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ABSTRACT 

 

This research is concerned with the nonlinear dynamics and acoustics of one 

dimensional ordered granular media. In particular the considered granular systems are 

composed of discrete elastic spherical beads that mutually interact through strongly 

nonlinear Hertzian force interaction law. In this work we primarily consider the 

granular chains in the limit of zero pre-compression, thus leading to complete absence 

of linear acoustics and zero speed of sound (as defined in the classical sense), hence 

their characterization as ‘sonic vacua’. Furthermore, we sparingly incorporate a 

dissipative mechanism between interacting neighboring beads. Due to the absence of 

cohesive interaction forces, the interaction between the beads is strongly nonlinear and 

non-smooth owing to possible bead separations and ensuing collisions. However, with 

the application of pre-compression the interaction between beads becomes weakly 

nonlinear and smooth and the granular media can no longer be considered as ‘sonic 

vacua’. Hence, the dynamics and acoustics of these material systems are highly tunable 

with varying pre-compression. 

The first part of the study is primarily focused on the oscillatory dynamics of 

finite dimensional homogeneous granular chains. We initiate the study by investigating 

the existence of nonlinear normal modes (NNMs) in these systems with fixed boundary 

conditions. The realized modes which have energy dependent frequency, when 

represented on frequency-energy plots (FEP) divide these plots into two mutually 

exclusive regions separated by the out of phase NNM which corresponds to the highest 

possible oscillation frequency. All the NNMs realized are situated in the region below 

the out-of-phase NNM, which is denoted as propagation band; the complementary 

region is then the attenuation band. When the chain is harmonically base excited, 

frequencies in the propagation band are spatially extended whereas those in the 

attenuation band are spatially localized wherein the beads experience constant 
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compression. The dynamics in the attenuation zone is weakly nonlinear and has been 

studied analytically. Furthermore, the existence of frequency bands has been 

experimentally verified. This happens to be the first exposition on the frequency band 

zones in homogeneous granular chains from both theoretical and experimental 

perspectives. 

The second part of the study is concerned with periodic ordered diatomic 

(dimer) granular chains consisting of spherical beads of two types. Initially we consider 

the most simple dimer chain wherein each bead of type 1 is preceded and followed by a 

bead of type 2; such chains are denoted as 1: 1 dimers and the dynamics of such chains 

is governed by a single parameter (�) scaling the mass of the two types of beads. Due to 

the periodic variation of the masses, a propagating pulse loses energy in the form of 

radiating waves in its trail and thus the pulse attenuates in dimer chains with an 

arbitrary value of mass ratio. Interestingly, at certain discrete values of mass ratios, the 

energy leakage from the propagating pulse ceases and the pulse propagates without 

attenuation, thus such pulses are called solitary waves. At the particular mass ratios 

where solitary waves are realized, these waves form an important energy transfer 

mechanism and any arbitrary pulse eventually disintegrates into a train of solitary 

waves. This is the first exposition of the realization of solitary waves in 1: 1 dimer 

granular chains. Moreover, we show that these chains support a countable infinity of 

solitary waves parameterized by energy. The contrasting (but more intuitive) effect of 

substantial energy radiation from the propagating pulse is also observed at a discrete 

set of mass ratios. This phenomenon is designated as resonance. A complete analytical 

formulation for these two phenomena is provided. Furthermore, these phenomena have 

been experimentally verified. The experimental results show good correspondence with 

the theoretical results thus validating the theoretically predicted existence of nonlinear 

resonances in granular media. This happens to be the first experimental investigation of 

the resonances in uncompressed dimer chains. 
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The spatial periodicity of traveling waves radiated in the trail of the propagating 

pulse (at arbitrary mass ratio) is found to depend only on the specific mass ratio of the 

dimer. The effect of the mass ratio on the realization of traveling waves, and in turn 

their significance to the resonance and pulse attenuation is studied by considering 

reduced order dimer chains composed of finite number of beads with periodic 

boundary conditions. Interesting bifurcations of the traveling waves have been 

discovered and correlation between the bifurcations and resonances is noted. 

We further study the dynamics of a general class of 1:�	(� ≥ 2) dimer chains. 

The dynamics of these chains is governed by two non-dimensional parameters, the 

mass ratio (�) and the stiffness ratio (�) scaling the respective properties of the two 

types of beads. We report on a countable infinity of traveling solitary waves and 

resonances and prove numerically and asymptotically their existence in the 1:2 dimer 

chain. These solitary waves studied in homogeneous and 1: 1 dimer chains possess 

symmetric velocity waveforms, In contrast, the traveling solitary waves velocity 

waveforms of the 1: 2 dimers of the heavy beads are symmetric, whereas those of the 

light beads are non-symmetric. Interestingly, we show that no such solitary waves or 

resonances can be realized in general 1:� granular dimers with � > 2. 

The final part of this study is concerned with the nonlinear dynamics of granular 

containers. These are granular setups composed of different types of homogeneous 

chains positioned in alternating configurations. Depending on the properties of the 

different types of homogeneous granular chains of the container, the wave energy can 

be entrapped in an appropriately designed intermediate layer. The primary aim of this 

study is to apply the binary collision approximation (BCA) for the analytic estimation of 

the amplitude of the scattered pulses (solitary waves) in the granular container. In 

addition, we provide a numerical study showing the qualitatively different dynamics of 

these containers depending on the frequency and amplitude of an applied harmonic 

excitation. 
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1. INTRODUCTION 

 

A granular system is defined as an assemblage of a finite number of granules (or 

particles or beads with typical characteristic length greater than 0.1 mm) of solid 

material, with particle distribution densities ranging from packed (e.g., as in the 

formation of pile of sand grains in a gravitational field or the compacted sand bags) to 

sparsely disperse (e.g., particles dispersed in a fluid or scattered interplanetary 

particles). Typical examples of granular materials are sand, gravel, food grains and salt. 

In the framework of the current research it is assumed that the grains obey the laws of 

classical physics, and thus preclude any relativistic or quantum mechanical effects. 

Further, we primarily deal with ‘dry’ granular materials, i.e., granular media where the 

interstitial space between granules is unfilled [1]. 

The study of the dynamics and acoustics of granular materials poses distinct 

challenges. It is well known that these media can exhibit the properties of all three states 

of matter, that is, solids, liquids and gases, under nearly identical environmental 

conditions. Similar to solids, granular materials under static condition can sustain shear 

stress and can form heaps. Interestingly enough, the angle of the heap (angle of the free 

surface of the heap with the horizontal plane) is dependent on the angle of repose 

(defined as the maximum slope at which the material is at rest [2, 3]). Granular particles 

beyond this repose angle surprisingly flow down under gravity like a liquid. In effect 

they can flow under gravity in similarity to liquids. A classic example of granular 

material in flow is a sand clock or hour glass with dry sand. But in contrast to liquids, 

granular materials are compressible [4], which is due to the vacant interstitial gaps 

between the particles. In essence, dry granular materials can be attributed with the 

properties of the three states of matter. 

Different approaches to study the physics of granular materials at different time 

and length scales have been developed in the past. Generally speaking, they can be 
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categorized into two length scales: Microscopic and macroscopic. At a microscopic or 

particle scale, granular material can be regarded as a discrete system whose physical 

properties are discontinuous with respect to position. In this approach the analysis is 

based on the motion of individual particles and the properties of each particle and its 

interaction with other particles are considered individually. On the other hand, at a 

macroscopic or bulk scale, a granular material is regarded as a continuum system 

whose physical properties are continuous over the length scale considered. Then, a 

suitable constitutive relation is defined over the entire domain of interest and the 

granular medium can be studied in a continuum (or quasi-continuum) context. In this 

regard, continuum approximations are useful in describing the dynamics and acoustics 

of discrete systems with a very large number of degrees of freedom and have played an 

important role in the development of the field of granular media. In general, a 

continuum model is developed under certain assumptions/conditions. Thus it may not 

necessarily describe all possible solutions supported by the underlying discrete system, 

but only those that satisfy the assumptions made. The usefulness of a particular 

continuum model depends on the underlying assumptions and how close it can 

represent the dynamics of the discrete system (for studies of continuum approximations 

of the dynamics of discrete systems see the works by Andrianov et al. [5-7]). 

In this work we will primarily focus on one dimensional granular chains with 

non-cohesive strongly nonlinear Hertzian interaction potential [8-10], under the 

assumption of weak pre-compression. The non-cohesive nature of the chain can lead to 

separation between the discrete particles, so continuum approximation fails to model 

such behavior. Furthermore, the phenomena we intend to study in this work are 

observable only in the discrete level of the system where continuum limit 

approximations are hardly applicable and seldom useful. Accordingly the continuum 

limit approximation is not invoked in the proceedings of this thesis, except when we 

employ results from previous works in the course of our asymptotic approximations. 
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The dynamics and acoustics of nonlinear lattices (i.e., arrays of discrete masses 

with nonlinear mutual interactions) have interested the researchers from different areas 

of research for quite a long time. Such study began with the celebrated work by Fermi, 

Pasta and Ulam about six decades back, who formulated the FPU problem [11]. The 

FPU lattice is a one-dimensional periodic system of masses that interact with their 

nearest neighbors through springs possessing linear and weak cubic terms; so the FPU 

lattice can be regarded as a linear lattice with weakly nonlinear perturbation. The main 

objective of the study [11] was to examine the equipartition of energy between the 

different vibration modes of the chain. Since the FPU lattice is nonlinear, interactions 

and energy exchanges between different nonlinear vibration modes [12] should be 

possible, in contrast to the corresponding linear chain (with no nonlinear perturbation) 

where vibration modes cannot interact (unless they are closely spaced [13, 14] thereby 

leading to beating phenomena). Furthermore, in an undamped linear system energy 

given to a certain mode stays localized in that mode (neglecting the dissipation), so if 

the system is started with initial conditions corresponding to a certain vibration mode, 

the system vibrates in that mode indefinitely. Hence, if this system is provided with 

random initial conditions, the ensuing motion can be decomposed into its 

corresponding modes and the energy in each mode can be ascertained due to the 

property of superposition. In contrast to this linear behavior, a nonlinear system can 

have energy leaking from one vibration mode and percolating to another; further, 

superposition is no longer valid and the frequency of each nonlinear vibration mode is 

energy dependent [12]. Owing to these distinctive features, Fermi, Pasta and Ulam 

anticipated that an initial energy distribution in the FPU lattice would be completely 

equipartitioned between all the modes of the system. Surprisingly enough, such energy 

equipartition was not observed; rather the energy remained in an initial nonlinear 

vibration mode and percolated only to a few nearby modes (although above a certain 

high energy input chaos ensues and this can lead to equipartition among the modes). 
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Further it was observed that the energy in each nonlinear mode varied periodically in 

time, and showed recurrence with no loss of energy to the higher modes. This 

seemingly unexpected revelation led to further investigation of the FPU lattice by 

Zabusky and Kruskal [15], and eventually the discrete FPU problem was considered in 

the continuum limit approximation and resulted in the well-known Kortweg de Vries 

(KdV) equation [16].  

KdV is a nonlinear partial differential equation and it supports special localized 

wave solutions called solitons [15, 17]. The numerical experiments of Zabusky and 

Kruskal revealed stable nonlinear dispersive entities, to which they coined the name 

solitons [17-22]. These are highly localized packets of energy which propagate with 

constant velocity, without change in form and without distortion. A soliton can be 

defined as a propagating localized wave that does not break up or disperses upon 

collision with other such waves [23]. In essence, solitons exhibit particle-like behavior 

with certain momentum and they conserve energy as they propagate. On the other 

hand, one may rigorously define a solitary wave [17] propagating in a one-dimensional 

medium as a right-traveling (left-traveling) localized disturbance whose transition from 

its asymptotic state at the limit � → −∞ to its other asymptotic state at the limit � → +∞ 

is localized in terms of the independent variable �, where � = � − �� (� = � + ��), with � 

and � being spatial and temporal independent variables, respectively, and � the speed of 

the traveling wave. In contrast to solitons, however, solitary waves do not remain 

undistorted after colliding with other solitary waves or boundaries. 

Revisiting the discrete lattice and considering wave propagation in a linear 

lattice (disregarding the nonlinear interactions in the FPU chain), although the 

interaction between particles is linear, a propagating wave loses its initial spatial 

waveform as it travels due to dispersion. Hence, it is intuitive to expect a similar 

behavior in the nonlinearly perturbed chain (e.g., the FPU chain); this is indeed what 

happens in typical nonlinear chains, but under certain conditions and in certain types of 
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chains it is possible that the effect of dispersion is counterbalanced by the effect of the 

nonlinearity thus producing traveling waves that propagate with no distortion (either 

solitons or solitary waves). In addition, discrete breathers and intrinsic localized modes 

(ILMs) [24, 25] can be realized. Discrete breathers are time periodic, spatially localized 

solutions of the governing nonlinear partial differential equation (with no dissipation) 

[26] (in this context the FPU chain), whereas ILMs are stationary, spatially localized 

vibration modes [27-29]. 

In the context of ordered granular chains of spherical beads, a seemingly simple 

prototypical example is Newton’s cradle [30, 31]. A Newton’s cradle is quite an 

interesting toy to explain the basic laws of physics like conservation of momentum and 

energy [32]. These devices usually consist of an array (� balls, usually 5) of balls/spheres 

in mutual contact suspended through strings. If a certain number (�) of balls are 

displaced and allowed to impact the remaining (� −�) balls of the chain, it is observed 

that same number (�) of balls are displaced by the same magnitude on the other end of 

the chain and leaving the rest (� − �) of the balls stationary (of course neglecting the 

inevitable friction present in the setup). This expected behavior seems to be in complete 

accordance with the laws of classical physics as described in literature [32], but, in fact, 

very careful experiments reveal that this is not what actually happens [33, 34]. Rather, it 

is observed that few of the balls at the impacting end rebound, whereas the ball at the 

other end flies off with maximum positive velocity and other balls have decreasing 

positive velocities [35]. Therefore, unless the chain consists of only two balls, the 

previous two conservation laws are not sufficient to explain this behavior.  

The required additional condition is wave dispersion which accounts for the 

aforementioned discrepancy. In the context of continuum system, dispersion is a 

property of the system by which the propagation speed of a signal is dependent on its 

wavenumber [36, 37]. But due to the discrete nature of the interacting balls in Newton’s 

cradle, in this particular context dispersion can be considered as a measure of the 
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negative momentum or kinetic energy carried by the rebounding balls in comparison to 

the initial input momentum or kinetic energy, respectively. Let us consider only two 

balls (both of the same mass) in the chain, one being at rest and the second impacting 

the first with a unit velocity. Applying the momentum and energy conservation we 

obtain the well know result of first ball coming to rest and the second flying off with 

unit velocity. In fact this simplified system is dispersion free [33, 34, 38]. Further it 

should be noted that for a discrete chain (of equal masses and similar interaction 

stiffness) to be dispersion free, the discrete particles should be moving so that only two 

particles are in interaction at any instant of time (model of binary collisions [39]) . With 

such a scenario the first particle transfers all its momentum to the second, the second to 

the third and so on. Once the particle loses contact with its successive one, it comes to 

complete rest. If the particles are just in contact initially, the chain is bound to be 

dispersive. Due to the presence of dispersion, complete momentum transfer seldom 

happens. In fact the first few balls bounce back with a portion of the initial energy [35] 

[40]. Furthermore, dispersion is highly dependent on the interaction potential between 

particles [33]. For example consider an interaction force of the form �� = 	
�� , where � is 

the interaction stiffness (a function of material and the geometric properties of the 

interacting particles), 
 is the compression between the particles, � is an exponent and 

subscript ‘+’ indicates that the interaction force vanishes once the particles separate. It 

can be easily shown that the dispersion is weaker for the case of � = 3 as compared to 

the case when � = 2. For a chain with higher value of �, the momentum carried by the 

rebounding balls is comparatively lower than that in a chain with lower value of �. 

Furthermore, in any homogeneous chain with interaction force with � > 1, the applied 

impact takes the form of a stationary propagating pulse of constant amplitude as it 

propagates in the chain, and thus is in the form of a solitary wave [35, 41-43]. It is worth 

emphasizing that although dispersion is present in all these nonlinear chains, solitary 

waves are realized only in discrete chains with power law type contact force with 
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exponents � > 1 [43]. This is in fact due to the balancing of the dispersion and the 

nonlinearity [41, 42]. In the special case when � = 1 (linear force interaction), only 

dispersion exists so no solitary waves can be formed.  

The interaction of the balls in the Newton’s cradle experiment is governed by a 

force interaction law with � = 1.5, so in this case solitary waves are realized with 

wavenumber (spatial span) of about 6-7 balls [41, 44, 45]. In fact such a solitary wave 

has been termed as compacton owing to its compact support over the media where it 

propagates [46]. The existence of such solitary waves in Newton’s cradle leads to the 

aforementioned deviations of predictions based solely on momentum and energy 

balance. Another interesting observation that came to light of late is the super-

exponentially fast decay of these waves with regard to space-time [47]. The 

consideration of such fractional exponent for the interaction between the balls is not 

arbitrary, but has very profound theoretical basis based on the geometry of the 

interacting bodies. 

Indeed, the interaction of two solids of arbitrary curvatures was first studied by 

Hertz [8, 9, 48, 49]. The proposed theory by Hertz predicts the geometry of the contact 

area and its evolution with increasing applied load. Furthermore, it also provides both 

the magnitude and distribution of surface tractions at the contact area in the interacting 

bodies. This theory of interaction was further applied to the collision of two elastic 

bodies with convex surfaces. The time of interaction between two colliding spherical 

particles and the underlying exponent of the interaction potential is of primary 

importance in our study. Few of the most important assumptions and observations 

made herein are of significance in our study, namely that: 

a) The contacting surfaces are smooth, continuous, non-conforming and frictionless 

at both micro and macro scales; at the micro scale this implies that small surface 

aberrations/irregularities are completely absent or at least negligible, on the other 
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hand, at a macro scale it indicates that the surface profiles at the region of contact 

are smooth and are continuous at least up to their second derivatives; 

b) When two curved bodies are brought into contact initially (i.e. under no load 

condition), the contact is over a point (as in two spheres in contact) or a line (as in 

two cylinders interacting with axes parallel); with the application of the load the 

elastic deformation evolves this point/line to an area and the load is distributed 

in the form of pressure over it; 

c) The size of the contact area is small compared to the characteristic size of the 

interacting bodies; 

d) The strains experienced are within the elastic limit, i.e. we preclude the 

permanent/plastic deformations; 

e) Stress in the immediate vicinity of the contact is much higher than in the rest of 

the body; hence, the elastic deformation energy is stored exclusively in the near 

vicinity of the area of contact, and each body can be considered to behave as an 

elastic half space in the vicinity of the contact. Hence, it can be deduced that the 

material in the contact area can be considered as a spring (in which the total 

energy can be stored in the form of elastic potential energy) connecting two 

undeformable bodies (which can be attributed to the stored energy in the form of 

momentum); furthermore, the elastic and the inertial properties of the collision of 

two bodies can be spatially separated; 

f) The time of interaction of the two bodies is found to be a function of the 

incoming velocity [50]; this interaction time should be much higher than the time 

required for the disturbance propagation inside the bulk of the material, so that 

time scale separation occurs between the dynamics of the body to body 

interaction and the wave acoustics within each body. 

With these assumptions satisfied, the interaction of the balls as described in 

Newton’s cradle experiment, or more generally the interaction of elastic bodies can be 
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approximated by a model where the colliding/interacting bodies are treated as discrete 

masses interacting through springs of appropriate force interaction law as predicted by 

the theory of Hertz. In our study we adhere to the above discussed assumptions and 

conditions and consider the spherical beads as point masses interacting through 

Hertzian interaction law. 

From Hertz’s theory it can be seen that the interaction of spherical bodies of 

arbitrary radii is governed by the relation �� = 	
��  where � = 1.5. This has been 

experimentally proven in collision experiments [33, 34] and wave propagation 

experiments [51, 52]. Moreover, the validity of this interaction potential has been 

theoretically proven by Coste et al. [53]. For the case of two cylinders interacting along 

their axes, the interaction is along a line and we have � = 1 [8, 10]. However, it should 

be noted that for the phase of wave propagation, the interaction between cylinders 

cannot be modeled as discrete masses interacting via linear springs as the velocity of 

wave propagation is of the same order as the velocity of sound in the bulk material [35]. 

In Figure 1.1 (unless stated all units are non-dimensional) we present the comparison of 

force interaction law with three different exponents. As can be seen the slope is constant 

for the case of � = 1, whereas the slope of the curves for the case of � = 1.5 and � = 2.5 

(realized for paraboidal solids [54]) is increasing with increasing deformation, 

indicating a hardening type nonlinear behavior. It is interesting to note that in both 

nonlinear cases the slope is zero at 
 = 0. In fact such a behavior leads to zero speed of 

sound propagation in this type of systems (i.e., complete absence of linear acoustics), 

and, hence, media with this type of interaction law have been aptly described as sonic 

vacua [42]. This definition is attributed only due to the zero slope of the force-

displacement interaction law at 
 = 0. On the other hand, if there is an applied pre-

compression (
�), the non-zero slope about 
� ≠ 0 defines the wave speed of the 

linearized acoustics. Moreover, we note that an additional form of strong nonlinearity 

in the interaction law stems from the fact that in the absence of compression the 
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interaction force is zero (cf. Fig. 1.1 for 
 < 0) so beads separate. The ensuing collisions 

between beads provide a second source of strong nonlinearity (in addition to the non 

linearizable force law for 
 ≥ 0), which as we will show leads to interesting nonlinear 

dynamical phenomena and renders the analysis non-smooth. 

The present work is solely devoted to the study of one dimensional ordered 

granular chains consisting of frictionless spherical balls (spheres/beads). Unless 

otherwise stated we consider only dry chains without incorporating any dissipative 

mechanisms and without any pre-compression. Furthermore, the considered granular 

chains are purely elastic (no plastic deformation considered) and non-cohesive (tension 

free). The Thesis has been broadly classified into a number of chapters. 

 

 

1.1 Outline of the Thesis 

 

We begin our study by considering the dynamics of homogeneous granular chains in 

Chapter 2. We particularly consider Nonlinear Normal Modes (NNMs) in finite 

granular chains constrained between rigid boundaries. The nonlinear nature of the 

system makes the dynamics energy dependent, and the most appropriate tool to study 

the NNMs is by depicting them in Frequency Energy Plots (FEP). The realized NNMs 

split the FEP into two zones, namely propagation and attenuation zones (PZs and AZs), 

which are studied numerically and experimentally. Although the considered system is 

strongly nonlinear, its dynamics in the AZ is weakly nonlinear and thus lends itself to 

analytical study. In contrast to a linear system wherein the number of normal modes is 

equal to the degrees of freedom (DOF), the number of NNMs in a nonlinear system can 

far exceed the DOF. Further, due to the non-cohesive nature of the granular chains the 

NNMs require appropriately tailored classification techniques. In Section 2.3 we 

consider the classification of NNMs in a finite granular chain. An interesting concept of 
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effective particles is introduced in Section 2.3.2 and its application to primary pulse 

propagation in layered granular chains is presented in 2.3.5.  

In Chapter 3 we focus primarily on the dynamics of periodic diatomic (dimer) 

chains, i.e. chains consisting of two types of beads with type 2 beads placed periodically 

between beads of type 1. Section 3.1 is concerned with the propagatory dynamics of a 

1: 1 dimer chain. A countable infinity of solitary waves has been discovered in 1: 1 

dimer chains and the pertinent numerical and analytical study is presented in Section 

3.1.2. In contrast to the un-attenuated propagation of solitary waves, specific conditions 

are devised when these dimers lead to substantial pulse attenuation. This phenomenon 

is attributed to a new type of nonlinear resonances, and their analytical and numerical 

study is presented in Section 3.1.3. The effect of pre-compression on the resonances and 

the solitary waves is an important consideration in designing practical systems 

incorporating dimer chains and Section 3.1.4 deals with this topic. Dimer chains not 

only support solitary waves but also periodic traveling waves of varying periodicities. 

The study of different types of traveling waves and their influence on the global 

dynamics of the dimers is carried out in Section 3.1.5. Finally in Section 3.1.6 the 

theoretically predicted resonances and anti-resonances are verified experimentally.  

In Section 3.2 we consider propagatory dynamics in a general 1:� dimer chain. A 

generalized asymptotic model is formulated in Section 3.2.2. In Section 3.2.3 and 3.2.4 

we consider the particular case of 1: 2 dimers and present the realization of anti-

resonances (solitary waves) and resonances, respectively. Although further extension of 

the previous analysis of 1: 1 and 1: 2 dimer chains to general 1:� dimers seems 

straightforward, it is seldom so. In fact we prove that no exact solitary waves and 

resonances can be realized in a general 1:� dimer (� > 2), although approximate 

dynamics resembling this type of dynamics can be realized. This interesting revelation 

and the analytical reasoning are presented in Section 3.2.5. Further we consider a 

particular case of a dimer chain with very high stiffness ratio in Section 3.2.6. A special 



12 

 

asymptotic analysis is formulated for the study of dimers in Chapter 3 and this has been 

extensively utilized. Section 3.2.7 is concerned with the study of the validity of this 

asymptotic methodology and with its limitations in a more qualitative manner. 

A brief introduction to an interesting system of granular containers is presented 

in Chapter 4. Section 4.1 provides the theoretical model of the granular wave containers, 

whereas Section 4.2 deals with the numerical simulation of granular containers with 

regard to their efficacy in containing the propagating pulses. Further the Section 4.3 

dwells on the excitation of transient breathers when small mass intruders are placed in 

a homogeneous chain. Section 4.4 concerns the application of binary collision 

approximation in quantifying the amplitudes of scattered solitary waves in granular 

containers. The last section in this chapter explores the PZ, AZ and the transition region 

between these two zones realized in harmonically excited granular containers. 

Finally, Chapter 5 provides a comprehensive overview of all the results 

presented in this Thesis and their potential application to practical metamaterials 

design. In addition, further development of the ideas and methodologies of the present 

work is discussed, together with suggestions for future work.  

 

 

1.2 Literature Review 

 

Granular media is a highly complex and distinct class of dynamical systems. The 

dynamics of this media is highly tunable [55], and depending on the applied pre-

compression it can be either strongly or weakly nonlinear and smooth or non-smooth 

[42, 44]. Indeed, for strong pre-compression the dynamics of granular media is weakly 

nonlinear, whereas for no pre-compression the dynamics is strongly nonlinear (in fact 

not even linearizable) and bead separation is possible in the absence of external 

cohesive forces. Hence, the dynamics of granular chains with no (or sufficiently weak) 
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pre-compression is either smooth – when neighboring beads are in contact – or non-

smooth due to bead separation accompanied by inter bead collisions. 

Propagatory dynamics of homogeneous granular chains has been studied 

extensively both analytically and experimentally, notably in the works by Nesterenko 

[41, 42], Coste et al. [52], Daraio et al. [56], Sen et al. [44], Nesterenko et al. [51], Job et al. 

[57], Mackay et al. [58] and English et al. [59]. A pioneering breakthrough in the 

acoustics of one dimensional granular chain was the discovery of solitary waves [41] 

[42]. Continuum approximation was invoked to prove the existence of solitary waves in 

this medium. The theoretical foundation for the existence of solitary waves was 

provided by Friesecke et al. [43], Ji et al. [60] and [61]. Experimental verification of these 

waves was performed by Nesterenko et al. [51] and Coste et al. [52]. The continuum 

approximation solution to the solitary wave provided by Nesterenko was modified and 

improved by the works of Chatterjee [47], Sen et al. [44, 62] and Starosvetsky et al. [63]. 

Due to the nonintegrability of the governing equations of motion, the realized solitary 

wave is not a soliton [17]. Although solitary waves or solitons span infinite spatial 

domains in integrable systems [21, 22], solitary waves in homogeneous granular chain 

span (has compact support) a finite spatial domain, namely a span of about 6-7 beads 

[42, 44, 45, 51]. This was proven analytically and so these solitary waves were denoted 

as compactons [46]. 

Solitary waves provide the only mechanism for propagation of disturbances in 

homogeneous granular chains. Although such chains are dispersive, it is the balancing 

of the nonlinearity and the dispersion that leads to the formation of these solitary waves 

[42]. The absence of bead separation when a solitary wave propagates in a 

homogeneous granular chain enables the application of continuum approximation for 

their analytical treatment. Apart from solitary waves, homogeneous granular chains 

support periodic traveling waves [63], but these waves involve separations between 

beads and thus continuum approximation is no longer applicable for their analysis. 
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However, it is conjectured in [63] that these traveling waves asymptotically converge to 

the aforementioned solitary wave in the limit of large number of beads of the 

homogeneous chain.  

The effect of a small mass intruder on the dynamics of a homogeneous granular 

chain has been studied [64-67], and it is shown that it leads to the excitation of discrete 

breathers. Further, the scattering of solitary waves at the interface of two homogeneous 

chains consisting of beads of different masses has been explored in other works [42, 68]. 

A solitary wave experiences complete transmission and disintegrates into a train of 

solitary waves at the interface of a chain composed of heavy beads to a chain composed 

of light beads, whereas there is partial transmission at the interface between a light and 

a heavy chain of beads. Such transitions has been taken into account in devising 

granular protectors or granular wave containers [69] composed of different types of 

homogeneous granular chains.  

Although most current works have focused on granular chains without 

dissipation, any practical granular system would invariably contain dissipative 

mechanisms like dry friction and plasticity. The quantification and modeling of these 

damping mechanisms is of primary importance when designing practical granular 

systems. Modeling the dissipation with velocity dependent damping is very popular 

and (perhaps surprising!) successful [70-73].  

The main emphasis of the current research has been on the propagatory 

dynamics of long homogeneous chains, and relatively little research has been devoted 

to studying the oscillatory dynamics of finite granular chains. By oscillatory dynamics 

we mean the time periodic motions or Nonlinear Normal Modes – NNMs that can be 

supported by finite granular chains. The discussion of NNMs in the literature has 

focused mainly on dynamical systems with smooth stiffness nonlinearities [12, 74-81], 

although some works on systems with non-smooth nonlinearities have also appeared 

[82-84]. These NNMs are defined as time-periodic oscillations of discrete or continuous 
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oscillators than can be either synchronous or asynchronous. The study of NNMs in 

granular chains poses its own distinct challenges, such as the strong nonlinearity of 

Hertzian interaction and the non-cohesiveness that leads to separation between beads. 

In such strongly nonlinear and possibly discontinuous systems, the definition of NNM 

will need to be modified [85] to include asynchronous but time periodic motions. It is 

well known that frequency zones (attenuation and propagation zones – AZs and PZs) 

exist in linear periodic systems [37, 86] where there is a characteristic speed of sound; 

however, one would expect that in sonic vacua like granular materials (with zero speed 

of sound) no such zones should exist. Yet, such frequency zones in homogeneous 

granular chains were studied theoretically and numerically in [85] and lately were 

confirmed in the experiments by Joseph et al. [87]. 

After substantial research on the homogeneous/monodisperse granular chains, 

heterogeneous/polydisperse granular chains have caught the attention of many 

researchers. Polydisperse systems typically support waves that radiate energy to the far 

field as they travel, and thus distort their initial waveforms due to continuous energy 

‘leakage’. In the context of one-dimensional granular media much emphasis has been 

given to periodic dimer systems [42, 88-92], i.e., systems composed of pairs of dissimilar 

beads, more often called 1: 1 dimers. The dynamics of these systems has been studied 

both theoretically in the continuum approximation [93] and experimentally [89, 90, 93]. 

Although continuum approximation [94, 95] applied for granular diatomic chains [93] 

seems quite a logical extension of analogous studies in homogeneous granular chains, 

large periodic variations of system properties makes the continuum approximation 

inappropriate when bead separations are realized. Hence, we claim that to investigate 

the dynamics of granular dimer chains the discrete approach is more suitable, unless 

the granular chain is pre-compressed and bead separation is suppressed. In this context, 

frequency band gaps in pre-compressed dimer chains have been explored by Herbold et 

al. [91], whereas discrete breathers in these systems have been studied by Boechler et al. 
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[92]. Further to that, intrinsic energy localization by exciting breathers in dimer chains 

has been studied by Theocharis et al. [96]. All these previous studies are possible only 

due to the applied pre-compression that prevents bead separation. But no similar 

results exist, however, in the strongly nonlinear case, i.e. in the absence of pre-

compression. Indeed, there has been no much progress in studying the dynamics of 

these systems analytically taking into account the discrete nature of the bead 

interactions; this perhaps is due to the complexity of the nonlinear dynamical 

interactions occurring in these media. The absence of pre-compression can reveal 

exciting new solutions, like families of solitary waves [97] which are analogs to those 

realized in homogeneous granular chains, and traveling waves [98, 99]. Further to that, 

resonance phenomena that lead to substantial attenuation of propagating pulses were 

explored [91]. The phenomena of resonances and anti-resonances have been 

experimentally verified by Potekin et al. [100]. 

Periodic dimer chains are a broad class of granular systems and 1: 1 dimers 

represent only a small sub-group. The dynamics of general 1:� dimer chains is more 

complicated and poses distinct challenges. Vibrational band gaps in 1: 2 dimers have 

been studied experimentally by Boechler et al. [101] but only in a pre-compressed state. 

Band gaps are those frequency regimes wherein pulse propagation in the medium is not 

possible. Due to the applied static pre-compression, the dimers considered in [101] 

exhibit linearized frequency spectra. Interestingly such spectra possess band gaps 

separated by pass bands. General 1:� dimers have not been considered in the limit of 

zero pre-compression in the literature. A particular case of 1:� and �: 1 dimers has 

been studied by Porter et al. [90], considering stiff (steel) and soft (PTFE) beads and 

establishing the propagation of stationary shocks. In fact the theoretical study of 1:� 

dimer chains considered in this Thesis happens to be one of the first comprehensive 

studies in this regard. It has been shown that 1: 2 dimer chains can support a countable 

infinity of families of solitary waves and nonlinear resonances [102, 103], whereas 
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general 1:�	(� > 2) dimer chains cannot. Other classes of periodic granular systems 

have been considered in literature like trimers [90], wherein light and soft beads are 

periodically placed in a chain of heavy beads in the form 1: 1: 1. The wave dynamics in 

this system is primarily governed by the heavy beads and propagation of stationary 

shocks has been observed. 

Other classes of one dimensional granular systems considered are 

tapered/decorated granular chains [104-109] and randomly decorated chains [110]. 

Although a tapered chain might look quite complex due to monotonous decrease in 

particle size, a simple model of binary collision approximation (BCA) can predict the 

velocity response of its individual beads [104, 105]. Surprisingly enough, tapered chains 

act as effective shock protectors and attenuators [106-108]. Shock attenuation and 

energy transfer to higher frequencies [106, 109, 111] in tapered chains have been 

experimentally verified by Melo et al. [112]. The main intent of these types of granular 

setups is shock mitigation or shock isolation [107, 109]. 

In the previous cases of tapered chain or resonances in dimers [91, 103], the 

applied shock attenuates as it propagates through the granular chain. The other 

methodology evolved for the same application of shock protection/isolation is by 

entrapping/containing the shock energy in a certain spatial domain. Such granular 

systems evolved for shock protection are called granular wave containers or granular 

protectors [44, 69, 113]. These granular chains are designed in such a way that a 

considerable portion of the shock energy is mainly localized in a spatial domain, while 

leaking energy at a substantially lower rate in an intermittent fashion. 

The application of granular media in blast protection is not new; in fact it dates 

back to the time of World War I. In the war field, though the troops are protected in the 

trenches, the shock due to the shelling and bomb explosions can be quite severe. In this 

regard sand bags have found a potential application.  These sand bags form barricades 

for the trenches and absorb the artillery fire efficiently thus protecting the troops [114].  
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In a different scenario, sand bags have been effectively used to protect the world 

famous sculptures like the Venus de Milo statue in order to protect it from getting 

destroyed [115] during the time of World War II. Even to the present day, sand bags 

have been used by the military all over the world to protect troops and artillery in the 

war front [116-118]. Apart from the application of blast protection, sand bags have 

found their utility in erosion prevention and flood control. The high hydrodynamic 

pressure during floods can be detrimental to the engineering structures. These sand 

bags have been effectively deployed to counter the potential catastrophe due to the 

floods [119]. Sand bags have shown substantial efficacy in blast/shock protection. 

Although they have the drawback of mobility and labor intensive filling process, their 

applicability is inevitable in certain situations. 

There has been a lot of interest recently in extending the knowledge gained in 

studying one dimensional chain to higher dimensional granular systems. One such 

study is with regard to branched granular structures [120] and splitting of solitary wave 

in such setups. Although this seems to be a two dimensional problem, due to the 

realization of solitary waves supported by different segments of homogeneous granular 

chains, a quasi-particle approach is evolved in studying the solitary wave propagation 

and their splitting at branch interfaces. Moreover, one and a half dimensional chains 

were proposed as extensions of one dimensional chain. These are discrete homogeneous 

granular chains coupled through weak links. Such chains represent a considerable 

reduction over two dimensional chains. Energy equipartition between parallel chains 

and energy localization and transfer phenomena have been studied in these systems 

[121, 122]. Studies of two dimensional systems have been primarily focused on wave 

propagation in square packing setups consisting of spherical beads [123, 124]. 

Interestingly, energy provided to a particular chain parallel to its axis remains in that 

chain and is seldom shared with neighboring chains. This is in fact due to the very small 

deformation of the beads and thus lateral deformation is negligibly small. In order to 
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transfer energy to neighboring chains, intruders are added in the interstitial space and 

the effect of small mass intruders (usually cylinders) on wave propagation in a two 

dimensional matrix of homogeneous beads was experimentally and numerically 

considered [123]. 

Much focus is devoted to the application of one dimensional granular media in 

practical engineering systems. One of the theoretical studies primarily concerns with 

the inclusion of granular chains as interfaces between one dimensional linear elastic 

continua [125]. Analytical and numerical studies indicate that NNMs of the granular 

chain are excited when the number of beads is small, whereas propagatory behavior 

and solitary waves are observed for larger number of beads in the granular chain. The 

excitation of solitary waves in homogeneous chains, their interactions with boundaries 

[126, 127] and the characteristics of the reflected pulses are taken into account in 

practical applications. Granular materials have found their use in non-destructive 

evaluation - NDE [128], in a system for orthopedics [129], in composite delamination 

[130], in monitoring of hydration of cement [131], in NDE of adhesive joints [132] and in 

highway infrastructure [133]. In all these applications, a strongly nonlinear solitary 

wave is created in the granular medium and is directed towards the intended test 

object. The test object is indirectly diagnosed by examining the form of the scattered 

pulse. Other potential applications include tunable vibration filters [91, 92] and acoustic 

switches and rectifiers [134]. An interesting application of granular chains concerns 

their interactions with elastic continua. It was shown recently that such interactions can 

lead to the creation of sound bullets in elastic half spaces. In principle, it is the 

constructive interference of the elastic waves at a point in the elastic half space causing 

such sound bullets; the source of these waves is a series of parallel uncoupled 

homogeneous granular chains with varying pre-compression that are in contact with 

the surface of the half space. Due to the tunability of the granular dynamics to pre-

compression, solitary waves in these parallel granular chains possess different speeds 
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(depending on their amplitudes). Hence, at the points of contact of the granular chains 

with the elastic half space, sources of disturbances are formed that generate elastic 

waves with varying time-delays between them. Indeed, it is possible to focus acoustic 

energy at a single point in the elastic half-space due to positive interference of the 

emitted elastic waves, resulting in the formation of a high-intensity acoustic bullet. 

Experimental and numerical results are well presented in the work of Spadoni et al. 

[135] and the accompanying supporting information. 

The granular chains (homogeneous and dimers) considered in this Thesis are in 

the strongly nonlinear limit of zero pre-compression, i.e., media possessing zero speed 

of sound (sonic vacua) [42]. In effect, the considered systems have no linearized 

dynamics whatsoever, in contrast to the majority of the above referenced works. Due to 

the absence of pre-compression, bead separation ensues and represents an added source 

of nonlinearity in addition to the strongly nonlinear Hertzian interaction. In fact there 

are no known and well established methods to comprehensively study such strongly 

nonlinear systems analytically. Although certain dynamical behaviors and responses of 

uncompressed granular chains can be analytically captured, we adhere to numerical 

simulations to analyze their complex dynamics. In the study of periodic diatomic chains 

a special asymptotic methodology is devised based of singular perturbation theory 

[136]. This methodology has paved way for the discovery of families of solitary waves 

realized in periodic dimer chains, unknown till now. This methodology is not without 

limitations, as it can be applied only to the regime of primary pulse propagation where 

bead separation cannot occur. Further to analytical and numerical studies, we have 

resorted to experiments in order to verify some of our theoretical findings like 

frequency bands in homogeneous granular chains and resonances and anti-resonances 

in periodic dimer chains. These experiments have verified our theoretical predictions. 
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1.3 Figures 

 

 

Figure 1.1 Comparison of elastic Hertzian force interaction law for non-cohesive elastic 

bodies with 	 = 1. 
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2. DYNAMICS OF HOMOGENEOUS GRANULAR CHAINS 

 

The propagatory dynamics of homogeneous granular chains has been studied 

extensively both numerically and experimentally in the references cited in the previous 

chapter. The present study focuses on the oscillatory behavior of finite dimensional 

homogeneous granular chains. It is well known that normal vibration modes are the 

building blocks of the oscillatory dynamics of linear systems due to the applicability of 

the principle of superposition. One the other hand, nonlinear theory is deprived of such 

a general superposition principle (although special cases of nonlinear superposition do 

exist), but nonlinear normal modes – NNMs still play an important role in the forced and 

resonance dynamics of these systems. In their basic definition [77] NNMs were defined 

as time-periodic nonlinear oscillations of discrete or continuous dynamical systems 

where all coordinates (degrees-of-freedom) oscillate in-unison with the same frequency; 

further extensions of this definition have been considered to account for NNMs of 

systems with internal resonances [12].  

We study time-periodic standing waves (NNMs) of finite granular chains 

composed of spherical granular beads in Hertzian contact, with fixed boundary 

conditions. Although these are homogeneous dynamical systems in the notation of 

Rosenberg [77, 79], we show that the discontinuous nature of the dynamics leads to 

interesting effects such as, separation between beads, NNMs that appear as traveling 

waves (these are characterized as pseudo-waves), and localization phenomena. In the 

limit of large number of beads we study band zones, i.e., pass and stop bands (or 

propagation and attenuation zones – PZs and AZs) in the frequency – energy plane 

(FEP) of these dynamical systems, and classify the essentially nonlinear responses that 

occur in these bands. This is the first instance of the realization of band zones in un-

compressed homogeneous granular chains, characterized as sonic vacuum [42]. 

Moreover, we show how the topologies of these bands affect the forced dynamics of 
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these granular media subject to narrowband excitations. We note that these band zones 

have been experimentally verified. Although the propagatory type behavior is 

analytically un-tractable, the dynamics of these systems in AZs lends itself to linearized 

analysis. Moreover, the theory of band zones contributes towards the design of granular 

media as shock protectors, and passive mitigation of transmission of unwanted 

disturbances. The classification of NNMs according to the existing classification theories 

does not seem appropriate, so a new classification theory has been developed based on 

the concept of effective particles and balance of momentum. 

 

 

2.1 Nonlinear Normal Modes (NNMs) and Frequency Bands of Homogeneous 

Granular Chains 

 

2.1.1 Introduction 

 

NNMs are defined as synchronous periodic particular solutions of the nonlinear 

equations of motion of dynamical systems, keeping in mind the fact that the 

superposition principle is no longer valid in the nonlinear case. With such a restricted 

definition, a nonlinear generalization of the concept of normal mode of linear vibration 

theory is possible, and beginning with the works of Lyapunov [74] several attempts 

were made in this direction. Lyapunov's theorem proves the existence of n synchronous 

periodic solutions (NNMs) in neighborhoods of stable equilibrium points of n degree-

of-freedom (DOF) Hamiltonian systems whose linearized eigenfrequencies are not 

integrally related (so that no internal resonances between modes exist). The formulation 

and development of the theory of NNMs can be attributed to Rosenberg and his co-

workers who developed general qualitative [75], and quantitative [76-79] techniques for 

analyzing NNMs in discrete conservative oscillators. Rosenberg considered � DOF 
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conservative oscillators and defined NNMs as vibrations-in-unison, i.e. synchronous 

time-periodic motions during which all coordinates of the system vibrate 

equiperiodically (in a synchronous fashion), reaching their maximum and minimum 

values at the same instant of time. In linearizable systems with weak nonlinearities it is 

intuitive that NNMs are particular periodic solutions, and that, as the nonlinearities 

tend to zero, approach in limit the classical normal modes of the corresponding 

linearized systems. On the contrary, essentially nonlinear systems do not show such a 

behavior, since the NNMs in these systems are not necessarily extensions of normal 

modes of linear systems. Thus the NNMs of these systems may exceed in number the 

degrees-of-freedom of the system, and, in addition, certain of the NNMs may not have 

any counterparts in linear theory. This is due to NNM bifurcations [12], which become 

exceedingly more complicated as the number of DOF of the systems increase and 

introduces new features such as nonlinear mode localization in the dynamics. 

Our study of standing waves (NNMs) in one dimensional granular media will be 

structured as follows. We initiate our analysis by considering a two-bead system with 

fixed boundary conditions, and study NNMs by numerical Poincaré maps and 

analytical techniques in terms of hypergeometric functions [137]. We then extend our 

analysis to three-bead granular systems, and compute the corresponding NNMs by 

numerical methods. Further, we focus on higher (but finite-) dimensional) systems and 

consider exclusively two specific classes of NNMs, namely the in-phase and out-of-

phase modes, since as we will show, these form the boundaries of the frequency – 

energy band within which all other NNMs are realized. 
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2.1.2 Two-Bead Granular System 

 

The two-bead granular system considered is depicted in Figure 2.1. The system is 

homogeneous in the sense that the two spherical beads have identical geometric and 

material properties. Moreover, the beads are placed between rigid boundaries (fixed 

hemispheres of the same radius and material as the other beads) with no gaps existing 

between them or with the walls when they are in their trivial equilibrium positions. The 

system is considered without any pre-compression, and thus it exhibits strong 

(essential) stiffness nonlinearity and potentially non-smooth effects. Furthermore, no 

dissipative effects are yet considered in this study, but weak dissipative forces in the 

bead interactions will be considered later, in our computational study of the forced 

dynamics of high-dimensional granular media carried out in Section 2.2. Assuming 

Hertzian contact interaction between beads and between the end beads and the rigid 

boundaries which are effectively fixed hemispheres of the same material and radius as 

that of the moving beads, the kinetic (��) and potential energy (��) of the two-bead 

system are defined as follows, 
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where, �� is the displacement of the � −th bead, � denotes the radius of the bead, � 

elastic modulus, � Poisson’s ratio, � mass density, and � mass of each bead; the (+) 

subscript in the expressions in (2.1) is used to emphasize that the bracketed term is non-

zero only if the term inside the bracket is positive and zero otherwise. The equations of 

motion can be derived from Lagrange’s equation as follows, 
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where Φ = ��2��� �⁄ /[3�(1 − ��)]. The non-smoothness due to the subscript (+) is 

introduced to mathematically model the possibility of separation between the beads in 

the absence of compressive forces and this considerably complicates the analysis. 

 The displacements are non-dimensionalized by means of the following 

normalizations, 
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So the equations of motion are placed in the following normalized form, 
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where �� = ��(�) is in terms of the normalized time �, and overdots denotes 

differentiation with respect to �. System (2.4) will be employed in the following 

analysis. We re-emphasize at this point that the dynamics of system (2.4) is not only 

essentially nonlinear (as the stiffness terms do not possess any linear components), but, 

in addition, they are non-smooth. The loss of smoothness is due to the fact that the 

interaction force due to (compressive) Hertzian contact vanishes when the center 

distance between the two beads exceeds a length equal to twice the radius and due to 
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the non-cohesiveness of the interacting beads. From the above discussion of the subtle 

features of the system, it is certain that the system dynamics will be highly complex. 

 Since the system possesses two degrees-of-freedom (two-DOF) and is 

conservative, it is possible to analyze its global dynamics in terms of numerical Poincaré 

maps. Indeed, a NNM of this system is defined as a time-periodic oscillation where the 

bead oscillations possess identical frequencies but may not necessarily be synchronous 

due to possible bead separations. Moreover, whether the dynamics is smooth or non-

smooth, a NNM should possibly be depicted as a (modal) curve in the configuration 

plane. System (2.4) possesses a four-dimensional phase space, but owing to energy 

conservation (since no dissipative effects considered),  
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the dimensionality can be reduced by one, and the dynamics can be restricted to a 

three-dimensional isoenergetic manifold. Intersecting the isoenergetic flow by a two-

dimensional cut section defined as, �: {�� = 0}, we obtain a two-dimensional Poincaré 

map �: Σ → Σ, where the Poincaré section Σ is defined as, Σ = ��� = 0, ��� > 0� ∩

{����, ���, ��, ���� = ℎ}, and depicts the global nonlinear dynamics of the system on the 

cut section that is now parameterized by (��, ���). In Figure 2.2 (unless stated all units 

are non-dimensional) we depict the numerical Poincaré map at the energy level 

ℎ = 0.0001. Three types of periodic solutions are detected, namely an in-phase NNM, 

an out-of-phase NNM, together with numerous subharmonic orbits. We note that the 

out-of-phase NNM is a synchronous oscillation and lies on the ��� axis on the cut section, 

whereas the in-phase NNM is offset from that axis and is an asynchronous oscillation. 

Moreover, the two modes appear to be stable (since they are surrounded by closed 
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orbits in the Poincaré maps), and, hence, are physically realizable (i.e., they can be 

realized experimentally). 

 In Figure 2.3 we depict the in-phase NNM for the energy level ℎ = 0.0001  

(region A of the Poincaré plot of Figure 2.2). From the time series of Figure 2.3a, we note 

that the two beads pass through their equilibrium positions at different instants of time. 

Hence, such a mode does not conform to the classical definition of NNM as proposed 

by Rosenberg [77]; however, by extending the definition to account for non-

synchronicity in the bead oscillation we may classify this time-periodic motion as in-

phase NNM. It is interesting to note that this NNM exhibits bead separation.  

The energy exchanges between beads for that NNM are of particular interest. 

Referring to Figure 2.3a, at point 1 the entire energy of the system is elastic due to the 

interaction of the second bead with the fixed right boundary, whereas the first bead is 

motionless but offset from its equilibrium position. As time progresses, at point 2 the 

beads start interacting with each other, and at that time instant the first bead collides 

with the second. Proceeding to point 3, the second bead loses contact with the boundary 

as it passes through its equilibrium position. Once the first bead passes through its 

equilibrium position at point 4, it starts interacting with the fixed left boundary and at 

that point the second bead has transferred almost all of its energy to the first bead and is 

about to get stationary. At point 5, the second bead loses all its energy, becomes 

stationary but offset from its equilibrium position, and the entire process repeats itself. 

It is interesting to note that from point 2 to 5, both beads remain in contact with each 

other, and, as explained previously, the second bead loses contact with the fixed right 

boundary whereas the first bead gains contact with the fixed left boundary. Beyond 

point 5, the first bead interacts with the boundary and subsequently loses contact with 

the second bead and the complete energy of the system is in the form of elastic potential 

energy due to the interaction of the first bead and the fixed left boundary (at point 6). 

Hence, complete exchange of energy between the two beads occurs, and the in-phase 
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NNM can be represented by the time-delayed relation ����� = −���� − �/2�, where T is 

the period of the in-phase NNM. The previous discussion highlights the complex and 

highly asymmetric oscillation of the granular system when it oscillates in this in-phase 

periodic motion. 

 The non-smooth character of the in-phase NNM can be inferred from the 

depiction of the dynamics in the projection of the phase plane (cf. Figure 2.3b), where a 

discontinuity in slope can be readily noted. This happens at the time instant when one 

of the beads loses contact with the fixed boundary and the other stands stationary. It 

follows that non-smooth effects in the oscillation are associated with ‘silent’ periods of bead 

responses, i.e., with phases of the motion where a bead is stationary at an offset position from the 

zero equilibrium. Moreover, the depiction of the modal curve in the configuration plane 

of Figure 2.3c confirms our earlier observation regarding the non-synchronicity of the 

bead oscillations since they cross their equilibrium points at different instants of time. 

Considering the motion of each bead, there are time instances where it interacts 

simultaneously with both the other bead and the rigid boundary; moreover, there are other 

time instances where the bead is stationary not interacting with neither the other bead nor 

the wall. This introduces asynchronicity in the NNM response. 

 Finally, a comparative study of the dynamics of the two-bead granular system to 

the dynamics of a two-DOF vibro-impacting system (corresponding to perfectly rigid 

beads and purely elastic collisions between them and the rigid boundaries cf. Figure 

2.4c) is performed in Figure 2.4. Due to the Hertzian contact law, deformation of beads 

during collisions occurs, and as a result the time series is smooth. By contrast, in the 

vibro-impacting system bead deformation does not occur, and so there exist non-

smooth transitions between different phases of the dynamics. Still, the vibro-impact in-

phase NNM could be considered as a generating solution to develop asymptotic 

approximations for the in-phase NNM of the granular medium in the limit of small 

bead deformations.  Although, the vibro impact response shown here is schematic, the 
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distance ‘ ’ (Figure 2.4c) can be estimated by matching the time period of the in-phase 

NNM in the two-bead granular system. It is worth noting that in the vibro-impacting 

system at any instant of time there is single bead to bead interaction (instead of 

simultaneous multiple bead interactions), and hence the dynamics is dispersion-free 

(ref. Chapter 1); furthermore, the interaction time is theoretically zero. In fact the in-

phase NNM can be modeled using the concept of effective particle as a single particle 

accounting for the transfer of kinetic energy/momentum in the vibro-impacting system 

(this is elaborated in greater detail in Section 2.3.4). 

 Focusing now on the out-of-phase NNM (region B in the Poincaré map of Figure 

2.2), in Figure 2.5a we depict the corresponding responses of the two beads. In this case 

neither of the two beads reaches a stationary position after separation, so no ‘silent’ 

regions exist, and the dynamics is completely smooth (in the sense that no non-smooth 

effects occur in the phase plot of Figure 2.5c). Indeed, the two beads oscillate in 

synchronicity and in out-of-phase fashion, and at the precise time instant when they 

lose contact with the fixed boundaries they get into contact and start interacting with 

each other; hence, at any given time a bead either interacts with the other bead or with 

the rigid boundary, but not simultaneously with both and there is no ‘free flight’. This is in 

contrast to the in-phase NNM. Moreover, both beads cross their equilibrium positions 

at the same instant of time, so this mode conforms to Rosenberg’s definition of NNM 

[77, 79]. It is worth mentioning that for higher dimensional systems the out-of-phase 

mode doesn’t conform to Rosenberg’s definition of NNM [77, 79]. In case of even 

number of beads, however, the pair of beads which are positioned symmetric about the 

center of mass of the chain would pass through their equilibrium points at the same 

instant of time. 

Due to the fact that the out-of-phase NNM corresponds to synchronous and 

symmetric oscillations of the two beads, it can be explicitly analyzed. To this end, the 

oscillation is divided into two phases, in each of which the strongly nonlinear equations 
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of motion are decoupled and can be explicitly solved. In the first phase of the oscillation 

the total energy ℎ of the granular system is partitioned equally between the two beads 

in the form of elastic potential energy due to their interactions with the fixed 

boundaries. Hence, in this phase each of the two beads remains in contact with its rigid 

boundary, being detached from each other. Consequently the mutual interaction terms 

in the equations of motion vanish and the equations of motion decouple completely, 
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subject to the initial conditions ���0� = −(5ℎ/4)�/�,	 ����0� = 0, ���0� = (5ℎ/4)�/�, and 

����0� = 0. Denoting ����� = −����� ≡ ����, the solution of (2.6) is computed in explicit 

form as, 
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where ( )2 1
, ; ;F • • • •  is a Hypergeometric function defined as [137], 
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and Γ(∙) is the Gamma function [137]. This solution is valid only until the two beads 

reach their respective equilibrium points and the first phase of the oscillation is 

completed. 
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 At that time instant the second phase of the oscillation starts. As the beads pass 

through their equilibrium positions, they lose contact with the corresponding rigid 

boundaries and engage in mutual interaction. Again the equations of motion can be 

combined into a single one, which can be solved in closed form. To show this we 

consider again the equations of motion, 
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As can be noted, the terms accounting for the bead interactions with the boundaries are 

neglected beforehand. Furthermore, we introduce the relative displacement variable 

! = �� − ��. Then the equations of motion (2.8) can be combined to the following single 

equation, 
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this can be solved explicitly by quadratures. We note at this point that at the end of the 

first phase of the oscillation the total energy of the system h is in the form of pure kinetic 

energy, equally distributed between the two beads. Hence, at the beginning of the 

second phase of the oscillation both the beads have opposite velocities, which provide 

us with the necessary initial conditions in the form, !�0� = 0,!��0� = 2√ℎ. Hence, the 

following analytical solution for (2.9) is derived: 
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The time period of the out-of-phase NNM can then be evaluated from (2.10) as, 
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this provides an explicit expression for the dependence of the frequency # = 2$/� of 

the out-of-phase NNM on the energy ℎ. This analytical solution will be further utilized 

in our later discussion of the dynamics of the granular system in the frequency – energy 

plane. 

The in-phase NNM corresponds to asynchronous and non-smooth oscillations of 

the two beads and it does not lend itself to a similar explicit solution. In fact, as many as 

five distinct phases of the dynamics exist for the in-phase NNM, of which only two 

(between point 1-2 and 5-6) can be analyzed explicitly (the other three phases 

correspond to concurrent interactions of the beads with each other and the rigid 

boundaries and are not amenable to direct analytic treatment). This prevents the 

decoupling of the nonlinear equations of motion and a closed form solution. 

 Focusing now on the subharmonic orbits of the two-bead system, we mention 

that there is a countable infinity of this type of motions (corresponding to the countable 

infinity of rational numbers). In Figures 2.6a, b we present two such representative  

subharmonic oscillations corresponding to 1: 3 and 2: 3 rational relations between the 

frequencies of the oscillations of the first and second beads, respectively. Both these 

orbits are stable but the domains of quasi-periodic (‘regular’) motions surrounding 

them are relatively small (cf. Figure 2.2). Moreover, as mentioned previously, due to the 

non-integrability of the dynamics of this system there exists a countable infinity of 

stable subharmonic orbits satisfying general �:� rational frequency relationships, albeit 

with increasingly smaller domains of realization as the mutually prime integers � and 

� increase. 
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Due to the nonlinear nature of the two-bead granular system, the frequencies of 

its time-periodic motions are energy dependent [12, 76, 80, 81]. It follows that the 

aforementioned NNMs and subharmonic orbits can be better represented in a 

frequency – energy plot (FEP). As discussed in [138], by depicting the dynamics of a 

system in a FEP it is possible to study the influence of these modes on the forced and 

damped dynamics; moreover, it would be possible to better relate the dynamics of the 

two-bead granular system to the dynamics of higher dimensional granular systems that 

will be considered later. To depict the two NNMs in the FEP it is necessary to compute 

their analytic continuations for varying energy and derive the corresponding frequency-

energy relationships. This can be performed immediately for the out-of-phase NNM by 

means of relation (2.11). Since no similar explicit relationship can be derived for the in-

phase NNM, we formulate a numerical shooting method to study this NNM at higher 

energy ranges. The shooting method is applied by specifying initial displacements and 

zero initial velocities for the two beads, so that at � = 0 the entire energy is stored in the 

second bead due to its elastic compression by the right boundary (cf. Figure 2.7). It 

follows that at � = 0 the first bead is neither in contact with the boundary nor with the 

second bead. Hence, assuming that the total (conserved) energy of the system is equal 

to h, the initial conditions for the granular system is chosen as, 
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where 0 < %�
(�)

< 1 is a constant that determines the asymmetry in the initial conditions 

for the in-phase mode, and is computed by the numerical shooting method. This 

constant is computed as %�
(�)

≈ 0.5585, and it is interesting to note that it remains fixed 

as the (conserved) energy level varies. This is due to the homogeneous nature of the 

system according to the definition of Rosenberg [77, 79]. To perform numerical 
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continuation for the subharmonic orbits at higher energy levels we utilized the 

numerical algorithm developed by Peeters et al. as discussed in [138]. 

 In Figure 2.8 we present the different families of modes (NNMs and 

subharmonic orbits) of the two-bead system in the FEP. The frequency-energy curve of 

the out-of-phase NNM provides the upper limit of time-periodic orbits for this system, 

so no time-periodic oscillations can be realized in the upper region of the FEP, which is 

labeled as ‘prohibited’ band. We note that the families of the two NNMs and subharmonic 

orbits are defined over the entire energy range and are represented by smooth curves 

that bifurcate from the origin of the FEP. This is in contrast to dynamical systems with 

essential but smooth stiffness nonlinearities, where subharmonic orbits appear as 

‘tongues’ over finite energy intervals [138]. It will be of interest to study how the 

topological structure of the orbits on the FEP changes as we increase the number of 

beads, and in particular, how the ‘prohibited’ band changes as the number of beads 

tends to infinity and the granular chain becomes of infinite extent. These questions are 

discussed in the subsequent sections. 

