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Abstract

Real-world physical objects and abstract data entities are interconnected, forming gigantic network-

s. By structuring these objects and their interactions into multiple types, such networks become

semi-structured heterogeneous information networks. Most real-world applications that handle big

data, including interconnected social media and social networks, scientific, engineering, or medical

information systems, online e-commerce systems, and most database systems, can be structured

into heterogeneous information networks. Therefore, effective analysis of large-scale heterogeneous

information networks poses an interesting but critical challenge.

In my thesis, I investigate the principles and methodologies of mining heterogeneous informa-

tion networks. Departing from many existing network models that view interconnected data as

homogeneous graphs or networks, our semi-structured heterogeneous information network model

leverages the rich semantics of typed nodes and links in a network and uncovers surprisingly rich

knowledge from the network. This semi-structured heterogeneous network modeling leads to a

series of new principles and powerful methodologies for mining interconnected data, including (1)

ranking-based clustering, (2) meta-path-based similarity search and mining, (3) user-guided rela-

tion strength-aware mining, and many other potential developments. This thesis introduces this

new research frontier and points out some promising research directions.
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Chapter 1

Introduction

We are living in an interconnected world. Most of data or informational objects, individual agents,

groups, or components are interconnected or interact with each other, forming numerous, large,

interconnected, and sophisticated networks. Without loss of generality, such interconnected net-

works are called information networks. Examples of information networks include social networks,

the World Wide Web, research publication networks [41], biological networks [87], highway net-

works [56], public health systems, electrical power grids, and so on. Clearly, information networks

are ubiquitous and form a critical component of modern information infrastructure. The analysis

of information networks, or their special kinds, such as social networks and the Web, has gained

extremely wide attentions nowadays from researchers in computer science, social science, physics,

economics, biology, and so on, with exciting discoveries and successful applications across all the

disciplines.

In this thesis, we propose to model real-world systems as semi-structured heterogeneous infor-

mation networks, by structuring objects and their interactions into different types, and investigate

the principles and methodologies for systematically mining such networks. Departing from many

existing network models that view interconnected data as homogeneous graphs or networks, our

semi-structured heterogeneous information network model leverages the rich semantics of typed

nodes and links in a network and uncovers surprisingly rich knowledge from the network.

In this chapter, we first introduce the motivation and overview of this study in Section 1.1, and

then introduce the organization of this thesis in Section 1.2.
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1.1 Motivation and Overview

In most of the current research on network science, social and information networks are usually

assumed to be homogeneous, where nodes are objects of the same entity type (e.g., person) and

links are relationships from the same relation type (e.g., friendship). Interesting results have

been generated from such studies with numerous influential applications, such as the well-known

PageRank algorithm [20] and community detection methods. However, most real world networks

are heterogeneous, where nodes and relations are of different types. For example, in a healthcare

network, nodes can be patients, doctors, medical tests, diseases, medicines, hospitals, treatments,

and so on. On one hand, treating all the nodes as of the same type (e.g., homogeneous information

networks) may miss important semantic information. On the other hand, treating every node

as of a distinct type (e.g., labeled graph) may also lose valuable schema-level information. It is

important to know that patients are of the same kind, comparing with some other kinds, such as

doctors or diseases. Thus, a typed, semi-structured heterogeneous network modeling may capture

essential semantics of the real world.

Typed, semi-structured heterogeneous information networks are ubiquitous. For example, the

network of Facebook consists of persons as well as objects of other types, such as photos, posts,

companies, movies, and so on; in addition to friendship between persons, there are relationships of

other types, such as person-photo tagging relationships, person-movie liking relationships, person-

post publishing relationships, post-post replying relationships, and so on. A university network may

consist of several types of objects like students, professors, courses, and departments, as well as their

interactions, such as teaching, course registration or departmental association relationships between

objects. Similar kinds of examples are everywhere, from social media to scientific, engineering or

medical systems, and to online e-commerce systems. Therefore, heterogeneous information networks

are powerful and expressive representations of general real-world interactions between different kinds

of network entities in diverse domains.

In this thesis, I investigate the principles and methodologies for mining heterogeneous informa-

tion networks, by leveraging the semantic meaning of the types of nodes and links in a network,

and propose models and algorithms that can exploit such rich semantics and solve real-world prob-

lems. Heterogeneous information networks often imply rather different semantic structures from

2



that in homogeneous networks. Links in heterogeneous networks indicate the interactions between

various types of objects in a network, which can be difficult to be expressed by traditional features.

Information is propagated across various kinds of objects in a network, via various kinds of rela-

tionships (i.e., heterogeneous links), carrying different semantics and having different strengths in

determining the “influence” across linked objects. These principles have laid the foundation for

methodologies of handling various mining tasks in heterogeneous information networks, including

ranking, clustering, classification, similarity search, relationship prediction and relation strength

learning. We will introduce these mining tasks and their associated new principles and methodolo-

gies chapter by chapter.

1.1.1 What Are Heterogeneous Information Networks?

An information network represents an abstraction of the real world, focusing on the objects and

the interactions between the objects. It turns out that this level of abstraction has great power in

not only representing and storing the essential information about the real-world, but also providing

a useful tool to mine knowledge from it, by exploring the power of links. Formally, we define an

information network as follows.

Definition 1.1. (Information network) An information network is defined as a directed graph

G = (V, E) with an object type mapping function τ : V → A and a link type mapping function

ϕ : E → R, where each object v ∈ V belongs to one particular object type τ(v) ∈ A, each link e ∈ E

belongs to a particular relation ϕ(e) ∈ R, and if two links belong to the same relation type, the two

links share the same starting object type as well as the ending object type.

Different from the traditional network definition, we explicitly distinguish object types and

relationship types in the network. Note that, if a relation exists from type A to type B, denoted as

ARB, the inverse relation R−1 holds naturally for BR−1A. R and its inverse R−1 are usually not

equal, unless the two types are the same and R is symmetric. When the types of objects |A| > 1

or the types of relations |R| > 1, the network is called heterogeneous information network;

otherwise, it is a homogeneous information network.

Given a complex heterogeneous information network, it is necessary to provide its meta level

(i.e., schema-level) description for better understanding the object types and link types in the

3



network. Therefore, we propose the concept of network schema to describe the meta structure of

a network.

Definition 1.2. (Network schema) The network schema, denoted as TG = (A,R), is a meta

template for a heterogeneous network G = (V, E) with the object type mapping τ : V → A and

the link mapping ϕ : E → R, which is a directed graph defined over object types A, with edges as

relations from R.

The network schema of a heterogeneous information network specifies type constraints on the

sets of objects and relationships between the objects. These constraints make a heterogeneous

information network semi-structured, guiding the exploration of the semantics of the network. An

information network following a network schema is then called a network instance of the network

schema.

Heterogeneous information networks can be constructed from many interconnected, large-scale

datasets, ranging from social, scientific, engineering to business applications. Here are a few exam-

ples of such networks.

1. Bibliographic information network: A bibliographic information network, such as the com-

puter science bibliographic information network derived from DBLP, is a typical heterogeneous

network, containing objects in four types of entities: paper (P), venue (i.e., conference/journal)

(V), author (A), and term (T). For each paper p ∈ P , it has links to a set of authors, a venue,

and a set of terms, belonging to a set of link types. It may also contain citation information for

some papers, that is, these papers have links to a set of papers cited by the paper and links from

a set of papers citing the paper.

The network schema for a bibliographic network and an instance of such a network are shown

in Fig. 1.1.

2. Twitter information network: Twitter as a social media can also be considered as an infor-

mation network, containing objects types such as user, tweet, hashtag and term, and relation (or

link) types such as follow between users, post between users and tweets, reply between tweets,

use between tweets and terms, and contain between tweets and hashtags.

4



Paper

Author

VenueTerm

(a) Schema of a bibliographic net-
work

Venue Paper Author

(b) A bibliographic network

Figure 1.1: A bibliographic network schema and a bibliographic network instance following the
schema (only papers, venues and authors are shown).

3. Flickr information network: The photo sharing website Flickr can be viewed as an informa-

tion network, containing a set of object types: image, user, tag, group, and comment, and a set

of relation types, such as upload between users and images, contain between images and tags,

belong to between images and groups, post between users and comments and comment between

comments and images.

4. Healthcare information network: A healthcare system can be modeled as a healthcare

information network, containing a set of object types, such as doctor, patient, disease, treatment,

and device, and a set of relation types, such as used-for between treatments and diseases, have

between patients and diseases, and visit between patients and doctors.

Heterogeneous information networks can be constructed almost in any domain, such as social

networks (e.g., Facebook), e-commerce (e.g., Amazon and eBay), online movie databases (e.g.,

IMDB), and numerous database applications. Heterogeneous information networks can also be

constructed from text data, such as news collections, by entity and relationship extraction using

natural language processing and other advanced techniques.

Diverse information can be associated with information networks. Attributes can be attached

to the nodes or links in an information network. For example, location attributes, either categorical

or numerical, are often associated with some users and tweets in a Twitter information network.

Also, temporal information is often associated with nodes and links to reflect the dynamics of
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an information network. For example, in a bibliographic information network, new papers and

authors emerge every year, as well as their associated links. Beside the structure information of

information networks, such information is also helpful or even critical in some tasks on mining

information networks.

1.1.2 Why Is Mining Heterogeneous Networks a New Game?

Numerous methods have been developed for the analysis of homogeneous information networks,

especially on social networks [2], such as ranking, community detection, link prediction, and influ-

ence analysis. However, most of these methods cannot be directly applied to mining heterogeneous

information networks. This is not only because heterogeneous links across entities of different

types may carry rather different semantic meanings but also because a heterogeneous information

network in general captures much richer information than its homogeneous network counterpart.

A homogeneous information network is usually obtained by projection from a heterogeneous in-

formation network, but with significant information loss. For example, a co-author network can

be obtained by projection on co-author information from a more complete heterogeneous biblio-

graphic network. However, such projection will lose valuable information on what subjects and

which papers the authors were collaborating on. Moreover, with rich heterogeneous information

preserved in an original heterogeneous information network, many powerful and novel data mining

functions need to be developed to explore the rich information hidden in the heterogeneous links

across entities.

Why is mining heterogeneous networks a new game? Clearly, information propagation across

heterogeneous node and links can be very different from that across homogeneous nodes and links.

Based on our research into mining heterogeneous information networks, especially our studies on

ranking-based clustering [100, 103], ranking-based classification [55, 54], meta-path-based similar-

ity search [99], relationship prediction [96, 97], relation strength learning [95, 101], and network

evolution [102], we believe there are a set of new principles that may guide systematic analysis of

heterogeneous information networks. We summarize these principles as follows.

1. Information propagation across heterogeneous types of nodes and links. Similar to

most of the network analytic studies, links should be used for information propagation in mining
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tasks. However, the new game is how to propagate information across heterogeneous types of

nodes and links, in particular, how to compute ranking scores, similarity scores, and clusters,

and how to make good use of class labels, across heterogeneous nodes and links. No matter how

we work out new, delicate measures, definitions, and methodologies, a golden principle is that

objects in the networks are interdependent, and knowledge can only be mined using the holistic

information in a network.

2. Search and mining by exploring network meta structures. Different from homogeneous

information networks where objects and links are being treated either as of the same type or as of

un-typed nodes or links, heterogeneous information networks in our model are semi-structured

and typed, that is, associated with nodes and links structured by a set of types, forming a

network schema. The network schema provides a meta structure of the information network.

It provides guidance of search and mining of the network and help analyze and understand the

semantic meaning of the objects and relations in the network. Meta-path-based similarity search

and mining introduced in this thesis has demonstrated the usefulness and the power of exploring

network meta structures.

3. User-guided exploration of information networks. In a heterogeneous information net-

work, there often exist numerous semantic relationships across multiple types of objects, carrying

subtly different semantic meanings. A certain weighted combination of relations or meta-paths

may best fit a specific application for a particular user. Therefore, it is often desirable to auto-

matically select the right relation (or meta-path) combinations with appropriate weights for a

particular search or mining task based on user’s guidance or feedback. User-guided or feedback-

based network exploration is a useful strategy.

1.2 Thesis Organization

The first chapter introduces the overview of mining heterogeneous information networks. After

that, this thesis is organized into three parts largely following the three principles, each containing

two chapters that present methodologies and algorithms for mining heterogeneous information

networks, organized by different mining tasks. Finally, Chapter 8 concludes this thesis and outlines
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a few open research themes in this domain. The major contents of Chapters 2-7 are summarized

as follows.

In Part I: Ranking-Based Clustering, we introduce two studies on the clustering problem, which

is one of the basic mining tasks, in heterogeneous information networks, by distinguishing the

information propagation across different types of links.

• Chapter 2: Ranking-Based Clustering on Bi-Typed Networks. For link-based clustering

of heterogeneous information networks, we need to explore links across heterogeneous types of

data. We propose a ranking-based clustering approach, RankClus [100], that generates both

clustering and ranking results for a target type of objects in a bi-typed network. This approach

is based on the observation that ranking and clustering can mutually enhance each other because

objects highly ranked in each cluster may contribute more towards unambiguous clustering, and

objects more dedicated to a cluster will be more likely to be highly ranked in the same cluster.

• Chapter 3: Ranking-Based Clustering on Star Networks. Later, we extend our ranking-

based clustering study to a more general scenario, where more types of objects exist in the

network. Specially, we focus on star networks that have a center type of objects, and propose

NetClus [103] that can cluster different types of objects simultaneously. A discussion will be

given on how to extend ranking-based clustering to general network schemas.

In Part II: Meta-Path-Based Similarity Search and Mining, we introduce a systematic approach

for dealing with general heterogeneous information networks with a specified network schema, using

a meta-path-based methodology. Under this framework, similarity search and other mining tasks

such as relationship prediction can be addressed by systematic exploration of the network meta

structure.

• Chapter 4: Meta-Path-Based Similarity Search. Similarity search plays an important

role in the analysis of networks. By considering different linkage paths (i.e., meta-path) in a

network, one can derive various semantics on similarity in a heterogeneous information network.

A meta-path-based similarity measure, PathSim, is introduced in [99], which aims at finding

similar peer objects in the network. PathSim turns out to be more meaningful in many scenarios

compared with random-walk based similarity measures.
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• Chapter 5: Meta-Path-Based Relationship Prediction. Heterogeneous information net-

work brings interactions among multiple types of objects and hence the possibility of predicting

relationships across heterogeneous typed objects. By systematically designing meta-path-based

topological features and measures in the network, supervised models can be used to learn appro-

priate weights associated with different topological features in relationship prediction [96, 97].

In Part III: User-Guided Relation Strength-Aware Mining, we address the issue that the het-

erogeneity of relations between object types often leads to different mining results that can be

chosen by users. With user guidance, the strength of each relation can be automatically learned

for improved mining.

• Chapter 6: Relation Strength-Aware Clustering with Incomplete Attributes. Links

in networks are frequently used to regularize the attribute-based clustering tasks, i.e., linked

objects should have similar cluster labels. However, shall we trust links from different types

equally? In this chapter, we propose GenClus [95] to address this problem. By specifying a

set of (incomplete) attributes, the strengths of different relations in heterogeneous information

networks can be automatically learned to help network clustering.

• Chapter 7: Integrating User-Guided Clustering with Meta-Path Selection. Differ-

ent meta-paths in a heterogeneous information network represent different relations and carry

different semantic meanings. User guidance, such as providing a small set of training examples

for some object types, can indicate user preference on the clustering results. Then a preferred

meta-path or a weighted meta-path combination of multiple paths can be learned to achieve

better consistency between mining results and the training examples [101].

Note that, although three parts largely correspond to the three principles mentioned in Sec-

tion 1.1, to solve a mining task in heterogeneous information networks usually involves multiple

principles simultaneously. For example, the first principle that “information propagation across

heterogeneous types of nodes and links” is used throughout all the chapters of this thesis. The sec-

ond principle “search and mining by exploring network meta structures” can further help to guide

the information propagation in heterogeneous information networks, and serves as meta-features

for tasks involving learning process. The third principle “user-guided exploration of information
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networks” can help us select the desirable ranking function in Part I for the clustering tasks, as

well as select the best meta-paths for similarity search in Chapter 4.
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Part I

Ranking-Based Clustering

11



Chapter 2

Ranking-Based Clustering on
Bi-Typed Networks

For link-based clustering of heterogeneous information networks, we need to explore links across

heterogeneous types of data. In this part, we study how ranking can be computed for different types

of objects using different types of links, and show how ranking and clustering mutually enhance

each other and finally achieve reasonable ranking and clustering results. In this chapter, we study

the problem in a special case of heterogeneous information networks, i.e., the bi-typed networks.

In next chapter (Chapter 3), we will study another special but more general case, i.e., the star

networks.

2.1 Overview

A great many analytical techniques have been proposed toward a better understanding of infor-

mation networks, though largely on homogeneous information networks, among which are two

prominent ones: ranking and clustering. On one hand, ranking evaluates objects of information

networks based on some ranking function that mathematically demonstrates characteristics of ob-

jects. With such functions, two objects can be compared, either qualitatively or quantitatively, in

a partial order. PageRank [20] and HITS [59], among others, are perhaps the most well-known

ranking algorithms over information networks. On the other hand, clustering groups objects based

on a certain proximity measure so that similar objects are in the same cluster, whereas dissimilar

ones are in different clusters. After all, as two fundamental analytical tools, ranking and clustering

can be used to show the overall views of an information network, and hence have been widely used

in various applications.

Clustering and ranking are often regarded as orthogonal techniques, each applied independently

to information network analysis. However, applying only one of them over an information network
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often leads to incomplete, or sometimes rather biased, analytical results. For instance, ranking

objects over a whole information network without considering which clusters they belong to often

leads to dumb results, e.g., ranking database and computer architecture venues or authors together

may not make much sense; alternatively, clustering a large number of objects (e.g., thousands of

authors) into one cluster without distinction is dull as well. However, integrating two functions

together may lead to more comprehensible results, as shown in Example 2.1.

Example 2.1. (Ranking without/with clustering) Consider a set of venues from two areas

of (1) DB/DM (i.e., Database and Data Mining) and HW/CA (i.e., Hardware and Computer

Architecture), each having 10 venues, as shown in Table 2.1. We choose top 100 authors in

each area from DBLP, according to their number of publications in the selected venues. With the

authority ranking function specified in Section 2.3.2, our ranking-only algorithm gives top-10 ranked

results in Table 2.2. Clearly, the results are rather dumb (because of the mixture of the areas) and

are biased towards (i.e., ranked higher for) the HW/CA area. Moreover, such biased ranking result

is caused not by the specific ranking function we chose, but by the inherent incomparability between

the two areas.

Still consider the same dataset. If we cluster the venues in the DB/DM area and rank both

venues and the authors relative to this cluster, the ranking results are shown in Table 2.3.

Table 2.1: A set of venues from two research areas.
DB/DM {SIGMOD, VLDB, PODS, ICDE, ICDT, KDD, ICDM, CIK-

M, PAKDD, PKDD}
HW/CA {ASPLOS, ISCA, DAC, MICRO, ICCAD, HPCA, ISLPED,

CODES, DATE, VTS }

This example shows that good clustering indeed enhances ranking results. Furthermore, as-

signing ranks to objects often leads to better understanding of each cluster. By integrating both

clustering and ranking, one can get more comprehensible results on networks. In this chapter, we

introduce RankClus that integrates clustering and ranking for a special case of heterogeneous

information networks, i.e., bi-typed networks.
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Table 2.2: Top-10 ranked venues and authors without clustering.

Rank Venue Rank Authors

1 DAC 1 Alberto L. Sangiovanni-Vincentelli
2 ICCAD 2 Robert K. Brayton
3 DATE 3 Massoud Pedram
4 ISLPED 4 Miodrag Potkonjak
5 VTS 5 Andrew B. Kahng
6 CODES 6 Kwang-Ting Cheng
7 ISCA 7 Lawrence T. Pileggi
8 VLDB 8 David Blaauw
9 SIGMOD 9 Jason Cong
10 ICDE 10 D. F. Wong

Table 2.3: Top-10 ranked venues and authors in DB/DM cluster.

Rank Venue Rank Authors

1 VLDB 1 H. V. Jagadish
2 SIGMOD 2 Surajit Chaudhuri
3 ICDE 3 Divesh Srivastava
4 PODS 4 Michael Stonebraker
5 KDD 5 Hector Garcia-Molina
6 CIKM 6 Jeffrey F. Naughton
7 ICDM 7 David J. DeWitt
8 PAKDD 8 Jiawei Han
9 ICDT 9 Rakesh Agrawal
10 PKDD 10 Raghu Ramakrishnan

2.2 Preliminaries

For the ranking-based clustering problem on a bi-typed network, we are interested in the task of

clustering one type of objects (target objects) using the other type of objects (attribute objects)

and the links in the network, as well as ranking the objects in each cluster at the same time. For

example, given a bi-typed bibliographic network containing venues and authors, where links exist

between venues and authors, and between authors and authors, we are interested in clustering

venues into different clusters representing different research areas, using the authors and links in

the network. At the same time, we could answer who are the top venues and researchers in a

research area.
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Figure 2.1 illustrates a bi-typed bibliographic network, which contains two types of objects,

venues (X) and authors (Y ). Two types of links exist in this network: the author-venue publication

links, with the weight indicating the number of papers an author has published in a venue, and

the author-author co-authorship links, with the weight indicating the number of times two authors

have collaborated. The bi-typed network can be represented by a block-wise adjacency matrix:

SIGMOD

SDM

ICDM

KDD

EDBT

VLDB

ICML

AAAI

Tom

Jim

Lucy

Mike

Jack

Tracy

Cindy

Bob

Mary

Alice

Figure 2.1: A bi-typed bibliographic network.

W =

 WXX WXY

WY X WY Y


whereWXX , WXY , WY X andWY Y each denotes a type of relation between types of the subscripts.

Formally, a bi-typed information network can be defined as follows.

Definition 2.1. (Bi-typed information network) Given two types of object sets X and Y ,

where X = {x1, x2, . . . , xm}, and Y = {y1, y2, . . . , yn}, the graph G = (V, E) is called a bi-typed

information network on types X and Y , if V = X ∪ Y and E ⊆ V × V.

The biggest issue in clustering target objects in a network is that unlike in traditional attribute-

based dataset, the features for those objects are not explicitly given here. A straightforward way

to generate clusters for target objects in a heterogeneous network is to first evaluate the similarity

between target objects using a link-based approach, such as SimRank [52], and then apply graph
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clustering methods [90, 72] to generate clusters. However, to evaluate pair-wise similarity between

objects in an information network is a space and time consuming task. Instead, RankClus explores

rank distribution for each cluster to generate new measures for target objects, which are low-

dimensional. The clusters are improved under the new measure space. More importantly, this

measure can be further enhanced during the iterations of the algorithm, because better clustering

leads to better ranking, and better ranking gives better ranking-based features thus better clustering

results. That is, different from combining ranking and clustering in a two-stage procedure like facet

ranking [31, 124], the quality of clustering and ranking can be mutually enhanced in RankClus.

2.3 Ranking Functions

Ranking function is critical in our ranking-based clustering algorithms, which not only provides

rank scores for objects to distinguish their importance in a cluster, but also serves as a new feature

extraction tool to improve the clustering quality. Current ranking functions are mostly defined

on homogeneous networks, such as PageRank [20] and HITS [59]. In this section, we introduce

two ranking functions based on the bi-typed bibliographic network: Simple Ranking and Authority

Ranking. Ranking functions on more complex heterogeneous networks are discussed at the end of

this section.

2.3.1 Simple Ranking

The simplest ranking of venues and authors is based on the number of publications, which is

proportional to the numbers of papers accepted by a venue or published by an author.

Formally, given the bi-typed information network with types X and Y , and the adjacency

matrix W , simple ranking generates the rank score of type X and type Y as follows:


r⃗X(x) =

∑n
j=1WXY (x, j)∑m

i=1

∑n
j=1WXY (i, j)

r⃗Y (y) =

∑n
i=1WXY (i, y)∑m

i=1

∑n
j=1WXY (i, j)

(2.1)

The time complexity of Simple Ranking is O(|E|), where |E| is the number of links. According

to simple ranking, authors publishing more papers will have higher rank score, even these papers
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are all in junk venues. In fact, simple ranking evaluates importance of each object according to the

number of their immediate neighbors.

2.3.2 Authority Ranking

A more useful ranking function we propose here is authority ranking, which gives an object higher

rank score if it has more authority. Ranking authority merely with publication information seems

impossible at the first glance, as citation information could be unavailable or incomplete (such as

in the DBLP data, where there is no citation information imported from Citeseer, ACM Digital

Library, or Google Scholars). However, two simple empirical rules give us the first clues.

• Rule 1: Highly ranked authors publish many papers in highly ranked venues.

• Rule 2: Highly ranked venues attract many papers from highly ranked authors.

Note that these empirical rules are domain dependent and are usually given by the domain experts

who know both the field and the dataset well. From the above heuristics, we define the iterative

rank score formulas for authors and venues according to each other as follows.

According to Rule 1, each author’s score is determined by the number of papers and their

publication forums,

r⃗Y (j) =

m∑
i=1

WY X(j, i)r⃗X(i) (2.2)

When author j publishes more papers, there are more nonzero and high weighted WY X(j, i), and

when the author publishes papers in a higher ranked venue i, which means a higher r⃗X(i), the score

of author j will be higher. At the end of each step, r⃗Y (j) is normalized by r⃗Y (j)← r⃗Y (j)∑n
j′=1 r⃗Y (j′) .

According to Rule 2, the score of each venue is determined by the quantity and quality of papers

in the venue, which is measured by their authors’ rank scores,

r⃗X(i) =

n∑
j=1

WXY (i, j)r⃗Y (j) (2.3)

When there are more papers appearing in venue i, there are more non-zero and high weighted

WXY (i, j), and if the papers are published by a higher ranked author j, which means a higher r⃗Y (j),

the score of venue i will be higher. The score vector is then normalized by r⃗X(i)← r⃗X(i)∑m
i′=1 r⃗X(i′) .
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Note that the normalization will not change the ranking position of an object, but it gives a

relative importance score to each object. And as shown in RankClus [100], the two formulas will

converge to the primary eigenvector of WXYWY X and WY XWXY respectively.

When considering the co-author information, the scoring function can be further refined by a

third rule:

• Rule 3: The rank of an author is enhanced if he or she co-authors with many highly ranked authors.

Adding this new rule, we can calculate rank scores for authors by revising Equation (2.2) as

r⃗Y (i) = α

m∑
j=1

WY X(i, j)r⃗X(j) + (1− α)
n∑

j=1

WY Y (i, j)r⃗Y (j) (2.4)

where parameter α ∈ [0, 1] determines how much weight to put on each factor, which can be

assigned based on one’s belief or learned by some training dataset.

Similarly, we can prove that r⃗Y should be the primary eigenvector of αWY XWXY +(1−α)WY Y ,

and r⃗X should be the primary eigenvector of αWXY (I − (1− α)WY Y )
−1WY X . Since the iterative

process is a power method to calculate primary eigenvectors, the rank score will finally converge.

For authority ranking, the time complexity is O(t|E|), where t is the iteration number and |E|

is the number of links in the graph. Note that, |E| = O(d|V|) ≪ |V|2 in a sparse network, where

|V| is the number of total objects in the network and d is the average link per object.

Different from simple ranking, authority ranking gives an importance measure to each object

based on the whole network, rather than its immediate neighborhoods, by the score propagation

over the whole network.

2.3.3 Alternative Ranking Functions

Although here we illustrate only two ranking functions, general ranking functions are not confined

to them. In practice, a ranking function is not only related to the link property of an information

network, but also depends on domain knowledge. For example, in many science fields, journals are

given higher weights than conferences when evaluating an author. Moreover, although ranking

functions in this section are defined on bi-typed networks, ranking function on heterogeneous

networks with more types of objects can be similarly defined. For example, PopRank [82] is a
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possible framework for general heterogeneous network, which takes into account the impact both

from the same type of objects and from the other types of objects, with different impact factors

for different types. When ranking objects in information networks, junk or spam entities are often

ranked higher than deserved. For example, authority ranking can be spammed by some bogus

venues that accept any submissions due to their large numbers of accepted papers. Techniques

that can best use expert knowledge, such as TrustRank [44], can be used to semi-automatically

separate reputable, good objects from spam ones. Personalized PageRank [132], that can utilize

expert ranking as query and generate rank distributions with respect to such knowledge, can be

another choice to integrate expert knowledge.

2.4 From Conditional Rank Distributions to New Clustering

Measures

Given a bi-typed bibliographic network, suppose that we have an initial partition on target type

X (venue type) and have calculated the conditional rank scores of venues and authors for each

clustered network, the next issue becomes how to use the conditional rank scores to further improve

the clustering results. Intuitively, for each venue cluster, which could form a research area, the

rank scores of authors conditional to this cluster (or research area) should be distinct from that

of the authors in other clusters. This implies that these rank scores can be used to derive new

features for objects for better clustering. Further, we treat these rank scores as from a discrete rank

distribution, as they are non-negative values and summing up to 1, which indicates the subjective

belief of how likely one may know an author or a venue according to their authority in each cluster.

Example 2.2. (Conditional rank distribution as cluster feature) Conditional rank distribu-

tions in different clusters are distinct from each other, especially when these clusters are reasonably

well partitioned. Still using the network of the two-research-area example introduced in Section 2.1,

we rank two hundred authors based on two venue clusters, and the two conditional rank distribu-

tions are shown in Figure 2.2. From the figure, we can clearly see that DB/DM authors (with IDs

from 1 to 100) rank high relative to the DB/DM venues, whereas rank extremely low relative to the

HW/CA venues. A similar situation happens for the HW/CA authors (with IDs from 101 to 200).
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Figure 2.2: Authors’ rank distributions over different clusters.

From Example 2.2, one can see that conditional rank distributions for attribute type in each

cluster are rather different from each other, and can be used as measures to characterize each

cluster. That is, for each cluster Xk, the conditional rank scores of X’s and Y ’s, r⃗X|Xk
and r⃗Y |Xk

,

can be viewed as conditional rank distributions of X and Y , which in fact are the features for

cluster Xk.

2.4.1 Cluster Membership for Each Target Object

Suppose we now know the clustering results for type X, which are X1, X2, . . . , and XK , where K

is the number of clusters. Also, according to some given ranking function, we have got conditional

rank distribution over Y in each cluster Xk, which is r⃗Y |Xk
(k = 1, 2, . . . ,K), and conditional rank

distribution over X, which is r⃗X|Xk
(k = 1, 2, . . . ,K). In the DBLP scenario, a cluster of venues,

e.g., the DB venues, can induce a subnetwork of venues and authors in that area. Conditional rank

distributions r⃗Y |Xk
and r⃗X|Xk

are calculated on each induced subnetwork of that area. In practice,

to avoid the zero rank score for target objects X, we propagate the converged rank scores of Y ,

r⃗Y |Xk
, for one step further to all target objects, to get a new r⃗X|Xk

. For simplicity, we use pk(Y )

to denote r⃗Y |Xk
and pk(X) to denote r⃗X|Xk

in the following. We use πi,k to denote xi’s cluster

membership for cluster k, which in fact is the posterior probability that xi belongs to cluster k and

satisfies
∑K

k=1 πi,k = 1.

According to Bayes’ rule, p(k|xi) ∝ p(xi|k)p(k). Since we already know p(xi|k), the conditional

rank of xi in cluster k, the goal is thus to estimate p(k), the cluster size of k. In the DBLP scenario,

p(k) can be considered as the proportion of papers belonging to the research area that is induced
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by the kth venue cluster, where each paper is represented by a link between a venue and an author.

According to p(k|xi) ∝ p(xi|k)p(k), we can see that in general the higher its conditional rank in

a cluster (p(xi|k)), the higher possibility an object will belong to that cluster (p(k|xi)). Since the

conditional rank scores of X objects are propagated from the conditional rank scores of Y objects,

we can also see that highly ranked attribute object has more impact on determining the cluster

membership of a target object.

Example 2.3. (Cluster membership as object feature) Following Example 2.2, each venue

xi is represented as a two-dimensional cluster membership vector (πi,1, πi,2). We plot 20 venues

according to their cluster membership vectors in Figure 2.3, where different styles of points rep-

resent different areas the venues really belong to. From the figure, we can see that the DB/DM

venues (denoted as ∗) and the HW/CA venues (denoted as +) are separated clearly under the new

features in terms of cluster membership vectors, which are derived according to the conditional rank

distributions of venues and authors with respective to the two research areas.
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Figure 2.3: Venues’ scatter plot based on 2-d cluster membership.

2.4.2 Parameter Estimation Using the EM Algorithm

In order to derive the cluster membership for each target object, we need to estimate the size

proportion for each cluster p(k) correctly, which can be viewed as the proportion of the links issued

by the target objects belonging to cluster k. In our bi-typed bibliographic information network

scenario, this is the proportion of papers belonging to the cluster.

We then build a mixture model for generating links issued by the target objects. Namely,
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each link between objects xi and yj is generated with the probability p(xi, yj) =
∑

k pk(xi, yj)p(k),

where pk(xi, yj) denotes the probability of generating such a link in cluster k. We also make an

independence assumption that an attribute object yj issuing a link is independent to a target

object xi accepting this link, which is pk(xi, yj) = pk(xi)pk(yj). This assumption says once an

author writes a paper, he is more likely to submit it to a highly ranked venue to improve his

rank; while for venues, they are more likely to accept papers coming from highly ranked authors

to improve its rank as well. This idea is similar to preferential attachment [9] of link formation for

homogeneous networks, but we are considering more complex rank distributions instead of degrees

of objects.

Let Θ be the K-dimensional parameter vector for p(k)’s. The likelihood of observing all the

links between types X and Y under the parameter setting is then:

L(Θ|WXY ) = p(WXY |Θ) =

m∏
i=1

n∏
j=1

p(xi, yj |Θ)WXY (i,j) (2.5)

where p(xi, yj |Θ) is the probability to generate link ⟨xi, yj⟩, given current parameter Θ. The goal

is to find the best Θ that maximizes the likelihood. We then apply the EM algorithm [16] to solve

the problem. In the E-step, we calculate the conditional distribution p(z = k|yj , xi,Θ0) based on

the current value of Θ0:

p(z = k|yj , xi,Θ0) ∝ p(xi, yj |z = k)p(z = k|Θ0) = pk(xi)pk(yj)p
0(z = k) (2.6)

In the M-Step, we update Θ according to the current Θ0:

p(z = k) =

∑m
i=1

∑n
j=1WXY (i, j)p(z = k|xi, yj ,Θ0)∑m

i=1

∑n
j=1WXY (i, j)

. (2.7)

By setting Θ0 = Θ, the whole process can be repeated. At each iteration, updating rules from

Equations (2.6)-(2.7) are applied, and the likelihood function will converge to a local maximum.

