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Abstract 

With growing demands and dwindling resources, the need for energy efficiency is being 

felt in all sectors.  The transportation sector is one of the largest consumers of energy and to 

reduce fuel consumption and greenhouse gas emissions, hybrid mobile power systems are seeing 

increased use.  A hybrid mobile power system is any vehicle that includes a power source and a 

means of storing that power.  These vehicles offer an opportunity for improved efficiency by 

partially decoupling power generation from demand, enabling more efficient operation.  This 

decoupling is achieved via energy storage which offers new opportunities for how energy is 

utilized.  To realize the potential of hybrid architectures, an energy management strategy (EMS) 

is needed to regulate the generation, distribution, and storage of energy.  Hybrid vehicles span 

wide power and weight scales from small passenger vehicles to large delivery trucks and the 

energy storage mechanisms come in many domains including mechanical, thermal, and 

electrical.  Therefore, if one is to enable effective wide spread use of hybrid vehicles, a method 

for designing EMS’s which is effective across applications and energy domains is needed. 

In this work a procedure for design of EMS’s is given, which is intended to be 

generalizable to the entire class of hybrid mobile power systems.  This procedure begins by 

decomposing the vehicle operation into modes characterized by which power sources are needed.  

Then convex quadratic objective functions are designed for each mode which attempt to 

maximize operational efficiency while meeting a performance goal.  Finally, a supervisory logic 

is used to regulate switching between modes.  The model predictive control (MPC) framework is 

used to setup the optimization problem within each mode as a receding horizon optimal 

controller which can be implemented in real-time.  The proposed method facilitates online 

implementation because it constrains the optimization problem to be convex and quadratic.  
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Furthermore, MPC allows flexibility in how much knowledge one assumes about the future, 

enabling this approach to be applied equally well to highly uncertain applications, like passenger 

vehicles, and well known systems, like city busses. 

The generalizability of the proposed method is tested through application in two different 

hybrid vehicles; a series hydraulic hybrid vehicle (SHHV) and a refrigerated delivery truck with 

thermal storage.  The SHHV is a passenger vehicle which uses a hydrostatic transmission with a 

high pressure gas charged accumulator for energy storage.  The goal of this system is to meet the 

driver’s speed demand while maximizing operational efficiency.  This case study includes 

experimental validation of the EMS performance using a hardware-in-the-loop system.  The 

refrigerated delivery truck uses a vapor compression cycle system that has been augmented with 

thermal storage to maintain a desired box temperature while maximizing operational efficiency.  

These case studies employ different architectures, different energy domains, and different 

degrees of knowledge of the system and duty cycle.  However, the proposed EMS design method 

is able to yield energy savings for both.    
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Chapter 1  Introduction 

This thesis examines energy optimization in the context of mobile systems that include 

energy storage.  This is a very broad class of systems that spans large power and weight scales.  

Furthermore, these systems can be used to meet a variety of demands, or duty cycles, from 

acceleration/braking demands to maintaining temperature.  These hybrid systems have seen 

increased use as their excess degrees of freedom make it possible to meet a performance demand 

while improving operating efficiency.  The most prevalent example of such systems is vehicles 

incorporating electric storage into the powertrain.  In Section 1.1 a general discussion of this 

class of systems is provided, including different mechanisms for energy storage and different 

architectures for integrating storage.  To realize the potential energy savings of these systems, an 

energy management strategy (EMS) is needed to regulate the excess degrees of freedom.  

Section 1.2 reviews different methods of deriving real-time EMS’s and their limitations.  In this 

work, an approach for designing a real-time implementable EMS is given.  The proposed 

methodology is intended to be broad enough to accommodate the entire class of hybridized 

vehicles.  Therefore, it must allow for varying levels of duty cycle preview and be executable 

quickly with limited processing power.  This is accomplished through a combination of 

decomposing system operation into operating modes and then using a system wide component 

analysis within each mode to characterize the overall operating efficiency as a summation of 

quadratic cost terms.  The optimization problems within each mode are then solved using the 

model predictive control (MPC) framework.  The flexibility and performance of this 

methodology is demonstrated through the two case studies: a hydraulic hybrid vehicle and a 

refrigerated delivery truck.  The thermal hybrid is unique from those introduced in Section 1.1 

since additional work is required to extract potential from the storage unit and storage is 

integrated using different system architectures.  This hybrid is introduced in Section 1.3.  The 

two case studies represent different energy domains, different architectures, and are evaluated 

with different constraints on system knowledge and preview of the duty cycle.  From these two 
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studies, the generalizability of the EMS design method will be demonstrated.  A complete 

discussion of the proposed EMS design method is presented in Chapter 2.    

1.1 Hybrid Mobile Power Systems 

The transportation sector is one of the largest consumers of energy, accounting for 28% 

of total US energy consumption in 2011.  Furthermore, 93% of this consumption is fueled by 

petroleum and the demand is projected to grow in the coming decades [1].  The need to stem this 

consumption and reduce greenhouse gas emissions has stimulated the development of hybrid 

mobile power systems.  A hybrid mobile power system is any vehicle that includes a power 

source and a means of storing that power.  These vehicles offer an opportunity for improved 

efficiency by partially decoupling power generation from demand, allowing for more efficient 

operation.  Furthermore, in some applications energy which is typically lost to the environment 

can be regenerated.  For example a regenerative braking system can capture energy in the 

vehicle’s momentum which is otherwise dissipated via mechanical brakes [2].  Hybrid mobile 

power systems come in many scales and domains: from electric hybrid passenger vehicles to 

large hydraulic hybrid delivery trucks [3], [4].  Despite the wide variance in application, all 

hybrid mobile power systems include a storage mechanism and there are some common 

architectures for integrating said storage into the vehicle.      

1.1.1 Storage Mechanisms 

Energy within a vehicle is typical transferred in one of two domains: mechanical, and 

electrical.  As such, there are storage mechanisms which can be employed within each of these 

domains.  In the mechanical domain energy can be stored using a flywheel, material strain, or 

pressurized gas [5–11].  In the electrical domain batteries are common storage mechanisms due 

to their relatively high energy density [6], [8], [12–14].  However, ultracapacitors and fuel cells 

are receiving growing interest [3], [13], [15], [16]. Fuel cells, like fossil fuels, release energy 

through a chemical reaction so they could also be classified as chemical energy storage [8], [13].  

However, they are used to produce electricity.  Examples of mechanical and electrical storage 

mechanisms are shown in Fig. 1.1.  
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Figure 1.1: Energy storage mechanisms 

The high speed flywheel stores energy as rotational kinetic energy and therefore is 

designed to have low inertia and operate on the order of 10,000 – 100,000 RPM [6], [7].  It has 

high transmission efficiency and high power density but low energy density compared to electric 

batteries [6].  Therefore, it has been studied in large vehicle applications which require large 

acceleration and braking power [7].  The main drawback of this storage technology is the air 

drag losses and bearing friction which can quickly dissipate the stored energy.  To overcome 

these losses a vacuum can be induced or low friction gases can be pumped into the flywheel 

containment vessel [7].  An alternate method of storing mechanical energy is via pressurized 

fluid.  The hydraulic hybrid has received growing attention from the academic and industry 

communities.  This vehicle uses a high pressure accumulator for energy storage because fluid 

power has a high power density and the accumulator can be fully charged and discharged safely 

for many cycles without loss in performance [17].  These characteristics make fluid power 

particularly attractive for urban driving applications where there are frequent starts and stops 

[11], [18–22].  To improve the energy density of accumulators and eliminate the thermal losses 

associated with maintaining a pressurized gas, researchers are looking into energy storage via 

material strain [9]. 

In the electric domain batteries have seen widespread use in large and small vehicle 

applications [8], [12], [23].  These devices have higher energy density than flywheels and gas 

charged accumulators but cannot tolerate fast charge/discharge rates and have a limited band of 

available charge.  Furthermore, they have limited charge/discharge cycles [8].  To overcome the 

life cycle and power density limitations of batteries, ultracapacitors have been developed.  These 
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devices have similar properties to gas charged accumulators in that they can accommodate fast 

charge/discharge rates.  However, they sacrifice the energy density of traditional batteries [13]. 

1.1.2 Architectures 

Most hybrid vehicles involve hybridization of the vehicle powertrain.  In this case, the 

prime mover is an engine and the storage unit is integrated into the vehicle powertrain.  There are 

three common architectures for integrating energy storage into a vehicle powertrain and they are 

differentiated by what paths are available for power to be delivered from the engine to the load.  

These three architectures are: parallel, series, and power-split.  The parallel configuration, or 

power assist, uses an energy storage mechanism in parallel with a mechanical power 

transmission path to store, disperse, and reclaim energy.  One of the advantages of this 

architecture is that the highly efficient mechanical transmission between the prime mover and the 

load is maintained [3], [21].  The series configuration removes the traditional transmission path 

altogether and puts the energy storage mechanism in series with the engine and load.  This 

typically requires a change in energy domain between the engine and load so some transmission 

efficiency is lost.  The benefit of this architecture is that engine operation is completely 

decoupled from power demand so optimal engine management is possible [3], [21].  Finally, the 

power-split architecture combines the parallel and series into a single architecture which 

increases the powertrain complexity but offers the greatest flexibility [3], [21]. Examples of 

these architectures are shown in Fig. 1.2. 
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Figure 1.2: Hybrid powertrain architectures 
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1.2 Energy Management 

Design of EMS’s for hybrid vehicles has been an active area of research for many years.  

There are numerous approaches to designing these strategies ranging from computationally 

demanding off line optimization techniques to heuristically derived rules [2], [3].  For real-time 

implementable EMS’s, rule-based, stochastic dynamic programming (SDP), and MPC are 

common design methods [14], [19], [20], [22–28]. 

Rule based EMS’s use a set of rules or logic to control the powertrain [19], [23], [27], 

[28].  They are typically extrapolated from global optimization assessment performed using 

deterministic dynamic programming (DDP) over an assumed duty cycle.  Since the optimization 

is not causal, it is approximated with a causal logic.  This logic can then be implemented in real-

time but it is usually suboptimal.  In the case of [27] there was nearly a 10% decrease in fuel 

economy between the rule based strategy and the optimum benchmark derived using dynamic 

programming.  Due to the cycle-dependent nature of this derivation, the performance cannot be 

guaranteed under arbitrary duty cycles.   

SDP uses probability maps in place of an assumed duty cycle to make an estimate of 

what the vehicle will be required to do in the future and optimizes using this estimate [20], [24], 

[25].  The benefits of this approach over the rule based design are that the solution is not limited 

to a specific duty cycle and a causal control strategy is determined without further analysis of the 

results.  However, this optimization procedure still includes some implicit assumption of the duty 

cycle. 

MPC is an attractive control method for hybrid vehicle applications because the duty 

cycle need not be known a priori.  Unlike the rule based and SDP solutions, MPC does not 

require any knowledge of the future duty cycle, or its statistical nature, to compute the control 

solution.  Rather, a model of the system is used to predict how the powertrain will respond to a 

sequence of inputs.  This enables one to express a finite horizon objective function as just a 

function of the control sequence.  However when computing the cost of a control sequence, one 

can choose to include information about the future duty cycle in the prediction horizon.  Since 

the MPC algorithm has the flexibility to be implemented with complete to no future knowledge, 

it has seen recent application in design of EMS’s for hybrid vehicles [14], [22], [26].  The 
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drawback of MPC compared to the rule-based and SDP methods is that more intense online 

computation is required. 

The proposed EMS design method will make use of MPC’s flexibility to design real-time 

implementable control strategies that can be extended to all hybrid vehicle applications.  To 

overcome the computational demand, a systematic approach for designing convex quadratic 

objective functions will be employed.  These objective function will seek to maximize overall 

operational efficiency while meeting a duty cycle and observing system constraints.     

1.3 Generality of Approach 

To demonstrate the generalizability of the proposed EMS method, a non-traditional 

hybrid vehicle is considered.  This system is a refrigerated delivery truck which incorporates 

thermal storage.  It will be demonstrated that the proposed method can be applied to this system 

with minimal changes to the procedure.  This system is chosen because it operates in a different 

energy domain than electric and mechanical hybrids while still encountering rapid transient 

loads, so the potential for storage is similar.  In thermal applications, the stored potential cannot 

be extracted without additional work.  Therefore, these systems do not employ the standard 

architectures outlined in Section 1.1.2.  For thermal energy storage (TES), either refrigerant or 

air must be pumped through the device in order for a controlled heat exchange to occur (there 

will be some passive heat transfer but this is typically minimized by insulation).  These systems 

can have many different configurations depending on the method for storing and extracting 

energy from the storage device.  For example the prime mover could be used to only charge the 

storage unit and a separate actuator could be used to discharge the storage unit to meet the 

operator’s demand. 

Thermal storage can be achieved through sensible and latent heat.  Sensible heat storage 

is the energy storage which is accomplished through a temperature change in the storage medium 

and latent heat storage is accomplished through a phase change in the storage medium [29].  

Latent heat storage provides a high thermal storage density with relatively little change in 

temperature and volume [29].  Therefore, phase change materials (PCM) are particularly 

attractive for TES’s.  Such systems have already been studied in the context of building heating 

and cooling systems in the form of large chilled water tanks [30].  However, due to the high 
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thermal storage density, novel PCM’s and storage architectures are starting to be evaluated for 

small scale storage in refrigerated transport systems [31].  Figure 1.3 shows a schematic of one 

TES embodiment. 

 

Figure 1.3: Example of thermal energy storage device with bank of tube geometry 

1.4 Thesis Scope 

In this thesis, there will be no discussion of how to optimize the design of a hybrid 

vehicle or an analysis of which storage technology to choose for a particular application.  The 

design of hybrid power systems is a complex engineering challenge in its own right with many 

considerations such as peak demand, length of duty cycle, and storage charge/discharge rates.  

This work assumes that one is working within the constraints of a predefined architecture and the 

goal is to design a control strategy which will utilize the storage capability to improve operating 

efficiency.  To achieve this goal, a method for formulating an EMS is presented which can 

accommodate varying degrees of duty cycle preview (from none to complete), different degrees 

of system knowledge (first principles models, black-box system ID, etc.), and is computationally 

compact enough to facilitate online implementation in vehicle systems.  To formulate the online 

optimization problem, linear discrete MPC is used.  The benefit of the proposed method is that it 

is a flexible, generally applicable process.  However, it is not guaranteed to produce the global 
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optimal solution which one could achieve using offline optimization techniques applied to an 

assumed duty cycle [32].  The generalizability of the proposed method will be demonstrated 

through two case studies.  In the first case study optimization of a series hydraulic hybrid vehicle 

(SHHV) is considered.  For this system a linear prediction model is defined from a first principle 

analysis of the system and no future knowledge of the duty cycle is used.  The performance of 

the control is validated using a hardware-in-the-loop system and the robustness of the proposed 

method versus other common EMS design techniques is demonstrated.  For the second case 

study, optimization of a refrigerated truck is considered, in which system ID is used to derive a 

prediction model and complete knowledge of the duty cycle is assumed.  It will be shown that, 

despite differences in system architecture and knowledge, the proposed method is able to achieve 

reduction in energy consumption for both cases.  

1.5 Organization of Thesis 

This thesis is organized as follows.  Chapter 2 introduces the proposed EMS design 

method as well as provides a brief overview of MPC.  An application of the proposed 

methodology to a SHHV powertrain is given in Chapter 3.  This chapter includes a first 

principles analysis of the hydraulic hybrid powertrain as well as a discussion of the hardware-in-

the-loop system used for control validation.  In addition, rule-based and SDP approaches to 

energy management are also presented in Chapter 3 for benchmarking of the proposed method.  

In Chapter 4 one will find a refrigerated delivery truck case study.  A discussion of the TES 

device using PCM is presented along with simulation results.  In this study, two duty cycles are 

evaluated to characterize their impact on energy optimization.  Finally, concluding remarks and 

future work are presented in Chapter 5.  
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Chapter 2  Energy Management Strategy Design 

A methodology for designing energy management strategies (EMS’s) applied to mobile 

power systems with energy storage is presented in this chapter.  The purpose of this method is to 

provide a real-time implementable control strategy which satisfies operator demands while 

improving energy use within the vehicle.  Mobile applications represent a significant portion of 

global energy consumption and present a number of unique challenges.  The energy management 

challenge in the context of these systems is a constrained optimization problem in which one 

may have complete to no knowledge of the duty cycle and the control complexity is constrained 

by the need for fast update rates.  The goal is to develop a tool which is generalizable to this 

entire class of systems.  Therefore, the EMS must satisfy two criteria:  

1. Computationally compact enough to be implemented in real-time with limited 

computing power  

2. Allow for varying levels of duty cycle preview to be used. 

The proposed methodology is outlined in Fig. 2.1.  It utilizes a hybrid modeling approach 

to decompose the operation of this class of systems into modes corresponding to how power is 

generated and transmitted within the system.  For example, in the parallel electric hybrid vehicle 

architecture shown in Fig. 2.2 there are two modes of operation; one when the prime mover is 

used to generate energy and one when it is disengaged and energy can be stored or drawn from 

the battery.  For each mode, an online optimization problem is defined which is solved using 

model predictive control (MPC).  MPC is used because it is an online optimization framework 

that allows for constraints on the inputs and outputs [33].  Finally, a supervisory logic is designed 

which regulates the switching between these modes.  The advantage of decomposing the system 

operation into modes is that only one set of system dynamics is considered in the optimization 
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problem and the objective of the optimization problem can be unique to each mode.  If this 

decomposition was not used, then the optimization problem would likely be a mixed integer 

programming problem since the system dynamics would include a combination of continuous 

and discrete states [34], [35].  In this case, the number of integer variables scales linearly with 

the prediction horizon length and since the mixed integer programming problem belongs to the 

class of NP-complete, the computation time scales at worst exponentially with problem size [35].  

In contrast, a convex quadratic programming problem belongs to the class of P and its 

computation time is upper bounded by a polynomial whose size is that of the problem [36].  By 

considering only continuous dynamics and carefully defining the objective function it will be 

shown how this approach to EMS design results in convex quadratic optimization problems. 

 

Figure 2.1: EMS design process 

 

Figure 2.2: Example of modal decomposition for a parallel electric hybrid powertrain   
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Within each mode of operation, a system wide perspective is taken to define the 

optimization problem.  The objective function is constructed by including quadratic cost terms 

associated with the efficiency characteristics of each actuator as well as cost for the performance 

objectives.  Then the weighting of each efficiency cost term which leads to maximum overall 

efficiency is identified.  The resulting optimization problem is coupled with the MPC framework 

to derive a real-time implementable optimal controller capable of integrating various levels of 

duty cycle knowledge.  Other investigations into energy management in vehicles with energy 

storage have focused on fuel consumption minimization to define their optimization problem 

[19], [20], [23], [27].  Unfortunately fuel consumption measures, such as the Willans line model 

[37], are often complex nonlinear functions extrapolated from empirical mappings that do not 

lend themselves to fast online optimization.  Furthermore, these objective functions are not 

readily expanded to other systems since they require detailed fuel consumption maps.  However, 

minimizing fuel consumption does not require the additional system analysis to define efficiency 

characteristics for each actuator.  Furthermore, the global minimum solution to the fuel 

minimization problem is the lowest possible fuel consumption whereas the proposed method is 

an approximation of this objective.   

2.1 Model Predictive Control 

MPC is a finite horizon optimal control framework which uses a model of the system to 

express future values of the outputs in terms of previous control decisions within the prediction 

horizon.  Through this transformation, one is able to restate the objective function, which is 

typically a function of the states, outputs, and inputs, as just a function of the control decisions.  

In this way, solving for the trajectory which minimizes one’s objective function over the 

prediction horizon reduces to solving for the optimal control sequence.  The first element of this 

sequence is then applied to the system and the process is repeated at every discrete instance the 

control is updated [33]. 

This control method has been utilized for EMS’s in many different applications [22], 

[26], [38].  It is attractive for hybrid vehicle applications because it is an online optimization 

method that can be formulated with different degrees of assumed future information.  One has 

flexibility in choosing the length of the prediction horizon and what duty cycle is used in the 
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prediction horizon.  For some applications, like passenger vehicles, it is difficult to predict future 

demand because environmental variables can have a significant impact on driver behavior and 

driver behavior can vary significantly between individuals.  In this case a MPC formulation with 

a constant demand over a short prediction horizon could lead to the most robust performance.  

One of the major drawbacks to using MPC is the intense online computation required.  A 

cornerstone of the proposed method is to use a system wide analysis to motivate the design of a 

convex quadratic objective function to produce an online optimal control strategy which 

maximizes overall system efficiency. 

In this work linear discrete MPC is considered.  The design of the controller can be 

broken down into two parts.  First is the construction of the prediction model which is used to 

estimate system response in the prediction horizon.  Second is the construction of the objective 

function which mathematically defines the goals of the controller.  

2.1.1 Prediction model 

There are many methods for deriving discrete linear representations of complex systems, 

such as deriving a linear model approximation, performing Taylor series expansions of nonlinear 

system equations then discretizing linearized system dynamics, or system identification.  From 

each of these methods, one arrives at the familiar discrete state space representation for a n state 

and m input dynamic system.  Note that in the model given by Eq. 2.1 it has been assumed there 

is no direct feed through of the inputs. 
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Here A, B, and C are the system matrices, X is the vector of states, and U is the vector of 

inputs.  The discrete state space representation is then used to transform an objective function 

into a collection of cost terms that are just functions of the inputs.  Consider the objective 

function given by Eq. 2.4, this function penalizes deviation of the output, y, from the reference, 
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ref.  Using the prediction model, each future value of y in the prediction horizon can be 

expressed as an initial state measurement and a summation of control decisions, as shown in Eq. 

2.5. 
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The transformed optimization problem is given by Eq. 2.6 and Eq. 2.7, where V is the 

stacked vector of each input signal over the prediction horizon.  The Hessian matrix, H, and the 

vector F contain all of the coefficients which result from expanding the transformed summation.  

Note that in this objective function all terms which are independent of U have been suppressed 

since the value of U which minimizes J is independent of these constant terms. 

 
T TJ V HV F V= +  ( 2.6 ) 
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In this example, the objective function is quadratic and the prediction model is a set of 

linear relationships.  Therefore the transformed optimization problem is a quadratic 

programming problem.  This is a structure that lends itself to quick evaluation and if the Hessian 

is positive semi-definite the optimization problem is convex [39].  A convex optimization 

problem with a convex space over which one is searching for solutions has the property that a 

local minimum is also a global minimum [40].  In this EMS design method, when constructing 

the objective function only quadratic functions of the inputs and outputs will be considered so 

the quadratic programming structure can be utilized to reduce computational demand and prevent 

local minima.  Appendix E gives a more detailed discussion of how a linear discrete prediction 

model is used to transform quadratic cost terms. 
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2.1.2 Objective function design 

When formulating the goal of minimizing energy consumption or maximizing the 

efficiency of a system, there are many different quantities one could consider, such as fuel 

consumption, power, and exergy destruction [26], [38], [41].  Many of these metrics are complex 

nonlinear functions of the system inputs/states/outputs and therefore lead to nonlinear 

optimization problems.  Solving a nonlinear optimization problem online in a vehicle system 

poses many challenges; large computational demand, no guarantee of a solution, and the 

presence of local minima which typically require iterative searches.  These challenges further 

increase memory and processing demand. Alternatively, a quadratic cost on output or input 

tracking is a strictly convex function and a summation of such terms is a convex optimization 

problem.  Solving such problems is much more tractable for online implementation in mobile 

power systems.  Therefore, the challenge is to translate the goal of optimizing energy use into a 

collection of quadratic set point tracking terms.   

To perform this transformation, an analysis of the system and its component efficiencies 

is utilized.  In most power systems the primary consumers of energy are the actuators and 

therefore, the first step in constructing the objective function is to identify each actuator, and 

characterize its efficiency as a function of the system inputs, states, and outputs.  These 

relationships are often available in the form of efficiency maps which can be generated through 

experimental data or first principles system analysis.  Examples of efficiency maps for a variable 

displacement pump, internal combustion engine, and gas compressor are shown in Fig. 2.3. 

 

Figure 2.3: Efficiency maps of different components 
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From these efficiency maps one can construct a quadratic cost term in the form of Eq. 2.8 

which penalizes deviation from the operating condition of highest efficiency.  Note that each 

tracking cost is normalized so that all terms by default have an equal weighting.  Each actuator’s 

efficiency could be characterized by summation of many input, state, and output tracking terms.  

To characterize the whole system, a weighted sum of these individual objective functions is 

taken as shown in Eq. 2.9.  The weighting on each of these terms is used to add greater emphasis 

to the component(s) which dominate the overall system efficiency.  One means of determining 

this weighting is to do an iterative search over different weighting combinations for a nominal 

duty cycle.  These weights are tuned offline and do not need to be recomputed during operations.  

To formulate the overall objective function, this efficiency objective would be combined with a 

performance objective. 
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In addition to the performance and efficiency objectives, the cost function can be 

augmented with an integral cost term to compensate for steady state tracking error resulting from 

modeling errors introduced by the linear, discrete system approximation.  The discrete integral is 

formulated as the sum of the previous tracking error times the time step (∆t) given by Eq. 2.10.  

