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ABSTRACT 

 This thesis describes an online CyberGIS (cyberinfrastructure-based geographic 

information system) environment for a public health application. This CyberGIS application 

represents a new GIS application modality for protected access to public health data and related 

CyberGIS analytical and visualization services based on service-oriented architecture. A novel 

CyberGIS Open Service Application Programming Interface is employed to allow a number of 

users to execute multiple spatial analyses simultaneously on the backend powerful 

cyberinfrastructure.  The user-centric interface of the CyberGIS application provides transparent 

access to cyberinfrastructure resources, which helps make the application scalable to the 

potential growth of the application users and pertinent public health researchers and users. 

 A case study is designed to examine spatial distribution characteristics of mortality rates 

in the mainland of China for the period of 1991 – 2000, using a suite of spatial data analysis 

methods integrated within the CyberGIS application that supports interactive exploratory 

analysis. The application demonstrates the novelty and utility of CyberGIS in this public health 

case study in the following four aspects. 1. Spatial pattern analyses combined with a set of 

visualization tools built on a CyberGIS infrastructure allow users to interactively explore the 

spatiotemporal distributions of heterogeneous data. 2. A highly interactive and easy-to-access 

user interface supporting temporal analysis allows users without in-depth GIS technical skills to 

experience an easy, efficient, and secure way to gain insights into the data. 3. Multiple users can 

access the application based on cloud computing support. 4. CyberGIS protects sensitive public 

health data based on a distributed database while enabling the dissemination of analytical 

insights based on the visualizations of spatial analyses. 
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CHAPTER 1 

INTRODUCTION 

 Online Web-based information environments are increasingly utilized in public health 

research and practice for information visualization and sharing through easy-to-access user 

interfaces. Within this broad context, geographic information systems (GIS) have become an 

important approach and tool in the domain of public health. Access to Web-based mapping and 

related spatial analysis, and usability and flexibility in making sense of spatial (i.e. 

geographically referenced) data in public health have drastically improved compared to 

conventional maps produced by desktop-based GIS software or printed atlases. Online GIS users 

can interact with dynamic maps through selecting and visualizing data on Web browsers (see e.g. 

http://www.earth.google.com). In addition, on the Internet many users can have shared access to 

specialized and customized GIS applications such as mortality and disease mapping, and disease 

surveillance systems (see e.g. http://www.who.int/research/en/). 

 Thus far, a number of studies on Web-based GIS for public health have focused on data 

sharing and interactive mapping (see Evans and Sabel 2012; MacEachren et al. 2008; Rop, Liu, 

and Wimberly, 2011; Toutant et al. 2011). Spatial analytical methods (broadly including spatial 

analysis and modeling) have been increasingly developed (Páez et al. 2010), and particularly 

these methods have been widely applied for supporting decision making in public health 

(Cromley and McLafferty 2011; Hanafi-Bojd et al. 2012; Watkins et al. 2012). On the other 

hand, a number of researchers have developed new methods based on desktop GIS software such 

as ArcGIS and combining data management with spatial and geo-visual analytical methods 

(Anselin et al. 2006; Guo 2008; Guo and Jin 2011). Open source GIS software such as GeoDa 
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(http://geodacenter.asu.edu/) and GRASS also has a variety of spatial analytical methods 

provided (http://grass.fbk.eu/). However, these GIS are designed based on the conventional 

computer-centric architecture (Wang 2010) in which it is often difficult to be integrated with 

powerful cyberinfrastructure resources. Cyberinfrastructure refers to integrated computing, 

information and communication technologies, and consists of computing systems, data, 

information resources, networks, digitally enabled-sensor, instruments, virtual organizations, and 

observatories, along with an interoperable suite of software services and tools (Atkins 2003; 

National Science Foundation 2007).  If millions of users simultaneously run computationally 

intensive spatial analyses in the computer-centric architecture, any single powerful computer 

would be easily overloaded. For this particular reason, conventional GIS often lacks the 

capability of supporting computationally intensive spatial analysis and does not support any 

application environment in which a number of users can work collaboratively to solve 

geographical problems. 

 CyberGIS - new generation GIS based on cyberinfrastructure – aims to overcome the 

aforementioned limitations of conventional GIS by integrating cyberinfrastructure, GIS, and 

spatial analysis capabilities (Wang 2010).  CyberGIS enables spatial analytical capabilities to be 

integrated with Web-based mapping and powerful cyberinfrastructure resources such as high-

performance computers and cloud computing resources. Another important aspect of CyberGIS 

is its focus on sharing of digital services among a large number of users for collaborative 

geographic problem solving and decision-making. 

 The primary purpose of this thesis research is to establish a CyberGIS environment with a 

highly interactive and multi-user online interface empowered by a suite of visual and analytical 

CyberGIS services. A case study is conducted to demonstrate how the CyberGIS environment 

http://geodacenter.asu.edu/
http://grass.fbk.eu/
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can support public health researchers to explore and analyze spatiotemporal mortality data 

through on-demand online maps, charts and analytical services. The challenge of organizing, 

visualizing, and analyzing spatiotemporal mortality data and high-dimensional socioeconomic 

and demographic data is tackled by integrating visualization tools, interactive mapping and 

cyberinfrastructure-based computation into the CyberGIS environment based on service-oriented 

architecture.  

 In the case study, two spatial analysis methods are adapted to allow users to gain further 

insights beyond data visualization and interactive mapping. The motivation for the use of spatial 

analysis is to represent the mortality rates of non-sampled counties by using sampled counties in 

which the mortality rates are known, and to identify regions with relatively high mortality rates 

compared to mortality rates in other regions. One method is self-organizing map (SOM), widely 

used for exploratory knowledge discovery (Agarwal and Skupin 2008). The other is a 

straightforward spatial classification (SSC) method, the development of which is based on SOM.

 These analyses focus on deriving the patterns of the mortality rates across all counties 

from sampled counties by utilizing two available datasets: (1) China national mortality data that 

are sampled in 145 selected counties among 2420 counties of the mainland of China from 1991 

to 2000; (2) high-dimensional socioeconomic and demographic data from the 1990 census 

collected at county level (see section 4.1 for details). Because the available data that can be used 

to estimate the mortality rates of non-sampled counties are limited, it would not be possible to 

construct a reliable model to predict the mortality rates of non-sampled counties. Therefore, 

instead of using a statistical approach to the prediction of the mortality values of non-sampled 

locations, our analyses (SOM and SSC) are performed based on the principles of exploratory 

data analysis (EDA) (see section 4.3 for details). EDA approach can provide useful hints that are 
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needed to estimate the mortality rates of non-sampled counties. Then, the estimated mortality 

rates help to reveal the general patterns of mortality rates across all counties in China. In addition, 

understanding the general patterns would be able to help create a hypothesis to design statistical 

models for the next level of study. 

 To achieve the objective of revealing the patterns of mortality rates by using 

aforementioned available datasets, our approach consists of two parts—classification and 

association. The first part is to group socioeconomically and demographically similar counties 

together. Among the counties within the same class defined at the first part, the second part is to 

select the representative sampled county and associate the mortality rate of the representative 

county to the mortality rates of non-sampled counties.  

 For the first part, it is challenging to precisely measure the similarity of high-dimensional 

socioeconomic and demographic data among counties. The SOM is applied to address this 

challenge by generating multiple classes to which socioeconomically and demographically 

similar counties belong. Regarding the second part for achieving the association, each class 

should include only one sampled county and one or more non-sampled counties. Through this 

association process, among the counties belonging to the same class, the mortality rate of the 

sampled county is assigned to the mortality rates of the non-sampled counties. A problem, 

however, is that the classification of SOM may include classes to which multiple sampled 

counties belong or it may not include any sampled county. In the former case, it is often difficult 

to identify the representative sampled county. In the latter case, there is no representative 

mortality rate of the sampled county that can be associated to the mortality rates of the non-

sampled counties. Consequently, given the SOM classification, the mortality rates of some non-
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sampled counties are not feasible to be associated with the morality rates of the sampled counties. 

Therefore, SSC is developed to achieve the desirable association.  

 SOM provides a foundation for the development of SSC and also has its own value as a 

knowledge discovery tool. SSC is built on SOM with respect to the measurement of the 

similarity of high-dimensional socioeconomic and demographic data, but uses a different 

classification method that is distinguished from the SOM’s classification. Though SOM itself 

does not directly contribute to the revelation of the patterns of the mortality rates of all counties, 

it results into various views of graphs and maps that can be useful for further analysis. 

 In this thesis research, by integrating the aforementioned spatial analyses, health-related 

data, and a highly interactive user interface in the CyberGIS environment, users experience 

dramatically reduced turnaround time required for performing spatial analyses. In addition, 

problems of conventional GIS regarding the limitations in its computational scalability are 

resolved by employing cyberinfrastructure, access to which CyberGIS makes easy and intuitive 

by developers and users. The research is intended to address the following three questions. 1. 

Given the limited number of samples from the available datasets, how the CyberGIS application 

can facilitate the analysis and revelation of spatiotemporal patterns of the China national 

mortality rates? 2. Are there any particular spatiotemporal patterns of the mortality rates of 

certain diseases at the national scale? And 3. How can the CyberGIS environment benefit public 

health researchers and practitioners? 

 The rest of this thesis is organized as follows. The background section reviews related 

work on Web-based GIS in public health and spatial analysis in medical geography. The section 

on the CyberGIS environment describes the architecture, interface design, and components of the 

CyberGIS environment. The case study addresses specific methods and focuses on findings 
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resulted from spatial analyses within the CyberGIS application. Finally, the summary and 

conclusions section summarize the findings of this thesis, and address the significance of the 

findings.  
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CHAPTER 2 

BACKGROUND 

 In this chapter, the first-part discussion is focused on literature related to Web-based GIS 

applications in public health and addresses needs for CyberGIS. Then, it reviews the use of self-

organizing map (SOM) in health geography research. SOM is adapted for analysis of sparsely 

sampled mortality data of China, which will be further detailed in the case study of this thesis. 

2.1 WEB-BASED GIS IN PUBLIC HEALTH 

 GIS is widely used for managing and analyzing public health data and revealing spatial 

patterns that may be difficult or impossible to be discovered. However, using conventional GIS 

requires mastering sophisticated skills in order to fully utilize necessary techniques and methods 

to generate desirable results and maps. On the other hand, public health researchers or policy 

makers have increasingly recognized the need for sharing geospatial data and using GIS for 

problem solving and decision-making. Web-based GIS emerged to enable easy access to 

geospatial information derived from public health data to broad users including those without in-

depth GIS expertise (Cromley 2003; Croner 2004). While a number of Web-based applications 

have recently been developed to resolve various public health issues, including for example 

disease surveillance (Robertson and Nelson 2010), GIS applications for geospatial knowledge 

discovery and decision making in public health remain to have tremendous needs and require 

major advances to be made in GIS and spatial analysis tools (Supak et al. 2012). 

2.1.1 Commercial off-the-Shelf Web-based GIS 

 Conventional Web GIS implementations are often led to isolated, standalone, monolithic 

and proprietary systems (Anderson and Moreno‐Sanchez 2003), which focus on data and tools 

implemented with the client-server architecture (Rinner 2011). For example, Blanton et al. (2006) 
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developed a spatial database and real-time Internet mapping tool for rabies surveillance in the 

United States by utilizing commercial Web GIS software—i.e. ArcIMS software. By using the 

same software, Yang et al. (2007) built a spatial decision support system for epidemic disease 

prevention. 

 Meanwhile, Kamadjeu and Tolentino (2006) suggested that proprietary GIS technologies 

are a limiting factor in the adoption of GIS in public health organizations that in many cases lack 

resources such as GIS hardware, software, and budgets for acquiring necessary technical 

expertise.  When such organizations try to use commercial Web GIS software to exchange 

geospatial data and deliver functions of spatial and statistical analysis, they often come across the 

following issues: (1) such GIS does not offer out-of-the-box spatial analysis functionality to 

support customized analyses; (2) it requires long-term commitments to cope with software 

evolution; (3) it requires that some of their IT personnel become specialists in the software 

operation and maintenance; and (4) it is costly to integrate with existing IT infrastructure. For 

these reasons, commercial off-the-shelf GIS are often beyond the reach of resource-constrained 

public health organizations (Anderson and Moreno‐Sanchez 2003). 

2.1.2 Open Source Web-based GIS  

  Open source GIS has emerged to overcome some of the aforementioned issues. Open 

source technologies can be shared with anyone and allow resource-constrained public health 

agencies to use Web resources with low development cost (Yi et al. 2008). Personnel with 

general IT background can learn open source technologies. In addition, open source GIS is freely 

extensible with functionalities that are not available in commercial software, and compatible 

with existing IT infrastructure including personnel skills, software, and applications (Anderson 
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and Moreno‐Sanchez 2003). Therefore, open source GIS software may be desirable for resource-

constrained public health agencies (Richards et al. 1999).  