Finally, the cluster membership for each target object xi in each cluster k, πi,k, is calculated

using Bayes’ rule:

πi,k = p(z = k|xi) =
pk(xi)p(z = k)∑K
l=1 pl(xi)p(z = l)

(2.8)
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2.5 Cluster Centers and Distance Measure

After we get the estimations for clustering memberships for each target object xi by evaluating

mixture models, xi can be represented as a K dimensional vector s⃗xi = (πi,1, πi,2, . . . , πi,K). The

centers for each cluster can thus be calculated accordingly, which is the mean of s⃗xi for all xi in

each cluster. Next, the distance between an object and cluster D(x,Xk) is defined by 1 minus

cosine similarity. The cluster label for each target object can be adjusted accordingly.

2.6 RankClus: Algorithm Summarization

To summarize, the input of RankClus is a bi-typed information network G = ⟨{X ∪ Y },W ⟩,

the ranking functions for X and Y , and the cluster number K. The output is K clusters of X

with conditional rank scores for each x, and conditional rank scores for each y. The algorithm of

RankClus is illustrated in Figure 2.4 and summarized in the following.
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Figure 2.4: The illustration of the RankClus algorithm.

• Step 0: Initialization.

The initial clusters for target objects are generated, by assigning each target object with a cluster

label from 1 to K randomly.
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• Step 1: Ranking for each cluster.

Based on current clusters, K cluster-induced networks are generated accordingly, and the con-

ditional rank distributions for types Y and X are calculated. In this step, we also need to

judge whether any cluster is empty, which may be caused by the improper initialization of the

algorithm. When some cluster is empty, the algorithm needs to restart in order to generate K

clusters.

• Step 2: Estimation of the cluster membership vectors for target objects.

In this step, we need to estimate the parameter Θ in the mixture model and get new represen-

tations for each target object and centers for each target cluster: s⃗x and s⃗Xk
. In practice, the

number of iterations t for calculating Θ only needs to be set to a small number.

• Step 3: Cluster adjustment.

In this step, we calculate the distance from each object to each cluster center and assign it to

the nearest cluster.

• Repeat Steps 1, 2 and 3 until clusters change only by a very small ratio ε or the number

of iterations is bigger than a predefined value iterNum. In practice, we can set ε = 0, and

iterNum = 20. In our experiments, the algorithm will converge in less than 5 rounds in most

cases for the synthetic dataset and around 10 rounds for the DBLP dataset.

Example 2.4. (Mutual improvement of clustering and ranking) We now apply our algo-

rithm to the two-research-area example. The conditional rank distributions for each cluster and

cluster memberships for each venue at each iteration of the running procedure are illustrated in

Figure 2.5 (a)-(h). To better explain how our algorithm works, we set an extremely bad initial

clustering as the initial state. In Cluster 1, there are 14 venues, half from the DB/DM area and

half from the HW/CA area. Cluster 2 contains the remaining 6 venues, which are ICDT, CIKM,

PKDD, ASPLOS, ISLPED and CODES. We can see that the partition is quite unbalanced accord-

ing to the size, and quite mixed according to the area. During the first iteration, the conditional

rank distributions for two clusters are very similar to each other (Figure 2.5(a)), and venues are

mixed up and biased to Cluster 2 (Figure 2.5(b)). However, we can still adjust their cluster labels

according to the cluster centers, and most HW/CA venues go to Cluster 2 and most DB/DM venues
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Figure 2.5: Mutual improvement of clusters and ranking through iterations.

go to Cluster 1. At the second iteration, conditional ranking improves somewhat (shown in Figure

2.5(c)) since the clustering (Figure 2.5(b)) is enhanced, and this time clustering results (Figure

2.5(d)) are enhanced dramatically, although they are still biased to one cluster (Cluster 1). At the

third iteration, ranking results are improved significantly. Clusters and ranks are further adjusted

afterwards, both of which are minor refinements.

At each iteration, the time complexity of RankClus is comprised of three parts: ranking

part, mixture model estimation part, and clustering adjustment part. For ranking, if we use simple

ranking, the time complexity is O(|E|). If we use authority ranking, the time complexity is O(t1|E|),

where |E| is the number of links, and t1 is the number of iterations. For mixture model estimation,

at each round, we need to calculate the conditional probability for each link in each cluster, the

time complexity of which is O(K|E|). For clustering adjustment, we need to compute the distance

between each object (m) and each cluster (K), and the dimension of each object is K, so the time
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complexity for this part is O(mK2). So, overall, the time complexity is O(t(t1|E|+t2(K|E|)+mK2)),

where t is the number of iterations of the whole algorithm and t2 is the number of iterations of

the mixture model. If the network is a sparse network, the time is almost linear to the number of

objects.

2.7 Experiments

We now show the effectiveness and efficiency of RankClus algorithm compared with other link-

based algorithms, using both synthetic and real datasets.

Case Study on the DBLP Dataset We use the DBLP dataset to generate a bi-typed informa-

tion network for all the 2676 venues (conferences only) and 20,000 authors with most publications,

from the time period of year 1998 to year 2007. Both venue-author relationships and co-author

relationships are used. We set the number of clusters K = 15, and apply RankClus with the

authority ranking function, with α = 0.95. We then pick 5 clusters, and show top-10 venues from

each cluster according to the conditional rank scores. The results are shown in Table 2.4, where

the research area labels are manually added to each cluster.

Table 2.4: Top-10 venues in 5 clusters generated by RankClus in DBLP.

DB Network AI Theory IR

1 VLDB INFOCOM AAMAS SODA SIGIR
2 ICDE SIGMETRICS IJCAI STOC ACM Multimedia
3 SIGMOD ICNP AAAI FOCS CIKM
4 KDD SIGCOMM Agents ICALP TREC
5 ICDM MOBICOM AAAI/IAAI CCC JCDL
6 EDBT ICDCS ECAI SPAA CLEF
7 DASFAA NETWORKING RoboCup PODC WWW
8 PODS MobiHoc IAT CRYPTO ECDL
9 SSDBM ISCC ICMAS APPROX-RANDOM ECIR
10 SDM SenSys CP EUROCRYPT CIVR

Please note that the clustering and ranking of venues shown in Tables 2.4 have used neither

keyword nor citation information, which is the information popularly used in most bibliographic

data analysis systems. It is well recognized that citation information is crucial at judging the
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influence and impact of a venue or an author in a field. However, by exploring the publication

entries only in the DBLP data, the RankClus algorithm can achieve comparable performance as

citation studies for clustering and ranking venues and authors. This implies that the collection

of publication entries without referring to the keyword and citation information can still tell a lot

about the status of venues and authors in a scientific field.

Accuracy and Efficiency Study on Synthetic Data In order to compare accuracy among

different clustering algorithms, we generate synthetic bi-typed information networks, which follow

the properties of real information networks similar to DBLP. In our experiments, we first fixed the

scale of the network and the distribution of links, but change configurations to adjust the density

within each cluster and the separateness between different clusters, to obtain 5 different networks

(Dataset1 to Dataset5). We set number of clusters K = 3, number of target objects in each cluster

as Nx = [10, 20, 15], and number of attribute objects in each cluster as Ny = [500, 800, 700], which

are the same for all the 5 datasets. Then we vary the number of links in each cluster (P ) and the

transition matrix of the proportion of links between different clusters (T ), to get the following 5

datasets.

• Dataset1: medium separated and medium density.

P = [1000, 1500, 2000],

T = [0.8, 0.05, 0.15; 0.1, 0.8, 0.1; 0.1, 0.05, 0.85]

• Dataset2: medium separated and low density.

P = [800, 1300, 1200],

T = [0.8, 0.05, 0.15; 0.1, 0.8, 0.1; 0.1, 0.05, 0.85]

• Dataset3: medium separated and high density.

P = [2000, 3000, 4000],

T = [0.8, 0.05, 0.15; 0.1, 0.8, 0.1; 0.1, 0.05, 0.85]

• Dataset4: highly separated and medium density.

P = [1000, 1500, 2000],

T = [0.9, 0.05, 0.05; 0.05, 0.9, 0.05; 0.1, 0.05, 0.85]
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• Dataset5: poorly separated and medium density.

P = [1000, 1500, 2000],

T = [0.7, 0.15, 0.15; 0.15, 0.7, 0.15; 0.15, 0.15, 0.7]

We use the Normalized Mutual Information (NMI) [94] measure to compare the clustering

accuracy among different algorithms. For N objects, K clusters, and two clustering results, let

n(i, j), i, j = 1, 2, . . . ,K, the number of objects that has the cluster label i in the first clustering

result (say generated by the algorithm) and cluster label j in the second clustering result (say

the ground truth). We can then define joint distribution p(i, j) = n(i,j)
N , row distribution p1(j) =∑K

i=1 p(i, j) and column distribution p2(i) =
∑K

j=1p(i, j), and NMI is defined as:

∑K
i=1

∑K
j=1 p(i, j) log(

p(i,j)
p1(j)p2(i)

)√∑K
j=1 p1(j) log p1(j)

∑K
i=1 p2(i) log p2(i)

(2.9)

We compare RankClus implemented with two ranking functions: Simple Ranking and Au-

thority Ranking, with a state-of-the-art spectral clustering algorithm, the k-way N-cut algorithm

[90], implemented with two link-based similarity functions, Jaccard Coefficient and SimRank [52].

Results for accuracy is summarized in Figure 2.6. From the results, we can see that, two versions

of RankClus outperform in the first 4 datasets. RankClus with authority ranking is even better,

since authority ranking gives a better rank distribution by utilizing the information of the whole

network. Through the experiments, we observe that performance of two versions of RankClus and

the N-Cut algorithm based on Jaccard coefficient are highly dependent on the data quality, in terms

of cluster separateness and link density, while SimRank has a more stable performance, especially

on the network that is sparse (Dataset5).

Figure 2.7 summarizes the average execution time of different algorithms over 4 networks with

different sizes. We can see that compared with the time-consuming SimRank algorithm, RankClus

is very efficient and scalable.
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Figure 2.6: Accuracy comparison with baselines in terms of NMI. Dataset1: medium separated
and medium density; Dataset2: medium separated and low density; Dataset3: medium separated
and high density; Dataset4: highly separated and medium density; and Dataset5: poorly separated
and medium density.
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Figure 2.7: Efficiency comparison with baselines in terms of execution time.

2.8 Related Work

In information network analysis, two most important ranking algorithms are PageRank [20] and

HITS [59], both of which are successfully applied to the Internet search. PageRank is a link

analysis algorithm that assigns a numerical weight to each object of the information network, with

the purpose of “measuring” its relative importance within the object set. On the other hand, HITS

ranks objects based on two scores: authority and hub. Authority estimates the value of the content

of the object, whereas hub measures the value of its links to other objects. Both PageRank and

HITS are evaluating the static quality of objects in information network, which is similar to the

intrinsic meaning of our ranking methods. However, both PageRank and HITS are designed on

the network of web pages, which is a directed homogeneous network, and the weight of the edge

is binary. PopRank [82] aims at ranking popularity of web objects. They have considered the role

difference of different web pages, and thus turn web pages into a heterogeneous network. They
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trained the propagation factor between different types of objects according to partial ranks given by

experts. Different from their setting, we will calculate the rank for each type of objects separately

(i.e., we do not compare ranks of two objects belonging to different types), rather than consider

them in a unified framework. J. E. Hirsch [46] proposed h index originally in the area of physics

for characterizing the scientific output of a researcher, which is defined as the number of papers

with citation number higher or equal to h. Extensions work [92] shows that it also can work well

in computer science area. However, h-index will assign an integer value h to papers, authors, and

publication forums, while our work requires that rank sores can be viewed as a rank distribution

and thus can serve as a good measure for clustering. What is more, since there are only very limited

citation information in DBLP, ranking methods demanding citation cannot work in such kind of

data. Instead of proposing a totally new strategy for ranking, we aim at finding empirical rules

in the specific area of DBLP data set, and providing ranking function based on these rules, which

works well for the specific case. The real novelty lies in our framework is that it tightly integrates

ranking and clustering and thus offers informative summary for heterogeneous network such as the

DBLP data.

Clustering is another way to summarize information network and discover the underlying struc-

tures, which partitions the objects of an information network into subsets (clusters) so that objects

in each subset share some common trait. In clustering, proximity between objects is often defined

for the purpose of grouping “similar” objects into one cluster, while partitioning dissimilar ones

far apart. Spectral graph clustering [90, 72, 28] is state-of-the-art method to do clustering on the

homogeneous network. However for heterogeneous network, adjacency matrix of the same type

objects does not explicitly exist. Therefore, similarity extraction methods such as SimRank [52]

should be applied first, which is an iterative PageRank-like method for computing structural simi-

larity between objects. However, the time cost for SimRank is very high, and other methods such

as LinkClus [119] have addressed this issue. Without calculating the pairwise similarity between

two objects of the same type, RankClus uses conditional ranking as the measure of clusters, and

only needs to calculate the distances between each object and the cluster center.

In web search, there exists an idea of facet ranking [124, 31], which clusters the returned results

for each query into different categories, to help users to better retrieve the relevant documents. A
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commercial website that illustrates the idea is “vivisimo.com1.” It may seem that facet ranking

also integrates ranking with clustering, however, our work is of totally different idea. First, the goal

of facet ranking is to help user to better organize the results. The meaning of ranking here is the

relevance to the query. RankClus aims at finding higher quality and more informative clusters for

target objects with rank information integrated in an information network. Second, facet ranking is

a two-stage methodology. In the first stage, relevant results are collected according to the relevance

to the query, and then clustering is applied on the collection of returned documents. RankClus

integrates ranking and clustering tightly, which are mutually improved during the iterations.

2.9 Discussion

RankClus is the first piece of work that utilizes ranking as cluster feature to improve clustering

results and tightly integrates ranking and clustering. However, there are many other issues need

to be considered in the future.

First, currently we have only performed experiments on the bi-typed information network.

It is interesting to consider utilizing additional information and constraints in the RankClus

process. For example, we may interested in adding citation information and text information to the

bibliographic data and utilizing the additional information to make refined clustering and ranking.

We will extend the framework to a more general type of heterogeneous information networks in

next chapter, which focus on star networks.

Second, the empirical rules and its associated weight computation formulas proposed in this

study may not be directly transferable to other problem domains. When applying the RankClus

methodology to other bibliographic data, such as PubMed, we need to re-consider the empirical

rules for ranking functions. When applying the methodology to non-bibliographic data sets, both

new ranking functions and the semantics of links need to be reconsidered. Recently, there are some

follow-up studies in the domains of PubMed (MedRank [24]) and web photos (RankCompete [22]),

which have provided insights to further extend RankClus to other domains.

Third, the quality of ranking function is important to the accuracy of clustering, as it can

capture the distinct feature for clusters. However, as we can see, ranking function is highly related

1http://vivisimo.com
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to different domains, how we can automatically extract rules based on a small partial ranking

results given by experts could be another interesting problem. A possible solution is to use meta-

path (Chapter 4) to guide the ranking score propagation in the network, and use user guidance to

learn the ranking functions defined on different meta-paths.

2.10 Conclusion

In this chapter, we propose a novel clustering framework called RankClus to integrate clustering

with ranking, which generates conditional ranking relative to clusters to improve ranking quality,

and uses conditional ranking to generate new measure attributes to improve clustering. As a result,

the quality of clustering and ranking are mutually enhanced, which means the clusters are getting

more accurate and the ranking is getting more meaningful. Moreover, the clustering results with

ranking can provide more informative views of data. Our experiment results show that RankClus

can generate more accurate clusters and in a more efficient way than the state-of-the-art link-

based clustering method. There are still many research issues to be explored in the RankClus

framework. We have identified a few of them in Section 2.9. Clearly, more research is needed to

further consolidate this interesting framework and explore its broad applications.
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Chapter 3

Ranking-Based Clustering on Star
Networks

In this chapter, we study the clustering problem in a more general type of heterogeneous information

networks, i.e., star networks, which contains more types of objects. Different from RankClus we

are interested in clustering objects from different types simultaneously. A new algorithm NetClus

is proposed, which also follows a ranking-based clustering framework.

3.1 Overview

The clustering task we are solving in this chapter is to soft cluster all types of objects for a more

general type of heterogeneous information networks that involve more types of objects and more

types of links. Among heterogeneous networks, networks with star network schema (called star

networks), such as bibliographic networks centered with papers (see Example 3.1) and tagging

networks (e.g., http://delicious.com) centered with a tagging event, are popular and important.

In fact, any n-nary relation set such as tables in a relational database can be mapped into a star

network, with each tuple in the relation as the center object and all attribute entities linking to

the center object.

Example 3.1. (A star bibliographic information network) A bibliographic network contains

rich information about research publications. It consists of nodes belonging to four types: paper (D),

author (A), term (T ), and venue (V ). Semantically, each paper is written by a group of authors,

using a set of terms, and published in a venue (a conference or a journal). Links exist between

papers and authors by the relation of “write” and “written by,” between papers and terms by the

relation of “contain” and “contained in,” between papers and venues by the relation of “publish”

and “published by.” The topological structure of a bibliographic network is shown in the left part

of Figure 3.1, which forms a star network schema, where paper is a center type and all other
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types (called attribute types) of objects are linked via papers. The network can be represented as

G = (V, E ,W ), where V = A ∪ V ∪ T ∪D, and the weight of the link ⟨xi, xj⟩, wxixj , is defined as:

wxixj =


1, if xi(xj) ∈ A ∪ V, xj(xi) ∈ D, and xi has link to xj

c, if xi(xj) ∈ T, xj(xi) ∈ D, and xi(xj) appears c times in xj(xi),

0, otherwise.

Formally, a general star network with one center type and T attribute types can be defined as

follows, where links only exist between the center type and attribute types.

Definition 3.1. (Star network) An information network, G = (V, E ,W ), with T + 1 types of

objects (i.e., V = {Xt}Tt=0), is called with star network schema, if ∀e = ⟨xi, xj⟩ ∈ E , xi ∈ X0 ∧ xj ∈

Xt(t ̸= 0), or vice versa. G is then called a star network. Type X0 is the center type (called the

target type) and Xt(t ̸= 0) are attribute types.

In contrast to traditional cluster definition, we propose NetClus to detect net-clusters that

contain multiple types of objects and follow the schema of the original network, where each object

can softly belong to multiple clusters. A net-cluster example is shown in Example 3.2.

Example 3.2. (The net-cluster of database area) A net-cluster of the database area consists

of a set of database venues, authors, terms, and papers, and these objects belong to the database

area with a (nontrivial) probability. Accordingly, we can present rank scores for attribute objects

such as venues, authors and terms in its own type. With rank distribution, a user can easily grab

the important objects in the area. Table 3.1 shows the top ranked venues, authors and terms in the

area “ database”, generated from a 20-venue subnetwork from a “four-area” DBLP dataset (i.e.,

database, data mining, information retrieval and artificial intelligence) (see Section 3.6), using

NetClus.

NetClus is designed for a heterogeneous network with the star network schema. It is a ranking-

based iterative method following the idea of RankClus, that is, ranking is a good feature to help

clustering. Different from RankClus, NetClus is able to deal with an arbitrary number of types

of objects as long as the network is a star network, also the clusters generated are not groups of

single typed objects but a set of subnetworks with the same topology as the input network. For a
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Table 3.1: Rank scores for venues, authors and terms for the net-cluster of the database research
area.

Venue Rank score

SIGMOD 0.315
VLDB 0.306
ICDE 0.194
PODS 0.109
EDBT 0.046
CIKM 0.019
. . . . . .

Author Rank score

Michael Stonebraker 0.0063
Surajit Chaudhuri 0.0057

C. Mohan 0.0053
Michael J. Carey 0.0052
David J. DeWitt 0.0051
H. V. Jagadish 0.0043

. . . . . .

Term Rank score

database 0.0529
system 0.0322
query 0.0313
data 0.0251
object 0.0138

management 0.0113
. . . . . .

given star network and a specified number of clusters K, NetClus outputs K net-clusters (Figure

3.1). Each net-cluster is a sub-layer representing a concept of community of the network, which is

an induced network from the clustered target objects, and attached with statistic information for

each object in the network.

Research 
Paper

Term

AuthorVenue

Publish Write

Contain

P

T

AV

P

T

AV

P

T

AV
NetClus

Computer Science

Database

Hardware

Theory

Figure 3.1: Illustration of clustering on a star bibliographic network into net-clusters.

Instead of generating pairwise similarities between objects, which is time consuming and difficult

to define under a heterogeneous network, NetClus maps each target object, i.e., that from the

center type, into a K-dimensional vector measure, where K is the number of clusters specified by

the user. The probabilistic generative model for the target objects in each net-cluster is ranking-

based, which factorizes a net-cluster into T independent components, where T is the number of

attribute types. In this chapter, we use the star bibliographic network introduced in Example 3.1
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to illustrate the NetClus algorithm.

3.2 Ranking Functions

We have introduced ranking functions in Section 2.3, and now we re-examine the two ranking

functions for the bibliographic network with a star network schema and illustrate some properties

of the two ranking functions for a simple 3-(attribute-)typed star network.

3.2.1 Simple Ranking

Simple ranking is namely the simple occurrence counting for each object normalized in its own

type. Given a network G, rank distribution for each attribute type of objects is defined as follows:

p(x|Tx, G) =
∑

y∈NG(x)Wxy∑
x′∈Tx

∑
y∈NG(x′)Wx′y

(3.1)

where x is an object from type Tx, and NG(x) is the set of neighbors of x in G. For example, in

the bibliographic network, the rank score for a venue using simple ranking will be proportional to

the number of its published papers.

3.2.2 Authority Ranking

Authority ranking for each object is a ranking function that considers the authority propagation

of objects in the whole network. Different from the bi-typed information network, we need to

consider the rank score propagation over a path in a general heterogeneous information network.

For a general star network G, the propagation of authority score from Type X to Type Y through

the center type Z is defined as:

P (Y |TY , G) =WY ZWZXP (X|TX , G) (3.2)

where WY Z and WZX are the weight matrices between the two corresponding types of objects, and

can be normalized when necessary. Generally, authority score of one type of objects could be a

combination of scores from different types of objects, e.g., that proposed in PopRank [82]. It turns
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out that the iteration method of calculating rank distribution is the power method to calculate

the primary eigenvector of a square matrix denoting the strength between pairs of objects in that

particular type, which can be achieved by selecting a walking path (or a combination of multiple

paths) in the network. For more systematic definition of such paths, please refer to Chapter 4 for

meta-path-based concepts.

In the DBLP dataset, according to the rules that (1) highly ranked venues accept many good

papers published by highly ranked authors, and (2) highly ranked authors publish many good

papers in highly ranked venues, we determine the iteration equation as:

P (V |TV , G) =WV DD
−1
DAWDAP (A|TA, G)

P (A|TA, G) =WADD
−1
DVWDV P (V |TV , G)

(3.3)

whereDDA andDDV are the diagonal matrices with the diagonal value equaling to row sum ofWDA

and WDV , for the normalization purpose. The normalization simply means if a paper was written

by multiple authors, we should consider the average rank score of these authors when calculating

the rank score of a venue. Since all these matrices are sparse, in practice, the rank scores of objects

need only be calculated iteratively according to their limited number of neighbors.

3.2.3 Integrating Ranking Functions with Prior Knowledge

In both ranking functions, prior distributions in different clusters for a certain type of objects

can be integrated. For example, a user may give a few representative objects to serve as priors,

like terms and venues in each research area. Priors for a given type X are represented in the

form PP (X|TX , k), k = 1, 2, . . . ,K. The prior is first propagated in the network in a Personalized

PageRank [132] way, which propagates scores to objects that are not given in the priors. Then, the

propagated prior is linearly combined with the rank distribution calculated by the given ranking

function with parameter λP ∈ [0, 1]: the bigger the value, the more dependent on the prior is the

final conditional rank distribution.
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3.3 Framework of NetClus Algorithm

Here, we first introduce the general framework of NetClus, and each part of the algorithm will

be explained in detail in the following sections. The general idea of the NetClus algorithm given

the number of clusters K is composed of the following steps:

• Step 0: Generate initial partitions for target objects and induce initial net-clusters from the

original network according to these partitions, i.e., {C0
k}Kk=1.

• Step 1: Build ranking-based probabilistic generative model for each net-cluster, i.e., {P (x|Ct
k)}Kk=1.

• Step 2: Calculate the posterior probabilities for each target object (p(Ct
k|x)) and then adjust

their cluster assignment according to the new measure defined by the posterior probabilities to

each cluster.

• Step 3: Repeat Steps 1 and 2 until the clustering result does not change significantly, i.e.,

{C∗
k}Kk=1 = {Ct

k}Kk=1 = {C
t−1
k }Kk=1.

• Step 4: Calculate the posterior probabilities for each attribute object (p(C∗
k |x)) in each net-

cluster.

In all, the time complexity for NetClus is about linear to |E|, the number of links in the

network. When the network is very sparse, which is the real situation in most applications, the

time complexity is almost linear to the number of objects in the network.

3.4 Generative Model for Target Objects in a Net-Cluster

According to many studies [37, 9, 79], preferential attachment and assortative mixing exist in many

real-world networks, which means an object with a higher degree (i.e., high occurrences) has a higher

probability to be attached with a link, and objects with higher occurrences tend to link more to

each other. As in the DBLP dataset, 7.64% of the most productive authors publishes 74.2% of all

the papers, among which 56.72% of papers are published in merely 8.62% of the biggest venues,

which means large size venues and productive authors intend to co-appear via papers. We extend

the heuristic by using rank score instead of degree of objects, which denotes the overall importance

38



of an object in a network. Examples following this intuition include: webpage spammed by many

low rank webpages linking to it (high-degree but low rank) will not have too much chance to get

a link from a really important webpage, and authors publishing many papers in junk venues will

not increase his/her chance to publish a paper in highly ranked venues.

Under this observation, we simplify the network structure by proposing a probabilistic gener-

ative model for target objects, where a set of highly ranked attribute objects are more likely to

co-appear to generate a center object. To explain this idea, we take the star bibliographic informa-

tion network as a concrete example and show how the model works, where we assume the number of

distinct objects in each type are |A|, |V |, |T |, and |D| respectively, objects in each type are denoted

as A = {a1, a2, . . . , a|A|}, V = {v1, v2, . . . , v|V |}, T = {t1, t2, . . . , t|T |} and D = {d1, d2, . . . , d|D|}.

In order to simplify the complex network with multiple types of objects, we try to factorize

the impact of different types of attribute objects and then model the generative behavior of target

objects. The idea of factorizing a network is: we assume that given a network G, the probability to

visit objects from different attribute types are independent to each other. Also, we make another

independence assumption that within the same type of objects, the probability to visit two different

objects is independent to each other:

p(xi, xj |Tx, G) = p(xi|Tx, G)× p(xj |Tx, G)

where xi, xj ∈ Tx and Tx is some attribute type.

Now, we build the generative model for target objects given the rank distributions of attribute

objects in the network G. Still using bibliographic network as an example, each paper di is written

by several authors, published in one venue, and comprised of a bag of terms in the title. Therefore,

a paper di is determined by several attribute objects, say xi1, xi2, . . . , xini , where ni is the number

of links di has. The probability to generate a paper di is equivalent to generating these attribute

objects with the occurrence number indicated by the weight of the edge. Under the independency

assumptions that we have made, the probability to generate a paper di in the network G is defined

as follows:

p(di|G) =
∏

x∈NG(di)

p(x|Tx, G)Wdi,x
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where NG(di) is the neighborhood of object di in network G, and Tx is used to denote the type

of object x. Intuitively, a paper is generated in a cluster with high probability, if the venue it is

published in, authors writing this paper and terms appeared in the title all have high probability

in that cluster.

3.5 Posterior Probability for Target Objects and Attribute

Objects

Once we get the generative model for each net-cluster, we can calculate posterior probabilities for

each target object. Now the problem becomes that suppose we know the generative probabilities for

each target object generated from each cluster k, k = 1, 2, . . . ,K, what is the posterior probability

that it is generated from cluster k? Here, K is the number of clusters given by the user. As some

target objects may not belong to any ofK net-cluster, we will calculateK+1 posterior probabilities

for each target object instead of K, where the first K posterior probabilities are calculated for each

real existing net-clusters C1, C2, . . . , CK , and the last one in fact is calculated for the original

network G. Now, the generative model for target objects in G plays a role as a background model,

and target objects that are not very related to any clusters will have high posterior probability

in the background model. In this section, we will introduce the method to calculate posterior

probabilities for both target objects and attribute objects.

According to the generative model for target objects, the generative probability for a target

object d in the target type D in a sub-network Gk is calculated according to the conditional rank

distributions of attribute types in that sub-network:

p(d|Gk) =
∏

x∈NGk
(d)

p(x|Tx, Gk)
Wd,x (3.4)

where NGk
(d) denotes the neighborhood of object d in sub-network Gk. In Equation (3.4), in order

to avoid zero probabilities in conditional rank scores, each conditional rank score should be first

smoothed using global ranking:

PS(X|TX , Gk) = (1− λS)P (X|TX , Gk) + λSP (X|TX , G) (3.5)
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where λS is a parameter that denotes how much we should utilize the rank distribution from the

global ranking.

Smoothing [128] is a well-known technology in information retrieval. One of the reasons that

smoothing is required in the language model is to deal with the zero probability problem for

missing terms in a document. When calculating generative probabilities of target objects using our

ranking-based generative model, we meet a similar problem. For example, for a paper in a given

net-cluster, it may link to several objects whose rank score is zero in that cluster. If we simply

assign the probability of the target object as zero in that cluster, we will miss the information

provided by other objects. In fact, in initial rounds of clustering, objects may be assigned to wrong

clusters, if we do not use smoothing technique, they may not have the chance to go back to the

correct clusters.

Once a clustering is given on the input network G, say C1, C2, . . . , CK , we can calculate the

posterior probability for each target object (say paper di) simply by Bayes’ rule: πi,k ∝ p(di|k) ×

p(k), where πi,k is the probability that paper di is generated from cluster k given current generative

model, and p(k) denotes the relative size of cluster k, i.e., the probability that a paper belongs to

cluster k overall, where k = 1, 2, . . . ,K,K + 1.

In order to get the potential cluster size p(k) for each cluster k, we choose cluster size p(k) that

maximizes log-likelihood to generate the whole collection of papers and then use the EM algorithm

to get the local maximum for p(k).

logL =

|D|∑
i=1

log(p(di)) =

|D|∑
i=1

log
(K+1∑

k=1

p(di|k)p(k)
)

(3.6)

We use the EM algorithm to get p(k) by simply using the following two iterative formulas, by

initially setting p(0)(k) = 1
K+1 :

π
(t)
i,k ∝ p(di|k)p

(t)(k); p(t+1)(k) =

|D|∑
i=1

π
(t)
i,k/|D|.

When posterior probability is calculated for each target object in each cluster Ck, each target

object d can be represented as a K dimensional vector: v⃗(di) = (πi,1, πi,2, . . . , πi,K). The center

for each cluster Ck can be represented by the mean vector of all the target objects belonging to
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the cluster under the new measure. Next, we calculate cosine similarity between each target object

and each center of cluster, and assign the target object into the cluster with the nearest center. A

target object is now only belonging to one cluster, and we denote p(k|di) as 1 if di is assigned to

cluster k, 0 otherwise. A new subnetwork Gk can be induced by current target objects belonging

to cluster k. The adjustment is an iterative process, until target objects do not change their cluster

label significantly under the current measure. Note that, when measuring target objects, we do not

use the posterior probability for background model. We make such choices with two reasons: first,

the absolute value of posterior probability for background model should not affect the similarity

between target objects; second, the sum of the firstK posterior probabilities reflects the importance

of an object in determining the cluster center.

The posterior probabilities for attribute objects x ∈ A ∪ V ∪ T can be calculated as follows:

p(k|x) =
∑

d∈NG(x)

p(k, d|x) =
∑

d∈NG(x)

p(k|d)p(d|x) =
∑

d∈NG(x)

p(k|d) 1

|NG(x)|

This simply implies, the probability of a venue belonging to cluster Ck equals to the average

posterior probability of papers published in the venue; similarly for authors and other attribute

objects.

3.6 Experiments

We now study the effectiveness of NetClus and compare it with several state-of-the-art baselines.

Dataset We build star bibliographic networks from DBLP according to Example 3.1. Two net-

works of different scales are studied. One is a big dataset (“all-area” dataset) which covers all

the venues, authors, papers and terms from DBLP. The other is a smaller dataset extracted from

DBLP, containing 20 venues from four areas (hence called “four-area” dataset): database, data

mining, information retrieval, and artificial intelligence. All authors have ever published papers

on any of the 20 venues, and all these papers and terms appeared in the titles of these papers

are included in the network. Using the “four-area” dataset, we are able to compare the clustering

accuracy with several other methods.
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Case Studies We first show the rank distributions in net-clusters we discovered using the “all-

area” dataset, which is generated according to authority ranking for venues and authors, by setting

venue type as priors and the cluster number as 8. We show four net-clusters in Table 3.2. Also,

we can recursively apply NetClus to subnetworks derived from clusters and discover finer level

net-clusters. Top-5 authors in a finer level net-cluster about XML area, which is derived from

database subnetwork, are shown in Table 3.3.

Table 3.2: Top-5 venues in 4 net-clusters.

Rank DB and IS Theory AI Software Engineering

1 SIGMOD STOC AAAI ITC
2 VLDB FOCS UAI VTS
3 ICDE SIAM J. Comput. IJCAI POPL
4 SIGIR SODA Artif. Intell. IEEE Trans. Computers
5 KDD J. Comput. Syst. Sci. NIPS IEEE Design & Test of Compu.

Table 3.3: Top-5 authors in “XML” net-cluster.

Rank Author

1 Serge Abiteboul
2 Victor Vianu
3 Jerome Simeon
4 Michael J. Carey
5 Sophie Cluet

Study on Ranking Functions In Section 3.2, we proposed two ranking functions, namely

simple ranking and authority ranking. Here, we study how low dimensional measure derived from

rank distributions improve clustering and how clustering can improve this new measure in turn

(Figure 3.2). In this study, term is always ranked by simple ranking, and venue and author are

ranked by either authority ranking or simple ranking as two different settings.