The integral cost term is then simply the sum of this error over the prediction horizon, see Eq. 

2.11, and the cost term with all of the constant terms suppressed is given by Eq. 2.12.  
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2.1.3 Solution methods 

There are a variety of methods for solving quadratic programming problems.  In the 

Matlab optimization toolbox, the ‘quadprog’ command is specifically designed to solve these 

optimization problems subject to both equality and inequality constraints [42].  However, under 

some additional constraints these problems can be made to be convex enabling the use of fast, 

simple solution methods, such as Newton’s method.  For a quadratic programming problem to be 

convex, the Hessian matrix must be positive semi-definite [39].  Using the method described in 

Section 2.1.2 one is guaranteed that the efficiency objective is convex because it is a convex 

quadratic optimization problem subject to a set of linear constraints from the prediction model.  

Therefore if the performance objective is also convex, then the overall optimization problem will 

be convex.  Strict convexity can be achieved by choosing the performance and efficiency 

objectives such that, when coupled with the prediction model, the value of every input is 

penalized in the prediction horizon.   

In some instances it may be desirable to transform a convex quadratic optimization 

problem subject to inequality constraints into an unconstrained optimization problem.  For 

example if one wishes to apply Newton’s method.  This is accomplished through the use of 

logarithmic barrier functions [39].  The barrier function approximates the inequality constraint 

by adding convex cost terms which have small cost away from the boundaries and a large cost 

near the boundaries, see Fig. 2.4.  The logarithmic barrier function is given by Eq. 2.13 and the 

augmented objective function is given by Eq. 2.14.  Here q is an additional weighting placed on 

the original objective function and p is the number of inequality constraints. 
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Figure 2.4: Example of logarithmic barrier function 

2.2 Supervisor Design  

The final component of the proposed method is to construct a supervisory logic for 

regulating switching between each operating mode.  This logic could be derived heuristically 

from an informed understanding of the system behavior or extrapolated from simulation and 

experimental studies.  One possibility for formulating this logic is to use an offline optimization 

approach, such as dynamic programming, to compute the optimal behavior over a prescribed 

duty cycle and then use those results to motivate the conditions for mode switching.  In many 

applications this decision will be a function of the state of charge of the storage unit as this will 

directly indicated whether there is capacity available for storing energy or there is energy 

available to power the vehicle.  When designing these strategies, care should be taken to avoid 

Zeno behavior as this rapid switching could damage components [43].  One method for 

preventing this behavior which will be demonstrated in Chapter 3 is inclusion of a dwell time 

constraint [43].  The dwell time constraint prevents the system from switching operating mode 

until a predefined amount of time has elapsed.  In this way, one can ensure that the transient 

dynamics associated with mode switching have died out.  This prevents components, like the IC 

engines, from cycling on/off too rapidly. 
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Chapter 3  Hydraulic Hybrid Vehicle Study 

There is interest in hydraulic hybrids because fluid power has a higher power density and 

the accumulator can tolerate more charge/discharge cycles than conventional electric storage 

[17].  Research into hydraulic hybrids spans a wide range of applications from heavy duty 

vehicles, like city buses, to small passenger vehicles [11], [18–22].  In this chapter, the design of 

a model predictive energy management strategy (EMS) is presented using the method outlined in 

Chapter 2.  Furthermore, two other methods for designing EMS’s are presented: rule-based and 

stochastic dynamic programming (SDP).  Each of these methods use information about the 

system and potential duty cycle differently and therefore will be uniquely affected by variations 

in these characteristics.  In this investigation, a simulation study is used to quantify how a rule-

based, SDP, and model predictive control (MPC) strategy are affected by variations in duty cycle 

and system parameters.  For this study, only real-time implementable control strategies that have 

been validated experimentally are considered.  This validation is conducted using the Augmented 

Earthmoving Vehicle Powertrain Simulator (AEVPS); a hardware-in-the-loop system containing 

the components of the hydraulic hybrid transmission while the engine and vehicle loads are 

emulated. 

3.1 System Description and Model 

For this study, a series hydraulic hybrid vehicle (SHHV) is considered.  A series 

architecture was chosen because it decouples the engine and wheel operation, allowing for 

optimal engine management, without the additional hardware and complexity of a power-split 

architecture [21].  The SHHV is composed of a hydrostatic transmission with an accumulator, for 

energy storage, connected in series with the prime mover [21].  The accumulator can be used to 
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capture excess power generated by the engine, assist the engine in supplying the operator’s 

power demand, or completely supply the demand power.  A schematic of the SHHV is presented 

in Fig. 3.1. 

 

 Figure 3.1: Schematic of a series hydraulic hybrid powertrain 

For the purpose of this study, the hydraulic hybrid vehicle will be represented experimentally 

using the AEVPS.  This testbed was originally developed as part of the Caterpillar 

Electromechanical Systems Lab at the University of Illinois at Urbana-Champaign and is used as 

a MIMO hardware-in-the-loop testbed for studying mobile electro-hydraulic powertrains [44–

46].  A picture of the AEVPS is given in Fig. 3.2 and a schematic of the electro-hydraulic 

powertrain is shown in Fig. 3.3.  From this schematic one can see that a throttling valve is used 

to regulate the transmission of energy to the load unit.  For heavy mobile applications a variable 

displacement pump/motor is preferred over valve control because this allows for regenerative 

braking.  However, for this study we are interested in evaluating the potential improvement that 

can be achieved with just improving powertrain operation and therefore no regeneration is 

considered.  When evaluating the performance of an EMS without regeneration, this system has 

the same number of actuators as an optimally designed series hybrid and presents similar 

challenges and opportunities.  See Appendix F for a discussion of how to operate the AEVPS. 
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 Figure 3.2: AEVPS at the University of Illinois at Urbana-Champaign 

 

Figure 3.3: Schematic of the AEVPS powertrain 
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There are two primary sections to the AEVPS: the powertrain and the load unit.  The 

major components of the AEVPS powertrain are: the prime mover, a variable displacement axial 

piston pump with a maximum displacement of 71 cc/rev (max. swashplate angle 0.314 rad) and a 

maximum flow rate of 128 L/min, a 18.9 liters gas charged accumulator with a precharge 

pressure of 5.17 MPa, an electronic proportional valve, and a 26.5 cc/rev hydraulic gear motor 

with a maximum flow rate of 79 L/min.  The maximum operating pressure for the AEVPS 

powertrain is 20 MPa.  The major components of the load unit are a 26 cc/rev hydraulic gear 

pump and an electronically controlled pressure relief valve (PRV).  The load unit is used to 

emulate the driving loads experienced by a passenger vehicle via regulation of the pressure 

required to activate the PRV [47].  The maximum pressure of the load unit is 20 MPa and only 

one of the three available load units within the AEVPS is used in this study. 

3.1.1 Powertrain model 

For this study a ¼ scale powertrain model is used in which the engine power and vehicle 

loads have been scaled down by a factor of 4.  This ensures that the simulation results comply 

with the hardware limitations of the AEVPS but should be scalable and applicable to a full-sized 

vehicle.  The prime mover is a diesel engine emulated by an AC motor and computer control 

[44], [46], [48]. By using computer control to force the AC motor to behave according to 

modeled engine dynamics, the AEVPS is able to emulate a variety of different engines.  This 

added flexibility enables the experimental system to represent a variety of engine/powertrain 

combinations.  In this case, the maximum power output of the emulated engine was chosen to be 

one fourth that of a 2009 Toyota Prius’ engine (18 kW) [49].  The AC motor can provide up to 

22.37 kW of power with a maximum speed of 188.5 rad/sec and a maximum torque of 121 Nm.  

When used to emulate the scaled diesel engine, the maximum supplied power is 18.1 kW.  The 

efficiency characteristics of the emulated engine are shown in Fig. 3.4.  From the engine 

efficiency map one can see that the peak operating efficiency occurs between 50-60% max 

engine speed and 40-60% max engine power.  Constraining the engine operation to this regime is 

not possible in traditional vehicle powertrains where the engine speed and output power are 

determined by the operator’s power demand.  However, for hybrid architectures, power 

generation and demand can be decoupled. 
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Figure 3.4: Diesel engine efficiency map 

A dynamic model of the AEVPS powertrain is derived from a first principles analysis of 

the powertrain dynamics.  This model is the basis for a linear discrete powertrain model which is 

used for the prediction model in the MPC.  For this model, the dynamics of the swashplate and 

valve were ignored since they are much faster than the update rate of the MPC (settling times 

less than 0.1 second) [44].  Furthermore, the engine is treated as a torque source to reduce the 

model complexity.  Equation 3.1 relates the engine torque to the engine speed and accounts for 

inertia, friction, and loading due to pressure across the pump. 
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Here Ie is the engine inertia, ωe is the engine speed, be and κe are engine friction 

coefficients, KP is the pump flow gain, up is the pump’s swashplate angle, and Pu is the upstream 

pressure. 

The dynamics of the pressure upstream and downstream of the valve, denoted by Pu and 

Pd respectively, are a consequence of conservation of mass flow.  The difference between flow 

into and out of the hoses causes the pressure within the hoses to change.  For the upstream hose, 

it has been assumed that the accumulator pressure and upstream hose pressure are equal.  This 

flow balance for the upstream hose is captured in Eq. 3.2 where Eq. 3.3 through Eq. 3.5 define 

each flow term. 
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Here βu is the fluid bulk modulus of the upstream hose, Vu is the volume of the upstream 

hose, Qp is the flow from the pump (Eq. 3.3), Qa is flow into the gas charged accumulator (Eq. 

3.4), Qv is the flow through the valve (Eq. 3.5), and ψu is the upstream leakage coefficient. 
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Here Cap is the accumulator capacity, k is the specific heat ratio of the gas, and Ppr is the 

precharge pressure of the gas. 

The flow through the valve is a function of the pressure drop across the valve and the 

voltage command sent to the valve via the valve’s flow gain.  The flow gain is approximated 

using a third order polynomial fit to data collected by stepping the valve command up from 0 to 

5 V for a fixed swashplate angle and throttle command (Eq. 3.6).  The curve fit is shown in Fig. 

3.5. 

 

Figure 3.5: Curve fit for valve flow gain 

 v VQ C P= ⋅ ∆  ( 3.5 ) 

 
3 212 40 65 4.5V v v vC u u u≈ ⋅ − ⋅ + ⋅ −  ( 3.6 ) 
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u d

P P P∆ = −  ( 3.7 ) 

Here CV is the valve flow gain and uv is the valve voltage command.  The downstream 

pressure dynamics, Eq. 3.8, relates the flow through the valve to the flow across the hydraulic 

motor and accounts for losses in the downstream hose. 

   ( )d
d V m m d d

d

P C P D P
V

β
ω ψ= ⋅ ∆ − ⋅ − ⋅�  ( 3.8 ) 

Here βd is the fluid bulk modulus of the downstream hose, Vd is the volume of the 

downstream hose, Dm is the displacement of the hydraulic motor and ψd is the downstream 

leakage coefficient. 

Finally, Eq. 3.9 relates the torque applied by the pressure difference across the motor to 

the motor speed.  This accounts for the inertia and damping characteristics of the combined 

pump/motor couple as well as the load torque imposed by pressure within the load unit. 

   
m m m d m m L

I D P b nω τ⋅ = ⋅ − ⋅ −  ( 3.9 ) 

Here Im is the motor inertia, bm is the hydraulic motor damping, and τL is the load torque. 

The load torque accounts for the steady state loading which is encountered in urban driving 

environments and is defined by Eq. 3.10.  This load model accounts for the viscous friction 

losses at the wheel and air drag.  Note, for this study a no slip condition was assumed at the 

vehicle’s drive wheels.  Finally, the load torque is scaled down by a factor of 4 to be consistent 

with the engine power scaling. 

     ( )
21

4 2

w
L w m air drag w m

r
b C A rτ ω ρ ω
 

= ⋅ + ⋅ ⋅ ⋅ ⋅ 
 

 ( 3.10 ) 

Here bw is the lumped viscous friction coefficient of the wheel and transmission coupling, 

rw is the wheel radius, ρair is the air density, Cdrag is the drag coefficient, and A is the vehicle 

area.  Equations 3.1 through 3.10 provide a complete description of the AEVPS powertrain 

dynamics. 

Finally, the fuel consumption of the engine is estimated using Eq. 3.11 where θ is the throttle 

command, kf is the fuel consumption coefficient, and 0.43 g.s
-1

 is the fuel consumption under idle 

conditions. 
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fuel rate max ,0.00043f ek
θ

ω
θ

 
= ⋅ 

 
 ( 3.11 ) 

3.1.2 Load emulation 

The driving loads described in Eq. 3.10 are approximated in experimentation using load 

emulation.  The load unit emulates the driving loads via computer control of a two-stage PRV’s 

cracking pressure [47].  There are two components to the load emulation: the driving load model 

and the valve control.  The driving load model, Eq. 3.10, computes the desired load torque based 

on a motor speed measurement.  A PI controller is then used to regulate the voltage commend 

supplied to the PRV.  The input to the load controller is the error between the desired load torque 

and a measurement of the pressure within the load unit multiplied by the pump’s displacement, 

see Eq. 3.12. 

     ,L Des p Le D Pτ= − ⋅  ( 3.12 ) 

Here e is the error signal, τL,Des is the desired load torque, Dp is the pump displacement, 

and PL is the pressure within the load unit.  Since the load unit is incapable of providing an 

overriding load, the integral term of the PI controller is reset whenever the load torque crosses 

zero.  A schematic showing the implementation of the driving load is shown in Fig. 3.6. 

 

 Figure 3.6: Driving load model implementation 

3.1.3 Model validation 

A comparison of the dynamic model and the physical system with load emulation is 

shown in Fig. 3.7.  For this test each actuator was given a 1V step increase in command, held 

constant for 100s, and then stepped back to their nominal values (5V throttle command, 2.5V 

swashplate angle command, and 3.5V valve command).  The valve command was stepped up at 
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200s, the swashplate command was stepped up at 400s, and the throttle command was stepped 

up at 600s.  During this test, the load emulation unit was used.  For a complete list of all 

parameters used to define the AEVPS model see Appendix A. 

 

Figure 3.7: Comparison between AEVPS with load emulation and model for step changes 

in each actuator command 

From Fig. 3.7 one can see that the model captures the time scales and approximate 

magnitudes of each powertrain state during the various step changes.  Larger steady state errors 

are observed in the downstream pressure and motor speed predictions for the displacement and 

throttle command step tests due to the approximation of the downstream leakage losses as a 

single proportionality term.  However, for all states, the steady state errors were within 15% 

throughout the test and the transients, which are of primary concern for the MPC, are well 

captured.  Therefore, this level of agreement was found to be sufficient for control analysis. 
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3.2 Model Predictive Energy management 

The MPC based EMS is implemented using a discrete linear model of the hybrid vehicle 

for prediction and objective functions motivated by an analysis of individual component 

efficiencies.  The prediction model is derived by using a first order Taylor series expansion and a 

zero order hold to linearize and discretize a nonlinear system model about the current operating 

point.  The controller solves for the sequence of throttle commands, pump swashplate angles, 

and valve openings which minimizes the objective function over the horizon, and applies the first 

element of this sequence to the system.  The vehicle operation is decomposed into two modes 

and a supervisory logic is used to regulate switching between these modes.  Furthermore, a dwell 

time constraint is employed to prevent high frequency engine on/off cycling.  During the “ON” 

mode the MPC utilizes the power generation capabilities of the engine to track the desired 

vehicle speed while maximizing the powertrain’s operational efficiency.  During the “OFF” 

mode the MPC minimizes the engine use while tracking the desired vehicle speed.  For both 

objective functions the desired vehicle speed is held constant throughout the prediction horizon 

because no prediction of the duty cycle is used in this formulation.  The MATLAB code used to 

define the MPC in this study is given in Appendix G.  

3.2.1 Prediction model 

The prediction model used within the MPC algorithm is a discrete linear approximation 

of the model presented in Section 3.1.1.  The linearization is done using a first order Taylor 

series approximation and the discretization is done using the zero order hold method.  

Throughout this section subscript o will be used to denote the operating point about which the 

model is linearized and δ will be used to denote the difference with respect to the operating 

point.  First, the linearized system dynamics will be given, followed by the state space matrices. 

Equation 3.13 is the linearized engine dynamics, Eq. 3.14 through 3.19 define the 

linearized upstream pressure dynamics, and Eq. 3.20 is the linearized downstream pressure 

dynamics.  Note that within the prediction model the engine is treated as an ideal torque source 

to reduce the model complexity.  Finally, Eq. 3.9 is already linear in the states so no further 

approximation is necessary.  However, in order to keep the prediction model linear, the effect of 
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the load emulation is approximated by increasing the damping coefficient by bL.  The final motor 

dynamic equation is given by Eq. 3.21. 

     ( ), , ,e e e e e e o e P p o u P p u oI u b K u P K u Pδω δ κ ω δω δ δ⋅ = − + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅�  ( 3.13 ) 
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     ( ) ( )m m m d m L mI D P b b nδω δ δ⋅ = ⋅ − + ⋅�  ( 3.21 ) 

Combining Eq. 3.13, Eq. 3.14, Eq. 3.20, and Eq. 3.21 one arrives at the usual state space 

representation of the AEVPS powertrain dynamics.  The system matrices are given by Eq. 3.22 

and Eq. 3.23; the state and input vectors are given by Eq. 3.24 and Eq. 3.25.  The following 
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system representation provides a compact linear description of the powertrain dynamics which is 

suitable for online implementation of the MPC algorithm. 
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3.2.2 Supervisory logic 

The next component of the MPC based EMS is a supervisory logic used to regulate 

switching between operating modes and impose a dwell time constraint on engine operation.  

The default mode of operation is the “OFF” mode and the first part of the logic, shown in Fig. 

3.8, checks when the desired engine torque has exceeded a threshold (τtheshold) or the upstream 

pressure falls below a threshold (Ptheshold).  This step is a check for when the accumulator no 

longer has sufficient energy stored to meet the demands of the control.  The time when this 

condition occurs is stored as ttrigger. 
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Figure 3.8: Supervisory logic, engine torque and pressure threshold detection 

Once the thresholds have been checked the second part of the logic, shown in Fig. 3.9, 

determines which mode of operation to select for the next control update.  It first checks whether 

the Flag indicating insufficient accumulator state of charge is still 1.  If this is the case, it then 

checks if the ON mode has been maintained for tdwell time.  Once tdwell time has expired, it then 

checks if the desired motor velocity is less than or equal to a threshold.  By defining this 

threshold as done in Eq. 3.26 this condition can be used to ensure that there is sufficient charge 

in the accumulator to sustain the desired hydraulic motor speed. 

     ( )3 212 40 65 4.5threshold mP v v v Dω = ∆ ⋅ − ⋅ + ⋅ −  ( 3.26 ) 

 Here v is the valve voltage command at which one evaluates the threshold.  By adjusting 

v one can tune how aggressively the logic seeks to return to the OFF mode.  The MATLAB code 

used to define the supervisory logic in this study is given in Appendix H. 

 

Figure 3.9: Supervisory logic, mode selection 
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3.2.3 Objective functions 

The MPC uses convex quadratic objectives functions for both the “ON” and “OFF” 

modes to reduce the computational demands of the online optimization.  The objective function 

used for the “ON” mode, given by Eq. 3.27 – Eq. 3.29, is composed of three parts.  The first term 

enforces tracking of a desired hydraulic motor speed and is the primary objective.  The second 

and third terms enforce efficient operation of SHHV powertrain.  The λ1 term seeks to optimize 

pump efficiency by maximizing upstream pressure and displacement, see Fig. 3.10 for a pump 

efficiency map at a fixed flow rate.  This is accomplished by having the engine track low speed 

and high torque operation.  To achieve these conditions the pump displacement is necessarily 

maximized, yielding greater upstream pressures.  The λ2 term seeks to minimize valve losses by 

having the AEVPS operate at low upstream pressure, reducing the pressure drop across the 

valve.  Through a simulation study, the weighting of these cost terms which minimizes fuel 

consumption over the Urban Dynamometer Driving Schedule (UDDS) [50] was found to be λ1 = 

1x10
-4

 and λ2 = 9x10
-4

.  See Appendix B for the details of this study.  Finally, the summation of 

the cumulative deviation from desired set points is used when evaluating the cost of a policy.  

This more heavily penalizes deviation from the desired values at the beginning of the prediction 

horizon, thereby improving tracking performance. 
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Here ωm,des, ne,des1, ue,des1, and Pu,des are the desired motor speed, engine speed, engine 

torque, and upstream pressure respectively and N is the length of the prediction horizon.  All of 

the cost terms are normalized with respect to their maximum values. 
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 Figure 3.10: Efficiency map of the variable displacement pump for a fixed flow rate [48] 

When power generation is not necessary, because the vehicle is decelerating or the 

accumulator can supply the requested power, the SHHV is operated in “OFF” mode.  During this 

mode the engine should be operated under idle conditions to minimize fuel consumption.  The 

objective function for this mode is given by Eq. 3.30 and Eq. 3.31. 
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Similar to the ON mode, λ3 is set to 1x10
-3

 to ensure motor speed tracking has the higher 

priority.  One of the advantages of MPC is that constraints can be easily applied on both the 

control signals and state values.  For control of this system, upper and lower constraints are 

placed on each control variable as well as on the accumulator pressure.  The constraints on 

control variables exist to ensure that actuator limitations are not exceeded by the controller.  The 

upper limit on upstream pressure is used to prevent loss of energy through activation of a PRV 

(max operating pressure 20 MPa) and the lower limit ensures the control never attempts to draw 
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oil from an empty accumulator (accumulator precharge pressure: 5.17 MPa).  The constraints are 

given by Eq. 3.32 through Eq. 3.35. 

     5.2 MPa 19 MPa
u

P< <  ( 3.32 ) 

     0 Nm 121 Nm
e

u< <  ( 3.33 ) 

     0 rad 0.314 radpu< <  ( 3.34 ) 

     0 V 5 V
v

u< <  ( 3.35 ) 

3.3 Alternate Energy management Methods 

In addition to the MPC, two other methods for deriving an EMS are considered.  The first 

is a rule-based strategy, which is derived from a deterministic dynamic programming (DDP) 

solution [51].  Even though DDP gives the global optimal solution, it assumes all future 

knowledge is known and therefore is not implementable on a physical system.  The rule-based 

strategy develops rules to attempt to replicate the DDP accurately while being implementable on 

a physical system.  The second method is SDP.  Rather than using an exact duty cycle, the SDP 

method uses transition probabilities of driving behavior.  This produces a causal control strategy 

since the future is not known exactly, but given as a probability map.  One drawback of this 

method is it could lead to a suboptimal result if the transition probabilities do not accurate reflect 

the probabilities of the actual cycle.  These alternate methods will be used to compare and 

contrast the robustness versus optimality tradeoffs of the proposed predictive energy 

management method. 

3.3.1 Rule-based strategy 

DDP is an optimization algorithm that calculates the global optimal solution for a system 

by starting at the end of a cycle and progressing backwards through time.  For this system, a 

discrete-state, discrete-time method is used with a backwards facing model that assumes the 

trajectory is achievable at each time step [32].  The states of the system are the upstream 

pressure, downstream pressure, and motor speed, and the control variables are the valve 

command, swashplate angle, and engine speed.  The engine speed is discretized into 5 rad/s 
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increments, the upstream pressure is discretized into 0.01 MPa increments, and the swashplate 

angle is discretized into 0.01 radian increments.  Motor speed is given by the duty cycle and 

downstream pressure can be calculated from the other variables.  Time is discretized into 1 

second increments.  The objective function is to minimize the fuel consumption over the entire 

duty cycle. 
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Here Nc is the total number of time steps in the duty cycle and ∆t is the length of each 

time step.  Since the DDP algorithm starts at the end of the duty cycle, the results are acausal 

because the future is assumed to be known exactly without external disturbances or model 

uncertainties.  Therefore, these results must be transformed into a set of rules to develop a causal 

relationship between the outputs and control variables.  To accomplish this transformation, a 

regression analysis of the DDP results over the UDDS was conducted to produce polynomial fits 

for throttle and swashplate angle commands based on engine speed, upstream pressure, and 

motor speed.  These fits are given by Eq. 3.37 and Eq. 3.38.  The valve command is regulated 

using a PI controller for tracking motor speed. 

     ( ) 2 2

1 , 434.775 10.026 0.017 0.055 0.002e m e m e mf ω ω ω ω ω ω= − + ⋅ + ⋅ − ⋅ + ⋅  ( 3.37 ) 

     ( ) 2 6 2

2 , 0.034 0.012 0.001 0.001 4.219 10u m u m u mf P P Pω ω ω−= − + ⋅ + ⋅ − ⋅ + ⋅ ⋅  ( 3.38 ) 

In the above equations, f1 is the throttle command function and f2 is the swashplate angle 

command function.  The r
2
 values for the fits are 0.80 and 0.71 respectively.  Despite good r

2
 

values for the polynomials they poorly capture the DDP results at high and low vehicle speeds.  

