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Abstract

Future high-speed air vehicles will be lightweight, flexible, and reusable. Ve-

hicles fitting this description are subject to severe thermal and fluid dynamic

loading from multiple sources such as aerothermal heating, propulsion sys-

tem exhaust, and high dynamic pressures. The combination of low-margin

design requirements and extreme environmental conditions emphasizes the

occurrence of fluid-thermal-structural coupling. Numerous attempts to field

such vehicles have been unsuccessful over the past half-century due par-

tially to the inability of traditional design and analysis practices to predict

the structural response in this flight regime. In this thesis, a high-fidelity

computational approach is used to examine the fluid-structural response of

aerospace structures in high-speed flows. The method is applied to two cases:

one involving a fluid-thermal interaction problem in a hypersonic flow and

the other a fluid-structure interaction study involving a turbulent boundary

layer and a compliant panel.

The coupled fluid-thermal investigation features a nominally rigid alu-

minum spherical dome fixed to a ceramic panel holder placed in a Mach

6.59 laminar boundary layer. The problem was originally studied by Glass

and Hunt in a 1988 wind tunnel experiment in the NASA Langley 8-Foot

High Temperature Tunnel and is motivated by thermally bowed body panels

designed for the National Aerospace Plane. In this work, the compressible

Navier-Stokes equations for a thermally perfect gas and the transient heat

equation in the structure are solved simultaneously using two high-fidelity

solvers coupled at the solid-fluid interface. Predicted surface heat fluxes are

within 10% of the measured values in the dome interior with greater differ-

ences found near the dome edges where uncertainties concerning the exper-

imental model’s construction likely influence the thermal dynamics. On the

flat panel holder, the local surface heat fluxes approach those on the wind-

ward dome face due to a dome-induced horseshoe vortex scouring the panel’s
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surface. Comparisons with reduced-order models of heat transfer indicate

that they perform with varying levels of accuracy around some portions of

the geometry while completely failing to predict significant heat loads in re-

gions where the dome-influenced flow impacts the ceramic panel. Cumulative

effects of flow-thermal coupling at later simulation times on the reduction of

panel drag and surface heat transfer are quantified.

The second fluid-structure study investigates the interaction between a

thin metallic panel and a Mach 2.25 turbulent boundary layer with an ini-

tial momentum thickness Reynolds number of 1200. A transient, non-linear,

large deformation, 3D finite element solver is developed to compute the dy-

namic response of the panel. The solver is coupled at the fluid-structure

interface with the compressible Navier-Stokes solver, the latter of which is

used for a direct numerical simulation of the turbulent boundary layer. In

this approach, no simplifying assumptions regarding the structural solution

or turbulence modeling are made in order to get detailed solution data. It

is found that the thin panel state evolves into a flutter type response char-

acterized by high-amplitude, high-frequency oscillations into the flow. The

oscillating panel disturbs the supersonic flow by introducing compression

waves, modifying the turbulence, and generating fluctuations in the power

exiting the top of the flow domain.

The work in this thesis serves as a step forward in structural response

prediction in high-speed flows. The results demonstrate the ability of high-

fidelity numerical approaches to serve as a guide for reduced-order model

improvement and as well as provide accurate and detailed solution data in

scenarios where experimental approaches are difficult or impossible.

iii



To Mom, Dad, Anika, Krista, and Karina.

iv



Acknowledgements

This has been the hardest thing I have ever done, and there are many people

without whose help and support I could not have succeeded. First, I thank

my advisors, Professor Daniel J. Bodony and Professor Philippe H. Geubelle,

for their guidance, endless patience, and friendship. I would next like to

thank the rest of my thesis committee, Professor Joanna M. Austin, Professor

Carlos A. Pantano-Rubino, and Dr. Stephen Mike Spottswood. I especially

appreciate the encouragement and help Dr. Spottswood has given me over

the four and a half years I have been working with him.

I am grateful for the support from the U.S. Air Force Research Laboratory

Air Vehicles Directorate under contract number FA8650-06-2-3620. Support

from the Illinois Space Grant Fellowship Program is also recognized. I ac-

knowledge computational resources provided by the National Science Foun-

dation Teragrid (TG-CTS090004), the DOD Distributed Shared Research

Centers at ERDC, ARL, AFRL, and NAVO, and the Computational Science

and Engineering Program at the University of Illinois.

I next would like to thank my family, who were always willing to listen to

my frustrations and provide loving support. Mom, Dad, Anika, Krista, and

Karina: you have all helped me so much, and it would have been impossible

without you all. I sincerely thank my grandparents, Baba and Jedo, who are

the most generous people I will ever know, and my late grandparents, Noni

and Nono, who I miss very much. I am also grateful for the endless support

of my close friend, Tim, and my step parents, Liz and Alan.

I would like to thank Michael Campbell for donating so much of his time

to helping me over the years. I would have sunk from the start without him.

I would also like to thank my friend and lab mate, Mahesh Manchakattil

Sucheendran, for the wise advice, the lunches he brought for me, and com-

forting words. I hope to meet him one day in Zihuatanejo. I thank my lab

mates Qi Zhang, Mahesh Natarajan, Ashish Mishra, Nishan Jain, Revathi

v



Jambunathan, and Ryan Tomokiyo, who have been so kind to me and have

cheered me up when I needed it.

I am very thankful to my friend Andy Pukniel for his support and for

talking me into going to the Grand Canyon. Thank you Brian and Julia

Woodard and Joseph Zimmerman, for your encouragement and for making

me laugh. Lastly, I want to thank my roommates: Steve Henry, Emma

Berdan, and Claire Baldeck, for keeping me from hanging out by myself too

much. I would probably have gotten much weirder without them.

vi



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Present approach and key accomplishments . . . . . . . . . . . 4

I Direct Numerical Simulation of Fluid-Thermal In-
teraction in a Mach 6.59 Flow 7

Chapter 2 Part I Literature Review . . . . . . . . . . . . . . 8

Chapter 3 Aerothermal Numerical Approach . . . . . . . . 11

3.1 Fluid domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Thermal domain . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Interface treatment . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Temporal solution procedure . . . . . . . . . . . . . . . . . . . 15

Chapter 4 Background: Aerothermal Investigation of a Rigid

Protuberance in Mach 6.59 Flow . . . . . . . . . . . . . . . 19

4.1 NASA Langley 8-Foot High Temperature Tunnel facility . . . 20
4.2 Mechanical systems . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Flow conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 8-Foot High Temperature Tunnel flow conditions . . . . . . . . 23
4.5 Verification of the laminar boundary layer . . . . . . . . . . . 24
4.6 Initial and boundary conditions . . . . . . . . . . . . . . . . . 25
4.7 Insertion procedure . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 5 Aerothermal Investigation Results . . . . . . . . 30

5.1 Coupled fluid-thermal simulations . . . . . . . . . . . . . . . . 30
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 Effect of numerics on surface heat flux . . . . . . . . . 33
5.2.2 Assessment of gas thermal model . . . . . . . . . . . . 34

vii



5.2.3 Surface temperature evolution . . . . . . . . . . . . . . 35
5.2.4 Flow solution features . . . . . . . . . . . . . . . . . . 36
5.2.5 Thermal solution . . . . . . . . . . . . . . . . . . . . . 37
5.2.6 Quantitative comparison with experiment . . . . . . . 38
5.2.7 Comparison with a semi-analytical model . . . . . . . . 40
5.2.8 Fifty second coupled simulation . . . . . . . . . . . . . 41

5.3 Summary of Part I . . . . . . . . . . . . . . . . . . . . . . . . 43

II Direct Numerical Simulation of Fluid-Structural
Interaction of Mach 2.25 Turbulent Boundary Layer
Over a Compliant Panel 64

Chapter 6 Part II Literature Review . . . . . . . . . . . . . 65

Chapter 7 Aeroelastic Numerical Approach . . . . . . . . . 70

7.1 Fluid domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Solid domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2.1 Multiplicative decomposition . . . . . . . . . . . . . . . 71
7.2.2 Isothermal stage . . . . . . . . . . . . . . . . . . . . . 71
7.2.3 Stress-free stage . . . . . . . . . . . . . . . . . . . . . . 76
7.2.4 Evolution of coupled equations . . . . . . . . . . . . . 78

7.3 Solver verification . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3.1 Dynamic thermal verification . . . . . . . . . . . . . . 79
7.3.2 Steady-state structural verification . . . . . . . . . . . 80
7.3.3 Dynamic structural verification . . . . . . . . . . . . . 81
7.3.4 Thermomechanical coupling verification . . . . . . . . . 81
7.3.5 Spatial convergence rate . . . . . . . . . . . . . . . . . 82

7.4 Interface treatment . . . . . . . . . . . . . . . . . . . . . . . . 82

Chapter 8 Background: Aeroelastic Investigation of a TBL

Over a Compliant Panel in Mach 2.25 Flow . . . . . . . . 92

8.1 Compressible turbulent boundary layer data . . . . . . . . . . 92
8.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2.1 Fluid domain . . . . . . . . . . . . . . . . . . . . . . . 93
8.2.2 Solid domain . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 9 TDNS of a Turbulent Boundary Layer . . . . . . 105

9.1 Turbulent boundary layer generation . . . . . . . . . . . . . . 105
9.1.1 Boundary layer stability . . . . . . . . . . . . . . . . . 105
9.1.2 Transition to turbulence . . . . . . . . . . . . . . . . . 114
9.1.3 Grid assessment . . . . . . . . . . . . . . . . . . . . . . 115
9.1.4 Turbulent boundary layer verification . . . . . . . . . . 117

viii



Chapter 10 Aeroelastic Investigation Results . . . . . . . . 135

10.1 Panel solution evolution . . . . . . . . . . . . . . . . . . . . . 135
10.1.1 Modal decomposition of panel state . . . . . . . . . . . 136
10.1.2 Power balance in the panel . . . . . . . . . . . . . . . . 137
10.1.3 Deflection into the boundary layer . . . . . . . . . . . . 139

10.2 One-way vs. two-way coupling . . . . . . . . . . . . . . . . . . 140
10.2.1 Panel response frequency . . . . . . . . . . . . . . . . . 142

10.3 Influence of panel motion on fluid solution . . . . . . . . . . . 143
10.4 Comparison with piston theory . . . . . . . . . . . . . . . . . 145
10.5 Effect of domain height on solution . . . . . . . . . . . . . . . 146
10.6 Summary of Part II . . . . . . . . . . . . . . . . . . . . . . . . 147

Chapter 11 Conclusions and Future Work . . . . . . . . . . 186

11.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
11.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Chapter 12 References . . . . . . . . . . . . . . . . . . . . . . 190

Appendix A Thermally Perfect Gas Model Verification . . 200

Appendix B Piston Theory and Eckert’s Reference Enthalpy203

B.1 Piston theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
B.2 Eckert’s reference enthalpy . . . . . . . . . . . . . . . . . . . . 204

Appendix C Comparison Between Gas Thermal Models with

Equal Freestream Static Temperatures . . . . . . . . . . . 207

Appendix D Additional Thermomechanical Formulation De-

tails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

D.1 Constitutive models . . . . . . . . . . . . . . . . . . . . . . . . 211
D.1.1 St. Venant-Kirchhoff constitutive model . . . . . . . . 211
D.1.2 Modified Neo-Hookean constitutive model . . . . . . . 212

D.2 Elasticity tensor, A . . . . . . . . . . . . . . . . . . . . . . . . 212
D.3 External load jacobian, B . . . . . . . . . . . . . . . . . . . . 214

D.3.1 External load from fluid stress tensor, τ . . . . . . . . 215
D.4 Spatial discretization of structural equations . . . . . . . . . . 216
D.5 Area change . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
D.6 Spatial discretization of thermal equations . . . . . . . . . . . 219

Appendix E Solution of 2D Steady-State Compressible Bound-

ary Layer Equations . . . . . . . . . . . . . . . . . . . . . . 222

E.1 Compressible boundary layer equations . . . . . . . . . . . . . 222
E.1.1 Derivation of the boundary layer equations . . . . . . . 223
E.1.2 The Howarth transformation . . . . . . . . . . . . . . . 225
E.1.3 Backwards transformation . . . . . . . . . . . . . . . . 227

ix



Appendix F Effect of Boundary Layer Forcing Terms on

Mean Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Appendix G Turbulent Kinetic Energy Budget . . . . . . . 230

x



List of Tables

4.1 Experimental conditions of the 1986 tests [1]. D = dome di-
ameter, H = dome height. Run 1 did not include a dome
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Material properties in thermal domain. . . . . . . . . . . . . 31
5.2 Evolution of drag and integrated heat load with time. Drag is

calculated assuming both temperature-varying and constant
viscosities to demonstrate the effect of boundary layer thick-
ening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Panel flutter analysis categories [2]. . . . . . . . . . . . . . . 66

7.1 Verification of the thermomechanical coupling. Solution values
at x = L/2, y = τ from the in-house code and Abaqus. . . . . 81

8.1 Flow conditions in the Pirozzoli & Grasso simulation [3]. . . . 95
8.2 Pirozzoli & Grasso simulation domain. . . . . . . . . . . . . . 95
8.3 TDNS domain for simulation for comparison with reference

solution. The viscous-length normalized values are valid at the
time of comparison with the reference solution (Section 9.1.4). 96

8.4 Long and short domains for the coupled simulation. The
viscous-length normalized values are valid at the time of com-
parison with the reference solution (Section 9.1.4). . . . . . . . 97

8.5 Dimensions in the panel and number of quadratic elements in
the discretization. . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.6 First 9 modes of a 50.1 mm × 25.4 mm clamped panel with
15 µm thickness and material properties comparable to steel
(E = 200× 109 Pa, ρ = 8000 kg/m3, and ν = 0.27). . . . . . . 98

8.7 Dimensions in the panel and number of quadratic elements in
the discretization. . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.1 Comparison of temporal eigenvalues with those given by Ma-
lik [4]. α and β non-dimensionalized by 1/l and ω is non-
dimensionalized by u∞/l as done by Malik [4]. c = ω/α is the
phase velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xi



9.2 LST growth rate predictions for comparison with DNS. In both
cases, the displacement thickness Reynolds number, Reδ∗ =
2000. α and β, non-dimensionalized by δ∗, are 0.25 and 0.0,
respectively. ω is non-dimensionalized by a∞/δ∗, where a∞ is
the freestream speed of sound. . . . . . . . . . . . . . . . . . 113

9.3 Grid data for convergence study. All grids have phsyical lengths
Lx × Ly × Lz = 71.4mm× 12.7mm× 25.4mm . . . . . . . . . 117

10.1 First six solutions to the equation for λj, cosh(λjL) cos(λjL) = 1.136

A.1 Pre-expansion fan flow conditions. . . . . . . . . . . . . . . . 200
A.2 Comparison of post-expansion fan flow conditions between nu-

merical and analytically determined values. . . . . . . . . . . . 201

xii



List of Figures

1.1 Generic hypersonic vehicle showing regions of significant thermo-
acoustic fatigue risk; (1) engine inlet ramp, (2) engine exhaust,
and (3) control surfaces [5]. . . . . . . . . . . . . . . . . . . . 5

1.2 (a) Extreme thermal loading on underside of a shuttle upon
atmospheric reentry [6]. (b) A damaged thermal protection
tile on the underside of Space Shuttle Endeavor [7]. . . . . . . 6

1.3 (a) An infrared image of Discovery during reentry showing a
1/4 inch asperity on the wing causing a significant increase in
heat load due to boundary layer transition. (b) An infrared
image of the asperity on the wing of a space shuttle. [8]. . . . 6

3.1 Surface heat flux (W/m2) at t = 1 s (a) with sponge zones
and (b) without sponge zones. Sponge zones are omitted from
remaining figures. . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Transfer function of the 10th-order implicit filter for filter strength
αf = 0.499. The associated cutoff wavenumber of 0.96π is
shown with a vertical line. . . . . . . . . . . . . . . . . . . . 18

4.1 The Langley 8-Foot High Temperature Tunnel (Recreated from
[9]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 (a) Flat plate panel holder and (b) boundary layer probe
schematic. Units are in inches. (Taken from Glass & Hunt
[9].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Pitot probe in supersonic flow. . . . . . . . . . . . . . . . . . . 28
4.4 2D Fluent domain with Mach number contours. The coupled

simulation uses the Fluent solution to provide boundary con-
ditions and an initial guess for the solution. . . . . . . . . . . 28

4.5 Boundary layer profile at X = 1.476 m: comparison between
numerical results and experimental measurements [1]. Pro-
cessed simulation data based on Eq. (4.4) (solid line), unpro-
cessed simulation data (dashed line), experiment (circles). . . 29

4.6 1D fluid-thermal problem to estimate insertion heating. The
rise in surface temperature during model insertion was esti-
mated to be 2 K. . . . . . . . . . . . . . . . . . . . . . . . . . 29

xiii



5.1 Schematic of the ceramic plate and aluminum dome inserted
into the Mach 6.59 freestream. . . . . . . . . . . . . . . . . . . 45

5.2 y+ values of the first wall normal grid point at t = 0 s. . . . . 45
5.3 Orientation and boundary conditions of the fluid and thermal

domains. The sides and back of the thermal domain are adi-
abatic. An example solution is displayed with temperature
contours in the thermal domain and pressure contours in the
fluid domain. Shaded regions represent the presence of sponges. 46

5.4 Effect of spatial filter boundary schemes on convergence of sur-
face heat flux along the plate. (a) Centered filter, (b) boundary
filter. The dashed line corresponds to the unfiltered Cartesian
form of the viscous terms while the solid line corresponds to
the filtered strong form of the viscous terms. . . . . . . . . . . 47

5.5 Temperature profiles in the boundary layer at X = 1.58 m
computed using the strong form of the viscous terms with
the centered filter (solid line) and the boundary filter (dashed
line) on the finer grid (170× 626). Temperature differences at
several wall normal locations are noted for clarity. . . . . . . . 48

5.6 Variation in (a) ratio of specific heats and (b) Prandtl number
with temperature. Calorically perfect (dashed line), thermally
perfect (solid line). . . . . . . . . . . . . . . . . . . . . . . . . 49

5.7 (a) Heat flux and (b) temperature profiles at the symmetry line
for the calorically and thermally perfect gas models at t = 0 s,
t = 1 s, t = 3 s, and t = 5 s. Calorically perfect (dashed line),
thermally perfect (solid line). . . . . . . . . . . . . . . . . . . 50

5.8 Surface temperature (K) at (a) t = 1 s, (b) t = 3 s, and (c)
t = 5 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.9 Surface heat flux W/m2 at t = 1 s. . . . . . . . . . . . . . . . 52
5.10 Shear stress vectors with (a) heat flux (W/m2) and (b) pres-

sure contours (Pa). . . . . . . . . . . . . . . . . . . . . . . . . 53
5.11 Streamlines illustrating a vortex shed off the right side of the

dome. Heat flux contours are shown on the thermal domain
surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.12 Counter-rotating vortex pair grazing the plate on the outside
of the dome. Heat flux contours are plotted on the surface.
The legend corresponds to the vorticity contours displayed on
the vertical slice. . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.13 Percent difference between value predicted by Reynolds Anal-
ogy (0.62) and Ch/Cf calculated over the interacting surface

at t = 0 s. % Diff. =
0.62−Ch/Cf

Ch/Cf
× 100% . . . . . . . . . . . . . 55

xiv



5.14 Evolution of thermal solution on the windward side of the
evacuated aluminum dome at (a) t = 1 s, (b) t = 3 s, and (c)
t = 5 s. Temperature contour units are in K. The geometry is
scaled by 200% in the vertical direction for clarity. Creases in
the images correspond to processor boundaries. . . . . . . . . 56

5.15 Evolution of through-thickness dome temperature (K) at the
symmetry plane at (a) t = 1 s, (b) t = 3 s, and (c) t = 5 s.
The flow is from left to right. . . . . . . . . . . . . . . . . . . 57

5.16 (a) Comparison between experimental and numerical values
for heat flux at the thirteen thermocouple locations denoted
by circles in (b). % Diff. = qsim.−qexp.

qexp.
× 100%. . . . . . . . . . 58

5.17 Comparison between heat flux (W/m2) calculated with (a)
piston theory/Eckert’s reference enthalpy and (b) the high-
fidelity model at t = 0 s. . . . . . . . . . . . . . . . . . . . . . 59

5.18 Comparison between heat flux calculated with (a) piston the-
ory/Eckert’s reference enthalpy and (b) the high-fidelity model
(t = 0 s). The contours indicate the difference between the
numerical and experimental heat fluxes normalized by the flat
plate reference heat flux, (qnum. − qexp)/qref . . . . . . . . . . . 60

5.19 (a) Surface temperature and (b) through-thickness dome tem-
perature at the symmetry plane at t = 50 s. Units are in K. . 61

5.20 Boundary layer profile (a) on the windward face of the dome
and (b) at the dome leading edge at 10 s (circles), 30 s (dashed
line), and 50 s (solid line). The boundary layer thickens and
the recirculation region becomes stronger with the increase in
surface temperature . . . . . . . . . . . . . . . . . . . . . . . . 62

5.21 Temperature along the centerline of the dome in the two-way
coupled (solid) and thermal-only (dashed) simulations. The
thermal-only solution predicts the peak temperature to be 23
K higher than the coupled solution. . . . . . . . . . . . . . . . 63

7.1 A 2D illustration the fluid grid (black) conforming to the mo-
tion of the solid grid (red) using transfinite interpolation. . . . 84

7.2 Transfer function for the 10th-order implicit filter for filter
strength αf = 0.490. The associated cutoff wavenumber of
0.90π is shown with a vertical line. . . . . . . . . . . . . . . . 85

7.3 Schematic of the isothermal split of the deformation gradient. 86
7.4 Initial condition for dynamic thermal verification problem. . . 87
7.5 Comparison of temperature at x = 0.5 m between the analyt-

ical (symbolds) and numerical (solid line) solutions. . . . . . 88
7.6 Verification problem for the structural solver. . . . . . . . . . 88
7.7 Verification problem for the dynamic structural solver. Cur-

rent solver (solid), Abaqus solution (dashed). . . . . . . . . . . 89
7.8 Verification problem for the thermomechanical coupling. . . . 89

xv



7.9 Thermomechanical coupling verification problem solution. . . . 90
7.10 Verification problem for the spatial convergence of the quadratic

elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.11 Verification problem for the spatial convergence of the quadratic

elements. % Error =
|w−wref |

wref
, where wref is the center dis-

placement of the beam with 150 through thickness elements. . 91
7.12 Flow of information between the solvers in the case where the

structural and thermal time steps are 2× and 4× the fluid time
step, respectively. Dashed boxes indicate interpolated data. . . 91

8.1 Simulation domain from Pirozzoli and Grasso [3]. Domain
lengths are Lx × Ly × Lz = 439.420 mm × 12.700 mm ×
4.445 mm. Zone lengths 1, 2, and 3 are 76.2 mm, 50.8 mm,
and 312.42 mm, respectively. . . . . . . . . . . . . . . . . . . . 100

8.2 Simulation domain of the present work for comparison with
Pirozzoli and Grasso [3]. Domain lengths are Lx × Ly × Lz =
142.800 mm× 12.700 mm× 4.445 mm and the grid is uniform
in the streamwise and spanwise directions. . . . . . . . . . . . 100

8.3 (a) Long domain for coupled simulation and (b) array of do-
mains. Domain lengths are Lx × Ly × Lz = 142.800 mm ×
12.700 mm× 25.400 mm, the panel length is Lp = 51.000 mm
and the distance between panels is Ldp = 97.200 mm. The
translucent layer represents the TBL and the gray region rep-
resents the flexible panel. . . . . . . . . . . . . . . . . . . . . 101

8.4 (a) Short domain for coupled simulation and (b) array of do-
mains. Domain lengths are Lx × Ly × Lz = 71.400 mm ×
12.700 mm× 25.400 mm, the panel length is Lp = 51.000 mm
and the distance between panels is Ldp = 20.400 mm . . . . . 102

8.5 Geometry of compliant panel. The back pressure is equal to
the mean pressure from the fluid domain. The sides are clamped.103

8.6 Estimate of TBL power spectral density based on dynamic
pressure, Mach number, and displacement thickness [10]. The
first 9 plate modes in Tab. 8.6 lie within the energy containing
frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.7 Maximum panel deflection with time into (a) and out of (b) the
flow using the baseline solid grid (solid), and the coarse solid
grid (dashed). The baseline and coarse grids are discretized
by Nx×Ny×Nz = 85×2×180 = 30, 600 and Nx×Ny×Nz =
43× 2× 90 = 7, 740 quadratic elements, respectively. . . . . . 104

9.1 (a) A ball in stable state, and (b) a ball in an unstable state. . 119

xvi



9.2 Neutral stability "thumb" curve of an incompressible bound-
ary layer created with the compressible linear stability solver
(black line) and as published in White [11] (red dashed). The
vertical dashed line represents Reδ∗,crit = 520 and the black
circle is the (Reδ∗ , αδ

∗) coordinate for the comparison in Fig. 9.3119
9.3 Eigenfunctions found by the Orr-Sommerfeld and compressible

LST equations for the Mach 0.005 Blasius boundary layer.
The real part (solid), imaginary part (dashed), and magnitude
(bold) of the (a) streamwise velocity, (b) transverse velocity,
and (c) pressure eigenfunctions are shown. The curves lie on
top of each other, and therefore only the LST results are shown.120

9.4 Eigenfunction comparison with Malik [4] for the incompress-
ible Rel = 580 boundary layer. (a) First mode and (b) third
mode. Malik (red), present work (black). . . . . . . . . . . . . 121

9.5 Eigenfunction comparison with Malik [4] for the Mach 10 Rel =
1000 boundary layer. Malik (red), present work (black). . . . . 122

9.6 Growth of perturbations in Mach 0.05 DNS (solid) compared
with eωrt predicted by linear stability theory (dashed) for (a)
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Chapter 1

Introduction

High-speed flight is accompanied by severe thermal and fluid dynamic loads.

A hypersonic vehicle is partially wetted by a turbulent boundary layer that

produces severe pressure and thermal fluctuations over the outer skin. Fur-

thermore, these vehicles require powerful propulsion systems that increase

the strength of the loading in the engine inlet and exhaust regions. Fig. 1.1

outlines three main fatigue risk areas identified in a National Aerospace Plane

(NASP)-era study for a generic hypersonic vehicle [12, 13]; namely (1) the

inlet ramp, (2) the exhaust ramp, and (3) the control surfaces. Addition-

ally, such high-speed vehicles are to be lightweight, flexible, and reusable; a

set of requirements that vehicles have not satisfied in the past [14]. Such de-

sign requirements are commonly satisfied in low-speed applications where the

environment and structural response are more easily understood. Extreme

loading and more uncertain environmental conditions are typically designed

for by increased safety margins in the form of weighty systems and frequent

maintenance. Bertin & Cummings [14] give an account spanning the sec-

ond half of the 20th century littered with attempts to design variants of a

NASP-like vehicle. They attribute the many failures of these programs to

the rise of “unknown-unknowns,” which “are usually discovered during flight

tests and could present drastic consequences to the survival of the vehicle or

of the crew and lead to unacceptable increases in the costs to develop the

vehicle.” [14]. Such unknown-unknowns arise due to the inability of tradi-

tional design methodologies to account for phenomena present in high-speed

environments. A significant source of complexity in the high-speed regime is

the presence of fluid-thermal-structural coupling [15].

Current design methodologies use a combination of analytical, experimen-

tal and numerical approaches, all utilizing educated assumptions of one form

or another. The confidence in the accuracy of the assumptions translates pro-

portionally to the amount of safety margin included in the final design. A
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successful hypersonic design, the Space Shuttle, reflects the large amount of

design margin, in the form of added material, inflexibility, and maintenance,

that results from the limited understanding of the operating environment.

Figure 1.2(a) shows the extreme thermal loading on the shuttle upon reentry,

that requires the use of heavy, inflexible, and frequently maintained tiles on

the underside of the vehicle (Fig. 1.2(b)). Large safety factors are warranted,

as it was seen that even a small irregularity in the underside of Space Shuttle

Discovery caused a local increase in thermal loading (Fig. 1.3). Even consid-

ering the extensive precautions taken with the shuttle, unknown-unknowns

still exist and, as evidenced by the Space Shuttle Columbia accident in 2003,

can have disastrous consequences. The DARPA Falcon (Force Application

and Launch from CONtinental United States) program aimed to develop the

Hypersonic Cruise Vehicle (HCV) for prompt global strike capability. One

stage of the project included two instances of the Hypersonic Test Vehicle 2

(HTV-2), created to test thermal protection and control systems in Mach 20

flight. Both vehicles, flown in 2010 and 2011, failed prematurely in in-flight

tests due to unpredicted occurrences. While the results the first flight led to

an improvement that was validated in the second flight, incremental advances

through flight testing may overextend the budget of these programs, as has

been the fate of the majority of hypersonic flight programs in the past.

As demonstrated above, in-flight testing is an effective way to uncover the

uncertainties inherent to hypersonic flight. However, modeling techniques are

being improved in accuracy and fidelity to reduce the necessity of frequent

tests and better utilize testing opportunities. Ground testing is a next step in

fidelity; however, due to the increasingly extreme operating conditions, these

tests may not be possible. It was concluded in a National Research Council

(NRC) report that the lack of ground testing capability at flight-realistic hy-

personic conditions was a limiting factor in high-speed vehicle development

[16]. Analytical and numerical analysis provide an alternative approach to

experiments. Assumptions made in previous analytical models, successful in

the design of vehicles for less demanding environments, may not be justified

in the hypersonic regime. However, full-order numerical analysis is computa-

tionally expensive and may not be feasible for analysis of large components for

full vehicle trajectories. Reduced-order models (ROMs) are being developed

in order to provide relatively inexpensive numerical solutions. These savings

in computational cost are achieved through modeling assumptions about the
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fidelity and solution accuracy needed to provide vital information. However,

without comprehensive experimental data, it is indeterminate whether these

assumptions are valid.

1.1 Thesis structure

This thesis consists of two parts. Part I spans Chapter 2 through Chapter 5

and describes the numerical simulation and comparison with an experiment

of a fluid-thermal interaction problem in a hypersonic flow. In this part the

level of fidelity necessary for accurate aerothermal predictions in hypersonic

flows is assessed by measuring lower-fidelity models against our validated

high-fidelity approach. Chapter 2 surveys the literature published on studies

focused on fluid-thermal interaction. Chapter 3 describes in detail the numer-

ical approach taken in Part I to study the fluid-thermal interaction problem.

In Chapter 4, the aerothermal problem setup and the motivating experiment

are presented. Part I is concluded with Chapter 5, in which simulation and

code validation results are described.

Part II contains Chapter 6 through Chapter 10 and presents the details

of a fluid-structure interaction problem between a supersonic turbulent flow

and a flexible panel. The key focus of this section is to address how strongly

coupled the fluid and structural solutions are by using a high-fidelity ap-

proach to investigate the effects that they have on each other. The merit in

this approach is that it does not utilize modeling assumptions which might

otherwise neglect important aspects of fluid-structure interaction. Chap-

ter 6 gives a literature review of previous fluid-structure interaction work.