 Recently there are numerous health-related Web-based GIS applications which address 

the potential of open source software in terms of its interoperability and scalability (Evans and 

Sabel 2012; Kamadjeu and Tolentino (2006); Maclachlan et al. 2007; Pirotti, Guarnieri, and 

Vettore 2011; Toutant et al 2011;Vanmeulebrouk et al. 2008). Boulos and Honda (2006) pointed 

out that open source Web-based GIS software systems have reached a stage of robustness and 

stability rivaling that of commercial Web-based GIS and provided instructions on how to publish 

their own health maps with Web Map Service (WMS) support. Moreno‐Sanchez et al. (2007) 

emphasized the potential of open source software by utilizing distributed raster images that are 

generated as map layers. MacEachren et al. (2008) presented the use of Web Feature Service 

(WFS) to support highly interactive and dynamic geo-visualization tools in the development of 

Web-based GIS-enabled cancer atlas across the state of Pennsylvania.  

2.1.3 Service-Oriented Web-based GIS 

 Architecture of Web-based GIS now is evolving to open, distributed, service-oriented 

environments where data can be transparently exchanged among components offering specific 

geo-processing functionalities (Dangermond 2002). In this architecture the Web is used for 

delivering not only data, but also spatial analysis methods or geo-processing tools that can be 

wrapped in interoperable software components (Anderson and Moreno‐Sanchez 2003). These 

components can be integrated together to build comprehensive services or applications (Hecht 

2002). Within this context, Croner (2003) demonstrated the potential of Web resources for public 

health decision-making and the integration of distributed spatial data applications into 

cyberinfrastructure including supercomputing, and data transfer and mining technologies. Goa et 



- 10 - 
 

al. (2008) presented an interoperable service-oriented architecture for online mapping of 

spatiotemporal disease information, and augured that such an infrastructure enhances efficiency 

and effectiveness of public health monitoring. Tiwari and Rushton (2010) developed an 

environmental health surveillance system (EHSS) that serves to (1) visualize the spatial patterns 

of diseases while preserving privacy, and (2) automatically link environmental data, 

environmental models, and geo-processing functionality to estimate individual exposures to 

environmental contaminants. The authors presented a modular, Web-based spatial analysis 

system that uses spatial analysis methods and services delivered over computer networks. Rinner 

et al. (2011) proposed service-oriented architecture that integrates publicly accessible map 

services with protected public health data layers to investigate injury rates and demographic 

factors through a spatial lens. Supak et al (2012) created a flexible framework for public health 

monitoring while focusing on the flexibility and scalability of the framework that allows the 

system to be customizable, modular, portable, and easily configurable to support additional 

research and education initiatives. 

2.2 NEEDS FOR CYBERGIS IN PUBLIC HEALTH 

 Recently, Web-based public health applications are omnipresent. Unfortunately, many of 

these applications are built as closed systems where it is difficult to use spatial analysis tools or 

geo-processing functionalities of other services and integrate with cyberinfrastructure resources. 

In addition, in a closed system a number of users who can simultaneously run spatial analyses or 

geo-processing functionalities on the Web are often limited. Wang (2010) showed that those 

systems have computer-centric architecture where hardware and operating systems are treated as 

center and databases and application software are built as peripherals. Consequently, Web-based 

GIS built in this architecture is often limited to enable collaborative problem solving involving 
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multiple users’ shared access to GIS services, and is also lacking support for computationally 

intensive spatial analysis.  

 CyberGIS addresses aforementioned issues so that a large number of users can be 

allowed to perform spatial analyses collaboratively and simultaneously, and exchange services 

on cyberinfrastructure including resources such as high-performance computers, clouds, remote 

visualization systems, and capabilities of knowledge management and virtual organization 

support functions. The holistic approach of CyberGIS is to interlink both application-driven and 

user-centered functionalities of cyberinfrastructure, GIS, and spatial analysis.  

One important capability of CyberGIS is to enable computationally intensive spatial 

analyses running on powerful cyberinfrastructure, while user-centered interfaces enhance the 

accessibility and usability of CyberGIS applications. Through intuitive interfaces, users can 

easily perform spatial analyses without going through a steep learning curve that is often 

required in desktop-based GIS. Another important aspect of CyberGIS is its service-oriented and 

open framework. For example, application developers can use OpenLayers as  a client-side 

mapping tool, GeoServer for managing layers and styles of visualization, Apache Web server for 

message handling and data retrieval, Ext JS or Yahoo User Interface (YUI) Library for 

visualization tools and layouts, and cloud computing or supercomputing to scale up the capacity 

of spatial analyses, and remote database for protecting sensitive data. CyberGIS synthesizes all 

of these digital resources and services, and achieves a cohesive single environment. Therefore, 

by utilizing CyberGIS for supporting knowledge discovery and decision making in public health, 

a wide range of users such as public health professionals, researchers, policy makers, and general 

public, can not only share geospatial information, but also work jointly on solving complex 

geographic problems.  
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2.3 SPATIAL ANALYSIS – SELF-ORGANIZING MAP 

 Self-organizing map (SOM) has been widely used as data clustering, classification, 

visualization, dimension reduction and pattern recognition methods. Several researchers used 

SOM to reveal and visualize structures of high-dimensional public health data and explore the 

relationships among data attributes (Mehmood et al. 2011; Ki et al. 2011; Koua and Kraak 2004; 

Törönen et al. 1999; Valkonen et al. 2002). Also, SOM has been utilized to analyze spatial 

patterns in public health research. Oyana et al. (2005) suggested the potential use of SOM for 

analyzing spatial data in biomedical domains. They applied SOM to explore the patterns of adult 

asthma patient data and revealed that asthma is more prevalent in areas that are close to major 

roadways and pollution sources. Basara et al. (2008) applied SOM to classify high-dimensional 

environmental variables. They found that there is a significant relationship between SOM 

classifications and the geographic distribution of diseases and, also revealed that the environment 

is correlated with the distribution of both chronic and infectious diseases. Zhang et al. (2009) 

identified the groups of geographical areas that share similar epidemiological data attributes. 

Previous work suggests that SOM as an exploratory data analysis method is effective in public 

health research for analyzing high-dimensional data including for example health outcomes, 

socioeconomic and demographic variables, and physical environments.  
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CHAPTER 3 

CYBERGIS ENVIRONMENT 

 This chapter describes the architecture, interface design, and components of a CyberGIS 

environment tailored to the spatiotemporal morality data and related public health application. 

3.1. ARCHITECTURE OF CYBERGIS ENVIRONMENT FOR PUBLIC HEALTH  

 The CyberGIS application is developed based on the principles of service-oriented 

architecture, and makes use of open source software for flexible customization of the 

technologies involved (Figure 1). The entire application includes PostGIS (remote database 

where sensitive public health data are stored), GeoServer for rendering and configuring the 

visualization of map layers, Web server for user interaction handling and data retrieval, and 

OpenLayers and Yahoo User Interface (YUI) Library for programming client-side user interfaces. 

In addition, the spatial analyses – self-organizing map and the straightforward spatial 

classification – are deployed within a cloud infrastructure of the CyberInfrastructure and 

Geospatial Information Laboratory (see chapter4 for the detailed description of the spatial 

analyses). Service-oriented architecture and cloud computing combined with open source 

software assure the scalability and interoperability of the CyberGIS application. The user-centric 

interface of the CyberGIS application provides transparent access to CI resources, which help 

make the application scalable to the potential growth of the application users.  
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Figure 1 

Architecture of the CyberGIS application 

• XSEDE stands for the Extreme Science and Engineering Discovery Environment, an integrated 

CI environment supported by the National Science Foundation (see https://www.xsede.org/). 

• Census data: 40 socioeconomic and demographic attributes from the 1990 census of China  

• Sensitive public health data: mortality data from 1991 to 2000 from the Chinese Center for 

Disease Control and Prevention 

• Som_pak-3.1: self-organizing map software package 

• SSC: straightforward spatial classification  

 

 

 Spatial analysis based on cloud computing provides on-demand access to computational 

resources (Figure 1). In the client-server architecture of GIS, when an application becomes 
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popular and has a large number of users, a single server may become overloaded. However, in 

our user-centered environment, the analyses are deployed to many virtual machines in the cloud, 

which enables serving massive users in a scalable way. A basic idea of cloud computing is that 

computing capacity available to users is elastic. The computing resources could be expanded or 

also shrunken based on users' dynamic requests to run spatial analyses. Through this cloud 

computing approach, a large number of users can run numerous analyses simultaneously without 

concerning about how much computing power is available to them. Therefore, dispatching 

spatial analyses to cloud infrastructure can help scale up the capacity of spatial analyses. For the 

integration of the user environment and back-end cloud infrastructure in which the spatial 

analyses are computed, an Open Service API is used. CyberGIS Open Service API (created by 

the CyberInfrastructure and Geospatial Information Laboratory at the University of Illinois at 

Urbana Champaign) bridges between application clients and back-end CI resources such as cloud 

computing. This API streamlines the integration of spatial analyses with CI. In addition, in the 

future other researchers who want to integrate the existing spatial analyses will be able to 

integrate them in their applications through the Open Service API. 

 The integration of remote database access and control can contribute to the dissemination 

of sensitive geospatial information derived from public health data while preserving the 

confidentiality of health records (Figure 1). Health organizations are often careful about 

releasing public health data that can possibly lead to the identification of individuals (Croner 

2003). Consequently, researchers have developed a number of methods for geographically 

masking (i.e. modifying) the locations of individuals containing health records (Armstrong et al. 

1999). The capability of remote database access and control allows a wide range of user 

privileges to be specified for flexible protection of the security of public health records. Since the 
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remote access to database is feasible, public health agencies do not need to release their sensitive 

health records out of their own database while permitting spatial analyses on their data. Spatial 

analyses generate maps visualizing trend and distributional patterns of diseases rather than 

presenting individual records. Furthermore, results of spatial analyses often allow users to have 

more advanced insights than visualizing raw data. Then, visualizations of spatial analysis results 

can be widely shared while ensuring the prevention of the disclosure of original health records. 

In aggregate, the CyberGIS application allows for different rights of accessing the database for 

different users. For example, general public can query to see the distribution of mortality rates of 

stomach cancer. Doctors can have access to sensitive data (e.g. sexually transmitted disease) that 

contain identifiable personal information. 

3.2 INTERFACE DESIGN AND COMPONENTS 

 With the advance of Web 2.0 technologies, CyberGIS applications can have user-friendly 

interfaces and, thus allow for easy access by those who do not possess GIS technical expertise. 

Target users for our CyberGIS application may include decision makers in public health 

organizations, public health researchers, and even general public users. The user interfaces 

consist of two parts: “Temporal Chart” (Figure 2) and “Spatial Chart” (Figure 3). Points 

represent the locations of stations where mortality data were sampled (description of the data and 

the study area are detailed in the section 4.1). Each part provides highly dynamic and interactive 

charting tools. Spatial analyses are arranged in the Spatial Chart part with a bar graph 

representing spatial distributions of mortality rates. 
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Figure 2 

The interface of “Temporal Chart” of the CyberGIS environment: Buttons and check boxes 

below the line graph allow users to compare and contrast the temporal changes of the mortality 

rates of each disease (N09, N10 and N11) among the selected population (males in the range of 

ages between 40 to 85). Currently only the total mortality rate of all three diseases is shown. 

Various views of this “Temporal Chart” are available in Figure 7, 8 and 9. A table view is 

available on the right side of the chart. 

N09 (malignant neoplasm of digestive organs and peritoneum) 

N10 (malignant neoplasm of respiratory and intrathoracic organs) 

N11 (malignant neoplasm of bone, connective tissue, skin, and breast) 

 

http://en.wikipedia.org/wiki/Malignant_neoplasm
http://en.wikipedia.org/wiki/Respiration_(physiology)
http://en.wikipedia.org/wiki/Intrathoracic
http://en.wikipedia.org/wiki/Malignant_neoplasm
http://en.wikipedia.org/wiki/Bone
http://en.wikipedia.org/wiki/Connective_tissue
http://en.wikipedia.org/wiki/Skin
http://en.wikipedia.org/wiki/Breast
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Figure 3 

“Spatial Chart”: a different view of this chart is available in Figure 10. 

 

3.2.1 Data Selection    

 The interfaces allow users to explore the temporal and distributional differences and 

similarities of mortality rates as a whole and across categories of gender, age, and death causes. 

For the calculation of mortality rates, there are options for users to select input parameters on the 

top of the map (Figure 4): gender (male and female), age (0, 1, 5...80, 85, and >100), and death 

causes that are represented based on the Chinese Classification of Diseases (CCD).  
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Figure 4 

On the interface, the user can select input parameters to visualize mortality rates in maps and 

charts and perform spatial analyses. There are three major categorizations—i.e. gender, age, and 

death causes. After this major categorization is chosen, the user can have more options to refine 

input parameters by clicking the “Refine” button.  

