view captured with

the camera was relatively small (≈ 0.34 m long and ≈ 0.23 m wide) to record the overall

evolution of the defect as it further moved in the propagation direction. However, from

side-view observations, it was found that the initial wavelength and height of the defects
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increased over time and distance (Figure 6.5), similar to results under unidirectional flows

(Southard and Dingler, 1971; Venditti et al., 2005a). In addition, the geometrical signature

of these structures remained the same as the initial features despite their development and

growth (Figure 6.5), until the bed became fully developed and then interaction among the

horns gave rise to a bed full of bedforms (video Ch06 - 01:T05O30U00 Genesis.wmv from

Appendix A.1.1). Once this stage was reached, the experiment was stopped, the bed was

flattened and a new condition was run.

Figure 6.5: Side (a) and top (b) view of bedform initiation in S1E3 (T = 15 s; Uo = 0.30ms−1

and Uu = 0.00 ms−1). Unidirectional flow is from right to left. For scaling, the window on
the back of the picture in (a) is 0.60 m wide and the area of view in (b) is ≈ 0.34 m long
and ≈ 0.23 m wide.

6.4 Propagation Direction

Measurements from the geometrical center of the defect to the downstream (λDS) and up-

stream (λUS) edges were computed from time-lapse photographs for all flows. For the case of

the first set of experiments (S1, pure oscillatory flows), the two-lobed horns were generated

to each side of the defect within the first wave cycles (less than 10 cycles), independent of the

oscillation period (Figure 6.6). Furthermore, the development of the edges was symmetric

as was the propagation of the consequent defects (Figure 6.7a). This symmetry can be
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Figure 6.6: Bedform initiation under pure oscillatory flows by defect initiation, where T = period, Uo = maximum oscillatory
velocity, Uu = mean free-flow unidirectional velocity and Cycle = Time/Period. Area of view for each individual image is
≈ 0.34 m long and ≈ 0.23 m wide. Note the relative symmetry of the two-lobed horns on each side of the defect.
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(a) Defect development under pure oscillatory flow (S1). (b) Maximum phase-averaged Shields number throughout the wave cycle
(S1). The shaded area represents shear stresses that are below the critical
shear stress necessary to mobilize 0.25 mm diameter sediment (Brownlie,
1981).

(c) Spectral Analysis of λDS/λUS (S1).

Figure 6.7: Bedform development under pure oscillatory flows (S1).
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observed in the overall trend of the ratio between the downstream and upstream growth

(λDS/λUS ≈ 1, Figure 6.7a). However, as was expected, this symmetric growth was not uni-

form throughout the oscillation period. It was observed that the defects had predominant

downstream migration (i.e., λDS/λUS > 1, Figure 6.7a) followed by upstream migration (i.e.,

λDS/λUS < 1, Figure 6.7a), which averages-out through the wave cycle (i.e., λDS/λUS ≈ 1,

Figure 6.7a). Such differential transport is associated with peaks in shear stress in both

the upstream and downstream direction (Figure 6.7b). For the four pure oscillatory flow

experiments (S1), the peak shear stress had the necessary energy to mobilize the 0.25 mm

sediment (values outside the shaded area in Figure 6.7b). Moreover, the symmetric growth

of the defect (λDS/λUS ≈ 1, Figure 6.7a) is linked to the symmetric shear applied in both

upstream and downstream directions (Figure 6.7b). The downstream and upstream migra-

tion stages in the defect development are controlled by the changes in shear stress directions

(i.e., change in sign; Figure 6.7b), and hence due to the changes in migration direction, there

must be a clear time scale in the growth patterns associated with the wave period. Thus,

the important time scale must be the oscillatory period and it can easily be recovered by

conducting a spectral analysis of the ratio λDS/λUS (Figure 6.7c), which shows a periodicity

that correlates within 1% of the period.

For the case of the second set of experiments (S2, wave-dominated combined flows), two-

lobed horns were generated to each side of the defect within the first cycles with a predomi-

nant growth towards the downstream side (Figure 6.8), independent of the oscillatory period.

This asymmetry during the formation of the bedforms persisted over time, resulting in com-

pletely asymmetric defect propagation with a net transport downstream (λDS/λUS > 1,

Figure 6.9a). Spectral analysis of the ratio λDS/λUS for these wave-dominated combined

flows (Figure 6.9b) shows that there is a clear period-driven peak for the short periods (T =

5 and 10 s) but a flat spectrum for the longer periods (T = 15 and 20 s). The absence of a

growth-frequency in the spectrum can be associated with purely unidirectional flows, where

the transport is driven by random packets of turbulence that do not have a characteristic
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Figure 6.8: Bedform initiation under wave-dominated combined flows by defect initiation mechanisms, where T = period,
Uo = maximum oscillatory velocity, Uu = mean free-flow unidirectional velocity and Cycle = Time/Period. Unidirectional
flow is from right to left. Area of view for each individual image is ≈ 0.34 m long and ≈ 0.23 m wide. Note the asymmetric
generation of the two-lobed horns on each side of the defect.
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(a) Defect development under wave-dominated combined flows (S2). (b) Spectral Analysis of λDS/λUS (S2).

(c) Spectral Analysis of λDS/λUS for pure unidirectional flow (S4E3). (d) Maximum phase-averaged Shields number throughout the wave cycle
(S2). Shaded area represents shear stresses that are below the critical shear
stress necessary to mobilize the 0.25 mm sediment (Brownlie, 1981).

Figure 6.9: Bedform development for wave-dominated combined flows (S2) and pure unidirectional flows (S4E3).
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time scale (Figure 6.9c). The fact that there is a flat spectrum for the longer periods

conforms with the experimental results shown in Chapter 5, where the effect of the unidi-

rectional flows becomes stronger as the period becomes longer. This behavior cannot be

explained based on the phase-averaged shear stresses (Figure 6.9d), since the instantaneous

unidirectionally-driven shear stresses average-out in the computation of the phase-averaged

shear stresses. However, the asymmetry seen in Figure 6.9d for all periods is responsible

for the similar asymmetry in growth of the defects (Figure 6.9a) for all periods, despite the

absence of periodic fluctuations for the longer periods. In other words, the development pro-

cess for all oscillatory periods is the same for wave-dominated combined flows (same overall

trend, Figure 6.9a), although for longer periods the growth of the defects does not exhibit

period-related fluctuations.

For the case of the third set of experiments (S3, current-dominated combined flows),

two-lobed horns were generated on each side of the defect within the first oscillation cycles

in experiments S3E1 (pure oscillatory; Figure 6.10a) and S3E2 (wave-dominated combined

flow; Figure 6.10b). However, there was no development of two-lobed horns on the upstream

side of the defect during S3E3 (current-dominated combined flow; Figure 6.10c). The main

difference between the S3 experiments is the increase of the unidirectional component of

flow from 0 to 0.2 ms−1, keeping the period (15 s) and the oscillatory velocity (0.3 ms−1)

constant. Increasing the unidirectional flow changed both the initiation geometries and the

propagation trends, resulting in symmetric (S3E1), slightly asymmetric (S3E2) and com-

pletely asymmetric (S3E3) defect propagation (Figure 6.11a). Figure 6.11a shows how the

downstream (closed dots) and upstream (open dots) distance, measured from the geomet-

rical center of the defect, evolved throughout the experiment. For the case of S3E1 (only

waves; Figure 6.10a), the downstream and upstream distance are similar over time, showing

a similar growth-path in opposite directions. This result is the same as the trends exhibited

for all periods for the pure oscillatory experiments (S1). In the case of the second experiment

(S3E2, wave-dominated combined flow; Figure 6.10b), both edges of the defect propagate
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Figure 6.10: Bedform initiation under different combined flows by defect initiation, where
T = period, Uo = maximum oscillatory velocity, Uu = mean free-flow unidirectional velocity
and Cycle = Time/Period. Unidirectional flow is from right to left. Area of view for each
individual image is ≈ 0.34 m long and ≈ 0.23 m wide. Note the asymmetric generation of
the two-lobed horns on each side of the defect.

away from the center, but the downstream edge of the defect moved ≈ 5 times faster than

the upstream edge, with the upstream edge still moving away from the defect center. Once

again, this asymmetric growth has similar mechanisms like the second set of experiments

(S2). However, for experiment S3E3 (current-dominated combined flow; Figure 6.10c), both

the upstream and downstream edge of the defect propagated in the same downstream direc-

tion (Figure 6.11a), which is reflected in the decreasing length (i.e., closer to the center of

the defect) of the upstream edge with time (green line with open dots, Figure 6.11a). The

reason why the upstream edge was not able to propagate upstream is associated with the

evolution of the shear stresses in the combined flow boundary layer (Figure 6.11b). All the
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(a) Defect development under current-dominated combined flows (S3). Downstream (closed dots) and up-
stream (open dots) distances are dimensionalized by the initial defect length.

(b) Maximum phase-averaged Shields number throughout the wave cycle (S3). The shaded area represents
shear stresses that are below the critical shear stress necessary to mobilize the 0.25 mm sediment (Brownlie,
1981).

Figure 6.11: Bedform development under current-dominated combined flows (S3).
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experiments in S3 have flow reversals (negative values in Figure 6.11b), however, for ex-

periment S3E3 the shear stresses generated in the flow reversal were not strong enough to

mobilize the sediment (Figure 6.11b). Thus, there is no net transport in the upstream di-

rection. In addition, the FFT of the defect growth fluctuations showed that there is a clear

period-driven peak for the pure oscillatory case (S3E1), but a flat spectrum for combined

flow cases (S3E2 and S3E3; Figure 6.12). These result is the same phenomenon that oc-

curred for the S2 experiments, where the absence of a spectral peak was associated with the

presence of a unidirectional component associated with a relatively long oscillation period

(T = 15 s).

Figure 6.12: Spectral Analysis of λDS/λUS (S3). The dashed line demarcates where the
T = 15 s peak should be if present.

6.5 Prediction of Propagation Rate

The average development rate as a function of time, α, was computed by fitting a polyno-

mial function of order one to the ratio between the downstream and upstream growth for
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pure oscillatory (S1; Figure 6.7a), wave-dominated combined flows (S2; Figure 6.9a) and

current-dominated combined flows (S3; Figure 6.11a). The polynomial function was

λDS

λUS

(t) = α t+ β (6.1)

where t is time measured in minutes and β = λDS,0/λUS,0 ≈ 1 is the ratio of the downstream

and upstream distances from the center of the defect to the edges at time = 0 (Table 6.2).

For the pure oscillatory flows, the average slope was α = 0.13 × 10−2 [1/min], for the

wave-dominated combined flows it was α = 3.56 × 10−2 [1/min] and for the case of the

current-dominated combined flow it was α = 7.47×10−2 [1/min]. The mean R2 from all the

fits was 0.68 with a standard deviation of 0.1 and an averaged p-value of 0.04 (Appendix B.2),

and each of the fits was able to capture the overall trend of the growth (e.g., Figure 6.13).

From the discussion in Section 6.3, it is clear that the change of α is a function of the peak

Figure 6.13: Defect development under pure oscillatory flow (S1). Dotted line is the fit of
Equation 6.1, where the gray-shaded area represents the 95% confidence interval of the fitted
function. Mean R2 = 0.68.

upstream and downstream shear stresses. Therefore, the ratio of the maximum downstream

shear stress (θ
(+)
max) and the maximum upstream shear stress (θ

(−)
max) through the wave cycle

was used to characterize the shear stress dependence via the Shear Stress Symmetry Index
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(SSSI = θ
(+)
max/θ

(−)
max ≥ 1). Thus, based on the experimental data available, a power law is

proposed to predict the development rate for oscillatory and combined flows:

α = γ (SSSI − 1)φ (6.2)

where γ = 0.035 and φ = 0.6 with an R2 = 0.82 and p-value of 0.04 (Figure 6.14). The

interpretation of Equation 6.2 is straightforward and follows the results of Section 6.3, when

the ratio between the maximum downstream shear stress and the maximum upstream shear

stress is one (i.e., SSSI = 1 represents a pure oscillatory flow), α is zero, leading to a

symmetric growth. On the other hand, if SSSI > 1 there is an asymmetry in the shear

stress which is reflected in an asymmetric development quantified by Equation 6.2.

Figure 6.14: Power law of the defect development rate as a function of the shear stress
symmetry index.

6.6 Conclusions

This chapter presents new experimental data on bedform initiation under oscillatory and

combined flows in order to gain a quantitative insight into bedform genesis over artificially-
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Pure Oscillatory Flows S01E01 S01E02 S01E03 S01E04

θ
(+)
max 0.105 0.108 0.101 0.084

θ
(−)
max -0.113 -0.102 -0.106 -0.092
SSSI 1.07 1.06 1.05 1.09

α× 10−2 [s−1] 0.05 0.41 0.02 0.05

Wave-Dominated Combined Flows S02E01 S02E02 S02E03 S02E04

θ
(+)
max 0.122 0.115 0.114 0.109

θ
(−)
max -0.078 -0.068 -0.085 -0.083
SSSI 1.56 1.68 1.33 1.32

α× 10−2 [s−1] 4.26 3.79 3.04 3.14

Current-Dominated Combined Flows S03E01 S03E02 S03E03

θ
(+)
max 0.101 0.114 0.148

θ
(−)
max -0.106 -0.085 -0.033
SSSI 1.05 1.33 4.47

α× 10−2 [s−1] 0.02 3.04 7.47

Table 6.2: Summary of shear stress and average defect development rate.

generated defects. These results show that combined flows share the same bedform initiation

processes as unidirectional and oscillatory flows. This result was reflected in the same ge-

ometric pattern (i.e., two lobed horns) regardless of the flow conditions. In addition, as

expected, the development of the defects shows a strong relationship with the direction and

magnitude of the shear stress throughout the oscillation. If the condition had a symmetric

shear stress, the defects grew and propagated symmetrically, whereas if the shear stress was

asymmetric, the defects grew and propagated with a predominant downstream direction.

Furthermore, for the case of current-dominated combined flow (S3E3), the maximum up-

stream shear stress was not large enough to entrain sediment in the upstream direction,

resulting in solely downstream migration transport.
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Chapter 7

Bedform Development under
Unidirectional, Oscillatory and
Combined Flows

7.1 Introduction

Over the past few decades, there have been several studies analyzing the development of

bedforms under unidirectional and oscillatory flows (e.g., Oost and Baas, 1994; Baas, 1999;

Faraci and Foti, 2002; Doucette and O’Donoghue, 2006). These studies have provided a

better understanding of temporally-varying bedforms, with especial emphasis on the impor-

tance of initial conditions and the time required for bed-flow equilibrium. These studies can

be used to understand the spatial and temporal variations of bedform size (e.g., wavelength

or height) and geometrical shape (e.g., Bedform Symmetry Index or Bedform Roundness

Index) for a given bed state (Harms et al., 1975; Allen, 1982; Anthony, 2009). However, our

comprehension of the development of bedforms under combined flows is still far from com-

plete. Hence, a set of experiments presented herein were made under a range of combined

flow conditions to gain insights on the equilibrium time for different bed states, temporal

changes of bedform height and wavelength, and their relationships with combined flow veloc-

ities and sediment transport. In addition, a more limited set of pure unidirectional and pure

oscillatory flow experiments were performed to compare the results with previous studies.

7.2 Experimental Data

Bedform development in a 250 µm diameter sand bed was studied under pure oscillatory and

combined flow conditions with oscillation periods (T) of 4, 5 and 6 seconds (Table 7.1). The
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maximum orbital velocity (Uo) was varied from 0.10 to 0.70 ms−1, while the unidirectional

component (Uu) was varied from 0 to 0.50 ms−1. The two pure unidirectional experiments

had unidirectional velocities (Uu) of 0.40 and 0.50ms−1. Experiments started from a smooth

flat bed and were consistently run until equilibrium conditions were obtained. These equi-

librium conditions were established following the methodology of Prins and de Vries (1971),

Gee (1974) and Baas (1993), where the development was estimated by

ηt(t) = ηe
(
1− e−cη t

)
(7.1)

λt(t) = λe
(
1− e−cλ t

)
(7.2)

where t is time in minutes, and cη and cλ are the bedform height and wavelength adaptation

constants. The subscripts indicate the actual (t) and equilibrium (e) values of height and

wavelength. It is important to note that Equations 7.1 and 7.2 only consider temporal vari-

ations of the bedform characteristics. Therefore, a spatial average is also used to determine

the mean height and wavelength for a particular time, t,

ηt(t) = 1
N

∑N
i=1 ηi(x, t)

λt(t) = 1
N

∑N
i=1 λi(x, t)

(7.3)

where N is the number of bedforms present in the 1 m center-span of the tunnel surveyed by

the sonar. It is important to note that the η and λ data sets include multiple measurements

of the same bedform as it migrates in the sampled area. However, since the bedforms evolve

over time, that bedform does not contribute to the same height or wavelength value every

time, and hence no oversampling is occurring. A non-linear least squares fit, using a least

absolute residual method, was used to find the best solution for Equations 7.1 and 7.2 to

fit the spatially-averaged height and wavelength data. From these solutions, the values of

[ηe, cη] and [λe, cλ] were obtained.

The equilibrium time te is defined as the time when the actual height (ηt) and wavelength
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Table 7.1: Summary of flow and bedform development characteristics. The table is divided
into pure unidirectional, pure oscillatory and combined flow experiments.

#a T Uo Uu ηe
b cη

a R2(η)a λe cλ
b R2(λ)b qs

c te
d tt

e Bedformf

(s) (ms−1) (ms−1) (mm) (hr−1) (m) (hr−1) (cm2 s−1) (hr) (hr) Type

Pure Unidirectional Flows

54 - - 0.40 17.6 1.36 0.72 0.20 3.69 0.76 71.6 9.36 18.00 CR
55 - - 0.50 18.1 2.09 0.63 0.21 2.82 0.78 117.1 0.82 3.28 CR

Pure Oscillatory Flows

1∗ 4 0.25 0.00 34.8 0.99 0.95 0.22 0.87 0.96 14.9 2.21 5.07 SR
8∗ 5 0.20 0.00 35.3 0.82 0.97 0.21 0.65 0.98 17.2 4.15 37.70 SR
18 5 0.40 0.00 22.0 2.79 0.62 0.20 3.48 0.53 27.7 0.67 15.20 SR
30∗ 6 0.25 0.00 32.1 0.45 0.94 0.20 0.48 0.97 16.1 4.23 14.49 SR
42 6 0.50 0.00 32.3 3.67 0.45 0.28 3.94 0.45 88.3 0.55 2.13 SR

Combined Flows

2 4 0.25 0.10 20.5 0.75 0.60 0.15 1.01 0.56 28.3 2.22 13.30 QAR
3 4 0.25 0.20 21.1 0.89 0.65 0.18 0.47 0.82 33.5 2.81 18.00 AR
4 4 0.25 0.30 26.9 2.02 0.40 0.23 1.80 0.56 47.9 1.10 12.50 ARR
5 4 0.25 0.40 35.6 1.34 0.45 0.51 6.90 0.45 16.3 0.88 2.00 ARD
11 5 0.20 0.10 36.4 0.69 0.66 0.15 0.24 0.46 27.0 3.80 18.10 QAR
12 5 0.20 0.20 27.3 2.10 0.87 0.22 1.24 0.91 28.8 2.60 20.20 QAR
15 5 0.20 0.30 27.6 2.68 0.63 0.27 2.72 0.48 70.4 0.73 9.70 ARR
16 5 0.20 0.40 30.3 2.20 0.50 0.60 0.98 0.45 156.3 0.58 7.30 ARD
17 5 0.20 0.50 44.6 0.06 0.85 0.88 0.06 0.85 210.0 0.30 2.30 ARD
19 5 0.40 0.10 23.0 4.30 0.43 0.17 3.17 0.35 67.8 0.49 7.50 QAR
20 5 0.40 0.20 20.7 2.65 0.53 0.21 2.48 0.59 104.4 0.79 6.20 QARR
21 5 0.40 0.30 61.3 0.93 0.92 0.58 0.77 0.93 333.6 0.41 1.65 QARR
22 5 0.40 0.40 98.3 0.98 0.89 1.02 0.93 0.79 751.1 0.17 2.20 ARD
25 5 0.50 0.40 153.0 0.06 0.47 1.23 0.96 0.47 1220.9 0.50 2.20 ARD
27 6 0.10 0.50 35.5 6.10 0.97 0.49 0.86 0.96 119.3 0.93 3.80 CR
31 6 0.25 0.05 26.6 0.70 0.63 0.18 2.50 0.39 21.4 1.97 17.04 SR
32 6 0.25 0.10 17.2 0.55 0.92 0.19 0.37 0.91 28.2 4.27 5.69 QAR
33 6 0.25 0.20 17.6 1.47 0.63 0.17 0.89 0.76 37.1 1.53 9.74 QAR
34 6 0.25 0.30 23.3 2.15 0.62 0.25 1.42 0.51 97.6 1.14 12.71 ARR
35 6 0.25 0.40 68.3 1.78 0.34 0.65 1.52 0.42 366.5 1.31 5.90 ARD
36 6 0.25 0.50 123.0 3.36 0.78 1.30 1.61 0.69 930.8 0.31 1.23 ARD

aExperiment Number: ∗ indicates that the stable planform geometry is 2D, otherwise it is 3D.
bValues obtained by fitting Equation 7.1 and Equation 7.2 to the experimental data. R2(η) and R2(λ)

are the square of the sample correlation coefficient for Equation 7.1 and Equation 7.2 respectively.
c Bedload transport per unit width (Section 4.3.2).
d Time until flow-bedform equilibrium obtained from Equation 7.7
e Duration of Experiment. fSR = Symmetric Ripples, AR = Asymmetric Ripples, ARR = Asym-

metric Rounded Ripples, QAR = Quasi-Asymmetric Ripples, QARR = Quasi-Asymmetric Rounded Ripples,
AD = Asymmetric Dunes, ARD = Asymmetric Rounded Dunes and CR = Current Ripples.
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(λt) reach 90% of their equilibrium height (ηe) and wavelength (λe)

ηt = 0.9 ηe

λt = 0.9λe.
(7.4)

Therefore, by applying Equation 7.4 to Equations 7.1 and 7.2, the equilibrium time for the

height was computed as

te (η) = − ln 0.1

cη
(7.5)

and for wavelength

te (λ) = − ln 0.1

cλ
(7.6)

The final equilibrium time was computed as the average of Equations 7.5 and 7.6

te = 0.5 [te (η) + te (λ)] . (7.7)

Table 7.1 shows the equilibrium time (te), equilibrium height (ηe) and equilibrium wavelength

(λe), as well as the adaptation constants for the height (cη) and wavelength (cλ).