First, we calculate average KL divergence between each conditional rank distribution and the

global rank distribution for each attribute type X to measure the dissimilarity among different
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(a) Authority R anking                                                             (b) S imple R anking

Figure 3.2: The change of ranking and clustering quality in terms of different measurements along
with the iterations.

conditional rank distributions, which is denoted as avgKL(X) for type X:

avgKL(X) =
1

K

K∑
k=1

DKL(P (X|TX , Gk)||P (X|TX , G))

Second, in order to evaluate how good the new measure generated in each round for cluster-

ing under the ranking function f , we use the compactness, denoted as Cf , which is defined as

the average ratio between within-cluster similarity and between-cluster similarity using the new

measure:

Cf =
1

|D|

K∑
k=1

|Dk|∑
i=1

s(dki, ck)∑
k′ ̸=k s(dki, ck′)/(K − 1)

Third, we trace the accuracy of clustering results for target objects in each round of iteration,

which is defined as:

accuracy =
1

|D|

D∑
i=1

Ptrue(·|di) · P (·|di)
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In other words, we calculate the percentage of papers that are assigned to the correct clusters.

However, since |D| is very large even in “four-area” dataset, we manually randomly labeled 100

papers into four clusters and use this paper set to calculate the accuracy.

Fourth, we trace the log-likelihood of the generative model along with the clustering iterations,

which is defined in Equation (3.6). From Figure 3.2, we can see authority ranking is better than

simple ranking in every measurement.

Study on Parameters In our algorithm, there are two parameters: prior parameter (λP ) and

smoothing parameter setting (λS). We use clustering accuracy for sampled papers to test the

impact of different settings of parameters to the algorithm. By fixing one of them, we vary the

other one. From Figure 3.3(a) and 3.3(b), we find that the larger the prior parameter λP , the better

the results, while when λP > 0.4, the impact becomes more stable1; also, the impact of smoothing

parameter is very stable, unless it is not too small (less than 0.1) or too big (bigger than 0.8). The

results are based on 20 runnings. Priors given for each of the four areas are around 2 or 3 terms.

For example, “database” and “system” are priors for database area, with equal prior probabilities.
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Figure 3.3: Parameter study of λP and λS .

Accuracy Study In this section, we compare our algorithm with two other algorithms: the topic

modeling algorithm PLSA [47] that merely uses term information for documents and RankClus

that can only be applied to bi-typed networks. Since both of them cannot directly applied to

heterogeneous networks with star network schema, we simplify the network when necessary. For

1Actually, the extremely poor quality when λP is very small is partially caused by the improper accuracy measure
at those occasions. When the prior is not big enough to attract the papers from the correct cluster, the clusters
generated not necessary have the same cluster label with the priors.
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PLSA, only the term type and paper type in the network are used, and we use the same term priors

as in NetClus. The accuracy results for papers are in Table 3.4.

Table 3.4: Accuracy of paper clustering results using PLSA and NetClus.

NetClus (A+V+T+D) PLSA (T+D)

Accuracy 0.7705 0.608

Since RankClus can only cluster venues, we choose to measure the accuracy of venue clus-

ter. For NetClus, cluster label is obtained according to the largest posterior probability, and

Normalized Mutual Information (NMI) is used to measure the accuracy. Since the majority of the

authors publish only a few papers, which may contain noise for correctly identifying the clustering

of venues, we run RankClus algorithm by setting different thresholds to select subsets of authors.

The results are shown in Table 3.5, where d(a) > n means we select authors that have more than

n publications to build the bi-typed bibliographic network. All the results are based on 20 runs.

Table 3.5: Accuracy of venue clustering results using RankClus and NetClus.

RankClus RankClus RankClus NetClus
d(a) > 0 d(a) > 5 d(a) > 10 d(a) > 0

NMI 0.5232 0.8390 0.7573 0.9753

We can see that by using more types of objects in the network, NetClus performs much better

than the two baselines that can only utilize partial information in the network.

3.7 Related Work

Clustering on networks and graphs has been widely studied in recent years. Clustering on graphs,

often called graph partition, aims at partitioning a given graph into a set of subgraphs based

on different criteria, such as minimum cut, min-max cut [35] and normalized cut [90]. Spectral

clustering [72] provides an efficient method to get graph partitions which is in fact an NP-hard

problem. Rather than investigate the global structure like spectral clustering, several density-based

methods [113, 117] are proposed to find clusters in networks which utilizes some neighborhood
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information for each object. These methods are all based on the assumption that the network is

homogeneous and the adjacent matrix of the network is already defined.

SimRank [52] is able to calculate pairwise similarity between objects by links of a given net-

work, which could deal with heterogenous network, such as bipartite network. However, when the

structure of network becomes more complex such as network with star network schema, SimRank

cannot give reasonable similarity measures between objects any more. Also, high time complexity

is another issue of SimRank, which prevents it from being applied to large scale networks.

An algorithm called RankClus [100] is proposed in Chapter 2, which uses a ranking-clustering

mutually enhancement methodology to cluster one type of objects in the heterogeneous network.

Although the algorithm is efficient comparing to other algorithms that need to calculate pairwise

similarity, there are some weaknesses for RankClus: (1) it has not demonstrated the ability to

clustering on networks with arbitrary number of types; and (2) the clusters generated byRankClus

only contain one type of objects. In contrast, NetClus can generate net-clusters comprised of

objects from multiple types, given any star network.

Other related studies include topic model, such as PLSA [47], which purely uses text informa-

tion and does not consider link information. Some work such as author-topic model [93] utilizes

additional information other than text by designing complex generative models that include addi-

tional types of objects. Other work such as [76] intends to optimize a combined objective function

with both text and graph constraints. All of these studies are extensions to existing topic model

framework, and treat text especially important. In our algorithm, we treat text information just

as one common type of objects.

Recently, a different view of clustering on heterogeneous networks [69, 7, 13] appears, which aims

at clustering objects from different types simultaneously. Given different cluster number needed for

each type of objects, clusters for each type are generated by maximizing some objective function.

In this paper, net-cluster follows the original network topology and resembles a community that is

comprised of multiple types of objects.
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3.8 Discussions

In this section, we present several discussions on further extending the ranking-based clustering

framework.

From Star Networks to General Networks First, we give some discussion on how to model

more general heterogeneous information networks.

In many bibliographic networks, there could be other link types, for example, the citation links

between papers. In this case, the papers can be treated as both target objects and attribute objects.

That is, in addition to the the ranking distributions for venues, authors, and terms, we also need

to model the ranking distribution for papers in terms of the probabilities of being cited in a certain

research area. We then can define the generative probability of a paper by considering citation

links in addition. In other cases, people may want to directly model the co-authorship between two

authors. A straightforward way is to model the probability of the co-occurrences of author pairs in

addition to the probability of the occurrence of single authors. Then the probability of a paper in

a cluster is determined also by the probability of all pairs of authors for this paper in that cluster.

By directly modeling co-authorship and other relationships, the clustering model can be further

enriched due to the introduction of more parameters, but this is likely to cause overfitting as well.

For information networks with arbitrary network structure, the major difficulty of directly

applying current model lies in the difficulty of identifying target objects. A possible way to handle

this issue is to treat each link as a virtual target object, and model the generation of links from

different types separately. The ranking distributions of objects from different types are also modeled

separately, but share the same value for the same type of objects, even they could be in different

relations.

From Static Networks to Dynamic Networks In real life, networks are rather dynamic, it

is interesting to study how objects in the networks form different clusters and how clusters evolve

over time, where the clusters represent groups of objects that are closely linked to each other, either

due to hidden common interests or due to some social events.

This problem is non-trivial, and it poses several challenges: (1) how to take different types of
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objects collectively to detect clusters? (2) how to discover the evolutionary structure (split, merge,

and evolve) among clusters of different time windows by modeling the co-evolution of objects in each

type? and (3) how to develop an efficient algorithm to solve the problem, as real-world information

networks can be very large?

Our recent research EvoNetClus [102] addresses this problem, which studies both the evolution

of multiple types of objects in each cluster and the evolutionary structure among the clusters. For

example, database and software engineering first formed a huge cluster, but later, database, data

mining and machine learning merged into a big cluster, and software engineering itself became an

independent cluster. Each cluster is composed of objects from different types, and the clusters

evolution is determined by the co-evolution of objects of different types.

From Clustering to Classification In many real-world applications, label information is avail-

able for some objects in a heterogeneous information network. Learning from such labeled and

unlabeled data via transductive classification can lead to good knowledge extraction of the hidden

network structure. Although classification on homogeneous networks [73, 74, 135, 131, 122, 71, 88,

77, 104, 14] has been studied for decades, classification on heterogeneous networks has not been

explored until recently. Moreover, both classification and ranking of the nodes (or data objects) in

such networks are essential for network analysis. But so far these approaches have generally been

performed separately.

In GNetMine [55], we have considered the transductive classification problem on heterogeneous

networked data objects which share a common hidden space. Only some objects in the given

network are labeled, and the aim is to predict labels for all types of the remaining objects. It has

been shown that by distinguishing the relation type in heterogeneous information networks, the

classification accuracy can be significantly enhanced.

Further, the authors combine ranking and classification [54] in order to perform more accurate

analysis of a heterogeneous information network, following the idea of integrating ranking and

clustering together. The intuition is that highly ranked objects within a class should play more

important roles in classification. On the other hand, class membership information is important for

determining a high quality ranking over a dataset. It is therefore beneficial to integrate classification

and ranking in a simultaneous, mutually enhancing process.
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3.9 Conclusion

In this chapter, we address a new clustering problem to detect net-clusters on a special hetero-

geneous network with star network schema, which aims at splitting the original network into K

layers and differs the concept from current clustering methods on heterogeneous networks. A novel

ranking-based algorithm called NetClus is proposed to find these clusters. The algorithm makes

the assumption that within each net-cluster, target objects (i.e., objects from the center type) are

generated by a ranking-based probabilistic generative model. Each target object is then mapped

into a new low dimensional measure by calculating their posterior probabilities belonging to each

net-cluster through their generative models. Our experiments on DBLP data show that NetClus

generates more accurate clustering results than the baseline algorithms extended from the topic

model and a previous ranking-based algorithm RankClus. Further, NetClus generates more in-

formative clusters, presenting good ranking information and cluster membership for each attribute

object in each net-cluster.
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Part II

Meta-Path-Based Similarity Search

and Mining
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Chapter 4

Meta-Path-Based Similarity Search

We now introduce a systematic approach for dealing with general heterogeneous information net-

works with a specified but arbitrary network schema, using a meta-path-based methodology. Under

this framework, similarity search (Chapter 4) and other mining tasks such as relationship prediction

(Chapter 5) can be addressed by systematic exploration of the network meta structure.

4.1 Overview

Similarity search, which aims at locating the most relevant information for a query in a large

collection of datasets, has been widely studied in many applications. For example, in spatial

database, people are interested in finding the k nearest neighbors for a given spatial object [60];

in information retrieval, it is useful to find similar documents for a given document or a given list

of keywords. Object similarity is also one of the most primitive concepts for object clustering,

recommender systems, and many other data mining functions.

In a similar context, it is critical to provide effective similarity search functions in information

networks, to find similar entities for a given entity. In a bibliographic network, a user may be

interested in the top-k most similar authors for a given author, or the most similar venues for a

given venue. In a network of tagged images such as Flickr, a user may be interested in search

for the most similar pictures for a given picture. In an e-commerce system, a user would be

interested in search for the most similar products for a given product. Different from the attribute-

based similarity search, links play an essential role for similarity search in information networks,

especially when the full information about attributes for objects is difficult to obtain.

There are a few studies leveraging link information in networks for similarity search, but most

of these studies are focused on homogeneous networks or bipartite networks, such as personalized
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PageRank (P-PageRank) [53] and SimRank [52]. These similarity measures disregard the subtlety

of different types among objects and links. Adoption of such measures to heterogeneous networks

has significant drawbacks: even if we just want to compare objects of the same type, going through

link paths of different types leads to rather different semantic meanings, and it makes little sense

to mix them up and measure the similarity without distinguishing their semantics. For example,

Table 4.1 shows the top-4 most similar venues for a given venue, DASFAA, based on (a) the

common authors shared by two venues, or (b) the common topics (i.e., terms) shared by two

venues. These two scenarios are represented by two distinct meta-paths: (a) V PAPV , denoting

that the similarity is defined by the connection path “venue-paper-author-paper-venue,” whereas

(b) V PTPV , by the connection path “venue-paper-topic-paper-venue.” A user can choose either

(a) or (b) or their combination based on the preferred similarity semantics. According to Path (a),

DASFAA is closer to DEXA, WAIM, and APWeb, that is, those that share many common authors,

whereas according to Path (b), it is closer to Data Knowl. Eng., ACM Trans. DB Syst., and Inf.

Syst., that is, those that address many common topics. Obviously, different connection paths lead

to different semantics of similarity definitions, and produce rather different ranking lists even for

the same query object.

Table 4.1: Top-4 most similar venues to “DASFAA” with two meta-paths.

Rank path: V PAPV path:V PTPV

1 DASFAA DASFAA
2 DEXA Data Knowl. Eng.
3 WAIM ACM Trans. DB Syst.
4 APWeb Inf. Syst.

To systematically distinguish the semantics among paths connecting two objects, we introduce

a meta-path-based similarity framework for objects of the same type in a heterogeneous network. A

meta-path is a sequence of relations between object types, which defines a new composite relation

between its starting type and ending type. The meta-path framework provides a powerful mecha-

nism for a user to select an appropriate similarity semantics, by choosing a proper meta-path, or

learn it from a set of training examples of similar objects.

In this chapter, we introduce the meta-path-based similarity framework, and relate it to two
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well-known existing link-based similarity functions for homogeneous information networks. Espe-

cially, we define a novel similarity measure, PathSim, that is able to find peer objects that are not

only strongly connected with each other but also share similar visibility in the network. Moreover,

we propose an efficient algorithm to support online top-k queries for such similarity search.

4.2 PathSim: A Meta-Path-Based Similarity Measure

The similarity between two objects in a link-based similarity function is determined by how the

objects are connected in a network, which can be described using paths. For example, in a co-author

network, two authors can be connected either directly or via common co-authors, which are length-

1 and length-2 paths respectively. In a heterogeneous information network, however, due to the

heterogeneity of the types of links, the way to connect two objects can be much more diverse. For

example, in Table 4.2, Column I gives several path instances between authors in a bibliographic

network, indicating whether the two authors have co-written a paper; whereas Column II gives

several path instances between authors following a different connection path, indicating whether

the two authors have ever published papers in the same venue. These two types of connections

represent different relationships between authors, each having some different semantic meaning.

Table 4.2: Path instance vs. meta-path in heterogeneous information networks.

Column I: Connection Type I Column II: Connection Type II

Path instance
Jim-P1-Ann Jim-P1-SIGMOD-P2-Ann
Mike-P2-Ann Mike-P3-SIGMOD-P2-Ann
Mike-P3-Bob Mike-P4-KDD-P5-Bob

Meta-path Author-Paper-Author Author-Paper-Venue-Paper-Author

Now the questions is, given an arbitrary heterogeneous information network, is there any way to

systematically identify all the possible connection types (i.e., relations) between two object types?

In order to do so, we propose two important concepts in the following.

4.2.1 Network Schema and Meta-Path

First, given a complex heterogeneous information network, it is necessary to provide its meta level

(i.e., schema-level) description for better understanding the network. Therefore, we propose the

54



concept of network schema to describe the meta structure of a network. The formal definition

of network schema has been given in Definition 1.2 in Chapter 1. We repeat the definition in the

following.

Definition 4.1. (Network schema) The network schema, denoted as TG = (A,R), is a meta

template for a heterogeneous network G = (V, E) with the object type mapping τ : V → A and

the link mapping ϕ : E → R, which is a directed graph defined over object types A, with edges as

relations from R.

The concept of network schema is similar to that of the ER (Entity-Relationship) model in

database systems, but only captures the entity type and their binary relations, without considering

the attributes for each entity type. Network schema serves as a template for a network, and tells

how many types of objects there are in the network and where the possible links exist. Note that

although a relational database can often be transformed into an information network, the latter is

more general and can handle more unstructured and non-normalized data and links, and is also

easier to deal with graph operations such as calculating the number of paths between two objects.

As we illustrated previously, two objects can be connected via different paths in a heterogeneous

information network. For example, two authors can be connected via “author-paper-author” path,

“author-paper-venue-paper-author” path, and so on. Formally, these paths are called meta-paths,

defined as follows.

Paper

Author

VenueTerm

Paper

Author

Venue

Paper

Author Author

(a) Network Schema (b) Meta-Path: APV (c) Meta-Path: APA

Figure 4.1: Bibliographic network schema and meta-paths.

Definition 4.2. (Meta-path) A meta-path P is a path defined on the graph of network schema

TG = (A,R), and is denoted in the form of A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1, which defines a composite
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relation R = R1 ◦R2 ◦ . . .◦Rl between types A1 and Al+1, where ◦ denotes the composition operator

on relations.

For the bibliographic network schema shown in Figure 4.1 (a), we list two examples of meta-

paths in Figure 4.1 (b) and (c), where an arrow explicitly shows the direction of a relation. We

say a path p = (a1a2 . . . al+1) between a1 and al+1 in network G follows the meta-path P, if ∀i,

ai ∈ Ai and each link ei = ⟨aiai+1⟩ belongs to each relation Ri in P. We call these paths as path

instances of P, denoted as p ∈ P. The examples of path instances have been shown in Table 4.2.

In addition to pointing out the meta-path we are interested in, we also need to consider how

to quantify the connection between two objects following a given meta-path. Analogously, a meta-

path-based measure in an information network corresponds to a feature in a traditional data set,

which can be used in many mining tasks.

4.2.2 Meta-Path-Based Similarity Framework

Given a user-specified meta-path, say P = (A1A2 . . . Al), several similarity measures can be defined

for a pair of objects x ∈ A1 and y ∈ Al, according to the path instances between them following the

meta-path. We use s(x, y) to denote the similarity between x and y, and list several straightforward

measures in the following.

• Path count: the number of path instances p between x and y following P: s(x, y) = |{p : p ∈ P}|.

• Random walk: s(x, y) is the probability of the random walk that starts form x and ends with

y following meta-path P, which is the sum of the probabilities of all the path instances p ∈ P

starting with x and ending with y, denoted as Prob(p): s(x, y) =
∑

p∈P Prob(p).

• Pairwise random walk: for a meta-path P that can be decomposed into two shorter meta-paths

with the same length P = (P1P2), s(x, y) is then the pairwise random walk probability starting

from objects x and y and reaching the same middle object: s(x, y) =
∑

(p1p2)∈(P1P2)
Prob(p1)Prob(p

−1
2 ),

where Prob(p1) and Prob(p
−1
2 ) are random walk probabilities of the two path instances.

In general, we can define a meta-path-based similarity framework for two objects x and y as:

s(x, y) =
∑

p∈P f(p), where f(p) is a measure defined on the path instance p between x and y.

Note that, P-PageRank and SimRank, two well-known network similarity functions, are weighted
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combinations of random walk measure or pairwise random walk measure, respectively, over meta-

paths with different lengths in homogeneous networks. In order to use P-PageRank and SimRank

in heterogeneous information networks, we need to specify the meta-path(s) we are interested in

and restrict the random walk on the given meta-path(s).

4.2.3 PathSim: A Novel Similarity Measure

Although there have been several similarity measures as presented above, they are biased to either

highly visible objects or highly concentrated objects but cannot capture the semantics of peer

similarity. For example, the path count and random walk-based similarity always favor objects

with large degrees, and the pairwise random walk-based similarity favors concentrated objects

where the majority of the links goes to a small portion of objects. However, in many scenarios,

finding similar objects in networks is to find similar peers, such as finding similar authors based

on their fields and reputation, finding similar actors based on their movie styles and productivity,

and finding similar products based on their functions and popularity.

This motivated us to propose a new, meta-path-based similarity measure, called PathSim, that

captures the subtlety of peer similarity. The intuition behind it is that two similar peer objects

should not only be strongly connected, but also share comparable visibility. As the relation of peer

should be symmetric, we confine PathSim to symmetric meta-paths. It is easy to see that, round

trip meta-paths in the form of P = (P lP−1
l ) are always symmetric.

Definition 4.3. (PathSim: A meta-path-based similarity measure) Given a symmetric

meta-path P, PathSim between two objects x and y of the same type is:

s(x, y) =
2× |{px y : px y ∈ P}|

|{px x : px x ∈ P}|+ |{py y : py y ∈ P}|

where px y is a path instance between x and y, px x is that between x and x, and py y is that

between y and y.

This definition shows that given a meta-path P, s(x, y) is defined in terms of two parts: (1)

their connectivity defined by the number of paths between them following P; and (2) the balance

of their visibility, where the visibility of an object according P is defined as the number of path
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instances between the object itself following P. Note that we do count multiple occurrences of a

path instance as the weight of the path instance, which is the product of weights of all the links in

the path instance.

Table 4.3 presents in three measures the results of finding top-5 similar authors for “Anhai

Doan,” who is an established young researcher in the database field, under the meta-path APV PA

(based on their shared venues), in the database and information system (DBIS) area. P-PageRank

returns the most similar authors as those published substantially in the area, that is, highly ranked

authors; SimRank returns a set of authors that are concentrated on a small number of venues shared

with Doan; whereas PathSim returns Patel, Deshpande, Yang and Miller, who share very similar

publication records and are also rising stars in the database field as Doan. Obviously, PathSim

captures desired semantic similarity as peers in such networks.

Table 4.3: Top-5 similar authors for “AnHai Doan” in the DBIS area.

Rank P-PageRank SimRank PathSim

1 AnHai Doan AnHai Doan AnHai Doan
2 Philip S. Yu Douglas W. Cornell Jignesh M. Patel
3 Jiawei Han Adam Silberstein Amol Deshpande
4 Hector Garcia-Molina Samuel DeFazio Jun Yang
5 Gerhard Weikum Curt Ellmann Renée J. Miller

The calculation of PathSim between any two objects of the same type given a certain meta-path

involves matrix multiplication. Given a network G = (V, E) and its network schema TG, we call

the new adjacency matrix for a meta-path P = (A1A2 . . . Al) a relation matrix, and is defined as

M = WA1A2WA2A3 . . .WAl−1Al
, where WAiAj is the adjacency matrix between type Ai and type

Aj . M(i, j) represents the number of paths instances between object xi ∈ A1 and object yj ∈ Al

under meta-path P.

For example, relation matrixM for the meta-path P = (APA) is a co-author matrix, with each

element representing the number of co-authored papers for the pair of authors. Given a symmetric

meta-path P, PathSim between two objects xi and xj of the same type can be calculated as

s(xi, xj) =
2Mij

Mii+Mjj
, where M is the relation matrix for the meta-path P, Mii and Mjj are the

visibility for xi and xj in the network given the meta-path.

It is easy to see that the relation matrix for the reverse meta-path of P l, which is P−1
l , is
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the transpose of relation matrix for P l. In this paper, we only consider the meta-path in the

round trip form of P = (PlP−1
l ), to guarantee its symmetry and therefore the symmetry of the

PathSim measure. By viewing PathSim in the meta-path-based similarity framework, f(p) =

2
w(a1,a2)...w(al−1,al)

Mii+Mjj
, for any path instance p starting from xi and ending with xj following the meta-

path (a1 = xi and al = xj), where w(am, an) is the weight for the link ⟨am, an⟩ defined in the

adjacency matrix.

Some good properties of PathSim, such as symmetric, self-maximum and balance of visibility,

are shown in Theorem 4.1. For the balance property, we can see that the larger the difference of

the visibility of the two objects, the smaller the upper bound for their PathSim similarity.

Theorem 4.1. (Properties of PathSim)

1. Symmetric: s(xi, xj) = s(xj , xi).

2. Self-maximum: s(xi, xj) ∈ [0, 1], and s(xi, xi) = 1.

3. Balance of Visibility: s(xi, xj) ≤ 2√
Mii/Mjj+

√
Mjj/Mii

.

Although using meta-path-based similarity we can define similarity between two objects giv-

en any round trip meta-paths, the following theorem tells us a very long meta-path is not very

meaningful. Indeed, due to the sparsity of real networks, objects that are similar may share no

immediate neighbors, and longer meta-paths will propagate similarities to remote neighborhoods.

For example, as in the DBLP example, if we consider the meta-path APA, only two authors that

are co-authors have a non-zero similarity score; but if we consider longer meta-paths like APV PA

or APTPA, authors will be considered to be similar if they have published papers in a similar

set of venues or sharing a similar set of terms no matter whether they have co-authored. But

how far should we keep going? The following theorem tells us that a very long meta-path may

be misleading. We now use Pk to denote a meta-path repeating k times of the basic meta-path

pattern of P, e.g., (AV A)2 = (AV AV A).

Theorem 4.2. (Limiting behavior of PathSim under infinity-length meta-path) Let meta-

path P(k) = (PlP−1
l )k, MP be the relation matrix for meta-path Pl, and M (k) = (MPM

T
P )

k be the
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relation matrix for P(k), then by PathSim, the similarity between objects xi and xj as k →∞ is:

lim
k→∞

s(k)(i, j) =
2r(i)r(j)

r(i)r(i) + r(j)r(j)
=

2
r(i)
r(j) +

r(j)
r(i)

where r is the primary eigenvector of M , and r(i) is the ith item of r.

As primary eigenvectors can be used as authority ranking of objects [100], the similarity between

two objects under an infinite meta-path can be viewed as a measure defined on their rankings (r(i)

is the ranking score for object xi). Two objects with more similar ranking scores will have higher

similarity (e.g., SIGMOD will be similar to AAAI). Later experiments (Table 4.9) will show that

this similarity, with the meaning of global ranking, is not that useful. Note that, the convergence

of PathSim with respect to path length is usually very fast and the length of 10 for networks of

the scale of DBLP can almost achieve the effect of a meta-path with an infinite length. Therefore,

in this paper, we only aim at solving the top-k similarity search problem for a relatively short

meta-path.

Even for a relatively short length, it may still be inefficient in both time and space to materialize

all the meta-paths. Thus we propose in Section 4.3 materializing relation matrices for short length

meta-paths, and concatenating them online to get longer ones for a given query.

4.3 Online Query Processing for Single Meta-Path

Compared with P-PageRank and SimRank, the calculation for PathSim is much more efficient, as

it is a local graph measure. But it still involves expensive matrix multiplication operations for top-k

search functions, as we need to calculate the similarity between a query and every object of the

same type in the network. One possible solution is to materialize all the meta-paths within a given

length. Unfortunately, it is time and space expensive to materialize all the possible meta-paths.

For example, in the DBLP network, the similarity matrix corresponding to a length-4 meta-path,

APV PA, for identifying similar authors publishing in common venues is a 710K × 710K matrix,

whose non-empty elements reaches 5G, and requires storage size more than 40GB.

In order to support fast online query processing for large-scale networks, we propose a method-

ology that partially materializes short length meta-paths and then concatenates them online to
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derive longer meta-path-based similarity. First, a baseline method (PathSim-baseline) is proposed,

which computes the similarity between query object x and all the candidate objects y of the same

type. Next, a co-clustering based pruning method (PathSim-pruning) is proposed, which prunes

candidate objects that are not promising according to their similarity upper bounds. Both algo-

rithms return exact top-k results for the given query. Note that the same methodology can be

adopted by other meta-path-based similarity measures, such as random walk and pairwise random

walk, by taking a different definition of similarity matrix accordingly.

4.3.1 Single Meta-Path Concatenation

Given a meta-path P = (P lP−1
l ), where P l = (A1 · · ·Al), the relation matrix for path P l is

MP = WA1A2WA2A3 · · ·WAl−1Al
, the relation matrix for path P is M = MPM

T
P . Let n be the

number of objects in A1. For a query object xi ∈ A1, if we compute the top-k most similar

objects xj ∈ A1 for xi on-the-fly, without materializing any intermediate results, computing M

from scratch would be very expensive. On the other hand, if we have pre-computed and stored the

relation matrix M =MPM
T
P , it would be a trivial problem to get the query results: we only need

to locate the corresponding row in the matrix for the query xi, re-scale it using (Mii +Mjj)/2,

and finally sort the new vector and return the top-k objects. However, fully materializing the

relation matrices for all possible meta-paths is also impractical, since the space complexity (O(n2))

would prevent us from storing M for every meta-path. Instead of taking the above extreme, we

partially materialize relation matrix MT
P for meta-path P−1

l , and compute top-k results online by

concatenating P l and P−1
l into P without full matrix multiplication.

We now examine the concatenation problem, that is, when the relation matrix M for the

full meta-path P is not pre-computed and stored, but the relation matrix MT
P corresponding to

the partial meta-path P−1
l is available. In this case, we assume the main diagonal of M , that

is, D = (M11, . . . ,Mnn), is pre-computed and stored. Since for Mii = MP (i, :)MP (i, :)
T , the

calculation only involves MP (i, :) itself, and only O(nd) in time and O(n) in space are required,

where d is the average number of non-zero elements in each row of MP for each object.

In this study, we only consider concatenating the partial paths P l and P−1
l into the form

P = P lP−1
l or P = P−1

l P l. For example, given a pre-stored meta-path APV , we are able to
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answer queries for meta-paths APV PA and V PAPV . For our DBLP network, to store relation

matrix for partial meta-path APV only needs around 25M space, which is less than 0.1% of the

space for materializing meta-path APV PA. Other concatenation forms that may lead to different

optimization methods are also possible (e.g., concatenating several short meta-paths). In the

following discussion, we focus on the algorithms using the concatenation form P = P lP−1
l .

4.3.2 Baseline

Suppose we know the relation matrix MP for meta-path Pl, and the diagonal vector D = (Mii)
n
i=1,

in order to get top-k objects xj ∈ A1 with the highest similarity for the query xi, we need to compute

s(i, j) for all xj . The straightforward baseline is: (1) first apply vector-matrix multiplication to

get M(i, :) = MP (i, :)M
T
P ; (2) calculate s(i, j) = 2M(i,j)

M(i,i)+M(j,j) for all xj ∈ A1; and (3) sort s(i, j)

to return the top-k list in the final step. When n is very large, the vector-matrix computation will

be too time consuming to check every possible object xj . Therefore, we first select xj ’s that are

not orthogonal to xi in the vector form, by following the links from xi to find 2-step neighbors

in relation matrix MP , that is, xj ∈ CandidateSet = {
∪

yk∈MP .neighbors(xi)
MT
P .neighbors(yk)},

whereMP .neighbors(xi)= {yk|MP (xi, yk) ̸= 0}, which can be easily obtained in the sparse matrix

form of MP that indexes both rows and columns. This will be much more efficient than pairwise

comparison between the query and all the objects of that type. We call this baseline concatenation

algorithm as PathSim-baseline.

The PathSim-baseline algorithm, however, is still time consuming if the candidate set is large.

Although MP can be relatively sparse given a short length meta-path, after concatenation, M

could be dense, i.e., the CandidateSet could be very large. Still, considering the query object and

one candidate object represented by query vector and candidate vector, the dot product between

them is proportional to the size of their non-zero elements. The time complexity for computing

PathSim for each candidate is O(d) on average and O(m) in the worst case, that is, O(nm) in the

worst case for all the candidates, where n is the row size of MP (i.e., the number of objects in type

A1), m the column size of MP (i.e., the number of objects in type Al), and d the average non-

zero element for each object in MP . We now propose a co-clustering based top-k concatenation

algorithm, by which non-promising target objects are dynamically filtered out to reduce the search
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space.

4.3.3 Co-Clustering Based Pruning

In the baseline algorithm, the computational costs involve two factors. First, the more candidates

to check, the more time the algorithm will take; second, for each candidate, the dot product of

query vector and candidate vector will at most involve m operations, where m is the vector length.

The intuition to speed up the search is to prune unpromising candidate objects using simpler

calculations. Based on the intuition, we propose a co-clustering-based (i.e., clustering rows and

columns of a matrix simultaneously) path concatenation method, which first generates co-clusters

of two types of objects for partial relation matrix, then stores necessary statistics for each of the

blocks corresponding to different co-cluster pairs, and then uses the block statistics to prune the

search space. For better illustration, we call clusters of type A1 as target clusters, since the

objects in A1 are the targets for the query; and call clusters of type Al as feature clusters, since

the objects in Al serve as features to calculate the similarity between the query and the target

objects. By partitioning A1 into different target clusters, if a whole target cluster is not similar to

the query, then all the objects in the target cluster are likely not in the final top-k lists and can be

pruned. By partitioning Al into different feature clusters, cheaper calculations on the dimension-

reduced query vector and candidate vectors can be used to derive the similarity upper bounds. This

pruning idea is illustrated in Figure 4.2 using a toy example with 9 target objects and 6 feature

objects.

Now we introduce the detailed algorithms in the following.

1. Block-wise Commuting Matrix Materialization

The first problem is how to generate these clusters for each commuting matrix MP . Since one

commuting matrix can be used for the concatenation into two longer meta-paths, i.e., MPM
T
P and

MT
PMP , we hope to find co-clusters of feature cluster and target cluster, within which all values

are similar to each other. We use a greedy KL-divergence based co-clustering method (summarized

in Algorithm 4.1), which is similar to the information-theoretic co-clustering proposed in [34], but

simplifies the feature space for each object by merely using the feature cluster information. For

example, for P l = (APC), we will use the conditional probability of author clusters appearing in
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Figure 4.2: Illustration of pruning strategy. Given the partial relation matrix MT
l and its 3 × 3

co-clusters, and the query vector Ml(xi, :) for query object xi, first the query vector is compressed
into the aggregated query vector with the length of 3, and the upper bounds of the similarity
between the query and all the 3 target clusters are calculated based on the aggregated query vector
and aggregated cluster vectors; second, for each of the target clusters, if they cannot be pruned,
calculate the upper bound of the similarity between the query and each of the 3 candidates within
the cluster using aggregated vectors; third, if the candidates cannot be pruned, calculate the exact
similarity value using the non-aggregated query vector and candidate vectors.

some conference c, say p(Âu|c = “V LDB”), as the feature for conference c, use the conditional

probability of author clusters in some conference cluster Ĉv, say p(Âu|Ĉv = “DB”), as the feature

for conference cluster Ĉv, and assign the conference to the conference cluster with the minimum

KL-divergence. The adjustment is the same for author type given current conference clusters. The

whole process is repeated for conference type and author type alternately, until the clusters do not

change any more.