 

Figure 5 

A user's selection of input parameters 

 

Figure 6 

A tooltip to show what N09 represents 
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The CCD code starting with N means internal causes of death and the code starting with E 

represents external causes of death. When the user hovers over each code, a tooltip containing its 

corresponding name of a specific cause of death and its ICD-9 code pops up. For example, N09 

indicates the malignant neoplasm of digestive organs and peritoneum, and 150-159 represents 

corresponding ICD-9 code for N09 (Figure 6).  To define input parameters, there are a major 

categorization (Figure 4) and further refinement of input parameters (Figure 5). The user can 

choose one among major categories—i.e. gender, age, and death causes. When the “Refine” 

button is clicked (Figure 4), the user has additional options to refine input parameters (Figure 5). 

For example, the user selects death causes among the major categories, and then selects male, 

aged 40 to 85 years old, and N09 (malignant neoplasm of digestive organs and peritoneum), N10 

(malignant neoplasm of respiratory and intrathoracic organs), and N11(malignant neoplasm of 

bone, connective tissue, skin, and breast) among death causes. Then, the mortality rates of the 

chosen diseases among the male population in the range of ages between 40 and 85 are 

calculated and visualized using both the “Temporal Chart” (Figure 2) and “Spatial Chart” 

(Figure 3). Since the user selects death causes in the major categorization, the temporal chart 

gives the user options to temporally compare and contrast the mortality rates of each disease 

(N09, N10 and N11) among the selected population (males in the range of ages between 45 to 

80) (Figure 2). 

3.2.2 Temporal Changes of Mortality Rates     

 Crude mortality rate is used to show their temporal change. It is the total number of 

deaths to residents in a specified geographic area (county) divided by the total population of the 

same geographic area (county) and multiplied by 1000. The default “Temporal Chart” first 

displays the temporal change of a total mortality rate of all of the sampled counties that are 
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http://en.wikipedia.org/wiki/Respiration_(physiology)
http://en.wikipedia.org/wiki/Intrathoracic
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http://en.wikipedia.org/wiki/Connective_tissue
http://en.wikipedia.org/wiki/Skin
http://en.wikipedia.org/wiki/Breast
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represented as points on the map (Figure 2). As the user specifies input parameters (e.g. Figure 

5), the temporal changes of mortality rates specific to age, sex, or certain causes of death are 

visualized. Also, the temporal changes of the mortality rates of a specific location are visualized 

on the line chart, whenever the user clicks one of the point locations on the map. For example, 

with the selection of input parameters as described above (Figure 5), once the user clicks a point 

on the map, a line graph is created to show the temporal change of mortality rates of the clicked 

location (Figure 2). The chart first displays a total mortality rate of the three selected diseases 

among the male population in the range of ages between 40 and 85, and has options to visualize 

N09, N10, and N11 (see the unchecked check boxes in Figure 2). After the user clicks the 

"Check All" button, all of the three lines are added to visualize the temporal changes of mortality 

rates of each disease (Figure 7). When the user hovers over each line, a tooltip pops up and tells 

what the line represents (Figure 8). 

Figure 7 

 This graph is captured from the page of “Temporal Chart” in Figure 2. The image is captured 

when the user’s mouse hovers over N09 (Note a tooltip). 

red: total 

blue: N09 (malignant neoplasm of digestive organs and peritoneum) 

yellow: N10 (malignant neoplasm of respiratory and intrathoracic organs) 

black: N11 (malignant neoplasm of bone, connective tissue, skin, and breast) 
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http://en.wikipedia.org/wiki/Respiration_(physiology)
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http://en.wikipedia.org/wiki/Malignant_neoplasm
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http://en.wikipedia.org/wiki/Connective_tissue
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http://en.wikipedia.org/wiki/Breast
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Figure 8 

A tooltip pops up when the user mouse hovers over the second circle of a blue line. 

 

 In addition, the “Temporal Chart” allows users to zoom in certain parts of the line graph. 

The line graph of Figure 7 represents that the mortality rates of N09 are always much higher than 

the mortality rates of N10 and N11 for the 10-year period from 1991 to 2000. However, the 

temporal changes of the mortality rates of N10 and N11 cannot be obviously shown. Especially, 

a line of mortality rates of N11 is almost crammed at the bottom of the graph because of the big 

difference between the mortality rates of N09 and N11. In this case, the user can uncheck the 

checkboxes of the total and N09 and hit the “Redraw” button (see Figure 9).  

 

 
Figure 9 
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This chart is redrawn from the chart of Figure 7.  

blue: N10 (malignant neoplasm of respiratory and intrathoracic organs) 

yellow: N11 (malignant neoplasm of bone, connective tissue, skin, and breast) 

 

Then, the graph zooms in the range where the mortality rates of N10 and N11 are visualized. 

Before the user redraws the graph, the maximum mortality rate of the y-axis is 5.77 (see Figure 

7). In contrast, in the redrawn graph, the maximum mortality rate of y-axis is 0.95 (see Figure 9). 

Consequently, the redrawn graph (Figure 9) shows temporal variations of mortality rates of N10 

and N11 more clearly than the prior graph (Figure 7). The mortality rate of N11 has a decreasing 

trend, which cannot be examined in the graph of Figure 7. When the user hits the “Initialize” 

button, the graph goes back to its initial view (Figure 2). In this way, the user can selectively 

visualize the line representing a temporal change of mortality rates, and also compare and 

contrast multiple line series in the graph. 

3.2.3 Distributional Patterns of Mortality Rates 

 In this section, all the mortality rates are age-adjusted based on a direct age 

standardization method (Ahmad et al. 2001). While the crude mortality rate is useful for 

determining the magnitude of health status of a geographic area, it is not appropriate for the 

comparison of the mortality rates of populations in different geographic areas (see Curtin, Klein, 

and National Center for Health Statistics (US) 1995). When the crude mortality rate is used to 

compare the mortality rates of populations belonging to groups having the different age 

composition, it brings the following issue. Because the mortality occurs at infant and old-age 

classes, the population with a large number of infants and old people would have a higher 

mortality rate than the population with a small number of groups of infants and old people. In 

order to eliminate the effect of the difference of the age composition in calculating mortality 

http://en.wikipedia.org/wiki/Malignant_neoplasm
http://en.wikipedia.org/wiki/Respiration_(physiology)
http://en.wikipedia.org/wiki/Intrathoracic
http://en.wikipedia.org/wiki/Malignant_neoplasm
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rates, the crude death rate should be adjusted for the differences in age composition between the 

population of interest and a standard population. The formula is given as follows: 

Direct Standardization of (Age Adjusted) Mortality Rate =  [Sum age groups (Mar Pas)]/Ps x 1000  

Mar is the age-specific mortality rate for the region. 

Pas is the number of people in the age group in the standard population. 

Ps is the total standard population. 

 “Spatial Chart” provides comparative views of the mortality rates across province and 

counties every year from 1991 to 2000 (Figure 10). For example, after the user’s selection of 

input parameters as defined in Figure 5, the chart represents the total mortality rates of all N09, 

N10, and N11 among the male population in the range between ages 40 and 85 at the province 

level and at the county level in the year 2000.  
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Figure 10 

The user clicks Jiangsu province. Then, the Jiangsu province is highlighted on the map and also 

another chart is drawn on the right side. The chart represents the mortality rate of each five 

sampled counties within the Jiangsu province. 

 

For the province-level visualization, the chart visualizes an average of the chosen mortality rates 

of all the stations within each province. The right-most bar of the chart represents the Guangxi 

province having the highest average mortality rate of all the stations within every province. In 

contrast, the left-most bar represents the Xizang province representing the lowest average 
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mortality rate of all the stations within every province. In addition, the chart allows the user to 

click one of province names on labels. Then, another chart comes out on the right side and shows 

the mortality rate of each sampled county of the clicked province. For instance, in Figure 10 

Jiangsu province is clicked by the user. Then, the Jiangsu province is highlighted on the map and 

also another chart is drawn on the right side. The chart represents the mortality rate of each five 

sampled counties within the Jiangsu province. In this fashion, linking between a map and the 

charting tool enables users to drill-down easily from a province level overview to more specific 

information about places of interest.  

 Users can run spatial analyses on the page of “Spatial Chart” - e.g. Figure (the description 

of the spatial analyses is provided in the section 4.3). Before users run spatial analyses, they can 

visually examine the mortality rates of sampled counties that are one of inputs of spatial analyses. 

For example, after “Sampled MR” button and year “1992” button are clicked, the image of 

Figure 10 is shown on the map area. When “Classification” button is clicked on the interface (e.g. 

Figure 10), the map shows the classification result of the straightforward spatial classification 

method (e.g. Figure 36). “Simulated MR” button is to show the distributional patterns of 

mortality rates in the entire counties including sampled counties (e.g. Figure 38). Both buttons: 

“Run-som_pak-3.1” and “Standard deviation” allow users to run self-organizing map and 

discover knowledge based on the various visualizations of the results (e.g. Figure 18 and 22). 

SOM_PAK3.1 is standalone software created by the Neural Networks Research Center at the 

Helsinki University of Technology (Kohonen et al. 1996). The source code, written in C, is 

freely available for non-commercial uses. When users click a button “Run-som_pak-3.1,” the 

source code is executed within the CyberGIS environment. 
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3.2.4 Combined Uses of Spatial Analyses and Charting Tools 

 Spatial analyses and charting tools can be used synergistically. For example, mortality 

rates are defined as shown in Figure 5. Then, the user visualizes defined mortality rates by using 

charting tools and distributional patterns of the mortality rates produced by performing spatial 

analyses (e.g. Figure 11, 12 and 13).  

 

Figure 11 The image on the map (above) is after the user zooms in Shandong province. The 

image of entire China is shown below. The graph on the right shows the mortality rate of each 

sampled county within the Shandong province. 



- 28 - 
 

 

Figure 12 

Shandong province (highlighted on the map) shows the relatively high mortality rates of the 

selected diseases (N09, N10 and N11) compared to other parts, especially the west parts of China. 

Counties in Shandong province are mostly colored in orange or red, which means the potentially 

high mortality rates of the selected diseases.  

 

As the users examine spatial distributional patterns of mortality rates of China, they are probably 

interested in focusing on the province level showing the high mortality rates as represented in red 

color on the maps. Then, the users may click a province showing the high mortality rates on the 

chart and examine the county level mortality rates within the selected province while 

simultaneously examining the red colored regions on the map. For example, Shandong province 

is focused since most counties in the province are represented in oranges or red indicating the 

relatively high mortality rates (see the highlighted province on the map in Figure 11). In this case, 

the user might also be interested in investigating the temporal changes of mortality rates of each 

sampling station within the Shandong province. Figure 13 shows that one of the stations in the 

selected Shandong province is clicked and all of the mortality rates of N09, N10, and N11 

indicate increasing trends during the ten-year period from 1991 to 2000. 
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Figure 13 

Users examine the temporal changes of the mortality rates of orange or red colored areas—i.e. 

areas with the high potential rates of mortality.  
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CHAPTER 4 

CASE STUDY 

 The case study is designed as a CyberGIS application in which spatiotemporal 

characteristics of mortality rates in China (mainland) are examined for the period of 1991–2000. 

This chapter addresses spatial analysis needs of a set of China mortality data, and describes 

specific analysis methods developed, and corresponding findings. A specific focus is placed on 

the evaluation of spatial data analysis methods and a CyberGIS user interface that supports 

interactive exploration of spatiotemporal data attributes. 

4.1 DATA 

 There are two different datasets available for this study. First, the China national 

mortality dataset covers 1% population in the mainland of China consisting of 2420 counties. 

This dataset was collected in 145 counties by using multiple stratified random sampling for the 

period of 1991 to 2000 (Figure 14) (Yang et al. 2008).  

 In these 145 sampled counties, each station uniquely identified by its four-digit ID is 

allocated for recording information about every death. Each mortality record includes gender, 

age, occupation, ethnicity, education, marriage statues, death date, death place, and death causes. 

The mortality samples were chosen to represent regional population distributions, urban and 

rural areas, age and sex, and eastern, middle, and western regions (Yang et al. 2008). The second 

dataset is China 1990 population census collected at the county level. Each county includes 40 

socioeconomic and demographic data attributes representing population, age-sex structure, 

education, marital status, the number of total births and death, industrial/economy activity and 

occupation (Table1). A spatiotemporal database of the ten-year mortality data and 
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socioeconomic and demographic attributes has been established, and is integrated within the 

CyberGIS application. 