7.3 Bedform development as a function of flow

conditions

The evolution of bedforms from an initial flat bed was studied for different types of flow

conditions: pure unidirectional (Section 7.3.1), pure oscillatory (Section 7.3.2) and combined

flows (Section 7.3.3).

7.3.1 Pure Unidirectional Flows

The development of pure unidirectional flow bedforms over a 0.25 mm diameter sand bed

exhibits the same general trend to that described by Baas (1993) with 0.095 and 0.238
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mm diameter sand grains. The evolution of the bed showed a characteristic asymptotic

growth (e.g., Sutherland and Hwang, 1965; Baas, 1994, 1999; Coleman et al., 2003) seen in

Figure 7.1. Once the overall equilibrium stage was reached (Equation 7.4), the wavelength

and height fluctuated around their equilibrium values as long as the flow conditions remain

unchanged (i.e., to the right of the vertical line in Figure 7.1). This development behavior

was found for both unidirectional experiments, in which their final equilibrium state was 3D

current ripples (Table 7.1). The development of the unidirectional bedforms was successfully

estimated by Equations 7.1 and 7.2 (e.g., red lines in Figure 7.1). Baas (1994, 1999) also

reports successful results of Equations 7.1 and 7.2, the strength of the prediction of these

equations can be seen by the relatively high R2 values obtained from the fits (Table 7.1). The

mean R2 value for all fits was 0.72 (Table 7.1) with a averaged p-value of 0.03 (Appendix

B), Baas (1993) experiments had a mean R2 = 0.70). The fact that the p-value< 0.05

allows rejection of the null hypothesis, which makes the regression statistically significant.

In addition, Figure 7.1 shows the 95% confidence intervals in the gray-shaded area, which

denotes that the fit produces a reliable estimate of the development history of the bedform.

Similar to Baas (1994), four major stages of bedform development were distinguished

during the unidirectional flow experiments (Figure 7.2): (1) incipient bedforms, (2) growing

bedforms, (3) stabilizing bedforms, and (4) fully-developed bedforms:

Stage 1 - Incipient Bedforms

Stage 1 starts with the initiation of the bed morphologies from an initially flat bed, until

the first signs of bedform growth (Figure 7.2). Once the threshold for sediment entrainment

is exceeded, a series of small incipient bedforms started to propagate from flow-generated

defects. For the case of unidirectional flows, the bed deformation started as longitudinal

streaks (Figure 7.3b) that rapidly transformed into very small, three-dimensional, bedforms

(Figure 7.3c) that then merged into straight and sinuous small bedform trains (Figure 7.3d).
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Figure 7.1: Development of bedform wavelength and height on an initially flat bed for pure unidirectional flow (Experiment
55, te = 0.82 hr). The equilibrium time te is denoted by the vertical line. R2(λ) and R2(η) are the correlation coefficients for
the bedform wavelength and bedform height, respectively, obtained by fitting Equations 7.1 and 7.2. The gray-shaded area
represents the 95% confidence interval of the fitted function. Bed morphology at equilibrium = three-dimensional current
ripple (3D CR). Note the gently ‘sinusoidal oscillation’ of the bedform height data for t > 80 min and its negligible influence
on the wavelength data.
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Figure 7.2: Spatially-averaged bedform height and wavelength plotted against time for a three-dimensional asymmetric current-
ripple (Experiment 55). The numbers at the base of the diagram indicate development stages: (1) incipient ripples (white
box), (2) growing bedforms (light-gray box), (3) stabilizing bedforms (gray box), and (4) fully-developed bedforms (dark-gray
box). The vertical line dividing boxes 3 and 4 marks the equilibrium time at te = 44.4 min. Both axes have a log-normal
scale. A series of photos were taken at (a) t = 1.5 min, (b) t = 5.0 min, (c) t = 20.4 min, (d) t = 50.7 min and (e) t = 139.9
min; and are denoted by the different colored arrows. The window on the back of the picture is 0.60 m wide. Note how the
three-dimensionally of the planform geometry grows from photos a-e.
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Figure 7.3: Incipient bedforms at the first stage of development for a three-dimensional
asymmetric current-ripple (Experiment 55). The series of photos were taken at (a) t = 1 s,
(b) t = 14 s, (c) t = 52 s, and (d) t = 77 s. The window on the back of the picture is 0.60
m wide. Note the bed deformation started as longitudinal streaks (solid-box in b), which
rapidly transformed into straight and sinuous small bedform trains (c-d). In addition, the
initial conditions of Stage 1 are characterized by 3D features (dashed box in c) which turned
into 2D bedforms (d)

Stage 2 - Growing Bedforms

Once the bed was fully covered with bed features, the bedforms started to grow in size

by a combination of sediment capturing and merging with nearby bedforms (Figure 7.2b).

Sediment incorporation into the bedforms occurred as it was transported as bedload over

the stoss side (saltation or surface creeping processes) and some of the sediment deposits in

the lee side of the bedform. The growth occurring during this stage accounts for ∼ 85% of

the total bedform enlargement. This result is consistent with the experiments reported by

Baas (1994) that show an overall growth of ∼ 75%.
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Stage 3 - Stabilizing Bedforms

Stage 3 is defined as the temporal gap that occurs in the interval between the moment

when the asymptotic growth ends and the time when the bed reaches equilibrium conditions

(Figure 7.2). During this stage, the bedforms are in a transitional stage. On the one hand,

the bed is not fully developed since the criteria defined in Equation 7.4 is not fulfilled and,

in addition, there are still signs of net bedform growth (mainly by merging with nearby

bedforms, Figure 7.4). On the other hand, the bed morphology exhibits all the ‘visual’

characteristics that fully developed bedforms display (e.g., planform geometry, shapes), but

they are just smaller. This observation is consistent with that of Baas (1994).

The rate at which the bedforms grow during Stage 3 is significantly lower than Stage 2. The

mean overall growth during Stage 3 was ∼ 10% of the overall growth. Baas (1994) reports

that during the stabilizing bedform state, the mean height and wavelength values increased

from 10 to 13 mm and from 100 to 116 mm, respectively, accounting for an estimated ∼ 14%

of the total growth. The difference in growth between Stage 2 (∼ 80% of the overall growth)

and Stage 3 (∼ 12% of the overall growth) denotes the main reason why there is a need to

separate Stage 3 from Stage 2 (Figure 7.2).

Figure 7.4: Amalgamation of two current ripples during the third stage of development
(Experiment 55). Lines between bed surfaces indicate successive positions of the ripple
crest on the bed. The number beside the bed surface refers to the development time in
minutes since the initiation of the experiment. The red line correlates the same crest along
its evolution as a function of time.
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Stage 4 - Fully-developed Bedforms

Once the bed reaches a morphodynamic equilibrium (i.e., fully developed bedforms under

the exact flow conditions acting on the bed), the average bedform height and wavelength will

converge to singular values, ceasing to change with time. However, the height and wavelength

of individual bedforms will continue to fluctuate around the equilibrium average values (Fig-

ure 7.1). The primary factors driving the observed fluctuations around the mean values are:

(i) the dynamic evolution of bedforms over time and space (e.g., amalgamation, Figure 7.4)

and (ii) the inherent three-dimensionality of the bed configuration. The experimental results

conducted by Baas (1994) show that the dynamic evolution of bedforms introduces intrinsic

scatter in the data. Additionally, the second cause of scatter (also reported by Baas, 1994)

was the result of transverse changes in bedform geometry and size. The geometry of the

equilibrium bedforms for both Experiments 54 and 55 are best described as linguoid and

lunate ripples (Figure 7.2). For example, a linguoid or lunate ripple possesses its maximum

height if measured in a cross-sectional plane through the center of the ripple and parallel to

the mean flow direction, whereas the height measurements through other planes will record

a smaller value. Hence, the transverse variability of these bedforms adds another source

of dispersion and fluctuation on individual measurements that will result in fluctuations

around the mean bedform height value. However, the ‘error’ associated with the transverse

variability of bedforms in Experiments 54 and 55 may be considered identical to the ‘error’

reported from measurements conducted in field studies (e.g., cross-sectional cuts of bedform

cross-strata in outcrops). Therefore due to this characteristic variability, and despite the

good predictive power of Equations 7.1 and 7.2, the use of a unique value (ηe or λe) to

describe all the range of geometries is insufficient for some conditions (e.g., values outside

the 95% confident interval, Figure 7.1). This result has been discussed within the context of

unidirectional bedforms, where a two-parameter gamma density function was employed in-

stead of a single value to describe the distribution of bedforms under equilibrium conditions
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(e.g., Paola and Borgman, 1991; Leclair and Bridge, 2001). Therefore, a Gaussian density

function was applied to characterize the bedform size distributions:

P(η(t > te);µη, ση) =
1√
2πση

exp

{
−(η − µη)

2

2σ2
η

}
(7.8)

P(λ(t > te);µλ, σλ) =
1√
2πσλ

exp

{
−(λ− µλ)

2

2σ2
λ

}
(7.9)

where µ is the mean (peak location) and σ is the standard deviation. Equations 7.8 and

7.9 assume a unimodal distribution; however, in some cases the distribution had a bimodal

distribution. In that case, a homotopic mapping method was used to possess a continuous

bimodal Gaussian density function:

P(η(t > te);µη,{1,2}, ση,{1,2}) =
ϑ√

2πση,1
exp

{
−(η − µη,1)

2

2σ2
η,1

}

+
1− ϑ√
2πση,2

exp

{
−(η − µη,2)

2

2σ2
η,2

}
(7.10)

P(λ(t > te);µλ,{1,2}, σλ,{1,2}) =
ϑ√

2πσλ,1
exp

{
−(λ− µλ,1)

2

2σ2
λ,1

}

+
1− ϑ√
2πσλ,2

exp

{
−(λ− µλ,2)

2

2σ2
λ,2

}
(7.11)

where µ1 and µ2 are the locations of the two peaks in the bimodal distribution, σ1 and

σ2 are standard deviations of the µ1 and µ2 distributions and ϑ is the unit interval (e.g.,

Armstrong, 1983).

Figure 7.5 displays the histogram of the recorded heights (Figure 7.5a) and wavelengths

(Figure 7.5b) for all equilibrium bedforms for a three-dimensional asymmetric current-ripple

(Experiment 55). These measurements include all the observed bedforms for each time (the N

bedforms from Equation 7.3) from the time t = te to the end of the experiment (tt, Table 7.1).
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Both the distribution of bedform heights (Figure 7.5a) and wavelengths (Figure 7.5b) show

signs of significant temporal variation of the spatially-averaged wavelength or height once

the bed reached an equilibrium state (e.g., ση/µη×100 ∼ 43.52% and σλ/µλ×100 ∼ 33.3%).

Assuming a normal distribution for both the height and wavelength, it can be found that

71.8% of the variability in bedform height lies within one standard deviation (ση) while 97.5%

lies within 2ση; whereas for bedform wavelength, 71.3% lies within one σλ and 95.4% within

2σλ. Moreover, 100% of the variability lies within ∼ 6σ; ∆η(t > te) ≈ 34 mm ≈ 4.9ση

and ∆λ(t > te) ≈ 0.43 m ≈ 5.9σλ. In addition, the distribution of bedform heights for

the particular case of Experiment 55 shows a bimodal distribution (Figure 7.5a). However,

based on the developmental behavior exhibited in Figures 7.1 and 7.2, it is evident that

the bimodal distribution in bedform height is not real, and this is a consequence of the bed

morphology was not being measured long enough within the equilibrium stage. Therefore,

the bimodal distribution does not capture the true morphological behavior of the bedforms

in Experiment 55. This is due to the fact that once the bed reached equilibrium conditions

(t > te, to the right of the vertical line in Figure 7.1), the bedforms exhibited a gentle

variation in their height, going first larger to smaller and then to large again (‘sinusoidal

oscillation’ of the bedform height data for t > 80 min in Figure 7.1), which then stabilizes at

the equilibrium value (inside the 95% interval confidence denoted by the gray-shaded areas

in Figure 7.1). During this readjustment, the bed is overpopulated with bedforms just below

and above the true equilibrium value (ηe = 18.1 mm vs µη,1 = 10.6 mm and µη,1 = 20.2

mm), which suggests that to capture the true bedform height distribution (i.e. bedform

distibution peak similar to ηe) a longer time series may be required. Similar errors occur

in other finite time series such as instantaneous velocity measurements, where a particular

record length may be sufficient to obtain a mean value (e.i. ηe or λe) but inadequate to

estimate higher order moments (e.g., Soulsby, 1980).
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Figure 7.5: Histogram of a) bedform height and b) wavelength at equilibrium conditions (t > te) for a three-dimensional
asymmetric current-ripple (Experiment 55). n is the number of measurements, Pr is the cumulative distribution function
of the normal PDF (black line, Equations 7.8 and 7.9), ηe and λe are the equilibrium height and wavelength obtained by
Equations 7.1 and 7.2. The unit interval for the bimodal distribution (blue line, Equations 7.10 and 7.11) was (a) ϑ = 0.458.
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7.3.2 Pure Oscillatory Flows

The development or growth of oscillatory bedforms exhibits the same general trend to that

described by Lofquist (1978) and that previously discussed herein for unidirectional flows

(section 7.3.1). Furthermore, the development of bedform height and wavelength showed

the same characteristic asymptotic growth for all types of pure oscillatory flow bedforms

(see Chapter 5) regardless of their final stable planform geometry (i.e., 2D = continuous and

straight creastlines and 3D = discontinuous and curved creastlines). Therefore, Equations 7.1

and 7.2 were used to characterize bedform development from an initially flat bed to two

characteristic bed configurations: (i) 2D symmetrical ripples (Experiment 30, Figure 7.6)

and (ii) 3D symmetrical ripples (Experiment 18, Figure 7.7). These fits (red lines) and their

95% confidence intervals (gray-shaded area) are plotted in Figures 7.6 and 7.7. The mean R2

value obtained by the fits for all the pure oscillatory bedform datasets was 0.78 (Table 7.1)

with an averaged p-value of 0.02 (Appendix B), which is, in general, a better overall fit than

the mean R2 value for unidirectional flows bedforms (0.72, Table 7.1; The experiments of

Baas (1993) had a mean R2 = 0.70). The better performance of Equations 7.1-7.2 to predict

the overall development of the pure oscillatory bedforms is mainly driven by the high R2

obtained for the two-dimensional bed configurations. The mean R2 value obtained for all

the 2D oscillatory bed morphologies (Experiments 1, 8 and 30; Table 7.1) was 0.9 with an

averaged p-value of 0.008 (Appendix B), whereas for the 3D oscillatory bedforms the R2

values ranged from 0.45 to 0.62 with an averaged p-value of 0.02. Equations 7.1 and 7.2

provide a better representation of the 2D bed morphologies due to the low variability (only

18.3% of the data lie outside of the 95% confident intervals) that occurs once the bed reaches

equilibrium conditions (i.e., to the right of the vertical line in Figure 7.6). However, for the

case of three-dimensional bedforms, the scatter was much larger, with almost 50% of the

data lying outside of the 95% confidence intervals. The variability of the three-dimensional

bedforms can be explained by the dynamic migration, separation and amalgamation of the
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bed features, a situation that is absent in the two-dimensional case (Figure 7.8).
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Figure 7.6: Development of bedform wavelength and height on an initially flat bed for pure oscillatory flow (Experiment 30,
te = 4.23 hr). The equilibrium time, te, is denoted by the vertical line. R2(λ) and R2(η) are the correlation coefficients for
the bedform wavelength and bedform height, respectively, obtained by fitting Equations 7.1 and 7.2. The gray-shaded area
represents the 95% confidence interval of the fitted function. Bed morphology at equilibrium = Two-dimensional Symmetrical
Ripple (2D SR).
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Figure 7.7: Development of bedform wavelength and height on an initially flat bed for pure oscillatory flow (Experiment 18,
te = 0.67 hr). The equilibrium time, te, is denoted by the vertical line. R2(λ) and R2(η) are the correlation coefficients for
the bedform wavelength and bedform height, respectively, obtained by fitting Equations 7.1 and 7.2. The gray-shaded area
represents the 95% confidence interval of the fitted function. Bed morphology at equilibrium = Three-dimensional Symmetrical
Ripple (3D SR).
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Figure 7.8: Stable (a) or dynamic (b) equilibrium conditions for pure oscillatory bedforms.
The window on the back of the picture is 0.60 m wide. (a) Sequence of photographs show-
ing the absence of change during the equilibrium stages of Experiment 30 along a 3.5 hrs
of bed-flow equilibrium conditions. (b) Sequence of photographs showing the diversity of
bedforms and an active movable bed (Experiment 18).

The development stages under pure oscillatory flows are the same as those described for

unidirectional bedforms (Section 7.3.1; Figures 7.9 and 7.10): (1) incipient bedforms, (2)

growing bedforms, (3) stabilizing bedforms, and (4) fully-developed bedforms. However, the

main difference between oscillatory and unidirectional flows lies in the morphological aspects

of the bedforms.