When the vehicle is travelling at highway speeds, the throttle and swashplate angle commands 

are too low, and when the vehicle is stopped, the throttle command is too high.  To account for 

these discontinuities switching condition are added to the rules.  At low speed the throttle 

command is set to the idle condition.  When the vehicle is traveling at highway speeds, the 

pressure drop across the valve is low.  Therefore, when the pressure drop across the valve is 
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below a minimum threshold the throttle command is set to 55 degrees and the swashplate angle 

is set to 0.16 rad.  The final set of rules is given by Eq. 3.39-3.42. 
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A comparison between the rule-based strategy and the dynamic programming results for 

urban driving are shown in Fig. 3.11.  The throttle command, swashplate angle command, and 

valve command all closely follow the DDP results. 
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Figure 3.11: Comparison of final rule-based strategy and dynamic programming results 

over UDDS 

3.3.2 Stochastic dynamic programming 

     One of the drawbacks of DDP is the inability to develop a control law directly from the 

results since the algorithm assumes the duty cycle and future are completely known.  To obtain 

an implementable control law, a set of rules is developed using trends from the DDP results.  

However, there is no guarantee that these rules are the optimal solution.  To overcome this 

obstacle, SDP can be used to develop a causal control law.  Rather than using a specific duty 

cycle, probabilities for a driving behavior are used to formulate a control law that is directly 

implementable from the results [52]. 

The SDP algorithm requires the transition probabilities to go from one state to another. A 

Markov chain model is developed for a typical driving behavior by combining numerous 

standard duty cycles. This is shown in Fig. 3.12, which combines the UDDS, West Virginia 

Highway, West Virginia Suburban, and West Virginia City duty cycles [50]. 

 

Figure 3.12: Combined duty cycle to determine transition probabilities 

The transition probabilities are calculated from this combined duty cycle. The current 

state is defined by the vehicle velocity and acceleration at the current time step, and the next state 
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is defined as the acceleration at the next time step. The acceleration at each time step is 

calculated using backward difference to keep the system causal. The velocity and acceleration at 

each time step is discretized into 20 uniformly spaced points from the minimum to maximum 

values using nearest-neighbor approximation. The transition probabilities (pij,k) are then 

calculated using Eq. 3.43. 
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In the above equation, j is the index for the current velocity, k is the index for the current 

acceleration, q is the index for the acceleration at the next time step, and η is the number of 

counts each occurs in the duty cycle. The probability of the next acceleration being equal to 

index q given the current velocity index j and the current acceleration index k is equal to the 

number of times this occurred during the duty cycle divided by the total number of times the 

duty cycle has a current velocity index of j and a current acceleration index of k.  Figure 3.13 

shows the transition probability map for a given vehicle speed.  Since the peaks lie on the 

diagonal, if the vehicle is accelerating or decelerating at the current time step, the probability to 

continue to accelerate or decelerate at the next time step is high. 
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Figure 3.13: Transition probability map for a certain vehicle speed 

Once the transition probabilities are known for each vehicle speed, the SDP algorithm is 

used to determine the optimal action for each state.  The discounted policy iteration method is 

used, which starts with an initial policy and iterates until the solution converges [52]. The first 

step is the policy evaluation step, which evaluates the current policy and finds the value function, 

l. 

 ( ) ( )( ) ( )( ) ( )
1

, , ,

S

q q q q

k

l j c j j p j j k l kµ ε µ
=

= + ⋅∑  ( 3.44 ) 

ε is the discount factor, which is less than 1. The meaning of this discount factor is that future 

costs do not matter as much as the same costs incurred at the present time.  The lower this 

discount factor, the lower the importance of the future costs. S is the total number of states and 

c   is the average cost at state j, which is given by Eq. 3.45. 
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The cost function c is the fuel consumption to go from state j to state k using control 

policy µq at state j.  The fuel consumption is a function of the throttle command and the engine 

speed. 
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 
 ( 3.46 ) 

The value function is solved at each state using the set of linear equations given in Eq. 

3.44. Once the value function at each state is known, the policy improvement step is performed 

according to Eq. 3.47. 

 ( )
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( )( ) ( ) ( )1

1

arg min , , ,
S

q q q
u U j

k

j c j j p j u k l kµ µ ε+
∈

=

 
∈ + ⋅ 

 
∑  ( 3.47 ) 

The policy evaluation and policy improvement steps repeat until the policy for each state 

between iterations is the same, which is the optimal policy. The end result is a lookup table 
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which inputs the current vehicle velocity, acceleration, and accumulator oil volume and outputs 

the control decision. 

The outputs and control variables are discretized uniformly between their minimum and 

maximum values.  The output variables are the upstream pressure and motor speed. The control 

variables are the swashplate angle command, engine speed, and valve command.  The values of 

upstream pressure are discretized from 6 MPa to 19 MPa in 1 MPa increments.  The values for 

the swashplate angle are discretized between 0 rad and 0.30 radians in 0.01 radian increments.  

The engine speed is discretized from 75 rad/s to 185 rad/s in 5 rad/s increments.  The throttle 

command is then found using a map of engine speed and engine torque.  The valve command is 

determined using a feedback PI controller on motor speed to improve speed tracking.  The 

discount factor is set to 0.95. 

3.4 Experimental Validation 

To validate the performance of the control strategies experiments are conducted using the 

UDDS as a reference trajectory.  When implementing the rule-based, SDP, and MPC EMS’s 

onto the AEVPS there are several hardware and computing constraints which had to be satisfied.  

For both the rule-based and SDP strategies a proportional plus integral feedback controller is 

employed to regulate the valve opening and ensure tracking of the desired hydraulic motor 

speed.  The error signal which is sent to this controller is the difference between the desired and 

measured motor speed.  Due to bandwidth limitations of the electronic proportional valve, a 

proportional gain of 0.01 and an integral gain of 0.05 are selected.  In addition, due to noise in 

the motor speed measurement, a first order low pass filter with a cut off frequency of 10 Hz is 

applied to this signal before calculating the tracking error.  Figure 3.14 through Fig. 3.16 show 

comparisons of the simulated and experimental outputs, inputs, and engine response respectively 

for the UDDS.  The outputs and inputs of the two cases agree except the average throttle 

command in the experimental case is less than that of the simulation case.  This is due to the 

engine idle speed being slightly less in the experimental case.  Since the engine is operating at a 

lower mean throttle command the accumulator is discharged at a greater rate to meet the 

operator’s demand.  However, the engine operations, shown in Fig. 3.16, for the two cases are 
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very similar.  Using the rule-based EMS, the simulated and experimental fuel consumptions are 

within 5% of each other (Urban: simulation: 1.099 kg, experiment: 1.058 kg). 

 

Figure 3.14: Comparison of simulated and experimental SHHV outputs for the rule-based 

strategy 
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Figure 3.15: Comparison of simulated and experimental SHHV inputs for the rule-based 

strategy 

 

Figure 3.16: Comparison of simulated and experimental engine response for the rule-based 

strategy, markers denote engine operating point 
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When implementing the SDP strategy on the AEVPS a discrete update rate of 10 Hz is 

used for the look-up tables to ensure time for the controller to complete the interpolation between 

update steps.  Furthermore, the high frequency behavior of the DDP solution could not be 

implemented in the AEVPS hardware due to bandwidth limitations of the actuators.  Therefore, 

the outputs of the tables resulting from the SDP formulation are passed through first order low 

pass filters with a cut off frequency of 0.5 Hz to prevent the high frequency response.  Imposing 

these limitations did affect the tracking performance of the controller but are ultimately 

necessary for physical implementation.  From Fig. 3.17 and Fig. 3.18 one can see that there is 

strong agreement in the both the outputs and inputs for the UDDS simulation and experimental 

cases.  The most significant difference is that the engine speed is able to fall below the idle speed 

in the experimental case.  This discrepancy can also be seen in the engine operating points shown 

in Fig. 3.19.  Given the strong agreement between the outputs and inputs, it is not surprising that 

the simulated and experimental fuel consumptions are within 5% of each other (Urbana: 

simulation: 1.008 kg, experiment: 0.975 kg). 
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Figure 3.17: Comparison of simulated and experimental SHHV outputs for the SDP 

strategy 

0 200 400 600 800 1000 1200 1400
0

50

100

150

E
n

g
in

e
 S

p
e

e
d

 (
ra

d
/s

)

0 200 400 600 800 1000 1200 1400
0

10

20

A
c
c
u

m
u

la
to

r
P

re
s
s
u

re
 (

M
P

a
)

0 200 400 600 800 1000 1200 1400
0

10

20

D
o

w
n

s
tr

e
a

m
P

re
s
s
u

re
 (

M
P

a
)

0 200 400 600 800 1000 1200 1400
0

50

100

M
o

to
r 

S
p

e
e

d
 (

ra
d

/s
)

Time (sec)

 

 Sim

Exp

Reference



45 

 

 

Figure 3.18: Comparison of simulated and experimental SHHV inputs for the SDP strategy 

 

Figure 3.19: Comparison of simulated and experimental engine response for the SDP 

strategy, markers denote engine operating point 

0 200 400 600 800 1000 1200 1400
0

0.5

1

N
o

rm
a

liz
e

d
T

h
ro

tt
le

 C
o

m
m

a
n

d
 

 

Sim

Exp

0 200 400 600 800 1000 1200 1400
0

0.5

1

N
o

rm
a

liz
e

d
D

is
p

la
c
e

m
e

n
t 
C

o
m

m
a

n
d

0 200 400 600 800 1000 1200 1400
0

0.5

1

N
o

rm
a

liz
e

d
V

a
lv

e
 C

o
m

m
a

n
d

Time (sec)



46 

 

The MPC based EMS is implemented with an update rate of 1 Hz and a prediction 

horizon length of 5 steps.  The update rate and horizon length are chosen such that they allow for 

real-time execution while balancing the step size against the prediction horizon length.  A 10 

second dwell time is used in the supervisory logic along with τthreshold  equals 30 Nm, Pthreshold 

equals 6.5 MPa, and v equals 1.9 V.  The set points for the ON mode objective function are 

ωe,des1 = 76 rad/sec (close to emulated engine idle speed) ue,des1 = 96.8 Nm (max emulated engine 

torque), and Pu,des equal to 7 MPa to ensure that the upstream pressure does not fall below the 

accumulator precharge pressure (5.17 MPa).  For the OFF mode, ωe,des2 is set below the idle 

speed and ue,des2 is set to 0 Nm.  In addition, the control signals are passed through first order low 

pass filters with a cut off frequency of 1 Hz to smooth the inputs and prevent violations of 

actuator bandwidth limitations.  The response of the hybrid powertrain with MPC is nearly 

identical for simulation and experimental response over the UDDS as can be seen in Fig. 3.20 

through Fig. 3.22.  The most noticeable difference is that the accumulator loses charge faster in 

the experimental case due to un-modeled losses.  For this EMS the simulated fuel consumption is 

1.300 kg and the experimental fuel consumption is 1.340 kg.  Again, the two fuel consumptions 

are within 5% of each other. 
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Figure 3.20: Comparison of simulated and experimental SHHV outputs for the MPC 

strategy 
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Figure 3.21: Comparison of simulated and experimental SHHV inputs for the MPC 

strategy 

 

Figure 3.22: Comparison of simulated and experimental engine response for the SDP 

strategy, markers denote engine operating point 
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3.5 Comparison Study 

A simulation study is presented for all three of the experimentally validated EMS’s 

described in this chapter to evaluate the behavior of these strategies in the face of uncertainty in 

the duty cycle and system model.  The effect of these uncertainties will be explored by varying 

the duty cycle and physical parameters within the system model and then evaluating the resulting 

fuel consumption and tracking error.  For the duty cycle variation study urban and highway 

driving scenarios are considered and each control strategy is simulated over 100 duty cycles of 

each scenario.  For the parameter variation study five powertrain parameters are varied (variable 

displacement pump flow gain, upstream hose loss coefficient, downstream hose loss coefficient, 

motor displacement, and vehicle viscous friction).  The results of these studies will be used to 

compare the relative performance of each EMS design method to duty cycle and system 

uncertainty.  From these comparisons, one can determine when one design methodology would 

be advantageous depending on the knowledge available. 

3.5.1 Duty cycle variation 

When evaluating the effect of duty cycle uncertainty on the performance of the EMS 

urban and highway driving scenarios are considered.  To allow for a rich set of duty cycles urban 

and highway duty cycles are generated from the transition probability maps of the UDDS and 

West Virginia Highway cycles.  A uniform random number generator is used with the transition 

probability matrix for the current state to calculate the acceleration at the next time step.  This is 

repeated until a specified time length is reached.  An example of an urban duty cycle generated 

using this method is shown in Fig. 3.23.  In this way, the transition probabilities for all generated 

duty cycles are the same as the root driving scenario, ensuring that each duty cycle is 

representative of the same driving scenario while allowing for different time sequences of 

desired vehicle speed. 
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Figure 3.23: Urban duty cycle generated from UDDS transition probability map 

To quantify the performance of each EMS for a duty cycle two metrics are considered: 

the fuel consumption and tracking error.  The fuel consumptions estimated in simulation for each 

EMS are normalized with respect to the fuel consumption of a non-hybrid vehicle for the same 

duty cycle.  The non-hybrid vehicle is modeled using the same engine and vehicle loads as the 

SHHV model with a lossless three gear transmission (7:1, 3.5:1, 1.75:1) and a speed dependent 

gear shifting policy given by Eq. 3.48– Eq. 3.50.  In simulation, the non-hybrid vehicle 

consumed 1.51 kg of fuel over the UDDS.  Note that the transmission ratios and shifting policy 

were chosen to ensure the vehicle could satisfy all speed demands but were not optimized to 

minimize fuel consumption.  This provides a common reference point to assess the relative 

improvement of each control strategy for all duty cycles.  The other metric for determining how 

well a strategy performs is its ability to track the desired reference.  The root mean square (RMS) 

tracking error is a measure of how closely the vehicle speed agrees with the desired vehicle 

speed profile. 
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The results of the urban driving study are summarized in Fig. 3.24 and Fig. 3.25.  From 

Fig. 3.24, one can clearly see that the SDP approach achieved the greatest improvement in fuel 

economy with a small variance between urban duty cycles.  This is what one would expect since 

the SDP strategy achieved the lowest fuel consumption in experimental validation and it is 

derived using the same transition probability maps.  The MPC and Rule-based strategies 

achieved similar levels of improvement with the rule-based approach having the largest variance.  

Since the rule-based strategy is tuned for a single duty cycle it is not surprising that its 

performance would be most sensitive to variations in the urban driving scenario. When 

comparing the tracking errors given in Fig. 3.25, one finds that the rule-based EMS achieved the 

lowest tracking error with the SDP strategy having the largest tracking error and the MPC being 

between the two.  The large tracking error of the SDP solution is a consequence of its sensitivity 

to errors in the model used for offline optimization.  One of the limitations of this approach is 

that there is no mechanism for fine tuning the lookup table based on simulation and experimental 

response.  Therefore, to improve the control performance the SDP algorithm would need to be 

rerun with progressively more detailed models (including limitations due to hardware and 

computational constraints)  until the desired tracking performance is achieved.  Based on the 

results shown in Fig. 3.24 and Fig. 3.25, the rule-based strategy is the best compromise between 

fuel improvement and tracking.  
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Figure 3.24: Mean fuel consumption relative to non-hybrid for urban driving scenarios, 

error bars are ±1 standard deviation 

 

Figure 3.25: Mean RMS tracking error for urban driving scenarios, error bars are ±1 

standard deviation 

Figure 3.26 and Fig. 3.27 summarize the performance of the EMS’s for highway driving 

scenarios.  Like the urban driving case, the SDP strategy achieves the lowest average fuel 

consumption but with the poorest mean tracking performance.  The rule-based strategy achieved 

the worst fuel economy performance with tracking performance nearly as bad as the SDP 

solution.  This overall loss in performance for the rule-based strategy is expected since it is tuned 

for an urban driving profile.  Finally, the MPC approach has the best tracking performance and 

superior fuel reduction than the rule-based strategy.  Furthermore, it had the lowest variance in 

performance for both metrics of all there EMS’s.  For the highway driving study, the MPC 

approach demonstrated the best overall performance.  
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Figure 3.26: Mean fuel consumption relative to non-hybrid for highway driving scenarios, 

error bars are ±1 standard deviation 

 

Figure 3.27: Mean RMS tracking error for highway driving scenarios, error bars are ±1 

standard deviation 

Finally, to determine which strategy would be the most robust in a general driving 

scenario, the two data sets are combined and those results are summarized in Fig. 3.28 and Fig. 

3.29.  For these results one can see that the SDP strategy offers the greatest improvement in fuel 

economy but with large tracking errors.  This suggests that for this strategy to be implemented 

effectively there must be strong agreement between the models used for control development and 

the physical system.  The rule-based and MPC solution offer similar fuel economy performance 

but the MPC achieved the lowest overall tracking error.  From this duty cycle study it can be 

seen that the rule-based strategy is most sensitive to variations in duty cycle and that its 

performance cannot be guaranteed for duty cycles which differ from its design cycle.  The MPC 

solution is the most robust to duty cycle variation, giving similar performance for highway and 
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urban driving.  This is as one would expect since duty cycle information is not used explicitly in 

the control design.     

 

Figure 3.28: Mean fuel consumption relative to non-hybrid for combined data sets, error 

bars are ±1 standard deviation 

 

Figure 3.29: Mean RMS tracking error for combined data sets, error bars are ±1 standard 

deviation 

3.5.2 Parameter variation 

For the parameter variation study 5 parameters are varied by ±10% in increments of 5% 

(cases 1-4: variable displacement pump flow gain, cases 5-8: upstream hose loss coefficient, 

cases 9-12: downstream hose loss coefficient, cases 13-16: motor displacement and cases 17-20: 

vehicle viscous friction).  In each case the percent change in fuel consumption and percent 

change in RMS tracking error are calculated relative to the case without parameter variation and 

all tests are done over the UDDS.  The results of this study are captured in Fig. 3.30 and Fig. 
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3.31. From these results one can see that the fuel consumptions of the MPC and SDP approaches 

are insensitive to parameter variations, with a 10% change in parameters causing less than a 10% 

change in fuel consumption.  However, the rule-based strategy showed greater sensitivity to 

parameter variations.  For a 10% decreases in pump flow gain the rule-based strategy 

demonstrated greater than 15% change in fuel consumption.  From the RMS tracking error 

results shown in Fig. 3.31, the MPC approach is found to be the least sensitive to changes in 

parameters.  The rule-based strategy exhibited percent changes in tracking error similar in 

magnitude to the change in parameters for increases in pump flow gain and decreases in motor 

displacement.  Finally, the tracking performance of the SDP approach is the most sensitive to 

changes in system parameters with a 10% decrease in motor displacement causing nearly a 200% 

increases in tracking error.  This observation is consistent with the behavior that is found in the 

duty cycle study.  Since a system model is assumed in the SDP formulation, an accurate model is 

critical to achieving good tracking performance. 

 

Figure 3.30: Variation in fuel consumption as a result of changes in system parameters 
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Figure 3.31: Variations in RMS tracking error as a result of changes in system parameters 

3.6 Concluding Remarks 

Each of the three design methods responded differently to variations in the duty cycle and 

model parameters and a tradeoff between optimality and robustness was observed.  The SDP 

strategy is the most direct implementation of the dynamic programming solution.  As such it 

achieved the lowest fuel consumption in all trials but was also the most sensitive.  Since this 

method yields a lookup table which can be implemented directly, care must be taken to ensure 

that the model and duty cycles used to define the optimization problem accurately reflect the 

physical system.  The rule-based strategy was found to be less sensitive to variations because it 

could be further tuned to ensure satisfactory performance over a desired duty cycle.  This tuning 

process increased the fuel consumption but improved robustness.  However, if the commanded 

duty cycle is not represented in the tuning process then large tracking errors and poor 

performance may result, as was the case with the highway driving cases.  Finally, the MPC 

strategy is the most robust design method studied.  Its performance is consistent for both urban 

and highway driving.  However, it is not able to achieve the fuel savings of the SDP strategy.  

From the simulation study, the following qualitative guidelines can be concluded: 

• The SDP strategy is best suited for applications in predictable environments with well-

defined models. 
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• The rule-based method is best suited for applications with known trajectories, like city 

buses, where one has strong confidence in duty cycle predictions. 

• For highly uncertain applications, such as a passenger vehicle, the MPC strategy is the 

most reliable. 
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Chapter 4  Thermal Management Study 

In the previous case study, it was demonstrated how the proposed method for designing 

energy management strategies (EMS’s) can use a first principle analysis of system dynamics and 

no knowledge of the future duty cycle to produce a robust control strategy.  This EMS was found 

to give consistent fuel consumption for different duty cycles and enforced modeling uncertainty.  

In this chapter the operation of a refrigerated delivery truck with thermal energy storage (TES) 

will be optimized.  System ID will be used to derive the prediction model and complete 

knowledge of the duty cycle will be assumed.  This will demonstrate the generalizability of the 

proposed method by considering a different type of system with different constraints on system 

modeling and preview.  Refrigerated transport systems are used throughout the world to deliver 

food and other temperature-sensitive goods.  As of 2002 there were over 1 million refrigerated 

road vehicles and 400,000 refrigerated containers in use [53].  A refrigerated transport system 

uses a vapor compression cycle (VCC) system to either cool or heat an enclosed space so that a 

desired temperature can be maintained.  For refrigerated road vehicles the, VCC system is either 

powered by the vehicle’s engine or an auxiliary diesel engine [31].  Therefore, the efficiency 

with which one is able to maintain the desired volume temperature directly affects the fuel 

consumption and emissions for these vehicles. 

Like a hybrid vehicle, the efficiency of refrigerated transport systems can be improved by 

including thermal energy storage [31].  The use of phase change materials (PCM) as a 

mechanism for storing thermal energy has been explored in building systems and has the 

potential to yield significant energy savings [29].   However, their use has not been studied in 

detail for mobile applications.  As in the case of hybrid vehicles, adding a storage device 

increases the complexity of the system architecture and necessitates an EMS.  Previous control 
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studies of systems with thermal storage have focused on large building systems [38] where the 

time scale for changes in thermal demand are much slower than the time scale in mobile 

applications.  Therefore the challenge of controlling a refrigerated transport system with thermal 

storage is analogous to that of the electric and hydraulic hybrid vehicles [22], [2].  However, 

there is no mechanism for regenerating energy in a refrigeration system. Therefore, any 

efficiency improvements must be made by using the storage capability to operate the actuators 

more efficiently.  In addition, the duty cycle of a refrigerated transport vehicle may be known in 

advance, and so this information can possibly be utilized by the EMS. 

4.1 Parallel Vapor Compression System 

For this study, a parallel configuration of a vapor compression system with storage is 

considered.  The parallel vapor compression cycle (PVCC) has a TES device in parallel with the 

traditional VCC, and the storage device is equipped with its own fan for regulating heat transfer 

between the TES and the environment.  A schematic of the PVCC architecture is shown in Fig. 

4.1.  There are four inputs to this system: compressor speed (uω), electronic expansion valve 

opening (ueev), flow split for an ideal flow control valve (uIV), and air mass flow rate across the 

TES (uair).  This system is capable of meeting a desired cooling capacity in 3 ways: 

• Evaporator Only 

• TES Only 

• Combined Evaporator and TES 

Within the PVCC there is a traditional VCC circuit.  This circuit is composed of four main 

components: the compressor, the condenser, an expansion valve, and the evaporator.  The 

compressor is used to compress superheated vapor refrigerant to a higher temperature and 

pressure.  Then the refrigerant passes through the condenser and rejects energy to ambient air 

passing over the condenser coils.  Refrigerant then exits the condenser as saturated liquid and 

expands isenthalpically through a valve causing a drop in pressure and temperature.  Here, an 

electronic expansion valve (EEV) is considered as the expansion device so that the pressure drop 

can be electronically controlled.  After passing through the expansion valve, two-phase 

refrigerant enters the evaporator where it exchanges heat with air passing over the evaporator 

coils.  Finally, refrigerant exits the evaporator as superheated vapor and the cycle is repeated.  



60 

 

For the VCC circuit model, only the dynamics of the compressor, condenser, EEV, and 

evaporator are captured.  For the heat exchangers (condenser and evaporator), a moving 

boundary model is used.  Detailed nonlinear models of these components exist in the literature; 

for details on how these components are modeled, the reader is referred to [54] and [55]. 

 

Figure 4.1: Schematic of the Parallel Vapor Compression Cycle 

To integrate the thermal storage device into the VCC circuit model, several continuity 

equations are needed.  For the storage device, it is assumed that the mass flow rate of refrigerant 

entering and exiting the device are equal and that the pressures at the inlet and outlet of the 

storage device and evaporator are equal.  At junction 1 (see Fig. 4.1) an ideal flow control valve 

is used to regulate the percent of refrigerant mass flow which is directed to the evaporator.  This 

device is ideal since there are no losses associated with the flow division.  From mass flow and 

energy conservation at Junction 1, one arrives at the constraints given by Eq. 4.1 through Eq. 4.4.  

