
Optimizing Sparse Matrix-Matrix
Multiplication for the GPU

Steven Dalton† Nathan Bell‡ Luke N. Olson§

Abstract

Sparse matrix-matrix multiplication (SpMM) is a key operation in numerous ar-
eas from information to the physical sciences. Implementing SpMM efficiently on
throughput-oriented processors, such as the graphics processing unit (GPU), requires
the programmer to expose substantial fine-grained parallelism while conserving the
limited off-chip memory bandwidth. Balancing these concerns, we decompose the
SpMM operation into three, highly-parallel phases: expansion, sorting, and compres-
sion, and introduce a set of complementary bandwidth-saving performance optimiza-
tions. Our implementation is fully general and our optimizations lead to substantial
efficiencies for a SpMM product.
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1 Introduction

Operations on sparse data structures abound in all areas of information and
physical science. In particular, the sparse matrix-matrix multiplication (SpMM)
is a fundamental operation that arises in many practical contexts, including
graph contractions [11], multi-source breadth-first search [6], matching [23], and
algebraic multigrid (AMG) methods [3]. In this paper we focus on the problem
of computing matrix-matrix products efficiently for general sparse matrices in
data parallel environments.

1.1 Sparse Matrices and Algorithms

While algorithms operating on sparse matrix and graph structures are numer-
ous, a small set of operations, such as SpMM and sparse matrix-vector multi-
plication (SpMV), form the foundation on which many complex operations are
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built. An analysis of sparse matrix-vector multiplication (SpMV) reveals that
the operation has very low computational intensity — i.e., the ratio of the float-
ing point operations (FLOPs) to memory accesses — which severely limits the
potential throughput of the operation on contemporary architectures [25, 26]. A
common strategy for improving SpMV performance is to exploit a priori knowl-
edge of the sparsity structure of the matrix in order to utilize memory access
optimizations. Since the cost of reformatting the data is non-trivial, generally
on the order of 10-20 SpMV operations, this approach is profitable when the
number of subsequent SpMV operations is relatively large.

Although SpMV is a useful starting point for understanding SpMM, we em-
phasize that the latter is a qualitatively different problem with unique complex-
ities and trade-offs in performance. In particular, whereas the computational
structure of SpMV is fully described by the matrix sparsity pattern, SpMM
adds another level of indirection and depends on the detailed interaction of two
sparse matrices. Indeed, simply computing the number of floating point op-
erations required by the SpMM, or even the size of the output matrix, is not
substantially simpler than computing the SpMM itself.

The recent demand for high performance SPMM operations is driven by
the increasing size of sparse linear systems [5, 7]. AMG is an important ex-
ample because the setup phase of the method relies on a sparse triple-matrix
product (ie., the Galerkin product). AMG solvers are generally divided into
two phases: setup and solve [3]. The relative cost of each phase varies, but
the setup phase often represents a significant portion (e.g. 25-50%) of the total
solve time. Within the AMG setup phase, the SpMM is the central performance
bottleneck, often accounting for more than 50% of the total setup cost as shown
in Figure 1. In contrast, the AMG solution phase is comprised of SpMV and
level 1 BLAS operations and therefore readily accelerated by employing existing
highly-optimized GPU implementations[3].
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Fig. 1: Relative cost of the SpMM during the AMG setup phase for a series of
matrices (see Table 3).

The approach to SpMM in [3] is based on a decomposition of the operation
into 3 phases: expansion, sorting, and compression (ESC). The ESC formulation
of the SpMM operation is naturally implemented with data parallel primitives,



Optimizing SpMM for the GPU 3

such as those provided by the Thrust parallel algorithms library[14]. In this
work we implement a set of optimizations that enhance SpMM performance by
exploiting on-chip memory, whenver possible, and reducing the cost associated
with the sorting phase.

2 Background

The emergence of “massively parallel” many-core processors has inspired inter-
est in algorithms with abundant fine-grained parallelism. Modern GPU archi-
tectures, which accommodate tens of thousands of concurrent threads, are at
the forefront of this trend towards massively parallel throughput-oriented exe-
cution. While such architectures offer higher absolute performance, in terms of
theoretical peak FLOPs and bandwidth, than contemporary (latency-oriented)
CPUs, existing algorithms need to be reformulated to make effective use of the
GPU [10, 18, 16, 24].

Modern GPUs are organized into tens of multiprocessors, each of which is
capable of executing hundreds of hardware-scheduled threads. Warps of threads
represent the finest granularity of scheduled computational units on each mul-
tiprocessor with the number of threads per warp defined by the underlying
hardware. Execution across a warp of threads follows a data parallel SIMD
(single instruction, multiple data) model and performance penalties occur when
this model is violated as happens when threads within a warp follow separate
streams of execution — i.e., divergence — or when atomic operations are ex-
ecuted in order — i.e., serialization. Warps within each multiprocessor are
grouped into a hierarchy of fixed-size execution units known as blocks or coop-
erative thread arrays (CTAs); intra-CTA computation and communication may
be routed through a shared memory region accessible by all threads within the
CTA. At the next level in the hierarchy CTAs are grouped into grids and grids
are launched by a host thread with instructions encapsulated in a specialized
GPU programming construct known as a kernel.