Stage 1 - Incipient Bedforms

Like unidirectional flows, Stage 1 started with the initiation of sediment transport on an

initially flat bed, until the first signs of bedform growth (Figures 7.9-7.10). A series of small

incipient bedforms started to propagate from the walls (Figure 7.11) or the center of the

flume (Figure 7.12) once sediment had been entrained. For the case of the experiments where

the bedform initiation was controlled by the wall, the incipient bedforms did not reflect the

true interactions between the flow and the bed, and hence such experiments are ignored for

the discussion on this development stage. However, once the bed was fully covered with bed

features (e.g., Figure 7.11f), the bed evolved in stages where its development reflected the

true behavior of the phenomenon.
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Figure 7.9: Spatially-averaged bedform height and wavelength plotted against time for a two-dimensional symmetric ripple
(Experiment 30). The numbers at the base of the diagram indicate development stages: (1) incipient ripples (white box);
(2) growing bedforms (light-gray box); (3) stabilizing bedforms (gray box); and (4) fully-developed bedforms (dark-gray box).
The vertical line dividing boxes 3 and 4 marks the equilibrium time at te = 255.6 min. Both axes have a log-normal scale. A
series of photos were taken at (a) t = 4.9 min, (b) t = 51.2 min, (c) t = 107.4 min, (d) t = 410.1 min and (e) t = 810.2 min;
and are denoted by the different colored arrows. The window on the back of the picture is 0.60 m wide. Note that photographs
(d) and (e) were both taken during Stage 4 where the wavelength and height were at equilibrium, yet the planform in (d) was
not yet fully-developed.
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Figure 7.10: Spatially-averaged bedform height and wavelength plotted against time for a three-dimensional symmetric ripple
(Experiment 18). The numbers at the base of the diagram indicate development stages: (1) incipient ripples (white box);
(2) growing bedforms (light-gray box); (3) stabilizing bedforms (gray box); and (4) fully-developed bedforms (dark-gray box).
The vertical line dividing boxes 3 and 4 marks the equilibrium time at te = 44.4 min. Both axes have a log-normal scale. A
series of photos were taken at (a) t = 1.25 min, (b) t = 8.15 min, (c) t = 34.5 min, (d) t = 199.4 min and (e) t = 548.4 min;
and are denoted by the different colored arrows. The window on the back of the picture is 0.60 m wide. Note how the picture
becomes more blurred due to the increase in sediment suspension from a-e.
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Figure 7.11: Incipient bedforms at the first stage of development for a two-dimensional
symmetric oscillatory-ripple (Experiment 01). The window on the back of the picture is
0.60 m wide.

For the flow conditions where the bed morphology did not develop from wall-defects,

the predominant morphological features during this early stage were two-dimensional rolling

grain ripples. Rolling-grain ripples appeared on the initially plane bed within only a few wave

cycles (3 wave cycles for the case of Experiment 18; Figure 7.12). These results are consistent

with other studies under pure oscillatory flow, which describe rolling-grain ripples as the first

bed state to generate from a flat bed (e.g., Bagnold, 1946; Lofquist, 1978; Pedocchi, 2009).

These rolling-grain ripples exhibited their characteristic alternation of crestline direction

from upstream to downstream during every cycle (Figure 7.12). In addition, unlike the

classification proposed by Baas (1994), the planform geometry changed within this first

stage. Figure 7.12 shows the development from a very short early three-dimensional stage

(Figure 7.12:c-d) to a more stable two-dimensional set of rolling grain ripples.

Stage 2 - Growing Bedforms

No difference was found between unidirectional and oscillatory flow conditions regarding the

mechanisms of bedform growth. The bedforms grew in size by a combination of sediment

capturing and amalgamation with nearby bedforms (Figure 7.10b). However, during this
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Figure 7.12: Incipient bedforms at the first stage of development for a three-dimensional
symmetric oscillatory-ripple (Experiment 18). Note the change in direction from upstream
to downstream oriented crestlines. The window on the back of the picture is 0.60 m wide.

stage, the bed configuration quickly transitioned from rolling grain ripples to small three-

dimensional vortex ripples within a few minutes (Figure 7.13). Once this transition occurred,

the bed remained populated with three-dimensional vortex ripples unless the stable config-

uration is two-dimensional, and hence the bed rearranged its planform geometry to become

two-dimensional (Figures 7.9 and 7.10). The growth occurring during this stage accounted

for ∼ 93% of the total bedform enlargement. This result is consistent with the experiments

reported under unidirectional flows (∼ 85%; Section 7.3.1) and by Baas (1994) (∼ 75%),

which show that the large majority of overall growth occurs in this stage.

Stage 3 - Stabilizing Bedforms

Under oscillatory flow conditions, resembling those occurring under unidirectional flows (sec-

tion 7.3.1), Stage 3 was also defined as the temporal gap that occurs in the interval between

the moment when the asymptotic growth ends and the time when the bed reached equilib-

rium conditions (Figures 7.9 and 7.10). The rate at which oscillatory bedforms grew during

Stage 3 is significantly lower than Stage 2, and less than that observed for unidirectional

flows. The mean overall growth during Stage 3 was ∼ 5% of the overall growth (Figures
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Figure 7.13: Development Stage 2 - Transition between rolling grain ripples to small three-
dimensional vortex ripples (Experiment 18). The window on the back of the picture is 0.60
m wide.

7.6-7.10), about half of that observed for unidirectional flow bedforms (section 7.3.1). How-

ever, this result is consistent with the observations seen in Stage 2, in which there was a

greater percentage growth under oscillatory than unidirectional flows (∼ 93% vs ∼ 85%;

Section 7.3.1).

Stage 4 - Fully-developed Bedforms

Unlike the unidirectional flow bed morphologies, oscillatory bedforms exhibited two different

stable planform bed configurations: two-dimensional and three-dimensional (Chapter 5). In

the previous development stages (Stages 1 to 3; Figure 7.9), there was no difference in the

development history between bedforms that displayed a stable two-dimensional configuration

or a three-dimensional configuration. However, for the case of the ‘fully-developed’ bedform

stage, the fundamental change in the planform geometry (i.e. 2D vs 3D) showed significant
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differences. It is important to note that the two-dimensional stable planform bed configu-

rations occurred under oscillatory flow conditions that obeyed the empirical relationship of

Pedocchi and Garćıa (2009b)

D∗ = Re2/3p > 0.15Re1/3w ⇒ D∗

Re
1/3
w

> 0.15 (7.12)

where D∗ is a dimensionless grain size

D∗ =

(
g R

ν2

)1/3

D50 (7.13)

and Rew is the wave Reynolds number

Rew =
UoA

ν
. (7.14)

Two-Dimensional bedforms

There are two main reasons why two-dimensional oscillatory bedforms are different or

behave differently to three-dimensional bedforms during the fourth stage of development.

One of these is the temporal lag in the development history of 2D oscillatory bedforms be-

tween the time required for these bedforms to reach equilibrium sizes (i.e., ηt ∼ 0.9 ηe and

λt ∼ 0.9λe) and the time to reach equilibrium planform geometry (i.e., the time for the

bed to be fully 2D; video Ch07 - 01: T06O25U00 Develop.wmv from Appendix A.1.2 and

Table 7.2). For example, during the fourth development stage for Experiment 30 (dark-gray

box; Figure 7.9), the bed reached size equilibrium after 253.8 min from the initiation of the

experiment, although the bed did not achieve a fully two-dimensional planform configura-

tion until 738.6 min (Table 7.2). Similarly, Figure 7.14 shows a sequence of photographs

during the planform geometry equilibrium transition for Experiment 1, where the bed was

at size equilibrium (t > te = 132min), but did not exhibit a fully two-dimensional planform

configuration until 141 min (bottom two photographs in Figure 7.14).
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Table 7.2: Summary of equilibrium times of size and planform geometry for the bedform
experiments with stable two-dimensional planform geometries.

# T Uo Uu ηe
a λe

a D∗
b Rew

c D∗

Re
1/3
w

d qs
e te

f tpg
g tt

h Bedformi

(s) (ms−1) (ms−1) (mm) (m) ×104 (cm2 s−1) (hr) (hr) (hr) Type

1 4 0.25 0.00 34.8 0.22 6.06 3.73 0.18 14.9 2.21 2.3 5.1 SR
8 5 0.20 0.00 35.3 0.21 6.36 3.21 0.20 17.2 4.15 20.6 37.7 SR
30 6 0.25 0.00 32.1 0.20 6.31 5.95 0.16 16.1 4.23 12.3 14.5 SR

a Values obtained by fitting Equation 7.1 and Equation 7.2 to the experimental data.
b Dimensionless grain size (Equation 7.13). c Wave Reynolds Number (Equation 7.14).
d Empirical relationship by Pedocchi and Garćıa (2009b) = 2D > 0.15 > 3D (Equation 7.12)
e Bedload transport per unit width (Section 4.3.2).
f Time until size equilibrium obtained from Equation 7.7.
g Time until planform geometry equilibrium.
h Duration of experiment. fSR = 2D Symmetric Ripples.

Figure 7.14: Transition between 2.5 to 2D oscillatory ripples during the fourth stage of
development (Experiment 1). Flow-size equilibrium was obtain at te ∼ 132 min, whereas
the flow-planform geometry equilibrium was achieved tpg ∼ 141 min (Table 7.2). The window
on the back of the picture is 0.60 m wide.
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After detailed examination of the development curves (e.g., Figure 7.9) and the pho-

tographs taken from the side window (e.g., Figure 7.14), it was observed that by the time

the bed reached size-equilibrium (t = te) the crest of the bedforms still possessed nu-

merous defects (Figure 7.9c). This presence of defects prevents the bed from being fully

two-dimensional, since lateral discontinuities in the crestline produce different flow veloc-

ities, which then induce differential sediment transport (e.g., Chapter 5, Venditti et al.,

2005b). Thus, additional time is necessary in order to fully reshape the bed from the

three-dimensional configuration (multiple defects on the bedform crest) to the final two-

dimensional configuration (very few defects on the bedform crest; Figure 7.14).

Pedocchi and Garćıa (2009b) discuss that the stability of two-dimensional bedforms lies

in the ratio between grain sizes D∗ and wave Reynolds numbers Rew (Equation 7.12). Equa-

tion 7.12 implies that the larger the grain size becomes (D∗) and/or the smaller the tur-

bulence (Rew) is, the more likely the bedform will be two-dimensional. This ratio can be

understood in this manner; the larger the grain size (Ds), the least susceptible it will be

to turbulent fluctuations (the flow is three-dimensional in nature; e.g., Carstensen et al.,

2010) and the more responsive it will be to the mean pure-oscillatory flow (2D motion),

thus becoming more two-dimensional. This grain size behavior is consistent with results by

other researchers that two-dimensional bedforms are predominately formed in coarser sands

(e.g., Southard, 1991; O’Donoghue and Clubb, 2001; O’Donoghue et al., 2006). However,

the larger the grain size, the harder it is to move the sediment (i.e., higher shear stress), and

thus the longer it will take to reshape the bedforms into a two-dimensional form. This result

can even be seen within the limited datan available (Table 7.2). Equation 7.15 is a linear

fit of the planform equilibrium time, tpg, as a function of the dimensionless grain size D∗.

Equation 7.15 implies that for larger D∗ longer planform equilibrium times tpg are required

to reach a stable two-dimensional bed configuration

tpg = 54D∗ − 326 (7.15)
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(black line in Figure 7.15). However, it is important to state that Equation 7.15 is estimated

using only 3 data points (Table 7.2), which are enough to perform a linear regression, yet

not sufficient to capture the true behavior of the system. Therefore, Equation 7.15 should

not be considered as the true relationship, but just as an overall guide that describes the

observed trends between variables. Another indicator that Equation 7.15 is not the true

formulation to encapture the relationship is the fact that it predicts negative values of tpg

for grain sizes smaller than D∗ < 6.03, a result that lacks any physical grounding.

Figure 7.15: Planform equilibrium time (tpg) as a function of the dimensionless grain size

(D∗ = (g R/ν2)
1/3

D50; black axis) and the dimensionless bedload sediment transport (q∗ =
qs/

√
g R D50 D50; blue axis). Solid line represent a potential (linear) relationship between

the three data points available. R2 values are the correlation coefficient obtained by fitting
Equations 7.15 and 7.16. The gray-shaded area represents the 95% confidence interval of
the fitted function.

Furthermore, following the same limited linear regression analysis, the time required to

reach two-dimensional planform geometry can also be linked with the sediment transport

by the dimensionless bedload sediment transport q∗ (blue line in Figure 7.15). If the good
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correlation between tpg and q∗ (R2 = 1.0) implies causation, it can be inferred that for

two-dimensional oscillatory bedforms (Equation 7.12), the greater the sediment transport,

the longer it will take the bedforms to reach planform equilibrium conditions (Figure 7.15)

tpg = 1.26× 10−4 q∗ − 116. (7.16)

The planform geometry equilibrium time should not be confused with the size equilibrium

time te, which exhibits an inverse relationship; higher sediment transport equates to a smaller

equilibrium time (Section 7.4). Yet, since the nature of sand transport is far from homoge-

neous along the bed, a relatively high transport rate will produce differential transport along

the bed. Hence, relatively high sediment transport rates will populate the bedform crests

with multiple defects (Figure 7.9c), and therefore additional time will be required to fully

reshape the bed to the final two-dimensional configuration (very few defects on the bedform

crest; Figure 7.14).

The second main reason for the differential behavior of two-dimensional oscillatory bed-

forms is that they exhibit very little variability once the bed reached size-equilibrium con-

ditions, regardless of the planform geometry (t ≥ te; right of the vertical line Figure 7.6).

Figure 7.14 shows a sequence of photographs during size-equilibrium conditions (t > te =

132min) for Experiment 1. Despite the difference in planform geometry through time, the

overall wavelength and height remained the same along the nearly 30 min of duration por-

trayed in Figure 7.14. Figures 7.6 and 7.16 show the spatially-averaged wavelength and

height as a function of time, where the very small temporal variations for equilibrium con-

ditions (t ≥ te; right of the vertical line) are reflected by the good coverage of the 95%

confidence interval of the Equations 7.1 and 7.2 fits (gray-shaded area).
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Figure 7.16: Development of bedform wavelength and height on an initially flat bed for pure oscillatory flow (Experiment 1
te = 2.21 hr). The equilibrium time, te, is denoted by the vertical line. R2(λ) and R2(η) are the correlation coefficients for
the bedform wavelength and bedform height respectively obtained by fitting Equations 7.1 and 7.2. The gray-shaded area
represents the 95% confidence interval of the fitted function. Bed morphology at equilibrium = Two-dimensional Symmetrical
Ripple (2D SR).
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Figure 7.17 displays the histogram of the recorded heights (Figure 7.17a) and wavelengths

(Figure 7.17b) for all equilibrium bedforms for a two-dimensional symmetric oscillatory-

ripple (Experiment 1). Both the distribution of bedform heights (Figure 7.17a) and wave-

lengths (Figure 7.17b) show very little signs of temporal variations of the spatially-averaged

wavelength or height once the bed reached an equilibrium state (e.g., ση/µη × 100 ∼ 7.3%

and σλ/µλ × 100 ∼ 9.3%). Assuming a normal distribution for both the height and wave-

length, it can be found that 80.9% of variability of bedform height lies within one stan-

dard deviation (ση), and 98.5% lies within 2ση; whereas for bedform wavelength, 77.1% lies

within one σλ and 97.1% within 2σλ. Moreover, 100% of the variability lies within ∼ 7.5σ;

∆η(t > te) ≈ 15.0 mm ≈ 5.6ση and ∆λ(t > te) ≈ 0.22 m ≈ 7.5σλ.

The narrow spectrum of bed morphologies for two-dimensional oscillatory bedforms can

be explained by the relatively fixed position of the bedforms once the bed reached equilib-

rium conditions (e.g., Figure 7.14). During the time interval between size equilibrium and

planform equilibrium a few fluctuations (e.g., Figure 7.9) were recorded since the bed was

still moving (e.g., Figure 7.14). However, this migration culminated when the bed reached a

full two-dimensional planform geometry, where no further change in height and wavelength is

recorded. The bedform wavelength and height present at the bed during this stage will per-

sist until the flow conditions are changed, and then the bed will break the two-dimensionality

to rearrange itself to a new equilibrium stage that is stable with the new flow condition. This

behavior is a fundamental characteristic of two-dimensional oscillatory ripples, and is not

seen in any other type of flow type or bedform.
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Figure 7.17: Histogram of bedform a) height and b) wavelength at equilibrium conditions (t > te) for two-dimensional
symmetric oscillatory-ripples (Experiment 01). n is the number of measurements, Pr is the cumulative distribution function
of the normal PDF (black line, Equations 7.8 and 7.9), and ηe and λe are the equilibrium height and wavelength obtained by
Equations 7.1 and 7.2.
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Three-Dimensional bedforms

The fourth stage of the development history of three-dimensional oscillatory bedforms

behaved more like that of three-dimensional unidirectional bedforms than two-dimensional

oscillatory bedforms. During this last development stage, the wavelengths and heights, for

both three-dimensional oscillatory and unidirectional bedform, fluctuated around the equi-

librium average values (e.g., Figure 7.7), therefore providing a wider spectrum of wavelengths

and heights (Figure 7.18). Figure 7.18 shows the histogram of the measured heights (Fig-

ure 7.18a) and wavelengths (Figure 7.18b) for all equilibrium bedforms for experiment 18

(three-dimensional oscillatory ripple). Contrary to the two-dimensional oscillatory bedforms,

both the distribution of bedform heights (Figure 7.18a) and wavelengths (Figure 7.18b)

show significant variations of the spatially-averaged wavelength and height once the bed

reached an equilibrium state (e.g., ση/µη × 100 ∼ 54.1% and σλ/µλ × 100 ∼ 38.5%). Based

on a normal distribution, 66.5% of the variability of bedform height lies within one stan-

dard deviation (ση), and 96.6% lies within 2ση; whereas for bedform wavelength, 71.3% lies

within one σλ and 96.6% within 2σλ. Moreover, 100% of the variability lies within ∼ 6σ;

∆η(t > te) ≈ 51.0 mm ≈ 4.3ση and ∆λ(t > te) ≈ 0.45 m ≈ 5.84σλ.

The wider range of three-dimensional oscillatory bedform sizes (∼ 45% from the mean

values) compared with two-dimensional oscillatory bedforms (∼ 8% from the mean values)

can be explained by the dynamic behaviour of the bedforms over time and space once the bed

reached equilibrium conditions (similar to that discussed for three-dimensional unidirectional

bedforms, Section 7.3.1: Stage 4). During this fourth stage of development, the bedforms

are constantly moving and generating new bed features that promoted the separation of the

old forms or the merger between nearby features. As discussed in Stage 4 for unidirectional

flows, this variability can be accounted for by the dynamic migration, separation and merging

of the bedforms (Section 7.3.1: Stage 4).
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Figure 7.18: Histogram of bedform a) height and b) wavelength at equilibrium conditions (t > te) for three-dimensional
symmetric oscillatory-ripples (Experiment 18). n is the number of measurements, Pr is the cumulative distribution function
of the normal PDF (black line, Equations 7.8 and 7.9), and ηe and λe are the equilibrium height and wavelength obtained by
Equations 7.1 and 7.2.
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7.3.3 Combined Flows

Similar to the pure unidirectional and pure oscillatory fow bedforms, the general trend

followed by the development or growth of the combined flow bedforms was characterized

by the previously described (Sections 7.3.1 and 7.3.2) asymptotic exponential growth rate

(Figures 7.19 to 7.22). This behavior was shared by all combined flows bedforms regard-

less of the final equilibrium stage; e.g., three-dimensional asymmetric ripple (Figure 7.19),

three-dimensional quasi-asymmetric rounded ripple (Figure 7.20), three-dimensional quasi-

asymmetric ripple (Figure 7.21) and three-dimensional asymmetric rounded dune (Fig-

ure 7.22). Hence, following the same methodology as the other flow conditions (Sections 7.3.1

and 7.3.2), Equations 7.1 and 7.2 were used to characterize the development from an initially

flat bed of the four experiments listed above (Figures 7.19-7.22). The fits (red lines) and

their 95% confidence intervals (gray-shaded areas) are plotted in each of the development

curves (Figures 7.19-7.22). The mean R2 value obtained by the fits of all the combined flow

bedform data sets was 0.64 with a standard deviation of 0.21 (Table 7.1) and an averaged

p-value of 0.03, a value that is a little below the mean R2 for unidirectional flows bedforms

of 0.72 (no standard deviation was computed since there are only two data points) or os-

cillatory flow bedforms of R2 = 0.78 with a standard deviation of 0.24 (Table 7.1). The

fact that the mean R2 value is slightly lower for the combined flows does not imply that the

predictive power of Equations 7.1 and 7.2 for the combined flow case is worse than the other

flows, since if the variations of these means are taken into account (i.e., standard deviation)

the results among the three overlap.