Chapter 7 presents the numerical approach used in Part II and describes

the formulation of a thermomechanical solver developed for the problem.

Chapter 8 gives the aeroelastic problem description, and presents a previous

numerical study of a compressible turbulent boundary layer [3, 17] that is

used as a reference to verify the solution in the fluid domain. In Chapter 9,

the generation and analysis of the turbulent boundary layer are discussed

and are verified by comparison with the reference solution. Part II ends

with Chapter 10, which contains the results from the fluid-structure cou-

pled simulations. Conclusions and suggestions for future work are given in

Chapter 11.
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1.2 Present approach and key

accomplishments

This thesis presents a study on the use of high-fidelity, high-accuracy di-

rect numerical simulations to predict structural response in extreme envi-

ronments. This approach, based on very few assumptions, serves to provide

accurate data in lieu of experimental data in cases where testing may be

prohibitively expensive or physically unattainable. Key accomplishments re-

sulting from the work outlined in this thesis are listed below:

• A validated direct numerical simulation of an aerothermal problem in-

volving a relavent 3D thermal structure under a Mach 6+ flow.

• The direct numerical simulation of a compressible turbulent boundary

layer over a flexible steel panel and the quantification of the interaction

between the turbulent flow and the panel response.

• The use of direct numerical simulation results to evaluate commonly-

used reduced-order models for aerothermoelastic design.
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Figures for Chapter 1
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Figure 1.1: Generic hypersonic vehicle showing regions of significant thermo-
acoustic fatigue risk; (1) engine inlet ramp, (2) engine exhaust, and (3) con-
trol surfaces [5].
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(a) (b)

Figure 1.2: (a) Extreme thermal loading on underside of a shuttle upon atmo-
spheric reentry [6]. (b) A damaged thermal protection tile on the underside
of Space Shuttle Endeavor [7].

(a) (b)

Figure 1.3: (a) An infrared image of Discovery during reentry showing a 1/4
inch asperity on the wing causing a significant increase in heat load due to
boundary layer transition. (b) An infrared image of the asperity on the wing
of a space shuttle. [8].

6



Part I

Direct Numerical Simulation of

Fluid-Thermal Interaction in a

Mach 6.59 Flow
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Chapter 2

Part I Literature Review

At present, full-order coupled analysis in high Mach number flows can be

prohibitive due to computational cost, especially when long time records are

desired. To mitigate the cost of the coupled approach, various reduced-order

models (ROMs) have been used to investigate the effects of coupling, phys-

ical loads, and design requirements for hypersonic flight. Several different

ROM approaches have been developed, oftentimes using full-order methods

for one branch of the coupled analysis and reduced-order methods for the oth-

ers. For example, Culler & McNamara [18] developed a coupled framework

which uses third-order piston theory [19] coupled with Eckert’s Reference En-

thalpy method [20] to predict fluid aerodynamic pressure and thermal loads,

and methods of varying fidelity for the thermal and structural solutions for

thin panels. For their flight profile, they found the mutual interaction be-

tween structural deformation and aerodynamic heating to be significant, es-

pecially over increased time records [18]. They also found that quasi-static,

time-averaged dynamic coupling, and instantaneous dynamic coupling yield

identical flutter boundaries, but thermal stresses and temperature-varying

material properties altered flutter boundaries [15].

Another class of ROMs uses snapshots of full-order steady-state solutions

to provide additional information. Crowell & McNamara [21] computed sam-

ple steady-state Reynolds averaged Navier-Stokes (RANS) solutions which

were then corrected for unsteady flow effects using third-order piston theory.

They found that this approach improved predictions significantly when com-

pared to using piston theory or Euler solutions, stressing the importance of

viscous effects in hypersonic flows. In the same work, they investigated the

use of a database of steady-state computational fluid dynamics (CFD) snap-

shots to create either an optimal basis of the solution space using proper

orthogonal decomposition (POD), or to make approximations to the solu-

tion by interpolating between snapshots using kriging. It was found that
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both approaches yielded average L∞ errors around 5%, and maximum er-

rors of 10-20%. The kriging models were found to be slightly more accurate,

while the POD models were more computationally efficient. Falkiewicz &

Cesnik [22] considered the use of POD to provide a reduced-order thermal

solution in aerothermoelastic simulations. This approach approximated the

full-order solution with an average error of 8.2% when the thermal load on

the structure was known a priori.

Increasing computational capabilities have enabled full-order coupled ap-

proaches to make structural response predictions in hypersonic environments.

Dechaumphai et al. [23] used an integrated fluid-thermal-structural approach

to analyze the response of a 2D leading edge in a Mach 6.47 uniform flow.

They noted that the fluid-thermal coupling from the increase of the leading

edge temperature resulted in significant reduction in aerodynamic heating.

Thermomechanical results of an engine inlet cowl subject to a prescribed

heat load simulating a oblique-shock/bow-shock interference produced se-

vere in-plane stresses, suggesting the need for 3D simulations. In a later

work, Dechaumphai et al. [24] investigated the engine inlet cowl while com-

puting the shock-shock interference thermal load using a 2D finite element

Navier-Stokes solver. The pressure at the interference location matched ex-

periment, but the heat load, as predicted using a two-point differencing

approximation, was only one third of the experimentally measured values,

despite a very small wall normal distance of the first element in the fluid

domain. Thornton & Dechaumphai [25] used the above mentioned 2D finite

element fluid-thermal-structural solver to study hypersonic flow over metallic

thin panels in both aligned and inclined configurations with respect to the

freestream. Results showed that even very modest deformations altered flow

features and introduced shocks, expansions, and recirculation regions that

significantly influenced the heat load.

Using a sequential approach in which fluid loads were calculated indepen-

dent of the structural solution, a numerical simulation of thermal protection

system (TPS) panel bowing was performed by Kontinos & Palmer [26]. The

semi-empirical methodology used CFD results that were computed a priori

to form a surface heating distribution function parametrized by dome deflec-

tion height. Using this approach, they found that the dome deflection height

did not change due to the surface heating perturbation caused by the ther-

mal bowing of the dome into the flow. This is contradictory to what Culler
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& McNamara [27] found using their more strongly coupled ROM approach.

Hassan et al. [28] used 2D coupled CFD, material thermal response, and

flight dynamics solvers to study the coupled effects of a non-equilibrium flow

on the flight trajectory of a vehicle with an ablating surface. They saw that

as the simulation progressed the nosetip blunted due to ablation, affecting

the flow and indicating that, after more time, the coupled and uncoupled

results would diverge from each other.

Recently, Crowell et al. [29] investigated the fluid-thermal coupling re-

quirements to make heat load predictions on a panel under shock-turbulent

boundary layer interactions. Their findings showed that movement of the

shock location due to a prescribed panel motion significantly altered the

aerothermal load on the panel. Results also suggested that quasi-static fluid-

thermal temporal coupling is a viable option for response prediction. Zhao

et al. [30] performed a 3D coupled simulation on a leading edge in Mach

6.47 flow using a Riemann solver with a k− ǫ−R turbulence model coupled

with finite element thermal and structural solvers. They showed that a wall

normal resolution of y+ ≤ 5 was required for accurate prediction of the heat

load when compared with experiment, and that the effect of the flow-thermal

coupling on the aerodynamic heating was significant.

The collective results of the above studies indicate the significant role that

fluid-thermal coupling play in aerothermal response prediction in high-speed

flows. In this study a fluid-thermal coupled approach is taken to investi-

gate the aerothermal response of a 3D structure under a Mach 6.59 laminar

boundary layer. As discussed in Chapter 3, very few assumptions are made

as the full governing equations are solved in the fluid and thermal domains in

an attempt to assess the fidelity requirements to make accurate predictions

in hypersonic flows. Chapter 4 provides the details of the motivating exper-

iment as well as a background of the simulation details. Chapter 5 focusses

on the validation of the method as well as the investigation into the physics

of the problem. Results are used to assess the accuracy of the assumptions

that go into some common reduced-order approaches.

10



Chapter 3

Aerothermal Numerical Approach

The numerical formulation described in this chapter is developed to compute

the aerothermal heating and thermal response of a high-speed air vehicle

(Fig. 1.3). Validation of the coupled fluid-thermal solver is presented in

Chapter 5.

3.1 Fluid domain

Our fluid model describes the motion of a fully non-linear, compressible,

viscous, calorically or thermally perfect gas. The Navier-Stokes equations

describe the conservation of mass, momentum, and total energy and are

given as

∂ρ

∂t
+

∂

∂xi

(ρui) = 0,

∂ρui

∂t
+

∂

∂xj
(ρuiuj + pδij − τij) = 0, (3.1)

∂ρE

∂t
+

∂

∂xj

[(ρE + p)uj + qj − uiτij ] = 0,

where the conserved variables, ρ, ρu, ρE = p/(γ − 1) + ρu · u, are the

density, specific momentum vector, and specific total energy, respectively.

The viscous stress tensor is τij = µ(∂ui/∂xj+∂uj/∂xi)+δijλ∂uk/∂xk, where

µ, λ, and δij are the first and second viscosity coefficients, and the Kronecker

delta, respectively. In Eq. (3.1), p is the thermodynamic pressure and q is

the heat flux vector. Repeated indices are summed. Non-dimensionalization

conventions of Eq. (3.1) are given in Appendix E, and result in the following

forms for the Reynolds and Prandtl numbers,

Re =
ρ̃∞c̃∞L̃

µ̃∞
,
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and

Pr =
µ̃∞C̃p,∞

k̃∞
,

respecitively, where the tilde denotes a dimensional quantity, subscript ∞
denotes are reference quantity, L̃ is a reference length, and c, k, and Cp

are the speed of sound, thermal conductivity, and specific heat at constant

pressure, respectively. We solve Eq. (3.1) on a non-uniform, non-orthogonal

mesh defined by the smooth mappings

x = X(ξ, τ), with inverse ξ = Ξ(x, t),

where X−1 = Ξ, τ = t, and Jacobian J = |∂X/∂Ξ|. It can be shown that

Eq. (3.1) maps into an equivalent conservative form in the computational

variables ξ [31].

Finite differences are used to approximate the spatial derivatives in the

computational coordinates. We use the summation-by-parts operators [32,

33] which, when coupled to the simultaneous-approximation-term (SAT)

boundary conditions [34, 35, 36, 37], yield a provably stable and accurate

method [38]. The spatial approximation to ∂/∂ξ is P−1Q, where Q has the

property that Q+QT = diag(−1, 0, . . . , 0, 1). For the SAT formulation, which

is a penalization approach, a penalty term is added to the right-hand-side of

the governing equations. Following the notation in Svärd & Nordström [36],

the penalized equation is

∂q

∂t
= F(q) + σI1P−1E1A

+(q − gI1) +
σI2

Re
P−1E1I(q − gI2), (3.2)

where σI1 and σI2 are the penalty parameters for the inviscid and viscous

boundary conditions, respectively, and E1 = (1, 0, . . . , 0)T . Here F(q) rep-

resents the divergence of the fluxes in the governing equations, A+ is a Roe

matrix to be defined later, and I is the identity matrix. It is known that

σI1 ≤ −2 and

σI2 ≤ − 1

4P (1, 1)
max

(

γµ

Prρ
,
5µ

3ρ

)

, (3.3)

are required for numerical stability. In the current work, both σI1 and σI2

are set to −2. The boundary data are contained in the vectors gI1 and gI2.

For inviscid flows, one omits the second penalty term and defines the target
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vector by

gI1 =







ρ

ρ(u− [(u · n)− (uw · n)]n)
ρe+ 1

2
ρ|u− [(u · n)− (uw · n)]n|2






. (3.4)

The matrix A+ = χΛ+χ−1 selects only the incoming characteristic variables

R = χq, where χ transforms the conserved variables q to characteristic

variables R. For a calorically perfect gas χ is given by Pulliam & Chaussee

[39], however, for a thermally perfect gas χ is found numerically. In both

cases, χ is evaluated using the Roe average of q and gI1. Λ+ = Λ − |Λ| is a

diagonal matrix containing the elements Λ = diag{Û , Û , Û + c, Û − c}|∇xξ|
where Û is the component of the velocity in the wall normal direction n =

∇xξ/|∇xξ|. For the viscous penalty term, the target data are

gI2 = [ρ, ρuw, ρe(Tw) +
1

2
ρ|uw|2]T , (3.5)

which applies a no-slip, isothermal condition for a moving wall with velocity

uw(x, t) and with temperature Tw(x, t). Additionally, sponge regions, where

the forcing term −η(q−qref) is added to the right hand side of Eq. (3.1), are

employed. The effect is to absorb and minimize reflections from computa-

tional boundaries by penalizing the difference between the internal solution,

q, and a target solution, qref [40]. The strength of the penalization is con-

trolled by η(ξ) = Nξ2, where N is the sponge amplitude and ξ is the distance

from the boundary normalized by the sponge length. The effect of the sponge

zones can be seen in Fig. 3.1(a). The zones affected by the sponge have been

removed from the remaining figures in Part I of this thesis in order to clarify

the presentation of the solution (Example: Fig. 3.1(b)).

For the current work, the strong form of the viscous terms is utilized,

where spatial second derivatives are approximated by repeated application

of first derivative finite difference operators. This method is more computa-

tionally efficient than the weak form (expanded second derivatives). However,

the strong form of the viscous terms has no numerical damping at the highest

wavenumber, which can lead to instabilities in the simulation. The implicit

spatial filter presented by Lele [41] is used to provide numerical damping to

the solution at each time step. Filtering is accomplished by solving the linear

system of equations resulting from the application of Eq. (3.6) to grid points
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i in each direction:

αf f̂i−1 + f̂i +αf f̂i+1 = afi +
d

2
(fi+3 + fi−3) +

c

2
(fi+2 + fi−2) +

b

2
(fi+1 + fi−1),

(3.6)

where (̂ ) denotes a filtered quantity and a, b, c, and d determine the accuracy

of the filter and are functions of αf . The parameter αf governs the filter

strength, which diminishes as αf → 0.5. The value assigned to αf is 0.499

for the work presented in Part I of this thesis. The transfer function for the

10th order filter using this value of αf is shown in Fig. 3.2, and the cutoff

wavenumber associated with 0.499 is 0.96π, where cutoff is defined as a 3 dB

drop in the amplitude of the filtered quantity relative to the unfiltered one.

In order to minimize the oscillations due to the presence of shocks in the fluid

domain, the shock capturing scheme of Kawai et al. [42] is used. Any direct

effect of the scheme on the calculation of heat flux into the thermal domain

is removed by allowing only the artificial bulk viscosity to be modified. The

shock capturing scheme was found to have no effect on the surface heat flux.

Both calorically perfect (constant specific heat capacities) and thermally

perfect (temperature-varying specific heat capacities) gas models are used.

The thermally perfect model, which departs from the calorically perfect as-

sumption at high temperatures, is implemented using a user-provided lookup

table. For the aerothermal work, the thermal properties of methane-air com-

bustion products were given in Leyhe & Howell [43]. Verification of the

implementation of the thermally perfect gas model is given in Appendix A.

The fluids code has been used in a variety of fluid-only problems involving

both laminar and turbulent flows [44, 45, 46, 47, 48, 49]. The temporal

advancement of Eq. (3.1) is deferred to a later section.

3.2 Thermal domain

The thermal solution in the solid is found by solving the 3D transient heat

conduction equation,

ρCp
∂T

∂t
=

∂

∂xj

(

k
∂T

∂xj

)

, (3.7)

using an in-house finite element thermal code fitted with tri-linear basis func-

tions on a hexahedral mesh. The solution is marched implicitly in time using

the second-order accurate, unconditionally stable, Crank-Nicholson scheme
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[50]. The resulting linear system of equations is then solved iteratively using

the Generalized Minimum Residual (GMRES) [51] method provided in the

HYPRE [52] suite of parallel linear algebraic solvers. The thermal solver has

been verified against classical analytical solutions. The same verification is

done for a solver in Section 7.3.1 and is presented in detail there.

3.3 Interface treatment

The individual codes are weakly coupled at the interface where the fluid-

thermal interaction takes place. The fluid and thermal solutions are found

independently in their respective domains at a given time step tm = m∆t.

The spatial transfer along the interface is achieved using the common refine-

ment scheme, which provides a conservative and accurate transfer of heat

flux across the non-matching discretizations at the interface [53, 54]. The

stability benefits of the implicit thermal solver are exploited in the choice of

the physical quantities to pass at the fluid-thermal interface. An analysis by

Giles [55] showed that numerical stability is increased when temperature is

passed from the solid to the fluid while the heat flux is passed from the fluid

to the solid. Roe et al. [56] extended this analysis to problems involving mov-

ing grids. Thus the thermal solver provides Tw(x, t) to the fluid solver while

qn = −k∂T/∂n, where n is the unit normal pointing into the fluid from the

solid, is determined by the fluid and transferred to the solid thermal solver.

3.4 Temporal solution procedure

One major challenge in fluid-thermal interaction simulations is the impact of

the highly disparate time scales involved in fluid and thermal physics. In a

preliminary study [57], the fluid solution was seen to recover a state of me-

chanical equilibrium roughly 1 ms after a boundary condition perturbation.

The thermal solution, as presented in the next chapter, changes on the order

of 1-10 K/s in the region of interest. This results in an O(102)−O(103) ratio

between the thermal and fluid time scales. The computational cost associated

with resolving the time scales involved in both disciplines can be prohibitive

due to the fact that the transient thermal solution in the solid evolves much

more slowly than does the solution in the fluid. This effect is exacerbated in
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the case where the fluid solution is explicitly advanced in time, in which the

coupled system time step is limited by the stability requirements associated

with the fluid solution. However, the goal of the current work is to determine

the transient thermal response of a structure in the hypersonic environment

with a laminar boundary layer. In this situation, it is not necessary to resolve

the small time scales in the fluid solution. The transient solution of the fluid-

thermal system becomes more tractable if a quasi-static temporal coupling

is employed. The time accurate thermal solution at the m + 1 time step is

found by integrating the solution given the thermal load provided by the fluid

solution at time step m. The interface temperature is given as a boundary

condition in the fluid domain and the fluid is marched from time step m to

the steady-state solution consistent with the m+ 1 interface temperature.

Since a temporally accurate fluid solution is not required, the equations

(Eq. (3.1)) were integrated to steady-state using a less accurate, accelerated

five-stage Runge-Kutta (RK5) scheme developed by Jameson [58]. In the

RK5 scheme, the viscous fluxes are evaluated at two of the five stages and are

frozen for the remaining stages. These schemes were shown by Swanson and

Turkel [59] to extend the stability limit significantly while sacrificing temporal

accuracy. The variant used in the current work evaluates the viscous terms

in the first two stages and is formally first-order accurate in ∆t.
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Figures for Chapter 3

(a)

(b)

Figure 3.1: Surface heat flux (W/m2) at t = 1 s (a) with sponge zones and
(b) without sponge zones. Sponge zones are omitted from remaining figures.
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Chapter 4

Background: Aerothermal

Investigation of a Rigid

Protuberance in Mach 6.59 Flow

As mentioned in Chapter 1, one key factor that makes simulation of the

hypersonic environment so attractive is that it is difficult to run experi-

ments that replicate the desired conditions. Unfortunately, due to this fact,

experimental data needed to validate the solutions produced by numerical

simulations of extreme environments are limited. However, in the 1980’s,

researchers at NASA Langley conducted a series of hypersonic wind tunnel

experiments that investigated the thermal effects on a NASP-like body panel

in a hypersonic flow. The reports [1, 9] involved the insertion of rigid, 3D

geometries into hypersonic flows of methane-air combustion products to mea-

sure the thermal and structural loads on the models. The motivation for the

studies came from the interest in using lightweight, flexible metallic body

panels in lieu of heavy, ablative thermal protection system panels. In the

presence of high surface temperatures, flexible body panels bow into the flow

field due to through-thickness thermal gradients. The rigid, domed protu-

berance [1] and quilted dome model [9] represented the deformed geometry of

such thermally bowed panels. In both reports, surface temperature, surface

pressure and heat flux data were taken. In a regime where experimental data

are scarce, this series of tests serves as an excellent resource for the validation

of the fluid-thermal multi-physics code described in Chapter 3.
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4.1 NASA Langley 8-Foot High Temperature

Tunnel facility

In order to successfully predict the response of a test article during the experi-

ments, the tunnel conditions first need to be understood. The NASA Langley

8-Foot High Temperature Tunnel (8’ HTT) (Fig. 4.1) is a high-energy hyper-

sonic blowdown wind tunnel. Built in the 1960’s, it has been used extensively

to test various aspects of hypersonic flight vehicles from thermal protection

systems to integrated propulsion systems. The tunnel is capable of simulat-

ing aerodynamic heating and pressure loading on test articles in a nominally

Mach 7 flow at altitudes of 80 to 120 thousand feet (24 km to 36 km). The

high-energy freestream flow is obtained by the combustion of methane and

air under pressure in a combustion chamber:

CH4 + 2(O2 + 3.76N2) + Ar → CO2 + 2H2O + 7.52N2 + Ar. (4.1)

The combustion products are then accelerated to Mach 7 through a conical

nozzle terminated by a constant 8-foot diameter section before entering the

test section. The attainable freestream dynamic pressures are within the

range of 250 psi to 1800 psi (1.7 MPa to 12.4 MPa), while the total tem-

peratures range from 2400 R to 3600 R (1300 K to 2000 K). The freestream

Reynolds numbers range from 0.3 to 2.2 × 106/ft (1.0 to 7.2 × 106/m), and

the tunnel can sustain these conditions for 120 seconds.

4.2 Mechanical systems

The test article (e.g., flat plate, spherical protuberance, quilted dome panel)

is installed in a cavity of a ceramic flat plate. Initially hidden in a pod below

the wind tunnel during startup, the assembly is inserted into the flow in

approximately 1.5 seconds using an elevator with a curved strut model pitch

system capable of positioning the test article at an angle of attack of ±20◦

[60]. An angle of attack of 5◦ was used in the experiments of interest.
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4.3 Flow conditions

The flow conditions for runs 1 and 14 in the 1986 experiment are given in

Table 2 of Glass & Hunt [1] and are reproduced in Tab. 4.1 of this thesis.

The tabulated values were not measured directly by Glass & Hunt, but were

based on data from previous tunnel surveys. It is noted that the total to

static temperature and pressure ratios are those for a thermally perfect gas.

Special considerations regarding this fact are discussed below. The freestream

properties are dictated by the equivalence ratio of the fuel to oxidizer in the

combustor given as

φ =
(nCH4

/nO2
)actual

(nCH4
/nO2

)stoichiometric

. (4.2)

The equivalence ratios in the combustor were not provided by Glass & Hunt

[1].
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Table 4.1: Experimental conditions of the 1986 tests [1]. D = dome diameter, H = dome height. Run 1 did not include a
dome model.

Run M T0,∞ p0,∞ p∞ D H δ99 Materials Instrumentation Boundary layer
K kPa kPa m mm mm condition

1 6.55 1872 2961 0.655 N/A N/A 12.7 Ceramic Pitot Probe Laminar
14 6.59 1894 2896 0.648 0.71 19.3 12.7∗ Aluminum Thermocouple Laminar

& Ceramic
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4.4 8-Foot High Temperature Tunnel flow

conditions

In order to accurately model the flow conditions in the 8’ HTT, the gas prop-

erties of the methane-air combustion products had to be calculated. However,

in order to obtain the needed thermal storage coefficients (specific heat ca-

pacities, Cp(T ) and Cv(T )) and transport coefficients (viscosity, µ(T ) and

thermal conductivity, k(T )), the composition, and therefore the equivalence

ratio of methane and air, had to be obtained. Leyhe & Howell [43] provide

empirical data for the specific heats and curves for viscosity and conductivity

corresponding to four equivalence ratios: φ = 0.7, φ = 0.8, φ = 0.9, φ = 1.0.

As mentioned above, the equivalence ratios for the wind tunnel runs were not

given in the Glass & Hunt report and were determined iteratively as follows.

First, one of the four φ values listed above was selected. Then, given the

total temperature and reactant equivalence ratio, a constant pressure com-

bustion calculation using STANJAN [61] was performed to determine the

mole fractions of the products in the freestream. Given the mole fractions

of the combustion products and the information given on page 26 of Leyhe

& Howel [43], a piecewise polynomial for Cp(T ) was constructed from the

weighted sum of Cp(T ) polynomials for all individual species. The freestream

ratio of specific heats, γ∞, total temperature, T0, and total pressure p0, were

then calculated according to

γ∞ =
Cp(T∞)

Cp(T∞)−R
, (4.3a)

∫ T0

0

Cp(T )dT =

∫ T∞

0

Cp(T )dT +
γ∞RT∞M2

∞

2
, (4.3b)

p0 = p∞

[
∫ T0

T∞

Cp(T )

RT
dT

]

. (4.3c)

It was found that an equivalence ratio of φ = 0.7 gave the freestream condi-

tions closest to those presented for the runs in Tab. 4.1. The curves for µ(T )

and k(T ) were digitized from Figs. 14(d) and 16(d) on pages 87 and 95 of

Leyhe & Howel [43], respectively, and approximated by piecewise polynomi-

als. The representation of the transport coefficient data for the methane-air

mixture with polynomials lead to errors under 2% and 5% in the µ(T ) and
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k(T ) curve fits, respectively. Additionally, the total temperatures and pres-

sures are reported [62] to vary up to 9% and 20% in the horizontal and vertical

extremes of a 4-foot by 4-foot box centered at the centerline 18 inches down-

stream of the nozzle exit. These deviations are attributed to condensation in

the expansion section. Note that the test article’s area of interest sits within

the core flow where the experimental variability is less, on the order of 5%,

and is away from the more highly variable flow closer to the tunnel walls.

4.5 Verification of the laminar boundary layer

Runs 1 through 15 of the 1986 experiment [1] involved studying the loads on

the spherical dome protuberance due to the presence of a laminar boundary

layer in hypersonic flow. The laminar boundary layer was produced over the

inclined flat panel with a 3/8-inch radius blunt leading edge (Fig. 4.2(a)).

The laminar state of the boundary layer was verified by comparison with

an analytically determined boundary layer profile [63]. The experimental

boundary layer profile was measured using a boundary layer probe, as shown

in Fig. 4.2(b). The use of the boundary layer probe is an invasive measure-

ment. The presence of the probe causes a local bow shock, shown in Fig. 4.3,

such that the stagnation pressure measured by the pitot tube is that asso-

ciated with the post shock flow. To calculate the pre-shock Mach number,

Glass & Hunt used the Rayleigh pitot formula

pt2
pfp

=

(

(γ + 1)2M2
1

4γM2
1 − 2(γ − 1)

)
γ

γ−1 (1− γ) + 2γM2
1

γ + 1
, (4.4)

which relates the total pressure after the shock (pt2) to the static pressure

before the shock (pfp). In supersonic applications, measuring the static pres-

sure upstream of the probe is usually done by placing a static pressure probe

flush with the wind tunnel wall in a smooth region of the flow. Glass & Hunt

did not use a flat plate pressure that they measured during run time at the

location of the probe; instead, a reference flat plate pressure from a previous

report [1] at a location downstream of the boundary layer probe was used.
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4.6 Initial and boundary conditions

To produce the inflow boundary conditions for the coupled simulation do-

main, a 2D simulation was run using the commercial software, ANSYS Flu-

ent. The solution of this 2D problem was sufficient to provide the inflow

boundary conditions because the geometry up to that point was invariant in

the third dimension and edge effects were not capable of affecting the region

of interest. The 2D simulation also served to validate that the selection of gas

properties was consistent with the Glass & Hunt experiment. The 2D Fluent

domain was refined until the solution was determined to be grid independent.

It is compared with the coupled simulation fluid domain in Fig. 4.4.

The simulation was run on the 2D Fluent domain using the freestream

parameters given in Tab. 4.1 and gas properties consistent with a combustion

chamber equivalence ratio of φ = 0.7. The plate had been heated an unknown

amount at the time that the boundary layer measurement was taken. It was

assumed that the thermal state of the plate was close to its initial isother-

mal 300 K condition, and that was the value assigned to the plate in the

simulation. The results in Fig. 4.5 were post-processed following the proce-

dure used by Glass & Hunt to extract the boundary layer profile. Although

the geometry of the probe was not modeled, its presence was simulated by

solving for the post shock flow given the unprocessed simulation data. The

post shock pitot pressure, pt2, the reference flat plate pressure [9], pfp, and

the ratio of specific heats [9], γ = 1.38, were used to solve for the pre-shock

Mach number in the Rayleigh pitot formula (Eq. (4.4)).

It can be seen in Fig. 4.5 that the predicted and the experimentally mea-

sured profiles are similar throughout the boundary layer. The simulation

slightly underpredicts the Mach number in the entropy layer. The Mach

number in this region is very sensitive to the leading edge geometry and

boundary conditions, for which the data are not available to be fully confi-

dent that the experimental setup was represented exactly. The agreement

between the simulation and experiment is sufficiently accurate to validate

our assessment of the tunnel flow and gas properties.
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4.7 Insertion procedure

In the 8’ HTT, test articles were inserted into the initialized hypersonic

freestream over a period of 1.5 seconds; before this time they were held below

and outside the established freestream. Heating of the panel by the flow

occurred during the panel insertion from an angle of attack of 0◦ to an angle

of attack of 5◦. In order to accurately model the temperature distribution

in the thermal domain at the moment that it reached the 5◦ position, a

fully coupled, transient simulation of the panel insertion would have to be

done. A simulated 1D panel insertion was done to estimate the amount of

heating that would take place during the insertion time and evaluate the

best course of action. The heating of a 1D rod was modeled using a transient

finite element code developed in Matlab. The material properties, boundary

conditions, and geometry of the rod were chosen to be consistent with the

aluminum sheet metal heat flux dome in run 14 of Glass & Hunt [1]. In

order to provide the heat flux from the fluid, the compressible self-similar

boundary layer equations were solved. The parameters for the flow were

chosen to be the post oblique shock flow conditions consistent with the Glass

& Hunt scenario at a location similar to that of the heat flux dome. The

coupling set up can be seen in Fig. 4.6.

The 1.5 seconds were divided into discrete time steps and at each time step

the angle of the flat plate was incremented towards 5◦. At each increment,

the post oblique shock conditions were calculated and passed along with

the plate surface temperature to the boundary layer code to solve. The

surface heat flux was taken from the solution of the boundary layer equations

and provided as a thermal load on the coupled boundary of the 1D thermal

domain. The thermal domain was then integrated one time step and returned

a new surface temperature as a boundary condition to the fluid domain. This

process was iterated until the heat flux and wall temperature were converged.

At the end of the 1.5 second insertion time, with the final angle of attack of

5◦ attained, the surface temperature at the location of the heat flux dome

was estimated to have risen 2 K from the initial temperature of 300 K. This

temperature rise was determined to have a negligible effect on the heat flux,

and therefore the initial condition of the coupled simulation could be taken

as a 300 K isothermal wall boundary condition to the fluid domain and a

uniform temperature in the thermal domain.
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Figures for Chapter 4

Figure 4.1: The Langley 8-Foot High Temperature Tunnel (Recreated from
[9]).