 

Figure 14 

Study area is the mainland of China. Sampled counties with mortality samples are represented in 

grey-filled counties.  
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Category Attribute Normalized by 

 •  population # of pop area 

  # of households area 

  # of non-agricultural households total households 

  # of agricultural households total households 
  # of immigrants since 1985 total pop 

 •  sex # of male pop total pop 

  # of female pop total pop 

 •  age age 0  - 4 total pop 

  age 5 - 14 total pop 

  age 15 - 39 total pop 

  age 40 - 64 total pop 

  age 65 above total pop 

 •  education # of pop having college degree pop over age 15 
  # of illiterate pop pop over age 15 

 •  marital  Never Married pop over age 15 

     status Married pop over age 15 

  Widow pop over age 15 

  Divorced pop over age 15 

 • birth/death # of births between 1989 - 1990 total  pop 

  # of deaths between 1989 - 1990 total pop 

 •  industrial # of total employed pop pop over age 15 

     /economic # of pop employed in agriculture total employed pop 
     activity # of pop employed in industry total employed pop 

  # of pop employed in mining, prospecting total employed pop 

  # of pop employed in construction total employed pop 

  # of pop employed transport, posts, telecommunications total employed pop 

  # of pop employed in commerce supply and marketing total employed pop 

  # of pop employed in real estate, utilities, residential services total employed pop 

  # of pop employed in medicine, health care, sports, welfare total employed pop 

  # of pop employed in education, culture, arts, radio, television total employed pop 

  # of pop employed in science, technology total employed pop 

  # of pop employed in finance, insurance total employed pop 

  # of pop employed in government, party, and NGOs total employed pop 

 • occupation # of professional and high-level technical personnel total employed pop 
  # of officials/managers in gov't, party, business, & NGOs total employed pop 
  # of clerical personnel total employed pop 
  # of employees in commercial sector total employed pop 

  # of employees in service sector total employed pop 

  # of workers in agriculture, forestry, husbandry,  fisheries  total employed pop 
  # of workers in manufacturing, construction, transport, etc.  total employed pop 

Table.1 

40 socicoeconomic and demographic attributes in China 1990 population census. These 

attributes are available in every county. Each attribute in the 2nd column is divided by another 

attribute of the 3rd column in the same row. 
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4.2 CHALLENGES OF SPATIAL DATA ANALYSIS 

 The epidemiological transition from infectious disease and perinatal conditions to chronic 

diseases and injuries has occurred at a much faster pace in China than in many western countries 

(Yang et al. 2008). Therefore, it is necessary to identify surveillance areas where populations are 

excessively exposed to certain disease risks. Identifying areas of high mortality rates would help 

public health officials to make informed decisions on where to allocate medical resources. To 

perform such a task, however, only available datasets are the mortality and census data (see 

section 4.1 for details). The primary question that this study addresses is how to analyze these 

datasets to represent the mortality rates of non-sampled counties and identify high risk areas of 

certain diseases in the mainland of China.  

4.3 METHODOLOGICAL APPROACH  

 Given the high dimensionality and complexity of the available data, our approach is 

based on exploratory data analysis (EDA). The principle of EDA is to let data speak for 

themselves by imposing no a priori hypothesis (Gould 1981). By utilizing statistical tools and 

information visualization such as cartographic maps, tables, histograms, scatter plots, and charts 

(Harris 1999), EDA employs visual abstractions to reveal “potentially explicable patterns” of 

data (Good, 1983). The general purpose of EDA is to represent data in an ordered fashion such 

as based on clustering structures and relations among data elements (Kaski and Kohonen 1996). 

Several EDA methods focus on user interactivity through data visualization. They allow users to 

explore various data views in response to their parameter selections, which are often enabled by 

computation for data processing (see Cleveland, 1993; Buja et al., 1996; Guo 2005). The 

findings based on EDA can guide users to suggest explanations, create formal hypothesis and 
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theoretical constructs, and present data in a form that is easily understandable (Messner et al. 

1999; Guo 2005).  

 Kaski and Kohonen (1996) illustrated a case in which an exploratory data analysis can be 

used instead of constructing a prediction model. Data and knowledge required for formulating 

accurate prediction models could often be too costly to acquire. Even though a model can be 

developed based on limited data and related knowledge, the model may fail to achieve desired 

quality. In this particular situation, EDA is also appropriate. Although predicting mortality rates 

of non-sampled counties is desirable in this research context, it would not be possible to 

construct a reliable model given our limited data. Therefore, instead of developing a model for 

prediction, we use EDA to produce useful hints on identifying areas of high mortality rates. 

 Our exploratory spatial data analysis encompasses two interrelated methods. The first is 

the self-organizing map (SOM) that focuses on grouping socioeconomically and 

demographically similar counties and visualizing the information of the mortality data in each 

group through statistical summary. The second is a straightforward spatial classification (SSC) 

method that aims to reveal the entire patterns of the mortality rates of the mainland of China 

based on the similarity of socioeconomic and demographic factors. To measure the similarity 

between high dimensional socioeconomic and demographic attributes of counties, both methods 

use Euclidean distance (see section 4.3.1 for details).  

4.3.1 Measuring the similarity of socioeconomic and demographic attributes 

 Data Preprocessing. In measuring the similarity between high dimensional 

socioeconomic and demographic attributes of counties, data preprocessing plays an important 

role. The first data-preprocessing step is that each attribute is divided by another attribute as 
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indicated in Table 1 (see Dailey 2006). The next step is to use the minimum and maximum 

values for normalizing all of the attributes. The formula is given below:   

  

This normalization method scales all of the attributes to the range [0,1] for a fair comparison 

between them (see Guo 2005; Vesanto et al. 1999).    

 A Similarity Measure. To measure the similarity or distance between high dimensional 

socioeconomic and demographic attributes, Euclidean distance is used (see Kohonen 2001): for 

county x with n attributes - x = (x1 , x2 ,  ..., xn) and county y with n attributes y = (y1 , y2 ,  ..., 

yn),   

 d(x, y) = || x - y || =  

The shorter the distance among the socioeconomic and demographic attributes of counties is, the 

more socioeconomically and demographically similar the counties are. 

4.3.2 Similarity comparison based on EDA 

 Revealing the patterns of mortality rates of the entire mainland of China can be achieved 

by associating the mortality rates of the sampled counties to the non-sampled counties that are 

socioeconomically and demographically similar to the sampled counties. For example, Figure 15 

illustrates how this process works.  
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Figure 15  

The mortality rate of a sampled county could be similar to the mortality rates of some non-

samped counties that are socioeconomically and demographically similar to the sampled couty. 

The mortaltiy rates of the sampled counties can be representative of all the counties within the 

areas that have socioeconomically and dmeogrpahically similar population characteristics 

(outlined with bright blue). 

 

There are sparsely sampled counties indicated by grey-color polygons (Figure 15a). Given a 

sampled county (red colored) that has a high mortality rate (Figure 15b), there could be non-

sampled countries whose socioeconomic and demographic attributes are similar to those of the 

sampled county. The similar counties are highlighted using bright blue color (Figure 15c). 

Geographic neighbors may be similar in such attributes, which can be explained by the first law 

of geography: everything is related to everything else, but near things are more related than 

distant things. 
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Once socioeconomically and demographically similar counties are identified, a mortality 

rate of a sampled county could be similar to mortality rates of non-sampled counties within the 

similar counties. Figure 15d provides an example that a set of non-sampled counties are 

identified with high mortality rates because these counties are socioeconomically and 

demographically similar to the sampled county that has a high mortality rate. In other words, the 

high mortality rate of the sampled county is chosen as a representative mortality rate of all of the 

similar counties (outlined with bright blue). Without losing generality, we hypothesize that the 

mortality rate of a sampled county can be associated to non-sampled counties that are 

socioeconomically and demographically similar to the sampled county. Because the research 

focus of this thesis is placed on spatial analysis methods and CyberGIS, it is appropriate to use 

1990 census data (see Table1) to assess the socioeconomic and demographic similarity although 

socioeconomic and demographic status may change during the 10-year span (1991 – 2000). 

4.3.3 EDA for knowledge discovery using self-organizing map 

 Self-organizing map (SOM), also known as Kohonen network, is a type of artificial 

neural networks (ANNs) and involves unsupervised learning (see Skupin and Agarwal 2008). It 

projects high dimensional data onto a low dimensional space (usually 2D space) through the use 

of self-organizing networks while preserving nonlinear relations of data. Kohonen (2001) 

provided detailed mathematical descriptions of SOM.  

 A typical SOM is composed of input vectors xi = [xi1 , xi2 ,  ..., xin] , where i denotes the 

number of vectors and n denotes the number of attributes (see Figure 3), and a two-dimensional 

array of nodes in output space (SOM) (Figure 16).  
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Figure 16 

When n is large, data are high dimesnional. 

 

   

Figure 17 A structure of self-organizing map 
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The lattice type of the array is usually rectangular or hexagonal. With every node i, n-

dimensional vector, called a codebook vector mi = [mi1 , mi2 ..., min ] is associated, where n is 

equal to the number of attributes of input vectors (Figure 17). In other words, the dimensionality 

of each node’s codebook vector mi is identical to that of the input vectors xi.  Each input vector 

is connected to each node’s codebook vector in parallel.  

 At the initialization step of the SOM algorithm, codebook vectors of each node are 

typically assigned with random numbers. Then, an iterative learning process is executed. At the 

first step, one vector among input vectors xi is selected randomly, and then the chosen input 

vector is compared with all nodes’ codebook vectors to find its most similar node. To measure 

the similarity between the chosen input vector and the codebook vector of each node, Euclidean 

Distance || x - mi || is calculated. At the second step, the node closest to the chosen input vector 

is made to define the best matching unit (BMU) that is also the most similar node to the chosen 

input vector. Once BMU is found, the chosen input vector is assigned to the BMU and its 

neighbors are adjusted to make them more similar to the chosen input vector. At the third step, 

the closer a node is to the BMU, the more its codebook vectors get altered to become more 

similar to the chosen input vector. The process of becoming adjusted to be more similar to the 

chosen input vectors is often referred to as a learning process. These three steps are repeated for 

a large number of times. As a “rule of thumb,” Kohonen suggested that the number of repetition 

should be more than 500 times the number of nodes. We demonstrate how the SOM algorithm 

works with the socioeconomic and demographic data in China as follows. 
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 Through the learning process, SOM classifies counties that are represented based on the 

40-dimensional socioeconomic and demographic attributes and visualizes the classification of 

counties on 2D (SOM) space. Commonly used hexagonal lattice type is adopted. To choose the 

dimension of SOM is often based on experimental processes (e.g. Oyana et al. 2005). When the 

size of nodes is too small, too many sampled counties are assigned into a few nodes. On the other 

hand, if the size of nodes is too large, it creates too many empty nodes. Therefore, in this thesis, a 

mid-range dimension of 7 by 7 nodes is configured, which leads to meaningful findings (see 

Figure 22 for details). For the calculation of SOM, above all, all of the attributes are 

preprocessed (see section 4.3.1 for details). For each iteration, one of the counties is chosen 

randomly for the learning process, and this county is assigned to a node if the node’s codebook 

vector is the closest (most similar) to the county’s attributes. Multiple counties can be assigned to 

one node while some nodes may be empty.   

 After the iterative learning process is done, counties having similar socioeconomic and 

demographic attributes are mapped to be close to one another in the SOM space. In other words, 

in each of the 49 classes, socioeconomically and demographically similar counties are grouped 

together and counties belong to nearby nodes are similar to each other. The terms “node,” 

“class,” and “type” are interchangeably used in this thesis. Consequently, 49 different groups are 

created. Each of the counties in the mainland of China is represented by one of the 49 population 

groups. Therefore, the 49 different population groups cover all population characteristics of 

China. Figure 5 is captured from the CyberGIS application (see section 3.2 for a complete 

description).  
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Figure 18   

Geographic space on the left and the SOM space on the right. Counties in the geographic space 

are represented by the same color as the node to which the counties belong. The SOM space is 

comprised of two layers (see Figure 19). 

 

An image on the right is the 7 by 7 SOM space. The SOM space specifies what counties belong 

to each class, but it does not depict geographic relationships among counties. To represent a 

spatial distribution of the 49 groups, the geographic space is linked to the SOM space, and data 

visualization and interactive mapping help connect between those two spaces.   

 In the SOM space, two layers are overlapped (Figure 19). A bottom layer is a color 

representation (Figure 19a) (Kohonen, 2001), and an upper layer is a U matrix representation 

(Figure 19b).  
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Figure 19 

a) Color representation of the SOM space: neighboring nodes are represented by similar colors. 

Counties belonging to neighboring nodes are generally similar to one another. b) U-matrix 

represents the dissimilarity of counties belonging to neighboring nodes: a center of each node is 

represented by a red dot. 

 

 

In general, counties that belong to the closely located nodes are socioeconomically and 

demographically similar to one another, whereas counties that belong to nodes located far away 

are socioeconomically and demographically dissimilar to one another. Therefore, neighboring 

nodes are visualized in similar colors—e.g. colors of nodes 40, 41, 47 and 48 are similar to one 

another. In contrast, nodes located far away are represented in more different colors—e.g. the red 

color of node 0 is the complementary color of the green of node 48. 