 

 

2.1.3 Effect of Pre-compression on the In-phase NNM of Two Bead System 

 

As described in the previous chapter, the application of pre-compression on the 

granular chain introduces a linear component in the force interaction law and, hence, a 

linear component in the acoustics of the system. Thus the system can no longer be 

considered to be essentially nonlinear. The application of strong pre-compression may 

completely suppress the bead separation and render the dynamics weakly nonlinear, 

but with the application of an initial pulse of sufficiently high energy, the system can 

still exhibit strong nonlinearity. To demonstrate the effect of pre-compression on the 

dynamics we consider the two bead homogeneous chain of Section 2.1.2, but now with 
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uniform pre-compression. Then the non-dimensional energy of the pre-compressed 

system can be expressed in the form, 
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and the corresponding equations of motion of the pre-compressed system are given by, 
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where Δ is the non-dimensional applied pre-compression on the two bead chain. 

Clearly, we can still construct the Poincaré map of system (2.14) at a fixed energy level, 

similar to the case of two bead uncompressed chain. Again we realize two NNMs, 

namely, an in-phase and an out-of-phase one. The more interesting case of in-phase 

NNM is now considered and its evolution with the change in pre-compression is 

studied. To have a fair comparison we consider a constant energy of ℎ = 0.0001 and 

vary the applied pre-compression from 0 to 0.023. The maximum pre-compression in 

the static condition of the system for certain energy ℎ is given by Δ	
� = (5ℎ/6)� �⁄ , and 

corresponds to Δ	
� = 0.02335 for ℎ = 0.0001. 

For zero pre-compression, i.e. Δ = 0, we recover the previous uncompressed case 

and the corresponding in-phase NNM is shown in Figure 2.3. For pre-compression 

equaling Δ = 0.01 and the corresponding in-phase NNM is shown in Figure 2.9a. As can 

be seen the amplitude of oscillations of the beads is higher than the applied pre-

compression and furthermore, a zone of stationarity can be observed; this implies that 

the beads separate from one another, with one of the beads losing contact with the rigid 

boundary, and the other continuing to interact with the rigid boundary. The dynamics 

in this case is still strongly nonlinear. Increasing the pre-compression to Δ = 0.015 
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(Figure 2.9b), we note that there is no zone of stationarity, and instead the beads remain 

always in mutual contact, but detach from the boundaries at certain periods during a 

cycle of oscillation. This can be ascertained by considering the relative displacements 

between beads. Further increasing the pre-compression renders the dynamics nearly 

linear and the in-phase NNM converges to the more recognizable in-phase NNM 

realized in two-DOF linear symmetric oscillators [12] wherein the two beads oscillate 

in-phase with almost same amplitude (cf. Figure 2.9c, d). From a different perspective, if 

we plot the response on the two-dimensional configuration plane, we observe that the 

modal lines for the in-phase NNMs for Δ = 0 to 0.02 do not pass through the origin, and 

thus do not conform to Rosenberg’s definition of isochronicity of the NNM. With 

further increase of the pre-compression to Δ = 0.023, however, the modal line passes 

through the origin and thus it is a similar to isochronous NNMs [12] as predicted by 

Rosenberg (as can be seen in Figure 2.10a). It is clear then that the applied pre-

compression eliminates the strongly nonlinear characteristics of the in-phase NNM. 

 

 

2.1.4 Three-Bead Granular System 

 

Considering the homogeneous three-bead granular system with rigid boundaries 

(similar to system in Figure 2.1), the governing normalized equations of motion are 

given by, 
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where the previous normalizations hold. In this case it is not feasible to compute 

Poincaré maps for studying the global dynamics since the dimensionality of the system 

is relatively high (it has a six-dimensional phase space). Nevertheless it is possible to 

numerically compute the NNMs and subharmonic orbits of this system using the 

methodology and computational techniques discussed in the previous section.  

Since the in-phase NNM (labeled as ‘NNM 1’) plays an important role in the 

dynamics of the granular system we will examine this mode in detail. To compute this 

NNM we employ the shooting method by assuming zero initial velocities and non-zero 

initial displacements in the form, 
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where ℎ is the (conserved) energy of the system, and, as previously, the coefficients %�,�
(�)

  

characterize the asymmetry in the initial spatial distribution of the in-phase NNM. 

These coefficients are computed as, 0 < (%�
��

≈ 0.374) < (%�
��

≈ 0.744) < 1, and as for 

the two-bead system they are independent of the energy h. In Figures 2.11a-c we depict 

the in-phase NNM for this system; in similarity to the two-bead system, we infer that 

there are domains where the beads become motionless at offset (from the zero 

equilibrium) positions. In addition, non-smooth effects in the dynamics are clearly 

noted, and a high non-synchronicity between bead oscillations is deduced. The most 

important (and unique) features of this mode are the patterns of separation and loss of 

contact between beads and between the end beads and the fixed boundaries (which 

lead to the non-smooth effects depicted in Figures 2.11b, c). Indeed, the initial 

conditions required for the realization of the in-phase NNM are such that except for one 

of the beads, all other beads are detached from each other and the walls. It is this feature 

that prevents the study of this mode using a continuum approximation technique (this 
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holds also for the in-phase NNM of higher dimensional homogeneous granular chains 

with increased number of identical beads). Indeed we can state that the in-phase NNM, 

which is the lowest frequency NNM, is the mode most affected and influenced by the discrete 

nature of the granular system. 

 An even more peculiar feature of the in-phase NNM is that it resembles a traveling wave, 

since it appears to ‘propagate’ back and forth in the granular chain. This becomes more 

apparent in higher-dimensional granular media (cf. Section 2.1.5), but a first hint is 

provided by studying the velocity profiles depicted in Figure 2.12 for the three-bead 

system. In that plot we present the superposition of the velocity profiles of the central 

and end beads and show them on the same time scale. We note that the velocity profiles 

are in the form of single-hump ‘pulses’; half of the velocity profiles of the end beads 

match exactly that of the central bead, whereas the other half is strongly influenced by 

the interaction of each end bead with the fixed boundaries. Moreover, there is a 

constant time delay between the transmission of velocity ‘pulses’ to the neighboring 

beads, so, in fact, the in-phase NNM resembles a traveling wave. This result will be 

generalized for higher dimensional systems where it will be shown that the velocity 

profiles of all beads except for the two end beads are identical but for a constant time 

shift. Hence, although the in-phase NNM is in actuality a time-periodic standing wave, 

the motion of each bead is followed by an extended period where it settles to an offset 

stationary position until the bead executes a motion in the reverse direction after a time 

interval equal to the half period of the NNM. Each bead (except for the end ones) 

executes an identical motion but for a constant time shift, so the in-phase NNM appears 

as a traveling wave. Based on these observations we will refer from here on the in-phase 

NNM as a pseudo-wave. 

 The second NNM (labeled as ‘NNM 2’) of the three-bead system corresponds to 

out-of-phase motion of the neighboring beads and is presented in Figure 2.13. Due to 

non-synchronicity of the oscillations of the three beads this mode is again in non-



40 

 

conformance with the definition of NNM given by Rosenberg [77, 79], but, in similarity 

to the two-bead case, it represents the highest frequency NNM of the three-bead 

system, and as such, it forms the upper bound of the domain of periodic motions in the 

frequency – energy plane. 

The third mode (labeled as ‘NNM 3’) of the three-bead system corresponds to 

lack of motion (stationarity) of the central bead (bead 2) for all times. As shown in 

Figure 2.14 the dynamics of the system can be partitioned into two phases. In the first 

phase the end beads share the energy of the system equally, which at � = 0 is purely 

elastic. At the end of the first phase the energy is completely transformed to kinetic and 

the two end beads have opposite velocities. Since the central bead is stationary, for this 

NNM it acts as a virtual fixed boundary. Hence, the dynamics of the system in the 

second phase is quite similar to the first one, and the equations of motion decouple 

throughout enabling us to solve for the bead responses in closed form. Omitting the 

details of the analysis we may express the period of this NNM as, 
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where ℎ denotes total conserved energy. 

The last type of NNM (labeled NNM 4) supported by the three-bead system is 

localized, with one of the end beads interacting with the wall and oscillating with an 

amplitude that is much larger (about twice) than the corresponding amplitudes of the 

other two beads (cf. Figure 2.15). It is clear that due to the symmetry of the system this 

mode is degenerate as it may be realized in an alternative symmetric configuration 

where the motion is localized to the other end bead. It is interesting to note that this 

type of nonlinear localization occurs in the homogeneous granular system, and in 

complete absence of pre-compression. To our knowledge this is the first report of this 
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type of (strongly) localized motion in a single bead of a finite homogeneous granular 

system. We make the remark at this point that nonlinear localization in granular 

homogeneous media has been reported in previous works (e.g., [139, 140]) but only 

under sufficiently strong pre-compression and/or in the presence of disorder, so that no 

separation between beads would be possible; moreover, spatially periodic standing 

waves with recurring time-periodic localization (after a wavelength) have been reported 

in infinite granular chains with no pre-compression [63]. Surprisingly, no analogous 

localized NNM where the localization takes place in the central bead of the three bead 

system under consideration was found in this system. 

 In addition to the four NNMs (where all beads oscillate with the same frequency) 

the system supports a countable infinity of subharmonic orbits, in similarity to the two-

bead system; in these periodic orbits the frequencies of the beads are related in rational 

ratios. The FEPs of the NNMs and some subharmonic orbits of the three-bead system 

are presented in Figure 2.16. From the above discussion, the number of NNMs in this 

system exceeds its degrees of freedom, and this is consistent with previous results 

concerning essentially nonlinear discrete oscillators [12]. The upper boundary that 

separates the region where time-periodic orbits are realized from the ‘prohibited’ band 

(where no NNMs can be realized) is formed again by the out-phase NNM 2 as in the 

case of two bead system, whereas the lowest frequency mode is the in-phase NNM 1, 

which, as discussed previously, is a pseudo-wave. Moreover, compared to the 

corresponding results of the two-bead system (cf. Figure 2.8) we note that with 

increasing number of beads the upper boundary (corresponding to the out-of-phase NNM) moves 

toward higher frequencies, whereas the curve corresponding to the in-phase (pseudo-wave) 

NNM moves towards lower frequencies. This trend will be confirmed in the next section 

where higher dimensional granular systems are considered. In the FEP of Figure 2.16 

we depict also the frequency-energy curves of two subharmonic orbits, which occur 

within the complement of the ‘prohibited’ band. No time-periodic orbits (NNMs or 
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subharmonic orbits) can occur in the ‘prohibited’ band, similar to the case of the two-

bead system. 

 

 

2.1.5 Higher Dimensional Granular Systems 

 

We now extend our analysis to homogeneous granular chains of higher dimensionality. 

Our main aim is to study the changes in the structure of the FEP as the number of beads 

increases, and, in particular, to identify regions in the frequency – energy plane where 

spatial transmission of disturbances (i.e., energy) is facilitated or prohibited by the 

intrinsic dynamics of the granular medium. This information is of practical significance 

when such media are designed as passive mitigators of shocks or other types of 

unwanted disturbances. Since the out-of-phase and in-phase NNMs represent the 

highest and lowest frequency NNMs of the granular medium, respectively, all other 

NNMs (localized or non-localized) are realized in the frequency – energy zone defined 

by these ‘bounding’ NNMs, irrespective of the dimensionality of the granular medium. 

Hence, in what follows we will only focus on these two NNMs and investigate how the 

topology of the band of realization of NNMs (and its complementary high-frequency 

‘prohibited’ band) changes with increasing number of beads in the granular chain. 

 In Figure 2.17 we depict the in-phase and out-of-phase NNMs in the FEP for 

systems composed of two to seven beads. We note that as the number of beads 

increases the out-of-phase NNM makes a transition towards higher frequencies and 

quickly converges (accumulates) to a definite upper bounding curve, whereas the in-

phase NNM makes a similar transition towards lower frequencies. No such quick 

convergence is noted for the in-phase NNM; rather, as the number of beads tends to 

infinity the in-phase NNM tends towards the zero frequency axis. This raises an 

interesting question concerning the physics of the dynamics of the infinite granular 
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system as the in-phase NNM approaches the zero-frequency limit. Namely, as 

discussed in the previous section due to bead separation the in-phase NNM resembles a 

traveling wave corresponding to a single-hump velocity disturbance propagating back 

and forth through the granular system (hence the previous characterization of this 

NNM as a pseudo-wave). Moreover, the ‘silent’ period for each bead response 

(corresponding to the time period where the bead remains motionless at an offset 

position) progressively increases with increasing dimensionality of the system. 

Following this argument one step further, one might deduce that in the limit of infinite 

number of beads the period of the NNM tends to infinity (and its frequency tends to 

zero as it approaches the energy axis in the FEP), so the in-phase mode should 

degenerate to a true traveling wave, similar (or may be identical) to the solitary wave 

studied by Nesterenko [41]. 

 Motivated by the aforementioned observation, in Figure 2.18 we compare the 

velocity profile of the solitary wave studied by Nesterenko [41] to the single-hump 

velocity profiles of the in-phase NNMs of fixed-fixed three- to seven-bead granular 

systems. It is clear that the velocity profiles of the in-phase NNMs do not converge to the 

profile of the solitary wave studied by Nesterenko [41]. So, clearly the in-phase NNM converges 

to a different limit as the dimensionality of the system tends to infinity, and the obvious 

question at this point concerns the type of dynamics that this limit represents. The 

answer can be found by considering more closely the dynamics of the granular chain 

when it oscillates in the in-phase NNM. As discussed previously, for an n − bead 

granular system the initial conditions necessary for exciting the in-phase NNM can be 

expressed in terms of nonzero initial normalized displacements and zero initial 

velocities as follows, 
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where ℎ is the (conserved) energy of the system. This indicates that in order to realize 

the in-phase NNM it is necessary to compress the � −th bead at the right end of the 

granular system, and then allow for gaps (clearances) between the other beads, which 

monotonically decrease as the left end of the system is reached. In Figure 2.19 we depict 

the coefficients %�
(�)

, � = 1, … , � − 1 characterizing the asymmetry in the in-phase NNM 

deformation (in terms of the corresponding gaps) for systems with ≈ � = 2, … ,7 beads, 

and note that as � increases the differences between these coefficients decrease. 

Moreover, the numerical results indicate that in the limit � → ∞ these gaps tend to zero, 

which indicates that the in-phase NNM cannot be realized in the limit of infinite granular 

chain. We conclude that the limit of the infinite granular chain (� → ∞) represents a 

singularity for the family of in-phase NNMs, which makes physical sense, since 

otherwise this family of NNMs (which are non-synchronous standing waves or pseudo-

waves) would degenerate to an actual traveling wave; this would have been a clear 

inconsistency in terms of the dynamics. Hence, we conclude that the pseudo-wave 

character and asymmetry of the in-phase NNM is a pure artifact of the finite dimensionality of 

the homogeneous granular chain, being more profound for smaller dimensionality. We make 

the remark at this point (which will be corroborated by later results) that even though 

the asymmetry in-phase NNM is less profound as the dimensionality of the granular 

chain increases, this lowest frequency NNM can significantly influence the dynamics, 

acoustics and energy transfer of finite dimensional granular media. 

 To demonstrate more clearly the pseudo-wave character of the in-phase NNM, in 

Figure 2.20a we present the velocity profile over half the period of this mode for each of 

the beads of a seven-bead granular system with fixed-fixed boundary conditions for an 

energy of ℎ = 0.00012, and compare it to the corresponding velocity profiles for seven 

beads for solitary wave propagation [42, 44]. Since theoretically the solitary wave can be 
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realized only in the infinite granular chain, the results of Figure 2.20b were computed 

for a chain with 100 beads and free-free boundary conditions; the magnitude of the 

impulse (����0� ≈ 0.019) provided to the first bead was selected so that the velocity 

amplitude (≈ 0.01283) of the resulting solitary wave matches the velocity amplitude of 

the in-phase NNM of the seven-bead fixed-fixed granular system.  

 We note that, whereas the velocity profiles of all beads match exactly for the case 

of the solitary wave (cf. Figure 2.20b), the same holds only for the velocity profiles of the 

five central beads for the case of the in-phase NNM (cf. Figure 2.20a). For the end beads 

of the fixed-fixed granular system only half of their velocity profiles match those of the 

central beads, whereas the other half is strongly influenced by the interaction of these 

beads with the fixed boundary. Moreover, comparing the time delays of arrival of the 

pulse from the first bead to the last, we note that the solitary wave possesses a higher 

speed compared to the pseudo-wave in the fixed-fixed granular system. Furthermore, 

in Figure 2.20a the pseudo-wave is depicted for only one half of the period of the in-

phase NNM (for the other half of the period the pseudo-wave is ‘reflected’ by the right 

rigid wall and it ‘propagates’ in the opposite direction – i.e., backwards – through the 

medium). A tabulation of these time delays for systems composed of three to seven 

beads is presented in Table 2.1, from which we infer that the pseudo-wave (i.e., the in-

phase NNM) becomes slower compared to the solitary wave studied by Nesterenko 

with increasing number of beads. 

 

 

2.1.6 Intrinsic Dynamics of the Infinite Granular Chain: Propagation and Attenuation 

Bands (Zones) 

 

In the limit of infinite number of beads the frequency – energy plane is partitioned into 

two regions, namely a propagation band or zone (PB or PZ) and attenuation band or 
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zone (AB or AZ). The existence of this type of bands in linear  [37, 86, 131, 141] and 

nonlinear [140, 142] periodic media has been well documented in the literature. 

Typically, in PBs traveling waves exist, and these represent the acoustic mechanism for 

spatial transfer of energy through the medium to the far field. On the contrary, in ABs 

near field motions with exponentially decaying envelopes are realized, so in these 

bands spatially localized waves are realized that cannot propagate energy to the far 

field; this is the mechanism for near-field confinement of acoustic disturbances. The 

boundaries separating the PBs and ABs are spatially extended time-periodic standing 

waves which can be regarded as NNMs of the corresponding infinite periodic media. 

 Similar types of time-periodic orbits are realized inside the PBs and ABs of 

infinite homogeneous granular medium with no pre-compression. The partitioning of 

the FEP of the infinite granular chain in terms of PBs and ABs is realized by the limiting 

(accumulating) curves of the in-phase and out-of-phase NNMs as depicted in Figure 

2.17. As the number of beads tends to infinity the in-phase NNM tends towards the 

energy axis (i.e., the zero frequency limit), and the spacing between the frequency – 

energy curves of the NNMs and the countably infinite subharmonic orbits tends to zero, 

or alternately, the NNMs and subharmonic orbits become densely ‘packed’ in terms of 

frequency and energy inside the PB.  

 In the infinite limit the dynamics of the granular medium supports a continuum 

of families of traveling waves (each parameterized by energy) inside the PB. These 

motions were studied in [63], where it was shown that the infinite granular medium 

supports a countable infinity of families of stable traveling waves in the form of 

propagating multi-hump velocity pulses with arbitrary wavelengths; these families are 

parameterized by the ‘silent’ regions of zero velocity that separate successive maxima of 

the propagating velocity pulses. As these ‘silent’ regions increase, the corresponding 

wavelengths and periods of the traveling waves also increase and the frequencies of the 

waves decrease. In the limit of infinite ‘silent’ region the wave ceases to be periodic and 
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its frequency becomes zero; this asymptotic limit of single-hump solitary waves is the 

solitary wave studied by Nesterenko [41]. 

 Different families of traveling waves were computed in [63] and their 

propagation properties were studied. It was found that these periodic waves are slower 

than the solitary wave studied by Nesterenko, with their speeds strongly depending on 

their amplitudes (energies). We wish to depict the frequency – energy curves of these 

families of traveling periodic waves in the FEP of the infinite granular chain. Now, each 

family of traveling waves corresponds to an infinite sequence of propagating velocity 

pulses separated by finite ‘silent’ regions (where no motion occurs). It follows, that in 

order to assign a finite energy measure (‘quantum’) to each family of traveling periodic 

waves we need to compute the corresponding energy density, i.e., the energy carried by 

each wave family over a single wavelength of the motion; moreover, the corresponding 

frequency follows directly from the time-periodic character of the waves. As the ‘silent’ 

region of the traveling wave increases, so does its period. It follows that with increasing 

‘silent’ region the frequency of the wave decreases, until in the limit of infinite ‘silent’ 

region (corresponding to the solitary wave studied by Nesterenko) the energy axis is 

reached and the frequency of the wave is zero. In addition, it is interesting to note that 

for all traveling waves with finite ‘silent’ regions there occur separations between 

beads, whereas in the limit of infinite ‘silent’ region there are no separations between 

beads; it follows that in that limit a continuum approximation can be utilized to study 

the solitary wave (as performed by Nesterenko in [41]). 

 In Figure 2.21 we depict two of these families of traveling waves, which as 

discussed previously, are distinguished by the regions of zero velocity (the ‘silent’ 

regions) between successive maxima of velocity pulses. One family corresponds to 

traveling wave with three-bead periodicity (Figure 2.21b), whereas the second one to 

the four-bead periodicity (Figure 2.21c) [63]. Indeed, we confirm that these families of 

waves are realized inside the PB of the infinite granular medium. In the limit of infinite 
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‘silent’ region we obtain the single-hump solitary wave studied by Nesterenko which 

lies on the energy axis of the FEP (as it corresponds to infinite period or zero frequency).  

 In addition to these families of traveling periodic waves additional motions can 

occur inside the PB, including subharmonic motions, standing waves with recurring 

localization features (i.e., periodically spaced humps) and chaotic orbits. A family of 

such standing waves with three-bead periodicity [63] is shown in [85], with one of the 

beads oscillating in out-of-phase fashion and with higher amplitude compared to its 

neighboring beads. We conjecture that additional families of such standing waves occur 

inside the PB of the infinite granular medium, distinguished by the extent of bead-

periodicity (spatial wavelength) of the standing wave, and type of localization 

characteristics. The standing wave separating the AB from the PB is the out–of-phase 

NNM of a two bead periodicity chain (it should be noted that no traveling waves can be 

realized in a two bead periodic chain). A brief discussion in this regard is presented in 

Section 3.1.5 where we discuss traveling waves in periodic dimer chains. We end our 

discussion of the dynamics inside the PB by noting that no similar standing waves (with 

or without localization characteristics) can occur in PBs of perfectly ordered linear 

periodic media, although standing waves with spatially localized slopes have been 

reported in ordered periodic media with smooth stiffness nonlinearities [143]. However, 

a full study of standing waves with localization features is beyond the aim of this work. 

 We now consider the dynamics of the infinite granular system inside the 

attenuation band (AB) of the FEP of Figure 2.21a. No spatially-periodic standing or 

traveling waves can occur for frequency – energy combinations in that band, so no 

spatial transfer of energy in the granular medium is possible for motions inside the AB. 

Rather, near-field motions occur inside the AB, corresponding to spatially periodic 

oscillations of the beads about different positive offset positions with spatially decaying 

envelopes; overall, the motion of the granular medium is a standing wave with 

decaying envelope, with each bead performing a time periodic oscillation about its own 
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(positive offset) equilibrium position. Examples of this type of near-field standing 

waves are provided in Section 2.2 where the influence of the propagation and 

attenuation bands on the forced response of the granular medium to narrowband 

excitation is studied. We note that the response of the granular medium inside the AB 

resembles the responses of unforced linear periodic media [86, 141, 144], which possess 

similar decaying standing waves (and even decaying ‘complex’ waves when more than 

one coupling coordinates between individual substructures exist [145]) in well-defined 

attenuation bands. This enables the analytical treatment of this type of attenuating 

standing waves in ABs of homogeneous granular media of infinite extent, as shown 

later. 

 

 

2.1.7 Conclusions 

 

New types of NNMs in granular media have been studied in this section. These media 

have the intriguing feature of ‘sonic vacuum’, that is, the characteristic velocity of sound 

in these media is zero due to the essentially nonlinear (non-linearizable) Hertzian 

contact interactions between neighboring beads. Moreover, non-smooth effects are 

added to the dynamics due to bead separation in the absence of sufficient compressive 

forces between them. Although the traditional terminology of NNMs is restricted to 

smooth dynamical systems, the essentially nonlinear and non-smooth features of the 

dynamics of granular media necessitates us to broaden the definition of NNMs to 

include time-periodic orbits that may not necessarily be synchronous. In the case of 

granular systems the non-synchronicity is caused due to bead separation, which can 

lead to ‘silent’ regions in the bead dynamics, whereby one or more beads become 

stationary for a finite period of time at an offset position from the zero equilibrium. 
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 The most interesting of the NNMs of the homogeneous granular systems studied 

in this section is the in-phase NNM, which to the authors’ knowledge has not been 

studied before in the scientific literature. This mode can be realized only when the 

initial state of the beads of the granular medium have prescribed gaps between them, 

i.e., for zero initial velocities, the initial bead displacements should be such that no bead 

is in touch with another bead or with the walls, except for one of the end beads. The in-

phase NNM resembles a traveling wave propagating back and forth through the finite 

granular chain, and hence labeled as a pseudo-wave. In addition, it can only exist in the 

finite chain, since in the limit of infinite number of beads the gaps between beads 

(required for the excitation of this mode) tend to zero. On the contrary, the solitary 

wave studied by Nesterenko [41] does not involve bead separation, so it can be studied 

by an analysis based on continuum limit approximation of the strongly nonlinear 

equations of motion. 

 The significance of the in-phase (pseudo-wave) NNM and the out-of-phase NNM 

of the granular chain is that they form the boundaries of the band in the frequency-

energy plane within which all other NNMs are realized. It follows that as the number of 

beads tends to infinity this region forms the propagation band (PB) in the frequency-

energy plot (FEP), whereas the complementary region forms the attenuation band (AB). 

Motions inside the PB transfer energy through the medium and are spatially extended, 

whereas the corresponding motions inside the AB are near-field solutions.  

In the next section we demonstrate the influence of the intrinsic dynamics of the 

unforced granular system on the forced dynamics of the same system forced by a 

narrowband excitation. It is expected that the partitioning of the FEP in terms of 

propagation and attenuation bands will significantly affect the capacity of the granular 

medium to transmit or attenuate disturbances through it. This, in turn, has clear 

implications on the capacity of the granular chain to act as passive mitigator of 
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unwanted disturbances. Further to that, we experimentally verify the existence of the 

band zones by considering a lower dimensional system of two beads. 

 

 

2.2 Forced Harmonic Responses of Homogeneous Granular Chains 

 

In the previous section we discussed about the dynamics of unforced systems and the 

NNMs that they support. These NNMs when depicted on the frequency-energy plane 

clearly split the plane into two zones which were denoted as the propagation band and 

the attenuation band. Although such bands are typical in linear or weakly nonlinear 

periodic media [37, 86, 141-144], their realization is not as intuitive in periodic ‘sonic 

vacua’ [42] i.e., in essentially nonlinear periodic media with complete lack of classical 

linear acoustics, such as the ordered granular media considered herein. In this section 

we show how the topology of the propagation and attenuation bands in the frequency-

energy plot (FEP) affects the forced dynamics of the multi-dimensional granular chain. 

The influence of the intrinsic dynamics of the unforced chain on the forced dynamics is 

inferred from our discussion below that disturbances initiated inside the PB of the FEP 

can spatially transfer energy within the granular medium (through excitation of 

traveling waves), whereas motions initiated inside the AB are near-field solutions that 

cannot transfer energy through the medium.  

First, we demonstrate this phenomenon numerically by considering a sufficiently 

long chain with harmonic base excitation and force the system in PB and AB. The 

second part of this section is devoted to the experimental verification of the existence of 

PBs and ABs in finite ordered granular media with fixed boundary conditions, forced 

by point harmonic excitations at their boundaries and provide its qualitative match 

with the corresponding numerical simulations. We find that the dynamics of these 

systems depend critically on the frequency and amplitude of the excitation. For fixed 
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forcing amplitude, at lower frequencies the responses are spatially extended, with the 

bead responses being strongly nonlinear and non-smooth, indicating PB behavior. On 

the contrary, at higher frequencies the dynamics is weakly nonlinear and smooth, in the 

form of spatially localized, compressed oscillations, indicating AB behavior. Although 

the propagatory dynamics of the PB cannot be analyzed analytically due to the strongly 

nonlinear characteristics and the bead separations therein, the dynamics inside the AB 

attains a compressed state and exhibits no bead separations. The final part of this study 

is concerned with the analytical study of the weakly nonlinear dynamics of the 

homogeneous granular chain in AB and shows how the pre-compressed dynamics 

becomes independent of the excitation frequency. 

 

 

2.2.1 Study in the Frequency – Energy Domain 

 

To numerically verify the theoretical predictions we excite a 50-bead granular chain by 

imposing a harmonic excitation of its left boundary in the form, ����� = & sin('�) where 

' is the circular frequency of the excitation in terms of the normalized time � and & is 

the non-dimensional amplitude of excitation. Although this is a finite-dimensional 

medium, we expect that, with the exception of certain boundary effects, its intrinsic 

dynamics will be close to the dynamics of the corresponding infinite chain. In order to 

eliminate high-frequency components in the response of the chain that result due to the 

excitation of low-amplitude chaotic motions (resulting from the strong non-integrability 

of the granular chain – see the Poincaré map of Figure 2.2) we added weak viscous 

dissipative forces in the interactions between neighboring beads with viscous damping 

coefficients equal to � = 0.01. As shown below, these weak dissipative terms 

successfully dampen out high-frequency chaotic contributions to the dynamics and help 

us reveal coherent features generated by the intrinsic dynamics in the forced responses. 
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 In Figure 2.22 we depict the forced response of the granular system for excitation 

parameters & = 1.5 and ' = 1. This corresponds to dynamics that occur inside the PB of 

the infinite chain, and this is confirmed by the spatially extended dynamical response of 

the system. We note that the initial disturbance generated at the left boundary of the 50-

bead chain is transmitted throughout the chain; in addition, the total energy in the 

system gradually builds up until it forms an oscillation about a mean energy level. 

Moreover, from the snapshots of the chain deformation at different time instants 

presented in Figure 2.22b, we infer that an initial disturbance travels from the left 

boundary through the chain and gets reflected from the right boundary. It follows that 

the forced dynamics of the chain is mainly caused by excitation of the spatially 

extended intrinsic motions, which, as discussed in the previous section, are densely 

‘packed’ inside the PB of the FEP. Hence, we conclude that in this case, the intrinsic 

dynamics favor the transfer of disturbances through the chain. 

 A qualitatively different picture for the dynamics is inferred from the results of 

Figure 2.23 that depicts the forced response of the chain inside the AB of the FEP. In this 

case the excitation parameters are selected as for & = 0.3 and ' = 1; so we keep the 

same frequency with the previous simulation by decrease the amplitude of the 

excitation, or equivalently the energy input in the system. Judging from the FEP of 

Figure 2.21, we make the theoretical prediction that by decreasing the energy input 

from a high to a sufficiently low level while keeping the frequency fixed, the dynamics 

should make a transition from the PB to the AB. Hence, the dynamics should change 

qualitatively, and the responses from spatially extended become spatially confined. This 

is confirmed by the numerical simulations presented in Figure 2.23, where we note that 

in this case no energy transmission occurs through the chain, but rather the input 

energy is confined in a region close to the left boundary where it is originally generated 

by the oscillating left rigid boundary. Moreover, from the transient responses of system 

presented in Figure 2.23a we note that after some initial transients the dynamics settles 
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into a pattern of a standing wave with a decaying envelope; it follows that the response 

of the system becomes increasingly smaller away from the point of base excitation. This 

is in agreement with our remarks regarding the near-field motions that typically occur 

inside the ABs. We conclude that, contrary to the previous simulation, in this case the 

intrinsic dynamics of the granular chain does not enable the transmission of 

disturbances through the granular medium. In addition, from the snapshot plots of 

Figure 2.23b we conclude that with increasing time the motion inside the AB settles into 

a near-linear spatial decaying configuration where the beads nearest to the excitation 

have the greatest offsets from the trivial equilibrium, whereas the ones farthest have 

negligible offsets (this is also confirmed by the waveforms of Figure 2.23a). This 

indicates that there is an effective pre-compression in the granular chain away from the 

excitation point. So the dynamics in the AB can be studied by adopting a weakly 

nonlinear approach. The analytical study of the dynamics in the AB is dealt with in 

Section 2.2.2. 

 Comparing the temporal evolutions of the total energy in the system for the two 

previous cases (i.e., Figures 2.22c and 2.23c) we note the for excitation frequency inside 

the AB the energy decays with time and reaches a near-zero steady state value, whereas 

for excitation frequency inside the PB the energy reaches a steady state where it 

fluctuates about a nonzero mean value (actually, the computation of this mean value 

can help us represent approximately the response depicted in Figure 2.22 in the FEP of 

Figure 2.21a). This is a clear demonstration of the influence of the intrinsic dynamics of 

the granular medium on energy propagation or attenuation in this medium. 

 We conclude that the results presented in this section indicate that the 

topological structure of the PB and AB of the frequency-energy plot affects significantly 

the narrowband forced dynamics of the granular chain. Indeed, depending on the 

frequency-energy content of the excitation, the intrinsic dynamics of the medium either 

facilitates or hinders the spatial propagation of disturbances within the granular 
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medium, allowing the propagation or dissipating certain frequency components. To 

extend this study to broadband (shock) excitation it will be necessary to add dissipative 

effects such as dry friction or plasticity to the Hertzian law interaction considered 

herein. We expect that such dissipative effects will reveal clearly the effect of the 

intrinsic dynamics on the broadband response of the granular medium. Moreover, it 

should be possible to identify transitions in the dissipative dynamics in the FEP, in an 

exact similar way performed for transient smooth nonlinear dynamics of dissipative 

coupled oscillators [138]. Such studies can be used in formulating predictive design of 

this type of granular media as passive mitigators of shocks or other types of unwanted 

transient disturbances. 

With the previous theoretical and numerical study in view, a series of 

experiments were set out to demonstrate this behavior experimentally in a harmonically 

forced system of 2 beads. The experiments were carried out by the group of Prof. Chiara 

Daraio of the California Institute of Technology, and in the next section we include a 

brief description of the obtained results. 

 

 

2.2.1.1 Experimental Setup and Numerical Model 

 

Daraio et al. considered a system of two beads placed between a dynamic sensor (PCB 

208C01) and a piezoelectric actuator (PST 150/5/7 VS10) [146] (Figure 2.24). The actuator 

was used to harmonically excite bead 1. The piezoactive material of the actuator is 

much stiffer than the actuator cap so they considered the system to be displacement-

driven, i.e. the excitation was realized in the base of the Hertzian interaction of equation 

(2.19) and acted as a moving wall. A dynamic force sensor measured transmitted force 

at the other fixed boundary and was used to infer the dynamics and state of the system, 

i.e., strongly or weakly nonlinear. Two polycarbonate support rods were used to align 
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the beads, actuator, and dynamic sensor along a common axis. Finally the offset bias of 

the actuator was adjusted to achieve dynamics at near zero pre-compression. 

We model the setup described above and shown in Figure 2.24 by considering all 

bead interactions to be Hertzian and purely elastic. To obtain the coefficient in the 

Hertzian contact law, we consider the following material properties of the beads, 

actuator and dynamic sensor. The beads are made of stainless steel 316 and have a 

Young’s modulus �� = 193	GPa, Poisson’s ratio �� = 0.3, mass � = 28.84	g, and radius 

� = 9.525	mm. The Young’s modulus and Poisson ratio for the actuator and dynamic 

sensor are ��� = 193	GPa, ��� = 0.3 and �� = 197	GPa, �� = 0.272 respectively [147]. 

The equations of motion for the experimental setup shown in Figure 2.24 are, 
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where �� and �� are the displacements of beads 1 and 2, respectively, and ��∗ and ��∗ 
the effective Young’s modulus of the different contact interactions, respectively. We 

vary the harmonic excitation ����� = ( sin(#�) applied to bead 1 in order to observe the 

intended PB and AB, where ( is the amplitude and #(= 2$)) the frequency of 

excitation. To stabilize the numerical simulations, we include a small amount of 

artificial viscous damping. Otherwise, the above model does not include any damping 

or dissipative mechanism. 

 



57 

 

2.2.1.2 Numerical Results 

 

In Figure 2.25 we present the response of the system for a low excitation frequency of 10 

Hz. Note that in all numerical simulations and experiments the excitation amplitude is 

approximately 0.4	μm. The force profile calculated at the dynamics sensor end (opposite 

to the actuator) is plotted in Figure 2.25a. At this low frequency, the responses of both 

beads closely follow the excitation (see the temporal evolution of the particles 

displacement in Figure 2.25b). When the excitation displacement is positive the beads 

are compressed against the dynamic force sensor, and when the excitation is negative 

the beads relax and lose contact with the dynamic sensor, resulting in zero applied 

force. The beads perform strongly nonlinear, nearly in-phase and highly asymmetric 

oscillations about their equilibrium positions, transmitting a force in the form of well-

separated pulses to the sensor. This is indicative of dynamics in a PB of the system. 

Similar behavior can be seen at higher excitation frequencies (500 Hz – Figure 2.26 and 

1000 Hz – Figure 2.27), with the notable difference that at higher frequencies the beads 

displacements do not follow the motion of the actuator but instead have more complex 

response waveforms.  

At higher frequencies, we note a qualitatively different behavior in the dynamic 

response of the particles. At 3000 Hz (Figure 2.28), the bead’s displacement cannot keep 

up with the high frequency of the actuator and are dynamically compressed to a 

positive equilibrium position. Furthermore, separation between beads is no longer 

possible. In addition, the amplitude of the oscillation about the mean position of each 

bead is significantly reduced from bead to bead, similar to the spatial attenuation that 

would be observed in linear periodic media. This induces a state of permanent 

compression (note the nonzero average force in Figure 2.28a), and, as a result, it changes 

the dynamic behavior of the system from strongly nonlinear (which characterizes 

motions in the PB), to weakly nonlinear and attenuated (for motions in the AB). This 
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change is brought solely by varying the excitation frequency, keeping the excitation 

amplitude nearly constant.  

With an increase of the excitation frequency to 5000 Hz (Figure 2.29), the mean of 

the force transmitted to the wall does not change, but the oscillation amplitude about 

the mean value reduces considerably. Hence, when the frequency increases the spatial 

attenuation is stronger and the motion becomes increasingly more localized. Figure 2.30 

shows the significant decrease of the amplitudes of the higher harmonics of the 

transmitted force when the dynamics transitions from being strongly nonlinear in the 

PB (Fig. 2.30a) to weakly nonlinear in the AB (Fig 2.30b). In addition, the compressed 

state in the AB allows us to linearize the system for a more comprehensive analytical 

study, as described in Section 2.2.2. 

 In order to carefully examine the transition between the AB to the PB, we fix the 

amplitude of excitation (( = 0.375	μm) and sweep through the frequency in the range 

) = 10	Hz	 to 5000	Hz. For the case of dynamics in the PB we consider the maximum 

force exerted on the fixed end (cf. Figure 2.25a), whereas for dynamics in the AB we 

consider the average of the transmitted force (cf. Figure 2.28a). This duality is due to the 

contrasting behavior of the dynamics in the PB and AB. In Figure 2.31 the transmitted 

force is plotted as function of the excitation frequency. As we sweep the frequency from 

lower frequency to higher, we observe that the magnitude of force increases until about 

) = 1440	Hz, and further increase in frequency decreases the transmitted force 

monotonically. The dynamics in this phase is still propagatory. The frequency 

corresponding to the maximum transmitted force is the nonlinear resonance frequency. 

Although this behavior is observable in the numerical simulations, its experimental 

verification is hardly possible, since as the resonance frequency is approached, the 

responses are no longer repeatable in experiments, but rather they show tendency 

towards chaotic behavior. Hence, the experimental response of the system near 

resonance is not shown in the succeeding discussion. With further increase in the 
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excitation frequency, we observe that the dynamics changes from PB to AB. The 

transition from PB to AB can be ascertained once the separation between the second 

bead and the fixed wall ceases to happen and the fixed wall starts experiencing an 

oscillatory positive average force (Figure 2.31). An interesting observation is that the 

average force in the AB is almost constant and independent of the excitation frequency. 

Again, this will be evident from the analytical study of the dynamics in the AB 

presented in a subsequent section. 

 

 

2.2.1.3 Experimental Results 

 

The experimental tests were carried out using the setup shown in Figure 2.24. The beads 

were excited harmonically with amplitude of approximately 0.4	μm and varying 

frequency. Small deviations (±0.05	μm) from this excitation value occur due to inherent 

nonlinear behavior of the actuator. The force exerted to the dynamic sensor was 

measured and showed the existence of a high-amplitude strongly nonlinear state at low 

frequencies, and a low-amplitude weakly nonlinear state at high frequencies. 

In Figure 2.32a and b, the experimental time series of the force measured by the 

sensor at 10 Hz and 500 Hz, respectively, are depicted. These are qualitatively similar to 

the numerical simulations for dynamics in the PZ at the same frequencies. We note a 

series of transmitted compressive force pulses, similar to the dynamics observed in 

simulation. The Fourier transform of the force at 500 Hz presented in Figure 2.34a 

shows numerous higher harmonics, another characteristic of this strongly nonlinear 

response. The maximum transmitted force is higher at 500 Hz, also in qualitative 

agreement to the simulations. However, in numerical simulations we observed 

resonance phenomena where the maximum force recorded was much higher at 1000Hz. 
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The presence of resonances was not observed in the experiments, due to experimental 

instabilities observed in this frequency regime. 

The weakly nonlinear regime is found at higher frequencies (Figure 2.33), with 

the nonzero mean force indicating a state of compression. The small-amplitude 

oscillations of the force about this mean value is an indication of weakly nonlinear 

interactions in the dynamics. Increasing the frequency decreases the transmitted force 

amplitude for these oscillations. The Fourier spectrum shown in Figure 2.34b 

emphasizes that much fewer harmonics are excited in the weakly nonlinear phase, in 

agreement with the simulations. It should be noted that although the experimental 

results do not match the numerical results quantitatively, we have good qualitative 

agreement between the two responses. The mismatch can be attributed to the dry 

friction, material damping, and other uncertainties present in the experimental setup. 

 

 

2.2.2 Analytical Study of the Dynamics in Attenuation Zone 

 

In this section we analytically study the weakly nonlinear dynamics in the AB. The 

induced permanent compression (Figure 2.28, 2.29 and 2.33) leads to a linearizable 

system suitable for the application of analytical techniques. Moreover, we extend the 

previous results by considering a homogeneous chain of � beads. Similar to the setup of 

Section 2.2.1 for two beads, the first bead is harmonically driven and the ��� bead is 

constrained by a fixed wall. We incorporate linear viscous damping (coefficient *) 

between interacting beads to simulate dissipative effects in the experimental system and 

to suppress transient dynamics.  

Hence, the equations of motion of the theoretical model are as follows, 
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where � = 2,3, … , (� − 1) are the bead subscripts, ����� = ( sin(#�) is the harmonic base 

excitation as defined in Section 2.2.1 and Θ[∙] is the Heaviside function. Incorporating 

appropriate non-dimensionalization leads to the set of normalized, non-dimensional 

equations of motion, 
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where �∗ is the effective stiffness between the interacting beads, displacement �� = ��/(, 

time � = �(4�∗√(�/3�)�/� ≡ +�, , = ��∗/�∗	, % = ��∗/�∗, frequency ' = #/+, and 

damping � = */�+ are the non-dimensional quantities relating equation (2.20) and 

(2.21). Without loss of generality, we consider , = 1 and % = 1 denoting that the 
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dynamic sensor, actuator and beads are made of the same material. This does not affect 

the validity of the resulting dynamics. Recalling the material and experimental data 

from the previous section, �∗ = ��/[2(1 − ���)], ( = 0.35	μm, and # = 8500	Hz; the non-

dimensional quantities are calculated to be ' = 3.1742, + = 1.6825 × 10� and � = 0.5.  

For high frequency excitations in the AB, experiments and numerical simulations 

show small amplitude oscillations about a permanent compressed state. This inspires us 

to introduce new translated coordinates ����� = 
� + -����, where the . −th bead 

displacement is expressed as a combination of its static, 
� > 0, and dynamic, -����, 

components. In simulations we observed that 
� > 
���, i.e., the permanent compression 

for each bead decreases as we move away from the actuator (Figure 2.35). From the 

previously shown results it can be deduced that no separation occurs between beads 

once the dynamics enters the AB, i.e., the dynamics is smooth between any interacting 

beads. Therefore the subscript ‘+’ can be eliminated from the bead to bead interactions 

in the equations of motion (2.21). The only exception is the contact between the actuator 

and first bead where the separation still persists. 

When the dynamics is deep inside the attenuation band it holds that |sin�'��−


�| ≫ -�(�), except in the close neighborhood of points ‘a’ and ‘b’ as shown in  Figure 

2.36. Hence, it can be assumed that 0sin�'��− 
� − -����1 > 0 in the region between 

points ‘a’ and ‘b’ where the actuator displacement exceeds the permanent compression 

of the first bead 
�, and 0sin�'��− 
� − -����1 < 0 when the actuator displacement is 

less than 
�. To this end, we can modify (2.21) to the following form by decomposing 

the coordinates and incorporating the observations mentioned above, 
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As in the previous discussion, the only non-smooth component is in the first 

equation of (2.22), modeling the separation of the actuator and first bead. We observe 

that there are two types of force components on the right hand side of (2.22) 

corresponding to the interaction between beads, (i) static components dependent only 

on 
�, and (ii) dynamic components involving -�(�). We account for the non-smooth 

terms in (2.22) by expanding the harmonic excitation term [sin�'��− 
�]�
�/�

 in Fourier 

series to obtain ‘static’ and ‘dynamic’ components, 
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with the coefficients are defined as: 

 



64 

 

[ ]

[ ]

[ ]

/

3/2

0 1

/

/

3/2

1

/

/

3/2

1

/

sin( )
2

sin( ) cos( )

sin( ) sin( )

n

n

a d

a n d

b n d

π β

π β

π β

π β

π β

π β

β
βτ δ τ

π

β
βτ δ βτ τ

π

β
βτ δ βτ τ

π

+

−

+

−

+

−

= −

= −

= −

∫

∫

∫

 

 

Now by balancing the static forces in all the (smooth) equations (2.22), we obtain the 

following recursive relation for the permanent compression of the beads, 
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where . = 2,3, … , (� − 1). A trivial algebraic manipulation yields, 
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where 2 = 2�/�%�/�. The only unknown in the above set of equations is the permanent 

compression of the first bead 
�. Once this is evaluated the compression of all the other 

beads can be expressed in terms of 
�. The compression 
� can be obtained by balancing 

the static force components in the first equation of (2.22), i.e., balancing the constant 

term from the Fourier series (2.23) with the constant force interaction between the first 

and the second beads. This leads to the following implicit relation: 
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Substituting for 
� in terms of 
� and rescaling time �̃ = '�, we derive the final form for 

the equation governing the compression of the first bead, 
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where the ‘+’ sign is removed from (2.25b) since (sin��̃� − 
�)�/� ≥ 0 within the limits of 

above integration. 

Equation (2.25b) is evaluated numerically to obtain 
�. This analysis predicts that 

the static compression 
� of the first bead (and therefore of any other bead) is 

independent of the excitation frequency when the dynamics is in the attenuation band. 

This is verified through numerical simulations (Figure 2.37), where we depict the 

response of the first bead for a homogeneous chain with � = 10 at various excitation 

frequencies (') inside the AB. The static component of the response is independent of 

the excitation frequency. This analysis assumes weakly nonlinear behavior, and these 

predictions are not valid at lower frequencies as the dynamics makes the transition 

from the propagation to the attenuation band. 

The static offset of each bead in the granular chain is evaluated using equations 

(2.24) and (2.25) and compared to the results derived from numerical simulation for a 

chain with � = 20 (Figure 2.38). The numerical simulations show good correspondence 

with the analytical estimates and confirm that the spatial variation of the static offset is 

linear. As the length of the chain is increased the static component of the first bead’s 

displacement reaches unity asymptotically, whereas the static offset of the last bead 
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approaches zero. In essence, for a sufficiently large number of beads, the chain detaches 

from the exciter and the energy input to the chain approaches zero asymptotically. 

Finally, considering the dynamic components of the bead displacements in (2.22) 

we can obtain analytical estimates of the oscillatory responses of the beads. We arrive at 

reduced dynamical equations for the response -�(�), by removing the static components 

of (2.22). These reduced equations depend on the dynamic components of the Fourier 

series expansion (2.23). We then find analytical approximations for the oscillatory 

components of the bead responses, from the resulting system in the form of an � degree 

of freedom linear damped oscillator system with periodically varying forcing 

frequency. The presence of damping terms leads to steady state periodic responses. Due 

to the presence of damping, the amplitude of oscillations about the static offset of the 

response of each of the beads decreases with increasing frequency. For a particular fixed 

frequency the amplitude of oscillations decrease as we move away from the site of the 

actuator, i.e., 	-���� > -������, confirming the attenuation behavior described above.  

The agreement between numerical and analytical response for the forced 2-bead 

system is presented in Figure 2.39. The analytical responses closely match the numerical 

ones, and both 	-���� > -���� and 
� > 
�. Although the transient dynamics is not 

captured in our analytic study, the steady state response shows good correspondence.  

 

 

2.2.3 Conclusions 

 

Considering harmonically forced granular chains we found that for fixed amplitude of 

excitation, the low-frequency dynamics is strongly nonlinear; beads separate and lead 

to collisions resulting in propagating pulses. This represents the propagation band of 

the dynamics. Indeed, frequency components inside the PB propagate spatially. With an 
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increase in the excitation frequency, the system enters into a state of permanent 

compression which results in weakly nonlinear and smooth dynamics. The response is 

localized close to the excitation and attenuates away from it. In the event of application 

of a high frequency excitation, the frequency components in the PB are transmitted 

along the chain, whereas the frequency components in the AB are attenuated. When the 

system is harmonically excited at high frequency, the system settles to a localized mode 

and the high frequency signals are completely attenuated. This final result, which is 

confirmed by direct numerical simulations and experiments reported in this section 

have considerable practical significance in designing this type of strongly nonlinear 

granular media as passive mitigators of unwanted disturbances. In the transition 

between these two frequency bands, nonlinear resonance phenomena occur, but due to 

the high sensitivity of the experimental setup, results were not repeatable and 

resonance was not experimentally verified, but numerical results evidence the 

occurrence of resonance. 

The dynamics inside the AB is analytically tractable and it is deduced that the 

permanent compression is independent of the excitation frequency. An increase in the 

length of the chain results in an increase in the static offset of the first bead, and in turn 

increases the permanent compression of the other beads. With the first bead having a 

substantial permanent offset, the interaction time between the first bead and the 

actuator decreases and less energy is transferred to the granular chain. 

 

 

2.3 Classification of NNMs in Finite Homogeneous Granular Chains 

 

In Section 2.1 we explored the oscillatory dynamics of homogeneous finite granular 

chains. It is interesting to note that some of the oscillatory modes did not conform to the 

classical definition of nonlinear normal modes (NNMs). In fact such modes were 
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realized for the first time in such non-cohesive systems. This necessitated the extension 

of the definition of NNMs to include such modes. Further to that, it is but obvious that 

the existing methodology to classify the normal modes either in linear or nonlinear 

systems fail to account for such motions. To this end, we develop a new systematic 

methodology for classifying the periodic orbits of homogeneous ordered granular 

chains with no dissipation, under the assumption that all beads oscillate with the same 

frequency. The analysis is based on the idea of balancing linear momentum for sets of 

auxiliary models consisting of ‘effective particles.’ The auxiliary models may be defined 

for any given finite, ordered granular chain composed of � identical beads that interact 

with each other through strongly nonlinear Hertzian interaction law. In turn, the 

auxiliary models may be effectively used for theoretically predicting the total number of 

periodic orbits and the corresponding amplitude ratios of the beads. The derived 

analytical models can be utilized to predict the response of the effective particles, and 

based on that, to predict primary pulse transmission in periodic layered media with 

granular interfaces. Moreover, our analysis can be extended to the general class of 

nonlinear chains of particles with smooth interacting potentials and possible 

separations between particles during the motion. 

 

 

2.3.1 Introduction 

 

The characterization and modeling of the periodic orbits (normal modes) of 

Hamiltonian dynamical systems is a matter of importance from both fundamental and 

practical points of view and thus an area of intensive study. The considered 

Hamiltonian systems can be divided into two main categories. The first category is 

composed of systems with smooth potentials; prototypical dynamical systems in this 

category are smooth linear or nonlinear lattices (e.g., Fermi-Pasta-Ulam – FPU models). 
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The second category includes Hamiltonian systems with non-cohesive, non-smooth 

interacting potentials (e.g., uncompressed granular media) allowing for complete 

separation between interacting particles during the dynamics. The physical models 

admitting the first category are those frequently considered in solid state physics where 

methods based on normal modes are widely applied. In this section we focus our 

attention on systems belonging to the second category namely, one-dimensional 

granular chains. This class of dynamical systems has not been studied extensively in the 

literature, the main reason being the absence of widely applicable analytical 

(perturbation or asymptotic) techniques for analyzing their dynamics. 

 The main hurdle in developing a systematic theoretical approach to 

comprehensively describe the dynamics of homogeneous and heterogeneous granular 

systems lies in the possibility of separation between the beads of the granular medium. 

This property, which is intrinsic to any granular system with no pre-compression, 

results in complete breakdown of regular analytical techniques for analyzing their 

dynamics. For example, as shown by Kadanoff et al. [148, 149] the hydrodynamic 

equations usually applied for the description of granular flows may not be proper for 

these systems when a small dissipation is introduced; this is because many-particle 

granular systems may reach "extraordinary" states where local equilibrium is destroyed. 

As this happens the hydrodynamic approach fails to correctly describe the global 

system dynamics. In these states the dynamics can be hardly approached using regular 

analytical techniques, which renders these media very challenging for theoretical 

studies.  

 Interestingly enough, however, under some external loading conditions these 

non-smooth dynamical systems may exhibit periodic or near periodic dynamical 

response, but their analytical treatment is a formidable task. For example, near-periodic 

patterns have been observed in the dynamical responses of one dimensional granular 

gas [149], whereas some other works have indicated the existence of chaotic and 
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periodic motions in a one dimensional inelastic and elastic granular systems [85, 150]. 

Additional works [151-153] discussed this type of dynamical systems from the 

perspective of the hydrodynamic approach. However, the proper characterization of the 

periodic and near periodic dynamical behavior of these systems wherever the 

hydrodynamic formulation fails (i.e., in dynamical states where the discrete nature of 

the dynamics prevails and cannot be overlooked or approximated by smooth potentials) 

is very important for the global understanding of the complex behavior of granular 

materials. Moreover it constitutes the basis for understanding pattern formation in the 

higher dimensional granular systems [154, 155]. Therefore, special approaches should 

be developed to address the dynamics of this class of non-smooth dynamical systems, 

taking into account the discrete nature of bead interactions and capable of properly 

characterizing the periodic patterns exhibited by these systems. The NNMs of finite 

one-dimensional ordered granular chains with no pre-compression were numerically 

studied for fixed-fixed boundary conditions in Section 2.1 [85] and for periodic 

boundary conditions [63]. Moreover, different families of spatially extended traveling 

waves exist in these systems [63].  

The previously described results highlight the distinct challenges that the study 

of the dynamics of this type of ordered granular media with no pre-compression entail, 

dictating the application of new techniques. Focusing on time-periodic responses, the 

definition of NNM has been extended in order to include a broad range of smooth and 

non-smooth responses. Such responses even include the case when separation between 

beads leads to regimes of ‘free flight’ in the granular responses and prevents 

synchronicity of the ensuing oscillation. It will be assumed, however, that all beads of 

the chain oscillate with the same frequency, in order to preclude the countable infinity 

of subharmornic oscillations in these systems [85].  

Towards this aim, the principal goal of this section is to provide a systematic 

classification of a certain type of periodic orbits (or nonlinear normal modes – NNMs) 
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existing in general ordered one-dimensional homogeneous granular chains with no pre-

compression and no dissipation. The approach developed herein is intended for 

complete classification and prediction of a certain kind of nonlinear normal modes 

(NNMs) (balanced by linear momentum) of general finite homogeneous, granular 

chains with no pre-compression effectively reducing the original system of 

uncompressed beads to an auxiliary system by introducing the concept and 

methodology of ‘effective particles’. The concept of effective particles has been 

introduced in the FPU chain for studying strong energy exchanges between different 

parts of the chain [156]. It is important to emphasize that it is incorrect to claim that 

there are no other possible nonlinear modes than the ones classified in this work and 

the NNMs predicted here are all exhaustive since this claim cannot be proven 

rigorously, although this is conjectured. However, using the proposed classification we 

can predict the existence of a special family of NNMs (balanced by linear momentum) 

all of which are fully confirmed computationally and in good correspondence with 

theoretical prediction. Moreover, it is shown that an analytical model can be derived to 

depict the response of the effective particles, and that the proposed approach can be 

successfully applied to the prediction of primary stress wave transmission in a layered 

elastic system with granular interfaces. The study will be carried out under the 

assumptions of absence of dissipative effects (e.g., of dry friction or plasticity). 

 It is important to emphasize at this point that the proposed methodology is by no 

means restricted to chains with Hertzian interaction laws, but holds also for a more 

general class of nonlinear interaction potentials (i.e. �� ∝ 
� , � > 1) wherever separation 

between the moving beads is possible resulting in non-smooth dynamical motions. 

Hence, the results of this work can be generalized beyond chains of interacting 

spherical beads. 
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2.3.2 Auxiliary and Vibro-Impact Models Based on the Concept of Effective Particles 

 

In this section we formulate the preliminary concepts for classifying time-periodic 

orbits in one-dimensional homogeneous granular chains with no dissipation or pre-

compression, under the assumption that all beads oscillate with identical frequencies; 

hence, we will exclude subharmonic motions from our discussion. For the purpose of 

our discussion we will consider the most general definition of a NNM, as a general free 

(that is, unforced) time-periodic oscillation of a discrete dynamical system where all 

particles oscillate with the same frequency. As discussed previously finite granular 

chains are strongly nonlinear dynamical systems, not only due to the essentially 

nonlinear Hertzian interaction law governing interactions between neighboring beads, 

but also due to possible non-smooth effects when neighboring beads separate and 

subsequently undergo collisions; hence, they constitute a very peculiar class of 

dynamical systems. 

 Moreover, one may consider the qualitative similarity of the dynamics of these 

systems to their vibro-impact analogs, i.e., of systems with rigid beads where dynamical 

interactions occur solely due to momentum exchange between colliding beads. To 

address this issue we note that in granular systems the time scale governing the 

interaction between adjacent beads is finite, whereas in the vibro-impact limit this 

interaction time is infinitesimally small so no characteristic time scale exists. This makes 

the dynamics of granular systems more complex since more than two beads may 

simultaneously interact, whereas this is obviously not the case for vibro - impact models 

where only two-bead interactions are possible at any given time instant. Nevertheless, it 

will be shown that the vibro-impact model may help us classify the NNMs in granular 

chains. 

 One may question the possibility of oscillatory motion for strongly nonlinear 

granular systems, yet it was already shown that these strongly degenerate systems do 
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possess numerous time-periodic stable motions in the form of NNMs in previous 

section [85] or traveling waves [63]. However, unlike typical oscillatory models with 

inter-bead interactions governed by smooth interaction potentials, in the granular 

chains under consideration NNMs may exhibit multi-phase dynamics. For example, 

there might be a phase in the dynamics where two adjacent beads are in contact (and 

are mutually compressed), followed by a second phase where separation occurs and a 

bead executes ‘free flight’ motion, and a third phase where three (or more) 

simultaneous bead interactions occur. As shown in previous section and in [63, 85], 

such distinct phases of the dynamics may coexist during a single cycle of the free 

oscillation of the granular system. It follows that no existing classification, based, for 

example, on the relative phases of bead oscillations, applies in this case, so a new 

methodology for classifying the oscillations of granular chains is required.  

 In the following exposition we aim to develop such a general classification 

scheme that applies for homogeneous granular chains composed of finite number of 

nonlinearly interacting beads with fixed-fixed or periodic boundary conditions. The 

governing equations of motion of a typical homogeneous granular chain can be 

normalized and non-dimensionalized so that no parameters appear [63, 85], 

 

3/2 3/2

1 1
( ) ( ) , 1,...,

i i i i i
x x x x x i n

− + + +
= − − − =ɺɺ                                     (2.21) 

 

where the notation from the previous section is preserved. Considering fixed-fixed or 

periodic boundary conditions at the two ends of the chain, we introduce its partition 

into � independent clusters. According to this partition, the 4 −th cluster 5� is composed 

of 6� number of beads, with 4 = 1, … ,� and 6� + ⋯ + 6� = �. To address the issue of 

how a cluster is defined, we regard the granular chain as a one-directional graph of 

beads (i.e., the beads are vertices in the graph), with the connection between any two 
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adjacent beads, say 7� and 7���, forming the edge 8(7�,7���) in the graph. Then, we 

introduce the following definition of a cluster of beads. 