(a) (b)

Figure 4.2: (a) Flat plate panel holder and (b) boundary layer probe
schematic. Units are in inches. (Taken from Glass & Hunt [9].)
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Figure 4.3: Pitot probe in supersonic flow.

Figure 4.4: 2D Fluent domain with Mach number contours. The coupled
simulation uses the Fluent solution to provide boundary conditions and an
initial guess for the solution.
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Figure 4.5: Boundary layer profile at X = 1.476 m: comparison between
numerical results and experimental measurements [1]. Processed simulation
data based on Eq. (4.4) (solid line), unprocessed simulation data (dashed
line), experiment (circles).

Figure 4.6: 1D fluid-thermal problem to estimate insertion heating. The rise
in surface temperature during model insertion was estimated to be 2 K.
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Chapter 5

Aerothermal Investigation Results

5.1 Coupled fluid-thermal simulations

The experiment featured in the 1986 report [1] was selected to be the val-

idation case for the fluid-thermal solver. Out of the 33 experimental con-

figurations investigated in the report, run 14 was selected for the present

simulation. This particular run featured a single aluminum dome installed in

a ceramic flat plate. The 28.6 mm thick flat plate was made from Resco Cast

RS-17E refractory ceramic. The aluminum dome was made from 14 gauge

sheet metal (1.57 mm thick). The spherical dome had a 3.28 m radius of

curvature and a diameter of 0.71 m. The backside of the dome was exposed

to an evacuated chamber. Material properties are listed in Tab. 5.1. The

assembly was inserted into a Mach 6.59 freestream as described in the above

section and shown in Fig. 5.1. Details on the experimental conditions are

given in Tab. 4.1.

Fluid and thermal domains

For the coupled simulation, the fluid domain is discretized with a single

288×313×97 structured grid, totaling over 8.7 million grid points. The grid

is designed to have an estimated y+ = y/δν value under 5 for the first wall

normal grid point to guide the near-wall resolution, where δν = ν
√

ρ/τw is

the viscous length. It is confirmed by simulation results (Fig. 5.2) that the

y+ value is less than 2 everywhere in the domain. In a later section, a grid

convergence study shows this wall normal refinement to be sufficient. The

surface grid extends away from the wall with a geometric growth rate under

1%. Fluid grid convergence data are given later in this section.

The thermal domain is meshed with 878,000 linear 8-node brick finite

elements and is modeled to represent closely the dome geometry described
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Table 5.1: Material properties in thermal domain.

Material Density Conductivity Specific heat capacity

ρ, kg
m3 k, W

m·K
Cp,

J
kg·K

Resco RS-17EC 2192 1.07 750
Aluminum (7000 series) 2800 155.0 883

in the 1986 report. As mentioned above, the domain is made up of two parts

with different material properties that have to be meshed separately with

matching nodes along the material interface. The ceramic flat plate portion

has a high mesh density near the surface to capture the thermal gradients

at the fluid-structure interface, but then is stretched into the plate. The

aluminum dome is meshed with 10 elements through its thickness. This mesh

density is shown to produce spatially invariant results for an analogous 1D

finite element solution for the present conditions. The spatial resolution of

the thermal domain is discussed further in Section 5.2.6. The dome is backed

by an evacuated chamber, represented by an adiabatic boundary condition.

Fig. 5.3 shows the orientation and boundary conditions of the two do-

mains. The boundary conditions on the thermal domain are set to adiabatic

everywhere except on the interacting surface. The initial condition in the

thermal domain is a uniform temperature of 300 K. In the fluid, a symmetry

plane bisects the dome while the other spanwise boundary is modeled as a

slip wall since edge effects from the panel holder do not influence the region

of interest. The inflow, top, and outflow are treated as far field boundaries.

The reference solution for the far field boundaries is provided by a target

solution generated by an ANSYS Fluent simulation of the complete panel at

a 5◦ incline in the Mach 6.59 freestream flow (Fig. 4.4). The target solution

for this simulation is a composite consisting of a refined 2D Fluent solution

over the full domain and a coarse 3D Fluent simulation of the full domain.

The inflow region is dominated by the 2D solution to provide an accurate

and inexpensive estimate for the inflow conditions, while the 3D solution is

used in the region above and aft of the dome to provide a reasonable match

between a 3D varying internal solution and the fixed boundary conditions.

The shaded regions in Fig. 5.3 represent sponges which blend the target so-

lution with the internal solution to promote simulation stability near the
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boundaries. The target solution also provides a fair initial condition in the

fluid domain, which reduces overall the simulation time. All reported results

do not include data from the sponge influenced regions.

Fluid steady-state convergence

As mentioned above, the temporal coupling is done in a quasi-static config-

uration, in which the transient-thermal problem is solved given the heat flux

from the steady-state fluid solution at each thermal time step. In a previous

paper [64], we considered several definitions of fluid steady-state and found

that, for the quantity of interest (heat flux into the thermal domain), the

change between fluid iterations in the root-mean-square (RMS) of the heat

flux over the interacting surface,

∆qRMS =

√

∑N
i=1(qi,k+1 − qi,k)2

N
,

was an appropriate metric, where N is the number of grid points on the

interacting surface. Further, through a convergence study, it was concluded

that a criteria of ∆qRMS < 1× 10−3 W/m2 was sufficient to provide accurate

results.

Fluid spatial convergence

The primary goal of this study is to simulate the heat flux into the aluminum

spherical dome protuberance in the Mach 6.59 flow, for which experimental

data are available. To be sure that the predicted heat flux is an accurate

solution of the Navier-Stokes equations, grid independence must be verified

for the solution on the spherical dome. As the heat flux into the surface

is most sensitive to the wall normal resolution of the solution, the grid is

designed to be very fine at the wall. The y+ value is confirmed by a fluid-

only simulation to have a maximum value of approximately 1.1 on the dome

surface. To ensure that this is sufficient, a homothetic grid refinement by a

factor of 2 in the wall normal direction is done, resulting in a 288×625×97 =

17.4 million point grid. The solution, after being run to steady-state as

defined above, is compared with the solution from the original grid. The

maximum y+ value for the new grid is less than 0.6, and occurs on the flat

plate next to the dome. The heat flux into the dome differs from the original
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results by less than 0.1%. The small difference suggests that the grid point

distribution in the wall normal direction in the original grid is fine enough

to capture the heat flux into the dome.

To ensure grid independence in the streamwise and spanwise directions,

the original, 8.7 million point grid is refined homothetically by a factor of 2

along both directions simultaneously, resulting in a 575 × 313 × 193 = 34.7

million point grid. The resulting steady-state heat flux is again compared

to that from the original grid. The change in heat flux on the dome is

less than 0.3%, indicating that the 8.7 million point grid is suitable for the

coupled fluid-thermal simulation for prediction of heat flux into the dome.

However, this refinement shows that the grid requirements off the dome are

more stringent than those on the dome. Further refinement is done for a

fluid-only investigation into the flow features in these regions. The solution

on the finest grid is discussed in Section 5.2.4.

5.2 Results

5.2.1 Effect of numerics on surface heat flux

As mentioned in Section 3.1, the viscous terms of Navier-Stokes equations are

evaluated in the present work using the strong form due to its computational

efficiency. For stability reasons, the strong form requires the use of solution

filtering in order to provide numerical damping. Preliminary simulation re-

sults indicate that the heat flux calculated at the surface is very sensitive to

the level of filtering used. Several small, 2D fluid-only simulations were run

over a flat plate at the same freestream conditions in order to understand and

avoid the inaccuracies introduced by the filter. The 2D simulations were run

on a grid similar to that used in the Glass & Hunt coupled simulation, and

extended over the region forward of the dome. The 2D initial and boundary

conditions from the Glass & Hunt simulation were used in order to make the

results relevant to the 3D simulation. The two filter parameters that affect

the solution are the filter strength (αf) and whether the filter employs biased,

high-accuracy stencils as the boundary is approached or centered stencils but

with decreasing stencil size and order. Unfiltered solutions using the Carte-

sian and weak form (not shown) of the viscous terms converge to the same

values. The Cartesian and weak forms of the viscous terms use expanded sec-
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ond derivative finite difference operators which provide sufficient numerical

dissipation to not require a filter in the current problem. In the strong form

simulations using the centered filter, the heat flux very slowly converges to

the values found by the unfiltered Cartesian form, significantly underpredict-

ing the heat flux as shown in Fig. 5.4(a). When using the boundary filter,

the strong form predictions converge to those of the unfiltered Cartesian form

(Fig. 5.4(b)) and was thus used for all simulations in this work. Figure 5.5

shows that the centered filter affects the heat flux by modifying the temper-

ature profile in the boundary. The shallower temperature gradient directly

affects the heat flux into the plate.

5.2.2 Assessment of gas thermal model

With the uncertainties associated with the grid and numerics quantified,

results are presented from the coupled fluid-thermal simulation of a Mach

6.59 flow over a flat plate with a spherical protuberance. The fluid-thermal

solution is advanced to 5 seconds in time in accordance with run 14 of the

1986 Glass & Hunt experiment [1]. The regions of interest are the dome

surface and surrounding areas. Results for longer run times are given later

in this article.

As mentioned earlier, the flow solver has the capability of simulating a

calorically perfect or a thermally perfect gas. It can be seen in Fig. 5.6(a)

that the ratios of specific heats (γ = Cp/Cv) of these two models diverge

from each other at higher temperatures. Coupled fluid-thermal simulations

are run to 5 seconds using each of the gas thermal models to assess the dif-

ferences in the resulting heat fluxes and thermal (solid) solution. Referring

to Tab. 4.1, the temperature data given in Glass & Hunt [1] is the total tem-

perature based on the 8’ HTT combustor conditions. The total temperature

and freestream Mach number are used to calculate the freestream static tem-

perature for the inflow boundary condition of the coupled simulations. To

be consistent, the calculation of the freestream temperature is calculated by

T∞ = TT,∞

(

1 + γ−1
2
M2

∞

)−1
in the calorically perfect case, and Eq. (4.3) in the

thermally perfect case. The resulting freestream temperatures are 204.73 K

and 237.14 K in the calorically and thermally perfect cases, respectively.

Figure 5.7(a) shows the heat flux distribution along the symmetry plane

of the dome from the fluid-thermal coupled simulations using both the calori-
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cally and thermally perfect gas thermal models. The thermally perfect model

consistently predicts higher heat flux values into the dome and flat plate. In-

terestingly, the variation in heat flux over time is seen to be less in the

thermally perfect case. This is due to the increase in Cv with temperature

(Fig. 5.6(a)), as given by Cv = R/(γ − 1). The boundary layer thickness

increases less with temperature as Cv increases, which results in the wall

normal temperature gradient being less sensitive to the surface temperature.

Therefore, the heat flux decreases less in the thermally perfect case. The

resulting surface temperature as the fluid-thermal coupled simulation pro-

gresses from 1 to 5 seconds is shown in Fig. 5.7(b). As expected from the

heat fluxes, the temperature along the symmetry line is also consistently

higher in the thermally perfect case. Although the total temperature of the

gas in the two simulations is the same, the total energy in the calorically

perfect case is less than that in the thermally perfect case. The difference in

total energy is because at TT,∞ = 1894 K, the specific heat capacity is higher

in the thermally perfect case. When compared to the heat fluxes reported

by Glass & Hunt, the values from the thermally perfect simulation are closer

than those from the calorically perfect simulation. Unless otherwise stated,

all further results represent the thermally perfect gas model. A comparison

between solutions from the two models when using identical static freestream

conditions is presented in Appendix C.

5.2.3 Surface temperature evolution

Figs. 5.8(a)-(c) show the evolution of the surface temperature at three times

during the 5 second coupled simulation. The surface temperature contours

give insight into the flow physics. As the time progresses, the largest temper-

ature rise occurs in two regions. While the whole front half of the dome shows

an obvious temperature increase, the forward-most portion of the dome ex-

hibits the most elevated temperature. The increased heat flux in this region

is due to the flow impinging on the front of the dome. A second region of

large temperature increase is located just past the outer spanwise extreme

of the dome on the ceramic plate. This is a viscous effect generated by the

impingement of vorticity shed off of the dome. Interestingly, the surface tem-

perature in this region is slightly higher than that at the flow impingement

region, while Fig. 5.9 shows a larger heat flux at the front of the dome. The
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relation between surface temperature and heat flux is a function of the ther-

mal properties of the dome (aluminum) and flat plate (ceramic), and will be

addressed in Section 5.2.5 below. Another phenomenon, most apparent in

Fig. 5.8(c) and Fig. 5.9, is the occurrence of low heat flux regions along the

circumference of the dome. The close proximity of high and low heat flux

indicates that there is an extreme change in the behavior of the flow in these

regions.

5.2.4 Flow solution features

Investigation of the flow behavior at time, t = 0 s, at the surface provides

information about the mechanisms which lead to the thermal features dis-

cussed in the previous section. Fig. 5.10(a) and Fig. 5.10(b) show the surface

streamlines, as visualized through the surface shear stresses, along with heat

flux and pressure contours, respectively. The shear stress visualization in

Fig. 5.10(a) shows that there is a correlation between the flow separation

and recirculation and the regions of low heat flux. Fig. 5.10(b) shows the

relation between the recirculation regions and the pressure gradients.

In order to investigate the flow features responsible for the high and

low surface temperatures that develop on the flat plate in Fig. 5.8, the

575 × 313 × 193 grid is again refined by a factor of 2 in the spanwise di-

rection, producing a 575× 313× 385 grid having just under 69.3 million grid

points. While the original grid is fine enough to resolve the solution on the

dome, surrounding areas on the flat plate are subject to more complex three

dimensionally varying flows and require a denser grid in the surface tangent

directions. It can be clearly seen in Fig. 5.11 that the region of increased

heat flux behind the dome and the long, low heat flux strip are both related

to a vortex shed off the dome. The vortex creates the low heat flux strip

by lifting the cool gas from the plate surface, decreasing the wall normal

temperature gradient. Simultaneously, the vortex forces hot gas from within

the boundary layer (Refer to Fig. C.1(b)) to the plate surface, resulting in

the high heat flux region aft of the outer side of the dome. A slice of the

X-vorticity to the outside of the dome (Fig. 5.12) exposes a counter-rotating

vortex pair above the low heat flux strip. As mentioned above, the strong

negative vorticity structure is primarily responsible for convecting the hot

boundary layer gasses to the plate surface.
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A common method for calculating heat transfer is by its relation to the

wall shear stress through the Reynolds analogy, which, for compressible flows,

takes the form:
Ch

Cf
=

qwU∞

2Cp∆Tτw
=

Pr−2/3

2
= 0.62,

where Cf is the friction coefficient and Ch is the Stanton number. The

temperature difference ∆T = Taw − Tw, where the compressible adiabatic

wall temperature is given by

Taw = T∞ + r(Pr)
U2
∞

2Cp
, r(Pr = 0.727) = 0.8519.

The Prandtl number for the combustion products of methane and air in

the present study is Pr = 0.727 in the freestream. The quotient Ch/Cf

is calculated from the simulation data to test the validity of the Reynolds

analogy over a varying geometry. Fig. 5.13 shows that the Reynolds anal-

ogy predictions are low (20% lower than simulation results), but otherwise

reasonably estimate the heat flux into the flat plate. However, the analogy

breaks down near the compression regions at the front and back of the dome,

where it grossly underestimates the heat flux. It is known that in compress-

ible flows with pressure gradients the Reynolds analogy is less useful [11], a

fact reflected in Fig. 5.13. Additionally, in flows involving large temperature

ranges, this model may be inadequate due to its assumption of a constant

Prandtl number. For both the thermally perfect and calorically perfect gas

models used in this simulation, the Prandtl number varies significantly over

the temperatures present in the flow field (Fig. 5.6(b)). Note that Pr is

not constant for the calorically perfect model because of the temperature

variation of the methane-air µ and k properties.

5.2.5 Thermal solution

Figs. 5.14(a)-(c) and Figs. 5.15(a)-(c) show the temperature distribution in

the thermal domain at three different times during the simulation. It is

noted in Section 5.2.3 that the surface temperature at the region aft of the

dome is higher than that on the the windward face of the dome where the

heat flux is higher. The through-thickness thermal solution reveals that

the surface temperature on the flat, ceramic portion of the model is very
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high in regions, but the temperature quickly decreases with distance into

the material. This is very different from the temperature distribution in

the aluminum part of the model, where the temperature is lower but nearly

constant through the thickness. The reason for this is the large difference in

the thermal diffusivities, κ = k/ρCp, of the two materials (aluminum, κ =

6.65× 10−5 m2/s, Resco RS-17E refractory ceramic, κ = 6.51× 10−7 m2/s).

5.2.6 Quantitative comparison with experiment

In the experiment, the aluminum dome had 58 thermocouples soldered to its

backside. With the time-varying temperature measurements from the ther-

mocouples, the surface heat flux through the aluminum dome was calculated

using

q = ρCpτ
∆T

∆t
. (5.1)

The rate, ∆T/∆t, was approximated using a central difference over three

data points. This value was calculated and reported for only one instant

in time, just after the model reached the tunnel centerline. Equation (5.1)

is based on several assumptions: (1) the through-thickness temperature is

constant, (2) the backside of the dome is perfectly insulated, (3) the specific

heat capacity is constant, (4) the heat conduction is 1D, and (5) the thickness

of the dome is constant. The temperature contours in Figs. 5.15(a)-(c) and

the fact that the backside of the dome is evacuated suggest that the first two

assumptions are valid. Assumptions (3) to (5) will be revisited at the end of

this section.

In order to compare quantitatively the simulation thermal response pre-

dictions with the experimental results, the temperatures over the 5 second

run at 13 of the 58 locations are monitored. The temperature and time data

at these 13 locations are post-processed using Eq. (5.1) and normalized by the

flat plate reference heat flux for run 14 in the report, qref = 0.669 Btu/ft2s

(7597 W/m2). The data are compared at a time shortly after the model in-

sertion, at t = 0.1 s, in the simulation. The results of the comparison shown

in Fig. 5.16 indicate that the thermally perfect gas model clearly performs

better than the calorically perfect model. The more rapidly decreasing heat

flux in the calorically perfect case (Figure 5.7) implies that the underpredic-

tions made with the calorically perfect model would worsen over longer time
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records.

Referring to the thermally perfect model, the simulation and experimen-

tal values are within 12% difference at all probes except at 12 and 21, where

the heat flux calculated from the temperature probes in the simulation un-

derpredict the heat flux as compared to the experiment. Negative differences

of 5% or more are grouped along the periphery of the dome, while positive

differences exceeding 5% occur towards the center. This is more easily seen

in Fig. 5.18(b). On the edge of the dome, there may be more complicated

aspects in the experimental configuration than represented in either Eq. (5.1)

or the computer model. Glass and Hunt [1] note that the aluminum dome

is secured to the panel with countersunk screws along the perimeter of the

dome and there also exists a maximum gap of 0.03 in (0.7 mm) between the

dome and flat plate. The fasteners would change both the geometry of the

dome (possibly invalidating the constant thickness and 1D heat flux assump-

tions in Eq. (5.1)) and the local surface topology experienced by the fluid.

Also, in the numerical discretization of the thermal domain, the dome/panel

interface is modeled to simply be a jump in the material properties. There

is no gap or filler material to insulate the dome from the plate. These in-

consistencies may contribute to the differences between the numerical and

experimental heat flux values near the dome edges.

Glass and Hunt also mention that the assumption made in Eq. (5.1) of

constant specific heat capacity may result in 3− 10% underestimates in the

heat flux. They reason that, by normalizing with the flat plate reference

heat flux (which also would contain the associated errors), the impact is

minimized. The minimization would be least effective in regions of higher

heat flux (higher temperatures). This would be one possible reason for the

overpredictions made by the simulation toward the center of the dome, where

the heat flux is elevated. In a later report [9], Glass and Hunt also state that

the uncertainty in the sheet metal dome thickness is approximately 2%. The

dome is instrumented with K-type chromel-alumel thermocouples, which can

also introduce an uncertainty of ±2.2% [65]. The combined experimental

uncertainties in the heat flux measurements are expected thus to be +4.2%

to −14.2%.

The validity of heat flux estimates made with Eq. (5.1) (without the

complications of varying material properties and manufacturing defects) is

assessed by comparing with the true heat flux calculated at the surface of
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the dome directly from the fluid solution, qn = −k∂T/∂n, where n is the

wall normal unit vector. The heat flux values calculated by the two different

methods are within 1% of each other, confirming that the assumptions in

Eq. (5.1) and the resulting heat flux values are accurate in the numerical

model. It should be noted that this is true both for the center and perimeter

temperature probes, indicating that the material property jump model of the

dome/plate interface does not significantly affect the temperature distribu-

tion in the dome, and may not be a contributing factor to the differences

seen in Fig. 5.16. In addition, the agreement of Eq. (5.1), which uses data

from the thermal solution, with the heat flux calculated directly from the

fluid data confirms that the discretization of the thermal domain is sufficient

for this problem.

It deserves consideration that thermomechanical deformation of the dome,

neglected in the fluid-thermal simulation, may be an additional factor present

in the experiment. Such a case would advocate for the need for increased

coupling (fluid-thermal-structural) to make reliable predictions in hypersonic

environments.

5.2.7 Comparison with a semi-analytical model

A comparison is made between the heat flux from the high-fidelity model with

a commonly used semi-analytical model based on third-order piston theory

[19] and Eckert’s reference enthalpy method [20]. The method, founded on

inviscid aerodynamics, is based on the assumption that the freestream Mach

number is large and that surface inclination is small enough so that the sur-

face normal velocity component does not exceed the speed of sound. Further,

one of the parameters in the Eckert’s reference enthalpy method is the dis-

tance from the sharp leading edge of a flat plate. As the leading edge of

the geometry under consideration is blunt, an effective sharp leading edge

is calculated from the streamwise evolution of the boundary layer thickness

from the 2D ANSYS Fluent solution using Eq. (5.2), where x0 is the distance

upstream of the blunt leading edge to the effective sharp leading edge and x

is the distance from the blunt leading edge to the δ99 measurement location,

δ99 =
5(x+ x0)√
Rex+x0

. (5.2)
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The effective leading edge is found to be 0.15 m forward of the blunt lead-

ing edge. Further details on the piston theory/Eckert’s reference enthalpy

method are given in Appendix B.

A comparison between the heat flux at the surface of the model as pre-

dicted by the semi-analytical model and the high-fidelity model shows the

similarities and differences between the two approaches (Fig. 5.17). Both

methods predict an increased heat flux on the windward face and a decreased

heat flux on the leeward face of the dome. However, while qualitative trends

in heat loads are similar, a quantitative comparison shows an increased heat

load prediction by the simpler approach, with significant features in the heat

flux not at all represented.

A comparison of the heat flux over the dome with that measured experi-

mentally by Glass & Hunt (Fig. 5.18) confirms that the semi-analytical model

grossly overpredicts the heat flux on the windward side of the dome while

underpredicting on the side and back of the dome. The underprediction can

be attributed to viscous effects, such as the fact that the boundary layer is

thicker on the rear of the dome, making the surface declination of the ef-

fective shape less than that of the actual geometry. The high-fidelity model

slightly overpredicts at the center of the dome and has both positive and

negative differences in isolated locations along the perimeter of the dome.

It should be noted that, in Figs. 5.17 and 5.18, the heat flux is calculated

directly from the fluid solution, while the values from the experiment were

calculated using thermocouples and Eq. (5.1).

5.2.8 Fifty second coupled simulation

As mentioned above, the coupled simulation is continued to a final time of

50 seconds. Glass & Hunt [1] collected 5 seconds of quantitative data during

run 14. The modest temperature increase over that time is not sufficient to

exhibit the advantages gained by two-way fluid-thermal coupling, as the fluid

solution is not altered significantly by the surface temperature increase. How-

ever, after 50 seconds, the surface temperature increase is more impressive.

As shown in Fig. 5.19(a) and (b), the maximum temperature reaches 465 K

and occurs on the windward face of the dome as opposed to the location at

5 seconds on the flat plate where the vortex grazing was seen.

The elevated temperature of the structure affects the flow by decreasing
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Table 5.2: Evolution of drag and integrated heat load with time. Drag is
calculated assuming both temperature-varying and constant viscosities to
demonstrate the effect of boundary layer thickening.

Time Drag, µ(T ), Drag, µ = cst., Integrated heat
s N N load, W
0 14.253 12.632 15341
10 14.122 11.578 14388
30 14.102 11.119 13905
50 14.087 10.821 13556

the density of the gas next to the model, therefore thickening the boundary

layer. Fig. 5.20(a) shows the thickening of the boundary layer profile on the

windward side of the dome at the symmetry plane as time increases. As a

consequence, the effective shape of dome changes, increasing the extent and

magnitude of the recirculation region. This is shown in Fig. 5.20(b), where

the boundary layer profile shows a taller recirculation region with stronger

reversed flow.

The thickening of the boundary layer changes both the velocity and tem-

perature gradients at the surface so that the drag and heat load on the

model evolve over time. The sum of the streamwise shear stress and pres-

sure load, integrated over the surface of the model, gives the drag force. As

the shear stress is affected by both the velocity gradient and the viscosity,

which increases with temperature, the drag is calculated from the same flow

field using two different viscosity models to investigate the modification of

the flow field by the thermal solution. The baseline drag calculation uses

a temperature-dependent viscosity. The drag is again calculated from the

same flow field using a constant viscosity model, where the viscosity is held

at its freestream value, µ = µ(T∞ = 237.14 K). The results are shown in

Tab. 5.2. The drag is seen to drop with time, but the drop is much smaller in

the case of temperature-varying viscosity. The drag reduction with time in

the constant viscosity case is due solely to the decreasing velocity gradient,

which highlights the affect of the surface temperature on the boundary layer

thickness. Also, as expected, the thickening boundary layer and increasing

surface temperature cause the integrated heat load to decrease over time. A

thermal-only simulation subject to a constant heat load (the initial heat load
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in the coupled case) yields a maximum surface temperature of 488 K. The

temperature distribution on the centerline of the dome is shown in Fig. 5.21

for the two-way coupled and thermal-only simulations. The 23 K difference

between the two cases demonstrates the integrated effect of the evolving heat

load. The uncoupled peak temperature location also moves upstream relative

to the coupled solution.

5.3 Summary of Part I

A high-fidelity coupled fluid-thermal solver was developed for the thermal

response prediction of extreme environment structures. For the purpose of

solver validation, a hypersonic wind tunnel experiment was studied. The

conditions inside the NASA Langley 8-Foot High Temperature Tunnel were

reproduced to provide initial and boundary conditions for a coupled simu-

lation. The solution filtering used in the simulation to promote numerical

stability was observed to have an effect on the heat load calculation into the

solid model. In order to minimize the impact of the filter on the coupled

solution, a study was conducted to assess the effects of filtering on heat flux

at the boundary of the fluid domain. Following that study, a coupled fluid-

thermal simulation of hypersonic flow over a rigid structure was conducted

over 5 seconds to compare with experimental data. Comparisons were made

between simulations employing both a calorically perfect gas thermal model

and a more general thermally perfect model, and the merits of each were

discussed. The impact of viscosity on the flow and in particular the surface

heat flux resulting from vortical structures in the flow was investigated. The

coupled simulation was run until 50 seconds, exceeding the available 5 sec-

onds of experimental data, to evaluate the effect of fluid-thermal coupling

on the long-term fluid solution. The results of the simulation were also com-

pared with predictions made using a semi-analytical model to highlight the

similarities and differences of the two predictive approaches.

It was found that, if solution filtering is required to ensure numerical sta-

bility, the accuracy of the filter at the boundary can significantly affect the

heat flux by reducing the temperature gradient in the boundary layer. A com-

parison between results from our high-fidelity solver and a semi-analytical

model based on inviscid aerodynamics and a flat plate boundary layer as-
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sumption revealed that while qualitative trends of the heat loads were iden-

tified, a quantitative comparison shows a substantial overprediction by the

simpler approach, with significant features in the heat flux not at all repre-

sented. In particular, a region of substantial heating due to vortex shedding,

a viscous effect, was completely neglected. Our simulations showed that the

Reynolds analogy, a ‘first-cut’ method for determining heat flux from surface

shear stress, provides a fair estimate in hypersonic flows over a flat plate,

but the method failed in the presence of pressure gradients. Thermal solu-

tion temperatures were found to be a function of heat load, geometry, and

material properties. Our high-fidelity, coupled approach incorporated these

aspects and produced solutions which were not obvious and may not be pre-

dicted by lower-order methods. It was also found that, in flows where there

exist even isolated regions of extreme temperatures, the calorically perfect

assumption may not be justified, requiring the use of a thermally perfect (or

more general) gas model. While changes in the fluid solution were not signif-

icant for the 5 second simulations, high temperatures that resulted from long

periods of time in hypersonic flow had a noticeable effect on the flow solution

in the coupled problem. This led to decreased drag and heat loads on the

structure. The coupled solver predictions, using the thermally perfect gas

model, were found to be within the experimental uncertainty for points on

the dome interior, except for points near the dome periphery where details of

the dome geometry were insufficiently described to be captured numerically.
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Figures for Chapter 5
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Figure 5.1: Schematic of the ceramic plate and aluminum dome inserted into
the Mach 6.59 freestream.

Figure 5.2: y+ values of the first wall normal grid point at t = 0 s.
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Figure 5.3: Orientation and boundary conditions of the fluid and thermal do-
mains. The sides and back of the thermal domain are adiabatic. An example
solution is displayed with temperature contours in the thermal domain and
pressure contours in the fluid domain. Shaded regions represent the presence
of sponges.
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Figure 5.4: Effect of spatial filter boundary schemes on convergence of surface
heat flux along the plate. (a) Centered filter, (b) boundary filter. The dashed
line corresponds to the unfiltered Cartesian form of the viscous terms while
the solid line corresponds to the filtered strong form of the viscous terms.
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perature differences at several wall normal locations are noted for clarity.
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(a)

(b)

(c)

Figure 5.8: Surface temperature (K) at (a) t = 1 s, (b) t = 3 s, and (c) t = 5
s.
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Figure 5.9: Surface heat flux W/m2 at t = 1 s.
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(a)

(b)

Figure 5.10: Shear stress vectors with (a) heat flux (W/m2) and (b) pressure
contours (Pa).
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Figure 5.11: Streamlines illustrating a vortex shed off the right side of the
dome. Heat flux contours are shown on the thermal domain surface.
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s
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Figure 5.12: Counter-rotating vortex pair grazing the plate on the outside
of the dome. Heat flux contours are plotted on the surface. The legend
corresponds to the vorticity contours displayed on the vertical slice.
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Figure 5.13: Percent difference between value predicted by Reynolds Anal-
ogy (0.62) and Ch/Cf calculated over the interacting surface at t = 0 s.

