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ABSTRACT 

 

The Smart Grid represents a transition of the power and energy industry into a new era of 

improved efficiency, reliability, availability, and security, while contributing to economic and 

environmental health. However, several challenges must be addressed for real-life 

implementation of Smart Grids. Demonstrating the effectiveness of data mining and graph theory 

in solving some of these problems is the motivation of this dissertation. 

One of the key challenges in taking advantage of what the Smart Grid offers is to extract 

information from volumes of power system data accumulated by a suite of new sensors and 

measurement devices. Data presents unprecedented potential of developing better understanding 

of the underlying system. Handling “data explosion” in power systems and mining it for 

information is hence a critical challenge, necessitating the development of sophisticated 

algorithms. To address this need, a particular instance of power system data, namely transient 

stability data is studied. Generator frequencies in a large power system are analyzed with data 

mining techniques to extract information such as groups of coherent generators. An effective 

visualization method based on “spark-lines” is also presented answering a long-time question of 

how to best display time-varying power system data.  Spark-lines are automatically placed on a 

geographical map of the system employing methods of graph drawing. Developed methods 

detected abnormal behavior in two generators of the system which was caused by errors in the 

generators’ simulation models that were previously undetected and subsequently corrected. This 

brings out the power of the developed methodology. 

Another important aspect of the Smart Grid is to enable integration of large quantities of 

renewables such as wind power. This requires installation of large wind farms and in turn 
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availability of advanced methods for designing wind farms. The electrical collector system is the 

single most important element of a wind farm after the wind turbines, and its optimal design is 

necessary for optimal wind farm operation. However, there is a need for algorithms to 

automatically design optimal wind farm collector systems. This represents the second problem 

addressed in this dissertation. A graph-theoretic approach has been applied to design an optimal 

wind farm collector system with minimum total trenching length. Clustering techniques have 

also been found extremely useful in handling specific design constraints. Application of the 

developed methods generated designs with significantly lower costs compared to an actual real-

world wind farm. 

The third and final challenge addressed is reliably integrating large quantities of wind power 

into the system. Inherent problems of variability of wind power can be overcome by developing 

better wind power forecasting methods and incorporating energy storage units such as batteries. 

A least squares estimation based short-term wind power forecasting method has been presented. 

Additionally, methods have been developed to determine optimal storage capacity required and 

optimal generation commitment for a wind farm with on-site energy storage. Both methods have 

been found to be extremely sensitive to the statistical properties of wind and load forecast data. 

In summary, this work applies tools, techniques, and concepts from the areas of graph 

theory and data mining to address three critical challenges of real-life implementation of Smart 

Grids. It is anticipated that the work presented in this dissertation will encourage future research 

in application of graph theory and data mining to other Smart Grid challenges.   
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1. INTRODUCTION 

1.1 Motivation 

Electrification has been recognized as “the greatest engineering achievement of the 20th 

century” by the National Academy of Engineering. The present United States electric grid is a 

gigantic network, consisting of more than 9,200 generation units, 1 million MW of capacity, and 

300,000 miles of transmission lines. Although an engineering marvel, electric power 

requirements of the 21st century have led to increasing complexity of grid management and 

hence the need to upgrade the existing energy infrastructure to the Smart Grid. 

The term Smart Grid encompasses a class of technologies that enable two-way 

communication technology, enhanced cyber-security, handling large amounts of renewable 

sources of energy such as wind and solar and even integrating electric vehicles onto the grid. The 

principal functional characteristics that comprise the foundation of Department of Energy 

(DOE)’s Smart Grid program are as follows [1]: 

 Self-healing from power disturbance events 

 Enabling active participation by consumers in demand response 

 Operating resiliently against physical and cyber attack 

 Providing power quality for 21st century needs 

 Accommodating all generation and storage options 

 Enabling new products, services, and markets 

 Optimizing assets and operating efficiently 
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The benefits associated with Smart Grids will be realized both at utility and consumer ends 

with higher energy efficiency and lower energy costs and in the overall system with improved 

reliability, availability, and adequacy. However, enabling the Smart Grid as envisioned is not an 

easy problem. Several challenges need to be addressed before the Smart Grid becomes a reality. 

For example, one critical challenge is to handle increasing amounts of power system data 

acquired by the network of new sensors and measurement devices in the Smart Grid. As volumes 

of such data are becoming gigantic, terms such as “data explosion” are being used more 

frequently to describe the situation of power systems with respect to data. There is a lot of 

information embedded in this data which could enable several applications such as intelligent 

monitoring and control of the system. But the crucial question is: How is this information 

extracted? Another challenge involves integration of renewable sources of energy such as wind. 

An important Smart Grid functional characteristic is the ability to accommodate all generation 

and storage options which include wind power. In the United States, installed capacity of wind 

power has been increasing over the years as shown in Figure 1. The Department of Energy 

(DOE) has put forward goals of achieving 20% wind power penetration by 2030, a target that 

would increase the wind power installed in the United States from ~47 GW in 2011 to ~300 GW 

in 2030 [2, 3]. This steep growth target of ~13 GW/year is accompanied by challenges of large-

scale wind power integration from planning to operations which must be addressed as a part of 

Smart Grid implementation as well. 

The objective of this dissertation is to demonstrate how concepts and techniques from data 

mining and graph theory can be applied to solve some of the Smart Grid challenges. A 

background on each of the areas of data mining and graph theory will be provided in the next 
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section. Also, the challenges addressed in this dissertation will be discussed in the context of 

graph-theoretic and data mining methods. 

 

 

Figure 1: Installed wind power capacity in the United States (Source: AWEA) 
 

   

1.2 Background 

 

Graph theory 

Graph theory is the study of graphs. A graph is an abstract representation of a set of objects 

called nodes or vertices in which some pairs of vertices are connected by branches or edges. A 
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graph is often denoted by an ordered pair G = (V, E) where V is the set of vertices and E is the 

set of edges. An example of a graph is shown in Figure 2. 

 

       

 

 

      
 

 

A graph may be undirected or directed depending on whether there is a direction associated 

with its edges from one vertex to another. Hence Figure 2 is also an example of an undirected 

graph. A directed graph involving the same vertices and edges is shown in Figure 3. 

 

 

 

 

 

        

From the graph-theoretic perspective, the power system is a gigantic graph of buses as 

vertices and transmission lines as edges. In this complex technological network, 

interconnectivity of thousands of buses and transmission lines ensures the transmission and 

distribution of electric power from generators to the loads. Because of this analogy, graph theory 

has found numerous applications in traditional power systems.   

 Figure 2: Example of a graph, V = {1, 2, 3, 4, 5}, E = {A, B, C, D, E} 
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Figure 4: United States transmission grid – a complex network (Source: FEMA) 
   

Graph-theoretic concepts are for instance very useful in topological analysis of power 

systems. Pai has addressed this topic in his book on application of computer techniques in power 

system analysis [4]. A power system network with passive elements can be represented by its 

graph, facilitating the computation of incidence matrices, cutset matrices, Kirchoff’s current law 

(KCL) equations for solving for branch currents, bus impedance and admittance matrices, which 

in turn are required for several other power system analyses such as power flow. Suppose the 

graph in Figure 3 belongs to a certain passive power system network. Then in matrix form, the 

KCL equations for the network can be easily written as: 

Lines 
A     B      C     D       E 

  Nodes       

1
2
3
4
5

0 1 1 0 0
1 1 0 0 0
1 0 1 1 0
0 0 0 1 1
0 0 0 0 1

0 

(1.1)
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where the first matrix on the left-hand side is the incidence matrix and the second matrix on the 

left-hand side is the vector of line currents. Another useful reference on different power system 

applications of graph theory is a book by Zhu [5]. This book includes graph-theoretic 

applications for power flow calculations, classical economic power dispatch, security constrained 

economic dispatch, multi-area system economic dispatch, reactive power optimization and 

pricing in multi-area environment, hydro-thermal power system operation, power system state 

estimation, secure economic automatic generation control, automatic contingency selection, 

distribution network optimization, and optimal load shedding. It is beyond the scope of one 

dissertation to discuss all applications of graph theory in power systems. So the review provided 

here is of the works where the same graph-theoretic concepts have been applied as in this 

dissertation. 

An important definition related to graphs is a tree, which is a graph with one and only one 

path between any two vertices. In other words, a graph without any loops is a tree. Hence the 

graph in Figure 2 is not a tree whereas the one in Figure 5 is a tree. In fact, the tree in Figure 5 is 

an example of a spanning tree since it spans all of the vertices of the graph.  

 

 

 

          

                                                   

      

Given a graph with a set of vertices and edges, there can be several spanning trees. For a 

complete graph, i.e. a graph (V, E) in which every pair of nodes in V is connected by an edge, 

Figure 5: Example of a tree
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the number of non-identical spanning trees is VV-2 as can be calculated by Cayley’s Tree formula 

[6]. Each edge of a graph can be assigned a weight or cost, which is a number representing how 

unfavorable it is and can be used to assign a weight to a spanning tree by computing the sum of 

the weights of the edges in that spanning tree. A minimum spanning tree (MST) is then a 

spanning tree with weight less than or equal to the weight of every other spanning tree. 

Spanning trees have been particularly useful in observability analysis of power system 

networks. A network is said to be observable if it is possible for the state estimator on it to 

determine the bus voltage magnitudes and angles throughout the entire network from the 

installed measurements. One way to determine observability of a system is by using a 

topological approach [7, 8, 9, 10]. A key paper in this area is by Krumpholz et al. [7] where 

authors have shown that a power system is topologically observable with respect to a 

measurement set consisting of a voltage measurement and pairs of P, Q measurements if and 

only if there exists a spanning tree of the system of full rank. Mori and Tzuzuki [11] proposed a 

minimum spanning tree based method for topological observability analysis. System 

observability in turn drives state estimator issues such as measurement placement. Wu’s 

dissertation [12] describes a heuristic-based algorithm for branch flow measurement placement 

such that the measurements form a spanning tree. For an n-bus network, the spanning tree 

consists of n-1 branches. Therefore, at least n-1 branch power flow measurements are needed to 

make the network observable. RTUs which are capable of obtaining all measurements from a 

single substation are placed strategically, in a “concentrated” measurement placement scheme so 

that fewer RTUs are needed. Lei’s thesis [13] addresses state estimator issue using graph theory 

and proposes a concept of contingency observability graph (COG) advancing the classical 

topological observability analysis, and it is proven that a power system network maintains its 
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observability under a contingency if and only if its COG satisfies some conditions. 

Another area of application of spanning trees in power system is in power distribution 

systems. An electrical network at the distribution level is composed of hundreds of nodes, most 

of which correspond to power delivery points or load points, and hundreds of branches, most of 

which correspond to electrical cables. The other nodes correspond to connecting points and the 

other branches correspond to switching busbars. In normal operation, each load point or 

connecting point is connected to a power delivery point through a single path. Thus, the network, 

when in operation, is radial and connected, i.e., the network is a spanning tree as shown in Figure 

6. One of the earliest and a key paper is by Merlin and Black [14] who have presented a spanning 

tree based method for reconfiguring a distribution network to minimize losses. More recently 

several other researchers [15, 16] have also employed spanning trees and minimum spanning 

trees in the context of distribution system reconfiguration, planning, and design. 

 

Figure 6: A radial distribution network [Source: 17] 
 

Distribution system restoration aimed at restoring loads after a fault by altering the 

topological structure of the distribution network by changing open/closed states of some tie 
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switches and sectionalizing switches in the distribution system also use spanning tree based 

algorithms to find candidate restoration strategies. A graph-theoretic distribution system 

restoration strategy that maximizes the amount of load to be restored and minimizes the number 

of switching operations is presented in Li’s dissertation [18]. Spanning trees have also been 

addressed for reconfiguring shipboard power systems (SPS) [19] which supply energy to electric 

equipment on ships. It is critical for the system to be reconfigurable for the purpose of 

survivability and reliability. 

Now consider a wind farm with wind turbines distributed over a geographical region and a 

substation which consolidates power generated by the turbines and transmits to the grid. Suppose 

that the wind turbines and the substation are already placed based on wind patterns, proximity to 

the transmission grid etc., and the question is: How should the electrical cables which connect 

the wind turbines to the substation be laid out in an optimal way? Thus the problem is that of 

optimal design of the wind farm collector system and is an important part of wind farm design 

since optimal operation of wind farms depends on it. The difficulty of a collector system design 

project is that given the wind turbine locations and the substation location, depending on the 

dimension of the wind farm, there may be thousands of feasible layout configurations to choose 

from. Selecting an optimal design from these choices can be a challenging task. In addition there 

are several design constraints to be taken into account. Hence an optimal design method is a 

critical need. In addition, it is necessary to automate the design process. This is a comparatively 

new area with a dearth of available research work. In addressing this design issue, a very 

interesting connection has been noticed between the wind farm collector system and graph 

theory. The problem of cable layout design for a wind farm collector system can be considered 

as finding a tree to meet required design characteristics in a graph G = (V, E), where V 
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represents the set of vertices which are the locations of wind turbines and the substation, and E 

represents the set of branches connecting the vertices which are the connecting cables. In a wind 

farm with hundreds of turbines, the difficulty is in finding the optimal tree to attain a desired 

objective since performing an exhaustive search becomes computationally expensive. If the 

objective is to minimize the total cable length and hence to find a tree in the graph with 

minimum total length of edges, the problem directly transforms itself to finding the minimum 

spanning tree.  Hence the challenge of wind farm collector system design presents a very 

interesting application of graph theory and is one of the topics considered in this dissertation. 