GPUs sacrifice serial performance of single thread tasks to increase the over-
all throughput of parallel workloads. Effective use of the GPU depends on four
key features: an abundance of fine-grained parallelism, uniform work distri-
bution, high arithmetic intensity [26], and regularly-structured memory access
patterns. Workloads that do not have these characteristics often do not fully
utilize the available computational resources and represent an opportunity for
further optimization. In this work we seek to characterize the nature of SpMM
and to decompose the computational work to suit the GPU architecture. In par-
ticular, by concentrating on the intersection of the input matrices and slightly
coarsening the degree of parallelism we greatly reduce the number of off-chip
memory references to improve the arithmetic intensity of the bandwidth-limited
SpMM operation.
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2.1 SpMM

Given two sparse matrices A ∈ Rm×k and B ∈ Rk×n, for k,m, n ∈ N, SpMM
multiplication computes

C = AB, (1)

where C ∈ Rm×n. We denote nnz(A) as the number of nonzeros in sparse matrix
A. The sparsity of A and B implies that both input matrices are represented
in a space-efficient format that avoids storing explicit zero values. Although
SpMM is related to both the SpMV operation and to dense matrix-matrix mul-
tiplication — e.g., GEMM in BLAS — the formulations and optimizations are
fundamentally different. Both SpMV and GEMM have achieved near optimal
implementations on GPUs through regularization of the data access patterns
and algorithmic reformulations [15, 8], approaching the (theoretical) peak lim-
its of memory bandwidth and arithmetic throughput, respectively.

In contrast to GEMM, SpMM operations are highly irregular and may ex-
hibit considerably lower arithmetic intensity. Techniques to improve perfor-
mance through sparsity pattern analysis, such as those for SpMV, are less ef-
fective because SpMM is in general a fleeting operation, meaning that they are
called at most once for a given set of matrices in most applications. Indeed,
whereas the same sparse matrix participates in hundreds of SpMV operations
in the context of a single iterative solver, SpMM operations are generally outside
the innermost solver loop.

Efficient sequential SpMM algorithms [2, 12], generally operate on sparse
matrices stored in the Compressed Sparse Row (CSR) format, which provides
O(1) indexing of the matrix rows, but O(nnz(A)) access to columns. There-
fore, these methods focus on constructing the output matrix and accessing both
input operands on a per row basis. Sequential methods operate by iterating
over the rows of A and for each column entry in each row scaling the values
in the corresponding row from B and accumulating the results. To accomplish
this the sequential algorithms rely on a large amount, O(N), of temporary stor-
age. Parallel SpMM algorithms generally decompose the matrix into relatively
large submatrices and distribute the submatrices across multiple processors for
parallel computation, a strategy used in many computational software packages
which use MPI such as Trilinos and PETSc [13, 1].

The reliance in sequential methods on O(N) storage renders these methods
untenable on GPUs, which thrive on workloads in which the per thread state
is considerably smaller — i.e., on the order of tens of values. Furthermore, the
traditional parallel approaches to SpMM on the GPU require a decomposition
of the matrices on a per thread or CTA basis which may be advantageous but
require complex decompositions to avoid unnecessarily high imbalances in the
work distribution.

The contribution of this work is the study and proposal of a SpMM algorithm
which exposes abundant fine-grained parallelism and is amenable to execution
on the GPU architecture. In particular, we develop parallelism at the level of
individual matrix rows and nonzero entries while respecting GPU performance
considerations, such as execution divergence and memory locality.
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3 ESC Algorithm

A direct implementation of the ESC algorithm using parallel primitives is “work-
efficient” and insensitive to the sparsity pattern of the matrices [3]. Although
SpMM is highly unstructured and gives rise to complex and unpredictable data
access patterns, the ESC algorithm distills the computation into a small set of
data-parallel primitives such as gather, scatter, scan, and stable sort by key,
whose performance characteristics are readily understood [19]. Since the whole
method is simply the sum of its parts, and great care is taken when implement-
ing the individual parts, the ESC algorithm with parallel primitives is robust,
reliable and efficient. The high-level structure of the ESC algorithm is summa-
rized in Algorithm 1.

Algorithm 1: SpMM: Reference

parameters: A, B
return: C

1 M ← slice(A) {decompose rows into slices}

for k = 0, . . . ,M

2 Ĉk ← expand(Ak, B) {expand intermediate matrix}

3 Ĉk ← sort(Ĉk) {radix sort Ĉk by row and column}

4 Ĉk ← compress(Ĉk) {compress duplicate Ĉk(row, col) entries}

5 C ← construct(Ĉ) {concatenate slices to form final matrix}

As an example, consider the matrices

A =


10 0 0 0
0 20 30 40
0 0 0 50
0 60 0 0

 , B =


1 0 0 0
0 2 0 3
4 5 0 0
0 6 0 7

 , C = AB =


10 0 0 0
120 430 0 340
0 300 0 350
0 120 0 180

 ,
(2)

where the COO representation is given by the tuples

A =


(0, 0, 10)
(1, 1, 20)
(1, 2, 30)
(1, 3, 40)
(2, 3, 50)
(3, 1, 60)

 B =



(0, 0, 1)
(1, 1, 2)
(1, 3, 3)
(2, 0, 4)
(2, 1, 5)
(3, 1, 6)
(3, 3, 7)