% Diff. =
0.62−Ch/Cf

Ch/Cf
× 100%
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(a)

(b)

(c)

Figure 5.14: Evolution of thermal solution on the windward side of the evacu-
ated aluminum dome at (a) t = 1 s, (b) t = 3 s, and (c) t = 5 s. Temperature
contour units are in K. The geometry is scaled by 200% in the vertical direc-
tion for clarity. Creases in the images correspond to processor boundaries.
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(a)

(b)

(c)

Figure 5.15: Evolution of through-thickness dome temperature (K) at the
symmetry plane at (a) t = 1 s, (b) t = 3 s, and (c) t = 5 s. The flow is from
left to right.
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(a)

(b)

Figure 5.16: (a) Comparison between experimental and numerical values for
heat flux at the thirteen thermocouple locations denoted by circles in (b).
% Diff. = qsim.−qexp.

qexp.
× 100%.
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(a)

(b)

Figure 5.17: Comparison between heat flux (W/m2) calculated with (a) pis-
ton theory/Eckert’s reference enthalpy and (b) the high-fidelity model at
t = 0 s.
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(a)

(b)

Figure 5.18: Comparison between heat flux calculated with (a) piston the-
ory/Eckert’s reference enthalpy and (b) the high-fidelity model (t = 0 s). The
contours indicate the difference between the numerical and experimental heat
fluxes normalized by the flat plate reference heat flux, (qnum. − qexp)/qref .
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(a)

(b)

Figure 5.19: (a) Surface temperature and (b) through-thickness dome tem-
perature at the symmetry plane at t = 50 s. Units are in K.
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Figure 5.20: Boundary layer profile (a) on the windward face of the dome
and (b) at the dome leading edge at 10 s (circles), 30 s (dashed line), and
50 s (solid line). The boundary layer thickens and the recirculation region
becomes stronger with the increase in surface temperature
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Figure 5.21: Temperature along the centerline of the dome in the two-way
coupled (solid) and thermal-only (dashed) simulations. The thermal-only
solution predicts the peak temperature to be 23 K higher than the coupled
solution.
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Part II

Direct Numerical Simulation of

Fluid-Structural Interaction of

Mach 2.25 Turbulent Boundary

Layer Over a Compliant Panel
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Chapter 6

Part II Literature Review

We now consider an aeroelastic problem where a compressible turbulent

boundary layer (TBL) interacts with NASP-like flexible steel panel to de-

termine the implications of fluid-structural interaction in high speed flows.

A variety of studies involving fluid-structure interaction have been con-

ducted using analytical, numerical, and experimental approaches. Early an-

alytical work on fluid-structural coupling was motivated by noise prediction,

coincident with the advent of the jet engine and its impact on air vehicles

half way through the 1900’s. In 1956, Corcos & Liepmann [66] developed

an analytical model based on Lord Rayleigh’s theory of sound to study the

noise transmission into a fuselage due to a prescribed forcing function rep-

resenting a boundary layer with turbulence that was random in both space

and time. In 1964, Ffowcs Williams [67] studied the effect of turbulence-

induced surface deformation on sound radiation from a turbulent boundary

layer based on Lighthill’s approach. He assumed that surface deformations

were sufficiently small to replace the compliant surface by a rigid surface with

velocity and stresses equal to those of the moving surface. More recently, Wu

& Maestrello [68] extended previous ideas by accounting for structural non-

linearities due to stretching and in-plane stress while studying a prescribed

turbulent loading on a plate using a forcing function. In their 1993 work [68],

they found that acoustic damping of the plate increased linearly with Mach

number, while the stiffness increased quadratically, a fact that could lead to

instability. When the structural response becomes unstable, the condition

referred to as panel flutter results, involving large amplitude, high frequency

oscillations of the panel. The fatigue risk associated with this condition can

have disastrous results. Furthermore, the interest in high-speed, lightweight

vehicles that feature thin body panels subject to high dynamic pressures,

conditions promoting panel flutter, make it necessary that flutter be well un-

derstood. Flutter analysis has been grouped by Dowel [69] and Cheng & Mei
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Table 6.1: Panel flutter analysis categories [2].

Type Structural Aerodynamic Mach number Approach
theory theory range

1 Linear Linear piston
√
2 < M∞ < 5

2 Linear Linearized 1 < M∞ < 5

potential flow Semi-

3 Non-linear Linear piston
√
2 < M∞ < 5 analytical

4 Non-linear Linearized 1 < M∞ < 5

potential flow
5 Non-linear Non-linear piston M∞ > 5

6 Non-linear Euler or Transonic, supersonic, Computational
Navier-Stokes or hypersonic

[2] into five analytical and one computational categories, given in Tab. 6.1,

based on the associated requirement of linear and non-linear structural and

aerodynamic theories dependent on Mach number range. Early studies fo-

cussed on the flutter of simple geometries due to first-order aerodynamic

loading models. Degundgji [70] studied the flutter boundaries of rectangular

plates by varying aspect ratio, in-plane loads, and the presence of an elastic

foundation, and found that the effects of aerodynamic and structural damp-

ing were important. Further studies have been extended to more complicated

geometries and loading scenarios. Dowell [71] studied the flutter character-

istics of curved plates and found that streamwise curvature has a significant

effect on the flutter boundary and amplitude. Houbolt [72] took a modal

approach to the study of buckling and panel flutter in the presence of a uni-

form temperature distribution. Hopkins & Dowel [73] used the Rayleigh-Ritz

assumed-mode method to study square panels under various temperature dif-

ferentials, which proved to have a significant influence on the solution. The

impact of coupling between aerodynamic heating and structural deformation

was extensively studied by Culler in his Ph.D. thesis [74]. He found that the

effect of aerodynamic heating can significantly lower the flutter boundary

by introducing thermal stresses and material degradation. A review of the

above studies shows a trend in the high-speed regime in which increments

in modeling fidelity are accompanied by significant changes in predictions,

indicating that higher fidelity models are needed to fully understand the en-

vironment. While much is learned from analytical approaches such as those
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used in the above studies, they are often limited to simplified scenarios in-

volving non-complex geometries and problem specific assumptions.

Historically, experimental approaches to the study panel flutter used wind

tunnels with the objective of determining the flutter boundary as a function

of dynamic pressure. Typically, a panel is inserted into the flow field at some

specified Mach number, stagnation pressure, and temperature. The flutter

boundary is sought by increasing the dynamic pressure while holding the

Mach number and temperature fixed. Prior to the flutter boundary, random,

small amplitude oscillations are observed due to pressure fluctuations present

in the TBL. The flutter boundary is marked by the dynamic pressure at which

the oscillations become nearly sinusoidal with large amplitudes comparable

to the plate thickness [69]. Early studies have been concerned with identi-

fication of flutter boundaries. As pointed out in Chapter 1, fluid-structure

coupling is expected in future high-speed vehicles, and an understanding of

the dynamics of panel motion is necessary. Mei et al. [75] note that “ex-

perimental investigations on post or non-linear flutter behavior of panels

have been essentially non-existent,” citing only one case where Kappus et al.

[76] studied panel response far past the flutter boundary. As measurement

techniques have advanced, detailed results regarding the panel and fluid dy-

namics have been sought. Laser vibrometry and accelerometers have been

used to gather single point dynamic information about the panel. Recently,

full-field digital image correlation have gained interest. From digital image

correlation measurements of panel deflections, detailed information about

panel strains and stresses can be inferred, but have been restricted in resolu-

tion or time record by technological limitations. Recently, at the Air Force

Research Laboratory, flexible panels have been inserted in the RC-19 super-

sonic wind tunnel for aeroelastic testing [77]. Innovative analysis techniques

developed by Beberniss et al. [78, 79], are being used to study the response of

compliant panels under scramjet inlet loading conditions, for example, using

high speed digital image correlation and high speed pressure sensitive paint.

Initial results indicate the usefulness of the newly developed techniques and

encourage their application to future high-speed fluid-structural interaction

experiments.

The computational category in Tab. 6.1 was added by Cheng & Mei [2] in

2004 to account for flow regimes which cannot be modeled by approximate

theories, and require the use of Euler or Navier-Stokes solutions. Numeri-
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cal approaches to fluid-structure interaction overcome some of the limitations

that plague analytical and experimental approaches. They are not hampered

by the assumptions that are present in analytical formulations and are able

to provide detailed information that is unobtainable by current measure-

ment techniques in experiments. However, as the complexity of the problem

increases, so do the computational costs. Visbal and Gordinier numerically

simulated two-way coupled fluid-structure interaction problems using a high-

order Navier-Stokes solver coupled with a non-linear von Karman plate. A

3D simulation [80] of laminar and turbulent boundary layers over a finite

plate in both subsonic and supersonic flows showed strong coupling in both

flow regimes, in which panel flutter and vortical structures in the unforced

boundary layer could be correlated. Later, in a 2D study [81] of a similar con-

figuration, they noted that, due to the coupling, panel flutter was achieved

under the boundary layer without any external perturbation and that the

boundary layer was left in a transitional state after the interaction. Both

studies showed the significant effect of two-way coupling on the fluid solu-

tion. The appearance of shock waves is common in high-speed flows, and,

in a recent paper, Visbal [82] has studied the 2D interaction of a impinging

shock on a flexible panel under an inviscid flow. The presence of the shock

lowered the dynamic pressure at the flutter boundary, and the panel motion

produced complicated the flow field by modifying the reflected shock and

creating additional compression/expansion wave systems at the trailing edge

of the panel. The presence of a TBL using a large eddy simulation (LES)

approach has been considered by Schäfer et al. [83] in their investigation

of a turbulent flow over a thin panel, though they were interested in the

acoustics resulting from fluid-structure interaction in low-speed flows. They

also conducted accompanying experiments to compare with their simulation

results. They found good agreement between numerical and experimental

measurements, at least qualitatively.

The above studies indicate the need for accurate information regarding

structural response in high-speed flows. Analysis approaches must consider

fluid-structural coupling, and increases in model fidelity are often accom-

panied by new insights into the operating conditions and loading scenar-

ios in the high-speed regime. Results of the highest fidelity are obtainable

through experiments, and advances in measurement techniques are allowing

more detailed information to been extracted. Numerical approaches have the
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advantage that they are not constrained by the limitations of available mea-

surement techniques and solution data is easily accessible. Many numerical

approaches rely on simplifying assumptions used, for example, in turbulence

models and plate theories to reduce the computational cost of simulations.

The work in this part presents a study of the interaction between a supersonic

TBL and a compliant panel in which no turbulence model or simplifications

regarding the structure are made. The approach extends the current state-

of-the-art to allow for a detailed investigation of the coupling between a flex-

ible structure and a high-speed TBL. In Chapter 7, the solver is presented,

including a detailed formulation of the non-linear thermomechanical solver

developed for this work. Chapter 8 introduces the details of the problem to

be examined. Chapter 9 discusses in detail the generation, verification, and

analysis of a temporal compressible TBL. Part II concludes with Chapter 10

presenting the simulations, results, and analysis of the aeroelastic problem.
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Chapter 7

Aeroelastic Numerical Approach

7.1 Fluid domain

The solution in the fluid domain is achieved using the same code described

in Chapter 3. Differences between the work in Part II and that presented

in Part I are that this problem involves grid deformation and high-accuracy

temporal integration. Grid deformation is accomplished using a simple trans-

finite interpolation scheme, which preserves the arclength-normalized coor-

dinate of each point along its associated grid lines. Details about transfinite

interpolation can be found in [84]. An example grid deformation is shown in

Fig. 7.1.

Temporal integration in the fluid domain is accomplished using a four-

stage Runge-Kutta scheme. While the scheme can achieve O(∆t4) accuracy

with variable time steps (governed by, say, a fixed CFL number), the time

step is held constant to accommodate the constant time step requirements

of the structural and thermal temporal integration schemes.

The implicit filter described by Eq. (3.6) is again used in Part II of this

thesis. However, the filter strength parameter is set to αf = 0.490. The

transfer function for the 10th-order filter using this value of αf is shown in

Fig. 7.2, and the cutoff wavenumber associated with 0.490 is 0.90π.

7.2 Solid domain

For the aeroelastic work presented in this thesis, a non-linear thermomechan-

ical finite-element solver was developed. Although the work presented in this

thesis utilizes only the structural capabilities of the thermomechanical solver,

the thermomechanical formulation is presented below for completeness. Cou-

pling between the thermal and structural solutions is achieved through a mul-

tiplicative decomposition of the deformation gradient (Fig. 7.3). As will be
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shown, this allows the use of a standard constitutive model for computation

of the stress field.

7.2.1 Multiplicative decomposition

Consider a deformable body under thermal and mechanical loads. Initially

the body is in the reference configuration, B0, and all points on the body

are described by X. At some time, t, the body’s motion can be described

by a transformation, φ(X, t), such that the position of every particle in the

current configuration, B, can be written x = φ = X + u, where u(x, t)

is the displacement. The deformation gradient is defined as F (X, t) =

∇Xφ(X , t) = ∂x/∂X , and the right Cauchy-Green tensor is C = F TF .

The Jacobian, J = det(F ), represents the volume change between the ref-

erence and current configurations. For the thermomechanical formulation

adapted in this study, the deformation gradient F is multiplicatively de-

composed into a stress-free component, θF , where all deformations are due

to thermal expansion/contraction, and an isothermal component, eF , where

deformations produced by the stresses in the elastic body:

F = θF eF . (7.1)

Partitioning of the problem in this way is referred to as the isothermal split

[85]. Each component of the deformation gradient has an associated Jaco-

bian, θJ = det(θF ) and eJ = det(eF ), which represent the volume changes

due to thermal effects and stresses, respectively. It is assumed that the solid

is thermally isotropic such that

θF = β(Θ)I, (7.2)

where I is the identity tensor and β(Θ) is the stretch ratio in any direction

due to thermal expansion/contraction.

7.2.2 Isothermal stage

Conservation of linear momentum gives the strong form in the current con-

figuration, B, as

∇ · σ + ρb = ρü, (7.3)
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where σ is the Cauchy stress tensor, b is a field of body forces, ρ is the

density, ü = ∂2u/∂t2 is the acceleration, and ∇ is the gradient in the current

configuration. The corresponding form of the principal of virtual work is

δW =

∫

B

(∇ · σ) · δu dv +

∫

B

ρb · δu dv −
∫

B

ρü · δu dv = 0, (7.4)

where δu denotes the virtual displacement. Rearrangement and application

of the divergence theorem
∫

v
∇ · (·)dv =

∫

∂v
(·) · n̂ da yields the alternative

form:

δW =

∫

B

σ : ∇δu dv+

∫

B

ρü·δu dv−
∫

∂Bt

t·δu da−
∫

B

ρb·δu dv = 0, (7.5)

where t = σ · n̂ denotes the traction vector applied along the portion ∂Bt of

the deformed boundary and n̂ is the outward pointing unit normal vector.

In order to pull Eq. (7.5) back to the initial configuration, B0, the following

identities are used [86, 87, 88]:

∇δu = F−T∇Xδu = F−TδF = eF−T θF−TδF ,

dv = JdV = eJθJdV = β3(Θ)eJdV,

tda = tJ
√

N ·C−1NdA = t0dA,

θF = β(Θ)I, (7.6)

P̂ =
∂eW

∂eF
= eJσeF−T ,

and ρ0 = Jρ.

In Eq. (7.6), dv and dV are infinitesimal volume elements in the current and

initial configurations, N is the unit outward pointing normal in the initial

configuration, and P̂ is the first Piola-Kirchhoff stress tensor representing

only stresses due to elastic deformations that take place during the isothermal

stage. It is trivial to show that the terms three and four in Eq. (7.5), when

pulled back into the reference configuration, are

∫

∂B

t · δu da+

∫

B

ρb · δu dv =

∫

∂B0

t0 · δu dA+

∫

B0

ρ0b · δu dV.

72



The expression of the first term in the undeformed configuration is derived

as follows:

∫

B

σ : ∇δu dv =

∫

B0

Jσ : ∇δu dV =

∫

B0

JσeF−T : θF−TδF dV

=

∫

B0

θJeJσeF−T : θF−TδF dV =

∫

B0

θJP̂ : θF−TδF dV

=

∫

B0

β3(Θ)P̂ :
I

β(Θ)
δF dV =

∫

B0

β2(Θ)P̂ : δF dV.

The acceleration term is also straightforward:

∫

B

ρü · δu dv =

∫

B0

ρ0ü · δu dV.

The principle of virtual work in the reference configuration, B0, is thus

δW =

∫

B0

β2(Θ)P̂ : δF dV +

∫

B0

ρ0ü · δu dV −
∫

∂B0

t0 · δu dA

−
∫

B0

b0 · δu dV = 0. (7.7)

Equation (7.7) shows that using the multiplicative decomposition of the de-

formation gradient allows for a standard elastic constitutive model to be used

to calculate the first Piola-Kirchhoff stress tensor in the isothermal stage.

The full expression of the first Piola-Kirchhoff stress tensor is the product

β2(Θ)P̂ .

Non-linear solution method

In a non-linear problem, if a body with current configuration x does not

satisfy δW (u) = 0, a linear correction is made, i.e., δW is linearized at u

and multiplied by a correction ∆u to achieve δW (u+∆u) = 0

δW (u+∆u) = 0 ≈ L[δW ] = δW (u) +DδW (u)[∆u] = 0 (7.8)

where DδW (u)[∆u] is the directional derivative of W (u) along ∆u. The

terms involved in the linearization are the internal stress and traction terms,

L[δW ] = δW (u) +DδWint(u)[∆u]−DδWext(u)[∆u] = 0,
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which are described below. The corrected configuration u = uold + ∆u is

found by solving for ∆u

DδWint(u)[∆u]−DδWext(u)[∆u] = −δW (u), (7.9)

and iterating until δW (u) = 0.

Linearization of δW

The internal virtual work is given by the term

δWint =

∫

B0

β2(Θ)P̂ : δF dV.

The term is linearized by taking the directional derivative along a displace-

ment, ∆u, as

DδWint[∆u] =

∫

B0

β2(Θ)δF : DP̂ [∆u]dV. (7.10)

Using

DP̂ [∆u] =
∂P̂

∂eF
: DeF [∆u] = A : DeF [∆u]

and

DeF [∆u] = ∇X∆u, (7.11)

the linearized term takes the form

∫

B0

β2(Θ)δF : DP̂ [∆u]dV =

∫

B0

β2(Θ)δF : A : ∇X∆udV. (7.12)

The expressions of P̂ and A for the St. Venant-Kirchhoff and Neo-Hookean

constitutive models are given in Appendix Sections D.1 and D.2, respectively.

Similarly, the external virtual work term,

δWext =

∫

∂B0

t0 · δu dA,

is linearized by taking the directional derivative along u as

DδWext[∆u] =

∫

∂B0

δu ·Dt0[∆u] dA, (7.13)
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where,

Dt0[∆u] =
∂

∂eF

(

t eJ
√

N ·C−1N
)

: DeF [∆u] = B : ∇X∆u, (7.14)

where B is given in Appendix D.3. The resulting linearized equation is given

as

L[δW (u)] =

∫

B0

β2(Θ)P̂ : δF dV +

∫

B0

ρ0ü · δu dV

−
∫

∂B0

t0 · δu dA−
∫

B0

b0 · δu dV (7.15)

+

∫

B0

β2(Θ)δF : A : ∇X∆u dV

−
∫

∂B0

δu · B : ∇X∆u dA = 0.

The discretized form for Eq. (7.15) yields

δuT
(

Rint +Mü−Rtract. −Rbody +K∆u
)

= 0, (7.16)

where Rint. is the internal load vector, M is the consistent mass matrix,

Rtract. and Rbody are the external load vectors due to traction and body forces,

respectively, and K, the tangent stiffness matrix, represents the linearized

internal and external virtual work terms. A detailed description of the spatial

discretization can be found in Appendix D.4.

Temporal discretization

The dynamic equilibrium equation at time step n+ 1 is

Rint
n+1 −Rext

n+1 +Mün+1 = 0 (7.17)

Newmark’s method is used to advance Eq. (7.17) in time, in which the solu-

tion at time step n+ 1 is approximated by

un+1 = un +∆tu̇n +
∆t2

4
[(1− 2β)ün + 2βün+1], (7.18)

u̇n+1 = u̇n +∆t[(1 − γ)ün + γün+1],
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where γ = 1/2 and β = 1/4 are chosen to give an O(∆t2) accurate, linearly

stable scheme. Plugging Eq. (7.18) into Eq. (7.17) and approximating the

internal load vector at time step n+ 1 as Rint
n+1 = Rint

n +K∆u results in

Rext
n+1 −Rext

n +M

(

4

∆t
u̇n + 2ün

)

=

(

4

∆t2
M +K

)

∆u

The solution, ∆u, is used to calculate the solution at n+ 1

un+1 = un +∆u,

u̇n+1 = u̇n +
2

∆t
∆u,

ün+1 = ün +
4

∆t2
∆u.

Newton-Raphson iterations are used until Eq. (7.17) is satisfied to a tolerance

of 10−5.

7.2.3 Stress-free stage

The transient heat equation describes the evolution of the thermal state in

a solid in the current configuration, B,

ρCpΘ̇ +∇ · q = 0. (7.19)

where Θ is the temperature, q is the heat flux vector, and Cp and k are the

specific heat capacitance and thermal conductivity of the solid, respectively.

The weak form is

∫

B

ρCpΘ̇δΘdv +

∫

B

(∇ · q)δΘdv = 0, (7.20)

where δΘ denotes the arbitrary weight function. Using the relation (∇ ·
q)δΘ = ∇ · (qδΘ) − q · ∇δΘ and the divergence theorem, Eq. (7.20) is re-

expressed as

∫

B

ρCpΘ̇δΘdv −
∫

B

q · ∇δΘdv +

∫

∂B

q · nδΘda = 0. (7.21)
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The first term in Eq. (7.21) is readily pulled back into the reference configu-

ration as

∫

B

ρCpΘ̇δΘdv =

∫

B0

JρCΘ̇δΘdV =

∫

B0

ρ0CpΘ̇δΘdV.

For the second term, Fourier’s law provides a linear relation between the

temperature gradient ∇Θ and the heat flux vector

q = −k∇Θ. (7.22)

The second term in Eq. (7.21) is pulled back into the undeformed configura-

tion as follows:

∫

B

q · ∇δΘdv =

∫

B0

−Jk∇Θ · ∇δΘdV =

∫

B0

−JkF−T∇XΘ · F−T∇XδΘdV

=

∫

B0

−JkF−1F−T∇XΘ · ∇XδΘdV =

∫

B0

−JkC−1∇XΘ · ∇XδΘdV

=

∫

B0

Q · ∇XδΘdV,

where Q = −JkC−1∇XΘ. The third term is found by finding the relation

between area elements in the current and reference configurations, da and

dA, respectively,

da = J
√

N ·C−1NdA. (7.23)

The derivation of Eq. (7.23) is given in Appendix D.5. The third term in the

reference configuration is thus given as

∫

∂B

q · nδΘda =

∫

∂B0

Q ·NδΘdA,

where

Q ·N = Jq · n
√

N ·C−1N . (7.24)

Given a heat flux q · n in the current configuration (e.g. calculated from

the fluid solution), Q ·N is calculated with Eq. (7.24) to be applied to the

reference configuration. The final expression of Eq. (7.21) in the reference
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configuration is thus

∫

B0

ρ0CpΘ̇δΘdV +

∫

B0

JkC−1∇XΘ ·∇XδΘdV = −
∫

∂B0

Q ·NδΘ dA. (7.25)

The discretized for of Eq. (7.25) yields

C thΘ̇+KthΘ = Rth, (7.26)

where C th and Kth are the thermal capacitance and thermal stiffness matri-

ces, respectively, and Rth is the thermal load vector. A detailed description

of the discretization can be found in Appendix D.6.

Temporal discretization

In this work, the heat equation in advanced in time using Crank-Nicholson

scheme. The thermal state at step n+ 1 is approximated by

Θn+1 ≈ Θn +∆t
(

(1− β)Θ̇n + βΘ̇n+1

)

(7.27)

Adding Eq. (D.22), written at n + 1 and n, multiplied by β and (1 − β),

respectively, yields

(1− β)
(

Cth,nΘ̇n +Kth,nΘn

)

+ β
(

C th,n+1Θ̇n+1 +Kth,n+1Θn+1) (7.28)

= (1− β)Rth,n + βRth,n+1

The choice of β = 1/2 is referred to as the trapezoidal rule, and is the value

used in this work. Furthermore, the choice of β = 1/2 gives an O(∆t2)

accurate scheme and is unconditionally stable for linear problems. Using

Eq. (7.27) and Kth,n+1Θn+1 ≈ Kth,nΘn+Kth,n∆Θ, where ∆Θ = Θn+1−Θn,

and noting that Cth,n+1 = Cth,n = Cth, gives

(

2

∆t
C th +Kth,n

)

∆Θ = CthΘ̇n −Kth,nΘn +Rth,n+1. (7.29)

7.2.4 Evolution of coupled equations

In order to integrate the coupled equations Eq. (7.3) and Eq. (7.19) in time,

a two-stage staggered approach based on the isothermal split is taken. The
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in the first stage, the mechanical phase (Eq. (7.17)) is solved with a fixed

temperature, and, in the second stage, the thermal phase (Eq. (D.22)) is

solved on the fixed, current configuration, x(X , t). The resulting structural

and thermal solutions are xk
n+1 and Θk

n+1, respectively, where n is the time

step index and k is the subiteration index. The two solutions are iterated on

at time step n until the desired convergence for both solutions is achieved,

which for the mechanical and thermal phases are

Su =
||xk+1

n+1 − xk
n+1||

||x1
n+1 − xn||

,

and

SΘ =
||Θk+1

n+1 −Θk
n+1||

||Θ1
n+1 −Θn||

,

respectively. Upon satisfaction of Su ≤ ǫ and SΘ ≤ ǫ, the structural and

thermal solutions at n + 1 are xn+1 = xk+1
n+1 and Θn+1 = Θk+1

n+1, and the code

proceeds with the next time step.

7.3 Solver verification

As mentioned in Chapter 3, the fluids code has been verified and used in

a number of previous investigations. Verification of the thermomechanical

solver is presented here.

7.3.1 Dynamic thermal verification

The dynamic thermal solver is verified by comparison with the analytical so-

lution of a structurally rigid beam, insulated on the sides, and with isothermal

0 K temperature imposed on the ends. The beam is given an initial condition

of a "triangular" temperature variation (Fig. 7.4),

Θ(x, 0) =











2x

L
Θmax for x ≤ L

2

2
L− x

L
Θmax for x >

L

2
.

(7.30)
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The analytical solution for the temperature field in the beam is given by

Θ(x, t) =

nmax
∑

n=1

B(n) sin
(nπx

L

)

exp

[

−ηth

(nπ

L

)2

t

]

, (7.31)

where

B(n) =























8LΘmax

n2π2
for n = 1, 5, 9...

−8LΘmax

n2π2
for n = 3, 7, 11...

0 for n = even,

and the thermal diffusivity, ηth = k/ρCp. For the verification, arbitrary

material properties and problem parameters were chosen to be

ρ = 400
kg

m3
, Cp = 500

J

kg ·K , k = 100
W

m ·K , L = 1 m, and dt = 1 s.

The numerical solution obtained with a uniform mesh composed of Nx×Ny =

10 × 1 quadratic elements closely matches the analytical solution as shown

in Fig. 7.5.

7.3.2 Steady-state structural verification

For geometrically non-linear problems, considerable difficulty exists in finding

an analytical solution. In lieu of an analytical solution, a reference solution

from the commercial finite element analysis tool Abaqus [89] is used. The

verification problem is a beam, pinned at the bottom corners with a uniform

pressure load on the underside, as shown in Fig. 7.6. For the verification,

a 2D beam with Nx × Ny = 10 × 4 quadratic elements was modeled in

simulations using both the in-house code and Abaqus. The beam dimensions

and material properties are

L = 25.4 mm, τ = 0.15 mm, E = 200× 109 Pa, ν = 0.27, and p = 105 Pa.

A similar simulation based on a square panel with pinned edges was also used

to verify the 3D solver. The present solver and Abaqus predicted identical

center point displacements of 0.343 mm and 0.275 mm in the 2D and 3D

cases, respectively. It is noted that these displacements are well over the
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beam/plate thickness, placing the solution in the geometrically non-linear

regime.

7.3.3 Dynamic structural verification

For verification of the dynamic structural solver, the beam in Fig. 7.6 was

initially undeformed and subject to a pressure load on one side, placing it out

of equilibrium. The same problem parameters are used as in the steady-state

verification problem. Additional dynamic parameters were

ρ = 8000
kg

m3
, and dt = 5.0 µs.

As shown in Fig. 7.7, the solutions between the two solvers match, and

oscillate about the static displacement of 0.343 mm found above.

7.3.4 Thermomechanical coupling verification

To verify the the coupling between the thermal and structural solutions (ac-

complished with the isothermal split in Eq. (7.1)), a problem similar to the

one used for the structural verification is solved. The pressure load is replaced

with a heat load applied along the top of the beam (Fig. 7.8), and the static

deflection and temperature of the center of the beam are compared between

the current solver and Abaqus. The discretization and mechanical proper-

ties are the same as in the structural verification problems. The additional

thermal parameters are

k = 16.26
W

m ·K , αth = 5.33× 10−6, and q = 25.0× 103
W

m2
.

The results of the comparison are given in Tab. 7.1. In the thermomechan-

Table 7.1: Verification of the thermomechanical coupling. Solution values at
x = L/2, y = τ from the in-house code and Abaqus.

Solver Temperature % Difference Deflection % Difference
(K) mm

In-house 831.208 9.92× 10−2 0.890 0.61
Abaqus 830.384 N/A 0.884 N/A
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ical comparison between the current solver and Abaqus, some discrepancy

is expected. In the current code, both the structural and the thermal so-

lutions discretized with quadratic elements, whereas Abaqus uses quadratic

elements in the structural solver and linear elements in the thermal solver.

The slightly higher temperature predicted by the current solver produces an

equally small increase in the lateral deflection of the beam. Nevertheless,

the two solutions are sufficiently close to each other to verify the current

thermomechanical implementation. It is also noted that deflections are very

large (∼6 times the beam thickness), as illustrated in Fig. 7.9.

7.3.5 Spatial convergence rate

To verify the convergence rate of the quadratic elements, the steady-state

problem in Fig. 7.10 is solved with Nx = 85 elements along the length of

the beam and through thickness discretizations progressively doubled from

Ny = 2 to Ny = 64. Due to the difficulty of obtaining an analytical solution

to the geometrically non-linear problem, the solution on a Nx×Ny = 85×150

mesh serves as the reference. The beam dimensions, material properties, and

load are

L = 50.1 mm, τ = 0.15 mm, E = 200× 109 Pa, ν = 0.27, and p = 104 Pa.

The results, shown in Fig. 7.11, confirm the quadratic spatial convergence in

the current implementation.