Similarly, conservation equations are applied at Junction 2 (see Fig. 4.1) to derive the constraints 

given by Eq. 4.5 and Eq. 4.6. 

 ,ev in IV eevm u m= ⋅� �  ( 4.1 ) 

 ( ), 1s in IV eevm u m= − ⋅� �  ( 4.2 ) 

 [ ]0,1IVu ∈  ( 4.3 ) 
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 , ,s in ev in eevh h h= =  ( 4.4 ) 

 , ,ev out s in compm m m+ =� � �  ( 4.5 ) 

 
, , , ,e out e out s out s in

comp

comp

h m h m
h

m

⋅ + ⋅
=

� �

�
 ( 4.6 ) 

Here m�  is air mass flow rate, h is specific enthalpy, subscript e,in denotes refrigerant at 

the evaporator inlet, e,out denotes refrigerant at the evaporator outlet, subscript s,in denotes 

refrigerant at the storage inlet, s,out denotes refrigerant at the storage outlet, subscript comp 

denotes refrigerant at the compressor inlet, and subscript eev denotes refrigerant at the exit of the 

EEV.  When deriving Eq. 4.5 and Eq. 4.6, it is assumed that refrigerant mass flow rates into and 

out of the storage device are equal. 

Many approaches have been developed for modeling PCM’s, including very 

sophisticated finite element analysis [56], [57]. Here, a model of the TES is presented which is 

detailed enough to capture the internal dynamics of the moving phase change boundary but 

computationally compact enough for control analysis.  For full details of how this model is 

derived and validation of the storage model the reader is referred to [58].  This heat exchanger is 

modeled with a concentric tube inner geometry and a bank of tubes exterior geometry.  A 

schematic of the exterior geometry is shown in Fig. 1.3 and the inner geometry is shown in Fig. 

4.2.  Each tube is decomposed into three fluid regions; the most internal region is refrigerant 

which is used to cool the PCM.  Moving radially outward, the next region is the PCM.  This 

region is discretized into Ns nodes.  The final fluid region is the ambient air.  Each of the three 

fluid regions are separated by walls which have their own thermal inertia. 
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Figure 4.2: Schematic of the concentric tube thermal energy storage system in which node i 

represents a control volume 

This model mathematically describes the properties of the three fluid regions in the TES 

and the heat transfer interactions among these regions.  Similar to the evaporator model, the 

refrigerant section is described by the lumped parameter, moving boundary, switched state space 

method developed in [55].  For the PCM region, an enthalpy formulation is used to describe the 

mechanism by which the material undergoes a change of phase.  This method is used because the 

rate of change of enthalpy is a continuous state over a phase change.  The boundary conditions 

for the inner and outer walls respectively are given by Eq. 4.7 and Eq. 4.8. 

 ( )
inner

TH innerr r
k T Tα

=
∇ = ∆  ( 4.7 ) 

 ( )
outer

TH outerr r
k T Tα

=
∇ = ∆  ( 4.8 ) 

Here T is temperature, α is wall convection coefficient, and kTH is the thermal 

conductivity.  For the j
th

 nodes of the PCM, a one dimensional radial enthalpy distribution is 

assumed, and control volumes are used to derive the governing equations.  The enthalpy of each 
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node is given by Eq. 4.9.  The radial temperature derivatives are given through the finite 

difference form shown in Eq. 4.10 and Eq. 4.11 where ρ is the PCM density, V is the PCM 

volume within a node, A is the surface area at a nodal boundary, ∆r is the radial spacing between 

nodes, and the subscripts inner and outer refer to the inner and outer boundaries, respectively. 

 
1 1

j TH
inner outer

j jPCM PCM
j

dh k dT dT
A A

dt V dr drρ − +

       
= ⋅ +                

 ( 4.9 ) 
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 ( 4.10 ) 
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T TdT
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+

+

− 
= 
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 ( 4.11 ) 

From the nodal enthalpies, temperatures are found from tabular data, assuming constant 

pressure, and algebraic relations are used to relate temperatures to the solidification fraction of 

each node.  This allows one to accurately compute the location of the solidification front. 

The boundary equations for the inner and outer walls are formulated using a similar 

process and are given by Eq. 4.12 and Eq. 4.13. 

 
( )

( )
( )

( ), , , ,

1 , , ,2 2 2 2

, , , ,

4 2wall si TH wall si wall si wall r

wall si wall r wall i

p wall si wall r p wall si wall r

dT k r h r
T T T T

dt C r r r C r rρ ρ

⋅ ⋅ ⋅
= − + −

⋅ − ∆ ⋅ −
( 4.12 ) 

 
( )

( )
( )

( ), , ,

,2 2 2 2

, , , ,

24
s

wall a wall a wall aTH s
N wall a NTU

p wall a wall so p wall a wall so

dT h rk r
T T T

dt C r r r C r rρ ρ

⋅ ⋅⋅
= − + ∆

⋅ − ∆ ⋅ −
( 4.13 ) 

Here subscript wall,si and wall,r refers to the inner and outer surfaces of the wall between 

the refrigerant and the PCM, subscript wall,so and wall,a refer to the inner and outer surfaces of 

the wall between the PCM and the air, ∆TNTU is the air temperature difference calculated in the 

air side formulation (see Eq. 4.15), and Cp is the specific heat. 

The advantage of using the control volume enthalpy method for this TES geometry is that 

it accurately characterizes the location of the phase change front while being computationally 

compact.  This allows one to model changes in heat transfer rates during freezing/melting cycles.  
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This is important for mobile applications which can experience rapid changes in cooling demand 

and consequently sudden transitions between heating and cooling of the PCM. 

The air side formulation is taken from an effectiveness-NTU method used in [59].  This 

method is valid for a bank of tube heat exchangers with air as the exterior fluid.  The method 

begins by finding the outer convection coefficient using Eq. 4.14. 

 
3

1/4

, , 0.36

1 2 ,max

2 Pr
Re Pr

Pr

wall a wall a

D

air s

r

k

ϕα
ϕ ϕ

⋅  
= ⋅ ⋅ ⋅  

 
 ( 4.14 ) 

Here ReD,max is the maximum Reynolds number throughout the tube bank, Pr is the 

Prandtl number of air evaluated at the air inlet temperature, Prs is the Prandtl number of air 

evaluated at the tube surface temperature, and φ1, φ2, and φ3 are correlation constants given in 

[59].  The temperature difference across the tube bank is then calculated using Eq. 4.15.  Once 

∆TNTU is calculated, the air outlet temperature is calculated using Eq. 4.16 where the subscripts 

air,in and air,out refer to the air inlet and outlet of the TES. 

 ( ), ,

,

1 exp o s
NTU air in wall a

air p air

A
T T T

u C

α  − ⋅
∆ = − ⋅ −    ⋅  

 ( 4.15 ) 

 , ,air out air in NTUT T T= −∆  ( 4.16 ) 

For this study the component sizes are taken from a laboratory training stand located at 

the University of Illinois at Urbana-Champaign [60].  The system model includes 5 major 

components: the compressor, condenser, evaporator, expansion valve, and thermal storage 

device. The variable speed semi-hermetic compressor has a maximum speed of 2000 RPM.  The 

tube-and-fin condenser has a tube diameter of 8.1 mm, a tube length of 10.7 m, and a fixed fan 

speed of 0.23 kg/s.  The condenser tube mass is 4.7 kg and the tube specific heat is 0.47 kJ/kg.  

Similarly, the evaporator has the same tube diameter with a length of 11.5 m, a fixed fan speed 

of 0.17 kg/s, a tube mass of 2.7 kg, and a tube specific heat of 0.49 kJ/kg.  Finally, a small TES 

with 2.5 kg of water is used for the storage medium and R134a is used as the refrigerant. 
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4.2 Thermal Management Strategy 

Like the hybrid vehicle, the operation of the PVCC can be decomposed into two distinct 

modes of operation: an ON mode when the compressor is used to pump refrigerant through the 

refrigeration system and an OFF mode when the compressor is shut off and the cooling demand 

is met by the TES.  Using the approach outlined in Chapter 2, logic is presented for switching 

between these two modes and discrete linear model predictive controllers are implemented to 

control the actuators within each mode of operation.  For each mode, the output signals used by 

the controllers are the pressure at the inlet and outlet of the compressor (respectively Pcomp,in and 

Pcomp,out), the TES air inlet temperature (Tair,in), the TES outer wall temperature (Twall,a), the 

cooling capacity delivered by the evaporator (γev), the cooling capacity delivered by the storage 

unit (γs), and the temperature/pressure of refrigerant exiting the evaporator (Tev,ref, Pev,ref).  For 

this study the evaporator and condenser fans are assumed to operate at fixed speeds.  Unlike the 

previous case study, in this example a linear discrete prediction model is derived using system 

ID.  This will demonstrate how the control design method can be adapted to different constraints 

on system knowledge and modeling.  The MATLAB code used to define the MPC in this study 

is given in Appendix I. 

4.2.1 Prediction model 

The complete PVCC system model is highly nonlinear including fluid and heat transfer 

dynamics as well as phase changes in the refrigerant and storage material.  The prediction model 

is a discrete linear approximation of these dynamics derived using a time-domain system 

identification procedure.  Four inputs (compressor speed, expansion valve opening, flow control 

valve command, and refrigerant mass flow rate across the TES) were given random Gaussian 

perturbations about a set of nominal conditions shown in Table 4.1.  A detailed nonlinear model 

of the PVCC was used to predict four desired outputs of the system: the pressure at the inlet of 

the compressor, cooling capacity delivered by the evaporator, a modulated cooling capacity 

delivered by the TES (γs,mod), and the superheat temperature of refrigerant exiting the evaporator 

(TSH,ev).  Superheat is the difference between the refrigerant temperature and its boiling 

temperature.  The cooling capacity delivered by the evaporator and the superheat temperature of 

refrigerant exiting the evaporator are calculated from states of the nonlinear model and fluid 
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properties tables according to Eq. 4.17 and Eq. 4.18.  The modulated cooling capacity delivered 

by the TES is given by Eq. 4.19.  This quantity will be used in the objective function to express 

the predicted cooling capacity of the storage unit relative to the temperature difference between 

the inlet air and TES outer wall measured at the beginning of the prediction horizon.  The time 

scale of temperature change within the PCM is slow relative to the update rate of the model 

predictive control (MPC) so this modification allows one to simplify the identified system 

dynamics without sacrificing accuracy. 

 , , ,ev p air ev air ev airC m Tγ = ⋅ ⋅∆�  ( 4.17 ) 

 , ,SH ev ev ref satT T T= −  ( 4.18 ) 

 
( )

,

,mod

, ,

p air air NTU

s

air in wall a

C u T

T T
γ

⋅ ⋅∆
=

−
 ( 4.19 ) 

Here ∆Te,air is the change in air temperature entering and exiting the evaporator and Tsat is 

the refrigerant saturation temperature.  Using this data a 5-state linear, discrete-time model is 

identified using a standard prediction error/maximum likelihood system identification algorithm 

from the MATLAB System Identification Toolbox [61].  The time step of the discrete model is 

10 seconds since a 10 second update rate will be used for the MPC.  See Appendix C for the 

matrices comprising the state space model.  Since the states of the prediction model have no 

physical meaning, a state estimator is used to estimate the values of these states from 

input/output measurements. 

Table 4.1: Nominal Inputs for System Identification 

Compressor Speed 1200 RPM 

Expansion Valve 14% 

Flow Control Valve 0.05 

Air Mass Flow Rate 0.001 

 

The graphs below show the response of the discrete linear prediction model and the 

detailed nonlinear model for two sets of inputs.  In each case all four inputs are sinusoidal signals 
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with amplitudes of 20% of their mean value.  For the first case the sinusoids were biased by the 

following values: uω = 1200 RPM, ueev = 12.2%, uIV = 0.5, uair = 0.01 kg/s.  These points were 

chosen because they are close to the nominal inputs used for the system ID while respecting 

actuator boundaries.  For the second case the inputs were biased by values away from the system 

ID nominal inputs: uω = 900 RPM, ueev = 10%, uIV = 0.7, uair = 0.01 kg/s.  From Fig. 4.3, one can 

see strong agreement between the two models for case 1.  However, as the inputs move away 

from the system ID values, the prediction model becomes less accurate.  Therefore, when 

constructing the objective function, the integral of the tracking error will also be penalized to 

compensate for model inaccuracies.  Alternatively, one could identify additional state space 

models and then switch between these models based on the current system states and inputs. 

 

Figure 4.3: Prediction and nonlinear model comparison for case 1: 20% deviations about 

operating point near system ID nominal inputs 
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Figure 4.4: Prediction and nonlinear model comparison for case 2: 20% deviations about 

operating point away from system ID nominal inputs 

4.2.2 Supervisory logic 

Since the operation of the PVCC has been decomposed into two modes, supervisor logic 

is used to regulate switching between these modes.  The purpose of this logic is to ensure that 

there is a sufficient temperature gradient between the TES and air entering the storage unit to 

meet the desired cooling demand.  The supervisory logic is given by 4.20.  When the variable 

Flag has a value of 1, the ON mode is used, and when it has a value of 0, the OFF mode is used.    

The default mode of operation is the OFF mode.  This mode is maintained until the air mass flow 

rate command exceeds 90% of its maximum value.  Once this condition occurs, the ON mode is 

active, and it is maintained until the outer wall temperature of the TES is below the melting 
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temperature of the storage medium.  Once this condition occurs, the system switches back to the 

OFF mode. 

 ( )

( )

,max

,

1,                    If 0.90

0,                    If 

1      Else

air air

wall a m

u u

Flag t T T

Flag t

 > ⋅


= <


−

 ( 4.20 ) 

Here uair,max is the maximum air mass flow rate, and Tm is the melting temperature of the 

storage material.  The MATLAB code used to define the supervisory logic in this study is given 

in Appendix J. 

4.2.3 Objective functions 

In each mode of operation, the objective functions are constructed such that the PVCC 

satisfies operational objectives while meeting a desired cooling capacity.  In the OFF mode, the 

compressor is shut down and the storage unit is used to provide the desired cooling capacity.  

Therefore, only the fan on the TES is needed to meet the cooling demand.  The objective 

function for this mode, given by Eq. 4.21, is composed of three terms.  The first term, Eq. 4.22, 

penalizes deviation of the cooling capacity delivered by the TES from the desired cooling 

capacity.  The second term, Eq. 4.23, penalizes using the compressor and evaporator to provide 

cooling by shutting down the compressor (uω,des1 = 0), closing the expansion valve (ueev,des = 0), 

and isolating the TES from the rest of the system (uIV,des = 1).  Finally, the third cost term, Eq. 

4.24, penalizes the integral of the cooling capacity tracking error.  This term is needed to 

compensate for the modeling error introduced by the identified discrete linear prediction model. 
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Here subscript o denotes a measurement made at the beginning of the prediction horizon, 

subscript des denotes the desired value, and subscript max denotes the maximum value of the 

respective variable. 

The objective function for the ON mode is constructed in a similar manner, except the 

operational objectives have changed.  Equations 4.25-4.30 describe the objective function.  In 

this mode the evaporator is used as the primary means of meeting the cooling demand and the 

storage unit can be used to assist the evaporator.  Equation 4.26 shows the tracking objective in 

which there is a penalty on the evaporator meeting the desired cooling demand and on the TES 

meeting the desired cooling demand minus the evaporator cooling capacity measured at the 

beginning of prediction horizon.  In this way, the TES is used to meet the peak demands that 

exceed the evaporator’s capacity.  During this mode, a secondary goal is to operate the 

compressor under conditions which maximize its isentropic efficiency.  The compressor’s 

isentropic efficiency can be characterized by speed and pressure ratio, as shown in Fig. 4.5.  

Therefore, in order to maximize the compressor’s isentropic efficiency, a penalty is placed on 

tracking a desired compressor speed and compressor inlet pressure (see Eq. 4.27).  From Fig. 4.5, 

one can see that the efficiency is maximized for speeds between 1300 and 1700 RPM and 

pressure ratios between 3 and 3.5.  The desired compressor speed was chosen to be 1400 RPM 

and the desired compressor inlet pressure is given by Eq. 4.28.  Similar to the OFF mode, a 

penalty is also placed on the integral of the cooling demand tracking errors, shown in Eq. 4.29 

and Eq. 4.30.  Since a single state space model is used to predict the future response, it is 

straightforward to compute the Hessian matrix for each of the quadratic programming problems.  

The Hessian matrices along with their eigenvalues are given in Appendix D.  From this 

calculation one will find that the Hessian is positive definite and therefore the optimization 

problem is strictly convex. 
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Figure 4.5: Compressor isentropic efficiency map; color bar indicates efficiency  
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For the PVCC, there exist upper and lower constraints on each of the input variables.  

The constraints on compressor speed, flow control valve command, and air mass flow rate, exist 

to ensure that actuator limitations are not exceeded by the controller.  The upper constraint on 

expansion valve opening ensures that the pressure and temperature of the refrigerant drop 

enough to guarantee that only superheated vapor enters the compressor.  In addition to these 

constraints, there are upper and lower limits placed on evaporator superheat to prevent liquid 

from entering the compressor and to ensure that the evaporator is operated in an efficient manner 

(if the superheat temperature is too high then there is poor heat transfer between the air and 

refrigerant in the evaporator).  An upper bound is also placed on the evaporator cooling capacity 

to prevent overly taxing the PVCC system since the TES can be used to aid in meeting peak 

loads.  These constraints are given by Eq. 4.31 through Eq. 4.36. 

 0 RPM 2000 RPMuω≤ ≤  ( 4.31 ) 

 0 1IVu≤ ≤  ( 4.32 ) 

 0% 15%eevu≤ ≤  ( 4.33 ) 

 0 kg/s 0.09 kg/sairu≤ ≤  ( 4.34 ) 

 
o o

,5 C 15 CSH evT≤ ≤  ( 4.35 ) 

 1.5 kWevγ ≤  ( 4.36 ) 

4.3 Simulation Results 

To evaluate the effectiveness of the EMS, several simulations were run with the model 

predictive controller applied to the detailed nonlinear model of the PVCC.  A 10 second update 

rate for the EMS was chosen because this is an order of magnitude faster than the time scale for 

cycling the compressor on.  The following values were used in the objective function: λ1 = λ2 = 

1000, ς = 0.01, and ζ1 = ζ2 = 0.1.  Similar to the hydraulic hybrid vehicle case study, these 

weights ensure that meeting the cooling demand is the primary objective and efficient 

compressor operation is a secondary goal.  For the simulation study, two duty cycles were 

chosen which reflects the long time scale of refrigerated vehicle operation and the aggressive 
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transients that can occur when the truck door is opened, allowing ambient air to enter the truck 

cargo space.  The first is a rural duty cycle for which there are fewer disturbances (door 

openings).  In this duty cycle, there is a long period of low cooling capacity demand between two 

delivery events.  The second duty cycle is an urban duty cycle in which there are frequent door 

openings and the storage unit is expected to have a larger impact.  The duty cycle represents the 

frequent starts/stop one might encounter in a home food delivery truck.  The duty cycles are 

shown in Fig. 4.6.  When the refrigerated truck is traveling between delivery locations, the 

product is well insulated and so the desired cooling capacity is set to 0.85 kW.  When the truck is 

making a delivery, there is a much greater thermal load on the system due to the open door.  

Therefore, to maintain the desired temperature inside the cargo space, the required cooling 

capacity is increased to 2.08 kW (the maximum attainable cooling capacity of the evaporator).  

These magnitudes were chosen because they highlight the limitations of sizing a traditional VCC 

system.  The refrigeration system is sized for peak loading conditions but usually operates at 

conditions off peak demand.  Later it will be demonstrated through simulation how the use of 

storage allows one to shave peak loads and normalize the operation of the compressor. 

    

Figure 4.6: Duty cycles (from left to right: rural, urban)  

We assume here that the refrigerated transport vehicle follows a prescribed trajectory 

wherein the time between delivery events can be predicted.  This information could be extracted 

from data on previous deliveries over the same route.  Therefore, the MPC is allowed to use 

future knowledge of the desired cooling capacity in the prediction horizon.  To assess the value 

of including this information in the MPC, the simulation over the rural duty cycle was run with 
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prediction horizon lengths of 1, 5, 10, 15, and 20 steps.  The compressor energy consumption 

and root mean square (RMS) tracking error for each simulation are shown in Fig. 4.7 and Fig 

4.8.  For very short prediction horizons, both the energy consumption and tracking error are 

large.  Similarly, as the prediction horizon increases (> 5 steps) the energy consumption and 

tracking error increase.  This is due to modeling error having an exacerbated effect for larger 

prediction horizons.  Overall, the magnitude of change in energy consumption and tracking error 

are small between the N = 1 and N = 5 cases, suggesting that including more information about 

the future demand might not be worth the cost to acquire this information (larger processing 

power for solving the optimization problem, more memory for storing data, communication with 

weather monitors, etc.).   

 

Figure 4.7: Energy consumed by the compressor for different prediction horizon lengths 

 

Figure 4.8: RMS tracking error for different prediction horizon lengths 
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Using a prediction horizon length of 5 steps, simulated PVCC response for the rural case 

is shown in Fig. 4.9.  From these results one can see that the thermal management strategy was 

able to track the desired cooling capacity while observing constraints on the inputs and 

evaporator cooling capacity.  The cycle starts with the thermal storage unit completely 

discharged and operating in the ON mode. During this mode, the evaporator and TES are used 

together to meet the cooling demand.  Between delivery events, the storage unit is charged while 

the cooling demand is satisfied by the evaporator.  Once the PCM is completely frozen, the 

system switches to the OFF mode and the compressor is cycled off.  During this mode only the 

TES is used to meet the cooling demand and this operation continues until there is no longer a 

sufficient temperature gradient between the TES and the incoming air to meet the cooling 

demand.  Note that for large cooling demands, when the evaporator and TES are used together, 

the evaporator cooling capacity exceeds the 1.5 kW upper limit.  This slight excess is a result of 

the prediction model errors. 

 

Figure 4.9: Simulated PVCC response for rural duty cycle with a prediction horizon of 5 

steps   
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   The charge/discharge cycle can also be seen in the response of the TES.  For this 

simulation study, a 5-node model was used, and the change in specific enthalpy of each node 

over time is given in Fig. 4.10.  One can see that in the OFF mode, as warm air travels across the 

TES the outer node melts first and then each subsequent node melts until the entire PCM is 

liquid.  In the ON mode, the nodes freeze in the opposite order as refrigerant is pumped through 

the system. 

 

Figure 4.10: Simulated nodal enthalpies over rural duty cycle for a 5 node TES model, 

where each line is a separate node 

Finally, during the ON mode, the compressor is also operated in regions of high 

isentropic efficiency.  Due to the operational constraints, the compressor could not operate at its 

most efficient point.  However, the TMS did find a balance between the compressor speed and 

inlet pressure which yielded high efficiency while respecting the constraints.  From Fig. 4.11 one 

can see that the operating points of the compressor are most densely clustered around compressor 

speeds of 750 to 1250 RPM and pressure ratios of 2 to 3.  This results in an average operating 

efficiency of 37.9%. 

As a baseline for comparison, a conventional VCC was simulated over the same duty 

cycle.  The component models for the PVCC and VCC are identical except the VCC does not 
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include a thermal storage unit.  Optimal set points for the compressor speed and valve were 

found which minimize compressor power.  To meet the 0.85 kW cooling demand, a valve 

opening of 1.15% and a compressor speed of 500 RPM are used (note that 500 RPM is the 

minimum allowed speed for continuous operation), and for the 2.08 kW cooling demand a valve 

opening of 15% and compressor speed of 2000 RPM are needed.  In Fig. 4.11 one can see that 

for the VCC system, the compressor operates over a much larger range of the isentropic 

efficiency map.  Between delivery events, the PVCC and VCC system operate at similar 

efficiencies and therefore it is not surprising that the average efficiency over the entire duty cycle 

is comparable (36.92% for the VCC case).  However, during the delivery events the compressor 

efficiency decreased by 5.5%.  As a result, the PVCC system was able to achieve a 14% decrease 

in compressor power consumption.   

 

Figure 4.11: Compressor isentropic efficiency for PVCC and VCC, color bar indicates 

efficiency, markers indicate simulated compressor operating points  
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reduction in compressor power use.  Figure 4.12 shows the PVCC response and Fig. 4.13 shows 

the TES response.  When comparing the rural and urban duty cycles, it is evident that for 

constant operation and an optimally sized conventional VCC system, inclusion of a thermal 

storage device would have little added benefit.  However, in many mobile applications the 

demand is constantly changing as a result of external disturbances (weather, door openings, etc.) 

and therefore these systems often operate off design points.  In this case, the thermal storage 

allows one to maintain highly efficient compressor operation in the face of thermal disturbances.  

Table 4.2 summarizes the operating efficiency and compressor energy consumption for the two 

cases. 