C = AB =



(0, 0, 10)
(1, 0, 120)
(1, 3, 340)
(1, 1, 430)
(2, 3, 350)
(2, 1, 300)
(3, 3, 180)
(3, 1, 120)


. (3)
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Then the expansion, sorting, and compression phases yield

Ĉ =



(0, 0, 10)
(1, 3, 60)
(1, 1, 40)
(1, 1, 150)
(1, 0, 120)
(1, 3, 280)
(1, 1, 240)
(2, 3, 350)
(2, 1, 300)
(3, 3, 180)
(3, 1, 120)


−−−−−−−−→

sort



(0, 0, 10)
(1, 0, 120)
(1, 1, 40)
(1, 1, 150)
(1, 1, 240)
(1, 3, 60)
(1, 3, 280)
(2, 1, 300)
(2, 3, 350)
(3, 1, 120)
(3, 3, 180)


−−−−−−−−→

compress



(0, 0, 10)
(1, 0, 120)
(1, 1, 430)
(1, 3, 340)
(2, 1, 300)
(2, 3, 350)
(3, 1, 120)
(3, 3, 180)


= C. (4)

Here we see that general sparsity patterns lead to a variety of row lengths in Ĉ.
To further illustrate this point consider a sparse random matrix of size n = 200
with an average of 20 nonzeros-per-row (see Figure 2a), yielding a minimum
and maximum sort length of 156 and 624, respectively, as shown in Figure2b.
Here nnz(A) = nnz(B) = 3812, and nnz(C) = 33678, while Ĉ contains 75786
entries. In the following, for a sparse matrix A we denote by Arowi the ith row of
A (and similar for columns), while NNZ(Arowi) denotes the set of nonzero column
indices.
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Fig. 2: Sparse matrix with n = 200 yielding a range of row lengths in Ĉ.

The ESC process for (1) follows from the inner product view of multiplica-
tion:

Ci,j = Arowi ·Bcolj =
∑
k

Ai,kBk,j . (5)

From this we see that simultaneous access to Arowi and Bcolj is necessary to
construct entry Ci,j . Yet, there are two issues to address when considering the
inner product formulation of SpMM: intersecting sparsity patterns and sparse
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storage formats. Intersecting sparsity patterns requires the categorization of all
of the entries in C into zero and nonzero values. The work performed in the
SpMM should avoid operations on zero values of Ci,j , which implies row i of A
and column j of B have non-intersecting sparsity patterns. However, to identify
non-intersecting sparsity patterns the näıve inner product formulation requires
explicit checking of all possible mn entries in C thereby generating excessive
data movement when C is also sparse. Another potential problem with the
inner product formulation is the access pattern of entries in A and B. As noted
earlier, if B is stored in CSR format then accessing entries on a per column
basis results in significant overhead and should therefore be avoided whenever
possible.

In the following, we consider the basic form of our ESC algorithm [3] in Algo-
rithm 1 as the reference implementation. However, there are several limitations
with this approach. First, implementing the operation using parallel primitives
forces many data movement operations in global memory between primitives.
Moving through global memory between operations ignores more efficient use of
registers and shared memory to seamlessly process data from successive phases
locally. Second, by staging values in global memory and relying on radix sorting,
which is not in-place, to order the intermediate matrix the amount of tempo-
rary global memory required by the method is significant. Indeed, to process
large matrices we use a decomposition method which partitions A row-wise into
multiple slices based upon the maximum amount of available temporary mem-
ory to form any slice of Ĉ. Lastly, although radix sorting on GPUs is fast and
efficient it is a O(kN) algorithm, with k representing the number of passes,
and requires random accesses to reorder data in global memory. In addition,
the costs are compounded by requiring two sorting operations, first by column
index and then by row index, to ensure the intermediate format is in proper
format for compression.

To motivate where in the ESC algorithm (Algorithm 1) we focus our opti-
mizations, we consider a set of matrices for A that result from a discretization
of a Poisson problem, −∇ · ∇u = 0, with Dirichlet boundary conditions and
an average mesh diameter h in the case of unstructured tessellations. The
matrices considered are outlined in Table 3, along with several additional test
problems previously found in GPU SpMV data sets [3, 4]. Here, cases 1 and
2 are structured, while 3–5 are unstructured tessellations. For matrix B, we
generate an interpolation matrix through smoothed aggregation-based AMG[3].

Figure 4 shows the per-phase-cost associated with the reference ESC imple-
mentation. Note the negligible overhead in the analysis (setup) phase, where
the GPU memory constraints are used to decompose the formation of Ĉ row-
wise, in contrast to the substantial overhead associated with the sorting phase.
In the following sections we detail a method of work decomposition to increase
the use of shared memory through all phases of the operation and improving
the sorting performance by reducing N in the radix sorting algorithm.
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Matrix n nnz Matrix n nnz

1a. 2D FD 1 048 576 5 238 784 Cantilever 4 007 383 62 451
1b. 2D FE 1 048 576 9 424 900 Spheres 6 010 480 83 334
2a. 3D FD 1 030 301 7 150 901 Accelerator 2 624 331 121 192
2b. 3D FE 1 030 301 27 270 901 Economics 1 273 389 206 500
3a. 2D FE 550 387 3 847 375 Epidemiology 2 100 225 525 825
3b. 2D FE 1 182 309 8 268 165 Protein 4 344 765 36 417
3c. 2D FE 2 185 401 15 287 137 Wind Tunnel 11 634 424 217 918
4. 3D FE 1 088 958 17 095 986 QCD 1 916 928 49 152
5a. 2D FE 853 761 5 969 153 Webbase 3 105 536 1 000 005
5b. 2D FE 832 081 5 817 905

Tab. 3: Test problems of square matrices (n× n) with nnz nonzeros.
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Fig. 4: Component-wise performance of the reference ESC SpMM operation.