7.4 Interface treatment

The individual fluid and structural solvers are weakly coupled at the inter-

face where the fluid-structural-thermal interaction takes place. The fluid

and thermomechanical solutions are found independently in their respective

domains at a given time step tn = n∆t. The spatial coupling is achieved

through matching nodes at the interface. Dirichlet quantities (displacement,

temperature) are passed from the solid to the fluid while the Neumann quan-

tities (traction, heat load) are passed from the fluid to the solid. Giles [55]

showed that numerical stability at the interface is increased for the thermal

problem when information is passed in this manner. Furthermore, it is shown
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in Appendix D.3.1 that it is less cumbersome to pass the Cauchy stress ten-

sor, σ, from the fluid solution to the solid domain, instead of the traction,

t = σ · n̂. This approach therefore taken in the current work.

One major challenge in fluid-structural-thermal interaction simulations is

the impact of the highly disparate time scales involved in the three physi-

cal problems. The computational cost resulting from trying to resolve the

time scales involved in all disciplines can be prohibitive due to the fact that

the transient thermal solution in the solid evolves much more slowly than

does the structural solution, which still evolves slower than the solution in

the fluid. This effect is exacerbated in the case where the fluid solution is

explicitly advanced in time, in which the coupled system time step is limited

by the stringent stability requirements associated with the fluid solution. To

efficiently advance the coupled system while minding the stability and ac-

curacy requirements of the solvers, different time step sizes are taken in the

fluid, thermal, and structural solution stages. The flow of information can be

seen in Fig. 7.12. This method is O(∆tc) accurate, where ∆tc is the coupling

step size.

As indicated, it is likely that the time step size would increase from the

fluid solver to the structural solver to the thermal solver. Information is lin-

early interpolated between time steps when needed. Due to the prohibitive

cost of the fluid solution, subiteration is not employed between the fluid

solution and the other two solutions. The time step ratios are chosen so

that their effect on the solution is minimal. To determine appropriate time

step ratios, a 2D simulation of a laminar Mach 2.25 boundary layer over

a structurally compliant 2D beam was conducted. The beam was initially

excited in the 10th beam mode so that it would deform into and interact

with the flow. The simulation was conducted with three different time

step ratios: ∆tsolid/∆tfluid = 1/1 (lock-step), ∆tsolid/∆tfluid = 10/1, and

∆tsolid/∆tfluid = 100/1. It was found that the change in the fluid verti-

cal velocity, taken at a location above the beam after one mode 10 period,

differed from the lock-step case by 6.7 × 10−4% and 1.2 × 10−1% for the

∆tsolid/∆tfluid = 10/1, and ∆tsolid/∆tfluid = 100/1, respectively. A time

step ratio of ∆tsolid/∆tfluid = 10/1 is used in this study.
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Figures for Chapter 7

Figure 7.1: A 2D illustration the fluid grid (black) conforming to the motion
of the solid grid (red) using transfinite interpolation.
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Figure 7.2: Transfer function for the 10th-order implicit filter for filter
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Figure 7.3: Schematic of the isothermal split of the deformation gradient.
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Figure 7.4: Initial condition for dynamic thermal verification problem.
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Figure 7.5: Comparison of temperature at x = 0.5 m between the analytical
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Figure 7.6: Verification problem for the structural solver.
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Figure 7.8: Verification problem for the thermomechanical coupling.
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Figure 7.9: Thermomechanical coupling verification problem solution.
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Figure 7.10: Verification problem for the spatial convergence of the quadratic
elements.
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structural and thermal time steps are 2× and 4× the fluid time step, respec-
tively. Dashed boxes indicate interpolated data.
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Chapter 8

Background: Aeroelastic

Investigation of a TBL Over a

Compliant Panel in Mach 2.25

Flow

In the work presented in Part I, the aspect of fluid-thermal coupling was

addressed while structural deformation was avoided by choosing to solve

a problem over a nominally rigid geometry. However, depending on the

conditions and structure under consideration, mechanical deformation can

significantly alter the solution. As evidenced by the situation that motivated

the Glass & Hunt work [1], a deformed body panel can create a shock, local

changes in surface heating, and can alter the flow field. In the following, a

deformable structure under a high-speed flow is studied to better understand

the consequences of fluid-structure coupling.

8.1 Compressible turbulent boundary layer

data

The goal of this investigation is to study the interaction of a flexible panel

with a high-speed turbulent boundary layer (TBL). Prior to the fully coupled

simulation, the fluid solution must be initialized with a TBL. While turbu-

lence is present in the majority of flows in nature, numerical generation of

a TBL is not a trivial task. Furthermore, once it is generated, verification

that it has reached a fully turbulent state is necessary. A good compari-

son with previously gathered true data, experimental or otherwise, provides

confidence in the numerically generated TBL.
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8.2 Problem definition

The current work features a Mach 2.25 turbulent boundary layer wetting a

(initially) flat isothermal no-slip surface. A section of the surface is composed

of a structurally compliant panel, while the remaining surface area is left

structurally rigid (Fig. 8.3(a)). Temporally and spatially varying tractions

from the supersonic turbulent boundary layer cause changes in the structural

state of the panel. The design of the simulations are guided by physical and

computational considerations.

8.2.1 Fluid domain

Temporal DNS

Consider a TBL over a flat plate with fixed freestream conditions. A laminar

boundary layer begins to develop at the leading edge of the plate and grows

with distance in the streamwise direction. At some point, depending on the

environmental conditions, the boundary layer begins to transition from a

laminar to turbulent state. The growth rate of the boundary layer changes

significantly during transition and settles to a new rate once the boundary

layer becomes turbulent. To capture this process in a simulation requires a

domain long enough to simulate all stages of boundary layer development.

This can be especially expensive considering the number of grid points needed

to accurately simulate a turbulent boundary layer. In addition, use of a

monolithic, structured grid would lead to a waste of computational resources,

as the grid would be unnecessarily fine in the laminar region to accommodate

for the turbulent region downstream. Use of a multiblock grid allows the use

of fewer grid points in the laminar region, but requires interpolation and an

a priori knowledge of the transition location. In any case, the simulation of

a spatially developing boundary layer, or SDNS, is an expensive endeavor.

Various methods have been developed to shorten the required domain in a

SDNS [90, 91, 92].

The growth of a boundary layer, whether in the laminar or turbulent

regime, is generally slow. It has been common practice to exploit this slow

streamwise growth by neglecting it entirely. The flow is assumed to be homo-

geneous in the streamwise direction thus allowing periodic boundary condi-

tions to be used. The resulting temporal DNS (TDNS) features a boundary
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layer that is homogeneous in both the spanwise and streamwise directions

and grows with time, not space. This allows a significant reduction in the

streamwise extent of the computational domain while enabling simulations of

boundary layers from their early laminar to fully developed turbulent stages.

Xu & Martin [93] state that “The usage [of periodic boundary conditions] is

proved to be valid by many numerical experiments, though it may not be

well justified physically.” In that same work, they consider a method called

extended TDNS (ETDNS), first developed by Meader et al. [94], where the

governing equations are modified by the addition of forcing terms to achieve

stationary mean flow and non-decaying turbulence (two issues that plague

TDNS). Xu & Martin show good comparison between TDNS and ETDNS

results and reason that, two criteria need to be satisfied for TDNS to be

valid: “(i) the turbulence can be considered quasi-steady, i.e., it adjusts itself

to local conditions much faster than the mean profile develops; and (ii) for

the purpose of gathering statistics, the sampling time is shorter than the

time scale of the mean profile development.” They later state that the first

condition satisfies the second. The first condition is quantified as follows.

They state that if the time scale of the boundary layer growth,

tg =

(

1

δ∗
dδ∗

dt

)−1

,

is much larger than the timescale associated with turbulence adjustment,

i.e., the eddy turnover rate, δ0/Ue, then the first criterion is satisfied. An a

posteriori calculation from a TDNS in this study confirmed that the ratio

tg/(δ0/Ue) remained in the range of 12 to 22 over the length of the simulation.

While the fluid solution requires a higher spatial resolution than the struc-

tural solution, the use of a TDNS leads to a better balance in computational

resources between the two problems.

Flow properties and domain discretization

The flow properties in the current work are chosen to be similar to those

in Pirozzoli & Grasso [3]. At the measurement location, their boundary

layer had a momentum thickness Reynolds number of Reθ = 4263. The

plate was an isothermal 322 K (the recovery temperature to approximate

an adiabatic wall) no-slip boundary. In their work, the boundary layer was
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simulated from a laminar state to a fully turbulent state, utilizing a section

of blowing/suction to induce transition. The flow properties are determined

from the information given in [3], which included the freestream temperature

T∞, Mach number M∞, and unit Reynolds number Re∞. The freestream

viscosity was computed assuming Sutherland’s law,

µ∞ = µref

(

T∞

Tref

)1.5
Tref + S

T∞ + S
,

where the reference values are given in White [11] as S = 111 K and T0 =

273 K∗. Given the above information, the density could be found as

ρ∞ =
Re∞µ∞

M∞

√
γRT∞

,

where R = 286.9 J/kg ·K is the specific gas constant for air. The resulting

flow properties are presented in Tab. 8.1.

Table 8.1: Flow conditions in the Pirozzoli & Grasso simulation [3].

Re∞ M∞ T∞ µ∞ ρ∞
1/m K kg/m · s kg/m3

25× 106 2.25 169.44 1.1489× 10−5 0.4893

To spatially resolve their TBL at the measurement location (Reθ = 4263),

Pirozzoli & Grasso performed a grid convergence study resulting in a 29.5×
106 point grid, referred to here as the PnG domain. The dimensions are given

is given in Tab. 8.2. The large streamwise extent of their domain is due to

Table 8.2: Pirozzoli & Grasso simulation domain.

Total Nx ×Ny ×Nz Lx × Ly × Lz ∆x+ ×∆y+wall ×∆z+

Points mm×mm×mm
29,488,200 2065× 56× 255 439.420× 12.700× 4.445 14.50× 1.05× 6.56

the requirement that the boundary layer be simulated through the laminar,

transitional, and turbulent stages. The only requirement on the spanwise

extent was that the turbulent structures be sufficiently decorrelated to justify

the use of periodic spanwise boundaries.

∗Sutherland’s law is 2% accurate for air in the temperature range 170 K to 1900 K
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The domain given in Tab. 8.2 is unsuitable for the current simulation

for the following reasons: 1) the spanwise dimension is not sufficient to ac-

commodate the 2 in. × 1 in. panel in the coupled simulations, 2) the large

streamwise extent needed for the SDNS is unnecessary in a TDNS, and 3)

the streamwise distribution of grid points is not uniform.

To verify our TBL methodology against the Pirozzoli & Grasso data, a

new simulation domain was created which is referred to here as the PnG2

domain (Tab. 8.3). The PnG2 domain has several differences from the PnG

domain. The streamwise length of the domain is shorter in the PnG2 domain,

while the number of streamwise points is greater. This is due to the fact that,

in the PnG domain, the domain is split into three zones in the streamwise

direction. The first zone is reserved for the blowing/suction strip and tran-

sition to turbulence and has a large spacing of ∆x = 0.17 mm. The second

zone in the PnG grid encompassed the region of interest where the turbu-

lence develops and is studied. Consequently, it has fine grid point spacing of

∆x = 0.039 mm with ∆x+ = 14.50. The third zone is progressively coars-

ened toward the outflow with an average ∆x = 2.7 mm. The uniform grid

requirement of TDNS gives the the PnG2 domain constant ∆x = 0.053 mm

and a corresponding ∆x+ = 21.29. In this work, it was found that numerical

stability issues required a larger number of points in the wall normal direc-

tion in the PnG2 domain when compared to the PnG domain. Results from

the comparison are shown in Section 9.1.4 and, despite the differences in

resolution, there is good agreement between the current work and reference

solution. Schematics of the two domains are given in Fig. 8.1 and Fig. 8.2.

Table 8.3: TDNS domain for simulation for comparison with reference solu-
tion. The viscous-length normalized values are valid at the time of compari-
son with the reference solution (Section 9.1.4).

Total Nx ×Ny ×Nz Lx × Ly × Lz ∆x+ ×∆y+wall ×∆z+

Points mm×mm×mm
50,182,800 2698× 100× 186 142.800× 12.700× 4.445 21.29× 1.42× 9.66

We now discuss the domain required for the coupled simulations. As

mentioned above, the coupled simulations feature a 1 in. wide compliant

panel that does not fit in the PnG2 domain. To allow for the increased

spanwise domain while keeping the simulation size manageable, the Reynolds
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number was dropped by a factor of four; the impact of this changes is given in

Section 9.1.4. Furthermore, the coupled simulations are run on two different

grids to test the solution dependence on the streamwise domain length. The

two domains differ in that one has twice the streamwise extent of the other.

They are referred to as the long and short domains with their dimensions

given in Tab. 8.4. The resolution of the two domains is the same. Due to

the periodicity of the domains, the simulation can be visualized as an array

of panels. The domains and corresponding domain arrays for the long and

short domains are shown in Fig. 8.3 and Fig. 8.4, respectively.

Table 8.4: Long and short domains for the coupled simulation. The viscous-
length normalized values are valid at the time of comparison with the refer-
ence solution (Section 9.1.4).

Domain Total Nx ×Ny ×Nz Lx × Ly × Lz ∆x+ ×∆y+wall ×∆z+

Points mm×mm×mm
Long 24,107,580 477× 140× 361 142.800× 12.700× 25.400 36.32× 0.79× 8.57
Short 12,079,060 239× 140× 361 71.400× 12.700× 25.400 36.32× 0.79× 8.57

Apart from the domain lengths, the fluid simulations run in the two do-

mains differ in one important way: the compliant panel is “inserted” under

boundary layers at different stages. In the long domain, the panel is compli-

ant from time t = 0, under a laminar boundary layer entering the transitional

stage. In the short domain, the panel is made compliant after the boundary

layer has become fully turbulent.

Table 8.5: Dimensions in the panel and number of quadratic elements in the
discretization.

# Elements Nx ×Ny ×Nz Lx × τ × Lz E ρ ν
mm×µm×mm Pa kg/m3

30,600 85× 2× 180 51.000 × 15.000 × 25.400 200 × 109 8000 0.27
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Table 8.6: First 9 modes of a 50.1 mm × 25.4 mm clamped panel with 15 µm
thickness and material properties comparable to steel (E = 200 × 109 Pa,
ρ = 8000 kg/m3, and ν = 0.27).

Mode (1,1) (2,1) (3,1) (4,1) (1,2) (2,2) (3,2) (5,1) (4,2)

Frequency (Hz) 136.6 176.7 248.3 351.1 355.8 395.7 462.8 483.4 559.7

Period (ms) 7.32 5.66 4.03 2.84 2.81 2.52 2.16 2.06 1.78

8.2.2 Solid domain

The fluid simulation is coupled with a structurally compliant, 50.1 mm (∼ 2

in.) × 25.4 mm (1 in.) panel a thickness of τ = 15 mm and with clamped

boundary conditions (Fig. 8.5). The panel is clamped at the streamwise and

spanwise boundaries while the top of the panel is loaded by the fluid trac-

tions. The back of the panel is subject to a pressure equal to the time-varying

mean pressure on top of the panel. The thickness and material properties

are selected to produce a panel that will be excited by the energy contain-

ing eddies of the TBL. The panel dimensions, discretization, and material

properties are given in Tab. 8.5. The steel panel with the above dimensions

has the natural vibrational frequencies listed in Tab. 8.6. An estimation of

the power spectra over the panel based on dynamic pressure, Mach number,

and wall temperature ratio is shown in Fig. 8.6. The estimation method is

based on the Houbolt algorithm [10] and is described by Blevins et al. [?].

It is shown that the panel modes in Tab. 8.6 lie in the low frequency, energy

containing range of the spectra.

In the coupled simulations to follow, the panel is discretized with two

quadratic elements through the thickness. In an identical simulation with

three quadratic elements through the thickness, the maximum panel deflec-

tion into and out of the flow, after 78,000 time steps, differed from the baseline

case by 0.5% and 1.1%, respectively, indicating that the spatial resolution in

the baseline discretization of panel is sufficient. The solid grid resolution is

assessed in the streamwise and spanwise directions by comparing the baseline

grid with a coarse grid containing half as many elements in the streamwise

and spanwise directions, shown in Tab. 8.7. Due to the matching node spa-

tial coupling utilized in this study, streamwise and spanwise discretization

of the panel cannot be changed in the coupled simulation and therefore the
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Table 8.7: Dimensions in the panel and number of quadratic elements in the
discretization.

Grid # Elements Nx ×Ny ×Nz Lx × τ × Lz

mm×µm×mm

Baseline 30,600 85× 2× 180 51.000 × 15.000 × 25.400

Coarse 7,740 43× 2× 90 51.000 × 15.000 × 25.400

coarse grid cannot be used in a coupled simulation with the TBL. The base-

line and coarse grids are compared in simulations using third-order piston

theory (Appendix B) to model the fluid dynamic loads. The baseline and

coarse grid panels are initially excited in the (1,1) panel mode. The evo-

lution of the panel solutions under piston theory loading are compared in

Fig. 8.7. The agreement shows that the panel solution is converged on the

coarse grid and therefore that the solid discretization used in the following

coupled simulations is more than sufficient.

99



Figures for Chapter 8

Lx

Ly

Lz

Lx

Zone 1 Zone 2 Zone 3

Figure 8.1: Simulation domain from Pirozzoli and Grasso [3]. Domain lengths
are Lx × Ly × Lz = 439.420 mm× 12.700 mm × 4.445 mm. Zone lengths 1,
2, and 3 are 76.2 mm, 50.8 mm, and 312.42 mm, respectively.

Lx

Ly

Lz

Lx

Figure 8.2: Simulation domain of the present work for comparison with Piroz-
zoli and Grasso [3]. Domain lengths are Lx × Ly × Lz = 142.800 mm ×
12.700 mm× 4.445 mm and the grid is uniform in the streamwise and span-
wise directions.
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(a)

(b)

Figure 8.3: (a) Long domain for coupled simulation and (b) array of domains.
Domain lengths are Lx ×Ly ×Lz = 142.800 mm× 12.700 mm× 25.400 mm,
the panel length is Lp = 51.000 mm and the distance between panels is
Ldp = 97.200 mm. The translucent layer represents the TBL and the gray
region represents the flexible panel.
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(a)

(b)

Figure 8.4: (a) Short domain for coupled simulation and (b) array of domains.
Domain lengths are Lx × Ly × Lz = 71.400 mm× 12.700 mm× 25.400 mm,
the panel length is Lp = 51.000 mm and the distance between panels is
Ldp = 20.400 mm
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Figure 8.5: Geometry of compliant panel. The back pressure is equal to the
mean pressure from the fluid domain. The sides are clamped.
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Figure 8.6: Estimate of TBL power spectral density based on dynamic pres-
sure, Mach number, and displacement thickness [10]. The first 9 plate modes
in Tab. 8.6 lie within the energy containing frequencies.
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Figure 8.7: Maximum panel deflection with time into (a) and out of (b) the
flow using the baseline solid grid (solid), and the coarse solid grid (dashed).
The baseline and coarse grids are discretized by Nx × Ny × Nz = 85 × 2 ×
180 = 30, 600 and Nx ×Ny ×Nz = 43× 2× 90 = 7, 740 quadratic elements,
respectively.
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Chapter 9

TDNS of a Turbulent Boundary

Layer

9.1 Turbulent boundary layer generation

For the simulation of a turbulent boundary layer over a compliant panel, an

initial condition must be chosen such that turbulence will be achieved. To

accomplish this, several methods have been used in the past such as using

a periodic blowing/suction strip to create instabilities [3, 17] and using a

synthetic boundary layer prescribed at the inflow [91]. The approach chosen

in this work is to find the temporally unstable eigenmodes to the linear

stability equations for a compressible boundary layer [4].

9.1.1 Boundary layer stability

A system’s stability is defined as its ability to wisthand a disturbance and

return to its original state. A classical example is given in Fig. 9.1, where

in Fig. 9.1(a), the ball will remain in the same state when perturbed and is

therefore in a stable state. In contrast, Fig. 9.1(b) shows a ball, whose state

will change when subjected to a disturbance, and is therefore in an unstable

state. When discussing the boundary layer that develops between a moving

fluid and a rigid surface, stability refers to the boundary layer’s tendency to

remain in a laminar state. A boundary layer may experience many kinds of

disturbances (acoustic waves, surface roughness, thermal pulses, etc.) and

remain laminar, in which case it is stable with respect to those disturbances.

If the boundary layer is unstable with respect to one of the disturbances,

then the disturbance will grow and may lead to transition of the boundary

layer from its laminar state to a turbulent state.
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Linear stability theory

The investigation of fluid flow stability is accomplished by decomposing each

flow variable into mean and fluctuating parts,

φ(x, y, z, t) = φ̄(x, y, z) + φ̂(x, y, z, t), (9.1)

where φ is a flow variable (e.g. density, ρ, velocity, u, etc.) and (̄ ) and (̂ )

specify the mean and fluctuating parts, respectively. Expressing the Navier-

Stokes equations in terms of variables as in Eq. (9.1) and then subtracting

the mean (which identically satisfies the Navier-Stokes equations), results in

equations for the disturbances, φ̂. Additionally, if disturbances are assumed

to be infinitesimal so that quadratic and higher terms can be neglected, the

linearized disturbance equations result. In the case of a flat plate bound-

ary layer, it is reasonable to make the parallel flow assumption, (ū = ū(y),

w̄ = w̄(y), and v̄ ≈ 0), which reduces the complexity of the problem. Also
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assuming a 2D mean flow, w̄ = 0, the disturbance equations become
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,

where all variables are non-dimensionalized by their freestream values (Ex.

u = ũ/Ũ∞, T = T̃ /T̃∞, etc.; tilde denotes dimensional quantities), M , µ,

R, k, Cp, and Pr = µCp/k are the Mach number, viscosity, specific gas

constant, thermal conductivity, specific heat at constant pressure, and the

Prandtl number, respectively. Also, the short hand notation, li = i + λ/µ,

where λ is the bulk viscosity, is used. A useful consequence of the parallel

flow assumption is that the flow is homogenous in x and z. The flow vari-

ables can therefore be decomposed into their modal components which are
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inhomogeneous only in y

φ̂ = φ′(y) exp[i(αx+ βz − ωt)], (9.3)

where i =
√
−1, and φ′(y) is a mode shape for a given combination of stream-

wise and spanwise wavenumbers (α and β, respectively), and mode frequency,

ω. In this work, we are concerned with disturbances that grow in time, or

temporally unstable disturbances that occur when ω has a positive imaginary

part, ℑ[ω] > 0. Only streamwise and spanwise periodic flows are considered,

and therefore only real α and β are explored. Substituting Eq. (9.3) into

Eq. (9.2) yields a five-equation eigenvalue problem, the solutions of which

are the eigenfunctions (φ′(y) profiles) which either decay (ℑ[ω] < 0) or grow

(ℑ[ω] > 0) in time. Given a base flow of a Blasius boundary layer (Ap-

pendix E), the developed linear stability theory (LST) solver finds the solu-

tions to Eq. (9.2).

Verification of the compressible LST solver

To thoroughly verify the compressible LST solver described above, the three

different approaches were taken. The first verification exercise involved the

comparison of the results of the compressible solver with an incompressible

formulation. Second, results from the solver were compared with results

from the literature [4]. Third, growth rates from the linear stability solver

are compared with DNS results.

Comparison with Incompressible LST Generally, flows less than Mach

0.3 are considered incompressible, where the dilatation is assumed to be neg-

ligible, ∇·u ≈ 0, and the density, ρ, is constant. In these flows the viscosity,

µ, is commonly assumed to be constant. The consequence of this is that the

continuity and momentum equations are decoupled from the energy equation,

and can be solved independently of the thermal state of the fluid. Further-

more, in the incompressible regime, Squire’s theorem [95] states (Taken from

[11]):

“For a two-dimensional parallel flow ū(y), the minimum crit-

ical unstable Reynolds number occurs for a two-dimensional dis-

turbance propagating in the same direction (β = 0),"
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which asserts that only streamwise disturbances (β = 0) need be considered

when investigating the stability limits of incompressible flows. The above

simplifications significantly reduce the complexity of the problem, reducing

the above mentioned eigenvalue problem to a single equation named the Orr-

Sommerfeld equation [11]

(ū−c)

(

d2v̂

dy2
− α2

δ∗ v̂

)

−d2ū

dy2
v̂+

i

αδ∗Reδ∗

(

d4v̂

dy4
− 2α2

δ∗
d2v̂

dy2
+ α4

δ∗ v̂

)

= 0, (9.4)

where αδ∗ = α̃δ̃∗ is the streamwise wavenumber non-dimensionalized by the

displacement thickness δ∗, c = α/ω is the phase speed, and Reδ̃∗ = Ũeδ̃
∗/ν̃

is the displacement thickness Reynolds number. In the temporal problem,

complex eigenvalues, c = cr + ici, are found where ℑ(c) > 0 are indicative of

an unstable mode. Solutions to Eq. (9.4) have been extensively studied since

1929 [96], as the majority of technologically relevant flows have historically

been in the low-speed regime.

The compressible LST equations are valid in both the compressible and

incompressible regimes, and therefore the solution to Eq. (9.2) is required

to match the solution obtained by Eq. (9.4) in the incompressible regime.

Solutions to either of the equations are used to produce a neutral stability

curve, which, in the temporal stability case, outlines the region in Re − α

space in which disturbances are predicted to grow. The neutral stability

curve for a Mach 0.005 BL is calculated with the compressible LST solver

and compared with White [11] in Fig. 9.2.

The neutral stability curve requires only the accurate calculation of the

eigenvalues of the LST equations. To verify the eigenfunctions calculated

by the compressible LST solver in the incompressible regime, Eq. (9.4) is

solved and the eigenfunctions are compared between the solutions from the

two solvers. The solution to Eq. (9.4) is obtained by the compound matrix

method which is discussed in detail by Ng & Reid [97, 98]. The stream-

wise and pressure perturbations are calculated from the transverse velocity

perturbation solutions of Eq. (9.4) as

û = − v̂

iα
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dū

dy
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]

1

iαRe
.

A Blasius boundary layer is calculated for the same Mach 0.005 flow as

studied in Fig. 9.2. The eigenmodes at the displacement thickness Reynolds

number of Reδ∗ = 700 and wavenumber αδ∗ = 0.25 (predicted to be unstable

as shown in Fig. 9.2) are calculated independently in both the compressible

LST solver and the Orr-Sommerfeld solver. The eigenvalues found by the

the compressible LST and Orr-Sommerfeld solvers converged to c = ω/α =

0.3670 + 5.14 × 10−3i. The eigenfunctions, shown in Fig. 9.3, indicate that

the two solvers are in good agreement, and verify that the formulation of the

compressible LST solver is valid in incompressible flow.

Comparison with Literature In order to assess the performance of the

LST solver in the compressible regime, results from the LST solver are also

compared with the results from Malik [4] in several flow speed regimes. All

comparisons are made with the most accurate results from Malik’s 2nd order

finite difference solver. Comparisons of predictions of temporal eigenvalues

are given in Tab. 9.1. In all cases, Tw/Tadb = 1.0. It was assumed that

Tadb/T∞ = 1 + (γ − 1)/2 · rM2, where the recovery factor, r, is defined as

r = Pr1/3.
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M∞ Rel α β δ∗/l (cr, ci) (cr, ci)Malik

Incompresible 580 0.179 0.0 1.7208 (0.3622, 0.0080) (0.3641, 0.0079)
(MMalik = 10−6) (0.4777, -0.1885) (0.4839, -0.1921)

(M = .005) (0.2855, -0.2748) (0.2897, -0.2768)
(ωr, ωi) (ωr, ωi)Malik

M = 0.5 2000 0.1 0.0 1.8236 (0.0288, 0.0023) (0.0291, 0.0022)
M = 2.5 3000 0.06 0.1 4.2578 (0.0365, 5.745× 10−4) (0.0368, 5.733× 10−4)
M = 10.0 1000 0.12 0.0 31.674 (0.1156, 4.704× 10−4) (0.1159, 3.251× 10−4)

Table 9.1: Comparison of temporal eigenvalues with those given by Malik [4]. α and β non-dimensionalized by 1/l and ω is
non-dimensionalized by u∞/l as done by Malik [4]. c = ω/α is the phase velocity.
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The comparison generally shows good agreement. However, the Mach

10 case shows a larger difference. At this Mach number, the boundary layer

state is influenced by the high temperatures that are present. The eigenvalue

is sensitive to the plate temperature as well as the viscous model used. All

results presented in Tab. 9.1 use the Sutherland’s law viscous model,

µ = 1.0869× 10−6 (1.8T )3/2

1.8T + 198.6

kg

m · s,

which is the model also used by Malik [4]. The sensitivity of the calculation

in the high Mach number case is demonstrated by the difference resulting

from the use of the power law viscous model,

µ

µ∞
=

(

T

T∞

).666

,

which yielded the result, ω = 0.1156+3.044×10−4i. Comparisons with Malik

[4] of the eigenfunctions for the incompressible and Mach 10.0 cases are given

in Fig. 9.4(a) and (b) and Fig. 9.5, respectively. Figure 9.4(a) shows the first

mode eigenfunctions for the streamwise and wall normal velocity perturba-

tions. These perturbations are temporally unstable with a corresponding

eigenvalue of ω = 0.3622 + 0.0080i.

Comparison with DNS Results The solutions satisfying the linearized

Navier-Stokes equations should, while perturbations remain sufficiently small,

agree with solutions to the full, non-linear Navier-Stokes equations. Any sin-

gle unstable eigenfunction to Eq. (9.2), when added to the laminar base flow

and integrated through time according to the Navier-Stokes equations, is

expected to grow at the rate indicated by ℑ[ω] as the flow is advanced in

time. However, this expectation is dependent on two assumptions: (1) that

the perturbation, while growing, will remain small enough in amplitude that

non-linear effects are negligible and (2) that the base flow is a solution to

the Navier-Stokes equations. While the parallel flow assumption (ū = ū(y),

w̄ = w̄(y), and v̄ ≈ 0) allows for several useful simplifications in the above

derivations, it results in a base flow that does not satisfy the Navier-Stokes

equations.

The eigenfunctions found by the LST solver are computed on a parallel

base flow and the eigenfunction growth is affected by the temporal evolu-
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M∞ (ωr, ωi)
M = 0.05 (3.299× 10−3, 2.070× 10−4)
M = 5.8 (0.1159, 3.251× 10−4)

Table 9.2: LST growth rate predictions for comparison with DNS. In both
cases, the displacement thickness Reynolds number, Reδ∗ = 2000. α and
β, non-dimensionalized by δ∗, are 0.25 and 0.0, respectively. ω is non-
dimensionalized by a∞/δ∗, where a∞ is the freestream speed of sound.

tion of the base flow to satisfy the Navier-Stokes equations. The growth

rates are studied in low (Mach 0.05) and high-speed (Mach 5.8) cases, and

the severity of the effect of the base flow adjustment on the growth rate is

seen to increase with Mach number. Both cases are run at the boundary

layer displacement thickness Reynolds number, Reδ∗ = 2000, and are seeded

with a single Tollmien-Schlicting (TS) wave with streamwise wavenumber,

α = Lx/2π so that Lx, streamwise dimension of the domain, is equal to one

wavelength, and periodic boundaries can be used. The LST predictions are

given in Tab. 9.2, where the imaginary parts, ωi, are the predicted growth

rates. The growth of the perturbations in the DNS are tracked by selecting

the Fourier amplitude of the perturbations at a given wall normal coordinate,

|F (α1, y)| =
∣

∣

∣

∣

2

Lx

∫ Lx

0

f(x, y)e−iα1xdx

∣

∣

∣

∣

. (9.5)

Results for the Mach 0.05 case are presented from from locations inside (y =

0.53δ∗) and outside (y = 12.2δ∗) the boundary layer in Fig. 9.6 and Fig. 9.7,

respectively. In the Mach 5.8 case, the base flow adjustment is large enough

that the growth of the eigenfunctions is severely altered. The adjusted base

flow may not be unstable with respect to the previously found eigenfunctions.