 

Figure 4.12: Simulated PVCC response for urban duty cycle with a prediction horizon of 5 

steps 
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Figure 4.13: Simulated nodal enthalpies over urban duty cycle for a 5 node TES model, 

where each line is a separate node 

 

Table 4.2: Compressor efficiency and energy consumption for PVCC vs. VCC 

 Avg. Operating Efficiency Energy Consumption 

VCC (Rural) 36.92% 4337 kJ 

VCC (Urban) 35.89% 6779 kJ 

PVCC (Rural) 37.90% 3712 kJ 

PVCC (Urban) 38.57% 4976 kJ 

4.4 Concluding Remarks 

Similar to the case study presented in Chapter 3, the thermal management study on the 

PVCC demonstrates the potential for energy storage coupled with intelligent control to improve 

system efficiency.  For this study system identification is used to derive a discrete linear 

prediction model relating the inputs to the desired system outputs.  Unlike the online 

linearization/discretization which was done in the hybrid vehicle study, this model introduces 
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significant model uncertainty which is mitigated by augmenting the MPC with integral action.  

For this case study, the MPC is also allowed to use exact information about the future cooling 

demand when solving the optimization problem.  Through a simulation study, it was found that 

using this information did not significantly reduce energy consumption or improve tracking 

performance.  This is not surprising since temperature control is a regulation problem and 

therefore the desired cooling capacity is constant for much of the duty cycle.  Using an identified 

state space model for prediction and including look ahead in the cost evaluation are two 

modifications from the hybrid vehicle study which demonstrate the flexibility of the proposed 

EMS design method.  Despite a radically different system architecture, slower system dynamics, 

and a different approach to predicting future response, the proposed EMS design method was 

able to show substantial improvement over a conventional system.  In this case the primary 

benefit of including storage is the ability to level off peak loads and operate the compressor in a 

more constant manner.  Through this load shaping a 14% decrease in energy consumption over a 

rural duty cycle was achieved.  This reduction could be further increased by downsizing the 

compressor such that the most efficient operating point coincides with compressor speeds of 750 

– 1250 RPM and pressure ratios of 2 – 3.  It was also observed that the benefits of the PVVC 

system are more pronounced for a system which makes frequent stops.  For the urban duty cycle, 

the PVCC system achieved a 26% decrease in compressor energy consumption. 
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Chapter 5  Conclusions 

5.1 Summary of Research Contribution 

Improving efficiency and reducing greenhouse gas emissions within the transportation 

sector is a critical societal need.  To this end hybrid vehicles have been developed which offer an 

opportunity for improved efficiency through a combination of energy storage and energy 

management.  These systems span a wide scale of power and weight as well as multiple energy 

domains: mechanical, thermal and electrical.  Therefore a method for designing energy 

management strategies (EMS’s) which could be applied to different architectures, energy 

domains, and applications (passenger vehicle, bus, delivery truck, etc.) was developed in this 

work.  For this method to be generalizable to the entire class of hybrid vehicles, it needed to 

satisfy two criteria: 

1. Computationally compact enough to be implemented in real-time with limited 

computing power  

2. Allow for varying levels of duty cycle preview to be used 

The proposed method uses a three step process to construct the EMS.  First, decompose 

system operation into modes.  Second, construct an optimization problem for each mode, and 

finally design a supervisory logic for regulating mode switching.  This enables one to reduce the 

optimization problem within each mode to a quadratic programming problem.  From an analysis 

of the actuators used in each mode, a set of quadratic cost terms associated with maximizing the 

efficiency of each actuator can be derived.  These cost terms are combined with quadratic 

performance objectives to provide a convex quadratic objective function which can be solved 

online quickly with limited processing power. The model predictive control (MPC) framework is 

used to setup the optimization problem as an online receding horizon optimal controller.  In this 
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way, the proposed methodology achieved the first objective.  The ability of the EMS to be run in 

real-time was validated through hardware-in-the-loop experiments using the Augmented 

Earthmoving Vehicle Powertrain Simulator.   

To satisfy the second objective, the EMS design method utilizes the fact that MPC is an 

online optimization method which can incorporate different prediction horizon lengths and use 

different previews of the duty cycle.  This gives one a great deal of flexibility when choosing 

how to apply the EMS design method.  Through the two case studies, it was demonstrated that 

the proposed method can be implemented with no duty cycle knowledge and short prediction 

horizon lengths for highly uncertain applications, like passenger vehicles.  Conversely, if the 

duty cycle is well known, like a delivery cycle, the EMS can be implemented with complete duty 

cycle knowledge and long prediction horizon lengths.  This flexibility enables one to apply the 

same approach for EMS design to applications with wildly varying levels of uncertainty. 

The generalizability of this method was demonstrated through two case studies: a series 

hydraulic hybrid vehicle (SHHV) and a refrigerated delivery truck.  The SHHV is a passenger 

vehicle which uses a hydrostatic transmission with a high pressure gas charged accumulator for 

energy storage.  The refrigerated delivery truck uses a parallel vapor compression cycle (PVCC) 

system that includes thermal storage.  These case studies employ different architectures, different 

energy domains, and different degrees of knowledge of the system and duty cycle.  However, the 

same method for energy management was able to achieve energy savings for both.  The 

hydraulic hybrid achieved an 11% decrease in fuel consumption over a non-hybrid vehicle 

powertrain for the Urban Dynamometer Driving Schedule.  Similarly, the PVCC system 

achieved a 14% reduction in energy consumption for rural and a 26% reduction in energy 

consumption for urban duty cycles over a conventionally equipped delivery truck.  In both cases, 

these improvements were achieved by applying the procedure outlined in Chapter 2 despite the 

differences in application and problem formulation. 

Finally, the performance of the EMS design method was also benchmarked against two 

alternate methods for designing EMS’s; rule-based and stochastic dynamic programming (SDP).  

Both of these techniques are offline optimization methods that use information about the system 

and duty cycle to minimize fuel consumption.  A simulation study was conducted to determine 

how these three approaches are affected by variations in duty cycle and system parameters.  
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From this study it was observed that the proposed EMS design method is the most robust to these 

perturbations.  This was achieved because the EMS was implemented without making 

assumptions on the duty cycle, unlike the rule-based and SDP approaches.  However, the 

tradeoff for this flexibility is that the EMS was unable to achieve the fuel savings of the SDP 

solution.  This study highlights the classic tradeoff between optimality and robustness which is a 

function of how much knowledge one has of their system.  The greater the information one 

assumes, the more optimal the controller may perform but at the expense of adaptability. 

5.2 Future Work 

This work laid a rigorous framework for designing EMS’s; including objective function 

selection and subsequent receding horizon optimization of energy use in hybrid vehicles.  The 

general framework and tools laid out here can be used to explore other architectures, 

applications, and energy domains.  Two directions for future consideration are how to couple this 

energy management framework with architecture design and how to improve system 

performance through optimization of the supervisory logic. 

Effective energy management is only half of the challenge of fully realizing the potential 

of hybrid vehicles.  Another critical component is optimizing the design of the system, including 

component sizing.  Since the proposed method formulates the EMS from an analysis of 

individual component efficiencies, one has direct and immediate insight into how each 

component affects energy management.  For example, the results of the refrigerated delivery 

truck study could be used to improve the design of the PVCC.  Figure 4.11 clearly shows that to 

improve efficiency the compressor should be downsized such that the peak efficiency occurs for 

speeds around 1000 RPM and pressure ratios of 2.75.  Coupling this EMS design method with 

architecture selection and sizing would allow one to rapidly evaluate many configurations, and 

hopefully converge to an optimal design and EMS. 

Another direction for further development of this work is the design of the supervisory 

logic.  In the present studies the supervisory logics were defined as a set of rules based primarily 

on the state of charge of the storage unit.  These rules were motivated by an understanding of the 

system and its limitations.  However, there is potential to improve these rules by using an 

optimization based approach to design, such as deterministic or stochastic dynamic 
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programming, and allowing the use of duty cycle preview.  From the comparison of the rule-

based, SDP, and MPC approaches to EMS design given in Chapter 3, it is evident that there is 

potential energy savings the current method does not realize.  By using methods like SDP to 

leverage duty cycle preview in the design of the supervisory logic and MPC to perform 

optimization within each mode, it may be possible to combine the best features of each approach. 
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Appendix A  AEVPS Parameters     

Below is a list of the physical parameters used in the dynamic model of the Augmented 

Earthmoving Vehicle Powertrain Simulator (AEVPS). 

Table A.1: AEVPS system parameters 

A 2 (m
2
) Dm 4.005 (cm

3
.rad

-1
) 

be 0.29 (N.m(rad.s
-1

)
-1

) Dp 4.216 (cm
3
.rad

-1
) 

bL 0.5 (N.m(rad.s
-1

)
-1

) Ie 0.383 (kg.m
2
) 

bm 0.0463 (N.m(rad.s
-1

)
-1

) Im 0.0019 (kg.m
2
) 

bw 1 (N.m(rad.s
-1

)
-1

) k 1.4 

βd 53.23 (MPa) KP 37.4 (cm
3
.rad

-2
) 

βu 266.13 (MPa) Ppr 5.17 (MPa) 

Cap 1.89*10
4
 (cm

3
) ρair 1.2 (kg.m

-3
) 

ψd 9.259 (cm
3
(s.MPa)

-1
) rw 0.31 (m) 

Cdrag 0.4 Vd 1854 (cm
3
) 

κe 2.45*10
-4

 (Nm(rad.s
-1

)
-2

) Vu 2785 (cm
3
) 

ψu 0.7 (cm
3
(s.MPa)

-1
)   
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Appendix B  AEVPS MPC Simulation Study     

A simulation study was conducted in which the energy management strategy described in 

Chapter 2 was applied to the Augmented Earthmoving Vehicle Powertrain Simulator model and 

was commanded to track the Urban Dynamometer Driving Schedule.  For all simulations the 

update rate of the model predictive control was set to 1 Hz with a prediction horizon of 5 seconds 

and the parameters of the supervisory logic were: τthreshold equals 30 Nm, Pthreshold equals 6.5 MPa, 

and v equals 1.9 V.  The update rate and prediction horizon length were chosen such that the 

optimization problem could be solved in real-time, under the hardware constraints, while 

achieving a balance between the prediction step size and prediction length.  Furthermore, a step 

size of 1 second and a prediction horizon of 5 steps were found to be successful in previous 

studies [14].  In this simulation study the effect of relative weighting of different component 

efficiencies within the objective function and the length of the dwell time were evaluated with 

respect to fuel consumption.  Expanded versions of the objective functions presented in Chapter 

3 were used in which the engine, pump, and valve efficiencies were each explicitly considered.  

Equations B.1 through B.6 give the objective functions used in this study. 
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The λ2 term seeks to optimize engine efficiency by placing the engine on the “sweet spot” 

of the engine efficiency map, see Fig. 3.4.  This corresponds to a desired engine speed (ωe,des2) of 

109 rad/sec (58% of max emulated engine speed) and a desired engine torque (ue,des2) of 91.8 Nm 

(55% of max emulated engine power).  The other cost terms of the objective function are the 

same as those described in Section 3.2.3.  For the OFF mode, motor speed tracking had the 

highest priority with λ5 = 1000 and λ6 = 1.  During the ON mode, every combination of the 

efficiency term weightings (λ2, λ3, and λ4) was evaluated in increments of 0.1, such that they 

satisfied the constraints given by Eq. B.7. 

     2 3 4 1λ λ λ+ + =  ( B.7 ) 

Equation B.7 is used to ensure that the magnitude of the efficiency cost within the 

objective function is always small compared to the tracking cost which is given a much larger 

weight (λ1 = 1000).  In addition, each sweep of efficiency term weightings was evaluated at 

different dwell times ranging from 10 to 60 seconds in increments of 10 seconds.  The results 

from one such study are summarized in Fig. B.1 and Table B.1.  Each corner of the triangle in 

Fig. B.1 represents a case in which only one actuator is considered in the objective function.  To 

ensure that the objective function is well posed, the case for λ2 = 0, λ3 = 0, and λ4 = 1 was 

approximated with λ2 = 0, λ3 = 0.01, and λ4 = 0.99.  This ensures that the objective function has 
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cost terms for 3 of the 7 variables characterizing the system (4 states, 3 inputs) with 4 linear 

constraints from the prediction model.  Note that for the simulation results presented in Chapter 3 

the fuel consumption rate is lower bounded by 0.43g.s
-1

 (fuel consumption under idle 

conditions).  This bound was not imposed in this simulation study, meaning when the throttle 

command is zero, the fuel consumption is zero.  However, the same trends for objective function 

weighting were observed and the same combination of weights yielded the lowest overall 

consumption for both methods of computing fuel consumption.  

 

Figure B.1: Efficiency term weighting sweep for dwell time of 10 seconds, max fuel 

consumption: 1.5 kg, min fuel consumption: 1.1 kg 

Table B.1: Fuel consumptions for different objective function weights 

 Fuel Consumption 

Engine Only 1.51 

Pump Only 1.32 

Valve Only 1.20 

Best Case 1.10 

 

Contrary to conventional wisdom which would have one believe that optimizing engine 

efficiency would yield maximum powertrain efficiency, these results demonstrate that focusing 
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on the pump and valve efficiencies will yield superior overall efficiency.  From Fig. B.1 one can 

see that the λ2 = 0, λ3 = 0.1, and λ4 = 0.9 case yielded the smallest fuel consumption.  By 

comparison, the “engine only” case consumed 35% more fuel.  The “valve only” case (λ2 = 0, λ3 

= 0.01, and λ4 = 0.99) achieved the second lowest consumption but the tighter tracking of 

upstream pressure forced the pump to operate at lower displacements and therefore overall 

efficiency was reduced. 

 

  Figure B.2: Simulated fuel consumptions for different dwell times (λ2 = 0, λ3 = 0.1, λ4 = 0.9) 

The consumption distribution shown in Fig. B.1 was found to be consistent for all dwell 

times.  However, with increasing dwell time there was an increase in fuel consumption.  Results 

for the lowest fuel consumption case are shown in Fig. B.2.  The increase in fuel consumption is 

a consequence of decreases in engine efficiency and pump displacement and an increase in 

average accumulator pressure during the ON mode.  For the 60 second dwell time case, there 

was a 4% decrease in average engine efficiency, an 18% decrease in average pump displacement, 

and a 6% increase in average accumulator pressure compared to the 10 second dwell time case.  

The increase in the average accumulator pressure leads to greater losses across the valve.  From 

Fig. B.2 one can see that there is a nearly linear increase in fuel consumption with increasing 

dwell time.  Therefore, one may be able to achieve significant reduction in unnecessary vehicle 

wear and tear with a modest increase in fuel consumption.      
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Appendix C  PVCC System ID 

Below are the state space matrices used to define the prediction model for the parallel 

vapor compression cycle system.  These matrices were derived using system ID applied to a 

nonlinear model of this system. 

      

0.6758 0.0092 0.0161 0.0472 0.0230

0.0190 0.0217 0.0710 0.0633 0.1248

0.0126 0.0427 0.2014 0.1445 0.4158

0.0456 0.0588 0.1654 0.5619 0.0980

0.0100 0.0910 0.3167 0.2048 0.5677

A

− 
 
 
 = −
 
− 
 − 

 ( C.1 ) 

     

0.0001 0.0093 0.5646 1.5405

0.0001 0.0007 0.1696 384.8474

0.0020 0.0674 0.0499 4.5734

0.0000 0.0006 0.2701 32.6867

0.0013 0.0320 0.0337 64.8587

B

− 
 − − 
 = − −
 

− − 
 − − 

 (C.2 ) 

     

42.4777 10.5127 108.0660 60.9211 6.4975

0.9536 0.0031 0.0646 0.0263 0.0143

0.0001 0.0023 0.0000 0.0001 0.0001

8.9621 0.7357 2.9827 18.1416 4.6270

C

− − − 
 − =
 −
 
− − 

 (C.3 ) 
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Appendix D  Thermal Management Hessian Matrix   

For the thermal management the Hessian matrix for the ON and OFF mode objective 

functions can be computed using the system matrices given in Appendix C.  The Hessian 

matrices for the N = 5 case without any weighting or normalization factors are given below. 

Hessian for ON mode columns 1:5: 

1.05E+00 2.50E-05 -1.04E-03 -9.13E-04 -7.69E-04 

2.50E-05 1.05E+00 9.85E-06 -1.05E-03 -9.15E-04 

-1.04E-03 9.85E-06 1.05E+00 -1.05E-05 -1.06E-03 

-9.13E-04 -1.05E-03 -1.05E-05 1.05E+00 -1.24E-05 

-7.69E-04 -9.15E-04 -1.06E-03 -1.24E-05 1.05E+00 

-1.79E+00 -1.94E-01 -1.23E-01 -9.81E-02 -7.93E-02 

8.99E-03 -1.79E+00 -1.95E-01 -1.25E-01 -9.84E-02 

4.29E-02 7.27E-03 -1.79E+00 -1.97E-01 -1.25E-01 

3.53E-02 4.08E-02 4.82E-03 -1.80E+00 -1.98E-01 

2.71E-02 3.22E-02 3.71E-02 5.81E-04 -1.80E+00 

-3.23E+00 -3.01E+00 -2.00E+00 -1.29E+00 -8.23E-01 

1.70E-01 -3.26E+00 -3.04E+00 -2.03E+00 -1.31E+00 

1.87E-01 1.34E-01 -3.30E+00 -3.09E+00 -2.05E+00 

1.24E-01 1.43E-01 8.33E-02 -3.36E+00 -3.10E+00 

5.71E-02 6.67E-02 7.61E-02 8.05E-03 -3.37E+00 

6.93E+02 -1.22E+02 -1.12E+02 -9.74E+01 -8.38E+01 

5.80E+00 6.92E+02 -1.23E+02 -1.13E+02 -9.74E+01 

-1.03E+01 4.37E+00 6.90E+02 -1.25E+02 -1.13E+02 

-1.04E+01 -1.20E+01 2.37E+00 6.88E+02 -1.25E+02 

-1.03E+01 -1.23E+01 -1.42E+01 -1.98E-01 6.88E+02 
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Hessian for ON mode columns 6:10: 

-1.79E+00 8.99E-03 4.29E-02 3.53E-02 2.71E-02 

-1.94E-01 -1.79E+00 7.27E-03 4.08E-02 3.22E-02 

-1.23E-01 -1.95E-01 -1.79E+00 4.82E-03 3.71E-02 

-9.81E-02 -1.25E-01 -1.97E-01 -1.80E+00 5.81E-04 

-7.93E-02 -9.84E-02 -1.25E-01 -1.98E-01 -1.80E+00 

6.44E+01 7.92E+00 5.04E+00 3.80E+00 2.80E+00 

7.92E+00 6.42E+01 7.72E+00 4.80E+00 3.47E+00 

5.04E+00 7.72E+00 6.40E+01 7.44E+00 4.40E+00 

3.80E+00 4.80E+00 7.44E+00 6.37E+01 6.94E+00 

2.80E+00 3.47E+00 4.40E+00 6.94E+00 6.29E+01 

1.49E+02 1.29E+02 8.45E+01 5.26E+01 3.04E+01 

3.43E+01 1.44E+02 1.25E+02 7.99E+01 4.74E+01 

2.28E+01 2.93E+01 1.39E+02 1.19E+02 7.30E+01 

1.44E+01 1.70E+01 2.29E+01 1.32E+02 1.10E+02 

6.41E+00 7.58E+00 9.19E+00 1.37E+01 1.19E+02 

-2.30E+04 5.20E+03 4.54E+03 3.73E+03 2.93E+03 

-1.99E+03 -2.31E+04 5.05E+03 4.34E+03 3.41E+03 

-1.27E+03 -2.13E+03 -2.33E+04 4.81E+03 3.97E+03 

-1.13E+03 -1.44E+03 -2.35E+03 -2.36E+04 4.38E+03 

-1.07E+03 -1.32E+03 -1.68E+03 -2.65E+03 -2.41E+04 

Hessian for ON mode columns 11:15: 

-3.23E+00 1.70E-01 1.87E-01 1.24E-01 5.71E-02 

-3.01E+00 -3.26E+00 1.34E-01 1.43E-01 6.67E-02 

-2.00E+00 -3.04E+00 -3.30E+00 8.33E-02 7.61E-02 

-1.29E+00 -2.03E+00 -3.09E+00 -3.36E+00 8.05E-03 

-8.23E-01 -1.31E+00 -2.05E+00 -3.10E+00 -3.37E+00 

1.49E+02 3.43E+01 2.28E+01 1.44E+01 6.41E+00 

1.29E+02 1.44E+02 2.93E+01 1.70E+01 7.58E+00 

8.45E+01 1.25E+02 1.39E+02 2.29E+01 9.19E+00 

5.26E+01 7.99E+01 1.19E+02 1.32E+02 1.37E+01 

3.04E+01 4.74E+01 7.30E+01 1.10E+02 1.19E+02 

1.18E+03 9.10E+02 6.03E+02 3.42E+02 1.33E+02 

9.10E+02 9.53E+02 6.92E+02 3.99E+02 1.59E+02 

6.03E+02 6.92E+02 7.39E+02 4.83E+02 1.98E+02 

3.42E+02 3.99E+02 4.83E+02 5.21E+02 2.53E+02 

1.33E+02 1.59E+02 1.98E+02 2.53E+02 2.51E+02 

-3.03E+04 2.03E+04 1.60E+04 1.11E+04 5.34E+03 

-3.29E+04 -3.12E+04 1.85E+04 1.31E+04 6.28E+03 

-2.30E+04 -3.42E+04 -3.34E+04 1.49E+04 7.37E+03 

-1.60E+04 -2.46E+04 -3.69E+04 -3.78E+04 8.18E+03 

-1.14E+04 -1.79E+04 -2.77E+04 -4.18E+04 -4.53E+04 
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Hessian for ON mode columns 16:20: 

6.93E+02 5.80E+00 -1.03E+01 -1.04E+01 -1.03E+01 

-1.22E+02 6.92E+02 4.37E+00 -1.20E+01 -1.23E+01 

-1.12E+02 -1.23E+02 6.90E+02 2.37E+00 -1.42E+01 

-9.74E+01 -1.13E+02 -1.25E+02 6.88E+02 -1.98E-01 

-8.38E+01 -9.74E+01 -1.13E+02 -1.25E+02 6.88E+02 

-2.30E+04 -1.99E+03 -1.27E+03 -1.13E+03 -1.07E+03 

5.20E+03 -2.31E+04 -2.13E+03 -1.44E+03 -1.32E+03 

4.54E+03 5.05E+03 -2.33E+04 -2.35E+03 -1.68E+03 

3.73E+03 4.34E+03 4.81E+03 -2.36E+04 -2.65E+03 

2.93E+03 3.41E+03 3.97E+03 4.38E+03 -2.41E+04 

-3.03E+04 -3.29E+04 -2.30E+04 -1.60E+04 -1.14E+04 

2.03E+04 -3.12E+04 -3.42E+04 -2.46E+04 -1.79E+04 

1.60E+04 1.85E+04 -3.34E+04 -3.69E+04 -2.77E+04 

1.11E+04 1.31E+04 1.49E+04 -3.78E+04 -4.18E+04 

5.34E+03 6.28E+03 7.37E+03 8.18E+03 -4.53E+04 

1.01E+07 -1.02E+06 -1.10E+06 -1.10E+06 -1.12E+06 

-1.02E+06 9.96E+06 -1.18E+06 -1.28E+06 -1.30E+06 

-1.10E+06 -1.18E+06 9.77E+06 -1.40E+06 -1.52E+06 

-1.10E+06 -1.28E+06 -1.40E+06 9.52E+06 -1.68E+06 

-1.12E+06 -1.30E+06 -1.52E+06 -1.68E+06 9.21E+06 

Hessian for OFF mode columns 1:5: 

1.00E+00 1.47E-12 9.02E-13 4.19E-13 3.99E-14 

1.47E-12 1.00E+00 6.91E-13 3.29E-13 3.15E-14 

9.02E-13 6.91E-13 1.00E+00 2.39E-13 2.30E-14 

4.19E-13 3.29E-13 2.39E-13 1.00E+00 1.56E-14 

3.99E-14 3.15E-14 2.30E-14 1.56E-14 1.00E+00 

3.96E-11 4.01E-11 3.05E-11 1.65E-11 1.61E-12 

-2.05E-11 -5.55E-13 8.42E-12 7.38E-12 7.76E-13 

-5.60E-11 -3.96E-11 -1.57E-11 -2.66E-12 -1.52E-13 

-6.88E-11 -5.20E-11 -3.65E-11 -1.34E-11 -1.17E-12 

-5.00E-11 -3.94E-11 -2.88E-11 -1.96E-11 -2.02E-12 

4.13E-09 2.34E-09 1.18E-09 4.51E-10 4.10E-11 

5.35E-09 3.10E-09 1.54E-09 5.84E-10 5.29E-11 

5.51E-09 4.03E-09 2.06E-09 7.74E-10 6.99E-11 

4.96E-09 3.76E-09 2.65E-09 1.05E-09 9.44E-11 

3.29E-09 2.59E-09 1.90E-09 1.29E-09 1.33E-10 

-2.36E-05 -1.51E-05 -8.47E-06 -3.61E-06 -3.37E-07 

-2.34E-05 -1.52E-05 -8.50E-06 -3.62E-06 -3.38E-07 

-2.01E-05 -1.49E-05 -8.54E-06 -3.64E-06 -3.39E-07 

-1.53E-05 -1.17E-05 -8.27E-06 -3.66E-06 -3.41E-07 

-8.58E-06 -6.76E-06 -4.95E-06 -3.36E-06 -3.46E-07 
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Hessian for OFF mode columns 6:10: 