The development stages under combined flows are the same as those described for uni-

directional (Section 7.3.1) and oscillatory (Section 7.3.2) bedforms. Figures 7.23 to 7.25

show the same development stages to those discussed for the other flow types: (1) incipient

bedforms, (2) growing bedforms, (3) stabilizing bedforms, and (4) fully-developed bedforms.
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Figure 7.19: Development of bedform wavelength and height on an initially flat bed for combined flow (Experiment 03, te = 2.81
hr). The equilibrium time, te, is denoted by the vertical line. R2(λ) and R2(η) are the correlation coefficients for bedform
wavelength and bedform height respectively obtained by fitting Equations 7.1 and 7.2. The gray-shaded area represents the
95% confidence interval of the fitted function. Bed morphology at equilibrium = Three-dimensional Asymmetric Ripple (3D
AR).
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Figure 7.20: Development of bedform wavelength and height on an initially flat bed for combined flow (Experiment 20, te = 0.79
hr). The equilibrium time, te, is denoted by the vertical line. R2(λ) and R2(η) are the correlation coefficients for the bedform
wavelength and bedform height respectively obtained by fitting Equations 7.1 and 7.2. The gray-shaded area represents
the 95% confidence interval of the fitted function. Bed morphology at equilibrium = Three-dimensional Quasi-Asymmetric
Rounded Ripple (3D QARR).
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Figure 7.21: Development of bedform wavelength and height on an initially flat bed for combined flow (Experiment 33, te = 1.53
hr). The equilibrium time, te, is denoted by the vertical line. R2(λ) and R2(η) are the correlation coefficients for the bedform
wavelength and bedform height respectively obtained by fitting Equations 7.1 and 7.2. The gray-shaded area represents the
95% confidence interval of the fitted function. Bed morphology at equilibrium = Three-dimensional Quasi-Asymmetric Ripple
(3D QAR).
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Figure 7.22: Development of bedform wavelength and height on an initially flat bed for combined flow (Experiment 35,
te = 1.31 hr). The equilibrium time, te, is denoted by the vertical line. R2(λ) and R2(η) are the correlation coefficients for
the bedform wavelength and bedform height respectively obtained by fitting Equations 7.1 and 7.2. The gray-shaded area
represents the 95% confidence interval of the fitted function. Bed morphology at equilibrium = Three-dimensional Asymmetric
Rounded Dune (3D ARD).
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Figure 7.23: Spatially-averaged bedform height and wavelength plotted against time for three-dimensional asymmetric ripples
(Experiment 03). The numbers at the base of the diagram indicate development stages: (1) incipient ripples (white box);
(2) growing bedforms (light-gray box); (3) stabilizing bedforms (gray box); and (4) fully-developed bedforms (dark-gray box).
The vertical line dividing boxes 3 and 4 marks the equilibrium time at te = 168.6 min. Both axes have a log-normal scale. A
series of photos were taken at (a) t = 3.33 min, (b) t = 14.31 min, (c) t = 74.36 min, (d) t = 254.77 min and (e) t = 777.08
min and are denoted by the different colored arrows. The window on the back of the picture is 0.60 m wide.
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Figure 7.24: Spatially-averaged bedform height and wavelength plotted against time for three-dimensional quasi-asymmetric
rounded ripple (Experiment 20). The numbers at the base of the diagram indicate development stages: (1) incipient ripples
(white box); (2) growing bedforms (light-gray box); (3) stabilizing bedforms (gray box); and (4) fully-developed bedforms
(dark-gray box). The vertical line dividing boxes 3 and 4 marks the equilibrium time at te = 47.4 min. Both axes have a
log-normal scale. A series of photos were taken at (a) t = 1.5 min, (b) t = 7.8 min, (c) t = 42.6 min, (d) t = 152.3 min and
(e) t = 312.1 min and are denoted by the different colored arrows. The window on the back of the picture is 0.60 m wide.
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Figure 7.25: Spatially-averaged bedform height and wavelength plotted against time for three-dimensional quasi-asymmetric
ripple (Experiment 33). The numbers at the base of the diagram indicate development stages: (1) incipient ripples (white
box); (2) growing bedforms (light-gray box); (3) stabilizing bedforms (gray box); and (4) fully-developed bedforms (dark-gray
box). The vertical line dividing boxes 3 and 4 marks the equilibrium time at te = 91.8 min. Both axes have a log-normal scale.
A series of photos were taken at (a) t = 3.6 min, (b) t = 24.1 min, (c) t = 84.05 min, (d) t = 224.0 min and (e) t = 388.4 min
and are denoted by the different colored arrows. The window on the back of the picture is 0.60 m wide.
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Stage 1 - Incipient Bedforms

For the combined flow conditions where the bed morphology did not develop from wall-

defects (i.e., Section 7.3.2), a clear distinction could be observed between the predominant

morphological features present under wave (e.g., Figure 7.26) or current dominated (e.g.,

Figure 7.27; Chapter 5) combined flow conditions. For the case of wave-dominated com-

bined flow bedforms (e.g., Figure 7.26), the incipient bedforms resembled those observed for

pure oscillatory bedforms: rolling grain ripples (Figure 7.26, Section 7.3.2). However, for the

case of current-dominated combined flows, the incipient bedforms behave as those described

for the pure unidirectional case (Figure 7.3, Section 7.3.1). The diagnostic features used to

differentiate the incipient bedforms generated under wave-dominated (WD) combined flow

versus current-dominated (CD) combined flow was the presence (Figure 7.26) or absence

(Figure 7.27) of crest reversal during the wave cycle. Moreover, during the first stages of

bedform development under a wave-dominated combined flow (Figure 7.26), there is a clear

back and forth movement of the crest direction or crest reversal (white arrows in Figure 7.26).

In addition, it can be observed that a full crest reversal (e.g., from downstream-pointing to

later downstream-pointing with an intermediate stage of upstream-pointing) occurs within

one wave cycle (white-box, Figure 7.28). On the other hand, during the genesis of bedforms

for current-dominated combined flows, the bedform crestline does not change direction (Fig-

ure 7.27).

The morphological difference between wave and current-dominated combined flow bed-

forms (i.e., presence and absence of crest reversal on the incipient bedforms along the wave

cycle) is a clear representation of the interactions of the SFD “trinity”components (Chapter

1). The interaction between the fluid dynamics and the sediment grains produces temporal

changes in the velocity profiles (Figures 7.29 and 7.30), which are reflected by the sediment

transport, and thus in the way the bedforms develop for different combined flow conditions

(Figures 7.26 and 7.27).
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Figure 7.26: Incipient bedforms at the first stage of development for a three-dimensional
quasi-asymmetric wave-dominated combined flow ripple (Experiment 19). The white arrows
indicate the change of direction (upstream to downstream) of the crestline along the wave
cycle. This process is shared with the rolling grain ripples generated at the first stage of pure
oscillatory bedforms (Figure 7.10), but does not occur under the genesis of current-dominated
combined flow bedforms (Figure 7.27). The window on the back of the picture is 0.60 m
wide.

Figure 7.27: Incipient bedforms at the first stage of development for a three-dimensional
asymmetric rounded current-dominated combined flow ripple (Experiment 4). The white
arrows indicate the absence of directional change of the crestline along the wave cycle; the
crest line always points downstream. This scenario is different than the wave (Figure 7.10)
and wave-dominated bedforms (Figure 7.26) where the crest alternates in direction. The
window on the back of the picture is 0.60 m wide.
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Figure 7.28: Crestal reversal occurring in the first stages of development of a wave-dominated
combined flow bedform (Experiment 19). Photographs (a) to (c) show the crest evolution
towards the upstream direction, whereas (d) to (f) are towards the downstream direction. On
the top axis of the white-box, the arrow denotes the overall direction of the crest migration.
In addition, within the arrow, three dots were plotted to illustrate where the average crestline
is located, with the red dot corresponding to the active frame. The window on the back of
the picture is 0.60 m wide.

Figures 7.29 and 7.30 show the streamwise phase-averaged (a) velocity profiles u(z) and (b)

a point measurement at z = 0.28 m along the oscillation cycle for wave-dominated combined

flow (Figure 7.29) and current-dominated combined flow (Figure 7.30). Figure 7.29 and

7.30 represent a clear example of the intrinsic interactions of the wave and current boundary

layers, which play a significant role in the dynamic of wave and current-dominated combined

flows bedforms. For example, the maximum combined flow velocity for both, the wave

(Figure 7.29) and current-dominated (Figure 7.30) combined flow conditions is roughly the

same (∼ 0.5ms−1). This similar maximum velocity produces a very similar velocity profile

when the direction of the oscillatory velocity coincides with the unidirectional flow (phase

∼ 0◦ in Figure 7.29 and phase ∼ 240◦ Figure 7.30). However, for the case where the

oscillatory velocity direction opposes the unidirectional flow, the velocity profiles look very

different (phase ∼ 179◦ in Figure 7.29 and phase ∼ 61◦ Figure 7.30).
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Figure 7.29: Velocity over a three-dimensional quasi-asymmetric, wave-dominated combined
flow ripple (Experiment 19). Oscillatory Condition: Uo = 0.40ms−1 and T = 5 s. Unidi-
rectional Condition: Uu = 0.10ms−1. (a) Streamwise phase-averaged velocity profile along
the oscillation cycle. (b) Streamwise phase-averaged velocity along the oscillation cycle at
z = 0.28 m. The symbols correspond to the velocity profiles plotted in (a).
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Figure 7.30: Velocity over a three-dimensional asymmetric rounded current-dominated com-
bined flow ripple (Experiment 4). Oscillatory Condition: Uo = 0.25ms−1 and T = 4 s.
Unidirectional Condition: Uu = 0.30ms−1. (a) Streamwise phase-averaged velocity profile
along the oscillation cycle. (b) Streamwise phase-averaged velocity along the oscillation cycle
at z = 0.28 m. The symbols correspond to the velocity profiles plotted in (a).
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The differences between wave and current-dominated combined flows not only concern

the mean or upper flow conditions, but also the dynamics occurring very close to the bed.

Near the bed, there are two boundary layers - one due to oscillatory flow and the other

due to unidirectional flow (Mathisen and Madsen, 1996a,b, 1999; Fredsøe et al., 1999). The

boundary layer formed by the wave is relatively thin compared to that generated by the

unidirectional flow, and thus the effects of the oscillatory conditions can be seen much more

clearly near the bed (e.g., flow reversal for z < 0.05m, Figure 7.30) than in the upper parts

of the flow (e.g., u > 0 for all wave phases for z > 0.1m, Figure 7.30). This explains why

current-dominated combined flows can exhibit flow reversal (z < 0.05m, Figure 7.30), yet

the magnitude of such velocities is insufficient to entrain sediment ( θ
(−)
max = −0.01 < θc =

−0.04; Equation 4.26.) in the upstream direction. On the other hand, for the case of the

wave-dominated combined flow conditions (Figure 7.29), the unidirectional velocity is not

strong enough to prevent the oscillatory velocity fully reversing (z < 0.05m, Figure 7.29).

Hence, a net sediment transport in the upstream direction occurs, which can be clearly

observed in the crest reversal phenomenon (Figure 7.26 and 7.28).

Stage 2 - Growing Bedforms

Similar to unidirectional and oscillatory flows, combined flow bedforms grow by a combina-

tion of sediment capturing and amalgamation with nearby bedforms (Figures 7.23b, 7.24b

and 7.25b). The growth occurring during this stage accounts for ∼ 95% of the total bedform

enlargement. This result is consistent with the experiments reported under unidirectional

flows (∼ 85%; Section 7.3.1), oscillatory flows (∼ 93%; Section 7.3.2) and by Baas (1994)

(∼ 75%), which shows that the large majority of the overall growth occurs in this stage.

Stage 3 - Stabilizing Bedforms

Identical to unidirectional (Section 7.3.1) and oscillatory flow (Section 7.3.2), the third stage

in the development of combined flow bedforms was also defined as the temporal gap that
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occurs in the interval between the moment when the asymptotic growth ends (Stage 2)

and the time when the bed reached equilibrium conditions (Figures 7.23 to 7.25). The

overall growth occurring during Stage 3 under combined flow is almost insignificant (< 3%,

Figures 7.23-7.25).

Stage 4 - Fully-developed Bedforms

The fourth stage of the development history of combined flow bedforms was very similar

to those described under unidirectional (Section 7.3.1) and oscillatory flows that generate

three-dimensional planform geometries (Section 7.3.2). For the three different types of flows

(all flows except the one that generated two-dimensional oscillatory bedforms), the bedform

wavelengths and heights fluctuated around the equilibrium average values (e.g., Figure 7.20

or Figure 7.22), providing a wide spectrum of wavelengths and heights (Figure 7.32 and 7.31).

This spectrum can be seen in both the wave (Figure 7.31) and current-dominated bedforms

(Figure 7.32). For the case of wave-dominated bedforms, the histogram of the measured

heights (Figure 7.31a) and wavelengths (Figure 7.31b) is analyzed for all bedforms present

in the sample volume during Stage 4 for experiment 20 (three-dimensional quasi-asymmetric

rounded combined flow ripple). The three-dimensional nature of the bedform (see discussion

in Section 7.3.1) is represented by the relative large range of sizes, ση/µη × 100 ∼ 47.9%

and σλ/µλ × 100 ∼ 33.9%. If the distribution of equilibrium bedforms is represented by a

normal distribution, 69.1% of the variability of the bedform heights are within one standard

deviation (ση), and 97.4% within 2ση; whereas for bedform wavelength, 75.7% lies within one

σλ and 96.2% within 2σλ. In addition, 100% of the variability lies within ∼ 6σ; ∆η(t > te) ≈

47.0 mm ≈ 4.8ση and ∆λ(t > te) ≈ 0.43 m ≈ 6.0σλ. Similarly, the histograms of the heights

(Figure 7.32a) and wavelengths (Figure 7.32b) for experiment 3 were processed in order to

see the distribution for a current-dominated combined flow bedform. Current-dominated

bedforms at equilibrium states show a relatively wide spectrum of sizes (e.g., ση/µη × 100 ∼

45.2% and σλ/µλ × 100 ∼ 28.9%). Using the same methodology as for the other types of
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bedforms, a normal distribution characterizes the dispersion of sizes; 65.5% of the variability

of bedform height lies within one standard deviation (ση), and 97.1% lies within 2ση; whereas

for bedform wavelength, 62.5% lies within one σλ and 97.3% within 2σλ. Moreover, 100% of

the variability lies within ∼ 6σ; ∆η(t > te) ≈ 42.0 mm ≈ 4.4ση and ∆λ(t > te) ≈ 0.35 m ≈

6.5σλ.
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Figure 7.31: Histogram of bedform a) height and b) wavelength at equilibrium conditions (t > te) for a three-dimensional
quasi-asymmetric rounded combined flow ripple (Experiment 20). n is the number of measurements, Pr is the cumulative
distribution function of the normal PDF (black line, Equations 7.8 and 7.9), ηe and λe are the equilibrium height and
wavelength obtained by Equations 7.1 and 7.2.
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Figure 7.32: Histogram of bedform a) height and b) wavelength at equilibrium conditions (t > te) for a three-dimensional
asymmetric current-dominated combined flow ripple (Experiment 3). n is the number of measurements, Pr is the cumulative
distribution function of the normal PDF (black line, Equations 7.8 and 7.9), ηe and λe are the equilibrium height and wavelength
obtained by Equations 7.1 and 7.2.
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7.4 Equilibrium time as a function of the flow and

sediment transport conditions

The empirical model proposed by Baas (1999) was used to predict the equilibrium time as a

function of the flow conditions. This model uses an inverse power of the flow velocity to find

the best-fit for the equilibrium time measured (Baas, 1999). However, Baas (1999) reported

a individual fit for the time required for the height and wavelength to reach equilibrium

conditions. Hence, Equation 7.7 was used to re-evaluate the experimental data from Baas

(1999) (D50 = 0.238 mm) and obtain a unified bed state equilibrium time as a function of

flow velocity

Uu = 0.2695 t−0.333
e + 0.274. (7.17)

(see solid red line in Figure 7.33). In addition, since Equation 7.17 does not account for the

oscillatory component of the combined flow, a peak combined flow velocity value was used

instead of Uu. Therefore,

Ucf = 0.2185 t−0.508
e + 0.272. (7.18)

(see solid blue line in Figure 7.33), where Ucf is the unidirectional velocity linearly added to

the maximum orbital velocity

Ucf = Uu + Uo. (7.19)

The fitting statistics of both Equations were similar, the R2 for Equation 7.17 (Baas, 1999)

was R2 = 0.55 (p-value= 0.04), whereas for Equation 7.18 being R2 = 0.63 (p-value= 0.03).

Equation 7.18 provides a slightly better prediction (better R2), but both equations are

unable to predict the large scatter. This observation can be seen by the multiple points

outside the gray-shaded area in Figure 7.33, which represents the 95% confidence interval

for Equation 7.18. In addition, even though the mean absolute percentage deviation (MAPD

column in Table 7.3) is relatively large, the true difference from the fitted coefficient is not
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significant (∆ column in Table 7.3).

Table 7.3: Comparison between the coefficients of Baas (1999) and Equation 7.18 for the
equilibrium time as a function of flow velocity. Equation Structure: U = A tBe + C

Coefficient Units Baas (1999)’s Equation Proposed Equation ∆a MAPDb

(Equation 7.17) (Equation 7.18)

A [m(s hr)−1] 0.2695 0.2185 0.05 20.9
B -0.333 -0.508 0.2 41.6
C [ms−1] 0.274 0.272 0.002 0.7

aAbsolute Difference
bMean Absolute Percentage Deviation

Figure 7.33: (a) Equilibrium time as a function of flow velocity. Current Ripple (CR, yellow)
data was taken from Baas (1999) (D50 = 0.238 mm). The gray-shaded area represents the
95% confidence interval of the fitted function for the new proposed Equation (Equation 7.18).
(b) Graphical scheme that represents the range of equilibrium times for different types of
bed states. SR = Symmetric Ripples (light-orange), AR = Asymmetric Ripples (red), AD
= Asymmetric Dunes (blue), and CR = Current Ripples (yellow).

Based on the distribution and relatively large overlap of the different equilibrium times

for different bedforms (Figure 7.33b), it can be concluded that te is not a good variable

to differentiate bed states. This result is consistent with the observations of Baas et al.
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(1993). However, based on the overall distribution of time scales (Figure 7.33b), in general

dunes required less time (only a few tens of minutes) to reach equilibrium conditions, whilst

ripples generally require several hours. As expected by the size alone (dunes being larger

than ripples), dunes would require more time to reach equilibrium than ripples. Yet, since

the flow conditions for dunes mobilized significantly more sediment than ripples, dunes reach

equilibrium faster. This result suggests that the sediment transport dynamics play a key

role in defining the equilibrium time of the system. Moreover, the similarities between

Equation 7.17 and Equation 7.18 can be explained since the time required for a bed to reach

equilibrium is related to the amount of sediment transported, regardless of what type of

flow is producing the transport. Therefore, a new formulation is required to better capture

the physical process controlling the equilibrium time of the different bedforms. This new

formulation must place more emphasis on the sediment transport characteristics, rather

than the flow conditions in the upper flow (i.e., Ucf in Equation 7.18). Hence, using the

methodology explained in Section 4.3.2, bedload was estimated for each experiment, and

used to reformulate Equation 7.18 as

q∗ = 4.89 t−1.28
e (7.20)

(solid line in Figure 7.34), where q∗

q∗ =
qs√

g RD50D50

(7.21)

is the dimensionless expression of qs, which is bedload transport per unit width (cm2 s−1).

Figure 7.34 shows the equilibrium time for the different bedforms (color scheme in Fig-

ure 7.34) generated under the range of wave periods (symbol scheme in Figure 7.34) utilized

in the present study, as a function of the dimensionless bedload transport per unit width.

Despite the large dispersion, the fitted Equation 7.20 does a better job than Equations 7.17
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and 7.18 at predicting the time at which the bed configuration reaches equilibrium condi-

tions (R2 = 0.92 and p-value= 0.02). In addition, for the case of relatively low sediment

transport rates (q∗ < 10) and long equilibrium times (te > 1 hr), all the experimental data

lies within the 95% confidence interval.