If additional intermediate vertices and edges can be added to a graph in order to reduce the 

length of its spanning tree, then the resulting tree becomes a Steiner tree [20]. These new vertices 

introduced to decrease the total length of the connection are known as Steiner points or Steiner 

vertices. The minimum Steiner tree problem [21] comes under combinatorial optimization and 

the main difficulty is to place Steiner points in order to get the shortest interconnect. Hence, the 

problem is superficially similar to the minimum spanning tree problem which interconnects a 

given set of points or vertices by a network or graph of shortest total weight of edges. In fact, a 

minimum spanning tree is a feasible but not usually optimal solution to the Steiner tree problem. 

For the Euclidean Steiner tree problem, with the geometric distance between vertices being 

the weight of the edges, Steiner points must have a degree of three, and the three edges incident 

to such a point must form three 120 degree angles. It follows that the maximum number of 

Steiner points that a Steiner tree can have is N − 2, where N is the initial number of given points. 

For N = 3, solution is given by a Steiner point located at the Fermat point of the triangle formed 

by the given points. Figure 7 shows the Steiner points for groups of three and four points 

respectively.    
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Figure 7: Steiner points for groups of three and four points 

 

Steiner trees have been studied in power systems for routing transmission lines with 

minimum cost over a terrain divided into equal cost regions with the exception of certain 

impassable regions, such as lakes and forests, which are considered to have infinite cost by 

Coulston and Weisshach [22]. Miguez et al. [23] have addressed Steiner trees for optimal design 

of medium voltage distribution systems. A branch-exchange technique is applied to first obtain a 

spanning tree. This is followed by applying a heuristic Euclidean Steiner tree algorithm to 

improve the spanning tree design. 

From the perspective of the wind farm collector system design, there is definitely the 

additional degree of freedom of allowing the creation of intermediate splice nodes similar to 

Steiner’s vertices to reduce the total length obtained by the minimum spanning tree algorithm. 

Hence it is imperative to explore the applicability of Steiner trees in addressing this challenge 

and will be discussed in more detail in Chapter 3. 

Graph theory also has its applications in power system visualization. One example is auto-

generation of one-line diagrams of power systems. Drawing one-line diagrams of large power 

systems is a cumbersome process if done manually. Hence there is a need to automate the 

process. Song et al. [24] have proposed three algorithms for automatic generation of power 
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system one-line diagrams. These algorithms use spring-embedder or force-based graph drawing 

for placing the buses or breakers. In [25], authors addressed a meshed system using a modified 

version of the Controlled Spring Embedder algorithm enhanced by the usage of physical laws 

and geospatial data. These applications mainly utilize the analogy of buses and transmission lines 

on a power system one-line with vertices and edges of a graph, and the question addressed is: 

How should the buses and transmission lines be placed automatically on a display area in a way 

that is aesthetic with improved readability and comprehension? Graph layout problems are a 

particular class of combinatorial optimization problems in which the objective is to find a layout 

of an input graph in such way that a certain objective cost is optimized. Several problems in a 

variety of areas such as network optimization, VLSI circuit design, etc. can be formulated as 

graph layout problems. Most of the graph layout problems are NP-complete, but, in many of 

their applications, feasible solutions with an “almost” optimal cost are sufficient and, thus, 

approximation algorithms or effective heuristics can be used. 

A “good” tree drawing is aesthetically pleasing, compact, nodes are uniformly distributed, 

and edges between nodes do not cross. The force-based graph drawing method is a well-known 

method that uses laws of physics to determine an optimal configuration [26, 27, 28, 29]. In this 

method, it is not guaranteed that the graph is aesthetically pleasing, but a “close enough” 

drawing can be produced. The nodes are replaced by charged rings that repel each other and 

branches connecting nodes are replaced by springs. The charges make the nodes repel each other. 

The magnitude of the repulsion is determined by Coulomb’s law which states that the force 

applied to a point charge by another point charge follows an inverse square law. Hooke’s law can 

tether the nodes together to preserve the compactness criteria. The magnitude of this force is 

directly linear with respect to the distance between the nodes. 
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Figure 8: Force-based graph drawing (Source: [29]) 
 

Figure 8 demonstrates the application of the force-based graph drawing technique.  

The force-based graph drawing technique can potentially be applied to other power system 

visualization applications as well. One of them is to spread out generators, transmission lines, 

and in general power system components which are geographically very close on a GIS map of 

the system. For example, displaying power system components of a substation using only the 

latitude longitude information will cause all of these to overlap because of physical proximity. 

Force-based graph layout methods can be used to attain a non-overlapping visualization in a 

pseudo-GIS display. The force-based graph drawing technique has been used in this dissertation 

once more for power system visualization, although not the traditional application of one-line 

diagram generation. Rather, the technique has been used to place miniature plots for visualizing 

transient stability data on a map and will be discussed in Chapter 2. 

       

Data mining 

Data mining is the process of extracting information from large data sets by utilizing 

methods from artificial intelligence, machine learning, statistics, and database systems. A 

fundamental idea is to discover patterns in the data and in general involves the following [30]: 
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 Anomaly detection (Outlier/change/deviation detection) which is the identification of 

unusual data records that might be “interesting” or contain data errors. 

 Association rule learning or dependency modeling which finds relationships between 

variables.  

 Clustering which groups “similar” objects.  

 Classification which generalizes known structure to apply to new data.  

 Regression that finds a function which models available data with the least error. 

 Summarization which provides a compact representation of the data set, including 

visualization and report generation. 

Data mining has been applied to several power system applications. Saleh and Laughton 

[31] described the application of clustering to decompose power networks based on load flow 

analysis in 1985. Use of the more formal term, namely “data mining” in power system domain, 

can be noted in the 1997 paper by S. Madan et al. [32] which brainstorms data mining 

applications in power systems. Ideas mentioned include application of data mining algorithms 

for classifying power system states as normal, alert, emergency, or restorative. Other ideas 

mentioned were developing decision trees to classify a power system as stable or unstable, 

discovering change of data values from previously stored ones to detect unusual patterns, load 

forecasting, and diagnostic expert systems for contingency analysis. Another paper  published in 

the same year by Steel et al. [33] mentions two applications of data mining in power systems, the 

analysis of energy pooling and settlement data, and condition monitoring of power plants. 

Following this, several researchers have applied data mining in different applications. Asheibi et 

al. [34] have applied clustering techniques to identify classes of harmonic data from medium and 

low voltage (MV/LV) distribution systems. The obtained clusters are merged into super-groups 
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by applying further data mining techniques. The ultimate goal is to find the correlation between 

the patterns of harmonic currents and voltages at different sites (substation, residential, 

commercial, and industrial) for the interconnected super-groups. Rogers and Overbye [35] have 

addressed identification of “load pockets” in a congested power system by applying clustering. 

Groups of generators are identified which gain ability to increase revenue without increasing 

dispatch and hence have the potential for market advantage. A paper by Mori [36] presents an 

overview of data mining papers in power systems. 

While data mining techniques have been applied in different power system applications, 

these methods have gained a renewed interest in the context of Smart Grids since integration of 

data and information systems is one of the key advantages of the Smart Grid [37]. Over the last 

10-15 years, there is an increasing trend of introduction of new sensors which is anticipated to 

continue in coming years [38]. There are currently several hundred Phasor Measurement Units 

(PMUs) already deployed across the North American grid with plans to deploy many more [39]. 

In the Western Interconnect, there are currently 137 PMUs installed and plans to increase that 

number to over 300 by end of 2012. In the Eastern Interconnect, 60 PMUs have been installed 

and 8 Phasor Data Connectors (PDC) have been deployed to aggregate this data. These PDCs 

stream their data to a super PDC at the Tennessee Valley Authority (TVA). To cover the grid 

adequately, it is projected that at least one third of the bulk power systems locations should be 

monitored by PMUs, ultimately requiring thousands of PMUs to be installed and resources for 

processing billions of data samples per day. Hence, one critical challenge is to handle increasing 

amounts of data acquired by the network of new sensors and measurement devices. As volumes 

of such data are becoming gigantic, terms such as “data explosion” are being used more 

frequently to describe the situation of power systems with respect to data. All of this data could 
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be utilized for improved performance of the power system. However, this will require proper 

interpretation of the data. Analytical methods, based on the advanced ideas of statistical signal 

processing, pattern recognition, and intelligent controls, will increasingly become imperative. 

Hence there is a critical need for development of fast, robust, and intelligent algorithms that can 

extract important patterns and information in power system data and take advantage of what the 

Smart Grid offers. In looking for possible ways to address these questions, data mining comes up 

as a natural choice. These ideas have also been discussed in Rogers’ dissertation [40] which 

addresses data mining of power system data. She has examined data mining and advanced data 

analysis techniques in the context of a number of specific power system applications. In 

particular, these applications concern the use of model data (sensitivities) to identify 

relationships, the data-enhanced estimation of network models, event identification from 

oscillation monitoring data, and dealing with the challenges of real-world data and data quality. 

A specific type of data of interest in power systems is transient stability data collected over a 

period of time in a wide area system subject to certain disturbances. For example, consider a 

16000 bus power system with 2400 generators. If there is a large disturbance in the system, 

frequencies in the system will oscillate and depending on the size and type of the system, a 

propagation of these disturbances will be noticed from one area of the system to the other. Given 

a data sheet with voltage and frequency measurements at all of these 16000 buses over the 

duration of disturbance, a pertinent question is: What useful information can be obtained about 

the system just by analyzing this data? Another question is: How can one visualize all of this 

data and information embedded in it at a glance? Since transient stability data is time-varying, 

there is an added challenge of showing not just the value of a variable or state at a single time 

point but rather to capture the variation. Typically such variations are shown by strip-charts and 
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multi-color plots, but that leads to loss of information about the geographical location of the data 

source. From power system perspective, locational information is important since it helps 

understand how one area of the power system behaves compared to another. This is a topic that 

could benefit significantly by applying data mining techniques and is one of the challenges 

addressed in this dissertation. As will be described in Chapter 2, clustering techniques have been 

found to be very useful in solving this problem. 

Cluster analysis is a major part of data mining. The goal of clustering algorithms is to group 

objects based on the information that describes them. Clusters can be considered classes, to 

which the clustering process automatically assigns objects. Clustering is often referred to as 

“unsupervised learning” since it does not require class labels to be known ahead of time. Several 

clustering algorithms are available in data mining literature [41]. Figure 9 shows a group of 

objects and one possible way of clustering them. It is important to note that there is no single 

way to cluster objects since the same set of objects can be classified differently according to 

different attributes. So selection of the appropriate clustering algorithm for a specific application 

is crucial.  

                                                  

Figure 9: Objects grouped in three clusters 
 

Clustering is a powerful tool given that it can identify groups of similar attributes or similar 

patterns. If there is any unusual pattern or object, it will usually be unclustered, i.e. will form a 

single-object cluster. Such unusual behavior could be a method for flagging down “interesting” 
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objects and patterns. In this dissertation, this capability of clustering has been utilized in 

identifying an error in a simulation model of a wide area power system. 

Estimation is another important technique of data mining that has been used extensively in 

power systems. State estimation [42, 43], which is the process of estimating power system states 

using real and reactive power and voltage measurements is perhaps the most popular example of 

this. Another common application is in estimation of parameters of power system devices and 

machines such as transformers, transmission lines etc. [44, 45, 46, 47, 48]. Among estimation 

techniques, least squares estimation is a common technique in many areas of science and 

engineering. This method allows computation of an approximate solution to an overdetermined 

system, i.e., a system with the number of equations exceeding the number of unknowns. The 

“least squares” solution minimizes the sum of the squares of the residuals of every equation, a 

residual being the difference between an observed value and the fitted value provided by a 

model. The most important application of least squares is in data fitting and is a simple and 

practical tool with numerous potential uses in power systems.  

To illustrate the concept of least squares estimation, consider a set of equations expressed in 

matrix form where x denotes the vector of estimated quantities, r denotes residuals: 

      
 (1.2)

 

 
 (1.3)

 
The least squares estimation minimizes the sum of the squared residuals and results in the 

following estimate: 

  (1.4)
 

When measurements have different weights, the weighted sum of the squares of residuals is 

minimized instead. Thus the objective function to be minimized is formulated as follows:  
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S w r  

(1.5)
 

Then, partial derivatives with respect to each variable to be estimated are computed. If there are 

k variables to be estimated, this yields k equations, the solution of which yields the k unknowns. 

In matrix form, the result is: 

  (1.6)
 

The weighted least squares (WLS) state estimation is an application of this method where 

different voltage and power measurements are assigned weights depending on the quality of the 

data and knowledge of the quality of devices acquiring these measurements [49, 50].   

The least squares regression has also been used for forecasting power demand. A review of 

research works in this area has been presented by Alfares and Nazeeruddin [51]. It has been 

noted that several load forecasting methods involve a basic or some variant of least squares. 

Mbamalu and El-Hawary [52] used the following load model for applying this analysis: 

 Y v a ε  (1.7)
 

where t is the sampling time, Yt  is measured system total load, vt is the vector of adapted 

variables such as time, temperature, light intensity, wind speed, humidity, day type (workday, 

weekend), etc., at is the transposed vector of regression coefficients, and Ɛt is the model error at 

time t. As apparent, least squares is a suitable technique for finding the regression coefficients.  