 

Definition 

A group of beads of the granular chain is denoted as a cluster 5� if and only if it satisfies 

the following conditions: 

a) All beads (vertices) of the cluster form a simply connected graph (group of the 

neighboring beads in the chain). 

b) Throughout the entire period of oscillation all beads 7�, 9 = 1, … ,6� forming the 

cluster satisfy the condition, 

            { },  sgn ( ) sgn ( ) ( ) 0 ( ) 0
p n p n

p n l Q Q Q QQ Q G v v or v or vτ τ τ τ   ∀ ∈ ⇒ = = =    

where :��
(�) denotes the normalized velocity of bead 7�. 

c) No additional bead of the chain can be added to the cluster without violating 

condition (a). 

We note that in this definition no stationary beads are assumed to exist, i.e., no beads 

that remain permanently immovable throughout the phase of free oscillation (NNM). 

The issue of stationary beads is considered in a later section to demonstrate the broad 

applicability of the proposed classification scheme. 

 Based on this definition we show that we can proceed to a complete classification 

of the free periodic oscillations of any one-dimensional finite homogeneous granular 

chain with fixed-fixed or periodic boundaries. Towards this task we need to introduce 

new effective coordinates for the displacement ��
���

(�) and velocity ���
(��)

(�) of a 

cluster 5� of the auxiliary model, defined as follows: 
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where ���
, ����

 denote the displacement and velocity, respectively, of the bead 7� in the 

considered cluster of the original granular chain (2.21). 

 To illustrate the algorithm for the classification scheme we consider fixed-fixed 

boundary conditions, and refer to Figure 2.40 where we depict schematically the 

partition of a granular chain of � beads into � clusters. It is apparent, however, that 

granular chains with periodic boundary conditions fit in the same scheme of 

classification developed for the fixed-fixed ones, so the classification scheme developed 

herein for standing wave oscillations can be extended to the case of traveling waves as 

well [63]. Then, we regard each of the � clusters 5�, � = 1, … ,� as an independent 

effective particle with mass equal to 6� (the number of beads composing that cluster), 

defining an auxiliary oscillatory chain of � effective particles with corresponding masses 

�� = 6�, … ,�� = 6�, … ,�� = 6�. From now on we focus on the motion of the center of mass 

of each of these effective particles (clusters) rather than the motion of each single bead of each 

cluster. It is important to note that based on our previous definition, each effective 

particle (cluster) of the auxiliary oscillatory chain oscillates in out-of-phase fashion with 

respect to its neighboring effective particles. It is also convenient to view the auxiliary 

chain as a vibro-impact model of effective particles of non-uniform masses, with the 

motion of each effective particle being determined by linear momentum exchanges 

between all effective particles. Clearly, in the absence of dissipation the combined linear 

momentum of all effective particles should be conserved. 

 The resulting vibro-impact auxiliary chain of effective particle greatly simplifies 

the dynamics and enables the classification of the NNMs of the original granular chain 
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(2.21). This approach is somewhat related to the method of effective particles developed 

in the theory of solitons, where a propagating soliton may be viewed as a moving 

particle with its own mass (effective mass of the soliton) and linear velocity (phase 

velocity of the soliton). Following similar arguments, we may state that the auxiliary 

system of effective particles is constructed in a way to reflect the interaction of pulses 

propagating back and forth in the granular chain. In Figure 2.41a we depict the 

auxiliary oscillatory model (original granular chain partitioned to clusters) of effective 

particles interacting through a Hertzian like contact law, corresponding to the fixed-

fixed granular chain of Figure 2.40. Note that we use the term ‘Hertzian like contact 

law’ since we are dealing with effective particles rather than the originally interacting 

identical spherical beads. Intuitively enough, each configuration of an auxiliary model 

generated from the original chain (i.e. the particular partition of the original granular 

chain into clusters) will correspond to the particular NNM of the original chain under 

consideration.  

 It is convenient at this point to introduce an analogous vibro-impact model 

(depicted in Figure 2.41b), where the masses of the effective particles (clusters) are the 

same as of the constructed auxiliary model, and the velocities of any two neighboring 

particles have opposite signs. The ratios of these velocities can be determined by 

imposing a balance of linear momentum, since otherwise no time-periodic motions 

where all effective particles have the same frequency would be possible in this system. 

It is important to note that according to the definition of the vibro-impact model only 

single point interaction between effective particles is possible. In other words, at any given 

instant of time, each of the effective particles of the auxiliary chain may interact with 

only one of its neighbors so that no multiple simultaneous interactions between 

effective particles are allowed in our model; this is different from the original granular 

chain where due to finite duration of elastic interaction between beads, more than two 

beads may interact at any given instant of time, which greatly complicates the nonlinear 
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dynamics and precludes analytical treatment of the dynamics. This does not hold in the 

vibro-impact chain, where there is immediate momentum exchange between interacting 

effective particles, due to the infinitesimally short duration of particle interaction. It 

follows that for any two neighboring effective particles �� and ���� of the vibro-impact 

model of Figure 2.41b the following relation holds: 

 

1 1
/ /

i i i i
v v m m

+ +
=                                                       (2.23) 

 

This relation is due to the balance of linear momentum of two adjacent clusters 

and is a necessary condition so that the oscillations of each cluster are of same 

frequency and synchronous. In the present study we demonstrate the complete 

correspondence of the velocity ratios predicted theoretically from the simplified vibro – 

impact model (i.e., from pure balance of the linear momenta) and the corresponding 

ratios of the amplitudes of the velocities (i.e. the maximum values of the velocities) of 

the effective particles of the corresponding auxiliary model. These amplitudes are 

derived from direct numerical integration of the governing equations of the original 

granular chain. The amplitude of the velocity of the � −th effective particle (cluster) 5� 	of 

the auxiliary model will be defined as follows: 
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We note that the maximum value of the absolute velocity of the cluster 5� is estimated 

over half period of the oscillation. Hence, in the following simulations we will show the 

nearly exact correspondence of the following velocity amplitude ratios between the 

auxiliary and vibro-impact models, 
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this will validate the reduction of the dynamics of the original granular chain in terms 

of greatly simplified vibro-impact models. 

 In synopsis, in order to classify the NNMs in the granular chain for either fixed-

fixed or periodic boundary conditions one specifies the ordered sets of integer mass 

values for each cluster (effective particle) and enforces the requirement that the 

summation of all the masses of the clusters be equal to �. It follows that the set of all 

possible ordered, arrangements of these masses will correspond to the total number of 

nonlinear normal modes (NNMs) that can be realized in the granular chain and can be 

classified by the proposed methodology. In the next sections we provide some examples 

of classification of finite granular chains composed of � = 3 and � = 4 beads for the 

fixed-fixed boundary conditions, and leave the corresponding discussion for the case of 

periodic boundary conditions to a future work. 

 

 

2.3.3 Classification of NNMs 

 

Based on the previous formulation we now proceed to demonstrate the algorithm for 

classifying the NNMs of finite granular chains. Initially we will be assuming that no 

stationary beads (nodes) exist in the NNMs examined, and then extend these results to 

the case when nodes exist. The proposed classification methodology is demonstrated by 

considering granular chains with fixed – fixed boundary conditions and � identical 

beads of normalized mass equal to unity. We will consider the cases � = 3 and � = 4 in 

detail, since the results can be generalized in a straightforward fashion. According to 
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the proposed classification we construct a scheme that classifies all possible NNMs in 

this system corresponding to different ordered arrangements of ‘masses’ �� of effective 

particles (clusters); this is presented in Table 2.2 and 2.3.  

 We continue with the application of the methodology for the fixed-fixed granular 

chain with � = 3 and � = 4. According to the proposed classification we construct 

Tables 2.2 and 2.3 listing the different ordered arrangements of effective particles for the 

four and eight NNMs of the system with three and four beads, respectively. From this 

classification we conclude that all NNMs, with the exception of NNM 1 and 5, are 

strongly or weakly localized to one or more beads of the chain with 4 beads. In Figures 

2.42 and 2.43 we depict the auxiliary models of effective particles and the corresponding 

vibro-impact models for some of the NNMs of the systems with � = 3 and � = 4. As in 

the previous case the velocity amplitudes of the effective-particles can be accurately 

predicted by imposing the simple momentum exchange relations (2.25) for the 

corresponding vibro-impact models. 

 The developed methodology for classification of NNMs of finite granular chains 

can be applied to study also nonlinear localization in these periodic systems. To this 

end, using the proposed classification scheme, it is of importance to identify and classify 

the subset of NNMs with nonlinear localization properties. Strongly localized NNMs 

correspond to modes where the energy of the oscillation is primarily confined in a 

single bead, whereas weakly localized NNMs are modes where the energy is localized in a 

subset of the beads of the chain. When such localized modes are excited either by the 

initial conditions or by external forces, there are always small parts of the chain (i.e., 

clusters containing one or more beads) that carry a significant amount of the entire 

energy supplied to the chain. Apparently the methodology of effective particles may 

predict fairly well the distribution of the velocities between the clusters of the chain, 

and thus brings about a certain measure for the energy localization on some parts of the 

granular chain. It has been established [150] that one dimensional granular media may 
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exhibit strongly non-uniform behavior where the commonly used approach of 

hydrodynamics applied for the description of the dynamics of granular flows of higher 

dimension breaks down. Therefore, it is of major importance to be able to characterize 

and recognize (at least qualitatively) the different patterns of oscillatory motions in 

various granular setups provided that the conservation of linear momentum holds. 

 To demonstrate how the outlined methodology can be applied to study 

localization in finite granular chains, we study the localization properties of the NNMs 

of the system with � = 4 listed in Table 2.3. Hence, strong localization can be attributed 

to modes 6 and 7, since according to relation (2.25) the corresponding ratio of maximum 

amplitudes of the velocities of the effective particles is equal to 3: 1, which is the 

maximum possible one. It follows that for these modes, energy is strongly localized to 

the right or left end bead of the chain, as shown in Figure 2.43e. Apart from the strongly 

localized modes, there are also modes which may be classified as weakly localized ones. 

Modes 2, 3 and 4 are of this type, corresponding to ratio of maximum amplitudes of the 

velocities equal to 2: 1. Modes 1 and 5 can be definitely attributed to the family of non-

localized modes as the corresponding velocity ratios are equal to 1: 1. The last mode to 

be considered is NNM 8, which according to the previous discussion can be classified as 

strongly localized; this is due to the fact that the collective response of the beads 

resembles a solitary-like pulse, and therefore, is strongly localized in space. However, 

the recurrent velocity peaks (as the ‘pulse’ bounces back and forth between the fixed 

boundary conditions) reached by each of the beads are almost identical, and in this 

sense the resulting motion may also be viewed as oscillatory rather than propagatory.  

 We note that it is possible to extend the results of this section to the study and 

classification of localization patterns and, in general, of non-uniform spatial 

distributions of velocities in one dimensional granular gas [152, 157]. What makes this 

possible is the previously discussed vibro-impact models that can be used to accurately 
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predict the amplitudes of the velocities of all clusters of a granular chain during a time-

periodic oscillation. This task is left for future work. 

 Using the outlined classification scheme it is possible to obtain an analytical 

prediction for the number of NNMs (balanced by linear momentum) that a granular 

chain with � beads possesses. Since we assume only out-of-phase oscillating effective 

particles (see Figure 2.41a) we need to solve the equivalent combinatorial problem of 

finding the number of ordered sets of � positive integers, where � is the number of 

effective particles (clusters) in the auxiliary granular chain with masses being equal to 

integers summing-up to the integer � (i.e., the total number of beads of the chain). To 

this end, we consider an appropriate generating function ( )G ζ  as follows [158], 
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Therefore, the following relation holds, 
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where the function g(N,s) can be expressed in terms of the generating function as 

follows, 
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where, according to the original problem definition � ≥ � so g(N,n) is defined. In fact 

g(N,n) defines the number of all possible partitions of � beads into � clusters.  
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 Rewriting the generating function in a more explicit form: 
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Substituting (2.28b) into (2.28a) we obtain 
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Therefore, the total number of NNMs for different partitions (clusters – effective 

particles) of the granular chain of � beads may be expressed in the closed form as: 
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As a check, for � = 4 we obtain ( )
4

1

,4 8
total

N

N g N
=

= =∑ , which exactly agrees with the 

results of Table 2.3. 

 In the procedure of classification developed so far we assumed the absence of 

permanently stationary beads. Yet, as shown in Section 2.1 [85], for certain NNMs there 

exists beads that are permanently stationary since they coincide with nodes of the 

spatial distribution of the time-periodic oscillation; hence, it is necessary to extend the 

previous classification to account for this scenario. Using the similar idea of creating an 

effective oscillatory chain (i.e., a chain of effective particles oscillating out-of-phase 

fashion with respect to each other) one may proceed to add intermediate, permanently 

stationary particles of unit mass in between any two oscillating effective particles. In 

fact the oscillating effective particles are already balanced by the condition of 
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conservation of linear momentum in the auxiliary chain, so the insertion of a 

permanently stationary bead in between them does not violate momentum 

conservation. The scheme for inserting a permanently stationary bead (node) in an 

auxiliary chain of effective particles is illustrated in Figure 2.44. 

 It is clear that we can realize different ordered configurations where more than 

one node (stationary beads) are inserted and placed at certain positions in an auxiliary 

chain. However, to account for all possible arrangements with nodes added, we should 

first compute the number of ordered arrangements that occupy all available places 

between each of two oscillating effective-particles in the auxiliary model consisting of � 

effective-particles; we need to take into account that no nodes can be added between the 

end oscillating effective-particles and the fixed boundaries, since, otherwise, the balance 

of linear momentum on both sides of the inserted node would be violated. Moreover, it 

should be clear that only one node is allowed to be inserted in between any pair of 

oscillating clusters. Therefore, the enumeration of all possible positions of nodes in 

between the � oscillating effective-particles of an auxiliary chain may be computed as: 
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 Combining the results of the previous section for the case of complete absence of 

nodes with (2.30), we are able to enumerate all possible NNMs ;, which can be realized 

in a granular chain of � beads, including NNMs that may possess stationary beads 

(nodes): 
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In Figure 2.45 we provide an example of a NNM with a stationary bead (node). This 

NNM is a variation of the out-of-phase NNM 1 of Table 2.3 with the immovable bead 2 

being inserted between beads 1 and 3. It is important to note that for the NNM 

illustrated in Figure 2.45 all the effective particles are single beads (i.e., ∀	�,6� = 1), 

therefore there will be no difference between the auxiliary model and the original 

granular chain. 

 

 

2.3.4 Theoretical Modeling of the Dynamics of Effective Particles 

 

The methodology for classification of NNMs using auxiliary chains of effective particles 

derived thus far greatly helps in identifying certain patterns of motion occurring in 

more complicated one-dimensional granular setups, and in predicting possible 

localization phenomena in granular chains. However, as discussed in the next section 

one of the most interesting practical applications of the methodology of effective 

particles is in the area of shock wave transmission in layered elastic media with 

granular interfaces. 

 In order to build predictive capacity for implementing the methodology of 

effective particles to applied problems it is necessary to derive analytical 

approximations for the dynamics governing the reduced order auxiliary systems of 

effective particles; namely, to describe analytically the motion of effective particles in 

the auxiliary model corresponding to a particular NNM. This task is addressed in this 

section by considering the in-phase NNM mode of finite granular chains with fixed-

fixed boundaries, (i.e., NNM 8 for the fixed-fixed chain with � = 4). 

 As discussed in the previous section, the corresponding auxiliary model of the 

in-phase NNM possesses a single effective particle bouncing between rigid boundaries 

(see Figure 2.46). The most natural way to model the dynamics of this effective particle 



85 

 

is by relating its frequency with that of the in-phase NNM, which due to the nonlinear 

nature of the system is directly proportional to the total energy. In order to obtain an 

approximate analytical frequency-energy relation for the in-phase NNM we resort to 

curve fitting of a numerically obtained frequency ()) – energy (ℎ) plot [85] with an 

approximate analytical function in the form ) = )�ℎ� = <ℎ�, where 2 is a universal 

constant independent of the number of beads in the chain and is found to be ∼ 0.1. The 

value of < = <(�) varies with the number of beads � in the granular chain. The 

numerical frequency-energy curves of granular chains with � = 2, … ,7 and the 

corresponding curve-fit approximations are depicted in Figure 2.47, where good 

correspondence is noted. 

 Returning to the auxiliary model of a single effective particle for the in-phase 

mode (e.g., NNM 4 for the chain with � = 3 and NNM 8 for the chain with � = 4 – see 

Figure 2.42c and 2.43f respectively), we note that as the effective particle bounces 

repeatedly between the fixed boundaries there exist two qualitatively different 

dynamical regimes during each cycle of oscillation: (i) A regime of interaction of the 

effective particle with each of the fixed boundaries through a Hertzian interaction law, 

and (ii) a regime of ‘free flight’ during the transition from one wall to the other. Hence, 

the periodic oscillation of the effective particle can be described by the following non-

dimensional equation of motion (where the normalizations of the previous sections 

were imposed), 
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with initial conditions ��0� = ( 2⁄ ) + (5ℎ/2)�/�	 and ���0� = 0;   denotes the distance 
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between the fixed walls (a parameter of the auxiliary model that needs to be 

determined). 

 Considering the first regime of interaction of the effective particle with the fixed 

boundary and assuming that at � = 0 there is maximum compression of the effective 

particle, the time of its interaction with the boundary can be analytically computed in 

terms of hyper-geometric function as ( ) ( )
2 /5* 1/ 2 1/10

1 2 1
2 5 / 2 1 / 2, 2 / 5; 7 / 5;1F hτ

− −

= . In fact, 

similar scaling of kinetic energy versus time has been already derived in [159]. Hence, 

denoting the period of oscillation of the in-phase NNM for a chain composed of � beads 

as ���� = 2$/)(�), the time of ‘free flight’ of the effective particle during a cycle of 

oscillation can be evaluated as �̃ = � − 4��∗. It follows that during the regime of ‘free 

flight’ the effective particle traverses a total distance of 2 = �̃√2ℎ, which is a relation 

that can be used to analytically estimate the distance in the auxiliary model. Moreover, 

as discussed previously, it is possible to analytically approximate the period of 

oscillation of the in-phase NNM at any energy level ℎ and for any number of beads �. 

Finally, once the effective particle detaches from the boundary and enters the regime of 

‘free flight,’ all the energy of the chain is purely kinetic, which allows the computation 

of the velocity of the effective particle in between the boundaries as >� = √2ℎ. 

 In Figure 2.48 we depict a comparison between the response of the single 

effective particle corresponding to the in-phase NNM and the response of the beads of 

chains with � = 4 and � = 5 beads obtained by direct numerical integration. We note 

that according to the classification derived previously, the velocity of the single effective 

particle modeling the in-phase NNM is just the summation of the velocities of all the 

beads of the chain. The same agreement is also observed for the displacement time 

series of the exact and auxiliary models of effective particles. Therefore, the dynamics of 

homogeneous granular chains with fixed-fixed boundary conditions, when oscillating 

in their in-phase NNMs can be completely captured using the corresponding auxiliary 
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models consisting of a single effective particle bouncing between the two boundaries. 

Moreover, the analysis of this section can be extended to higher-frequency NNMs 

consisting of more than one effective particle. 

 The results of this section have important implications in applications of 

homogeneous granular media when the dynamics is dominated by one or more NNMs. 

For instance, considering the bead interactions realized in certain modes of coupled 

granular chains, one might be interested in identifying important nonlinear resonance 

conditions [91] under which energy from a propagating pulse gets scattered efficiently 

and gets transferred to the far field of the chain through traveling waves; or, 

considering coupled granular chains it is possible to formulate resonance conditions 

under which energy flows from one chain to another in a near-irreversible fashion (i.e., 

under which targeted energy transfer occurs) or conditions for strong energy exchanges 

through nonlinear beat phenomena [122]. Knowledge of the nonlinear modes that 

participate in such strongly nonlinear interactions leads to analytical estimates of the 

characteristic times for these energetic excursions, and, hence, of the rate of realization 

of this dynamics.  

Apparently it would be a formidable task to consider the very complicated 

dynamics of entire granular chains, accounting for the motion of every particular 

particle (bead). Therefore, it would be much more convenient to study the collective 

behavior of these chains using the concept of effective particles, thus effectively 

reducing the problem to a reduced system of a few coupled, nonlinear oscillators whose 

analysis is straightforward. This reduction can be efficiently performed by applying the 

modeling proposed in this section, and is by no means restricted to the lowest mode 

(which was considered herein just as an example to demonstrate the approach). In fact, 

the outlined approach can be easily extended to any arbitrary mode of interest which 

will be effectively transformed to a reduced binary model of interacting effective particles 

with the analytically approximated interaction laws. Moreover, the developed 
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methodology of replacing the original granular chain by the binary model of effective 

particles can also be extended to higher dimensional granular systems, which, in turn, 

can be reduced to granular gasses (i.e. 2D, 3D systems) composed of effective particles. 

We are convinced that the proposed methodology will highly facilitate the ongoing 

research in this field in topics such as, pattern formation in granular systems, periodic 

motions of density waves in vibrating granular layers, internal resonant interactions in 

granular materials and wave propagation through the multi-layered granular 

structures. 

 As an example of application of the proposed methodology, in the next section 

we consider a layered elastic medium with homogeneous granular interfaces and forced 

by a short-duration applied shock is considered. As shown in a previous work [125], at 

least in the leading layers of this system the dynamics of the granular interfaces is 

dominated by the lowest frequency in-phase mode, so the reduction of the dynamics in 

terms of auxiliary models of effective particles should be applicable. 

 

 

2.3.5 Application of Effective Particles to Study Primary Pulse Propagation in 

Layered Media 

 

From the previous analysis it is apparent that a significant reduction of the dynamics of 

one-dimensional homogeneous ordered granular media can be achieved by 

decomposing the oscillatory regimes of these media into auxiliary models of effective 

particles oscillating in out-of-phase fashion with respect to each other. Although this 

modeling looks promising, its basic deficiency is that it neglects the internal dynamics 

between the granular particles, instead considering them as clusters or effective 

particles. It follows that an effective particle models only the momentum transfer 

occurring between subsets of beads in a granular medium (which is the most significant 
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piece of information in most of the practical applications dealing with shock 

transmission dynamics), but neglects all other internal (local) modes that are excited 

during the dynamics. It is quite intuitive, however, that momentum transfer in a 

granular medium can be primarily attributed to the in-phase motion of the subsets of 

the particles. Therefore we anticipate that to first order, the auxiliary model of effective 

particles constructed in the previous section for the ‘pseudo-wave’ in-phase NNM 

should efficiently model pulse propagation induced by a significantly short shock in a 

granular chain. Indeed, it was shown in [125] that for applied shocks of sufficiently 

short durations (compared to a characteristic time scale of the intrinsic dynamics) 

primary pulse transmission in a one-dimensional granular chain takes place through the 

excitation of its lowest-frequency ‘pseudo-wave’ in-phase mode, whereas the excitation 

of other modes are nearly negligible. By primary pulse transmission we mean the 

transmission of the main pulse through the medium (i.e., the ‘front pulse’), disregarding 

secondary waves resulting from reflections at boundaries. 

 From this discussion, we conjecture that in the first approximation we should be 

able to study primary pulse transmission in a granular chain with fixed-fixed 

boundaries excited by short-duration applied shocks, by replacing it with the auxiliary 

model of a single effective particle modeling its ‘pseudo-wave’ in-phase NNM. The 

following study aims to verify this conjecture. 

 To this end we consider the layered system depicted in Figure 2.49, composed of 

one-dimensional linearly elastic layers (longitudinal bars executing axial oscillations) 

with granular interfaces of homogeneous chains of � beads. To the ends of each bar are 

attached rigid plates in order to suppress three-dimensional end effects, so that the 

granular interfaces are excited by longitudinal shock excitations. The dynamics of this 

periodic system has been studied in detail in [125] and it was shown that the granular 

interfaces can lead to drastic reduction of the transmitted primary pulse through the 

layered medium. 
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Following the analysis of [125] and omitting details, each elastic bar is modeled 

as linear homogeneous continuum governed by the hyperbolic wave equation and 

assumes the standard D’Alembert solution [36, 160]. Once the propagating wave 

encounters the granular interface, transmitted and reflected pulses are generated that 

propagate in the granular layer and back to the bar, respectively. As mentioned 

previously, our study is solely concerned with the primary transmitted pulse through 

the layered medium. To study the dynamics of primary pulse transmission we consider 

granular interfaces with � = 5 beads and excite the left boundary of the first elastic 

layer of the system with the shock excitation of short time duration compared to the 

characteristic time scale of the intrinsic dynamics of the granular interfaces. 

 The resulting responses of the boundaries of the two leading layers and the 

leading two granular interfaces of the medium are depicted in Figure 2.50. It can be 

observed from the displacement response of the beads and the layers, that in the initial 

(highly energetic) phase of the dynamics a localized pulse propagates through the 

layered medium; it is precisely this initial transmitted primary pulse that is the focus of 

our study (once the primary pulse reaches successive granular interfaces and scatters, 

secondary pulses are generated that complicate further the dynamics, but these will not 

be considered here). We note that most of the energy of the external pulse is transmitted 

through the layered medium by the propagating primary pulse, so that from a practical 

point of view, shock transmission through the medium should be mostly captured by 

our analysis. We also note that the granular interfaces seem to exhibit complex 

dynamics (especially at later times), which are caused by the nonlinear Hertzian-law 

interactions and the separations and ensuing between beads during wave transmission. 

 This complex picture of the dynamics, however, can be significantly simplified if 

we plot the sum of velocities of all the beads of each granular interface; this amounts to 

an effective particle coordinate transformation, since as mentioned in the previous 

section the resulting summation provides the velocity of the center of mass of the 
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interface and is strongly correlated to the dynamics of the single effective particle of the 

auxiliary model corresponding to the in-phase (‘pseudo-wave’) NNM of the granular 

interface. Clearly, this computation completely disregards the dynamics of the other 

higher-frequency NNMs of the granular interface, but as mentioned previously, we 

anticipate that most of the transmitted shock energy, at least during the initial phase of 

the motion, is due to the excitation of the in-phase NNM. Observation of collective 

motion of the beads on the edge of primary pulse transmission, as well as the analysis 

reported in [125] lead us to the conclusion that during the initial short duration of the 

excitation of the layered system by the shock a significant part of the induced shock 

energy excites the lowest frequency in-phase NNMs of the granular interfaces, while 

the remaining part of this energy is scattered to the other higher frequency NNMs and 

is negligible in comparison to the first. This observation, which has been verified in 

[125] via numerical wavelet transform analysis of bead responses, provides us with the 

rationale to apply the concept of effective particles to model the primary pulse 

propagation in the layered system, by replacing each granular interface by an auxiliary 

model composed of a single effective particle (corresponding to in-phase motion of all five 

beads of the interface); this is equivalent to assuming that, to a first approximation, only 

the lowest frequency in-phase NNMs of the granular interfaces are excited and the 

effects of higher NNMs are negligible. 

 To initiate the analysis of the reduction of the dynamics of the layered system 

through the introduction of effective particles, we consider the equations of motion of 

the beads of the 1st granular interface between the elastic layers 1 and 2 that can be 

expressed in normalized form as follows [125], 
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where � denotes the number of beads of each interface (in this case � = 5); 0 ≤ (? =

@/A) ≤ 1 the normalized spatial variable (where A is the length of each elastic layer); 

� = ��/A the normalized time variable (where � is the speed of sound in each elastic 

layer); B = C/�A a mass ratio (where C is the mass of each bead and �A the mass of 

each of the elastic layers); and ����� = ��(� A	⁄ ��������, 9 = 1, . . . , � the normalized 

displacements of the beads of the interface (where ��(�) denotes the displacement of 

the 9 −th bead), where � is the Young’s modulus, (�  is the area of cross section of the 

elastic layer and 	 is the stiffness coefficient of the Hertzian interaction. Moreover, the 

displacements of material points of the elastic layers on the left and right of the granular 

interface are normalized according to :���, @� = ��(� A	⁄ ��D�(�, ?), 	:���, @� =

��(� A	⁄ ��D�(�, ?), respectively. The equations of motion (2.33a) are complemented by 

the following equations of motion of the normalized displacements of the ends of the 

rods 1 and 2, 
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where D�(�, 1) denotes the normalized displacement of the right end point of the 1st  

rod, D�(�, 0) the normalized displacement of the left end point of the 2nd rod, ���� =

(A		� �	(�	⁄ )�(�) the normalized force applied at the left boundary of the 1st  elastic 
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layer (with �(�) denoting the corresponding non-normalized axial force). As in [150] 

our analysis assumes that B ≪ 1, i.e., the mass of a single bead is much smaller in 

comparison to the mass of the elastic layer. This allows us to model approximately each 

granular interface as an uncompressed granular chain confined by nearly rigid and 

slowly moving boundaries, so that the NNMs of the corresponding fixed-fixed granular 

chain is expected to play a dominant role in the dynamics of primary pulse 

transmission in this system (for a detailed discussion on the validity of this 

approximation we refer to [125]). 

The auxiliary model of effective particles that models primary pulse transmission 

in the layered system of Figure 2.49 is presented in Figure 2.51. Each granular interface 

is replaced by a single effective particle that is initially in contact with its left elastic 

layer; as discussed previously this approximation models the in-phase NNM of each 

interface by a single effective particle that replaces all five beads of the interface. The 

distances  � and  � of ‘free flight’ of the effective particles in the first and second 

auxiliary models, respectively (cf. Figure 2.51), will be evaluated below by energy 

considerations, taking into account the energy induced in the medium by the excitation 

pulse. We now describe the modeling of the effective particle for the in-phase NNM of 

the homogeneous granular interfaces. 

Considering the first two layers, the equations of motion of the system of Figure 

2.51 are given by, 
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where the distances of ‘free flight’  � and  � enter explicitly in the equations of motion, 

the indexes . = 1, 2 , 9 = 1, 2, 3 and upper cases for displacement variables are used to 

indicate the effective particle model. Based on the time series of the effective particle 

modeling the in-phase NNM (see Figure 2.42c and 2.43f) we anticipate an 

(approximately constant) velocity of free flight, >84�, of the effective particle in the first 

granular interface; this forms the basis for evaluating the distance  �. Considering the 

mass of each effective particle equal to unity, we deduce that the energy in the first 

effective particle is equal to ℎ = >84��/2. This estimation holds by assuming that there is 

the same forcing for the effective particle as in the actual layered granular system. It is 

worth noting that we have only considered kinetic energy and neglected the elastic 

potential energy attributed to the internal dynamics of actual bead interaction; so this 

energy estimation is approximate, but still consistent with the effective particle 

approach. Assuming Hertzian-law elastic interaction between the first layer and the 

first effective particle we compute the time of interaction of the effective particle with 

the left (slowly moving) boundary as [85],  
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For the energy level ℎ�, we can obtain the period of oscillation � of the in-phase NNM 

of the granular interface from the plot of Figure 2.47 corresponding to � = 5. Then, the 

time of free flight of the first effective particle can be evaluated as �̃ = � − 4��∗, where we 

took into account the Hertzian interaction of the effective particle with both boundaries 
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during a full cycle of oscillation. It follows that during ‘free flight’ the effective particle 

traverses a total distance equal to 2 � = �̃E2ℎ�, which evaluates the distance between 

the two leading layers in the auxiliary model of Figure 2.51. A similar approach can be 

used to evaluating the distance  �.  

 In Figure 2.52 we present the correspondence between the responses of the 

auxiliary model based on effective particles (cf. Figure 2.51) and of the actual layered 

medium (cf. Figure 2.49). In this simulation the applied shock on the left boundary of 

the first elastic layer was taken as, 
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τ
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                                       (2.36) 

 

with 5 = 25 and �
 = $/50; moreover, the mass ratio was chosen as B = 0.005. From the 

numerical plots of the velocities of the centers of mass of the first two granular 

interfaces it is verified that in the initial phase of the motion (that is, until the primary 

transmitted pulse scatters at the right boundary of each granular interface), the 

dynamics is dominated by the single effective particle modeling the in-phase NNM. 

This can be deduced by comparing the initial waveforms of the plots of Figure 2.52 with 

the velocity waveforms of the effective particle modeling the in-phase NNMs in Figures 

2.42c and 2.43f for the system with � = 3 and � = 4. Moreover, from the plots of Figure 

2.52 we deduce that indeed there is an initial phase of constant velocity of the center of 

mass of the leading granular interfaces, which signifies that the single effective particle 

(cluster) formed by the five beads of each interface traverse at constant velocity without 

being affected by local interactions between beads. 

 From the comparisons of Figure 2.52 we conclude that primary pulse 

transmission is well predicted by the effective particle approach. This satisfactory 

correspondence holds for both the first and second layers of the medium. Discrepancies 
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arise only when secondary reflections of the primary pulse occur at the boundaries of 

the layers, and higher frequency NNMs are excited in the granular interfaces. As was 

described earlier, the effective particle model used in Figure 2.51 represents well only 

the lowest frequency in-phase NNM which is responsible for the major part of the 

initial momentum transfer through the layered medium. Once scattering of the pulse at 

interfaces occur at later times and higher NNMs are excited, the validity of the single 

effective particle model is not expected to hold. Moreover, the application of the 

effective particle approach for the study of shock dynamics of multi-layered repetitive 

structure requires certain modifications when applied to the systems with the number 

of layers higher than two. Indeed, we expect that modeling of primary shock 

transmission based on the effective particle approach is accurate only up to the second 

granular layer, since as the pulse penetrates further into the periodic medium the 

primary shock broadens due to dispersion and, hence, it ceases of being of short-time 

duration. In turn, violation of the assumption of short-time duration of the propagating 

pulse, restricts the applicability of the effective particles approach, since modes with 

higher frequency are excited during the initial phase of shock transmission through the 

layered medium [125]. 

Summarizing, from the results of Figure 2.52 we conclude that the methodology 

based on effective particles can be effectively applied for predicting primary pulse 

transmission in the leading layers of the periodic medium of Figure 2.49. Another 

valuable prediction obtained from the reduced model concerns the force transmitted in 

the elastic layers due to propagation of the primary pulse. The normalized force can be 

calculated through the Hertzian interaction law of the effective particles with the elastic 

layers, and the results are depicted in Figure 2.53. In the same plot we also depict the 

normalized transmitted force computed by direct numerical simulations of the 

equations of motion (2.33a, b) for comparison purposes. From these results we conclude 

that the theoretical prediction based on the effective particles approach satisfactorily 
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models the transmitted force due to the primary pulse in the second elastic layer, but it 

deviates from the numerical simulation in the third elastic layer. There is a simple 

physical explanation for this result. As mentioned previously, the effective particles 

approach is only valid as long as the applied force on the elastic layer is of sufficiently 

short duration. Although this assumption holds in the second layer of the medium, it is 

violated in the third layer since the transmitted primary pulse at its left boundary (after 

scattering at the second granular interface) broadens due to dispersion and is not of 

short duration anymore. 

 

 

2.3.6 Conclusions 

 

A new methodology for systematic classification of the families of time periodic 

solutions of one-dimensional, homogeneous granular chains, under the condition that 

all beads oscillate with similar frequencies is presented in this section. This 

methodology is applied to finite granular chains with fixed-fixed boundary conditions, 

and showed that NNMs of homogeneous granular chains with no pre-compression can 

be effectively classified by introducing auxiliary models of effective-particles (clusters) 

oscillating out-of-phase with respect to each other (i.e. balanced by the translational 

momentum), and with or without stationary beads (nodes) in between them. In 

addition, vibro-impact models of effective-particles are introduced that allows 

analytical estimation of the maximum velocities of the oscillating effective-particles. 

Direct numerical simulations verify the predictive capacity of the auxiliary models. 

 In addition, the effective particles approach has proved to be a useful tool for 

modeling primary shock propagation in layered media with granular interfaces excited 

by short time duration shocks. In such a case, primary pulse propagation is primarily 

due to the excitation of the lowest-frequency, i.e. in-phase mode of the granular 
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interfaces, which, in turn, can be modeled by simple auxiliary model, composed of a 

single effective particle. Indeed, it is demonstrated that the reduced model of effective 

particles can efficiently capture the primary impulse propagation as well as the force 

transmitted to the second elastic layer of the system. This example indicates that the 

methodology of effective particles might be useful in modeling theoretically primary 

pulse transmission in more complex granular media, such as dimer systems or periodic 

setups of higher dimensions. It is reiterated once again that the proposed classification 

is by no means restricted to Hertzian interaction law between interacting granular 

particles, but rather holds for any-type of nonlinear interaction potential (of the general 

form �� ∝ 
� , � > 1) wherever separation between the moving beads is allowed. This is 

owing to the fact that the oscillating clusters will support the propagating solitary-like 

pulses (that are generated due to the strong nonlinearity of the system), which, in turn, 

can be effectively modeled and ‘replaced’ by oscillating effective particles with 

appropriate masses and velocities. The resulting reduced system of effective particles 

can be used to study momentum transfer in granular media. Finally, the oscillating 

granular chain can be effectively reduced to a vibro-impact chain (binary model) of 

effective particles balanced by linear momentum. 
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2.4 Figures 

 

Figure 2.1: The two-bead system. 

 

 

 

 

Figure 2.2: Poincaré map of the global dynamics of the two-bead system for � � 0.0001. 
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Figure 2.3: The in-phase NNM for the two-bead granular system for ℎ = 0.0001,  

(a) time series; (b) depiction in a projection of the phase plane; (c) modal curve in the 

configuration plane. 
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Figure 2.4: Comparing the dynamics of the two-bead granular system to the dynamics 

of the corresponding vibro-impacting one, (a) time series; (b) modal curve in the 

configuration plane; (c) two bead vibro-impact system. 
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Figure 2.5: The out-of-phase NNM for the two-bead granular system for ℎ = 0.0001,  

(a) time series; (b) modal curve in the configuration plane; (c) depiction in a projection 

of the phase plane. 
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Figure 2.6: Subharmonic orbits of the two-bead system for ℎ = 0.0001:  

(a) 1: 3; (b) 2: 3 ratios between the frequencies of the beads. 
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Figure 2.7: Initial conditions for applying the shooting method for the in-phase NNM 

(two-bead system). 

 

 

 

 

Figure 2.8: Representation of the modes of the two-bead system in the frequency – 

energy plot (FEP). 
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Figure 2.9: The in-phase NNM for the two-bead pre-compressed granular system for 

ℎ = 0.0001, (a) pre-compression Δ = 0.01; (b) Δ = 0.015; (c) Δ = 0.02. 
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Figure 2.9 (cont’d): The in-phase NNM for the two-bead pre-compressed granular 

system for ℎ = 0.0001, (d) pre-compression Δ = 0.023. 

 

 

                               

Figure 2.10: The in-phase NNM for the two-bead pre-compressed granular system for 

ℎ = 0.0001, (a) model curves in configuration plane; (b) depiction in a projection of the 

phase plane for varying pre-compression. 
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Figure 2.11: The in-phase NNM (pseudo-traveling wave) for the three-bead granular 

system for ℎ = 0.0001, (a) time series; (b, c) depiction in projections of the phase plane. 
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Figure 2.12: Velocity profiles for the in-phase NNM (pseudo-traveling wave) of the 

three-bead granular system for ℎ = 0.0001. 

 

 

Figure 2.13: The out-of-phase NNM for the three-bead granular system for ℎ = 0.0001. 
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Figure 2.14: The NNM with stationarity of the central bead for the three-bead granular 

system for ℎ = 0.0001. 

 

 

Figure 2.15: The localized NNM for the three-bead granular system for ℎ = 0.0001. 
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Figure 2.16: Representation of different modes of the three-bead system in the frequency 

– energy plot (FEP). 

 

 

Figure 2.17: Representation of the in-phase and out-of-phase NNMs in the frequency – 

energy plot (FEP) for granular systems from two to seven beads; in the limit of infinite 

number of beads the FEP is partitioned into a propagation and an attenuation band. 
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Figure 2.18: Comparison of the velocity profiles of the in-phase NNMs of fixed-fixed 

� −bead granular systems to the velocity profile of the solitary wave studied by 

Nesterenko [41]. 

 

 

Figure 2.19: Coefficients %�
(�)

, � = 1, … , � − 1 for systems with � = 2, … ,7 for the in-phase 

NNMs of the fixed-fixed granular system, with %�(�) = 1. 
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Figure 2.20: Velocity profiles of seven adjacent beads: (a) in-phase NNM; (b) the solitary 

wave [41]; time delays in terms of normalized time �. 
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Figure 2.21: Traveling waves inside the propagation band (PB) of the FEP of the infinite 

granular chain [63], the attenuation band (AB) is also indicated, (a) Frequency – energy 

curves; (b) velocity profile of a bead of 3 bead periodicity traveling wave inside the PB 

for energy ℎ = 1; (c) velocity profile of a bead of 4 bead periodicity traveling wave 

inside the PB for energy ℎ = 1. 
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Figure 2.22: Forced response of the 50-bead granular chain for harmonic wall excitation 

� = 1.5 sin(�), (a) Transient responses of selected beads for 1500 < � < 2000;  

(b) snapshots of chain deformation at selected time instants; (c) evolution of total energy 

in the chain. 

1500 1600 1700 1800 1900 2000

−10

−5

0

5

10

15

TIME

D
IS

P
LA

C
E

M
E

N
T

 

 

BEAD 1 BEAD 10 BEAD 20 BEAD 30 BEAD 40 BEAD 50

(a)

5 10 15 20 25 30 35 40 45 50
−6

−4

−2

0

2

4

6

8

BEADS

D
IS

P
LA

C
E

M
E

N
T

 

 

T=10
T=200
T=400
T=500
T=1000
T=2000

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

TIME

E
N

E
R

G
Y

(c)

MEAN ENERGY
 LEVEL



115 

 

 

 

 

Figure 2.23: Forced response of the 50-bead granular chain for harmonic wall excitation 

� = 0.3 sin(�), (a) Transient responses of selected beads for 1000 < � < 2000;  

(b) snapshots of chain deformation at selected time instants; (c) evolution of total energy 

in the chain. 
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Figure 2.24: Experimental setup realized by Prof. C. Daraio’s group at the California 

Institute of Technology. 

 
 

 
Figure 2.25: Response of the two-bead system for excitation frequency equaling 

� � 10	Hz and amplitude 
 � 0.3951	μm, (a) Transmitted force on the boundary (the 

site of the dynamic sensor); (b) bead displacements. 
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Figure 2.26: Response of the two-bead system for excitation frequency equaling 

) = 500	Hz and amplitude ( = 0.3775	μm, (a) Transmitted force on the boundary (the 

site of the dynamic sensor); (b) bead displacements. 
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Figure 2.27: Response of the two-bead system for excitation frequency equaling 

) = 1000	Hz and amplitude ( = 0.35	μm, (a) Transmitted force on the boundary (the 

site of the dynamic sensor); (b) bead displacements. 
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Figure 2.28: Response of the two-bead system for excitation frequency equaling 

) = 3000	Hz and amplitude ( = 0.3408	μm, (a) Transmitted force on the boundary (the 

site of the dynamic sensor); (b) bead displacements. 
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Figure 2.29: Response of the two-bead system for excitation frequency equaling 

) = 5000	Hz and amplitude ( = 0.357	μm, (a) Transmitted force on the boundary (the 

site of the dynamic sensor); (b) bead displacements. 
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Figure 2.30: Fourier transform of the transmitted force to the dynamic sensor at forcing 

frequency equaling (a) ) = 500	Hz; (b) ) = 3000	Hz. 

 

 

 

Figure 2.31: Frequency response of the 2 bead system for amplitude of ( = 0.375	μm. 
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Figure 2.32: Experimental time series of the force at the dynamic sensor at  

(a) � � 10	Hz  and 
 � 0.3951	μm; (b) � � 500	Hz and 
 � 0.3775	μm. 
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Figure 2.33: Experimental time series of the force at the dynamic sensor at  

(a) ) = 3000	Hz and ( = 0.3408	μm; (b) ) = 5000	Hz and ( = 0.357	μm. 
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Figure 2.34: Experimental Power Spectral Densities of the force time series of  

(a) Figure 2.32b: ) = 500	Hz; (b) Figure 2.33a: ) = 3000	Hz. 

 

 

Figure 2.35: Response of 1st, 3rd, 5th and 7th beads of a 10 bead homogeneous chain under 

harmonic excitation with frequency in the attenuation band. 
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Figure 2.36: Dynamics of the 10-bead homogeneous chain under harmonic excitation 

with frequency in the attenuation band, (a) Response of the first bead superimposed to 

the excitation; (b) detail of (a). 
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Figure 2.37: Response of first bead of a 10-bead homogeneous chain with varying 

normalized excitation frequency and fixed normalized excitation amplitude equaling 

unity (dynamics deep inside the attenuation band). 

 

 

Figure 2.38: Spatial variation of permanent pre-compression (
�) in a 20 bead chain 

when the dynamics is deep in the attenuation band. 
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Figure 2.39: Correspondence between analytical and numerical response of the 2-bead 

system when the dynamics is in the attenuation band. 

 

 

Figure 2.40: Schematic partition of a granular chain of � beads with fixed-fixed 

boundary conditions into � clusters – effective particles. 

 

 

Figure 2.41: Reduced models of the granular chain of Figure 2.40, (a) Auxiliary model of 

effective particles; (b) vibro-impact model based on (a). 
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Figure 2.42: Velocity time series for the NNMs of the granular chain with � = 3 beads, 

(a) NNM1; (b) NNM2; (c) NNM4; for each mode the plots (1) depict the individual 

responses of the beads of the granular chain and the plots (2) the time series of effective 

particles of the corresponding auxiliary model (Cluster 1 to 3) and vibro-impact model 

(V.I). 
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Figure 2.43: Velocity time series for the NNMs of the granular chain with � = 4 beads, 

(a) NNM1; (b) NNM2; (c) NNM3; (d) NNM5; for each mode the plots (1) depict the 

individual responses of the beads of the granular chain and the plots (2) the time series 

of effective particles of the corresponding auxiliary model (Cluster 1 to 4) and vibro-

impact model (V.I). 
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Figure 2.43 (cont’d): Velocity time series for the NNMs of the granular chain with � � 4 
beads, (e) NNM6; (f) NNM8; for each mode the plots (1) depict the individual responses 

of the beads of the granular chain and the plots (2) the time series of effective particles 

of the corresponding auxiliary model (Cluster 1 to 4) and vibro-impact model (V.I). 

 

 

 

 

Figure 2.44: Auxiliary model of � oscillating effective particles with a permanently 

stationary bead (node) of unit mass. 
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Figure 2.45: Time series of bead oscillations for a NNM of a chain with � � 4 possessing 

an immovable bead; this mode can be considered as variation of NNM1 of Table 2.3 of 

the chain with � � 3. 

 

 

Figure 2.46: Auxiliary model of effective particle for the in-phase NNM. 

 

 

Figure 2.47: Frequency – energy curves for in-phase NNMs of granular chains with 

 � � 2 � 7 beads. 
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Figure 2.48: Responses of the auxiliary model and of the actual granular for the in-phase 

NNM of granular chains with (a) � � 4; (b) � � 5 beads. 

 

 

Figure 2.49: One dimensional layered elastic system with granular interfaces [125]. 
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Figure 2.50: Displacements of the right boundaries of the first two layers and the first 

two granular interfaces (� � 5) of the layered medium, (a) first layer; (b) second layer. 

 

 

  

Figure 2.51: Layered medium with granular interfaces modeled as auxiliary models. 
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Figure 2.52: Comparison of the responses of the center of mass (in-phase NNM) of the 

first two granular interfaces (------), and the responses of the effective particles (_______) 

modeling the in-phase NNMs, (a) first layer (� = 5); (b) second layer (� = 5). 

 

 

  

Figure 2.53: Normalized transmitted force in the leading layers of the medium,  

(a) left end of bar 2; (b) left end of bar 3. 
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2.5 Tables 

 

Table 2.1: Normalized time delays for velocity pulse propagation 

� 100-bead chain 

(Solitary wave [41]) 

� −bead system 

(In-phase NNM) 

3 5.248 7.67 

4 7.858 10.62 

5 10.528 13.45 

6 13.168 16.25 

7 15.778 19.04 

 

Table 2.2: Classification of NNMs of the granular chain with � = 3 

Cluster 1 – �� Cluster 2 – �� Cluster 3 – �	 NNM 

1 1 1 1 

2 1  2 

1 2  3 

3   4 

 

Table 2.3: Classification of NNMs of the granular chain with � = 4 

Cluster 1 – �� Cluster 2 – �� Cluster 3 – �	 Cluster 4 – �� NNM 

1 1 1 1 1 

2 1 1  2 

1 2 1  3 

1 1 2  4 

2 2   5 

3 1   6 

1 3   7 

4    8 
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3. DYNAMICS OF DIATOMIC (DIMER) GRANULAR CHAINS 

 

The propagatory dynamics in one-dimensional granular systems has been well studied 

theoretically [41, 42, 44, 47, 58, 59, 62], numerically and experimentally [41, 42, 51, 52, 56, 

57]. Moreover, it was shown that one-dimensional monodisperse systems support 

solitary waves which has attracted great interest and has been studied extensively. 

Indeed, in homogeneous granular chains spatially localized waves may propagate 

without distortion. Such waves are denoted as solitary waves. A solitary wave is defined 

rigorously as in Chapter 1 [17]. An arbitrary disturbance in a homogeneous granular 

chain disintegrates into train of solitary waves of varying amplitudes.  

As a further step in the study of granular chains, periodic diatomic chains have 

been considered [42, 89, 90, 92]. These are chains consisting of two different types of 

beads. These beads may be of different masses and or stiffness. Periodic dimer chains 

have been studied employing continuum limit approximation [89, 90, 93-95], but due to 

the mass or stiffness disparity this approach has limitations, like the disparity has to be 

either very large or very small. The intermediate range of mass or stiffness disparity 

falls outside the purview of the applied continuum limit approximation. Furthermore, 

there is no comprehensive study (neither analytically/numerically nor experimentally) 

exhausting all the parameter range of mass and stiffness disparity between the beads. 

Moreover, there are certain phenomena that are completely obscured when the system 

is not considered in the discrete limit.  

In this chapter we focus exclusively on periodic dimer chains, i.e., periodic 

arrangements of beads of type 2 in a chain of beads of type 1. A dimer chain of similar 

alternating beads is denoted as 1: 1 dimer (each bead of type 1 is followed and preceded 

by a bead of type 2) and in such chains only periodic variation of masses can be 

realized, whereas a general 1:�	(� ≥ 2) dimer chain can support both mass and 

stiffness periodicities. Our study considers these dimer chains in their discrete limit. We 
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begin our study by considering the propagatory dynamics in the simplest dimer chain, 

i.e., 1: 1 dimer chain in Section 3.1. The dynamics of these dimer chains is governed by a 

single parameter scaling the masses of the two types of beads in the chain. We show the 

existence of solitary waves which are an outcome of the anti-resonance phenomenon 

and the realization of resonances which leads to substantial pulse attenuation. These 

anti-resonances and resonances are realized in un-compressed dimer chains at discrete 

set of mass ratios. The application of pre-compression on these chains imposes a linear 

term in the force interaction law between the beads and thereby lowers both the 

dispersive and nonlinear effects. The study of the effect of pre-compression on the anti-

resonances and resonances is of primary importance in designing engineering systems 

incorporating dimers as it is really hard to realize un-compressed granular chains. A 

1: 1 dimer chain supports not only solitary waves but can also support periodic 

traveling waves of varying periodicities. These waves are the only mode of energy 

transfer to the far field of the dimer chain during pulse attenuation, an effect of the 

nonlinear resonance. The realization of these waves is a function of the mass ratio 

between the beads and can exhibit interesting bifurcations with mass ratio as the 

bifurcation parameter. This is of importance in understanding of the resonance and its 

effect on the propagatory dynamics of the dimer chain. The final part of this section is 

devoted to the experimental verification of the phenomena of resonance and anti-

resonance in dimer chains.  

 In Section 3.2 we focus on the propagatory dynamics of a general class of 1:� 

dimers (a bead of type 1 preceded and followed by � beads of type 2). In contrast to 1: 1 

dimers where the dynamics was governed by a single parameter, the dynamics of 1:� 

dimer is governed by two parameters, mass ratio and stiffness ratio scaling the masses 

and stiffness characteristics respectively of the two types of beads. Initially we consider 

the particular case of 1: 2 dimer chains and the realization of anti-resonances and 

nonlinear resonances. In fact we show that solitary waves can be realized only in 1: 1 
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and 1: 2 dimer chains. Analogously, resonances can be realized only in 1: 1 and 1: 2 

dimer chains. A general 1:�	(� ≥ 2) dimer chain cannot support solitary waves or 

nonlinear resonances. This is elaborated by considering a simple case of 1: 3 dimer 

chain and it is shown that near solitary wave and resonances can be realized by 

considering the first mode of the linearized oscillatory dynamics of the light beads 

squeezed between the heavy beads during primary pulse propagation. An interesting 

particular case of degeneracy of a general 1:� dimer chain with very high stiffness ratio 

to a 1: 1 dimer chain is explored. This result can be applied in simplifying the 

complicated study of a general 1:� dimer chain with large stiffness ratio.  

The last part of this chapter is concerned with the study of validity of the 

asymptotic approach developed and applied in this chapter. Although it may seem that 

the asymptotic approach is valid whenever the asymptotic parameter is small enough, 

we show that for a general 1:� dimer chain a combined parameter involving both the 

number of light beads � and the mass ratio governs the validity of asymptotic 

methodology devised herein. 

 

 

3.1 Dynamics of F:F Dimers 

 

3.1.1 Introduction 

 

Polydisperse systems typically exhibit waves that radiate energy to the far field as they 

travel, and thus distort their initial waveforms due to continuous energy ‘leakage’. In 

the context of one-dimensional granular media, much emphasis has been given to a 1: 1 

dimer systems [89, 90, 92], i.e., in systems composed of pairs of dissimilar beads. The 

dynamics of these systems have been studied both theoretically in the continuum 

approximation [93] and experimentally [90, 93]. There has been no much progress, 
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however, in studying the dynamics of these systems analytically taking into account the 

actual discrete nature of the bead interactions; this perhaps is due to the complexity of 

the nonlinear dynamical interactions occurring in these media, including the possibility 

of bead separation in the absence of pre-compression. Theocharis et al. [96] studied 

localized breathers in dimers under pre-compression taking into account the linear 

component in the dynamics that pre-compression introduces, but no similar results 

exist in the strongly nonlinear case dealt with here, in the absence of pre-compression. 

 In this section we focus on a particular feature of the dynamics of general one-

dimensional elastic dimer chains with no pre-compression, and report on the existence 

of a new family of localized solitary waves in these systems. As mentioned previously, 

this type of waves are not typical in polydisperse systems, such as the dimer chains 

considered herein. Solitary waves in dimers were observed and analyzed [42] for large 

mass mismatch and in the limit of long wave approximation. The derived expression 

happens to be a rescaled version of the expression for solitary wave in homogeneous 

chain of similar beads derived in [41, 42]. We denote this limiting system with large 

mass mismatch as ‘auxiliary system’ and use the analytical expression derived in [44, 

62] as the G(1) approximation in our asymptotic analysis. Furthermore, we consider 

higher order approximations in the limit of small mass mismatch and show the 

existence of a class of solitary waves in the dimer. We show that this class of perfectly 

localized solitary waves (as defined above) is the direct result of special symmetries or 

anti-resonances in the strongly (essentially) nonlinear dynamics of the un-compressed 

dimers. Moreover, we conjecture that there exists a countable infinity of members in 

this new family of solitary waves, corresponding to discrete values of a mass ratio 

parameter. This leads us to the interesting conjecture that nonlinear anti-resonances may 

give rise to localized solitary waves in a more general class of periodic polydisperse granular 

media, e.g., involving more complex spatial periodicities than the dimers considered in 

this section. An additional interesting feature of the reported family of solitary waves is 
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that they propagate faster than the corresponding solitary waves in the homogeneous 

system obtained in the limit of no mass mismatch (i.e., in a homogeneous chain of 

identical beads). This observation very much applies to the normalized system under 

consideration in our work, and indicates that nonlinear anti-resonances in granular 

media may speed up the propagation of disturbances within them. We present 

extensive numerical evidence of the presence of localized solitary waves in dimer 

chains with no pre-compression, and provide a general mathematical condition for the 

realization of this family of waves in these systems. 

 

 

3.1.2 Anti-resonances and Solitary Waves 

 

3.1.2.1 Numerical Evidence of Solitary Waves in the Dimer 

 

We consider a one-dimensional 1: 1 dimer chain of spherical elastic beads in Hertzian 

contact with no pre-compression. Denoting the materials of two neighboring beads by 

the labels 1 and 2, and by �� the displacement of the � −th bead, the governing equations 

of motion are strongly nonlinear and given by, 
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where �� = �� and ���� = ��; �� = �� = (4 3⁄ )$��	�� and ���� = �� = (4 3⁄ )$��	��; 

�∗ = ���� [���1 − ����+ ���1 − ����]⁄ ; ��(��) is the elastic modulus, ��(��) the radius 

and ��(��) the Poisson’s ratio of bead 1 (2). We note that the interaction force between 
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neighboring beads is given by �� = (4 3⁄ )�∗√�Δ	/�, where � = ���� (�� + ��)⁄  and Δ is 

the relative displacement between neighboring beads. 

 Introducing the non-dimensionalizations, 
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we obtain the system of non-dimensional equations, 
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where overdots denote differentiation with respect to non-dimensional time � and the 

only non-dimensional parameter is B = ����	/����	 scaling one of the pair of beads of the 

dimer system (cf. Figure 3.1). We note that if �� = �� the parameter B is the ratio of the 

mass densities of the two materials of the dimer. In the following asymptotic analysis 

we will use B as the small parameter of the problem by assuming that 0 < B ≪ 1. Hence, 

we will be assuming that the dimer system is composed of ‘heavy’ and ‘light’ beads 

corresponding to normalized mass ratio equal to unity and B respectively. In the 

notation of the original system (3.1) bead 1 is the ‘heavy’ bead and bead 2 is the ‘light’ 

one. The clear advantage of studying the normalized dimer (3.3) is that our results will 

have broad applicability to general dimer systems after appropriate rescaling. In 

addition to the asymptotic analysis we will explore numerically solitary waves realized 

for larger values of B where the asymptotic analysis is not valid. 

 It will be shown that the normalized dimer system (3.3) has a special family of 

solitary waves (parameterized by energy) whose members are realized at a 
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monotonically decreasing sequence of (discrete) values of B. Since this dimer system is 

non-integrable, asymptotic analysis of these solitary waves can be performed only in 

the limit of small 	B, so initially we resort to direct numerical simulations to demonstrate 

their existence. For the numerical simulations we employ the setup shown in Figure 3.2 

and consider the parameter in the range B ∈ (0,1]. In the system shown in Figure 3.2 we 

apply an impulsive excitation equal to �
(�) at the left end of a dimer chain composed 

of a total of 251 beads. The right end of the chain has a fixed light bead (i.e., its center of 

mass is immovable) so that the non-dimensionalization and rescaling employed in (3.3) 

are valid. To demonstrate the existence of solitary waves in this system we consider a 

few pairs of beads (51 to 59) in the middle of the chain and examine only primary pulse 

propagation, omitting reflections from the boundaries. Due to the inhomogeneity of the 

dimer system, intuitively one would expect a slow disintegration of the applied 

impulse, leading to small-amplitude oscillating ‘tails’ in the corresponding responses of 

the light and heavy beads. This has been observed in previous experimental and 

numerical works (e.g., [89]). However, as shown in the following numerical 

simulations, at specific discrete values of B (normalized mass ratio) the applied impulse 

gives rise to propagation of solitary waves which travel un-deformed (i.e., their 

waveforms remain un-distorted during propagation) instead of disintegrating due to 

scattering at the interfaces between dissimilar beads. 

 In Figure 3.3 (unless stated all units are non-dimensional) we depict the velocities 

of four dimer pairs (beads 51 to 59 of the dimer) of the system of Figure 3.2 for an 

arbitrary value of the mass ratio B = 0.4, with an applied impulse of unity. In all the 

numerical simulations considered hereon, unless otherwise stated, the applied impulse 

is unity. In this case it is observed that following the propagation of the main pulse, 

both light and the heavy beads of the dimer execute oscillations caused by residual 

energy left behind by the pulse, and appearing as oscillatory tails in the trail of the 

propagating pulse. Clearly, these tails are due to scattering of the main propagating 
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pulse at the interfaces between beads. We note that this response is typical in the 

dynamics of the dimer, and demonstrates the (slow) disintegration of a propagating 

pulse. In fact, the oscillating tails are composed of nonlinear traveling waves that 

propagate behind the main pulse, and are similar to traveling waves in homogeneous 

granular chains studied in an earlier work [63]. The continuous radiation of traveling 

waves leads to a monotonic reduction of the amplitude of the main pulse as it 

propagates through the dimer. The discussion on traveling waves in dimers is 

presented in Section 3.1.5. 