Figure 7.34: Equilibrium time as a function of the dimensionless bedload transport per unit
width. The gray-shaded area represents the 95% confidence interval of the fitted function for
the new proposed Equation (Equation 7.20). SR = Symmetric Ripples (light-orange), AR
= Asymmetric Ripples (red), AD = Asymmetric Dunes (blue), and CR = Current Ripples
(yellow).

7.5 Discussion

The evolution of bedforms from a flat bed was studied for a range of unidirectional, oscillatory

and combined flow conditions over a 250 µm diameter sand bed. Based on the growth path

described for the different types of flow, it can be concluded that the overall development

(i.e., asymptotic growth) is clearly independent of the flow characteristics (Section 7.3).

This result is consistent with the conclusion that could have been obtained if the results of
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Sutherland and Hwang (1965) or Baas (1999) (unidirectional) were combined with the ones

of Doucette and O’Donoghue (2006) (oscillatory), showing the same development curves to

the present study. Furthermore, despite the difference in the morphological aspects (e.g.,

2D vs 3D discussion in Section 7.3.2), the ‘asymptotic growth’ behavior is also independent

on the final bedform stage. In other words, the general shape of the development curve

is independent of the size (i.e., ripples vs dunes), shape (i.e., symmetric or rounded) and

planform geometry (i.e., 2D vs 3D). A clear example of this result is the similar growth

path of a two-dimensional symmetrical oscillatory ripple (Experiment 30, Figure 7.6) and

a three-dimensional asymmetric rounded dune (Experiment 35, Figure 7.22). In addition

to the independence on the flow characteristics (e.g., unidirectional vs combined flow) and

the final bedform geometry (e.g., 2D vs 3D or CR vs SR), the development growth-path

is also found to be grain-size independent. Faraci and Foti (2002) and the experiments

herein (Table 7.1) were all conducted over a 0.25 mm diameter sand bed, whereas Lofquist

(1978), Baas (1993) and Doucette and O’Donoghue (2006) conducted experiments over a

wide range of grain sizes: D50 = 0.18 mm, D50 = 0.21 mm, D50 = 0.55 mm (Lofquist,

1978), D50 = 0.095 mm and D50 = 0.238 mm (Baas, 1993) and D50 = 0.44 mm (Doucette

and O’Donoghue, 2006) and all results describe the same behavior. Therefore, it can be

concluded that the development path described in Section 7.3 is ubiquitous for all types of

subaqueous bedforms.

Consequent to the invariance of flow type (i.e., unidirectional, oscillatory or combined

flow) on bedform development (Section 7.3), the analysis of the equilibrium time presents the

same conclusion (symbol scheme in Figure 7.34). The different flow conditions (i.e., different

velocities or periods) alter the sediment transport stages (through the SFD “trinity”), but

no differences were found between different periods or flow types. However, the equilibrium

time it is not independent of the final equilibrium stage for the particular cases of the

bedforms generated in this study, and the larger bed morphologies (i.e., dunes) took the

least amount of time to reach equilibrium conditions, since they were generated under the
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most active sediment transport regimes. On the other hand, the smaller bedforms (i.e.,

ripples) formed in the lower sediment transport conditions, and hence required more time

to reach their stable configuration. This result depends on the fact that for this particular

grain size (D50 = 250µm), the larger bedforms only formed under high sediment transport

rates and the small bedforms formed only under low transport stages. Furthermore, both

sediment transport and bedform states have a strong correlation with grain size, and hence

the relationship between equilibrium time and bed stage presented in Figure 7.34 should not

be generalized for other grain sizes. For example, for coarser grain sizes large-scale gravel

dunes can be generated under flow conditions that are just above the threshold for sediment

transport (Carling, 1999), hence requiring a long time to reach their stable configuration.

It is important to note that all the results described in this chapter do not take into account

hysteresis. The bedforms in this study were generated from an initial flat bed by a specific

flow condition. Therefore, these results should not been extrapolated to bed morphologies

that are generated by varying flows.

7.6 Conclusions

The development of bedforms was studied under a diverse range of unidirectional, oscillatory

and combined flow conditions over an initially flat bed. Based on the results of previous

work and the present results, several conclusions can be reached:

• The development-path or bedform growth exhibits the same general trend regardless

of the flow type (e.g., unidirectional vs combined flow), bedform size (e.g., ripples vs

dunes), bedform shape (e.g., symmetric or rounded), bedform planform geometry (e.g.,

2D vs 3D) and sediment grain size.

• Bedform development can be divided into four main stages regardless of the flow con-

ditions: (1) incipient bedforms, (2) growing bedforms, (3) stabilizing bedforms, and
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(4) fully-developed bedforms. This division is consistent with the separation proposed

by Baas (1994, 1999) for pure unidirectional flows.

• Stage 1 is defined from the genesis of the bedforms until the first signs of bedform

growth. The dominant morphological feature for pure unidirectional and current-

dominated combined flows started as longitudinal streaks that developed into very

small three-dimensional ripples. On the other hand, for pure oscillatory and wave-

dominated combined flows, the main juvenile bedform was transient rolling-grain rip-

ples.

• Once the bed is fully covered with bed features, the bedform transitions to Stage 2

where the bedforms start to grow exponentially in time. This growth was propor-

tionally to ≈ 1 − e−c t and was successfully estimated by Equations 7.1 and 7.2. The

large majority of the bedform enlargement takes place during this stage. The main

mechanisms of bedform growth are sediment capturing and amalgamation with nearby

bedforms.

• Stage 3 is defined as the temporal gap between the cessation of asymptotic growth and

the time when the bed reaches equilibrium conditions. Compared with the growth in

Stage 2, the enlargement during Stage 3 is minimal.

• Once the bedform reaches its equilibrium stage (Stage 4), the bed morphology remains

in that regime until the flow conditions are changed. The equilibrium time te was

defined by applying Equation 7.7 to the fitted data. The time of development was

found to be inversely proportional to the amount of sediment transport occurring for

that flow condition (Equations 7.21)

• During the fourth stage of development, the bedform wavelength and height fluctuate

from their equilibrium mean wavelength and height. This variation is more marked

for the case of three-dimensional bedforms, since the bed is constantly moving, with
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bedforms merging and splitting and producing a relatively large range of active sizes.

• The behavior of bedforms during the fourth stage can be divided based on the final

stage planform geometry. For the case of two-dimensional bedforms occurring only

under pure oscillatory flows, there is a temporal separation between the time when

the bed morphology reaches its equilibrium size and when the planform geometry

becomes fully two-dimensional. In addition, three-dimensional bedforms generated

under pure unidirectional, pure oscillatory and combined flows, exhibit a wider range

of bedform sizes (∼ 50% from the mean values) compared with two-dimensional os-

cillatory bedforms (∼ 8% from the mean values). These results can be explained

by the clear differences in the end state, with two-dimensional bedforms at planform-

equilibrium being in a ‘stable-equilibrium’, whereas all three-dimensional bedforms are

in a ‘dynamic-equilibrium’.
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Chapter 8

Unidirectional, Oscillatory and
Combined Flow Bedform Indices

8.1 Introduction

In most field scenarios, stratigraphers have to make interpretation of paleoenviroments based

on the cross-sectional form of preserved sedimentary structures (e.g., outcrops, cores). There-

fore, geometrical analysis that examines the bedform indices can be essential to fully char-

acterize the bedforms, and hence the paleoenviroment. Unfortunately, few studies report

these variables, despite the fact that bedform indices (generally named ripple indices) were

introduced almost half a century ago (Tanner, 1967). An explanation of their unpopularity

lies in the fact that no study has assessed how useful or accurate these indices are in order

to reconstruct paleoflows. Hence, based on the new experimental data presented herein, a

detailed analysis of the most relevant bedform indices is made, with particular emphasis on

their use to differentiate between unidirectional, oscillatory and combined flows.

8.2 Experimental Data

Tables 8.1 and 8.2 summarize the flow parameters and bedform characteristics of the 44

experiments conducted in the LOWST over a 250 µm sandy bed. The oscillatory flow

velocities (Uo) were changed from 0 to 0.80 ms−1, whilst the superimposed unidirectional

flow velocities (Uu) were varied between 0 and 0.50 ms−1 at three different periods (T = 4,

5 and 6 s).
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Table 8.1: Summary of flow parameters and bedform characteristics.

#a Init.b T Uo Uu λ η BIc BSIc BRIc 2D/3Dd Bedforme

Cond. (s) (ms−1) (ms−1) (m) (mm) Type

01 00 04 0.25 0.00 0.22 34.8 06.3 0.96 0.40 2D SR
02 00 04 0.25 0.10 0.15 20.5 07.4 1.39 0.45 2.5D QAR
03 00 04 0.25 0.20 0.18 21.1 08.6 1.53 0.54 2.5D AR
04 00 04 0.25 0.30 0.23 26.9 08.4 1.66 0.61 3D ARR
05 00 04 0.25 0.40 0.51 35.6 14.3 2.36 0.72 3D ARD
06 04 04 0.25 0.40 0.52 36.0 14.4 2.14 0.71 3D ARD
07 00 04 0.30 0.00 0.20 31.0 06.5 1.04 0.41 3D SR
08 00 05 0.20 0.00 21.20 35.3 06.1 0.97 0.36 2D SR
09 13 05 0.20 0.00 18.50 33.1 05.7 1.00 0.39 3D SR
10 11 05 0.20 0.00 16.20 23.6 07.1 0.98 0.42 3D SR
11 00 05 0.20 0.10 14.60 36.4 09.3 1.17 0.52 3D QAR
12 00 05 0.20 0.20 21.60 27.3 08.0 1.34 0.54 3D QAR
13 01 05 0.20 0.20 20.20 30.0 06.7 1.32 0.53 3D QAR
14 09 05 0.20 0.20 20.90 29.3 07.2 1.28 0.55 3D QAR
15 00 05 0.20 0.30 26.90 27.6 08.8 1.96 0.61 3D ARR
16 00 05 0.20 0.40 60.10 30.3 12.7 2.29 0.78 3D ARD
17 00 05 0.20 0.50 88.40 44.6 11.7 3.20 0.88 3D ARD
18 00 05 0.40 0.00 23.90 22.0 10.7 1.11 0.43 3D SR
19 00 05 0.40 0.10 22.20 23.0 09.7 1.31 0.32 3D QAR
20 00 05 0.40 0.20 21.00 20.7 10.5 1.31 0.68 3D QARR
21 00 05 0.40 0.30 42.20 61.3 08.7 1.22 0.73 3D QARR
22 00 05 0.40 0.40 102.10 98.3 10.4 4.20 0.89 2D1 ARD
23 17 05 0.40 0.40 105.30 102.3 10.3 4.16 0.92 2D1 ARD
25 00 05 0.50 0.40 123.20 153.0 08.1 3.10 0.63 2D1 ARD
26 41 06 0.10 0.20 0.22 23.2 09.5 1.97 0.53 3D AR
27 00 06 0.10 0.50 0.49 35.5 13.8 1.72 0.52 3D CR
28 28 06 0.15 0.40 0.56 37.9 14.9 3.26 0.58 3D AD
29 39 06 0.20 0.00 0.25 42.0 06.0 1.04 0.37 2D SR
30 00 06 0.25 0.00 0.20 32.1 06.2 1.08 0.42 2D SR
31c 00 06 0.25 0.05 0.18 26.6 06.8 1.37 0.43 2.5D SR
32 00 06 0.25 0.10 0.19 17.2 10.9 1.44 0.40 3D QAR
33 00 06 0.25 0.20 0.17 17.6 09.8 1.45 0.45 3D QAR
34 00 06 0.25 0.30 0.25 23.3 10.6 2.79 0.72 3D ARR

a Experiment number
b Initial condition of the sediment bed at the beginning of the experiment: 00 indicates flat bed, other

numbers indicate the number of the experiment run before.
c BI = λη η−1 (Equation 8.1), BSI = λs λ

−1
l (Equation 8.2) and BRI = λ0.5 s λ

−1
s (Equation 8.3).

d 2D indicates two-dimensional bedforms, 2.5D indicates the presence of two-dimensional, and three-
dimensional or wavy bedforms and 3D indicates three-dimensional bedforms. The superscript 1 indicates
that the width of the flume was not large enough for bedforms to fully develop their planform geometry.

e SR = Symmetric Ripples, SD = Symmetric Dunes, AR = Asymmetric Ripples, ARR = Asymmetric
Rounded Ripples, QAR = Quasi-Asymmetric Ripples, QARR = Quasi-Asymmetric Rounded Ripples, AD
= Asymmetric Dunes, ARD = Asymmetric Rounded Dunes and CR = Current Ripples.
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Table 8.2: Summary of flow parameters and bedform characteristics. (cont’d).

#a Init.b T Uo Uu λ η BIb BSIc BRIc 2D/3Dd Bedforme

Cond. (s) (ms−1) (ms−1) (m) (mm) Type

35 00 06 0.25 0.40 0.65 68.3 09.5 3.15 0.64 3D ARD
36 00 06 0.25 0.50 1.30 123.0 10.6 3.69 0.82 3D ARD
37 16 06 0.30 0.00 0.22 39.4 05.6 1.15 0.45 2.5D SR
38 40 06 0.30 0.10 0.17 18.4 09.3 1.37 0.44 3D QAR
39 42 06 0.30 0.20 0.30 38.8 07.8 1.46 0.51 3D QAR
40 44 06 0.40 0.20 0.32 48.6 06.6 1.63 0.63 3D ARR
41 45 06 0.40 0.30 0.74 84.2 08.8 2.17 0.72 3D1 ARD
42 00 06 0.50 0.00 0.28 32.3 08.7 1.14 0.41 3D SR
43 29 06 0.50 0.30 0.56 31.0 18.0 3.33 0.71 3D ARD
45 00 06 0.70 0.00 0.71 50.1 14.2 0.91 0.38 3D SD
46 29 06 0.80 0.20 0.73 71.0 10.3 1.20 0.50 3D SD
54 00 - - 0.40 0.20 17.6 11.4 2.21 0.51 3D CR
55 00 - - 0.50 0.21 18.1 11.8 2.36 0.49 3D CR

a,b,c,d,e See Table 8.1

8.3 Bedform Indices

Tanner (1967) discussed the uses of several bedform indices including

BI = λη η
−1 Bedform Index (8.1)

BSI = λs λ
−1
l Bedform Symmetry Index. (8.2)

By plotting Equations 8.1 and 8.2, a dimensionless geometrical phase-space can be estab-

lished for different bedforms generated by a variety of flows (Figure 8.1). Yokokawa (1995)

highlighted the need to distinguish combined flow bedforms from oscillatory and unidirec-

tional features by measuring a new bedform index, named the bedform roundness index,

which can be plotted against BSI to generate a new geometrical-phase-space (Figure 8.2)

BRI = λ0.5 s λ
−1
s Bedform Roundness Index. (8.3)
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Figure 8.1: Bedform Index plotted against Bedform Symmetry Index. Data used comes from this study, Yokokawa (1995),
Dumas et al. (2005), Venditti et al. (2005a), Yamaguchi and Sekiguchi (2010) and Martin and Jerolmack (2013). Bedform
indices are shown for different type of flows, where U = unidirectional, O = oscillatory, CF = combined flows, W = wind and
S = swash-zone bedforms.
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Figure 8.2: Bedform Roundness Index plotted against Bedform Symmetry Index. Data used comes from this study, Yokokawa
(1995), Dumas et al. (2005), Venditti et al. (2005a), Yamaguchi and Sekiguchi (2010) and Martin and Jerolmack (2013).
Bedform indices are shown for different types of flow, where U = unidirectional, O = oscillatory and CF = combined flows
bedforms.
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Although these dimensionless geometrical-phase-spaces do not show unique zones where

only one type of flow condition exists, several trends can be observed (Figure 8.3):

Unidirectional Bedforms 60 > BI > 6, BSI > 1.2 and BRI ≈ 0.5

Oscillatory Bedforms 20 > BI > 5, BSI < 3.5 and BRI w 0.5

Combined Flow Bedforms 20 > BI > 3, BSI < 5 and BRI > 0.3

Wind Bedforms 50 > BI > 10 and BSI < 8

Swash-Zone Bedforms 100 > BI > 30 and BSI < 2

Figure 8.3: Graphical scheme that represents the range of (a) Bedform Index, (b) Bedform
Symmetry Index and (c) Bedform Roundness Index, for different type of bedforms. U =
unidirectional, O = oscillatory, CF = combined flows, W = wind and S = swash zone
bedforms.

Figure 8.3 shows a graphical representation of the ranges of the bedform indices (Equa-

tions 8.1, 8.2 and 8.3) for different types of bedforms. Since there are no published data for

BRI for wind (yellow) and swash (brown) bedforms, the discussion will only focus on the

unidirectional, oscillatory and combined flow data sets. Unfortunately, none of the individ-

ual bedform indices by itself shows any promise to be a clear and unique measurement that
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can be employed in the field to quickly distinguish between flow types. This result does not

coincide with early results proposed by Yokokawa (1995) where a very clear distinction was

found between unidirectional, oscillatory and combined flow bedforms. The pioneering work

by Yokokawa (1995) was based on the relatively limited data of BRI at the time (N = 66),

which did not include any observations in the overlapping zones. In some occasions, despite

the multiple overlaps, the set of bedform indices can be used to define the flow type. For

example, if a bedform has indices BI = 25, BSI = 4 and BRI = 0.5, although BSI and

BRI does not provide any conclusive information, BI can be used to conclude unambigu-

ously that the bedform was generated under unidirectional flows. This can be done in some

very particular cases where some of the bedform indices lie within a range with no overlap

(i.e., BI > 20 and BRI > 0.7 ). Nonetheless, there is a large subset of variables that does

not lead to an answer, since none of the indices can unequivocally define one flow type (e.g.,

BI = 12, BSI = 1.5 and BRI = 0.5). In order to provide an alternative to the desired

deterministic method (i.e., one set of bedform indices will unambiguously define one type of

flow), a very simple multinomial logistic regression (Hosmer and Lemeshow, 2000) was per-

formed using the MATLABR©(R2012a) Statistics Toolbox. Multinomial logistic regressions

are one of the most common tools to analyze categorical data (Agresti, 1996). Thus the

three different flow types (unidirectional, oscillatory and combined flows) are defined as the

categorical variables with the bedform indices as the independent variables

U = f(BI,BSI,BRI)

O = f(BI,BSI,BRI)

CF = f(BI,BSI,BRI)

(8.4)

Hence, if a linear model is assumed and the experimental data from the pure unidirectional

flows is chosen as a reference or base (Hosmer and Lemeshow, 2000), the log-odds or logits

are

ZU,O(BI,BSI,BRI) = −0.56BI − 0.37BSI − 4.75BRI + 9.74 (8.5)
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ZU,CF (BI,BSI,BRI) = −0.16 BI − 0.49 BSI + 2.65 BRI + 1.92 (8.6)

where 9.74 and 1.92 are two constants and the rest of the values are the regression coeffi-

cients computed from the model. The R2 of the regression coefficient is 0.56 and an average

p-value is 0.01. Despite the relatively low R2, the fact that the p-value< 0.05 allows re-

jection of the null hypothesis, which makes the regression statistically significant. These

logits (Equations 8.5 and 8.6) can be used to formulate a probabilistic model to obtain the

likelihood of categorical variables (flow type) for an individual set of independent variables

(bedform indices)

Pu(BI,BSI,BRI) =
1

1 + eZU,O + eZO,CF
(8.7)

Po(BI,BSI,BRI) =
eZU,O

1 + eZU,O + eZO,CF
(8.8)

PCF (BI,BSI,BRI) =
eZO,CF

1 + eZU,O + eZO,CF
. (8.9)

A set of examples of the use of Equations 8.7-8.9 are listed below (Table 8.3).

The values presented in Table 8.3 are a compilation of bedform indices from previous

work and from measurements at the Lower-Colorado River in the Colorado River Wildlife

Sanctuary near Austin, Texas (Figure 8.4). The field measurements were taken over 11

ripples (Figure 8.4c-d) located in different locations on a sandy river bed (Figure 8.4b).