 In the geographic space, counties are also represented using the same color assigned to a 

node where the counties belong to in the SOM space (see the geographic space in Figure 18 and 

Figure 19a). For example, counties belonging to node 48 colored by red in the SOM space are 

also represented by red colored counties in the geographic space. Therefore, counties with 

similar colors in the geographic space mean that they are similar to one another in terms of 

socioeconomic and demographic variables.  
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 U matrix focuses on representing the dissimilarity among neighboring nodes. A darker 

grey indicates that there is significant socioeconomic and demographic dissimilarity among 

neighboring nodes. Conversely, a lighter grey represents less dissimilarity among the 

neighboring nodes. For example, nodes 43 and 44 are neighboring to each other in the SOM 

space, but there is a substantially high dissimilarity between the counties that belong to these two 

nodes. In contrast, the dissimilarity between the two neighboring nodes 12 and 19 is relatively 

low.  

 In the CyberGIS application, the connection between the SOM and geographic spaces 

can be interactively examined. When a user clicks one of the SOM nodes, counties belonging to 

the clicked node are highlighted in the geographic space. For example, as a user clicks node 48 

colored by red on the SOM space (see Figure 19a), counties belonging to the node 48 are 

highlighted in the geographic space (Figure 20).  

 

Figure 20 Linkage between the SOM and the geographic spaces 
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The user interface also shows the number of counties belonging to the node 48. In the same 

manner, the degree of the dissimilarity among counties in the geographic space can be also 

examined by highlighting counties in response to clicking each node in the U matrix (see Figure 

19b).  

 In the geographic space, the classification and clustering of socioeconomically and 

demographically similar counties are generated by a SOM process (Figure 21). 

 

Figure 21 

Major clusters of socioeconomically and demographically similar counties.  

a) cluster: orange colored counties in the eastern coastal areas 

b) cluster: purple and light pink colored counties in inner-land areas of east coast 

c) cluster: red and pink colored counties in the center region. 

d) cluster: blue colored counties in southwest areas. 

e) cluster: green colored counties across northwest areas to northeast areas 

 

 Clusters of a, b and c are groups of similar counties in highly populated areas in the southeast, 

central, and southwest parts of China. On the other hand, d cluster contains similar counties 

where mountainous and high plateaus are located. e clusters seems to represent a transition group 
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between d and other clusters. Therefore, these clusters show that counties having similar 

population characteristics have geographic dependencies. Based on the classification using SOM, 

information about a distribution of mortality rates of each year is added to the application (Figure 

22).  

 

Figure 22 

Counties are shaded to represent the difference of mortality rates belonging to each class. Darker 

counties indicate that there is a significant difference among the mortality rates of sampled 

counties belonging to the same class. Lighter color represents that the mortality rates of sampled 

counties belonging to the same class do not have any significant difference. White colored 

counties are the members of classes having only one sampled county. Red colored counties 

belong to classes where no sampled county is included. Different views of this map are provided 

in Figures 24, 25, 26 and 27.  

 

 

The image is generated in response to a user's selection of input parameters (see section 3.2.1 for 

details). Figure 23 shows the selected input of mortality data—i.e. the total mortality rate and the 

year 1992. The 145 sampled counties were selected to represent different types of population 

characteristics of the mainland of China (see section 4.1).  

 



- 46 - 
 

 

Figure 23 

It represents the total mortality rates of sampled counties in 1992. They are inputs for the map 

shown in Figure 22.  

 

 Our EDA based on SOM sheds light on how comprehensively these samples can be 

representative of different population characteristics in relation to socioeconomic and 

demographic factors. Red colored counties on the map belong to classes where population 

characteristics do not have any matching sampled mortality data. In the legend area of Figure 24, 

nine classes where red colored counties belong to are displayed. Based on the 49 classes 

generated by SOM (see Figure 18), each of the nine classes is socioeconomically and 

demographically different from one another, whereas counties belonging to each same class are 

comparatively similar to one another. A group of counties in each of the nine classes respectively 

reflects distinctive population characteristics, but none of the counties belonging to those classes 

are sampled. For example, class 0 has 24 socioeconomically and demographically similar 

counties that are different from counties belonging to other classes (Figure 24). None of the 24 
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counties, however, has any representative mortality rate sampled. Therefore, it would be 

suggested that at least one of the counties belong to the class 0 should be sampled to have a 

better coverage reflecting all different population characteristics. Through the classification 

based on SOM, one or more counties in each class of counties suggested in Figure 24 are 

candidates to be sampled to have a more comprehensive coverage of various population 

characteristics.  

 

Figure 24 

There are 9 classes where counties do not include any representative mortality rate. Among 

counties belonging to classes 0, 2, 4, 6, 7, 9, 14, 16 and 20, one or more counties in each of these 

classes are suggested to be sampled. The suggested sites for sampling of mortality data can be 

examined interactively by users. For instance, the class 0 is clicked above (indicated by an 

arrow). Once it is clicked, all 24 counties belonging to the class 0 is highlighted (see the info on 

the top of a map). Among them, one or more counties may be sampled. 

 

A cost-effective sampling strategy may also be suggested, by taking only one sample 

from each of the 49 classes since the 49 population classes could be regarded as the 

representatives of various population characteristics in China. Counties belong to the class 
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having only one sampled county is represented in white on the map. For example, Figure 25 

shows that class 48 has 70 similar counties, and among them the mortality rate of 7.233 of the 

clicked county would be a representative of all of the highlighted counties. Therefore, white-

colored counties would likely be cost-effective sampling areas. 

 

Figure 25                   

When the user clicks one of counties on the map, all sampled counties belonging to the same 

class having the clicked county are filled in bright blue. At the same time, non-sampled counties 

belonging to the same class are outlined with bright green. In addition, information about the 

clicked county is displayed. A clicked county is highlighted using an arrow. A county (ID: 

512929) is clicked (as shown in Figure 19a). Class 48 includes 70 counties, and among them 

only one is a sampled county. In this case, the sampled county is clicked, so it also displays the 

station code (swcode: 2125) of the sampled location and mortality rate, 7.233 of the clicked 

county. 

 

Investigating the difference of mortality rates of counties belonging to each SOM class 

provides insights to understand the relationships between mortality rates, and socioeconomic and 

demographic factors in a comprehensive way. For each class having more than two sampled 

counties, counties are shaded to represent the difference among mortality rates of sampled 
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counties belonging to the class. In this case, the standard deviation of mortality rates of sampled 

counties is calculated. The darker areas represent the larger standard deviation in the same class. 

For example, Figure 26 shows that there are 52 counties in class 45, and among them 5 counties 

are sampled for death records. When the range of mortality rates in 1992 is considered in Figure 

23, the difference of mortality rates of the 5 sampled counties is relatively small with the 

standard deviation - 0.8816 - of the 5 sampled counties, which suggests a strong correlation 

between mortality rates, and socioeconomic and demographic factors in the 52 counties 

belonging to the class 45. In other words, for these counties, mortality rates tend to be similar in 

the areas that are socioeconomically and demographic similar to each other.  

 

Figure 26 

When the standard deviation is small, it means that there is a strong correlation between 

mortality rates, and socioeconomic and demographic factors. Once county (ID: 320625) is 

clicked (indicated by an arrow), all the highlighted counties are members of class 45. Class 45 

has 52 counties as its members. Among them 5 counties were sampled. Standard deviation of 

mortality rates of all sampled counties is 0.8816 (see top of the map)   
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 In contrast, some classes are revealed to have large standard deviations of mortality rates 

of sampled counties. For example, Figure 27 shows that there are 82 counties in class 5. Among 

them, 4 counties were sampled for mortality records, and the standard deviation—3.3616—is 

relatively large.  In this case, it is hard to tell that mortality rates are likely to be similar within 

the counties that are socioeconomically and demographically similar to one another. In the 

counties belonging to the classes where significant difference of mortality rates of their sampled 

counties is observed, other factors than the socioeconomic and demographic ones may play a 

more significant role. For example, within counties belonging to the same class, there could be 

some counties that have land polluted by industry, leading to higher mortality rates than those of 

counties without land pollution.  

 

Figure 27 

When standard deviation is large, it means that there may be other factors affecting mortality 

rates in addition to socioeconomic and demographic factors. County (ID: 53128) is clicked 

(indicated by an arrow). All the highlighted counties are members of class 5. Class 5 has 82 

counties. Among them 4 counties were sampled. Standard deviation of the mortality rates of all 

sampled counties is 3.3616 (see top of the map).  
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4.3.4 The concept of straightforward spatial classification (SSC).   

 Based on the principles of EDA, the patterns of mortality rates of the entire mainland of 

China can be extrapolated from the mortality rates of the sampled counties. It would be desirable 

to associate a mortality rate of each sampled county with the mortality rates of non-sampled 

counties similar to the sampled counties, and see if any particular patterns of the mortality rates 

of certain diseases can be revealed. Exploring spatiotemporal patterns of mortality rates in this 

study is designed as a two-part process. The first part is to classify all of the counties into classes, 

within each of which its population characteristics are similar. The second part is to associate, 

within the same class defined in the first part, a mortality rate of a sampled county to the 

mortality rates of non-sampled counties. An idealistic case for the association is where there is 

only one sampled county in one class. For example, Figure 28 shows only one sampled county 

that belongs to one class where counties are similar to one another. In this case, the mortality rate 

of a sampled county can be considered as a representative mortality rate of all highlighted 

counties that belong to the same class.  

 

 

Figure 28 
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An idealistic case for associating a mortality rate of a sampled county with the mortality rates of 

non-sampled counties within the same class. A mortality rate of a sampled county would be 

considered as the representative mortality rate of all highlighted counties that belong to the same 

class. Counties belonging to the same class are outlined with bright green. 

 

SOM is feasible for the classification of the high dimensional socioeconomic and 

demographic data, but is not suitable for the association. As described previously in section 4.3.3, 

the SOM method generates 49 different classes of population characteristics. However, given the 

SOM classification, there are some limitations on associating the mortality rates of the sampled 

counties to the mortality rates of the non-sampled counties. Specifically, SOM organizes the 

similar counties through an iterative learning process with multiple sampled counties often 

assigned to a same class. In some classes, none of the sampled counties are included. One 

sampled county per class is an idealistic case (Figure 28) for the association part, while the other 

two cases—no sampled county or multiple sampled counties in one class—requires further 

treatment. Suppose that a mortality rate is within a range between 2 and 8 across all counties (see 

the legend in Figure 29). As a result of SOM classification, there are, for instance, two sampled 

counties belonging to one class. One sampled county has the mortality rate of 7.3 and the other 

sampled county has the mortality rate of 7.4. These two mortality rates are likely to indicate 

relatively high mortality rates in the range between 2 and 8. Since the mortality rates of both of 

the sampled counties are relatively high (Figure 29.1a), the representative mortality rate of the 

counties belonging to the same class would be high (around 7.3 or 7.4) (Figure 29.1b). On the 

other hand, as a result of SOM classification, in one class very different mortality rates of 

sampled counties are assigned (Figure 29.2b)—e.g. one sampled county has a relatively high 

mortality rate (e.g. 7.2) while the other county has a relatively low mortality rate (e.g. 2.2). In 

this case, it is difficult to derive the representative mortality rate of the class.  
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In the SOM classification, there are even some classes without any sample county 

included. For example, Figure 29.3 shows two classes of counties. One class includes the sample 

4.1 (outlined using pink color), and the other class including counties outlined using bright blue 

color. Within the former class, the sample, 4.1 can be associated as the mortality rates of all non-

sampled counties. Therefore, the representative mortality rate of the counties outlined with pink 

color is 4.1. In contrast, in the latter class, there is no sample that can be representative of all 

non-sampled counties.  

 

Figure 29 

The classification generated by the SOM (left images) and the association based on the 

classification (right images): the association is not feasible in the second and third cases. 

Counties belonging to the same class are outlined using the same color. The socioeconomically 
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and demographically similar counties are organized together in each class. The numbers 

represent the values of mortality rates of sampled counties. In the first case, the representative 

mortality rate in the class would be reasonably between 7.3 and 7.4. In the second case, in the 

class, the two mortality rates of the two sampled counties are quite different. Therefore, it is not 

feasible to estimate the representative mortality rate of the class. In the third case, there are two 

separate classes. Among counties belonging to the class at the bottom, there is no mortality rate 

of the sampled county that can be representative of the class. 

 

To address this association problem in the application of SOM and subsequently derive 

national distributional patterns of the estimated mortality rates, a method called straightforward 

spatial classification (SSC) has been developed. This method, like SOM, allows 

socioeconomically and demographically similar counties to be clustered together. Unlike the 

SOM, however, it is designed to always include only one sampled county in each class that may 

include multiple non-sampled counties. 

The SSC method assures that each class includes one sampled county, which results into 

classes with the ideal association described in Figure28. The SSC measures the similarity 

between each non-sampled county and each sampled county. Then, for each non-sampled county, 

SSC searches each sampled county to find the most similar one. The shortest distance of 40 

socioeconomic and demographic attributes between two counties means those counties are the 

most similar ones. As a result of this SSC process, while it is possible that a class includes only 

one sampled county and none of the non-sampled counties, it does not happen that any class 

includes only non-sampled counties or no sampled county based on the design of the SSC 

algorithm.  