3.1 Analysis

For SpMM, traditional approaches process the input matrices using the natural
ordering of the operands and assign a fixed number of threads and memory
per row of the output matrix. If C is constructed row-wise then assigning a
fixed number of computational units per row of the output matrix may result
in significant load imbalance. To illustrate, the minimum number of FLOPs
associated with forming Crowi is proportional to∑

j∈NNZ(Arowi
)

nnz(Browj ).

This quantity represents the total number of products required to scale each
row of B referenced by each column entry within the row.

As depicted in Figure 5, with respect to the products, the computational
work per row of C may vary substantially. Consequently, any static assign-
ment of computational units to rows of the matrix leads to arbitrarily poor load
balance and possible degradation in performance. One strategy for avoiding
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this load imbalance is to implement the entire algorithm in terms of parallel
primitives [3]. While this approach thoroughly eliminates load imbalances it
does so at the cost of significant data movement between stages. An alterna-
tive method relies on dynamically scaling computational units to address the
data-dependent workloads. In a GPU architecture, the allocation of computa-
tional units should account for processing small workloads completely in shared
memory as opposed to global memory, and scaling should take advantage of the
parallel execution across arbitrary groups of threads within a CTA and multiple
CTAs. While ideal, this dynamic scaling is difficult to implement effectively in
real hardware. Therefore we use a different approach based on the work distri-
bution model that groups work into several categories that are processed using
the most appropriate method.
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Fig. 5: Distribution of Ĉ row lengths for SpMM operations in Tables 11,13.
Rows are grouped by color: 0-256 (Blue), 257-1024 (Green), and 1025≥ (Red).

We observe that C may be assembled in any order, thus we may permute
the input matrices to achieve a grouping of the output rows which yield a fa-
vorable use of the computational units. Our scheme is based on reordering the
output matrix rows by the amount of computational work in the model. This
sorting yields a permutation matrix P for C and implies that PC = PAB which
translates into processing the rows of A in permuted order. The permuted order
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of A groups rows of similar total work and places the rows in non-decreasing
order of the work-per-row, Algorithm 2. Identification of rows to be processed
by individual threads, warps, or CTAs may be carried out using a model pa-
rameterized by the size and number of rows fulfilling predefined conditions. Our
strategy is to use a splitting to decompose the rows into units that are processed
within a targeted group of threads using parallel primitives. One drawback of
this approach is that C is generated in a permuted order and must be sorted by
row before the final output is generated. However, in practice we find that this
reassembly cost is relatively low.

Algorithm 2: SpMM: reorder

parameters: A, B {A ∈ Rm×k and B ∈ Rk×n}

return: P {reordering vector}

P ← 0
foreach row i in C do

for j ∈ NNZ(Arowi)
Pi ← Pi + nnz(Browj ) {gather B row lengths based on A column indices}

P ← sort(P ) {set P to permutation of P in non-decreasing order}

3.2 Expansion

As illustrated in Figure 6, the expansion phase expands scaled rows of B into
an intermediate buffer. Expanding B row-wise ensures efficient access when the
underlying sparse storage format is CSR and all expanded entries contribute to
the nonzero entries in C. The expanded memory buffer consists of row indices Î,
column indices Ĵ , and values V̂ , which we collectively denote as Ĉ = (Î , Ĵ , V̂ ).
The formation of Ĉ requires gathering possibly disparate rows from B dictated
by the column indices of A. Loading rows of B in an incoherent or random
manner limits the benefit of coalescing and therefore precludes fully utilizing
the memory bandwidth of the GPU. In particular, if a fixed unit of threads are
assigned to load rows from B, and the average row length from is significantly
smaller than the number of assigned threads, then many threads are idle or
load unrelated entries from adjacent rows. In contrast if the average row length
of B is significantly larger than the number of assigned threads, then multiple
sequential loading phases are required to process the row.

To address the deficiencies in the expansion phase we adopt a formulation
of SpMM as a layered graph model [9]. Each input matrix is represented as a
bipartite graph with vertices defined by the individual rows and columns in the
matrix. For each nonzero entry in the matrix, a directed edge is created from
the row to the column vertices in the bipartite graph. The bipartite graphs
are then concatenated — i.e., layered — by joining the graphs along the inner
dimension vertex sets. The equality of the cardinality of the joined vertex sets
is assured by assuming the proposed multiplication is well-posed — i.e., the
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Fig. 6: Scaling rows of B by columns of A and storage in intermediate buffer.

inner matrix dimensions agree. As an example, we illustrate the layered model
diagram in Figure 7 using matrices A and B defined as

A =


x 0 x 0
0 x 0 x
0 x x 0
x 0 0 x

 and B =


x x 0 0
x x x 0
0 x x x
0 0 x x

 . (6)
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Fig. 7: Schematic of graph-based sparse matrix multiplication.