Equations 8.7-8.9 successfully predicted the flow type 23 times out of the 25 measurements

(∼ 92%). The lack of a perfect prediction (i.e., 25 out of 25) is expected due to the nature of

the overlap between bedform geometries (Figure 8.3). In other words, since there is a large

range of bedform geometries generated from a particular type of flow, any observation can

lie close to the most likely geometry of other type of flow, generating the wrong prediction.

Therefore multiple observations are required to minimize this error, and as illustrated in

Table 8.3, the averaged percentage clearly predicts the right flow type.

i In addition, the regression coefficients of the logits (Equations 8.5 and 8.6) can be used

to characterize the relative weight (compared with the base case, unidirectional bedforms)
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Table 8.3: Different probability distributions for flow type based on different bedform indices
measured in the Lower-Colorado River and from previous studies.

Independent Variables Categorical Variables (%)
Predictedb Measuredb

BIa BSIa BRIa Ub Ob CFb

32.0 7.0 0.50 99.50 00.00 00.50 U U†

10.5 6.7 0.40 56.95 35.00 08.05 U U†

12.0 5.0 0.30 50.90 39.33 09.77 U U†

8.4 3.3 0.40 11.41 77.03 11.56 O U †

12.0 5.0 0.50 61.51 18.38 20.10 U U†

19.2 4.8 0.32 92.07 01.31 06.62 U U†

11.3 5.0 0.40 49.66 36.32 14.02 U U†

10.0 3.3 0.60 29.50 31.21 39.29 CF U †

11.6 4.5 0.44 50.54 29.97 19.49 U U†

9.5 6.0 0.39 38.44 53.09 08.47 O U †

16.5 3.7 0.45 75.61 03.76 20.63 U U†

Averaged Percentages 56.01 29.58 14.41 U U†

6.4 1.0 0.31 0.01 0.95 0.04 O O‡

7.2 1.2 0.42 0.03 0.85 0.12 O O‡

3.9 1.0 0.50 0.01 0.93 0.07 O O‡

4.6 1.2 0.65 0.02 0.77 0.21 O O?

5.2 1.3 0.47 0.01 0.90 0.08 O O?

4.4 1.6 0.63 0.02 0.81 0.17 O O§

3.0 1.6 0.55 0.01 0.93 0.06 O O§

3.6 1.4 0.50 0.01 0.94 0.05 O O§

4.3 1.1 0.44 0.01 0.94 0.05 O O§

4.1 1.0 0.35 0.00 0.97 0.02 O O§

4.9 1.9 0.56 0.02 0.85 0.12 O O††

4.7 1.0 0.50 0.01 0.90 0.09 O O††

6.2 1.6 0.77 0.06 0.43 0.51 CF CFo

7.8 1.6 0.68 0.09 0.42 0.49 CF CFo

a BI = λη η−1 (Equation 8.1), BSI = λs λ
−1
l (Equation 8.2) and BRI = λ0.5 s λ

−1
s (Equation 8.3).

b U = Pure Unidirectional Flows, O = Pure Oscillatory Flows and CF = Combined Flows. References
= †Lower-Colorado Measurements, ‡Bagnold (1946),?Campbell (1966), §Faraci and Foti (2002), ††Admiraal
et al. (2006) and oYokokawa et al. (1995)
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Figure 8.4: a) Location of the study area, Lower-Colorado River, near Austin, Texas. b)
Approximate location of the ripple measurements represented by the red circles (Table 8.3).
c-d) Unidirectional ripples from the location area.

of the different independent variables (i.e., bedform indices) in the probability. For exam-

ple, the coefficients for BI are −0.56 for the comparison between oscillatory bedforms with

unidirectional bedforms (U,O), and −0.16 for the comparison between combined flow bed-

forms with unidirectional bedforms (U,CF). Both coefficients are negative, so an increase

in the value of BI will decrease the probability of either being generated by oscillatory or

combined flow. In addition, since the coefficient for the U,O is smaller than the U,CF coef-

ficient, it is less likely to be generated by oscillatory flows. The same thought process can

be used to conclude that an increase in BSI will increase the probability of the bedform

being generated under combined, rather than oscillatory flows, but yet it is more likely to be

unidirectionally-generated. On the other hand, an increase in BRI increases the probability

of unidirectional flows being the characteristic flow rather than oscillatory flow. However,

a decrease in BRI reduces the probability of unidirectional flows compared with combined
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flows.

8.3.1 Bedform Index

Between all the geometrical indices, the most documented in the literature is the Bedform

Index (e.g., Dumas et al., 2005) or its inverse, the bedform steepness (e.g., Carling, 1999;

van der Mark and Blom, 2007) given in Equation (8.1). Previous studies of combined flows

have reported an abrupt change in the bedform wavelength between dunes and ripples (larger

and small ripples in the nomenclature of Arnott and Southard, 1990; Dumas et al., 2005),

a result that can influence the overall distribution of BI under combined flows. Dumas

et al. (2005) reported that there is a gap in bedform wavelength between ≈ 0.30 and ≈ 1

m (green-shaded area in Figure 8.5), this conclusion being based on the lack of equilibrium

wavelength bedforms (N = 159, squared symbols in Figure 8.5) in the ‘size-gap’ proposed.

However, the experimental results presented in this chapter do not allow the same conclusion.

Several equilibrium wavelengths for combined-flow ripples and dunes were observed in the

‘size-gap’ (triangles in Figures 8.5). Furthermore, as discussed in Chapter 7, the equilibrium

value of the wavelength or height is not necessary a representative measure of the distribution

of bed configuration sizes (Figure 8.6). Figure 8.6 not only presents an example of a bed

state where the mean equilibrium wavelength (λe) is in the ‘size-gap’ domain, but also the

associated equilibrium distribution of bedform sizes covers a wide range of sizes. However,

it is important to note that the presence of these ‘medium size’ bedforms occurred only

under flow conditions that had been previously unexplored (no squares in the green-shaded

area in Figure 8.5). The experiments conducted by Arnott and Southard (1990) and Dumas

et al. (2005) were conducted under unidirectional velocities up to 0.30 ms−1 with grain sizes

smaller than 0.17 mm (square symbols in Figure 8.5), and these bedforms were generally

observed under unidirectional velocities greater than 0.30ms−1 (mean ≈ 0.40ms−1) with a

D50 = 0.25 mm (triangle symbols in Figure 8.5). Furthermore, the large majority of the new

combined flow experiments conducted in the LOWST with unidirectional velocities smaller
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than 0.30ms−1 had wavelengths less than 0.30 m. Therefore, if only the mean values of the

wavelength are considered, there might be a true size gap for wave-dominated combined flows,

and the wavelength continuum is a representation of current-dominated combined flows. On

the other hand, the gap probably is present only in the mean or equilibrium values of the

wavelength, and if the whole dispersion of bed features is used multiple bedforms populate

the ‘size-gap’.

The mean equilibrium wavelength (λη) was plotted against the combined-flow water ex-

cursion d+o

d+o =
(Uu + Uo)T

π
(8.10)

to compare the dependence between the two variables with the classic oscillatory-flow rela-

tionship that relates bedform wavelength (λη) to the pure oscillatory water excursion length

(do)

do =
Uo T

π
. (8.11)
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Figure 8.5: Bedform wavelength at equilibrium conditions as a function of the maximum combined-flow water excursion. Data
from Dumas et al. (2005) (squares, sample size = 159) and new experiments at LOWST (circles and triangles, sample size =
44). Note that all the experimental data from Dumas et al. (2005) has Uu < 0.3ms−1 (squares symbols). In addition, the large
majority of the experiments with Uu ≥ 0.3ms−1 (triangles symbols) lie within the bedform size gap (green). The gray-shaded
area represents the 95% confidence interval of the fitted function (black line, Equation 8.13). The red line represents the
relationship between λη and d+o for pure oscillatory orbital ripples (Clifton, 1976). 2D SR = Two-dimensional Symmetric
Ripples (dark-orange), 3D SR = Three-dimensional Symmetric Ripples (light-orange), AR = Asymmetric Ripples (red), QAR
= Quasi-asymmetric Ripples (pink), AD = Asymmetric Dunes (blue), SD = Symmetric Dunes (purple) and CR = Current
Ripples (yellow). SR, QAR and AR do not scale with the flow (blue and red boxes); wavelength is independent of the water
excursion.
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Figure 8.6: Histogram of bedform wavelength at equilibrium conditions for a three-
dimensional asymmetric combined flow dune (Experiment 28). n is the number of mea-
surements, Pr is the cumulative distribution function of the normal PDF (red line), λe is the
equilibrium wavelength.

This type of relationship was first derived by Komar (1974) and later improved by Clifton

(1976) to

λη = 0.65 do, (8.12)

and since then Equation (8.12) has been widely used in the geological community to predict

paleoflow-depths (e.g., Dupré, 1984; Allen and Hoffman, 2005; Immenhauser, 2009). Rela-

tionships that simply relate the bedform size, which can be easily measured in the field, with

the water excursion can be quickly used to back-calculate the water depth in the paleoen-

vironment. Therefore, based on their proven utility, a similar relationship can be proposed
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for a subset of combined flow bedforms (data outside the red and blue boxes in Figure 8.5),

λη = 0.82 d+o (8.13)

Like pure oscillatory and combined flow, a similar linear dependency is found in which the

wavelength of dunes (previously named large ripples; e.g., Dumas et al., 2005) increase as

the water excursion becomes larger. This result is consistent with previous studies under

combined flows (Arnott and Southard, 1990; Dumas et al., 2005). Equation 8.13 (black line)

and the 95% confidence interval (gray-shaded area) are plotted in Figure 8.5, showing the

large amount of dispersion characteristic of bedforms (Figure 8.6). The fit of the experi-

mental data was not able to account for the dispersion present in the data (symbols outside

the gray-shaded area), although, no existing bedform predictor has been able to accomplish

such a task (e.g., Raudkivi, 1997; Pedocchi and Garćıa, 2009b). Nevertheless, Equation 8.13

predicts a linear relationship between λη and d+o , and thus following the orbital/anorbital

classification (Clifton, 1976), these bedforms can be classified as orbital.

On the other hand, similar to the experimental results of Dumas et al. (2005), the wave-

length of SR, QAR and AR (small ripples in the nomenclature of Dumas et al., 2005) did

not scale with the flow properties ( i.e., the equilibrium wavelength was independent of the

water excursion, symbols inside the blue and red box in Figure 8.5). This independence can

be observed by the lack of an increment of the bedform wavelength as the combined flow

orbital diameter is increased (symbols inside the blue and red box in Figure 8.5). Rather,

the wavelength of oscillatory-flow and combined flow ripples remains constant at ∼ 0.10 m

for Dumas et al. (2005) (D50 < 0.17 mm; blue box in Figure 8.5) and ∼ 0.20 m for the new

combined flow experiments presented herein (D50 = 0.25 mm; red box in Figure 8.5). Hence,

based on the behavior previously described, Dumas et al. (2005) classified such bedforms

as anorbital. However, the wavelength of the bedforms present in the present study, which

might be considered anorbital, have a wavelength that is twice as large as the characteristic
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anorbital wavelength (λη ∼ 0.075− 0.1 m).

Figure 8.7: Experimental data relating d+o with the wavelength spacing compiled by Pedocchi
(2009) (pure oscillatory bedforms). In addition, the combined flow data inside the red
and blue boxes from Figure 8.5 is plotted in color (for reference see Figure 8.5). The two
lines corresponds to ‘orbital’ λη = 0.65 do (Equation 8.11) and ‘anorbital’ λη = 0.075 m
trends. The blue and red-shaded zones are drawn to illustrate the range of orbital (blue)
and anorbital (red) bedforms. Modify from Pedocchi (2009).

Nevertheless, despite this observation, the effects of grain size in the presence of orbital or

anorbital bedforms is far from been understood (Cummings et al., 2009; Pedocchi, 2009). The

presumably combined flow anorbital ripples in the present study generated with D50 = 0.25

mm lie within the large dispersion of orbital bedforms (colored circles in the blue-shaded

area in Figure 8.7). However, it is hard to believe that the experimental data inside the red

box in Figure 8.5 is actually scaling with d+o as proposed by Figure 8.7 (blue-shaded area).
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The combined flow anorbital ripples (symbols inside the red box in Figure 8.5) show no

commensurate increase in bedform wavelength in a range between d+o = 0.3 m and d+o = 1.15

m, suggesting an anorbital classification. Therefore, it can be hypothesized that there might

be some scaling effects between the anorbital wavelength and grain size. Unfortunately,

the new experimental data presented in this study was unable to address such a grain size

dependence, and further experimental work is required.

Similar to combined flow and oscillatory bedform wavelengths, the bedform index was

found to have a strong relationship with the maximum combined-flow water excursion (d+o ;

Figure 8.8)

BI = 12.04 d+o
0.32 (8.14)

Figure 8.8: Bedform index as a function of the maximum combined-flow water excursion.
The gray-shaded area represents the 95% confidence interval of the fitted function (Equa-
tion 8.14). SR = Symmetric Ripples (light-orange), AR = Asymmetric Ripples (red), QAR
= Quasi-asymmetric Ripples (pink), AD = Asymmetric Dunes (blue), SD = Symmetric
Dunes (purple) and CR = Current Ripples (yellow). Experimental data from Dumas et al.
(2005) and the present study.
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Figure 8.8 shows the linear regression (Equation 8.14) with a R-square of 0.85 (p-value =

0.0264, Appendix B.4) with the 95% confidence interval (gray-shaded area). Despite the

natual dispersion, Equation 8.14 provides an overall good agreement with the experimental

data. Furthermore, contrary to Equation 8.13, Equation 8.14 is able to represent (without

accounting for the dispersion) all the combined flow bedforms from this study and the

experimetal data from Dumas et al. (2005), including the anorbital bedforms.

8.3.2 Bedform Symmetry

One of the most clear descriptions that can be obtained from the cross-sectional geometry of

bedforms in outcrops is the symmetry, and use of a quantitative value such as the bedform

symmetry index is crucial to characterize this symmetry. To properly utilize this index, it is

important to measure the lee and stoss side lengths using the distance between the trough

and the crest, and not the trough and the brinkpoint (Allen, 1968). The separation between

the crest and the brinkpoint is an important change in the cross-sectional geometry, but

is independent of the change in symmetry (see section 8.3.3). Nevertheless, following the

terminology proposed in chapter 5, the bedform symmetry can be classified as

BSI < 1.3 Symmetric

1.3 < BSI ≥ 1.5 Quasi-asymmetric

BSI < 1.5 Asymmetric.

(8.15)

The presence of the unidirectional component in a given combined flow produces a net

sediment transport downstream, which is reflected in the bedload transport (i.e., bedform

migration). As preferential transport increases with the unidirectional flow velocities relative

to the oscillatory component, the bedforms become oriented to this direction, thus producing

an asymmetric profile. Figure 8.9 shows a range of cross-sectional geometries of different

bedforms at equilibrium conditions with a fixed period (T = 4 s) and maximum orbital
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Figure 8.9: Different cross-sectional bedform geometries at equilibrium conditions. a) BSI =
0.96 - Experiment 01 (T = 4 s, Uo = 0.25ms−1 and Uu = 0ms−1), b) BSI = 1.53 -
Experiment 03 (T = 4 s, Uo = 0.25ms−1 and Uu = 0.20ms−1), c) BSI = 1.66 - Experiment
04 (T = 4 s, Uo = 0.25ms−1 and Uu = 0.30ms−1) and d) BSI = 2.36 - Experiment 05
(T = 4 s, Uo = 0.25ms−1 and Uu = 0.40ms−1).

velocity (Uo = 0.25ms−1) as the unidirectional flow is increased from 0ms−1 to 0.4ms−1.

Therefore, the change between symmetric and asymmetric ripples is proportional to the

relative amount of sediment transport generated by the unidirectional flow relative to the

oscillatory flow. In addition, it was observed that BSI is also a function of the oscillation

period (Figure 8.10)

BSI

T∗
= 1.71× 10−10

(
θu
θo

)0.45

(8.16)

where θu/θo is the ratio between the unidirectional and oscillatory Shields number and

T∗ = Tν/D2
50 (8.17)

is a dimensionless period. Equation 8.16 is a linear regression of the experimental data

with an R2 of 0.79 (p-value = 0.033, Appendix B.4; 95% confidence interval shown in the

gray-shaded area in Figure 8.10). In addition, Equation 8.16 expresses two important be-

haviors of the BSI: i) it rises as the ratio between the unidirectional and oscillatory shear

stress increases, and, ii) it exhibits a linear relationship with the dimensionless period T∗.

Figure 8.10 shows the predictive power of Equation 8.16 for a range of oscillatory periods.
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It can be observed that, despite the short range of oscillatory periods (T = 4 − 9.4 s), the

relationship expressed by Equation 8.16 well predicts the degree of asymmetry for combined

flows. However, Equation 8.16 does not show the asymptotic behavior necessary to predict

the cases of pure oscillatory flows or pure unidirectional flows. Therefore, further experi-

ments are needed to fully test this predictor and enlighten new physical processes that allow

formulation of a universal equation for the bedform symmetry index.

Figure 8.10: BSI/T∗ as a function of the ratio between the current and wave Shields number
(θc/θw), where T∗ is the dimensionless wave period Tν/D2

50. The gray-shaded area represents
the 95% confidence interval of the fitted function (Equation 8.16). Data from this study and
Dumas et al. (2005).

8.3.3 Bedform Roundness

Bedforms with a rounded-stoss side have been described under relatively strong (below USPB

conditions) unidirectional (e.g., Jopling and Forbes, 1979), oscillatory (e.g., Pedocchi and

Garćıa, 2009b) and combined flows (e.g., Yokokawa, 1995). Figure 8.11 shows a range of

different cross-sectional geometries at equilibrium conditions for pure oscillatory (Fig. 8.11a:
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(a) Cross-sectional geometry of bedforms in the present study. (1) BRI = 0.40 - Experiment 01 (T = 4
s, Uo = 0.25ms−1 and Uu = 0ms−1), (2) BRI = 0.54 - Experiment 03 (T = 4 s, Uo = 0.25ms−1 and
Uu = 0.20ms−1), (3) BRI = 0.61 - Experiment 04 (T = 4 s, Uo = 0.25ms−1 and Uu = 0.30ms−1) and (4)
BRI = 0.72 - Experiment 05 (T = 4 s, Uo = 0.25ms−1 and Uu = 0.40ms−1). Flow direction from right to
left.

(b) Rounded ripple formed under pure unidirectional flows (Uu = 0.45ms−1): BRI = 0.61. Flow direction
from right to left. Modified from Jopling and Forbes (1979).

Figure 8.11: Different cross-sectional bedform geometries at equilibrium conditions.

1), combined (Fig. 8.11a: 2-4) and pure unidirectional (Fig. 8.11b) flows. Similar to the

bedform symmetry index, the bedform roundness index increased as the unidirectional flow

increases for a given period and oscillatory velocity (Figure 5.11 and Chapter 5). However,

in these cases the same phenomenon occurred as the oscillatory velocity was increased. It

is important to acknowledge that, in most cases, and especially for pure unidirectional and

oscillatory flows, the roundness of the stoss side is a morphological representation of relatively

high flow velocities and bed shear stresses. Hence, some of the bedforms generated under

pure unidirectional and oscillatory flows are described as a transient stage or a gradual

transition between ripples or dunes and USPB (e.g., Saunderson and Lockett, 1983; Bridge

and Best, 1988; Pedocchi and Garćıa, 2009b). However, there is a set of combined flow
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conditions where rounded bedforms are not generated under high shear stresses or close to the

USPB transition. The additional process which rounds the bedforms in these combined flow

conditions is associated with the flow reversal occurring under wave-dominated combined

flows. Wave-dominated combined flows are such that the maximum shear stress at flow

reversal (maximum oscillatory velocity in the upstream direction) is larger than the critical

shear stress for sediment entrainment (|θ(−)
max| > θc). Experiment 03 is used to illustrate this

process, utilizing a sequence of cross-sectional pictures throughout a wave cycle (Figure 8.12).