In this dissertation least square estimation technique has been applied to wind power 

forecasting applications. A critical deterrent in the integration of large amounts of wind power 

with existing power grids is the inherent variability and uncontrollability of wind which can 

affect the reliability of the entire power system. These problems can be mitigated by developing 

better forecasting methods for wind. The applicability of least squares estimation technique to 
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this topic had been addressed in Chapter 4.  

Statistical properties of data can be used for extracting information about a system. 

Statistical methods of pattern recognition are reviewed in [53]. Hence statistical techniques are 

also data mining techniques. Statistical analysis of data starts by computing averages or means 

and variances. The mean value of a series of measurements is an expected value of that quantity 

as a random variable. The expected value of a random variable x is: 

 
E x x p  (1.8)

 

where p  is the probability that the random variable x takes on each value x . In addition to its 

mean, another important aspect of a distribution is the variance, which is a measure of dispersion 

of the data around the mean. This is the expected value of the square of the deviation of x from 

its mean. The variance is computed as follows: 

 V x E x E x  (1.9)
 

The standard deviation is the square root of the variance and has the same units as x. 

 σ V x  (1.10)
 

The variance is also the second moment, and the average is the first moment. In general, other 

moments of the data can be found. The third moment is related to the “skewness” of the 

distribution. If all of the moments of a distribution are calculated, they provide a complete 

characterization. 

The normal or Gaussian distribution, prominent in statistical theory and in practice, is 

completely characterized by its mean and variance. 
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(1.11)
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The standard deviation σ is the distance from the location of the mean μ to the point of 

inflection on the distribution curve. The normal distribution is especially important as a result of 

the central limit theorem which states that under certain conditions, as sample size increases, the 

sample mean becomes normally distributed about the population mean. 

The importance of studying statistical distributions comes out when dealing with 

probabilistic power system quantities such as load and wind forecasts. No matter how good 

forecasts are, there is a certain amount of uncertainty involved. Such uncertainties are crucial and 

should be incorporated in problem formulation. The impact of these forecast uncertainties are 

noted in Chapter 4 where methods are developed for coordinating energy storage with wind farm 

operation and optimally sizing storage units. 

      

1.3 Dissertation overview       

To summarize, this dissertation examines the application of graph-theoretic concepts and 

data mining techniques to address three significant challenges of the Smart Grid. 

The challenge of information extraction from transient stability data by identifying patterns 

in the data and its visualization is addressed in Chapter 2. In essence this application captures 

what data mining embodies. However, not just data mining techniques, but graph drawing 

techniques have also been applied in the overall methodology. The procedure developed in this 

chapter is extremely relevant in the Smart Grid framework where there is an increasing amount 

of data being collected through sensors and other measurement devices. 

Automatic and optimal design of wind farm collector systems for optimal operation of 

large-scale wind farms has been addressed in Chapter 3. This work is applicable in the planning 

and installation stages of wind farms and particularly relevant in the current scenario with 
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increasing focus on integration of renewable energy such as wind power in the power grids. 

Clustering and graph-theoretic algorithms were found to be very useful once more in generating 

these designs and handling the design constraints. 

Chapter 4 deals with large-scale integration of wind power and associated problems due to 

variability of wind. Strategies such as better wind power forecasting and integrating energy 

storage units such as on-site batteries with wind farms to “firm” wind power are addressed. A 

least squares based wind power forecasting method is presented. Also, methods are proposed to 

compute optimal size of a storage unit required for a wind farm to reliably meet a load and to 

compute optimal charge-discharge schedules for storage units in coordination with wind farm 

operation and determining maximum steady generation commitment that can be scheduled to be 

met by the combined plant. Results indicate the importance of incorporating statistical properties 

of load and wind forecast data in problem formulation. 

Finally, conclusions and suggestions for moving forward are presented in Chapter 5. Many 

other Smart Grid and in general power system applications are in a position to benefit from the 

graph-theoretic and data mining based methods, techniques, and algorithms presented in this 

dissertation.        
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2. INFORMATION PROCESSING AND VISUALIZATION OF POWER 

SYSTEM TIME-VARYING DATA 

      This chapter presents application of data mining techniques to power system data for 

extracting useful information embedded in the data and presenting the information in a visually 

effective manner. Hence the work described in this chapter captures the true essence of data 

mining. The type of power system data considered is transient stability data collected over a 

period of time in a wide area system subject to certain disturbances. However, the analytical 

methods presented are also applicable to other time-varying data of power systems. There are 

two major contributions of the work presented in this chapter; first, methods for extracting 

information from the data, and second, effective visualization of the extracted information. The 

work presented here is anticipated to stimulate application of similar techniques and analysis on 

other types of power system data, thereby taking advantage of volumes of power system data 

collected through a network of sensors and measurement devices in the current electric grid and 

also in the future Smart Grid. 

 

2.1 Motivation 

In the following subsections, the motivation for this work has been detailed. 

 

Information extraction from time-varying data 

Identifying useful information from time-varying data is the first and most crucial part of 

this work. Consider that transient stability data is available for a wide area power system. As has 

been discussed in Chapter 1, this data contains a lot of information about the underlying system 
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embedded in it. To extract this information, there is a need for developing methods for analyzing 

the system wide response, identify distinct patterns that characterize the overall system response 

and hence, help develop better understanding of the overall system. If there are any abnormal 

responses, these need to be detected from the set of distinct responses, since these could 

potentially be indicators of errors or system conditions that require attention. Considering the 

volume of data, all of this analysis must be done automatically. Hence there is a need for 

developing dedicated algorithms and methodologies for answering the question: How does one 

extract information by analyzing the data? Addressing this need is the motivation of this work. 

     Transient stability data from a large 16000-bus power system under the influence of 

disturbances has been collected. The main focus has been on the frequencies of the 2400 

generators in the system. It is well known that machines in a power system can be grouped into 

areas based on coherency [54, 55, 56, 57, 58]. Hence the goal has been to find whether 

algorithms based on data mining techniques can be developed to automatically identify groups of 

generators with similar dynamic response and intelligently identify abnormalities such as errors 

in simulation models.  

      While data mining and clustering have been applied in power systems research for different 

applications such as stability studies, monitoring operating conditions, fast transient stability 

assessment [59, 60, 61, 62], most works consider overall stability of the system rather than 

inspecting the behavior of states at individual nodes. Analyzing the dynamic response is hence 

an important distinguishing feature of this work. 

      It is important to note here that an issue that comes up in analyses such as these is large data 

volume [63]. In fact, issues of large data volumes are being encountered in recent times more and 

more frequently not just in the power area but other areas as well. This has led to several 
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research works addressing data volume and dimension reduction techniques [59, 64, 65, 66]. 

Data structures such as k-D trees can index data and speed up data processing algorithms [67]. 

Another method for reducing data volume proposed in the literature involves data clustering [68, 

69]. In this work a K-means clustering based method for data volume reduction has been 

presented to show the effectiveness of clustering even in handling large data volume. 

 

Visualization of power system time-varying data 

       Before considering an assessment of how time-varying information should be displayed, it is 

important to first briefly discuss the nature of this variation. The variation of the power system 

information of interest here, such as transmission line flows and bus voltage values, can be 

considered to be divided into four categories. In the first category are the small, zero-average, 

seemingly random fluctuations which are caused primarily by the switching of myriads of 

individual loads. These variations occur with time scales on the order of seconds to perhaps 

minutes and have magnitudes on the order of a few percent of the underlying load. In the second 

category are the slower changes driven by the diurnal, weekly, and seasonal variations in the 

electric load. Also in this category are the changes caused by re-dispatching of generation.  

Sustained rate of change on the order of several percent per minute are typical. The third and 

fourth categories are the changes caused by large-scale system disturbance, such as the loss of a 

high voltage transmission line or the tripping of a large generator. The third category contains the 

dynamic response of the system following such a disturbance. Frequency analysis of such 

disturbances [70], [71] indicates essentially all modes are faster than 0.2 Hz. Following such a 

disturbance the system usually returns to its new quasi-steady state operating point within a few 

seconds. The fourth category is then the discrete changes in these quasi-steady state values that 
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occur following such a disturbance. For example, following a line contingency (after the 

oscillations have damped out within seconds) a line flow might change from 75% to 125%, and a 

voltage might fall from 0.98 to 0.9 p.u. The net result from a visualization perspective of these 

different categories of variation is that in order to fully assess the significance of the value 

variation it is important to show its full time signal over a reasonable period, as opposed to just 

showing the value and say its value one time interval prior. 

       Traditionally the time-variation in system information has been shown using strip-chart 

recorders. For example, banks of paper strip-charts are very prominent on the left sides of Figure 

10 and Figure 11, while electronic strip-charts are shown on the left side of Figure 12. Clearly 

strip-charts have proven to be quite useful both in real-time power system operations and in post-

event analysis; they are a technology that is here to stay. 

 

 

Figure 10: PSE&G control center in 1988 (Source: Figure 1 of [72]) 
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Figure 11: Commonwealth Edison control center in the late 1990s (Source: [73]) 
 

 

Figure 12: MISO control center in September 2009 (Source: MISO) 

 

        But traditional 2-D strip-charts have significant disadvantages in that they cannot be used to 

show large numbers of data points, and they cannot be used to show geographically distributed 

information. Of course these limitations are not significant with respect to the display of crucial 



 

28 
 

system overview information like frequency and total load or generation. Multiple curves can be 

shown on a single display using different colors, but this becomes ineffective as the number of 

colors becomes higher than ten [74, p. 125].   

Several solutions have been proposed to address this issue. In a technique similar to weather 

radar sequences, time-sequence animations can be used to show how a particular display has 

changed over a user-specified time period. The use of this trend playback for power system 

visualization is mentioned in [75], and is also a function available on the ISO-NE developed 

Adobe Flash display shown in Figure 13.  

 

Figure 13: Adobe Flash web-based display at NE ISO (Source: [73]) 

This can be a very useful feature and such functionality is certainly recommended. Its major 

disadvantage is it requires time to see the display, so it cannot provide results at a glance. 

      Another possible partial solution to the issue of showing time variation of spatial data would 

be to use contours with bivariate color sequences. As the name implies the idea behind a 
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bivariate color sequence is to contour data using a 2-D color-map, in which one dimension might 

correspond to the present value, and a second might depend on its rate of change. An example 

mapping might be to vary between yellow and blue in one dimension, and then between light and 

dark in intensity in the second. While this approach has not been applied to power system, such 

displays are used in other domains. However, these displays can be notoriously difficult to read 

([74], p. 136). Also, in describing such displays Tufte notes, “The complexity of 

multifunctioning elements can sometimes turn data graphics into visual puzzles, crypto-graphical 

mysteries for the viewer to decode” ([76], p. 153). A sure sign a display has become a puzzle is 

when it requires a verbal rather than visual process to decode. More recent work is exploring the 

use of color coding with small graphical elements called textons, in which each represents a 

different numeric value [77]. An example of such a display is shown in Figure 14. Power system 

applications have not yet been explored.  

       

Figure 14: Contour using textons (Source: Figure 9 of [77]) 
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Contouring is a popular method of displaying variation of data [78], but an issue with it is 

that this technique is good for displaying data at a single snapshot in time thus showing only the 

current state of the system. Time-sequence animations can be used for visualization similar to a 

weather radar sequence [75] but a major disadvantage is that it requires time to see the display, 

so it cannot provide results at a glance. In addition such plots cannot show geographically 

distributed information.   

Another approach that has been suggested is to integrate small strip charts onto existing one-

lines next to the field of interest. An example of this is shown in Figure 15. The advantage of this 

approach is the strip-charts are shown with good geographic context. An obvious disadvantage is 

to show such strip-charts for all the fields would require that they be quite small.    

 

Figure 15: Geographically placed strip charts (Source: Figure 10 of [75]) 
 

      One solution to this issue is use spark-lines, which have been defined by E. Tufte as intense, 

simple, word-sized graphics [79]. The idea of a spark-line is to show the time-variation in a 
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signal using about the same display space as the value. Hence a spark-line is a graph without axis 

labels and numbers. Obviously there is a tradeoff between display space, and the amount of 

information shown. Spark-lines can only show data with several significant digits, but “the idea 

is to be approximately right rather than exactly wrong” ([79], p. 50). In a power system one-line 

context the x-axis time-scale could be common for all spark-lines (e.g., one hour or five 

minutes). The y-axis could also be implicit based on the type of value, for example between 75% 

and 150% for transmission line flows, and between 0.8 and 0.95 for low voltage voltages. Hence 

spark-lines would only need to be shown for values that are trending toward limit violations.  

Because of their small size spark-lines could also be embedded in tabular displays, such as 

showing voltage variation in the column next to the field showing the current voltage value. Use 

of spark-lines has been mentioned in [40] but not explored significantly in power system 

visualization.  

        In a previous work, the state-of-the art visualization techniques applied to power systems 

[73] have been studied and the shortcomings of existing visualization methods to present time 

series data of the power system have been noted. One of the recommendations of this study was 

that there is a need for development of effective visualization techniques to display power system 

time-varying data. To address this need, a visualization technique is presented for displaying 

transient stability data in this work using spark-lines on geographic overlays and is a contribution 

of this work. Thus both the issue of displaying trends and embedding it with geographic 

information such as those presented in the concept of Geographic Data Views [80] have been 

addressed. 
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2.2 Prior art 

A method for monitoring system stability by visualizing generator oscillations on a 2-D 

plane with speed versus rotor position was presented [81]. This work, however, did not address 

the variation of system dynamics over time. Wide area frequency visualization methods have 

been presented in [82, 83]. The techniques used are animated event replays. Data collected from 

frequency disturbance recorders (FDRs) in a wide area FNET system are displayed with colored 

contours for every time step and played in the form of a movie as shown with the screen shots in 

Figure 16.  