 Perhaps counter intuitively, at certain discrete values of the normalized mass 

ratio ε , localized solitary waves are formed in the dimer having the shape of traveling 

localized pulses with no residual oscillating ‘tails’ in their trails. Due to the absence of 

energy radiation these solitary waves propagate un-attenuated in the dimer and can be 

considered as analogs of the well-studied solitary pulse of the homogeneous granular 

chain [41]. In the case of the dimer, however, pulses with distinct waveforms are 

realized for the heavy and light beads. A similar observation of distinct propagating 

pulses in heavy and light beads in a dimer has been reported in [42]. These solitary 

waves are realized for a discrete set of values of the small parameter B of the dimer, as 

demonstrated in the following section. Before proceeding with the numerical evidence 

of the solitary waves in the dimer, it is worthwhile to comment on the two limiting 

configurations of the dimer system (3.3), namely in the limits of the interval 0 < B ≤ 1. 

In the lower limit of B → 0 the dimer degenerates to a homogeneous chain with a 

normalized stiffness coefficient smaller than unity; this system will be designated as the 

‘auxiliary system’ [cf. (3.8b) below]. It should be noted that the auxiliary system does 

not imply that there are gaps between heavy beads, but rather it indicates that the 

inertial effects of the light beads are negligible so that they act effectively as pure elastic 

springs. In the upper limit of B → 1 the dimer degenerates again to a homogeneous 
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chain with normalized stiffness coefficient equal to unity; this is a homogeneous chain 

composed only of heavy beads. 

 In Figure 3.4a we present the localized solitary wave (on beads 51 to 59) realized 

in the dimer with B = 0.3428, excited with unit impulse. In this case there are no 

oscillating tails following the propagation of the primary pulse. The velocity profiles of 

the heavy beads are in the form of a single hump and those of the light beads are  

double humps (that is, a slow-scale single hump superimposed with fast-scale 

oscillations possessing significant amplitude). Although the heavy bead waveforms of 

these waves are localized single humps similar to the solitary wave discussed by 

Nesterenko [41, 42], they have some very distinct differences. This is evidenced by the 

waveform of the heavy beads which is significantly affected by the fast-scale oscillations 

of the light beads, and also by the corresponding waveform of the light beads. 

However, in similarity to the Nesterenko solitary wave in the homogeneous chain, both 

velocity profiles of heavy and light beads decay to zero with increasing time and remain 

undistorted as the solitary wave propagates through the dimer. The Figure 3.4b depicts 

localized humps of both heavy and the light beads in the phase plane (depicting relative 

velocity versus relative displacement for alternating heavy or light beads) and shows 

them in comparison with the solitary wave that is supported in a homogeneous chain 

(excited by an impulse of magnitude 1.4) of heavy beads (obtained in the limit B → 1) 

with identical maximum displacement amplitude. It is clear that the two solitary humps 

of the dimer can be regarded as a disintegration of the solitary wave of the limiting 

homogeneous system due to scattering; yet, the fact that there is no disintegration of the 

main pulse to oscillatory tails implies that a special symmetry (or anti-resonance) 

condition is realized at this special value of B preventing the complete disintegration of 

the pulse (as it occurs for arbitrary values of B – cf. Figure 3.3). In Figure 3.4c 

displacement wave profile of the solitary wave is shown. As can be observed, after the 

passage of the solitary wave, both heavy and the light beads experience a rigid body 
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translation in the direction of the applied impulse. Although light beads execute 

oscillations, they attain zero velocity towards the end of the squeeze mode. This 

condition will be invoked in the next section to derive a spectrum of mass ratios where 

solitary waves can be realized. 

 Additional solitary waves realized in the dimer have been numerically detected 

for B = 0.1548 (see Figure 3.5), B = 0.0901 (see Figure 3.6), and 

B ≈ 0.0615, 0.04537, 0.03448, … , 0.00868. Similar to the solitary wave for B = 0.3428 

these additional solitary waves have no oscillating tails but rather have velocity profiles 

that decay to zero with increasing time. With decreasing B (i.e., increasing normalized 

mass mismatch) the light beads execute high frequency oscillations while they are being 

compressed in between adjacent heavy beads; this phase is denoted as the ‘squeeze 

mode’. Generally, the frequency of oscillation of the light beads during the squeeze 

mode increases with decreasing B. For a general value of B, typically the light bead loses 

contact with its left neighboring heavy bead at the end of its compression phase (i.e., at 

the end of the squeeze mode), and retains a small portion (residual) of the energy of the 

propagating pulse. This residual energy manifests as oscillation of the light beads even 

after the propagation of the primary pulse, which in turn leads to the formation of 

traveling waves in oscillating tails appearing in the wake of the propagation of the 

primary pulse. These tails radiate energy to the far field in the opposite direction to that 

of the propagating pulse, and cause a continuous decrease of the amplitude (energy) of 

the primary pulse as it propagates through the dimer. Hence, for an arbitrary value of B 

no solitary wave can be formed.  

 In contrast, at the aforementioned discrete values of B, solitary waves are formed 

once the light beads stay in continuous contact with adjacent heavy beads (that is, no 

separation between light and heavy beads occurs), and the entire energy of the main 

pulse is conserved and transferred without loss from each heavy bead to the next heavy 

bead, after which each heavy bead reaches a stationary position at the end of the 
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squeeze mode. As a result, no residual oscillating tails are formed in this case, there is 

no energy radiated to the far field, and the primary pulse propagates un-attenuated 

through the dimer. Clearly, this lossless transfer of energy through the dimer occurs 

only if certain symmetry conditions are satisfied. These conditions are formulated 

asymptotically in the next section where it is proved that a discrete set of solitary waves 

exists in the dimer accumulating to a definite limit as B → 0. It is also important to point 

out the formation of secondary solitary waves (cf. Figure 3.5b) belonging to the same 

class of solitary waves discussed so far. These secondary waves are generated due to 

separations of the initial beads of the system following the application of the impulse, 

and the fact that they have the exact form of the solitary wave provides additional 

numerical evidence that at the mentioned discrete values of B, these solitary waves provide the 

principal (fundamental) mechanism for transferring energy in the dimer. Thus it is concluded 

that this family of solitary waves constitutes the most natural type of localized traveling 

pulses in the dimer system for the mentioned special discrete values of B, in similarity to 

the solitary waves studied by Nesterenko [41, 42] which provide the principal 

mechanism for transferring energy in homogeneous granular chains. 

 A particularly interesting feature of solitary waves in the dimer chain is that their 

phase velocities are higher than the phase velocity of the solitary wave in the 

homogeneous system obtained in the limit B → 1; in fact the solitary waves become 

faster as the normalized mass ratio B decreases. Indeed, in Figure 3.7 we depict the time 

shift (labeled as �
 in Figure 3.5a) of a solitary wave in the dimer (defined as the time 

difference between velocity peaks of successive heavy beads) plot against the velocity 

amplitude of the solitary wave. In essence, this plot represents the energy – speed 

relations for the different families of solitary waves in the dimer. Due to the discrete 

nature and the normalized form of the considered system, defining phase velocity as in 

continuum systems is not possible. An analogous quantity which can be attributed to 

the velocity of propagation of the solitary waves is the time shift which is presented in 
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Figure 3.7. The lower bounding curve corresponds to the auxiliary system obtained in 

the limit B → 0, and corresponds to the fastest class of solitary waves. As shown in the 

asymptotic analysis that follows, every point in the lower bounding curve represents an 

accumulation point of solitary waves as B → 0 (that is, fixing the peak velocity 

amplitude of the solitary wave and letting B → 0). Moreover, there is an upper 

bounding curve corresponding to the solitary wave of the homogeneous chain 

corresponding to B = 1, which demonstrates that every solitary wave propagating in 

the dimer is faster than the solitary wave propagating in the corresponding 

homogeneous system composed only of heavy beads. We also note that due to the 

homogeneous nonlinear potential of the Hertzian law interaction [8, 48], the dimer 

system is fully re-scalable in the sense that for any input impulse the time shifts for the 

solitary waves bear a constant ratio compared to that of the solitary wave realized in the 

limiting homogeneous chain with B = 1. 

 From the above discussion it is clear that the time shifts of the solitary waves in 

dimer converges towards that in the homogeneous chain with the increase in B. But it is 

interesting to observe the convergence of the waveform of these solitary waves to the 

Nesterenko solitary wave in homogeneous chain. In Figure 3.8 we depict the solitary 

wave velocity profile on the heavy bead (51st bead) in comparison with the velocity 

profile of the same bead in homogeneous chain. The amplitudes are matched exactly by 

exciting the dimer chains with appropriate impulses (�B = 0.3428,� = 1.237�, �B =

0.1548,� = 1.012�;	�B = 0.0901,� = 1.006�;	�B = 1,� = 1�). From the above discussion it 

is intuitive to expect that the solitary wave velocity profile of the dimer chain converge 

towards that in homogenous chain with increase in B, but the response in Figure 3.8 

depicts a contrastingly different scenario. In fact the solitary wave corresponding to 

B = 0.3428 (the last mass ratio of the dimer where solitary wave is realized) shows 

maximal deviation from the solitary wave in homogeneous chain. In fact this can be 

attributed to the large high frequency oscillations that are observed in the velocity 
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profile of the light beads (Figure 3.4a). This strong oscillation of the light beads during 

the squeeze mode considerably influences the wave profile of the heavy beads. In 

contrast, for lower values of mass ratio the amplitude of high frequency oscillation in 

the velocity profile of light beads are substantially lower and have very mild/no 

influence on the heavy beads (cf. Figure 3.5, 3.6). 

 To demonstrate the effect that the solitary waves can have on the response of the 

dimer chain to shock excitations we reconsider the system of Figure 3.2 with a total of 

85 heavy and light beads, with the last heavy bead of the dimer being in contact with a 

fixed light bead (such a setup has been previously employed in the context of 

homogeneous chains by Coste et al. [53]). Again, no pre-compression in the chain exists. 

A unit impulse excitation is applied to the first bead on the left end of the dimer chain. 

As described previously this system is fully re-scalable, and thus for any applied 

impulse the ratio of the maximum force transmitted H���B,�� = �������
	/� I to the fixed 

light bead over the corresponding force in the limiting homogeneous chain with B = 1 is 

constant for any value of B, i.e., Λ�B� = ��(B,�) ��(1,�)⁄  is constant for a particular value 

of B for any arbitrary value of applied impulse strength F. This argument is valid also 

for the time delay �� between the application of the pulse on the first bead at the left 

end of the dimer chain (Figure 3.2) and its arrival to the right fixed bead, i.e. Υ�B� =

��(B,�) ��(1,�)⁄  is constant for a particular value of B for any arbitrary value of applied 

impulse strength. It follows that we only need to consider the dynamics of the dimer subject to 

a unit impulse, with our results being valid at different energies (or applied pulses). Again, this 

result originates from the ‘homogeneous’ nature of the nonlinear interaction potential 

between beads, leading to dynamics that are fully re-scalable with energy. It should be 

noted that this result is valid only for dimer chain length less than 85 beads. With 

further increase in the number of beads, the propagatory dynamics exhibits a different 
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phenomenon and the above discussed normalization is no longer valid. This 

phenomenon is discussed in Section 3.1.3.2 [91].  

 In Figure 3.9a we depict the force transmitted to the fixed light bead normalized 

with respect to the corresponding force transmitted in the homogeneous system. From 

these results it is clear that the force transmitted is always smaller for the case of the 

dimer compared to the homogenous chain. The intermediate local peaks of normalized 

transmitted force (occurring at B = 0.3428, 0.1548, 0.0901, …) are realized at the specific 

values of B for which solitary waves are realized, since only then the energy is 

transferred un-attenuated through the dimer. On the contrary, in between the local 

peaks of normalized transmitted force where no solitary waves are formed and the 

propagating pulse disintegrates due to scattering at bead interfaces, the normalized 

transmitted force decreases, with maximum reduction of the order of 75% of the 

normalized transmitted force occurring for B ≈ 0.59. These results indicate that the 

solitary waves represent an efficient mechanism for transferring energy through the 

dimer system. The normalized time delay [110] (with respect to the corresponding time 

delay for the homogeneous system with B = 1) for the dimer is presented in Figure 3.9b, 

from which we infer that for an arbitrary value 0 < B ≤ 1 the normalized time delay is 

smaller than unity. This leads us to the claim that solitary waves in the dimer propagate 

faster than the Nesterenko solitary wave in the homogeneous system of heavy beads. It 

is worth noting that the number of beads and the loading conditions are identical for 

each dimer system considered in Figure 3.9, while the only parameter being varied is 

the normalized mass B. Clearly, the time delay described here is more applicable for 

practical/experimental applications instead of theoretical analysis since it does not 

provide a rigorous measure of the speed of the solitary wave in the dimer. From a 

theoretical perspective, the time shift (Figure 3.7) is a valid measure to describe the 

speed of solitary waves and Figure 3.7 rigorously evidences our claim of faster 

propagation of solitary waves in dimer when compared to that in a homogeneous chain 



150 

 

of heavy beads. Moreover, the previous observations are valid only for the normalized 

system under consideration, wherein the mass of the heavy bead is fixed to unity, and 

only the normalized mass of the light bead is varied in the range B ∈ (0,1]. 

 The previous numerical results show that a granular chain with periodic 

inhomogeneities can support different classes of solitary waves. The solitary waves  

with perfect localization (i.e., with no oscillating tails following the propagation of the 

main pulse) considered here differ from traveling waves observed by previous 

researchers [42, 89, 90] in these systems that can at best be described as either 

quasistationary primary pulses or solitary-like pulses, but are not solitary waves as per 

the rigorous definition of [17]. In the context of our discussion the propagating solitary 

waves conserve their energy, do not radiate energy to the far field and retain their 

waveforms intact.  

 In the family of solitary waves considered herein, the light beads execute 

relatively high-frequency oscillations (in their squeeze mode) but they do not loose 

contact with their neighboring heavy beads even towards the end of the squeeze mode. 

Such a behavior can occur under special conditions, that is, only if the velocity 

(displacement) waveform of each light bead possesses special symmetric (anti-

symmetric) properties. For the velocity waveform to be symmetric a light bead should 

end its high-frequency oscillation with precisely zero velocity, i.e., with precisely the 

initial velocity with which it begins its motion during the squeeze mode. This exactly 

conforms to the solitary wave definition [17] given above. Such synchronization 

between the motion of the light and heavy beads can only imply that a certain anti-

resonance condition is satisfied when a solitary wave is formed; this will be confirmed in 

the theoretical study of the next section. For smaller values of B (i.e., for large mass 

mismatch in the dimer) the oscillation of the light bead does not affect the motion of its 

neighboring heavy beads. It follows that in the limit of small B we may introduce 

multiple time scales to describe the dynamics of the solitary waves: a fast time scale that 
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governs the relatively high-frequency oscillations of the light beads, and a slow time scale 

that governs the slowly varying localized pulse in the heavy beads. However, as the 

normalized mass ratio increases and we progress towards the region of upper bound 

(B = 0.3428) of realization of these solitary waves, it is clearly seen that the amplitude of 

oscillations of the light beads become comparable to the solitary pulse in the heavy 

beads. At this stage the time scale separation breaks down and one may no longer 

partition the dynamics of the heavy and light beads in terms of slow and fast 

components (that is, the time scales become entangled). Hence, the normalized mass 

ratio B = 0.3428 represents an upper bound for the existence of solitary waves in the 

dimer, in the sense that beyond this point no solitary waves can be formed, with the 

exception, of course, of the well-studied solitary wave in the limiting homogeneous 

system with B = 1 studied by Nesterenko [41, 42]. 

 The fact that the solitary waves in the dimer propagate faster than the solitary 

wave in the limiting system with B = 1 might seem counterintuitive. Taking into 

account, however, that solitary waves in the dimer are formed under conditions of anti-

resonance, it implies that anti-resonance phenomena may be responsible for the higher phase 

velocities of the solitary waves in the dimer. As shown in the numerical results of Figure 3.9, 

the existence of solitary waves in granular chains with periodicity facilitates the 

transmission of energy and increases the speed of disturbance transmission in these 

media. This implies that anti-resonance phenomena in granular chains represent an 

important dynamical mechanism which significantly affects the capacity of these media 

to transmit disturbances. 

 In the next section we will be concerned with the analytical study of realization 

of families of solitary waves in the dimer system in the limit of small B, and the study of 

the anti-resonance conditions that lead to the formation of solitary waves in the dimer 

for specific values of normalized mass ratio B. 

 



152 

 

3.1.2.2 Analytical Study of Anti-Resonances in Dimers 

 

Considering again the non-dimensional governing equations for the dimer, 
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we assume that 0 < B ≪ 1, i.e., study the dynamics in the limit of large normalized mass 

mismatch. The index notation in (3.3) indicates that odd indices correspond to heavy 

beads, and even indices to light beads. The subscripts (+) will be dropped from hereon 

as we will be concerned only with primary pulse transmission in the dimer, that is, we 

will be concerned only with the phase of the squeeze mode during which the light 

beads are under continuous compression from their neighboring heavy beads so that no 

separation between beads occurs. 

 Clearly, for sufficiently small values of B, system (3.3) is in the form of a 

singularly perturbed problem which calls for a slow-fast time scale separation. We will 

be interested only in primary pulse transmission in the dimer, omitting secondary 

waves. Within this context we may study solitary wave transmission in the dimer since 

this corresponds particularly to primary pulse transmission with no separation between 

beads. Hence, the dynamics of solitary wave formation can be described by introducing 

the following asymptotic approximation for the bead displacements of the dimer, 
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where � and �� are distinct time scales of the dynamics defined as follows, 
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0 1 0

,

b
t t tτ ε= =                                                       (3.5) 

 

and the real exponents J, K, � are to be determined by balancing terms at various orders 

of approximation of the asymptotic analysis. Substituting (3.4) and (3.5) into (3.3), and 

expanding the rational powers in power series with respect to B we obtain the following 

set of governing equations valid in the limit of sufficiently small B: 
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In the equations above overdots indicate differentiation with respect to the time 

scale � = � and primes represent differentiation with respect to the time scale ��. By 

considering the order of magnitude of the various terms in (3.6) and (3.7), the exponents 

in the asymptotic analysis are chosen as J = 2, K = −1/2, � = 1, since this leads to 

appropriate balancing of terms at successive orders of approximation. It follows that 

� = � is the slow time scale, whereas �� = B��/�� the fast time scale of the dynamics. 

 To provide a demonstration of the range of validity of the above asymptotic 

expansions, Figure 3.3 presents the distinct dynamical regimes that are realized during 

primary pulse propagation in a 1: 1 dimer chain (similar results hold for general 1:� 

dimers with � > 1). To this end we consider a semi-infinite 1: 1 dimer chain excited by 

a normalized impulse with intensity equal to unity applied to its free left boundary (i.e., 

the first heavy bead corresponding to � = 1), and depict the responses of beads 51 to 59. 

The resulting pulse propagation through the dimer can be classified into two distinct 
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regimes: (i) a primary pulse or squeeze mode, and (ii) an oscillating tail developing in 

the trail of the primary pulse. During primary pulse transmission (squeeze mode), the 

light beads are squeezed between their neighboring heavy beads and thus no bead 

separation is possible. Thus the dynamics is weakly nonlinear due to the strong local 

compression between beads associated with the first arrival of the pulse, and the 

asymptotic analysis formulated herein is valid. In the oscillating tail, however, there is 

bead separation and collision between beads, so the dynamics is strongly nonlinear. 

Indeed, towards the end of the squeeze mode the compression of the light beads by 

their neighboring heavy beads relaxes gradually (as the primary pulse passes), leading 

to non-smooth dynamics so that the asymptotic methodology of this section ceases to be 

valid. Typically, this phase is noted in the trail of the propagating primary pulse for 

arbitrary values of the normalized parameter B, and is associated with radiation of 

energy from the primary pulse to the far field of the medium in the form of strongly 

nonlinear traveling waves (discussed in Section 3.1.5); this is the principal mechanism of 

pulse dispersion as the primary pulse gradually loses its energy as it penetrates further 

through this heterogeneous medium. Interestingly enough, it will be proved that for 

certain values of the normalized parameter B it is possible that the oscillatory tail 

completely disappears (so that only the squeeze mode is realized), leading to the 

formation of localized solitary waves propagating with no distortion or attenuation. 

This corresponds to realization of anti-resonances (as opposed to resonances that lead to 

maximum primary pulse attenuation [91]) in the dimer. 

 Considering the zero-th order approximation in (3.6) and (3.7) respectively, the 

following set of equations that govern the slow dynamics of the dimer are obtained: 
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The first set of nonlinear ordinary differential equations in (3.8a) provides the 

first-order approximation of the dynamics of the heavy beads, whereas the second set of 

linear algebraic equations provides the first-order approximation of the dynamics of the 

light beads. It is clear that system (3.8a) is expressed exclusively in terms of the slow 

time scale �, so the leading-order approximations of the responses of both the heavy 

and light mass beads of the dimer are slow dynamical motions.  

 By simple algebraic manipulations, (3.8a) may be rewritten in the following form: 
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It follows that the first-order approximation of the (slowly-varying) motion of the heavy 

beads is identical to the response of a homogeneous granular chain [i.e., the first set of 

nonlinear ordinary differential equations in (3.8b) which is in terms only of the 

responses of the heavy beads], whereas the first-order approximation of the response of 

the light beads is expressed in terms of the (slowly-varying) responses of the heavy 

beads [i.e., the second set of linear algebraic relations in (3.8b)]. In fact the homogeneous 

granular chain in (3.8b) corresponds to the auxiliary system defined in the previous 

section derived in the limit B → 0 of the dimer.  

 Hence, in the first-order of approximation the slow dynamics of the light beads is 

determined in terms of the slow dynamics of the heavy beads. At this point it is emphasized 

that we are interested only in the analytical description of the primary pulse 

propagating in the dimer. Therefore, we select the solution of the first set of equations 

in (3.8b) to be the solitary wave of the homogenous system for which analytical 

approximations have been derived in the literature [41, 47, 62, 63]. Following [62] the 
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analytical approximation of the slowly varying motion of the heavy beads is expressed 

as, 
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In (3.9b) A is the amplitude of the solitary wave and T is the time shift in the 

response between the maxima of two successive heavy beads (or the peak-peak delay 

for velocity pulse transmission between successive heavy beads). Accordingly, the 

slowly varying component of the motion of the light beads is expressed as: 
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Thus it is observed that the G(1) approximation of the responses of both the 

heavy and light beads always decay to zero. Such an approximation is valid only in the 

limit of very small B. Such a solution was previously derived by employing the long 

wave approximation by Nesterenko [41, 42]. This long wave approximation and the 

solitary wave approximation used in this thesis are compared in [62]. Although such 

approximations well predict the dynamics of the heavy beads for smaller B, the 

responses of the light beads need not necessarily decay to zero for arbitrary values of B. 

It follows that in order to realize solitary waves it is necessary to find the discrete values 
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of B for which higher order asymptotic corrections of the dynamics of the light bead 

decay to zero. 

 Proceeding to the next order approximation, at G(B) the following equations 

governing the fast dynamics of the heavy and light beads can be derived, 
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are the square of a slowly varying natural frequency and the slow varying excitation, 

respectively. These equations provide the leading-order approximation to the fast 

dynamics of the dimer for primary pulse propagation. We note that the second set of 

equations (3.10a) is uncoupled from the first set and governs the fast oscillations of the 

light beads. It is interesting to point out that this is in the form of uncoupled linear 

oscillators with slowly varying frequencies and excitations. Once analytical 

approximations for the fast oscillations of these oscillators are derived, the fast 

oscillations of the heavy beads can be approximated by integrating twice the first set of 

equations (3.10a). Hence, it is interesting to note that in this order of approximation of, 

the fast dynamics of the heavy beads is determined in terms of the fast dynamics of the light 

beads, which is the reverse of what occurred in the slow dynamics at the leading order of 

approximation. 
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 From the previous discussion it is clear that we only need to focus on the second 

set of slowly varying linear oscillators (3.10a) since these determine completely the fast 

dynamics of the dimer for solitary wave propagation. Once an analytical approximation 

of the fast oscillation of an arbitrary light bead, say the 29 −th light bead, 9 ∈ ℤ, is 

computed, the responses of the other light beads can be determined by imposing 

appropriate time shifts (i.e., multiples of T) to the solution. Hence, in the remainder of 

this section we focus mainly on the analysis of the following linear oscillator with 

slowly varying frequency and forcing, 
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p p p p
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this governs the fast oscillation of the 29 −th light bead of the dimer for solitary wave 

propagation. Clearly, localized solutions in terms of the slow time scale of (3.11) 

correspond to solitary waves in the dimer through appropriate time shifts. 

 Before proceeding to the analytic approximations of the localized solutions of 

(3.11) it is important to discuss the symmetry conditions that these solutions should 

satisfy according to the numerical results of the previous section. From the velocity 

profiles of the three localized solitary waves depicted in Figures 3.4, 3.5 and 3.6 it is 

noticed that they have reflectional symmetry with respect to the time instant where the 

two neighboring heavy beads attain equal (but non-zero) velocities. Based on this 

observation we formulate a symmetry condition for the solitary waves of the dimer. 

Indeed, for the �� + 1� −th light bead a reference time instant � = T
(��) is defined as the 

time instant at which its velocity profile attains a local extreme and the � −th and 

�� + 2� −th neighboring heavy beads [which compress the �� + 1� −th light bead in the 

squeeze mode] attain identical but non-zero velocities. The symmetry condition states 

that the velocity profile of the �� + 1� −th light bead has reflectional symmetry with 
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respect to the reference time instant � = T
(��). In fact this time instant may also be 

regarded as the point of maximum compression of the light bead by its neighboring 

heavy beads. Therefore, for the velocity profile :��� of �� + 1� −th light bead we 

formulate the following symmetry condition: 
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Note that if the symmetry condition (3.12) is satisfied, it automatically prevents the 

appearance of oscillatory tail in the velocity profile of the light intruder (as in Figure 

3.3) resulting from secondary reflections in the trail of the propagation of the primary 

pulse. Hence, the symmetry condition (3.12) provides the necessary condition for the 

formation of a localized solitary wave in the dimer by preventing scattering of the main 

pulse at the interfaces between beads. 

 The symmetry condition for the velocity profile of the �� + 1� −th light bead 

implies that the corresponding displacement profile is anti-symmetric with respect to the 

reference time instant � = T
(���). Recalling that the asymptotic approximation of the 

response of the light bead is given by, 
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where � = �, �� = B��/�� and that the slow part L���(�) is already anti-symmetric with 

respect to the reference time instant, condition (3.12) implies that the fast part of the 

dynamics, �������(��), should also be anti-symmetric with respect to the reference time 

instant. It follows that a necessary condition for the existence of the solitary wave in the dimer 
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is that the fast dynamics (3.11) of the �� + 1� − th light bead is anti-symmetric with respect to 

the reference time instant. 

 Returning to the fast dynamics (3.11) of the 29 −th light bead, without loss of 

generality we assume that its reference time instant is equal to zero, i.e. �
(��) = 0. We 

recognize that by construction the excitation )��(�) is anti-symmetric, and the natural 

frequency squared Ω��
� (�) is symmetric with respect to the reference time instant � = 0. 

It follows that in order to satisfy the anti-symmetry condition of the fast dynamics (3.11) 

with respect to � = 0 we require that: 

 

��������� = 0� = 0                                                     (3.13) 

 

This provides a necessary condition for the formation of the solitary wave in the dimer.  

 A second condition that needs to be imposed on the asymptotic solution of the 

29 −th light bead is that it is localized in time and decays as � → ±∞. Recalling the 

asymptotic approximation of the dynamics of the light bead, �����, ��, … � = L�����+

B����������+ ⋯, and taking into account that the slow part of the dynamics already 

satisfies this asymptotic requirement in the far field, we impose the condition that 

lim��→±� ���������� = 0. Taking into account the anti-symmetry condition for the fast 

dynamics it suffices to impose the condition: 

 

lim��→��
���������� = 0                                              (3.14) 

 

The combined relations (3.13) and (3.14) formulate necessary and sufficient conditions at 

G�B� approximation for the formation of solitary waves in the dimer and provide the 

appropriate boundary conditions for the asymptotic approximation of the fast dynamics 

of the 29 −th light bead.  
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 The next goal in this regard is to find the discrete values of B for which 

conditions (3.13) and (3.14) are satisfied. Recalling that a small parameter	B enters into 

the problem (3.11) through the differentiation with respect to the fast time scale, it is 

convenient to rewrite (3.11) in terms of the slow time scale � = � as follows, 
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and seek the initial conditions �������0� = 0, ��������0� = > and the specific values of B 

for (3.14) to be satisfied. This task is performed numerically and the discrete set of 

values �B�� and initial velocities �>�� required for the formation of solitary waves in the 

dimer are computed. 

 Before reviewing the numerical solutions of this problem, however, it is 

interesting to explore the possibility of constructing analytical approximations of the 

solitary wave solutions of (3.15). To this end we apply the Wentzel–Kramers–Brillouin 

(WKB) approximation [136, 161] under the assumption of B sufficiently small. It is well 

known that the WKB approach ceases to be valid in the vicinity of turning points (i.e., at 

points of nullification) of Ω��(�), and in our case we are interested in finding an 

approximation of the solutions of (3.15) in the semi-infinite time interval � ∈ [0, +∞). 

However, Ω��(�) is an exponentially decaying function of time so there exists a turning 

point at infinity. It follows that for relatively small values of Ω��(�) the proposed 

methodology may become invalid. According to the WKB approximation we seek the 

solution of (3.15) subject to the aforementioned initial conditions in the form, 
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where the first term represents the homogeneous solution of (3.15), whereas the second 

term is a particular solution of the problem. Although this approximation is valid in a 

finite interval � ∈ 00, T∗1, T∗ < +∞, as shown below this interval provides the main 

contribution to the sought solitary wave. Inserting (3.16) into (3.15), and considering the 

zeroth-order terms we obtain the following results [where . = (−1)�/�]: 
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The anti-symmetry condition �������0� = 0 yields MN� = 0. Imposing the second initial 

condition ��������0� = > we determine the second constant MN� as follows, 
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where it holds that Ω� ���0� = 0, )�(0) ≠ 0 owing to the symmetric and anti-symmetric 

nature of these functions, respectively. Therefore, the WKB asymptotical approximation 

in the finite interval � ∈ [0, T∗] reads: 
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We can find sets of values �B�, V�� for which the condition lim�→�� ������(�) = 0 is 

satisfied for (3.19), and solitary waves are formed in the dimer. Moreover, the analytical 

expression (3.19) compares favorably well with the direct numerical solution of problem 

(3.15) that satisfies (3.14). Hence, the WKB approximation (3.19) can be regarded as an 

adhoc analytical approximation of the solitary wave over the semi-infinite interval 

� ∈ [0, +∞]. This is demonstrated in Figure 3.10, where the numerical solution of (3.15) 

for B� = 0.062913 and the analytical solution (3.19) for B� = 0.062748 are compared. We 

note that the solutions are in good agreement, especially in the finite interval of rapid 

oscillations of the response where the WKB approximation is valid. 

 Considering the WKB approximation (3.19) and imposing the condition of anti-

resonance such that the displacement ������(�) → 0 as � → ∞. It should be noted that 

)(�) Ω��(�)�⁄ → 0 as � → ∞. With these conditions imposed, we obtain a spectrum of 

mass ratios predicted by the WKB approximation in the form, 
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For the WKB approximation in this and the next sections, we consider amplitude 

A = 3 and time shift T = 1.937 for the solitary wave (3.9b) in the auxiliary system. From 

the derived spectrum of mass ratios (3.20) it can be stated that there is a countable 

infinity of families of solitary waves that can be realized in a typical elastic dimer 

system. 

In Table 3.1 we provide a comparison of the set of discrete values �B�� where 

solitary waves are realized in the dimer, computed in three different ways: (i) by direct 

numerical simulations of the normalized system (3.3) – exact results in the center 
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column; (ii) by the numerical solutions of the asymptotic model (3.11) [or equivalently 

(3.15)] describing the fast dynamics of the light beads – approximate results in the left 

column; and (iii) mass ratio spectrum (3.20) predicted by WKB approximation. As 

stated previously the results predicted by the asymptotic model (3.11) and (3.20) have 

physical meaning only for sufficiently small values of B, so it is expected that better 

convergence of the two sets of results for decreasing values of B� (or for increasing order 

�). This is confirmed in the results listed in Table 3.1, where we note that the 

approximate results converge to the corresponding exact results for increasing order �. 

Although the asymptotic analysis predicts the existence of a solitary wave for B� =

0.82835 (for � = 2), this corresponds to the solitary wave in the homogeneous chain 

(B = 1). Here it is remarked that for this relatively large value of normalized mass ratio 

the slow-fast partition of the dynamics is not valid for describing the solitary wave in 

the dimer, so the asymptotic analysis is not expected to be valid in that range of values 

of B.  

 This analysis is concluded by commenting that the anti-symmetry conditions 

formulated for the solitary wave in the dimer may also be viewed in the context of 

imposing anti-resonance conditions in the bead dynamics. In fact, the absence of a ‘tail’ 

in the solitary wave is due to the anti-symmetry conditions (3.13) and (3.14), resulting in 

an anti-resonance condition in the dynamics of the dimer. This contrasts to a resonance 

condition in the dimer dynamics which occurs when a phase difference of $/2 exists at 

� = 0 between the response ������(�) and the (slow) excitation )��(�)/B of the fast 

oscillator (3.15). It is worth noting that such a nonlinear resonance leads to the drastic 

reduction of the transmitted normalized force in the plot of Figure 3.9a, through the 

magnification of the amplitudes of the traveling waves in the ‘tail’ of the propagating 

pulse and corresponding maximum radiation of a significant part of the energy of the 

pulse as it scatters at the interfaces between heavy and light beads; we note that this is 
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the exact opposite of the ‘zero tail’ situation of the solitary wave corresponding to the 

condition of anti-resonance. The resonance mechanism will be dealt in greater detail in 

the next section. 

 In this context, the formation of the solitary wave in the dimer for the eigenvalue 

B = B� determines the order of anti-resonance satisfied by the velocity profile of the 

solitary wave. Since the characteristic frequency Ω��(�) of the linearized system (3.15) is 

slowly varying we must resort to a non-standard definition of anti-resonance in this 

case. Hence, we will refer to the number of peaks exhibited in the fast oscillations of a 

light bead compared to the one peak of the applied force )��(�) [cf. Figure 3.11 where 

numerical solitary waves of the asymptotic model (3.11) or (3.15) are depicted]. 

Considering the first value B = B� predicted by the asymptotic model (3.11), we note 

that the fast oscillations of the light bead possesses one peak, so this would correspond 

to a condition of 1: 1 anti-resonance between the applied force and the light bead 

response; however, as discussed previously this value of B corresponds to solitary wave 

in homogeneous chain. At this value of mass ratio the slow fast decomposition of the 

dynamics is no longer valid and it should be noted that the forcing is no longer slow in 

comparison to the dynamics of the beads. Proceeding to the next eigenvalue B = B	 the 

fast oscillation response of the light bead possesses two peaks (cf. Figure 3.11), so this 

would be a condition of 1: 2 anti-resonance which indeed corresponds to a class of 

physically realizable solitary waves parameterized by energy. Extending this argument, 

the class of solitary waves corresponding to the eigenvalue B = B� corresponds to an 

1: (� − 1) anti-resonance, with the fast oscillation response of the light bead possessing 

(� − 1) peaks compared to a single peak of the forcing function )��(�). Hence, as the 

order � increases (and the eigenvalue B� decreases), the fast frequency of the light bead 

response also increases. It follows that each solitary wave solution in the dimer 
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corresponds to a precise anti-resonance condition which is equivalent to the anti-

symmetry conditions posed previously. 

 Again, it is emphasized that the asymptotic analysis is valid only as long as the 

slow-fast time scale separation exists. Although it is not expected that the 

asymptotically predicted value of B� = 0.829 will correspond to the formation of a 

solitary wave in the dimer, since that would imply an exact 1: 1 anti-resonance between 

the slow and fast dynamics, a fact that contradicts the slow-fast time scale partition 

upon which the asymptotic analysis is based. However, the rest of the asymptotically 

predicted anti-resonance conditions do correspond to physically realizable solitary 

waves in the dimer starting from B	 = 0.2781 which corresponds to (1: 2) anti-resonance 

between the slow and fast dynamics and indeed was numerically detected in the dimer 

chain (see Figure 3.4). 

 

 

3.1.2.3 Conclusions 

 

Summarizing the findings of this section, we demonstrated the existence of a new 

family of solitary waves in one-dimensional granular dimer chains with elastic 

interactions between beads according to the Hertzian interaction law and in the absence 

of pre-compression. The governing equations of motion was considered in normalized 

form, and thus the system dynamics was governed by a single parameter B, defined as 

the ratio of normalized masses between the light and heavy beads of the dimer. It 

should be noted that these results are applicable to a general class of 1: 1 dimers of 

different materials and geometric properties. 

 The solitary waves in the dimer explored herein can be considered  analogous to 

the solitary wave supported by the homogeneous granular chains discovered by 

Nesterenko [41, 42], in the sense that these localized solitary pulses do not involve 
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separations between beads; rather they satisfy special symmetries/anti-symmetries, or 

equivalently anti-resonances in the dynamics. We may conjecture therefore that these 

solitary waves are the direct products of a countable infinity of anti-resonances in the 

dimer. Moreover, it is found that the solitary waves in the normalized dimer propagate 

faster than the solitary wave in the normalized homogeneous granular chain obtained 

in the limit of no mass mismatch and composed of only heavy beads. This seemingly 

counter intuitive result indicates that under certain conditions nonlinear anti-

resonances can increase the speed of wave propagation in periodic granular media, by 

providing new ways of transferring energy to the far field of this media. At the exact 

mass ratio where solitary waves are realized, any arbitrary disturbance disintegrates 

into a train of solitary waves and this indicates that solitary waves are the only mode of 

energy transfer in this media. This result is very much anologous to the homogeneous 

chain. 

 The asymptotic analysis of this section was based on slow-fast partitions of the 

dynamics, and can be applied to a more general class of granular media with periodic 

disorders. Such studies would identify efficient nonlinear mechanisms for effectively 

propagating energy through periodic granular media.  

An additional interesting topic of application of the presented methodologies is 

to employ the reverse mechanism of resonances for efficiently attenuating propagating 

pulses in granular media. An initial indication of such a phenomenon can be observed 

in Figure 3.9a. It is interesting to note that the force transmitted for any arbitrary mass 

ratio is lower than that in the homogeneous chain. Lower transmitted force indicates the 

attenuation of the propagating pulse. Moreover, it is evident that there are peaks and 

valleys in the force transmitted curve and peaks indicate local maximum transmitted 

force, whereas valleys indicate local minimum transmitted force. The global minimum 

of this curve happens to be at a mass ratio of about 0.59 and from the practical point of 

view of shock mitigation this is of utmost importance. In view of this, the next section is 
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devoted exclusively for the study of the mechanism of resonance and its effect on the 

pulse attenuation. 

 

 

3.1.3 Resonances Leading to Pulse Attenuation in Dimers 

 

In this section we study nonlinear resonances in granular periodic one-dimensional 

chains. Specifically, we consider a dimer chain composed of alternating ‘heavy’ and 

‘light’ spherical beads with no pre-compression. In the previous section we discussed 

the existence of families of solitary waves [97] that propagate without distortion of their 

waveforms. In these systems we attributed this dynamical feature to ‘anti-resonance’ in 

the dimer that led to the complete annihilation of radiating waves in the trail of the 

propagating solitary wave. Anti-resonances were associated with certain symmetries of 

the velocity waveforms of the beads of the dimer. In this section we consider the exact 

opposite phenomenon that is of the break of all waveform symmetries, leading to 

drastic attenuation of traveling pulses due to radiation of traveling waves to the far 

field. We use the connotation of ‘resonance’ to describe this dynamical phenomenon 

resulting in maximum amplification of the amplitudes of radiated waves that emanate 

from the propagating pulse. Each anti-resonance can be related to a corresponding 

resonance in the appropriate parameter plane. We study numerically and analytically 

the nonlinear resonance mechanism and show that it can lead to drastic attenuation of 

pulses propagating in the dimer. Furthermore, we estimate the discrete values of the 

normalized mass ratio between the light and heavy beads of the dimer for which 

resonances are realized. It is worth noting that all these phenomena considered herein 

are in dimer chains without pre-compression or dissipation.  

 The present section builds on the mathematical methodology developed in 

Section 3.1.2. The main focus in this section is to study the capacity of a 1: 1 dimer chain 
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to attenuate propagating pulses through maximization of radiated energy from the 

pulse to the far field. This will lead us to the study of resonances in general dimer chains, 

having the opposite effect of anti-resonances and resulting in maximum dispersion of 

propagating pulses due to the inherent (intrinsic) dynamics. Indeed, resonance or anti-

resonance phenomena in dimers correspond to maximum amplification (hence 

maximum radiated energy to the far field) or complete elimination (hence formation of 

solitary waves) of oscillating tails in the trail of propagating pulses, respectively. These 

are opposite nonlinear dynamical mechanisms that are realized in 1: 1 granular dimer 

chains with appropriate parameters. The methodology developed herein can be 

generalized to general 1:� granular dimer chains and the corresponding study is 

presented in Section 3.2. 

 

 

3.1.3.1 Numerical Evidence of Pulse Attenuation and Resonances in Dimers 

 

Motivated by the results reported in Section 3.1.2 where anti-resonance phenomena in 

the dimer (3.3) were studied leading to families of solitary waves, we anticipate that 

(3.3) should support the reverse phenomenon of resonance, where traveling waves [98] 

radiating from a propagating pulse are significantly amplified for specific values of B. 

This should not be counter intuitive given that the dimer typically scatters energy to the 

far field through oscillating ‘tails’ in the trail of propagating primary pulses. Thus, it is 

expected that when a resonance is realized, a traveling pulse is drastically distorted and 

attenuated as it propagates through the dimer. In Section 3.1.2 numerical experiments 

were performed to study pulse attenuation in the system of Figure 3.2 with 85 beads 

(excluding the fixed light bead at the right boundary), by applying a unit impulse 

excitation at the left end, and recording the maximum force transmitted to the right 

fixed boundary. Since the dimer system (3.3) is re-scalable with respect to the 
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magnitude of the applied impulse (energy), there is no loss of generality by considering 

unit impulse excitation and the results are applicable to arbitrary other excitation levels. 

Clearly, lower the force transmitted to the right end, higher is the capacity of the dimer 

to attenuate propagating pulses through scattering of the pulse by its inherent 

dynamics. 

 The plot of transmitted force versus normalized mass ratio B is presented in 

Figure 3.9a [97]. At the discrete values B�� = 0.3428, 0.1548, 0.0901, … solitary waves 

(anti-resonances) are realized, evidenced as peaks (local maxima) of the plot. This 

indicates that formation of solitary waves is a mechanism for effective transmission of 

energy through the dimer. On the contrary, at the discrete values 

B� ≈ 0.59, 0.24, 0.12, 0.075 … valleys (local minima) exist, corresponding to locally 

optimal scattering of the energy of the pulse by the dimer (with the exception of the first 

valley at B� ≈ 0.59 which represents the global minimum). This hints at the realization  

of resonances at these values of the normalized mass ratio. Moreover, each anti-

resonance is preceded and followed by a resonance and vice versa. As in the case of 

anti-resonances [97], it is conjectured that there exists a countable infinity of resonances 

in the dimer system (3.3) and this conjecture is proven true in the subsequent section. 

 We initiate our study of the dynamics of resonance in the dimer by examining 

the waveforms of the light and heavy bead responses at the discrete values B = B�. In 

Figure 3.12a we present the velocity waveforms of a light bead and its adjacent heavy 

beads for the valley of the plot corresponding to B� = 	0.075; the waveforms were 

shifted so that � = 0 lies at the center of the combined plot. In contrast to the anti-

resonance case, the velocity waveforms are not symmetric, but instead exhibits 

maximum break of symmetry; that is, the fast component of the velocity waveform of 

the light bead has a phase difference approximately equal to $/2 compared to the 

corresponding waveforms of its adjacent heavy beads. The fast component of the 

dynamics corresponds to the high-frequency small-amplitude oscillations that are 
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superimposed to the slowly varying (averaged) dynamics. Furthermore, the velocity of 

the light bead does not decay to zero, but rather attains a finite non-zero velocity 

towards the end of the ‘squeeze mode’ (Figure 3.3) [97]. Similarly, the velocities of the 

heavy beads decay to nonzero values, which is an indication that the primary pulse has 

lost a part of its energy as it propagated through the beads under consideration. In 

addition, contrary to anti-resonances where the light bead has zero displacement and 

nonzero velocity at the axis of symmetry (� = 0) [97], in resonances the light bead has 

nonzero displacement and zero velocity at the same time instant (cf. Figure 3.12b, c). For 

the numerical simulations we consider beads 51, 53 (heavy beads) and 52 (light bead) of 

the dimer chain excited by a unit impulse. 

 At the end of squeeze mode the response of the light bead does not decay to zero 

as in the case of anti-resonance [97] (Figure 3.13, 3.15, 3.17), but rather the light bead 

executes strongly nonlinear oscillations involving separation from its adjacent heavy 

beads. This mode generates the oscillating ‘tails’ that appear in the trail of the primary 

pulse transmission in the dimer. These are strongly nonlinear waves that propagate in 

the direction of the primary pulse and continuously radiate energy from the pulse to the 

far field. During resonance there is locally maximum (with respect to B) amplification of 

these radiating waves, resulting in effective dispersion and attenuation of the 

propagating pulse. In fact, during resonance the primary pulse loses a part of its energy 

due to scattering at each interface between heavy and light beads, and significantly 

attenuates as it propagates through the dimer. It follows that resonance not only 

represents a very effective dynamical mechanism for pulse attenuation in the dimer, but also, it is 

conjectured that this is the principal mechanism for pulse attenuation in a more general class of 

spatially periodic one dimensional dimer granular systems [100]. In Figure 3.14 and 3.16 we 

depict representative bead waveforms for resonances realized at B� ≈ 0.12 and 0.24, 

from which similar conclusions are drawn. 
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 As described previously about the occurrence of resonance in between anti-

resonances (Figure 3.9a), it can be seen that between any two anti-resonances there 

exists a specific mass ratio where the oscillatory tail maximizes. This is further 

evidenced by the series of responses shown in Figure 3.12 to 3.17. At a mass ratio of 

B� ≈ 0.075, we observe maximization of the oscillatory tail as shown in Figure 3.12, but 

with slight increase in mass ratio to B�� = 0.0901 we observe complete annihilation of 

the tails. But surprisingly enough, with further increase in mass ratio to B� ≈ 0.12, the 

oscillatory tail reappears with maximum amplitude. This transitions observed in Figure 

3.12 to 3.17 corresponds to the discussion of phase difference between the fast velocity 

response of the light bead with respect to the forcing. It should be noted that the phase 

difference for the case of resonance is $/2, whereas that for the anti-resonance it is 0. 

Focusing on the oscillating tail formed in the trail of the propagating pulse, it is 

noted that the entire granular chain gains momentum and traverses in the direction of 

the applied impulse. This traversing is similar to the rigid body motion, but with an 

internal degree of freedom where the light beads execute oscillations between the 

neighboring heavy beads. This rigid body type mode is depicted in Figure 3.18 in terms 

of the velocity profile of the heavy bead (bead 51). It is worth mentioning that periodic 

traveling waves (which bear resemblance to cnoidal waves [21], which are localized 

periodic traveling waves) are superimposed to the rigid body type motion. From the 

results of Figure 3.18 we note that the velocity of the rigid body type motion of the 

chain increases with increasing values of B�. For the numerical simulation we have 

considered varying impulses (�B = 0.075,� = 0.5525�, �B = 0.12,� = 0.56�;	�B =

0.24,� = 0.605�;	�B = 0.59,� = 1�) in order to match the amplitude of the propagating 

primary pulse. As discussed below, for smaller values of B� one can analytically predict 

the amplitudes of the oscillating tails and obtain estimates for pulse attenuation. 

However, since pulse attenuation for smaller values of B� is not substantial, these 

energy estimates are not of much practical significance. On the contrary, for the highest 
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value of B� ≈ 0.59 it is noted that the velocity of the rigid body type motion is 

significant but the analytical estimate of energy loses accuracy. An energy estimate 

approach is presented in this section, but it is valid for a short length of the dimer chain.  

The waveforms of the oscillating tails (radiated traveling waves) for a light and a 

heavy bead are depicted in Figure 3.19. We note that the motion of the heavy bead is 

not oscillatory like that of the light bead, but has small periodic depressions which 

correspond to the previously mentioned cnoidal like waves. These waves possess 

spatially periodic waveforms with sharp crests separated by wide flat troughs. Solitary 

waves are found in the limit of infinite wavelength of a family of cnoidal waves. The 

nearly constant levels of the waveforms of the heavy beads indicate a rigid body type 

velocity of the granular chain in the trail of the traveling pulse. Contrary to the motion 

of the heavy bead, the light bead executes periodic oscillations between the neighboring 

beads. The motion of the light bead is strongly nonlinear since it undergoes collisions 

between its neighboring heavy beads after separation. 

As described previously, for the discrete set of values �B��, resonances occur 

which are characterized by maximum amplitude tail oscillations. As for all nonlinear 

resonances, this should correspond to integral relationships between two or more 

characteristic frequencies of the dynamics. Indeed, this is exactly what happens during 

resonance in the granular dimer, when one considers the characteristic frequencies of 

the light beads in each of the two phases of their motion; that is, in the initial squeeze 

mode during the arrival of the primary pulse when the light beads are in a state of 

continuous compression from their neighboring heavy beads, and in the later collision 

mode (after the primary pulse has propagated) when the light beads collide with their 

neighboring heavy beads. These two characteristic frequencies, although attributed to 

two different dynamical behaviors determine the type of nonlinear resonance realized. 

During the squeeze mode the dynamics is linearized and the corresponding 

characteristic frequency can be asymptotically approximated [65], whereas during the 
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collision mode the dynamics is strongly nonlinear and the characteristic frequency of 

the bead collisions can only be estimated numerically. Nonlinear resonance occurs 

whenever these two frequencies become commensurate, and in the case of the dimer 

this frequency ratio is equal to 1:� where � is the integer that determines the order of 

the resonance. Hence, we conjecture that a countable infinity of nonlinear resonances 

can be realized in the elastic dimer chain. 

In Figure 3.20 we depict the wavelet spectra of the fast components of the 

oscillations of the light bead (bead 52 of the dimer chain excited by unit impulse) for 

four specific resonances in the dimer. For B� ≈ 0.075 the ratio of characteristic 

frequencies is approximately equal to 4 signifying 1: 4 resonance, whereas for B� ≈ 0.12 

and B� ≈ 0.24 this ratio is about 3 and 2 and corresponds to 1: 3 and 1: 2 resonance 

respectively. In these cases a multi-scale partition of the dynamics can be performed, 

since the time scale of the squeeze mode is well separated from the time-scale of the 

collision mode. However, most important from a practical point of view is the case of 

B� ≈ 0.59, with a frequency ratio of about 1 and thus 1: 1 resonance. Thus, the time scale 

separation between the squeeze mode and the oscillating tail that existed for smaller 

values of B is completely lost. 

 As discussed later, the lack of time scale separation prevents the analytical 

treatment of the dynamics of the dimer in 1: 1 resonance. From a physical point of view, 

for this large value of B the dynamics of the light beads cannot be regarded as being 

driven by the dynamics of their neighboring heavy beads anymore, but rather there is 

strongly nonlinear interaction between them. Yet, as the plot of Figure 3.9a indicates, 

1: 1 resonance corresponds to the strongest possible pulse attenuation in the dimer (of 

about 75%) compared to the homogeneous chain composed only of heavy beads. The 

previous numerical results enable a classification of resonances in the dimer according 

to their order, for example, B�
(�:�)

≈ 0.075, B�
(�:	)

≈ 0.12, B�
(�:�)

≈ 0.24 and B�
(�:�)

≈ 0.59. 
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 It is interesting that in the limit of small normalized mass ratio B, one may derive 

analytical approximations for the amplitudes of the strongly nonlinear traveling waves 

that are radiated from the propagating pulse. Moreover, based on these estimates one 

will be able to analytically estimate pulse attenuation in the dimer chain. Considering 

the case of 1: 4 resonance corresponding to B�
(�:�)

≈ 0.075 there is clear time scale 

separation between the two phases of the dynamics of the light beads. In the squeeze 

mode the frequency of oscillation is well modeled by linearized dynamics and can be 

analytically approximated [65]. Then, by imposing the resonance condition we can 

estimate the frequency of the traveling wave as four times lower than the linearized 

frequency of the squeeze mode. The amplitude of oscillation of the traveling wave is 

then estimated by regarding the displacements of the heavy beads adjacent to the light 

bead as being approximately zero (this is consistent with our earlier observation that 

the rigid body type mode of the chain is nearly negligible for small values of B), so the 

equation of motion for the light bead as it collides with the nearly motionless heavy 

beads approximately reduces to, 

 

3/2 3/2( ) ( ) , (0) ,  (0) 0x x x x xε
+ +

≈ − − = ∆ =ɺɺ ɺ                                  (3.21) 

 

for nearly conserved energy ℎ = (2/5)Δ�/� where Δ is the amplitude of oscillation and 

for 1:� resonance, � > 1. Solving the above strongly nonlinear oscillator (in terms of 

Hypergeometric functions) with the specified initial conditions, and matching the 

resulting oscillating tail frequency (#� ≈ 1.5) we predict the amplitude of the traveling 

wave as Δ�
�
(�:�)

≈ 0.0343 compared to the numerical value of Δ���
(�:�)

≈ 0.03 (cf. Figure 

3.21a) for ε�
(�:�)

≈ 0.075. The responses shown in Figure 3.21 correspond to beads 51 to 

53 of the dimer chain excited by a unit impulse. We note that an analytical solution of 

the model (3.21) is possible in spite of bead separation, since the dynamics involve at 
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most two-bead interactions at any given time. The frequency of oscillation is related to 

the amplitude in the form #� = 2$/(6.005092ℎ�.�√B), where ℎ = (2/5)Δ�/� is the 

energy of the oscillator (3.21).  Similar analysis for 1: 3 resonance corresponding to 

ε�
(�:	)

≈ 0.12 yields Δ�
�
(�:	)

≈ 0.0766 corresponds to a tail frequency of #� ≈ 1.45. It differs 

considerably from the numerical value Δ���
(�:	)

≈ 0.057 (cf. Figure 3.21b). This discrepancy 

should be expected since for increasing values of B the rigid body type motion of the 

granular chain during propagation of the traveling wave is far from being negligible so 

that the model (3.21) is not valid. 

 Clearly, the previous analytical methodology cannot be applied for the case of 

1: 1 resonance since it corresponds to a high value of mass ratio ε�
(�:�)

≈ 0.59. Given, 

however, the significant practical importance of 1: 1 resonance in pulse attenuation, we 

apply a different methodology for estimating the amplitude of the traveling wave, 

taking into account (to first order) the rigid body type motion of the chain. In this case, 

due to strongly nonlinear interactions and mixing of the time scales the dynamics is 

highly non-stationary. Nevertheless, as we show below if the aim is to predict the 

amplitude of the traveling waves just after the completion of the squeeze mode, an 

analytical approximation is still possible. 

 Considering the numerical simulations of Figure 3.21c we note that for 1: 1 

resonance the amplitude of the tail oscillation is nearly equal to the pre-compression (Δ) 

experienced by the light beads from their neighboring heavy beads. Further we observe 

that the relative displacement between the left heavy bead and the light bead is 

minimum (zero in this case), whereas the relative displacement between the light bead 

and the right heavy bead is maximum at the same instant of time. In order to 

analytically study such a scenario, we create a reduced order model under the 

assumption that the light bead is compressed between its neighboring heavy beads with 

constant pre-compression Δ. It is worth noting that although the light bead is pre-
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compressed, it still executes oscillations whose amplitude is approximately equal to the 

pre-compression, so the reduced order model for 1: 1 resonance is: 

 

3/2 3/2( ) ( ) , (0) ,  (0) 0x x x x xε
+ +

≈ ∆− − ∆+ = ∆ =ɺɺ ɺ                            (3.22a) 

 

It is worth noting that in (3.22a) the motion of the neighboring heavy beads is neglected 

and the initial conditions are dictated by the previous scenario. Indeed, we assume that 

the light bead loses contact with the right heavy bead and at the same instant it is in 

maximum compression with the left heavy bead. Further we assume that the velocity of 

the light bead is zero at this instant of time and with appropriate rescaling, 

 

2

3/2 3/2

2

(0)
(1 ) (1 ) ;  (0) 1, 0

ˆ ˆ

d y dy
y y y

d dτ τ
+ +

≈ − − + = =                              (3.22b) 

 

where the rescaled time �̂ = �E(Δ�/� B⁄ ) and - = �/Δ. 

 No analytical solution of (3.22a) exists due to the presence of pre-compression, 

but by rescaling (3.22a) to the normalized form (3.22b) we can numerically estimate the 

frequency of oscillation. The period of oscillation of the oscillator (3.22b) for the 

specified initial condition is �̂� ≈ 3.71. Imposing the condition of 1: 1 resonance between 

the frequencies of the strongly nonlinear oscillator (3.22a) and the squeeze mode 

frequency, the pre-compression can be analytically estimated to be 

Δ�
�
(�:�)

= B�(#��̂� 2$⁄ )�. For the response shown in Figure 3.21c we derive the analytical 

estimate of Δ�
�
(�:�)

≈ 0.12 compared to the exact numerical solution of Δ���
(�:�)

≈ 0.1278 

(Figure 3.21c) for a tail frequency of #� ≈ 1.3. Hence, an accurate amplitude estimation 

of the oscillating tail in the trail of the primary pulse is achieved. 

 In addition, we can estimate the energy retained in each light bead once the 

primary pulse has propagated. To this end we consider a dimer chain excited by a 
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higher impulse of magnitude 4.7 and the corresponding estimate of the pre-

compression is Δ�
�
(�:�)

≈ 0.397. The total potential energy in the light bead when its 

velocity is zero can be estimated to be ℎ = (2 5⁄ )(2Δ)�/� or ℎ�
� = 0.2247, corresponding 

to a Δ�
�
(�:�)

≈ 0.397; this is the energy retained by a single light bead. The motivation 

behind the reduced order model (3.22) and the energy estimations is to predict the rate 

of attenuation of the propagating primary pulse due to scattering at the interfaces 

between the heavy and light beads. Based on the previous estimation of the energy 

retained by each light bead after the pulse has been transmitted, we can develop an 

iterative procedure whereby we subtract the energy retained by each light bead from 

the energy of the propagating pulse. For this estimation we take into account that in the 

regime of 1: 1 resonance the propagating primary pulse spans about 9 beads in space. In 

our model the central of these 9 beads has maximum velocity and the velocities of the 

neighboring beads decrease gradually. When we consider the energy contained in the 

primary pulse, we actually consider the kinetic energy of each of these 9 beads and their 

elastic energy due to their mutual interactions. Similarly, we evaluate the total energy 

contained in the beads in the trail of the primary pulse and designate it as the energy of 

the oscillating tail. Since each light bead retains a portion of the energy of the pulse, the 

energy in the primary pulse diminishes gradually due to scattering. For the numerical 

simulation, we evaluate the instantaneous energies of the primary pulse and of the 

oscillating tail for a small time window �� < � < �� when the primary pulse propagates 

through 13 beads (bead 49 to 61). It is clear that the energy in the tail should be 

increasing with time, whereas the energy of the primary pulse should be decreasing at 

an equal rate. 

 Although a purely analytical prediction of the energy loss of the primary pulse 

due to scattering is not possible, we resort to numerically computing the total energy 

ℎ���(��) of the primary pulse at time instant �� and build our analytical estimates 
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keeping this as the reference point. As the pulse propagates through a light bead, the 

light bead retains a part of its energy which was estimated previously as ℎ�
� = 0.2247. 

In the considered short time window �� < � < �� the primary pulse propagates through 

12 beads, so if we assume that an equal amount of energy is retained by each of the six 

light beads we can estimate the energy of the pulse ℎ���(��) at � = �� as ℎ������� ≈

ℎ�������− 6ℎ�
�. In Figure 3.22a we depict the analytical estimate for the energy loss of 

the pulse in the regime of 1: 1 resonance and compare it to direct numerical simulation. 

We further depict the total energy in the system in order to verify that it remains 

constant in the time window considered. We note that the previous energy estimate 

provides an accurate description of pulse attenuation in this strongly nonlinear 

resonance regime. 