Wave-dominated combined flows are characterized by flow conditions where the current

Figure 8.12: Sequence of pictures during a wave cycle for experiment 03 (wave-dominated
combined flows), showing wave-reworking of the ripple crest. Pictures are temporally spaced
at 0.61 s. Unidirectional flow from right to left. Bedform wavelength is 0.175 m. Since the
bedforms are at equilibrium with the flow conditions, BRI remains unchanged at 0.54 for all
the pictures.

boundary layer is not strong enough to prevent the wave boundary layer reversing the flow.

Yet, the presence of the unidirectional flow produces a clear asymmetry in the flow near

the bed (Figure 8.13) that is not only reflected in the bedform asymmetry, but also in the

observed leeside (Figure 8.12:2) and stoss-side (Figure 8.12:6) flow separation eddies. When

the direction of the oscillatory component and unidirectional flow coincide, flow separation

is similar to that for unidirectional bedforms (Figure 8.12: 1-2, see section 3.2.2 or 3.2.3).

On the other hand, the separation eddy (Figure 8.12:6) generated during flow reversal is

generated under lower velocity conditions

(left side of the vertical lines in Figure 8.13a). This upstream flow separation eddy (Fig-
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Figure 8.13: Velocity over a three-dimensional asymmetric combined flow ripple (Experi-
ment 3). Oscillatory Condition: Uo = 0.25ms−1 and T = 4 s. Unidirectional Condition:
Uu = 0.20ms−1. (a) Streamwise phase-averaged velocity profile along the oscillation cycle.
(b) Streamwise phase-averaged velocity along the oscillation cycle at z = 0.28 m. The sym-
bols correspond to the velocity profiles plotted in (a). Vertical (a) and horizontal (b) lines
represent the zero velocity line.
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ure 8.12: 6) does not have enough energy to fully mobilize the sediment on the stoss-side.

Nonetheless, as the downstream eddy reverses, the eddy stays relatively close to the bed,

thus ‘reworking’ the crest of the ripple, and making it relatively rounded (Figure 8.12: 3-5).

After detailed analysis, the bedform rounded index was found to be related to the ratio

between the unidirectional and oscillatory Shields number (θu/θo) by the following equation

(Figure 8.14)

BRI = 0.33

(
θu
θo

)0.30

+ 0.40 (8.18)

where the Shields numbers were computed using the unstratified, three-layer eddy viscosity

formulation of Madsen and Grant (1976). Equation 8.18 is obtained by a linear regression

of the experimental data (blue line in Figure 8.14). The R2 of the fit is 0.78 (p-value =

Figure 8.14: BRI as a function of the ratio between the unidirectional and oscillatory
Shields number (θu/θo). The gray-shaded area represents the 95% confidence interval of the
fitted function (Equation 8.18). SR = Symmetric Ripples (light-orange), AR = Asymmetric
Ripples (red), AD = Asymmetric Dunes (blue), SD = Symmetric Dunes (purple) and CR
= Current Ripples (yellow). Data from this study and Dumas et al. (2005).
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0.046, Appendix B.4) with a relatively large, but expected, scatter (values outside the 95%

confidence interval represented by the gray-shaded area in Figure 8.14). Despite the scatter,

Equation 8.18 is able to represent the mean value of BRI observed for pure oscillatory flows

lim
Uu→0

BRI → 0.40 (8.19)

(Figure 8.14). On the other hand, Equation 8.16 does not show the asymptotic behavior

necessary to predict the cases of pure unidirectional flows (BRI ≈ 0.5).

8.4 Conclusions

A detailed analysis of the Bedform Index (BI), Bedform Symmetry Index (BSI) and Bedform

Roundness Index (BRI) was made, with a particular emphasis on their use to differentiate

between unidirectional, oscillatory and combined flows. This chapter proposes a new set of

equations (Equations 8.7 to 8.9) that compute the probability of a bedform with a given

cross-sectional geometry, defined with bedform indices (BI,BSI,BRI), being generated under

unidirectional, oscillatory and combined flows. In order to characterize the indices with the

flow conditions, three empirical relationships are proposed to relate (i) the bedform index

with the combined-flow water excursion

BI = 12.04 d+o
0.32, (8.20)

(ii) cross-sectional bedform symmetry with the Shields number ratio

BSI

T∗
= 1.71× 10−10

(
θu
θo

)0.45

(8.21)
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and (iii) cross-sectional bedform roundness with the flow conditions

BRI = 0.33

(
θu
θo

)0.30

+ 0.40 (8.22)

In addition, unlike other combined flow studies (e.g., Dumas et al., 2005), a gradual size

transition was observed between ripples and dunes. If only the mean values of wavelength

are considered for the combined flow conditions with the unidirectional component less than

0.3ms−1, there might be a size gap between wavelengths ≈ 0.30 and ≈ 1 m. However,

such a wavelength ‘gap’ was not observed under current-dominated combined flows (Uu ≥

0.3ms−1). Moreover, such a gap is non-existent if the whole distribution of bedform sizes

is taken into account.
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Chapter 9

Conclusions and Future Research

This thesis presents new experimental data on bedform initiation and development under

unidirectional, oscillatory and, more extensively, combined flows. In particular, this study

was able to populate zones of the Terra incognita region previously defined in the literature

(Southard, 1991). In this thesis, the stable bedform configurations under a diverse range

of flow conditions were studied and divided into: no motion (NM), 2D symmetric ripples

(2D SR), 3D symmetric ripples (3D SR), 3D symmetric dunes (SD), 3D asymmetric ripples

(AR), 3D quasi-asymmetric ripples (QAR), 3D asymmetric dunes (AD), 3D current ripples

(CR), 3D current dunes (CD) and upper-stage plane bed (USPB). Each of these bedform

stages was described, characterized and reproduced in dimensional and dimensionless phase

diagrams. The experimental data collected under unidirectional flows larger than 0.30 ms−1

allow expansion of the current understanding on bed configurations within the Terra Incog-

nita zone, where the phase boundary between combined flow bedforms and current ripples

was experimentally constrained. On the other hand, based on dimensionless analysis, the

oscillatory and unidirectional mobility numbers were used to represent the dimensionless

phase diagram under combined flows. This set of dimensionless numbers provides a bet-

ter representation than previous studies that use a friction factor to compute the Shields

number. In addition, a new nomenclature for combined flow bedforms is proposed, which

includes the planform and cross-sectional geometries in order to better represent the bed

morphologies. This new nomenclature was carefully designed to integrate both unidirec-

tional and oscillatory bedforms. One of the main changes that allows integration with the

nomenclature used in unidirectional flows is the reclassification of large ripples as dunes.
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This change is a significant modification of the system of classification of oscillatory and

combined flow bedforms where all bed states are called ripples. Furthermore, the intro-

duction of the planform and cross-sectional geometries as properties to classify bedforms

leads to the definition of a stable phase space for two-dimensional symmetrical ripples and

three-dimensional quasi-asymmetrical ripples.

The bedform initiation and development experiments illuminated the similarity of the

genesis and growth processes for all types of flows. This result was reflected in the same

geometric pattern and development-path regardless of the flow conditions. Moreover, the

development-path, or bedform growth, exhibits the same general trend for different bedform

sizes (e.g., ripples vs dunes), bedform shape (e.g., symmetric or rounded), bedform planform

geometry (e.g., 2D vs 3D) and sediment grain sizes. The development of the bed defects

during the genesis of bedforms shows a strong relationship with the direction and magnitude

of the shear stress throughout the oscillation cycle. If the condition possessed a symmetric

shear stress, the defects grew and propagated symmetrically, whereas if the shear stress was

asymmetric, the defects grew and propagated with a predominant downstream direction.

Furthermore, for the case of current-dominated combined flow, the maximum upstream

shear stress was not large enough to entrain sediment in the upstream direction, resulting in

solely downstream sediment transport and bedform migration. The bedform development

was able to be divided and characterized into four main stages : (1) incipient bedforms,

(2) growing bedforms, (3) stabilizing bedforms, and (4) fully-developed bedforms, consistent

with the separation proposed by Baas (1994, 1999) for pure unidirectional flows. Finally,

a probabilistic model based on the bedform cross-sectional geometries is proposed in order

to differentiate between unidirectional, oscillatory and combined flows from the preserved

strata. This probabilistic model provides a significant improvement on the present tools to

diagnose bedforms in the modern and ancient record.

Despite these new advances, the limitations of the present experiments, combined with the

limited data set available in the literature, makes it impossible to address the effects of grain
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size in the bed morphologies. Unfortunately, based on the grain size dependence of pure

unidirectional and pure oscillatory flows bedforms, the effects of grain size might change the

bed configuration significantly. It is expected that for sediments coarser than a critical grain

size (still unknown), the stability field of ripples should vanish. Similarly, for sediments finer

than a critical grain size, dunes would not form anymore or have a very small stability space.

Furthermore, new work in sediment mixtures, in particular sand with silt/clay (e.g., Baas

et al., 2011) has highlighted the significant role played by finer sediment in the development

and final states of bedforms. Other issues besides grain size, which were not addressed in

this thesis but may have a significant impact on bedform characteristics and evolution, are

associated with the simplified flow field used in the present experiments. One of the most

significant simplifications was the fact that the waves used in these experiments had a very

well-defined sinusoidal shape with a unique oscillation period (symmetric waves). The effect

of irregular waves (asymmetric waves), which are common in natural environments, can affect

the overall geometry of the bedforms. In addition, coastal environments are characterized

by a spectrum of wave periods and wave directions, effects that are thought to generate

interference ripples (Davis, 1965), and were not considered herein. Hence, future field and

laboratory experiments will require consideration of some, or all, of the above variables to

move closer to bedforms that are found in the field.
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Appendix A

Illustrative Videos

A.1 Cited Videos

A.1.1 Ch06 - 01:T05O30U00 Genesis.avi

Oscillatory Condition: Uo = 0.30ms−1 and T = 5 s.

Unidirectional Condition: Uu = 0.00ms−1

The experiment started from an initial defect, which was made by compacting the flat bed

and generating a negative defect with a length ≈ 0.08 m, width ≈ 0.1 m and height ≈ 0.03

m. As the flow started, a characteristic geometric pattern was generated from the defect

propagation by erosion of the edge of the original defect, and development of a crest and

twin scour pits or ‘horns’ (Chapter 6). Despite the fact that no flow data was measured over

the defect, it can be deduced by looking at the movie, that the flow separates from the defect

edge, generating a zone of high instantaneous bed shear stresses large enough to move the

sediment, mainly as bedload. As sediment gets transported both downstream and laterally,

two-lobed horns form in the bed. Over time, the newly-formed feature becomes the new

edge of a defect generating flow separation, which causes scour and development of a new

feature; this process is repeated to form a train of defects in the direction of propagation.

Unfortunately, due to the natural limitation of the facility, the area of view captured with

the camera was relatively small (≈ 0.34 m long and ≈ 0.23 m wide) and unable to record

the overall evolution of the defect as it further moved in the propagation direction.
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Table A.1: Summary of flow parameters, bedform and video characteristics of
T05O30U00 Genesis.avi.

Set Exp T Uo Uu D∗ UH
a u∗,M94

b u∗,S97
c

(s) (ms−1) (ms−1) (ms−1) (ms−1) (ms−1)

01 01 05 0.30 0.00 6.06 0.00 0.026 0.025

u∗ θ
(+)
max

d θ
(−)
max

e SSSIf Temp Durationg Frame Rate V. Rep.h V.L.i

(ms−1) (◦C) (min) (fps) (min/sec) (min)

0.021 0.105 -0.113 1.07 18.0 46.83 60 RT 0.50

a Depth-averaged unidirectional velocity. UDVP data, computed with Equation 4.29.
b Predicted value based on Grant and Madsen (1979). c Predicted value based on Soulsby (1997).
d Maximum value through the oscillation cycle. UDVP data, computed with Equation 4.26.
e Minimum value through the oscillation cycle. UDVP data, computed with Equation 4.26.
f SSSI = Shear Stress Symmetry Index. g Experiment duration.
h Video Representation. RT = Real Time. i Video Length.

A.1.2 Ch07 - 01: T06O25U00 Develop.wmv

Oscillatory Condition: Uo = 0.25ms−1 and T = 6 s.

Unidirectional Condition: Uu = 0.00ms−1

The video shows two animations: on the left side of the video there is a sequence of

pictures that show the evolution of the bedforms, and on the right side, there is a plot of

the mean height (η - blue circles) and wavelength (λ - brown circles) as a function of time.

There is a larger yellow circle in the diagram on the right side that indicates the mean

height and wavelength represented in the image displayed on the left side. In addition, three

vertical lines indicate the transitions of the four bedform development stages: (1) incipient

bedforms, (2) growing bedforms, (3) stabilizing bedforms, and (4) fully-developed bedforms

(see Chapter 7). Once the bedform reaches the fourth, or fully-developed bedform stage, the

bedform is considered in morphodynamic equilibrium.

The experiment started from a flat bed. First, very small two-dimensional symmetrical

ripples grew slowly from the sidewalls of the tunnel and propagated into the center of the

channel. Fifteen to twenty minutes after the beginning of the experiment, the bed was com-

pletely covered by bedforms of a similar size to the initial ones, but with a three-dimensional
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planform geometry. It is important to note that at this time the first measurements of height

and wavelength were able to be computed, and hence all the time previous to this moment

is listed as negative time. By a slow merging process, these ripples grew in size and the

planform geometry became more two-dimensional as the bedforms started to amalgamate.

During this merging stage, bedforms of all sizes were present on the bed. Larger bedforms

stayed in a relative fixed position as smaller bedforms migrated into them forming even larger

bedforms. This process culminated at the same time the bed reached a full two-dimensional

planform geometry, where no further changes in height, wavelength and planform geometry

were recorded, or ‘stable equilibrium’. The experiment started from a flat bed. First, very

small two-dimensional symmetrical ripples grew slowly from the sidewalls of the tunnel and

propagated into the center of the channel. Fifteen to twenty minutes after the beginning of

the experiment, the bed was completely covered by bedforms of a similar size to the initial

ones, but with a three-dimensional planform geometry. It is important to note that at this

time the first measurements of height and wavelength were able to be computed, and hence

all the time previous to this moment is listed as negative time. By a slow merging process,

these ripples grew in size and the planform geometry became more two-dimensional as the

bedforms started to amalgamate. During this merging stage, bedforms of all sizes were

present on the bed. Larger bedforms stayed in a relative fixed position as smaller bedforms

migrated into them forming even larger bedforms. This process culminated at the same

time the bed reached a full two-dimensional planform geometry, where no further changes

in height, wavelength and planform geometry were recorded, or ‘stable equilibrium’.

There are several important observations that can be made from this video:

• there is a temporal lag in the development history of 2D oscillatory bedforms between

the time required for these bedforms to reach equilibrium sizes (i.e., ηt ∼ 0.9 ηe and

λt ∼ 0.9λe) and the time to reach equilibrium planform geometry (i.e., the time for the

bed to be fully 2D). This is shown in the video when the experiment reaches the fourth,

or fully-developed, bedform stage and the bed is still not at planform equilibrium.
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• that despite the two-dimensionality of the initial and final stages of the bed configura-

tion, the bedforms always transition to a three-dimensional stage when transitioning

between two-dimensional configurations. This characteristic property of oscillatory

flows was also observed in the experiments reported by Pedocchi (2009).

• that for the case of two-dimensional oscillatory ripples, once the bed reached the fi-

nal equilibrium the bedforms stopped their migration and established a very defined

wavelength and height that stayed fixed over time without any variations. These wave-

lengths and heights will persist until the flow condition is changed, and then the bed

will break the two-dimensionality to rearrange itself to a new equilibrium stage that is

stable with the new flow condition. This ’stable equilibrium’ behavior is a fundamental

characteristic of two-dimensional oscillatory ripples, not seen in any other type of flow

type or bedform.

Table A.2: Summary of flow parameters, bedform and video characteristics of
T06O25U00 Develop.wmv.

#a Init.b T Uo Uu λ η BIc BSIc BRIc

Cond. (s) (ms−1) (ms−1) (m) (mm)

01 00 06 0.25 0.0 0.25 42.00 6.23 1.08 0.42

2D/3Dd A/Se nR/Rf Bedformg Temp Eq. Timeh Durationi Frame Rate V. Rep.j V.L.k

Type (◦C) (hr) (hr) (fps) (min/sec) (min)

2D S nR SR 20.5 2.83 15.5 42 15.5 1.93

a Experiment number: s at the end of the name indicates that smaller bedforms were observed super-
imposed on the larger ones.

b Initial condition of the sediment bed at the beginning of the experiment: 00 indicates flat bed, other
numbers indicates the number of the experiment run before.

c BI = λη η−1, BSI = λs λ
−1
l and BRI = λ0.5 s λ

−1
s , equation 3.32.

d 2D indicates two-dimensional bedforms
e A stands for asymmetric (BSI > 2) and S for symmetric (BSI < 2)
f nR stands for not-rounded (BRI < 0.6) and R stands for rounded (BRI > 0.6).
g SR = Symmetric Ripples. h Time until flow-bedform equilibrium.
i Experiment duration. j Video Representation. k Video Length.
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A.2 Additional Videos

In the following appendix, there is a list of several key videos generated to illustrate the

development and behavior of the bedforms in the thesis.

A.2.1 Experiment 3 - T04O25U20.wmv

Oscillatory Condition: Uo = 0.25ms−1 and T = 4 s.

Unidirectional Condition: Uu = 0.20ms−1

The experiment started from a flat bed. Initially, small ripples slowly grew from the side-

walls of the tunnel and propagated into the center of the tunnel with a clear downstream

alignment. This propagation was not homogeneous along the bed, leaving some areas of

the bed free of bedforms. Ten to fifteen minutes after the beginning of the experiment, the

bed was completely covered by bedforms. At this time, the bed was populated by small

asymmetrical ripples with a wide range of sizes. Soon after these ripples had covered the

bed, differential transport allowed the “faster” ripples to agglomerate with the “slower”

ripples, thereby generating larger three-dimensional combined-flow ripples. Unlike Experi-

ment 30 (A.1.2), once the bed reached a final equilibrium stage, the bedforms moved and

adjusted in a ‘dynamic equilibrium’ with the instantaneous flow and sediment transport

conditions. The diversity of sizes seen in the video, which is an inheritance condition of a

dynamic equilibrium, are considered to be the ‘normal’ stage of the bedform, where there

is not a unique equilibrium wavelength and height but a spectrum of values. The difference

between a bedform with a spectrum of sizes and multiple superimposed bedforms can be

distinguished by a clear break in the size distribution (i.e, the presence of a bi- or tri-modal

distribution). Unless specifically mentioned in the existence of a superposition of bedforms,

all three-dimensional bedforms are in dynamic equilibrium and their wavelength and height

reported is the mean of the sizes (see Chapter 7).
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Table A.3: Summary of flow parameters, bedform and video characteristics of
T04O25U20.wmv.

#a Init.b T Uo Uu λ η BIc BSIc BRIc

Cond. (s) (ms−1) (ms−1) (m) (mm)

03 00 04 0.25 0.2 0.18 21.1 08.6 1.53 0.54

2D/3Dd A/Se nR/Rf Bedformg Temp Eq. Timeh Durationi Frame Rate V. Repj V.L.k

Type (◦C) (hr) (hr) (fps) (min/sec) (min)

2.5D A nR ARς 17.5 2.91 18.0 74 18 1.12

a Experiment number: s at the end of the name indicates that smaller bedforms were observed super-
imposed on the larger ones.

b Initial condition of the sediment bed at the beginning of the experiment: 00 indicates flat bed, other
numbers indicates the number of the experiment run before.

c BI = λη η−1, BSI = λs λ
−1
l and BRI = λ0.5 s λ

−1
s , equation 3.32.

d 2D indicates two-dimensional bedforms
e A stands for asymmetric (BSI > 2) and S for symmetric (BSI < 2)
f nR stands for not-rounded (BRI < 0.6) and R stands for rounded (BRI > 0.6).
g AR = Asymmetric Ripples and ς = Current-Dominated Combined Flows.
h Time until flow-bedform equilibrium. i Experiment duration.
j Video Representation. k Video Length.

A.2.2 Experiment 23 - T05O40U40fromT05O20U40.wmv and

T05O40U40fromT05O20U40 CloseUP.avi

Oscillatory Condition: Uo = 0.40ms−1 and T = 5 s.