           

             

Figure 16: Screen shot of event replay of frequency data (before and after event)      
(Source: [82]) 
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While contouring is in general computationally intensive, the use of graphical processor 

units (GPUs) for fast power system contouring allowing for near real-time usage is presented in 

[84]. Although certainly useful for some situations, contouring to show time-varying information 

requires time to show the animation loop. 

Figure 17 and Figure 18 demonstrate how transient stability frequency variation is often 

shown for a large system. Both figures show the bus frequency response for a 16,000 bus system 

for twenty seconds of simulation with a large generation loss contingency occurring at two 

seconds. Figure 17 shows the frequency response at all of the buses in the system, while Figure 

18 shows the frequency at twelve selected, primarily high voltage, buses spread throughout the 

system. 

      

                

Figure 17: Frequencies at over 16000 buses in a system 
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Figure 18: Frequencies at 12 selected buses 
 

From the figures it is clear that there is coherency in the response of at least some of the 

buses, but it is difficult to determine the details. Obviously with 16,000 buses the purpose of 

Figure 17 is not to show the response at any individual location, but rather to give bounds on the 

overall system response. Yet even with only twelve curves in Figure 18 it is difficult to 

determine the individual frequency response (the individual buses are not identified on the figure 

due to data confidentiality concerns). Also, there is the question of how to select a small subset 

of buses that adequately captures the range of patterns of behavior exhibited by a large system, 

especially when these patterns may vary depending on the assumed contingency. The proposed 

methodology addresses these issues. 
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2.3 Methodology 

The overall methodology is presented in the form of a flow chart in Figure 19.  

 

 

                     

Figure 19: Overall methodology 
 

Distinct patterns are identified in the data with a Pattern identification algorithm. A problem 

encountered in this process involved computational burden of processing large data sets. So a 

preprocessing algorithm was developed for Data volume reduction. To visualize the information 

thus extracted using the preceding two algorithms, “spark-lines” are generated which is the third 

step Spark-line display of the overall methodology. Spark-lines are overlaid on a geographical 

map of the power system. In the following subsections, each of these algorithms is described in 

detail. The term “data set” has been used frequently in this work to mean an N x τ volume of data 

where the number of nodes in the system is N, and the number of time points considered is τ. 

 

Data volume reduction 

It is well known that given the size of a wide area power system, the volume of data 

generated by a simple transient stability run can be substantial. Analyzing such large data 

volumes can be computationally prohibitive. Hence this preprocessing step to reduce data 

Reduce data volume 

Identify distinct patterns 

Create spark lines corresponding to each pattern overlaid on map 

Acquire data 
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volume was developed. Depending on the size of the system/data set, this step can be skipped. 

Application of a K-means based clustering algorithm has been suggested as a possible 

method to aggregate synchro-phasor data in case of data overload [69]. Along these lines, in this 

dissertation the generators are clustered by identifying several patterns in the transient stability 

data and representing each group by one representative pattern called cluster representative. 

K-means clustering is one of the simplest unsupervised learning algorithms for classifying a 

given data set into a certain K number of clusters fixed a priori [85, 86]. The main idea is to 

define K centroids, one for each cluster and assign each data point to the clusters with the nearest 

centroid. The problem is computationally difficult, called NP-hard, i.e. non-deterministic 

polynomial-time hard in computational complexity theory, meaning it cannot be solved in 

polynomial time. However there are efficient heuristic algorithms that are commonly employed 

and converge fast to a local optimum. One of the most popular heuristics for solving the K-

means problem is based on a simple iterative scheme for finding a locally minimal solution. This 

algorithm is often called the K-means algorithm. There are a number of variants to this 

algorithm, and the version used in this work is known as the Lloyd’s algorithm [87]. 

An important point to note in this iterative algorithm is that the starting centroids must be 

chosen carefully since different starting locations of centroids may cause the algorithm to 

converge to different clusters. An idea is to select centroids from the given data set in a way that 

they are as much as possible far away from each other. The next step is to take each point 

belonging to the given data set and associate it to the nearest centroid forming clusters. When all 

the points have been grouped, the first step is completed. At this point K new centroids are re-

calculated as centers of the clusters resulting from the previous step. After this, once again the 

same data set points are grouped so that each one is now associated with its nearest new centroid. 
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This process continues till there is no change in the location of the centroids. In other words 

centroids do not move any more.  

 

                      

 

                                

                                              

 

 

                              

 

Figure 20: Illustration of K-means clustering 
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Figure 20: Illustration of K-means clustering (cont.) 

Figure 20 illustrates the K-means algorithm for grouping 15 objects shown with black dots 

into 3 clusters. Initially, three of the objects are randomly chosen as centroids, shown with red 

body and black outline. All other objects are assigned to the nearest centroid, forming three 

groups. In the next iteration, three new means or centroids are computed for each group shown 

with red dots. In this case, the centroids are distinct from the original set of objects. Once more, 

the objects are assigned to the nearest centroid forming three new clusters. The process is 

repeated till the centroids do not move any more. 

K-means clustering algorithm is used for data volume reduction in this work with the 

number of clusters k chosen between 200 and 300.  Although it might seem that such a procedure 

could fail to capture certain important information, the validity of this method and the choice of 

number of clusters will be justified in the discussion of results. 

Comparison of multiple data series over a time window requires a similarity measure. Based 

on a survey of different clustering methods for time-varying data [88], in this work Euclidean 

 

 

New centroids formed and 
points associated to nearest 
centroids 

3 new clusters formed 
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distances between the time series have been used where each time series is a data point with as 

many dimensions as the number of time samples in the series.   

Let Xp and Xq be τ-D vectors where, 

 X x , x , … . . , x  (2.1)
 

The Euclidean distance between these two vectors is given by: 

 d x x  

(2.2)
 

Mathematically, the K-means algorithm determines a set of K cluster centers 	V 	|	i

1, 2, … , K	   where, 

 V v , v , … . . , v  (2.3)
 

Given a set of N nodes 	X 	|	n 1, 2, … , N	 , the objective function to be minimized is: 

 Min	J U, V u ‖X V ‖  
(2.4)

 

                                     Such that: 

 u ∈ 0,1 ∀ i, n (2.5)
 

 u 1 ∀ n 
(2.6)

 

 

where ‖	. ‖ is the Euclidean distance measure given by equation (2.2). 

The iterative solution procedure has the following steps: 

 Step 1 – Choose the number of clusters K and a small number ε for stopping the iterative 

procedure. Set the counter l = 0 and the initial cluster centers V ,	∀	i, arbitrarily. 
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 Step 2 – Distribute X , ∀	n  to determine U  such that J is minimized. This is achieved 

by reassigning X  to a new cluster that is closest to it. 

 Step 3 – Revise the cluster centers V ,	∀	i. 

 Step 4 – Stop if the change in cluster centers is smaller than ε; otherwise, increment l and 

repeat steps 2 and 3. 

The K cluster centers are cluster representative nodes (generators for the case study) and the 

time response corresponding to each of these characterizes its entire cluster. In the case that a 

cluster center is not one of the nodes in the original data set, the node closest by similarity 

measure to the cluster center is selected as the cluster representative node.  

 

Pattern identification 

Pattern identification forms the heart of the proposed methodology. The transient stability 

data from K cluster representative nodes computed in the previous step are the inputs to this 

stage. This stage identifies distinct patterns in the input data and selects the nodes or generators, 

whose responses taken together capture the behavior of the entire system. Thus a set of responses 

is identified that provides comprehensive understanding of the system dynamics. Referring back 

to Figure 17 and Figure 18, this algorithm presents a method to automatically select a small 

number of buses from the set of over 16,000 buses which capture the range of patterns in the 

system. A Quality-Threshold (QT) clustering based algorithm has been used for this purpose.   

The QT (Quality Threshold) clustering algorithm [89] was originally developed to group 

genes into high-quality clusters. Quality is ensured by finding clusters whose diameters do not 

exceed a given user-defined diameter threshold. This method prevents dissimilar genes from 

being forced under the same cluster and ensures that only good quality clusters will be formed. 
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The goal of QT clustering is to form large clusters with similar expression pattern, and to ensure 

a quality guarantee for each cluster. Quality is defined by the cluster diameter and the minimum 

number of points contained in each cluster. The advantage of QT clustering algorithm compared 

to K-means is that in QT clustering there is no need to specify the number of clusters, as required 

in K-means. Also, it is not necessary that all points need to be clustered and returns the same 

result when run several times. However, QT is computationally more expensive than K-means.  

       The QT algorithm is as follows [90]: 

 Step 1 – A random point is chosen from the list of points to be clustered. 

 Step 2 – The algorithm determines which point has the greatest similarity (closest 

Euclidean distance) to this point. If the distance is less than the quality threshold distance 

which is pre-specified, then these two points are clustered together. 

 Step 3 – Other points are similarly added to this cluster. This process continues until no 

point can be added to this first candidate cluster without surpassing the diameter 

threshold. 

 Step 4 – A second candidate point is chosen. 

 Step 5 – The algorithm determines which point has the greatest similarity (closest) to this 

second point. All points in the list of points are available for consideration to the second 

candidate cluster. 

 Step 6 – Other points from the list of points that minimize the increase in cluster diameter 

are iteratively added to the second candidate cluster. The process continues until no point 

can be added to this second candidate cluster without surpassing the diameter threshold. 

 Step 7 – The algorithm iterates through all points on the selected list of points and forms 

a candidate cluster with reference to each point. In other words, there will be as many 
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candidate clusters as there are points in the list. Once a candidate cluster is formed for 

each point, all candidate clusters below the user-specified minimum size are removed 

from consideration. 

 Step 8 – The largest remaining candidate cluster, with the user-specified minimal number 

of points, is selected and retained as a QT cluster. The points within this cluster are now 

removed from consideration. All remaining points will be used for the next round of QT 

cluster formation. 

 Step 9 – The entire process (steps 1 to 9) is repeated until the largest remaining candidate 

cluster has fewer than the user-specified number of points. 

The result is a set of non-overlapping QT clusters that meet quality threshold for both size, 

with respect to number of points, and similarity, with respect to maximum allowable diameter. 

Points that do not belong in any clusters will be grouped under the “unclassified” group. Figure 

21 illustrates the process of clustering fourteen objects. Corresponding to each object, a 

candidate cluster is formed including all objects within a certain quality around it, shown by a 

blue circle. From the fourteen candidate clusters, the largest cluster consisting of nine objects is 

selected as a QT cluster, and these nine objects are no longer considered in the next iteration. 

Thus in the next iteration only five objects need to be considered. For each of these objects, a 

candidate cluster is formed and again the largest cluster consisting of four objects is finalized as 

a QT cluster. The remaining object is “unclassified” or forms a single object cluster.   
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                                     Largest cluster (4 points) 

 

                                                                     

Figure 21: Illustration of Quality-Threshold clustering 

     It is important at this stage to discuss some complexity issues of the QT algorithm. Danalis et 

al. [91] have studied in detail the complexity of the QT clustering algorithm and found that a 

poor implementation of the QT algorithm could be O(N5) which is prohibitively high. However, 

if the QT algorithm is implemented as described in this chapter, the complexity is O(N2) [92] 

where the main source of complexity is in the computation of distances between all of N objects, 

or nearest-neighbor searches.  

 Largest cluster (9 points) 
These 9 points are not 
considered in the next step 

 

14 objects to be clustered  
(14 candidate clusters formed) 

5 points to be considered for 
forming next cluster (5 
candidate clusters formed) 

Unclassified point 

Clusters formed finally 
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Nearest-neighbor search (NNS), also known as proximity search, similarity search or 

closest point search, is an optimization problem for finding closest points in metric spaces [93]. 

The problem is: given a set S of points in a metric space M and a query point q ∈ M, find the 

closest point in S to q. In many cases, M is taken to be d-D Euclidean space and distance is 

measured by Euclidean distance or Manhattan distance. The simplest solution to the NNS 

problem is to compute the distance from the query point to every other point in the database, 

keeping track of the “best so far.” This algorithm, sometimes referred to as the naive approach, 

has a running time of O(Nd) where N is the cardinality of S and d is the dimensionality of M. 

There are no search data structures to maintain, so linear search has no space complexity beyond 

the storage of the database. Much effort has been devoted to making these searches as fast as 

possible and reducing the number of searches needed. One approach is the use of space-

partitioning techniques. In this group of techniques, is the method involving use of a data 

structure called k-D tree which partitions items in k-D coordinate space. 

Description of k-D trees can be found in [94] and [95]. A k-D tree is a binary search tree in 

multiple dimensions. A simple 2-D k-D tree for points (1,3), (6,4), (5,6), (3,9), (4,7), and (6,8) is 

shown in Figure 22. 