In the layered graph model a nonzero, Ci,j , in the output matrix corresponds
to a path to vertex j in the column set of B from vertex i in the row set of
A. There may be an arbitrary number of paths bounded by the product of the
maximum in- and out-degrees of the second level intermediate vertices. A weight
is attributed to all paths according to a binary operation — e.g., multiplication
in the case of SpMM — on the weight of the individual edges traversed by the
path. Based on this formulation the expansion phase is an operation on graphs
rather than algebraic structures and enumerating the entries which contribute
to all output nonzeros is recast as computing all-pairs-all-paths to the column
set of B from the row set of A.

By viewing the expansion phase from a graph perspective we see that expan-
sion is a candidate for a breadth-first-search (BFS) of the levels in the layered
model. BFS traversals are effectively mapped to GPUs using efficient expan-
sion methods designed to dynamically scale the number of threads expanding
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the frontier of a single vertex within a CTA [16]. Starting from the source
vertices in the layered model — i.e., vertices in the bipartite graph with an in-
degree of zero — is unnecessary because the first expansion is implicitly defined
as all the column indices in A. Therefore the column indices of A identify the
vertices in the frontier from rows of B which must be expanded. However, in
contrast to previous BFS implementations [16], the edges in the layered model
are weighted. Moreover, although duplicate vertices appear in the frontier, the
distinct weights associated with the edges prevent the removal of duplicates, to
reduce redundant expansion operations.

Algorithm 3: SpMM: Expansion

parameters: A,B
return: Ĉ = (Î , Ĵ , V̂ )

foreach row i in C do
for k ∈ NNZ(Arowi) {Note Ai,k is stored in shared memory for reuse}

for j ∈ NNZ(Browk)

Î ← [Î , i] {implicit row index}

1 Ĵ ← [Ĵ , j] {append column index}

2 V̂ ← [V̂ , Ai,k ∗Bk,j ] {append value}

The work in the expansion phase is decomposed at the granularity of one
thread per nonzero entry in A. Each thread within the warp or CTA computes
the length of the row referenced from B and expansion proceeds using either
fine-grained scan-based or cooperative warp or CTA expansion routines[16]. The
expansion phase is therefore efficient and the imbalance between CTAs is neg-
ligible. To reduce the costs of repeated loading of values from A, each thread
stores their entry from A to shared memory. Once the row corresponding to the
given thread is expanded the column indices are stored in either local registers in
preparation for the impending sorting operation outlined in the following section
or streamed to global memory along with the floating point values if global mem-
ory processing is necessary. Prior to streaming the floating-point values from
shared memory the per-thread values from A are broadcast to shared memory
and the entries from B are scaled appropriately. A high-level description of the
expansion phase is outlined in Algorithm 3 where the loop over entries in each
row of A on lines 1 and 2 is decomposed at the granularity of the thread group,
which may be a thread, warp, or CTA.

3.3 Sorting

The expansion phase generates a partially sorted matrix, Ĉ, in coordinate for-
mat (see 4) with duplicate entries. Since there are an undetermined number
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of duplicates for any column entry j within the extent of row i, the partial or-
dering creates a bottleneck in reducing the duplication. To do this efficiently,
Ĉ is first sorted by row and column, transforming Ĉ into a sorted format with
duplicate entries in adjacent locations. Figure 4 underscores the expense of the
sorting performance, which shows it is the dominant cost in the reference ESC
algorithm.

Since sorting is the dominant expense we focus on improved SpMM per-
formance by employing a faster sorting algorithm or exploiting our knowledge
about the range of input values. Figure 8 illustrates the potential speedup in the
sorting performance yielded by two such improvements. By default the Thrust
sorting algorithms allocate and free large amounts of temporary memory each
time they are invoked, which represents a non-trivial cost. Using the preallo-
cated memory interface∗ we improve the sorting performance of our previous
SpMM implementation by minimizing the number of allocations. As a compar-
ison, Figure 8 also captures the performance of the back40computing (B40C)
implementation [17] from which the Thrust sorting implementation was derived.
The B40C radix sort allows specializations in the number and location of the
sorting bits. We exploit this feature to achieve optimal sorting by noting that
the total number of bits in the row and column indices of Ĉ are dlog2(m)e and
dlog2(n)e.
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Fig. 8: Sorting performance comparison of Thrust and B40C routines.

Following the marginal improvements realized using optimized global sorting
methods we instead focus on sorting within the GPU’s higher-bandwidth shared
memory for increased efficiency. We observe that Ĉ consists of a collection of
rows of various lengths which may be processed in parallel since there are no
dependencies between matrix rows. There are two advantages of operating on
a per row basis: 1) two global sorting operations over millions of entries are
replaced by numerous operations over possibly tens to thousands of entries and
2) sorting the intermediate entries using shared memory improves overall per-

∗ Introduced in version 1.6 of Thrust
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formance. However, row-wise sorting using shared memory places tight bounds
on the number of intermediate entries which may be processed per thread group
precluding the use of such a method for rows which exceed the maximum shared
memory space. Consequently, we identify the rows that violate this space con-
straint during the analysis phase and process them using the global memory
ESC algorithm available within the CUSP library.