The time complexity of Algorithm 4.1 is O(t(m+n)(UV )), where t is the number of iterations,

m and n are the number of objects for feature type and target type, U and V are the numbers of

clusters for feature type and target type. Compared with the original O(mn(U + V )) algorithm in

[34], it is much more efficient. Sampling-based variation algorithm such as in [83] can be applied for

further faster co-clustering. In our experiment setting, we will select objects with higher degrees

for the clustering, and assign those with smaller degrees to the existing clusters.

Once the clusters for each type of objects are obtained, the commuting matrix can be de-

composed into disjoint blocks. To facilitate further concatenation on two meta-paths for queries,

necessary statistical information is stored for each block. For each block b denoted by row cluster

Ru and column cluster Cv, we store:
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Algorithm 4.1 Greedy Co-Clustering Algorithm

Input: Commuting Matrix MT
P , number of feature clusters (row clusters) U , number of target clusters

(column clusters) V
Output: row clusters {Ru}Uu=1, column clusters {Cv}Vv=1

1: //Initialization.
2: Randomly assign row objects into {Ru}Uu=1;
3: Randomly assign column objects into {Cv}Vv=1;
4: repeat
5: //get center vector of each Ru:

6: f(Ru) =
1

|Ru|
∑V

v=1M
T
P (Ru, Cv);

7: //Adjust row objects
8: foreach object xi in row objects do
9: f(xi) =

∑V
v=1M

T
P (xi, Cv);

10: assign xi into Ru, u = argminkKL(f(xi)||f(Ru));
11: //get center vector of each Cv:

12: f(Cv) =
1

|Cv|
∑U

u=1M
T
P (Ru, Cv)

13: //Adjust column objects
14: foreach object yj in row objects do

15: f(yj) =
∑U

u=1MP (Ru, yj);
16: assign yj into Cv, v = argminlKL(f(yj)||f(Cv));
17: until {Ru}, {Cv} do not change significantly.

1. Element sum of each block T {U×V }:

tuv =
∑

i∈Ru

∑
j∈Cv

MT
P (i, j);

2. Sum of row vectors (1-norm of each column vector) of each block T
{U×m}
1 :

tuv,1(j) =
∑

i∈Ru
MT
P (i, j), for j ∈ Cv;

3. Square root of sum of square of row vectors (2-norm of each column vector) of each block

TT
{U×m}
1 :

t2uv,1(j) =
√∑

i∈Ru
(MT
P (i, j))

2, for j ∈ Cv;

4. Sum of column vectors (1-norm of each row vector) of each block T
{n×V }
2 :

tuv,2(i) =
∑

j∈Cv
MT
P (i, j), for i ∈ Ru;

5. Square root of sum of square of column vectors (2-norm of each row vector) of each block

TT
{n×V }
2 :

t2uv,2(i) =
√∑

j∈Cv
(MT
P (i, j))

2, for i ∈ Ru.

2. Pruning Strategy in Path Concatenation

Now let’s focus on how we can get top-k results efficiently for a query given the materialized

block-wise commuting matrix. The intuition is that we first check the most promising target cluster,
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then if possible, prune the whole target cluster; if not, we first use simple calculations to decide

whether we need to further calculate the similarity between the query and the candidate object,

then compute the exact similarity value using more complex operations only for those needed.

Theorem 4.3. Bounds for block-based similarity measure approximation. Given a query

object x, the query vector is x = MP (x, :). Let D be the diagonal vector of M , let x̂1 be the

compressed query vector given feature clusters {Ru}Uu=1, where x̂1(u) = maxj∈Ru{x(j)}, and let x̂2

be the 2-norm query vector given feature clusters Ru, where x̂2(u) =
√∑

j∈Ru
x(j)2, the similarity

between x and target cluster Cv, and the similarity between x and candidate y ∈ Cv can be estimated

using the following upper bounds:

1. upperbound 1: ∀y ∈ Cv, s(x, y) ≤ s(x,Cv) =
∑

y∈Cv
s(x, y) ≤ 2x̂T

1 T (:,v)
D(x)+1 ;

2. upperbound 2: ∀y ∈ Cv, s(x, y) ≤
2x̂T

2 TT1(:,y)
D(x)+D(y) .

Proof. See Proof in the Appendix A.

In Theorem 4.3, the upper bound for s(x,Cv) can be used to find the most promising target

clusters as well as to prune target clusters if it is smaller than the lowest similarity in the current

top-k results. The upper bound for s(x, y) can be used to prune target objects that are not

promising, which only needs at most U times calculation, whereas the exact calculation needs at

most m times calculation. Here, U is the number of feature clusters and m is the number of feature

objects, i.e., objects of type Al.

The search strategy is to first sort the target clusters according to their upper bound of the

similarity between the query x and the cluster Cv, i.e., s(x,Cv), in a decreasing order. The higher

the similarity the more likely this cluster contains more similar objects to x. It is very critical

to use the order to check the most promising target clusters first, by which the most desirable

objects are retrieved at an early stage and the upper bounds then have stronger power to prune

the remaining candidates. When a new target cluster needs to be checked, the upper bound can

be used to prune the whole target cluster and all the remaining target clusters, if it is smaller

than the k-th value of the current top-k list. Next, when going to check the candidates within the

target cluster, the upper bound between query object x and candidate y can be used to prune non-

promising candidates if it is smaller than the current threshold. The algorithm PathSim-pruning
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is summarized in Algorithm 4.3. On Line 5, min(S) is the lowest similarity in the current top-k

result set S. Similar to PathSim-baseline (Algorithm 4.2), before the pruning steps, we still need to

first derive the candidate set. Compared with the baseline algorithm, the pruning-based algorithm

at most checks the same number of candidates with the overhead to calculate the upper bounds.

In practice, a great number of candidates can be pruned, and therefore the performance can be

enhanced.

Algorithm 4.2 (PathSim-Baseline) Vector-Matrix Multiplication Based Path Concatenation

Input: Query xi, Commuting Matrix MP , Diagonal Vector D, top-k K
Output: Top-k List SortList
1: CandidateSet = ∅;
2: foreach yk ∈MP .neighbors(xi) do
3: foreach xj ∈MT

P .neighbors(yk) do
4: CandidateSet = CandidateSet ∪ {xj};
5: List = ∅;
6: foreach xj ∈ CandidateSet do
7: value = 2 ∗MP (i, :)MP (j, :)

T /(D(i) +D(j));
8: List.update(xj , value,K);
9: List.sort();

10: SortList = List.topk(K);
11: return SortList;

Algorithm 4.3 (PathSim-Pruning) Cluster-based Top-k Search on Path Concatenation

Input: Query xi, Commuting matrix MT
P , Feature clusters {Ru}Uu=1, Target clusters {Cv}Vv=1, Diagonal

vector D, top-k K.
Output: Top-k list S.
1: Set CandidateSet = xi.neighbors.neighbors;
2: S = ∅;
3: Sort clusters in {Cv}Vv=1 according to upper bound of s(xi, Cv);
4: foreach Cv with decreasing order do
5: if the upper bound of s(xi, Cv) < min(S) then
6: break;
7: else
8: foreach xj ∈ Cv and xj ∈ CandidateSet do
9: if the upper bound of s(xi, xj) < min(S) then

10: continue;
11: else

12: s(xi, xj) =
2MP (xi,:)(MP (xj ,:))

T

D(xi)+D(xj)
;

13: Insert xj into S;
14: return S;

Experiments show that PathSim-Pruning can significantly improve the query processing speed

comparing with the baseline algorithm, without affecting the search quality.
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4.4 Multiple Meta-Paths Combination

In Section 4.3, we presented algorithms for similarity search using single meta-path. Now, we

present a solution to combine multiple meta-paths. Formally, given r round trip meta-paths from

Type A back to Type A, P1,P2, . . . ,Pr, and their corresponding relation matrix M1,M2, . . . ,Mr,

with weights w1, w2, . . . , wr specified by users, the combined similarity between objects xi, xj ∈ A

are defined as: s(xi, xj) =
∑r

l=1wlsl(xi, xj), where sl(xi, xj) =
2Ml(i,j)

Ml(i,i)+Ml(j,j)
.

Example 4.1. (Multiple meta-paths combination for venue similarity search) Following

the motivating example in the introduction section, Table 4.4 shows the results of combining two

meta-paths P1 = V PAPV and P2 = V PTPV with different weights specified by w1 and w2, for

query “DASFAA.”

Table 4.4: Top-5 similar venues to “DASFAA” using multiple meta-paths.

Rank w1 = 0.2, w2 = 0.8 w1 = 0.5, w2 = 0.5 w1 = 0.8, w2 = 0.2

1 DASFAA DASFAA DASFAA
2 Data Knowl. Eng. DEXA DEXA
3 CIKM CIKM WAIM
4 EDBT Data Knowl. Eng. CIKM
5 Inf. Syst. EDBT APWeb

The reason why we need to combine several meta-paths is that, each meta-path provides a

unique angle (or a unique feature space) to view the similarity between objects, and the ground

truth may be a cause of different factors. Some useful guidance of the weight assignment includes:

longer meta-path utilize more remote relationships and thus should be assigned with a smaller

weight, such as in P-PageRank and SimRank; and, meta-paths with more important relationships

should be assigned with a higher weight. For automatically determining the weights, users could

provide training examples of similar objects to learn the weights of different meta-paths using

learning algorithms.

We now evaluate the quality of similarity measure generated by combined meta-paths, according

to their performance for clustering tasks in the “four-area” dataset. First, two meta-paths for the

venue type, namely, V AV and V TV (short for V PAPV and V PTPV ), are selected and their linear
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combinations with different weights are considered. Second, two meta-paths with the same basic

path but different lengths, namely AV A and (AV A)2, are selected and their linear combinations

with different weights are considered. The clustering accuracy measured by NMI for conferences

and authors is shown in Table 4.5, which shows that the combination of multiple meta-paths can

produce better similarity than the single meta-path in terms of clustering accuracy.

Table 4.5: Clustering accuracy for PathSim for meta-path combinations on the “four-area” dataset.

w1 0 0.2 0.4 0.6 0.8 1
w2 1 0.8 0.6 0.4 0.2 0

V AV ;V TV 0.7917 0.7936 0.8299 0.8587 0.8123 0.8116

AV A; (AV A)2 0.6091 0.6219 0.6506 0.6561 0.6508 0.6501

4.5 Experiments

To show the effectiveness of the PathSim measure and the efficiency of the proposed algorithms,

we use the bibliographic networks extracted from DBLP and Flickr in the experiments.

We use the DBLP dataset downloaded in Nov. 2009 as the main test dataset. It contains over

710K authors, 1.2M papers, and 5K venues (conferences/journals). After removing stopwords

in paper titles, we get around 70K terms appearing more than once. This dataset is referred

as the full-DBLP dataset. Two small subsets of the data (to alleviate the high computational

costs of P-PageRank and SimRank) are used for the comparison with other similarity measures in

effectiveness: (1) the DBIS dataset, which contains all the 464 venues and top-5000 authors from

the database and information system area; and (2) the four-area dataset, which contains 20 venues

and top-5000 authors from 4 areas: database, data mining, information retrieval and artificial

intelligence [98], and cluster labels are given for all the 20 venues and a subset of 1713 authors.

For additional case studies, we construct a Flickr network from a subset of the Flickr data,

which contains four types of objects: images, users, tags, and groups. Links exist between images

and users, images and tags, and images and groups. We use 10,000 images from 20 groups as well

as their related 664 users and 10284 tags appearing more than once to construct the network.
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Table 4.6: Case study of five similarity measures on query “PKDD” on the DBIS dataset.

Rank P-PageRank SimRank RW PRW PathSim
1 PKDD PKDD PKDD PKDD PKDD
2 KDD Local Pattern Detection KDD Local Pattern Detection ICDM
3 ICDE KDID ICDM DB Support for DM Appl. SDM
4 VLDB KDD PAKDD Constr. Min. & Induc. DB PAKDD
5 SIGMOD Large-Scale Paral. DM SDM KDID KDD
6 ICDM SDM TKDE MCD DMKD
7 TKDE ICDM SIGKDD Expl. Pattern Detection & Disc. SIGKDD Expl.
8 PAKDD SIGKDD Expl. ICDE RSKD Knowl. Inf. Syst.
9 SIGIR Constr. Min. & Induc. DB SEBD WImBI J IIS
10 CIKM TKDD CIKM Large-Scale Paral. DM KDID

4.5.1 Effectiveness

Comparing PathSim with other measures When a meta-path P = (P lP l
−1) is given, other

measures such as random walk (RW) and pairwise random walk (PRW) can be applied to the same

meta-path, and P-PageRank and SimRank can be applied to the sub-network extracted from P.

For example, for the meta-path V PAPV (V AV in short) for finding venues sharing the same set

of authors, the bipartite graph MCA, derived from the relation matrix corresponding to V PA can

be used in both P-PageRank and SimRank algorithms. In our experiments, the damping factor for

P-PageRank is set as 0.9 and that for SimRank is 0.8.

First, a case study is shown in Table 4.6, which is applied to the DBIS dataset, under the

meta-path V AV . One can see that for query “PKDD” (short for “Principles and Practice of

Knowledge Discovery in Databases,” a European data mining conference), P-PageRank favors the

venues with higher visibility, such as KDD and several well-known venues; SimRank prefers more

concentrated venues (i.e., a large portion of publications goes to a small set of authors) and returns

many not well-known venues such as “Local Pattern Detection” and KDID; RW also favors highly

visible objects such as KDD, but brings in fewer irrelevant venues due to that it utilizes merely one

short meta-path; PRW performs similar to SimRank, but brings in more not so well-known venues

due to the short meta-path it uses; whereas PathSim returns the venues in both the area and the

reputation similar to PKDD, such as ICDM and SDM.

We then labeled top-15 results for 15 queries from the venues in the DBIS dataset (i.e., SIG-

MOD, VLDB, ICDE, PODS, EDBT, DASFAA, KDD, ICDM, PKDD, SDM, PAKDD, WWW,

SIGIR, TREC and APWeb), to test the quality of the ranking lists given by 5 measures. We label
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Table 4.7: Comparing the accuracy of top-15 query results for five similarity measures on the DBIS
dataset measured by nDCG.

P-PageRank SimRank RW PRW PathSim

Accuracy 0.5552 0.6289 0.7061 0.5284 0.7446

each result object with a relevance score at one of the three levels: 0 (non-relevant), 1 (somewhat

relevant), and 2 (very relevant). Then we use the measure nDCG (i.e., Normalized Discounted Cu-

mulative Gain, with the value between 0 and 1, the higher the better) [51] to evaluate the quality

of a ranking algorithm by comparing its output ranking results with the labeled ones (Table 4.7).

The results show that PathSim gives the best ranking quality in terms of human intuition, which

is consistent with the previous case study.

Table 4.8: Top-10 similar authors to “Christos Faloutsos” under different meta-paths on the full-
DBLP dataset.

(a) Path: APA

Rank Author

1 Christos Faloutsos
2 Spiros Papadimitriou
3 Jimeng Sun
4 Jia-Yu Pan
5 Agma J. M. Traina
6 Jure Leskovec
7 Caetano Traina Jr.
8 Hanghang Tong
9 Deepayan Chakrabarti
10 Flip Korn

(b) Path: APV PA

Rank Author

1 Christos Faloutsos
2 Jiawei Han
3 Rakesh Agrawal
4 Jian Pei
5 Charu C. Aggarwal
6 H. V. Jagadish
7 Raghu Ramakrishnan
8 Nick Koudas
9 Surajit Chaudhuri
10 Divesh Srivastava

Semantic meanings of different meta-paths As we pointed out, different meta-paths give

different semantic meanings, which is one of the reasons that similarity definitions in homogeneous

networks cannot be applied directly to heterogeneous networks. Besides the motivating example

in the introduction section, Table 4.8 shows the author similarity under two scenarios for author

Christos Faloutsos: co-authoring papers and publishing papers in the same venues, represented by

the meta-paths APA and APV PA respectively. One can see that the first path returns co-authors
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who have strongest connections with Faloutsos (i.e., students and close collaborators) in DBLP,

whereas APV PA returns those publishing papers in the most similar venues.

Table 4.9: Top-10 similar venues to “SIGMOD” under meta-paths with different lengths on the
full-DBLP dataset.

(a) Path: (V PAPV )2

Rank Venue Score
1 SIGMOD 1
2 VLDB 0.981
3 ICDE 0.949
4 TKDE 0.650
5 SIGMOD Record 0.630
6 IEEE Data Eng. Bul. 0.530
7 PODS 0.467
8 ACM Trans. DB Sys. 0.429
9 EDBT 0.420
10 CIKM 0.410

(b) Path: (V PAPV )4

Rank Venue Score
1 SIGMOD 1
2 VLDB 0.997
3 ICDE 0.996
4 TKDE 0.787
5 SIGMOD Record 0.686
6 PODS 0.586
7 KDD 0.553
8 CIKM 0.540
9 IEEE Data Eng. Bul. 0.532
10 J. Comp. Sys. Sci. 0.463

(c) Path: (V PAPV )∞

Rank Venue Score
1 SIGMOD 1
2 AAAI 0.9999
3 ESA 0.9999
4 ITC 0.9999
5 STACS 0.9997
6 PODC 0.9996
7 NIPS 0.9993
8 Comput. Geom. 0.9992
9 ICC 0.9991
10 ICDE 0.9984

The impact of path length The next interesting question is how the length of meta-path

impacts the similarity definition. Table 4.9 shows an example of venues similar to “SIGMOD”

with three meta-paths, using exactly the same basic meta-path, but with different repeating times.

These meta-paths are (V PAPV )2, (V PAPV )4 and its infinity form (global ranking-based simi-

larity). Note that in (V PAPV )2, two venues are similar if they share many similar authors who

publish papers in the same venues; while in (V PAPV )4, the similarity definition of those venues

will be further relaxed, namely, two venues are similar if they share many similar authors who

publish papers in similar venues. Since venue type only contains 5K venues, we are able to get

the full materialization relation matrix for (V PAPV )2. (V PAPV )4 is obtained using meta-path

concatenation from (V PAPV )2. The results are summarized in Table 4.9, where longer paths

gradually bring in more remote neighbors, with higher similarity scores, and finally, it degenerates

into global ranking comparison. Through this study, one can see that a meta-path with relatively

short length is good enough to measure similarity, where a long meta-path may even reduce the

quality.
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4.5.2 Efficiency Comparison

The time complexity for SimRank is O(KN2d2), where K is the number of iterations, N is the

total number of objects, and d is the average neighbor size; the time complexity for calculating P-

PageRank for one query is O(KNd), where K,N, d has the same meaning as in SimRank; whereas

the time complexity for PathSim using PathSim-baseline for single query is O(nd), where n < N

is the number of objects in the target type, d is the average degree of objects in target type for

partial relation matrix MP l
. The time complexity for RW and PRW are the same as PathSim. We

can see that similarity measure only using one meta-path is much more efficient than those also

using longer meta-paths in the network (e.g., SimRank and P-PageRank).

Now we compare the pruning power of PathSim-pruning vs. PathSim-baseline by considering

two factors: the size of the neighbors of a query (Fig. 4.3) and the density of the partial com-

muting matrix MP (Fig. 4.4). 500 queries are randomly chosen for two meta-paths (V PAPV

and (V PAPV )2, denoted as V AV and V AV AV for short), and the execution time is averaged

with 10 runs. The results show that the execution time for PathSim-baseline is almost linear to

the size of the candidate set, and the improvement rate for PathSim-pruning is larger for queries

with more neighbors, which requires more calculation for exact dot product operation between a

query vector and candidate vectors. Also, the denser that the commuting matrix corresponding to

the partial meta-path (MV PAPV in comparison with MV PA), the greater the pruning power. The

improvement rates are 18.23% and 68.04% for the two meta-paths.
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Figure 4.3: Efficiency study for queries with different neighbor size under meta-path V AV on the
full-DBLP dataset based on 500 queries.
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(b) Meta-path: V AV AV

Figure 4.4: Pruning power denoted by the slope of the fitting line under two meta-paths for type
conference on the full-DBLP dataset. Each dot represents a query under the indicated meta-path.

4.5.3 Case study on Flickr network

In this case study, we show that to retrieve similar images for a query image, one can explore

links in the network rather than the content information. Let “I” represent images, “T” tags that

associated with each image, and “G” groups that each image belongs to. Two meta-paths are used

and compared. One is ITI, which means common tags are used by two images at evaluation of

their similarity. The results are shown in Figure 4.5. The other is ITIGITI, which means tags

similarities are further measured by their shared groups, and two images can be similar even if they

do not share many exact same tags as long as these tags are used by many images of the same

groups. One can see that the second meta-path gives better results than the first, as shown in

Figure 4.6, where the first image is the input query. This is likely due to that the latter meta-path

provides additional information related to image groups, and thus improves the similarity measure

between images.

4.6 Related Work

Similarity measure has been widely studied in categorical, numerical, or mix-type data sets, such

as cosine similarity defined on two vectors, Jaccard coefficient on two sets, and Euclidean distance

on two numerical data points. Based on the traditional similarity measures, a recent study [114]
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(a) top-1 (b) top-2 (c) top-3 (d) top-4 (e) top-5 (f) top-6

Figure 4.5: Top-6 images in Flickr network under meta-path ITI.

(a) top-1 (b) top-2 (c) top-3 (d) top-4 (e) top-5 (f) top-6

Figure 4.6: Top-6 images in Flickr network under meta-path ITIGITI.

proposes an efficient top-k similarity pair search algorithm, top-k-join, in relational database, which

only considers similarity between tuples. Also widely studied are k nearest neighbor search in

spatial data [60] and other high dimensional data [15], which aims at finding top-k nearest neighbors

according to similarities defined on numerical features. However, these similarity definitions cannot

be applied to networks.

Similarity measures defined on homogeneous networks emerged recently. Personalized PageR-

ank [53] is an asymmetrical similarity measure that evaluates the probability starting from object

x to visit object y by randomly walking on the network with restart. More discussions on how

to scale the calculation for online queries are in [38, 108], etc., and how to derive top-k answers

efficiently is studied in [42]. SimRank [52] is a symmetric similarity measure defined on homoge-

neous networks, which can also be directly applied to bipartite networks. The intuition behind

SimRank is propagating pairwise similarity to their neighboring pairs. Due to its computational

complexity, there are many follow-up studies (e.g., [68]) on speeding up such calculations. SCAN

[117] measures similarity of two objects by comparing their immediate neighbor sets.

ObjectRank [5] and PopRank [82] first noticed that heterogeneous relationships could affect the

random walk, and assigned different propagation factors to each type of object relationship to either

derive a revised version of P-PageRank (ObjectRank) or a global PageRank (PopRank). However,

such solutions only give one particular combination of all the possible meta-paths using the fixed
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weights determined by the damping factor and propagation factors between different types. In our

PathSim definition, users can freely specify the meta-paths they are interested in and assign any

weight to them. Random walk style similarity search is not adopted in PathSim, which overcomes

the disadvantage of returning highly ranked objects rather than similar peers.

4.7 Discussions

In this study, we assume that users know how to choose meta-path. In practice, there are several

ways for a user to select the best meta-path or meta-path combinations. First, a user can make

a choice based on her interest and domain knowledge. Second, she can have several experimental

trials, such as those done in Section 4.5, and choose the best one according to her intuition. Third,

she can label a small portion of data according to specific applications. For example, one can

label similar objects or rank them, and then train the best meta-path(s) and their weights by

some learning algorithms. By doing so, one can automatically choose appropriate meta-paths as

well as the associated weights, and make the similarity search adaptable to different application

scenarios. One recent work [115] follows this direction, which can identify different similarity search

intentions by learning the weights for different meta-paths. The problem on how to choose and

weight different meta-paths is similar to the feature selection process in machine learning. In-depth

study for a systematic solution is left as a future research task.

4.8 Conclusion

In this chapter, we have introduced a novel and practical notion of meta-path-based similarity

for heterogeneous information networks. We comparatively and systematically examine different

semantics of similarity measures in such networks and introduce a new meta-path-based similarity

measure to find similar objects of the same type in such networks. Meta-paths give users flexibility

to choose different meta-paths and their combinations based on their applications. Moreover, we

propose a new similarity measure, PathSim, under this framework, which produces overall better

similarity qualities than the existing measures. Since meta-paths can be arbitrarily given, it is

unrealistic to fully materialize all the possible similarity results given different meta-paths and their
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combinations. However, online calculation requires matrix multiplication, which is time consuming

especially when the vector and matrix are not sparse. Therefore, we proposed an efficient solution

that partially materializes several short meta-paths and then applies online concatenation and

combination among paths to give the top-k results for a query. Experiments on real data sets show

the effectiveness of the similarity measure and the efficiency of our method. The framework of

meta-path-based similarity search in networks can be enhanced in many ways, e.g., weight learning

for different meta-paths, which may help provide accurate similarity measures in real systems and

discover interesting relationships among objects.
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Chapter 5

Meta-Path-Based Relationship
Prediction

In Chapter 4, we introduced a meta-path-based similarity measure, PathSim, for heterogeneous

information networks. The concept of meta-path serves not only as a basis for similarity search but

also as a key for mining and learning general heterogeneous networks with an arbitrary network

schema, because this notion provides a way to guide us to systematically build link-based features.

In this chapter, we examine a new mining task, relationship prediction in heterogeneous information

networks, by exploring meta-path-based features.

5.1 Overview

Link prediction, that is, predicting the emergence of links in a network based on certain current or

historical network information, has been a popular theme of research in recent years, thanks to the

popularity of social networks and other online systems. The applications of link prediction range

from social networks to biological networks, as it addresses the fundamental question of whether

a link will form between two nodes in the future. Most of the existing link prediction methods

[66, 45, 111, 67, 63] are designed for homogeneous networks, in which only one type of objects

exists in the network. For example, in a friendship network or a co-author network, a user may like

to predict possible new friendship between two persons or new co-authorship between two authors,

based on the existing links in a network.

In the real world, most networks are heterogeneous, where multiple types of objects and links

exist. In such networks, objects are connected by different types of relationships. Objects are

connected together not only by immediate links, but also by more sophisticated relationships that

follow some meta-path-based relations. Here we extend the link prediction problem in homogeneous

information networks to the relationship prediction problem in heterogeneous information networks,
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where a relationship could be an immediate link or a path instance following some meta-path.

Many real-world problems can be considered as relationship prediction tasks, such as citation

prediction in a bibliographic network, product recommendation in an e-commerce network, and

online advertisement click prediction in an online system-based network.

The heterogeneity of objects and links makes it difficult to use well-known topological features in

homogeneous networks for algorithmic design. For example, the number of the common neighbors

is frequently used as a feature for link prediction in homogeneous networks. However, the neighbors

of an object in a heterogeneous network often are of different types, and a simple measure like the

number of shared neighbors cannot reflect this heterogeneity.

We thus propose a meta-path-based relationship prediction framework to overcome this diffi-

culty. Instead of treating objects and links of different types equally or extracting homogeneous

subnetworks from the original network, we propose a meta-path-based topological feature frame-

work for heterogeneous networks. The goal is to systematically define the relations between objects

encoded in different paths using the meta structure of these paths, that is, the meta-paths.

Two case studies using the meta-path-based relationship prediction framework are presented

in this chapter. The first is on co-authorship prediction in the DBLP network, whereas the second

proposes a novel prediction model that can predict when a relationship is going to built in a given

heterogeneous information network.

5.2 Meta-Path-Based Relationship Prediction Framework

Different from traditional link prediction tasks for homogeneous information networks, in a het-

erogeneous information network scenario, it is necessary to specify which type of relationships to

predict. The relationship to be predicted is called the target relation and can be described using a

meta-path. For example, the relation co-authorship can be described as a meta-path A − P − A.

Moreover, in order to build an effective prediction model, one need to examine how to construct

the meta-path-based topological features between two objects for each potential relationship. In

this section, we first examine how to systematically build topological feature space using meta-

paths, and then present a supervised prediction framework where the meta-path-based topological

measures are used as features.
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5.2.1 Meta-Path-based Topological Feature Space

Topological features, also known as structural features, reflect the essential connectivity properties

for pairs of objects. Topological feature-based link prediction aims at inferring the future con-

nectivity by leveraging the current connectivity of the network. There are some frequently used

topological features defined in homogeneous networks, such as the number of common neighbors,

preferential attachment [10, 78], and katzβ [57]. We first review several commonly used topological

features in homogeneous networks, and then propose a systematic meta-path-based methodology

to define topological features in heterogeneous networks.

Existing Topological Features

We introduce several well-known and frequently used topological features in homogeneous networks.

For more topological features, the readers can refer to [66] .

• Common neighbors. Common neighbors is defined as the number of common neighbors shared

by two objects ai and aj , namely |Γ(ai) ∩ Γ(aj)|, where Γ(a) is the notation for neighbor set of

the object a and | · | denotes the size of a set.

• Jaccard’s coefficient. Jaccard’s coefficient is a measure to evaluate the similarity between two

neighbor sets, which can be viewed as the normalized number of common neighbors, namely

|Γ(ai)∩Γ(aj)|
|Γ(ai)∪Γ(aj)| .

• Katzβ. Katzβ [57] is a weighted summation of counts of paths between two objects with different

lengths, namely
∑∞

l=1 β
l|path⟨l⟩ai,aj |, where βl is the damping factor for the path with length l.

• PropFlow. In a recent study [67], a random walk-based measure PropFlow is proposed to measure

the topological feature between two objects. This method assigns the weighs to each path (with

fixed length l) using the products of proportions of the flows on the edges.

One can see that most of the existing topological features in homogeneous networks are based on

neighbor sets or paths between two objects. However, as there are multi-typed objects and multi-

typed relations in heterogeneous networks, the neighbors of an object could belong to multiple

types, and the paths between two objects could follow different meta-paths and indicate different
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relations. Thus, it is necessary to design a more complex strategy to generate topological features

in heterogeneous networks.

Meta-path-based Topological Features

To design topological features in heterogeneous networks, we first define the topology between two

objects using meta-paths, and then define measures on a specific topology. In other words, a meta-

path-based topological feature space is comprised of two parts: the meta-path-based topology and

the measure functions that quantify the topology.

Meta-path-based topology As introduced in Chapter 4, a meta-path is a path defined over a

network schema and denotes a composition relation over a heterogeneous network. By checking the

existing topological features defined in a homogeneous network, we can find that both the neighbor

set-based features and path-based features can be generalized in the heterogeneous information

network, by considering paths following different meta-paths. For example, if we treat each type

of neighbors separately and extend the immediate neighbors to n-hop neighbors (i.e., the distance

between one object and its neighbors are n), the common neighbor feature between two objects

then becomes the count of paths between the two objects following different meta-paths. For path-

based features, such as Katzβ, it can be extended as a combination of paths following different

meta-paths, where each meta-path defines a unique topology between objects, representing a special

relation.

Meta-paths between two object types can be obtained by traversing the graph of network

schema, using standard traversal methods such as the BFS (breadth-first search) algorithm. As

the network schema is a much smaller graph compared with the original network, this stage is very

fast. We can enumerate all the meta-paths between two object types by setting a length constraint.

For example, in order to predict co-authorship in the DBLP network, we extract all the meta-paths

within a length constraint, say 4, starting and ending with the author type A. The meta-paths

between authors up to length 4 are summarized in Table 5.1, where the semantic meaning of each

relation denoted by each meta-path are given in the second column.
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Table 5.1: Meta-paths under length 4 between authors in the DBLP network.

Meta-path Semantic Meaning of the Relation

A− P −A ai and aj are co-authors

A− P → P −A ai cites aj
A− P ← P −A ai is cited by aj

A− P − V − P −A ai and aj publish in the same venues

A− P −A− P −A ai and aj are co-authors of the same authors

A− P − T − P −A ai and aj write the same topics

A− P → P → P −A ai cites papers that cite aj
A− P ← P ← P −A ai is cited by papers that are cited by aj
A− P → P ← P −A ai and aj cite the same papers

A− P ← P → P −A ai and aj are cited by the same papers

Measure functions on meta-paths Once the topologies given by meta-paths are determined,

the next stage is to propose measures to quantify these meta-paths for pairs of objects. Here

we list four measures along the lines of topological features in homogeneous networks. They are

path count, normalized path count, random walk, and symmetric random walk, defined as follows.

Additional measures can be proposed, such as pairwise random walk mentioned in Chapter 4.

• Path count. Path count measures the number of path instances between two objects following a

given meta-path R, denoted as PCR. Path count can be calculated by the products of adjacency

matrices associated with each relation in the meta-path.

• Normalized path count. Normalized path count is to discount the number of paths between

two objects in the network by their overall connectivity, and is defined as NPCR(ai, aj) =

PCR(ai,aj)+PCR−1 (aj ,ai)

ZR(ai,aj)
, where R−1 denotes the inverse relation of R, ZR(ai, aj) is some normal-

ization factor. For example, PathSim [99] is a special case of normalized path count, where

ZR(ai, aj) = PCR(ai, ai) + PCR(aj , aj) for symmetric R’s.

• Random walk. Random walk measure along a meta-path is defined asRWR(ai, aj) =
PCR(ai,aj)
PCR(ai,·) ,

where PCR(ai, ·) denotes the total number of paths following R starting with ai, which is a nat-

ural generalization of PropFlow [67].

• Symmetric random walk. Symmetric random walk considers the random walk from two

directions along the meta-path, and defined as SRWR(ai, aj) = RWR(ai, aj) +RWR−1(aj , ai).
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Figure 5.1: An example of path instances between two authors following A-P -V -P -A

Taking the example in Figure 5.1, we show the calculation of these measures. Let R denote the

relation represented by meta-path A − P − V − P − A. It is easy to check it is symmetric, i.e.,

R = R−1. Let J denote Jim, andM denote Mike. We can see that PCR(J,M) = 7, NPCR(J,M) =

7+7
7+9 = 7/8 (under PathSim), RWR(J,M) = 1/2, RWR(M,J) = 7/16, and SRWR(J,M) = 15/16.

For each meta-path, we can apply any measure functions on it and obtain a unique topological

feature. So far, we have provided a systematic way to define the topological features in heteroge-

neous networks, which is a large space defined over topology ×measure. These meta-path-based

topological features can serve a good feature space for mining and learning tasks, such as relation-

ship prediction.