To combat this effect, the wall normal diffusion of streamwise momentum and

energy are removed by adding the source terms shown in Eq. (9.6) to the right
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hand side of the compressible Navier-Stokes equations [99],

S =























0

− ∂

∂y

µ̄

Re

∂ū

∂y
0

0

− ∂

∂y

µ̄

Re
ū
∂ū

∂y
− ∂

∂y

µ̄

RePr

∂T̄

∂y























. (9.6)

This modification suppresses the growth of the velocity and thermal bound-

ary layers and, therefore, the adjustment from the mismatch in the mean

initial condition and governing equations. Figure 9.8 exhibits the suppres-

sion of the boundary layer adjustment by the use of Eq. (9.6). Negative

effects associated with the application of Eq. (9.6) require that it be removed

after the transition period. Such effects are shown in Appendix F.

9.1.2 Transition to turbulence

The unstable eigenvalues found following the procedure in Section 9.1.1, when

superposed onto a laminar boundary layer solution, grow in time. An exam-

ple mean profile and corresponding unstable perturbations to the primative

variables are shown in Fig. 9.9.

The transition to turbulence from the seeded laminar flow is composed

of several stages. Though the specific path is dependent on the initial dis-

turbances, boundary layer transition generally involves the amplification of

disturbances to a saturation point, followed by a break down process. For

example, in the case of the simulation for comparison with Pirozzoli and

Grasso, the transition process is shown in Fig. 9.10(a)-(c). The 3D bound-

ary layer, initially very similar to a 2D flow, begins to develop noticeable

spanwise variations, which, in this example, organize into Λ waves, as can

be seen in Fig. 9.10(a). After a period of amplification, the disturbances

break down into smaller spatial and temporal scales, forming turbulent spots

(Fig. 9.10(b)). The initially sporadic spots of turbulence continue to spread

and eventually coalesce, finally resulting in a fully turbulent boundary layer

flow (Fig. 9.10(c)).

114



9.1.3 Grid assessment

Having generated the TBL, the suitability of the chosen grid dimensions and

grid point densities are assessed.

Domain length and width

The use of periodicity requires that the grid be sufficiently large in the homo-

geneous directions that the turbulent flow is decorrelated over half the length

of that dimension. If the flow is not sufficiently decorrelated, the dynamics

of the TBL are affected. To determine the correlation distance, 1D two-point

autocorrelations are performed on all variables in the periodic (streamwise

and spanwise) directions, were the discrete two-point correlation is defined

as

Ruu(i) =

∑Nperp.−1
j

∑N−1
l (u(l, j)u(l + i, j))

(Nperp. − 1)(N − 1)
, (9.7)

where N is the number of points in the direction in which the autocorrelation

is taken and Nperp. is the number of points in the perpendicular periodic

direction, resulting in the average two-point autocorrelation over the domain.

Figure 9.11 and Fig. 9.12 show the 1D correlations in the streamwise

and spanwise directions, respectively. For each, the correlation is shown at

three different wall normal locations: y+ = 2.1, y+ = 73.9, and y+ = 151.3,

corresponding to the viscous sublayer, the log-law layer, and the outer layer,

respectively. All flow variables appear to be decorrelated in the distance

rz/δ
99 = 3 in both directions. The streamwise length of the domain is Lxδ

99 =

64.6, so all variables are easily decorrelated over half the length of the domain.

The spanwise length of the domain is Lzδ
99 = 11.5, so Fig. 9.12 confirms that

the flow is decorrelated over the width of the domain.

Energy spectra

The 1D energy spectra give a measure of how well the turbulent structures

are resolved on the current grid. As famously proposed by Richardson [100],

kinetic energy enters the boundary layer from the freestream into the largest

turbulent scales. That energy is then transferred through a cascade of smaller

scales until it reaches the smallest (Kolmogorov) scale, at which point it is

dissipated by viscosity, resulting in the production of thermal energy. The

grid should be fine enough to resolve the smallest scales and represent the
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energy cascade in the TBL. The energy spectrum function, E(κ) is calculated

by twice the Fourier transform of the two-point correlation (Eq. (9.7))

Euu(κ) =
2

N − 1

N−1
∑

i

Ruu(i)e
−iκri , (9.8)

where,

ri =
(i− 1)L

N − 1
.

Figure 9.13 and Fig. 9.14 show the 1D energy spectra in the streamwise

and spanwise directions, respectively. As in the case of the two-point auto-

correlations, the spectra are shown at three different wall normal locations:

y+ = 2.1, y+ = 73.9, and y+ = 151.3. In addition, the wavenumber range

below the cutoff frequency of the implicit filter (shown in Fig. 7.2) are de-

marcated by vertical dashed lines. In Fig. 9.13 all spectra drop between 3

and 4 decades from their peak values, the exception being the pressure fluc-

tuations in the log-law layer. In Fig. 9.14 all spectra again drop between 3

and 4 decades from their peak values. The pressure fluctuations exhibit a

small turn-up at the highest wavenumbers, indicating a small aliasing error.

Kolmogorov’s first similarity hypothesis states that in locally isotropic

flow, which exists on the small length scales in the universal equilibrium

range of a TBL, velocity statistics have a universal form which is solely

dependent on the dissipation, ǫ, and kinematic viscosity, ν. Considering the

first similarity hypothesis, dimensional analysis gives E(κ) as

E(κ) = ǫ2/3κ−5/3Ψ(κη), (9.9)

where the η = (ν3/ǫ)1/4 is the Kolmogorov length scale and Ψ is a the non-

dimensional compensated Kolmogorov spectrum function. According to the

second similarity hypothesis, in the inertial subrange velocity statistics are

only dependent on ǫ, and are independent of ν, requiring Ψ = C, where C is

constant. In the inertial subrange, Eq. (9.9) then becomes

E(κ) = Cǫ2/3κ−5/3,

giving rise to the Kolmogorov -5/3 spectrum. A dashed line with −5/3 slope

is shown in Fig. 9.13(b)-(c) and Fig. 9.14(b)-(c), where the data is taken
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from the log-law and outer layers and are independent of viscosity. While

the Reynolds number is relatively low, the energy spectra in Fig. 9.13 verify

that the TBL is healthy.

Turbulent boundary layer grid convergence

To ensure grid independence of the Mach 2.25 turbulent boundary layer, a

grid convergence study was done. The study involved three grids: a baseline

grid whose grid point spacing was equal to that shown in Fig. 9.17(a), a grid

in which the number of points were doubled in the x and z directions, and

one in which the number of points were doubled in the y direction. The

details are given in Tab. 9.3. A comparison of the mean velocity profiles

Table 9.3: Grid data for convergence study. All grids have phsyical lengths
Lx × Ly × Lz = 71.4mm× 12.7mm× 25.4mm

Grid Nx ×Ny ×Nz ∆x+ ×∆y+wall ×∆z+ δν
µm

A (baseline) 239× 140× 361 33.36× 0.72× 7.85 8.992
B 239× 279× 361 33.42× 0.36× 7.86 8.997
C 477× 140× 721 16.60× 0.72× 3.93 9.039

(Fig. 9.15) confirms that the baseline grid is sufficiently converged and is

very well resolved in the wall normal direction.

9.1.4 Turbulent boundary layer verification

As the computational cost associated with DNS of a turbulent boundary

layer can be staggering (proportional to Re3 [101]), the Reynolds number of

the flow in the coupled simulation is chosen to be relatively low in order to

balance the costs between the two solve stages involved in the multiphysics

simulation. The boundary layer has a Reynolds number based on momentum

thickness of Reθ = 1196. A second turbulent boundary layer simulation at

a higher Reynolds number, Reθ ≈ 4000 was also run for the purpose of

verification by comparison with previous work. Simulation conditions were

chosen to be similar to a reference solution from Pirozzoli & Grasso [3].

One main difference exists between the current work and that of Pirozzoli

& Grasso. Their work featured a spatially developing turbulent boundary
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layer, or SDNS, which requires a domain with a large streamwise extent,

and is therefore generally more costly. In an effort to save on the fluid

simulation in the current coupled multiphysics simulation, the current work

uses a temporal DNS approach (TDNS) to model the fluid solution. This

assumes periodicity in the streamwise direction, and results in a boundary

layer thickness that increases in time and not space.

The quantities compared were mean profile and normal Reynolds stresses.

As can be seen in Fig. 9.16(a), the Van Driest transformed mean velocity

profile satisfies u+
c = y+ in the viscous sublayer, and obeys the log law,

1/k log(y+) + C, in the log-law region, where k = 0.41 and C = 5.20.

The comparison with the reference solution is also in agreement. Shown in

Fig. 9.16(b) are the normalized, normal components of the Reynolds stresses,

which are also in agreement with the reference solution.

Also shown are comparisons between the reference solution and the lower

Reynolds number solution planned for the coupled simulation. The two solu-

tions are compared at a time during the TDNS when the momentum thick-

nesses are similar. The momentum thickness at the time corresponding to

Reθ = 1196 is θ = 1.88×10−4 m, compared to the reference solution [3] at the

streamwise location where the momentum thickness was θ = 1.69× 10−4 m.

Figure 9.17(a) shows that the Van Driest scaled mean velocity profile still

follows the same trends, obeying u+
c = y+ and the log law in the viscous

subregion and log-law region, respectively. The effect of the lower Reynolds

number produces a shorter boundary layer and a less pronounced wake at

the boundary layer edge. The comparison between the normalized, normal

components of the Reynolds stresses (Fig. 9.17(b)) shows that the peaks of

the respective quantities occur in the same wall normal locations and that

the profiles are similar from the wall into the buffer layer (y+ < 30). The dif-

ferences highlight the Reynolds number dependence of the Reynolds stresses

in the outer layer as documented by DeGraaff & Eaton [102], and indicate

that, in the higher Reynolds number TBL, the range of length scales extends

to larger structures.
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Figures for Chapter 9

(a) (b)

Figure 9.1: (a) A ball in stable state, and (b) a ball in an unstable state.
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Figure 9.2: Neutral stability "thumb" curve of an incompressible boundary
layer created with the compressible linear stability solver (black line) and as
published in White [11] (red dashed). The vertical dashed line represents
Reδ∗,crit = 520 and the black circle is the (Reδ∗ , αδ

∗) coordinate for the
comparison in Fig. 9.3
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Figure 9.3: Eigenfunctions found by the Orr-Sommerfeld and compressible
LST equations for the Mach 0.005 Blasius boundary layer. The real part
(solid), imaginary part (dashed), and magnitude (bold) of the (a) streamwise
velocity, (b) transverse velocity, and (c) pressure eigenfunctions are shown.
The curves lie on top of each other, and therefore only the LST results are
shown.

120



0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Wall Normal Distance (non-dimensional)

P
er

tu
rb

at
io

n

(a)

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Wall Normal Distance (non-dimensional)

P
er

tu
rb

at
io

n

(b)

Figure 9.4: Eigenfunction comparison with Malik [4] for the incompressible
Rel = 580 boundary layer. (a) First mode and (b) third mode. Malik (red),
present work (black).
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Figure 9.5: Eigenfunction comparison with Malik [4] for the Mach 10 Rel =
1000 boundary layer. Malik (red), present work (black).
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|û
|

(a)

0 20 40 60 80 100 120 140 160
4.62

4.64

4.66

4.68

4.7

4.72

4.74

4.76

4.78
x 10

−5

tδ∗/u∞

|v̂
|

(b)

0 20 40 60 80 100 120 140 160
5.8

5.85

5.9

5.95

6

6.05

6.1
x 10

−6

tδ∗/u∞

|p̂
|

(c)

0 20 40 60 80 100 120 140 160
1.22

1.225

1.23

1.235

1.24

1.245

1.25

1.255

1.26

1.265

1.27
x 10

−5

tδ∗/u∞

|T̂
|

(d)

Figure 9.6: Growth of perturbations in Mach 0.05 DNS (solid) compared
with eωrt predicted by linear stability theory (dashed) for (a) |û|, (b) |v̂|, (c)
|p̂|, and (d) |T̂ |. Data taken at the wall normal location y = 0.53δ∗.
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|û
|

(a)

0 20 40 60 80 100 120 140 160
1.71

1.72

1.73

1.74

1.75

1.76

1.77

1.78
x 10

−5

tδ∗/u∞

|v̂
|

(b)

0 20 40 60 80 100 120 140 160
5.85

5.9

5.95

6

6.05

6.1

6.15

6.2
x 10

−7

tδ∗/u∞

|p̂
|

(c)

0 20 40 60 80 100 120 140 160
5.85

5.9

5.95

6

6.05

6.1

6.15

6.2
x 10

−7

tδ∗/u∞

|T̂
|

(d)

Figure 9.7: Growth of perturbations in Mach 0.05 DNS (solid) compared
with eωrt predicted by linear stability theory (dashed) for (a) |û|, (b) |v̂|, (c)
|p̂|, and (d) |T̂ |. Data taken at the wall normal location y = 12.2δ∗.
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Figure 9.8: Growth of v′ perturbations in TDNS at y/δ∗ = 50 above the
wall. TDNS data from simulations (a) without and (b) with the application
of Eq. (9.6). The TDNS data (solid) plotted with LST predicted growth rate
(dashed), v′0 exp[ωit], where ωi = 3.31× 10−4δ∗/a∞.
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Figure 9.9: (a) Reδ∗ = 2000, Mach 2.25 laminar boundary layer base flow
and (b) temporally unstable eigenvectors for the stream wise and spanwise
wavenumbers, αδ∗ = 0.2, βδ∗ = 0.0. u (solid), v (dotted), p, (dash dot), T
(dashed).
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(a) (b)

(c)

Figure 9.10: Stages of laminar to turbulent boundary layer transition. (a)
Staggered Λ waves. (b) The breakdown of amplified disturbances into tur-
bulent spots. (c) The final stage of transition: fully turbulent flow.
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Figure 9.11: Two-point correlations in the streamwise direction at (a) y+ =
2.1, (b) y+ = 73.9, and (c) y+ = 151.3. Rρ′ρ′ (dotted), Ru′u′ (solid), Rv′v′

(dashed), Rw′w′ (dash-dot), Rp′p′ (solid with dots).
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Figure 9.12: Two-point correlations in the spanwise direction at (a) y+ =
2.1, (b) y+ = 73.9, and (c) y+ = 151.3. Rρ′ρ′ (dotted), Ru′u′ (solid), Rv′v′

(dashed), Rw′w′ (dash-dot), Rp′p′ (solid with dots).
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Figure 9.13: Energy spectra in the streamwise direction at (a) y+ = 2.1, (b)
y+ = 73.9, and (c) y+ = 151.3. Eρ′ρ′ (dotted), Eu′u′ (solid), Ev′v′ (dashed),
Ew′w′ (dash-dot), Ep′p′ (solid with dots). The filter cutoff frequency (refer
to Fig. 7.2) is shown by the dashed vertical line. Kolmogorov’s −5/3 energy
spectra is shown in (b) and (c).
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Figure 9.14: Energy spectra in the spanwise direction at (a) y+ = 2.1, (b)
y+ = 73.9, and (c) y+ = 151.3. Eρ′ρ′ (dotted), Eu′u′ (solid), Ev′v′ (dashed),
Ew′w′ (dash-dot), Ep′p′ (solid with dots). The filter cutoff frequency (refer
to Fig. 7.2) is shown by the dashed vertical line. Kolmogorov’s −5/3 energy
spectra is shown in (b) and (c).
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Figure 9.15: Grid convergence study using three grids: A (baseline, solid), B
(dashed), and C (dotted).
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Figure 9.16: (a) Van Driest scaled mean velocity profile and (b) normalized
normal components of the Reynolds stresses for the current Reθ ≈ 4000 TBL
(solid) and that of Pirozzoli & Grasso [3](dash-dot).
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Figure 9.17: (a) Van Driest scaled mean velocity profile and (b) normalized
normal components of the Reynolds stresses for the current Reθ = 1196 TBL
(solid) and that of Pirozzoli & Grasso [3](dash-dot).
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Chapter 10

Aeroelastic Investigation Results

This chapter documents the interaction of the Mach 2.25 turbulent boundary

layer (TBL) discussed in Chapter 9 with the compliant panel described in

Section 8.2.2. Unless stated, results are from the long domain simulation

(Refer to Section 8.2.1).

10.1 Panel solution evolution

The effect of fluid-structure interaction is seen in the evolution of the panel

state, immediately departing from its initial flat-plate configuration under

the loading from the TBL. Panel deformations are shown at four different in-

stances in time in Fig. 10.1(a)-(d). Figure 10.1(a) shows that, at initial times,

panel deformations are small and are in an unorganized dimpled pattern. As

shown in Fig. 10.1(b) the panel deflections at t = 0.79 ms are made up of

higher-mode bending waves which travel down the panel in the streamwise

direction. The maximum panel deflections into and out of the boundary layer

at this time are wup = 0.136 mm (0.070δ∗, 9.06τ) and wdown = 0.102 mm

(0.053δ∗, 6.8τ), respectively. Panel deflections normalized by current dis-

placement thickness, δ∗, and panel thickness, τ , are given in parentheses. An

x-t diagram of the panel deformations is shown in Fig. 10.2. The slopes of the

deformation contours, which are further from zero at earlier times, correspond

to the phase velocities of the panel bending waves. The peak which exists at

the downstream extent of the panel in Fig. 10.1(b) is seen in Fig. 10.2 to grow

and accelerate as it progresses down the panel. At later times, Fig. 10.1(c)

and Fig. 10.1(d) show that the panel deformations are characterized by larger

amplitude, low spatial mode standing waves. At t = 1.60 ms, the maximum

panel deflections into and out of the boundary layer are wup = 0.080 mm

(0.024δ∗, 5.3τ) and wdown = 0.239 mm (0.072δ∗, 15.9τ), respectively. At

t = 1.90 ms, the maximum panel deflections into and out of the bound-
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ary layer are wup = 0.240 mm (0.064δ∗, 16.0τ) and wdown = 0.048 mm

(0.013δ∗, 3.2τ), respectively. The stationary nature of these waves is evi-

denced by the almost zero slope of the associated deflection contours shown

in Fig. 10.2 at t = 1.60 ms and t = 1.90 ms.

10.1.1 Modal decomposition of panel state

The linear mode shapes for a clamped-clamped panel are given in Seodel

[103] as

φj(x) = cosh(λjx)−cos(λjx)−
cosh(λjL)− cos(λjL)

sinh(λjL)− sin(λjL)
(sinh(λjx)− sin(λjx)) ,

(10.1)

where λj is the jth solution to the transcendental equation cosh(λjL) cos(λjL) =

1. The first six (j = 0 to 5) solutions are given in Tab. 10.1 and the asso-

ciated mode shapes are shown in Fig. 10.3. While the panel response is

Table 10.1: First six solutions to the equation for λj, cosh(λjL) cos(λjL) = 1.

j 0 1 2 3 4 5
λjL 0.000000 4.730041 7.853205 10.995608 14.137165 17.278760

non-linear and therefore exhibit slightly different mode shapes [104], the lin-

ear shapes are a useful approximation to investigate the modal content of

the panel state. Since the panel displacement is dominated by the vertical

component, the simplification made by this analysis of only considering wall

normal deflections is justified. The displacement of the neutral plane can be

represented as the sum of Nx and Nz modes in the streamwise and spanwise

directions, respectively, as

η(x, z, t) =

Nx
∑

m

Nz
∑

n

Amn(t)φm(x)φn(z). (10.2)

Taking advantage of the orthogonality of φn,

∫ L

0

φn(x)φm(x)dx = 0 for m 6= n,
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the modal coefficients Amn(t) are found by

Amn(t) =
1

CmDn

∫ Lx

0

∫ Lz

0

η(x, z, t)φm(x)φn(z)dxdz, (10.3)

where

Cm =

∫ Lx

0

φm(x)
2dx, and Dn =

∫ Lz

0

φn(z)
2dz.

The temporal evolution of the modal content of the panel solution is shown

in Fig. 10.4. At earlier times, such as t = 0.79 ms, there exist a variety of low

and high modes with similar amplitudes. However, it is seen that at later

times the lower modes (mostly (2,1)), clearly dominate.

10.1.2 Power balance in the panel

The power into the panel from the fluid is calculated by evaluating the inte-

gral

Ẇ =

∫

∂Bi

u · (τ · n̂) d∂B, (10.4)

where n̂ is the unit normal, u is the velocity, and τ fluid stress tensor at the

interacting surface, ∂Bi. The evolution of Ẇ is shown in Fig. 10.5. Before

t = 0.5 ms the power into the panel is relatively small. During this time

the panel is nominally flat (Fig. 10.1(a)) and, since the mean pressure above

and below the panel are equal, only the local TBL pressure fluctuations

and viscous stresses contribute to the power into the panel. This result

suggests that their contributions to the panel response are small compared

to the loading due to the aerodynamic pressure created on the deflected panel.

The role of viscous loading is addressed again below. Over the whole time

record, the power directed into the panel from the fluid has both positive

and negative values corresponding to instants at which the panel is moving

with the fluid loading and against it, respectively. The kinetic energy of the

panel is given by

KE =

∫

B

1

2
ρs (u · u) dB,

where ρs denotes the panel density. The evolution of the kinetic energy in

the panel is shown in Fig. 10.6. The kinetic energy is always positive due to

the presence of many panel modes of different frequencies and phases. The
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low frequency periodicity in the evolution of the kinetic energy lags that of

the power into the panel by 90◦, with peaks occurring at points in time just

before the panel loses power back to the fluid. The total energy transferred

to the panel from the fluid is obtained by integrating the power in Eq. (10.4)

over time from the beginning of the simulation

Etot.(t) =

∫ t

0

Ẇ (t′)dt′.

Since no structural damping is used, all energy that is passed to the panel

is either pumped back into the fluid or stored in the panel in the form of

kinetic and strain energy. Consequently, the strain energy in the panel can

be found by the difference between the total energy and kinetic energy

SE(t) = Etot.(t)−KE(t).

The strain energy over time is shown in Fig. 10.7. Naturally, peaks in the

strain energy coincide with valleys in the kinetic energy and vice-versa.

In aeroelastic studies, the inviscid assumption is commonly made to cal-

culate the fluid loading using both reduced-order models [105, 106] or the

Euler equations [82]. This assumption reduces the computational cost both

directly, by removing the viscous terms from the computation, and indi-

rectly, by relaxing the stability requirements therefore allowing larger time

steps. The quality of this assumption in transmitting forces to the panel is

assessed here by comparing the power resulting from the inviscid loading on

the panel with the full power calculation in Eq. (10.4). Given the geometry,

velocity and surface pressure on the panel, the inviscid contribution to the

fluid power into the panel is

Ẇinv. =

∫

∂Bi

−p (u · n̂) d∂B. (10.5)

The results of this calculation are compared with the total power (Eq. (10.4))

to assess the amount of power into the panel that results from viscous loading,

shown in Fig. 10.8. The viscous loads, at their peak, contribute less than 2%

of the total power exchanged between the fluid and the panel. Additionally,

in this study, the panel deflections are small so that a further assumption

that the rotation of the surface normal due to the deflection of the panel is
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negligible may be valid. The inviscid power into the flat panel geometry is

calculated by assuming a vertical normal as

Ẇinv.,flat =

∫

∂Bi

−p (u · ê2) d∂B.

The result of this is again compared with the full power. Figure 10.9 shows

that this assumption is justified, as the consideration of the surface normal’s

deviation from vertical in the power calculation is less the 0.8% of the total

power. However, this does not mean that panel deflection can be neglected.

In a later section it will be shown that the panel cannot be approximated to

be flat as panel deflections significantly affect the coupled solution.

10.1.3 Deflection into the boundary layer

The evolution of the panel’s maximum deflections both into and out of the

the flow are plotted in Fig. 10.10(a) and Fig. 10.10(b), respectively. The

panel deflections approach 20 times the panel thickness, putting them well

into the non-linear regime. The panel deforms 7% though the boundary layer

displacement thickness at initial times. At t = 1.60 ms and t = 1.90 ms, the

panel deflection out of and into the boundary layer are around k+ = 25,

where k+ = w/δv and δv is the viscous length. Deflections into the boundary

layer extend through the viscous subregion and into the buffer region.

Robustness to domain size and initial conditions

In a second set of fluid-only and coupled simulations, the fluid solution is

found in a domain with half the streamwise extent of the first set of sim-

ulations. The simulations on the two different domains will be referred to

as the long and short domain simulations. The short domain effectively re-

duces the distance between the panels in the periodic simulation (Fig. 8.4(b)).

Whether the panel response is significantly altered by the coupling of more

closely spaced panels through the boundary layer is of interest, and can be

assessed by comparing the results between the long and short domain simu-

lations. A second difference is that the short domain coupled simulation does

not start until the boundary layer becomes fully turbulent. Therefore initial

loads experienced by the panel are different between the two simulations.

The panel in the long domain is initially subject to the larger spatial and
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temporal scales of the unsteady eigenmodes, while the short domain panel

is subject to the small scale turbulent fluctuations for the duration of the

simulation. The panel dimensions are kept the same. One final difference

between the two simulations is that the freestream densities differ by ∼ 2%,

where in the long domain, ρ∞ = .4893 kg/m3, and in the short domain,

ρ∞ = .4981 kg/m3. Deformations into and out of the boundary layer in the

second case are shown in Fig. 10.11(a) and Fig. 10.11(b), respectively. A

comparison of Fig. 10.10 with Fig. 10.11 shows that, while the initial loading

on the panel was different, the large amplitude, long time, panel response is

very similar.

Effect of panel thickness

A simulation featuring a panel with a thickness of τ = 150µm, ten times the

thickness of the original panel, was run in the long domain to compare the

effect of panel thickness on the coupled solution. The simulation was run

for 1.33 ms over which time the panel deformation remained well below one

panel thickness as shown in Fig. 10.12. Based on an analysis by Degundji

[70], this higher panel thickness and the dynamic pressure of the flow place

the thick panel well inside the flutter boundary.

10.2 One-way vs. two-way coupling

It has been standard analysis and design practice to compute the fluid loads

around a vehicle body and then pass those loads to structural models to

determine the structural response. Here the role of communication from the

structure back to the fluid is assessed in order to study the significance of full

coupling in the panel response. Two coupled simulations are run on the short

domain from the same initial state, with zero deflection and velocity under

the already fully developed TBL. The simulations differ in that one of them

uses the same two-way coupling as used in the above simulations while the

other only employs one-way coupling. One-way coupling is defined here as

passing fluid loads to the structure while not communicating the structural

solution to the fluid.

Figure 10.13(a) and (b) show the one-way and two-way coupled panel

solutions, respectively, at t = 1.34 ms (0.21 ms after they were “inserted”
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into the flow). At this initial time the panel responses are very similar, as

highlighted by the tight contour limits in the figure. However, after another

0.27 ms, Fig. 10.14 shows that the solutions quickly diverge. There is a

striking qualitative difference in the panel response between the two solu-

tions which suggests that the fluid response to the panel geometry, which

is neglected in the one-way coupled solutions, has a significant effect on

the panel response. The panel motion in the two-way coupled simulation

has developed into a wave like response, while the one-way coupled simu-

lation produces panel deformations in a dimpled pattern similar to that in

Fig. 10.13. Quantitatively, the panel states are also very different. The one-

way coupled panel has maximum in/out deflections of 16.9 µm/ − 11.8 µm

(8.32 × 10−3δ∗, 1.1τ/−5.81 × 10−3δ∗, − 0.8τ) while the two-way coupled

panel deflections are over three times as large, 150.2 µm/− 97.5 µm (3.05×
10−2δ∗, 4.03τ/−1.81×10−2δ∗, −2.5τ). At a time 0.27 ms later (Fig. 10.15),

the disparity in the two solutions grows larger. In the two-way coupled case,

the waves have begun to interact with the clamped BC. A positive wave crest

has reflected off of the downstream boundary, producing a large negative de-

flection. Figure 10.16 shows that, 1.07 ms later, there is almost an order of

magnitude difference in the response amplitudes. Furthermore, the two-way

coupled response has achieved the standing wave state observed in the earlier

simulation (Fig. 10.1(d)).

The x-t diagram shown in Fig. 10.17 gives spatio-temporal information

about the differences in the panel responses between the one- and two-way

coupled cases. It is shown that the panel response in the one-way coupled

case is made up of seemingly random fluctuations about zero in space and

time. In contrast, the two-way coupled simulation produces a panel response

with an x-t diagram exhibiting ordered patterns; at earlier times the acceler-

ating wave patterns are again seen while the two-state standing wave pattern

is observed at later times. The modal decomposition (refer to Section 10.1.1)

shown in Fig. 10.18 supports the statement that the one-way coupled re-

sponse is much less ordered, remaining broadband and low amplitude over

time. At later times, there is an emergence of a slightly dominant (1, 1) mode.

The two-way coupled response again evolves from an initially low amplitude,

broadband nature to being dominated by large amplitude (2, 1) waves.

In Fig. 10.19, the maximum amplitudes of the deflections into and out of

the boundary layer are compared. The maximum deformations from the two
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cases follow the same trajectory initially. However, there is a point where the

panel deformations both into and out of the boundary layer quickly amplify in

the two-way coupled case. Figure 10.20 compares the maximum amplitudes

of the deflections normalized by the boundary layer displacement thickness.

It appears that the panel deflects slightly more than 0.005δ∗ before the two

solutions diverge. The displacement thickness represents the effective shape

of the panel to the inviscid free stream flow, and therefore changes to the

displacement thickness govern the aerodynamic pressure felt by the panel.

A one-way coupled simulation over the thick panel in Section 10.1.3 shows

negligible differences from the two-way coupled case, as shown in Fig. 10.21.

This suggests that, in the absence of panel flutter, two-way coupling is less

important.

10.2.1 Panel response frequency

The Fourier transform of the maximum panel deformations into and out of

the boundary layer highlight the dominant panel response frequency, shown

in Fig. 10.22 and Fig. 10.23 for the long and short domain simulations, re-

spectively. The dominant response frequencies are 1822± 114 Hz in the long

domain simulation and 2028 ± 206 Hz in the short domain simulation. Ad-

ditionally, in each domain there are well defined peaks at harmonics of the

primary frequencies, 3654±114 Hz and 4056±128 Hz in the long domain and

short domain simulations, respectively. To investigate the relation between

the pressure fluctuations under the TBL and the dominant panel response,

the spectral content of the pressure at a point on the plate surface down-

stream of the panel is shown in Fig. 10.24 and Fig. 10.25. Pressure traces

from both the rigid and compliant cases are investigated. If the turbulent

fluctuations contributed significantly to the response of the panel, it would

be expected that there would be peaks in the rigid panel simulation pressure

spectra at the panel response frequencies. The absence of such peaks sug-

gests that the turbulent fluctuations are not a driver of the panel response.