 At this point a comment should be made regarding the effect of the rigid body 

type motion of the dimer on the previous energy estimates. As shown in Figure 3.18, in 

the regime of 1: 1 resonance this motion can be quite significant, caused by the applied 

impulse at the left end of the dimer with the entire dimer drifting in the direction of the 

applied impulse. This rigid body motion, however, can be disregarded in the 

considered small time interval �� < � < �� as seen from the plot of Figure 3.22b, where 

the rigid body velocities of two heavy beads (the ones with maximum velocities at times 

�� and ��, respectively) just after the time instants �� and �� are depicted. However, the 

contribution of the rigid body type motion in pulse attenuation cannot be neglected if 

we consider larger time windows than the one considered herein. 

 

 

3.1.3.2 Beating Wave-packets following F:F Resonance 

 

In the previous section we explored the strongly nonlinear resonance phenomena 

giving rise to strong pulse attenuation in the dimer. It is interesting to note that the 
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effect of 1: 1 resonance in the upstream and downstream of the dimer chain is not 

similar. In fact in the upstream, vigorous energy radiation is observed in the trail of 

propagating pulse, whereas in the downstream the wave dynamics is contrastingly 

different. We now study numerically some interesting beating wave-trains that arise in 

the downstream of the dimer following 1: 1 resonance. Indeed, from the previous 

numerical simulations, the non-stationary nature of the oscillating tail for 1: 1 resonance 

should be evident. We note that in this case the dynamics of the dimer is qualitatively 

different in the vicinity and downstream of the primary propagating pulse. This 

qualitatively different behavior can be inferred when the system responses are viewed 

in the space-time plane. In what follows we provide a sequence of plots that illustrate 

the gradual change in the dynamics of pulse propagation as the normalized mass ratio B  

varies. 

 In Figure 3.23 we depict pulse propagation in a free-free dimer with B = 0.3428, 

composed of 301 beads and an applied impulse of unity at its left end. Moreover, we 

have normalized the velocity of each bead with respect to the applied impulse (this is 

owing to the rescalable character of the dimer chain). The selected value of B 

corresponds to anti-resonance in the dimer and solitary wave formation, as confirmed 

by the spatio-temporal plot of Figure 3.23a. The secondary and tertiary solitary pulses 

following the primary solitary wave are generated by the initial transients during the 

formation of the solitary wave immediately after the application of the impulse. In 

Figure 3.23b we present velocity time series at spatial points of the dimer, and it can be 

seen that the solitary waves leave no oscillating tails (since solitary wave energy is 

conserved during propagation). In this case the solitary pulse spans about 7 beads of the 

dimer chain. 

 For an arbitrary value of B away from the discrete set of anti-resonances, there 

occurs radiation of energy from the propagating pulse which reduces in amplitude as it 

propagates through the dimer. This is particularly evident in the neighborhood of the 
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global minimum of the plot of transmitted force of Figure 3.9a. In Figure 3.24a we 

depict the normalized velocity of the beads of the dimer in space-time plane for B = 0.5. 

Although the general shape of the primary propagating pulse is still preserved, its 

energy content is considerably reduced due to energy radiation. In fact a train of 

traveling waves forming the oscillating tail of the pulse can be clearly discerned in that 

plot and in the plot of Figure 3.24b where the velocity time series of four heavy beads 

are presented. 

Now we consider the most important resonance condition from the perspective 

of pulse attenuation, 1: 1 resonance. In the last simulation we observed that although 

there was attenuation, the shape of the primary pulse is preserved. In contrast, for 

B = 0.59, there exist two distinct phases of the dynamics of the dimer. In the initial 

phase the propagating pulse is strongly attenuated but still preserves its localized shape 

as it propagates through the dimer. This is followed by the second phase where due to 

severe energy radiation, the primary pulse eventually splits into a wave-train of 

interacting secondary solitary waves that propagate through the dimer as a localized 

beating wave packet. Within this wave-packet we note nonlinear beat phenomena 

between nonlinearly interacting stationary pulses. This can be clearly visualized from 

the plot of Figure 3.25a. 

 The realization of the beating wave-packet after the disintegration of the initial 

primary pulse is realized when the faster- and higher-amplitude trailing secondary 

pulses of the wave-train coalesce, and eventually overcome the leading primary pulse. 

This phenomenon repeats itself to form a type of nonlinear beat (pulsation) as the wave 

packet propagates through the dimer. Perhaps the most interesting feature of the 

localized beating wave packet is that it radiates very small amount of energy as it 

propagates through the dimer, so it appears to be approximately preserved 

downstream. This is in contrast to the initial phase of the dynamics where substantial 

attenuation of the primary pulse occurs due to 1: 1 resonance. We note that the beating 
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wave-packet appears only after a relatively large number of beads (> 85), since a 

prerequisite for its formation is the complete disintegration of the initially formed 

primary pulse due to 1: 1 resonance. Indeed, the appearance of this wave-packet 

signifies the elimination of 1: 1 resonance in the dimer. 

 We observed similar formation of beating wave-packets in a small neighborhood 

of 1: 1 resonance (i.e., in the vicinity of B = 0.59), which confirms that this type of wave-

packets can only be realized after severe attenuation of primary pulse attenuation due 

to 1: 1 resonance. The resulting beating wave-packets appear to be formed due to local 

compression of a limited number of beads of the dimers propagating downstream. This 

prevents bead separation and collisions between beads, which leads us to conjecture 

that the beating wave-packet can be studied using techniques from nonlinear 

modulation theory [36]. A final note concerns the simulations used to generate the 

transmitted force plot of Figure 3.9a. These simulations were carried out for dimers 

composed of a total of 85 beads, that is, before the formation of the beating wave-

packet. We selected this number of beads in order to ensure that the computation of the 

transmitted force was within the regime of 1: 1 resonance. 

 The previous results demonstrate the important role of nonlinear resonances in 

the dynamics of elastic granular dimers. In the following section we give an analytical 

study of the resonance mechanism. Specifically, we develop an asymptotic 

approximation for the leading edge of propagating primary pulses (wave fronts) and 

formulate a linear eigenvalue problem whose eigensolutions provide analytical 

approximations to the discrete set of values of the normalized mass ratio, B�
(�:�)

, 4 =

1,2, … corresponding to nonlinear resonances in the dimer. 
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3.1.3.3 Analytical Study of Nonlinear Resonances in Dimers 

 

Our approach is similar to the methodology in Section 3.1.2 where anti-resonances in 

the dimer system were studied. The analysis presented herein provides full analytical 

description of resonance in the dimer and proves that there is a countable infinity of 

values of B for which resonances are realized. Reconsidering WKB solution to the G(B) 

equation (3.15), 

 

( ) 1 2
(2 )1 2 2 20 0

22 2

1 1 ( )
cos ( ) sin ( )

( )
p p p

pp p

C C f
x d d

τ τ τ
τ ζ ζ ζ ζ

τε ε

   
≡ Ω + Ω +    ΩΩ Ω   

∫ ∫
ɶ ɶ

     (3.23) 

 

Theoretically, the decay of the slow frequency of (3.15) should be superexponentional, 

although this is not the case in the analytical result (3.23) since the first order 

approximations (3.9a-c) are based on Pade’ approximations [44, 62] of the solitary wave 

(instead of the exact solution which is not available analytically). Then, we can make the 

argument that the rapidly varying oscillatory part of the solution that includes nearly 

all of the energy of the propagating pulse should decay to zero as time increases. The 

resulting solution can then be justified on physical grounds. 

 It is important to emphasize again that in the present study we are primarily 

interested in finding the special discrete set of parameter values PB�
(�:�)Q for resonance. In 

order to obtain this discrete set we formulate a boundary value problem – BVP for (3.23) 

by imposing the appropriate conditions for resonance (see discussion of Section 3.1.3.1): 

 

(2 )1 (2 )1(0)=0 ,  ( - )=0
p p

x x τ → ∞ɺ                                           (3.24) 
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Then, noting that, 
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Applying the velocity boundary condition of (3.24) in (3.23), by considering (3.25) and 

in view of the fact that )�(0)/Ω��
� (�) ≈ 0, we have MN� = 0. By applying the displacement 

boundary condition as � → ∞ we formulate the following analytical condition for the 

resonance values: 

 

2
0

2
0

2

(1: )

1
lim cos ( ) 0

1 4.7219 (2 1)
( )

2

9.4438
, 1, 2,...

(2 1)

p

p

l

R

d

l
d

l
l

τ

τ

ζ ζ
ε

π
ζ ζ

ε ε

ε
π

→−∞

−∞

 
Ω = ⇒ 

 

−
Ω = = ⇒

 
= = − 

∫

∫

                               

(3.26) 

 

This result (3.26) proves that there exists a countable infinity of nonlinear 

resonances in the dimer (3.3) in the range 0 < B ≤ 1. In between these two limits a 

countable infinity of nonlinear resonances is realized, with the most interesting from a 

practical point of view being the 1: 1 resonance since as discussed in previous sections it 

leads to strong pulse attenuation. 

 In Figure 3.26 we depict

 

the

 

WKB solution (3.23) for 1: 4 resonance realized for 

B�̃
(�:�)

≈ 0.07468, and compare it to the numerical solution derived by numerically 

integrating system (3.15) subject to the boundary conditions (3.24) and for B�̂
(�:�)

≈ 0.078. 
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We note good agreement in the phase of the squeeze mode, but divergence in the 

regime of the collision mode. This is expected since our analysis does not account for 

bead separation occuring after the end of the squeeze mode. This result validates the 

WKB solution. We note, however, that the asymptotic model (3.15, 3.23, 3.24), as well as 

the WKB solution are valid only for higher order resonances since they are based on the 

separation of time scales of the dynamics of the squeeze and collision modes. As 

discussed in Section 3.1.3.1 this does not hold for the case of 1: 1 resonance where 

mixing of time scales occurs. 

 In Table 3.2 we provide a comparison of the resonance values B = B� predicted 

by the asymptotic model (3.15, 3.23, 3.24) and those derived by direct numerical 

simulations of the dimer system (3.3). We use the terminology #
 for the fast frequency 

of the light bead during the squeeze mode and #� for the frequency of the oscillating 

tail during the collison mode [hats indicate estimates based on the asymptotic model 

(3.15)]. From these results the orders of the different resonances are identified, and the 

validity of the asymptotic model is validated in the limit of small B. As mentioned 

previously, 1: 1 resonance represents the most important dynamical mechansism for 

passive pulse attanuation in the dimer (3.3). Yet, due to the fact that there occurs mixing 

of the time scales of the governing dynamics of the squeeze and collission modes, it is 

not possible to introduce slow-fast time scale decompositions in order to perform 

asymptotic analysis. This is also evidenced by the poor matching of the asymptotic and 

numerical results for 1: 1 resonance in Table 3.2. In the next section we focus exclusively 

on this important resonance and provide a simplified and alternative mathematical 

analysis based on the binary collision approximation. 

 

 

3.1.3.4 Binary Collision Approximation for F:F Resonance 
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In order to elucidate the dynamics of 1: 1 resonance, in Figure 3.27 we depict the 

relative displacements of four adjacent pairs of heavy and light beads (beads 51 to 58) in 

the dimer system (3.3) for a value of B (≈ 0.625) close to 1: 1 resonance and excited by 

unit impulse. Moreover, we consider the initial phase of the dynamics where strong 

pulse attenuation occurs, prior to the formation of the beating wave-packet discussed in 

Section 3.1.3.2. This plot reveals a very interesting feature associated with this 

resonance, namely, that maximum compression between a pair of heavy and light 

beads occurs in approximate synchronicity with a secondary (smaller) peak of 

compression between the previous pair of beads. As detailed previously, the asymptotic 

analysis of the previous section cannot account for this behavior due to the lack of time 

scale separation for this resonance. This near-synchronization phenomenon will enable 

the analytical estimation of the value of the normalized mass ratio for 1: 1 resonance, 

without assuming time scale separation, but rather by resorting to the binary collision 

model [39, 104]. 

 To this end, we consider a slightly modified model of the normalized dimer 

chain (3.3) (with odd numbered beads being ‘heavy’ with normalized mass equal to 

unity, and even numbered ones being ‘light’ with normalized mass equal to 0 < B ≤ 1), 

by introducing identical fixed clearances (gaps) between adjacent beads. Motivated by 

the numerical results of Figure 3.27, we aim to reproduce the bead interaction scenario 

shown there. Assuming that an impulse is applied to the left boundary of this system, 

this scenario requires that after some initial transients, at the reference normalized time 

� = 0 a heavy bead (labeled ‘bead H1’) travels with constant positive velocity > (in the 

direction of the applied impulse) and collides with the adjacent light bead (labeled 

‘bead L1’) in a strongly nonlinear interaction with the time of interaction being a 

function of their relative velocity (if this relative velocity is small, the time of interaction 

is large and vice versa – see equations below). Once bead H1 transfers a part of its 

energy to bead L1 both beads continue to travel in the same direction, until bead L1 
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interacts with the next heavy bead (labeled ‘bead H2’). Owing to momentum and 

energy conservation, the velocity of the light bead L1 changes sign becoming negative 

and that of the heavy bead H2 becomes positive. For realization of 1: 1 resonance, we 

need to synchronize the time taken for the heavy bead H2 to interact with the next light 

bead (labeled ‘Bead L2’) with the time taken by the light bead L1 (which now has 

negative velocity) to interact with heavy bead H1 (which now has positive velocity).  

 To reproduce this scenario mathematically, we consider constant gaps ( ) 

between neighboring beads and impose conservation of energy and momentum during 

binary bead interactions and realize the bead velocities listed in Table 3.3. Moreover, 

Based on these velocity values we can synchronize the time taken by the pairs of beads 

H1-L1 and H2-L2 to reach their maximum relative displacements, which in effect 

amounts to realization of 1: 1 resonance. The interaction time between the beads is 

neglected in this approximation for the sake of simplicity. The time taken by L1 to 

interact with H2 is  (1 + B)/(2>). During this time duration, H1 (with velocity 

(1 − B)>/(1 + B)) would have traversed a distance of  (1 − B)/2. Further, the time 

duration for H2 to interact with L2 is  �1 + B��/(4>B). The time synchronization for 

the second interaction of H1-L1 and first interaction of H2-L2 can be denoted as below, 
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This leads to the following quadratic equation in B, 

 

2
3 4 3 0ε ε+ − =                                                           (3.28) 
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this has only one acceptable real root B�̅
(�:�)

= 0.537 in the interval (0, 1]. This provides 

the analytical estimate for the normalized mass ratio corresponding to 1: 1 resonance, 

and compares favorably well to the exact numerical value of B�
(�:�)

≈ 0.59. In Figure 3.28 

we depict the relative displacements for the pairs of beads discussed in the previous 

binary collision scenario with the imposed synchronicity for 1: 1 resonance. It is clear 

that the binary collision model correctly predicts the significant attenuation of the pulse 

caused by 1: 1 resonance, although it over predicts this attenuation. This is concluded 

by comparing the plots of Figure 3.28 and the exact numerical plots depicted in Figure 

3.27. 

 

 

3.1.3.5 Conclusions 

 

In this section we explored resonance phenomena in dimer chains with no pre-

compression. Resonances are a feature of the intrinsic dynamics of these systems and 

can lead to strong dispersion and attenuation of propagating pulses. In that context, 1: 1 

resonance was found to provide the most optimal results. In this study no dissipative 

mechanism of any form is incorporated, so pulse attenuation is attributed solely to 

redistribution of the energy of the propagating pulse to strongly nonlinear modes of the 

dimer and to traveling waves radiating energy to the far field. Under condition (or near 

condition) of 1: 1 resonance we detected two distinct phases of pulse propagation in the 

dimer: An initial regime of strong pulse attenuation due to pulse scattering, followed by 

a regime where the pulse disintegrates to strongly pre-compressed modulated wave 

packet of nonlinearly interacting solitary waves that propagates without radiating 

energy. Hence, when 1: 1 resonance is realized in the dimer, there exists an initial 

strongly nonlinear regime of strong pulse attenuation, followed by a regime where a 
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beating wave-packet (involving a limited number of beads in compression) propagates 

nearly un-attenuated in the dimer. This is one more indication of the complexity of the 

nonlinear dynamics of this granular medium. 

 The methodologies developed in this section can be applied to more general 

classes of periodic polydisperse granular media with or without pre-compression. For 

example, similar analysis can be applied for the case of periodically varying granular 

media composed of periodic sets with varying numbers of heavy and light beads. It is 

interesting to note that although these systems (as well as the dimers considered herein) 

are non-integrable dynamical systems [162], one can still apply asymptotic analysis 

based on slow/fast time scale partitions or binary collision approximations in order to 

formulate and predict the conditions for realization of strongly nonlinear resonances. It 

would be interesting to relate resonance phenomena to the capacity of periodic 

polydisperse granular media for pulse attenuation, and to study the effects of pre-

compression on the resonance dynamics of these systems. As discussed previously, the 

results presented herein are for the 1: 1 dimer chains without pre-compression. Whereas 

the realization of practical granular chains without pre-compression is far from reality. 

Thus it is of practical significance to study the effect of pre-compression on the 

resonance and anti-resonance dynamics. The next section is concerned with this study. 

 

 

3.1.4 Effect of Pre-compression on Resonances and Anti-resonances in Dimers 

 

In the previous sections we considered the dimer system (3.3) without pre-compression. 

In practical situations, however, realization of systems without pre-compression is 

seldom possible, so it is of interest to study its effect on the resonance dynamics. It is 

well known [42] that pre-compression in ordered granular chains adds a linear 

component in the dynamics by making separation between beads less possible; 
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moreover, in the limit of high pre-compression, the strong nonlinearity is eliminated 

and the dynamics becomes linearized. In the context of this work, it is of interest to 

investigate how pre-compression affects the strongly nonlinear resonance dynamics 

discussed in the previous sections, since this has obvious practical implications as it 

relates to the capacity of the dimer to passively attenuate propagating pulses. 

 Considering a dimer system with set pre-compression Δ the equations of motion 

are given by, 
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where we use the notation and the parameter definitions of Section 3.1.2. We non-

dimensionalize the bead displacements with respect to the fixed pre-compression Δ by 

introducing the new variables, 
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and expressing (3.29) in the following normalized form, 
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We observe that the dynamics is again governed by the parameter B but also by the 

energy level since it is not rescalable any more with respect to the applied impulse (as it 

was for the case of system with no pre-compression). We conclude that the dynamics of 

the pre-compressed dimer is governed by two parameters, and the results depend on 

the specific energy level considered. Moreover, depending on the magnitude of the applied 

impulse, system (3.31) can be characterized as strongly or weakly pre-compressed. For very 

strong applied impulses and fixed pre-compression, the system is strongly nonlinear 

since it approaches the state of zero pre-compression. On the contrary, for very weak 

applied impulses (again keeping the pre-compression fixed) the system is weakly 

nonlinear or almost linear reaching the state of strong pre-compression. In fact, for the 

normalized pre-compressed dimer (3.31) we ascertain the level of pre-compression by 

invoking the following criterion: 
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 We wish to study how the capacity of the dimer for pulse attenuation is affected 

by pre-compression. As shown previously the pulse attenuation capacity of the dimer is 

closely tied to the realization of resonances and, in particular, of 1: 1 resonance. Hence, 

our study is directed to the effect of pre-compression on the strongly nonlinear 

resonances realized in the dimer with no pre-compression. To this end, we consider a 

system similar to the one shown in Figure 3.2 but with constant pre-compression, forced 

by an impulse �
(�) at its left boundary, and compute the force transmitted to the right 

boundary. Further, we normalize this force with respect to the corresponding force 

transmitted in the homogeneous granular chain with only of heavy beads (i.e., with 

B = 1). Since the pre-compressed dimer is governed by two parameters, namely the 
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normalized mass ratio B and the magnitude of the applied impulse �, we need to study 

the force transmission in a two dimensional parameter plane. This is performed in the 

plot of Figure 3.29a for parameter ranges B ∈ (0, 1] and � ∈ [1, 100], with resolution 

equal to 0.01 units for the mass ratio, and 4 units for the magnitude of applied impulse. 

 It should be clear that for weak impulses the system is nearly linear and non-

dispersive as evidenced by the fact that the variation of the normalized mass ratio has 

no effect on the transmitted force. However, for moderate applied impulses the 

dynamics is weakly nonlinear and dispersion of the pulse becomes more evident. In the 

limit of strong applied impulses, the dynamics approaches the strongly nonlinear 

regime of no pre-compression and exhibits strong pulse dispersion and attenuation; 

then we converge towards the result of Figure 3.9a for the dimer with zero pre-

compression. We note that in the regimes of weakly or strongly nonlinear dynamics the 

nonlinearity may balance the dispersion leading to families of solitary waves which 

propagate undistorted and un-attenuated in the dimer [97]. Clearly, no solitary waves 

exist in the limit of weak applied impulses where the response is nearly linear. But in 

the limit of strong pre-compression, the chain is both linear and approximately non-

dispersive and thus a pulse can propagate without dispersion or scattering for any 

arbitrary mass ratio. 

At stronger levels of pre-compression, the plot of transmitted force flattens out so 

that peaks and valleys are eliminated. In this case no global minimum for the 

transmitted force exists and better pulse attenuation is achieved for low normalized 

mass ratios. This behavior is explained when one considers that for strong pre-

compression the dynamics is nearly linear so pulse transmission and attenuation 

between the pairs of heavy and light beads is governed by linear interactions. In this 

case, large linearized impedance mismatches between beads lead to relatively stronger 

pulse dispersion and attenuation. Based on these results we can state that pre-

compression in the dimer is detrimental to the objective of passive pulse mitigation. 
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 From these results we note that for relatively weak pre-compression (i.e., in the 

regime of strongly nonlinear response) we can still discern local minima and maxima in 

the plot of the transmitted force, indicating the preservation of resonances and anti-

resonances (solitary waves), respectively. We conclude that the strongly nonlinear 

resonance dynamics of the dimer cannot be destroyed by weak pre-compression. However, it is 

also clear that the capacity of the dimer for pulse attenuation due to resonance is 

diminished by pre-compression. In summary, when a linear component is added to the 

dynamics due to weak pre-compression, pulse attenuation deteriorates but is still 

realized in the pre-compressed dimer. 

 It has been proved that with proper tuning of the parameter of mass ratio, the 

dimer can either support families of anti-resonances/solitary waves or resonances. The 

principal distinguishing feature of this phenomenon is the complete elimination or the 

maximization of the oscillating tail in the trail of the propagating primary pulse. From a 

practical point of view of utilizing the granular dimer in shock mitigation/attenuation 

applications, resonance is of great importance. As described previously, the oscillatory 

tail in the trail of the primary pulse governs the attenuation of the propagating pulse. It 

is interesting to note that the oscillating tails exhibit the form of periodic traveling 

waves (cf. Figure 3.21a, b). The maximization of the amplitude of these waves leads to 

substantial energy loss from the propagating pulse and eventually leads to its 

attenuation. Thus it is of primary interest to study the effect of these traveling waves on 

the efficacy of the dimer chain in attenuating propagating pulse and the effect of mass 

ratio on the excitation of such periodic traveling waves. Furthermore, it is of interest to 

compare their inherent dynamics and their excitation in relation to the global 

propagatory dynamics in this system. In view of these observations, the next section 

will deal with the study of periodic traveling waves and their dynamics in 1: 1 dimer 

chains. 
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3.1.5 Periodic Traveling Waves and Bifurcations 

 

In contrast to the special set of solitary waves that are realized for a discrete set of the 

mass ratio B, for arbitrary values of B, a primary pulse propagating in the dimer 

continuously radiates energy in the form of oscillatory tails in its trail [91]. Surprisingly 

enough, at certain values of B these oscillatory tails take the form of spatially periodic 

traveling waves with different spatial periodicities (wavenumbers). This was the first 

instance of realization of traveling waves in dimer chains.  

This section is concerned with the dynamics of spatially periodic traveling waves 

supported by strongly nonlinear granular dimer chains with no pre-compression. In 

particular, the dynamical responses of semi-infinite dimer chains subject to impulsive 

excitation has revealed very peculiar, spatially periodic patterns of traveling waves, 

excited in the trail of propagating wavefronts. Moreover, it is interesting to note that 

these spatially periodic traveling waves exhibit similar characteristics to the waves 

observed in homogeneous chains [63] with periodic boundary conditions. These 

traveling waves depend on a single system parameter, the mass ratio of the two beads 

forming each dimer pair of the chain. It is conjectured that the formation of these waves 

in semi-infinite dimer chains is not accidental, but rather it is indicative of special 

internal symmetries hidden in the structures of these complex dynamical systems. 

Another interesting observation from recent studies is that the variation of the mass 

ratio of the heavy and light beads of the dimer may lead to complete loss of stability of 

traveling waves. In fact, it is conjectured that strong attenuation of propagating pulses 

in these dimers is highly correlated with the stability of spatially periodic waves 

supported by the dimer chain. Currently there is an absence of theoretical models that 

are capable of adequately explaining the exact mechanism responsible for the efficient 
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attenuation of propagating pulses in heterogeneous granular structures; the correlation 

of the loss of stability and of bifurcations of traveling waves to pulse attenuation may 

provide this mechanism. The theoretical understanding of the mechanism of strong 

pulse attenuation is of high scientific and practical importance when designing ordered 

granular media as efficient shock mitigators. 

The dynamics of these families of traveling waves is systematically studied by 

considering finite dimer chains (termed as the ‘reduced systems’) subject to periodic 

boundary conditions. In this section we demonstrate that these waves may exhibit 

interesting bifurcations and or loss of stability as the system parameter varies. In turn, 

these bifurcations and stability exchanges in infinite dimer chains are correlated to 

previous studies of pulse attenuation in finite dimer chains through efficient energy 

radiation from the propagating pulse to the far field, mainly in the form of traveling 

waves. Motivated by these observations, in this section we pursue a numerical study of 

the dynamics of spatially periodic traveling and standing waves in finite dimer 

granular chains subject to periodic boundary conditions. We demonstrate the existence 

of bifurcations of these waves as the mass ratio between the heavy and light beads vary. 

In addition, these bifurcations are correlated with wave propagation in semi-infinite 

dimer chains. Based on these findings a new formulation of attenuation and 

propagation zones (stop and pass bands) of semi-infinite granular dimer chains is 

proposed. 

 

 

3.1.5.1 Excitation of Families of Traveling Waves in Semi-Infinite Dimer Chains 

 

In the following numerical simulations we consider a semi-infinite dimer chain with a 

free left boundary where an impulsive force is applied, and numerically study the 

resulting propagating pulse in the chain. As a first demonstration of the excitation of 
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spatially periodic traveling waves in the dimer chain, in Figure 3.30 we depict the 

velocity responses of beads 49 to 54 of the semi-infinite dimer for the system with 

B = 0.303. In this and the following simulations of this section the semi-infinite dimer is 

excited by an impulsive excitation ���� = �
(�) applied to the left free end where 

� = 0.95. It should be noted that there is a propagating primary pulse leaving an 

‘oscillating tail’ in its trail. This trail is due to the energy radiation from the primary 

pulse to the dimer and eventually causes continuous attenuation of the amplitude of the 

pulse and the maximization of this tail is denoted as resonance and the mechanism of 

annihilation of tails is called the anti-resonance. Moreover, careful consideration of the 

oscillating tail reveals that it is composed of a nearly exact traveling wave of a 6-bead 

spatial periodicity, in the sense that it repeats itself every other 6 beads, or every 3 

periodic sets. This periodicity can be ascertained by the time period shown in the inset 

of Figure 3.30. Indeed, the time period of the wave is equal to � and the constant time 

shift between the response profiles of any two adjacent heavy and light beads is equal 

to �/3. As we are concerned only with 1: 1 periodic traveling waves, i.e., with time-

periodic oscillations where the frequencies of the heavy or light beads are identical, the 

mentioned time period and time shifts are identical for both the heavy and light beads. 

Since the time shift between any two adjacent heavy or light beads is equal to �/3, we 

designate such a wave as a 6-bead periodic traveling wave. 

Surprisingly enough, such traveling waves in the trail of propagating pulses in 

the dimer can only be realized at special discrete values of the mass ratio B, and their 

spatial periodicities vary with B. To highlight this point, in Figures 3.31 we depict the 

formation of traveling waves with 8- bead periodicity by considering the velocity 

responses of beads 49 to 56. Indeed, the corresponding time shift can be computed as 

�/4, where, as in the previous example, � denotes the corresponding time periods of 

these waves. Clearly, the time period � is a function of the energy of the dynamics, i.e., 

of the applied external impulsive excitation, so that higher impulses produce traveling 
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waves of smaller time periods and vice versa. Furthermore, traveling waves of other 

periodicities can be realized in an impulsively excited semi-infinite dimer chain. 

However, the periodicity (not to be confused with time period �) and the waveform of 

these traveling waves are only functions of mass ratio B, and do not depend on energy 

(within the assumed elastic limit of the bead interactions). An interesting feature to be 

noticed is that at the lower value of B = 0.017 we observe a standing wave with 4-bead 

periodicity; that is, in this case a stationary time-periodic oscillation (ringing mode) 

forms in the trail of the propagating pulse in the dimer, as depicted in the velocity 

response of beads 49 to 52 shown in Figure 3.32. This special mode is characterized by 

constant rigid body velocity of the heavy beads and out-of-phase oscillation of the light 

beads superimposed over the rigid body motion. The rigid body velocity observed in 

this case is negligibly small due to the smallness of B. Once the rigid body motion is 

decomposed from the response, we observe that the heavy beads stand stationary 

whereas the light beads execute out-of-phase oscillations. In fact, the standing wave in 

this degenerate, non-smooth system is realized due to perfect balance of momentum 

between successive light beads, which leaves the intermediate heavy beads completely 

stationary at all times. In the next section we illustrate a very interesting bifurcation 

undergone by the traveling wave with 4-bead periodicity to such a standing wave. 

We note that the dimer granular system under consideration is rescalable with 

respect to the applied impulse, hence, the only parameter governing the system 

dynamics is the normalized mass ratio B. Our primary aim in this study is to explore the 

traveling waves in different periodic dimer chains and ascertain their stability and 

possible bifurcations with changing mass ratio B. Further, we conjecture that the 

existence and stability of these waves influence the capacity of the dimer to passively 

attenuate propagating pulses due to its intrinsic dynamics. Finally, we make the remark 

that due to the previously mentioned rescaling with respect to energy, our results are 

quite general and apply to general elastic dimer chains with different spherical bead 
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configurations and under varying applied impulsive excitations, as long as the 

assumptions associated with the construction of the models (3.1) and (3.3) are satisfied 

as described in Chapter 1. 

 

 

3.1.5.2 Dynamics of Periodic Traveling Waves in Dimer Chains 

 

In a previous work [63], traveling waves in homogeneous granular chains were 

explored. The system considered in [63] contained a finite number of identical beads 

and possessed periodic boundary conditions to accommodate the sought spatial 

periodicity of the traveling waves. By periodic boundary conditions it is meant that the 

first and the last beads are in mutual interaction. For example, considering a finite chain 

composed of � beads, the first bead is in interaction with both the second and � − th 

beads, whereas the � − th bead is in interaction with the first and the (� − 1) −th bead. 

Using this scheme, traveling waves with different spatial periodicities could be studied, 

and, further led to the conjecture that the family of solitary waves studied by 

Nesterenko [41, 42] was the limit of a countable infinity of families of these traveling 

waves as the spatial periodicity of the waves tend to infinity. 

In an effort to systematically study traveling waves in the dimer system and to 

correlate them with the numerical results reported in the previous section for the 

impulsively excited semi-infinite dimer chain, in the spirit of [63] we will study the 

realization of traveling waves in a finite dimer chain with periodic boundary 

conditions; we will denote these finite dimers as ‘reduced systems’. Similar to [63] the 

infinite repetition of the reduced chains due to the periodic boundary conditions 

produces dimer chains of infinite extent. Given that the dimer consists of series of pairs 

of beads, the total number of beads in the finite chain should always be an even 

number. 
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The equations of motion for the reduced chain are given below, considering the 

first bead to be heavy with normalized mass equal to unity and the last bead to be light 

with normalized mass equal to B (defined previously in Section 3.1.2): 
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where � = 1,3, … , � − 1, and �	(� > 2) is an even number as discussed previously. In 

particular, for � = 2, we obtain the two-dimensional reduced system: 
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Introducing the change of coordinates, , = (�� + B��)/(1 + B) (denoting the 

motion of the center of mass of the periodic set consisting of a pair of heavy and light 

beads) and ! = �� − �� (denoting the relative motion between the heavy and light beads 

of the periodic set) the equations (3.34) are transformed to, 
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where prime denotes differentiation with respect to the ‘fast’ time scale �̃ = �[(1 +

B)/B]�/�. In this coordinate system the center of mass would have a simple solution of 

the form , = M� + M��, where M� and M� are integration constants determined from the 

initial conditions. This solution would lead to a rigid body motion of the periodic set if 

M� ≠ 0; otherwise, if M� = 0, the center of mass of the periodic set is displaced by a 

constant amplitude equal to M�. Furthermore, the consideration of the equation 

governing the relative displacement !(�̃) would lead us to a standing wave wherein the 

pair of heavy and light beads executes out-of-phase oscillations [63]. In Figure 3.33 we 

depict this mode realized for an arbitrary value of B = 0.75 and M� = M� = 0 (i.e. the 

center of mass of the two beads remains stationary). In essence, the only time-periodic 

solution that can be realized in a reduced system with � = 2 is this standing wave (or 

nonlinear normal mode in the notation of Chapter 2 [12, 85]). As we are concerned 

primarily with traveling waves in periodic dimer chains, this system would not be of 

particular interest in our study. Hence, we proceed to consider the 4-bead reduced 

system with periodic boundary conditions, seeking traveling waves with 4-bead spatial 

periodicity. 

Before embarking on exploring the dynamics of these traveling waves, it is worth 

noting some of their salient features. In Figure 3.34 we present the traveling wave in a 4-

bead reduced system with periodic boundary conditions for mass ratio B = 1 

(homogeneous chain) [63]. These waves are qualitatively different from traveling 

solitary waves in homogeneous [41] and dimer chains [97]. Indeed, traveling solitary 

waves are special solutions with no bead separation either in the wavefront of the 

propagating pulse or in its trail, whereas propagation of traveling waves exhibit 

separation between adjacent beads, and, hence, are strongly nonlinear and non-smooth 

motions. This can be deduced even from the traveling waves in the impulsively forced 

semi-infinite dimer chains depicted in Figures 3.30 and 3.31. Separations between beads 

give rise to collisions, add high complexity in the dynamics, and prevent direct 
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analytical treatment of the resulting strongly nonlinear oscillations of the dimer by 

means of available analytical techniques. It follows that these traveling waves can only 

be studied numerically, although attempts have been made to study these waves 

analytically [99]. 

We also note that due to the nonlinear nature of the Hertzian interaction law 

between beads, the dynamics of the system is expected to depend on the intensity of the 

applied excitation (or energy). As shown in the previous section traveling waves 

realized in the impulsively excited semi-infinite Hertzian chain are realized at specific 

discrete values of the mass ratio B at a given energy level. Hence, one of the objectives of 

this section is to study the effect of the mass ratio and the periodicity � on the dynamics 

of traveling waves in dimer systems. To this end, we will resort to a numerical 

continuation technique. The basic philosophy of the numerical continuation will be, (a) 

to compute traveling wave solutions realized in homogenous reduced systems 

consisting of even number of beads and with periodic boundary conditions, and (b) to 

invoke a numerical continuation procedure by varying the masses of the even-

numbered (light) beads incrementally, and study the traveling wave solutions that are 

realized at every decrement of the mass ratio. This procedure proves to be very effective 

when the decrement in the mass ratio is sufficiently small. In what follows, we provide 

results of the outlined continuation technique corresponding to three different dimer 

periodicities, and discuss their subtle features. 

Fixing the normalized energy of the reduced system to unity, we decrease the 

value of B, and compute numerically the corresponding traveling wave solutions that 

result as numerical continuations of the solution depicted in Figure 3.34. In Figure 3.35 

we depict the traveling wave in the system with B = 0.75, � = 4 and unit normalized 

energy of the reduced system. We note that for decreasing B, the amplitudes of the light 

beads increase, while those of the heavy beads decrease. It is to be noted that in this 

traveling wave solution (as in each of those that follow) the initial conditions of the 
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beads are rescaled in order to preserve the normalized total energy of the reduced 

system to unity. As a result, the frequencies of the traveling wave solutions increase 

with decreasing B. 

By further decrease of the value of B (and fixed normalized energy of the reduced 

system equal to unity), the amplitudes of the heavy beads in the traveling wave solution 

decreases continuously and monotonically until they reach zero at B̂ ≈ 0.53. Then the 

standing wave solution is realized, as discussed in the previous section; in this 

stationary mode all light beads execute out-of-phase oscillations with identical 

amplitudes, whereas all heavy beads remain stationary. This result is quite counter 

intuitive in the sense that a traveling wave transforms itself into a standing wave by just 

the change in the value of the mass ratio B. Interestingly enough, we observe that no 

traveling wave solutions are realized for B ≤ B̂. In Figure 3.36 we depict the standing 

wave solution realized at B = B̂, for � = 4, and unit total energy of the reduced system. 

It is worth noting that the standing wave can be realized for any arbitrary value of B by 

providing appropriate initial conditions so that the two light beads of the reduced 

system oscillate out-of-phase with respect to each other while the heavy beads stand 

stationary, balanced by the light beads. On the contrary, the traveling wave solution for 

� = 4 can be realized only for B > B̂. This interesting feature is clearly depicted in the 

bifurcation diagram of Figure 3.37, where we deduce that at the bifurcation point B = B̂, 
the traveling and standing wave solutions coalesce, signifying the elimination of the 

traveling wave solution for smaller mass ratios (B ≤ B)̂. It is to be noted that the standing 

wave is unstable for all values of B. Furthermore, the traveling wave in this system loses 

stability at B ≈ 0.74 and the traveling waves realized for B < 0.74 are unstable. It is 

worth noting that we have two families of traveling waves in the range B̂ < B ≤ 1, i.e. a 

positive traveling and a negative traveling wave, but these two waves share the same 

frequency for a particular value of B and energy. Thus the bifurcation at B = B̂ is that of 

two unstable traveling waves and an unstable standing wave coalescing and leading to 
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an unstable standing wave for B ≤ B.̂ This is described as pitchfork bifurcation in [99]. 

This result should be viewed in close conjunction with the results reported in the 

previous section concerning pulse propagation in the impulsively excited semi-infinite 

dimer granular chain. 

An alternative way to depict these waves is on the frequency (#) – wavenumber 

(S) plane [37]. The wavenumber (S) is defined as the inverse of the distance between 

two successive points of constant phase. As the system under consideration is discrete 

and the equations of motion are in normalized form, the distance in this context can be 

inferred as the number of beads. Thus an �-bead spatially periodic traveling wave 

would imply a wavenumber of S = 1/�. The time period (�) is defined as the time 

duration for a point to reach the same phase and thus the frequency (#) would be equal 

to 2$/�. The definition of the time period (�) for traveling waves with spatial 

periodicity is denoted in Figures 3.30 and 3.31. In Figure 3.38 we consider two specific 

dimer chains with B = B̂ ≈ 0.53 and B = 0.9. On this plane we can recognize the 

existence of two families of standing waves in the infinite dimer chain for varying bead 

periodicity (represented by the wavenumber S). Different traveling waves realized in 

the dimer for varying mass ratios can be depicted in this universal plot. The origin of 

the plot represents the in-unison rigid body motion of all beads of the homogeneous 

granular chain. Also, for zero wavenumber (S = 0 and uniform waveform of the 

traveling wave with no spatial periodicity) an out-of-phase standing wave can be 

realized wherein any two adjacent beads execute time-periodic out-of-phase oscillations 

at each of the particular values of B considered in Figure 3.38. This standing wave 

(nonlinear normal mode) represents the highest frequency mode in the dimer for a 

particular value of B and at particular energy level. 

Furthermore, at S = 1 two standing waves are realized for each value of B; the 

higher (lower) mode corresponds to a time-periodic motion where the heavy (light) 

beads remain stationary and adjacent light (heavy) beads execute out-of-phase 
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oscillations. It is worth noting that the frequency of the lower mode for S = 1 is 

independent of the value of B. The line connecting the lower frequency mode realized 

for S = 1 with the origin represents approximately the acoustic branch of the infinite 

dimer chain for each of the two mass ratios B considered, whereas the line connecting 

the upper frequency mode realized for S = 1 and the out-of-phase standing waves 

realized for S = 0 represent approximately the optical branch of the infinite dimer chain. 

The optical and the acoustic branches shown in here are schematic and are drawn to 

show the optical and acoustic zones. They are just shown as indicative curves and not 

the true branches. For each mass ratio 0 < B ≤ 1, the frequency range between the 

upper frequencies of the standing waves at S = 0 and the lower frequencies of the 

standing waves at S = 1 for each of the acoustic and optical branches define two 

propagation zones (pass bands) for the corresponding infinite dimer chain, whereas the 

frequency complements of the propagation zones define attenuation zones of these 

dimers. For the homogeneous granular chain corresponding to B = 1 the two 

propagation zones merge into one (cf. Figure 3.38). As discussed in the previous chapter 

where such zones [85] were first introduced in infinite homogeneous granular chains, in 

propagation zones strongly nonlinear traveling waves may exist that are capable of 

propagating energy to the far field of these media. On the contrary, in attenuation zones 

weakly nonlinear, near-field standing wave solutions are realized (under a state of 

permanent compression) that are incapable of radiating energy to the far field. These 

zones can significantly influence the propagation of pulses in ordered granular media 

and has been experimentally evidenced in Section 2.2 [87]. 

In Figure 3.38 we present a schematic (non-exact) representation of the 

boundaries of the acoustic and optical bands by connecting through straight lines the 

exact boundaries at wavenumbers S = 0 and S = 1. By doing this we aim to provide an 

indication of the frequency ranges of the optical and acoustic zones for varying S. 

Referring to the frequency – wavenumber plot of Figure 3.38, for the dimer with B = 0.9 
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the upper propagation zone (related to the optical branch) is in the range 1.026 < # <

1.418 for unit energy. As expected, the traveling wave solution realized for this chain 

falls within this upper propagation zone. For decreasing B, the bounding frequencies of 

the upper propagation zone and the frequency of the traveling wave solution increase 

monotonically. But an interesting phenomenon occurs at the critical value B = B̂ ≈ 0.53, 

when the traveling wave solution encounters the lower boundary of the upper 

propagation zone. As explained previously, at precisely this value of B the traveling 

wave solution bifurcates to a standing wave (cf. Figure 3.37), so we are able to show 

that the bifurcation of the traveling wave solution coincides with its transition from a 

propagation zone to an attenuation zone of the infinite dimer chain. This result further 

highlights that a primary pulse propagating in a semi-infinite dimer chain cannot 

radiate energy in the form of 4-bead spatially periodic traveling waves for normalized 

mass ratios below the critical value B̂ = 0.53. 

Traveling wave represents one of the classes of time-periodic solutions 

supported by infinite dimer granular chains; whereas standing waves (or nonlinear 

normal modes – NNMs) represent another class. Unlike linear systems, the number of 

NNMs may exceed the number of degrees of freedom of a nonlinear system [12, 85] due 

to mode bifurcations which introduce symmetry-breaking and localization phenomena 

in the dynamics. In Figure 3.39 we present two of the NNMs with 4-bead periodicity 

realized in the reduced system with periodic boundary conditions. These are just 

representative modes and the presentation is not exhaustive. As reported in [12, 63, 85] 

nonlinear periodic systems (such as the dimer chains considered herein) can exhibit 

localization phenomena wherein the amplitude of oscillation of one or more of the 

beads of the reduced system exceeds those of the other beads In the NNM shown in 

Figure 3.39a, the heavy beads oscillate, while the responses of the light beads resemble 

cnoidal waves [21, 22]; in addition, the light beads stand stationary for a certain time 

duration during every period of oscillation. In the NNM shown in Figure 3.39b the 
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localization is on one of the light beads whose amplitude of oscillation exceeds the 

amplitudes of the other beads. In contrast to the previous NNM, in this case both the 

heavy beads execute motions resembling cnoidal waves. Moreover, despite the 

symmetry of the reduced system with 4-bead periodicity both presented NNMs possess 

asymmetric waveforms. 

We now explore if similar bifurcations can be realized in higher dimensional 

reduced systems, i.e., for traveling waves with bead periodicities � > 4. To this end we 

consider the 6-bead reduced system, and examine if the standing wave  described 

previously with the light beads performing out-of-phase oscillations and stationary 

heavy beads can be realized in this case. Such a mode can be realized only when the 

momentum between adjacent light beads is uniformly balanced when they oscillate in 

out-of-phase fashion with respect to each other. It follows that, due to symmetry, such 

standing waves can only be realized in periodic chains with number of beads that are 

multiples of 4. It follows that no such mode can exist in the 6-bead reduced system. 

Instead, we consider the 12-bead reduced system which happens to be the least 

common multiple of 4 and 6. 

Again we resort to the same procedure followed for the 4-bead periodicity and 

numerically continue the traveling wave solution by varying the mass ratio B. Initially 

we realize the traveling wave solution with 6-bead periodicity for the homogeneous 

chain with B = 1, and this solution is used as an initial guess for the numerical 

continuation of the solution for small decrements in B. It is clear that the traveling wave 

with 6-bead periodicity will also trivially possess 12-bead periodicity, so we resort to 

computing traveling waves with 6-bead periodicity only. The resulting traveling wave 

solutions with 6- and 12-bead periodicity realized for B = 0.9 and B = 0.2 are shown in 

Figures 3.40 and 3.41, respectively. Similar to the case of 4-bead periodicity, the 

amplitude of traveling wave at the heavy beads decreases with decreasing B. For fixed 

energy of the reduced system with 6-bead (and 12-bead) periodicity the frequency of 
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the traveling wave solution is presented in Figure 3.42 as function of B. In the same plot 

we depict the frequency of the standing wave corresponding to stationary heavy beads 

and out-of-phase motion of adjacent light beads for the 12-bead reduced system. As 

described previously, due to symmetry this standing wave can be realized for 12-bead 

reduced system but not for the 6-bead reduced system, so to provide a fair comparison 

with the previously computed traveling wave solutions for 6-bead periodicity, the 

(fixed) energy of the traveling wave with 12-bead periodicity was taken as twice the 

(fixed) energy for the traveling waves with 6-bead periodicity depicted in Figures 3.40 

and 3.41. Surprisingly and in contrast to the bifurcation plot of Figure 3.38 for the 4-

bead periodicity, in this case traveling wave solutions are realized for all values of the 

mass ratio B, and their frequencies never coincide with the frequencies of the 

corresponding standing wave mode. It follows that no traveling wave bifurcations exist 

for this spatial periodicity. 

Extending these results for the case of 8-bead periodicity, in Figures 3.43 and 3.44 

we depict the traveling wave solutions for total energy of the reduced system fixed to 

unity and different mass ratios. In similarity to the case of 12-bead periodicity (but not 

to the case of 4-bead periodicity) traveling wave solutions with 8-bead periodicity can 

be realized in the entire range 0 < B ≤ 1; this is confirmed by the frequency-mass ratio 

plot of Figure 3.45 where the frequencies of the traveling waves are compared to the 

corresponding frequencies of the standing wave with stationary heavy beads and out-

of-phase oscillations of adjacent light beads. Interestingly, for the case B = 0.02 (cf. 

Figure 3.44) the traveling wave realized corresponds to relatively small amplitudes of 

the heavy beads, but the wave pattern of the traveling wave is still preserved; the inset 

in the plot of Figure 3.44 depicts the wave pattern of the heavy beads in more detail. 
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3.1.5.3 Correlation of the Stability of Traveling Waves to the Dynamics of Finite 

Dimer Chains 

 

This section primarily attempts to relate the previous traveling wave solutions realized 

in infinite dimer chain to the dynamics of finite periodic dimer chains. The dynamics of 

finite dimer chains were explored in Sections 3.1.2 and 3.1.3 [91, 97]. One of the main 

findings of these works was the realization of countable infinities of families of solitary 

waves parameterized by energy, caused by nonlinear anti-resonance [97], and of similar 

countable infinities of nonlinear resonances also parameterized by energy [91]. 

Moreover, it was shown that nonlinear resonances can lead to strong passive 

attenuation of propagating pulses in these systems [91]. Given the complete absence of 

linearized acoustics in these systems (hence their designation as ‘sonic vacua’ [42]) the 

phenomenon of nonlinear resonance was attributed to maximum break of symmetry of 

the waveforms of the propagating pulses. 

 The contrasting phenomena of anti-resonance and resonance in finite dimers 

were depicted in a plot (Figure 3.9a) where a normalized transmitted force at the fixed 

right boundary of the finite dimer is plotted against the normalized mass ratio B for a 

fixed intensity applied impulse on the free left boundary of the dimer. It was observed 

that the peaks on this curve corresponded to the anti-resonances or solitary waves, and 

the valleys to the resonances. The most important point observed here was that 

maximum pulse attenuation due to the inherent dynamics of the dimer occurs at the 

global minimum of the curve at B = 0.59; this point corresponded to 1: 1 nonlinear 

resonance. From the practical perspective of pulse attenuation, this mass ratio is of most 

importance. In the following exposition we discuss the possibility that the dynamics of 

traveling wave solutions in the infinite dimer chain can influence the capacity for 

passive pulse attenuation in the finite-dimensional dimer chain. To this end, we 

consider the normalized force transmitted curve studied in Section 3.1.2 and 3.1.3 [91, 
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97] for finite dimer chains, and attempt to correlate it with our previous findings 

concerning traveling wave solutions with different bead periodicities in infinite dimer 

chains. It should be noted that although the traveling waves in semi-infinite dimer 

chain were observed only at discrete mass ratios, a continuous family of traveling 

waves as a function of B are realized in the periodic dimer chains. Thus finding a one to 

one correlation between these systems is not possible. The primary objective of this 

study is to correlate the existence and possible bifurcation of the traveling waves in 

periodic dimer chains with the global dynamics of a finite dimer chain. Thus we 

concentrate on the normalized force transmitted curve, Figure 3.9a [91, 97]. 

In Figure 3.46 we superimpose the force transmitted plot of the finite dimer chain 

presented in Section 3.1.2.1 [91, 97] to the bifurcation diagram of the traveling waves 

with 4-bead periodicity presented in Figure 3.37 for the dimer chain of infinite extent. It 

is interesting to observe that the bifurcation point nearly coincides with the global 

minimum of the normalized force transmitted curve which represents 1: 1 nonlinear 

resonance and maximum pulse attenuation [91]. This indicates that the energy radiated 

by the primary pulse for B < B̂ cannot be realized in the form of traveling waves with 4-

bead periodicity. This correlates with the fact that traveling waves with 4-bead 

periodicity were not observed in the oscillating tails of propagating pulses in a semi-

infinite dimer chain.  

Considering now traveling waves with 6-bead (12-bead) periodicity, no 

bifurcation of the traveling wave solution for varying mass ratio occurs. In this case, 

however, we note that traveling waves with this periodicity can be stable only in certain 

ranges of B and are found to be unstable or modulationally unstable [163] in other 

ranges of this parameter. By modulationally unstable we mean that the waveform of 

this wave is distorted as time increases. Note that the distorted waveform may still 

preserve the basic features (albeit slowly modulated) of the traveling wave, but the 

wave is still modulationally unstable. An example of a modulationally unstable 
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traveling wave with 6-bead periodicity for B = 0.9 is shown in Figure 3.47a. As can be 

observed, the traveling wave seems to be quite stable for the initial time period (this 

initial stable waveform is depicted in Figure 3.40), but as time elapses the wave becomes 

modulated. Surprisingly the waveform doesn’t become irregular, but rather stays close 

to the initial stable traveling wave response as can be deduced from Figure 3.47b where 

the modulated waveform is presented over a small time window. Such traveling wave 

behavior is observed over certain ranges of mass ratio. For certain other ranges of mass 

ratio, the traveling waves become unstable, i.e. their long time waveform loses all 

characteristics of a traveling wave solution. 

 In Figure 3.48 we superimpose the frequency – mass ratio plot of the traveling 

wave solution with 6-bead periodicity realized in the infinite dimer chain to the force 

transmitted diagram of the finite dimer chain reported in [91, 97]. It is interesting to 

note that although there is no traveling wave bifurcation associated with the region of 

maximum pulse attenuation, still, there is a marked change in the stability behavior of 

the traveling wave in the parameter region where maximum passive attenuation of 

transmitted force occurs. This should not be surprising since the global minimum of the 

transmitted force plot is associated with maximum radiation of energy from the 

propagating primary pulse to the far field of the medium in the form of traveling waves 

[91]. With the observed change in stability of the traveling waves with 6-bead 

periodicity near the global minimum of the force transmitted curve, it can be 

conjectured that the instability of this type of traveling waves contributes in a more 

effective energy radiation from the propagating primary pulse which results in drastic 

attenuation of the transmitted force at the right fixed boundary of the finite dimer chain. 

Although, no such claims can be made for the general class (that is, with arbitrary bead-

periodicities) of traveling waves, the correlation studies presented in Figures 3.46 and 

3.48 strongly suggest that the stability of the different classes of nonlinear traveling 
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waves in the dimer chain plays an important role in the capacity of this system for 

passive attenuation of propagating pulses by its intrinsic dynamics. 

 

 

3.1.5.4 Conclusions 

 

In this section we have explored traveling waves in periodic dimer chains with varying 

bead periodicities. This is the first exposition of the periodic traveling waves in 

heterogeneous ordered granular chains reported in the literature [98], and extends the 

results reported in [63] on traveling waves in homogeneous ordered granular chains. In 

close conjunction to this work is the research work by Pelinovsky et al. [99]. In previous 

works such traveling waves were observed in oscillating tails in the trails of 

propagating pulses in semi-infinite dimer chains, and played an important role in 

radiating energy from the propagating pulse to the far field of these media. We 

systematically studied traveling waves with different bead periodicities by considering 

reduced systems composed of a finite number of dimer pairs and imposing periodic 

boundary conditions. This technique first introduced in [63] to study traveling waves in 

homogeneous granular media, proved to be quite effective for analyzing these strongly 

nonlinear motions and studying their dependencies on energy and on the mass ratio of 

the dimer. 

It is found that traveling waves with 4-bead periodicity exhibits an interesting 

bifurcation wherein, for fixed energy and decreasing mass ratio from unity the traveling 

wave coincides with a standing wave, after which it ceases to exist for further decrease 

in the mass ratio. It is interesting to note that the point of bifurcation lies very close to 

the global minimum of the transmitted force plot in the corresponding finite 

dimensional dimer chain discussed in Section 3.1.2 and 3.1.3 [91, 97]. The global 

minimum of this plot indicates maximum radiation of energy to the far field in the form 
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of traveling waves from a propagating pulse. Hence, it is conjectured that the reported 

traveling wave bifurcation plays a role in the capacity of the dimer chain to passively 

attenuate propagating pulses by its intrinsic dynamics. 

 Even though no such traveling wave bifurcations were observed for the cases of 

6- (12-) and 8-bead periodicities, it is found that for the case of 6-bead periodicity 

traveling waves exhibit a change of stability in the parameter region where maximum 

pulse attenuation in the finite dimer chain occurs. This provides a further indication of 

the influence of traveling waves and their stability on the capacity of the dimer to 

passively attenuate propagating pulses. However, more work is needed in order to 

prove this conjecture by considering the bifurcations and the stability changes of 

traveling waves with different bead periodicities and at varying energy and parameter 

ranges. 

 The dynamical study of 1: 1 dimers in Section 3.1.2 to 3.1.5 is from the 

theoretical/analytical and numerical perspective. The ultimate goal of these studies is 

the design and realization of a practical system incorporating the granular media. 

Although the theoretical findings and results are convincing, the dynamics of these 

systems in practice may exhibit contrastingly different behaviors. For example, in all 

systems considered herein, the dissipative effects (like material damping, contact 

friction), plasticity of the beads, rotation of the interacting beads, surface characteristics 

of the beads have been completely neglected. In fact this is owing to the assumptions 

underlying the Hertzian interaction model presented in Chapter 1. These factors are 

invariably present in the designed practical granular systems. Even in the most 

carefully designed and devised systems the above described features creep in due to 

manufacturing limitations, handling etc. Thus it necessitates an experimental study of 

the dynamics in these granular chains. The effect of these subtle features on the anti-

resonance and resonance dynamics will lead to better predictive design. The next 
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section is a step towards the experimental study of propagatory dynamics in 1: 1 dimer 

chain. 

 

 

3.1.6 Experimental Verification of Resonances and Anti-resonances in F:F Dimers 

 

In the context of experimental study of one-dimensional polydisperse media, much 

impetus has been given to 1: 1 dimer chains [89, 90, 92]. In fact the considered dimer 

chains in these works are pre-compressed. Moreover, the beads of the dimer chain were 

of the same radii and the materials of these beads were altered to obtain appropriate 

mass ratio. The inherent difficulty in realizing chains with dissimilar radii beads is due 

to the placement of these chains in a planar track and such a setup may lead to 

misaligned beads and/or beads dislocating completely from their designated position. 

With this limitation, study of uncompressed dimer chains with dissimilar radii beads 

and realization of resonances and anti-resonances have not been considered till of late. 

The current experimental study in this section will primarily dwell upon these issues 

[100]. 

The aim of the study in this section is to experimentally verify the existence of 

strongly nonlinear dynamical phenomena of anti-resonance and resonance in 1: 1 dimer 

chains explored previously only analytically/numerically. This is achieved through a 

series of experiments involving granular dimer chains. By supporting dimer chains 

through carefully designed flexures, the stiff dynamics of the bead to bead interactions 

is considerably elevated from the soft dynamics of the flexures. With such a setup, it is 

intended to overcome a basic limitation for the experimental realization of such dimer 

systems, namely the construction of one-dimensional dimer chains with beads of 

different radii. One way to study resonances is by examining the transmitted force to a 

fixed light bead at the right boundary of a finite dimer chain which is excited by a an 
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impulse at its left free boundary, for varying mass ratios as described in the previous 

sections [91, 97]. Depending on the value of the mass ratio, a granular dimer, either may 

facilitate energy transmission (at anti-resonances through excitation of solitary waves), 

or may strongly restrict it (at resonances due to strong wave scattering and energy 

radiation to the far field). Thus transmitted force is a measure of the pulse attenuation 

in the dimer chain. In this context the maximum force transmission is observed for the 

case of the homogeneous chain (mass ratio of unity), whereas minimum force 

transmission is realized for 1: 1 resonance, i.e., when the characteristic frequency of the 

propagating pulse equals the frequency of the radiated wave in its trail (cf. Figure 

3.20d) [91]. To this end, we study the dimer chain considering three different mass 

ratios, a mass ratio close to an anti-resonance, a mass ratio at resonance and a mass ratio 

of unity (homogeneous chain). The results presented herein confirm experimentally the 

occurrence of nonlinear resonances and anti-resonances in dimer chains, and 

conclusively prove the capacity of appropriately designed granular dimers for passive 

strong attenuation of propagating pulses due to nonlinear resonance. Moreover, we 

validate the theoretical prediction that within the elastic range of bead to bead 

dynamical interactions the results are fully re-scalable with respect to energy. The 

experimental study in this section provides the first experimental evidence of strongly 

nonlinear resonances and anti-resonances in essentially nonlinear periodic granular 

media. 

 

 

3.1.6.1 Experimental Fixture 

 

The experimental setup is shown in Figure 3.49. It consists of two sturdy pillars that are 

connected through threaded shafts. Stainless steel holders with slots are placed on these 

shafts to host the flexures. The granular chain is composed of horizontally and 
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vertically aligned spherical beads, each rigidly attached to the one end of a thin steel 

flexure. The other end of the flexure is placed in a slot of the holders assembled on the 

threaded shafts. Once the beads are perfectly aligned, the holders are firmly bolted and 

rigidly fastened to the support structure. The thin flexures (made of Spring Steel grade 

1095) are used in order to construct dimer assemblies composed of beads with 

dissimilar radii; as discussed below, by designing the flexures to be much ‘softer’ than 

the ‘stiff’ beads, it is feasible to separate the time scales of the dynamics of the flexure 

responses and the dynamics of the bead-to-bead interactions, so that the dynamics of 

the flexures do not affect the granular dynamics. 

Considering first the homogeneous granular chain, it is composed of 21 chrome 

steel beads (bearing-quality aircraft-grade E52100 alloy Steel) of radius � = 12.7	mm, 

modulus of elasticity � = 210	GPa, density � = 7850	Kg/m	, and Poisson’s ratio � = 0.3. 