3.96E-11 -2.05E-11 -5.60E-11 -6.88E-11 -5.00E-11 

4.01E-11 -5.55E-13 -3.96E-11 -5.20E-11 -3.94E-11 

3.05E-11 8.42E-12 -1.57E-11 -3.65E-11 -2.88E-11 

1.65E-11 7.38E-12 -2.66E-12 -1.34E-11 -1.96E-11 

1.61E-12 7.76E-13 -1.52E-13 -1.17E-12 -2.02E-12 

1.00E+00 2.30E-09 -5.30E-10 -2.16E-09 -2.02E-09 

2.30E-09 1.00E+00 1.52E-09 -3.72E-10 -9.72E-10 

-5.30E-10 1.52E-09 1.00E+00 1.59E-09 1.90E-10 

-2.16E-09 -3.72E-10 1.59E-09 1.00E+00 1.47E-09 

-2.02E-09 -9.72E-10 1.90E-10 1.47E-09 1.00E+00 

-1.77E-07 -1.56E-07 -1.31E-07 -9.68E-08 -5.14E-08 

-1.94E-08 -2.18E-07 -1.76E-07 -1.27E-07 -6.63E-08 

1.03E-07 -7.28E-08 -2.44E-07 -1.70E-07 -8.75E-08 

1.59E-07 3.29E-08 -1.06E-07 -2.37E-07 -1.18E-07 

1.33E-07 6.39E-08 -1.25E-08 -9.65E-08 -1.66E-07 

2.19E-04 5.51E-04 7.09E-04 6.72E-04 4.22E-04 

-2.17E-04 5.58E-04 7.12E-04 6.75E-04 4.23E-04 

-4.73E-04 1.23E-04 7.20E-04 6.78E-04 4.25E-04 

-5.10E-04 -1.31E-04 2.86E-04 6.86E-04 4.27E-04 

-3.47E-04 -1.67E-04 3.26E-05 2.52E-04 4.34E-04 

Hessian for OFF mode columns 11:15: 

4.13E-09 5.35E-09 5.51E-09 4.96E-09 3.29E-09 

2.34E-09 3.10E-09 4.03E-09 3.76E-09 2.59E-09 

1.18E-09 1.54E-09 2.06E-09 2.65E-09 1.90E-09 

4.51E-10 5.84E-10 7.74E-10 1.05E-09 1.29E-09 

4.10E-11 5.29E-11 6.99E-11 9.44E-11 1.33E-10 

-1.77E-07 -1.94E-08 1.03E-07 1.59E-07 1.33E-07 

-1.56E-07 -2.18E-07 -7.28E-08 3.29E-08 6.39E-08 

-1.31E-07 -1.76E-07 -2.44E-07 -1.06E-07 -1.25E-08 

-9.68E-08 -1.27E-07 -1.70E-07 -2.37E-07 -9.65E-08 

-5.14E-08 -6.63E-08 -8.75E-08 -1.18E-07 -1.66E-07 

1.00E+00 1.57E-05 1.07E-05 6.81E-06 3.38E-06 

1.57E-05 1.00E+00 1.43E-05 8.92E-06 4.36E-06 

1.07E-05 1.43E-05 1.00E+00 1.20E-05 5.75E-06 

6.81E-06 8.92E-06 1.20E-05 1.00E+00 7.78E-06 

3.38E-06 4.36E-06 5.75E-06 7.78E-06 1.00E+00 

-8.36E-02 -7.43E-02 -6.29E-02 -4.79E-02 -2.77E-02 

-5.53E-02 -7.50E-02 -6.31E-02 -4.81E-02 -2.78E-02 

-3.51E-02 -4.66E-02 -6.37E-02 -4.83E-02 -2.80E-02 

-2.02E-02 -2.64E-02 -3.53E-02 -4.88E-02 -2.81E-02 

-8.81E-03 -1.14E-02 -1.50E-02 -2.03E-02 -2.85E-02 
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Hessian for OFF mode columns 16:20: 

-2.36E-05 -2.34E-05 -2.01E-05 -1.53E-05 -8.58E-06 

-1.51E-05 -1.52E-05 -1.49E-05 -1.17E-05 -6.76E-06 

-8.47E-06 -8.50E-06 -8.54E-06 -8.27E-06 -4.95E-06 

-3.61E-06 -3.62E-06 -3.64E-06 -3.66E-06 -3.36E-06 

-3.37E-07 -3.38E-07 -3.39E-07 -3.41E-07 -3.46E-07 

2.19E-04 -2.17E-04 -4.73E-04 -5.10E-04 -3.47E-04 

5.51E-04 5.58E-04 1.23E-04 -1.31E-04 -1.67E-04 

7.09E-04 7.12E-04 7.20E-04 2.86E-04 3.26E-05 

6.72E-04 6.75E-04 6.78E-04 6.86E-04 2.52E-04 

4.22E-04 4.23E-04 4.25E-04 4.27E-04 4.34E-04 

-8.36E-02 -5.53E-02 -3.51E-02 -2.02E-02 -8.81E-03 

-7.43E-02 -7.50E-02 -4.66E-02 -2.64E-02 -1.14E-02 

-6.29E-02 -6.31E-02 -6.37E-02 -3.53E-02 -1.50E-02 

-4.79E-02 -4.81E-02 -4.83E-02 -4.88E-02 -2.03E-02 

-2.77E-02 -2.78E-02 -2.80E-02 -2.81E-02 -2.85E-02 

3.62E+02 2.89E+02 2.17E+02 1.45E+02 7.24E+01 

2.89E+02 2.91E+02 2.18E+02 1.45E+02 7.26E+01 

2.17E+02 2.18E+02 2.20E+02 1.46E+02 7.29E+01 

1.45E+02 1.45E+02 1.46E+02 1.47E+02 7.33E+01 

7.24E+01 7.26E+01 7.29E+01 7.33E+01 7.44E+01 

Using the above matrices, one can calculate the eigenvalues and confirm that the 

Hessians are positive definite. 

Eigenvalues for the ON mode Hessian: 

1.04E-04 

1.38E-04 

2.36E-04 

6.85E-04 

1.33E-02 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

2.97E+00 

5.03E+00 

1.34E+01 

7.02E+01 

1.31E+03 

4.54E+06 

1.08E+07 

1.10E+07 

1.11E+07 

1.11E+07 



102 

 

Eigenvalues for the OFF mode Hessian: 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

1.00E+00 

2.09E+01 

2.69E+01 

4.39E+01 

1.08E+02 

8.95E+02 
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Appendix E  MPC Guide   

In this appendix a discussion is presented of how the quadratic efficiency objectives 

presented in this work are transformed using a linear discrete prediction model into a function of 

just the control sequence.  This implementation guide only considers quadratic objective 

functions so all cost terms will be composed of proportional and squared terms of the outputs and 

inputs.  The motivation for considering only quadratic objective functions is that this limits the 

complexity of the problem and for the linear/discrete prediction model, one is guaranteed to have 

a convex optimization problem and under some additional constraints a strictly convex problem.  

For this work, each of the quadratic efficiency objectives can be expressed as linear 

combinations of the four elements shown in Eq. (E.1) – (E.4).  

 ( ) ( )jc R i y i⋅ ⋅  ( E.1 ) 

 ( ) ( )j kc y i y i⋅  ( E.2 ) 

 ( ) ( )j kc u i y i⋅  ( E.3 ) 

 ( )jc u i⋅  ( E.4 ) 

Here c is a constant coefficient, R is a vector of values dependent on the time index 

(typically the reference trajectory), y is an output, u is an input, subscripts j and k are the indices 

of the variable (i.e. uk is the k
th

 input and yj is the j
th

 output), and i is the discrete time index.  

Below is a derivation of how each of the above terms can be expressed as a function of the 

control sequence and MATLAB code for generating each cost term.  Throughout this discussion, 

the control sequence over the prediction horizon will be denoted by V, given by Eq. (E.5) where 
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N is the length of the prediction horizon.  In addition, there are many terms throughout these 

derivations which take the form of Eq. (E.6).  These terms should be interpreted as the 

summation from i = 1 to N of the r
th

 element of the j
th

 row of Z raised to the i
th

 power. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 20 , 1 , , 1 , 0 , , 1 , , 0 , , 1
T

m mV u u u N u u N u u N = − − − � � � �  ( E.5 ) 

 ( ) ( )
1

N
i

j
i

Z r
=

∑  ( E.6 ) 

Element: 

( )
1

1
N

j

i

J c u i
=

= ⋅ −∑
 

( )

( ) ( ) ( ) ( )( )
1

1

0 1 2 1

N

j

i

j j j j

J c u i

c u u u u N

=

= ⋅ −

= ⋅ + + + + −

∑

�
 

( )
( ) ( )1 1 11

Collect all terms which are proportional to 

0 ,1 ,0
N j N m jN

u

F
× − × −×

⋅

 =    
J c F V→ = ⋅ ⋅  

 
function[H,F]=MPC_H_F_for_c_ui(B,c,State1,n) 
% Computes the H and F matrices associated with a cost term, c*u_state1(i), 

% that results from expanding a quadratic objective function.  This term is 
% summed from i = 0 to n-1. 

  
[y,m] = size(B); 

  
F=zeros(1,m*n); 
H=zeros(m*n,m*n); 

  
for i=1:n 
    F(i+(State1-1)*n) = 1; 
end 

  
F = c*F; 
end 
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Element: 

( ) ( )
1

1 1
N

j k

i

c u i u i
=

⋅ − −∑
 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1

1 1

0 0 1 1 2 2 1 1

N

j k

i

j k j k j k j k

J c u i u i

c u u u u u u u N u N

=

= ⋅ − −

= ⋅ ⋅ + ⋅ + ⋅ + + − ⋅ −

∑

�

 

( ) ( )

( ) ( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

1 1 1

1

1 1

1 1

1

Collect all terms which include 

assume 

0

0 0.5 0

0

0 0.5
0

0

N k N

N j N j N j N m jN N

N j k N

N N k N N j kN N

N m j N m j

N m j N j

u u

j k

I

H

I

− ×

− × − − × −×

− − ×

× − × − −×

− + × − +

− × −

⋅ ⋅ ⋅

>

      
      

⋅      
      

      =
  ⋅          

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1

1

1

if 

0 0 0

0 0

0 0 0

N j N j N j N N j N m j

N N j N N m jN N

N m j N j N m j N N m j N m j

j k

H I

− × − − × − × −

× − × −×

− × − − × − × −




=

 
 

=  
 
  

 

TJ c V H V→ = ⋅ ⋅ ⋅  

 

function[H,F]=MPC_H_F_for_c_ui_uj(B,c,State1,State2,n) 
% Computes the H and F matrices associated with a cost term, 

% c*u_state1(i)*u_state2(i), that results from expanding a quadratic 
% objective function.  This term is summed from i = 0 to n-1. 

  
[y,m] = size(B); 

  
F=zeros(1,m*n); 
H=zeros(m*n,m*n); 

  
for k=1:n; 
    H(k+(State1-1)*n,k+(State2-1)*n)= H(k+(State1-1)*n,k+(State2-1)*n)+1/2; 
    H(k+(State2-1)*n,k+(State1-1)*n)= H(k+(State2-1)*n,k+(State1-1)*n)+1/2; 
end 

  
H = c*H; 
end 
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Element: 

( )
1

N

i

jc y iJ
=

⋅=∑
 

( )

( ) ( )( )(
( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( ) )

1

1 1 2

0 0

0 0 1

0 0 1 2

0 0 1 1

j

N

i

j

j

j

N N N N

j

J

c C A X G L B U

C A A X G L B U B U

C A A A X G L B U B U B U

C A

c y

X A G

i

L A B U A B U B U N

=

− − −

=

 = ⋅ ⋅ + ⋅ + ⋅ 

 + ⋅ ⋅ ⋅ + ⋅ + ⋅ + ⋅
 

 + ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ + ⋅ + ⋅
 

 + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + + ⋅ − 

⋅



∑

�

�

 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
1 1

1 1

Collect all terms which are proportional to 

, , ,

1 , 2 , ,

N N
i i

j jj j
i i

j j j

u

f r C A B r C A B r C B r

F f f f m

−
− −

= =

⋅

 
= ⋅ ⋅ ⋅ ⋅ ⋅ 
 

 =  

∑ ∑ �

�

 

J c F V→ ≈ ⋅ ⋅  

 
function[H,F]=MPC_H_F_for_c_yi(A,B,C,c,R,State,n) 
% Computes the H and F matrices associated with a cost term, c*R(i)*y(i), 

that 
% results from expanding a quadratic objective function.  This term is summed 
% from i = 1 to n. 

  
[y,m] = size(B); 
[r,p] = size(C); 

  
Z = zeros(r,m*n); 

  
F=zeros(1,m*n); 
H=zeros(m*n,m*n); 

  
for i=1:n; 
    for j=1:r; 
        for k=1:m; 
            Q = C*(A^(i-1))*B; 
            Z(j,k+(i-1)*m) = Q(j,k); 
        end 
    end 
end 

  
for i=1:m 
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    for j=1:n 
        for k=1:n+1-j 
            F(k+(i-1)*n)=F(k+(i-1)*n)+R(k+j-1)*Z(State,i+m*(j-1)); 
        end 
    end 
end 

  
F = c*F; 
end 

Element: 

( ) ( )
1

N

j k

i

J c y i y i
=

= ⋅∑
 

( ) ( )

( ) ( )( ) ( ) ( )( )(
( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

( )

1

0 0 0 0

0 0 1 0 0 1

0 0 1 2

   0 0 1 2

0

N

j k

i

j k

j k

j

k

N N

J c y i y i

c C A X G L B U C A X G L B U

C A A X G L B U B U C A A X G L B U B U

C A A A X G L B U B U B U

C A A A X G L B U B U B U

C A X A

=

−

= ⋅

   = ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅   

   + ⋅ ⋅ ⋅ + ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ + ⋅
   

 + ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ + ⋅ + ⋅
 

 ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ + ⋅ + ⋅
 

+ ⋅ ⋅ +

∑

�

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 1 2

1 1 2

0 1 1

  0 0 1 1

N N

j

N N N N

k

G L A B U A B U B U N

C A X A G L A B U A B U B U N

− −

− − −

 ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + + ⋅ −  
  ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + + ⋅ −  

�

�
 

( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )

1 1 1 1

,

1 2

, , , , 1, 1
1 1 10 1 2

1

, ,

1 11

,

Collect all terms which include 

1 1 1 1
, , , ,

2 2 2 2

1 1
, ,

2 2

,

T T
i z i i z i

j k
j k k j

N N

j k j k j k j k i z N
i i iz z z N

N N

j k j k

i iz

j k

u u

Q C A B C A B C A B C A B

Q r p Q r p Q r p Q r p

Q r p Q r p

h r p

+ − − + − −

−

= = −
= = == = = −

− −

= ==

⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

=

∑ ∑ ∑

∑

�

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

, , 1, 2
10 3

2 2 2

, , , , 1, 1
1 1 12 3 0

, , , ,1, 1 1, 2 1, 1 1, 0

1 1
, ,

2 2

1 1 1 1
, , , ,

2 2 2 2

1 1 1 1
, , , ,

2 2 2 2

j k j k i z N
iz z N

j k j k j k j k i z
i i iz N z N z

j k j k j k j ki z N i z N i z i z

Q r p Q r p

Q r p Q r p Q r p Q r p

Q r p Q r p Q r p Q r p

= = −
== = −

= =
= = == − = − =

= = − = = − = = = =














∑ ∑

∑ ∑ ∑

�

� � 
 � �

�

�

( ) ( )

( ) ( )

, ,

, ,

1,1 1,

,1 ,

j k j k

j k j k

h h m

H

h m h m m












 
 
 



 
 

=  
 
 

�

� 
 �

�
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( )

( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 1

,

1

, , , , 0
1 1

, , ,

Collect all terms which are proportional to 

0 0

, , ,

1 , 2 , ,

i i i i i i

j k
j k k j

N N

j k j k j k j k
i

i i

j k j k j k

u

w C A X C A G L C A B C A X C A G L C A B

f r w r w r w r

F F f f f m

− − − −

−

=
= =

⋅

= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 
 
 

 = =  

∑ ∑ �

�
 

( )TJ c V H V F V→ ≈ ⋅ ⋅ ⋅ + ⋅  

function[H,F]=MPC_H_F_for_c_yi_yj(A,B,C,Xo,c,State1,State2,n) 
% Computes the H and F matrices associated with a cost term, 

% Integral(c*y1(i)*y2(i)), that results from expanding a quadratic objective 
% function.  This term is summed from i = 1 to n. 

  
[y,m] = size(B); 
[r,p] = size(C); 

  
Z = zeros(r,m*n); 

  
F=zeros(1,m*n); 
H=zeros(m*n,m*n); 

  
for i=1:n; 
    for j=1:r; 
        for k=1:m; 
            Q = C*(A^(i-1))*B; 
            Z(j,k+(i-1)*m) = Q(j,k); 
        end 
    end 
end 

  

  
for j=1:m 
    for k=1:n 
        for l=1:n+1-k 
            q=C*A^(l+k-1); 
            for i = 1:r 
                F(l+(j-1)*n)=F(l+(j-1)*n) 

                  +q(State1,i)*Xo(i)*Z(State2,j+m*(k-1)) 

                  +Z(State1,j+m*(k-1))*q(State2,i)*Xo(i); 
            end 

             
            for a=1:m 
                H(l+(j-1)*n,l+(a-1)*n) = H(l+(j-1)*n,l+(a-1)*n) 

                  +(1/2)*(Z(State1,j+m*(k-1))*Z(State2,a+m*(k-1)) 

                  +Z(State2,j+m*(k-1))*Z(State1,a+m*(k-1))); 

                 
                if l >=2 
                    for o=1:l-1 
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                        H(o+(j-1)*n,l+(a-1)*n)= H(o+(j-1)*n,l+(a-1)*n) 

                          +(1/2)*(Z(State1,j+m*(l+k-1-o))*Z(State2,a+m*(k-1)) 

                          +Z(State2,j+m*(l+k-1-o))*Z(State1,a+m*(k-1))); 
                        H(l+(j-1)*n,o+(a-1)*n)= H(l+(j-1)*n,o+(a-1)*n) 

                          +(1/2)*(Z(State1,j+m*(k-1))*Z(State2,a+m*(l+k-1-o)) 

                          +Z(State2,j+m*(k-1))*Z(State1,a+m*(l+k-1-o))); 
                    end 
                end 
            end 
        end 
    end 
end 

  

  
F = c*F; 
H = c*H; 
End 

 

Element: 

( ) ( )
1

1 1
N

j k

i

J c u i y i
=

= ⋅ − −∑
 

( ) ( )

( )( ) ( )(
( )( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) )

1

1 2 2 3

1 1

0 0

1 0 0

2 0 0 1

1 0 0 1 2

N

j k

i

kj

j k

j k

N N N N

j k

J c u i y i

c U C X

U C A X G L B U

U C A A X G L B U B U

U N C A X A G L A B U A B U B U N

=

− − − −

= ⋅ − −

   = ⋅ ⋅  

   + ⋅ ⋅ ⋅ + ⋅ + ⋅   

  + ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ + ⋅   

  + − ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + + ⋅ −   

∑

�

�
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( ) ( )

( )

( )

( ) ( ) ( )
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From the above derivations one can see that after all terms which are independent of the 

input vector are removed, each term of the objective function results in an F vector, an H matrix, 

or a combination of the two.  Therefore, the final objective function is simply the summation of 

these terms as shown in Eq. (E.7). 

 
1 1

T

i i

i i

J V H V F V
= =

   
= ⋅ ⋅ + ⋅   

   
∑ ∑  ( E.7 ) 

Here Hi and Fi are the i
th

 H matrix and F vector resulting from the decomposition of the 

objective function.   
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Appendix F  AEVPS Operation Guide   

The Augmented Earthmoving Vehicle Powertrain Simulator (AEVPS) is a complex 

hydro-mechanical powertrain with energy storage and computer control.  Below is a discussion 

of how to operate this system and setup MATLAB based control of the system.  The structure 

and major components of this experimental system were described in Section 3.1.  Here a more 

detailed description of the operation is presented.  Specifically, instructions are given for how to 

turn the system on/off, how the electrical connections are configured, and how to setup computer 

control.  In addition to the electric motor, variable displacement pump, gas charged accumulator, 

valve manifold, and three load units, the AEVPS also has two computers for controlling the 

system and manual valves for changing the physical architecture.  One computer, denoted 

Compeng, is used exclusively for engine control.  Compeng uses a model of an internal combustion 

engine to predict the engine speed based on throttle command and loading.  This engine speed is 

then used as a reference for the electric motor.  This computer uses WinCon to generate a real 

time executable program from Simulink models.  The second computer, Comppow, is a dSPACE 

box which is used to run the energy management strategy and vehicle load emulation.  Real time 

executable programs are generated from a Simulink model and downloaded onto the dSPACE 

box.  Figure F.1 shows the dSPACE box. 
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Figure F.1: dSPACE box 

The AEVPS can be setup in two different physical configurations through manipulation 

of a pair of manual valves.  It is very important that these valves be setup properly before 

turning on the hardware.  Failure to check the valve configuration could result in an 

incomplete hydraulic circuit which may lead to over pressurization and damage of components.  

In the configuration shown on the left of Fig. F.2, the gas charged accumulator is isolated from 

the circuit and there is no storage.  In the configuration shown on the right Fig. F.2, the gas 

charged accumulator is part of the circuit and energy storage is possible.  The manual valve 

directly below the accumulator goes directly to the tank and is used to drain the accumulator 

between experiments.  During operation it should be closed (handle is perpendicular to the drain 

hose).  To open the valve, move the handle so that it is parallel with the drain hose.  Fig. F.3 

shows the drain valve configurations.  Properly positioning the manual valves is the only 

physical setup required for the AEVPS.  However, it is always good practice to open and close 

the drain valve before an experiment, in case the accumulator has pressurized fluid within it. 
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Figure F.2: Manual valve bank; left: no accumulator, right: accumulator 

 

Figure F.3: Drain valve; left is closed, right is open 

To turn on the system, there are a series of components which must be turned on in 

sequence.  Note that these steps assume that the computers are already on and the real time 

executable controllers have already been generated.  Instructions for using the computers and 

setting up the controllers are provided later.  The following sequence is used to turn on the 

AEVPS. 

1. Turn the control cabinet on by turning the large lever clockwise to the “On” 

position.  See Fig. F.4 for an image of the lever. 

2. Switch up the “Drive Enable” toggle switch, shown in Fig. F.5. 

3. Turn on the amplifier shown in Fig. F.6. 
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Once these steps are complete the AEVPS is ready to receive inputs from the computers.  

When activating computer control, it is recommended that the program running on Compeng be 

started first and then Comppow.  To shut down the AEVPS, the same steps should be run in 

reverse. 

 

Figure F.4: Control cabinet and power lever 

 

Figure F.5: “Drive Enable” toggle switch on control cabinet 

 

Figure F.6: Amplifier  
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Between the AEVPS, Compeng, and Comppow there are many electrical connections for 

transferring inputs and measurements.  Figures F.7 - F.10 show schematics of the input and 

output connections of each component.  Table F.1 is a list of each input to the AEVPS and its 

associated number.  Table F.2 is a list of each measurement and its associated number. 