5.2.2 Supervised Relationship Prediction Framework

The supervised learning framework is summarized in Figure 5.2. Generally, given a past time

interval T0 = [t0, t1), we want to use the topological features extracted from the aggregated network

in the time period T0, to predict the relationship building in a future time interval, say T1 = [t1, t2).

In the training stage, we first sample a set of object pairs in T0, collect their associated topological

features represented as x’s in T0, and record relationship building facts between them represented as

y’s in the future interval T1. A training model is then built to learn the best coefficients associated

with each topological feature by maximizing the likelihood of relationship building. In the test

stage, we apply the learned coefficients to the topological features for the test pairs, and compare

the predicted relationship with the ground truth. Note that, the test stage may have different

past interval T ′
0 and future interval T ′

1 as in the training stage, but we require they have the same

lengths as the intervals in the training stage, namely using the same amount of past information

to predict the same length of future.

For most of the existing link prediction studies, the tasks are predicting whether a new link will
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Figure 5.2: Supervised framework for relationship prediction.

appear in the future. In other words, y is a binary variable and is usually modeled as following

Bernoulli distribution. While in a more general case, y can be variables related to any reasonable

value of the relationship for a pair of objects. For example, in order to predict when a relationship

is going to be built, y could be modeled a positive real value following exponential distribution;

in order to predict the frequency of a relationship (e.g., how many times two authors are going to

collaborate), y could be modeled as a non-negative integer following Poisson distribution. Then

statistical models can be built based on the distribution assumptions of y, such as logistic regression

model for binary variables and generalized linear model for more sophisticated assumptions.

Two case studies of relationship prediction are shown in the following sections, both of which

follow the supervised relationship prediction framework, but with different purposes and thus dif-

ferent assumptions on the response variable y.

5.3 Co-authorship Prediction

For the first case study, we study the problem of co-authorship prediction in the DBLP bibliographic

network, that is, whether two authors are going to collaborate in a future interval for the first time.

In this case, the target relation for prediction is co-authorship relation, which can be described

using meta-path A−P −A. For the topological features, we study all the meta-path listed in Table

5.1 other than A− P −A and all the measures listed in the last section.

We next introduce the relationship prediction model which models the probability of co-

authorship between two authors as a function of topological features between them. Given the

training pairs of authors, we first extract the topological features for them, and then build the

prediction model to learn the weights associated with these features.
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5.3.1 The Co-authorship Prediction Model

In order to predict whether two authors are going to collaborate in a future interval, denoted as

y, we use the logistic regression model as the prediction model. For each training pair of authors

⟨ai1 , ai2⟩, let xi be the (d + 1)-dimensional vector including constant 1 and d topological features

between them, and yi be the label of whether they will be co-authors in the future (yi = 1 if

they will be co-authors, and 0 otherwise), which follows Bernoulli distribution with probability pi

(P (yi = 1) = pi). The probability pi is modeled as follows:

pi =
exiβ

exiβ + 1

where β is the d+ 1 coefficient weights associated with the constant and each topological feature.

We then use standard MLE (Maximum Likelihood Estimation) to derive β̂, that maximizes the

likelihood of all the training pairs:

L =
∏
i

pyii (1− pi)(1−yi)

In the test stage, for each candidate author pair, we can predict whether they will collaborate

according to P (ytest = 1) = extestβ̂

extestβ̂+1
, where xtest is the (d + 1)-dimensional vector including

constant 1 and d topological features between the candidate pair.

5.3.2 Experiments

It turns out that the proposed meta-path-based topological features can improve the co-authorship

prediction accuracy compared with the baselines that only use homogeneous object and link infor-

mation.

We consider three time intervals for the DBLP network, according to the publication year

associated with each paper: T0 = [1989, 1995], T1 = [1996, 2002], and T2 = [2003, 2009]. For the

training stage, we use T0 as the past time interval, and T1 as the future time interval, which is

denoted as T0−T1 time framework. For the test stage, we consider the same time framework T0−T1

for most of the studies, and consider T1 − T2 time framework for the query-based case study.

Let an author pair be ⟨ai, aj⟩, we call ai the source author, and aj the target author. Two
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sets of source authors are considered. The first set is comprised of highly productive authors, who

has published no less than 16 papers in the past time interval; and the second set is comprised of

less productive authors, with between 5 and 15 publications. The target authors are selected if

they are 2-hop co-authors or 3-hop co-authors of the source author. In all, we have four labeled

datasets: (1) the highly productive source authors with 2-hop target authors (denoted as HP2hop);

(2) the highly productive source authors with 3-hop target authors (denoted as HP3hop); (3) the

less productive source authors with 2-hop target authors (denoted as LP2hop); and (4) the less

productive source authors with 3-hop target authors (denoted as LP3hop).

To evaluate the prediction accuracy, two measures are used. The first measure is the classifica-

tion accuracy rate (accuracy) for binary prediction under the cut-off score as 0.5, and the second

one is the area under ROC (receiver operating characteristic) curve [19], which is denoted as AUC.

Overall Accuracy

We first compare the heterogeneous topological features with the homogeneous ones. For the het-

erogeneous topological features, we use path count measure for 9 meta-paths (denoted as heteroge-

neous PC) listed in Table 5.1 (not including the target relation itself); for homogeneous topological

features, we use (1) the number of common co-authors, (2) the rooted PageRank [66] with restart

probability α = 0.2 for the co-author sub-network, and (3) the number of paths between two authors

of length no longer than 4, disregarding their different meta-paths (denoted as homogeneous PC).

The rooted PageRank measure is only calculated for the HP3hop dataset, due to its inefficiency in

calculation for large number of authors. The comparison results are summarized in Figure 5.3 and

Table 5.2. We can see that the heterogeneous topological feature beats the homogeneous ones in

all the four datasets, which validates the necessity to consider the different meta-paths separately

in heterogeneous networks. We also notice that, in general the co-authorship for highly produc-

tive authors is easier to predict than less productive authors, by looking at the overall prediction

accuracy on the two groups of source authors. Finally, we can see that the prediction accuracy is

higher when the target authors are 3-hop co-authors, which means the collaboration between closer

authors in the network is more affected by information that is not available from network topology.

Second, we compare different measures proposed for heterogeneous topological features: (1)
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Figure 5.3: Homogeneous features vs. heterogeneous Path Count feature. Heterogeneous feature
beats homogeneous features in all of the datasets, which is more significant on 3-hop datasets,
where topological features play a more important role for co-authorship prediction.

the path count (PC), (2) the normalized path count (NPC, i.e., PathSim in our case), (3) the

random walk (RW ), (4) the symmetric random walk (SRW ), and (5) the hybrid features of (1)-(4)

(hybrid). It turns out that in general we have (see Figure 5.4): (1) all the heterogeneous features

beat the homogeneous features (common neighbor is denoted as PC1, and homogeneous PC is

denoted as PCSum); (2) the normalized path count beats all the other three individual measures;

and (3) the hybrid feature produces the best prediction accuracy.

Case Study

For the case study, we first show the learned importance for each topological feature in deciding

the relationship building in DBLP, and then show the predicted co-author relationships for some

source author in a query mode.

First, we show the learned importance for all the 9 meta-paths with NPC measure, as NPC
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Table 5.2: Homogeneous vs. heterogeneous topological features.

Dataset Topological features Accuracy AUC

HP2hop

common neighbor 0.6053 0.6537
homogeneous PC 0.6433 0.7098
heterogeneous PC 0.6545 0.7230

HP3hop
common neighbor 0.6589 0.7078
homogeneous PC 0.6990 0.7998
rooted PageRank 0.6433 0.7098
heterogeneous PC 0.7173 0.8158

LP2hop
common neighbor 0.5995 0.6415
homogeneous PC 0.6154 0.6868
heterogeneous PC 0.6300 0.6935

LP3hop
common neighbor 0.6804 0.7195
homogeneous PC 0.6901 0.7883
heterogeneous PC 0.7147 0.8046
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Figure 5.4: Average accuracy over 4 datasets for different features.

is the best measure for co-author relationship prediction overall. We show the p-value for the

feature associated with each meta-path under Wald test and their significance level in Table 5.3.

From the results, we can see that for the HP3hop dataset, the shared co-authors, shared venues,

shared topics and co-cited papers for two authors all play very significant roles in determining their

future collaboration(s). For the asymmetric meta-paths that represent the asymmetric relations,

such as citing and cited relations between authors, they have different impacts in determining the

relationship building. For example, for a highly productive source author, the target authors citing

her frequently are more likely to be her future co-authors than the target authors being cited by

her frequently.

Second, we study the predicted co-authors for some source author as queries. Note that, pre-
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Table 5.3: Significance of meta-paths with Normalized Path Count measure for HP3hop dataset.

Meta-path p-value Significance level1

A− P → P −A 0.0378 **

A− P ← P −A 0.0077 ***

A− P − V − P −A 1.2974e-174 ****

A− P −A− P −A 1.1484e-126 ****

A− P − T − P −A 3.4867e-51 ****

A− P → P → P −A 0.7459

A− P ← P ← P −A 0.0647 *

A− P → P ← P −A 9.7641e-11 ****

A− P ← P → P −A 0.0966 *

1 *: p < 0.1; **: p < 0.05; ***: p < 0.01, ****: p < 0.001

dicting co-authors for a given author is an extremely difficult task, as we have too many candidate

target authors (3-hop candidates are used), while the number of real new relationships are usually

quite small. Table 5.4 shows the top-5 predicted co-authors in time interval T2 (2003-2009) using

the T0 − T1 training framework, for both the proposed hybrid topological features and the shared

co-author feature. We can see that, the results generated by heterogeneous features has a higher

accuracy compared with the homogeneous one.

Table 5.4: Top-5 predicted co-authors for Jian Pei in 2003-2009.

Rank Hybrid heterogeneous features # of shared authors as features

1 Philip S. Yu Philip S. Yu
2 Raymond T. Ng Ming-Syan Chen
3 Osmar R. Zäıane Divesh Srivastava
4 Ling Feng Kotagiri Ramamohanarao
5 David Wai-Lok Cheung Jeffrey Xu Yu

* Bold font indicates true new co-authors of Jian Pei in the period of 2003-2009.

5.4 Relationship Prediction with Time

Traditional link prediction studies have been focused on asking whether a link will be built in the

future, such as “whether two people will become friends?” However, in many applications, it may

be more interesting to predict when the link will be built, such as “what is the probability that
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two authors will co-write a paper within 5 years,” and “by when will a user in Netflix rent the

movie Avatar with 80% probability?”

In this section, we study the problem of predicting the relationship building time between two

objects, such as, when two authors will collaborate for the first in the future, based on the topo-

logical structure in a heterogeneous network, by investigating the citation relationship between

authors in the DBLP network. First, we introduce the concepts of target relation and topological

features for the problem encoded in meta-paths [99]. Then, a generalized linear model (GLM) [36]

based supervised framework is proposed to model the relationship building time. In this frame-

work, the building time for relationships are treated as independent random variables conditional

on their topological features, and their expectation is modeled as a function of a linear predictor

of the extracted topological features. We propose and compare models with different distribu-

tion assumptions for relationship building time, where the parameters for each model are learned

separately.

5.4.1 Topological Features for Author Citation Relationship Prediction

In the author citation relationship prediction problem, the target relation is A−P → P −A, which

is short for A
write−→ P

cite−→ P
write−1

−→ A, and describes the citation relation between authors. In

general, for a target relation RT = ⟨A,B⟩, any meta-paths starting with type A and ending with

type B other than the target relation itself can be used as the topological features for predicting

new relationships. These meta-paths can be obtained by traversing on the network schema, for

example, using BFS (breadth-first search). By reasoning the dynamics of a relationship building,

we are in particular considering three forms of relations as topological features:

1. ARsimARTB, where Rsim is a similarity relation defined between type A and RT is the target

relation. The intuition is that if ai in type A is similar to many ak’s in type A that have

relationships with bj in type B, then ai is likely to build a relationship with bj in the future.

2. ARTBRsimB, where RT is the target relation, and Rsim is a similarity relation between type B.

The intuition is that if ai in type A has relationships with many bk’s in type B that are similar

to bj in type B, then ai is likely to build a relationship with bj in the future.
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Table 5.5: Meta-paths denoting similarity relations between authors.

Meta-path Semantic Meaning of the Relation

A− P −A ai and aj are co-authors

A− P − V − P −A ai and aj publish in the same venues

A− P −A− P −A ai and aj are co-authors of the same authors

A− P − T − P −A ai and aj write the same topics

A− P → P ← P −A ai and aj cite the same papers

A− P ← P → P −A ai and aj are cited by the same papers

3. AR1CR2B, where R1 is some relation between A and C and R2 is some relation between C and

B. The intuition is that if ai in type A has relationships with many ck’s in type C that have

relationships with bj in type B, then ai is likely to build a relationship with bj in the future.

Note that the previous two forms are special cases of this one, which can be viewed as triangle

connectivity property.

For topological features, we confine similarity relations Rsim and other partial relations R1 and

R2 to those that can be derived from the network using meta-paths. Moreover, we only consider

similarity relations that are symmetric.

Taking the author citation relation, which is defined as A − P → P − A, as the target re-

lation, we consider 6 author-author similarity relations defined in Table 5.5. For each similarity

relation, we can concatenate the target relation in its left side or in its right side. We then have

12 topology features with the form ARsimARTB and ARTBRsimB in total. Besides, we consider

the concatenation of “author-cites-paper” relation (A−P → P ) and “paper-cites-author” relation

(P → P −A) into (A−P → P → P −A), as well as all the 6 similarity relations listed in Table 5.5,

which can be viewed as the form of AR1CR2B themselves. Now we have 19 topological features

in total.

For each type of the meta-paths, we illustrate a concrete example to show the possible rela-

tionship building in Figure 5.5. In Figure 5.5(a), authors a1 and a2 are similar, as they publish

papers containing similar terms, and a2 cites papers published by a3. In the future, a1 is likely

to cite papers published by a3 as well, since she may follow the behavior of her fellows. In Figure

5.5(b), author a1 cites a2, and a2 and a3 are cited by common papers together (p5, p6, p7). Then

a1 is likely to cite a3 in the future, as she may cite authors similar to a2. In Figure 5.5(c), a1 and
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a2 publish in the same venue, then a1 is likely to cite a2 in the future as they may share similar

interests if publishing in the same conference.

p1 t1a1 p2 a2 p3 p4 a3

t2

p1 t1a1 p2 a2 p3 p4 a3

t2

p5

a1 p1 p2 a2 p3 p5 p4 a4

p6

p7

a1 p1 p2 a2 p3 p5 p4 a4

p6

p7

p8

a1 p1 v1 p2 a3 a1 p1 v1 p2 a3

p3

(a) Meta-Path Type ARsimARTB: A P T P A P A

(b) Meta-Path Type ARTBRsimB: A P P A P P A

(c) Meta-Path Type AR1CR2B: A P C P A

Figure 5.5: Feature meta-path illustration for author citation relationship prediction.

By varying the similarity relations and partial relations, we are able to generate other topological

features in arbitrary heterogeneous networks.

Without loss of generality, we use the count of path instances as the default measure. Thus,

each meta-path corresponds to a measure matrix. For a single relation R ∈ R, the measure matrix

is just the adjacency matrix of the sub-network extracted by R. Given a composite relation, the

measure matrix can be calculated by the matrix multiplication of the partial relations.

In Figure 5.5(a), the count of path instances between a1 and a3 following the given meta-path

is 2, which are:

(1) a1 − p1 − t1 − p2 − a2 − p3 → p4 − a3, and

(2) a1 − p1 − t2 − p2 − a2 − p3 → p4 − a3.

In Figure 5.5(b), the count of path instances between a1 and a4 following the given meta-path

is 3, which are:

(1) a1 − p1 → p2 − a2 − p3 ← p5 → p4 − a4,

(2) a1 − p1 → p2 − a2 − p3 ← p6 → p4 − a4, and

(3) a1 − p1 → p2 − a2 − p2 ← p7 → p4 − a4.
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In Figure 5.5(c), the count of path instances between a1 and a3 following the given meta-path

is 1, which is:

(1) a1 − p1 − v1 − p2 − a3.

Measures for different meta-paths have different scales. For example, longer meta-paths usually

have more path instances due to the adjacency matrix multiplication. We will normalize the

measure using Z-score for each meta-path.

5.4.2 The Relationship Building Time Prediction Model

We now propose the generalized linear model-based prediction model, which directly models the

relationship building time as a function of topological features, and provides methods to learn the

coefficients of each topological feature, under different assumptions for relationship building time

distributions. After that, we introduce how to use the learned model to make inferences.

We model the relationship building time prediction problem in a supervised learning framework.

In the training stage, we first collect the topological features xi in the history interval T0 = [t0, t1)

for each sampled object pair ⟨ai, bi⟩, where types of ai and bi are τ(ai) = A and τ(bi) = B. Then,

we record their relative first relationship building time yi = ti − t1, if ti is in the future training

interval T1 = [t1, t2); record the building time yi ≥ t2− t1, if no new relationship has been observed

in T1. Note that in the training stage, we are only given limited time to observe whether and when

two objects will build their relationship, it is very possible that two objects build their relationship

after t2, which needs careful handling in the training model. A generalized linear model (GLM)

based relationship building time model is introduced, and the goal is to learn the best coefficients

associated with each topological feature that maximize the current observations of the relationship

building time. In the test stage, we apply the learned coefficients of the topological features to

the test pairs, and compare the predicted relationship building time with the ground truth.

Different from the existing link prediction task, in the training stage, we are collecting relation-

ship building time yi for each training pair, which is a variable ranging from 0 to ∞, rather than a

binary value denoting whether there exists a link in the future interval. Similarly, in the test stage,

we are predicting the relationship building time yi for test pairs that range from 0 to ∞, rather

than predicting whether the link exists or not in the given future interval.
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The Generalized Linear Model Framework

The main idea of generalized linear model (GLM) [36] is to model the expectation of random

variable Y , E(Y ), as some function (“link function”) of the linear combination of features, that is,

Xβ, where X is the observed feature vector, and β is the coefficient vector. Then the goal is to

learn β according to the training data set using maximum likelihood estimation. Under different

distribution assumptions for Y , usually from the exponential family, E(Y ) has different forms of

parameter set, and the link functions are with different forms too. Note that the most frequently

used Least-Square regression and logistic regression are special cases of GLM, where Y follows

Gaussian distribution and Bernoulli distribution respectively.

Suppose we have n training pairs for the target relation ⟨A,B⟩. We denote each labeled pair as

ri = ⟨ai, bi⟩, and yi as the observed relative relationship building time in the future interval. We

denote Xi as the d dimensional topological feature vector extracted for ai and bi in the historical

interval plus a constant dimension.

Distributions for Relationship Building Time

The first issue of the prediction model is to select a suitable distribution for the relationship building

time. Intuitively, a relationship building between two objects can be treated as an event, and we

are interested in when this event will happen.

Let Y be the relationship building time relative to the beginning of the future interval (yi = ti−

t1), and let T be the length of future training interval. For training pairs, Y has the observations in

[0, T )∪{T+} in a continuous case, and {0, 1, 2, . . . , T−1, T+} in a discrete case, where y = T+ means

no event happens within the future training interval. For testing pairs, Y has the observations in

[0,∞) in a continuous case, and nonnegative integers in a discrete case.

We consider three types of distributions for relationship building time, namely exponential,

Weibull and geometric distribution. For each of the distribution assumptions over yi, we set up

the models separately.

The first distribution is exponential distribution, which is the most frequently used distri-

bution in modeling waiting time for an event. The probability density function of an exponential
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distribution is:

fY (y) =
1

θ
exp{−y

θ
} (5.1)

where y ≥ 0, and θ > 0 is the parameter denoting the mean waiting time for the event. The

cumulative distribution function is:

FY (y) = Pr(Y ≤ y) = 1− exp{−y
θ
} (5.2)

The second distribution is Weibull distribution, which is a generalized version of exponential

distribution and is another standard way to model the waiting time of an event. The probability

density function of a Weibull distribution is:

fY (y) =
λyλ−1

θλ
exp{−(y

θ
)λ} (5.3)

where y ≥ 0, and θ > 0 and λ > 0 are two parameters related to mean waiting time for the event

and hazard of happening of the event along with the time. λ is also called the shape parameter, as

it affects the shape of probability function. When λ > 1, it indicates an increasing happening rate

along the time (if an event does not happen at an early time, it is getting higher probability to

happen at later time); and when λ < 1, it indicates a decreasing happening rate along the time (if

an event does not happen at an early time, it is getting less possible in happening in later time).

Note that when λ = 1, Weibull distribution becomes exponential distribution with mean waiting

time as θ, and the happening rate does not change along the time. The cumulative distribution

function is:

FY (y) = Pr(Y ≤ y) = 1− exp{−(y
θ
)λ} (5.4)

The third distribution is the geometric distribution, which is a distribution that models how

many times of failures it needs to take before the first-time success. As in our case, the time of

failure is the discrete time that we need to wait before a relationship is built. The probability mass

function of a geometric distribution is:

Pr(Y = k) = (1− p)kp (5.5)
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where k = 0, 1, 2, . . ., and p is the probability of the occurrence of the event at each discrete time.

The cumulative distribution function is:

Pr(Y ≤ k) = 1− (1− p)k+1 (5.6)

In our case, each relationship building is an independent event, and each relationship building

time Yi is an independent random variable, following the same distribution family, but with different

parameters. With the distribution assumptions, we build relationship building time prediction

models in the following.

Model under Exponential and Weibull Distribution Note that, as exponential distribution

is a special case of Weibull distribution (with λ = 1), we only discuss prediction model with Weibull

distribution.

In this case, we assume relationship building time Yi for each training pair is independent of

each other, following the same Weibull distribution family with the same shape parameter λ, but

with different mean waiting time parameters θi. Namely, we assume that different relationships

for the target relation share the same trend of hazard happening along with the time, but with

different expectation in building time. Under this assumption, we can evaluate the expectation

for each random variable Yi as E(Yi) = θiΓ(1 + 1
λ). We then use the link function E(Yi) =

exp{−Xiβ}Γ(1 + 1
λ), that is log θi = −β0 −

∑d
j=1Xi,jβj = −Xiβ, where β0 is the constant term.

Then we can write the log-likelihood function:

logL =
n∑

i=1

(fY (yi|θi, λ)I{yi<T} + P (yi ≥ T |θi, λ)I{yi≥T})

where I{yi<T} and I{yi≥T} are indicator functions, which equals to 1 if the predicate holds, or 0

otherwise. It is easy to see that the log-likelihood function includes two parts: if yi is observed in

the future interval, we use its real density in the function; otherwise, we are only able to use the

probability of yi ≥ T in the function.
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By plugging in log θi = −Xiβ, we can get the log-likelihood with parameters β and λ:

LLW (β, λ) =
n∑

i=1

I{yi<T} log
λyλ−1

i

e−λXiβ
−

n∑
i=1

(
yi

e−Xiβ
)λ (5.7)

where LLW denotes the log-likelihood function under Weibull distribution. We refer this model

as Weibull model.

Model under Geometric Distribution In this case, we assume relationship building time

Yi for each training pair is independent of each other, following the same geometric distribution

family, but with different success probability pi. Under this assumption, we can evaluate the

expectation for each random variable Yi as E(Yi) =
1−pi
pi

. We then let E(Yi) = exp{−Xiβ}, i.e.,

log 1−pi
pi

= −Xiβ. The log-likelihood function is then:

LLG(β) =

n∑
i=1

(Pr(Yi = yi)I{yi<T} + P (yi ≥ T )I{yi≥T})

=
n∑

i=1

(
− I{yi<T}(−Xiβ) + (yi + 1)(−Xiβ − log(e−Xiβ + 1))

) (5.8)

We refer this model as geometric model.

The learning of the models is becoming an optimization problem, which aims at finding β̂ and

other parameters (e.g., λ̂ in the Weibull model) that maximize the log-likelihood. As there are no

closed form solutions for Eqs. (5.7) and (5.8), we use standard Newton-Raphson method to derive

the update formulas, which are based on the first derivative and second derivative (Hessian matrix)

of the log-likelihood function.

Model Inference

Once the parameters such as β and λ are learned from the training data set through MLE, we can

apply the model to the test pairs of objects, as long as their topological features in the historical

network are given. Let the learned parameter values be β̂ and λ̂ for β and λ, and let the topological

feature vector for the test pairs be Xtest (with constant 1 as the first dimension), we now consider

three types of questions people may be interested in for the new relationship building time, and

provide the solutions in the following.
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1. Whether a new relationship between two test objects will be built within t years?

This question is equal to the query for the probability Pr(ytest ≤ t), which can be evaluated by

plugging in the MLE estimators to derive the distribution parameters. Note that for traditional

link prediction tasks, t should be the same as the length of training interval. For our task, t can

be any nonnegative values. For Weibull model, we have:

θ̂test = exp{−Xtestβ̂}

Pr(ytest ≤ t) = 1− exp{−( t

θ̂test
)λ̂}

(5.9)

For geometric model, we have:

p̂test =
1

exp {−Xtestβ̂}+ 1

Pr(ytest ≤ t) = 1− (1− p̂test)t+1

(5.10)

2. What is the average relationship building time for two test objects?

This is simply the query for E(Ytest). Using the same estimators for θ̂test and p̂test as above, we

can have the estimator for E(Ytest) as E(Ytest) = θ̂testΓ(1 +
1
λ̂
) for Weibull model, where Γ(·) is

the Gamma function, and E(Ytest) =
1−p̂test
p̂test

for geometric model.

3. The quantile: by when a relationship will be built with a probability α?

This is equal to query for the solution of FY (ytest) = α, and we can get answers as ytest =

θ̂test(− log(1− α))
1

λ̂ for Weibull model, and ytest = max{ log(1−α)
log(1−p̂test)

− 1, 0} for geometric model.

When α = 0.5, the quantile is just the median.

5.4.3 Experiments

We select a subset of authors in the DBLP bibliographic network, who published more than 5

papers in top conferences in the four areas1 that are related to data mining between years 1996

and 2000 (T0 = [1996, 2000]). The total number of the author set is 2721. Then we sampled 7000

1Data Mining: KDD, PKDD, ICDM, SDM, PAKDD; Database: SIGMOD Conference, VLDB, ICDE, PODS,
EDBT; Information Retrieval: SIGIR, ECIR, ACL, WWW, CIKM; and Artificial Intelligence: NIPS, ICML, ECML,
AAAI, IJCAI.
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pairs of authors in the form of ⟨ai, aj⟩ that ai did not cite aj in T0, but have citation relationship

between year 2001 and 2009 (T1 = [2001, 2009] and T = 9) as positive samples; and we sampled

another 7000 pairs of authors that have no citation relationship during either T0 or T1. The citation

relationship is defined if ai cites papers written by aj published before year 2000. Note that, we

have this time constraint for papers as we want to infer citation relationship via the historical

network. 19 topological features introduced in Section 5.4.1 are calculated for each training pair.

The first (relative) time of the citation relationship is recorded for each pair of authors; and if there

is no citation relationship between them in T1, the time is recorded as a value bigger than 9.

Experimental Setting

In order to show the power of using time-involved model in relationship prediction, we use logistic

regression [84] (denoted as logistic) that is frequently used in binary link prediction tasks as the

baseline. Note that, the output of the logistic regression is a probability denoting whether a

relationship will be built in T1 for each test pair. In our models, the output is the parameter set for

the distribution of the relationship building time, from which we can infer much more information

rather than a simple probability. We denote our models with different distribution assumptions as

GLM geo, GLM exp, and GLM weib respectively.

To compare the four models, we use two sets of measures to evaluate the effectiveness of each

model. First, we measure the effectiveness according to the predicted probability for each rela-

tionship. We define the accuracy of the relationship prediction as the ratio between the number

of correctly predicted relationship (under the cut-off 0.5) and the total number of the test pairs.

Also, another frequently used measure AUC (the area under ROC curve) is used to compare the

accuracy.

Second, we directly compare the predicted time with the ground truth, among our proposed

models. Mean absolute error (MAE ) that is the mean of the absolute error between predicted

relationship building time and the ground truth is used. Also, we use the ratio of the relationships

that occur in some confidence interval derived from the models as another measure to test the

accuracy of the predicted time. Note that, relationships yet to happen are not considered in these

two measures.
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Prediction Power Study

We now compare our time-involved models with the baseline logistic regression, using the first set

of measures.

We test the generality power for different models, namely, when the training future interval is

not equal to the test future interval (T train ̸= T test). On one hand, we may want to know the

probability of relationship building within each year in the training interval (T test < T train); on

the other hand, we may want to infer longer term probability given a short term training interval

(T test > T train). We show the two cases in Tables 5.6 and 5.7. Note that, since logistic regression

can only output the probability when T test = T train, we use the same predicted probability for

different test intervals. In Table 5.6, we fix the training interval with length T train = 9, namely,

T train
1 = [2001, 2009], and vary the test intervals with length from 1 to 4. We can see that when

T test is small, time-involved models can give much better prediction accuracy, especially in terms

of the measure accuracy. In other words, time-involved models carry more information in telling

the probability of relationship building in finer time periods. In Table 5.7, we fix the test interval

with length T test = 9 and vary the training intervals with length from 2 to 5. We can see that,

time-involved models can better utilize the short term training than logistic regression, and output

better prediction results for longer term relationship building behavior. It is interesting to note that

by using the measure AUC, which does not require users to specify a cut-off value in the predicted

probabilities, the performance of logistic regression is still comparable with other models. This is

due to AUC only uses the ranking order of the predicted values, while accuracy requires that the

absolute values of the predicted probabilities are also correct.

Table 5.6: Prediction generalization power comparison: T test < T train and T train = 9.

T test = 1 T test = 2 T test = 3 T test = 4
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

logistic 0.7106 0.7619 0.7246 0.7535 0.7669 0.7347 0.7349 0.7731

GLM-geo 0.9284 0.7626 0.8436 0.7532 0.7829 0.7657 0.7347 0.7696

GLM-exp 0.9290 0.7553 0.8442 0.7464 0.7821 0.7569 0.7328 0.7603

GLM-weib 0.9287 0.7273 0.8441 0.7452 0.7826 0.7559 0.7334 0.7597

In all, for time-involved model, it contains more information and can answer different questions
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Table 5.7: Prediction generalization power comparison: T test > T train and T test = 9.

T train = 2 T train = 3 T train = 4 T train = 5
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

logistic 0.5157 0.7810 0.5379 0.7805 0.5599 0.7841 0.5952 0.7896

GLM-geo 0.5942 0.7910 0.6209 0.7926 0.6366 0.7902 0.6522 0.7982

GLM-exp 0.5015 0.7802 0.5214 0.7833 0.6709 0.7841 0.7143 0.7870

GLM-weib 0.7081 0.7816 0.7021 0.7832 0.7002 0.7833 0.7103 0.7862

and with strong generalization power. Logistic regression can only answer the question of whether

a relationship will happen or not, given a fixed time interval. However, if we are asking more, it

fails in most of the scenarios.

Time Prediction Accuracy Study

We now evaluate the predicted time using different time-involved models. Here, we use the predicted

median time as the predicted time. Table 5.8 shows the MAE (mean average error) between the

predicted median time and the ground truth under different training and test intervals. It turns

out that GLM-exp has the lowest error. Also, both GLM-exp and GLM-weib perform even better

using shorter interval as training, whereas GLM-geo has the opposite behavior, that is, longer term

of training leads to better performance. Note that, we only calculate the error for the relationships

indeed happen in the test interval.

In Table 5.9, we infer different confidence intervals from the predicted relationship building

time distribution, and test the ratio of the true relationship in different confidence intervals. A

confidence interval (range) rather than a simple value, say the median time, can give users a better

view of the relationship building time. It is shown that GLM-exp and GLM-weib has a higher ratio

of giving correct confidence intervals for the true relationship building time, especially when using

a small confidence interval. This is very useful in practice as they can give tight bound estimations.

Case Studies

To better understand the output of our model, we now show a case study of predicting when

the citation relationship will be build for “Philip S. Yu” with other candidates. The model is
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Table 5.8: MAE of predicted time and the ground truth.

T train = 5, T test = 9 T train = 9, T test = 9

GLM-geo 4.9883 4.7219

GLM-exp 2.7774 3.0685

GLM-weib 3.1025 3.1692

Table 5.9: Ratio of the true relationship occurring in different confidence intervals: T test = 9.

25%-75% 10%-90% 0%-80%
T train = 9 T train = 5 T train = 9 T train = 5 T train = 9 T train = 5

GLM-geo 0.5489 0.5336 0.8936 0.8947 0.9650 0.9743

GLM-exp 0.7167 0.7246 0.8619 0.8634 0.9880 0.9889

GLM-weib 0.7278 0.7314 0.8680 0.8686 0.9884 0.9896

trained by GLM-weib using a training interval of 9 years (T train
1 = [2001, 2009]), with the learned

parameter λ = 0.9331, slightly less than 1, which means the citation relationship has a higher

hazard happening at an earlier time. The ground truth of the citation building time, and the

predicted median, mean, 25% quantile and 75% quantile for several test pairs are shown in Table

5.10. It can be seen that the predicted median and confidence interval are very suggestive for

predicting the true citation relationship building time. For those authors whose predicted being

cited time is significantly different from the ground truth, in-depth studies may be needed. For

example David Maier is a prolific researcher in database area, and by intuition as well as suggested

by the model, Philip should cite him. However, the ground truth says otherwise. Furthermore,

this function can be used to recommend authors to any author in DBLP for citation purpose.

Table 5.10: Case studies of relationship building time prediction.

ai aj Ground Truth Median Mean 25% quant. 75% quant.

Philip S. Yu Ling Liu 1 2.2386 3.4511 0.8549 4.7370
Philip S. Yu Christian Jensen 3 2.7840 4.2919 1.0757 5.8911
Philip S. Yu C. Lee Giles 0 8.3985 12.9474 3.2450 17.7717
Philip S. Yu Stefano Ceri 0 0.5729 0.8833 0.2214 1.2124
Philip S. Yu David Maier 9+ 2.5675 3.9581 0.9920 5.4329
Philip S. Yu Tong Zhang 9+ 9.5371 14.7028 3.6849 20.1811
Philip S. Yu Rudi Studer 9+ 9.7752 15.0698 3.7769 20.6849
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For the above model, the learned top-4 most important topological features with the highest

coefficients are:

1. A − P − T − P − A, that is, if two authors are very similar in terms of writing similar topics,

they tend to cite each other;

2. A−P ← P → P −A, that is, if two authors are very similar in terms of being frequently co-cited

by the common papers, they tend to cite each other;

3. A− P − A− P → P − A, that is, an author tends to cite the authors that are frequently cited

by her co-authors;

4. A − P − T − P − A − P → P − A, that is, if two authors are similar in terms writing similar

topics, they tend to cite the same authors.