The localized shared memory sorting routine is implemented using the highly
efficient CTA oriented radix sorting implementation exposed by the CUB branch
of B40C library[17]; we implement thread and warp variants. To address the
possible inefficiency of attempting to sort a highly varying workload using a
static number of threads we scale the number of threads per row of Ĉ propor-
tionally with the maximum number of entries produced during the expansion.
Therefore if nnz(Ĉrowi) ≤ αthread we sort each row within a single thread using
a sorting network in an “embarrassingly parallel” manner. This optimization
dramatically reduces the overall costs of the sorting phase by completely decou-
pling the threads and preferring the execution of the sorting phase in registers
over shared memory. Similarly if nnz(Ĉrowi) ∈ (αthread, αwarp] then each row
is assigned to 1 (32-thread) warp and ordered using radix sort. The remain-
ing rows in the range of (αwarp, αcta] are processed using an entire CTA. By
scaling the number of registers and threads on a per row basis our approach
reduces the number of the wasted memory operations caused by rows whose
size does not perfectly match any of our targeted sorting boundaries and allows
the cost of the sorting pass to scale proportionally with the size of the row. The
values of [αthread, αwarp, αcta] are parameters that may be set — e.g., we use
[32, 736, 3840] in our tests.

A näıve implementation of the sorting implementation described above re-
quires that a key (column index) and value (floating point number) pair be
exchanged using shared memory during each pass of the radix sorting routine
. To avoid this cost we implement an optimization which sacrifices dlog2(m)e
bits, where m is the intermediate row size, and stores the position corresponding
to each entry within the upper region of each column index. To illustrate this
point if the maximum column index in the matrix is 220 (1,048,576) then the
intermediate row may consist of no more than 212 (4,096) entries in order for
the position index to be placed within the sacrificed bit field. Although this
optimization is applicable over a more constrained set of rows than those which
fit in shared memory, as shown in Algorithm 4, the reduction of key-value to
keys-only sorting reduces the total number of shared memory operations and
provides a notable improvement in the localized sorting performance.

3.4 Compression

The next computationally intensive phase compresses duplicate entries in Ĉ
using pairwise addition. In contrast to the predictable nature of the total work
required to construct Ĉ in the expansion phase, the number of duplicates, and
therefore the number of FLOPs to form any row of C is not easily known a
priori and often varies significantly between rows in Ĉ. As noted previously in
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Algorithm 4: SpMM: Sorting

parameters:
β: number of bits per column index
n: number of columns in B

Ĉ = (Î , Ĵ , V̂ ) : column indices, Ĵ , reside in shared memory

return: Ĉ, P {Ĵ sorted row-wise and permutation vector P}

foreach row i in C do

J, V ← extracti Ĵ , V̂ {extract entries where Î ≡ i}

1 m←nnz(J) {m is the number of expanded entries}

if log2m ≤ β − dlog2 ne {if row not long}

for (j, k) ∈ (J, [0,m])
2 j ← [ k

upper log2 m bits

, j
lower dlog2 ne bits

] {store index in upper bits}

3 J ← lower bit sort(J) {keys-only sort}

4 P ← upper bit indices {extract upper bits to form permutation}

else
5 J, P ← key value sort(J, [0,m]) {keys-value sort}

Section 3.2 the structure of row Ĉrowi and is dependent on the set of rows from
B referenced by the column indices in Arowi .

The irregularity of the work required to reduce duplicate entries per row in
Ĉ causes a severe imbalance in the compression phase if rows are compressed
using a fixed number of threads. The reduce by key function in Thrust avoids
imbalance [3] by reducing duplicates in adjacent locations at the granularity
of a fixed number of entries per CTA irrespective of the duplicates per region.
While reduce by key is general and avoids excessive imbalance, it relies on
constructing keys and values in global memory.

Storing the keys and values in global memory for relatively long rows allows
multiple processing units to work cooperatively to reduce values but ignores
possible optimizations associated with utilizing local shared memory storage.
Following the sorting phase outlined in Section 3.3 for short rows, the column
indices are stored in nondecreasing order in shared memory and the permutation
which achieves the sorted ordering is stored within the bit field of each index.
As outlined in Algorithm 5 a simple scan operation over the column indices per
row may be used to identify unique entries which define the nonzero structure of
C. The final task requires the reduction of values corresponding to each dupli-
cate column index and relies on the permutation computed during the sorting
phase. The scaled values, which are computed and stored in temporary global
memory during the expansion phase, are streamed into registers according to
the permutation indices. Then, duplicate values are reduced using a segmented
scan operation and tail values are stored to the final row of C. The most ineffi-
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Algorithm 5: SpMM: Compression

parameters: Ĉ = (Î , Ĵ , V̂ ), P {P permutation which sorts Ĉ row-wise}

return: C

foreach row i in C do
1 v ← 0 {initialize output value}

J, V ← extracti Ĵ , V̂ {extract entries where Î ≡ i}

for j = 0, . . . , nnz(Ĉrowi)
2 v ← v + V [Pj ] {reduce consecutive values}

if J [j] 6= J [j + 1] {J[j + 1] marks beginning of new nonzero entry}

3 Ci,J[j] ← v {Store accumlated value to output row}

4 v ← 0 {re-initialize output value}

cient portion of this value compression algorithm is the loading of values from
global memory in permuted ordering, however this penalty is mitigated by the
implicit spacial locality of the referenced values for short rows.