 

 

 

 

 

 

 

(4,7) X

(1,3) (5,6) 

(3,9) 

Y

(6,8) (6,4) X

Figure 22: A k-D tree with 6 points 
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The tree is constructed recursively by cycling through each of the k axes of the data. At each 

level the data is split about the median point. Hence the tree is balanced by design. Given N 

points, k-D tree can be built with O(N) nodes and O(logN) depth in O(NlogN) time. By storing 

data in this structure, the nearest-neighbor query, i.e. the process of searching the tree and 

finding the point with smallest distance to the query point can be done very efficiently. Nearest-

neighbor searches using k-D trees are discussed in detail in [95]. The average complexity for 

finding the nearest-neighbor is O(log N) [67]. 

The QT algorithm can be potentially speeded up by using k-D trees. However, it is 

important to note that naive search can, on average, outperform space partitioning approaches on 

higher-dimensional spaces [96]. In this work the dimension of the data equals the length of the 

time series over which dynamic frequency responses of generators are recorded that is 0-20 secs 

with average granularity of 0.05 secs or a time series with about 400 time points for each of the 

representative generators or data points. So in this case k-D trees are not very useful. 

Compared to the K-means algorithm, QT clustering does not require specification of the 

number of clusters. Typical QT algorithms also have a restriction on minimal number of nodes 

required to form a cluster. In this work, this restriction is removed allowing formation of even 

single node clusters. These two features are crucial in determining the distinct patterns of the 

system and identifying “outliers” in the data, which tend to form single node clusters. Also, QT 

algorithm returns the same result when run several times. Like the previous stage, the closeness 

of nodes is measured by Euclidean distance. 

The result is a set of non-overlapping QT clusters that meet quality threshold for similarity 

with respect to maximum allowable diameter. The choice of quality threshold diameter in this 

work is by trial and error. The problem of automating the selection of this parameter has been 
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left as a future work. However, as the results will reveal, the choice of threshold diameter in this 

work is adequate. An important note is that the lower the cluster threshold diameter, the “tighter” 

the clusters are formed. Often this is tantamount to generation of many more clusters. Of course 

if all the system responses are identical, no matter how small the threshold diameter is, only one 

cluster will be formed.  

 

Spark-line display 

The distinct patterns identified in the previous stage are visualized with spark-lines overlaid 

on a map, each spark-line representing a cluster. An approach that has been suggested is to 

integrate small strip-charts onto existing one-lines next to the field of interest [97].  This of 

course requires strip-charts to be quite small. The current work leverages on this idea, displaying 

the transient stability information as spark-lines, and infusing these with location information by 

overlaying on the one-line diagram or the actual latitude-longitude map. 

As discussed earlier, spark-lines present a historical trend of data in the space of a typical 

word [98]. The effectiveness of spark-lines can be explained by Figure 23, Figure 24, and Figure 

25 all showing the frequency of a generator at a time instant. The simplest way to represent the 

frequency is in the value form shown as Figure 23. This single number can take on additional 

meaning when placed in context of previous frequency measurements as shown in Figure 24. 

Further, the current value and the time point it occurs, i.e. far right are accented in red color and 

shown in Figure 25. The data line thus created is called a spark-line.   
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A spark-line does not have axis labels and numbers. In a power system one-line context or 

geographic data view, the x-axis time-scale could be common for all spark-lines, e.g. 20 seconds 

in a transient stability run. The y-axis could also be implicit based on the type of value, e.g. 

between 59.8 to 60.2 Hz for frequencies. 

Spark-lines are automatically generated and laid out on a geographical map. It should be 

made sure that spark-lines do not overlap. This was achieved by developing overlap correction 

algorithms which automatically detect the occurrence of overlaps and relocate spark-lines on the 

available display space using force-based layout methods [29]. 

Frequency: 

59.8066

Figure 23: Display of value only 

Frequency:

59.8066

Figure 24: Display of value and trend

Frequency:

59.8066

Figure 25: Display of value and trend highlighting present value 
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The force-based layout is a graph drawing method in which the nodes or vertices of the 

graphs are replaced by charged rings and the interconnecting edges by springs. The net force 

applied on a given node is the sum of the spring force applied to the node and the repelling 

Coulomb forces applied by all the point charges. Let the direction be given by the vector  d ,  

representing the distance between the ith and jth nodes (x  representing the ith node’s location).  

                                    d , x x  (2.7)
 

where the normalized vector representing the direction of the force is given by: 

 d ,
d ,

d ,

 
(2.8)

 

                                 

The spring force can be given by: 

 F , γ d , r d ,  (2.9)
 

where γ is the spring constant, r is the length of the spring at rest, and F ,  is the force between 

the ith and jth node. For the point charge the repulsive force is given by 

 F , k
Q Q

d ,

d ,  
(2.10)

 

 

where Q  is the charge of the ith node and k  is the coulomb constant. After the net force on each 

node is computed, the velocity and location of the nodes are computed. From Newton’s laws,  

 F ma (2.11)
 

If the present velocity of a node is v , then, 

 v ah v  (2.12)
 

If the node has current location p , then its next location will be, 

 p
h
2
a hv p  

(2.13)
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Here h represents the time steps. It is important to apply damping to the velocity over time, to 

prevent the structure from continuing to move in space and result in an overflow error.  

Figure 26 presents the pseudocode for a typical force-based graph drawing technique. 

 
 set initial node velocities to zero 
 set initial node positions to random non-overlapping values  
    loop 
        set total_KE = 0                // running sum of total kinetic energy (KE) over all  particles 
        for this_node                     // loop over every node 
             set net-force = 0           // running sum of total force on this particular node 
          
             for each other_node 
                 net-force = net-force + Coulomb_repulsion( this_node, other_node ) 
             next node 
          
             for each spring connected to this_node 
                 net-force = net-force + Hooke_attraction( this_node, spring ) 
             next spring 
          
             // update velocity and position 
             this_node.velocity = (this_node.velocity + timestep * net-force) * damping 
             this_node.position = this_node.position + timestep * this_node.velocity 
             total_KE = total_KE + this_node.mass * (this_node.velocity)2 
         next node 
    until total_KE is less than some small number  // the simulation has converged 
 

Figure 26: Pseudocode for typical force-based graph drawing technique  

 

Depending on the size of the spark-line plots relative to size of the display, the spark-line 

plots might overlap. As such, the visualization algorithm should have the capability to 

automatically detect occurrence of overlaps and relocate spark-line plots on the available display 

space. This capability is achieved by implementing an overlap corrector algorithm. This 

algorithm first detects the occurrence of overlaps and then applies a force-based re-locating 

algorithm. 
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A modified version of the force-based layout algorithm has been applied in this work 

because of major differences in between the traditional framework and the current one. First, 

instead of point objects as nodes, spark-line plots need to be placed in a display area. Second, the 

spark-line plots themselves do not have any connection such as transmission lines in between. As 

such there are no sources of spring forces as per the traditional force-based layout concepts. 

In running the force-based algorithm, the spark-line plots might be relocated at a position 

where the plot area overlaps one or more of the cluster representative nodes. This needs to be 

avoided as well. Hence the force-based layout algorithm is run on both spark-line reference 

points and the cluster representative nodes taken together with the added constraint that cluster 

representative nodes cannot move. In the modified force-based layout, a pseudo-Hooke’s force is 

also added which pulls the spark-line plot reference locations back to the initial positions. This 

force is similar in nature to the spring force since the farther a spark-line plot is away from its 

original location, the greater the force acting on it pulling it toward that location. 

The algorithm initially places the spark-line plots at a small offset from the geographic 

locations of the cluster representative nodes whose information is to be displayed. The choice of 

this offset, denoted by Δ will vary from display to display. This is followed by checking whether 

such placement causes overlaps. The lower-left corner of the plot areas are considered as the 

reference locations of corresponding spark-line plots and are treated similar to nodes. 

Dimensions of the spark-line plots are also chosen depending on the size of the display. The 

dimension along the x-direction and dimension along the y-direction are represented 

consecutively by L and H. The difference in x-coordinates and y-coordinates between any pair of 

nodes i and j is given by dist_x(i,j) and dist_y(i,j), respectively. 
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     Three sets are defined. A = {spark-line reference points},  B = {cluster representative nodes}, 

and N = {A,B}. 

Initial positions are given by: 

p p p 		 longitude latitude 																																						∀n	 ∈ B
		 longitude Δ latitude Δ 																						∀n	 ∈ A

     

Initial velocities are given by v v v 0 0 		∀n	 ∈ 	N.                               

Initially the total force on a node is given by: 

F F F 0 0 		∀n	 ∈ A                                    

The pseudo-code for the overall algorithm is as follows: 

            // Overlap detection 
               If dist_x (i, j) < L and dist_y (i, j) < H 	∀ i, j ∈ A and i ≠ j 
                  // overlap is detected  
                     Go to Relocation algorithm 
               end 
             
            // Relocation algorithm  
               While KE  >  Ɛ    // a small number 
                   For  i ∈ A 

                          F F Hooke_attraction i, p 		

                          For  j ∈	 N and  j ≠  i 

                               F F Coulomb_repulsion i, j   
                          End For  
                          // update velocity 

                           v v stepsize ∗ F ∗ damping 

                          // update position 

                           p p stepsize ∗ v  
                          // update total kinetic energy 

                           KE KE θ ∗ v  // θ is a constant 

                  End For 
              End While  
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2.4 Case study and discussions 

The methodology discussed in the previous section has been tested on the 16,000 bus, 2400 

online generator system introduced in Figure 17 and Figure 18. A generator outage fault is 

applied at time two seconds which triggers a frequency disturbance that propagates across all the 

generators of the system. The low frequency event originating in one part of the system moves to 

the other part and back causing most of the generators in the system to oscillate over the 

simulation period of 20 seconds, the oscillations varying in phase and amplitude. 

Animated contouring visualization can capture these propagations in the form of a movie. 

This approach has been used in [82] to visualize frequency disurbance propagation in the Eastern 

Interconnect simulating the 2003 blackout. As mentioned earlier, this kind of visualization 

requires observation of the whole movie and any individual movie frame does not contain any 

information of the history of the system dynamics. Furthermore, contouring is a computationally 

intensive visualization technique. 

 

Figure 27: Frequency visualization before fault at 1.95 sec 

60
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Figure 27 and Figure 28 show the frequency distribution over the system at two time 

instants, just before the fault occurs at 1.95 secs and at the end of 20 secs. 

    

 

Figure 28: Frequency visualization at 20 secs 
       

Figure 28 shows the transient stability frequency variation of the system generators over 20 

seconds. All of the generators, including the cluster representatives, are displayed on a roughly 

geographical map of the system with different color codes corresponding to different clusters. 

The transient stability data corresponding to each cluster representative node is displayed by 

spark-lines showing the trend and the current value. In addition, lines drawn from a spark-line 

plot to the corresponding cluster representative node indicates the cluster to which a spark-line 



 

54 
 

belongs. Ten distinct frequency response patterns are identified by the algorithm and displayed 

using spark-lines. The current time (i.e. 20 sec) frequency values are also displayed. Note that 

these include a single node cluster (in dark red color in the top row) which shows a frequency 

response which has significant oscillations. Another single node cluster was identified (in 

yellowish-green color on the left side) with oscillations increasing as time progresses. Thus two 

generators were automatically located by the algorithm which warrant attention. 

Later these generators were carefully inspected and the cause of their abnormal behavior 

was found to be a limit error in their exciter models which were subsequently corrected.    

Interestingly, prior to the development of the technique presented here these model errors had 

not been noticed by the authors inspite of repeated use of the same model for other studies. 

Figure 29 shows all of these 10 distinct responses on one plot. As can be seen it is difficult 

to determine the details even with only 10 responses in multiple colors on one plot. 

 

 

 

Figure 29: Frequency data from 10 generators 
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Figure 30 - Figure 39 show these same 10 responses in separate larger plots with each plot 

showing the range of frequency values of generators included in its cluster (colored in cyan). The 

number of generators included in each cluster is also mentioned. The close conformity of the 

range values with the cluster representative indicates that no important information was lost in 

the Data volume reduction process. 

The running time of the algorithm analyzing frequencies of 2400 generators at over 400 

time points (0-20 secs with average step size of 0.05 sec) coded in MATLAB and run on an Intel 

i5 2.30 GHz CPU is 4.69 secs. The running time is mainly dependent on the implementation of 

the clustering algorithms and can be reduced further by employing k-D trees [67]. The other 

parameters affecting the speed are the number of cluster representative points generated in the 

Data volume reduction process, quality-threshold diameter in the Pattern identification process, 

and the number of time points considered for the analysis. Although the detailed results are not 

presented here, the current implementation was tested on an even larger system of over 16,000 

buses. Bus frequencies over 400 time points (0-20 secs with average step size of 0.05 sec) were 

clustered generating 100 cluster representative points and finally 10 clusters. Running time was 

found to be about 5 secs. Hence  the proposed methodology is fast and can be further developed 

for real-time analysis with PMU measurements in tracking mode for example. Another extension 

of this work could be to enable the algorithm to automatically select the time range of data for 

information processing and visualization. For example, if the algorithm detects that there is no 

abnormal dynamic response in the system over a time window of say 20 secs, it automatically 

scans the data over the previous time window as well.  
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     Figure 30: Cluster 1 (379 generators) 
 

 

 

Figure 31: Cluster 2 (1518 generators) 
 

   

 

    Figure 32: Cluster 3 (194 generators) 
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    Figure 33: Cluster 4 (162 generators) 
 

 

 

    Figure 34: Cluster 5 (75 generators) 
 

 

 

 

    Figure 35: Cluster 6 (7 generators) 
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       Figure 36: Cluster 7 (1 generator) 
 

 

 

       Figure 37: Cluster 8 (61 generators) 
 

      

 

       Figure 38: Cluster 9 (3 generators) 
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           Figure 39: Cluster 10 (1 generator) 
         

 

2.5 Conclusions 

This work presents an important contribution by proposing a methodology for extracting 

important information from power system time-varying data and its visualization. Transient 

stability run results are the source of such data in this work. Extracted information includes 

abnormal dynamic response indicating some form of error or condition requiring attention. Also 

identified are the characteristics of the wide area power system, grouping nodes of similar 

response. Data volume, a problem frequently encountered in large power systems is also 

addressed with a method to reduce data volume without loss of information. 