These topological features provide insightful knowledge for people in understanding the citation

relationship building between authors.

5.5 Related Work

The link prediction problem has been first studied on homogeneous networks. Early work mainly

studies unsupervised methods [1, 66], namely they propose different similarity measures according

to either topological structures of the networks or proximity of object attributes that are consistent

with the link appearance in the future. Later, supervised methods that are able to combine

different features with different coefficients via training data sets are proposed by different studies

[45, 111, 67]. A recent study [63] has discussed the link prediction problem when the network is not

fully observed and thus is modeled in a probabilistic way. A survey in link prediction can be found

in [40]. In this paper, we extend the link prediction problem to the more general heterogeneous

networks, by extending link prediction to relationship prediction and exploring the topological

features in such scenarios.

Recently, some studies [21, 65] propose frequent graph pattern mining-based methodology to

detect graph evolution rules, which provides some clues for proposing new topological features
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in the network for link prediction. However, the focus on the two papers are still on homoge-

neous networks, and they have not considered how different frequent evolution patterns affect the

link formation speed yet. That is, this methodology cannot answer the “when” problem of link

formation.

Another line of study similar to our problem is the link prediction task in relational data [84,

106], as relational data also involves different types of objects and complex relationships between

objects. However, these studies have a focus different from our research. As in [84], they study

feature selection in a relational environment using relational languages, and feed these features

into supervised link prediction models; for [106], their goal is to model the relational data via a

probabilistic model. In this chapter, we aim at designing a model for relationship building, either

whether or when, by systematically exploring the topological features in heterogeneous networks.

The general setting of link prediction task is set by Liben-Nowell and Kleinberg [66], which is

to predict whether a link between two existing objects will be added to the network during the

time interval [t, t +∆t] given the snapshot of the network at time t. In other words, the task has

not considered the issue when a link will appear in this time interval. Recently, several studies

have considered the extension on usage of time. In [109], a methodology that assigns weights

to events and edges according to their appearing time is proposed, which produces better link

prediction accuracy by using more time information in the feature side. In [49], a time series model

is proposed to predict the frequency of repeated links in networks. In comparison to these studies,

our research focuses on the new relationship prediction and aims at modeling the relationship

building in the future.

In all, in this chapter, we extend the traditional link prediction in homogeneous networks into

relationship prediction in the more complex heterogeneous networks. we build a framework for

general relationship prediction in heterogeneous networks by systematically extracting meta path-

based topological features, and study whether or when the relationship will happen in the future.

5.6 Conclusion

In this chapter, we study the problem of relationship prediction in heterogeneous information

networks. In comparison with traditional homogeneous networks, heterogeneous networks contain
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multiple types of objects and links. Two case studies using the meta-path-based relationship

prediction framework are presented in this chapter. The first is on co-authorship prediction in

the DBLP network, whereas the second proposes a novel prediction model that can predict when

a relationship is going to built in a given heterogeneous information network. Experiments on

the DBLP bibliographic network show that by considering heterogeneous topological features, the

relationship prediction accuracy can be significantly improved, and the model using hybrid features

that have combined different meta-paths and different measures gives the best overall performance.

Furthermore, the learned significance for each topological feature can provide better understanding

of the relationship building mechanism in such networks.
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Part III

User-Guided Relation

Strength-Aware Mining
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Chapter 6

Relation Strength-Aware Clustering
with Incomplete Attributes

A heterogeneous information network contains multiple types of objects as well as multiple types of

links, indicating different sorts of interactions among these objects. The heterogeneity of network

model brings rich semantic information for mining. It also raises the issue of selecting the right type

of information for different mining purposes. For mining different kinds of knowledge, it is desirable

to automatically learn the right information encoded in the network, with limited guidance from

users. In this chapter, we study a special case of such problems: cluster objects in a network, with

user-provided attribute set and relations from the original network schema.

6.1 Overview

The rapid emergence of online social media, e-commerce, and cyber-physical systems brings the

necessity to study them with the model of heterogeneous networks in which objects (i.e., nodes)

are of different types, and links among objects correspond to different relations, denoting different

interaction semantics. In addition, an object is usually associated with some attributes. For

example, in a YouTube social media network, the object types may include videos, users, and

comments; links between objects correspond to different relations, such as publish and like relations

between users and videos, post relation between users and comments, and friendship and subscribe

relations between users; and attributes may include user’s location, the length of video’s clips, the

number of views, and comments.

Such kinds of heterogeneous information networks are ubiquitous and determining their under-

lying clustering structures has many interesting applications. For example, clustering objects (e.g.,

customers, products, and comments) in an online shopping network such as eBay is helpful for

customer segmentation in product marketing; and clustering objects (e.g., people, groups, books,
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and posts) in an online social network such as Facebook is helpful for voter segmentation in political

campaigns.

The clustering task brings two new challenges in such scenarios. First, an object may contain

only partial or even no observations for a given attribute set that is critical to determine their cluster

labels. That is, a pure attribute-based clustering algorithm cannot correctly detect these clusters.

Second, although links have been frequently used in networks to detect clusters [29, 72, 3, 103] in

recent research, we consider a more challenging scenario in which the links are of different types

and interpretations, each of which may have its own level of semantic importance in the clustering

process. That is, a pure link-based clustering without any guidance from attribute specification could

fail to meet user demands.

Figure 6.1: A motivating example on clustering political interests in social information networks.

Figure 6.1 shows a toy social information network extracted from a political forum containing

users, blogs written by users, books liked by users, and friendship between users. Now suppose we

want to cluster users in the network according to their political interests, using the text attributes

in user profiles, blogs and books, as well as the link information between objects. On one hand,

since not all the users listed their political interests in their profiles, we cannot judge their political

interests simply according to the text information contained in their profiles directly. On the other

hand, without specifying the purpose of clustering, we cannot decide which types of links to use

for the clustering: shall we use the friendship links to detect the social communities, or the user-

like-book links to detect the reading groups, or a mix of them? Obviously, to solve such clustering

tasks, we need to use both the incomplete attribute information as well as the link information of

different types with the awareness of their importance weights. In our example, in order to discover
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a user’s political interests, we need to learn which link types are more important for our purpose

of clustering, among the relationships between her and blogs, books, and her friends.

Recently, some studies [133, 75, 91, 118, 105, 70] show that the combination of attribute and

link information in a network can improve the clustering quality. However, none of them has

addressed the two challenges simultaneously. Some of them rely on a complete attribute space and

the clustering result is considered as a trade-off between attribute-based measures and link-based

measures. Moreover, none of the current studies has examined the issue that different types of

links have different importance in determining a clustering with a certain purpose.

Here we explore the interplay between different types of links and the specified attribute set in

the clustering process, and design a comprehensive and robust probabilistic clustering model for

heterogeneous information networks.

6.2 The Relation Strength-Aware Clustering Problem Definition

As defined before, a heterogeneous information network G = (V, E ,W ) is modeled as a directed

graph, where each node in the network corresponds to an object (or an event) in real life, and each

link corresponds to a relationship between the linked objects. Associated with each link, there is a

binary or positive value, denoting its input weight.

Attributes are associated with objects, such as the location of a user, the text description of

a book, the text information of a blog, and so on. In this setting, we consider attributes across all

different types of objects as a collection of attributes for the network, denoted as X = {X1, . . . , XT },

in which we are interested only in a subset for a certain clustering purpose. Each object v ∈ V

contains a subset of the attributes, with observations denoted as v[X] = {xv,1, xv,2, . . . , xv,NX,v
},

where NX,v is the total number of observations of attribute X attached with object v. Note that,

some attributes can be shared by different types of objects, such as the text and the location

attribute; while some other attributes are unique for a certain type of objects, such as the time

length for a video clip. We use VX to denote the object set that contains attribute X.
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6.2.1 The Clustering Problem

The goal of the clustering problem is to map every object in the network into a unified hidden

space, that is, a soft clustering, according to the user-specified subset of attributes in the network,

with the help of links from different types.

There are several new challenges for clustering objects in this new scenario. First, the attributes

are usually incomplete for an object: the attributes specified by a user may be only partially or

even not contained in an object type; and the values for these attributes could be missing even

if the attribute type is contained in the object type. Moreover, the incompleteness of the data

cannot be easily handled by interpolation: the observations for each attribute could be a set or a

bag of values, and the neighbors for an object are from different types of objects, which may not

be helpful for predicting the missing data. For example, it is impossible to get a user’s blog via

interpolating techniques. Therefore, none of the existing clustering algorithms that purely based

on attribute space can solve the clustering problem in this scenario.

Second, with the awareness that links play a critical role to propagate the cluster information

among objects, another challenge is that different link types have different semantic meanings

and therefore have different strengths in the process of passing cluster information around. In other

words, while it is clear that the existence of links between nodes is indicative of clustering similarity,

it is also important to understand that different link types may have a different level of importance

in the clustering process. In the example of clustering political interests illustrated in Figure 6.1, we

expect a higher importance of the relation user-like-book than the relation friendship in deciding

the cluster membership of a user. Thus, we need to design a clustering model which can learn

the importance of these link types automatically. This will enhance the clustering quality because

it marginalizes the impact of low quality types of neighbors of an object during the clustering

process.

We present examples of clustering tasks in two concrete heterogeneous information networks in

the following.

Example 6.1. (Bibliographic information network) A bibliographic network is a typical

heterogeneous network, containing objects from three types of entities, namely papers, publication

venues (conferences or journals), and authors. Each paper has different link types to its authors
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and publication venue. Each paper is associated with the text attribute as a bag of words. Each

author and venue links to a set of papers, but contains no attributes (in our case). The application

of a clustering process according to the text attribute in such a scenario can help detect research

areas, and decide the research areas for authors, venues and papers.

: Paper

: Text Attributes

: Venue

: Author

Figure 6.2: Illustration of bibliographic information network.

Note that, we treat text as attributes of papers in this case instead of term entities as in

previous chapters. Multiple types of objects and links in this network are illustrated in Figure 6.2.

For objects of different types, their cluster memberships may need to be determined by different

kinds of information: for authors and venues, the only available information is from the papers

linked to them; for papers, both text attributes and links of different types are provided. Note that,

even for papers that are associated with text attributes, using link information can further help

the clustering quality when the observations of the text data is very limited (e.g., using text merely

from titles). Also, we may expect that the neighbors of an author type play a more important

role in deciding a paper’s cluster compared with the neighbor of a venue type. This needs to be

automatically learned in terms of the underlying relation strengths.

Example 6.2. (Weather sensor network) Weather sensor networks typically contain differ-

ent kinds of sensors for detecting different attributes, such as precipitation or temperature. Some

sensors may have incorrect or no readings because of the inaccuracy or malfunctioning of the in-

struments. The links between sensors are generated according to their k nearest neighbors under

geo-distances, in order to incorporate the importance of locality in weather patterns. The clus-

tering of such sensors according to both precipitation and temperature attributes can be useful in

determining regional weather patterns.

Figure 6.3 illustrates a weather sensor network containing two types of sensors: temperature
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Figure 6.3: Illustration of weather sensor information network.

and precipitation. A sensor may sometimes register none or multiple observations. Although it is

desirable to use the complete observations on both temperature and precipitation to determine the

weather pattern of a location, in reality a sensor object may contain only partial attribute (e.g.,

temperature values only for temperature sensors), and both of the attribute and link information

are needed for correctly detecting the clusters. Still, which type of links plays a more important

role needs to be determined in the clustering process.

Formally, given a network G = (V, E ,W ), a specified subset of its associated attributes X ∈ X ,

the attribute observations {v[X]} for all objects, and the number of clusters K, our goal is:

1. to learn a soft clustering for all the objects v ∈ V, denoted by a membership probability matrix,

Θ|V|×K = (θv)v∈V , where Θ(v, k) denotes the probability of object v in cluster k, 0 ≤ Θ(v, k) ≤ 1

and
∑K

k=1Θ(v, k) = 1, and θv is the K dimensional cluster membership vector for object v, and

2. to learn the strengths (importance weights) of different link types in determining the cluster

memberships of the objects, γ|R|×1, where γ(r) is a real number and stands for the importance

weight for the link type r ∈ R.

6.3 The Clustering Framework

We propose a novel probabilistic clustering model in this section and introduce the algorithm that

optimizes the model in Section 6.4.

112



6.3.1 Model Overview

Given a network G, with the observations of its links and the observations {v[X]} for the specified

attributes X ∈ X , a good clustering configuration Θ, which can be viewed as hidden cluster

information for objects, should satisfy two properties:

1. Given the clustering configuration, the observed attributes should be generated with a high

probability. Especially, we model each attribute for each object as a separate mixture model,

with each component representing a cluster.

2. The clustering configuration should be highly consistent with the network structure. In other

words, linked objects should have similar cluster membership probabilities, and larger strength

of a link type requires more similarity between the linked objects of this type.

Overall, we can define the likelihood of the observations of all the attributes X ∈ X as well

as the hidden continuous cluster configuration Θ, given the underneath network G, the relation

strength vector γ, and the cluster component parameter β, which can be decomposed into two

parts, the generative probability of the observed attributes given Θ and the probability of Θ given

the network structure:

p({{v[X]}v∈VX
}X∈X ,Θ|G,γ,β) =

∏
X∈X

p({v[X]}v∈VX
|Θ,β)p(Θ|G,γ) (6.1)

From a generative point of view, this model explains how observations for attributes associated with

objects are generated: first, a hidden layer of variables Θ is generated according to the probability

p(Θ|G,γ), given the network structure G and the strength vector γ; second, the observed values of

attributes associated with each object are generated according to mixture models, given the cluster

membership of the object, as well as the cluster component parameter β, with the probability∏
X∈X p({v[X]}v∈VX

|Θ,β).

The goal is then to find the best parameters γ and β, as well as the best clustering configuration

Θ that maximize the likelihood. The detailed modeling of the two parts is introduced in the

following.
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6.3.2 Modeling Attribute Generation

Given a configuration Θ for the network G, namely, the membership probability vector θv for each

object v, the attribute observations for each object v are conditionally independent with observa-

tions from other objects. Each attribute X associated with each object v is then assumed following

the same family of mixture models that share the same cluster components, with the component

mixing proportion as the cluster membership vector θv. For simplicity, we first assume that only

one attribute X is specified for the clustering purpose and then briefly discuss a straightforward

extension to the multi-attribute case.

Single Attribute

Let X be the only attribute we are interested in the network, and let v[X] be the observed values

for object v, which may contain multiple observations. It is natural to consider that the attribute

observation v[X] for each object v is generated from a mixture model, where each component

is a probabilistic model that stands for a cluster, with the parameters to be learned, and the

component weights denoted by θv. Formally, the probability of all the observations {v[X]}v∈VX

given the network configuration Θ is modeled as:

p({v[X]}v∈VX
|Θ,β) =

∏
v∈VX

∏
x∈v[X]

K∑
k=1

θv,kp(x|βk) (6.2)

where K is the number of clusters, and βk is the parameter for component k. In this chapter, we

consider two types of attributes, one corresponding to text attributes with categorical distributions,

and the other numerical attributes with Gaussian distributions.

1. Text attribute with categorical distribution: In this case, objects in the network contain

text attributes in the form of a term list, from the vocabulary l = 1 to m. Each cluster k

has a different term distribution following a categorical distribution, with the parameter βk =

(βk,1, . . . , βk,m), where βk,l is the probability of term l appearing in cluster k, that is, X|k ∼

discrete(βk,1, . . . , βk,m). Following the frequently used topic modeling method PLSA [47], each

term in the term list for an object v is generated from the mixture model, with each component

as a categorical distribution over terms described by βk, and the component coefficient is θv.
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Formally, the probability of observing all the current attribute values is:

p({v[X]}v∈VX
|Θ,β) =

∏
v∈VX

m∏
l=1

(

K∑
k=1

θv,kβk,l)
cv,l (6.3)

where cv,l denotes the count of term l that object v contains.

2. Numerical attribute with Gaussian distribution: In this case, objects in the network

contain numerical observations in the form of a value list, from the domain R. The kth cluster is

a Gaussian distribution with parameters βk = (µk, σ
2
k), that is, X|k ∼ N (µk, σ

2
k), where µk and

σk are mean and standard deviation of normal distribution for component k. Each observation

in the observation list for an object v is generated from the Gaussian mixture model, where each

component is a Gaussian distribution with parameters µk, σ
2
k, and the component coefficient is

θv. The probability density for all the observations for all objects is then:

p({v[X]}v∈VX
|Θ,β) =

∏
v∈VX

∏
x∈v[X]

K∑
k=1

θv,k
1√
2πσ2k

e
− (x−µk)2

2σ2
k (6.4)

Multiple Attributes

As in the weather sensor network example, we are interested in multiple attributes, namely temper-

ature and precipitation. Generally, if multiple attributes in the network are specified by users, say

X1, . . . , XT , the probability density of observed attribute values {v[X1]}, . . . , {v[XT ]} for a given

clustering configuration Θ is as follows, by assuming the independence among these attributes:

p({v[X1]}v∈VX1
, . . . , {v[XT ]}v∈VXT

|Θ,β1, . . . ,βT ) =
T∏
t=1

p({v[Xt]}v∈VXt
|Θ,βt) (6.5)

6.3.3 Modeling Structural Consistency

From the view of links, the more similar the two objects are in terms of cluster memberships, the

more likely they are connected by a link. In order to quantitatively measure the consistency of a

clustering result Θ with the network structure G, we define a novel probability density function for

observing Θ.

We assume that linked objects are more likely to be in the same cluster, if the link type is of
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importance in determining the clustering process. That is, for two linked objects vi and vj , their

membership probability vectors θi and θj should be similar. Within the same type of links, the

higher link weight (w(e)), the more similar θi and θj should be. Further, a certain link type may

be of greater importance, and will influence the similarity to a greater extent. The consistency

of a configuration Θ with the network G, is evaluated with the use of a composite analysis with

respect to all the links in the network in the form of a probability density value. A more consistent

configuration of Θ will yield a higher probability density value. In the following, we first introduce

how the consistency of two cluster membership vectors is defined with respect to a single link, and

then show how this analysis can be applied over all links in order to create a probability density

value as a function of Θ.

For a link e = ⟨vi, vj⟩ ∈ E , with type r = ϕ(e) ∈ R, we denote the importance of the link type

to the clustering process by a real number γ(r). This is different from the weight of the link w(e),

which is specified in the network as input, whereas the value of γ(r) is defined on link types and

needs to be learned. We denote the consistency function of two cluster membership vectors θi

and θj with link e under strength weights for each link type γ by a feature function f(θi,θj , e,γ).

Higher values of this function imply greater consistency with the clustering results. In the following,

we list several desiderata for a good feature function:

1. The value of the feature function f should increase with greater similarity of θi and θj .

2. The value of the feature function f should decrease with greater importance of the link e, either

in terms of its specified weight w(e), or the learned importance γ(r) for its link type. In other

words, for the larger strength of a particular link type, two linked nodes are required to be more

similar in order to claim the same level of consistency.

3. The feature function should not be symmetric between its first two arguments θi and θj , because

the impact from node vi to node vj could be different from that of vj to vi.

The last criterion may need some further explanation. For example, in a citation network, a

paper i may cite paper j, because i feels that j is relevant to itself, while the reverse may not

be necessarily true. In the experimental section, we will show that asymmetric feature functions

produce higher accuracy in link prediction.
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We then propose a cross entropy-based feature function, which satisfies all of the desiderata

listed above. For a link e = ⟨vi, vj⟩ ∈ E , with relation type r = ϕ(e) ∈ R, the feature function

f(θi,θj , e,γ) is defined as:

f(θi,θj , e,γ) = −γ(r)w(e)H(θj ,θi) = γ(r)w(e)

K∑
k=1

θj,k log θi,k (6.6)

where H(θj ,θi) = −
∑K

k=1 θj,k log θi,k, is the cross entropy from θj to θi, which evaluates the

deviation of vj from vi, in terms of the average coding bits needed if using coding schema based on

the distribution of θi. For a fixed value of γ(r), the value of H(θj ,θi) is minimal and (therefore) f

is maximal, when the two vectors are identical. It is also evident from Eq. (6.6) that the value of

f decreases with increasing learned link type strength γ(r) or input link weight w(e). We require

γ ≥ 0, in the sense that we do not consider links that connect dissimilar objects. The value of f

so defined is a non-positive function, with larger value indicating a higher consistency of the link.

Other distance functions such as KL-divergence could replace the cross entropy in the feature

function. However, as cross entropy favors distributions that concentrate on one cluster (H(θj ,θi)

achieves the lowest distance, when θj = θi and θi,k = 1 for some cluster k), which agrees with our

clustering purpose, we pick it over KL-divergence.

We then propose a log-linear model to model the probability of Θ given the link type weights

γ, where the probability of one configuration Θ is defined as the exponential of the summation of

feature functions of all the links in G:

p(Θ|G,γ) = 1

Z(γ)
exp{

∑
e=⟨vi,vj⟩∈E

f(θi,θj , e,γ)} (6.7)

where γ is the strength weight vector for all link types, f(θi,θj , e,γ) is the feature function defined

on links of different types, and Z(γ) is the partition function that makes the distribution function

sum up to 1: Z(γ) =
∫
Θ exp{

∑
e=⟨vi,vj⟩∈E f(θi,θj , e,γ)}dΘ. The partition function Z(γ) is an

integral over the space of all the configurations Θ, and it is a function of γ.
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6.3.4 The Unified Model

The overall goal of the network clustering problem is to determine the best clustering results Θ,

the link type strengths γ and the cluster component parameters β that maximize the generative

probability of attribute observations and the consistency with the network structure, described by

the likelihood function in Eq. (6.1).

Further, we add a Gaussian prior to γ as a regularization to avoid overfitting, with the mean

as 0, and the covariance matrix as σ2I, where σ is the standard deviation of each element in γ,

and I is the identity matrix. We set σ = 0.1 in our experiments, and more complex strategy can

be used to select σ according to labeled clustering results, which will not be discussed here. The

new objective function is then:

g(Θ,β,γ) = log
∑
X∈X

p({v[X]}v∈VX
|Θ,β) + log p(Θ|G,γ)− ||γ||

2

2σ2
(6.8)

In addition, we have the constraints that γ ≥ 0, and some constraints for β that are dependent

on the attribute distribution type. Also, p({v[X]}v∈VX
|Θ,β) and p(Θ|G,γ) need to be replaced by

the specific formulas proposed above for concrete derivations.

6.4 The Clustering Algorithm

This section presents a clustering algorithm that computes the proposed probabilistic clustering

model. Intuitively, we begin with the assumption that all the types of links play an equally

important role in the clustering process, then update the strength for each type according to the

average consistency of links of that type with the current clustering results, and finally achieve a

good clustering as well as a reasonable strength vector for link types. It is an iterative algorithm

containing two steps in that clustering results and strengths of link types mutually enhance each

other, which maximizes the objective function of Eq. (6.8) alternatively.

In the first step, we fix the link type weights γ to the best value γ∗, determined in the last

iteration, then the problem becomes that of determining the best clustering results Θ and the

attribute parameters β for each cluster component. We refer to this step as the cluster optimization
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step: [Θ∗,β∗] = argmax
Θ,β

g(Θ,β,γ∗).

In the second step, we fix the clustering configuration parameters Θ = Θ∗ and β = β∗, cor-

responding to the values determined in the last step, and use it to determine the best value of γ,

which is consistent with current clustering results. We refer to this step as the link type strength

learning step: γ∗ = argmax
γ≥0

g(Θ∗,β∗,γ).

The two steps are repeated until convergence is achieved.

6.4.1 Cluster Optimization

In the cluster optimization step, each object has the link information from different types of neigh-

bors, where the strength of each type of link is given, as well as the possible attribute observations.

The goal is to utilize both link and attribute information to get the best clustering result for all the

objects. Since γ is fixed in this step, the partition function and regularizer term become constants,

and can be discarded for optimization purposes. Therefore, we can construct a simplified objective

function g1(·, ·), which depends only on Θ and β:

g1(Θ,β) =
∑

e=⟨vi,vj⟩

f(θi,θj , e,γ) +
∑
v∈VX

∑
x∈v[X]

log
K∑
k=1

θv,kp(x|βk) (6.9)

We derived an EM-based algorithm [32, 16] to solve Eq. (6.9). In the E-step, the probability of

each observation x for each object v and each attribute X belonging to each cluster, usually called

the hidden cluster label of the observation, zv,x, is derived according to the current parameters Θ

and β. In the M-step, the parameters Θ and β are updated according to the new membership

for all the observations in the E-step. The iterative formulas for single text attribute and single

Gaussian attribute are provided below.

1. Single categorical text attribute: Let zv,l denote the hidden cluster label for the lth term

in the vocabulary for object v, Θt−1 be the value of Θ at iteration t− 1, and βt−1 be the value

of β at iteration t− 1. 1{v∈VX} is the indicator function, which is 1 if v contains this attribute,
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and 0 otherwise. Then, we have:

p(ztv,l = k|Θt−1,βt−1) ∝ θt−1
v,k β

t−1
k,l

θtv,k ∝
∑

e=⟨v,u⟩

γ(ϕ(e))w(e)θt−1
u,k + 1{v∈VX}

m∑
l=1

cv,lp(z
t
v,l = k|Θt−1,βt−1)

βtk,l ∝
∑
v∈VX

cv,lp(z
t
v,l = k|Θt−1,βt−1)

(6.10)

2. Single Gaussian numerical attribute: Let zv,x denote the hidden cluster label for the obser-

vation x for object v, Θt be the value of Θ at iteration t, and µtk and σtk be the values of mean

and standard deviation for kth cluster at iteration t. 1{v∈VX} is the indicator function, which is

1 if v contains this attribute, and 0 otherwise. Then, we have:

p(ztv,x = k|Θt−1,βt−1) ∝ θt−1
v,k

1√
2π(σt−1

k )2
e
−

(x−µt−1
k

)2

2(σt−1
k

)2

θtv,k ∝
∑

e=⟨v,u⟩

γ(ϕ(e))w(e)θt−1
u,k + 1{v∈VX}

∑
x∈v[X]

p(ztv,x = k|Θt−1,βt−1)

µtk =

∑
v∈VX

∑
x∈v[X] xp(z

t
v,x = k|Θt−1,βt−1)∑

v∈VX

∑
x∈v[X] p(z

t
v,x = k|Θt−1,βt−1)

(σ2k)
t =

∑
v∈VX

∑
x∈v[X](x− µtk)2p(ztv,x = k|Θt−1,βt−1)∑

v∈VX

∑
x∈v[X] p(z

t
v,x = k|Θt−1,βt−1)

(6.11)

For networks with multiple attributes, the formulae can be derived similarly. The readers can

find the formulae for the case of two Gaussian numerical attributes in [95].

From the update rules, we can see that the value of the membership probability for an object

is dependent on its neighbors’ memberships, the strength of the link types, the weight of the

links, and the attribute associated with it (if any). When an object contains no attributes in the

specified set, or contains no observations for the specified attributes, the cluster membership is

totally determined by its linked objects, which is a weighted average of their cluster memberships

and the weight is determined by both the weight of the link and the weight of the link type.

When an object contains some observations of the specified attributes, its cluster membership is

determined by both its neighbors and these observations for each possible attribute.
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6.4.2 Link Type Strength Learning

The link type strength learning step is to find the best strength weight for each type of links that

makes the current clustering result to be generated with the highest probability. By doing so, the

low quality link types that connect objects not so similar will be punished and assigned with low

strength weights; while the high quality link types will be assigned with high strength weights.

Since the values of Θ and β are fixed in this step, the only relevant parts of the objective function

(for optimization purposes) are those which depend on γ. These are the structural consistency

modeling part and the regularizer over γ. Therefore, we can construct the following simplified

objective function g2(·) as a function of γ:

g2(γ) =
∑

e=⟨vi,vj⟩

f(θi,θj , e,γ)− logZ(γ)− ||γ||
2

2σ2
(6.12)

In addition, we have the linear constraints as γ ≥ 0.

However, g2 is difficult to be optimized directly, since the partition function Z(γ) is an integral

over the entire space of valid values of Θ, which is intractable. Instead, we construct an alter-

nate approximate objective function g′2, which factorizes log p(Θ|G) as the sum of log p(θi|θ−i, G),

namely the pseudo-log-likelihood, where p(θi|θ−i, G) is the conditional probability of θi given the

remaining objects’ clustering configurations, which turns out to be dependent only on its neighbors.

The intuition of using pseudo-log-likelihood to approximate the real log-likelihood is that, if the

probability of generating the clustering configuration for each object conditional on its neighbors

is high, the probability of generating the whole clustering configuration should also be high. In

other words, if the local patches of a network are very consistent with the clustering results, the

consistency over the whole network should also be high.

In particular, we choose each local patch of the network as an object and all its out-link

neighbors. In this case, every link is considered exactly once, and the newly designed objective

function g′2(·) is as follows:

g′2(γ) =

|V |∑
i=1

( ∑
e=⟨vi,vj⟩

f(θi,θj , e,γ)− logZi(γ)
)
− ||γ||

2

2σ2
(6.13)
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where logZi(γ) = log
∫
θi
e
∑

e=⟨vi,vj⟩
f(θi,θj ,e,γ)

dθi, the local partition function for object vi, with the

linear constraints γ ≥ 0.

As the joint distribution of Θ as well as the conditional distribution of θi given its out-link

neighbors are both belonging to exponential families, both g2 and g′2 are concave functions of γ.

Therefore, the maximum value is either achieved at the global maximum point or at the boundary

of constraints. The Newton-Raphson method is used to solve the optimization problem. It needs

to calculate the first and second derivative of g′2(γ) with respect to γ, which is non-trivial in our

case. We discuss the computation of these below.

By re-examining p(θi|{θj}∀e=⟨vi,vj⟩, G), the conditional probability for each object i given its

out-link neighbors, we have:

p(θi|{θj}∀e=⟨vi,vj⟩, G) ∝
K∏
k=1

θ

∑
e=⟨vi,vj⟩

γ(ϕ(e))w(e)θj,k

ik (6.14)

It is easy to see that p(θi|{θj}∀e=⟨vi,vj⟩, G) is a Dirichlet distribution with parameters αik =∑
e=⟨vi,vj⟩ γ(ϕ(e))w(e)θj,k+1, for k = 1 to K. Therefore, the local partition function for each object

i, Zi(γ), should be the constant B(αi) as in Dirichlet distribution, where αi = (αi1, . . . , αiK) and

B(αi) =
∏K

k=1 Γ(αik)

Γ(
∑K

k=1 αik)
. Then the first and second derivatives (∇g′2 and Hg′2) can be calculated now

as each Zi is a function of Gamma functions. Then, we can use the Newton-Raphson method to

determine the value of γ that maximizes g′2 with the following iterative steps:

1. γt+1 = γt − [Hg′2(γ
t)]−1∇g′2(γt);

2. ∀r ∈ R, if γ(r)t+1 < 0, set γ(r)t+1 = 0.

6.4.3 Putting together: The GenClus Algorithm

We integrate the two steps discussed above to construct aGeneral Heterogeneous NetworkClustering

algorithm, GenClus. The algorithm includes an outer iteration that updates Θ and γ alternatively,

and two inner iterations that optimize Θ using the EM algorithm and optimize γ using the Newton-

Raphson method respectively. For the initialization of γ in the outer iteration, we initialize it as

an all-1 vector. This means that all the link types in the network are initially considered equally

important. For the initialization of Θ′ in the inner iteration for optimizing Θ, we can either (1)
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assign Θ′0 with random assignments, or (2) start with several random seeds, run the EM algorithm

for a few steps for each random seed, and choose the one with the highest value of the objective

function g1 as the real starting point. The latter approach will produce more stable results.

The time complexity for the EM algorithm in the first step is O(t1(Kd1|V|+K|E|), where t1 is

the number of iterations, d1 is the average number of observations for each object, K is the number

of clusters, |V| is the number of objects, and |E| is the number of links in the network, which is

linear to |V| for sparse networks. The time complexity of the algorithm in the step of maximizing

γ is dependent on the time for calculating the first derivative and Hessian matrix of g′2(γ), and the

matrix inversion involved Newton-Raphson algorithm. This is O(K|E|+ t2|R|2.376)), where K and

|E| are with the same meaning as before, t2 is the number of iterations, and |R| is the number of

relations in the network. In all, the overall time complexity is O(t(t1(Kd1|V|+K|E|)+ t2|R|2.376)),

where t is the number of outer iterations. In other words, for each outer iteration, the time

complexity is approximately linear to the number of objects in the network when the network is

sparse. Therefore, the GenClus algorithm is quite scalable.

6.5 Experiments

In this section, we examine the effectiveness of GenClus on several real and synthetic datasets.

6.5.1 Datasets

Two real networks and one synthetic network are used in this study. We extracted two networks

from the DBLP “four-area” dataset [103, 39], by using different subsets of entities and the links

between them to represent the underlying network structures. This dataset was extracted from

20 major conferences from the four areas corresponding to database, data mining, information

retrieval, and artificial intelligence. Besides the real networks, we also generated a synthetic weather

sensor network. We describe these networks below:

(a) DBLP four-area A-V network. This network contains two types of objects, authors (A) and

venues (V); and three types of links depending upon publication behavior, namely publish in(A, V )

(short for ⟨A, V ⟩), published by(V,A) (short for ⟨V,A⟩), and coauthor(A,A) (short for ⟨A,A⟩).
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The links are associated with a weight corresponding to the number of papers that an author has

published in a venue, a venue is contributed by an author, and the two authors have coauthored,

respectively. The author nodes and venue nodes contain text corresponding to the text from the

titles of all the papers they have ever written or published.

(b) DBLP four-area A-V-P network. This network contains objects corresponding to authors

(A), venues (V) and papers (P); and four types of links depending upon the publication behavior,

namely write(A,P ) (short for ⟨A,P ⟩), written by(P,A) (short for ⟨P,A⟩), publish(V, P ) (short

for ⟨V, P ⟩), and published by(P, V ) (short for ⟨P, V ⟩). In this case, the links have binary weights,

corresponding to presence or absence of the link. Only papers contain text attributes that are

from their titles.