Table F.1: AEVPS Input signals 

1 AC motor speed 16 
Pressure relief valve command for load 

unit 2 

9 Displacement Command 19 Valve command for load unit 3 

12 Valve command for load unit 1 20 
Pressure relief valve command for load 

unit 3 

13 
Pressure relief valve command for load 

unit 1 
31 Engine load estimate 

15 Valve command for load unit 2   

 

Table F.2: AEVPS measurement signals 

2 AC motor torque 11 
Pressure downstream of valve for load 

unit 1 

3/4 AC motor speed 14 Hydraulic motor speed for load unit 1 

5 Pressure of load unit 1 17 
Pressure downstream of valve for load 

unit 2 

6 Pressure of load unit 2 18 Hydraulic motor speed for load unit 2 

7 Pressure of load unit 3 21 
Pressure downstream of valve for load 

unit 3 

8 Pump displacement 22 Hydraulic motor speed for load unit 3 

10 Upstream pressure   
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Figure F.7: AEVPS electric connection schematic 

 

Figure F.8: Compeng electric connection schematic 

 

Figure F.9: Comppow electric input connection schematic 
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Figure F.10: Comppow electric output connection schematic 

The final component of properly using the AEVPS is to setup the control strategies.  As 

discussed previously, Compeng is used for engine emulation.  The Simulink model 

“AEVPS_Eng_Emulation”, which can be accessed from the desktop, contains an engine model 

with the appropriate input/output blocks.  Figure F.11 shows the Simulink block diagram.  This 

model takes in a throttle command from Comppow, the AC motor speed measurement, and an 

estimate of the load torque on the emulated engine.  The output of this model is the desired speed 

of the AC motor.  To produce a real time executable program, click on “Build” from the WinCon 

dropdown menu, see Fig. F.12.  Once this program is produced, the WinCon toolbar shown in 

Fig. F.13 will appear.  From this toolbar one can open plot windows of signals and then save that 

recorded data for offline analysis.  The signals of most interest are “Speed (rad/sec)” which is the 

AC motor speed measurement, “Speed_sim (rad/sec)” is the reference speed from the engine 

model, and “Torque (N-m) is the estimated load torque from Comppow.  The green “START” 

button is used to launch the engine emulation. 
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Figure F.11: Simulink model used for engine emulation 

 

Figure F.12: WinCon dropdown menu 

 

Figure F.13: WinCon Server toolbar, the plot icon is outlined 

The powertrain control and load emulation are handled by Comppow, the dSPACE box. 

To use Comppow one must first build a Simulink model and download it using the ControlDesk 
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software.  ControlDesk is the software interface for managing the dSPACE box.  Before turning 

on the computer connected to the dSPACE box, the box must be on.  Once the computer is on, 

launch ControlDesk from the start menu, see Fig. F.14, and then open MATLAB.  Navigate the 

MATLAB working directory to the folder “AEVPS_Start” located on the desktop.  In this folder 

there are two files “AEVPS_basic_interface.mdl” and “Vehicle_Parameters.m”,  The m-file 

defines parameters for the load emulation and should be executed before running any program in 

which load emulation is needed.  Figure F.15 shows the Simulink model titled 

“AEVPS_basic_interface”.  This model can be used as the bases for any controller interacting 

with the AEVPS.  Simply, add the controller to this model and route signals to the appropriate 

inputs and outputs. The dSPACE I/O blocks are configured for the connections shown in Fig. F.9 

and Fig. F.10.  One can add or remove inputs and outputs through the dSPACE I/O GUI.  The 

GUI can be accessed by double clicking on the “Outputs” and “Inputs” Simulink blocks.  Figure 

F.16 shows the Simulink blocks and GUI’s for the dSPACE I/O’s.  To download a model to 

dSPACE access the “Tools” dropdown menu, select “Real-Time Workshop”, and then “Build 

Model…”.  Figure F.17 shows the menu sequence. 

From Fig. F.15 one can see that a manual switch is included in this model.  This provides 

a software means of shutting down the AEVPS.  This signal gives a throttle and displacement 

command of zero and opens the valve connected to load unit 1 (if other load units are needed 

copy the appropriate block for their inputs as well).  The valve is opened to allow the 

accumulator to drain.  It is recommended that this switch be used to shut down the AEVPS and 

drain the accumulator before turning off the physical components.  If the physical components 

are turned off, without draining the accumulator, then the manual drain valve can be used to 

empty the accumulator.   
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 Figure F.14: ControlDesk launch from start menu 

 

Figure F.15: Simulink diagram with dSPACE I/O connections and load emulation 
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Figure F.16: dSPACE I/O blocks and GUI, left: Simulink blocks, center: Outputs GUI, 

right: Inputs GUI 

 

Figure F.17: Comppow build dropdown menu 

 Once the program is built and downloaded to the dSPACE box, the program is managed 

through the ControlDesk interface. This interface is shown in Fig. F.18 along with a list of 

important features.  If a program is running on the dSPACE box, there will be a green triangle 

next to the ds1005 icon.  To view/save data coming into the dSPACE box and enable manual 

inputs, a layout must first be created.  Once a new layout is started, the first tool which should be 

added is the “CaptureSettings” tool.  This can be accessed through the “Data Acquisition” tab.  

This tool allows one to specify the time length over which data is captured, the downsampling of 
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the data, and which variables are captured.  To configure these settings, one must enter animation 

mode using the mode selection buttons.  The default mode is edit mode which is used to edit the 

layout.  Animation mode is used when collecting data so one can see the graphs evolve in real 

time.  To configure the “CaptureSettings” tool, choose the model from the dropdown menu. 

Another common component of a layout is the “PlotterArray” .  This tool is used to plot 

data.  Once the tool is on the layout, variable tags can be dragged and dropped onto the tool to 

plot them.  One “PlotterArray” can be used to plot multiple variables.  To stop a program that is 

running on the dSPACE box, simply click the red square.  Finally, when shutting down comppow 

remember to turn of the computer first, and then the dSPACE box. 

 

 

Figure F.18: ControlDesk GUI 

1. Indicator that program is running on dSPACE box 

2. Add new layout button 
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3. Layout where graphical interface for sending inputs and collecting data 

4. Data acquisition tools 

5. CaptureSettings tool 

6. PlotterArray tool 

7. Variable tags 

8. Mode selection (Edit, Test, Animation) 

9. Stop/Play buttons 
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Appendix G  Hydraulic Hybrid EMS Code   

Below is the MATLAB code used for the embedded MATLAB block used to define the 

MPC in the hybrid vehicle study.  Note that for this system, the states are the outputs and the 

references values are constant throughout the prediction horizon.  This code also includes code 

for a Newton’s method solver of the optimization problem. 

function [u1,u2,u3] = fcn(n_m_des,C,a_o,uv_o,n_e_o,P_u_o,P_d_o,a11,a12,a13,a14,a21, 

                          a22,a23,a24,a31,a32,a33,a34,a41,a42,a43,a44,b11,b12,b13, 

                          b21,b22,b23,b31,b32,b33,b41,b42,b43, n, Lambda1, Lambda2,                  

                          Plow, Phigh, Lambda3, Lambda4, n_m_max, n_e_max, T_e_max,  

                          pu_max) 

%#eml 

K_P = 37.4; 

 

T_e_o = K_P*a_o*P_u_o+(121/(1185*0.8))*((2+0.048*((220/188.5)*(30/pi)*n_e_o) 

        +1.0336e-05*((220/188.5)*(30/pi)*n_e_o)^2)*.014*53.05)+0.2407*n_e_o; 

 

if T_e_o >= 120 

    T_e_o = 120; 

End 

 

if C == 1 

    n_e_des1 = 109.4-n_e_o; 

    T_des1 = 91.793-T_e_o; 

    n_e_des2 = 76-n_e_o; 

    T_des2 = 96.8-T_e_o; 

    pu_des = 7-P_u_o; 

else 

    n_e_des1 = 60-n_e_o; 

    T_des1 = 0-T_e_o; 

    n_e_des2 = 60-n_e_o; 

    T_des2 = 0-T_e_o; 

    pu_des = 7-P_u_o; 

    Lambda2 = 1; 

    Lambda3 = 0; 

    Lambda4 = 0; 

End 

 

%% Initialization and declaration %% 

QP1 = [-T_e_o*ones(n,1);-a_o*ones(n,1);-uv_o*ones(n,1)]; 

QP2 = [(121-T_e_o)*ones(n,1);(0.314-a_o)*ones(n,1);(5-uv_o)*ones(n,1)]; 

A=[a11,a12,a13,a14;a21,a22,a23,a24;a31,a32,a33,a34;a41,a42,a43,a44]; 

B=[b11,b12,b13;b21,b22,b23;b31,b32,b33;b41,b42,b43]; 
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y,m] = size(B); 

Xo=zeros(y,1); 

[Za,Zb]=Za_Zb_pressure_bounds_obj(A,B,Xo,Plow-P_u_o,Phigh-P_u_o,n); 

IC = zeros(m*n,1); 

U=zeros(m*n,1); 

H=zeros(m*n,m*n); 

F=zeros(1,m*n); 

EG = zeros(m*n,1); 

%% End %% 

  

%% Execution %% 

[H,F,P_star]=H_F_obj_AEVPS_full(A,B,Xo,n_m_des,n_e_des1,n_e_des2,T_des1,T_des2, 

                                pu_des,Lambda1,Lambda2,Lambda3,Lambda4,n_m_max, 

                                n_e_max,T_e_max,pu_max,n); 

%% Newton's Method%% 

[U]=Newton_Opt_Quad_boundries_AEVPS(2*H,F,IC,QP1,QP2,Za,Zb,P_star,2,0.01,0.5, 

                                    1e-3,100,100,100); 

%% End %% 

  

%% Output %% 

u1 =U(1)+T_e_o; 

u2 =U(n+1)+a_o; 

u3=U(2*n+1)+uv_o; 

%% End %% 

end 

  

function[Za,Zb]=Za_Zb_pressure_bounds_obj(A,B,Xo,Plow,Phigh,n) 

% Computes the Za and Zb matrices for the Pressure bounded between Plow and Phigh. 

  

[Za1,Zb1]=MPC_Constraint_for_xi_greater_than_c(A,B,Xo,Plow,2,n); 

[Za2,Zb2]=MPC_Constraint_for_xi_less_than_c(A,B,Xo,Phigh,2,n); 

  

Za = [Za1;Za2]; 

Zb = [Zb1;Zb2]; 

end 

  

function[Za,Zb]=MPC_Constraint_for_xi_greater_than_c(A,B,Xo,c,State,n) 

% Computes the Za and Zb matrices associated with a constraint term, x_state(i)<c. 

% This term is summed from i = 1 to n 

  

[y,m] = size(B); 

  

C = zeros(y,m*n); 

  

Za = zeros(n,m*n); 

Zb = -c*ones(n,1); 

  

for i=1:n; 

    for j=1:y; 

        for k=1:m; 

            Q = (A^(i-1))*B; 

            C(j,k+(i-1)*m) = Q(j,k); 

        end 

    end 

end 

  

for j=1:m 

    for k=1:n 

        for l=1:n+1-k 

            Za(l+k-1,l+(j-1)*n) = -C(State,j+(k-1)*m); 

        end 
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    end 

end 

  

for i=1:n 

    for j=1:y 

        q=A^(i); 

        Zb(i) = Zb(i)+q(State,j)*Xo(j); 

    end 

end 

end 

  

function[Za,Zb]=MPC_Constraint_for_xi_less_than_c(A,B,Xo,c,State,n) 

% Computes the Za and Zb matrices associated with a constraint term, x_state(i)<c. 

% This term is summed from i = 1 to n 

  

[y,m] = size(B); 

  

C = zeros(y,m*n); 

  

Za = zeros(n,m*n); 

Zb = c*ones(n,1); 

  

for i=1:n; 

    for j=1:y; 

        for k=1:m; 

            Q = (A^(i-1))*B; 

            C(j,k+(i-1)*m) = Q(j,k); 

        end 

    end 

end 

  

for j=1:m 

    for k=1:n 

        for l=1:n+1-k 

            Za(l+k-1,l+(j-1)*n) = C(State,j+(k-1)*m); 

        end 

    end 

end 

  

for i=1:n 

    for j=1:y 

        q=A^(i); 

        Zb(i) = Zb(i)-q(State,j)*Xo(j); 

    end 

end 

end 

  

function[H,F,P_star]=H_F_obj_AEVPS_full(A,B,Xo,n_m_des,n_e_des1,n_e_des2,T_des1, 

                                        T_des2,pu_des,Lambda1,Lambda2,Lambda3, 

                                        Lambda4,n_m_max,n_e_max,T_e_max,pu_max,n) 

% Computes the H and F matrices for the following objective function:  

% J = Lambda1*((n_m-n_m_des)/n_m_max)^2 

%     +Lambda2*((n_e-n_e_des1)/n_e_max)^2+Lambda2*((T_eng-T_des1)/T_e_max)^2 

%     +Lambda3*((n_e-n_e_des1)/n_e_max)^2+Lambda2*((T_eng-T_des2)/T_e_max)^2 

%     +Lambda4*((uv-uv_des)/uv_max)^2 

% Note all terms are with respect to delta variables, delta_x = x-x_o 

%P_star is minimum cost associated with H F matrices for quadratic 

%objective function.  Assume J=0 is achievable 

%% 

P_star = 0; 

%% 
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[H1,F1]=MPC_H_F_for_c_xi_xj_Integ(A,B,Xo,1,4,4,n); 

[H2,F2]=MPC_H_F_for_c_xi_Integ(A,B,-2*n_m_des,4,n); 

%% 

[H3,F3]=MPC_H_F_for_c_xi_xj_Integ(A,B,Xo,1,1,1,n); 

[H4,F4]=MPC_H_F_for_c_xi_Integ(A,B,-2*n_e_des1,1,n); 

%% 

[H5,F5]=MPC_H_F_for_c_ui_uj_Integ(B,1,1,1,n); 

[H6,F6]=MPC_H_F_for_c_ui_Integ(B,-2*T_des1,1,n); 

%% 

[H7,F7]=MPC_H_F_for_c_xi_xj_Integ(A,B,Xo,1,1,1,n); 

[H8,F8]=MPC_H_F_for_c_xi_Integ(A,B,-2*n_e_des2,1,n); 

%% 

[H9,F9]=MPC_H_F_for_c_ui_uj_Integ(B,1,1,1,n); 

[H10,F10]=MPC_H_F_for_c_ui_Integ(B,-2*T_des2,1,n); 

%% 

[H11,F11]=MPC_H_F_for_c_xi_xj_Integ(A,B,Xo,1,2,2,n); 

[H12,F12]=MPC_H_F_for_c_xi_Integ(A,B,-2*pu_des,2,n); 

%% 

H = Lambda1*(1/n_m_max^2)*(H1+H2)+Lambda2*(1/n_e_max^2)*(H3+H4) 

    +Lambda2*(1/T_e_max^2)*(H5+H6)+Lambda3*(1/n_e_max^2)*(H7+H8) 

    +Lambda3*(1/T_e_max^2)*(H9+H10)+Lambda4*(1/pu_max^2)*(H11+H12); 

 

F = Lambda1*(1/n_m_max^2)*(F1+F2)+Lambda2*(1/n_e_max^2)*(F3+F4) 

    +Lambda2*(1/T_e_max^2)*(F5+F6)+Lambda3*(1/n_e_max^2)*(F7+F8) 

    +Lambda3*(1/T_e_max^2)*(F9+F10)+Lambda4*(1/pu_max^2)*(F11+F12); 

%% 

for i=1:n 

    Ao=A^(n); 

    P_star = P_star-Lambda1*(Ao(4,:)*Xo-n_m_des)^2-Lambda2*(Ao(1,:)*Xo-n_e_des1)^2 

             -Lambda2*T_des1^2-Lambda3*(Ao(1,:)*Xo-n_e_des2)^2-Lambda3*T_des2^2 

             -Lambda4*(Ao(2,:)*Xo-pu_des)^2; 

end 

end 

  

function[H,F]=MPC_H_F_for_c_xi_xj_Integ(A,B,Xo,c,State1,State2,n) 

% Computes the H and F matrices associated with a cost term,  

% Integral(c*x_state1(i)*x_state2(i)), that results from expanding a  

% quadratic objective function.  This term is summed from i = 1 to n. 

  

[y,m] = size(B); 

  

C = zeros(y,m*n); 

  

F=zeros(1,m*n); 

H=zeros(m*n,m*n); 

  

for i=1:n; 

    for j=1:y; 

        for k=1:m; 

            Q = (A^(i-1))*B; 

            C(j,k+(i-1)*m) = Q(j,k); 

        end 

    end 

end 

  

  

for j=1:m 

    for k=1:n 

        for l=1:n+1-k 

            q=A^(l+k-1); 

            for i = 1:y 
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                F(l+(j-1)*n)=F(l+(j-1)*n) 

                            +(n+2-k-l)*q(State1,i)*Xo(i)*C(State2,j+m*(k-1)) 

                            +(n+2-k-l)*C(State1,j+m*(k-1))*q(State2,i)*Xo(i);                     

            end 

             

            for a=1:m 

                H(l+(j-1)*n,l+(a-1)*n) = H(l+(j-1)*n,l+(a-1)*n)+(n+2-k-l)*(1/2)* 

    (C(State1,j+m*(k-1))*C(State2,a+m*(k-1))+C(State2,j+m*(k-1))*C(State1,a+m*(k-1))); 

                 

                if l >=2 

                    for o=1:l-1 

                        H(o+(j-1)*n,l+(a-1)*n)= H(o+(j-1)*n,l+(a-1)*n) 

                                                +(n+2-k-l)*(1/2)* 

(C(State1,j+m*(l+k-1-o))*C(State2,a+m*(k-1))+C(State2,j+m*(l+k-1-o))*C(State1,a+m*(k-

1))); 

                        H(l+(j-1)*n,o+(a-1)*n)= H(l+(j-1)*n,o+(a-1)*n) 

                                                +(n+2-k-l)*(1/2)* 

(C(State1,j+m*(k-1))*C(State2,a+m*(l+k-1-o))+C(State2,j+m*(k-1))*C(State1,a+m*(l+k-1-

o))); 

                    end 

                end 

            end 

        end 

    end 

end 

  

  

F = c*F; 

H = c*H; 

end 

  

function[H,F]=MPC_H_F_for_c_xi_Integ(A,B,c,State,n) 

% Computes the H and F matrices associated with a cost term, Integral(C*x_state(i)),  

% that results from expanding a quadratic objective function.  This term is summed  

% from i = 1 to n. 

  

[y,m] = size(B); 

  

C = zeros(y,m*n); 

  

F=zeros(1,m*n); 

H=zeros(m*n,m*n); 

  

for i=1:n; 

    for j=1:y; 

        for k=1:m; 

            Q = (A^(i-1))*B; 

            C(j,k+(i-1)*m) = Q(j,k); 

        end 

    end 

end 

  

for i=1:m 

    for j=1:n 

        for k=1:n+1-j 

            F(k+(i-1)*n)=F(k+(i-1)*n)+(n+2-j-k)*C(State,i+m*(j-1)); 

        end 

    end 

end 

  

F = c*F; 
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end 

  

function[H,F]=MPC_H_F_for_c_ui_uj_Integ(B,c,State1,State2,n) 

% Computes the H and F matrices associated with a cost term, % 

Integral(c*u_state1(i)*u_state2(i)), that results from expanding a quadratic objective  

% function.  This term is summed from i = 0 to n-1. 

  

[y,m] = size(B); 

  

F=zeros(1,m*n); 

H=zeros(m*n,m*n); 

  

for k=1:n; 

    H(k+(State1-1)*n,k+(State2-1)*n)= H(k+(State1-1)*n,k+(State2-1)*n)+(n+1-k)*1/2;    

H(k+(State2-1)*n,k+(State1-1)*n)= H(k+(State2-1)*n,k+(State1-1)*n)+(n+1-k)*1/2;  

end 

  

H = c*H; 

end 

  

function[H,F]=MPC_H_F_for_c_ui_Integ(B,c,State1,n) 

% Computes the H and F matrices associated with a cost term, Integral(c*u_state1(i)),  

% that results from expanding a quadratic objective function.  This term is summed  

% from i = 0 to n-1. 

  

[y,m] = size(B); 

  

F=zeros(1,m*n); 

H=zeros(m*n,m*n); 

  

for i=1:n 

    F(i+(State1-1)*n) = n+1-i; 

end 

  

F = c*F; 

end 

  

function[X]=Newton_Opt_Quad_boundries_AEVPS(H,F,Xi,Low,High,C,UB,P_star,mu,alpha,beta,

eps,max_itr_dual,max_itr_primal,max_itr_line) 

%Newtons method based  optimization for a quadratic objective function of the form  

% 1/2*x'*H*x+F*x subject to Low <= X <= High and C*X <= UB where C is a matrix and UB 

% is a vector (implimented as barrier function) 

X = Xi; 

m = 2*length(X)+length(UB); 

q = m/(0.5*X'*H*X+F*X-P_star); 

         

for k=1:max_itr_dual 

    for i=1:max_itr_primal 

        grad1_F = q*(H*X+F'); 

        grad2_F = q*H; 

        for j=1:length(X) 

            grad1_F(j) = grad1_F(j)-((1/(X(j)-Low(j))+1/(X(j)-High(j)))); 

            grad2_F(j,j) = grad2_F(j,j)+((1/(X(j)-Low(j))^2+1/(X(j)-High(j))^2)); 

            for n=1:length(UB) 

                grad1_F(j) = grad1_F(j)-C(n,j)/(C(n,:)*X-UB(n)); 

                for l=1:length(X) 

                    grad2_F(j,l) = grad2_F(j,l)+C(n,j)*C(n,l)/(C(n,:)*X-UB(n))^2; 

                end 

            end 

        end 

        N_step = -grad2_F\grad1_F; 
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        N_dec_2 = -grad1_F'*N_step; 

        if N_dec_2/2 <= eps 

            break 

        end 

        t = 1; 

        A = q*(0.5*(X+t*N_step)'*H*(X+t*N_step)+F*(X+t*N_step)); 

        B = q*(0.5*X'*H*X+F*X)+alpha*t*grad1_F'*N_step; 

        for j=1:length(X) 

            A = A-(real(log(complex(X(j)+t*N_step(j)-Low(j))))+real(log(complex(-

(X(j)+t*N_step(j)-High(j)))))); 

            B = B-(real(log(complex(X(j)-Low(j))))+real(log(complex(-(X(j)-

High(j)))))); 

        end 

        for n=1:length(UB) 

            A = A-real(log(complex(-(C(n,:)*(X+t*N_step)-UB(n))))); 

            B = B-real(log(complex(-(C(n,:)*X-UB(n))))); 

        end 

        for i_line=1:max_itr_line 

            if A < B 

                break 

            end 

            t = beta*t; 

            A = q*(0.5*(X+t*N_step)'*H*(X+t*N_step)+F*(X+t*N_step)); 

            B = q*(0.5*X'*H*X+F*X)+alpha*t*grad1_F'*N_step; 

            for j=1:length(X) 

                A = A-(real(log(complex(X(j)+t*N_step(j)-Low(j))))+real(log(complex(-

(X(j)+t*N_step(j)-High(j)))))); 

                B = B-(real(log(complex(X(j)-Low(j)))+log(complex(-(X(j)-High(j)))))); 

            end 

            for n=1:length(UB) 

                A = A-real(log(complex(-(C(n,:)*(X+t*N_step)-UB(n))))); 

                B = B-real(log(complex(-(C(n,:)*X-UB(n))))); 

            end 

        end 

        X = X+t*N_step; 

    end 

    if m/q < eps 

        break 

    end 

    q = mu*q; 

end 

end 
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Appendix H  Hydraulic Hybrid Logic Code   

Below is the MATLAB code used to define the supervisory logic in the hybrid vehicle 

study.  This code is implemented as an embedded MATLAB block. 

function y  = fcn(Teng,n_m_des,Pu,Pd,Time, T_dwell_mpc) 

%#eml 

  

%% Initialization and decleration %% 

persistent Flag1 t_trigger % Makes Matlab retain the value of the variables between 

                           % function calls.  The variables are still local 

if isempty (Flag1) 

    Flag1 = 0; 

end 

if isempty (t_trigger) 

    t_trigger = 0; 

end 

Delta_P = Pu - Pd; 

    if Delta_P < 0 

        Delta_P = 0; 

    end 

%% End %% 

  

%% Execution %% 

if (Teng > 30 || Pu <= 6.5) && Flag1 == 0 

    Flag1 = 1; 

    t_trigger = Time; 

end 

  

if Flag1 == 1 && Time <= t_trigger+T_dwell_mpc 

    C = 1; 

else if Flag1 == 1 && n_m_des <= 58*sqrt(Delta_P)/4.216; 

        C = 2; 

        Flag1 = 0; 

        t_trigger = 0; 

    else if Flag1 == 1 

            C = 1; 

        else 

            C = 2; 

            Flag1 = 0; 

            t_trigger = 0; 

        end 

    end 

end 
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%% End %% 

  

%% Output %% 

y = C; 

%% End %% 
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Appendix I  Thermal Study EMS Code   

Below is the MATLAB code used for the MPC in the hybrid vehicle study.  This code 

uses the ‘quadprog’ command to solve the optimization problem.  This code also allows for a 

time varying desired cooling capacity and includes cost on the integral of the tracking error.  