Each bead is fabricated with a thin slit to a depth of about 1/8th of its diameter where the 

supporting flexure is inserted and fastened permanently. The right end of the chain is in 

contact with a dynamic force sensor that is firmly mounted on an L-angled pedestal and 

rigidly fixed onto the surface table as shown in Figure 3.49. The left (free) end of the 

chain is excited by an impulse applied with a pendulum whose mass is equal to the 

mass of the first bead of the chain. Using energy conservation (disregarding the mass of 

the pendulum rod) we can approximately estimate the impact velocity (or the intensity 

of the applied impulse). The initial drop angle of the pendulum is measured using a 

protractor mounted along the pivotal axis of the pendulum (cf. Figure 3.49). A measure 

of transmitted force is then utilized to ascertain the dynamics of the granular chain. The 

transmitted force pulse through the granular chain is measured using a piezoelectric 

dynamic force sensor (PCB 208 C02) in contact with the last (furthest right) bead; the 

sensitivity of the force sensor is 11,241 mV/kN and the force signal is fed to a 24-bit m+p 

International VibPilot data acquisition system, allowing for direct visualization of the 

transmitted force. The experimental raw data is then post processed using Matlab. 
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Two different dimer chains will be considered composed of a total of 21 beads, 

with the first and last beads being heavy beads; hence, each dimer chain consists of 11 

heavy beads and 10 light beads. Both heavy and light beads are made of the same 

material (bearing-quality aircraft-grade E52100 alloy Steel), and the heavy-light bead 

pairs differ only in radius. For the first dimer chain (denoted as ‘dimer 1’) the radii of 

the heavy and light beads are given by �� = 12.7	mm and �� = 10.08	mm, whereas for 

the second dimer chain (denoted as ‘dimer 2’) these radii �� = 12.7	mm and �� =

6.35	mm. As discussed below the values of the radii are selected in order to induce 

conditions of resonance in dimer 1, and conditions of near anti-resonance in dimer 2. 

The realization of nonlinear resonance and anti-resonance in these dimers will be 

inferred indirectly by examining the transmitted force measured by the force sensor at 

the right boundary of each of the granular chains. Indeed, under condition of 1: 1 

resonance (realized in dimer 1) maximum scattering of the propagating force pulse 

occurs due to strong energy radiation in the form of traveling waves in the trail of the 

pulse; this results in a drastically reduced transmitted force at the site of the force 

sensor. On the contrary, under conditions of near anti-resonance (realized in dimer 2) a 

pulse propagates without substantial distortion or dispersion, facilitating force 

transmission through the dimer; this results in increased transmitted force at the site of 

the force sensor. These issues are explained in the next section and provide the basis for 

experimental proof of these nonlinear phenomena in the dimer chains. 

 

 

3.1.6.2 Theoretical Modeling 

 

The dimer configuration is as described previously in Section 3.1.2.1, but in here we 

have an additional onsite linear grounded spring at each bead modeling the supporting 

flexure. It is assumed that the granular chains under consideration have no pre-
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compression, so the dynamics is strongly nonlinear. Furthermore, the considered dimer 

chain is of finite length with its left end free and the last bead at the right end in contact 

with a fixed planar surface (modeling the force sensor). These considerations are very 

much commensurate with the experimental setup which is elaborated in the previous 

section. Denoting the displacement of the � −th bead by ��(�) and the properties of the 

alternating heavy and light beads by subscripts 1 and 2, respectively, the governing 

equations of motion is given by (note that both the first and last beads are heavy): 
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In (3.36) � represents the stiffness of the flexures; ��� is the radius of curvature of 

the surface with which the last bead is in contact. The other notations are as elaborated 

in Section 3.1.2. The force transducer considered has properties similar to the beads and 

thus we have its Young’s modulus ��∗ = �∗. In the numerical simulations and the 

following experimental study, we consider the last bead to be in contact with a planar 

surface [53] (force transducer with a planar cap) and, hence, it holds that ��� → ∞, so 

that �� ≅ ��. We assume strictly horizontal motion of the beads and model each flexure 

as a cantilever beam so that the stiffness is given by � = (3� T) A	⁄ , where � = 200	GPa 

is the elastic modulus of the flexure, T = (Kℎ	) 12⁄  its cross-section moment of inertia, its 

length A = 302	mm, width K = 25.4	mm and thickness ℎ = 0.233	mm. 
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At this point we introduce the normalizations (3.2) and express (3.36) in the following 

normalized form: 
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Taking into account the previous numerical values for the geometric and material 

parameters of the system, we estimate the following upper bound for the normalized 

flexure stiffness parameter, � U�4 3⁄ ��∗0��/��� + ���1�/���V⁄ ≤ 5.17 × 10�� ≪ 1, hence, 

the dynamics of the flexures are much ‘softer’ compared to the bead-to-bead interaction 

dynamics and thus can be neglected from further consideration. Equivalently, there is 

clear time-scale (or frequency-scale) separation in the corresponding dynamics and so 

the presence of the flexures does not affect the granular chain dynamics. This finding 

which will be validated experimentally in the next section, and further validates the 

design of the experimental fixture and provides a new way for experimentally studying 

the dynamics of heterogeneous ordered granular media. Hence, the normalized 

equations (3.37) can be further approximated as, 
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The only parameter governing the dynamics is the normalized mass ratio B. Note 

that this normalization indicates that the results are fully re-scalable with respect to 

energy (i.e., magnitude of the applied shock) provided that the assumptions of the 

model hold, that is, for sufficiently small deformations so that the bead-to-bead 

interactions are elastic with no plasticity effects. In addition, no dissipative effects 

resulting from internal structural damping within the material of the beads or dry 

friction effects are taken into account in model (3.38), although later we will introduce 

viscous damping dissipation in order to match the results of the model and the 

experimental measurements. We also note that the flexure construction minimizes dry 

friction effects as no sliding of the beads with any supporting guides exists in the 

experimental fixture. Considering now the normalized equations (3.38), since both 

heavy and light beads are composed of the same material this parameter is expressed 

only in terms of the corresponding radii, B = ��	 ��	⁄ , and lies in the range 0 < B ≤ 1. 

Considering the aforementioned values of the radii selected for the light beads, the 

dimer 1 corresponds to B = 0.5, whereas the dimer 2 to B = 0.125. 

The normalized equations (3.38) govern the dynamics of the general finite dimer 

chain in contact with a fixed planar surface at one end [53]. A similar setup for a finite 

dimer chain in contact with a fixed light bead at its right boundary was considered 

previously in Section 3.1.2 in order to study the efficacy of pulse transmission in the 

general dimer chain with varying mass ratio. From a practical point of view of effective 
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pulse attenuation, 1: 1 resonance is of great importance. For the particular 21-bead chain 

considered in this experimental work this resonance occurs at normalized mass ratio 

B = 0.5. It is worth noting that this global minimum of the force transmitted curve is a 

function of the number of beads in the chain. Interestingly, with a decrease in the 

number beads this global minimum is realized at a lower value of B. In Figure 3.50 we 

present the maximum normalized transmitted force at the right end of the 21 bead 

dimer chain considered in this section as function of the normalized mass ratio; a unit 

impulse is applied on the left free boundary of the dimer and the transmitted force is 

normalized with respect to the force transmitted in the homogeneous chain composed 

only of heavy beads. As can be observed the global minimum occurs at B ≈ 0.5, which 

coincides with the regime of 1: 1 resonance in the dimer. Furthermore, the normalized 

transmitted force increases with decreasing mass ratio B as a series of anti-resonances 

and higher order resonances are realized [91, 97]. The global maximum of the force 

transmitted plot is realized for the homogeneous chain (B = 1) where the solitary wave 

studied by Nesterenko [41, 42] is realized. It follows that by studying the plot of 

normalized transmitted force for varying normalized mass ratio, we can infer the 

presence of resonance or anti-resonance in the dimer chain. In the next section we 

report on a series of experimental tests designed to validate the theoretical plot of 

Figure 3.50.  

 

 

3.1.6.3 Experimental Results 

 

Previous experiments with dimer chains [42, 89-92, 96, 101] considered alternating 

beads of two different materials sliding in guides in order to explore the existence of 

frequency bands in these systems. To realize these experiments the beads were 

constructed of the same radius so that they could be assembled on a planar track and 
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loaded. However, the contact friction between the beads and the track presented a clear 

limitation. The problem of frictional contact between the beads and the track is quite an 

important consideration. Additionally, each material might have different material 

damping characteristics. To address this issue, in our flexure-based setup we consider 

beads composed of the same material and vary only the radius of every other bead in 

order to obtain the required normalized mass ratio. Since in this case the internal 

material damping characteristic is similar for all the beads, we conjecture that the 

comparison between different dimer setups is valid. Moreover, as the beads are 

attached through flexures and are hung down from a rigid support, it is intended to 

eliminate all the frictional contacts from the experiments. But it should be noted that 

complete elimination of friction and damping in these experiments is seldom possible. 

Furthermore, friction contacts still exist due to the rotation of the beads due to the very 

flexible flexures through which they are suspended. 

 As mentioned previously we consider three different cases corresponding to 

normalized mass ratios B = 1 (homogeneous chain), B = 0.5 (dimer 1) and B = 0.125 

(dimer 2) (indicated on Figure 3.50). Moreover, we consider three different levels of 

excitation for each of these dimer setups corresponding to initial drop angles of the 

excitation pendulum equal to W = 7 (level 1 – providing an initial velocity – impulse – 

of the first bead of the chain equal to ����0� = 0.2102	m/s), W = 10 (level 2 – ����0� =

0.3	m/s) and W = 14 (level 3 – ����0� = 0.4195	m/s), where W is the initial drop angle 

of the pendulum (the length of the pendulum is chosen equal to 302	mm). To test 

repeatability of the results there were 10 trials conducted at each excitation level for 

each of the three considered granular chains. 

In Figure 3.51 we depict the transmitted force to the right boundary for the 

homogeneous chain excited by the highest excitation, i.e. level 3. The numerical result 

shown here corresponds to the theoretical model (3.39) without any dissipative effects 

incorporated. We observe that the transmitted force is in the form of a single primary 
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pulse followed by a train of much smaller secondary force pulses. The primary pulse 

represents the propagation of the Nesterenko solitary wave, whereas the secondary 

pulses are created due to the loss of contact (separation) between the leading beads at 

the left end of the chain once the chain is impacted by the pendulum. 

The difference in the peaks of the primary pulse observed between the numerical 

and experimental data is caused by the lack of dissipative effects in the theoretical 

model (3.38), which, in fact, is Hamiltonian [26]. Yet, in the experiment there exist 

dissipative effects due to inherent internal structural damping of the material of the 

beads and other effects, such as plastic deformations or dry friction at the point of 

contact. To account for these effects we model the damping effects by introducing ad hoc 

viscous damping term [70-72, 164] in the theoretical model (3.39), and express the 

modified theoretical model incorporating viscous damping as follows, 
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where � = */(��X) is the non-dimensional viscous damping coefficient, * the 

dimensional viscous damping coefficient, X is defined in (3.2), and Θ[∙] the Heaviside 

function. We use this representation to account for the fact that damping forces are 

activated only during compression between beads and are absent when bead separation 

occurs.  

 As described in the previous section, we consider three experimental setups 

corresponding to normalized mass ratios equaling B = 1, 0.5 and 0.125. We quantify the 
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damping coefficient in (3.39) by considering the response of the homogeneous chain 

(B = 1). This is performed by matching the viscous damping coefficient � in order to 

match the maximum amplitude of the transmitted force obtained from the numerical 

computation and the experimental measurement. Since in the experimental tests we 

have considered 10 trials at each impact level we obtain 10 values for � following this 

process, so we compute the average of these estimates for each excitation level. 

Transforming into non-dimensional coefficients, for excitation level 1 the average value 

of the damping coefficient was estimated as �� = 0.003475, for excitation level 2 as 

�� = 0.00353, and for level 3 as �	 = 0.004025. Taking the mean of these three averaged 

values we obtain the final estimate of the damping coefficient as � = 0.00367. Since the 

coefficient � is dependent on X (refer (3.37)), which in turn is dependent on the radii �� 

and ��, the dimensional damping coefficient * = ���X) varies for each of the 

experimental setups. Hence, for the homogeneous chain we estimate * ≈ 35.4	Ns/m, for 

dimer 1, * ≈ 34.33	Ns/m, whereas for dimer 2, * ≈ 32	Ns/m. These coefficients values 

are in good agreement with that reported in [70]. 

In Figure 3.52 we depict the comparison between the numerical and 

experimental results for the three granular chains at the lowest excitation level 1. The 

numerical results were obtained using the modified theoretical model (3.39) that 

incorporates viscous damping and, hence, accounts for dissipative effects; moreover in 

these plots (as in the following plots) we depict all 10 experimental trials for each 

excitation level. In each case we note good repeatability of the 10 experimental trials, 

and also good agreement with the corresponding numerical prediction. At mass ratio 

B = 0.125 (Figure 3.52a) dimer 2 is near anti-resonance and thus it facilitates 

transmission of energy; in this case the force transmitted is lower than the 

homogeneous case (Figure 3.52c), but not significantly lower. 

In contrast, for B = 0.5 (Figure 3.52b) dimer 1 is in 1: 1 resonance (refer Figure 

3.50), leading to strong attenuation of the pulse; in accordance, we note that in this case 
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the transmitted force is significantly lower compared not only to the homogeneous case 

but also to dimer 2. Furthermore, in this case we observe that the transmitted force does 

not reach zero immediately after the primary pulse. Instead, the nonzero transmitted 

force in the immediate trail of the primary pulse shows significant fluctuations which 

are attributed to the excitation of traveling waves in the trail of the primary pulse as 

described in Section 3.1.5 [91, 98]. These waves are responsible for strong energy 

radiation from the primary pulse to the far field of the dimer and to the resulting strong 

attenuation of the transmitted force pulse. These features are very much in contrast 

with what is observed for the chains with B = 1 and B = 0.125. A zero force level after 

the arrival of the primary force pulse implies that the last bead of the chain is just in 

contact or has lost contact with the force sensor; such a phenomenon is observed in the 

trail of the primary pulse in Figures 3.52a and c. On the other hand, a constant or 

oscillating transmitted force after the arrival of the primary force pulse signifies 

continuing contact of the last bead of the chain with the force sensor, as observed in 

Figure 3.52b. Table 3.4 provides the experimental force transmitted for varying B and 

excitations levels. 

Interestingly enough, the numerical results agree closely and follow the same 

trends with the experimental results. The mismatch between the two results is 

attributed to the approximation in the viscous damping model used in the numerical 

model (3.39), and to possible misalignment, bead rotation and loss of contact that could 

affect the experiments. Similar good agreement between experimental results and 

numerical simulations is noted for the highest excitation (level 3), as depicted in Figure 

3.53. A similar correspondence is observed even in the case of excitation level 2, but we 

do not present them here as the results are similar and do not reveal anything new. All 

the experimental and numerical responses are time shifted to zero so as to have a fair 

comparison of the pulse widths. 
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As a final step we normalize the maximum transmitted force with respect to the 

maximum transmitted force realized in the homogeneous chain at a particular 

excitation level. In Figure 3.54 these normalized results are superimposed on the 

theoretical plot of Figure 3.50, with the error bars showing the variability of the results 

due to the numerous trials considered (10 trials at each excitation level). We note that 

the normalized results match well with the numerical plot; the error bounds show that 

the experimental results vary over a small range, and, hence they are consistent and 

repeatable. The drastic reduction of the transmitted force in the 1: 1 resonance region is 

fully verified, as is the amplification of the transmitted force in the near anti-resonance 

region. Moreover, given the agreement between the experimental and numerical 

normalized data for all excitation levels, we verify the theoretical prediction that the 

force transmitted plot of Figure 3.50 is fully re-scalable with energy (level of force 

excitation). It is interesting to note that the experimental results for 1: 1 resonance (at 

B = 0.5) are slightly higher than the numerical results, whereas for near anti-resonance 

(at B = 0.125) are lower. We conjecture that this reflects the presence of small pre-

compression in the experimental system. Although every care is taken in the 

experiment to reduce or eliminate pre-compression, this cannot be achieved completely, 

and a small residual pre compression is invariably present in the system. The effect of 

pre-compression has been explored in detail in Section 3.1.4 and the trends reported 

there (Figure 3.29b) are consistent with the results depicted in Figure 3.54. 

 

 

3.1.6.4 Conclusions 

 

Motivated by the theoretical and numerical results of Section 3.1.2 [97], 3.1.3 [91] we 

experimentally investigated resonance and anti-resonance (solitary wave) phenomena 

in granular dimer chains. Our experimental study was based on granular chains 
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supported by thin flexures in order to minimize friction effects and to accommodate 

beads with dissimilar radii. By appropriately designing the supporting flexures we 

ensured time-scale separation of their dynamics from the dynamics of bead-to-bead 

interactions. To obtain a fair comparison between the different dimer setups used in this 

study, we have considered the same material for all beads and changed only their radii 

to obtain the required normalized mass ratios. It is conclusively shown that when this 

mass ratio is either equal to unity (i.e., for the homogeneous chain) or low (B = 0.125) so 

that near anti-resonance conditions are realized, the pulse attenuation is not substantial. 

In contrast, strong pulse attenuation is realized under condition of 1: 1 resonance (when 

the normalized mass ratio is B = 0.5), fully confirming the theoretical prediction. 

Moreover, by superimposing the experimental results on the plot of maximum 

transmitted force versus mass ratio, and by the coincidence of the results for the three 

considered force levels, we verified the theoretical prediction that the resonance and 

anti-resonance phenomena are fully re-scalable with energy, so they are independent of 

the level of the applied shock – provided, of course, that the assumptions of the 

theoretical model hold. 

 From the results obtained with the experimental granular chains corresponding 

to three mass ratios, we ascertain that the theoretically predicted resonance and anti-

resonance phenomena can be observed experimentally. This provides the first such 

result for dimer chains from an experimental perspective, and paves the way for the 

implementation of nonlinear resonances in dimer chains with appropriately chosen 

normalized mass ratios, in order to use them as stress wave mitigators in practical 

material systems excited by shock excitations. 
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3.2 Dynamics of F:Y Dimers 

 

3.2.1 Introduction 

 

In Section 3.1 we studied extensively the propagatory dynamics of the 1: 1 dimer chain. 

It revealed whole new phenomena of anti-resonances and resonances, and subsequently 

their existence has been verified experimentally. It should be noted that 1: 1 dimer chain 

is a particular case of a general periodic dimer chain. Although the most general case of 

such chains is the randomly decorated dimer chain, but they are seldom analytically 

tractable. Thus research focus is primarily concentrated on periodic dimer chains. As 

discussed in Section 3.1 and the references cited therein, the dynamics of 1: 1 dimer 

chain has attracted immense interest from the granular media research community. The 

research focus on 1: 1 dimer from the analytical, numerical and experimental 

perspective is quite overwhelming. In contrast very limited interest has been shown in 

the study of general 1:�	(� ≥ 2) dimer chains. From the perspective of experiments, 

pre-compressed 1: 2 dimer chain has been explored leading to the realization of band 

gaps [101]. A more general 1:� dimer chain with � ranging up to 22 has been 

considered in [90]. One of the most recent studies concerned with pre-compressed 1: 2 

dimers and explored breathers in these chains [165]. Interestingly enough, none of these 

studies have considered a 1:�	(� ≥ 2) dimer chain in its strongly nonlinear limit. Even 

the consideration of 1: 1 dimers in Section 3.1 in their strongly nonlinear limit and the 

realization of solitary waves and resonances was the first of its kind [91, 97]. The main 

challenge in considering granular chains in this limit is the absence of cohesiveness 

between beads that can lead to separation. This motivated us to employ the idea of 

studying the dynamics only in the phase of primary pulse propagation when bead 

separation seldom happens and thus the evolution of the asymptotic methodology 

described in the previous section. The dynamics of the 1: 1 dimer was primarily 
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governed by the parameter of mass ratio scaling the masses of the two types of beads 

and we considered it to be less than unity and thus all possible cases of periodic 

variation of masses were considered. It should be noted that even though the two types 

of beads are made of different materials with disparity in elastic modulus, the dynamics 

would still be governed only by the mass ratio. The system normalizes in such a way 

that the disparate elastic properties of the two types of beads seldom affect the 

dynamics. In fact this is true because any particular bead (say type 1) is in contact only 

with bead of the other type (type 2). Thus any interaction is only between these two 

types of beads and the temporal variable can be appropriately rescaled to eliminate the 

elastic properties from the normalized system. Depending on the elastic properties, only 

the temporal attributes (like pulse width, propagation velocity, time shifts) of the 

dynamics would change. With this in view, only mass periodic chains can be realized 

with 1: 1 dimers, whereas stiffness periodicity is not possible. This can be considered as 

one of the limitations of 1: 1 dimer chains. To overcome this limitation, consideration of 

a general 1:� dimer is a necessity since both stiffness and mass periodic chains can be 

realized. To this end we set out to explore a general 1:� dimer chain from both 

analytical and numerical perspective.   

 The present section builds on the mathematical framework developed in Section 

3.1 [91, 97] to study propagatory dynamics in a more general class of 1:�	(� ≥ 2) 

granular dimer chains. These chains are composed of a number of periodic sets 

composed of one ‘heavy’ bead (type 1) followed by (and being in contact with) � ‘light’ 

beads (type 2). As assumed previously, we consider beads to be linearly elastic spheres 

that interact with each other through Hertzian contact forces, with no dissipation or any 

pre-compression being considered. Hence, the dynamics of these systems is strongly 

nonlinear and highly non-smooth, dictating the application of special asymptotic 

methodology developed in Section 3.1 [91, 97]. Moreover, unlike the case of 1: 1 dimers 

whose dynamics is governed by a single parameter (the normalized mass ratio [91, 97]), 
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the dynamics of 1:�	(� ≥ 2) dimers is governed by two parameters, namely a 

normalized mass ratio and a normalized stiffness ratio. This is due to the fact that the 

heavy beads interact only with light beads, but a light bead interacts with both heavy 

and light beads. This leads to an additional parameter of stiffness ratio scaling the 

elastic properties of the two types of beads in addition to the mass ratio. Thus we can 

realize both mass and stiffness periodic granular chains. Although this is an advantage, 

the parameter addition imposes additional complexity in the analysis. We begin our 

study by providing a general asymptotic formulation for the dynamics of 1:�	(� ≥ 2) 

dimer chains. Then, we study in detail the solitary wave formation in 1: 2 dimers and 

prove the existence of a countable infinity of this type of solutions, realized at different 

discrete values of the normalized mass and stiffness parameters. These periodic 

variations are in general more appropriate and attractive to attenuate propagating 

disturbances. As described in Section 3.1.3, nonlinear resonances are the mechanisms 

that lead to substantial attenuation. With this in view we study both analytically and 

numerically the mechanism of resonances and realize families of countable infinity of 

resonances at discrete set of mass and stiffness parameters. In contrast to 1: 1 and 1: 2 

dimers, realization of solitary waves and resonances in general 1:�	(� ≥ 3) granular 

chain is not possible, unless special symmetries are realized in the system. In that 

context, realization of solitary waves and resonances in homogeneous and 

heterogeneous 1: 1 and 1: 2 dimer granular systems represent special cases that cannot 

be extended to the more general class of 1:�	(� ≥ 3) granular dimers. Further, we 

consider the degeneracy of a 1:� dimer chain with large stiffness coefficient to a 1: 1 

dimer chain. The last part of this section is concerned with the study of validity of the 

asymptotic approach developed and applied in this section. Although it may generally 

seem that the asymptotic approach is valid whenever the asymptotic parameter is small 

enough, it is seldom so in this context. We show that for a general 1:� dimer chain a 
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combined parameter involving both the number of light beads (�) and the mass ratio 

governs the validity of asymptotic methodology devised herein.   

 

 

3.2.2 General Asymptotic Formulation for Primary Pulse Propagation in F:Y Dimer 

Chains 

 

We consider a one-dimensional 1:�	dimer chain of spherical elastic beads in Hertzian 

contact with no pre-compression (cf. Figure 3.55). We assume that this system consists 

of two types of beads designated as ‘heavy’ (or type 1) and ‘light’ (or type 2) depending 

on their relative masses. We define a 1:� dimer as a chain composed of an infinite 

number of periodic sets, with each set composed of a single heavy bead followed by � 

light ones. 

Denoting by �� the displacement of the � −th bead of the dimer, the governing 

equations of motion of the system are expressed as: 
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At this point we introduce the normalizations (3.2) and consider �̃ = X� where �̃ is the 

non-dimensional time, X is as defined in (3.2) and express the equations of motion in 

the following non-dimensional form, 
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We note that there are two non-dimensional parameters, namely, a non-dimensional 

stiffness parameter �%� and a non-dimensional mass parameter (B), defined as: 
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As described in the previous sections, in the following asymptotic analysis we 

will consider B as the small parameter of the problem by assuming that 0 < B ≪ 1; that 

is, we will develop our asymptotics in the limit of large mass mismatch between the  

heavy and light beads. Alternatively, we will be assuming that the dimer system is 

composed of heavy and light beads with normalized mass ratios equal to unity and B, 

respectively (in the notation of system (3.41) beads with indices � = 1 + �� + 1��,� =

0,1,2 … are heavy, whereas those with indices � + ., 1 ≤ . ≤ � are light). The parameter %  

scales the relative stiffness of the two types of beads. It is worth noting that the 

minimum value of this parameter is equal to 1/(2√2), whereas the limiting values 

B = % = 1 correspond to the homogeneous granular chain. The other limit B = 0 

corresponds to the so-called ‘auxiliary system,’(cf. Section 3.1.2.2 [97]) wherein the 

masses of the light beads are neglected and only their stiffness is taken into account. 
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 The asymptotic analysis of the normalized system (3.41) will be performed in the 

regime of primary pulse propagation (squeeze mode), i.e. the phase during which there are 

no bead separations. Of course, after the passage of the primary pulse and the gradual 

relaxation of the compressive forces, bead separations are possible (and indeed do 

occur); this influences primarily the radiation of the energy of the pulse to the far field 

through the propagation of nonlinear (and highly non-smooth) traveling waves (cf. 

Section 3.1 [63, 91, 97, 98]), but it does not affect primary pulse transmission. Hence, the 

subscripts (+) will be dropped from (3.41) from here on. 

For primary pulse propagation we consider the following asymptotic expansions 

of the responses of the heavy and light beads, 
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where � and �� are two distinct time scales of the dynamics defined as follows, 

� = �̃�� �� − 1 + 2��⁄ �	/� = +�̃, �� = B!�, � = %�/	 and from the previous section we 

have J = 2, K = − 1 2⁄ , � = 1. Expanding the rational powers in power series with 

respect to B, we obtain the following set of governing equations at the first order 

approximation, valid in the limit of sufficiently small B: 
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In these equations overdots indicate differentiation with respect to the slow time 

scale � and primes denote differentiation with respect to fast time scale ��. 

Considering system (3.44) at the G(1) approximation, and applying simple 

algebraic manipulations we obtain the relations, 
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where � = %�/	. The set of nonlinear ordinary differential equations (3.45) provides the 

first-order approximation of the dynamics of the heavy beads, whereas the set of linear 
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algebraic equations (3.46a) provides the first-order approximation of the dynamics of 

the light beads. It is worth noting that the G(1) approximation of the responses of the 

light beads is the weighted average of the G(1) approximation of the response of the 

bounding heavy beads. Moreover, since systems (3.45, 3.46) are expressed only in terms 

of the slow time scale �, the G(1) approximations of the responses of both the heavy 

and light beads of the dimer are governed solely by the slow time scale. 

The G(1) approximation of the slowly-varying motion of the heavy beads is 

identical to the response of a homogeneous auxiliary system composed of weakly 

coupled heavy beads, realized in the limit B → 0; whereas the G(1) approximation of the 

response of the light beads is expressed entirely in terms of the corresponding 

responses of the heavy beads. As we are interested only in studying solitary wave 

transmission in the dimer, we select as solution of the set of equations (3.45) the well-

known Nesterenko’s solitary wave. This is very much similar to the considered 

solutions in Section 3.1.2.2. To this end, the slow motion of the heavy beads is 

approximated as (3.9a, b). Accordingly, the slow component of the dynamics of the light 

beads is expressed as: 
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It is interesting to note that the G(1) approximations of the responses of both the 

heavy and light beads invariably decay to zero for increasing or decreasing �. Hence, 

they are denoted as compactons [42, 46] as they decay to zero in finite time, and need 

finite compact support from the media for their propagation. Although these 

approximations predict quite well the dynamics of the heavy beads for sufficiently 

small B, this does not guarantee that the responses of the light beads in the actual 

system would decay to zero even for small values of B, owing to the fact that bead 
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separation can occur towards the end of the squeeze mode for arbitrary values of B (cf. 

Figure 3.3), and this bead separation can be ascertained only from the ( )O ε  

approximation of the response of the light beads. Once there is bead separation, solitary 

waves cannot be realized. It is noted at this point that the propagation of solitary waves 

in homogeneous [35, 41, 52, 58] or 1: 1 dimer granular chains [97] does not involve 

separation between beads. Hence, in order to realize solitary waves in a general 1:� 

dimer we need to determine the specific values of the normalized parameters % and B 

for which the higher order asymptotic corrections of the dynamics of the light beads 

also decay to zero. By requiring that the higher order oscillations also decay to zero 

towards the end of the squeeze mode, we ascertain that the light beads do not separate 

(at least correct to the order of approximation considered) and all the energy of the 

propagating pulse is transmitted without any loss through each periodic set in the form 

of a localized solitary pulse. In that case the dynamical state of the chain would be the 

same before and after the propagation of the solitary wave except for a rigid body 

translation (assuming no boundaries) in the direction of the propagation of the solitary 

wave. 

From the above discussion it should be clear that there is a need to consider the 

equations of motion at the G(B) approximation, leading to the following equations 

governing the fast dynamics of the heavy and light beads, 
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It can be observed that the G(B) approximation of the fast response of the light beads 

lead to a � −degree of freedom linear system of coupled oscillators with slowly varying 

frequencies and forces. Once analytical approximations for the fast oscillations of the 

light beads are derived, the G(B) fast oscillations of the heavy beads can be 

approximated by means of relations (3.47a). Higher order corrections are not needed, 

since in the limit of small B they are expected to be insignificant compared to the 

previous leading order expressions. 

From the previous discussion it is clear that we only need to focus on the second 

set of slowly varying linear oscillators (3.47b) since these determine completely the fast 

dynamics of the dimer for primary pulse propagation. Hence, for the realization of anti-

resonances (resonances) in the general 1:� dimer chain we simply require that the 

responses of all � light beads at this order of approximation decay to zero (maximize) at 

the end of the squeeze mode. Viewed from another perspective, since the system (3.47b) 

is linear, the equations can be decoupled with respect to the fast time scale to obtain 

equations of motion in modal coordinates corresponding to � normal modes. It follows 

that for solitary wave propagation (resonance) we should require that the response of 
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each mode decays to zero (maximizes) at the end of the squeeze mode. Up till now we 

have formulated a very general asymptotic model for the propagatory dynamics of a 

general 1:� dimer chain. It is interesting to note that either for the realization of anti-

resonances or resonances, the corresponding conditions needs to be imposed on these �  

equations. Interestingly, the dynamics of these chains are governed by only two 

parameters (B and %), whereas � equations are required to be satisfied. As a result and 

as shown in the next section, this is only possible for the case of � = 2, since for � > 2 

this decay or maximization condition cannot be realized with just two parameters 

unless special symmetries are satisfied. To this end we consider the propagatory 

dynamics of the particular case of 1: 2 dimer chains in the next couple of sections. 

 

 

3.2.3 Anti-Resonances and Solitary Waves in F:Z Dimer Chains 

 

In this section we consider the particular case of 1: 2 dimer chains. We prove 

numerically and asymptotically the existence of a countable infinity of traveling solitary 

waves in 1: 2 dimer chain. These solitary waves, which can be regarded as anti-

resonances in these strongly nonlinear media, are found to be qualitatively different 

than those previously studied in homogeneous [35, 41, 52, 58] and 1: 1 dimer chains [97] 

which possess symmetric velocity waveforms. In contrast, for traveling solitary waves 

in 1: 2 dimers the velocity waveforms of the responses of the heavy beads are 

symmetric, whereas those of the light beads are non-symmetric. In this context we 

employ the asymptotic model developed in the previous section. 

For the particular case of 1: 2 dimer chain, the G(B) equation (3.47b) governing 

the fast dynamics of the light beads during primary pulse propagation reduces to a two 

degree of freedom system, with in-phase and out-of-phase modes. Motivated by this 

observation, we introduce new coordinates for the dynamics of the two light beads of 
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each periodic set, namely, the response of their center of mass ,� = ���� + ���� (for the 

in-phase mode) and their relative displacement !� = ���� − ���� (for the out-of-phase 

mode) where � = 3� + 1, � = 0, ±1, ±2, …. According to the previous general asymptotic 

we define the two time scales � = �̃(� (1 + 2�⁄ ))	/� = +�̃, �� = B��/�� and introduce 

the asymptotic expansions, 
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At the G(1) approximation we obtain the following slow dynamics for the heavy and 

light beads, 
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The notation of the previous section for Nesterenko’s solitary wave in the auxiliary 

system (3.49) is retained. 

Proceeding to the next order approximation, we study the G(B) fast dynamics of 

the lights beads of each periodic set. In view of the previous coordinate transformations, 

the system (3.47b) takes the form of a set of two coupled oscillators: 
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Hence, the G(B) approximations for the motion of the center of mass and the 

relative displacement between the two light beads are governed by decoupled linear 

oscillators with slowly varying frequencies and excitations. It can be observed that the 

frequency of the oscillator modeling the motion of the center of mass of the light beads 

is smaller compared to the one of the oscillator governing the relative displacement 

between light beads. This can be seen in light of classical linear theory wherein the in-

phase mode typically possesses the lowest frequency and captures the highest energy. 

From the previous discussion and the asymptotic methodology of the previous 

section, it is clear that we need to focus only on the slowly varying linear oscillators 

(3.51) since they determine completely the fast dynamics of the light beads of the 1: 2 

dimer during primary pulse propagation. Once an analytical approximation of the fast 

oscillation of an arbitrary pair of light beads, say beads 39 + 2 and 39 + 3 for some 

9 ∈ ℤ, is determined, the responses of the other light beads can be determined by 

imposing appropriate time shifts (i.e., multiples of T) to the solution. Moreover, the fast 

oscillation of the heavy bead 39 + 1 is also determined from this solution [cf. relation 

(3.47a)]. From here on we denote the center of mass and relative displacement of light 

beads 39 + 2 and 39 + 3 by ,(	���) and 
(	���), respectively. Hence, in the remainder of 

this section we focus exclusively on the analysis of the following linear oscillator with 

slowly varying frequency and forcing, 
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and slow time varying excitations )�	�������� = −,[(	���) and )�	�������� = −![(	���). 

Since we selected Nesterenko’s solitary wave as solution of the G(1) auxiliary 

homogeneous system (3.49), taking into account relations (3.52), we conclude that both 

these forces decay to zero as � → ±∞. Moreover, it can be shown that at � = 0, it holds 

that )�	������0� = 0 and )�	������0� is maximum. These features will be of importance 

when formulating the appropriate boundary conditions in the following asymptotic 

analysis. 

As discussed previously, to realize solitary waves in these systems we need to 

impose appropriate boundary conditions such that the G(B) fast oscillations of the light 

beads decay to zero. Before we formulate these boundary conditions we provide 

numerical evidence of realization of solitary waves in the 1: 2 dimer chains. In Figure 

3.56 we depict velocity profiles for two light beads of a periodic set (numbered 44 and 

45 of the semi-infinite 1: 2  dimer numerical model with an applied impulse of intensity 

1.5 applied to its free left boundary) and the corresponding bounding heavy beads 

(numbered 43 and 46 in the numerical model) for normalized parameters B = 0.05616 

and % = 2.78. We note that all velocities decay to zero with increasing or decreasing 

normalized time. This implies that the propagating primary pulse does not radiate 

energy, and, hence, propagates without distortion. Interestingly, the individual 

responses of the light beads possess reflectional symmetry about a middle point of the 

velocity profile (cf. Figure 3.56a), whereas the velocity of their center of mass is 

symmetric and their relative velocity is anti-symmetric with respect to the middle point 

(cf. Figure 3.56b). Moreover, decomposing the fast and slow dynamics of these velocity 

profiles (cf. Figure 3.56c) we can ascertain the appropriate boundary conditions that 

need to be imposed on the G(B) equations (3.52a) for solitary wave formation. 

Moreover, based on these decompositions we can numerically compute the slow 

excitations on the right-hand-sides of these equations (cf. Figure 3.56d). 
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Indeed, for the periodic set composed of the �39 + 2� −th and �39 + 3� −th light 

beads we define the reference time instant � = �
(	���) as the time instant when the 

bounding heavy beads �39 + 1� and �39 + 4� attain identical non-zero velocities (cf. 

Figure 3.56a); in fact this time instant represents the point of maximum compression of 

the light beads by their neighboring heavy beads. Then, we impose the symmetry 

conditions that the velocity profile of, (a) the center of mass of the light beads has 

reflectional symmetry, and (b) the relative velocity of the light beads is anti-symmetric 

with respect to the reference time instant. It follows that the following symmetry 

conditions should be imposed for the velocity profiles ,(	���)"  and !(	���)"  of the pair of 

light beads and of the bounding heavy beads: 
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                    (3.53) 

 

These symmetry conditions ensure the annihilation of the oscillatory tail in the 

response of the center of mass and relative displacement of the light beads, so they 

represent necessary conditions for absence of radiation from the propagating primary 

pulse, and, hence, the realization of propagating solitary wave in the 1: 2 dimer. 

Moreover, the symmetry condition for the velocity profile of the center of mass of the 

�39 + 2� −th and �39 + 3� −th light beads implies that the corresponding displacement 

profile is anti-symmetric with respect to the reference time instant � = �
(	���). This can 

be observed from the decomposed fast oscillation of the response of the center of mass 

shown in Figure 3.56c.  

Considering now the equations for the fast dynamics (3.52a), without loss of 

generality we shift the reference time to �
(	���) = 0. Taking into account that the slow 

excitation )�	�����(�) ()�	�����(�)) is anti-symmetric (symmetric) (cf. Figure 3.56d), and 
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the slow frequencies squared Ω�	�����
� (�) and Ω�	�����

� (�) are symmetric with respect 

to �
(	���) = 0, in order to satisfy the previous symmetry conditions we impose the 

boundary conditions: 
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                                                    (3.54) 

 

As discussed previously, these provide the necessary conditions for solitary wave 

formation. A second set of conditions that needs to be imposed concerns the asymptotic 

behavior of the solutions as � → ±∞ [17], but in view of the previous symmetry 

conditions we only need to consider the solutions in the semi-infinite interval � ∈

00, +∞�. We are seeking localized (simple-hump) solitary pulses, and noting that by 

construction the G(1) (slow) approximations of the bead responses decay to zero as 

� → +∞ (since they are based on Nesterenko’s solitary wave of the auxiliary system 

(3.49)), we only need to consider the behavior at infinity of the G(B) (fast) components. 

Hence, we need to impose the following additional limiting conditions, 
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which together with (3.54) form necessary and sufficient conditions at the G(B) 

approximation for the formation of solitary waves in 1: 2 dimers.  

 In summary, solitary wave propagation in the 1: 2 dimer is governed by the 

following linear boundary value problems (LBVPs) governing the fast components of 

the response of the center of mass (CM), and of the relative displacement (RD) between 

the two light beads of an arbitrary periodic set, 
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where 9 = 0, ±1, ±2, … and we have re-introduced the normalized time through the 

transformation �� = B��/�� = B��/��. In these LBVPs the normalized parameters B and 

% enter explicitly (since the slowly varying frequencies and nonhomogeneous terms 

depend on the parameter � = %�/	). Commenting on the symmetric boundary 

conditions in relations (3.56) and (3.57), these correspond to the formation of an anti-

resonance in the dimer chain. As discussed in Section 3.1.2 and 3.1.3 [91, 97], depending 

on the form of the boundary conditions in the reduced problems governing the higher-

order fast frequency oscillations of the light beads, one can study the formation of either 

anti-resonances corresponding to absence of oscillating tails in the trails of propagating 

pulses [97], or of resonances corresponding to maximization of the amplitudes of the 

oscillating tails and resulting in maximum distortion or attenuation of propagating 

pulses [91]. This section focuses on the formation of anti-resonances (and solitary 

waves) in the 1: 2 dimers, whereas the study of resonances in the same system will be 

considered in the next section. 

 To solve the boundary value problems (3.56) and (3.57) we follow the following 

methodology. For fixed parameter % we seek the initial conditions ,�	������0� = 0, 

,�(	���)� = >#(%) at the discrete values B = B#�$�%�,\ = 1,2, . .. (spectrum) that solve the 

LBVP (3.56). Similarly, we seek the initial conditions !�	������0� = (�(%), !�(	���)� = 0 at 

the discrete values B = B��%�%�, � = 1,2, . .. that solve the LBVP (3.57). Hence, we derive 
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two separate discrete spectra UB#�$(%)V	and �B��%(%)� corresponding to each of the 

problems (3.56) and (3.57). Clearly, for the realization of a solitary wave both LBVPs should 

be satisfied simultaneously, and this is achieved by requiring that: 

 

( ) ( )
CM RD

Q QR R QRε α ε α=  for some ( , )Q R
+ +

∈ ×ℕ ℕ                         (3.58) 

 

This condition provides the discrete pairs (spectra) of the normalized parameters for 

which solitary waves are realized. In the following analysis we apply the outlined 

methodology in two different ways, namely, either by developing asymptotic solutions 

of (3.56) and (3.57) in the limit of small B, or, alternatively by computing direct 

numerical solutions of the same problems. 

 We initiate our study by applying the Wentzel–Kramers–Brillouin (WKB) 

approximation [136] to construct the analytical approximations of the solutions of the 

LBVP (3.60) in the limit of sufficiently small B. We emphasize at this point that the WKB 

method ceases to be valid in the vicinity of turning points (i.e., at the points of 

nullification) of the frequency Ω�	�����(�). In this case we are interested in finding 

asymptotic approximation to the solutions of (3.56) in the semi-infinite time interval 

� ∈ [0, +∞), but since this frequency is exponentially decaying as � → ∞ and thus it 

possesses a turning point at infinity. It follows that for sufficiently small values of the 

frequency, the WKB approximation may cease to be valid, so our asymptotic 

approximations are restricted to finite values of the normalized time �. We then seek the 

asymptotic solution of (3.56) in the form (3.16) and substitute it back into (3.56) to have: 
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Imposing the first boundary condition ,�	������0� = 0 yields MN� = 0, whereas imposing 

the limiting boundary condition lim��→�
,�	��������� = 0 (and taking into account that it 

must hold that MN� ≠ 0) we derive an asymptotic approximation for the spectrum 

(eigenvalues) of the LBVP (3.56): 
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Note that it holds that Ω� �	������0� = 0 and )��	������0� ≠ 0, oweing to the symmetric and 

anti-symmetric nature of these functions, respectively. To each eigenvalue B#�$(%) 

corresponds the following eigenfunction valid in the finite interval � ∈ [0, T∗], 
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      (3.61) 

 

where MN� is a free parameter that can be chosen arbitrarily [since (3.56) is a linear BVP], 

and the explicit dependence of the eigensolution on the slow time and % has been 

indicated. Hence, the spectrum (3.60) of (3.59) consists of a countable infinity of one-

dimensional curves of eigenvalues parametrised by the normalized stiffness parameter 

%. It should be noted that these do not correspond to solitary wave solutions since they 

only satisfy the LBVP (3.56) governing the fast oscillations of the center of mass of the 

pair of light beads of an arbitrary periodic set, and not necessarely the LBVP (3.57) 

governing the fast relative oscillations between the same pair of light beads. 
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In Figure 3.57 we provide a comparison of the WKB approximations (3.59) and 

(3.60), and the direct numerical solution of (3.60) for the eigenfunction ,�	������
�$ (�; 3) of 

a 1: 2 dimer chain with B��$ ≈ 0.056597 and % = 3; for the WKB approximation a 

solitary wave solution with amplitude A = 3 and time shift T = 1.937 is considered. 

This representative result validates the asymptotic analysis. Extending this comparison, 

in Table 3.5 we provide a similar comparison for the spectrum UB#�$(3)V,\ = 2, … ,6. 

Again, we note satisfactory agreement between the direct numerical solutions and the 

WKB approximations, especially for higher order eigenvalues, i.e., for decreasing 

eigenvalues, in accordance to the assumptions of the asymptotic analysis. We note, 

however, that this spectrum corresponds only to the center of mass of the light beads of 

a periodic set, and is not related to the oscillations of their relative displacement. This 

implies that it may so happen that the fast oscillations of the centre of mass decays to 

zero whereas that of the relative displacement does not. This calls for the study of the 

complementary LBVP (3.57). 

Following a similar analysis in the limit of small B, we asymptotically 

approximate the eigensolution of (3.57) as, 
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where due to the first boundary condition we set MN� = 0. Then, to obtain the spectrum 

of B values where the relative displacement decays to zero, we impose the second 

limiting boundary condition, which in view of the fact that  MN	 ≠ 0, leads to: 
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To each eigenvalue B��%(%) corresponds the following eigenfunction valid in the finite 

interval � ∈ [0, T∗], 
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where again MN	 is a free parameter that can be chosen arbitrarily. Hence, similar to the 

spectrun of (3.60), the eigenvalue spectrum �B��%(%)�, � = 1,2, … of (3.57) consists of a 

countable infinity of one-dimensional eigenvalue curves parametrised by the 

normalized stiffness parameter %. These, however, do not correspond to solitary wave 

solutions of the dimer since they only govern the fast oscillations of the relative 

displacement of the pair of light beads of an arbitrary periodic set, and not necessarely 

the LBVP (3.56) governing the fast oscillations of the center of mass of the same pair of 

light beads. 

In Figure 3.58 we provide a comparison of the WKB approximations (3.62) and 

(3.63), and the direct numerical solution of (3.57) for the eigenfunction !�	������
�% (�; 3) of 

a 1: 2 dimer chain with B&�% ≈ 0.17 and % = 3, and in Table 3.6 we provide a similar 

comparison for the spectrum �B��%(3)�, � = 3,4, … ,13. Again, we note satisfactory 

agreement between the direct numerical solutions and the WKB approximations, 

especially for higher order eigenvalues. 
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 According to the previous discussion for the realization of a solitary wave the 

two eigenvalue spectra should intersect in accordance with the condition (3.58). In 

Figure 3.59 we depict the asymptotic spectra UB#�$(%)V and �B��%(%)� for a range of 

values of %. Each crossing between these two families of spectral curves corresponds to 

a solitary wave in the 1: 2 dimers, since at these points both problems (3.56) and (3.57) 

are satisfied. In fact, this topology indicates that there exists a double countable infinity 

of families of solitary waves parameterized by energy. This is due to the fact that, as the 

previous mathematical construction reveals, the wave profiles and speed of 

propagation of these solitary waves depend on their amplitudes (energies). Indeed, the 

Nesterenko solitary wave [41], upon which the entire asymptotic approximation of the 

solitary waves of the dimer is based, is highly dependent on energy [42, 97]. 

To verify the existence of the analytically predicted solitary waves we perform 

direct numerical simulations of the governing equations of motion of semi-infinite 1: 2 

dimer chains forced by impulses at their free boundaries. In Figure 3.60a we depict the 

solitary wave realized in the 1: 2 dimer with parameters % = 0.4935 and B = 0.082. For 

this and the additional numerical simulations depicted in Figures 3.61 and 3.62 we have 

considered two heavy beads (the 43-rd and 46-th beads) and the corresponding 

enclosed pair of light beads (the 44-th and 45-th beads) of a long (for practical purposes, 

semi-infinite) 1: 2 dimer chain with a free left boundary forced by an impulse of 

intensity 1.5 at its left free end. The plot in Figure 3.60 shows the velocity time series of 

these light and heavy beads. We note that all responses decay to zero, which verifies the 

realization of an exact solitary waves in this 1: 2 dimer chain. An important feature to 

note is the symmetric waveforms of the heavy beads, and the non-symmetric 

waveforms of the light beads. In this case the number of waves in the fast oscillations of 

the CM of the pair of light beads is equal to 4, while that on their RD is equal to 6, hence 

this particular solitary wave can be assigned the index notation (4: 6). For this solitary 
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wave the previous WKB analysis predicts the parameter values 	% = 0.5 and B = 0.0822 

(see Table 3.7 and the discussion below). 

Furthermore, we consider the formation of solitary waves in 1: 2 dimer chains 

with other parameter values. In Table 3.7 we tabulate the numerical and theoretically 

predicted values (derived by the WKB approximation, corresponding to the crossing 

points of the spectral lines depicted in Figure 3.59) of the parameters corresponding to 

these solitary waves. These results prove that the WKB approximation is capable of 

accurately predicting the formation of solitary waves in this system, and confirm 

numerically the existence of multiple such solutions in the highly inhomogeneous but 

ordered system considered. In the same Table 3.7 we also provide details regarding the 

number of oscillations in the fast component of the response of CM and of RD of a pair 

of light beads of an arbitrary periodic set. In all cases listed, the wavenumber (the 

number of peaks in the fast oscillation) of the fast oscillation of CM is equal to 4 (Figure 

3.60a2 to d2), whereas the corresponding wavenumber for RD varies from 6 (Figure 

3.60a2) to 10 (Figure 3.60d2) as the normalized stiffness parameter % increases. In this 

context, the normalized parameter values for the realization of the solitary wave 

depicted in Figure 3.60a would be denoted as �B̃,%]�(�:&) = (0.082,0.4935), where the 

tildes are used to denote that they were derived by direct numerical simulations. 

Moreover, we may consider all solitary waves listed in Table 3.7 as members of the 

same family of solitary waves of the 1: 2 dimers with fixed wavenumber of the fast 

oscillation of the CM of the pair of light beads, and parameterized by the wavenumber 

of the fast oscillation of the corresponding RD of the same pair, and by energy. From 

this point of view, the 1: 2 dimers possesses a double infinity of families of solitary 

waves parameterized by the two mentioned wavenumbers and energy. 

 An additional numerical confirmation of the previous theoretical prediction that 

multiple (in fact, a double countable infinity of) solitary waves can be realized in 

general 1:2 dimer granular chain is provided by the solitary waves depicted in Figure 



250 

 

3.61. These are realized in dimers with vastly dissimilar values of normalized 

parameters, hinting on the existence of solitary waves in a broad range of parameters. 

Indeed, as the mass and stiffness properties change, so does the profile of the solitary 

wave since the wavenumber of the fast oscillations of the CM and RD of the pairs of 

light beads depend strongly on these properties. In the limit B = % = 1 we recover the 

Nesterenko solitary wave [41] realized in the homogeneous granular chain as depicted 

in Figure 3.62. In this case there are no high-order (fast frequency) corrections for the 

bead responses and the waveforms of the CM and the RD between adjacent beads are 

composed of purely slow motion. 

It is well known that solitary waves in nonlinear media propagate with constant 

velocity and without change in their waveforms. This was confirmed for the solitary 

waves propagating in the 1: 2 granular dimers depicted in Figures 3.60 and 3.61. A 

quantity that can be associated to the propagation velocity of the solitary waves in this 

normalized discrete lattice is the normalized time shift �
 (defined in Figure 3.5a) 

between the responses of adjacent heavy beads; this is discussed in detail in Section 

3.1.2. We define such a time shift in order to study the propagation speed of the family 

of solitary waves listed in Table 3.7, corresponding to fixed wavenumber (equal to 4) of 

the fast oscillations of the CM of the light beads of a periodic set and varying 

wavenumber of the corresponding RD. To this end, the amplitudes of the velocities of 

the solitary waves of the heavy beads are set equal to unity and the normalized time 

shift �
 is studied as a function of the normalized parameter α (note that the normalized 

parameter B also varies for these solitary waves – see the numerical results of Table 3.7). 

The results are depicted in Figure 3.63. We note that the time shift decreases with 

increasing wavenumber of the fast oscillations of the RD of the light beads (i.e., with 

increasing % and decreasing B), indicating a corresponding increase in the speed of the 

solitary wave. As discussed in [97], solitary waves are effective mechanisms for 

transferring energy through the dimer chain, so these results indicate that energy 
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propagates faster in 1: 2 dimer chains with high wavenumber of fast oscillations of their 

light beads. Similar studies can be performed for other families of solitary waves and 

similar results can be deduced. It should be noted here that these results are very 

particular to the normalized system under consideration.  

 In the next section we will attempt to relate the realization of solitary waves to 

effective pulse transmission in semi-infinite 1: 2 dimers forced by an external impulse. 

This study is motivated by previous results of Section 3.1.2 [91, 97], where realization of 

a solitary wave (characterized as anti-resonance) and resonances were associated with 

effective shock propagation in the 1: 1 dimer. The contrasting dynamic phenomenon of 

resonance in the 1: 1 dimer [91] was associated with maximum dispersion of a 

propagating pulse due to strong energy radiation to the far field of the medium through 

excitation of strongly nonlinear traveling waves; resonances in 1: 2 dimers will be 

studied in a subsequent Section 3.2.4. 

 

 

3.2.3.1 Pulse Transmission in Finite F:Z Dimer Chains 

 

Until now we examined formation of solitary waves in the 1: 2 dimer chains by 

formulating necessary and sufficient conditions for the realization of such localized 

pulses. In Section 3.1.2, it was shown that 1: 1 dimers are capable of supporting solitary 

waves and facilitate the transmission of shock-induced pulses. This was studied by 

considering a finite 1: 1 dimer chain with free left and fixed right boundary and with an 

impulsive excitation applied to its free boundary. By studying the transmitted force to 

the fixed boundary for varying normalized mass ratio of the dimer chain (which 

indicates the relative mass ratio between adjacent light and heavy beads, and which is 

the only parameter for the normalized 1: 1 dimer), it was found that local maxima of 

transmitted force occur for normalized mass ratios where solitary waves are realized. 
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Hence, a direct correlation between occurrence of solitary waves and local 

maximization of transmitted force was established. We aim to perform a similar study 

in this section, by considering impulsively forced finite 1: 2 dimer chains, and taking 

into account that in the present case, there exist two normalized parameters to consider, 

namely the normalized mass B and stiffness %. 

 To this end we consider a similar series of numerical simulations and the 

transmitted force measure. The system we consider is a finite normalized 1: 2 dimer 

chain composed of 71 beads and is depicted in Figure 3.64. The first bead of the chain is 

a heavy bead and so is the 70-th bead which is followed by a fixed light bead (the 71-st 

bead). We measure the force transmitted at the right fixed boundary of the system and 

normalize this force by the corresponding force transmitted in the homogeneous 

granular chain with B = % = 1. As we have two design parameters, we sweep the 

complete parameter space (B,%) and construct a two-dimensional surface of normalized 

transmitted force. This is presented in Figure 3.65, where it should be noted that from a 

physical point of view the minimum value of the normalized stiffness parameter is 

%��� = 1 (2√2)⁄ . 

From the force transmitted surface (cf. Figure 3.65a) we can deduce that the force 

transmitted is maximum for the homogeneous granular chain with B = 1 and % = 1. 

The peaks observed in the surface plot correspond to local maxima of the normalized 

transmitted force, whereas valleys of the plot correspond to local minima of force 

transmission. In Figure 3.65b we present ‘slices’ of the surface plot by examining the 

normalized transmitted force for fixed values of %. We conclude that the global 

minimum of transmitted force occurs is the 1: 2 dimer with % = 0.4 and B = 0.78. 

Moreover, it is noted that the transmitted force is much higher in dimers with higher 

values of % for the fixed value of B = 0.78. Hence, it appears that the stiffness parameter 

% plays a major role in pulse propagation in 1: 2 dimer chains.  
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Another important feature worth noting is that for any particular value of % the 

force transmitted curve has peaks and valleys. To elaborate more on this issue, we 

choose an arbitrary value for the normalized stiffness parameter, % = 3, and depict the 

corresponding normalized transmitted force plot for varying normalized mass 

parameter B, as shown in Figure 3.66. In the case of 1: 1 dimers, the peaks in the force 

transmitted plot are realized at values of B where solitary waves are realized [91, 97]. 

This agrees with physical intuition, since dimers supporting solitary waves are expected 

to facilitate transmission of energy applied by external shock excitations. But in general 

1:� dimer chains, such peaks in force transmitted curves need not necessarily 

correspond to the formation of solitary waves that are realized at the intersection of the 

two eigenvalue spectra described by relation (3.58). Rather, these peaks appear to 

correspond to the spectrum B#�$ resulting as solution of problem (3.56) and 

corresponding to decay of the fast oscillations of the center of mass of the light beads of 

a periodic set of the 1: 2 dimers. This is concluded by comparing the values of B 

corresponding to the local maxima of the plot of Figure 3.66 and the corresponding 

eigenvalues B#̃�$�3�, \ = 2, . . . ,6 listed in Table 3.5. This is surprising in the sense that we 

have two spectra governed by the LBVPs (3.56) and (3.57), yet it appears that only one 

of these spectra appear to affect the local maxima of the transmitted force curve. Similar 

correspondence was obtained for other values of the normalized parameters, verifying 

the correlation of the spectra of the fast oscillations of the CM of the light beads and 

peaks of transmitted force in the 1: 2 dimers. 
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3.2.3.2 Conclusions 

 

This section considered the formation of solitary waves in an ordered but highly 

inhomogeneous 1: 2	granular dimers, composed of an infinite set of ‘heavy’ beads 

separated by two ‘light’ beads. It is found that in similarity to 1: 1 dimers considered in 

Section 3.1.2 [97], 1: 2 dimers support a countable infinity of solitary waves 

parameterized by energy. These are localized pulses (in space and time) that propagate 

undistorted and with speeds that depend on their amplitudes in these inhomogeneous 

media. However, in these solitary waves the waveforms of the responses of the heavy 

and light beads are markedly different; indeed, although both waveforms decay to zero 

with increasing (or decreasing) time, the velocity waveforms of the heavy beads are 

symmetric with respect to appropriately defined reference points, whereas those of the 

light beads are asymmetric with respect to the same reference points. This is a new 

finding since until now only solitary waves with symmetric velocity waveforms were 

known to exist in 1: 1 dimers and homogeneous. 

Asymptotic analysis of solitary waves in 1: 2 dimer chains was performed by 

slow/fast partition of the nonlinear dynamics in the weakly nonlinear regime of primary 

pulse. The aforementioned symmetry and anti-symmetry conditions for the solitary 

wave profiles were imposed as boundary conditions in appropriately defined linear 

(with slowly varying frequency and excitation) boundary value problems that govern 

the fast frequency approximations of the responses of the light beads of the dimer 

during solitary wave propagation. Then, necessary and sufficient conditions for the 

formation of solitary waves in the 1: 2 dimer are formulated. The results of the 

asymptotic analysis are found to agree with the results of direct numerical simulations 

of solitary waves formed in semi-infinite 1: 2 dimers forced by impulses applied to their 

boundaries. As the systems under consideration are fully rescalable with respect to the 

applied impulses, the theoretically predicted solitary waves can be realized for 
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arbitrarily applied impulses, provided that the assumptions of the analysis are satisfied. 

Furthermore, any arbitrary shaped transmitted pulse in a 1: 2 dimer supporting a 

solitary wave (i.e., for a dimer with the specific values of the normalized parameters B 

and % required for realization of a solitary wave) would eventually disintegrate into a 

train of solitary waves of varying amplitudes. This is similar to what is observed in 

homogeneous [41, 45] and 1: 1 dimer granular chains [97]. Hence, once a granular 1: 2 

dimer chain is ‘tuned’ to support a specific family of solitary waves, solitary pulse propagation 

becomes the fundamental mechanism for transmission of energy in this medium. This result 

highlights the high passive adaptability of this class of highly non-smooth and 

inhomogeneous media to different modes of energy transmission. 

Although we proved the existence of families of solitary waves in 1: 2 dimer 

chains, they can be realized only at certain specific discrete ordered pairs of parameters 

(B and %). But for arbitrary parameter values, the dimer chain exhibits scattering and 

more so, intuitively it is expected that such inhomogeneous granular chains would 

scatter, disperse the propagating pulses. In fact it is certainly counterintuitive that they 

support not a few, but a countable infinity of families of solitary waves. It the next 

section we set out to study the mechanism of resonances that can lead to substantial 

attenuation of the propagating pulses. Such mechanisms are of interest in incorporating 

granular media in shock and blast protection. 

 

 

3.2.4 Resonances in F:Z Dimer Chains 

 

In this section we continue our study of 1: 2 dimer chains emphasizing primarily on the 

nonlinear resonances in 1: 2 granular dimer chains. In the previous section we proved 

the existence of countable infinite of families of solitary waves in these systems; these 

are localized pulses that propagate without distortion of their waveforms through these 
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highly inhomogeneous nonlinear media. We attributed these waves to nonlinear anti-

resonance that led to complete elimination of radiating waves in the trail of the 

propagating localized pulse. Anti-resonances were associated with certain symmetries 

of the velocity waveforms of the beads of the dimer. In this section we dwell on the 

opposite phenomenon that is of the breakup of waveform symmetries of the bead 

responses leading to drastic attenuation of propagating pulses due to energy radiation 

to the far field by means of nonlinear traveling waves. We develop analytical 

approximations for the resonance dynamics in the limit of small mass ratios. Similar to 

the case of anti-resonance (solitary waves) [102], we realize a countable infinity of 

families of nonlinear resonances. We use the connotation of resonance to describe this 

dynamical phenomenon resulting in the maximum amplification of the amplitudes of 

radiated waves that emanate from the propagating pulse. The resonances are 

characterized by substantial pulse attenuation as they propagate through the chain, 

which, mathematically, can be related to maximization of the oscillatory tail (radiating 

nonlinear waves) in the trail of the propagating primary pulse. With the application of 

asymptotic analysis, it will be shown that countable infinity of families of nonlinear 

resonances can be realized in these systems. We study numerically and analytically the 

nonlinear resonance mechanism in this class of strongly nonlinear periodic media, and 

demonstrate that it can lead to drastic attenuation of shock-induced pulses propagating 

in the dimers. 