(c) Weather sensor network. This network is synthetically generated, containing two types of

objects: temperature (T) and precipitation (P) sensors, and four link types between any two

types of sensors denoting the kNN relationship: ⟨T, T ⟩, ⟨T, P ⟩, ⟨P, T ⟩, and ⟨P, P ⟩. The links

are binary weighted according to their k-nearest neighbors. The attributes associated with a

sensor correspond to either temperature or precipitation, depend on the type of the sensor. We

use the weather network generator to generate two sets of synthetic climate sensor networks,

each containing 4 clusters, and each sensor is linked to 5 nearest neighbors for each type (10

in total). In each setting, we vary the number of sensors, by fixing the number of temperature

sensors at 1000, and precipitation sensors as 250, 500, and 1000. For each setting, the number

of observations for each object may be 1, 5 or 20. In all, for each weather pattern setting, we

have 9 networks with different configurations.

6.5.2 Effectiveness Study

We use two measures for our effectiveness study. First, the labels associated with the nodes in the

datasets provide a natural guidance in examining the coherence of the clusters. We use Normalized

Mutual Information (NMI) [94] to compare our clustering result with the ground truth. Second,

we use link prediction accuracy to test the clustering accuracy. The similarity between two objects

can be calculated by similarity function defined on their two membership vectors, such as using

cosine similarity function. Clearly, a better clustering quality will lead to better computation of
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similarity (and therefore the accuracy of link prediction). For a certain type of relation ⟨A,B⟩, we

calculate all the similarity scores between each vA ∈ A and all the objects vB ∈ B, and compare

the similarity-based ranked list with the true ranked list determined by the link weights between

them. We use the measure Mean Average Precision (MAP) [127] to compare the two ranked links.

Clustering Accuracy Test We choose clustering methods that can deal with both the links

and attributes as our baselines. None of these baselines is capable of leveraging different link types

of different impacts to the clustering process. Therefore, we set each link type strength as 1 for

these baselines. Second, we choose different baselines for clustering networks with text attributes

and for clustering networks with numerical attributes, since there are no unified clustering methods

(other than our presented GenClus) that can address both situations in the same framework.

For the DBLP four-area A-V network and the DBLP four-area A-V-P network that are with

text attributes, we use NetPLSA [75] and iTopicModel [98] as baselines, which aim at improving

topic qualities by using link information in homogeneous networks. We compare GenClus with

the baselines by assuming homogeneity of links for the latter algorithms. The mean and standard

deviation of NMI of the 20 running results are shown for the DBLP A-V network and the DBLP

A-V-P network in Figures 6.4 and 6.5 respectively. From the results, we can see that the GenClus

algorithm is much more effective than both the iTopicModel and the NetPLSA methods in both

networks. This is because of the ability of the former algorithms to learn and leverage the strengths

of different link types in the clustering process. Furthermore, the standard deviation of NMI over

different runs is much lower for GenClus, which suggests that the algorithm is more robust to the

initial settings with the learned strength weights for different link types.
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Figure 6.4: Clustering accuracy comparisons for the A-V network.
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Figure 6.5: Clustering accuracy comparisons for the A-V-P network.

The A-V network is the easiest case among the three networks, since it only contains one type

of attribute (the text attribute), and all object types contain this attribute, namely the attribute

is complete for every object. The A-V-P network is a more difficult case than the previous one,

because not every type of objects contain the text attributes. This requires the clustering algorithm

to be more robust to deal with objects with no attributes at all. From the results, we can see

that GenClus is more robust than NetPLSA algorithm, which outputs almost random predictions

for authors for the A-V-P network. Although the homogenous methodology of the iTopicModel

algorithm performs better for objects of type V for A-V network (See Figure 6.5), GenClus still

has an overall better performance. This is because our objective function is over all the objects

rather than a particular type.

We also examined the actual clusters obtained by the algorithm on DBLP A-V network, and list

corresponding cluster membership for several venues and authors in Table 6.1, where the research

area names are given afterwards according the clustering results. We can see that the clustering

results for the GenClus algorithm are consistent with human intuition.

Table 6.1: Case Studies of Cluster Membership Results

Object DB DM IR ML

SIGMOD 0.8577 0.0492 0.0482 0.0449
KDD 0.0786 0.6976 0.1212 0.1026
CIKM 0.2831 0.1370 0.4827 0.0971

Jennifer Widom 0.7396 0.0830 0.1061 0.0713
Jim Gray 0.8359 0.0656 0.0536 0.0449

Christos Faloutsos 0.4268 0.3055 0.1380 0.1296

The synthetic weather sensor network is the most difficult case among the three networks, as
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it has two types of attributes corresponding to different types of sensors. Furthermore, all sensor

nodes contain incomplete observations of the attributes. Existing algorithms cannot address these

issues well. We compare the clustering results of GenClus with two baselines, by comparing the

cluster labels with maximum probabilities with the ground truth. In this case, we choose the initial

seed for GenClus as one of the tentative running results with the highest objective function, and the

number of iterations is set to 5. The first baseline is the k-means algorithm, and the second one is

a spectral clustering method that combines the network structure and attribute similarity as a new

similarity matrix. We use the framework given in [91], which utilizes modularity objective function

in the network part, but we replace the cosine similarity by Euclidean distance in the attribute part

as in [125] for better clustering results. As both methods cannot handle the problem of incomplete

attributes, we use interpolation to make each sensor have a regular 2-dimensional attribute, by

using the mean of all the observations of its neighbors and itself. For the spectral clustering-based

framework, we centralize the data by extracting the mean and then normalize them by the standard

deviation, in order to make the attribute part comparable with the modularity part in the objective

function. Both parts are set to have equal weights.

The results are summarized in Figures 6.6 and 6.7. It is evident that the GenClus algorithm

exhibits superior performance to the two baselines in most of the datasets (17 out of 18 cases).

Furthermore, GenClus can produce more stable clustering results compared with k-means, which

is very sensitive to the number of observations for each object, especially for Setting 2. GenClus is

also highly adaptive in that there is no need of any weight specification for combining the network

and attribute-contributions to the clustering process. This results in greater stability of GenClus.

Another major advantage of GenClus (which is not immediately evident from the presented results)

is that we can directly utilize every observation instead of the mean, while the baselines can only

use a biased mean value because of the interpolation process.

Link Prediction Accuracy Test Next, the link prediction accuracy measured by MAP is

compared between GenClus and the baselines. For the A-V network, we select the link type ⟨A, V ⟩

for the prediction task, namely we want to predict which venues an author is likely to go. For the

A-V-P network, we select the link type ⟨P, V ⟩ for the prediction task, namely we want to predict

which venue a paper is published in. As the prediction is based on the similarity between the two
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Figure 6.6: Clustering accuracy comparisons for weather sensor network Setting 1.
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Figure 6.7: Clustering accuracy comparisons for weather sensor network Setting 2.

objects, say query object vi with clustering membership θi and candidate object vj with clustering

membership θj , three similarity functions are used here: (1) cosine similarity denoted as cos(θi,θj);

(2) the negative of Euclidean distance denoted as −||θi−θj ||; and (3) the negative of cross entropy

denoted as −H(θj ,θi). The results are summarized in Tables 6.2 and 6.3.

Table 6.2: Prediction accuracy for A-V relation in A-V network.

NetPLSA iTopicModel GenClus

cos(θi,θj) 0.4351 0.5117 0.7627

−||θi − θj || 0.4312 0.5010 0.7539

−H(θj ,θi) 0.4323 0.5088 0.7753

Table 6.3: Prediction accuracy for P-V Relation in A-V-P network.

NetPLSA iTopicModel GenClus

cos(θi,θj) 0.2762 0.4609 0.5170

−||θi − θj || 0.2759 0.4600 0.5142

−H(θj ,θi) 0.2760 0.4683 0.5183

For the weather sensor network, we select the link type ⟨T, P ⟩, namely we want to predict the P-

128



typed neighbors for T-typed sensors. We test the link prediction in the network with configuration

as in Setting 1, with #T = 1000 and #P = 250. We only output the link prediction results

for GenClus algorithm, since the other two baselines can only output hard clusters (exact cluster

memberships rather than probabilities). The results are shown in Table 6.4.

Table 6.4: Prediction accuracy for ⟨T, P ⟩ in weather sensor network.

cos(θi,θj) −||θi − θj || −H(θj ,θi)

MAP 0.7285 0.7690 0.8073

From the results, it is evident that the GenClus algorithm has the best link prediction accuracy

in terms of different similarity functions. Also, the results show that the asymmetric function

−H(θj ,θi) provides the best link prediction accuracy, especially for better clustering results such

as those obtained by GenClus and in the weather sensor network where the out-link neighbors are

different from the in-link neighbors.

Analysis of Link Type Strength Since the process of learning the semantic importance of

relations is important in a heterogeneous clustering approach, we present the learned relation

strengths in Figure 6.8 for the two DBLP four-area networks. From the figure, it is evident that

in the A-V network, the link type ⟨A, V ⟩ has greater importance to the clustering process than the

link type ⟨A,A⟩, and thus is more important in deciding an author’s membership. This is because

the spectrum of co-authors is often broad, whereas authors’ publication frequency in each venue

can be a more reliable predictor of clustering behavior. For the A-V-P network, we can see that the

link type ⟨P, V ⟩ has the weight 3.13, whereas the link type ⟨P,A⟩ has a much higher weight 13.30.

This suggests that the latter link type is more reliable in deciding the cluster for papers, since the

venues usually have a broader research track than the authors. For example, it is difficult to judge

the cluster for a paper if we only know that it is published in the CIKM venue. The ability of our

algorithm to learn such important characteristics of different link types is one of the reasons that

it is superior to other competing methods.

For the weather sensor network, we summarize the link type strengths for the three networks

with different network sizes that contain 5 observations for each sensor and use the configuration
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Figure 6.8: Strengths for link types in two DBLP four-area networks.

of Setting 1, in Table 6.5. It is evident that GenClus can correctly detect: (1) the P-typed sensors

cannot be trusted as much as the other typed sensors when P-typed sensors are very sparse, due

to their farther distance and less similarity to other objects (the strengths of ⟨T, P ⟩ and ⟨P, P ⟩

relations decrease as #P decreases); (2) for both types of sensors, T-typed neighbors are more

trustable than P-typed ones, due to the higher quality of T-typed data in the network setting.

⟨T, T ⟩ ⟨T, P ⟩ ⟨P, T ⟩ ⟨P, P ⟩
T:1000; P: 250 3.14 2.88 1.60 1.32
T:1000; P: 500 3.16 3.05 2.38 1.98
T:1000; P: 1000 3.14 3.03 3.34 2.78

Table 6.5: Link Type Strength for Weather Sensor Network in Setting 1

6.5.3 A Typical Running Case

One of the core ideas of this algorithm is to enable a mutual learning process between importance

of link types for the clustering and the actual clustering results. In this section, we provide some

detailed results within the different iterations of the algorithm, which suggests that such a mutual

learning process does occur. In particular, a typical running case for the A-V network is illustrated

in Figure 6.9. Figure 6.9(a) shows how the clustering accuracy progresses along with the changes

in the importance of different link types. Figure 6.9(b) shows how the strength weights change

along with the clustering results at different iterations and finally converge to the correct values.

Note that, we plotted the initial value γ at iteration 0 in Figure 6.9(b), which is an all-one value.

6.5.4 Efficiency Study

In this part, we study the efficiency of our algorithm. We illustrate the execution time of each

inner iteration for the EM algorithm, which is the bottleneck component for the overall time
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Figure 6.9: A Running Case on A-V network: Iterations 1 to 10

complexity. The results are presented for the weather sensor network with different sizes and

number of observations for both the pattern generator settings. The results are illustrated in Figure

6.10, and are consistent with our observations in the complexity section about the scalability with

the number of objects.
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Figure 6.10: Scalability Test over Number of Objects

One observation is that the EM approach is very easy to parallelize, which is the major compo-

nent for GenClus in terms of time complexity. We tested the parallel version of the EM algorithm

with the use of 4 parallel threads, and it turned out that the execution time is improved by a factor

of 3.19. This suggests that the approach is highly parallelizable.

6.6 Related Work

Clustering is a classical problem in data analysis, and has been studied extensively in the context

of multi-dimensional data [50]. Most of these algorithms are attribute based, in which the data

corresponds to a multi-dimensional format, and does not contain links. A number of clustering

methods [18, 58, 23, 26] have been proposed on the basis of network structure only, mainly in
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the context of the community detection problem [4, 64, 29]. A recent piece of work extends the

network clustering problem to the heterogeneous scenario [103]. However, this latter method [103]

is designed for a specific kind of network structure, referred as the star network schema, and is

not applicable to networks of general structure. Furthermore, it cannot be easily integrated with

attribute information.

Recently, some studies [12, 91, 75, 118] have shown that by considering the link constraints

in addition to the attributes, the clustering accuracy can be enhanced. However, most of these

algorithms require that the network links, objects and their attributes are all homogeneous. A

recent clustering method [133] integrates the network clustering process with categorical attributes

by considering the latter as augmented objects, but the same methodology cannot be applied to

numerical values. Some other algorithms [91] can cluster objects with numerical attributes by

combining the network clustering objective function with a numerical clustering objective function,

but it is difficult to decide the weight to combine them, and cannot deal with the incomplete

attributes properly. [70] provides a framework for clustering objects in relational networks with

attributes. However, they studied a different clustering problem by clustering objects from different

types separately, and did not study the interplay of importance of different link types and the

clustering results. Probabilistic relational models, such as [105], provide a way to model a rational

database containing both attributes and links, but do not consider the scenario studied in this paper

that clustering purposes could be different according to the specified attributes. Also, they cannot

handle the problem of incomplete attributes due to the discriminative nature of their methods.

There are several different philosophies on using the link information in addition to attributes

to help the clustering in networks. First, in [91, 133], links are viewed to provide another angle

of similarity measure between objects besides the attribute-based similarity measure, and the final

clustering results are generated by combining the two angles. Second, In relational clustering

[70] and probabilistic relational models [105], every link is treated as equally important and the

probability of a link appearance is modeled explicitly according to the cluster memberships of

the two objects of the link, in a way of building mixture of block models [3]. Third, in [75, 98],

links are considered to provide additional information about the similarity between objects that

are consistent with the attributes, and the final clustering result is a more smoothing version
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compared with the one merely using attributes. However, none of these views is able to model the

fact that different relations should have different importance in determining the clustering process

for a certain purpose. Our philosophy in modeling link consistency is more similar to the third

line, that is, two objects linking together indicates a higher chance that they have similar cluster

memberships. Moreover, we further associate each type of links with a different importance weight

in measuring the consistency under a given clustering purpose, and thus each type of relation carries

different strengths in passing the cluster membership between the linked objects.

6.7 Conclusion

We propose GenClus, the first approach to cluster general heterogeneous information networks

with different link types and different attribute types, such as numerical or text attributes, with

guidance from a specified subset of the attributes. Our algorithm is designed to seamlessly work

in the case when some of the nodes may not have the complete attribute information. One key

observation of the work is that heterogeneous network clustering provides a tremendous challenge

because different types of links may present different levels of semantic importance to the clustering

process. The importance of different semantic link types is learned in order to enable an effective

clustering algorithm that meets a user’s demand. We present experimental results which show the

advantages of the approach over competing methods, including a number of interesting case studies

and a study of the algorithm efficiency.
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Chapter 7

User-Guided Clustering via
Meta-Path Selection

In this chapter, we study another relation strength-aware mining problem: user-guided clustering

of a certain type of objects, based on their involvement of multiple types of relations, encoded by

meta-paths, in a heterogeneous information network. In an application, a user often has the best

say on the kinds of clusters she would like to get, and such guidance will lead to the selection of

appropriate combination of weighted meta-paths for generation of desired clustering results.

7.1 Overview

With the advent of massive social and information networks, link-based clustering of objects in

networks becomes increasingly important since it may help discover hidden knowledge in large

networks. Link-based clustering groups objects based on their links instead of attribute values.

This is especially useful when attributes of objects cannot be fully obtained. Most existing link-

based clustering algorithms are on homogeneous networks, where links carry the same semantic

meaning and only differ in their strengths (i.e., weights). However, most real-world networks are

heterogeneous, where objects are of multiple types and are linked via different types of relations or

sequences of relations, forming a set of meta-paths. These meta-paths indicate different relations

among object types and imply diverse semantics, and thus clustering on different meta-paths will

generate rather different results, as shown below.

Example 7.1. (Meta-path-based clustering) A toy heterogeneous information network is shown

in Figure 7.1, which contains three types of objects: organization (O), author (A) and venue (V),

and two types of links: the solid line represents the affiliation relation between author and organiza-

tion, whereas the dashed one the publication relation between author and venue. Authors are then

connected (indirectly) via different meta-paths. For example, A−O−A is a meta-path denoting a
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Figure 7.1: A toy heterogeneous information network containing organizations, authors and venues.

relation between authors via organizations (i.e., colleagues), whereas A− V −A denotes a relation

between authors via venues (i.e., publishing in the same venues). A question then arises: which

type of connections should we use to cluster the authors?

Obviously, there is no unique answer to this question: Different meta-paths lead to different

author connection graphs, which may lead to different clustering results. In Figure 7.2(a), au-
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Figure 7.2: Author connection graphs under different meta-paths.

thors are connected via organizations and form two clusters: {1, 2, 3, 4} and {5, 6, 7, 8}; in Figure

7.2(b), authors are connected via venues and form two different clusters: {1, 3, 5, 7} and {2, 4, 6, 8};

whereas in Figure 7.2(c), a connection graph combining both meta-paths generates 4 clusters:

{1, 3}, {2, 4}, {5, 7} and {6, 8}.

This toy example shows that all the three clusterings look reasonable but they carry diverse

semantics. It should be a user’s responsibility to choose her desired meta-path(s). However, it is

often difficult to ask her to explicitly specify one or a weighted combination of meta-paths. Instead,

it is easier for her to give some guidance in other forms, such as giving one or a couple of examples

for each cluster. For example, it may not be hard to give a few known conferences in each cluster

(i.e., field) if one wants to cluster them into K research areas (for a user-desired K), or ask a user
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to name a few restaurants if one wants to cluster them into different categories in a business review

website (e.g., Yelp).

The new situation is that since we are dealing with heterogeneous networks, the previous work

on user-guided clustering or semi-supervised learning approaches on (homogeneous) graphs [61, 134,

135] cannot apply. We need to explore meta-paths that represent heterogeneous connections across

objects, leading to rich semantic meanings, hence diverse clustering results. With user guidance,

a system will be able to learn the most appropriate meta-paths or their weighted combinations.

The learned meta-paths will in turn provide an insightful view to help understand the underlying

mechanism in the formation of a specific type of clustering, such as, which meta-path is more

important to determine a restaurant’s category?—the meta-path connecting them via customers,

or the one connecting them via text in reviews, or the one determined by the nearest spatial

locations?

We thus integrate meta-path selection with user-guided clustering in order to better cluster

a user-specified type of objects (i.e., target objects) in a heterogeneous information network. We

assume that user guidance is in the form of a small set of seeds for each cluster. For example, to

cluster authors into 2 clusters in Example 7.1, a user may seed {1} and {5} for two clusters, which

implies a selection of meta-path A−O −A; or seed {1}, {2}, {5}, and {6} for four clusters, which

implies a combination of both meta-paths A−O−A and A−V −A with about equal weight. Our

goal is to (1) determine the weight of each meta-path for a particular clustering task, which should

be consistent with the clustering results implied by the limited user guidance, and (2) output the

clustering result according to the user guidance and using the learned weights for each meta-path.

We propose a probabilistic model that models the hidden clusters for target objects, the user

guidance, and the quality weights for different meta-paths in a unified framework. An effective

and efficient iterative algorithm PathSelClus is developed to learn the model, where the clustering

quality and the meta-paths quality mutually enhance each other. The experiments with different

tasks on two real networks show our algorithm outperforms the baselines.
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7.2 The Meta-Path Selection Problem for User-Guided

Clustering

Here we illustrate the problem using two heterogeneous information networks: the DBLP network

and the Yelp network.

Paper

Author

VenueTerm

(a) DBLP

Review

User

BusinessTerm

(b) Yelp

Figure 7.3: Examples of heterogeneous information networks.

Example 7.2. (The DBLP bibliographic network) As introduced before, DBLP is a computer

science bibliographic network (see schema in Figure 7.3(a)) containing 4 types of objects: paper(P),

author (A), term (T), and venue (V) (i.e., conferences and journals). Links exist between authors

and papers by the relation of “write” and “written by,” between papers and terms by “mention”

and “mentioned by,” and between venues and papers by “publish” and “published by.” “Citation”

relation between papers can be added further using other data source, such as Google scholar.

Example 7.3. (The Yelp network) Yelp is a website (http://www.yelp.com/) where users can

write reviews for businesses. The Yelp network (see schema in Figure 7.3(b)) used in this chapter

contains 4 types of objects: business (B), user (U), term (T), and review (R). Links exist between

users and reviews by the relation of “write” and “written by,” between reviews and terms by “men-

tion” and “mentioned by,” between businesses and reviews by “commented by” and “comment,”

and between users by “friendship” (not included in our dataset).

Following our previous discussion, a meta-path is defined by a sequence of relations in the

network schema and can be denoted by a sequence of object types when there is no ambiguity. For

example, A−P −A is a meta-path denoting the co-authorship between authors, and A−P −V is
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a meta-path denoting the publication relation between the author and the venue type. Note that,

a single relation defined in the network schema can be viewed as a special case of meta-path, such

as the citation relation P → P .

7.2.1 The Meta-Path Selection Problem

Link-based clustering is to cluster objects based on their connections to other objects in the network.

In a heterogeneous information network, we need to specify more information for a meaningful

clustering. This includes (1) the type of objects to be clustered (called the target type), and (2)

the type of connections, that is, meta-path(s), to use for the clustering task, and we call the object

type that the target type is connecting to via the meta-path as the feature type. For example,

when clustering authors based on the venues which they have published papers in, the target type

is the author type, the meta-path to use is A− P − V , and the feature type is venue.

In a heterogeneous information network, target objects could link to many types of feature

objects by multiple meta-paths. For example, authors could connect to other authors via meta-

path A−P −A, or connect to terms via meta-path A−P −T . Meta-path selection is to determine

which meta-paths or their weighted combination to use for a specific clustering task.

7.2.2 User-Guided Clustering

User guidance is critical for clustering objects in the network. In this study, we consider the

guidance as user seeding objects in each cluster. For example, to cluster authors based on their

(hidden) research areas, one can first provide several representative authors in each area. These

seeds are used as guidance for clustering all the target objects in the network. More importantly,

they provide information for selecting the most relevant meta-paths for the specific clustering task.

Note that in practice, a user may not be able to provide seeds for every cluster, but only for some

clusters they are most familiar with, which should be handled by the algorithm too.

7.2.3 The Problem Definition

Now we provide the problem definition of user-guided clustering via meta-path selection. Given a

heterogeneous information network G, a user needs to specify the following as inputs for a clustering
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task:

1. The target type for clustering, type T .

2. The number of clusters, K, and the object seeds for each cluster, say L1, . . . ,LK , where Lk

denotes the object seeds for cluster k, which could be an empty set. These seeds will be used as

hints to learn the purpose/preference of the clustering task.

3. A set of M meta-paths starting from type T , denoted as P1,P2, . . . ,PM , which might be helpful

for the clustering task. These meta-paths can be determined either according to users’ expert

knowledge, or by traversing the network schema starting from type T with a length constraint.

For each meta-path Pm, we calculate the adjacency matrix Wm, which we call relation matrix,

between the target type T and the feature type Fm, by multiplying adjacency matrices for each

relation along the meta-path. For example, the relation matrixW for meta-path A−P−V , denoting

the number of papers published by an author in a venue, is calculated by W =WAP ×WPV , where

WAP and WPV are the adjacency matrices for relation A− P and P − V respectively.

The output of the algorithm consists of two parts: (1) the weight αm ≥ 0 of each meta-path

Pm for a particular clustering task, which should be consistent with the clustering result implied

by the limited user guidance, and (2) the clustering result according to the user guidance and

under the learned weights for each meta-path, that is, to associate each target object ti in T with

a K-dimensional soft clustering probability vector, θi = (θi1, . . . , θiK), where θik is the probability

of ti belonging to cluster k, i.e., θik ≥ 0 and
∑K

k=1 θik = 1.

7.3 The Probabilistic Model

A good clustering result is determined by several factors: First, the clustering result should be

consistent with the link structure; second, it should also be consistent with the user guidance; and

third, the importance of each meta-path is implied by the user-guided clustering, which should

be modeled and learned to further enhance the clustering quality. In the following, we propose a

probabilistic approach to model the problem in a unified framework, by considering all the three

factors.
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7.3.1 Modeling the Relationship Generation

To model the consistency between a clustering result and a relation matrix, we propose a clustering-

based generative model for relationship generation.

For a meta-path Pm, let its corresponding relation matrix between the target type T and the

feature type Fm be Wm. For each target object ti, we model its relationships as generated from

a mixture of multinomial distributions, where the probability of ti ∈ T connecting to fj,m ∈ Fm

is conditionally independent on ti given that the hidden cluster label of the relationship is known.

Let πij,m = P (j|i,m) be the generative probability of the relationship starting from ti and ending

at fj,m, where
∑

j πij,m = 1, then

πij,m = P (j|i,m) =
∑
k

P (k|i)P (j|k,m) =
∑
k

θikβkj,m (7.1)

where θik = P (k|i) denotes the probability of ti belonging to cluster k and βkj,m = P (j|k,m) de-

notes the probability of fj,m appearing in cluster k. In other words, let πi,m = (πi1,m, . . . , πi|Fm|,m)

be the generative probability vector for target object ti, then each πi,m can be factorized as a

weighted summation of ranking distributions of feature objects in each cluster. The factorization

idea is similar to that of PLSA [48], PHITS [30], and RankClus [100], but is built on meta-path-

encoded relationships rather than immediate links. This extension will capture more and richer

link-based features for clustering target objects in heterogeneous networks.

By assuming each target object ti is independent with each other and each relationship generated

by ti is independent with each other, the probability of observing all the relationships between all

the target objects and feature objects is the production of the probability of all the relationships

following meta-path Pm:

P (Wm|Πm,Θ, Bm) =
∏
i

P (wi,m|πi,m,Θ, Bm) =
∏
i

∏
j

(πij,m)wij,m (7.2)

where Πm = ΘBm is the probability matrix with cells as πij,m’s, Θ is the parameter matrix for

θik’s, Bm is the parameter matrix for βkj,m’s, and wij,m is the weight of the relationship between

ti and fj,m. Note that, to model the relationship generation, each meta-path Pm corresponds
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to a different generative probability matrix Πm. These probability matrices share the same soft

clustering probabilities Θ, but they have different ranking distributions Bm in different meta-paths.

7.3.2 Modeling the Guidance from Users

Further, we take the user guidance in the form of object seeds for some clusters as the prior

knowledge for the clustering result Θ, by modeling the prior as a Dirichlet distribution rather than

treating them as hard labeled ones.

For each target object ti, its clustering probability vector θi is assumed to be a multinomial

distribution, which is generated from some Dirichlet distribution. If ti is labeled as a seed in

cluster k∗, θi is then modeled as being sampled from a Dirichlet distribution with parameter vector

λek∗ + 1, where ek∗ is a K-dimensional basis vector, with the k∗th element as 1 and 0 elsewhere.

If ti is not a seed, θi is then assumed as being sampled from a uniform distribution, which can also

be viewed as a Dirichlet distribution with parameter vector 1. The density of θi given such priors

is:

P (θi|λ) ∝


∏

k θ
1{ti∈Lk}λ

ik = θλik∗ , if ti is labeled and ti ∈ Lk∗ ,

1, if ti is not labeled.

(7.3)

where 1{ti∈Lk} is an indicator function, which is 1 if ti ∈ Lk holds, and 0 otherwise.

The hyper-parameter λ is a nonnegative value, which controls the strength of users’ confidence

over the object seeds in each cluster. From Equation (7.3), we can find that:

• when λ = 0, the prior for θi of a labeled target object becomes a uniform distribution, which

means no guidance information will be used in the clustering process.

• when λ→∞, the prior for θi of a labeled target object converges to a point mass, i.e., P (θi =

ek∗)→ 1 or θi → ek∗ , which means we will assign k∗ as the hard cluster label for ti.

In general, a larger λ indicates a higher probability that θi is around the point mass ek∗ , and thus

a higher confidence for the user guidance.
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7.3.3 Modeling the Quality Weights for Meta-Path Selection

Different meta-paths may lead to different clustering results, therefore it is desirable to learn the

quality of each meta-path for the specific clustering task. We propose to learn the quality weight

for each meta-path by evaluating the consistency between its relation matrix and the user-guided

clustering result.

In deciding the clustering result for target objects, a meta-path may be of low quality for the

following reasons:

1. The relation matrix derived by the meta-path does not contain an inherent cluster structure.

For example, target objects are connecting to the feature objects randomly.

2. The relation matrix derived by the meta-path itself has a good inherent cluster structure, how-

ever, it is not consistent with the user guidance. For example, in our motivating example, if the

user gives a guidance as: K = 2,L1 = {1},L2 = {2}, then the meta-path A−O−A should have

a lower impact in the clustering process for authors.

The general idea of measuring the quality of each meta-path is to see whether the relation matrix

Wm is consistent with the detected hidden clusters Θ and thus the generative probability matrix

Πm, which is a function of Θ, i.e., Πm = ΘBm.

In order to quantify the weight for such quality, we model the weight αm for meta-path Pm as

the relative weight for each relationship between target objects and feature objects following Pm.

In other words, we treat our observations of the relation matrix as αmWm rather than originalWm.

A larger αm indicates a higher quality and a higher confidence of the observed relationships, and

thus each relationship should count more.

Then, we assume the multinomial distribution πi,m has a prior of Dirichlet distribution with

parameter vector ϕi. In paticular, we consider a discrete uniform prior, which is a special case

of Dirichlet distribution with parameters as an all-one vector, i.e., ϕi,m = 1. The value of αm

is determined by the consistency between the observed relation matrix Wm and the generative

probability matrix Πm, which can be evaluated as how likely we can get Πm given the relation

matrixWm and its quality weight αm. The goal is then to find the α∗
m that maximizes the posterior

probability of πi,m for all the target objects ti, given the observation of relationships wi,m with
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relative weight αm:

α∗
m = argmax

αm

∏
i

P (πi,m|αmwi,m,θi, Bm) (7.4)

We can show that the posterior of πi,m = θiBm is another Dirichlet distribution with the updated

parameter vector as αmwi,m + 1, according to the multinomial-Dirichlet conjugate:

πi,m|αmwi,m,θi, Bm ∼ Dir(αmwij,m + 1, . . . , αmwi|Fm|,m + 1) (7.5)

which has the following density function:

P (πi,m|αmwi,m,θi, Bm) =
Γ(αmni,m + |Fm|)∏
j Γ(αmwij,m + 1)

∏
j

(πij,m)αmwij,m
(7.6)

where ni,m =
∑

j wij,m, the total number of path instances from ti following meta-path Pm. By

modeling αm in such a way, the meaning of αm is quite clear:

• αmwij,m + 1 is the parameter of jth dimension for the new Dirichlet distribution.

• The larger αm, the more likely it will generate a πi,m with a distribution as the observed

relationship distribution, i.e., πi,m → wi,m/ni,m when αm →∞, where ni,m is the total number

of path instances from ti following meta-path Pm.

• The smaller αm, the more likely it will generate a πi that is not relevant to the relation matrix

Wm, and πi,m can be any |Fm|-dimensional multinomial distribution.

Note that, we do not consider negative αm’s in this model, which means that the relationships

with a negative impact in the clustering process are not considered, and the extreme case of αm = 0

means that the relationships in a meta-path are totally irrelevant to the clustering process.
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7.3.4 The Unified Model

Putting all the three factors together, we have the joint probability of observing the relation matrices

with relative weights αm’s, and the parameter matrices Πm’s and Θ:

P ({αmWm}Mm=1,Π1:M ,Θ|B1:M ,Φ1:M , λ)

=
∏
i

(∏
m

P (αmWm|Πm,θi, Bm)P (Πm|Φm)
)
P (θi|λ)

(7.7)

where Φm is the Dirichlet prior parameter matrix for Πm, and an all-one matrix in our case.

We want to find the maximum a posteriori probability (MAP) estimate for Πm’s and Θ, which

maximizes the logarithm of posterior probability of {Πm}Mm=1, given the observations of relation

matrices with relative weights {αmWm}Mm=1 and Θ, plus a regularization term over θi for each

target object denoting the logarithm of prior density of θi:

J =
∑
i

(∑
m

logP (πi,m|αmwi,m,θi, Bm) +
∑
k

1{ti∈Lk}λ log θik
)

(7.8)

By substituting the posterior probability formula in Equation (7.6) and the factorization form for

all πi,m, we get the final objective function:

J =
∑
i

(∑
m

(∑
j

αmwij,m log
∑
k

θikβkj,m

+ log Γ(αmni,m + |Fm|)−
∑
j

log Γ(αmwij,m + 1)
)

+
∑
k

1{ti∈Lk}λ log θik

)
(7.9)

7.4 The Learning Algorithm

In this section, we introduce the learning algorithm, PathSelClus, for the model (Equation (7.9))

proposed in Section 7.3. It is a two-step iterative algorithm, where the clustering result Θ and the

weights for each meta-path α mutually enhance each other. In the first step, we fix the weight

vector α, and learn the best clustering results Θ under this weight. In the second step, we fix the

clustering matrix Θ and learn the best weight vector α.

144



7.4.1 Optimize Clustering Result Given Meta-Path Weights

When α is fixed, the terms only involving α can be discarded in the objective function Equation

(7.9), which is then reduced to:

J1 =
∑
m

αm

∑
i

∑
j

wij,m log
∑
k

θikβkj,m +
∑
i

∑
k

1{ti∈Lk}λ log θik (7.10)

The new objective function can be viewed as a weighted summation of the log-likelihood for each

relation matrix under each meta-path, where the weight αm indicates the quality of each meta-path,

plus a regularization term over Θ representing the user guidance. Θ and the augmented parameter

Bm’s can be learned using the standard EM algorithm, as follows.