4 Evaluation

In this section, we examine the performance of a GPU implementation of the
proposed ESC method. All of the operations are performed using double preci-
sion with error-correcting code (ECC) memory support disabled and the times
reported are the average for 10 iterations. We refer to our proposed approach
as “Optimized” † and compare against the reference ESC variant within the
CUSP library as well as the CUSPARSE SpMM implementation[20]. Our sys-
tem is configured with CUDA v5.0 [22] and Thrust v1.7 [14], and all tests are
performed using an Nvidia Tesla C2075[21].

4.1 SPMM

4.1.1 Intermediate Factors

We characterize the SpMM multiplication pairs by the expansion and contrac-
tion factors associated with the intermediate matrices. The expansion factor,
nnz(Ĉ)/nnz(A), describes the ratio of the number of memory references from A
to the number data movement operations from B. A relatively large expansion
factor indicates that the number of load operations per memory reference is
high. The compression factor, nnz(C)/nnz(Ĉ), describes the ratio of the num-
ber unique entries in C to the number of duplicates in the expanded format. A
relatively large compression factors indicate a compression phase with relatively
few FLOPs.

† Code is available in the CUSP library: https://github.com/cusplibrary/spmm
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Table 9 illustrates the variation in the expansion and contraction factors
possible for computing the inner and outer products of a matrix with dimensions
10242× 1024 and a density of 10−3. For the inner product the expansion phase
consists a large collection of sparse rows resulting in a contraction phase with
a large number of duplicates. In contrast the outer product expansion phase
consists of a small collection of rows with many entries which do not contain
duplicates and the contraction phase therefore has relatively little work.

Expand: nnz(Ĉ)/nnz(A) Contract: nnz(C)/nnz(Ĉ)
Min Max Mean Std Min Max Mean Std

Inner 1.00 1.14 1.05 0.02 7.50 108.00 20.19 9.49
Outer 73.0 140.0 105.99 10.80 1.00 1.01 1.00 0.00

Tab. 9: Expansion and contraction factors for a 10242 × 1024 matrix.

4.1.2 Performance

Table 10 outlines the performance for each phase of the ESC algorithm for a
few representative matrices. The companion operator, B = P , used in all oper-
ations is generated using a smoothed aggregation interpolation matrix P found
in algebraic multigrid methods[3]. It is clear that the cost of the analysis phase
varies with the properties of the input matrices but remains a relatively small
overhead compared to the overall cost of SpMM. Although for some matrices,
such as the anisotropic horseshoe and square matrices, the analysis consumes
more than 20% of the total execution time the total improvement in the per-
formance compared to the CUSP version is evident from Table 11. The SpMM
portion of the processing time completely encompasses the time required to pro-
cess the rows of C in a batch oriented manner based on the entries of the Ĉ. As
a consequence of processing the rows of C in ascending order according to the
number of entries in Ĉ there is an additional overhead in the form of reordering
the final matrix. Though reordering increases the total time per operation it is
negligible compared to both the analysis and SpMM times. We note that in the
special case where all Ĉ row lengths are less than 32, processing of rows uses
the natural ordering which avoids the overhead of reordering C.

Table 11 presents the speedup of the optimized SpMM over the dataset out-
lined in Table 3. The average speedup of the our proposed method over the
global processing approach utilized in the CUSP version of the ESC algorithm
is 3.1 for AP and 6.5 compared to CUSPARSE. The properties of the P oper-
ator allow the product AP to be favorable for the ordered approach for several
reasons. As illustrated in Figure 5 many of the intermediate row lengths are
relatively small and may be processed completely within a single thread, warp,
or CTA, thus avoiding the cost of resorting to global memory operations.

In addition, the small row lengths coupled with the fact that P ∈ Rn×k,
where k is typically a constant factor smaller then n, allows the intermediate
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Matrix Analysis
Expand

Sort
Compress

Reorder

1a. 2D FD, 5-point 4.6 14 28.7 86 0.0 0
1b. 2D FE, 9-point 7.5 16 39.8 84 0.0 0
2a. 3D FD, 7-point 5.8 10 52.0 90 0.0 0
2b. 3D FE, 27-point 17.9 11 146.7 87 3.4 2
3a. 2D FE, h ≈ 0.03 4.5 18 20.2 82 0.0 0
3b. 2D FE, h ≈ 0.02 8.0 7 110.6 92 1.7 1
3c. 2D FE, h ≈ 0.015 14.5 7 198.0 91 4.1 2
4. 3D FE, h ≈ 0.15 13.1 8 142.7 89 4.2 3
5a. 2D FE, horseshoe 4.9 17 24.3 83 0.0 0
5b. 2D FE, square 5.3 17 26.1 83 0.0 0

Tab. 10: Time (ms) and percentage in each phase of the optimized algorithm.