Another contribution is in use of spark-lines for visualizing transient stability information 

and their automatic placement without overlaps on a geographic map of the system. Important to 

note is that although the case study presented analyzes generator frequencies, the presented 

methodology can also be applied to other data from transient stability results such as bus 

voltages. The algorithms are extremely fast even when run on thousands of data points and hence 
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can be used for real-time analysis in tracking mode with PMU measurements for example. These 

applications can be addressed as a future direction of the work presented here. Also 

demonstrated here was the effectiveness of data mining and graph drawing techniques for 

information extraction and visualization of power system data. 
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3. APPLICATION OF GRAPH THEORY AND CLUSTERING 

ALGORITHMS TO WIND FARM COLLECTOR SYSTEM DESIGN 

A wind farm has three main components, the wind turbines that generate power from wind, 

the substation which transmits the power generated by turbines to the electric grid, and the 

electrical collector system which consists of cables, transformers, junction boxes, switchgear, 

and other electrical equipment that consolidate the power generated by turbine units distributed 

over the geographical area of the wind farm to the substation.  

This chapter addresses the optimal design of wind farm collector systems. The work 

presented in this chapter is extremely important for planning and installation stages of large wind 

farms as shown in Figure 40. Due to a large number of wind farms coming up in recent times due 

to the focus on increasing penetration of renewable energy in our power grids, this topic is 

particularly relevant at the present time. It has been demonstrated that clustering techniques and 

graph-theoretic algorithms can be extremely useful tools in developing optimal designs also 

taking into consideration several design constraints. 

 

Figure 40: Aerial view of a wind farm (Source: www.midwestenergynews.com) 
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3.1 Motivation 

Wind farm collector systems constitute the single most important element of wind farms 

after the turbines and the substation. Optimal operation of wind farms depends on optimal 

designs of the wind farm collector systems. So there is a need to develop sophisticated 

methodologies to generate these designs. However, optimal design of a wind farm collector 

system is not an easy problem since this requires consideration of several real-life design 

constraints. Considerations for laying out cables in a collector system include turbine placement, 

terrain, reliability, landowner requirements, economics, and expected climatic conditions for the 

location [99]. Another consideration is the configuration of collector systems, which can be 

structured as the loop system or radial system depending on the desired level of collector system 

reliability. Typically designs of collector systems are done manually which is cumbersome and 

prone to errors. But with growing sizes of wind farms this manual process needs to be replaced 

by automatic design processes. Hence, there is a need for algorithms which automatically 

generate optimal collector system designs considering real-life design constraints. 

The motivation for this work is to demonstrate the applicability of graph-theoretic and 

clustering methods and concepts to the optimal wind farm collector system design. As discussed 

in Chapter 1, the problem of cable layout design for a wind farm collector system can be 

considered as finding a tree to meet required design characteristics in a graph G = (V, E), where 

V represents the set of vertices or wind turbines and the substation, and E represents the set of 

branches or edges connecting the vertices which in this work are the connecting cables. 

However, in a wind farm with hundreds of turbines, performing an exhaustive search for the 

optimal tree is computationally expensive since there are numerous trees to be analyzed. In fact 

by Cayley’s tree formula, the number of non-identical trees of order V is VV-2. Both graph theory 
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and data mining are rich resources with a lot of useful tools, concepts, and algorithms. So the 

question addressed in this work is as follows: Can graph theory and data mining provide tools to 

develop algorithms for optimal collector system design? 

An added motivation for this work comes out by comparing the wind farm collector system 

with electrical distribution systems. Both of these have certain similarities but there are distinct 

differences as well. Collector systems operate at medium voltages and the substation steps the 

voltage up to a transmission level voltage while the input to a distribution substation is from a 

high voltage transmission line and the output is a number of medium voltage feeders. Also, 

collector system cables are mostly underground whereas distribution system lines are mostly 

overhead, along streets and hence more exposed to environment and inclement weather 

conditions with a greater failure rate compared to underground cables. Looped or meshed 

configurations are common in distribution systems while radial configurations are common in 

wind farm collector system. The area covered by a distribution system is also typically much 

larger compared to a collector system. The differences between distribution systems and wind 

farm collector systems indicate that an algorithm that generates the best layout for a distribution 

system may not generate the best one for a collector system. Hence arguably further research is 

required to develop dedicated algorithms for wind farm collector system layout design.       

Studies have shown that an electric utility’s power distribution system can account for up to 60% 

of capital budget and 20% of operating costs making it a significant expense [100]. Minimizing 

the cost of the distribution system can be a considerable challenge, as there are thousands of 

feasible design options to choose from. For these reasons, a lot of research [101, 23, 102] has 

been focused on development of optimization algorithms to identify the lowest cost distribution 

configuration and hence the best design. Even with approximations, such programs can help 



 

64 
 

reduce distribution costs by 5 to 10%. The similarities in the problems of distribution system 

optimization and wind farm collector system optimization indicates that there is scope of 

improvements on a similar scale by developing better designs for wind farm collector systems as 

well, further motivating the current work. 

      

3.2 Prior art 

There is a lot of scope in the research of optimal design of wind farm collector systems, 

given that this is a new area. Some related works include electric system design for an off-shore 

wind farm [103]. The IEEE PES Wind Plant Collector System Design Working Group has 

addressed issues related to the design of collector systems for wind plants. This group has 

summarized the important design considerations such as feeder topology, collector design, 

interconnect and NESC/NEC requirements for wind farms [99], described protection issues of 

wind farms [104], presented design guidelines based on redundancy, reliability, and economics 

[105], and summarized collector system design considerations including conductor selection, soil 

thermal properties, installation methods, and splicing [106]. A mixed-integer programming based 

formulation has been proposed for optimal collector system design in [107]. One of the 

recommendations of this work is to apply Steiner trees from graph theory literature to the 

collector system design problem as future research scope. Also, design constraints such as 

landowner requirements and limit on turbines on a feeder have not been considered. In addition, 

the design process is slow. Mixed-integer programming based formulation has also been 

developed in [108] resulting in a complex formulation and slow convergence. Recently another 

research group has independently approached the problem of collector system design from the 

graph-theoretic perspective [109]. However, Steiner trees have not been considered for design. 
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Also, several crucial design constraints have not been considered. These gaps in available 

research will be filled in with the current work. 

       

3.3 Clustering-based design 

One way to design the collector system for a wind farm is by clustering the wind turbine 

locations hierarchically in levels [110]. For example, consider the 22-turbine wind farm shown in 

Figure 41 where the dots represent the turbines and the square represents the collector substation.  

 

Figure 41: Wind farm with 22 turbines (dots) and one substation (square) 

       

     The locations of the wind turbine units are given by the following set of points in Cartesian 

coordinates: {(0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2), (3,2), (0,3), (1,3), (3,3), 

(1,4), (5,5), (6,4), (6,6), (7,5), (7,6), (7,7), (8,6), (8,7)}. Each unit on X and Y axes corresponds 

to 1000 ft. Thus, the minimum distance between any two turbine locations is 1000 ft. Also, it is 
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assumed that the 1 MW turbines generate power at a lagging power factor of 0.8, with a 

maximum current per phase projected to be  
.

√
.

20.92	A per turbine at a 34.5 kV 

medium voltage collector system. 

At the first level, the wind turbine locations are clustered into a number of groups using 

Quality-Threshold clustering algorithm as described in Chapter 2. The quality threshold distance 

for this level is set to 2.5 units = 2500 ft. Two clusters are formed containing respectively 14 and 

8 wind turbines. The turbine location in each group that is closest in distance to the substation is 

called the first-level cluster representative point for that group. Cables are laid out from each of 

the turbine locations of that group to the first-level cluster representative point. The resulting 

system is shown in Figure 42.  

 

 

Figure 42: First-level clustering 
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The choice of quality threshold distance for each stage of clustering is by trial and error. A 

good initial guess for the first stage clustering is 2 to 3 times the minimum distance in between 

turbines. For every subsequent clustering stage, the quality threshold distance can be chosen as 

double that for the previous stage. The initial guess for the threshold distance is modified to 

achieve specific design targets and meet constraints such as maximum number of turbines in a 

cluster.  

The cable size is selected from the available cable sizes provided in the Appendix to provide 

required ampacity to carry power. 1/0 conductor-sized cables are sufficient for this level. The 

total length of 1/0 conductor-sized cables is 47.3701 units per phase = 47370.1 ft per phase. 

Maximum losses associated with the 1/0 conductor-sized cables is 10.4 kW for all three phases 

which can be computed using resistance of cables. 

In the next level, the first-level cluster representative points are clustered with a quality 

threshold distance of 4 units = 4000 ft to compute second-level cluster groups and second-level 

cluster representative points similar to the first level as shown in Figure 43. The second-level 

cluster representative point is marked as a diamond around a black dot. A 4/0 conductor-sized 

cable is needed at this level. Length of the required cable is 3.6056 units per phase = 3605.6 ft 

per phase.  The power losses associated with this cable is 25.3 kW for three phases. 

In the third and last level, a cable carries power from the second-level cluster representative 

point to the substation as shown in Figure 44. This cable carries power from all the turbines in 

the wind farm and carries a maximum current of 460.24 A per phase. The cable used for this is 

one with 1000 kcmil-sized conductors. The length of the required cable is 2.8284 units per phase 

= 2828.4 ft per phase and losses associated equal 34.6 kW for three phases. 
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Figure 43: Second-level clustering 

 

                          

Figure 44: Third-level clustering 
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A conventional method of connecting wind turbines in a wind farm is the radial system or 

the daisy chain system. Figure 45 shows a possible radial system cable layout configuration for 

the wind farm considered in this work. An equivalencing process described in [111] is used to 

compute the currents in each cable. The cables required in this layout per phase are 24376 ft of 

1/0 conductor-sized cables, 1000 ft of 4/0 conductor-sized cables, and 3000 ft of 500 kcmil 

conductor-sized cables. 

 

                         

Figure 45: Radial system cable layout 

        

      A combined cluster-based and radial layout can also be considered as shown in Figure 46. 

The first level uses the quality-threshold clustering method followed by a radial interconnection. 

The total cable length required in this method per phase is 47370 ft of 1/0 conductor-sized 

cables, and 6943 ft of 4/0 conductor-sized cables.  

-1 0 1 2 3 4 5 6 7 8 9 10
-1 

0 

1 

2 

3 

4 

5 

6 

7 

8 
9 

10 

X-axis: 1 unit = 1000 ft

Y
-a

xi
s:

 1
 u

ni
t =

 1
00

0 
ft



 

70 
 

 

Figure 46: Mixed layout configuration 

       

Reliability metric                                                                             

To compare the reliability of the three layouts, the metric introduced is the mean number of 

turbines lost due to a single cable fault.  The assumption is that the mean rate to a cable fault is 

much larger than the mean rate to a cable failure. Thus, at an instant, there can be a fault on any 

one cable. Let the total number of cables in each layout be N. Let the probability that a fault 

occurs on a cable be p = 0.1. If the number of turbines lost due to fault in cable-i is given by ti, 

then the mean number of turbines lost due to a fault on a cable, μ can be given by: 

 μ t ∗ p ∗ 1 p P ∗ t  
(3.1)

 

 

Here P is a probability multiplier. Note that the lower the μ, the higher the reliability of the 

design. A comparison of the three different configurations is provided in Table 1. It is assumed 
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that the cost of digging the land and entrenching the cables i.e. trenching costs are $15/ft. It is 

noted that the cluster-based methods improve the reliability of the systems, lowers power loss 

due to use of higher-sized cables of lower resistance compared to the pure radial system. 

However, the cable costs and total trenching lengths are significantly higher. This can be 

considered as a major disadvantage. To address this, the collector system design problem has 

been reconsidered from the standpoint of reducing the total trenching length [112]. This is where 

a graph-theoretic perspective was found to be extremely effective. 

 

Table 1: Comparison of the layouts 
 

Layout based on Reliability (mean no. 
of turbines lost due to 

single cable fault)

Power 
loss 

(kW)

Total 
trenching 
length (ft) 

Total 
cable 

costs ($)
Clustering 0.545 70.42 161,412 380,386 

Radial system 0.916 123.9 28,376 167,880 
Combined cluster-

radial 
0.458 99.9 54,313 306,280 

 

  

       

3.4 Collector system design with minimum total trenching length and application of 

spanning trees 

When the objective is to minimize the total trenching length of the collector system and 

hence to find a tree in the collector system graph with minimum total length of edges, the 

problem is relatively easy and requires a minimum spanning tree algorithm to generate the 

required configuration.  
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The minimum spanning tree (MST) algorithm 

The first algorithm for finding an MST was developed by Czech scientist Borůvka in 1926. 