• E-step: In each relation matrix, we use zij,m to denote the cluster label for each relationship

between a target object ti and a feature object fj,m. According to the generative process de-

scribed in Section 7.3.1, a cluster k is first picked with probability θik, and a feature object fj,m

is picked with probability βkj,m. The conditional probability of the hidden cluster label given

the old Θt−1 and Bt−1
m values is then:

p(zij,m = k|Θt−1, Bt−1
m ) ∝ θt−1

ik βt−1
kj,m (7.11)

• M-step: We have the updating formulas for Θt and Bt
m as:

θtik ∝
∑
m

αm

∑
j

wij,mp(zij,m = k|Θt−1, Bt−1
m ) + 1{ti∈Lk}λ (7.12)

βtkj,m ∝
∑
i

∑
j

wij,mp(zij,m = k|Θt−1, Bt−1
m ) (7.13)

From Equation (7.12), we can see that the clustering membership vector θi for ti is determined

by the cluster labels of its relationships to all the feature objects in all the relation matrices.

Besides, if ti is labeled as a seed object in some cluster k∗, θi is also determined by the label. The

strength of impacts from these factors is determined by the weight of each meta-path αm, and the

strength of the cluster labels λ, where αm’s are learned automatically by our algorithm, and λ is

given by users.
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7.4.2 Optimize Meta-Path Weights Given Clustering Result

Once a clustering result Θ and the augmented parameter Bm’s are given, we can calculate the

generative probability matrix Πm for each meta-path Pm by: Πm = ΘBm. By discarding the

irrelevant terms, the objective function of Equation (7.9) can be reduced to:

J2 =
∑
i

(∑
m

(∑
j

αmwij,m log πij,m + log Γ(αmni,m + |Fm|)−
∑
j

log Γ(αmwij,m + 1)
))

(7.14)

It is easy to check that J2 is a concave function, which means there is a unique α that maximizes

J2. We use gradient descent approach to solve the problem, which is an iterative algorithm with

the updating formula as: αt
m = αt−1

m + ηtm
∂J2
∂αm

∣∣∣
αm=αt−1

m

. To guarantee the increase of J2, the step

size ηtm is usually set as a small enough number. By setting ηtm = αt−1
m

−
∑

i

∑
j wij,m log πij,m

, following

the trick used in non-negative matrix factorization (NMF) [62], we can get updating formula for

αm as:

αt
m = αt−1

m

∑
i

(
ψ(αt−1

m nim + |Fm|)ni,m −
∑

j ψ(α
t−1
m wij,m + 1)wij,m

)
−
∑

i

∑
j wij,m log πij,m

(7.15)

which guarantees αt
m a non-negative value, where ψ(x) is the digamma function, the first derivative

of log Γ(x). Also, by looking at the denominator of the formula, we can see that a larger log-

likelihood of observing relationships wij,m under model probability πij,m (i.e., a smaller denominator

as log-likelihood is negative) generally leads to a larger αm. This is also consistent with the human

intuition.

7.4.3 The PathSelClus Algorithm

Overall, the PathSelClus algorithm is an iterative algorithm that optimizes Θ and α alternatively.

The optimization of Θ contains an inner loop of EM-algorithm, and the optimization of α contains

another inner loop of gradient descent algorithm.

The Weight Setting of Relation Matrices Given a heterogeneous information network G, we

calculate the relation matrix Wm for each given meta-path Pm by multiplying adjacency matrices

along the meta-path. It can be shown that, scaling Wm by a factor of 1/cm leads to a scaling of the

learned relative weight αm by a factor of cm. Therefore, the performance of the clustering result
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will not be affected by the scaling of the relation matrix, which is a good property of our algorithm.

Initialization Issues. For the initial value of α, we set it as an all-one vector, which assumes

all the meta-paths are equally important. For the initial value of Θ in the clustering step given α,

if ti is not labeled, we assign a random clustering vector to θi; whereas if ti is labeled as a seed for

a cluster k∗, we assign θi = e∗k.

Time Complexity Analysis. The PathSelClus algorithm is very efficient, as it is proportional

to the number of relationships that are used in the clustering process, which is about linear to

the number of target objects for short meta-paths in sparse networks. Formally, for the inner

EM algorithm that optimizes Θ, the time complexity is O(t1(K
∑

m |Em|+K|T |+K
∑

m |Fm|)) =

O(t1(K
∑

m |Em|)), where |Em| is the number of non-empty relationships in relation matrix Wm,

|T | and |Fm| are the numbers of target objects and feature objects in meta-path Pm, which are

typically smaller than |Em|, and t1 is the number of iterations. For the inner gradient descent

algorithm, the time complexity is O(t2(
∑

m |Em|)), where t2 is the number of iterations. The total

time complexity for the whole algorithm is then O(t(t1(K
∑

m |Em|)+ t2(
∑

m |Em|))), where t is the

number of outer iterations, which usually is a small number. Such a processing efficiency has also

be verified by our experiments.

7.5 Experiments

In this section, we compare PathSelClus with several baselines and show the effectiveness of our

algorithm.

7.5.1 Datasets

We use two real information networks for performance test, the DBLP network and the Yelp net-

work. For each network, we design multiple clustering tasks provided with different user guidance,

which are introduced in the following.

1. The DBLP Network. For the DBLP network introduced early in the chapter, we design three

clustering tasks in the following.
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• DBLP-T1: Cluster conferences in the “four-area” dataset [103], which contains 20 major

conferences and all the related papers, authors and terms in DM, DB, IR, and AI fields,

according to the research areas of the conferences. The candidate meta-paths include:

V − P −A− P − V and V − P − T − P − V .

• DBLP-T2: Cluster top-2000 authors (by their number of publications) in the “four-area”

dataset, according to their research areas. The candidate meta-paths include: A − P − A,

A− P −A− P −A, A− P − V − P −A, and A− P − T − P −A.

• DBLP-T3: Cluster 165 authors who have been ever advised by Christos Faloutsos, Michael

I. Jordan, Jiawei Han, and Dan Roth (including these professors), according to their research

groups. The candidate meta-paths are the same as in DBLP-T2.

2. The Yelp Network. For the Yelp network introduced early in the chapter, we are provided by

Yelp a sub-network1, which include 6900 businesses, 152327 reviews, and 65888 users. Hierar-

chical categories are provided for each business as well, such as “Restaurants,” “Shopping” and

so on. For Yelp network, we design three clustering tasks in the following.

• Yelp-T1: We select 4 relatively big categories (“Health and Medical,” “Food,” “Shopping,”

and “Beauty and Spas”), and cluster 2224 businesses with more than one reviews according

to two meta-paths: B −R− U −R−B and B −R− T −R−B.

• Yelp-T2: We select 6 relatively big sub-categories under the first-level category “Restauran-

t” (“Sandwiches,” “Thai,” “American (New),” “Mexican,” “Italian,” and “Chinese”), and

cluster 554 businesses with more than one reviews according to the same two meta-paths.

• Yelp-T3: We select 6 relatively big sub-categories under the first-level category “Shopping”

(“Eyewear & Opticians,” “Books, Mags, Music and Video,” “Sporting Goods,” “Fashion,”

“Drugstores,” and “Home & Garden”), and cluster 484 businesses with more than one

reviews according to the same two meta-paths.

1http://www.yelp.com/academic dataset
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7.5.2 Effectiveness Study

First, we study the effectiveness of our algorithm under different tasks, and compare it with several

baselines.

Baselines

Three baselines are used for comparison studies. Since none of them has considered the meta-path

selection problem, we will use all the meta-paths as features and prepare them to fit the input of

each of these algorithms. The first is user-guided, information theoretic-based, k-means clustering

(ITC), which is an adaption of seeded k-means algorithm proposed in [11], by replacing Euclidean

distance to KL-divergence as used in information theoretic-based clustering algorithms [33, 6]. ITC

is a hard clustering algorithm. For the input, we concatenate all the relation matrices side-by-side

into one single relation matrix, and thus we get a very high dimensional feature vector for each

target object.

The second baseline is the label propagation (LP) algorithm proposed in [135], which utilizes

link structure to propagate labels to the rest of the network. For the input, we add all the relation

matrices together to get one single relation matrix. As LP is designed for homogeneous networks,

we confine our meta-paths to ones that start and end both in the target type. LP is a soft clustering

algorithm.

The third baseline is the cluster ensemble algorithm proposed in [85], which can combine soft

clustering results into a consensus, which we call ensemble soft. Different from the previous two

baselines that directly combine meta-paths at the input level, cluster ensemble combines the clus-

tering results for different meta-paths at the output level. Besides, we also use majority voting as

another baseline (ensemble voting), which first maps each clustering result for each target object

into a hard cluster label and then picks the cluster label that is the majority over different meta-

paths. As we can use either ITC or LP as the clustering algorithm for each ensemble method, we

get four ensemble baselines in total: ITC soft, ITC voting, LP soft, and LP voting.
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Evaluation Methods

Two evaluation methods are used to test the clustering result compared with the ground truth,

where the soft clustering is mapped into hard cluster labels. The first measure is accuracy, which is

used when seeds are available for every cluster and is calculated as the percentage of target objects

going to the correct cluster. Note that, in order to measure whether the seeds are indeed attracting

objects to the right cluster, we do not map the outcome cluster labels to the given class labels.

The second measure is normalized mutual information (NMI), which does not require the mapping

relation between ground truth labels and the cluster labels obtained by the clustering algorithm.

Both measures are in the range of 0 to 1, and a higher value indicates a better clustering result in

terms of the ground truth.

Full Cluster Seeds

We first test the clustering accuracy when cluster seeds are given for every cluster. In this case, all

the three baselines can be used and compared. Performances under different numbers of seeds in

each cluster are tested. Each result is the average of 10 runs.

Table 7.1: Clustering accuracy for DBLP-T1 task.

#S Measure PathSelClus LP ITC LP voting LP soft ITC voting ITC soft

1
Accuracy 0.9950 0.6500 0.6900 0.6500 0.6650 0.6450 0.5100

NMI 0.9906 0.6181 0.6986 0.6181 0.5801 0.5903 0.5316

2
Accuracy 1 0.7500 0.8450 0.7500 0.8200 0.8950 0.8700

NMI 1 0.6734 0.7752 0.6734 0.7492 0.8321 0.7942

Table 7.2: Clustering accuracy for DBLP-T2 task.

#S Measure PathSelClus LP ITC LP voting LP soft ITC voting ITC soft

1
Accuracy 0.7951 0.2122 0.3284 0.2109 0.3529 0.2513 0.2548

NMI 0.6770 0.0312 0.1277 0.0267 0.0301 0.4317 0.4398

5
Accuracy 0.8815 0.2487 0.3223 0.5117 0.3685 0.3311 0.3495

NMI 0.6868 0.0991 0.1102 0.4402 0.0760 0.3092 0.4316

10
Accuracy 0.8863 0.5586 0.3694 0.4297 0.3880 0.4891 0.2969

NMI 0.6947 0.4025 0.1261 0.1788 0.1148 0.4045 0.4204
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Table 7.3: Clustering accuracy for DBLP-T3 task.

#S Measure PathSelClus LP ITC LP voting LP soft ITC voting ITC soft

1
Accuracy 0.8067 0.9273 0.5376 0.7091 0.5424 0.4770 0.2358

NMI 0.6050 0.7966 0.5120 0.5870 0.7182 0.3008 0.3416

2
Accuracy 0.9036 0.9394 0.5285 0.7333 0.3267 0.5176 0.4085

NMI 0.7485 0.8283 0.5056 0.5986 0.8087 0.3898 0.3464

4
Accuracy 0.9248 0.9576 0.7624 0.7636 0.9255 0.6370 0.5485

NMI 0.7933 0.8841 0.6280 0.6179 0.9057 0.4437 0.4634

The accuracy for all the 6 tasks for two networks are summarized in Table 7.1 through Table

7.3 and Table 7.4 through Table 7.6 respectively. From the results we can see that, PathSelClus

performs the best in most of the tasks. Even for the task such as DBLP-T3 where other methods

give the best clustering result, PathSelClus still gives clustering results among the top. This means,

PathSelClus can give consistently good results across different tasks in different networks.

Also, by looking at the clustering accuracy trend along with the number of seeds used in each

cluster, we can see that, more seeds generally leads to better clustering results.

Table 7.4: Clustering accuracy for Yelp-T1 task.

%S Measure PathSelClus LP ITC LP voting LP soft ITC voting ITC soft

1%
Accuracy 0.5384 0.3381 0.2619 0.1632 0.1632 0.2564 0.2769

NMI 0.5826 0.0393 0.0042 0.0399 0.0399 0.1907 0.2435

2%
Accuracy 0.5487 0.3444 0.2798 0.1713 0.1713 0.3581 0.3790

NMI 0.5800 0.0557 0.0062 0.0567 0.0567 0.2281 0.2734

5%
Accuracy 0.5989 0.3732 0.3136 0.1965 0.1965 0.5215 0.5250

NMI 0.5796 0.1004 0.0098 0.0962 0.0962 0.2583 0.2878

Table 7.5: Clustering accuracy for Yelp-T2 task.

%S Measure PathSelClus LP ITC LP voting LP soft ITC voting ITC soft

1%
Accuracy 0.7435 0.1137 0.1758 0.2112 0.2112 0.2430 0.2022

NMI 0.6517 0.0323 0.0178 0.0578 0.0578 0.2308 0.2490

2%
Accuracy 0.8004 0.1264 0.1910 0.2202 0.2202 0.2762 0.2792

NMI 0.6803 0.0487 0.0150 0.0801 0.0801 0.2099 0.2907

5%
Accuracy 0.8125 0.2653 0.2200 0.2437 0.2437 0.3049 0.3240

NMI 0.6894 0.1111 0.0220 0.1212 0.1212 0.2252 0.2692
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Table 7.6: Clustering accuracy for Yelp-T3 task.

%S Measure PathSelClus LP ITC LP voting LP soft ITC voting ITC soft

1%
Accuracy 0.4736 0.2789 0.1893 0.0682 0.0682 0.2593 0.1775

NMI 0.4304 0.0568 0.0155 0.0626 0.0626 0.1738 0.2065

2%
Accuracy 0.4597 0.4008 0.1948 0.0764 0.0764 0.2318 0.2033

NMI 0.4359 0.0910 0.0172 0.0755 0.0755 0.1835 0.1822

5%
Accuracy 0.4393 0.5351 0.2233 0.1033 0.1033 0.3337 0.3083

NMI 0.4415 0.1761 0.0194 0.1133 0.1133 0.1793 0.2285

Partial Cluster Seeds

We then test the clustering accuracy when cluster seeds are only available for some of the clusters.

We perform this study on DBLP-T3 using PathSelClus, which includes 4 clusters, and the results

are shown in Figure 7.4. We can see that even if user guidance is only given to some clusters, those

seeds can still be used to improve the clustering accuracy. In general, the fewer number of clusters

with seeds, the worse the clustering accuracy, which is consistent with the human intuition. Note

that, label propagation-based methods like LP cannot deal with partial cluster labels. However, in

reality it is quite common that users are only familiar with some of the clusters and are only able

to give good seeds in those clusters. That is another advantage of PathSelClus.
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Figure 7.4: Clustering accuracy under partial guidance on DBLP-T3. Number of seeds provided
by user for each cluster is 1 (#seeds = 1).

7.5.3 Case Study on Meta-Path Weights

One of the major contributions of PathSelClus is that it can select the right meta-paths for a

user-guided clustering task. We now show the learned weights of meta-paths for some of the tasks.

In DBLP-T1 task, the total weight αm for meta-path V − P − A − P − V is 1576, and the

152



average weight per relationship (a concrete path instance following the meta-path) is 0.0017. The

total weight for meta-path V −P −T −P −V is 17001, whereas the average weight per relationship

is 0.0003. This means that generally the relationships between two conferences that are connected

by an author are more trustable than the ones that are connected by a term, which is consistent

with human intuition since many terms can be used in different research areas and authors are

typically more focused on confined research topics. However, as there are much more relationships

following V − P − T − P − V than following V − P −A− P − V , the former overall provide more

information for clustering.

In the Yelp network, similar to DBLP-T1 task, in terms of the average weight for each relation-

ship, meta-path B−R−U−R−B is with higher weight than B−R−T −R−B; whereas in terms

of total weight, meta-path B −R− T −R−B is with higher weight. An interesting phenomenon

is that, for Yelp-T2 task, which tries to cluster restaurants into different categories, the average

weight for relationships following B−R−U −R−B is 0.1716, much lower than the value (0.5864)

for Yelp-T3 task, which tries to cluster shopping businesses into finer categories. This simply says

that most users actually will try different kinds of food, therefore they will not be served as a good

connection between restaurants as they are in other categories.

7.6 Related Work

Recently, there are many clustering algorithms proposed for networks, such as spectral clustering-

based methods [90, 72], link-based probabilistic models [30, 3], modularity function-based algo-

rithms [81, 80], and density-based algorithms [117, 113] on homogenous networks; and ranking-

based algorithms [100, 103], non-negative matrix factorization [62, 112], spectral clustering-based

methods [69], and probabilistic approaches [70] on heterogeneous networks. However, while all

these clustering methods use the information given in the networks, none considers that different

users may have different purposes for clustering, nor do they ask users to help select different in-

formation for link-based clustering. In this chapter, we show that different types of relationships

encoded by meta-paths have different semantic meanings in determining the similarity between

target objects, and the selection of these meta-paths should be done with user guidance in order

to derive user-desired clustering results.
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There are several lines of research on how to add user guidance to derive good clustering results,

consistent with users’ demand in vector space or networked data.

• Clustering with constraints. In [11, 12, 61], clustering algorithms that consider constraints either

in the form of seeds in each cluster or pairwise constraints as must-link or cannot-link are

proposed. A probabilistic model with an HMRF (hidden Markov random field) as a hidden layer

that models the must-link and cannot-link between objects is proposed to solve the problem [12].

This approach can also be extended to graph data with the use of kernels instead of vector-based

features [61]. However, these methods assume there is one trustable information source to either

define the feature of each object or define the network structure between objects. The goal is

to output the clustering result that is consistent with both the similarity defined by the data as

well as the user guidance. In this chapter, we dig further and study which type of information

source encoded with meta-paths is more trustable in a heterogeneous network.

• Semi-supervised learning on graphs. In [134, 135, 131], algorithms that propagate labels for a

small portion of objects into the rest of the network are proposed, which are based on harmonic

functions defined between objects using the network structure. Again, this kind of methods

totally trust the given network and determine the best labels of the rest of the nodes according

to the cost function defined on the network.

• Semi-supervised metric learning. In [17, 8], algorithms that learn the best distance metric func-

tions according to the constrains for the clustering task are proposed. This line of problem is

closer to the meta-path selection problem, but still differs significantly. First, they study features

of objects in vector space instead of network; second, the metric functions should be given in an

explicit format, which is very difficult to determine in a network scenario. In this chapter, we

are not finding an explicit metric function that determines the similarity between any two target

objects, instead, we model and learn the quality weight for each meta-path in the clustering

process, which can be viewed as an implicit way to determine the similarity between two target

objects.

• User-guided clustering in relational data. CrossClus [121] deals with another type of guidance

from users: the attribute set of the target object type. The algorithm extracts a set of highly
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relevant attributes in multiple relations connected via linkages defined in the database schema,

and then use the whole attribute set as the feature set to apply traditional vector space-based

clustering algorithm. CrossClus works for relational data with complete attributes, but not for

purely link-based clustering.

Cluster ensemble [94, 85] is a method that combines clustering results of different methods or

different datasets to a single consensus. Most of these cluster ensemble methods try to find a mean

partition given different partitions of target objects. However, in reality these clusterings may

conflict with each other, representing different purposes of clustering tasks, and a consensus does

not necessarily lead to a clustering desired by users. In this study, we do not combine clustering

results at the output level, but use intermediate clustering results as feedback to adjust the weight

of each meta-path, and thus the clustering results and the quality weight for each meta-path can

mutually enhance each other.

Our work also differs from traditional feature selection [43] and recently emerged semi-supervised

feature selection [126, 116], which focus on vector space features, and do not have an immediate ex-

tension of solutions to our problem. For our meta-path selection problem, each meta-path provides

a source of features instead of a concrete feature, and we have shown that simple combinations of

features from different sources may lead to no good solution.

7.7 Discussions

The Power of Meta-Path Selection Different meta-paths in heterogeneous networks could be

viewed as different sources of information for defining link-based similarity between objects. There

are several ways to handle different meta-paths for a mining task such as clustering: (1) to combine

them at relation matrix level, such as in baselines ITC and LP; (2) to combine the clustering results

at the output level, such as in ensemble baselines; and (3) to learn and improve the quality weights

for each meta-path iteratively, such as in PathSelClus. Only the third approach is able to select

different meta-paths according to different clustering tasks, whereas the other two can only output

an “average” clustering result using all the information. It turns out that, in most cases, the third

approach is more flexible to combine information from different sources, and its advantage has been
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shown in the experiment section.

Meta-Paths vs. Path Instances We now only consider the different semantics encoded by

different meta-paths. In practice, different concrete paths (path instances) between two objects

may also differ from each other. For example, two objects may be linked via a “bridge” or via

a “hub,” indicating different meanings. The difference between the two concepts: meta-path and

path instance, is similar to the difference between a source of features and a concrete feature in a

vector space. In this chapter, we have only discussed the selection of meta-paths. It is possible to

select path instance at the object level, and the concrete method is left for future research.

7.8 Conclusion

Link-based clustering for objects in heterogeneous information networks is an important task with

many applications. Different from traditional clustering tasks where similarity functions between

objects are given and with no ambiguity, objects in heterogeneous networks can be connected via

different relationships, encoded by different meta-paths. In this chapter, we integrate the meta-path

selection problem with the user-guided clustering problem in heterogeneous networks. An algorithm

PathSelClus that can utilize very limited guidance from users in the form of seeds in some of the

clusters and automatically learn the best weights for each meta-path in the clustering process,

is proposed. The experiments on different tasks on real datasets have demonstrated that our

algorithm can output the most stable and accurate clustering results compared with the baselines.

Also, the learned weights for each meta-path are very insightful to explain the hidden similarity

between target objects under a particular clustering task.

Exploration of other types of user guidance, such as must-link and cannot-link, in meta-path

selection for effective link-based clustering is an interesting topic for future study. More generally,

meta-path selection problem exists in many other mining tasks, such as classification, ranking,

relationship prediction and so on, which requires more future research on integrating meta-path

selection with all these different mining tasks.
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Chapter 8

Conclusion and Research Frontiers

In this thesis, we have proposed to use heterogeneous information networks to model real-world

connected data, and introduced some general principles and methodologies for mining heteroge-

neous information networks. Although homogeneous networks are interesting subjects to study,

real-world objects are usually connected via heterogeneous types of objects in complex ways, car-

rying critical information and rich data semantics, as shown in the examples like authors linking

with papers and venues, and patients linking with diseases and treatments. Clearly, heterogeneous

information networks preserve rich semantic information of the real-world data. Mining directly

on heterogeneous information networks often leads to in-depth understanding of the relationships

among different types of data and their regularities, models, patterns and anomalies, hence a deep

insight of the networks, and fruitful mining results.

8.1 Conclusion

In the thesis, we have made the contributions on mining heterogeneous information networks in

the following aspects.

1. We have proposed three principles on systematically mining heterogeneous information net-

works as follows.

• Information propagation across heterogeneous types of nodes and links. Hetero-

geneous information network contains much richer and more complex information compared

with projected homogeneous information networks. Objects from different types in the het-

erogenous networks are interdependent, and knowledge can only be mined using the holistic

information in a network. Thus, we need to study how to compute ranking scores, similarity
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scores, cluster and class labels, across heterogeneous nodes and links. This is a principle

that goes through all the chapters, which is mainly illustrated in Part I, including Chapter

2 and Chapter 3 .

• Search and mining by exploring network meta structures. The network schema

provides a meta structure of the information network. It provides guidance of search and

mining of the network and help analyze and understand the semantic meaning of the objects

and relations in the network. Meta-path-based similarity search and mining introduced

in this thesis has demonstrated the usefulness and the power of exploring network meta

structures. The second principle is mainly discussed in Part II, including Chapter 4 and

Chapter 5.

• User-guided exploration of information networks. In a heterogeneous information

network, there often exist numerous semantic relationships across multiple types of objects,

carrying subtly different semantic meanings. It is desirable to automatically select the right

relation (or meta-path) combinations with appropriate weights for a particular search or

mining task based on user’s guidance or feedback. User-guided or feedback-based network

exploration is a useful strategy. The third principle is mainly discussed in Part III, including

Chapter 6 and Chapter 7.

2. We have studied different mining tasks on heterogeneous information networks, which include

ranking (Chapter 2 and Chapter 3), clustering (Chapter 2, Chapter 3, Chapter 6, and Chap-

ter 7), similarity search (Chapter 4), relationship prediction (Chapter 5), user-guided clustering

(Chapter 7), and relation strength-aware learning (Chapter 6 and Chapter 7). Some of these

mining tasks are unique for heterogeneous information networks, such as relationship prediction

and relation strength-aware mining problems. For other mining tasks, although they have al-

so been studied in homogeneous information networks, new solutions are required in the new

heterogeneous network scenario.

3. We have proposed models and algorithms to solve the above mining tasks in different applica-

tions, which include ranking-based clustering algorithms (RankClus, Chapter 2, and NetClus,

Chapter 3), meta-path-based similarity search algorithm (PathSim, Chapter 4), meta-path-based
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relationship prediction (PathPredict and PathPredict when, Chapter 5), relation strength-aware

clustering with incomplete attributes (GenClus, Chapter 6), and user-guided clustering with

meta-path selection (PathSelClus, Chapter 7).

8.2 Research Frontiers

Mining heterogeneous information networks is a young and promising research field. There are

many unexplored territories and challenging research issues. Here we illustrate a few of them.

Constructing and Refining Heterogeneous Information Networks. Our study in most

of the chapters assumes that a heterogeneous information network to be investigated contains a

well-defined network schema and a large set of relatively clean and unambiguous objects and links.

However, in the real world, things are more complicated.

A network extracted from a relational database may contain a well-defined schema which can be

used to define the schema of its corresponding heterogeneous information network. Nevertheless,

objects and links even in such a database-formed information network can still be noisy. For

example, in the DBLP network, different authors may share the same name [120], that is, one node

in a network may refer to multiple real-world entities; whereas in some other cases, different nodes

in a network may refer to the same entity. Entity resolution will need to be integrated with network

mining in order to merge and split objects or links and derive high quality results. Moreover, links

in a network, roles of a node with respect to some other nodes may not be explicitly given. For

example, the advisor-advisee relationship in the DBLP network [110] is not given, but such kind

of relationships can be critical for understanding the growth of a research community or for some

other data mining tasks. Furthermore, sometimes the connections between different nodes may not

be reliable or trustable. For example, the author information for a book provided by an online book

store could be erroneous or inaccurate. Multiple Web-sites may provide conflicting or compensating

information for the properties of certain objects. Trustworthiness modeling [129] could be critically

important for data cleaning, data integration, and quality network construction.

Construction of high-quality heterogeneous information networks becomes increasingly more

challenging when we move away from relational databases towards increasingly more complicated,

159



unstructured data, from text documents, to online web-based systems, multimedia data, and multi-

lingual data. Information extraction, natural language understanding, and many other information

processing techniques should be integrated with network construction and analysis techniques to

ensure high-quality information networks can be constructed and progressively refined so that

quality mining can be performed on better-quality heterogeneous information networks.

Notice that entity extraction, data cleaning, detection of hidden semantic relationships, and

trustworthiness analysis should be integrated with the network construction and mining processes to

progressively and mutually enhance the quality of construction and mining of information networks.

Diffusion analysis in heterogeneous information networks. Diffusion analysis has been

studied on homogeneous networks extensively, from the innovation diffusion analysis in social sci-

ence [86] to obesity diffusion in health science [27]. However, in the real world, pieces of information

or diseases are propagated in more complex ways, where different types of links may play different

roles. For example, diseases could propagate among people, different kinds of animals and food, via

different channels. Comments on a product may propagate among people, companies, and news

agencies, via traditional news feeds, social media, reviews, and so on. It is highly desirable to study

the issues on information diffusion in heterogeneous information networks in order to capture the

spreading models that better represent the real world patterns.

Discovery and mining of hidden information networks. Although a network can be huge,

a user at a time could be only interested in a tiny portion of nodes, links, or sub-networks. Instead

of directly mining the entire network, it is more fruitful to mine hidden networks “extracted” dy-

namically from some existing networks, based on user-specified constraints or expected node/link

behaviors. For example, instead of mining an existing social network, it could be more fruitful to

mine networks containing suspects and their associated links; or mine subgraphs with nontrivial

nodes and high connectivity. How to discover such hidden networks and how to mine knowledge

(e.g., clusters, behaviors, and anomalies) from such hidden but non-isolated networks (i.e., still in-

tertwined with the gigantic network in both network linkages and semantics) could be an interesting

but challenging problem.
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Discovery of application-oriented ontological structures in heterogeneous information

networks. As shown in the studies on ranking-based clustering and ranking-based classification,

interconnected, multiple typed objects in a heterogeneous information network often provide critical

information for generating high quality, fine-level concept hierarchies. For example, it is often dif-

ficult to identify researchers just based on their research collaboration networks. However, putting

them in a heterogeneous network that links researchers with their publication, conferences, terms

and research papers, their roles in the network becomes evidently clear. Moreover, people may have

different preferences over ontological structures at handling different kinds of tasks. For example,

some people may be interested in the research area hierarchy in the DBLP network, whereas others

may be interested in finding the author lineage hierarchy. How to incorporate user’s guidance, and

generate adaptable ontological structures to meet users’s requirement and expectation could be an

interesting and useful topic to study.

Online analytical processing of heterogeneous information networks. The power of on-

line analytical processing (OLAP) has been shown in multidimensional analysis of structured, re-

lational data. Similarly, users may like to view a heterogeneous information network from different

angles, in different dimension combinations, and at different levels of granularity. For example, in a

bibliographic network, by specifying the object type as paper and link type as citation relation, and

rolling up papers into research topics, we can immediately see the citation relationships between

different research topics and figure out which research topic could be the driving force for others.

However, the extension of the concept of online analysis processing (OLAP) to multi-dimensional

data analysis of heterogeneous information networks is nontrivial. Not only different applications

may need different ontological structures and concept hierarchies to summarize information net-

works but also because multiple pieces of semantic information in heterogeneous networks are

intertwined, determined by multiple nodes and links. There are some preliminary studies on this

issue, such as [107, 25, 130], but the large territories of online analytical processing of information

networks are still waiting to be explored.

Intelligent querying and semantic search in heterogeneous information networks. Giv-

en real-world data are interconnected, forming gigantic and complex heterogeneous information
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networks, it poses new challenges to query and search in such networks intelligently and efficiently.

Given the enormous size and complexity of a large network, a user is often only interested in a

small portion of the objects and links most relevant to the query. However, objects are connected

and inter-dependent on each other, how to search effectively in a large network for a given user’s

query could be a challenge. Similarity search that returns the most similar objects to a queried

object, as studied in this thesis [99] and its follow-up [89], will serve as a basic function for semantic

search in heterogeneous networks. Such kind of similarity search may lead to useful applications,

such as product search in e-commerce networks and patent search in patent networks. Search

functions should be further enhanced and integrated with many other functions. For example,

structural search [123], which tries to find semantically similar structures given a structural query,

may be useful for finding pattern in an e-commerce network involving buyers, sellers, products,

and their interactions. Also, a recommendation system may take advantage of heterogeneous in-

formation networks that link among products, customers and their properties to make improved

recommendations. Querying and semantic search in heterogeneous information networks opens

another interesting frontier on research related to mining heterogeneous information networks.
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Appendix A

Proofs of Theorems

Here are the proofs of the theorems introduced in the previous chapters.

Theorem 4.1: Properties of PathSim.

Proof. (1) s(xi, xj) =
2Mij

Mii+Mjj
=

2Mji

Mii+Mjj
= s(xj , xi), as Mij = Ml(i, :) ·Ml(j, :) = Ml(j, :) ·Ml(i, :

)=Mji, where · means the dot product of two vectors.

(2) Let Ml(i, :) = (a1, a2, . . . , ap), Ml(j, :) = (b1, b2, . . . , bp), easy to see ak, bk are nonnegative

for all 1 ≤ k ≤ p, then Mij =
∑p

k=1 akbk ≥ 0, Mii =
∑p

k=1 a
2
k > 0 (no dangling object), and

Mjj =
∑p

k=1 b
2
k > 0, therefore s(xi, xj) ≥ 0; also,

∑p
k=1 a

2
k +

∑p
k=1 b

2
k ≥ 2

∑p
k=1 akbk, with equality

holding when ak = bk for every k, therefore s(xi, xj) ≤ 1, and s(xi, xi) = 1.

(3) Mij =
∑

k akbk ≤
√∑

k a
2
k

∑
k b

2
k =

√
MiiMjj (by Cauchy-Schwarz inequality), then

s(xi, xj) ≤ 2√
Mii/Mjj+

√
Mjj/Mii

.

Theorem 4.2: Limiting behavior of PathSim under infinity length meta-path.

Proof. Since M = (MPM
T
P ) is real symmetric, it can be decomposed as M = PDP T , where D

is a diagonal matrix with the values of eigenvalues of M , P is an orthogonal matrix composed of

eigenvectors corresponding to eigenvalues in D. Let r be the first column in P , thenMk = PDkP T .

Let s
(k)
ij = 2Mk(i,j)

Mk(i,i)+Mk(j,j)
, λ1 be the largest eigenvalue of M , then s

(k)
ij =

2(PDkPT /λk
1 )(i,j)

(PDkPT (i,i)+PDkPT (j,j))/λk
1
,

and lim
k→∞

s
(k)
ij = 2r(i)r(j)

r(i)r(i)+r(j)r(j) .

Theorem 4.3: Bounds for block-based similarity measure approximation.

Proof. 1.
∑

y∈Cv
s(x, y) =

∑
y∈Cv

2xTy
D(x)+D(y) ≤

2xT
∑

y∈Cv
y

D(x)+1 =
∑

u

2x(Ru)T
∑

y∈Cv
y(Ru)

D(x)+1

≤
∑

u
2x̂1(u)T (u,v)

D(x)+1 =
2x̂T

1 T (:,v)
D(x)+1 , since according to Holder’s Inequality, aTb ≤ ||a||∞||b||1.

2. s(x, y) = 2xTy
D(x)+D(y) =

2
∑

u x(Ru)Ty(Ru)
D(x)+D(y) . Since aTb ≤ ||a||2||b||2 according to Cauchy-Schwarz

inequality, then the above formula ≤ 2
∑

u x̂2(u)TT1(u,y)
D(x)+D(y) =

2x̂T
2 TT1(:,y)

D(x)+D(y) .
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