Unidirectional Condition: Uu = 0.40ms−1

The experiment (T05O40U40fromT05O20U40.wmv) started from the final equilibrium

condition of Experiment 17 (Uo = 0.20ms−1, T = 5 s and Uu = 0.40ms−1). This flow

condition generated appreciable immediate entrainment, suspending large amounts of sedi-

ment. In general, high transport conditions promote rapid initiation of bedforms (Venditti

et al., 2005a) but in this case, since the bed possessed bedforms already, the flow slowly

modified the pre-existing bedforms. As these bedforms evolved, they quickly grew in size.

This growth was limited by the scaling imposed by the width of the flume. At this point,

the bedform three-dimensionality was eliminated. The wavelength exhibited by these dunes

was ≈ 1 m and was interpreted as the equilibrium wavelength. The large velocities gener-
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ated when the unidirectional and oscillatory flows were directionally-coincident produced the

greatest downstream bedform migration. In addition, during these conditions, separation

eddies forming in the lee side of the asymmetric combined-flow dunes were strong enough to

mobilize sediment, leading to the development of small upstream migrating ripples. These

small ripples persisted only while the recirculation eddies entrained sediment. This process

can be seen in the close-up video (T05O40U40fromT05O20U40 CloseUP.avi).

Table A.4: Summary of flow parameters, bedform and video characteristics of
T05O40U40fromT05O20U40.wmv.

#a Init.b T Uo Uu λ η BIc BSIc BRIc

Cond. (s) (ms−1) (ms−1) (m) (mm)

23 16 05 0.40 0.40 1.05 102.30 10.3 4.16 0.92
2D/3Dd A/Se nR/Rf Bedformg Temp Eq. Timeh Durationi Frame Rate V. Repj V.L.k

Type (◦C) (hr) (hr) (fps) (min/sec) (min)

2D1 A R ARDς 17.0 - 00.8 15 1.808 0.57

a Experiment number: s at the end of the name indicates that smaller bedforms were observed super-
imposed on the larger ones.

b Initial condition of the sediment bed at the beginning of the experiment: 00 indicates flat bed, other
numbers indicates the number of the experiment run before.

c BI = λη η−1, BSI = λs λ
−1
l and BRI = λ0.5 s λ

−1
s , equation 3.32.

d 2D indicates two-dimensional bedforms. The superscript 1 indicates that the width of the flume was
not large enough for bedforms to fully develop their planform geometry.

e A stands for asymmetric (BSI > 2) and S for symmetric (BSI < 2)
f nR stands for not-rounded (BRI < 0.6) and R stands for rounded (BRI > 0.6).
g AR = Asymmetric Rounded Dune and ς = Current-Dominated Combined Flows.
h Time until flow-bedform equilibrium. i Experiment duration.
j Video Representation. k Video Length.
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Table A.5: Summary of flow parameters, bedform and video characteristics of
T05O40U40fromT05O20U40 CloseUP.avi.

#a Init.b T Uo Uu λ η BIc BSIc BRIc

Cond. (s) (ms−1) (ms−1) (m) (mm)

23 16 05 0.40 0.40 1.05 102.30 10.3 4.16 0.92
2D/3Dd A/Se nR/Rf Bedformg Temp Eq. Timeh Durationi Frame Rate V. Repj V.L.k

Type (◦C) (hr) (hr) (fps) (min/sec) (min)

2D1 A R ARDς 17.0 - 00.8 15 RT 0.73

a Experiment number: s at the end of the name indicate that smaller bedforms were observed superim-
posed on the larger ones.

b Initial condition of the sediment bed at the beginning of the experiment: 00 indicates flat bed, other
numbers indicates the number of the experiment run before.

c BI = λη η−1, BSI = λs λ
−1
l and BRI = λ0.5 s λ

−1
s , equation 3.32.

d 2D indicates two-dimensional bedforms. The superscript 1 indicates that the width of the flume was
not large enough for bedforms to fully develop their planform geometry.

e A stands for asymmetric (BSI > 2) and S for symmetric (BSI < 2)
f nR stands for not-rounded (BRI < 0.6) and R stands for rounded (BRI > 0.6).
g AR = Asymmetric Rounded Dune and ς = Current-Dominated Combined Flows.
h Time until flow-bedform equilibrium. i Experiment duration.
j Video Representation. RT = Real Time. k Video Length.
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Appendix B

Significance of Correlations

B.1 Chapter 05

Table B.1: Significance of correlations for fits in Chapter 5

Equation BSI = AUu +B (Equation 5.5)

A B R2 p-value

4.40 1.0 0.68 0.036

Equation BRI = AUu +B (Equation 5.5)

A B R2 p-value

0.64 0.42 0.62 0.042
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B.2 Chapter 06

Table B.2: Significance of correlations for fits in Chapter 6

Equation λDS

λUS
(t) = α t+ β (Equation 6.1)

Set Exp
α× 10−2

R2(α) p-value(α)
[s−1]

01 01 0.05 0.69 0.04
01 02 0.41 0.68 0.05
01 03 0.02 0.90 0.02
01 04 0.05 0.67 0.03
02 01 4.26 0.63 0.03
02 02 3.79 0.70 0.04
02 03 3.04 0.70 0.03
02 04 3.14 0.69 0.04
03 01 0.02 0.62 0.03
03 02 3.04 0.56 0.04
03 03 7.47 0.71 0.04

Equation α = γ (SSSI − 1)φ (Equation 6.2)

γ φ R2 p-value

0.035 0.6 0.82 0.04
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B.3 Chapter 07

Table B.3: Significance of correlations for Table 7.1

Equations
ηt(t) = ηe

(
1− e−cη t

)
(Equation 7.1)

λt(t) = λe

(
1− e−cλ t

)
(Equation 7.2)

#
ηe cη R2(η) p-value(η)

λe cλ R2(λ) p-value(λ)
(mm) (hr−1) (m) (hr−1)

1 34.8 0.99 0.95 0.005 0.22 0.87 0.96 0.006
2 20.5 0.75 0.60 0.028 0.15 1.01 0.56 0.042
3 21.1 0.89 0.65 0.044 0.18 0.47 0.82 0.012
4 26.9 2.02 0.40 0.021 0.23 1.80 0.56 0.040
5 35.6 1.34 0.45 0.048 0.51 6.90 0.45 0.035
8 35.3 0.82 0.97 0.009 0.21 0.65 0.98 0.009
11 36.4 0.69 0.66 0.035 0.15 0.24 0.46 0.042
12 27.3 2.10 0.87 0.022 0.22 1.24 0.91 0.010
15 27.6 2.68 0.63 0.027 0.27 2.72 0.48 0.047
16 30.3 2.20 0.50 0.034 0.60 0.98 0.45 0.030
17 44.6 0.06 0.85 0.029 0.88 0.06 0.85 0.024
18 22.0 2.79 0.62 0.036 0.20 3.48 0.53 0.026
19 23.0 4.30 0.43 0.036 0.17 3.17 0.35 0.021
20 20.7 2.65 0.43 0.027 0.21 2.48 0.43 0.042
21 61.3 0.93 0.92 0.007 0.58 0.77 0.93 0.008
22 98.3 0.98 0.89 0.023 1.02 0.93 0.79 0.034
25 153.0 0.06 0.47 0.040 1.23 0.96 0.47 0.047
27 35.5 6.10 0.97 0.007 0.49 0.86 0.96 0.008
30 32.1 0.45 0.94 0.007 0.20 0.48 0.97 0.008
31 26.6 0.70 0.63 0.050 0.18 2.50 0.39 0.046
32 17.2 0.55 0.92 0.005 0.19 0.37 0.91 0.009
33 17.6 1.47 0.43 0.047 0.17 0.89 0.36 0.037
34 23.3 2.15 0.62 0.047 0.25 1.42 0.51 0.026
35 68.3 1.78 0.64 0.044 0.65 1.52 0.42 0.027
36 123.0 3.36 0.78 0.023 1.30 1.61 0.69 0.047
42 32.3 3.67 0.45 0.028 0.28 3.94 0.45 0.021
54 17.6 1.36 0.72 0.030 0.20 3.69 0.76 0.035
55 18.1 2.09 0.63 0.040 0.21 2.82 0.78 0.025
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Table B.4: Significance of correlations for fits in Chapter 7

Equation Uu = A tBe + C (Equation 7.17)

A B C R2 p-value

0.2695 -0.333 0.274 0.55 0.04

Equation Uu = A tBe + C (Equation 7.18)

0.2185 -0.508 0.272 0.63 0.03

Equation q∗ = A tBe (Equation 7.20)

A B R2 p-value

4.89 -1.28 0.92 0.02
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B.4 Chapter 08

Table B.5: Significance of correlations for fits in Chapter 8

Equation λη = Ad+o (Equation 8.12)

A R2 p-value

0.65 0.65 0.051

Equation λη = Ad+o (Equation 8.13)

A R2 p-value

0.82 0.86 0.048

Equation BI = Ad+o
B (Equation 8.14)

A B R2 p-value

12.04 0.32 0.85 0.026

Equation BSI
T∗

= A
(

θu
θo

)B
(Equation 8.16)

A B R2 p-value

1.71 ×10−10 0.45 0.79 0.033

Equation BRI = A
(

θu
θo

)B
+ C (Equation 8.18)

A B C R2 p-value

0.33 0.30 0.40 0.78 0.046
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and G. M. E. Perillo), 2, Taylor and Francis Group, London, Enschede, The Netherlands,
793–798.

Prandtl, L. (1904) über flüssigkeitsbewegung bei sehr kleiner reibung, In: Verhandlungen des
dritten Internationalen mathematikerkongresses in Heidelberg .

Prandtl, L. (1925) Bericht über untersuchungen zur ausgebildeten turbulenz. Zeitschrift für
angewandte Mathematik und Mechanik, 5, no. 2, 136–139.

Prave, A. R. and Duke, W. L. (1990) Small-scale hummocky cross-stratification in turbidites:
a form of antidune stratification? Sedimentology, 37, no. 3, 531–539.

Prins, A. and de Vries, M. (1971) On dominant discharge concepts for rivers: Technische
Hogeschool Delft, Waterloopkundig Laboratorium, Delft, Netherlands, 22 pp.

Raudkivi, A. J. (1963) Study of sediment ripple formation. Journal of the Hydraulics Division,
89, no. HY6, 15–33.

284



Raudkivi, A. J. (1997) Ripples on stream bed. Journal of Hydraulic Engineering, 123, no. 1,
58–64.

Reesink, A. J. and Bridge, J. (2009) Influence of bedform superimposition and flow unsteadiness
on the formation of cross strata in dunes and unit bars part 2, further experiments. Sedimentary
Geology, 222, no. 3-4, 274–300.

Reynolds, O. (1883) An experimental investigation of the circumstances which determine whether
the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 35, 84–99.

Ribberink, J. and Al-Salem, A. (1994) Sediment transport in oscillatory boundary layers in
cases of rippled beds and sheet flow. Journal of Geophysical Research, 99, no. C6, 12707 12727.

Richards, K. J. (1980) The formation of ripples and dunes on an erodible bed. Journal of Fluid
Mechanics, 99, no. 03, 597–618.

Robinson, S. K. (1991) Coherent motions in the turbulent boundary layer. Annual Review of
Fluid Mechanics, 23, 601–639.

Rubin, D. M. and Hunter, R. E. (1982) Bedform climbing in theory and nature. Sedimentology,
29, no. 1, 121–138.

Sato, S. (1987) Oscillatory boundary layer flow and sand movement over ripples. Ph.D. thesis,
University of Tokyo, Japan, 135 pp.

Saunderson, H. C. and Lockett, F. P. J. (1983) Flume experiments on bedforms and structures
at the dune-bed transition, In: Modern and Ancient Fluvial Systems (Eds. J. Collinson and
J. Lewin), Blackwell Science Ltd, Special Publications 6 of the International Association of
Sedimentologists, 584 pp. .

Schlichting, H. (1979) Boundary-layer theory: McGraw-Hill, New York, 817 pp.

Sekiguchi, T. and Sunamura, T. (2004) Effects of bed perturbation and velocity asymmetry on
ripple initiation: wave-flume experiments. Coastal Engineering, 50, no. 4, 231–239.

Sekiguchi, T. and Yokokawa, M. (2008) Effect of wave period on combined-flow bedforms: a
flume experiment, In: Marine Sandwave and River Dune Dynamics 281–284.

Sequeiros, O. E. (2008) Bedload transport, self acceleration, downstream sorting, and flow dy-
namics of turbidity currents. Ph.D. thesis, University of Illinois at Urbana-Champaign, 190 pp.

Shields, A. (1936) Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die
Geschiebebewegung. 26. Mitteilungen der Preußischen Versuchsanstalt fr Wasserbau, Berlin:
Preuischen Versuchsanstalt fr Wasserbau., 1-26 pp.

Simons, D. B., Richardson, E. V. and Nordin Jr, C. F. (1965) Bedload equation for ripples
and dunes. Tech. rep., US Geological Survey, 9 pp.

Sleath, J. (1984) Sea Bed Mechanics: John Wiley & Sons Inc, USA, 335 pp.

285



Sleath, J. F. (1991) Velocities and shear stresses in wave-current flows. Journal of Geophysical
Research, 96, no. C8, 15237–15244.

Sleath, J. F. A. (1987) Turbulent oscillatory flow over rough beds. Journal of Fluid Mechanics,
182, no. -1, 369–409.

Smith, G. J. and Jacobi, R. D. (2001) Tectonic and eustatic signals in the sequence stratigraphy
of the Upper Devonian Canadaway Group, New York State. AAPG Bulletin, 85, no. 2, 325–357.

Smits, A. J., McKeon, B. J. and Marusic, I. (2011) Highreynolds number wall turbulence.
Annual Review of Fluid Mechanics, 43, 353–375.

Sommer, H. J. (2008) polygeom.m. MATLAB Central File Exchange, Retrieved April 26, 2011.
URL http://www.mathworks.com/matlabcentral/fileexchange/319-polygeom-m

Sontek (2011) ADV Beam Geometry.
URL http://www.sontek.com/xmedia/products/adv-beam-geometry_001.gif

Soulsby, R. L. (1980) Selecting record length and digitization rate for near-bed turbulence mea-
surements. Journal of Physical Oceanography, 10, no. 2, 208–219.

Soulsby, R. L. (1997) Dynamics of marine sands : a manual for practical applications: Telford,
London, 249 pp.

Soulsby, R. L. and Clarke, S. (2005) Bed shear-stresses under combined waves and currents on
smooth and rough beds. Tech. Rep. TR 137, HR Wallingford.

Soulsby, R. L., Hamm, L., Klopman, G., Myrhaug, D., Simons, R. and Thomas, G.
(1993) Wave-current interaction within and outside the bottom boundary layer. Coastal Engi-
neering, 21, no. 1-3, 41–69.

Southard, J. B. (1991) Experimental determination of bed-form stability. Annual Review of
Earth and Planetary Sciences, 19, no. 1, 423–455.

Southard, J. B. and Boguchwal, L. A. (1990) Bed configurations in steady unidirectional water
flows; part 2, synthesis of flume data. Journal of Sedimentary Research, 60, no. 5, 658–679.

Southard, J. B. and Dingler, J. R. (1971) Flume study of ripple propagation behind mounds
on flat sand beds. Sedimentology, 16, no. 3–4, 251–263.

Southard, J. B., Lambie, J. M., Federico, D. C., Pile, H. T. and Weidman, C. R. (1990)
Experiments on bed configurations in fine sands under bidirectional purely oscillatory flow, and
the origin of hummocky cross-stratification. Journal of Sedimentary Research, 60, no. 1, 1–17.

Stokes, W. L. (1950) Some unusual ripple marks from the Triassic of Utah. The Journal of
Geology, 58, no. 2, 153–155.

Sutherland, A. J. and Hwang, L. S. (1965) A study of dune geometry and dune growth on a sand
bed. Technical Memorandum 65-5, W.M. Keck Laboratory of Hydraulics and Water Resources,
Division of Engineering and Applied Science, California Institute of Technology., Pasadena, CA.

286



Swift, D., Hudelson, P., Brenner, R. and Thompson, P. (1987) Shelf construction in a
foreland basin: storm beds, shelf sandstones, and shelf-slope depositional sequences in the Upper
Cretaceous Mesaverde Group, Book Cliffs, Utah. Sedimentology, 34, 423–457.

Swift, D. J. P., Figueiredo, A. G., Freeland, G. L. and Oertel, G. F. (1983) Hummocky
cross-stratification and megaripples; a geological double standard? Journal of Sedimentary
Research, 53, no. 4, 1295–1317.

Takeda, Y. (1991) Development of an ultrasound velocity profile monitor. Nuclear Eng. and
Design, 126, 277–284.

Takeda, Y., Fischer, W. E. and Sakakibara, J. (1994) Decomposition of the modulated waves
in a rotating couette system. Science, 263, 502–505.

Tanner, W. F. (1964) Eolian ripple marks in sandstone. Journal of Sedimentary Research, 34,
no. 2, 432–433.

Tanner, W. F. (1965) High-index ripple marks in the swash zone. Journal of Sedimentary Re-
search, 35, no. 4, 968.

Tanner, W. F. (1967) Ripple mark indices and their uses. Sedimentology, 9, no. 2, 89–104.

Theodorsen, T. (1952) Mechanism of turbulence, In: Proceedings of the Second Midwestern
Conference on Fluid Mechanics: 1719 March Ohio State University, Columbus, OH,.

Thorne, P. D., Williams, J. J. and Davies, A. G. (2002) Suspended sediments under waves
measured in a large-scale flume facility. Journal of Geophysical Research, 107, no. C8, 3178.

Tillman, R. (1985) A spectrum of shelf sands and sandstones, In: Shelf Sands and Sandstones
(Eds. D. Swift, R. Walker and R. Tillman), Society of Economic Paleontologists and Mineralogists
(SEPM), SEPM Short Courses, Vol 13, 1–46.

Tinterri, R. (2011) Combined flow sedimentary structures and the generic link between sigmoidal-
and hummocky-cross stratification. GeoActa, Bologna, 10, 1–43.

Traykovski, P., Hay, A., Irish, J. and Lynch, J. (1999) Geometry, migration, and evolution
of wave orbital ripples at leo-15. Journal of Geophysical Research, 104, no. C1, 1505 1524.

Tropea, C. (1983) A note concerning the use of a one-component lda to measure shear stress
terms. Experiments in Fluids, 1, no. 4, 209–210.

Uchiyama, Y., McWilliams, J. C. and Restrepo, J. M. (2009) Wave-current interaction
in nearshore shear instability analyzed with a vortex force formalism. Journal of Geophysical
Research, 114, no. C06021, 15.

van der Mark, C. and Blom, A. (2007) A new and widely applicable bedform tracking tool.
CE&M Research Report 2007R-003/WEM-002., Faculty of Engineering Technology, University
of Twente.

van Rijn, L. C. (1982) Equivalent roughness of alluvial bed. Journal of the Hydraulics Division,
118, no. 10, 1215–1218.

287



van Rijn, L. C. (1984a) Sediment transport, part i: Bed load transport. Journal of Hydraulic
Engineering, 110, no. 10, 1431–1456.

van Rijn, L. C. (1984b) Sediment transport, part iii: Alluvial roughness. Journal of Hydraulic
Engineering, 110, no. 12, 1733–1754.

van Rijn, L. C. (1986) Manual sediment transport measurements. Delft Hydraulics Laboratory,
Delft, The Netherlands.

van Rijn, L. C. (2006) Principles of sediment transport in rivers, estuaries and coastal seas: Aqua
Publications, Amsterdam, 690 pp.

Vanoni, V. A. (2006) Sedimentation Engineering: American Society of Civil Engineers Publica-
tions, 432 pp.

Venditti, J. G., Church, M. A. and Bennett, S. J. (2005a) Bed form initiation from a flat
sand bed. Journal of Geophysical Research, 110, F01009.

Venditti, J. G., Church, M. A. and Bennett, S. J. (2005b) On the transition between 2D
and 3D dunes. Sedimentology, 52, no. 6, 1343–1360.

Venditti, J. G., Church, M. A. and Bennett, S. J. (2006) On interfacial instability as a cause
of transverse subcritical bed forms. Water Resources Research, 42, W07423.
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