Rather, the panel motion induces pressure fluctuations that can be seen un-

der the TBL, as evidenced by the 141.8 dB spike in the pressure spectra at

1860 ± 85 Hz in the long domain and the 141.8 dB spike at 2054 ± 93 Hz

in the short domain post-panel pressure spectra. The observation that the

turbulent fluctuations are not a driver of the panel solution is supported by
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the results presented in Section 10.2. The one-way coupled panel was sub-

ject only to the turbulent fluctuations and did not exhibit large amplitude

responses at discrete frequencies.

10.3 Influence of panel motion on fluid

solution

Figure 10.26 shows the coupled solution at t = 0.98 ms. Constant vorticity

magnitude surfaces exhibit the turbulent structures present in the bound-

ary layer and constant pressure surfaces representing compression waves are

shown in gray. The panel is outlined and deformations are shown. The de-

formations are shallow and are emphasized with blue and red contours to

indicate negative and positive deflections, respectively. The effect of the tur-

bulent boundary layer on the panel is easily seen, as shown in Fig. 10.10(a)-

(d). However, changes to the fluid solution due to the panel motion are more

subtle. Figure 10.26 shows the relationship between the fluid and panel

states, and illustrates the significant effect the panel has on the flow solu-

tion. As shown in Fig. 10.27(a)-(d), the bending waves propagating through

the panel cause compression and expansion waves to oscillate back and forth.

In the conditions studied, the compression waves are relatively weak. The

normal Mach number to the waves does not become subsonic, indicating that

they are not sufficiently strong to be considered shock waves. Oscillations

of compression/expansion wave patterns is a potential cause for concern in

internal flow applications where unsteady loading on an opposite wall may

be an issue.

The flux of power through the top surface of the fluid domain is calculated

at every fluid time step by evaluating the integral

Ẇtop =

∫

s

(u(ρE + p) + q − τu) · n̂ ds,

where n̂ is the outward pointing normal on a surface, s, in the x-z plane

positioned below the sponge region in the fluid domain, and the total energy

per unit volume is ρE = p/(γ − 1) + 1
2
ρu · u. The evolution of the power

with time in the long domain rigid and compliant panel simulations is shown

in Fig. 10.28. The average trend of the both power evolutions are influenced
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by the vertical velocity induced by the temporal boundary layer. The time

derivative of the displacement thickness, shown in Fig. 10.29, provides evi-

dence supporting this claim. The presence of the compliant panel fluttering

under the boundary layer produces fluctuations in the power flux through

the top of the fluid domain as seen in Fig. 10.28. The difference in the power

evolution between the rigid and the compliant panel is shown in Fig. 10.30(a)

to highlight the power modification due to the panel motion. The peak to

peak oscillation amplitude is ∼ 1.4% of the inflow power and makes a neg-

ligible contribution to the power balance in the fluid domain. The Fourier

transform of the power difference shown in Fig. 10.30(b) indicates that the

power out of the top of the compliant panel simulation fluctuates with a

frequency of 1860 ± 85 Hz, which correlates well with the large amplitude

panel response frequency of 1822 ± 114 Hz in the long domain simulation

(Fig. 10.22). Results are similar in the short domain simulations, where the

power out fluctuation frequency is 2054 ± 93 Hz (Fig. 10.31) corresponding

to the panel fluctuation frequency of 2028± 206 Hz.

Temporal averages of the wall normal flow were taken over 0.1 ms centered

around t = 1.56 ms (panel down position in Fig. 10.20(b)) and t = 1.86 ms

(panel up position in Fig. 10.20(a)) to investigate the effect of the panel

deformations on relevant turbulence statistics. In order to ensure the inde-

pendence of the samples, the sample frequency was chosen so that they were

spaced by the integral timescale, δt, given by

δt =

∫ 0.1ms

0

〈u(t)u(t+ s)〉
〈u(t)u(t)〉 ds.

The Reynolds shear stresses, 〈u′v′〉, were compared over the same time in-

tervals between the compliant and rigid panel (fluid only) simulations to

determine the effect that the compliant panel state had on the shear stress.

The Reynolds shear stress profiles above the panel from the time interval

surrounding t = 1.56 ms (panel down position) are compared in Fig. 10.32.

When compared to the rigid panel case, −〈u′v′〉 is reduced in the log-law re-

gion. The Reynolds shear stress profiles above the panel from the time inter-

val surrounding t = 1.86 ms (panel up position) are compared in Fig. 10.33.

As compared to the rigid panel case, there appears to be a deficiency in

−〈u′v′〉 towards the boundary layer edge surrounded by large spikes. Values

taken by −〈u′v′〉 in all cases differ from previous work [102], which may be
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due to the non-trivial task of taking flow statistics over a moving surface.

The compressible turbulent kinetic energy (TKE) equation is written as

ρ̄
∂k

∂t
+ ρ̄ũj

∂k

∂xj

= P +D + Tu′ + Tp′ +Π− ρǫ− ST1 − ST2, (10.6)

where explanations of the individual terms are given in Appendix G. The ef-

fect on the turbulence downstream of the panel is examined by averaging over

sections in the post-panel domain and comparing the turbulent kinetic energy

(TKE, k = 1/2ρu′′
i u

′′
i ) budget computed from both the rigid and compliant

panel cases in that region (Eq. (10.6)). Three post-panel sections, shown in

Fig. 10.34, are studied. Each section is one integral length long, based on the

initial state of the TBL, which as shown in Fig. 9.11, is ≈ 0.5δ990 , where δ990 is

the initial boundary layer thickness. For the comparison, TKE budget terms

were averaged over one panel cycle over a period shown in Fig. 10.35(a).

Differences in the temporal averages of all terms between the rigid and com-

pliant panel cases are small and are not noticeable in Fig. 10.35(b). Detailed

plots of the comparisons of P and −ρǫ in post-panel sections one, two, and

three are shown in Fig. 10.36, Fig. 10.37, and Fig. 10.38, respectively. Error

bars represent ± one standard deviation. The results indicate that there is

no statistical difference in the temporal means of any of the TKE budget

terms between the rigid and compliant panel cases in the post-panel region.

However, the fluctuations in P and −ρǫ due to the panel movement are seen

in the increased deviations from the mean in section one (Fig. 10.36). By

sections two and three (Fig. 10.36 and Fig. 10.36) the deviations in P and

−ρǫ are similar between the rigid and compliant panel cases. This result

suggests that any local effects on the turbulence statistics (Fig. 10.32 and

Fig. 10.33) are forgotten by the TBL within one integral length downstream

of the compliant panel.

10.4 Comparison with piston theory

To assess the performance of a popular ROM the panel response is solved

under the loading provided from first order piston theory, which computes

the pressure at a point on the panel as a function of freestream dynamic

pressure, Mach number, streamwise slope and vertical velocity of the panel
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surface and is given as

p− p∞ =
ρ∞U2

∞

M∞

(

∂w

∂x
+

1

U∞

∂w

∂t

)

. (10.7)

The panel solution is determined by the current non-linear solver, and only

the fluid model is changed. The freestream conditions are identical to those

in the short domain simulations, with ρ∞ = 0.4981 kg/m3. Since Eq. (10.7)

will not provide any loading over a flat panel at rest, the (1,1) mode of

the panel, given by Eq. (10.1), is given an initial velocity of 0.1 m/s. The

evolution of the panel subject to the piston theory loading is qualitatively

similar to the response in the fully coupled simulations utilizing the Navier-

Stokes solver. The panel reaches a state exhibiting a standing wave response

with states shown in Fig. 10.39. Quantitatively, there are differences between

the simulations using the two different methods. Maximum deformations into

and out of the flow are 0.163 mm (10.9τ) and 0.177 mm (11.8τ), respectively.

The response frequency, which due to non-linear stiffening is dependent on

the magnitude of the deformations, also has a reduced value compared to

the high-fidelity simulations, 761.5±63 Hz. Third-order piston theory, while

not shown, gives nearly identical results. Differences in the panel response

to piston theory loading and to the Navier-Stokes loads are evidence of a

possible deficiency in piston theory under these conditions.

10.5 Effect of domain height on solution

One negative feature of the TDNS approach is that the boundary layer grows

in time, which places a finite limit on the length of time a simulation can run

before the boundary layer outgrows the fluid domain. Figure 10.40 shows the

evolution of the boundary layer visual (δ99), displacement (δ∗), and momen-

tum (θ) thickness over time in the short domain rigid panel simulation. The

visual boundary layer thickness hits the top of the domain relatively early in

the simulation, but the displacement and momentum thicknesses appear to

remain undisturbed. To assess the effect, if any, of the domain height on the

panel response, a simulation featuring a compliant panel in a domain twice

the height of the previous simulations is run. The new fluid domain was

created by adding 39 uniformly spaced grid points to the top of the short do-
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main to extend it to twice the height of the previous simulation. The initial

condition in the fluid was set equal to the fluid solution from which the short

domain compliant panel simulation was started, but the freestream flow was

extended upwards to the top of the domain. The fluid initial condition is

shown in Fig. 10.41. The flow solution in the initial condition above the pre-

vious domain height is not consistent with the Navier-Stokes equations and

causes as small adjustment at the beginning of the coupled simulation. The

maximum deflections of the panel into and out of the flow are compared to

the panel response in the short domain simulation in Fig. 10.42. The Fourier

transform of the maximum deflections into and out of the boundary layer in

Fig. 10.43 indicate that the large amplitude fluctuations occur at a frequency

of 1895± 316 Hz and the lower amplitude response occurs at 3790± 316 Hz.

The uncertainties overlap in the response frequencies of the short and tall

domains, indicating that there is no statistical difference between the two.

10.6 Summary of Part II

A high-accuracy, high-fidelity methodology for the simulation of coupled

fluid-structural problems has been developed for the purpose of predicting

the structural response of a panel on an aerospace vehicle in extreme condi-

tions. Few assumptions are made about the physical properties or solution

geometry in order to achieve accurate predictions in situations where simpli-

fied approaches may be invalid and experiments may be extremely difficult.

In particular, no turbulence model was used and all turbulent scales were re-

solved. The formulation of the coupled solver was presented. Details about

the method for generation of the turbulent boundary layer in a temporal

direct numerical simulation were discussed and it was shown that, in high-

speed flows, the growth of the mean flow needs to be suppressed in order for

linear stability theory to hold. The effect of coupling on both the fluid and

structural response were studied.

Results showed that panel deformations, in the form of traveling bending

waves, amplify when they interact with the clamped panel boundaries. At

later times, the deformations exhibit a standing wave behavior which is dom-

inated by the (2,1) panel mode at a frequency around 2000 Hz. In all cases,

a second, lower amplitude panel response occurs at the next harmonic of the
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primary response frequency. The deformation approached 20 panel thick-

nesses, and extended into the boundary layer a distance of 25 wall units.

Differences were small between short and long domain simulations, suggest-

ing that, in the conditions studied the distance between successive panels

did not affect the panel response. Changes in surface topology led to the

generation of oscillating compression and expansion waves, which may cause

localized unsteady loads on an opposing wall in internal flow applications.

The large amplitude panel response produces pressure fluctuations that ra-

diate into the fluid and are seen in at the top of the domain as well as under

the turbulent boundary layer downstream. Turbulence statistics show that

the Reynolds shear stress profiles may be modified on the compliant panel,

but results were not conclusive. The effect of the interaction with the panel

on the turbulence can be seen in the downstream turbulent kinetic energy

budget close to the panel and suggest that panel compliance effects on tur-

bulence are forgotten after one integral length. In comparing results from a

simulation where structural deformations are not communicated to the fluid

solution with the standard two-way coupled results, a large difference is seen.

Two-way coupling is shown to be very important in response prediction of a

panel interacting with a compressible turbulent boundary layer in situations

where the panel flutter may occur.
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Figures for Chapter 10

(a) t = 0.27 ms (b) t = 0.79 ms

(c) t = 1.60 ms (d) t = 1.90 ms

Figure 10.1: Panel deformation at (a) t = 0.27 ms, (b) t = 0.79 ms , (c)
t = 1.60 ms , and (d) t = 1.90 ms. Red and blue indicate deflection into and
out of the boundary layer, respectively. Units are in meters.
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Figure 10.5: Power into the panel from the fluid, as defined by Eq. (10.4).
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Figure 10.6: Kinetic energy of the panel.
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Figure 10.7: Strain energy of the panel.
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Figure 10.10: Maximum panel deflection with time into (a) and out of (b)
the flow in the long domain simulation. The deflections are normalized by
the boundary layer displacement thickness, δ∗ (solid), and panel thickness, τ
(dashed).
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Figure 10.11: Maximum panel deflections with time into (a) and out of (b)
the flow in the short domain simulation. The deflections are normalized by
the boundary layer displacement thickness, δ∗ (solid), and panel thickness,
τ (dashed). Note that the time starts at t = 1.13 ms, when the compliant
panel section is “inserted” into wall.
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Figure 10.12: Maximum deformation of the thick panel with time into (a)
and out of (b) the flow. Deformations are normalized by the panel thickness,
τ = 150 µm.
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(a)

(b)

Figure 10.13: Panel solutions from the (a) one-way coupled and (b) two-way
coupled simulations at t = 1.34 ms. Maximum panel deflections in/out of
the TBL are (a) 7.7 µm/− 10.9 µm (5.05×10−3δ∗, 0.5τ/−7.15×10−3δ∗, −
0.7τ) and 10.0 µm/− 13.9 µm (6.56×10−3δ∗, 0.7τ/−9.12×10−3δ∗, −0.9τ),
Contour limits are (−16.3 µm, 16.3 µm) to highlight solution similarities.
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(a)

(b)

Figure 10.14: At t = 1.61 ms, the panel solutions from the (a) one-way
coupled and (b) two-way coupled simulations show significant differences.
Maximum panel deflections in/out of the TBL are (a) 16.9 µm/− 11.8 µm
(8.32 × 10−3δ∗, 1.1τ/−5.81 × 10−3δ∗, − 0.8τ) and b) 62.0 µm/− 36.8 µm
(3.05 × 10−2δ∗, 4.1τ/−1.81 × 10−2δ∗, − 2.5τ). Contour limits (a)
(−48.8 µm, 48.8 µm) and (b) (−270.6 µm, 270.6 µm) are held constant
through Fig. 10.14-Fig. 10.16 to display panel state evolution.
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(a)

(b)

Figure 10.15: At t = 1.88 ms, the panel solutions continue to diverge be-
tween the (a) one-way coupled and (b) two-way coupled simulations. Max-
imum panel deflections in/out of the TBL are (a) 25.6 µm/− 13.5 µm
(1.02 × 10−2δ∗, 1.7τ/−5.37 × 10−3δ∗, − 0.9τ) and 62.2 µm/− 97.5 µm
(2.48 × 10−2δ∗, 4.2τ/−3.88 × 10−2δ∗, − 6.5τ). Contour limits (a)
(−48.8 µm, 48.8 µm) and (b) (−270.6 µm, 270.6 µm) are held constant
through Fig. 10.14-Fig. 10.16 to display panel state evolution.
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(a)

(b)

Figure 10.16: By t = 2.95 ms, the panel solutions from the (a) one-way
coupled and (b) two-way coupled simulations differ substatially. Max-
imum panel deflections in/out of the TBL are (a) 29.6 µm/− 36.4 µm
(7.17 × 10−3δ∗, 2.0τ/−8.81 × 10−3δ∗, − 2.4τ) and 245.2 µm/− 61.1 µm
(5.94 × 10−2δ∗, 16.3τ/−1.48 × 10−2δ∗, − 4.0τ). Contour limits (a)
(−48.8 µm, 48.8 µm) and (b) (−270.6 µm, 270.6 µm) are held constant
through Fig. 10.14-Fig. 10.16 to display panel state evolution.
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and (b) two-way coupled panel response. Note the substantial difference in
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Figure 10.19: Evolution of the maximum panel deflection (a) into and (b) out
of the flow obtained for the one-way (dashed) and two-way coupled (solid)
simulations. The deflections are normalized by panel thickness, τ .
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Figure 10.20: Evolution of the maximum panel deflections (a) into and (b)
out of the flow comparing the one-way (dashed) and two-way coupled (solid)
solutions. The deflections are normalized by the rigid panel boundary layer
displacement thickness, δ∗.
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Figure 10.21: Maximum deformation of the thick panel with time into (a)
and out of (b) the flow in two-way (solid) and one-way (dashed) coupled sim-
ulations. Deformations are normalized by the panel thickness, τ = 150 µm.
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Figure 10.23: Same as Fig. 10.22 for the short domain simulation.
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Figure 10.24: Pressure spectra exhibiting the difference in the post-panel
pressure fluctuations between the rigid (dashed) and compliant (solid) panel
cases in the long domain simulations.
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Figure 10.25: Same as Fig. 10.24 for the short domain simulations.
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Figure 10.26: Fluid and panel state at t = 0.98 ms. The panel deformations are emphasized with blue (negative) and red
(positive) contours. Turbulent structures are presented as constant scalar vorticity surfaces and are colored by streamwise
velocity. Compression waves resulting from panel deformations are shown in gray.
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(a) t = 0.85 ms

(b) t = 1.07 ms

(c) t = 1.29 ms

(d) t = 1.47 ms

Figure 10.27: Compression wave locations due to panel deformations at (a)
t = 0.85 ms, (b) t = 1.07 ms, (c) t = 1.29 ms, and (d) t = 1.47 ms. Pressure
isosurfaces representing compression waves colored by streamwise velocity
contours. Pressure contours on the extreme spanwise boundary are also
shown.
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Figure 10.28: Power out of the top of the fluid domain in the rigid (dashed)
and compliant (solid) panel simulations.

0 1 2 3 4 5 6 7

x 10
−3

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7

x 10
−3

0

1

2

3

4

5

6

7

δ̇∗
(m

/s
)

δ∗
(m

m
)

Time (s)
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Figure 10.30: (a) Difference in the power out of the top of the fluid domain
between the rigid and compliant panel cases in the long domain simulation.
(b) Fourier transform of the power difference.

1860± 85 Hz

173



1 2 3 4 5 6 7

x 10
−3

−150

−100

−50

0

50

100

150

200

Ẇ
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Figure 10.31: (a) Difference in the power out of the top of the fluid domain
between the rigid and compliant panel cases in the short domain simulation.
(b) Fourier transform of the power difference.
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Figure 10.32: Reynolds shear stress profile above (a) rigid and (b) compliant
panel for t = 1.56± 0.05 ms corresponding to the time when the panel is
deflected out of the boundary layer. Error bars represent 95% confidence
intervals.
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Figure 10.33: Reynolds shear stress profile above (a) rigid and (b) compliant
panel for t = 1.86± 0.05 ms corresponding to the time when the panel is
deflected out of the boundary layer. Error bars represent 95% confidence
intervals.
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Figure 10.34: Post-panel regions over which TKE budget terms (Eq. (G.2))
are compared between rigid and compliant panel simulations. Each section
is 1/2δ990 ≈ 1 integral length scale, where δ990 is the initial boundary layer
thickness .
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Figure 10.35: (a) Time period over which the TKE budget is averaged for
comparison of post-panel statistics between the rigid and compliant panel
cases. (b) Rigid and compliant panel TKE budget terms averaged over the
time period shown in (a). The viscous diffusion, D, production, P , turbulent
transport, Tu′, and viscous dissipation, −ρǫ, are the dominant terms and are
given by Eq. (G.2)
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Figure 10.36: Comparison of TKE budget terms (a) production (P ) and (b)
viscous dissipation (−ρǫ) between the rigid and compliant panel cases with
error bars of ± one standard deviation. The deviations in the compliant
panel case are larger than those in the rigid panel case, indicating that the
fluctuations in P and −ρǫ due to the panel motion still exist in station 1.
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Figure 10.37: Comparison of TKE budget terms (a) production (P ) and (b)
viscous dissipation (−ρǫ) between the rigid and compliant panel cases with
error bars of ± one standard deviation. The standard deviations in the terms
between the rigid panel and compliant panel cases are similar, indicating that
the effect of the panel motion has been forgotten by section 2.
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Figure 10.38: Comparison of TKE budget terms (a) production (P ) and (b)
viscous dissipation (−ρǫ) between the rigid and compliant panel cases with
error bars of ± one standard deviation. Deviations in the terms between the
rigid panel and compliant panel cases are similar.
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Figure 10.39: (a) Up and (b) down states of the panel response under aero-
dynamic loading provided by piston theory.
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Chapter 11

Conclusions and Future Work

11.1 Conclusions

Future high performance vehicles are desired to be lightweight, flexible, and

reusable. Structures satisfying these requirements are subject to complex

fluid-structure interactions at the desired extreme flight conditions. To better

understand the interactions between a fluid and a solid in high-speed flows, a

high-fidelity, coupled, numerical approach to structural response prediction

was taken. The work presented was composed of two parts including coupled

fluid-thermal and fluid-structural studies.

In Part I, the fluid-thermal problem was motivated by a phenomena ob-

served when thin National Aerospace Plane (NASP) thermal protection sys-

tem (TPS) panels bowed into the flow field due to thermal gradients. The

resulting modified geometry produced changes in the thermal and mechan-

ical loading both on the TPS panel and surrounding area. A finite-element

thermal solver was developed and coupled with an existing finite difference

Navier-Stokes solver to investigate the effects of fluid-thermal coupling in this

scenario. In addition to the validation of the coupled solver by comparison

with experimental results, the following conclusions resulted from Part I:

1. Reynolds analogy provides a fair relation between surface shear stress

and heat flux over a flat plate, but fails in the presence of geometry

changes and pressure gradients.

2. Semi-analytical and reduced-order models based on inviscid aerody-

namics reproduce some qualitative trends but significantly overpredict

quantitatively the heat loads on the deformed geometry. Additionally,

significant features in the heat flux, such as those due to vortex shed-

ding, are completely missed by the inviscid approach.
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3. To accurately predict the thermal solution, thermal loading, geometri-

cal features, and material properties must be accounted for.

4. In flows that contain regions of extreme temperatures, the calorically

perfect assumption may not be justified and the use of more general

gas models are required to make accurate predictions.

5. The high temperatures of the solid domain that resulted from an ex-

tended period of time in hypersonic flow led to changes in the flow

solution, decreasing the drag and heat load on the structure.

In Part II, the response of a thin metallic panel under a fully turbulent

supersonic boundary layer was studied. The fluid solution incorporated no

turbulence model and all turbulent scales were resolved. The structural solu-

tion of the panel state required the development of a non-linear finite-element

formulation, which was coupled with the flow solver at the fluid-solid inter-

face. The effect of coupling on both the fluid and structural response were

studied. The study in Part II yielded the following results:

1. The panel response is initially broadband and low amplitude under the

turbulent fluctuations, but at later times under aerodynamic pressure,

the response is dominated by high amplitude low mode waves.

2. Changes in surface topology lead to the generation of oscillating com-

pression and expansion waves, which may cause localized unsteady

loads on an opposing wall in internal flow applications.

3. Fluctuations generated by the fluttering panel modify the power out of

the top of the fluid domain, but make a negligible contribution to the

overall power balance in the flow.

4. Significant panel response is due to an aeroelastic instability and is not

driven by turbulent loading.

5. Viscous loading on the panel does not contribute significantly to the

power balance in the panel.

6. Two-way coupling is shown to be very important in response prediction

of a panel interacting with a compressible turbulent boundary layer in

conditions where panel flutter is expected.
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7. Under the conditions studied, the panel motion may effect turbulence

statistics locally, but the effect of the interaction with the panel on the

turbulence is forgotten within one integral length downstream.

11.2 Future work

This work has presented results from high-fidelity fluid-thermal and fluid-

structural coupled simulations in high-speed flows. A natural progression

suggests a study involving fluid-thermal-structural interaction. However,

several incremental steps are necessary to advance the application of the

high-fidelity, high-accuracy approach developed here to a realistic, high-speed

aerothermoelastic problem, which would likely involve a turbulent boundary

layer.

In the work presented in Part II of this thesis, significant difficulties and

limitations were imposed by the use of temporally developing boundary layer.

While the TDNS approach allowed for the use of a smaller computational

fluid domain, the following three drawbacks are sufficient evidence that the

approach should be changed in future studies. First, the generation of the

TBL involved the use of non-physical suppression of the boundary layer

growth in order for the unstable perturbations to amplify to the point where

the laminar boundary layer began to transition. A second, more detrimental

feature is that the temporal growth limited the time record of the simulation

as the boundary layer outgrew the height of the computational domain. A

third, equally severe limitation of the TDNS approach is that the growing

boundary layer made difficult the analysis of turbulence statistics. The short

domain afforded by the TDNS in this study allowed for a relatively large

streamwise extent which could accommodate a wide compliant panel. Even

so, the panel dimensions were unrealistic. A next iteration in the high-fidelity

structural response prediction should involve a spatially developing bound-

ary layer over a more realistic sized panel. The computational investment in

such a study would be significantly larger

Another advancement is needed in the algorithms applied to these prob-

lems. Both the spatial and temporal coupling strategies used in this work

can be improved. In Part I, the common refinement based load transfer

scheme allowed for conservative load transfer between non-matching meshes,
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but was cumbersome in its implementation. In Part II, the use of matching

nodes at the interface required the structural mesh to have the same level of

refinement as the fluid mesh. The TBL resolution requirements led to un-

necessary computational effort on the structural problem. Due to the highly

disparate time scales involved in fluid turbulence, structural, and thermal

physics, aerothermoelastic computations are required to be temporally re-

solved with regard to turbulence but long enough to capture the evolution of

the thermal solution. Temporal coupling schemes need to be developed for

accurate yet efficient communication between the three solutions.

Continued collaboration between experimental and numerical approaches

is needed for the purpose of validation. The above mentioned advances need

to be made to simulate realistic geometries used in experiments.
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Appendix A

Thermally Perfect Gas Model

Verification

The thermally perfect gas model implementation was verified by numerically

solving for the flow field of a Mach 2 expansion fan around a 10◦ corner

and comparing the result with an analytically determined solution. The

pre-expansion freestream conditions are shown in Tab. A.1. The analytical

Table A.1: Pre-expansion fan flow conditions.

M1 T1 ρ1 p1 γ1
K kg/m3 kPa = Cp(T1)/(Cp(T1)− R)

2 1000 1.2 352.38 1.3005

solution is found by the following steps. First the sonic conditions, denoted by

a superscript ∗, are found iteratively. The calorically perfect sonic conditions

are used as an initial guess to the iterative process and are defined as

T ∗
CP = T1

(

1 +
γ1 − 1

2
M2

1

)

2

γ1 + 1
,

and

p∗CP = p1

(

T ∗
CP

T1

)

γ1
γ1−1

.

The sonic enthalpy and temperature, h∗ and T ∗, respectively, are calculated

as

h∗ =

∫ T ∗

0

Rγ(T ′)

γ(T ′)− 1
dT ′,

and

T ∗ =

[(

h1 +
u2
1

2

)

− h∗

]

2

Rγ(T ∗)
,

respectively, and iterated until convergence. After finding the converged

solution the sonic ratio of specific heats is known from the tabulated value at
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the sonic temperature, γ∗ = γ(T ∗). The sonic pressure is found by evaluating

the following integral

p∗ = p1 exp

[

1

R

∫ T ∗

T1

Cp(T
′)dT ′

]

.

The Prandtl-Meyer function on in the pre-expansion flow is calculated as

ν1 = −
∫ p1

p∗

sin(2µ(T ))

2γ(T )p′
dp′,

where the Mach angle, µ(T ), is found using the following expressions:

µ(T ) = sin−1

(

1

M(T )

)

,

M(T ) =

√

2 (h∗ + γ∗RT ∗/2− h(T ))

γ(T )RT
,

and

h(T ) =

∫ T

0

Rγ(T ′)

γ(T ′)− 1
dT ′.

The post-expansion flow values are found such that the following equation is

satisfied,

ν2 − ν1 = φ = −
∫ p2

p∗

sin(2µ(T ))

2γ(T )p′
dp′,

where φ is the expansion angle. In this verification exercise, φ = −10◦ =

−π/18 radians. The flow values are propagated along the characteristics,

(µ = constant) into the interior of the domain shown in Fig. A.1. The

resulting analytical solution and the corresponding numerical solution are

compared at the post-expansion reference location shown in Fig. A.1. The

comparison is shown in Tab. A.2.

Table A.2: Comparison of post-expansion fan flow conditions between nu-
merical and analytically determined values.

Variable Analytical Numerical % Difference
M2 2.32990 2.32992 8.58× 10−4

T2, K 878.125 878.120 5.69× 10−4
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Figures for Appendix A

Figure A.1: Expansion fan solution for ρu. The reference location in Tab. A.2
is circled.

����
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Appendix B

Piston Theory and Eckert’s

Reference Enthalpy

B.1 Piston theory

A popular reduced-order model for calculating unsteady pressure loading

over a static or dynamic protrusion is piston theory. Devloped by Lighthill

[107], piston theory is a simplistic model that has been heavily utilized since

its inception [70, 108, 109]. The model is based on the observation that a

slab of fluid moving with a horizontal velocity U∞ past an inclined surface

will rise in a column like it was being forced by a piston with velocity

Vp = U∞
∂w

∂x
+

∂w

∂t
, (B.1)

where w is the vertical coordinate of the surface, as shown in Fig. B.1. If

the piston velocity, dependent on the surface inclination, surface motion, and

freestream velocity, is low enough that no there are no changes in entropy

and only simple waves are created, then the pressure on the surface of the

piston, ps, can be calculated as

ps
p∞

=

(

1 +
γ − 1

2

Vp

c∞

)
2γ
γ−1

, (B.2)

where p∞, c∞, and γ are the freestream pressure, speed of sound, and ratio

of specific heats, respectively. The first-, second-, and third-order binomial
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expansions of Eq. (B.2) result in

ps − p∞ = ρ∞c∞Vp, (B.3)

ps − p∞ = ρ∞c2∞

[

Vp

c∞
+

γ + 1

4

(

Vp

c∞

)2
]

, (B.4)

ps − p∞ = ρ∞c2∞

[

Vp

c∞
+

γ + 1

4

(

Vp

c∞

)2

+
γ + 1

12

(

Vp

c∞

)3
]

, (B.5)

for the first-, second-, and third-order forms of piston theory, respectively.

B.2 Eckert’s reference enthalpy

Using Eckert’s reference enthalpy method [20], an approximation for the heat

flux under a laminar or turbulent boundary layer can be found. Though

there is an analogous reference temperature method, the reference enthalpy

method is better suited for flows with large temperature variations where the

calorically perfect assumption may not be valid, and is thus described here.