4.3.5 Description of SSC algorithm.   

 The algorithm developed for the straightforward spatial classification (SSC) method is 

described as follows. Inputs for this algorithm are 40 socioeconomic and demographic attributes 

of all of the sampled and non-sampled counties (Table1) and also the mortality rates of user-
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defined diseases among user-specified population (see section 3.2.1 for details). Two groups are 

established as the basic data structure (Figure 30). 

 

Figure 30 An illustrative diagram of straightforward spatial classification 

 

The first group includes socioeconomic and demographic attributes of sampled counties xi = 

[xi1 , xi2 ,  ..., xin], where i is the index of sampled counties. The other group holds the same set 

of attributes of non-sampled counties mi = [mi1 , mi2 ..., min ],where i is the index of non-

sampled counties. In both groups, n represents the number of socioeconomic and demographic 

attributes (n=40) (see Table1). 

 The algorithm includes multiple steps. At the first step, socioeconomic and demographic 

attributes of all of the counties are preprocessed as described in the section 4.3.1. The second 

step is to sort sampled counties to arrange the similar sampled counties next to each other (Figure 

31).  
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Figure 31 Sorting sampled counties by ascending di to place the similar sampled counties side 

by side. After the sorting is done, the class id is assigned to each sampled county. 

 

To arrange the socioeconomically and demographically similar sampled counties side by side, 

Euclidean distance from 0 to a vector of each sampled county is calculated: for sampled counties 

having n socioeconomic and demographic attributes xi = (xi1 , xi2 ,  ..., xin), where i is the index 

of sampled counties,  

 di = || 0 - xi  || =     
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Next, all sampled counties are sorted based on the ascending distance (di). After sorting is done, 

the class id is assigned to each sampled county in order from the smallest to largest distance. As 

a result, neighboring classes have similar sampled counties. For example, after the sorting, 

county7 of class2 is placed between county 14 of class1 and county3 of class3 since county7 is 

more similar to county14 or county3 rather than county1 of class7 (Figure31).  

 As the third step, the vector of every non-sampled county m is compared with the vector 

of all the sampled counties xi to find one of the sampled counties that is most socioeconomically 

and demographically similar to each non-sampled county (Figure 32).  

 

Figure 32 Measuring the similarity (distance) from the vector of every non-sampled county to 

the vectors of all of the sampled counties 

 

To measure the socioeconomic and demographic similarity between sampled counties and non-

sampled counties, the distance from the vector of every non-sampled county m to the vectors of 

all sampled counties xi is calculated—i.e. Euclidean Distance || xi - m || is used in the same way 

as the SOM uses it for similarity measure. Then, for each non-sampled county the closest (the 

most similar) sampled county is chosen, and the chosen sampled county can be considered as 

BMU (Best Matching Unit) (Figure 33). 



- 58 - 
 

 

Figure 33 

A value of each node represents a mortality rate. The BMU of county 5 is county14; BMU of 

county2, 4 and 6 is county7; BMU of county 10 and 13 is county3, etc. The values in red nodes 

represent the mortality rates of sampled counties. Question marks in grey nodes indicate that the 

mortality rates of non-sampled counties are unknown. 

 

Once the BMU is identified, at the fourth step, the class id and a value of mortality rate of BMU 

are assigned to each non-sampled county.  Figure 34 shows that the nodes of all of the sampled 

and non-sampled counties are rearranged according to the defined class ids and mortality rates. 

For example, non-sampled counties 2, 4 and 6 of class 2 hold the mortality rate, 5.5 of the 

sampled county 7 in the same class because the counties 2, 4 and 6 are most socioeconomically 

and demographically similar to the sampled county 7. In other words, the vector distance of the 

non-sampled counties 2, 4 and 6 is the closest to the sampled county7 among all the sampled 

counties. Consequently, the two parts of the classification and association are achieved: 1) 

classification: counties having similar socioeconomic and demographic attributes are grouped 

together; and also 2) association: each non-sampled county holds a value of the mortality rate of 

the sampled county that is most similar to itself. 
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Figure 34 

Output of SSC: Red nodes represent sampled counties and grey nodes represent non-sampled 

counties. A value of each node represents a mortality rate. Socioeconomically and 

demographically similar counties are grouped together in each class, and counties in neighboring 

classes are more similar than counties belonging to non-neighboring classes. Each class always 

contains only one sampled county.  

 

The detailed algorithm for steps 3 and 4 is illustrated in flowchart and pseudo C language (Figure 

35). The entire program is available in Appendix B.  
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Figure 35 (cont. on next page) 
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Figure 35 The SSC algorithm.  

Step by step description of the SSC method in the text corresponds to the steps described in the 

flow chart and pseudo code. 

 

The first output of the SSC algorithm is 145 classes containing all of the counties in the 

mainland of China. Each of the 145 classes holds counties having similar population 

characteristics, and those counties that belong to classes next to one another are similar to one 

another. For example, counties in class2 are more socioeconomically and demographically 

similar to counties in class1 or counties in class3 rather than counties in class7 in Figure 34. 

Regarding the visualization of SSC results, class id of each county is mapped (Figure 36).  
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Figure 36 

An output of SSC: class id of each county is visualized to represent the patterns of 

socioeconomically and demographically similar counties. The other output of SSC is shown in 

Figure 39. 

 

Since counties belonging to classes next to one another mean that they are similar to one another, 

counties belonging to neighboring classes are represented by the same or similar colors. For the 

visualization purpose, 145 classes are grouped into 30 colors from the first class to the last class 

are designed to change gradually to represent the similarity of counties belonging to nearby 

classes and the dissimilarity of counties belonging to classes separated far away. For example, 

since classes 1 through 5 are similar to one another, they are represented by the same color, the 

dark green. A group of classes from 6 to 9 is similar to a group of classes from 1 to 5 and from 

10 to 14. Thus, all the counties belonging to all these classes from 1 through 14 are represented 

in similar colors, dark to medium green colors on the map. One the other hand, all the greenish 

colored counties are socioeconomically and demographically different from reddish colored 



- 63 - 
 

counties that belong to the classes far away from the greenish colored classes. Figure 37 shows 

the clusters of socioeconomically and demographically similar counties.  

 

Figure 37 

Major clusters of socioeconomically and demographically similar counties.  

a) cluster: light purple colored counties on the eastern coastal areas 

b) cluster: brown colored counties in inner-land areas of east coast 

c) cluster: pink colored counties in the center region 

d) cluster: blue colored counties in southwest areas 

e) cluster: green colored counties across northwest areas to northeast areas 

 

 The second output of the SSC algorithm is the estimated mortality rates of non-sampled 

counties. The visualization of the mortality rate of each county in the geographic space from the 

SSC output (described in Figure 34) reveals the patterns of the estimated mortality rates of the 

entire China (mainland). Figure 39 shows a set of example maps of the distributional patterns of 

estimated mortality rates that are derived by using the SSC as part of the CyberGIS application. 

Many types of such maps as for mortality rates specific to gender, age and death causes, can be 

generated by user’s selections of input parameters through the CyberGIS application interface 
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(see section 3.2.1 for details). Maps in Figure 38 are the visualization of the mortality rates of 

sampled counties (i.e. inputs of SSC method). With the two input data of the mortality rates of 

sampled counties (Figure38) and socioeconomic and demographic data (Table1), SSC method 

reveals the distributional patterns of estimated mortality rates that are shown in Figure39. A 

color ramp in which colors change gradually from blue to red is created to represent the areas 

with relatively low or high mortality rates.  

 

  

 

Figure 38 (cont. on next page) 
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Figure 38  

The visualization of the mortality rates of sampled counties. These are originally available data 

and also the input of SSC method. Maps on the left represent the mortality rates of cancer of 

sampled counties. Maps on the right show the mortality rates of infectious and parasitic diseases 

of sampled counties. 

 



- 66 - 
 

 

Figure 39 (cont. on next page) 
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Figure 39 

The visualization of the estimated mortality rates of non-sampled counties and known mortality 

rates of sampled counties. The estimated mortality rates of non-sampled counties are one of the 

outputs of the SSC method. Maps on the left represent the estimated mortality rates of cancer. 

Maps on the right show the estimated mortality rates of infectious and parasitic diseases. 

 

 To interpret the estimated mortality rates on the maps, it makes sense to focus on the 

overall understanding of the distributional patterns of high or low mortality rates rather than 

picking up the exact value of the mortality rates of specific non-sampled counties. The actual 

mortality rate of a non-sampled county is originally unknown. However, through the analysis 

using the SSC method, one of the sampled counties is selected and a mortality rate of the 

sampled county is assigned to the non-sampled counties that are most socioeconomically and 

demographically similar to the chosen sampled county. As a result, a value of mortality rate of 

each non-sampled county on the map is equal to a mortality rate of one of the sampled counties. 

In this way, the mortality rates of non-sampled counties are estimated rather than being predicted. 

Therefore, though each of the 15 classes might indicate the exact range of mortality rates based 

on the legend of Figure 39, it may not be appropriate to interpret those values of the mortality 

rates on the maps are exactly within the range of a particular class among the 15 classes. 
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 Though the SSC method developed based on the exploratory data analysis cannot predict 

the exact values of mortality rates of specific non-sampled counties, it provides a hint about the 

areas with relatively high or low mortality rates. For example, the 4th class of cancer mortality 

rate in the legend of Figure 39 shows that the mortality rate is between 0.6 and 0.72. Under the 

assumption that the mortality rate tends to be similar within the socioeconomically and 

demographically similar counties, the actual mortality rate represented by the 4th class will likely 

be around 0.6 or 0.7. The assumption makes sense when it is considered that the 145 sampled 

counties are “nationally representative samples reflected regional population distributions, urban 

and rural areas, age and sex, and eastern, middle, and western regions” (Yang et al. 2008). It 

implies that with only 145 sampled counties, it is possible to capture the mortality trends of 

overall population since the non-sampled counties are similar to some of the 145 sampled 

counties. Furthermore, each mortality rate of a non-sampled county can be represented by one of 

the mortality rates of a sampled county when the population characteristics of the sampled 

county are similar to the population characteristics of the non-sampled county. 

The mortality rates of cancer and infectious/parasitic diseases show different patterns 

(Figure 39). Since chronic diseases had dramatically increased during the 10-year period (Yang 

et al. 2008), cancer as one of the prevalent death causes among chronic diseases is chosen to be 

mapped for this case study. In addition, the patterns of the mortality rates of chronic diseases are 

compared and contrasted with the patterns of the mortality rates of infectious and parasitic 

diseases.  Cancer mortality rates increased especially along the east coastal areas of China. 

Especially, two maps of the cancer mortality rates of 1991 and 2000 show a dramatic increase in 

terms of the areas of high cancer mortality rates. On the other hand, the southwest part of China 

consistently shows low cancer mortality rates. In contrast, the mortality rates of infectious and 
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parasitic diseases decreased during the 10 years, especially along the east coastal areas and the 

central region of China. Comparing the two maps of 1991 and 2000, the mortality rates of 

infectious and parasitic diseases show a significant decrease across the entire country. However, 

the mortality rates of the west part of China remained relatively high compared to other regions 

for the 10 years. Especially, the comparison of the two maps of mortality rates of cancer and 

infectious diseases of 2000 shows the reverse distributional pattern (Figure 40)—i.e. the 

mortality rates of cancer tend to be high in the areas where the mortality rates of infectious and 

parasitic diseases are low whereas the mortality rates of cancer seem to be low in the areas where 

the mortality rates of infectious and parasitic diseases are high. 

 

Figure 40 

Contrasting the 

distributional patterns of 

the mortality rates of 

cancer and the mortality 

rates of infectious and 

parasitic diseases: 

especially the southwest 

(A), central south (B), 

and eastern coastal (C) 

regions show a contrast 

in the mortality rates of 

the two types of diseases. 
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4.3.6 Weighting and spatial factors of straightforward spatial classification (SSC)  

 A user can assign a weight to each of the 40 socioeconomic and demographic variables 

(Table1) so that each variable can be evaluated in terms of its specified level of impact on the 

similarity measure. In the section 4.3.4 and 4.3.5 we assume that all variables have equal weight 

on the similarity measure (see flowchart in Figure 35). On the interface of the CyberGIS 

application the user has an option to type in different weight for each variable and, thus, can 

create maps similar to maps in figure 36 and 39 with different weight of each socioeconomic and 

demographic variable. When the user clicks “Parameters” button on the top of the interface of 

Figure11, the option of parameter setting shows up (Figure 41). Weight for each variable is set to 

1 by default, but the user can change it as needed. For example, the user may think that the 

mortality rates are likely to be similar in the areas where the percentage of aging people is 

similar. Therefore, the user would think that particular variables (e.g. age is 65 and older) should 

have more impact on measuring the similarity of counties than any other variables. In this case, 

the user can assign more weight (i.e. greater than 1) to the old population. 