Several algorithms have since been developed and two of the most common algorithms are 

Prim’s algorithm and Kruskal’s algorithm [113, 114, 115, 116]. Both of these algorithms run in 

polynomial time. Prim’s algorithm was developed in 1930 by Czech mathematician Jarník and 

later independently by computer scientist Robert C. Prim in 1957 and rediscovered by Edsger 

Dijkstra in 1959 [117]. Therefore it is also sometimes called the Dijkstra-Jarnik-Prim or DJP 

algorithm. This is the algorithm that has been used for computing an MST in this dissertation.  

 

Three sets of branches are defined: 

 Set I – The branches definitely assigned to the tree under construction (form a subtree). 

 Set II – The branches from which the next branch to be added to Set I will be selected. 

 Set III – The remaining branches (rejected or not yet considered). 

The nodes are subdivided into two sets: 

 Set A – The nodes connected by the branches of Set I. 

 Set B – The remaining nodes (one and only one branch of Set II will lead to each of these 

nodes). 

The algorithm starts by choosing an arbitrary node as the only member of Set A, and by 

placing all branches that end in this node in Set II. To start with, Set I is empty. From then 

onward the following two steps are performed repeatedly. 

 Step 1 – The shortest branch of Set II is removed from this set and added to Set I. As a 

result one node is transferred from Set B to Set A. 
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 Step 2 – The branches leading from the node which has just been transferred to Set A to 

the nodes that are still in Set B are considered. If the branch under consideration is longer 

than the corresponding branch in Set II, it is rejected; if it is shorter, it replaces the 

corresponding branch in Set II, and the latter is rejected. This is followed by a return to 

Step I and a repetition of the process until Set II and Set III are empty. The branches in 

Set I form the tree required. 

Figure 47 and Table 2 illustrate the algorithm on a graph of five nodes. Initially say the node 

5 is selected. Thus Set A contains node 5 and Set B contains nodes 1, 2, 3, and 4. The possible 

branches from node 5 to the other nodes form Set II. The smallest branch in this set is (5, 3) 

which in the next stage is moved to the Set I. This moves node 3 to Set A. The branches from 

node 3 to the nodes still in Set B i.e. (3, 1), (3, 2), (3, 4) are considered. (3, 1) is compared with 

(5, 1). Since (5, 1) is smaller, this branch is retained. Similarly, (3, 2) is compared with (5, 2), 

and (3, 4) is compared with (5, 4) and found that (5, 2) and (5, 4) are smaller and hence retained 

as elements of Set II. These are highlighted in the table. The smallest among (5, 1), (5, 2), and (5, 

4) is computed. This is found as (5, 2) and is moved to Set I. Accordingly, node 2 is moved from 

Set B to Set A. Next, (2, 1) is compared with (5, 1) and (2, 4) compared with (5, 4) and found 

that (2, 1) and (5, 4) are smaller and are retained. Between (2, 1) and (5, 4), (2, 1) is smaller so 

this branch is moved to Set I and accordingly node 1 is moved from Set B to Set A. Now the 

branches compared are (1, 4) and (5, 4), of which (5, 4) is smaller. Thus (5, 4) is added to Set I 

and the last remaining node from Set II, i.e. node 4 is moved to Set I.  
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Figure 47: Illustration of the minimum spanning tree algorithm 
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Table 2:  Illustration of the MST algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

         

 

       

        

 

The application of the MST algorithm for collector system design with minimum total 

length is demonstrated with an example. 

A real-life wind farm consisting of 66 wind turbines such as is common in the flat terrain of 

the American Midwest is considered. Figure 48 shows the locations of the 66 wind turbines with 

dots and the substation with a square. Figure 49 shows the actual connection diagram as it exists 

in the considered section of the real wind farm.  

Stage No. Set I Set II Set A Set B 

Initial [] 

(5,1) 
(5,2) 
(5,3) 
(5,4) 

5 

1 
2 
3 
4 

1 (5,3) 
(3,1) or (5,1) 
(3,2) or (5,2) 
(3,4) or (5,4) 

5 
3 

1 
2 
4 

2 
(5,3) 
(5,2) 

(2,1) or (5,1) 
(2,4) or (5,4) 

5 
3 
2 

1 
4 

3 
(5,3) 
(5,2) 
(2,1) 

(1,4) or (5,4) 

5 
3 
2 
1 

4 

4 

(5,3) 
(5,2) 
(2,1) 
(5,4) 

[] 

5 
3 
2 
1 
4 

[] 
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Figure 48: Location of wind turbines and the substation 

Figure 49: Actual layout 
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The MST algorithm is applied on all of the turbine locations and the substation location 

resulting in the configuration shown in Figure 50. This layout is denoted as: 

Case I – Minimum total length configuration without any constraints  

 

     

As can be seen there are two feeders coming into the substation, one carrying the power 

generated from 3 turbines and the other from 66 turbines. None of the cables listed in Table 14 of 

the Appendix can provide the required ampacity as loading increases closer to the substation. 

Thus multiple circuits of cables have to be used. As a result in this layout the total cable length is 

larger than the total trenching length. 
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3.5 Collector system design with flexibility of introducing intermediate splice nodes  

The MST algorithm only uses the input nodes to compute the tree. If an additional degree of 

freedom is introduced in the design space by allowing the creation of intermediate splice nodes 

similar to Steiner’s vertices as introduced in Chapter 1, the total length obtained by the minimum 

spanning tree algorithm can be further reduced. Then the problem of optimal cable layout design 

to minimize the total length becomes a Steiner tree problem. 

     

Steiner tree 

The Euclidean Steiner tree problem dates back to the 17th century when Fermat proposed the 

problem: Find a point in a plane, the sum of whose distances from three given points is minimal 

[118]. This simple problem prompted over one hundred years of study before Heinen proposed a 

complete solution in 1834. After another hundred years the Fermat problem gained further 

popularity among mathematicians and received a name change. After the publishing of What Is 

Mathematics? [118] in 1941 by Courant and Robbins, the Fermat problem and its generalizations 

were renamed the Steiner tree problem after Steiner, a professor at the University of Berlin who 

made great contributions to mathematics [119]. The real-world applications of Steiner trees and 

their generalizations are numerous. Routing of heating and plumbing pipes inside a building, 

trace layout between logic gates in circuits to minimize propagation time, determining the 

pathway for oil or natural gas pipelines that are as short as possible while considering the terrain 

they cross or avoid, and other minimal networks are a few of the many examples. 

In 1977, Garey, Graham, and Johnson showed that the Euclidean Steiner tree problem for 

general N vertices is NP-Hard [120], and hence it is not known whether an optimal solution can 

be found by using a polynomial-time algorithm. Several researchers have worked in the area of 
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computing exact Steiner trees. Dave Warme, Pawel Winter, and Martin Zachariasen have made 

publicly available their world champion algorithm for computing optimal Steiner trees. This 

package, entitled GeoSteiner [121, 122], computes optimal Euclidean and rectilinear Steiner 

trees. There have been some other significant contributions in the area of computing exact 

Steiner trees as well [123, 124, 125, 126]. 

However, the GeoSteiner algorithm and all known exact algorithms for the Euclidean 

Steiner tree problem require exponential time. So the general consensus is to use heuristics and 

approximation algorithms. The goal is to connect the vertices by edges of minimum total length 

in such a way that any two points may be interconnected by line segments either directly or via 

intermediate points similar to but not the same as Steiner points and line segments. 

In order to gauge performance of Steiner heuristics and approximation algorithms the 

Steiner ratio has been introduced. It is defined as the largest possible ratio between the total 

length of an MST over all vertices and the total length of a minimum Steiner tree. For the 

Euclidean Steiner tree problem, Gilbert and Pollak, in 1968, [127] speculated that the best 

obtainable ratio over all Steiner trees equals ratio for the equilateral triangle, i.e 2
√3

1.15. In 

1992, Du and Hwang [128] presented a formal proof of this conjecture. An improvement of this 

order is difficult to achieve given that the problem is NP-hard. In 2002, Dreyer and Overton 

[129] proposed two heuristic-based algorithms for computing Steiner trees. The first algorithm is 

relatively faster but does not generate results as good as the other. Whereas, the second algorithm 

generates better results but is extremely slow, taking as long as 10 minutes on 10 points, 3 hours 

on 10 points, and a day on 100 points [129]. Thus each algorithm has its own advantages and 

disadvantages, and it is concluded that the choice of an algorithm should be dependent on the 

application.  In this dissertation, another heuristic-based algorithm is presented that is simple and 
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caters to the requirements of the problem of wind farm collector system design.  

 

Heuristic algorithm for introducing splice nodes 

     This algorithm introduces intermediate splices improving the results obtained by minimum 

spanning tree algorithm. The algorithm has the following steps [112]: 

 Step 1 – The algorithm is initialized by the connected graph obtained by applying 

minimum spanning tree algorithm on all nodes including the substation. Four sets are 

defined as follows: Set 1 = {the substation node}, Set 2 = {all other nodes}, Set 3 and Set 

4 are null sets. 

 Step 2 – A node is selected from Set 2, called Node-A, such that it is connected to a node, 

called Node-B, in Set 1, as computed by the minimum spanning tree algorithm. The least 

distance between Node-A and the nodes in Set 1 is computed. If the least distance 

corresponds to Node-B, the existing branch in between Node-A and Node-B is retained 

and moved to Set 3. However, if the least distant node in Set 1 is not Node-B, it (the least 

distant node) is defined a “splice node.” The splice node location is copied to the Set 4. A 

branch is created between the Node-A and the splice node which replaces the existing 

branch between Node-A and Node-B in Set 1 and is moved to Set 3.  

 Step 3 – Multiple equidistant points are created on the just moved branch to introduce 

new nodes. In this work, five equidistant points are chosen. The Node-A and the five 

newly created nodes are moved to Set 1.  

Steps 2 and 3 are repeated till Set 2 is empty. This indicates that all the nodes have been 

considered. Finally Set 4 contains the newly created splice nodes, and Set 3 contains the 

branches that form a tree with original set of nodes and introduced splice nodes. 
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An important point to note in this algorithm is that Set 1 is initialized with the substation 

node. The characteristics of spanning trees having only one unique path between any pair of 

nodes ensures that a node from a non-empty Set 2 can always be found that has a connection 

with a node in Set 1. The modified tree with increased number of nodes and branches grows 

outward from the substation node with every iteration, adding intermediate splice nodes as 

necessary to reduce the total spanning length. 

The process in steps 1 to 3 has been illustrated in Figure 51 and Table 3. A graph with five 

nodes (four turbine nodes indicated by dots and one substation node indicated by a square) is 

initialized by a MST algorithm. At this stage, the Set 1 consists of the substation node, i.e. node 

1, and Set 2 consists of the other four nodes, i.e. nodes 2, 3, 4, and 5. At the first stage, Node-B = 

node 1, and Node-A = node 2, since it is the only node connected to a node in Set 1. The least 

distance between Node-A and a node in Set 1 corresponds to Node-B, since Set 1 contains only 

node 1 at this stage. Hence the branch between these is retained as shown in Stage I. This branch 

is replaced by five equidistant nodes as shown in Stage II and these are moved to Set 1. The Set 

1 now contains the five newly created nodes, node 1, and node 2.  Node 2 is removed from Set 2. 

Set 3 contains the branch between node 1 and node 2 and Set 4 is empty. At the next stage, node 

3 is selected and distance between this node and the seven nodes in Set 1 are computed. It is 

found that node 2 is the least distant from node 3, so the branch between these is retained and no 

splice nodes introduced as shown in Stage III. This process is followed till the first splice node 

(indicated by a diamond) is found in Stage VII, and the Set 2 becomes empty. 
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Figure 51: Illustration of the splice introduction algorithm 
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Figure 51: Illustration of the splice introduction algorithm (cont.) 
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Figure 51: Illustration of the splice introduction algorithm (cont.) 

 

Table 3: Illustration of the splice introduction algorithm – transition of the sets 
 

Stage No. Set 1 Set 2 Set 3 Set 4 

Initial {1} (substation) {2, 3, 4, 5} {[]} {[]} 

I {1, 2} {3, 4, 5} {(2,1)} {[]} 

II {1, 2, a1, b1, c1, d1, e1} {3, 4, 5} 

III {1, 2, 3} {4, 5} {(2,1), (3,2)} {[]} 

IV {1, 2, 3, a2, b2, c2, d2, e2} {4,5} 
  

V {1, 2, 3, 4} {5} {(2,1), (3,2), (4,3)} {[]} 

VI 
{1, 2, 3, 4, a3, b3, c3, d3, 

e3} 
{5} 

  

VII {1, 2, 3, 4, 5} {[]} 
{(2,1), (3,2), (4,3), 

(5,e3)} 
{e3} 

 

The algorithm has been further illustrated with a flow chart in Figure 52. 
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Figure 52: Flow chart showing algorithm for introducing splice nodes 
 

     

  Applying the proposed algorithm on the wind farm results in the layout shown in Figure 53. 

The total trenching length decreases by a factor of about 1.01 and 8 intermediate splice nodes are 

introduced. This layout is denoted as follows: 

N 

Y 

 Set 1 = {the substation node} 
 Set 2 = {all other nodes} 
 Set 3 = {} 
 Set 4 = {} 

Stop Is Set 2 empty? 