The heat flux on a surface is given by

qs = h(ir − iw), (B.6)

where h, ir, and is are the heat transfer coefficient, recovery enthalpy, and

wall enthalpy, respectively. The recovery enthalpy is given by

ir = i∞ + r

(

U2
∞

2

)

, (B.7)

where r, the recovery factor, is given by

r =
√
Pr∗ (B.8)

for a laminar boundary layer, and Pr∗ is the Prandtl number evaluated at

the reference enthalpy, defined by

i∗ = i∞ + 0.5(is − i∞) + 0.22(ir − i∞). (B.9)

The solutions to Eq. (B.7) and Eq. (B.9) are determined iteratively. It re-

mains to determine, h, the heat transfer coefficient, which is related to the
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coefficient of friction, cf , through the Stanton number, St. The friction co-

efficient for a laminar boundary layer is given by

cf =
0.664√
Re∗

=
0.664

√

ρ∗U∞x/µ∗
, (B.10)

where ρ∗ and µ∗ are the density and dynamic viscosity evaluated at the

reference enthalpy, and x is the distance from the leading edge of the flat

plate over which the boundary layer is growing. After the determination of

cf , the Stanton number can be determined by the relation

St =
cf
2
(Pr∗)−

2

3 . (B.11)

The heat transfer coefficient can now be determined by

h = Stρ∗Ue, (B.12)

where Ue is the velocity at the edge of the boundary layer, and can be found

from its relation to the pressure, ps, found in Section B.1

Ue = c∞

√

√

√

√

2

γ − 1

[

(

ρ∞U2
∞ + 2p∞
2ps

)
γ−1

γ

− 1

]

(B.13)

In the case of a turbulent boundary layer, the the relations given in Eq. (B.8)

and Eq. (B.10), are replaced by

r =
3
√
Pr∗,

and

cf =
0.370

(log10Re
∗)2.584

=
0.370

(log10 ρ
∗U∞x/µ∗)2.584

,

respectively.
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Figures for Appendix B

U∞, c∞, ρ∞

Air column

Equivalent piston

Vp = U∞
∂w

∂x
+

∂w

∂t
∆x

∆w

Figure B.1: Piston-like motion of a column of air moving over a sloped
surface.
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Appendix C

Comparison Between Gas

Thermal Models with Equal

Freestream Static Temperatures

To determine whether the more complex thermally perfect gas model would

be justified if the calorically perfect case were run with freestream static

temperature equal to that in the thermally perfect case (T∞ = 237.14 K), an

additional 2D ANSYS Fluent simulation is run. The resulting flat plate heat

flux and boundary layer profile are compared to those from the thermally

perfect case. The calorically perfect and thermally perfect simulations are

run on the same grid with the same freestream conditions.

The fluid in close proximity to the stagnation streamline passes through

the high temperature region of the flow at the blunt leading edge where the

calorically perfect and thermally perfect gas thermal models differ signifi-

cantly. This is reflected in the surface heat flux at the blunt leading edge

of the plate. At the stagnation point, the heat fluxes are 1107.1 kW/m2

and 1024.1 kW/m2 for the calorically perfect and thermally perfect cases,

respectively. This result owes to the fact that the temperature of the gas

in the stagnation region is higher in the calorically perfect case than in the

thermally perfect case. The pressure and density are lower leading to a larger

shock standoff distance in the calorically perfect case. Accurate prediction of

the flow in the stagnation region, heat flux in particular in design contexts,

would require use of the more complex thermally perfect gas model.

Figure C.1 shows the boundary layer and temperature profiles at the

boundary layer probe location. Inside the boundary layer, Fig. C.1(a) shows

that, in the immediate vicinity of the plate, the thermally perfect model

captures the near-wall gradients more closely than does the calorically perfect

model. However, the differences are minor. It is interesting to note that in

Fig. C.1(b) the maximum temperature in the thermally perfect simulation is

207



higher than that in the calorically perfect case.

The heat flux into the flat region of the plate is shown in Fig. C.2. Over

the entire length of the plate, the calorically perfect model predicts a higher

heat flux into the plate (approximately +500 W/m2, X = 0.25 m) which

decreases with distance (approximately +15 W/m2, X = 2.5 m). In the

calorically perfect case, more energy is lost to the plate over a given dis-

tance because of the higher heat flux predicted by the model, which causes a

temperature difference between the two models in the boundary layer which

becomes larger with distance from the leading edge, as shown in Fig. C.1(b).
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Figures for Appendix C
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Figure C.1: (a) Boundary layer profile at X = 1.476 m and (b) temper-
ature profiles at X1 = 0.1 m and X2 = 1.476 m, where ∆T1 = 11 K and
∆T2 = 17 K. Calorically perfect (dashed line), thermally perfect (solid line),
experiment (circles).
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Figure C.2: Heat flux into the flat plate (W/m2). Calorically perfect
(squares), thermally perfect (solid line).
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Appendix D

Additional Thermomechanical

Formulation Details

D.1 Constitutive models

In the geometrically non-linear regime, a hyperelastic constitutive model is

derived from the function W (X,F ), the stored energy per unit volume in

the reference configuration. The stored energy function is often expressed in

terms of the right Cauchy-Green strain, W (F ) = Ŵ (C), or, in the case of

isotropic materials, the the invariants of C, W̄ (I1, I2, I3). The three invari-

ants are I1 = Tr(C), I2 = 1/2(Tr(C)2 − Tr(C2), and I3 = det(C) = J2.

Expressing W in terms of the invariants is useful when taking derivatives of

W . For example, the second Piola-Kirchhoff stress tensor is given as

S = 2
∂Ŵ

∂C
= 2

3
∑

j=1

∂W̄

∂Ij

∂Ij
∂C

. (D.1)

D.1.1 St. Venant-Kirchhoff constitutive model

The St. Venant-Kirchhoff model has the stored energy function

Ŵ =
µ

2
Tr

(

C − I

2

)

+
λ

8
(Tr(C)− 3)2 , (D.2)

where λ and µ are Lamè’s first and second parameters, respectively. From

Eq. (D.1), the second Piola-Kirchhoff stress tensor is found to be

S = [λTr(E)I + 2µE]. (D.3)

The first Piola-Kirchhoff stress tensor can be shown to be P = FS. Given

an energy functional, W , the first Piola-Kirchhoff stress tensor is defined as

PiK =
∂W

∂FiK
=

∂Ŵ

∂CJP

∂CJP

∂FiK
, (D.4)
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where C = F TF is the right Cauchy-Green tensor and S = 2
∂W

∂C
. Further

manipulation gives

∂CJP

∂FiK
=

∂

∂FiK
(FjJFjP ) =

∂

∂FiK
(δijδKJFjP+δijδKPFjJ) =

∂

∂FiK
(δKJFiP+δKPFiJ).

(D.5)

Considering the symmetry of the right Cauchy-Green tensor

PiK =
∂Ŵ

∂CJP
(δKJFiP + δKPFiJ) =

∂Ŵ

∂CJP
δKJFiP +

∂Ŵ

∂CJP
δKPFiJ(D.6)

= 2FiP
∂Ŵ

∂CKP
= FiPSKP .

Therefore,

P = F [λtr(E)I + 2µE]. (D.7)

D.1.2 Modified Neo-Hookean constitutive model

The stored energy function for the modified Neo-Hookean model is given by

W̄ (I1, I2, I3) =
G

2
(Ĩ1 − 3) +

K

2
(J − 1)2, (D.8)

where, Ĩ1 = I1/J
1/3 = I1/I

2/3
3 is the deviatoric expression of the first invariant

of C and

G =
E

2(1− ν)

and

K =
E

3(1− 2ν)

are the shear and bulk moduli, respectively. For this class of materials, the

second Piola-Kirchhoff stress tensor is given by

S = 2
∂Ŵ

∂C
= G J−2/3

(

1− Tr(C)C−1

3

)

+K(J2 − J)C−1 (D.9)

D.2 Elasticity tensor, A
The elasticity tensor, A, is defined as A = ∂P /∂F . Given the result in ap-

pendix D.1.1, the elasticity tensor relating changes in the first Piola-Kirchhoff
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elasticity tensor to changes in the deformation gradient can be found as

AKiLj =
∂

∂FjL

(FiPSKP ) =
∂

∂FjL

(

2FiP
∂W

∂CKP

)

(D.10)

= 2δijδLP
∂W

∂CKP
+ 2FiP

∂2W

∂CKP∂CMN

∂CMN

∂FjL

= δijSKL + 4FiPFjM
∂2W

∂CKP∂CML

= δijSKL + FiPFjMCKPML,

where CKPML = 4 ∂2Ŵ
∂CKP ∂CML

is the elasticity tensor relating changes in the

Green-Lagrange strain tensor, E, to the second Piola-Kirchhoff stress tensor,

S. This result is valid for any isotropic material. For the St. Venant-Kirchhoff

model, it is known that

CKPML = λδKP δML + µ(δKMδPL + δKLδPM),

where λ and µ are the first and second Lamé parameters, respectively. For

the modified Neo-Hookean model, following the derivation steps summarized

in Doghri [88], the elasticity tensor is found to be

CKPML = Γ1C
−1
KPC

−1
ML+Γ2

(

C−1
KPδML + δKPC

−1
ML

)

+
1

2
Γ8

(

C−1
KMC−1

PL + C−1
KLC

−1
PM

)

,

where

Γ1 =
2

9
G Tr(C)J−2/3 +K(2J2 − J),

Γ2 = −2

3
G J−2/3,

and

Γ8 =
2

3
G Tr(C)J−2/3 − 2K(J2 − J).
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D.3 External load jacobian, B
The term B entering Eq. (7.14) is

B =
∂

∂eF

(

t eJ
√

N ·C−1N
)

=
∂t

∂eF

(

eJ
√

N ·C−1N
)

+ t
∂

∂eF

(

eJ
√

N ·C−1N
)

= Bt

(

eJ
√

N ·C−1N
)

+ t Bda, (D.11)

where Bt and Bda are the Jacobians associated with the change in traction

and surface, respectively, This term is derived as follows. The superscript e

on the deformation gradient F and Jacobian, J , will be left off for brevity.

Bda,gG =
∂

∂FgG

(

J
√

N ·C−1N
)

=
∂J

∂FgG

√

N ·C−1N + J
∂

∂FgG

(√

N ·C−1N
)

= JF−1
gG

√

N ·C−1N +
J

2

(

N ·C−1N
)−1/2 ∂

∂FgG

(

N ·C−1N
)

= J

[

F−1
gG

√

N ·C−1N +
1

2

(

N ·C−1N
)−1/2

NI
∂C−1

IJ

∂FgG

NJ

]

= J

[

F−1
gG

√

N ·C−1N +
1

2

(

N ·C−1N
)−1/2

NI
∂

∂FgG

(

F−1
Ik F−1

Jk

)

NJ

]

= J
[

F−1
gG

√

N ·C−1N

+
1

2

(

N ·C−1N
)−1/2

NI

(

F−1
Ik

∂F−1
Jk

∂FgG

+ F−1
Jk

∂F−1
Ik

∂FgG

)

NJ

]

(D.12)

= J
[

F−1
gG

√

N ·C−1N

+
1

2

(

N ·C−1N
)−1/2

NI

(

F−1
Ik F−1

Jg F
−1
Gk + F−1

Jk F
−1
Ig F−1

Gk

)

NJ

]
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Bt,gG =
∂ti
∂gG

= σij
∂nj

∂gG
= σij

∂

∂gG





F−1
Ii NI

√

NIF
−1
ImF−1

KmNK



 (D.13)

= σij

[

∂F−1
Jj NJ

∂FgG

(

NC−1N
)−1/2

+ F−1
Jj NJ

∂

∂FgG

(

NC−1N
)−1/2

]

= σij

[

NJF
−1
Jg F

−1
Gj

(

NC−1N
)−1/2 −

1

2
F−1
Jj NJ

(

NC−1N
)−3/2

NI
∂

∂FgG

(

F−1
ImF−1

Km

)

NK

]

= σij

[

NJF
−1
Jg F

−1
Gj

(

NC−1N
)−1/2 −

1

2
F−1
Jj NJ

(

NC−1N
)−3/2

NI

(

∂F−1
Im

∂FgG

F−1
Km + F−1

Im

∂F−1
Km

∂FgG

)

NK

]

= σij

[

NJF
−1
Jg F

−1
Gj

(

NC−1N
)−1/2 −

1

2
F−1
Jj NJ

(

NC−1N
)−3/2

NI

(

F−1
Ig F−1

GmF
−1
Km + F−1

ImF−1
KgF

−1
Gm

)

NK

]

D.3.1 External load from fluid stress tensor, τ

The formulation is simplified if the traction on the boundary is expressed

as the product of the Cauchy stress tensor and the current surface normal,

tj = τijni. The traction load is then calculated as

∫

∂B

δu · t da =

∫

∂B

δu · (τ · n) da =

∫

∂B0

δu ·
(

τ ·
(

JF−T ·N
))

dA.

(D.14)

The advantage of this form is that the resulting linearization is simpler:

D

∫

∂B

δujtj da[u] =D

∫

∂B

δu (τijni) da[u]

=D

∫

∂B0

δuj

(

τij
(

JF−1
Ii NI

))

dA[u]

=

∫

∂B0

δuj

(

τijNI D
(

JF−1
Ii

)

[u]
)

dA (D.15)

=

∫

∂B0

δuj

(

τijNI BIikK
∂uk

∂XK

)

dA,
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where

BIikK =
∂

∂FkK

(

JF−1
Ii

)

=

(

∂J

∂FkK

F−1
Ii + J

∂F−1
Ii

∂FkK

)

(D.16)

=J
(

F−1
KkF

−1
Ii − F−1

Ik F−1
Ki

)

.

D.4 Spatial discretization of structural

equations

Solution values X and u are stored at the n nodal locations per element.

Values are interpolated using shape functions N of order n

Xd =
n
∑

a=1

NaX̂ad, (D.17)

where d is the direction index, a is the element local node index, and (̂ )

denotes the nodal value of a given quantity. Isoparametric elements are

used, so that
∫

e

φ(x) dV =

∫ 1

−1

φ′(ξ)J dξ

where J = det (∂X/∂ξ). Numerical integration is done using Gauss quadra-

ture, so that (in three dimensions, for example)

∫ 1

−1

∫ 1

−1

∫ 1

−1

φ′(ξ)J(ξ) dξdηdζ ≈
ng
∑

i=1

ng
∑

j=1

ng
∑

k=1

φ′(ξijk)J(ξijk)W (ξi)W (ηj)W (ζk).

Discretizing the first term of Eq. (7.15) for each element

∫

e

β2(Θ)P̂ : δF dV ≈ δûad

ng
∑

ijk=1

β2(ξijk)PdK(ξijk)
∂Na(ξijk)

∂ξl

∂ξl
∂XK

J(ξijk)

×W (ξi)W (ηj)W (ζk) = δûadr
int
ad ,

which, when assembled over the entire body, B0, gives

∫

B0

β2(Θ)P̂ : δF dV ≈ δûTRint.
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In the latter relation, Rint is the internal load vector. The remaining terms

are discretized similarly:

The external load due to a body force over an element is given by

∫

e

ρ0b · δu dV ≈ δûad

ng
∑

ijk=1

ρ0(ξijk)b(ξijk)Na(ξijk)J(ξijk)

×W (ξi)W (ηj)W (ζk) = δûadr
body
ad .

When added over B0, this term yields

∫

B0

ρ0b · δu dV ≈ δûTRbody,

where Rbody is the external load vector due a body force.

The external load due to a traction force over an element takes the form

∫

∂e

t0 · δu dA ≈ δûad

ng
∑

ij=1

t0a(ξ2Dij)Na(ξ2Dij)Nb(ξ2Dij)J2D(ξ2Dij)

×W (ξi)W (ηj) = δûadr
tract.
ad .

When assembled over the entire body, B0, this term gives

∫

∂B0

t0 · δu dA ≈ δûTRtract.,

where Rtract. is the external load vector due a body force.

The acceleration term is discretized as follows:

∫

e

ρ0ü · δu dV ≈ δûad

ng
∑

ijk=1

ρ0(ξijk)Na(ξijk)Nb(ξijk)J(ξijk)

×W (ξi)W (ηj)W (ζk)übd = δûadmadbd
ˆ̈ubd,

which, when added over B0 gives

∫

B0

ρ0ü · δu dV ≈ δûTM ˆ̈u,
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where M is the mass matrix.

Finally, the linearized internal work term yields

∫

e

β2(Θ)δF : A : ∇X∆u dV

≈ δûad

ng
∑

ijk=1

β2(ξijk)AKdLm(ξijk)
∂Na(ξijk)

∂ξl

∂ξl
∂XK

∂Nb(ξijk)

∂ξq

∂ξq
∂XL

× J(ξijk)W (ξi)W (ηj)W (ζk)∆ûbm = δûadkadbm∆ûbm.

The global form of that term is then

∫

B0

β2(Θ)δF : A : ∇XudV ≈ δuTK∆û,

where K is the tangent stiffness matrix. The discretized form of the principle

of virtual work is thus

δuT
(

Rint +Mü−Rtract. −Rbody +K∆u
)

= 0, (D.18)

where the (̂ ) on nodal values are assumed.

D.5 Area change

The relation between the areas in the reference (initial) and deformed (cur-

rent) configurations is derived as follows. We can first start with the relation

between two volume elements, dv and dV , in the current and initial config-

urations, respectively

dv = JdV, (D.19)

where the Jacobian, J = det(F ). Each volumes can be decomposed into the

product of an area and a length element

dv = dl · da,

and

dV = dL · dA,
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where

dl = F dL.

Plugging into Eq. (D.19) and multiplying both sides by F−1 gives the result-

ing relation between area vectors

da = JF−TdA. (D.20)

This is known as Nanson’s relation. To relate the two scalar areas, we use

the fact that da =
√
da · da. When applied to Eq. (D.20), this results in

da =
√
da · da =

√

JF−TdA · JF−TdA = J

√

[NF−1]TF−TNdA

= J
√

N · F−1F−TNdA

This gives the final relation as

da = J
√

N ·C−1NdA.

D.6 Spatial discretization of thermal

equations

Discretization of Eq. (7.25) on B0 is similar to the discretization the the

structural equations described above except that, in the thermal problem,

there is only one degree of freedom per node. The thermal solution, Θ is

stored at n nodal locations and interpolated using the same shape functions,

N , as those used in the structural problem:

Θ =

n
∑

a=1

NaΘ̂a, (D.21)
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where, again, a is the element local node index and (̂ ) denotes a nodal

quantity. The first term in Eq. (7.20) is discretized as

∫

e

ρ0CΘ̇δΘ dV ≈ δΘ̂a

ng
∑

ijk=1

ρ0(ξijk)C(ξijk)Na(ξijk)Nb(ξijk)J(ξijk)

×W (ξi)W (ηj)W (ζk)
ˆ̇Θb = δΘ̂acab

ˆ̇Θb,

which, when added over B0, gives

∫

B0

ρ0CΘ̇δΘ dV ≈ δΘ̂
T
Cth

ˆ̇
Θ,

where Cth is the thermal capacitance matrix.

The second term in Eq. (7.25) is discretized as

∫

e

JkC−1∇XΘ · ∇XδΘdV

≈ δΘ̂a

ng
∑

ijk=1

k0(ξijk)C
−1
PK(ξijk)

∂Na(ξijk)

∂ξl

∂ξl
∂XP

∂Nb(ξijk)

∂ξq

∂ξq
∂XK

J(ξijk)

×W (ξi)W (ηj)W (ζk)Θ̂b = δΘ̂akabΘ̂b.

Its global (assembled) form is

∫

B0

JkC−1∇XΘ · ∇XδΘdV ≈ δΘ̂
T
KthΘ̂,

where Kth is the thermal stiffness matrix and Jk = k0 is the heat conduction

coefficient in the reference configuration.

The final term in Eq. (7.25) is discretized as

∫

∂e

Q ·NδΘ dA ≈ δΘ̂a

ng
∑

ij=1

(Q ·N)b(ξ2Dij)Nb(ξ2Dij)Na(ξ2Dij)

× J2D(ξ2Dij)W (ξi)W (ηj) = δΘar
heat
a ,
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which when computed over the entire body, B0, yields

∫

∂B0

Q ·NδΘ dA ≈ δΘ̂
T
Rth,

where Rth is the thermal load vector.

The final semi-discrete thermal equation is thus

C thΘ̇+KthΘ = Rth, (D.22)

where the (̂ ) on nodal values are assumed.
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Appendix E

Solution of 2D Steady-State

Compressible Boundary Layer

Equations

E.1 Compressible boundary layer equations

The Navier-Stokes equations are non-linear, non-unique, complex and diffi-

cult to solve. In the boundary layer, some approximations can be applied

that simplify the Navier-Stokes equations significantly. The approximations

are as follows:

• Stream wise gradients are much smaller than transverse gradients, i.e.

u >> v,

and
∂2

∂y2
>>

∂2

∂x2
.

• Pressure is imposed from the freestream, i.e.

p = pe(x).

• In the case of a flat plate, freestream pressure is constant,

pe = constant.

• Body forces, such as that due to gravity, are negligible,

f ≈ 0.

The resulting equations are called the boundary layer equations, and are

presented below. The derivation of the boundary layer equations as well

as the details of the Howarth transformation to similarity coordinates are
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presented in the Lui Ph.D. thesis1. They are restated below.

E.1.1 Derivation of the boundary layer equations

The 2-dimensional, steady, compressible Navier-Stokes equations are as fol-

lows:

∂

∂xi
(ρui) = 0,

∂

∂xj
[ρuiuj + pδij − µ

∂

∂xj
(ui)] = ρfi, (E.1)

∂

∂xj
[uj(ρE + p) + qj − uiµ

∂

∂xj
(ui)] = ρfiui.

The following non-dimensionalizations are applied (the tilde denotes a di-

mensional quantity):

ui =
ũi

Ũ∞

xi =
x̃i

L̃

ρ =
ρ̃

ρ̃∞

p =
p̃

ρ̃∞c̃2∞

µ =
µ̃

µ̃∞

T =
T̃

c̃2∞/C̃p,∞

=
T̃

(γ − 1)T̃∞

Additionally, the following non-dimensional groups are defined. The Reynolds

number based on freestream quantities is

Re =
ρ̃∞c̃∞L̃

µ̃∞

,

and the Prandtl number is

Pr =
C̃p,∞µ̃∞

k̃∞
,
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where C̃p,∞, k̃∞ and L̃ are the freestream specific heat capacity at constant

pressure, the freestream thermal conductivity and a length scale, respectively.

When applied to the Navier-Stokes equations, the non-dimensionalizations

and assumptions listed above produce the non-dimensional, steady, com-

pressible boundary layer equations. The conservation of mass, streamwise

momentum, and energy, respectfully, are listed as

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0,

ρu
∂u

∂x
+ ρv

∂u

∂y
− 1

Re

∂

∂y

(

µ
∂u

∂y

)

= 0, (E.2)

ρu
∂T

∂x
+ ρv

∂T

∂y
− 1

Re

∂

∂y

(

µ

Pr

∂T

∂y

)

− µ

Re

∂2u

∂y2
= 0.

Additionally, a passive scalar concentration can be modeled as

ρu
∂c

∂x
+ ρv

∂c

∂y
− 1

Re

∂

∂y

(

µ

Sc

∂c

∂y

)

= 0. (E.3)

The four equations above contain the five unknowns: u, v, T , ρ and c. The

non-dimensionalized ideal gas law,

T =
1

(γ − 1)ρ
,

is used to close the system of equations. Note that pressure does not appear

in the above expression. Due to the assumption of constant pressure, the

non-dimensionalized quantity is equal to the inverse of the ratio of specific

heats

p =
1

γ
.

The first coefficient of viscosity, µ, is modeled using the power law,

µ = ((γ − 1)T )n,

where n is a fluid-specific constant and is taken as n = 0.666 for air [11].
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E.1.2 The Howarth transformation

The Howarth transformation alters the coordinates in Eq. (E.2) making it

more tractable for an analytical solution. The transformation is outlined

below. A new set of cartesian coordinates, X and Y , are defined as

X = x,

and

Y =

∫ y

0

ρdy′,

where the density variations are integrated into the new Y coordinate. This

results in the following coordinate stretching factors:

∂X

∂x
= 1

∂Y

∂x
=

∫ y

0

∂ρ

∂x
, dy′

∂X

∂y
= 0

∂Y

∂y
= ρ

Substituting the stretching factors into the boundary layer equations pro-

duces the following:

∂u

∂X
+

∂V

∂Y
= 0,

u
∂u

∂X
+ V

∂u

∂Y
− 1

Re

1

γ − 1

∂

∂Y

(

µ

T

∂u

∂Y

)

= 0,

u
∂T

∂X
+ V

∂T

∂Y
− 1

Re

1

Pr

1

γ − 1

∂

∂Y

(

µ

T

∂T

∂Y

)

− µ

Re

∂2u

∂Y 2
= 0, (E.4)

u
∂c

∂X
+ V

∂c

∂Y
− 1

Re

1

Pr

1

γ − 1

∂

∂Y

(

µ

T

∂c

∂Y

)

= 0,

and the equation of state

ρ =
γ

(γ − 1)T
.

By the Howarth transformation, the first three equations contain only three

unknowns: u, V and T. These three equations are decoupled from the equa-
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tion of state and can be solved without knowledge of the density. The density

and passive scalar can be solved for after the quantities u, V and T are found.

A boundary layer over a flat plate has no intrinsic length scale, and the

problem can be further simplified by treating it as self-similar. The similarity

variable, η, is introduced as

η(X, Y ) = Y

√

Re

X
,

the following coordinate stretching factors are obtained.

∂η

∂X
= −1

2

η

X
,

and
∂η

∂Y
=

√

Re

X
,

and the unknown variables are redefined as

u = f ′(η),

V =
1

2
√
ReX

(f ′(η)η − f(η)),

T = g(η),

and

c = h(η).

One consequence of this transformation is that the continuity equation is sat-

isfied identically. These definitions transform the boundary layer equations

into the following:

ff ′′ + 2(γ − 1)n−1[f ′′′ + (n− 1)
g′

g
f ′′]gn−1 = 0,

2

Pr
(γ − 1)n−1gn−1[g′′ + (n− 1)

g′2

g
] + fg′ + 2(γ − 1)n−1gn−1f ′′2 = 0, (E.5)

2

Sc
(γ − 1)n−1gn−1[h′′ + (n− 1)

g′h′

g
] + fh′ = 0.

The first two equations represent a system of two, non-linear, third order

ordinary differential equations. The solution of the equations is obtained by

a shooting method.
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E.1.3 Backwards transformation

Once the transformed boundary layer equations are solved, the variables f(η),

f ′(η), g(η) and h(η) are known. The task still remains to recover the variables

ρ(x, y), u(x, y), v(x, y), T (x, y) and c(x, y). Since the solution variables are

functions of η, the first step in the backwards transformation is to determine

the values η(x, y). This is accomplished with the relation,

y = (γ − 1)

√

Re

x

∫

g(η′)dη
′
. (E.6)

Once the values of η(x, y) are found, it is trivial to assign

u(x, y) = f ′(η(x, y)),

T (x, y) = g(η(x, y)),

ρ(x, y) =
1

(γ − 1)g(η(x, y))
,

and

c(x, y) = h(η(x, y)).

The transverse specific momentum, ρv, is found by

ρv =
1

2
√
Rex

(ηf ′ − f)− f ′

∫ y

0

∂ρ

∂x
dy′. (E.7)
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Appendix F

Effect of Boundary Layer Forcing

Terms on Mean Profile

The forcing terms (Eq. (9.6)), while preserving the boundary layer mean flow

prior to transition, leave a noticeable effect on the turbulent boundary layer

after transition. In order to obtain a the expected turbulent boundary layer

statistics, the forcing is removed after transition is complete. The plateau

of the shape factor, H = θ/δ∗, is taken to indicate the end of the transition

period (Fig. F.1(c)). The forcing is then removed and the boundary layer

relaxes to its expected profile, as shown in Fig. F.1(a) and (b), which occurs

over ta∞/δ99 = 12.
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Figures for Appendix F
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Figure F.1: (a) Effect of forcing seen in TBL mean profile at ta∞/δ99 = 0.25.
(b) TBL mean profile recovered ta∞/δ99 = 0.05 after forcing is removed. (c)
Evolution of the shape factor up to and after forcing is removed.
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Appendix G

Turbulent Kinetic Energy Budget

The compressible turbulent kinetic energy (TKE) equation is written as

ρ̄
∂k

∂t
+ ρ̄ũj

∂k

∂xj

= P +D + Tu′ + Tp′ +Π− ρǫ− ST1 − ST2, (G.1)

where

P =− ρu′′
i u

′′
j

∂ũ

∂xj

, (Production)

D =
∂

∂xj

τ ′iju
′′
i , (Viscous Diffusion)

Tu′ =− 1

2

∂

∂xj

ρu′′
ju

′′
i u

′′
i , (Turbulent Transport)

Tp′ =− ∂

∂xj

p′u′′
j , (Pressure Diffusion) (G.2)

Π =p′
∂u′′

j

∂xj

, (Pressure Dilatation)

ρǫ =− τ ′ij
∂u′′

j

∂xj

, (Viscous Dissipation)

ST1 =− u′′
j
∂p̄

∂xj

, (Pressure Work)

ST2 =u′′
j
∂τ̄ij
∂xj

. (Additional Compressibility Term)

The terms above utilize Favre averaging, where

ũ =
ρu

ρ
,

and

u′′ = u− ũ,
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are the Farve average of velocity and the fluctuations about the Favre aver-

age, respectively. Additionally, k = 1/2ρu′′
i u

′′
i is the compressible TKE and

τ ij and τ ′ij are the Reynolds averaged mean and fluctuating parts of the vis-

cous stress tensor. Favre averaging is a mathematical simplification, yielding

Favre averaged equations (ex. Eq. (G.1)) that are similar to their incom-

pressible, Reynolds averaged counterparts. The pressure dilatation term, Π,

in Eq. (G.1) becomes zero in an incompressible flow (∂u′′
j/∂xj = 0). Addi-

tionally, the terms ST1 and ST2 (as they are referred to in [110]) are a direct

consequence of Favre averaging, where

u′′ = −ρ′u′

ρ
6= 0.

Those terms, therefore, also vanish in the incompressible limit. The terms

on the right hand side of Eq. (G.1) are shown for the rigid panel, Mach 2.25,

Reθ = 1196 boundary layer (Section 9.1.4) in Fig. G.1(a). At the modest

Mach number of 2.25, the terms arising from compressibility are relatively

small. The pressure dilatation, Π, is very small, and appears to zero in

Fig. G.1(a). The net change in TKE is given by the sum of those terms, and

it is shown in Fig. G.1(b) that there is small net production of TKE in the

TBL.
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Figures for Appendix G
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Figure G.1: (a) TKE budget terms. P , D, −ρǫ, and Tu′ are noted on the
figure. Less significant terms are shown with different line types for clarity:
Tp′ (dashed), ST1 (dash-dot), and ST2 (dotted). Π is the solid line on on the
x-axis. (b) Sum of the TKE budget terms.
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