Matrix CUSPARSE Ref Opt

1a. 2D FD, 5-point 135.5 98.2 33.3 4.1 / 3.0
1b. 2D FE, 9-point 206.2 186.6 47.3 4.4 / 4.0
2a. 3D FD, 7-point 428.9 196.6 57.8 7.4 / 3.4
2b. 3D FE, 27-point 1633.0 820.1 168.0 9.7 / 4.9
3a. 2D FE, h ≈ 0.03 168.2 75.7 24.7 6.8 / 3.1
3b. 2D FE, h ≈ 0.02 368.8 166.6 120.3 3.1 / 1.4
3c. 2D FE, h ≈ 0.015 682.4 323.9 216.6 3.2 / 1.5
4. 3D FE, h ≈ 0.15 1269.2 567.2 160.0 7.9 / 3.5
5a. 2D FE, horseshoe 162.4 94.5 29.2 5.6 / 3.2
5b. 2D FE, square 412.9 95.0 31.4 13.2 / 3.0

Tab. 11: C = AP times (ms) and speedups (h is an average diameter).

sorting routines to utilize the faster keys-only version as discussed in Section 3.3.
In Figure 12 the intermediate expansion and contraction factors for each of
the matrices in Table 3 are presented as well as the corresponding standard
deviation. It is clear that the maximum and minimum intermediate factors may
vary substantially between rows of Ĉ and therefore to achieve high efficiency
the SpMM method must adapt at runtime to accomodate these features.

The matrices outlined in Table 3 exhibit negligible variations in the number
of entries per row in the intermediate matrix. As shown in Figure 12 the stan-
dard deviation of the expansion phase is moderate for many of the matrices and
the mean expansion factor is less than 5 in all cases. These two factors impact
the sorting phase because together they imply that many of the intermediate
rows are roughly of equal length with the total number of entries in each row
a small constant factor larger than the corresponding row from A. As such
these matrices may not fully capture the the imbalances which may be present
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Fig. 12: SpMM expansion and contraction factors for test matrices.

in more general sparsity patterns giving rising to intermediate matrices with
highly varying expansion, sorting, and contraction components.

To address this we conduct a similar set of tests using a small subset of the
matrices outlined in the GPU SpMV dataset [4]. The P operator was generated
in a similar manner outlined in the previous dataset — i.e., through an AMG
interpolation matrix. This class of SpMM operations are susceptible to extreme
variations in the all phases which places an increased concern on the applicability
of our proposed optimizations to improve the performance.

In Table 13 we note the first instance of our optimized SpMM operation fail-
ing to improve over the CUSP version. The Webbase matrix originates from a
scale free graph and therefore generates a intermediate matrix with a rich diver-
sity of row lengths. However, since many of the rows are small (due to a power
law) the total number of intermediate entries in Ĉ in total is not expected to be
large. This allows for the CUSP ESC method to process the entire operation in
a single pass and removing any sensitivity to the jagged nature of the workload.

Total Time
Matrix CUSPARSE Ref Opt

Cantilever 61.9 57.6 21.6 2.8 / 2.7
Spheres 131.3 90.3 19.3 6.8 / 4.7
Accelerator 108.9 39.7 15.4 7.1 / 3.6
Economics 67.8 50.6 26.0 2.6 / 2.0
Epidemiology 72.3 57.0 17.4 4.2 / 3.3
Protein 92.0 56.2 39.4 2.3 / 1.4
Wind Tunnel 182.5 107.1 28.1 6.5 / 3.8
QCD 97.4 83.6 17.1 5.7 / 4.9
Webbase 3086.3 154.2 190.8 16.2 / 0.8

Tab. 13: AP times (ms) and speedups.
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Finally in Table 14 we present data for C = A2 (cf. Table 13) to illustrate
the effectiveness of our method outside of the context of computing C = AP .
Notably our method consistently outperforms CUSP on this dataset by uti-
lizing shared memory more efficiently and achieving up to almost four times
performance improvement. Compared to CUSPARSE our new method is com-
parable in many cases and substantially outperforms CUSPARSE for matrices
such as the Accelerator. Though we cannot state definitively the reason for this
considerable improvement we speculate it is connected to the analysis phase of
our optimized approach. During analysis it is discovered that 75% of the Ĉ
rows generated by A2 are less than 1024 elements. Adapting to this knowledge
our method is capable of processing this set of short rows in approximately
14 milliseconds. Conversely we find that for the Protein matrix our approach
still outperforms the CUSP version but is twice as slow as CUSPARSE. During
the analysis phase for this matrix we find that only half of the input rows are
capable of being processed in shared memory. The remaining rows must be
processed using the global memory variant which mimics the performance of
CUSP, yielding only modest performance.

Total Time
Matrix CUSPARSE Ref Opt

Cantilever 233.1 486.3 204.2 1.1 / 2.4
Spheres 305.1 838.1 308.6 1.0 / 2.7
Accelerator 238.7 108.1 25.0 9.5 / 4.3
Economics 136.9 63.7 30.1 4.6 / 2.1
Epidemiology 55.2 65.4 21.3 2.6 / 3.1
Protein 280.5 912.4 612.6 0.5 / 1.5
Wind Tunnel 374.9 1090.5 477.0 0.8 / 2.3
QCD 333.7 527.9 185.7 1.8 / 2.8
Webbase 1545.5 583.4 563.2 2.7 / 1.0

Tab. 14: A2 (ms) and speedups.

5 Conclusion

In conclusion we have presented a new formulation of our global sort based
SpMM operation that exhibits notable speedup by exploiting the row-wise pro-
cessing of the intermediate matrix. In order to study and process the inter-
mediate matrix more effectively we presented a reordering scheme to identify
the number of total entries per row of the intermediate matrix and adaptively
tune the sorting implementation to reduce the costs of global sorting in favor
to localized schemes. While our method does not provide speedup in all cases,
we have shown that by performing a lightweight analysis phase it is possible to
mitigate the overhead of global memory in favor of shared memory operations.
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