 Before embarking on the mathematical analysis of the nonlinear resonance, it 

would be interesting to observe how these resonances are manifested in the global 

dynamics of the 1: 2 dimers. Accordingly, we examine numerically the 1: 2 dimer chains 

for its efficacy to attenuate a propagating pulse. To this end we revisit the normalized 

force transmitted plots of Figure 3.65. 

From the force transmitted plots we deduce that lower the force transmitted, the 

higher is the pulse attenuation through the dimer. On the contrary, local maxima 
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observed in the surface plot correspond to points where the force transmitted reaches 

local maxima, whereas valleys correspond to substantial pulse attenuation. In Figure 

3.65b we depict ‘slices’ of the plot of Figure 3.65a corresponding to fixed values of %. As 

noted previously, the stiffness parameter has significant effect on the propagatory 

dynamics of the 1: 2 dimer chains. It was noted previously that for any particular value 

of % we observe that the normalized transmitted force possesses peaks and valleys. 

Here we note that in the case of 1: 1 dimers [91] (where the only parameter in the 

dynamics is the mass ratio B) valleys correspond to resonances leading to local 

maximum primary pulse distortion, whereas peaks to anti-resonances leading to 

solitary wave formation. In contrast, we will establish that in 1: 2 dimer chains these 

valleys do not necessarily correspond to resonances. 

 To elucidate the system response for varying B, we examine the plot 

corresponding to % = 3 in Figure 3.66. In this case there exists a local minimum at 

B = 0.37, with corresponding bead responses presented in Figure 3.67. For the 

numerical simulations we have considered a 1: 2 dimer chain composed of 77 beads 

wherein the 77th bead (light bead) is fixed, and the responses are normalized with 

respect to the applied impulse. In Figure 3.67a we present the velocity contours of all 

bead responses in a space-time diagram, whereas in Figure 3.67b we depict velocity 

time series of selected heavy beads of this system. The attenuation of the propagating 

primary pulse is evident in these numerical simulations, as a significant portion of its 

energy is radiated to the far field of the medium by traveling waves in the trail of the 

propagating pulse. 

 Intuitively, we would expect that by increasing the mass ratio beyond B = 0.37 

the force transmitted has to further decrease due to the increase of the mass of the light 

beads which should enhance the scattering of the primary pulse at interfaces between 

heavy and light beads. However, surprisingly enough, we observe that a peak in the 

transmitted force occurs at B = 0.56. In Figure 3.68 we present the corresponding 
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responses of the dimer in that case, from which we deduce that the energy radiated in 

the tail of the propagating pulse is at a substantially lower level compared to the case of 

B = 0.37 (cf. Figure 3.67a). We note, however, that in contrast to what was observed in 

the 1: 1 dimer, in the present case the peak of transmitted force is not associated with 

formation of solitary waves; this is evident by the considerable oscillating tails in the 

trail of the propagating pulse in the plots of Figure 3.68b. 

As described previously, as B → 0 we realize the auxiliary system, and an applied 

impulse would propagate as a solitary wave without any attenuation leading to 

relatively high levels of the transmitted force. In the other limit, as B → 1, a dimer 

system is realized composed of heavy beads but with alternating stiffness changes. 

Intuitively, one would expect that the applied impulse would travel without 

attenuation and distortion through the medium in that case. Interestingly, such a 

phenomenon is not observed, since when further increasing the mass ratio beyond 

B = 0.56 we do not observe any peaks or valleys in the transmitted force plot, but rather 

the realization of a global minimum (for the considered range B ∈ (0, 1]) at B = 1. In this 

case the primary pulse is radiating substantial energy as it propagates, exclusively due 

to stiffness (but not mass) inhomogeneity in the granular medium. An analysis of the 

dynamics of this limiting system will be presented in a later section. 

 Returning to the G(B) equations (3.52), for the realization of nonlinear resonance 

we need to impose boundary conditions that guarantee that the light beads end the 

squeeze mode of oscillation with maximum velocity, as this will lead to maximization 

of the oscillatory tail (traveling waves) in the trail of the propagating primary pulse; as 

mentioned previously, this would mean maximization of energy radiation and 

consequent maximum dispersion of the propagating primary pulse. The necessary 

conditions for the maximization of the oscillatory tails in the 1: 2 dimer under 

consideration can be ascertained by examining the response of the light beads in the 

valleys of the force transmitted curve for an arbitrary value of %. Similarly to the case of 
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resonances in the 1: 1 dimer [91] a break of symmetry of the velocity waveforms should 

be imposed in the present case as well. To this end, we need to impose conditions for 

maximum asymmetry with respect to an axis passing through the time instant when the 

two light beads are under maximum compression from their neighboring heavy beads 

[91]. These conditions can be summarized as, ,�	����0� ≠ 0, ,�	���" = 0, ,�	������ →

−∞� = 0 for the motion of the CM, and !�	����0� ≠ 0, !�	���" ≠ 0, !�	������ → −∞� = 0,  

for the RD of the pair of light beads of the periodic set. Combining these conditions 

with (3.52) we formulate the following pair of uncoupled linear boundary value 

problems (LBVPs) that govern the resonance dynamics in the squeeze mode, 
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where 9 = 0, ±1, ±2, … and we re-introduced the normalized time through the 

transformation �� = B��/�� = B��/��. 
 In these LBVPs the parameters B and % enter implicitly through the slowly 

varying frequencies and nonhomogeneous terms (i.e. the forcing). Our objective is to 

determine the values of B and % corresponding to solutions of both LBVPs; accordingly, 

we adopt the following methodology. For a fixed value of the stiffness ratio % we seek 

the initial conditions ,�	����0� = (�%�, ,��	����0� = 0 at the discrete values B =

B#�$�%�,\ = 1,2, . .. (CM-spectrum) that solve the LBVP (3.65). Similarly, we seek the 

initial conditions !�	����0� = B�%�,!��	����0� = V�%�, at the discrete values B =
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B
�%�%�, L = 1,2, … that solve the LBVP (3.71) (RD-spectrum). Hence, we derive two 

separate discrete CM- and RD-spectra UB#�$(%)V and �B
�%(%)�, respectively, 

corresponding to solutions of the problems (3.65) and (3.66). Clearly, for the realization of 

nonlinear resonance both LBVPs should be satisfied simultaneously, and it is achieved by 

requiring that the CM- and RD-spectra intersect: 
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This condition provides the discrete pairs (spectra) of the normalized parameters for 

which nonlinear resonances are realized. In the following analysis we apply the 

outlined methodology in two different ways, namely, either by developing asymptotic 

solutions of (3.65) and (3.66) in the limit of small values of B, or, alternatively by 

computing direct numerical solutions of the same problems. 

 Further, we apply the Wentzel–Kramers–Brillouin (WKB) approximation [136] to 

construct the analytical approximations of the solutions of LBVPs (3.65, 3.66) in the limit 

0 < B ≪ 1. The formulation is similar to the one employed in the previous section where 

anti-resonances in 1: 2 dimer chains were considered. It is emphasized at this point that 

the WKB approach ceases to be valid in the vicinity of turning points (i.e., at the points 

of nullification) of Ω�	�����(�), and in our case we are interested in finding an 

approximation of the solutions of the LBVPs in the semi-infinite time interval � ∈

(−∞, 0]. 

 The general solution of the LBVP (3.65) is reproduced from equation (3.59) from 

previous section: 
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It is important to emphasize again that in this study we are mostly interested in finding 

the special discrete set of parameter values (B,%) for resonance. Accordingly, we impose 

the appropriate conditions (3.65) for resonance, ,(	���)�" �0� = 0, ,�	������� → ∞� = 0, 

and taking into account that, 
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we formulate the following analytical condition for the resonance for the CM of the pair 

of light beads of the periodic set: 
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The CM-spectrum B#�$ denotes the discrete mass ratio as a function of stiffness ratio 

� = %�/	 where the response (3.68) after the application of the conditions (3.65) would 

attain maximum velocity towards the end of the squeeze mode. Hence, for any arbitrary 

value of %, the spectrum provides a countable infinity of discrete set of mass ratios 

where the CM of the two light beads complete their squeeze mode of oscillation with 

maximum velocity and lead to maximization of the oscillatory tail in the trail of the 

primary pulse (and, hence, maximization of energy radiation from the primary pulse to 

the far field of the dimer chain). 



262 

 

In Table 3.8 we provide a comparison of the truncated CM-spectrum 

UB#�$(3)V,\ = 2, … ,6 predicted by the WKB approximation and computed by the 

numerical simulation of the G(B) equation of the CM (3.65) for % = 3. Further we also 

tabulate the values of B corresponding to valleys in the normalized transmitted force 

plot of Figure 3.66 for % = 3. We note that for small values of the mass ratio, the mass 

ratios for resonance predicted by the asymptotic analysis match well with the numerical 

results obtained by solving the LBVP (3.65) and from direct numerical simulations of 

the finite 1: 2 dimer chain of Figure 3.64. 

A comparison of the responses from the numerical simulation of the numerical 

solution of the G(B) equation (3.65) and the WKB solution (3.70) is presented in Figure 

3.69 for the eigenfunction ,�	������$ (�; 3) of the 1: 2 dimer chain with B��$ ≈ 0.07 and 

% = 3. These results confirm our previous assertion that reduced force transmission in 

the 1: 2 dimer is associated with the realization of nonlinear resonances that enable 

enhanced attenuation of propagating pulses in this medium. 

Similar analysis was performed for the LBVP (3.66) governing the RD between 

the two light beads of the periodic set of the 1: 2 dimer. In this case we impose the 

boundary conditions !�	������� = 0� = )�	������0� Ω�	�����
�^ (0) ≠ 0 and 

lim��→��

�	�����(�) = 0 to the WKB solution, 
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leading to the conditions, MN	 = 0 and (since MN� ≠ 0): 
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The resulting truncated RD-spectrum �B
�%(3)�, L = 3, … ,12 predicted by the WKB 

approximation is presented in Table 3.9, together with the corresponding numerical 

values computed by solving the LBVP (3.66) for % = 3. Again, good correspondence is 

observed in the limit of small values of the mass ratio. 

 From the previous results we note that the discrete spectra UB#�$(3)V and �B
�%(3)� 

listed in Tables 3.8 and 3.9 do not coincide for the particular value of % = 3, and this is 

expected to hold for arbitrary values of %. Moreover, we do not observe a one to one 

correspondence between the two spectra. This indicates that maximization of the 

oscillatory tails in terms of the center of mass – CM response of the pair of light beads of 

a periodic set, does not imply maximization of the corresponding oscillatory tails in 

terms of their relative displacement – RD. Another notable feature is that the valleys in 

the normalized force transmitted plot corresponding to % = 3 in Figure 3.66 coincide 

with the spectrum B#�$(3) in Table 3.8; this means that the valleys in the plot primarily 

correspond to the maximization of the oscillatory tails in terms of the CM of the light 

beads. This is quite a surprising result given that we have two independent spectra for 

this problem, and indicates that the motion of the CM of the light beads mainly governs the 

resonant propagatory dynamics in the class of dimer chains considered herein. Moreover, since 

the G(B) oscillators (3.65, 3.66) that we have derived to study the fast oscillations of the 

light beads are linear in terms of the fast time scale (but not with respect to the slow 

time scale, rendering them quasi-linear in time), the lowest frequency mode is expected to 
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capture the main amount of energy of the propagating pulse and to control the resonance 

dynamics of the propagating primary pulse. 

In synopsis, the resonance phenomenon in 1: 2 dimers is mainly influenced by 

the dynamics of the CM of the pair of light beads, whereas the corresponding RD is not 

much pronounced. However, in order to render our study of resonances compatible 

with that of anti-resonances developed in the previous section [102], we will follow a 

similar approach and designate as resonances the intersections in the (B,%) plane of the 

two spectra, i.e., requiring that for resonance to occur in the 1: 2 dimer both LBVPs 

(3.65) and (3.66) need to be satisfied. This requirement, however, cannot be satisfied in 

the more general class of 1:� dimers and will be relaxed in the next section where only 

the CM-spectrum will be considered. In Figure 3.70a we present the superposition of 

CM- and RD-spectra as functions of %. We note that due to the introduced rescalings in 

the normalized system (3.41) these spectra can be characterised as global in the sense 

that they apply for the general class of 1: 2 granular dimers within the assumptions of 

the present theoretical formulation. There are transverse intersections between the 

resonance families UB#�$(%)V,\ = 1,2, … and �B
�%(%)�, L = 1,2, … corresponding to 

different pairs of (\, L). The notion of resonance family will be elaborated subsequently. 

 As discussed in Section 3.1.3 [91], the phenomenon of resonance is related to 

rational relations between the characteristic frequencies of the squeeze mode and the 

traveling waves in the oscillating tail. For example, in Figure 3.70 the families of 

resonances corresponding to the CM-spectrum UB#�$(%)V, \ = 1,2, … are denoted by 

�:��$, indicating that the ratio of characteristic frequencies of the two phases is equal 

to � �⁄  where �,� are relatively prime positive integers; similar notation holds for the 

resonance families denoted by ��$:��%, where ��$ ,��% are not necessarily relatively 

prime (ref. Table 3.10, column 3). This was elaborated in detail in Section 3.1.3 [91] for 

the case of 1: 1 dimer where a single family of resonances could be realized. Although 
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the same theory of resonance holds for the case of 1: 2 dimers, the main difference is 

that in the latter case different families of resonances can be realized. 

Indeed, although the CM-dynamics of the light beads has greater influence on 

propagating pulse attenuation, the RD-dynamics are essential in distinguishing 

between different resonances belonging to the same family. Moreover, as discussed 

previously exact resonances are achieved when the CM- and RD-spectra intersect [cf. 

relation (3.72)]; this provides the discrete pairs (spectra) of the normalized parameters 

for which exact nonlinear resonances are realized. In Table 3.10 we provide a 

comparison of asymptotic and exact values of the parameters (B,%) for the family of 

exact resonances along the 1: 4�$ curve of Figure 3.70b. What differentiates these 

resonances are the frequency ratios of the RD-resonances, as denoted by the transverse 

intersections of curves 1:��% with the curve 1: 4�$. 

This is better illustrated by considering the wavelet transforms of the fast 

oscillations of both CM and RD of the pairs of light beads. In the following simulations 

we consider the responses of the pair of light beads 44-45 of a normalized 1: 2 dimer 

(with varying ratios B and %) composed of a total number of 200 beads and forced by an 

impulse with normalized magnitude 1.5. The wavelet transform spectra of the fast 

oscillation of the CM of two light beads presented in Figure 3.71a correspond to the 

dimer with �%, B� = (0.8, 0.052) corresponding to a point on the 1: 4�$ curve shown in 

Figure 3.70b; the two distinct phases of the oscillations are clearly discerned. In this case 

the ratio of the dominant frequency of the squeeze mode is about four times that of the 

characteristic frequency of the traveling waves in the oscillating tail, hence the 

designation of the dynamics as 1:4 CM resonance. The wavelet spectrum depicted in 

Figure 3.71b depicts the fast oscillation of the RD of the light beads at the same point, 

and we note that the corresponding frequency ratio is about 4, from which we discern 

that this is an exact 1:4 resonance as defined in the previous formulation. Resonances of 

order 1: 4�$ are shown in Figure 3.72 and 3.73. It should be noted that the frequency 
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ratio for RD in these cases are 4:14 (or 1:3.5) and 4:17 (1:4.25) respectively. These two 

cases do not correspond to the exact resonance in the previously described notation. 

Furthermore, in Figures 3.74 and 3.75, we depict the corresponding wavelet 

spectra for the exact 1: 2 and 1: 1 resonances, respectively. These lower-order 

resonances result in better pulse attenuation as can be realized from the normalized 

transmitted force plot of Figure 3.65a (such lower order resonances would correspond 

to valleys in this plot). This holds especially true for 1: 1 resonance where the requency 

of the squeeze mode coincides with the frequency of the traveling wave in the 

oscillating tail that radiates pulse energy to the far field of the medium. This 

coincidence of frequencies prevents the application of asymptotic techniques based on 

slow-fast time scale separation since mixing of time scales occurs at this resonance. 

However, alternative methods, e.g., based on binary collision approximations (as 

explored in Section 3.1.3), could be applied for analyzing the dynamics in this resonance 

regime [91]. 

 

 

3.2.4.1 Conclusions 

 

We explored the nonlinear resonances in 1: 2 dimer granular chains with no pre-

compression. The resonance phenomenon in these strongly nonlinear systems is 

characterized by strong energy radiation from a pulse propagating through the dimer 

and is associated with the creation of relatively high-amplitude traveling waves in the 

oscillatory tail in the trail of the propagating pulse. It is precisely these waves through 

which the energy of the pulse is radiated to the far field of the dimer, and their existence 

in 1: 1 dimers not only has been predicted theoretically, but has been shown 

experimentally in Section 3.1.6 [100]. 
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 The particular case of 1: 2 dimer was considered in detail and we proved that this 

system possessed a countable infinity of resonances. The asymptotic analysis of primary 

pulse transmission (the squeeze mode of the dynamics) was carried out under the 

assumption B� = G(B) ≪ 1, and was based on the solitary wave solution of the 

auxiliary homogeneous system realized in the limit when the mass ratio B (but not the 

stiffness ratio %) tends to zero. In that context, the leading order (slow) approximation 

of the motions of the heavy beads of the 1: 2 dimer was approximated by the solitary 

wave, whereas the corresponding slow approximation of the light beads was computed 

by algebraic relations in terms of the slow response of the heavy beads (i.e., the solitary 

solution). Hence, by construction the slow approximation of the primary pulse 

dynamics invariably decays to zero. In the next order the fast dynamics was considered 

and conditions were posed to maximize the velocity of each light bead at the end of the 

squeeze mode, which led to maximum radiation of energy from the propagating 

primary pulse. This led to two classes of linear boundary value problems in terms of the 

fast dynamics of the light beads, providing two independent eigenvalue spectra: The 

first for the motion of the CM of the pair of light beads, UB#�$(%)V, and the other for the 

relative motion between the two light beads, �B
�%(%)�. Realization of exact nonlinear 

resonances corresponded to transverse intersections of these two spectra, which 

provided the countable infinity of parameter pairs B'�$_%'(` = B(�%(%'(), (7, �) ∈ ℕ� ×

ℕ�. Asymptotic analysis of the two LBVPs was performed utilizing WKB 

approximations and the results compared well with the numerical simulations as long 

as B� = G(B) ≪ 1. 

 The methodology discussed in this section deals directly with the discrete 

strongly nonlinear equations of ordered granular media and does not resort to 

homogenization approaches which are not valid given the realization of bead 

separations and collisions. Instead, we focused on primary pulse propagation (i.e., the 
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squeeze mode) where under conditions of (transient) strong bead compression during 

the arrival of the primary pulse a smooth analysis of the dynamics can be performed. It 

would be of interest to investigate the application of a similar methodology to study 

primary pulse transmission in other classes of problems such as, two-dimensional 

ordered granular media with or without intruders, stochastically disordered granular 

media and granular flows. This would provide us with predictive capacity for 

designing such media as effective shock mitigators of external shocks. 

In the next section we intend to extend the previously discussed methodology 

and consider the realization of anti-resonances and resonances in general 1:�	(� ≥ 3) 

dimer chains. By reconsidering the system of G(B) fast oscillators (3.47a, b) with slowly 

varying frequencies and forcings derived in Section 3.2.2, our analysis will show that 

although realization of exact anti-resonance and resonance is not possible in this system, 

one can still formulate a condition for approximate anti-resonance and resonance based 

on dynamics of lowest frequency mode. 

 

 

3.2.5 Resonances and Anti-Resonances in General F:Y	(Y > Z) Dimer Chains 

 

As noted in the previous sections, the realization of resonances and anti-resonances are 

primarily governed by the G(B) fast oscillators (3.47a, b). For a 1:� dimer chain it 

follows that the G(B) model of the dynamics of the light beads is governed by an �– 

degree-of-freedom system of time-varying but linear coupled oscillators. This is a 

reflection of the nearly-linear dynamics governing the squeeze mode. We note that the 

oscillators (3.47b) have slow time varying excitations and frequencies. Accordingly, the 

fast oscillations of the heavy beads (3.47a) can be approximated once the corresponding 

approximations for the light beads have been derived. Since the G(B) corrections of the 

responses of the heavy beads are much smaller than the leading order approximations 
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(3.45, 3.46) for small values of B, we neglect (3.47a) from hereon and focus only on the 

set (3.47b) which determines completely the fast dynamics of the dimer. In addition, 

since the system (3.47b) is linear it can be decoupled using the modal coordinates [13], 

and the appropriate boundary conditions similar to the one imposed in the previous 

section will be imposed such that the response of each mode attains zero (for anti-

resonance) or maximum (for resonance) velocity towards the end of the squeeze mode. 

 This appears to be a formidable task in view of the fact that we have just two 

parameters governing the system dynamics (% and B) and we need to impose a set of � 

conditions for the � decoupled modal oscillators. This in fact indicates an ill posed 

problem. However, as we show, the first (lowest frequency) mode of the fast system 

(3.47b) is dominant in the squeeze mode (or primary pulse dynamics) of the dimer, and 

so the first mode plays the most important role in the anti-resonance/resonance 

dynamics of the dimer system. We note that the lowest frequency mode corresponds to 

the near-rigid translation of the center of mass – CM of the � light beads of each 

periodic set, and we expect that momentum transfer through the dimer chain should be 

dominated by this low frequency mode which is expected to carry most of the energy of 

the primary pulse; so our considerations are justified from the perspective of physics as 

well. We note that similar arguments were employed in a previous work on layered 

media with granular interfaces [125], and in an additional work [166] where the concept 

of ‘effective particle’ was introduced to create reduced-order models of granular media. 

It was shown that the effective particle corresponding to the lowest frequency mode is 

mainly responsible for momentum transfer in granular interfaces, and under certain 

assumptions [125, 166] higher order modes may be neglected. 

We now consider the question of solitary wave formation in the general class of 

1:� dimers with � > 2. The analysis follows the lines of the asymptotic method 

developed in Section 3.2.3 for the 1: 2 dimer, and is general, in the sense that it applies 

to general 1:� dimer chains with � > 2. To this end, we reconsider the G(B) 
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approximations (3.47b, c) governing the fast dynamics of the light beads of a general 

1:� dimer chain. Since there is time-scale separation between the coefficients and 

forcing terms depending on the slow time �, and the dependent variables depending 

on the fast time scale ��, and since this slowly-varying dynamical system is linear, we 

may decouple the equations of motion (in the fast time scale) by using its corresponding 

matrix of eigenvectors. Hence, we may express (3.47b) in modal coordinates, and derive 

a set of uncoupled modal equations governing the amplitudes of the � modes of the 

fast oscillations of the light beads. To demonstrate this analysis and to avoid 

cumbersome mathematical expressions, we provide the resulting uncoupled system 

below for � = 3: 
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(3.73) 

 

where @��, 4 = 1,2,3, � = 1 + 4�,� = 0,1,2, …, denotes the amplitude of the 4 −th mode of 

the fast oscillation of the three beads of the � −th periodic set. 

It is now possible to apply WKB analysis to each of the three uncoupled 

equations in (3.73), subject to appropriate boundary conditions similar to those 

considered in (3.56, 3.57) (anti-resonances in 1: 2 dimers) and (3.65, 3.66) (resonances in 

1: 2 dimers) in order to compute the three independent eigenvalue spectra B =

B#� �%�, \ = 1,2,3, …, l=1,2,3, one for each of the three modes. The 4 −th spectrum UB#� �%�V 
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consists of an infinite set of eigenvalue curves in ℝ� corresponding to functional 

dependencies of the normalized mass parameter with respect to the normalized 

stiffness parameter, for which the fast oscillations of that mode of the light beads decay 

to zero as time tends to infinity. Moreover, the three spectral families are independent 

from each other. It should be clear that realization of solitary waves in the 1: 3 dimer chains 

requires that for certain values of α all three eigenvalue spectra should coincide. Therein lies 

the difficulty of solitary wave formation in this system (as well as in more general 1:� 

dimer with � > 3), since from geometrical point of view simultaneous transverse 

intersections of � > 2 one-dimensional curves at a single point in ℝ� is non-generic. We 

conclude that the formation of solitary waves in 1:�	(� > 2) dimers is not typical, in 

contrast to 1: 1 and 1: 2 dimers, which, as shown in Section 3.1.2 and 3.2.3 respectively, 

can support countable infinities of solitary waves. 

Although imposing the exact conditions for realization of solitary waves in 

general 1:� dimers is not feasible, rather we can obtain approximations of near-solitary 

waves by considering only the spectra of the two lowest-frequency modes in (3.73) and 

computing the normalized parameters % and B corresponding to transverse 

intersections of the corresponding lowest-frequency eigenfrequency curves (i.e., 

following the procedure developed in Section 3.2.3 for the 1: 2 dimer). The reasoning 

behind this approximation lies in the fact that when an external shock is applied to the 

general dimer, energy transmission mainly occurs through excitation of the lower 

frequency modes of the periodic sets; this was confirmed by previous results . Taking 

this argument one step further we may simplify the approximation even more by taking 

into account only the lowest (fundamental) mode with spectrum {B#��%�}, \ = 1,2, …	, 

since predominantly the in-phase mode is expected to capture most of the energy 

induced by an external shock, and hence, the mode most responsible for transferring 

energy through the dimer; it follows that this mode is most appropriate for modeling 
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near-solitary waves in the general dimer. To test this approximation we consider the 

system of equations (3.73) with � = 3, � = 1, and study only the first mode: 
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In Figure 3.76a we compare the fast oscillation computed by (3.74) to the fast 

component of the center-of-mass oscillations of the light beads 26-28 of the 1: 3 dimer 

with normalized parameters B = 0.0207 and % = 1, forced by a unit impulse applied at 

its left end. This numerical fast oscillation was computed using the following 

approximate expression, 
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z
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≈ −ɶ                               (3.75) 

 

where �(���)�, �(���)�, �(��	)� are the responses of the three light beads (26-28) and 

��, �(���)  (25, 29) are the responses of the bounding heavy beads of the periodic set 

with � = 25. It is to be noted that the asymptotic approximation (3.75) is valid only in 

the limit when B is sufficiently small, since only in this limit the responses of the heavy 

beads would be very close to the Nesterenko solitary wave of the auxiliary system 

obtained in the limit B → 0. In Figure 3.76b we depict the corresponding comparison 

regarding the velocity of the center-of-mass of the same set of light beads (i.e., the 

composite responses superimposing slow and fast components). 

From the results of Figure 3.76 we conclude that the fast oscillation of the first 

mode predicted by the asymptotic model (3.74) closely matches the result of the 
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numerical simulation. This indicates that in the limit of small normalized mass ratios 

the lowest mode approximation (3.74) provides a satisfactory approximation of the 

near-solitary wave since it captures most of the energy of the transmitted pulse which is 

induced by the applied impulse. We emphasize, however, that since the exact 

conditions for the formation of solitary waves cannot be satisfied exactly in the 1: 3 

dimer; it is only possible that near-solitary pulses are realized, with most of the energy 

of these pulses transferred by the lowest-frequency mode of the fast oscillations of the 

light beads in each periodic set. With an increase in the value of B, however, the energy 

of the transmitted pulse ‘spreads’ to higher modes of the fast frequency oscillations of 

the light beads, which become more profound in the dynamics. In that case the previous 

asymptotic simplification is not expected to hold and no near-solitary pulses can exist. 

A confirmation of this conjecture is provided by the responses depicted in Figure 3.77, 

where plots similar to those in Figure 3.76 are depicted for the 1: 3 dimer with 

parameters B ≈ 0.05275 and % = 1. The oscillating tail in the trail of the pulse observed 

in the numerical simulation signifies the lack of a near-solitary pulse in this case, in 

contrast to the asymptotic model (3.74) which predicts such a solution. 

We now extend the analysis of resonances to the general class of 1:� dimers with 

� ≥ 3. In order to extend the methodology developed in the previous section to the 

system of � decoupled G(B) fast oscillators (3.47b), we need to impose necessary and 

sufficient conditions so that each fast oscillator ends its squeeze mode of oscillation with 

maximum velocity. As discussed above, we need to satisfy � conditions with just two 

parameters, namely the mass ratio B and the stiffness ratio %, which, as discussed above 

represents a mathematically ill-posed problem. Arguing along the same lines as for the 

case of 1: 2 dimers, we note that, even if we obtain the � independent spectra of B as a 

function of % corresponding to these � decoupled oscillators, it is non-generic that these 

� spectra will transversely simultaneously intersect in the two-dimensional plane (B,%), 
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providing the discrete ordered pairs of B and % for exact nonlinear resonances. Hence, 

realization of exact nonlinear resonances in 1:� dimers with � ≥ 3 is non-generic.  

Interestingly enough, however, numerical simulations indicate that pulse 

attenuation can still occur in general 1:� dimer chains. As an example, we consider a 

1: 3 dimer chain composed of 140 beads with % = 1 and B = 0.49. The attenuation of the 

propagating primary pulse can be clearly discerned from the space-time plot of bead 

velocities shown in Figure 3.78a, where the velocity of each bead is normalized with 

respect to the applied impulse. In Figure 3.78b we present the velocity response of some 

intermediate heavy beads, to highlight the strong primary pulse attenuation in this case. 

This indicates that pulse attenuation in this 1: 3 dimer chain is still possible even though 

the exact resonance conditions may not be satisfied. 

This can be explained by recalling our previous discussion concerning the 

influence of the lowest frequency mode of the system of fast oscillators (3.47b) 

(modeling the low frequency motion of the center of mass of the � light beads of each 

periodic set) on primary pulse propagation and attenuation. Hence, instead of 

considering conditions for exact resonances (which, as mentioned previously, cannot be 

satisfied in the general case), one can still focus to the decoupled oscillator 

corresponding to the lowest frequency fast oscillations and impose the appropriate 

resonance condition only for this specific oscillator; this will derive a condition for 

approximate resonance which can be used to explain pulse attenuation in the general 

1:� dimer case. This will be performed in the following analysis considering the case 

� = 3, however, the analysis can be generalized for � > 3 (although, as discussed in the 

next section there are some restrictions in extending the asymptotic analysis when � 

increases). 

 To this end, we consider the G(B) system of fast oscillators (3.75) and set � = 3 

and the corresponding decoupled set of equations (3.73). Arguing along the same lines 

as in the case of anti-resonances in 1: 3 dimers, we formulate conditions for approximate 
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nonlinear resonances for the first mode of oscillation of the G(B) equation (3.73) and 

formulate the following LBVP for the lowest frequency oscillator, 
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where �� = 0 corresponds to the time instant when the adjacent heavy beads have equal 

non-zero velocity. This LBVP is similar to the CM-LBVP (3.65) formulated for the 1: 2 

dimer in Section 3.2.4. As before, this problem can be solved either asymptotically 

(using the WKB approximation) or numerically to yield the discrete spectrum 

�B��(%)�, � = 1,2, … for the approximate nonlinear resonances based on the lowest 

frequency (dominant) mode. This discrete set of mass ratios is seen to have one to one 

correspondence with the local minima (valleys) in the normalized force transmitted 

curve, validating our approximate approach. 

 Indeed, in Figure 3.79 we depict the normalized transmitted force curve for a 1: 3 

dimer chain composed of 82 beads (with the 82nd bead being a fixed light bead – where 

the transmitted force is measured) and a unit impulse applied to the first heavy bead on 

the left boundary of the chain; to this plot we superimpose the discrete spectra �B��(%)� 
predicted by WKB analysis (B�
)�) of the LBVP (3.76) and compare them to the values 

of B*�� where valleys of the plot occur. As expected, the asymptotic solutions of the 

approximate model (3.76) predicts well the local minima for lower values of B, but 

deviate substantially for higher values. This is consistent with the basic assumption of 

our asymptotic analysis which is based on time scale separation in limit of sufficiently 

small values of B for fixed values of � (a discussion of this assumption is provided in 

the next section). However, the most important feature of the plot is that it confirms that 
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force attenuation in the 1: 3 dimer is associated with the nonlinear resonance of the 

lowest frequency mode of the triplets of light beads or, equivalently, approximate 

nonlinear resonance in the dimer. This approximate resonance scenario can be further 

extended to the more general class of 1:� dimers with � > 3. 

As a concluding remark, the extension of the asymptotic analysis to a general 

class of 1:�	(� > 2) granular dimer chains to realize anti-resonances or resonances, 

although seems straightforward, possess distinct difficulties from a mathematical point 

of view due to the fact that the resulting set of boundary value problems cannot be 

simultaneously solved; hence resulting in an ill-posed mathematical problem. This is 

due to the fact that realization of exact solitary waves or resonances in 1:�	(� > 2) 

dimers requires the simultaneous transverse intersection of � one-dimensional 

eigenvalue curves in ℝ�; whereas for � = 2 this can be performed, as such intersections 

are generic, but for � > 2 this is not generally possible. Hence, it is conjectured that 

solitary wave or resonance realization in a general 1:�	(� > 2) granular dimer chain is not 

mathematically possible, unless special symmetries can be realized. Even in these systems, 

however, the formation of near-solitary localized pulses and near resonances are still 

possible, since in the limit of small values of the normalized mass parameter most of the 

energy of a propagating pulse is captured by the lowest frequency mode of the fast 

oscillations of the light beads of each periodic set. In that case, one can approximately 

consider only the linear boundary value problem corresponding to the lowest frequency 

mode of the fast oscillations of the light beads, and theoretically predict the existence of 

near-solitary (but not exact) solitary pulses and resonances. Numerical evidences 

support this claim. 
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3.2.6 A Note on the Dynamics of F:Y Dimer Chains with Large Stiffness Ratios 

 

In the previous discussion we considered two limiting cases of dimers corresponding to 

B → 0 and B → 1. The former case leads to the auxiliary system which is homogeneous 

in mass and stiffness, whereas the latter case denotes a mass homogeneous, but stiffness 

periodic dimer chain. Thus it is evident that the stiffness parameter can render the chain 

inhomogeneous, but still periodic. Although it may seem that as the chain is mass 

homogeneous and thus analytically tractable, it is hardly so. Due to the presence of this 

stiffness periodicity, there are no known analytical tools or approximations that can 

capture the dynamics of such dimer chains. Even the consideration of binary collision 

approximation [39, 104, 110] fails in view of the fact that this approximation cannot 

account for the stiffness disparity between beads. This is the scenario for a general 1:� 

dimer chain for an arbitrary value of stiffness ratio. Interestingly enough, dimer chains 

with large stiffness ratio lend themselves to certain approximations. It was noted 

previously that due to the physical reasoning the minimum value of stiffness ratio is  

%��� = 1 2√2⁄ , but there is no specific upper bound for this parameter. In fact this is 

quite advantageous in applying certain approximations and in exploring the dynamics. 

The primary objective of this section is considering the 1:� dimer chain in the limit of 

large stiffness ratio and its degeneracy to a 1: 1 dimer chain. 

To this end, we reconsider the normalized equations of motion (3.41) and 

introduce the rescaling B̃ = B/% with B̃ ≪ 1, as % ≪ 1. It will be of interest to consider the 

limiting case obtained when B̃ → 0. Then, expressing the responses of the heavy and 

light beads of an arbitrary periodic set in the following asymptotic forms �� = ����� +

B̃�������� +…, ���+ = ����+����+ B̃�����+��(��)+…, substituting into (3.41) and setting 

B̃ = 0 we obtain the following G(1) approximation, 
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where � = 1 + ��1 + ��,� = 0,1,2, … , 1 < . < � and the notation of previous section is 

preserved. We note that at the G(1) approximation the responses of all light beads are 

identical, i.e., the � light beads of each periodic set move in-unison; more precisely, the 

internal dynamics between the lights beads is completely annihilated due to the high 

stiffness ratio between the light and the heavy beads. This indicates that in the limit of 

small values of the ratio B̃ = B/% the lowest frequency mode of the set of � light beads is 

primarily responsible for momentum transfer during primary pulse transmission. In 

Section 2.3 [166] such arguments were employed to construct effective particles, i.e., 

reduced order models of homogeneous granular chains, and on the same lines the 

asymptotic analysis in this section will be developed. 

 Returning to system (3.41) and substituting the previous asymptotic expansions 

and transforming back to the original parameters B and % we derive the following 

normalized system of governing equations of G(1) for an arbitrary periodic set: 
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Motivated by the afore mentioned discussion concerning the effective particle in the 

G(1) approximation, we proceed to the summation of the � intermediate equations in 

(3.78) governing the light beads to derive the following reduced system, 
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where �� = (1/�)∑ �(��+)*
+,� . Hence, the set of � light beads is replaced by a cluster or 

effective particle with effective mass equal to �B, and, in essence the slow approximation 

(3.79) represents a 1: 1 dimer chain with heavy and light beads with normalized masses 

equal to unity and �B, respectively; hence, a 1:� dimer with high stiffness ratio can be 

effectively reduced to a 1: 1 effective dimer chain with effective mass ratio equaling 1:�B. This 

represents a significant simplification (and reduction) of the problem. 

We now consider the finite 1: 2 dimer chain and set B = 1; thus we have a 

granular chain with homogeneous mass but with periodic variation in stiffness. In this 

case the only parameter that can be varied is the stiffness ratio, so the center of mass of 

the light beads can be replaced by an effective particle of normalized mass equal to 

�B = 2 in the limit of very high %. The resulting effective normalized 1: 1 dimer 

corresponds to a mass ratio equal to 0.5. In Figure 3.80 we present the corresponding 

transmitted force curve of this system for varying %, normalized with respect to the 

homogeneous chain with % = B = 1 (this plot represents a ‘slice’ B = 1 of the plot of 

Figure 3.65a). It is to be noted that the maximum force transmitted is in the 

homogeneous chain (% = B = 1) whereas force transmitted is substantially lower for 

higher values of %. This dynamics is quite non-intuitive given that the dimer chain 

considered is mass-homogeneous (since B = 1) and there is only stiffness disparity. 

Moreover, this result indicates that this type of granular dimer is especially suitable for 

strong pulse attenuation due to its intrinsic dynamics. 

In Figure 3.81a we present the velocity response of the CM of the two light beads 

(44 and 45) and their adjacent heavy beads (43 and 46) of a 1: 2 dimer with B = 1 and 

% = 114 composed of 200 beads and excited by an impulse of normalized magnitude 1.5 
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(such a high stiffness ratio is realizable for a dimer composed of steel and Teflon or 

PTFE beads). As described above, for such high stiffness ratios, the 1: 2 dimer chain 

emulates a 1: 1 dimer with an effective mass ratio of 0.5. This is confirmed by the results 

depicted in Figure 3.81b where the velocity response of a heavy bead (bead 51) and its 

adjacent light beads (beads 50 and 52) in a 1: 1 dimer chain with mass ratio 0.5 

consisting 200 beads, excited by an impulse of 1: 1 are shown. As can be noted, the 

responses in the two plots show good qualitative agreement. It should be noted that the 

response of the CM of the light beads in the 1: 2 dimer chain is an analogue of the 

response of the heavy bead in the effective 1: 1 dimer chain; and the responses of the 

heavy beads of the 1: 2 dimer are analogous to the responses of the light beads in the 

effective 1: 1 dimer chain. It is worth noting that a mass ratio of ~0.59 corresponds to 

the global minimum of transmitted force (or maximum pulse attenuation) in the 

normalized 1: 1 dimer chain (cf. Figure 3.9a in Section 3.1.2). Since the 1: 2 dimer with 

high stiffness ratio of our example corresponds to the effective 1: 1 dimer with effective 

mass ratio 0.5 (i.e., close to 0.59), we expect substantial pulse attenuation in that system 

as well. In fact the amplification of the oscillatory tail in Figure 3.81 indicates substantial 

pulse attenuation.  

A second example is given with a 200-bead 1: 3 dimer chain with homogeneous 

mass distribution B = 1 and large stiffness ratio % = 114 excited by an impulse with a 

unit normalized magnitude. In Figure 3.82a we present the velocity response of the CM 

of the light beads (beads 50-52) and their adjacent heavy beads (beads 49 and 53). In this 

case the effective mass of the CM of the light beads is equal to �B = 3 whereas that of 

the heavy beads equals unity. The responses of the corresponding effective 1: 1 dimer of 

200 beads with an effective mass ratio 1/3 and excited by an impulse with normalized 

magnitude equal to 0.5 is depicted in Figure 3.82b (we depict the velocity of the heavy 

bead 51 and of its adjacent light beads 50 and 52). Again the responses in the Figures 

3.82a and b show good qualitative agreement, with the cluster (effective particle) of the 
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light beads of the 1: 3 dimer chain having a response that is analogous to that of the 

heavy bead of the 1: 1 dimer chain; in addition, the responses of the heavy beads of the 

1: 3 dimer is observed to correspond to the responses of the light beads of the effective 

1: 1 dimer chain. It is interesting to note, however, that the time durations of the pulses 

in the two systems are different; this is due to the fact that in a 1: 3 dimer chain any two 

adjacent heavy beads are separated by three light beads, and thus its responses stretch 

out in time when compared to the corresponding responses in the 1: 1 dimer chain 

(which is relatively ‘stiffer’). 

In conclusion, the principal idea in this approximation is owing to the fact that if 

the stiffness ratio of a 1:� dimer (with mass ratio B) is very large, the dynamics of the 

light beads (or their internal dynamics) loose significance, and move approximately in 

unison. This enables us to model them as a single effective particle or cluster with an 

effective mass equal to �B, and to approximately reduce the 1:� dimer to an effective 

1: 1 dimer thus simplifying substantially the analysis. This reduction can help us 

interpret the highly effective pulse attenuation observed in this type of 1:� dimers (cf. 

Figure 3.80) in terms of pulse attenuation in the effective 1: 1 dimer with effective ratio 

�B which has been studied in detail in Section 3.1.3. 

 

 

3.2.7 Validity of the Asymptotic Approach for the General F:Y Dimer Chains 

 

In general, the validity of asymptotic analysis is limited to the asymptotic parameter 

being relatively small. The smallness of this parameter is a relative term, but not 

absolute. Further to this, each order of asymptotic approximation has an error of higher 

order defined in terms of the asymptotic small parameter. Thus the asymptotic 

approximation becomes invalid once the error at any order of approximation becomes 

comparable to that order. In essence it implies that for sufficiently small asymptotic 
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parameter, the asymptotic approximation converges towards the exact solution. Indeed 

this criteria is valid for general asymptotic analysis, i.e. the asymptotic solutions are 

valid when the small parameter (B) in the analysis is sufficiently small. But in contrast to 

this criteria, for a general 1:� dimer chain, the smallness of B is a necessary condition, 

but not sufficient for the validity of asymptotic analysis. In this section we formulate an 

alternate qualitative measure for ascertaining the validity of the developed asymptotic 

analysis. 

 The asymptotic formulation developed for the general 1:� dimer chain leads to 

the � dimensional system of fast linear oscillators (3.47) in the G(B) approximation. The 

asymptotic analysis was carried out in the asymptotic limit of small mass ratios B ≪ 1 

for � fixed. Although the asymptotic approximation closely agrees with direct 

numerical simulations for small values of the mass parameter B and � = G(1), it 

deviates for large values of � even though B remains small. From the perspective of 

asymptotics this can be explained by considering the G(B) equations governing the fast 

dynamics of the � light beads of each periodic set. Due to the finite asymptotics, the 

error in the approximation of the response of each light bead one would expect to be of 

order G(B�); yet, given that the system (3.47b) is a set of � DOF coupled oscillators, the 

total error in the G(B) approximation accumulates to G(B��). Hence, the error in the 

asymptotics increases not only when B increases, but (and perhaps counter intuitively) 

also when � increases. It follows that if the product B� = G(1) the total error in the 

asymptotic approximation is expected to be of G(B), and given that the approximation 

itself is of G(B) the solution becomes asymptotically invalid. Before proceeding to 

validate these arguments with direct numerical simulations, we discuss the asymptotic 

approximations of the responses of the heavy beads of the dimer chain. 

In the previous sections it was noted that for sufficiently small values of B, the 

solitary wave solution of the auxiliary system (corresponding to B = 0) provides a good 

approximation to the G(1) response of the heavy beads. Furthermore, it was noted that 
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the G(B) correction of the heavy beads depended on the G(B) approximation of the light 

beads (3.47b), but, the G(B) approximation of the heavy beads was seldom required 

because the effect of light beads on the heavy beads was found to be insignificant for 

lower values of B. With an increase in B, the influence of light beads on the response of 

the heavy beads also increases. With the increase in both � and B the error in the 

approximation of the light beads increases, and thus the error in the G(B) correction of 

the response of the heavy beads becomes more significant. Moreover, when B� = G(1), 

the G(B) correction of the heavy beads becomes even less valid and the asymptotic 

approximations of the responses of the heavy beads deviate considerably from the 

actual numerical simulations. In that case it can be clearly inferred that the responses of 

the heavy beads are greatly affected by the light beads, so these responses deviate 

considerably from the solitary pulse of the auxiliary system which cannot be used 

anymore as generating solution for the asymptotic analysis. Viewed from another 

perspective, the quantity B� denotes the relative mass of the � light beads of the entire 

periodic set with respect to the mass of their neighboring heavy beads; hence, as B� 

increases the set of � light beads has sufficient inertia to influence the dynamics of their 

neighboring heavy beads instead of being just driven by them (as the asymptotic theory 

assumes). 

The numerical evidences that substantiate the aforementioned criteria are 

divided into two categories, namely simulations for fixed B and varying �, and then 

simulations for fixed � and varying B. In Figure 3.83 we consider primary pulse 

propagation in 1:� dimer chain with B = 0.05 and varying �, forced at its left end by a 

unit impulse. In each case we consider the velocity responses of a specific periodic set 

consisting of � light beads and the neighboring two heavy beads. In the plot of Figure 

3.83a we consider a dimer with � = 3 and a total of 200 beads; we depict the velocity 

responses of the heavy beads 81 and 85, the velocity of their CM and the velocity of the 

CM of the light beads 82 to 84. We note that in this case the responses of the heavy 
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beads are close to the theoretical solitary pulse of the auxiliary system, which indicates 

that the asymptotic approximation is valid, and that the heavy beads drive (and are not 

influenced by) the dynamics of the light beads. Further, we observe that the CM of the 

light beads executes oscillations of G(B), very close to the CM of the heavy beads, as 

predicted by the asymptotics. In particular, the error in the asymptotic approximation is 

estimated to be of the order of B� = 0.15 ≪ 1. 

In Figure 3.83b we consider a dimer with � = 8 and a total of 400 beads; we 

depict the velocity responses of the heavy beads 181 and 190, the velocity of their CM 

and the velocity of the CM of the light beads 182 to 189. Despite the small value of 

B = 0.05, the response of the heavy beads deviates considerably from the previous case 

of the 1: 3 dimer. Furthermore, the amplitude of the CM of the light beads is seen to 

deviate considerably from that of the heavy beads, not being of G(B) as in the previous 

case. This implies that the asymptotic approximation is less valid in this case, which is 

consistent with the fact that �B = 0.40 (i.e., not small). This indicates that even when the 

mass ratio is fixed to a small value, increasing � would render the asymptotic 

approximation based on the solitary wave generating solution invalid. This is further 

confirmed by the numerical simulations depicted in Figures 3.83c, d corresponding to 

dimer chains with � = 14 (total of 500 beads with the responses of the periodic set of 

beads 301 to 316 shown) and � = 20 (total of 600 beads with the responses of the 

periodic set of beads 421 to 442 shown), respectively. The corresponding values of the 

product �B = G(1) for these two cases are 0.7 and 1, respectively, invalidating the 

previous asymptotic approximations. 

In the second series of simulations we consider a 1: 10 dimer chain composed of 

a total of 400 beads and varying B. The results presented in Figure 3.84 correspond to 

the responses of the periodic set composed of two heavy beads (221 and 232), and ten 

light beads (222 to 231). Similarly to the previous numerical simulations we depict the 

velocity profiles of the two heavy beads, of their CM, and of the CM of the ten light 



285 

 

beads of the periodic set. Starting from the plot of Figure 3.84a for the 1: 10 dimer with 

�B = 0.05 ≪ 1, we note that the responses of the heavy beads are close to the 

asymptotically predicted solitary pulse of the corresponding auxiliary system (obtained 

in the limit B → 0). In addition, the oscillations of the CM of the light beads are B −close 

to the CM response of the heavy beads, again in agreement with the asymptotic 

approximation. An increase of the mass ratio to B = 0.01 (cf. Figure 3.84b) corresponds 

to B� = 0.1 ≪ 1, so the asymptotic approximation still maintains its validity. This is also 

confirmed by the numerical simulations. In both cases the asymptotics is valid since, 

due their small total inertia the set of light beads is driven by their neighboring heavy 

beads without being capable to influence their dynamics. 

However, further increase of the mass ratio renders the asymptotics invalid, as 

the set of ten light beads gains sufficient inertia to influence the dynamics of their 

neighboring heavy beads instead of merely being driven by them. This is evident from 

the numerical simulations of Figures 3.84c and d corresponding to B = 0.05 (�B = 0.5) 

and  B = 0.1 (�B = 1), respectively. In both cases, the errors of the corresponding 

asymptotic approximations are expected to be significant. 

The previous discussion confirms that the asymptotic approximation is valid as 

long as �B ≪ 1, and ceases to be valid once �B = G(1) or more precisely when � =

G(1/B). In the region of validity of the asymptotics the dynamics of the light beads can 

be approximated by (slow) algebraic equations at the G(1) approximation, and by a set 

of � coupled linear driven (fast) oscillators at the G(B) approximation. These fast 

oscillators give rise to � linear vibration modes driven by the (slow) motions of the 

neighboring heavy beads, and the dynamics of the dimer chain that can be classified as 

being of oscillatory type. We note that although we designate such a response as 

oscillatory, the primary pulse propagation through the dimer is mainly governed by the 

G(1) approximation (i.e., the solitary wave generating solution) and so is always 

propagatory. Once the asymptotic approximation ceases to be valid, the dynamics 
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inside the layer of � light beads cannot be described by the system of � fast oscillators 

and their dynamics are wave-like instead of vibration-like. In this case the dynamics are 

classified as being of propagatory type. The latter case of primary wave transmission in 

layered elastic media with granular interfaces is discussed in [125]. 
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3.3 Figures 

 

 

Figure 3.1: Non-dimensional dimer system composed of ‘heavy’ and ‘light’ beads. 

 

 

 

Figure 3.2: Dimer setup for numerical simulations. 

 

 

Figure 3.3: Velocity profiles of dimer pairs for � � 0.4. 
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Figure 3.4: Solitary wave in the dimer with B = 0.3428, (a) Velocity profiles of dimer 

pairs; (b) phase plot of relative velocity versus relative displacement between successive 

heavy and light beads compared to the solitary wave of the homogeneous chain of 

heavy beads (B = 1); (c) displacement profiles of dimer pairs. 
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Figure 3.5: Solitary wave in the dimer with B = 0.1548: (a) Velocity profiles of dimer 

pairs; (b) primary solitary wave followed by secondary solitary waves  

(on beads 51 to 53). 
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Figure 3.6: Solitary wave in the dimer with B = 0.0901, velocity profiles of dimer pairs. 

 

  

 

Figure 3.7: Time shifts �
 versus peak velocities of the different families of solitary 

waves in the dimer. 
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Figure 3.8: Comparison of dimer solitary wave profiles on heavy beads with Nesterenko 

solitary wave. 

 

  

 

Figure 3.9: (a) Normalized transmitted force as function of the normalized mass ratio 

parameter B for an impulsively excited dimer. 
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Figure 3.9 (cont’d): (b) Normalized time delay as function of the normalized mass ratio 

parameter B for an impulsively excited dimer. 

 

  

 

 

Figure 3.10: Comparison of the numerical solution of the fast dynamics (3.11) and the 

WKB analytical approximation (3.19). 
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Figure 3.11: Numerical solutions of the fast dynamics (3.11) for certain values of B� at 

which solitary waves are realized in the dimer. 

 

  

  

 

Figure 3.12: Resonance at B� ≈ 0.075, (a) Velocity profiles of a light bead and its 

neighboring heavy beads; (b, c) fast components of the displacement and velocity, 

respectively, of the light bead. 
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Figure 3.13: Anti-Resonance at B�� = 0.0901, (a) Velocity profiles of a light bead and its 

neighboring heavy beads; (b, c) fast components of the displacement and velocity, 

respectively, of the light bead. 

 

 

Figure 3.14: Resonance at B� ≈ 0.12, (a) Velocity profiles of a light bead and its 

neighboring heavy beads; (b, c) fast components of the displacement and velocity, 

respectively, of the light bead. 

 

−5 0 5 10
0

0.2
0.4
0.6

V
E

LO
C

IT
Y

 

 

HEAVY BEADS
LIGHT BEAD

−5 0 5 10

−0.02

0

0.02

D
IS

P
LA

C
E

M
E

N
T

−5 0 5 10
−0.05

0

0.05

TIME

V
E

LO
C

IT
Y

AXIS OF
SYMMETRY

(a)

(b)

(c)

−5 0 5 10
0

0.2
0.4
0.6

V
E

LO
C

IT
Y

 

 

HEAVY BEADS
LIGHT BEAD

−5 0 5 10
−0.05

0

0.05

D
IS

P
LA

C
E

M
E

N
T

−5 0 5 10

−0.05

0

0.05

TIME

V
E

LO
C

IT
Y

(a)

(b)

(c)



295 

 

 

Figure 3.15: Anti-Resonance at B�� ≈ 0.1548, (a) Velocity profiles of a light bead and its 

neighboring heavy beads; (b, c) fast components of the displacement and velocity, 

respectively, of the light bead. 

 

 

Figure 3.16: Resonance at B� ≈ 0.24, (a) Velocity profiles of a light bead and its 

neighboring heavy beads; (b, c) fast components of the displacement and velocity, 

respectively, of the light bead. 

  

−5 0 5 10
0

0.2
0.4
0.6

V
E

LO
C

IT
Y

 

 

HEAVY BEADS
LIGHT BEAD

−5 0 5 10
−0.05

0

0.05

D
IS

P
LA

C
E

M
E

N
T

−5 0 5 10
−0.1

0

0.1

TIME

V
E

LO
C

IT
Y

(a)

(b)

(c)

−5 0 5 10

0
0.2
0.4
0.6

V
E

LO
C

IT
Y

 

 

HEAVY BEADS
LIGHT BEAD

−5 0 5 10
−0.1

0

0.1

D
IS

P
LA

C
E

M
E

N
T

−5 0 5 10
−0.2

0

0.2

TIME

V
E

LO
C

IT
Y

(a)

(b)

(c)



296 

 

 

Figure 3.17: Anti-Resonance at B�� ≈ 0.3428, (a) Velocity profiles of a light bead and its 

neighboring heavy beads; (b, c) fast components of the displacement and velocity, 

respectively, of the light bead. 

 

  

Figure 3.18: Velocity time series of heavy beads during resonance. 
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Figure 3.19: Velocity time series of heavy and light bead in the oscillating tail (radiated 

traveling wave) during resonance for B�
(�:	)

= 0.12. 

 

 

 

Figure 3.20: Wavelet transform spectra of the fast component of the oscillation of a light 

bead for (a) B ≈ 0.075. 
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Figure 3.20 (cont’d): Wavelet transform spectra of the fast component of the oscillation 

of a light bead for (b) B ≈ 0.12; (c) B ≈ 0.24; (d) B ≈ 0.59. 
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Figure 3.21: Relative displacements between adjacent light and heavy beads for 

(a)B�
(�:�)

≈ 0.075; (b) B�
(�:	)

≈ 0.12; (c) B�
(�:�)

≈ 0.59 (for adjacent beads 51-53). 
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Figure 3.22: Pulse attenuation in the regime of 1: 1 resonance (B�
��:��

≈ 0.59) in the short 

time interval �� < � < ��, (a) Energy contained in the primary pulse and in the 

oscillating tail; (b) rigid body velocities of the heavy beads with maximum velocities at 

times �� and ��. 
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Figure 3.23: Normalized velocity of the dimer for B = 0.3428, (a) solitary wave 

propagation in space and time; (b) time series at four spatial points. 
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Figure 3.24: Normalized velocity of the dimer for B = 0.5, (a) pulse propagation in space 

and time; (b) time series at four different locations. 
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Figure 3.25: Normalized velocity of the dimer for B = 0.59 (1: 1 resonance), (a) pulse 

propagation in space and time; (b) time series at four different locations. 
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Figure 3.26: Comparison of the WKB solution (3.23) and the asymptotic model  

(3.15, 3.23, 3.24) for 1:4 resonance. 

 

 

Figure 3.27: Relative displacement responses between four pairs of neighboring beads 

of the dimer (3.3) with B = 0.625 in the regime of strong pulse attenuation due to 1: 1 

resonance. 

 

−6 −4 −2 0 2 4 6
−0.6

−0.4

−0.2

0

0.2

0.4

TIME

D
IS

P
LA

C
E

M
E

N
T

 

 

NUMERICAL SIMULATION OF O(ε) EQUATION
                             ε=0.078
WKB SOLUTION OF O(ε) EQUATION
                            ε=0.07468

−f(τ)/Ω
2p

(τ)2

55 60 65 70 75 80 85
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

TIME

R
E

LA
T

IV
E

 D
IS

P
LA

C
E

M
E

N
T

 

 

BEAD 51−52
BEAD 53−54
BEAD 55−56
BEAD 57−58



305 

 

 

Figure 3.28: Relative displacement responses between four pairs of neighboring beads 

for the binary model with gap  = 3.3489 and B�̅
(�:�)

= 0.537. 

 

  

 

Figure 3.29: Maximum normalized force transmitted to the right boundary of the dimer 

for varying pre-compression as function of normalized mass ratio and applied impulse, 

(a) Plot in parameter space. 
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Figure 3.29 (cont’d): Maximum normalized force transmitted to the right boundary of 

the dimer for varying pre-compression as function of normalized mass ratio and 

applied impulse, (b) plots for decreasing levels of pre-compression. 

  

 

Figure 3.30: Traveling wave with 6-bead periodicity in the trail of a propagating pulse 

in a semi-infinite dimer chain with B = 0.303; (thick lines correspond to responses of 

heavy beads and thin ones to responses of light beads). 
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Figure 3.31: Traveling wave with 8-bead periodicity in the trail of a propagating pulse 

in a semi-infinite dimer chain with B = 0.3305; (thick lines correspond to responses of 

heavy beads and thin ones to responses of light beads). 

 

 

Figure 3.32: Standing wave with 4-bead periodicity in the trail of a propagating pulse in 

a semi-infinite dimer chain with B = 0.017; (thick lines correspond to responses of 

heavy beads and thin ones to responses of light beads). 
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Figure 3.33: Out-of-phase standing wave in the 2-bead reduced system for B = 0.75. 

 

 

Figure 3.34: Spatially periodic traveling wave with 4-bead periodicity in the 

homogeneous chain (B = 1) for unit normalized energy level [63]. 
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Figure 3.35: Spatially periodic traveling wave with 4-bead periodicity in the dimer chain 

with B = 0.75 for unit normalized energy level. 

 

 

Figure 3.36: Standing wave solution with 4-bead periodicity in the dimer chain with 

B̂ = 0.53 and normalized energy level equal to unity. 
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Figure 3.37: Bifurcation diagram for traveling and standing wave solutions for 4-bead 

periodicity (� = 4) and total energy of the reduced system equal to unity. 

 

 

Figure 3.38: Approximate depiction of acoustic and optical branches for infinite 

granular dimer chain for unit energy with for B = 0.9 and B = 0.53; the traveling waves 

for 4-bead periodicity S = 1/4 are depicted. 
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Figure 3.39: Localized standing waves with 4-bead periodicities for B = 0.9 and 

normalized total energy of reduced systems equal to unity: (a) # = 0.9601,  

(b) # = 1.0026. 
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Figure 3.40: Spatially periodic traveling wave with 6-bead (and 12-bead) periodicity in 

the dimer chain with B = 0.9 for unit normalized energy level. 

 

 

Figure 3.41: Spatially periodic traveling wave with 6-bead (and 12-bead) periodicity in 

the dimer chain with B = 0.2 for unit normalized energy level. 
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Figure 3.42: Frequencies of traveling and standing waves with 12-bead periodicities as 

functions of the mass ratio for the same fixed energy level; note absence of bifurcation 

in this case. 

 

 

Figure 3.43: Spatially periodic traveling waves with 8-bead periodicity in the dimer 

chain with B = 0.9 for unit normalized energy level. 
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Figure 3.44: Spatially periodic traveling waves with 8-bead periodicity in the dimer 

chain with B = 0.02 for unit normalized energy level. 