This code is implemented as an embedded MATLAB block. 

function [u1,u2,u3,u4] = 

fcn(Time,Pert,P_low_d,kspeed_d,EEV_d,IV_d,E_rate,S_rate,T_lower,T_upper, 

CoolCap_E_old,Diff_temp,Delta_x1,Delta_x2,Delta_x3,Delta_x4,Delta_x5, error_e, 

error_s1, error_s2, A_long_on, B_long_on, C_long_on, kspeed_n_on, EEVC_n_on, IVC_n_on, 

m_air_s_n_on, n, CoolCap_max, kspeed_max, Lambda1, Lambda2, Lambda3, P_low_max, 

A_long_off, B_long_off, C_long_off, Mode, kspeed_n_off, EEVC_n_off, IVC_n_off, 

m_air_s_n_off, EEV_max, Lambda4, Beta_on, Ts, Beta_off, CoolCap_P, 

Cool_Cap_s_mod_n_off, Cool_Cap_e_n_on) 

 

%#eml 

 

eml.extrinsic('quadprog','optimset') 

Time = floor(Time); 

CoolCap_D = zeros(1,n); 

CoolCap_D(1) = CoolCap_P(Time); 

for i = 1:n-1 

    CoolCap_D(i+1) = CoolCap_P(Time+i*Ts)+Pert*(rand(1)-0.5)*CoolCap_P(Time+i*Ts); 

end 

  

%% Initialization and declaration %% 

 

if Mode <= 0.5 

 

    %OFF Mode% 

    QP1 = [(0-kspeed_n_off)*ones(n,1);(0-EEVC_n_off)*ones(n,1);(0-

IVC_n_off)*ones(n,1);(0.0-m_air_s_n_off)*ones(n,1)]; 

    QP2 = [(2000-kspeed_n_off)*ones(n,1);(15-EEVC_n_off)*ones(n,1);(1-

IVC_n_off)*ones(n,1);(0.09-m_air_s_n_off)*ones(n,1)]; 

 

Else 

 

    %ON Mode% 

    QP1 = [(0-kspeed_n_on)*ones(n,1);(0-EEVC_n_on)*ones(n,1);(0-

IVC_n_on)*ones(n,1);(0.0-m_air_s_n_on)*ones(n,1)]; 

    QP2 = [(2000-kspeed_n_on)*ones(n,1);(15-EEVC_n_on)*ones(n,1);(1-

IVC_n_on)*ones(n,1);(0.09-m_air_s_n_on)*ones(n,1)]; 
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End 

 

[y,m] = size(B_long_on); 

Xo=[Delta_x1;Delta_x2;Delta_x3;Delta_x4;Delta_x5]; 

IC = zeros(m*n,1); 

U=zeros(m*n,1); 

H=zeros(m*n,m*n); 

F=zeros(1,m*n); 

%% End %% 

  

%% Execution %% 

 

if Mode <= 0.5 

 

    %OFF Mode% 

 

    CoolCap_d_s = (CoolCap_D./Diff_temp)-Cool_Cap_s_mod_n_off; 

    

[H,F]=H_F_obj_OFF(A_long_off,B_long_off,C_long_off,Xo,error_s2,CoolCap_d_s,kspeed_d,EE

V_d,IV_d,Diff_temp,Lambda1,Lambda2,Lambda3,Lambda4,Beta_off,CoolCap_max,EEV_max,kspeed

_max,Ts,n); 

    [Za_sH,Zb_sH] = 

T_Super_Heat_const(A_long_off,B_long_off,C_long_off,Xo,T_lower,T_upper,n); 

    [Za_C,Zb_C] = 

Storage_rate_const(A_long_off,B_long_off,C_long_off,Xo,E_rate,S_rate,n); 

    [U] = 

quadprog(2*H,F,[Za_C],[Zb_C],[],[],QP1,QP2,IC,optimset('LargeScale','off','MaxIter',20

00)); 

 

Else 

 

    %ON Mode% 

 

    CoolCap_d_e = CoolCap_D-Cool_Cap_e_n_on; 

    CoolCap_d_s = ((CoolCap_D-CoolCap_E_old)./Diff_temp)-Cool_Cap_s_mod_n_off; 

    CoolCap_d = CoolCap_D-Cool_Cap_s_mod_n_off*Diff_temp-Cool_Cap_e_n_on; 

    

[H,F]=H_F_obj_ON(A_long_on,B_long_on,C_long_on,Xo,error_e,error_s1,CoolCap_d,CoolCap_d

_e,CoolCap_d_s,kspeed_d,P_low_d*ones(1,n),m_air_s_n_on,Diff_temp,Lambda1,Lambda2,Lambd

a3,Lambda4,Beta_on,CoolCap_max,P_low_max,kspeed_max,Ts,n); 

    [Za_sH,Zb_sH] = 

T_Super_Heat_const(A_long_on,B_long_on,C_long_on,Xo,T_lower,T_upper,n); 

    [Za_C,Zb_C] = 

Storage_rate_const(A_long_on,B_long_on,C_long_on,Xo,E_rate,S_rate,n); 

    [U] = 

quadprog(2*H,F,[Za_sH;Za_C],[Zb_sH;Zb_C],[],[],QP1,QP2,IC,optimset('LargeScale','off',

'MaxIter',2000)); 

 

End 

 

%% End %% 

  

%% Output %% 

 

if Mode <= 0.5 

 

    %OFF Mode% 

 

    u1 =U(1)+kspeed_n_off; 

    u2 =U(n+1)+EEVC_n_off; 

    u3=U(2*n+1)+IVC_n_off; 
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    u4=U(3*n+1)+m_air_s_n_off; 

else 

    %ON Mode% 

 

    u1 =U(1)+kspeed_n_on; 

    u2 =U(n+1)+EEVC_n_on; 

    u3=U(2*n+1)+IVC_n_on; 

    u4=U(3*n+1)+m_air_s_n_on; 

 

end 

 

%% End %% 

 

end 

  

function[H,F]=H_F_obj_ON(A,B,C,Xo,Zo1,Zo2,CoolCap_d,CoolCap_d_e,CoolCap_d_s,kspeed_d,P

_low_d,m_air_s_n_on,Diff_temp,Lambda1,Lambda2,Lambda3,Lambda4,Beta,CoolCap_max,P_low_m

ax,kspeed_max,Ts,n) 

 

% Computes the H and F matricies for the following objective function:  

% J = Lambda1*((CoolCap_e-CoolCap_d_e)/CoolCap_max)^2 

%     +Lambda2*((P_low - P_low_d)/P_low_max)^2 

%     +Lambda3*((kspeed - kspeed_d)/kspeed_max)^2 

% Note all terms are with respect to delta variables, delta_x = x-x_o 

%% 

 

[H1,F1]=MPC_H_F_for_c_yi_yj(A,B,C,Xo,1,2,2,n); 

[H2,F2]=MPC_H_F_for_c_yi(A,B,C,-2,CoolCap_d_e,2,n); 

[H3,F3]=MPC_H_F_for_c_yi_yj(A,B,C,Xo,1,3,3,n); 

[H4,F4]=MPC_H_F_for_c_yi(A,B,C,-2,CoolCap_d_s,3,n); 

%% 

[H6,F6]=MPC_H_F_for_c_yi_yj(A,B,C,Xo,1,1,1,n); 

[H7,F7]=MPC_H_F_for_c_yi(A,B,C,-2,P_low_d,1,n); 

%% 

[H8,F8]=MPC_H_F_for_c_ui_uj(B,1,1,1,n); 

[H9,F9]=MPC_H_F_for_c_ui(B,-2*kspeed_d,1,n); 

%% 

[H10,F10]=MPC_H_F_for_c_ui_uj(B,1,4,4,n); 

[H11,F11]=MPC_H_F_for_c_ui(B,-2*(0-m_air_s_n_on),4,n); 

%% 

[H12,F12]=MPC_H_F_for_Integ_error(A,B,C,Xo,Zo1,Ts,1,CoolCap_d_e,2,n); 

[H13,F13]=MPC_H_F_for_Integ_error(A,B,C,Xo,Zo2,Ts,1,CoolCap_d_s,3,n); 

%% 

H = 

Lambda1*(1/CoolCap_max^2)*(H1+H2)+Lambda1*(1/(CoolCap_max/Diff_temp)^2)*(H3+H4)+Lambda

2*(1/P_low_max^2)*(H6+H7)+Lambda3*(1/kspeed_max^2)*(H8+H9)+Beta*H12+10*Beta*H13; 

F = 

Lambda1*(1/CoolCap_max^2)*(F1+F2)+Lambda1*(1/(CoolCap_max/Diff_temp)^2)*(F3+F4)+Lambda

2*(1/P_low_max^2)*(F6+F7)+Lambda3*(1/kspeed_max^2)*(F8+F9)+Beta*F12+10*Beta*F13; 

  

end 

  

function[H,F]=H_F_obj_OFF(A,B,C,Xo,Zo,CoolCap_d_s,kspeed_d,EEV_d,IV_d,Diff_temp,Lambda

1,Lambda2,Lambda3,Lambda4,Beta,CoolCap_max,EEV_max,kspeed_max,Ts,n) 

 

% Computes the H and F matricies for the following objective function:  

% J = Lambda1*((CoolCap_s-CoolCap_d_s)/CoolCap_max)^2 

%     +Lambda2*((EEV - EEV_d)/EEV_max)^2 

%     +Lambda3*((kspeed - kspeed_d)/kspeed_max)^2 

% Note all terms are with respect to delta variables, delta_x = x-x_o 

%% 
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[H1,F1]=MPC_H_F_for_c_yi_yj(A,B,C,Xo,1,3,3,n); 

[H2,F2]=MPC_H_F_for_c_yi(A,B,C,-2,(CoolCap_d_s),3,n); 

%% 

[H3,F3]=MPC_H_F_for_c_ui_uj(B,1,2,2,n); 

[H4,F4]=MPC_H_F_for_c_ui(B,-2*EEV_d,2,n); 

%% 

[H5,F5]=MPC_H_F_for_c_ui_uj(B,1,1,1,n); 

[H6,F6]=MPC_H_F_for_c_ui(B,-2*kspeed_d,1,n); 

%% 

[H7,F7]=MPC_H_F_for_c_ui_uj(B,1,3,3,n); 

[H8,F8]=MPC_H_F_for_c_ui(B,-2*IV_d,3,n); 

%% 

[H9,F9]=MPC_H_F_for_Integ_error(A,B,C,Xo,Zo,Ts,1,CoolCap_d_s,3,n); 

%% 

H = 

Lambda1*(1/(CoolCap_max/Diff_temp)^2)*(H1+H2)+Lambda2*(1/EEV_max^2)*(H3+H4)+Lambda3*(1

/kspeed_max^2)*(H5+H6)+Lambda4*(1/1^2)*(H7+H8)+10*Beta*H9; 

F = 

Lambda1*(1/(CoolCap_max/Diff_temp)^2)*(F1+F2)+Lambda2*(1/EEV_max^2)*(F3+F4)+Lambda3*(1

/kspeed_max^2)*(F5+F6)+Lambda4*(1/1^2)*(F7+F8)+10*Beta*F9; 

end 

  

function[H,F]=MPC_H_F_for_c_yi_yj(A,B,C,Xo,c,State1,State2,n) 

 

% Computes the H and F matrices associated with a cost term, c*y1(i)*y2(i), that 

% results from expanding a quadratic objective function.  This term is 

% summed from i = 1 to n. 

  

[y,m] = size(B); 

[r,p] = size(C); 

  

Z = zeros(r,m*n); 

  

F=zeros(1,m*n); 

H=zeros(m*n,m*n); 

  

for i=1:n; 

    for j=1:r; 

        for k=1:m; 

            Q = C*(A^(i-1))*B; 

            Z(j,k+(i-1)*m) = Q(j,k); 

        end 

    end 

end 

  

  

for j=1:m 

    for k=1:n 

        for l=1:n+1-k 

            q=C*A^(l+k-1); 

            for i = 1:r 

                F(l+(j-1)*n)=F(l+(j-1)*n)+q(State1,i)*Xo(i)*Z(State2,j+m*(k-

1))+Z(State1,j+m*(k-1))*q(State2,i)*Xo(i); 

            end 

             

            for a=1:m 

                H(l+(j-1)*n,l+(a-1)*n) = H(l+(j-1)*n,l+(a-

1)*n)+(1/2)*(Z(State1,j+m*(k-1))*Z(State2,a+m*(k-1))+Z(State2,j+m*(k-

1))*Z(State1,a+m*(k-1))); 
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                if l >=2 

                    for o=1:l-1 

                        H(o+(j-1)*n,l+(a-1)*n)= H(o+(j-1)*n,l+(a-

1)*n)+(1/2)*(Z(State1,j+m*(l+k-1-o))*Z(State2,a+m*(k-1))+Z(State2,j+m*(l+k-1-

o))*Z(State1,a+m*(k-1))); 

                        H(l+(j-1)*n,o+(a-1)*n)= H(l+(j-1)*n,o+(a-

1)*n)+(1/2)*(Z(State1,j+m*(k-1))*Z(State2,a+m*(l+k-1-o))+Z(State2,j+m*(k-

1))*Z(State1,a+m*(l+k-1-o))); 

                    end 

                end 

            end 

        end 

    end 

end 

  

  

F = c*F; 

H = c*H; 

end 

  

function[H,F]=MPC_H_F_for_c_yi(A,B,C,c,R,State,n) 

 

% Computes the H and F matrices associated with a cost term, c*R(i)*y(i), that 

% results from expanding a quadratic objective function.  This term is 

% summed from i = 1 to n. 

  

[y,m] = size(B); 

[r,p] = size(C); 

  

Z = zeros(r,m*n); 

  

F=zeros(1,m*n); 

H=zeros(m*n,m*n); 

  

for i=1:n; 

    for j=1:r; 

        for k=1:m; 

            Q = C*(A^(i-1))*B; 

            Z(j,k+(i-1)*m) = Q(j,k); 

        end 

    end 

end 

  

for i=1:m 

    for j=1:n 

        for k=1:n+1-j 

            F(k+(i-1)*n)=F(k+(i-1)*n)+R(k+j-1)*Z(State,i+m*(j-1)); 

        end 

    end 

end 

  

F = c*F; 

end 

  

function[H,F]=MPC_H_F_for_c_ui_uj(B,c,State1,State2,n) 

 

% Computes the H and F matrices associated with a cost term,  

% c*u_state1(i)*u_state2(i), that results from expanding a quadratic objective  

% function.  This term is summed from i = 0 to n-1. 

  

[y,m] = size(B); 
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F=zeros(1,m*n); 

H=zeros(m*n,m*n); 

  

for k=1:n; 

    H(k+(State1-1)*n,k+(State2-1)*n)= H(k+(State1-1)*n,k+(State2-1)*n)+1/2; 

    H(k+(State2-1)*n,k+(State1-1)*n)= H(k+(State2-1)*n,k+(State1-1)*n)+1/2; 

end 

  

H = c*H; 

end 

  

function[H,F]=MPC_H_F_for_c_ui(B,c,State1,n) 

 

% Computes the H and F matrices associated with a cost term, c*u_state1(i), that 

% results from expanding a quadratic objective function.  This term is 

% summed from i = 0 to n-1. 

  

[y,m] = size(B); 

  

F=zeros(1,m*n); 

H=zeros(m*n,m*n); 

  

for i=1:n 

    F(i+(State1-1)*n) = 1; 

end 

  

F = c*F; 

end 

  

function [H,F]=MPC_H_F_for_Integ_error(A,B,C,Xo,Zo,Ts,c,R,State,n) 

 

% Computes the H and F matrices associated with a cost term, 

% Integral(y_state(i)-R), with a time step of Ts.  This term is 

% summed from i = 1 to n. 

[H1,F1] = MPC_H_F_for_c_xi_SumSum(A,B,C,-2*Ts*c*Zo,State,n); 

[H2,F2]=MPC_H_F_for_c_Sum_Sum_yi_Sum_R(A,B,C,-2*Ts^2*c,State,R,n); 

[H3,F3]=MPC_H_F_for_c_xi_xj_Sum_square_Sum(A,B,C,Xo,Ts^2*c^2,State,n); 

  

H = H1+H2+H3; 

F = F1+F2+F3; 

end 

  

function[H,F]=MPC_H_F_for_c_xi_SumSum(A,B,C,c,State,n) 

 

% Computes the H and F matrices associated with a cost term, C*Sum(Sum(y_state(i))).   

% This term is summed from i = 1 to n. 

  

[y,m] = size(B); 

[r,p] = size(C); 

  

Z = zeros(r,m*n); 

  

F=zeros(1,m*n); 

H=zeros(m*n,m*n); 

  

for i=1:n; 

    for j=1:r; 

        for k=1:m; 

            Q = C*(A^(i-1))*B; 

            Z(j,k+(i-1)*m) = Q(j,k); 
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        end 

    end 

end 

  

for i=1:m 

    for j=1:n 

        for k=1:n+1-j 

            F(k+(i-1)*n)=F(k+(i-1)*n)+(n+2-j-k)*Z(State,i+m*(j-1)); % Added (n+2-j-k)* 

        end 

    end 

end 

  

F = c*F; 

end 

  

function[H,F]=MPC_H_F_for_c_Sum_Sum_yi_Sum_R(A,B,C,c,State1,R,n) 

 

% Computes the H and F matrices associated with a cost term,  

% C*Sum(Sum(y_state1(i))*Sum(R(i))).  This term is summed from i = 1 to n. 

  

[y,m] = size(B); 

[r,p] = size(C); 

  

Z = zeros(r,m*n); 

Q = zeros(r,m); 

F=zeros(1,m*n); 

H=zeros(m*n,m*n); 

  

for i=1:n; 

    Q = Q+C*(A^(i-1))*B; 

    for j=1:r; 

        for k=1:m; 

            Z(j,k+(i-1)*m) = Q(j,k); 

        end 

    end 

end 

  

for j=1:m 

    q = 0; 

    for k=1:n 

        for i = 1:k-1 

            q = q+R(i); 

        end 

        for l=1:n+1-k 

            %q = sum(R(1:l+k-1)); 

            q = q + R(l+k-1); 

            F(l+(j-1)*n)=F(l+(j-1)*n)+Z(State1,j+m*(k-1))*q; 

        end 

        q = 0; 

    end 

end 

  

F = c*F; 

end 

  

function[H,F]=MPC_H_F_for_c_xi_xj_Sum_square_Sum(A,B,C,Xo,c,State,n) 

 

% Computes the H and F matrices associated with a cost term, 

% C*Sum((Sum(x_state(i)))^2).  This term is summed from i = 1 to n. 

  

[y,m] = size(B); 
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[r,p] = size(C); 

  

Z = zeros(r,m*n); 

Q = zeros(r,m); 

F=zeros(1,m*n); 

H=zeros(m*n,m*n); 

  

for i=1:n; 

    Q = Q+C*(A^(i-1))*B; 

    for j=1:r; 

        for k=1:m; 

            Z(j,k+(i-1)*m) = Q(j,k); 

        end 

    end 

end 

  

  

for j=1:m 

    q = zeros(r,p); 

    for k=1:n 

        q = q+C*A^(k-1); 

        for l=1:n+1-k 

            q = q+C*A^(l+k-1); 

            for i = 1:p 

                F(l+(j-1)*n)=F(l+(j-1)*n)+2*q(State,i)*Xo(i)*Z(State,j+m*(k-1)); 

            end 

             

            for a=1:m 

                H(l+(j-1)*n,l+(a-1)*n) = H(l+(j-1)*n,l+(a-1)*n)+Z(State,j+m*(k-

1))*Z(State,a+m*(k-1));  

                 

                if l >=2 

                    for o=1:l-1 

                        H(o+(j-1)*n,l+(a-1)*n)= H(o+(j-1)*n,l+(a-

1)*n)+Z(State,j+m*(l+k-1-o))*Z(State,a+m*(k-1)); 

                        H(l+(j-1)*n,o+(a-1)*n)= H(l+(j-1)*n,o+(a-1)*n)+Z(State,j+m*(k-

1))*Z(State,a+m*(l+k-1-o)); 

                    end 

                end 

            end 

        end 

        q = zeros(r,p); 

        for b = 1:k 

            q = q+C*A^(b-1); 

        end 

    end 

end 

  

  

F = c*F; 

H = c*H; 

end 

  

function[Za,Zb]=MPC_Constraint_for_yi_equal_to_c(A,B,C,Xo,c,State,n) 

 

% Computes the Za and Zb matrices associated with a constraint term, x_state(i)=c.   

% This term is summed from i = 1 to n 

  

[y,m] = size(B); 

[r,p] = size(C); 
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Z = zeros(r,m*n); 

  

Za = zeros(n,m*n); 

Zb = c*ones(n,1); 

  

for i=1:n; 

    for j=1:r; 

        for k=1:m; 

            Q = C*(A^(i-1))*B; 

            Z(j,k+(i-1)*m) = Q(j,k); 

        end 

    end 

end 

  

for j=1:m 

    for k=1:n 

        for l=1:n+1-k 

            Za(l+k-1,l+(j-1)*n) = Z(State,j+(k-1)*m); 

        end 

    end 

end 

  

for i=1:n 

    for j=1:r 

        q=C*A^(i); 

        Zb(i) = Zb(i)-q(State,j)*Xo(j); 

    end 

end 

end 

  

function[Za,Zb]=MPC_Constraint_for_yi_plus_yi_equal_to_c(A,B,C,Xo,c,c1,c2,State1,State

2,n) 

 

% Computes the Za and Zb matrices associated with a constraint term,  

% c1*x_state1(i)+c2*x_state2(i)=c.  This term is summed from i = 1 to n 

  

[y,m] = size(B); 

[r,p] = size(C); 

  

Z = zeros(r,m*n); 

  

Za = zeros(n,m*n); 

Zb = c*ones(n,1); 

  

for i=1:n; 

    for j=1:r; 

        for k=1:m; 

            Q = C*(A^(i-1))*B; 

            Z(j,k+(i-1)*m) = Q(j,k); 

        end 

    end 

end 

  

for j=1:m 

    for k=1:n 

        for l=1:n+1-k 

            Za(l+k-1,l+(j-1)*n) = c1*Z(State1,j+(k-1)*m)+c2*Z(State2,j+(k-1)*m); 

        end 

    end 

end 
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for i=1:n 

    for j=1:r 

        q=C*A^(i); 

        Zb(i) = Zb(i)-c1*q(State1,j)*Xo(j)-c2*q(State2,j)*Xo(j); 

    end 

end 

end 

  

function[Za,Zb]=MPC_Constraint_for_yi_less_than_c(A,B,C,Xo,c,State,n) 

 

% Computes the Za and Zb matrices associated with a constraint term, x_state(i)<=c.   

% This term is summed from i = 1 to n 

  

[y,m] = size(B); 

[r,p] = size(C); 

  

Z = zeros(r,m*n); 

  

Za = zeros(n,m*n); 

Zb = c*ones(n,1); 

  

for i=1:n; 

    for j=1:r; 

        for k=1:m; 

            Q = C*(A^(i-1))*B; 

            Z(j,k+(i-1)*m) = Q(j,k); 

        end 

    end 

end 

  

for j=1:m 

    for k=1:n 

        for l=1:n+1-k 

            Za(l+k-1,l+(j-1)*n) = Z(State,j+(k-1)*m); 

        end 

    end 

end 

  

for i=1:n 

    for j=1:r 

        q=C*A^(i); 

        Zb(i) = Zb(i)-q(State,j)*Xo(j); 

    end 

end 

end 

  

function[Za,Zb]=MPC_Constraint_for_yi_greater_than_c(A,B,C,Xo,c,State,n) 

 

% Computes theZa and Zb matrices associated with a constraint term, x_state(i)>c.   

% This term is summed from i = 1 to n 

  

[y,m] = size(B); 

[r,p] = size(C); 

  

Z = zeros(r,m*n); 

  

Za = zeros(n,m*n); 

Zb = -c*ones(n,1); 

  

for i=1:n; 

    for j=1:r; 
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        for k=1:m; 

            Q = C*(A^(i-1))*B; 

            Z(j,k+(i-1)*m) = Q(j,k); 

        end 

    end 

end 

  

for j=1:m 

    for k=1:n 

        for l=1:n+1-k 

            Za(l+k-1,l+(j-1)*n) = -Z(State,j+(k-1)*m); 

        end 

    end 

end 

  

for i=1:n 

    for j=1:r 

        q=C*A^(i); 

        Zb(i) = Zb(i)+q(State,j)*Xo(j); 

    end 

end 

end 

  

function[Za_comb,Zb_comb] = Storage_rate_const(A,B,C,Xo,E_rate,S_rate,n) 

[Za1,Zb1]=MPC_Constraint_for_yi_less_than_c(A,B,C,Xo,E_rate,2,n); 

Za_comb = Za1; 

Zb_comb = Zb1; 

end 

  

function[Za_comb,Zb_comb] = T_Super_Heat_const(A,B,C,Xo,T_lower,T_upper,n) 

[Za1,Zb1]=MPC_Constraint_for_yi_greater_than_c(A,B,C,Xo,T_lower,4,n); 

[Za2,Zb2]=MPC_Constraint_for_yi_less_than_c(A,B,C,Xo,T_upper,4,n); 

Za_comb = [Za1;Za2]; 

Zb_comb = [Zb1;Zb2]; 

end 
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Appendix J  Thermal Study Logic Code  

Below is the MATLAB code used to define the supervisory logic in the thermal hybrid 

study.  This code is implemented as an embedded MATLAB block. 

 

function m = fcn(T,M) 

%#eml 

persistent F 

if isempty(F) 

    F = 0; 

end 

  

if T>=25 || M>=0.9*0.09 

    F = 1; 

else if T < 0.0 

        F = 0; 

    end 

end 

  

if F == 0 

    m = 0; 

else 

    m = 1; 

end 

 