X, Y coordinates of centroid at the bottom right of Figure 41 has x, y coordinate of 

centroid of each county. Increasing weight to the x, y coordinate of centroid means country 

location has more impact on the similarity measure than other 40 socioeconomic and 

demographic variables. Therefore, straightforward spatial classification (SSC) method with this 

increased weighting on x, y coordinates of centroid produces the results that the socioeconomic 

and demographic attributes and mortality rates are more similar in counties geographically 

neighboring to one another than in faraway counties. The larger the weight of x, y coordinates is, 

the more similar the socioeconomic and demographic attributes and the mortality rates of 

neighboring counties are.                                                                                  
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Figure 41  

User’s option to set different weight to each variable 

 

Figure 42 represents that different weights of x,y coordinates produce different results of 

the SSC method - e.g. the classification of socioeconomic and demographic attributes of all 

counties and the estimated mortality rates of 1991, 1994, 1997 and 2000. Five maps in the first 

column are the output of SSC when the weight of x, y coordinate is equal to 0. Weighting 0 on x, 
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y coordinates means that spatial factors are not explicitly considered in producing those maps – 

e.g. the mortality rate of a county is not directly affected by the mortality rates of neighboring 

counties.  In the second case (five maps in the middle column), weight 1 is assigned to x, y 

coordinates, which means that the variable of x, y coordinates has the same-level impact on 

measuring the similarity of counties as much as the other 40 socioeconomic and demographic 

variables. Also, by weighting 1 to the x, y coordinates of centroid, the mortality rates of counties 

are affected by the mortality rates of neighboring counties. In other words, the location of 

counties is one of the factors that we use to estimate the mortality rates of counties.  When maps 

in the first column (weight 0 on x, y coordinates) and the second column (weight 1 on x, y 

coordinates) are compared, there is a general trend that the socioeconomic and demographic 

attributes and the mortality rates of neighboring counties are more similar in the maps of the 

second column than in the maps in the first column.  

In the third case (five maps in the last column), a considerably high weight value - 40 – is 

assigned to x, y coordinates of centroid to experiment the effect of such weighting. In this case, 

the SSC method produces an output where the effect of the locations of counties is a dominant 

factor in measuring the similarity of socioeconomic and demographic attributes and measuring 

the mortality rates. The socioeconomic and demographic attributes are similar in neighboring 

counties and also the counties having the same values of mortality rates are spatially aggregated 

in neighboring counties. Even though the third case is not realistic in estimating the mortality 

rates, the comparison of output maps of the first, the second and the third cases shows the 

influence of increasing weight on x, y coordinates of centroid. This further demonstrates the 

flexibility and capability of SSC for taking into account geographic distance effects. 
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Figure 42 (cont. on next page) 
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Figure 42  

These maps are the results of the SSC method with different options of weighting x,y coordinates 

of centroid. SSC with weight 0,1 and 40 of x, y coordinates produces each 5 maps on the left, in 

the middle, and on the right. As the weight of x,y coordinates, both the socioeconomic and 

demographic attributes and the estimated mortality rates are likely to show more similarities in 

geographically neighboring counties than in faraway ones.  
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CHAPTER 5 

SUMMARY AND CONCLUDING DISCUSSION 

5.1 SUMMARY OF FINDINGS 

 The integrated approach to combining the self-organizing map (SOM) and 

straightforward spatial classification (SSC) methods effectively addresses the challenge of 

analyzing the sparsely sampled mortality data and high-dimensional socioeconomic and 

demographic data. The exploratory data analysis based on this approach leads to new knowledge 

and insights for (1) identifying areas that should be sampled to have better coverage reflecting all 

of the population characteristics, (2) assessing the effectiveness of the national sampling strategy, 

and (3) evaluating the relationships between mortality rates and socioeconomic and demographic 

factors. Both SOM and SSC use Euclidean distance to measure the similarity of high-

dimensional data in attribute space—i.e. socioeconomic and demographic data consisting of 40 

attributes. The SSC has demonstrated that the mortality rates of the non-sampled counties can be 

represented by the mortality rate of the sampled counties based on the hypothetical similarity of 

socioeconomic and demographic factors among counties. The SSC serves to understand the 

spatial patterns of the national mortality by using the sparsely sampled mortality data and to 

identify the regions that have the relatively high mortality rates compared to those in other 

regions.  

 The case study demonstrates the findings based on the maps generated by the spatial 

analyses supported in the CyberGIS application. One of the findings that can be examined by 

using the application is that the cancer mortality rate had increased especially along the east 

coastal areas of China from 1991 to 2000. When the pattern maps of the mortality rates of 

cancers are compared and contrasted with those of parasitic and infectious diseases, the mortality 
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rates of the two types of diseases have shown the spatially reversed patterns. Beyond this finding, 

CyberGIS application enables users to temporally explore the patterns of the mortality rates of 

any death causes among the population of different gender and age groups. 

 The interface design and service components of the CyberGIS application have 

demonstrated how the integrated use of visualization tools with the spatial analyses can 

contribute to the exploratory analysis of data in various settings. A possible scenario is that users 

first examine an overview of the patterns of the mortality rates of the entire China while visual 

analytical tools are used to reveal distributional characteristics of the mortality rates at the 

provincial level. Once some areas of interest are identified from the overview, users can easily 

drill down to examine the distributional characteristics at the sampled county within the areas of 

interest. 

5.2 Limitation  

 There are limitations in analyses that are conducted by SOM and SSC methods based on 

exploratory data analysis. This study focuses on exploring available datasets, which help to 

generate hypotheses rather than hypothesis testing. Generating new hypotheses based on the 

exploration of the data that can be easily done with the CyberGIS application would be able to 

lead to the next level of analysis such as modeling to predict the mortality rates of non-sampled 

locations. However, this study does not produce a confirmatory result in predicting them. Instead, 

this study is focused on exploring various maps with various options of input parameters. In 

other words, SOM and SSC methods produce various maps in measuring the similarity of 

counties and estimating the mortality rates rather than any confirmatory result. The user is 

required to set the various variables to run the SOM and SSC methods and generate result maps 

of those spatial analyses. For example, there are many options that the user needs to specify such 
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as the number of the nodes within SOM and weight of each SSC variable. Therefore, the maps 

produced as the outputs of the spatial analyses may change depending on the user’s settings of 

the variables. In other words, it is the user’s choice to decide which variables he/she would set. 

The resulting maps in the case study of this thesis are chosen after many experiments with 

different variable options, and ones that can be considered producing the most meaningful and 

helpful results to solve the problem are picked.  

5.3 BENEFITS OF CYBERGIS IN PUBLIC HEALTH  

 Spatial analysis of public health data supported by conventional GIS often involves 

complicated steps, and may require in-depth technical training. Specifically, the following issues 

may arise. Users’ data have many variables and they need to selectively query and configure 

large amounts of input data with different combinations of variables. Thus, users may have to 

write or understand query commands for data selection, produce many input files, and convert 

them to appropriate formats for the preparation of spatial analysis. In addition, manual processes 

of data preprocessing such as normalization or standardization are often involved. Sometimes, 

the same process of data preprocessing, formatting, importing of input files, setting up input 

parameters, map unit, and extent, coloring maps, creating legends, and exporting result maps has 

to be repeated by spatial analysts for many times and, thus, may become error-prone. When there 

are needs to compare and contrast result maps of a spatial analysis for a certain period of time, 

e.g. 10 years with every month considered, the whole process may become very inefficient and 

labor intensive. 

  The integration of the spatial analyses, mortality data, and highly interactive user 

interface with a set of visualization tools into the CyberGIS environment has this process 

optimized. Specifically, users query input data with a few mouse clicks through the user-friendly 
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interface without the involvement of typing query commands, and selected input data are 

automatically available for data preprocessing, spatial analyses, and visualization. Furthermore, 

output maps can be seen and are compared easily with a few button clicks on the fly without 

exporting and generating an image file of result maps. In addition, interactive visualization tools 

are used simultaneously with dynamically created maps based on the analyses. Therefore, the 

CyberGIS application has dramatically reduced the time required for data processing and 

performing spatial analysis. Furthermore, it allows public health users including non-GIS experts 

to perform spatial analysis with minimal effort and effectively engage spatial analytics. 

Therefore, the CyberGIS environment has a potential to increase the efficiency of spatial data 

analytics in public health research and practice.  

 In addition, the limitations of conventional GIS in its computational scalability have been 

addressed by integrating cloud computing based on user-centered service-oriented architecture. 

The user-centered interface guides users to access powerful cyberinfrastructure resources, which 

allows a number of users to run their spatial analyses simultaneously while protecting sensitive 

public health data. As a future work, the integration of the spatial analysis services and cloud 

infrastructure can be further extended to include other CyberGIS resources and services. 
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APPENDIX A: GLOSSARY OF SELECTED TERMS 

USED IN THIS THESIS  

 

CyberGIS Open Service API (Application Programming Interface): the CyberGIS service 

API is a set of Web service APIs for CyberGIS application integration and associated 

computation.  

ICD -9: Standard of a set of codes for international statistical classification of diseases and 

related health problems. 

Scalability: The ability of a system, network, or processes for handling a growing amount of 

work in a capable manner or the ability to be enlarged to accommodate that growth. 

Virtual Organization (VO): A dynamic collection of users, resources and services for sharing 

of cyberinfrastructure resources and services. 
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APPENDIX B: STRAIGHTFORWARD SPATIAL CLASSIFICATION (SSC) METHOD  

IN C CODE 

 

 

main.c 
 

#include "hdr.h" 

 

// Parse the command-line parameters that passed by the user 

int parsecmdparameters(int argc, char **argv) { 

    int i; 

 

    if(argc < 5) { 

        printf("[ERROR] Incorrect parameters : %s <dimension> <socEcon filename> <MR 

filename> <Output filename>\n",argv[0]); 

        exit(1); 

    } 

 

    som->argc=argc; 

    som->argv=argv; 

    som->dimension=atoi(argv[1]); 

    som->socEconfilename=argv[2]; 

    som->arcMRfilename=argv[3]; 

    som->outputfilename=argv[4]; 

} 

 

     

// innerDist comparison for quick sort 

int scomp(const void *a, const void *b) { 

    if (((arcMR *)a)->innerDist > ((arcMR *)b)->innerDist) return +1; 

    if (((arcMR *)a)->innerDist > ((arcMR *)b)->innerDist) return +1; 

    return 0; 

} 

 

 

// Calculation 

void calculation() { 

 

    int i, j, k, m, d; 

    float min, max, range; 

    float distance; 

 

    // Normalize 1  divide 

    for(k=0; k<som->dimension; k++) { 

        d = divider[k]; 

        if (d == -1) continue; 
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        for(i=0; i<countyCount; i++) { 

            county[i].points[k] /= county[i].points[d]; 

        } 

    } 

 

    // Normalize 2  range(0~1) 

    for(k=0; k<som->dimension; k++) { 

        min = FLT_MAX; 

        max = FLT_MIN; 

         

        for(i=0; i<countyCount; i++) { 

            if (min > county[i].points[k])  min = county[i].points[k]; 

            if (max < county[i].points[k])  max = county[i].points[k]; 

        } 

 

        range = max - min; 

        for(i=0; i<countyCount; i++) { 

            county[i].points[k] /= range; 

        } 

    } 

 

    // Weighting factor 

    for(k=0; k<som->dimension; k++) { 

        for(i=0; i<countyCount; i++) { 

            county[i].points[k] *= weight[k]; 

        } 

    } 

 

    // calculation inner distance form 0 

    for(j=0; j<stationCount; j++) {  // 138 

        distance = 0; 

        for(k=0; k<som->dimension; k++) {  // 197 

            if(use[k])  distance += DISTANCEQ(0.0, station[j].points[k]); 

        } 

        station[j].innerDist = sqrt(distance); 

    } 

 

    // quick sort by innerDist 

    qsort(station, stationCount, sizeof(arcMR), scomp); 

 

    // set up classID from 1 

    k = 0; 

    for(j=0; j<stationCount; j++) {  // 138 

        // printf("station[%i].innerDist=%f\n", j ,station[j].innerDist);  

        k++; 
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        station[j].classID = k; 

 

        int found = 0; 

        for(i=0; i<countyCount; i++) { 

            if (county[i].countyID == station[j].countyID) { 

                county[i].classID    =  station[j].classID; 

                county[i].innerDist  =  station[j].innerDist; 

                found              =  1;    

                break; 

            } 

        } 

        if(!found) { 

            printf("County not found in socEcom.  countyID=%d, classID=%d, innerDist=%f, 

mr=%f\n", 

                   station[j].countyID, station[j].classID, station[j].innerDist, station[j].mr); 

        } 

    } 

 

    // calculation 

    for(i=0; i<countyCount; i++) {   

        if (county[i].isMR) continue; 