 

 

Figure 3.45: Frequencies of traveling and standing waves with 8-bead periodicities as 

functions of the mass ratio for the same fixed energy level; note absence of bifurcation 

in this case. 
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Figure 3.46: Correlation of the bifurcation diagram for traveling waves with 4-bead 

periodicity and the plot of normalized transmitted force in a finite dimer chain [91, 97]. 
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Figure 3.47: Modulationally unstable traveling wave with 6-bead periodicity for B = 0.9, 

(a) Waveform; (b) long-time preservation of traveling wave characteristics. 
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Figure 3.48: Correlation of the stability of traveling waves with 6-bead periodicity and 

the plot of normalized transmitted force in a finite dimer chain [91, 97]; regions of 

stable, modulationally unstable and unstable traveling waves are indicated. 

 

 

 

Figure 3.49: Experimental setup with a homogeneous granular chain. 
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Figure 3.50: Normalized transmitted force as function of the normalized mass ratio for 

the general 21 bead dimer chain; the three granular chains considered in this study are 

indicated in the plot. 

 

 

Figure 3.51: Experimental and numerical transmitted force at the force sensor for the 

homogeneous granular chain composed of 21 heavy beads at excitation level 1; no 

dissipation effects are assumed in the numerical model. 
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Figure 3.52: Comparison of experimental measurements and numerical simulations for 

excitation level 1, (a) dimer 2 (B = 0.125); (b) dimer 1 (B = 0.5); 

(c) homogeneous chain (B = 1). 
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Figure 3.53: Comparison of experimental measurements and numerical simulations for 

excitation level 3, (a) dimer 2 (B = 0.125); (b) dimer 1 (B = 0.5); 

(c) homogeneous chain (B = 1). 
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Figure 3.54: Experimental results of maximum normalized transmitted force measured 

at the site of the dynamical force sensor and comparison with the theoretical prediction; 

the three levels of force excitation are depicted. 

 

 

 

Figure 3.55: The 1:� elastic dimer chain. 
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Figure 3.56: Response profiles for solitary wave formation in the 1: 2 dimer with 

B = 0.05616 and % = 2.78 , (a) Velocities of light beads and bounding heavy beads; (b) 

velocity of the center of mass and relative velocity of the light beads; (c) fast dynamic 

components of the responses in (b); (d) corresponding slow varying forces )�	�����(�) 

and )�	�����(�) in the fast equations (3.52a). 
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Figure 3.57: Comparison between numerical and asymptotic eigenfunctions 

,�	������
�$ (�; 3) for B��$ ≈ 0.056597 and % = 3. 

 

 

Figure 3.58: Comparison between numerical and asymptotic eigenfunctions 

!�	������
�% (�; 3) for B&�% ≈ 0.17 and % = 3. 
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Figure 3.59: (a) Asymptotic eigenvalue spectra UB#�$(%)V and �B��%(%)� of (3.56) and 

(3.57), respectively, derived by WKB approximation; crossings of these spectral lines 

correspond to realization of solitary waves in the 1: 2 dimer; (b) detail of (a) (solid lines 

correspond to CM spectrum and dotted to the RD spectrum). 
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Figure 3.60: Solitary wave in the 1: 2 dimer chain with (a) B = 0.082 and % = 0.4935;  

(b) B = 0.06664 and % = 1.037; (c) B = 0.05969 and % = 1.822; (d) B = 0.05389 and  

% = 3.925, (1) Velocity profiles of heavy and light beads of an arbitrary periodic set, (2) 

fast oscillations of the center of mass and the relative displacement of the light beads. 
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Figure 3.61: Numerically computed solitary waves in 1: 2 dimer chains with parameters, 

(a) B = 0.175 and % = 0.3795; (b) B = 0.1169 and % = 1.122; (c) B = 0.225 and % = 3.569; 

(d) B = 0.578 and % = 6; in all cases we depict the velocity profiles of heavy and light 

beads of an arbitrary periodic set. 

 

 

Figure 3.62: The Nesterenko solitary wave [41] in the limiting homogeneous granular 

chain with B = 1 and % = 1, representing pure slow oscillations. 
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Figure 3.63: Normalized time shift for solitary wave propagation between adjacent 

heavy beads for the family of solitary waves listed in Table 3.7. 

 

 

 

Figure 3.64: Schematic of a finite dimensional 1: 2 dimer granular chain. 
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Figure 3.65: Normalized transmitted force in the finite 1: 2 dimer chain: (a) Transmitted 

force surface, (b) ‘slices’ of the surface corresponding to fixed %. 
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Figure 3.66: Force transmitted curve in 1: 2 dimer chain for % = 3. 
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Figure 3.67: Dynamics of the 1: 2 dimer chain with B = 0.37 and % = 3, (a) Velocity 

contours of the system in the space-time plane; (b) velocity time series of selected heavy 

beads. 
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Figure 3.68: Dynamics of the 1: 2 dimer chain with for B = 0.5675 and % = 3,  

(a) Velocity contours of the system in the space-time plane; (b) velocity time series of 

selected heavy beads. 
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Figure 3.69: Comparison of WKB approximation (3.68) for B�̃�$�3� = 0.068 and the 

numerical simulation of the LBVP (3.65) for B��$ ≈ 0.0699 and % = 3. 
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Figure 3.70: Global diagram of resonances in the 1: 2 dimer, (a) WKB asymptotic spectra 

UB#�$(%)V and �B
�%(%)� of (3.70) and (3.72), respectively, with crossings corresponding to 

resonances; (b) detail of (a). 
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Figure 3.71: Exact 1:4 resonance for the 1: 2 dimer with �%, B� = (0.8, 0.052) on the 1: 4�$ 

curve shown in Figure 3.70b; wavelet transform spectrum of the response of (a) the CM; 

(b) the RD of the pair of light beads. 
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Figure 3.72: Resonance in 1: 2 dimer with �%, B� = (0.4, 0.069) on the 1: 4�$ curve shown 

in Figure 3.70b; wavelet transform spectrum of the response of (a) the CM; (b) the RD of 

the pair of light beads. 
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Figure 3.73: Resonance in 1: 2 dimer with �%, B� = (1.1, 0.048) on the 1: 4�$ curve shown 

in Figure 3.70b; wavelet transform spectrum of the response of (a) the CM; (b) the RD of 

the pair of light beads. 
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Figure 3.74: Exact 1: 2 resonance for the 1: 2 dimer with �%, B� = (1.364, 0.1715); wavelet 

transform spectrum of the response of (a) the CM; (b) the RD of the pair of light beads. 
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Figure 3.75: Exact 1: 1 resonance for the 1: 2 dimer with �%, B� = (2.2, 0.42); wavelet 

transform spectrum of the response of (a) the CM; (b) the RD of the pair of light beads. 
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Figure 3.76: Comparison between the asymptotic model (3.74) and direct numerical 

simulations for the 1: 3 dimer with B = 0.0207 and % = 1, (a) Fast frequency component 

of the response of the center-of-mass of the light beads 26-28; (b) corresponding velocity 

of the center-of-mass of the same light beads. 
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Figure 3.77: Comparison between the asymptotic model (3.74) and direct numerical 

simulations for the 1: 3 dimer with B ≈ 0.05275 and % = 1, (a) Fast frequency 

component of the response of the center-of-mass of the light beads 26-28; 

(b) corresponding velocity of the center-of-mass of the same light beads. 

 

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

TIME

V
E

LO
C

IT
Y

 

 

TRUE SYSTEM: CM OF
 LIGHT BEADS
ASYMPTOTIC: O(1)+O(ε)
  OF FIRST MODE

OSCILLATING TAIL 
IN THE NUMERICAL

 RESULT

(a)

−10 −5 0 5 10

−0.04

−0.02

0

0.02

0.04

TIME

V
E

LO
C

IT
Y

 

 

ASYMPTOTIC
NUMERICAL

OSCILLATING TAIL IN
THE NUMERICAL RESULT

(b)



341 

 

 

 

 

Figure 3.78: Normalized bead velocities of a 1: 3 dimer chain with B = 0.49 and % = 1, 

(a) Space-time plot; (b) Velocity time series of selected intermediate heavy beads (time 

series are vertically displaced for clarity). 

 

BEAD INDEX

T
IM

E

 

 

20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

−0.2

0

0.2

0.4

0.6

0.8

(a)

0 10 20 30 40 50
0

0.5

1

1.5

2

TIME

V
E

LO
C

IT
Y

 

 

BEAD 25
BEAD 37
BEAD 49
BEAD 61

(b)



342 

 

 

Figure 3.79: Normalized transmitted force in a finite 1: 3 dimer chain for % = 1, with 

superimposed the asymptotic spectra �B��(1)� of the LBVP (3.76); for comparison we 

indicate the values of the mass ratio B where valleys of the plot occur. 

 

 

Figure 3.80: Normalized force transmitted in the 1: 2 dimer chain with B = 1 and high 

stiffness ratio %; note the strong pulse attenuation compared to the homogeneous 

granular chain with % = 1. 
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Figure 3.81: Comparison of velocity responses of, (a) a 1: 2 dimer with  B = 1 and 

% ≈ 114; (b) the corresponding effective 1: 1 dimer with effective mass ratio equal to 0.5. 
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Figure 3.82: Comparison of velocity responses of, (a) a 1: 3 dimer with B = 1 and 

% ≈ 114; (b) the corresponding effective 1: 1 dimer with mass ratio equal to 1/3. 
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Figure 3.83: Velocity responses of periodic sets of 1:� dimers with B = 0.05 and % = 1 

and (a) � = 3; (b) � = 8; (c) � = 14; (d) � = 20, note increasing inaccuracy of the 

asymptotics as �B increases. 

 

     

     

Figure 3.84: Velocity responses of a periodic set of the 1: 10 dimer with % = 1 and  

(a) B = 0.005; (b) B = 0.01; (c) B = 0.05; (d) B = 0.1, note increasing inaccuracy of the 

asymptotics as �B increases. 
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3.4 Tables 

 

Table 3.1: Parameter values B� for realization of solitary waves in the dimer 

� 

Numerical simulation 

of the G(B) fast 

dynamics (3.11) B� 

Numerical simulation 

of system (3.3) B� 

 

WKB approximation 

(3.20) B�̂ 

2 0.82835 1.0 0.56477 

3 0.278115 0.3428 0.25101 

4 0.146747 0.1548 0.1412 

5 0.091702 0.0901 0.09036 

6 0.062913 0.0615 0.06275 

16 0.0086818 0.00868 0.0088245 

 

 

 

Table 3.2: Resonances in the dimer system (3.3). 

Resonance 

1:� 

Asymptotic Model 

(3.15) 

Numerical Simulation 

of System (3.3) 

 B�̂
(�:�)

 #b( #b� B�
(�:�)

 #( #� 

1: 1 0.420 2.545 2.545 0.590 1.37 1.28 

1: 2 0.205 3.642 1.821 0.240 2.77 1.42 

1: 3 0.111 4.950 1.650 0.120 4.0 1.45 

1: 4 0.078 5.905 1.476 0.075 5.2 1.5 

1: 5 0.052 7.212 1.442    
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Table 3.3: Binary Collision Model for Realization of 1: 1 Resonance in the Dimer 

 

Table 3.4: Force transmitted (in newton) and normalized force transmitted (in brackets) 

in different dimer chain setups for varying impact velocities 

 

B → B = 0.125 B = 0.5 B = 1 

 

 
����0� = 0.2102	�/L 

max

Tr
F    
max

_( )
Tr norm

F  

256 

(0.875) 

199.77 

(0.683) 

299.56 

(1.02) 

m in

Tr
F  
min

_( )
Tr norm

F  

243 

(0.811) 

196.37 

0.655) 

292.37 

(0.976) 

 

 
����0� = 0.3	�/L 

max

Tr
F    
max

_( )
Tr norm

F  

395.6 

(0.864) 

307 

(0.67) 

464.57 

(1.0158) 

m in

Tr
F  
min

_( )
Tr norm

F  

385 

(0.829) 

298.8 

(0.643) 

457.77 

(0.9843) 

 

 
����0� = 0.4195	�/L 

max

Tr
F    
max

_( )
Tr norm

F  

569.97 

(0.855) 

460.2 

(0.69) 

684.3 

(1.026) 

m in

Tr
F  
min

_( )
Tr norm

F  

539.55 

(0.788) 

450.3 

(0.658) 

666.78 

(0.974) 
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Table 3.5: Spectrum of eigenvalues of the LBVP (3.56) for % = 3. 

B#̃�$(3)  

[Direct numerical 

simulation of (3.56)] 

\ B#�$(3)  

[WKB approximations 

(3.59) and (3.60)] 

0.03941 6 0.03923 

0.05744 5 0.056597 

0.09192 4 0.088433 

0.1742 3 0.15721 

0.51886 2 0.3537 

 

Table 3.6: Spectrum of eigenvalues of the LBVP (3.57) for % = 3. 

B�̃�%(3)  

[Direct numerical 

simulation of (3.57)] 

 
� 

B��%(3) 

[WKB approximations 

(3.62) and (3.63)] 

0.039417 13 0.0401 

0.04599 12 0.0467 

0.05463 11 0.0552 

0.06527 10 0.0662 

0.07984 9 0.0809 

0.09995 8 0.1011 

0.12881 7 0.1298 

0.17242 6 0.1728 

0.24302 5 0.2414 

0.36935 4 0.3606 

0.6357 3 0.5960 
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Table 3.7: Analytical and numerical values of the normalized parameters for a family of 

solitary waves of the 1: 2 dimer chain 

 

Analytical predictions 

(WKB approximation) 

Numerical values 

( )
(4:6)

, (0.0822,0.5)ε α =

 
( )

(4:6)
, (0.082,0.4935)ε α =ɶ ɶ  

(Figure 3.60a) 

( )
(4:7)

, (0.06978,0.9193)ε α =

 
( )

(4:7)
, (0.06664,1.037)ε α =ɶ ɶ

 
(Figure 3.60b) 

( )
(4:8)

, (0.06312,1.492)ε α =

 
( )

(4:8)
, (0.05969,1.822)ε α =ɶ ɶ

 
(Figure 3.60c) 

( )
(4:9)

, (0.05904,2.23)ε α =

 
( )

(4:9)
, (0.05616,2.78)ε α =ɶ ɶ

 
(Figure 3.56) 

( )
(4:10)

, (0.05631,3.148)ε α =

 
( )

(4:10)
, (0.05389,3.925)ε α =ɶ ɶ

 
(Figure 3.60d) 

 

Table 3.8: Truncated CM-spectrum UB#�$(3)V,\ = 2, … ,6 for the 1: 2 dimer with % = 3. 

B#̃�$(3) 

[Direct numerical 

simulation of (3.65)] 

B#̂�$ 

[Numerical simulation 

of the 1: 2 dimer system  

(Figure 3.64)] 

 

 
\ 

B#�$(3)  

[WKB 

approximation 

(3.70)] 

 

0.0324 0.033 6 0.0335 

0.0452 0.0424 5 0.0468 

0.068 0.08 4 0.0699 

0.115 0.16 3 0.1155 

0.2254 0.37 2 0.2264 
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Table 3.9: Truncated RD-spectrum �B
�%(3)�, L = 3, … ,12 for the 1: 2 dimer with % = 3. 

B
̃�%(3)  

[Direct 

numerical 

simulation of 

(3.66)] 

 

 
L 

B
�%(3)  

[WKB 

approximation (3.71-

3.72)] 

0.0497 12 0.0507 

0.059 11 0.0603 

0.071 10 0.073 

0.088 9 0.0901 

0.11 8 0.1141 

0.143 7 0.149 

0.196 6 0.2028 

0.282 5 0.292 

0.436 4 0.4563 

0.79 3 0.8112 

 

Table 3.10: Family of nonlinear resonances of the 1: 2 dimer on the 1: 4�$ curve of 

Figure 3.70b. 

WKB approximation Numerical simulation CM / RD 

frequency 

ratios 

( ), (0.0738,0.422)ε α =
 ( ), (0.069, 0.4)ε α =

 
1:4 / 4:14 

(Figure 3.72) 

( ), (0.06,0.7757)ε α =
 ( ), (0.052, 0.8)ε α =

 
1:4 / 4:16 

(Figure 3.71) 

( ), (0.054,1.241)ε α =
 ( ), (0.048,1.1)ε α =

 
1:4 / 4:17 

(Figure 3.73) 

( ), (0.0502,1.844)ε α =
 ( ), (0.045,1.7)ε α =

 
1:4 / 4:18 

( ), (0.04778, 2.563)ε α =
 ( ), (0.042, 2.3)ε α =

 
1:4 / 4:19 

( ), (0.0459,3.47)ε α =
 ( ), (0.04,3.35)ε α =

 
1:4 / 4:21 
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4. DYNAMICS OF GRANULAR CONTAINERS 

 

In our present study we have concentrated primarily on the homogeneous granular 

chains (Chapter 2) and periodic granular chains (Chapter 3). In the study of 

homogeneous granular chains we explored frequency band zones and their effect on the 

forced dynamics. We discovered frequency band zones in homogeneous granular 

chains under zero pre-compression, which are otherwise called the sonic vacuum due to 

the absence of characteristic speed of sound. It is interesting to note that localization 

was observed in harmonically base excited homogeneous granular chains wherein only 

low frequency signals can propagate spatially, while the high frequency signals lead to 

localized motions near the excited end and results in a non-zero constant compressive 

force at the fixed end. Such frequency band zones can be utilized to great advantage for 

vibration and shock isolation, for example in precluding the unwanted high frequency 

components of a harmonic excitation from reaching the object being protected. 

Although we considered damping in the system, the purpose was to suppress the 

transient dynamics, whereas the localization and the band zones were an intrinsic 

behavior of the granular chain.  

On the other hand, we considered impulsive excitation of the dimers and 

discovered resonance phenomena that lead to substantial attenuation of propagating 

pulses through these media. We emphasize that in these systems the applied 

shocks/impulses are attenuated by the intrinsic nonlinear dynamics of the dimer chains, 

and not by any dissipative mechanisms (indeed the theoretical studies were performed 

for systems that were dissipation-free). Other types of granular setups considered for 

such purposes are tapered granular chains, randomly decorated granular chains [104-

109]. Again, wave attenuation in these setups happens gradually over space. The 

objective of all these granular setups was to protect an object from propagating 

unwanted disturbances.  
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There are other methodologies that address these issues from a different 

perspective. These setups are called wave arresters or granular wave containers and 

they entrap the wave energy to a certain spatial domain of the granular chain. Although 

eventually the entrapped energy leaks and trickles through the boundaries of this 

spatial domain, however, the intensity is considerably reduced than the initially applied 

shock. The motivation for such a setup came from the scattering of the solitary wave at 

the interface of two homogeneous granular chains  [42, 45, 68]. As noted previously, 

solitary waves are the only mechanism for energy/disturbance propagation in 

homogeneous granular chains. It is observed that there is complete transmission of the 

solitary wave when propagating from a homogeneous chain of heavy beads to a 

homogeneous chain of light beads. Interestingly, although there is complete 

transmission, the single solitary pulse impinging on the interface disintegrates into a 

train of solitary waves of varying amplitudes in the chain of light beads [68]. On the 

other hand a solitary wave disintegrates into a transmitted and a reflected pulse when 

propagating from a chain of light beads to a chain of heavy beads  [44, 45, 68, 69, 167]. 

Although different materials can be used to construct such setups, for simplicity we 

assume here that the beads are made of the same material. With these observations in 

view, granular wave containers were conceptualized [69]. For example if a chain of light 

beads is sandwiched in between two chains of heavy beads, the propagating solitary 

wave disintegrates at the first interface (heavy to light beads chain) with total 

transmission and in contrast, at the second interface (light to heavy beads chain) each 

disintegrated solitary pulse transmits only a part of its energy and reflects the rest. As 

can be visualized, the initial solitary pulse is disintegrated into a train of solitary pulse 

at the interface and then allowed to leak energy gradually at the second interface. With 

this scenario in place, the wave energy is eventually localized or entrapped in the center 

layer of light beads with slight energy leakage through the interfaces. Wave containers 

have been previously studied by researchers with different interaction potentials and 
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chain lengths  [44, 69, 113]. Such phenomenon has also been experimentally studied in 

pre-compressed chains [167]. The primary objective of the study in this chapter is the 

application of binary collision approximation (BCA) [39] in predicting the number of 

disintegrated solitary pulses and their amplitudes. In fact BCA has been in use in 

granular media research and has provided surprisingly good correspondence with the 

exact numerical simulations [104, 110, 168]. Further we consider a harmonically base 

excited granular container and study the realization of PZ and AZ and explore the 

transitions region between these two zones. 

 

 

4.1 Theoretical Model 

 

In this study we consider a granular system wherein a homogeneous granular chain of 

type 2 (type 1) beads is sandwiched between two homogeneous granular chains of type 

1 (type 2) beads. As described previously, under certain conditions such a setup can act 

as granular wave containers. The assumptions made previously are still applicable, 

damping is disregarded, and the considered granular chains are assumed to be 

uncompressed. A schematic of a typical granular container is shown in Figure 4.1. As 

shown, the granular chain of � light (heavy) beads is sandwiched between two 

granular chains of � heavy (light) beads and with an applied impulse of strength � 

applied at the left end of the chain. 

The application of an impulse on the left end of the chain leads to the formation 

of solitary wave in the left homogeneous chain [41, 51, 52, 56]. It is worth noting that 

solitary waves in granular chains with Hertzian contact spans about 6-7 beads [42, 44, 

45] and for the formation of these waves a minimum chain length of about 10 beads [42, 

44] is necessary. Thus in all our numerical simulations we make sure that these 
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requirements are fulfilled and solitary wave is formed in the left homogeneous 

chain	(� ≥ 30) and impinges on the center layer (� beads).  

The equations of motion of the described granular setup are expressed as, 
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(4.1) 

 

It should be noted that the above equations of motion hold for � ≥ 3. We consider the 

mass of each bead on the left and right chain to be equal to �, and that of the center 

chain equal to C; moreover, the indices are in the ranges � < �, . > � + � + 1 and 

�� + 1� < 4 < (� + �). We have index 1 (2) corresponding to left and right (center) 

chain, � is the Young’s modulus, � is the Poisson’s ratio, � is the radius of the bead and 

� is the dimensional displacement of the beads. The subscript (+) indicates that the 

bracketed terms are considered only if they are positive and are neglected otherwise. 

Applying the non-dimensionalizations for displacement and time, 
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Hence, we have the non-dimensional equations of motion for � ≥ 3, 
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where primes denote derivatives with respect to non-dimensional time � and we 

introduce the non-dimensional parameters,  
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As can be seen the dynamics of the granular containers is governed by three non-

dimensional parameters; namely, the stiffness ratio (%), radius ratio (c) and the density 

ratio (2) of the two types of beads of the chain. Although there is an additional 
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parameter scaling the masses of the two types of beads, the mass ratio (B), this is 

dependent on c and 2. 

For the particular case of � = 1 we have, 
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(4.3b) 

 

Similarly, for the case � = 2 one can deduce the equations of motion by eliminating the 

equations involving the index � in (4.3a). 

 

 

4.2 Numerical Simulations 

 

To explore the efficacy of the system for wave containment, we use the maximum 

transmitted force to the right fixed boundary as a measure (as employed in Chapter 3). 

We mainly consider the case of B ≤ 1, which implies that the left and the right chains 

are heavy bead chains, whereas the center chain comprises of light beads. To this end, 

we fix a heavy bead at the right end of the chain and measure the maximum force 

transmitted (first pulse) as we vary c, B and �. The measured maximum force 

transmitted indicates the scattering experienced by the solitary wave as it propagates 

through the interfaces, and subsequent attenuation as it reaches the right fixed end of 



357 

 

the chain. As the solitary pulse propagates from the left chain to the center chain, it 

encounters the first interface (if B ≠ 1). This interface acts as a defect and leads to the 

scattering of the propagating pulse. 

In Figure 4.2 (unless stated all units are non-dimensional) we depict the 

normalized maximum force transmitted to the fixed bead for the case when the center 

layer is of the same material as the right and the left chains. Thus we have % = 1, B =

c�. The normalization of the transmitted force is with respect to the force transmitted 

for the case of homogeneous chain, i.e., % = 1,c = 1, 2 = 1. For the case of 

homogeneous chain, a solitary wave propagates without any scattering or attenuation 

and thus corresponds to the maximum transmitted force. 

If the center chain consists of only one light bead, the impinging solitary wave 

encounters an interface (B ≠ 1) and leads to the formation of transient breathers [64] 

[65]. Breathers are time-periodic spatially localized high frequency oscillators and are 

excited in this case due to the presence of the small mass intruder in between the two 

(left and right) homogeneous chains. The small mass intruder retains some amount of 

energy from the propagating pulse and executes high frequency oscillations while 

squeezed between the adjacent heavy beads. It should be noted that breathers are 

excited only when the intruder is of sufficiently small mass (B ≪ 1). Once B ≈ G(1), 

these breathers can no longer be excited. As can be seen for the case of � = 1, even for 

sufficiently small mass ratio the decrease in transmitted force is not substantial, whereas 

the transmitted force decreases drastically for increasing � for the same value of mass 

ratio. The excitation of transient breathers happens, in general, for small � and for 

sufficiently small B. This is due to the fact that the (internal) nonlinear normal modes of 

the light beads of the center chain are excited only for small �. On the other hand, 

propagatory dynamics are realized when � is sufficiently large, enabling the 

intermediate chain to support the formation of solitary waves. Such chains come under 
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the class of granular containers. A brief note on the excitation of transient breathers is 

provided in the next section. 

Another notable feature in Figure 4.2 is that for a particular mass ratio, the 

normalized force transmitted decreases with an increase in the number of light beads in 

the center layer. This is an interesting observation and an important feature of the 

granular containers. For sufficiently long center layer, depending on the magnitude of B, 

we observe two different phenomenon. If B < 1, the solitary wave from the left chain 

disintegrates into a train of solitary pulses at the first interface and, interestingly 

enough, there is complete transmission and no reflection back into the left chain. These 

solitary wave trains have decreasing amplitudes. As the highest amplitude pulse travels 

the fastest, it reaches the second interface and scatters once again into a right traveling 

transmitted pulse and a left traveling reflected pulse. Thus the solitary wave generated 

in the left chain by the initial applied impulse scatters twice and the maximum 

amplitude solitary pulse (the first pulse) reaching the fixed end is substantially lower 

than the solitary wave in the left chain generated by the applied impulse. This scenario 

is observed only when � is sufficiently long enough to support the solitary wave train. 

Thus the first pulse reaching the right fixed end is of lower amplitude and so are the 

subsequent pulses. The reflected solitary wave in the center chain which is a left 

traveling wave interacts with the first interface and again splits into a left traveling 

transmitted solitary pulse and a right traveling reflected solitary pulse. This 

phenomenon goes on until the energy of the reflected pulse in the center chain is 

completely spent. Thus we have wave energy entrapped in the center layer and these 

waves emit solitary waves to the left and the right chains whenever they interact with 

the first and second interfaces, respectively. This scenario is clearly depicted in Figure 

4.3a where we consider a 30:70:30 granular container excited by a unit impulse and 

present the instantaneous velocity profiles at specific time snapshots normalized with 

respect to the applied impulse (unity). 



359 

 

As a final note we consider the case of B = 2 in a 30:70:30 chain. The space-time 

plot is shown in Figure 4.3b. Interesetingly, there is partial transmission at the first 

interface and complete transmission at the second. Thus there is no effect of wave 

containment in this configuration. 

The next section provides a brief introduction to the excitation of transient 

breathers excited in a homogeneous granular chain with a small mass intruder. Such a 

phenomenon was observed in a granular container with small � and B ≪ 1. We discuss 

in brief the subtle features of transient breathers and how the energy is entrapped in 

such breathers. 

 

 

4.3 Excitation of Transient Breathers 

 

It is well known that any propagating disturbance in a homogeneous granular chain 

disintegrates into a train of solitary pulse, which is the principal mechanism of energy 

propagation in this nonlinear periodic system. But whenever a solitary wave encounters 

a defect (small mass intruder), the interaction leads to excitation of transient breathers 

at the site of the defect. Although no bead separation is observed during  solitary wave 

propagation, such separations (and ensuing bead collisions) are observed at the site of 

transient breathers. When separation between beads occurs, localized transient 

breathers are excited corresponding to repeated collisions of the small mass intruder 

with its heavy bead neighbors. This leads to high-frequency scattering of energy, and 

radiation of this energy to the far field of the granular medium in the form of low-

amplitude slowly modulated oscillatory pulses. Repeated excitation of localized 

transient breathers by an array of periodically placed intruders can result in drastic 

reduction of the amplitude of the pulse propagating through the granular medium. In 

contrast to traveling solitary waves, transient breathers are spatially localized standing 
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waves that confine energy (at least at a fast time scale). It indicates that this type of 

granular media can be designed for effective energy entrapment. Such phenomenon has 

been well studied in previous works [65, 67]. 

Considering the uncompressed granular chain of identical beads in Hertzian 

contact with a single intruder studied in [67] and depicted in Figure 4.1, an initial 

impulse applied to the free left boundary of the chain leads to the formation of a 

solitary wave that propagates undispersed until it impedes on the intruder, in this case 

� = 1 and B ≪ 1. Then a strongly nonlinear interaction between the intruder and the 

solitary wave takes place leading to fast-scale oscillations of the intruder. An example of 

this interaction is depicted in the plot of Figure 4.4 where the displacements of the light 

intruder and of its left and right neighboring heavy beads are shown for a unit impulse 

applied to the left free end of a 100:1:100 granular container. For this simulation the 

mass of the intruder is chosen as 5% (B = 0.05) of the mass of its neighboring beads 

(% = 1,c = 1). Clearly two modes of intruder-chain interaction are inferred from this 

plot. 

The first mode of interaction corresponds to ‘fast’ oscillation of the light intruder 

under heavy compression from its left and right neighbor beads which themselves 

undergo ‘slow’ motions. There is no separation between these three beads so the 

dynamics is smooth and governed by the Hertzian law interaction between beads under 

compression. The second mode of interaction corresponds to separations and collisions 

between the intruder and its neighboring heavy beads and the resulting dynamics is 

non-smooth. The ensuing (elastic) collisions between the intruder and its left and right 

neighbors give rise to a localized transient breather [67] at the site of the intruder, in the 

form of a ‘fast’ (non-smooth) oscillation of the intruder with varying amplitude and 

frequency and ‘slow’ motions of its neighboring beads. As discussed in [65], the 

excitation of this breather acts in essence as ‘energy trap’ since it is a high-frequency 

energy scatterer. Under certain conditions the excitation of such transient breathers can 



361 

 

drastically reduce the amplitude of a pulse propagating through granular medium, e.g., 

by placing such intruders periodically the wave energy can be periodically trapped in 

these breathers and thus the pulse can be efficiently and effectively attenuated. 

In the previous section we described the phenomenon of wave containment in 

granular containers. The dynamics of such granular systems has been well studied in 

the literature cited therein. In estimating the energy retained in the center chain and the 

energy propagated to the right chain it is important to ascertain the amplitudes of 

scattered solitary waves at the two interfaces. To this end, it is noted that a simplified 

model of binary collisions can provide very good approximations. The next section 

describes the application of BCA in this regard and compares it to the exact dynamics of 

the original system. 

 

 

4.4 Binary Collision Approximation 

 

Let’s consider ��� = D and ����� = :, which are the velocities of beads of mass 1 and B at 

the interface between the left and the center chains, respectively. In the binary collision 

approximation – BCA, it is considered that at any instant of time there can be 

interaction between at most two beads. Further, it is assumed that the interaction is 

purely elastic and no dissipation occurs during this interaction so the total energy and 

momentum are conserved.  

Applying conservation of momentum for the two particles at the interface we 

have, 

 

0 0 1 1
w v w vε ε+ = +                                                      (4.4a) 
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where D�, :� are the initial velocities of the velocities of beads of mass 1 and B at the 

interface between the left and the center chains, respectively. But we have that D� = �,

:� = 0, i.e., we provide an impulse of magnitude � at the left end of the chain which 

propagates un-attenuated and impinges on the interface. Thus we have D� + B:� = D� =

�. As the interaction is purely elastic, we have the coefficient of restitution 8 = 1, 

 

1 1

1 1 0

0 0

v w

e v w w

w v

−
= ⇒ − =

−                                               
(4.4b) 

so we have that, 

0 0

1 1

(1 ) 2
;  

1 1

w w

w v

ε

ε ε

−
= =

+ +                                                 
(4.4c) 

 

From these relations we observe that if B < 1,D� > 0 and :� > 0. As the center chain is 

homogeneous, the first bead (of mass B) of the center chain interacts with the second (of 

mass B), thus the conservation of momentum yields �:� + 9�� = (:]� + 9�), where 9�,� 

denotes the velocity of second bead of the center chain before (9� = 0) and after 

collision respectively and :]� is the velocity of first bead of the center chain after 

collision. Applying the relation of coefficient of restitution, we have 9� − :]� = :�. 

Solving these two equations we have 9� = :� > 0, :]� = 0. This indicates that the first 

bead of the center chain becomes stationary after colliding with the second bead of the 

center chain. This transmitted pulse propagates un-attenuated in the center chain. As 

the heavy bead also has a positive velocity (D� > 0), it collides with the first bead of the 

center chain which is stationary leading to the second transmitted pulse with the heavy 

bead still having a positive velocity (D� > 0). In essence it so happens that the bead of 

mass unity (last bead of left chain) incessantly collides with the bead of mass B (first 

bead of center chain) and loses its energy gradually. This leads to a series of solitary 

pulses being injected into the center chain. The magnitude of each subsequent solitary 
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pulse can be obtained by recursively considering conservation of momentum and the 

relation for the coefficient of restitution: 

 

1 2 2

1 2 2

w w v

w w v

ε= +

= − +                                                               
(4.5a) 

 

Solving the above equations we have, 
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(4.6a) 

 

Further we can estimate the amplitude of the � −th solitary pulse as follows, 
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(4.6b) 

 

where D� and :� are the velocities of the beads of mass unity and B at the first interface 

after � collisions, respectively. Thus the heavy bead of mass unity emits solitary pulses 

of monotonously decreasing amplitudes. In other words, :� is the velocity amplitude of 

the � −th solitary wave generated at the interface. In the following results we have 

considered that the beads are made of the same material, thus % = 1, 2 = 1, B = c�. 

In the first set of simulations we consider B < 1. As described earlier, there is 

complete transmission of the impeding solitary wave, which disintegrates and leads to 

a solitary wave train. The top plot in the Figure 4.5a (B = 0.216) corresponds to the 
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original system, and the bottom one to the BCA model. As can be observed, the 

amplitude of the solitary wave in the left chain is of amplitude unity for both the 

original system and the BCA model. In the original system we observe that the 

impinging solitary wave disintegrates into to a train of solitary waves which propagates 

in the center chain and there are no reflected pulses at the interface. This scenario is 

fully captured by the BCA model presented in the bottom plot of Figure 4.5a. Moreover, 

the BCA model predicts quite well the number of disintegrated solitary waves in the 

center chain. In Figure 4.5b we provide a comparison of the amplitudes of the solitary 

waves in the center chain as predicted by BCA versus the corresponding amplitudes in 

the original system. The estimations by the BCA model closely match that in the 

original system. 

It is worth noting that as the mass ratio increases, the number of disintegrated 

solitary waves decreases. Even this is very well captured by the BCA model, whereas 

the amplitudes predicted by BCA model correspond much better than in the previous 

case [as shown in Figure 4.6 (B = 0.512) and Figure 4.7 (B = 0.729)]. But, as expected, for 

B = 1, there is complete transmission without disintegration of the solitary wave. 

Now we consider the dynamics at the second interface with -� > 0 being the 

amplitude of first solitary wave reaching the second interface (in other words the 

velocity of the last bead of the center chain) and @� = 0 being the velocity of the first 

bead of the right chain. Applying again conservation of momentum at the second 

interface we have, 

 

0 0 1 1
z y z yε ε+ = +                                                        (4.4a) 

1 1

1 1 0

0 0

z y
e z y y

y z
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Solving these two equations we have: 

 

0 0

1 1

(1 ) 2
;  

1 1

y y
y z

ε ε

ε ε

−

= − =

+ +                                                  
(4.4c) 

 

It can be observed that for -� > 0 and B < 1, we have that -� < 0 and @� > 0. This 

implies a transmitted solitary pulse and a reflected pulse at the second interface. The 

transmitted pulse reaches the right far end of the granular container, whereas the 

reflected pulse travels left and encounters the first interface and again leads to a 

transmitted pulse and a reflected pulse. Thus the first solitary pulse reaching the right 

end of the granular container has an amplitude of @� = 2B-�/(1 + B) = 4BD�/(1 + B)�, 

where we consider -� = :� = 2D�/(1 + B). For the case of B = 0.216 and D� = 1, we 

have @� = 0.5843, whereas from the numerical simulation of the original system we 

have @̃� = 0.679. For the other cases shown in Figure 4.6 (B = 0.512) we have @� =

0.8958 and @̃� = 0.9337; and @� = 0.988 and @̃� = 0.9754 for the case of B = 0.729 

(Figure 4.7). From these results it is clear that the granular containers are very efficient 

for smaller values of mass ratio, but the amplitudes of the solitary waves predicted by 

the BCA loses accuracy for lower values of the mass ratio. 

Now considering the case of B > 1, we observe that we have a transmitted pulse 

and a reflected pulse at the first interface. The beads at the first interface come into 

contact only once during this interaction. For B = 2, the binary collision model predicts 

that D� = −0.267 and :� = 0.7334 for D� = 1 and thus there is no further pulse 

disintegration. On the other hand, for the original system the amplitude of the 

transmitted pulse is 0.745 and of the reflected pulse −0.208. Furthermore, the 

transmitted pulse experience complete transmission and disintegrates into a solitary 

wave train of decreasing amplitudes at the second interface. Thus there is no wave 

container phenomenon in this case as described previously (cf. Figure 4.3b). 
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Until now we considered systems with % = 1, i.e., systems wherein all beads are 

made of materials having similar stiffness characteristics. It should be noted that the 

parameters % and B are related due to the fact that both depend on material properties, 

i.e., % is a parameter dependent on Young’s modulus and Poisson’s ratio, whereas B 

(= 2c�) depends on the densities of the two materials. Hence, practically these two 

parameters cannot be independently chosen. It follows that if any two materials are 

chosen, % and 2 will be fixed; the only parameter that still can be varied is the radius 

ratio c leading to the variation of the mass ratio B.  

A primary drawback of the BCA model is its inability to incorporate the material 

parameters such as Young’s modulus, Poisson’s ratio in the dynamical analysis. As this 

model is based on pure momentum transfer considerations, it takes into account only 

the masses of the beads, so the stiffness of the beads is of no importance. Hence, even if 

one incorporates the Hertzian interaction law in the BCA, the time of interaction 

between the beads would change with a change in %, but the final momentum of each 

bead would remain the same. Thus the BCA cannot be applied for a general case of 

% ≠ 1. In addition, and because of the assumed instantaneous interactions between 

beads in the BCA, only single bead to bead interactions exist and (the more realistic) 

simultaneous interactions between more than two beads are excluded in the analysis. 

This simplifies the dynamics but it leads to the inaccuracies and mismatches described 

previously. 

 

 

4.5 Propagation and Attenuation Zones in Granular Containers 

 

In the previous section we particularly considered the granular containers excited by 

impulses and showed the phenomenon of wave containment and the corresponding 

applicability of BCA. Furthermore, we considered the beads in the chain made of 
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materials with similar elastic properties. In this section we consider a similar setup but 

with harmonic excitation at the left end while the right end being fixed. The primary 

objective of this study is the realization of PZ and AZ in this class of granular chains 

and study the transition zone between these phases. To this end we consider a 30:50:30 

granular container with a normalized harmonic excitation of &sin('�), where & and ' 

are the normalized amplitude and frequency respectively. We consider a particular 

mass ratio and sweep the harmonic excitation frequency. The time average of the 

transmitted force measured at the fixed end is considered as an indication of the PZ or 

AZ. The average transmitted force for the case of B = 0.729 for & = 5 is presented in 

Figure 4.8. The numerical simulation is considered for a total of 10000 time units and 

the force is averaged over the last 1000 time units. As it is expected, for lower 

frequencies of excitation the system is in PZ and the energy is distributed spatially in 

the chain. This is evidenced by the time snapshot of the displacement response of the 

beads in Figure 4.9a. Furthermore, Figure 4.9b depicts the transmitted  force as a 

function of time. Thus it can be ascertained that the average transmitted force over the 

last 500 time units is non-zero. In contrast, for an excitation frequency in the AZ, we 

observe localization near the excitation end and spatial attenuation towards the fixed 

end (Figure 4.10a), whereas the transmitted force response (Figure 4.10b) shows almost 

zero force indicating that energy from the excited end no longer is reaching the fixed 

end. These behaviors are previously observed in homogeneous granular chains. 

 The most interesting feature in Figure 4.8 is the transition region between the PZ 

and the AZ. In fact, the transition is not a single point but happens over a range of 

frequencies. It is interesting to note that both AZ and PZ can be realized in this 

frequency range. In the following series of simulations we show the response of the 

granular container excited by two frequencies which are sufficiently close but exhibit 

propagatory and attenuatory behaviors. Consider the response of the system for 

' = 1.568 and 1.572 in Figure 4.11a, b respectively. Interestingly enough, although the 



368 

 

frequencies are sufficiently close, they exhibit contrastingly different behaviors. While 

response at ' = 1.568 is propagatory, the response at ' = 1.572 is attenuatory. Such a 

behavior is further evidenced by the response of the system at ' = 1.856 and 1.864 in 

Figure 4.12a, b respectively. It is worth noting that the considered granular chain is high 

dimensional nonlinear system and chaotic behavior is quite expected. In fact even in the 

case of two degree of freedom granular system, chaos was observed on the Poincaré 

map (cf. Figure 2.2). Thus the contrasting behavior of PZ and AZ for sufficiently close 

excitation frequencies can be attributed to the sensitive dependence on initial 

conditions, a distinct feature of chaotic systems. In essence, both AZ and PZ can be 

realized in this transition region with very slight variation in excitation frequency. This 

result can be seen in close conjunction with the experimental results of Section 2.2.1.3 

wherein the transition region could not be captured experimentally due to the nonlinear 

resonance and chaotic behavior. 

 

 

4.6 Conclusions 

 

In conclusion, granular containers exhibit very interesting dynamics. In the present 

analysis we have considered a normalized system where we have three non-

dimensional material and geometric parameters. The three primary parameters 

governing the dynamics are the stiffness, radius and density ratios between the two 

different types of beads. It should be noted that the mass ratio depends both on the 

radius ratio and on the material properties. In our work we focus mainly on systems 

composed of beads of the same material; so we have stiffness, density ratio equal to 

unity and the mass ratio depending only on the ratio of radii.  

In this case we observed two different behaviors. If the mass ratio is less than 

unity, the solitary wave disintegrates at the first interface between the heavy (left) and 
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the light (center) chains. An impinging solitary pulse disintegrates into a train of 

solitary waves which propagates in the center chain. Once these waves impinge on the 

second interface of the light (center) and the heavy (right) chain, they split into two 

solitary waves, one reflected wave traveling in the center chain and the other 

transmitted wave propagating in the right chain. The reflected wave in the center chain 

is entrapped and wave containment results. Although the wave energy leaks through 

the two interfaces gradually (at a slow time scale), the magnitudes of these ‘leaked’ 

waves are very much reduced in comparison to the initial applied impulse.  

In contrast, a chain with mass ratio greater than unity exhibits no wave 

containment effect. To this end, we applied the Binary Collision Approximation for this 

system and observed that the BCA model predicts the dynamics well. This simple 

model predicts the number of disintegrated solitary waves and their amplitudes. For 

smaller mass ratios, the number of disintegrated solitary waves increases. Although the 

BCA predicts the number of pulses quite well, the amplitude predictions are less 

accurate. Whereas for higher mass ratios, BCA predicts both the amplitude and the 

number of solitary pulses quite well. In conclusion, BCA can be effectively employed in 

estimating the amplitudes of disintegrated solitary waves and the energy contained in 

the center chain. 

 Finally we have considered harmonically base excited granular containers. 

Previously we explored the AZs and PZs in homogeneous granular chains. Such 

frequency band zones are not particular to homogeneous chains, but can also be 

realized in granular containers. We observe that for a particular mass ratio (B), the lower 

excitation frequencies are propagated spatially, whereas the higher frequencies are 

attenuated. The transition between these zones exhibit behavior which is sensitively 

dependent on the excitation frequency. In essence both propagatory and attenuatory 

behaviors can be realized for very close excitation frequencies.  
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4.7 Figures 

 

 

Figure 4.1: Schematic of a granular container 

 

 

 

 

Figure 4.2: Normalized maximum transmitted force at the fixed right boundary for 

� � 1, � � 1. 
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Figure 4.3a: Instantaneous normalized velocity in a granular container for % = 1, 

	2 = 1,c ≈ 0.368, B ≈ 0.05.  

 

 

 

 

Figure 4.3b: Instantaneous normalized velocity in a granular container for % = 1, 

	2 = 1,c ≈ 1.26, B ≈ 2. 
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Figure 4.4: Excitation of transient breather in 100:1:100 granular container for B = 0.05. 
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Figure 4.5a: Comparison of original system (top plot) and the BCA (bottom plot) model 

for B = 0.216. 
 

 

Figure 4.5b: Solitary pulse amplitude comparison of original system and the BCA model 

for B = 0.216. 
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Figure 4.6a: Comparison of original system (top plot) and the BCA (bottom plot) model 

for B = 0.512. 

 

 

Figure 4.6b: Solitary pulse amplitude comparison of original system and the BCA model 

for B = 0.512. 
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Figure 4.7a: Comparison of original system (top plot) and the BCA (bottom plot) model 

for B = 0.729. 
 

 

Figure 4.7b: Solitary pulse amplitude comparison of original system and the BCA model 

for B = 0.729. 
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Figure 4.8: Average normalized force in a 30:50:30 granular container with B = 0.729 

harmonically excited with an amplitude & = 5.  
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Figure 4.9: (a) Time snapshot of the displacement variation; (b) Normalized transmitted 

force in a 30:50:30 granular container with B = 0.729 harmonically excited with an 

amplitude & = 5 and frequency ' = 0.94. 
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Figure 4.10: (a) Time snapshot of the displacement variation; (b) Normalized 

transmitted force in a 30:50:30 granular container with B = 0.729 harmonically excited 

with an amplitude & = 5 and frequency ' = 2.65. 
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Figure 4.11: Time snapshot of the displacement variation in a 30:50:30 granular 

container with B = 0.729 harmonically excited with an amplitude & = 5 for  

(a) ' = 1.568 and (b) ' = 1.572. 
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Figure 4.12: Time snapshot of the displacement variation in a 30:50:30 granular 

container with B = 0.729 harmonically excited with an amplitude & = 5 for  

(a) ' = 1.856 and (b) ' = 1.864. 
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5. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

 

The primary objective of this work was the study of one dimensional granular chains. In 

this regard we have considered both homogeneous and dimer chains and analyzed 

their nonlinear dynamics and acoustics. Further, some of the most important and 

intriguing results have been verified experimentally. As an epilogue, in this chapter we 

provide a synopsis of the derived results and provide some directions for future 

research. 

The first granular system under consideration in this work is the homogeneous 

chain with fixed boundary conditions. Beginning with the simplest case of two bead 

system and the NNMs supported by them, we progressed to higher order systems and 

studied the corresponding NNMs. To our knowledge, this is first such systematic study 

of time-periodic standing waves (nonlinear normal modes – NNMs) in this class of 

strongly (essentially) nonlinear dynamical systems. Owing to the non-cohesive nature 

of the considered granular chains, the definition of NNMs had to be broadened to 

include time-periodic orbits that may not necessarily be synchronous. When the 

realized NNMs are depicted on the frequency-energy plane, the out-of-phase NNM was 

found to split the plane into two zones (bands). The normal modes and the 

subharmonics were realized in the zone below the out-of-phase NNM, which was 

denoted as the propagation zone – PZ or propagation band – PB, whereas the 

complementary zone was denoted as the prohibited band (attenuation zone – AZ or 

attenuation band – AB) where only near field solutions are realized. The effect of such 

frequency zones is quite well pronounced when the homogeneous chain is 

harmonically excited in these distinct frequency zones. To this end we have observed 

that for fixed amplitude of excitation, the low-frequency dynamics is strongly nonlinear 

and the beads execute strongly nonlinear oscillations. This represents the propagation 

band of the dynamics. With the system excited in the attenuation zone, it was observed 
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that the system entered into a state of permanent compression with the response 

localized close to the excitation source and attenuates away from it. Thus, a 

homogeneous chain behaves as a low pass filter, transmitting only low 

frequency/energy harmonics and attenuating (or spatially localizing) high 

frequency/energy harmonics. Although the NNMs were realized in dissipation free 

systems, the harmonically excited granular chains possessed weak viscous damping to 

suppress the initial transients. 

The first experimental study in this work comes in the form of the verification of 

the frequency band zones in homogeneous granular chains. To this end we have 

considered a simple case of two bead system excited by harmonic excitation at one end 

while providing fixed boundary condition at the other. The previously described 

frequency zones were captured according to theoretical predictions. Although in this 

experimental study we have considered a simple two bead system, any higher 

dimensional granular chains would exhibit a similar behavior and these frequency band 

zones should be realized in these systems as well. 

Although the dynamics in the PB is strongly nonlinear and exhibits separation 

between beads, the dynamics inside the AB is weakly nonlinear and beads no longer 

separate so their dynamics is analytically tractable. From the analytical study it is 

deduced that the permanent compression experienced by the beads is independent of 

the excitation frequency and varies linearly in space. With increase in the granular chain 

length, the compression experienced by the first bead adjacent to the excitation end 

increases in the AB, and thus the time of interaction of the first bead with the exciter 

decreases, as does the energy input to the system. It is worth noting that due to the 

incessant bead separations possible in the PB, there are no known analytical techniques 

to study the system dynamics, so we only resort to direct numerical simulations. 

The final part of the study of homogeneous granular chains is concerned with the 

systematic classification of the NNMs based on the concept of effective particles. 
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Effective particles are packets of energy accounting for the kinetic energy of a 

propagating pulse, or for momentum transfer in the chain. Although there are 

methodologies to classify NNMs in strongly nonlinear systems, these are seldom 

applicable in the case of interaction potentials that are non-cohesive (tension free) and, 

hence, non-smooth. Thus a new methodology for the classification of NNMs in these 

highly degenerate strongly nonlinear systems is devised. This methodology introduces 

auxiliary models of effective-particles (clusters) oscillating out-of-phase with respect to 

each other (i.e., balanced by the translational momentum). Additionally, vibro-impact 

models of effective-particles were introduced that allowed analytical estimation of the 

maximum velocities of the oscillating effective-particles. This classification 

methodology was applied to a granular chain with Hertzian interaction potential, but it 

was not certainly limited to that considered system. In fact the methodology holds for 

any general non-cohesive nonlinear interaction potential (i.e., of the general form 

�� ∝ 
� , � > 1) where separation between the interacting beads is allowed. 

 Although it may seem that application of effective particles is limited to the 

classification of the NNMs, it is seldom so. Indeed, the concept of effective particles has 

been successfully applied to model primary shock propagation in layered media with 

granular interfaces excited by short time duration shocks. Primary pulse propagation in 

granular layers is mainly dominated by overall momentum transfer, and, thus, by the 

excitation of the lowest-frequency in-phase NNM of these layers. In turn, the in-phase 

NNM can be effectively modeled by a single effective particle (as all the beads are 

moving in unison) and provides good correspondence with numerical results. In 

essence, the concept of effective particle can be further extended to two and three 

dimensional granular setups to model primary pulse transmission, and permits drastic 

simplification of the strongly nonlinear acoustics of many-bead granular chains. 

 The second class of granular systems considered in this Thesis is diatomic or 

dimer chains, more particularly periodic dimer chains of type 1:�. We have primarily 
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considered the propagatory dynamics of this class of dimer chains. It is interesting to 

note that no parameters were involved in the dynamical evolution of homogeneous 

chains, in contrast the dynamics of 1: 1 and 1:�	(� > 1) dimers is governed by one 

(mass ratio) and two (mass and stiffness ratio) parameters, respectively. Owing to the 

periodic variation in mass and or stiffness, it is quite intuitive to expect that a pulse 

propagating in this class of systems scatters and disperses. In fact this is true for a 

typical value of the system parameters. However, it was found that at special values 

(discrete spectrum) of system parameters a pulse can propagate without attenuation or 

distortion, forming a solitary wave. Although propagating primary pulses in the dimers 

have been observed previously [42, 89, 90] and have been denoted as solitary waves, 

they do not exactly conform to the solitary definition of [17], whereas the families of 

solitary waves presented in this work do conform to this definition. The formation of 

solitary waves has been attributed to the phenomenon of anti-resonance wherein the 

oscillatory tails formed in the trail of the propagating primary pulse is completely 

eliminated. The solitary waves are realized at the discrete spectrum of mass ratios in 

1: 1 dimer and at the discrete ordered pairs of mass and stiffness ratios in 1: 2 dimers. In 

fact, it is an interesting revelation that a general 1:�	(� > 2) dimer does not support 

such ‘exact’ solitary waves, although  near solitary waves can be realized in these 

systems, as well, based on the excitation of the in-phase NNM as the light beads of the 

dimer are compressed between the adjacent heavy beads. 

 In the case of anti-resonance (solitary wave formation), the oscillatory tail in the 

trail of a propagating primary pulse was completely annihilated. The contrasting effect 

of maximization of that oscillating tail was attributed to the reverse phenomenon of 

resonance. Indeed, as the oscillating tail maximizes its amplitude, the propagating 

primary pulse attenuates substantially due to energy radiation through traveling waves 

(in the oscillating tail) to the far field of the medium. Hence, resonances can lead to 

substantial passive attenuation of propagating pulses in heterogeneous media, such as 
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the dimers considered herein. Similar to the case of anti-resonances, nonlinear 

resonances are realized at a discrete spectrum of mass ratios in 1: 1 dimers, and at 

discrete ordered pairs (spectra) of mass and stiffness ratios in 1: 2 dimers. From a 

practical point of view and the employment of dimers in shock attenuation and 

mitigation, resonances play the most important role. Furthermore, although exact 

resonances cannot be realized in a general 1:�	(� > 2)  dimer chain, still substantial 

pulse attenuation is observed at near-resonances that can be realized based on the first 

mode of oscillation of the light beads when compressed between the heavy beads. 

 The second experimental study reported in this work comes in the form of 

verification of anti-resonances and resonances in 1: 1 dimers. The experiment considers 

dimer chains at three different mass ratios, namely, near anti-resonance, 1: 1 resonance 

and 1: 1 anti-resonance (B = 1). The experimental results are found to be in very good 

correspondence with theoretical/numerical predictions and positively verify these 

phenomena in dimer chains. An experimental linear viscous damping coefficient has 

been deduced in this process to model the observed dissipation in granular chains. 

A detailed study of oscillatory tails in 1: 1 dimers at arbitrary values of their mass 

ratio revealed that the oscillations therein are not random, but rather consist of strongly 

nonlinear traveling waves with varying spatial periodicity (wavenumbers). The 

amplitude of these waves are functions of energy, but the excitation of traveling waves 

of a certain wavenumber appears to depend only on the mass ratio of the dimer. With 

this observation in view we have considered a detailed study of traveling waves in 

reduced systems which are dimer chains consisting of an even number of beads and 

possessing periodic boundary conditions. For a particular periodicity of the reduced 

system, interesting bifurcations were observed with the mass ratio being the bifurcation 

parameter. For the case of four bead periodicity, the traveling wave bifurcated to a 

standing wave and ceased to be excited below a certain value of the mass ratio. The 

bifurcation point was very close to the mass ratio at which maximum attenuation was 



386 

 

observed in the corresponding finite dimer chain, indicating that the bifurcation of 

traveling waves influenced the maximum attenuation of the pulse in this range of mass 

ratios. It is interesting to note that such bifurcation was not observed for any other 

periodicity, although it was found that the stability of the traveling waves changed 

when the mass ratio was varied. In view of these observations, it was conjectured that 

the excitation of traveling waves is intrinsically related to the resonance mechanism and 

the subsequent attenuation of the propagating pulse. 

Finally, we considered the dynamics of granular wave containers. Although 

these systems have been explored previously, we show the applicability of the 

simplified binary collision approximation (BCA) model in the analysis of its dynamics. 

Although the BCA is a simplified model, the dynamics of granular wave containers was 

well captured by this approximation. The BCA not only well predicted the amplitude of 

scattered solitary pulses, but also predicted correctly the resulting solitary wave trains. 

The main drawback of this methodology is its inability to incorporate the stiffness 

mismatch between beads. However, if the stiffness disparity is included in the model, 

the interaction time changes but the final velocity of the interacting beads remains 

unchanged. Thus the BCA is effective only for granular chains consisting of beads made 

of the same or similar material properties. We have further considered the granular 

container excited by harmonic base excitation and numerically explored the PZ and AZ. 

The chaotic behavior in the transition region between these zones has been shown 

numerically. 

Regarding suggestions for future work, there are numerous potential extensions 

of the topics addressed herein. In this Thesis, NNMs in one dimensional homogeneous 

granular chains have been explored. As a further step, such normal modes can be 

considered for general 1:� dimer chains. It is worth noting that, perhaps surprisingly, 

the NNMs of homogeneous chains did not exhibit any bifurcations with respect to 

energy or to any other system parameter. It would be interesting to explore possible 
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NNM bifurcations in granular dimers where the mass ratio for the case of 1 :1  dimer, or 

the mass and stiffness ratios greatly influence the dynamics. Furthermore, it would be 

worth exploring the frequency band zones in such dimers which may not just depend 

on frequency, but also on system parameters. 

In addition, NNMs in two and three-dimensional matrix of beads can be 

explored. In fact a new classification methodology based on the concept of effective 

particles can be formulated to classify the different classes of modes realized. However, 

it should be noted that a two- or three-dimensional matrix of beads may not necessarily 

be rescalable with respect to energy and thus the energy will become an additional 

bifurcation parameter in the dynamical evolution of the realized normal modes. 

 The periodic dimer chains considered in this work, i.e., 1:� dimers is a particular 

subclass of the general periodic C:� dimer chains. It is worth noting that the dynamics 

of such general C:�	(C > 1,� > 1) dimer chains is governed by two stiffness 

parameters and the mass ratio, whereas if � = 1, the dynamics is governed by a single 

stiffness ratio and the mass ratio. Such general periodic dimer chains can reveal 

interesting internal resonance mechanisms for the attenuation of propagating primary 

pulses. Moreover, one can explore new families of solitary waves in these systems. 

 It was observed that in the case of 1: 1 dimer with mass ratio of B ≈ 0.59, beating 

wavepackets were excited once the chain length exceeded 85 beads. Although near 1: 1 

resonance conditions are realized at this mass ratio, the wave packet seldom attenuates 

and does not radiate oscillating tails. This is an interesting dynamical phenomenon and 

can be studied analytically owing to the fact that the beads no longer separate during 

this propagatory phase. 

It was noted previously that solitary waves are the main mechanism for energy 

propagation in homogeneous granular chains and dimer chains (at the specific discrete 

values of the system parameters). Thus any arbitrary signal disintegrates into a train of 

solitary waves with varying amplitudes and propagate with corresponding 
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proportional velocities. This behavior is observed only numerically, however, there are 

no analytical theories to model this disintegration of the signal and estimate the 

amplitudes of the disintegrated solitary waves. An interesting prospective research can 

be initiated to formulate an exact or an approximate analytical methodology in this 

regard. 

As a further topic, it would be of interest to extend the concept of effective 

particles to heterogeneous granular media in one, two or three dimensions and to study 

reduced order models based on this concept. This would enable predictive design of 

these strongly nonlinear media by providing accurate estimates of primary propagating 

pulses. In addition, it would contribute to the design of granular interfaces in layered 

media and to the design of new classes of highly discontinuous acoustic metamaterials 

with tunable material properties and the capacity to adapt their dynamics and acoustics 

to different forcing environments. 

In the process of experimental study of resonances and anti-resonances in 1: 1 

dimer chains, we have considered a velocity proportional linear viscous damping. 

Although this simple damping model proves quite effective, a nonlinear damping 

model for the bead interaction seems more appropriate. A more careful experiment 

with the interaction of two beads with varying radii needs to be considered to ascertain 

the exact damping mechanism. 

 The existence of solitary waves in discrete homogeneous lattices is proved by 

Friesecke et al. [43] and has been extended to the particular case of granular chains with 

Hertzian interaction by MacKay [58] and Ji et al. [60]. In this work, realization of 

families of solitary waves in 1: 1 and 1: 2 dimers has been shown numerically and 

approximate asymptotic methods are invoked to find the discrete spectra of mass and 

stiffness ratio for their realization. But there are no particular existence theorems for the 

realization of solitary waves in dimer chains. An interesting prospective research is to 

formulate an appropriate existence theorem in this regard. 
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