 

        min = FLT_MAX; 

        for(j=0; j<stationCount; j++) {    

            distance = 0; 

            for(k=0; k<som->dimension; k++) {    

                if(use[k])  distance += DISTANCEQ(county[i].points[k], station[j].points[k]); 

            } 

            distance = sqrt(distance); 

            if (min > distance) { 

                min = distance;  m = j; 

            } 

        } 

        //printf("%i=%i ",i,m); 

        county[i].classID    =  station[m].classID; 

        county[i].innerDist  =  station[m].innerDist; 

        county[i].distance   =  min; 

        county[i].mr         =  station[m].mr; 

    } 

} 

 

int main(int argc,char **argv) { 

    int lc; 

    int i; 

 

    // Current time of day 
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    time_t     timenow; 

    struct tm *timets; 

    char       timebuf[80]; 

  

    // Get the current time  

    timenow = time(0); 

  

    // Format and print the time, "yyyy-mm-dd hh:mm:ss zzz"  

    timets = localtime(&timenow); 

    strftime(timebuf, sizeof(timebuf), "%Y-%m-%d %H:%M:%S %Z", timets); 

    //printf("time: SOM Classify start  %s  ---------------------------------\n", timebuf); 

 

    som=&somInfo; 

 

    // Parse the command line parameters 

    parsecmdparameters(argc, argv); 

 

    // Read somID.csv 

    getsocEconfromfile(som->socEconfilename); 

 

    // Read arcMR.csv 

    getarcMRfromfile(som->arcMRfilename); 

 

    // Calculate distence from each county, and get min distance 

    calculation(); 

 

    // Setup classify.csv 

    setupClassify(som->outputfilename); 

 

    // Free allocated memory 

    free(station); 

    for(i=0; i<countyCount; i++) 

    free(county[i].points); 

    free(county); 

 

    // Get the current time  

    timenow = time(0); 

 

    // Format and print the time, "yyyy-mm-dd hh:mm:ss zzz"  

    timets = localtime(&timenow); 

    strftime(timebuf, sizeof(timebuf), "%Y-%m-%d %H:%M:%S %Z", timets); 

 

    return 0; 

} 
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io.c 
 

#include "hdr.h" 

 

// Count the number of lines in f from the start of the file and reset the file pointer 

int linecount(FILE *f) { 

    int  lc; 

    char b, c; 

    char line[4000];                // buffer for reading first input data line 

    char* dummy = fgets(line, 4000, f); 

 

    if(line[0] == 'C' || line[0] == 'G' || line[0] == '"') { 

        som->fileHasTitle = 1;     // File has a title 

    } else { 

        som->fileHasTitle = 0;     // File has no title 

        rewind(f);                          // Put the file position to the start 

    } 

 

    lc=0;                          // Line count 

    while ((c=getc(f)) != EOF) {   // While the character isn't the EOF 

        b = c;                     // Save b as a previous char 

        if ((c)=='\n')           // If a newline 

            lc++;                  // add to line count 

    } 

    if((b) != '\n')  lc++;       // In case of last char in the input file is not a new line 

    rewind(f);                     // Put the file position back to the start 

 

    return lc; 

} 

 

// Open a file based on given attributes 

FILE *open(char *fn,char *attr) { 

    FILE *f; 

 

    f = fopen(fn,attr); 

    assert(f!=NULL); 

 

    return f; 

} 

 

// Close a file 

int close(FILE *f) { 

    fclose(f); 

} 
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// Read a socEcon file and populate a soc 

int getsocEconfromfile(char *filename) { 

    FILE *f; 

    int lc; 

 

    f = open(filename,"r"); 

    lc = linecount(f); 

 

    // Set size and allocate array 

    countyCount = lc; 

    county  = (socEcon *) calloc(countyCount, sizeof(socEcon)); 

 

    countyCount = readsocEcon(f); 

 

    close(f); 

} 

 

// Read socEcon file, populate soc list 

int readsocEcon(FILE *f) { 

    int  i; 

    int  cnt; 

    char line[4000];               // buffer for reading first input data line 

  

    rewind(f);                     // Put the file position back to the start 

    if(som->fileHasTitle) { 

        char* dummy = fgets(line, 4000, f); 

    } 

    cnt=0; 

 

    int   countyID; 

    int   dataID; 

    char  *p[som->dimension+2]; 

 

    while(fscanf(f, "%s", line) != EOF) { 

 

        p[0] = strtok(line, ","); 

        i = 1; 

        while((p[i] = strtok(NULL, ","))) { 

            if(i > som->dimension+1) { 

                printf("Too much columns in socEcon.  line=%d, dimension=%d, variable 

count=%d\n%s\n",  

                       cnt+1, som->dimension, i+1, line); 

                return 1; 

            } 

            i++; 

        } 
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        if(i != som->dimension+2) { 

            printf("Variable conunt error.  line=%d, dimension=%d, variable count=%d\n%s\n",  

                   cnt+1, som->dimension, i+1, line); 

            return 1; 

        } 

 

        if(strcmp(p[0],"Use") == 0) { 

            use = (int *) calloc(som->dimension, sizeof(int)); 

            for(i=0; i<som->dimension; i++) { 

                use[i] = atoi(p[i+2]); 

            } 

 

            continue; 

        } 

 

        if(strcmp(p[0],"Divider") == 0) { 

            divider = (int *) calloc(som->dimension, sizeof(int)); 

            for(i=0; i<som->dimension; i++) { 

                divider[i] = atoi(p[i+2]) - 1; 

                if(divider[i] >= som->dimension) { 

                    printf("divider range error.  dimension=%d, divider[%i]=%d\n",  

                           som->dimension, i, divider[i]); 

                    return 1; 

                } 

            } 

 

            continue; 

        } 

 

        if(strcmp(p[0],"Weighting") == 0) { 

            weight = (float *) calloc(som->dimension, sizeof(float)); 

            for(i=0; i<som->dimension; i++) { 

                weight[i] = atof(p[i+2]); 

            } 

 

            continue; 

        } 

 

        county[cnt].countyID =  atoi(p[0]); 

        county[cnt].dataID   =  atoi(p[1]); 

        county[cnt].isMR     =  0; 

        county[cnt].classID  =  0; 

        county[cnt].distance =  0.0; 

        county[cnt].mr       =  0.0;       

        county[cnt].points = (float *) calloc(som->dimension, sizeof(float)); 

        for(i=0; i<som->dimension; i++) { 
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            county[cnt].points[i] = atof(p[i+2]); 

        } 

 

        cnt++; 

    } 

    assert(cnt+3==countyCount); 

 

    return cnt;   

} 

 

// Read a arcMR file and populate a station 

int getarcMRfromfile(char *filename) { 

    FILE *f; 

    int lc; 

 

    f = open(filename,"r"); 

    lc = linecount(f); 

 

    // Set size and allocate array 

    stationCount = lc; 

    station  = (arcMR *) calloc(stationCount, sizeof(arcMR)); 

 

    stationCount = readarcMRs(f); 

 

    close(f); 

} 

 

// Read arcMR file, populate arcmr list 

int readarcMRs(FILE *f) { 

    int  i; 

    int  cnt; 

    char line[4000];               // buffer for reading first input data line 

  

    rewind(f);                     // Put the file position back to the start 

    if(som->fileHasTitle) { 

        char* dummy = fgets(line, 4000, f); 

    } 

    cnt=0; 

 

    int    countyID; 

    int    dataID; 

    int    somNodeID; 

    int    swcode; 

    float  lon; 

    float  lat; 

    int    year; 
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    float  death; 

    float  population; 

    float  mr; 

 

    while(fscanf(f, "%d,%f\n",  

                 &countyID, &mr) != EOF) { 

 

        //if(year == 0) continue; 

 

        station[cnt].countyID  =  countyID; 

        station[cnt].mr        =  mr; 

 

        int found = 0; 

        for(i=0; i<countyCount; i++) { 

            if (county[i].countyID == countyID) { 

                station[cnt].points  =  county[i].points; 

                county[i].isMR          =  1; 

                county[i].classID       =  0; 

                county[i].mr            =  mr; 

                found                =  1;    

                break; 

            } 

        } 

        if(!found) { 

            printf("County not found in socEcom.  line=%i, countyID=%d, mr=%f\n", 

                   cnt+1, countyID, mr); 

        } 

 

        cnt++; 

    } 

    return cnt; 

} 

 

 

// Save the Classify.csv 

int setupClassify(char *filename) { 

    FILE *f; 

    f = open(filename,"w"); 

    writeArcMR(f); 

    close(f); 

} 

 

// Write an ascii grid file 

int writeArcMR(FILE *f) { 

    int i; 
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    for(i=0; i<countyCount; i++) { 

        fprintf(f, "%d,%d,%d,%f,%f\n",  

                county[i].countyID, county[i].isMR, county[i].classID, 

                county[i].distance, county[i].mr); 

    } 

} 

 

// Write socEcon array for demo 

int writesocEcon(char *filename) { 

    int  i; 

    FILE *f; 

    f = open(filename,"w"); 

    fprintf(f, 

"CountyID,dataID,isMR,classID,innerDist,distance,MR,popHden,popDen,popDenM,popDenF,n

onAg\n");   

 

    for(i=0; i<countyCount; i++) { 

        fprintf(f, "%d, %d, %d, %d, %f, %f, %f, %f, %f, %f, %f, %f\n",  

                county[i].countyID, county[i].dataID,    county[i].isMR, 

                county[i].classID,  county[i].innerDist, county[i].distance, county[i].mr, 

                

county[i].points[0],county[i].points[1],county[i].points[2],county[i].points[3],county[i].points[4])

; 

    } 

    close(f); 

} 

 

// Write arcMR array for demo 

int writearcMR(char *filename) { 

    int  i; 

    FILE *f; 

    f = open(filename,"w"); 

    fprintf(f, "CountyID,classID,innerDist,MR,popHden,popDen,popDenM,popDenF,nonAg\n");  

 

    for(i=0; i<stationCount; i++) { 

        fprintf(f, "%d, %d, %f, %f, %f, %f, %f, %f, %f\n",  

          station[i].countyID, station[i].classID, station[i].innerDist, county[i].mr, 

          

station[i].points[0],station[i].points[1],station[i].points[2],station[i].points[3],station[i].points[4]); 

    } 

    close(f); 

} 

 

// Display to console 

int displayArcMR() { 

    int i; 
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    for(i=0; i<countyCount; i++) { 

        printf("%d,%d,%d,%f,%f\n",  

                county[i].countyID, county[i].isMR, county[i].classID, 

                county[i].distance, county[i].mr); 

    } 

} 
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hdr.h 
 

#include <stdlib.h> 

#include <stdio.h> 

#include <assert.h> 

#include <string.h> 

#include <float.h> 

#include <math.h> 

#include <time.h> 

#ifdef _OPENMP  

#include <omp.h> 

#endif 

 

// Data structures 

 

// A socEcon.csv 

typedef struct { 

    int    countyID;             // county ID  input                

    int    dataID;                 // data ID  input 

    int    isMR;                   // is MR from arcMR.csv  output 

    int    classID;                // class ID  output 

    float  innerDist;            // distance from 0,  when isMR == 1 

    float  distance;              // distance  output  

    float  mr;                       // mr  output 

    float  *points;                // socioeconomic and  demographic variables 

} socEcon; 

 

// A arcMR.csv 

typedef struct { 

    int    countyID; 

    int    classID; 

    float  innerDist;              // distance from 0  

    float  mr; 

    float  *points;                 // socioeconomic and  demographic variables                               

                                            // Point to socEcon's points. 

 

} arcMR; 

 

// Store important SOM information for the program 

typedef struct { 

    int argc; 

    char **argv; 

    int  fileHasTitle; 

    int  dimension;                // dimension of the variables in the socEcon file 

    char *socEconfilename;         // socEcon filename 

    char *arcMRfilename;           // arcMR filename 
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    char *outputfilename;          // output filename 

} somstr; 

 

// Definitions of static variables 

#define PRINTPOINTS 0  

#define PRINTGRID   0 

#define INT_MAX     2147483647 

// #ifndef M_PI 

// #define M_PI 3.14159265358979323846 

// #endif 

 

// Global variables 

int     countyCount; 

int     stationCount; 

socEcon *county; 

arcMR   *station; 

somstr  somInfo, *som; 

int     *use;                      // set 1 if the variable is used to calculate the result of SSC 

                                       // set 0 if the variable is not used to calculate the result of SSC     

int     *divider;                // Divider column;  -1 means no dividing 

float   *weight;               // Weights 

 

#ifdef _OPENMP 

#else 

long countcell; 

long countall; 

long countselected; 

#endif 

 

// Macros 

#define max(a,b) a>b?a:b 

#define min(a,b) a<b?a:b 

#define DISTANCEQ(p1,p2) ((p1)-(p2))*((p1)-(p2)) 

 

// Function definitions 

FILE *open(char *fn,char *attr); 

int linecount(FILE *f); 

 

 

 

 

 

 

 

 