Select Node-A in 
Set 2 | (Node-A is 
connected to Node-
B in Set 1) 

 Set “Splice node” 
= closest node and 
copy into Set 4  

 
 Create branch 

(Node-A, “splice 
node”) and move 
to Set 3 

 
 Delete rest of 

nodes created in 
previous iteration 

 Branch (Node-A,  
Node-B) moved 
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 Delete nodes 
created in 
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Y N  
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Case II – Reduced total length configuration compared to Case I by the introduction of 

intermediate splice nodes without limits on the maximum number of turbines on a feeder and 

without trenching constraints. 

 

     

    Similar to Case I (Figure 50), the total trenching length is lower than the total cable length 

because multiple cable circuits have to be used to provide required ampacity closer to the 

substation. The disadvantages with this configuration are that there are two feeders coming into 

the substation each connecting to 3 and 63 turbines respectively. In a practical collector system, 

there may be limits on the maximum number of turbines on a feeder depending on the maximum 

size and ampacity of available cables. To address this problem in the design, the wind turbine 

locations can be clustered using K-means clustering and the number of turbines in each cluster 
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restricted to the maximum limit by an algorithm. This algorithm is described in the following 

section.  

 

3.6 Applying clustering to limit maximum number of turbines on a feeder 

     Feeder cables have limited current carrying capacity. This limits the number of turbines that 

can be connected to a feeder. Assuming a limit of Nmax turbines on a feeder, the algorithm for 

incorporating this constraint in the automatic cable layout design is as follows [112]: 

 Step 1 – The algorithm is initialized with a value of the number of clusters required. This 

value is calculated by finding the ratio of the total number of turbines and Nmax. 

 Step 2 – The turbines are clustered with the K-means clustering algorithm and the size of 

the largest cluster is found. 

 Step 3 – If the size of the largest cluster exceeds the prespecified Nmax, the value of the 

number of required clusters is increased by unity and Step 2 and Step 3 are redone. If the 

size of the largest cluster is within limit, the value for the required cluster number is 

finalized and the turbine nodes are grouped according to K-means clustering algorithm.  

 Step 4 – For every cluster, the nodes corresponding to the turbines and the substation 

location are grouped in a set called Set A. Next the minimum spanning tree algorithm is 

applied on elements of Set A. 

     Depending on a visual inspection of the geographical distribution of wind turbines, the Step 2 

can be varied to cluster the actual wind turbine locations or the radial angles of turbine locations 

at substation location.  
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Figure 54: Algorithm for enforcing max. limit on no. of turbines 
 

To ensure the convergence of the K-means clustering algorithm to the same clusters in each 
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the turbines are first sorted by increasing or decreasing angle values and then K equispaced 

locations are selected from this list to give the K starting centroids. 

Applying this algorithm on the example wind farm results in: 

Case III – Minimum total length configuration with limits on maximum number of turbines on a 

feeder and without introducing intermediate splice nodes or considering landowner constraints. 

Clustering by geographical locations of the turbines results in Figure 55. Clustering by radial 

angles of turbine locations at the substation results in Figure 56.  

    

In each figure the dash-dot lines show the clusters. The number of clusters is determined so 

that the maximum number of turbines in each cluster is less than or equals 20 turbines in this 

work. However, the maximum limit can be varied according to the design requirement. As can 
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be seen, in Figure 55, five clusters are formed with 20 turbines in the largest cluster, and in 

Figure 56, five clusters are formed with 17 turbines in the largest cluster.  

 

 

 

 

It should be noted here that using angles subtended by turbines at substation as the criteria 

for clustering is an innovation that is particularly applicable for the wind farm collector system 

design given its radial structure. This can also be seen for the example wind farm, where the 

geographical distribution of wind turbine locations are such that Figure 56 (and hence a radial 

clustering) depicts a better choice for clustering compared to Figure 55. The disadvantage of 
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Figure 56: With limit on max no. of turbines on a feeder and radial clustering 



 

91 
 

Figure 55 for this wind farm is that some cables connecting turbines of a cluster to the substation 

may pass through or very close to turbines in another cluster thus requiring application of 

heuristics to improve the design generated by the algorithm.  However, clustering based on 

turbine locations can be useful in designing collector system configurations in a wind farm where 

the terrain and other factors lead to placement of groups of wind turbines at large distances from 

each other. The choice whether turbine locations or radial angles are to be clustered depends on 

the specific wind farm under study and can be done by a visual inspection of relative locations. 

Once the clusters are defined, the MST algorithm is run on individual clusters to get the least 

total length layout under this constraint. In both Figure 55 and Figure 56, the total cable length 

equals the total trenching length. This is because the maximum number of turbines on a feeder is 

limited. So one of the cable sizes from Table 14 (see Appendix) could be assigned to each of the 

cables; even those close to the substation, without violating the ampacity limits. 

Applying the splice introduction algorithm along with the algorithm for limiting the number 

of turbines on a feeder results in Figure 57. This layout is represented as: 
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Case IV – Reduced total length configuration by introduction of intermediate splice nodes and 

considering limits on the maximum number of turbines on a feeder but without trenching 

constraints. 

   

     

3.7 Applying graph theory to address design constraints of trenching restrictions     

The geographical area of the wind farm is sometimes restricted with respect to excavating 

the land and/or burying cables, i.e. trenching. Such restrictions might come from the owner of 

the land area or be due to presence of a water body etc. The following algorithm takes into 

account these restrictions while designing the cable layout system. An assumption made is that 

the restricted areas are convex polygons and if an area is not a convex polygon, it can be 

approximated by one.  
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Figure 57: Algorithm with splices and restriction of max no. of turbines on a feeder 
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This algorithm is based on a modified version of the minimum spanning tree algorithm. 

Three sets are defined: 

 Set I – The branches definitely assigned to the tree under construction (they will form a 

subtree), 

 Set II – The branches from which the next branch to be added to Set I will be selected, 

 Set III – The remaining branches (rejected or not yet considered). 

Each branch in Set II has a certain length typically computed by the Euclidean distance 

between the nodes at the two ends of the branch. However, in this algorithm, each branch is 

checked for possible intersection with the polygon representing restricted area where trenching is 

not allowed. If such intersection is found, as shown in Figure 58, then the length of the branch is 

incremented to a very large value.  

 

 

Figure 58: Branch between two nodes crossing area restricted for trenching (Distance 
between nodes artificially increased to a large value) 

 

 

 The nodes are subdivided into two sets: 

 Set A – The nodes connected by the branches of Set I, 

 Set B – The remaining nodes (one and only one branch of Set II will lead to each of these 

nodes). 

Area restricted for trenching 

Nodes/turbines 
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      The algorithm starts by choosing an arbitrary node as the only member of Set A, and by 

placing all branches that end in this node in Set II. To start with, Set I is empty. From then 

onward the following two steps are performed repeatedly. 

 Step 1 – The shortest branch of Set II is removed from this set and added to Set I. As a 

result one node is transferred from Set B to Set A. 

 Step 2 – The branches leading from the node which has just been transferred to Set A to 

the nodes that are still in Set B are considered. If the branch under consideration is longer 

than the corresponding branch in Set II, it is rejected; if it is shorter, it replaces the 

corresponding branch in Set II, and the latter is rejected. This is followed by a return to 

Step 1 and a repetition of the process until Set II and Set III are empty. The branches in 

Set I form the tree required. 

      This algorithm is applied on the example wind farm. The turbine locations are first clustered 

based on radial angles followed by applying algorithm for trenching constraints. This is followed 

by applying the algorithm for introducing splice nodes. The resulting configuration is shown in 

Figure 59. The polygons in green represent the land areas where trenching is not allowed or 

difficult, enforced by a large cost of laying out any possible cables crossing these areas.  
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Case V – Reduced total length configuration by introduction of intermediate splice nodes and 

considering limits on the maximum number of turbines on a feeder and trenching restrictions. 

 

 
     

     Comparing Figure 59 and Figure 57 shows how applying the trenching restriction constraint 

changes the layout.  

3.8 Layout obtained with same clusters as actual layout 

     It should be noted that the maximum number of turbines on a feeder for the actual layout 

(Figure 49) is 24 whereas in the layout in Figure 57, the maximum number is 17. For comparison 

purposes, the MST and splice introduction algorithms are applied on the same turbine clusters as 

the actual one, to obtain the layout shown in Figure 60: 
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Case VI – Reduced total length configuration by introduction of intermediate splice nodes and 

groups of same turbines on each feeder cable as actual layout but without considering 

landowner constraints. 

 

 

The total cable length equals the total trenching length because the maximum number of 

turbines on a feeder is limited.  

 

3.9 Conversion of undirected to directed graph and assigning cable sizes 

      The algorithms described in the previous sections result in undirected trees. However, for the 

wind farm collector system design, an important concern is determining the cable sizes which 

depend on the ampacity of required cables which in turn depend on the actual power carried by 
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the cable. This needs a direction of power flow on the cables and hence the undirected graphs 

have to be converted to directed graphs. Another algorithm has been proposed for the same. The 

algorithm described in this subsection converts the undirected trees to directed ones. The input to 

the algorithm is the connected undirected graph obtained by applying one of the previously 

described algorithms on substation and wind turbine locations. The output is the direction and 

magnitude of active power flow on the branches or cables, an assignment of cable sizes for 

different cables from a list of available cable sizes as shown in Table 14 (in the Appendix), and 

power losses on all connecting cables. The design is for the situation when all the turbines 

generate the rated power. Thereby the power injected by each turbine at the node corresponding 

to its location equals the rated power. The algorithm is as follows [112]: 

 Step 1 – Two sets are initialized. Set 1 is the set of all turbine and splice nodes. Set 2 is the 

set of all branches. 

 Step 2 – A node called Node-A is selected from Set 1such that Node-A corresponds to only 

one branch in Set 2. This step physically selects one of the terminal nodes in the graph. The 

Node-A is denoted a “from node.” The node which the Node-A is connected to is denoted a 

“to node.” The power flow direction is from the “from node” to the “to node.” The flow on 

the cable is the power injected at the “from node” and the power injected at the “to node” 

location is incremented by the power flow on the cable. The connecting cable is assigned a 

cable size from continuous ampacity rating of available conductors in Table 14 (in the 

Appendix) and assuming a 34.5 kV medium voltage system. The resistance of the cable is 

computed from resistance data in Table 14 (in the Appendix). The resistance is used to find 

the I2R power losses on the cable.   

 Step 3 – The Node-A (“from node”) is deleted from Set 1 and the branch connecting the “to 
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node” and “from node” is deleted from Set 2 thus resulting in a smaller dimension graph. 

 Step 4 – The Steps 2 and 3 are repeated till the Set 1 is empty. 

This algorithm has been illustrated with a flow chart in Figure 61. 

 

Figure 61: Flow chart for algorithm to convert undirected to directed graph and assign 
cable sizes 

 

Y

N

Select  Node-A in Set 1 | (Node-A corresponds 
to only one branch  in Set 2) 

 “from node” = Node-A, “to node”= node connected to Node-A 
 Connecting cable = branch connecting “from node” and “to node” 
 Power flow direction = “from node” to “to node”  
 Power flow on connecting cable = power injected at “from node” 
 Power injected at “to node” = power flow on connecting cable + 

power generated at “to node” 

Delete Node-A from Set 1 and branch connecting 
“to node” and “from node” from Set 2 

Stop 

 Assign required cable size from available cable sizes  
 Find power loss in the cable  

Is Set 1 empty? 

 Initiate with connected undirected graph 
 Set 1 = {all turbine + splice nodes} 
 Set 2 = {all branches}
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The algorithm is further illustrated with the Figure 62 which provides an example of a small 

wind farm with the substation (square) represented by node 1, turbines (dots) represented by 

nodes 2, 3, 4, and 5, and a splice node (diamond) represented by node 6. The transition of sets is 

shown in Table 4. 

 

 

 

  

 

 

 

 

 

      

 

 

Figure 62: Illustration of the algorithm for converting the undirected to directed graph 
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Table 4: Illustration of algorithm for converting undirected to directed graph        
(transition of the sets) 

 

Stage No. 
From 
Node 

To Node 
Power Flow on 

Cable 
Updates 

I 5 6 P5 P6=0+P5 

II 4 6 P4 P6=P6+P4 

III 6 3 P6 P3=P3+P6 

IV 3 2 P3 P2=P2+P3 

IV 2 1 P2 P1=P1+P2 

 

Cables are assigned depending on required ampacity on each section from available cable sizes 

provided in the Appendix.   

 

3.10 Economic analysis 

It is important to do an economic analysis of the design. The process for that is described 

here. In this work, underground cables interconnect 1 MW wind turbines and the substation at 

34.5 kV. Assuming the units generate power at unity power factor, the rms current/phase is 

projected to be a maximum of  

                           
.

√
.

16.73  A (3.2)
 

 

It has been assumed that the average wind speed at the wind farm location is 8.5 m/s.   

Assuming Rayleigh distribution, capacity factor of the turbines can be computed as [18]: 
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 CF 0.087V
P
D

 
(3.3)

 

      

where,  V  is the average wind speed in m/s, P  is the rated power in KW of a wind turbine, D is 

rotor diameter in m. With rated power of each turbine unit taken as 1 MW, rotor diameter 52 m, 

and average wind speeds of 8.5 m/s, the capacity factor is approximately 37%. It has been 

assumed that the wind turbines generate either the peak power or zero. Hence, the collector 

system loss factor equals the capacity factor.  

A levelized cost estimate for energy delivered by the wind farm has been found by 

computing the ratio of annual costs and the annual energy produced. 

  

 Cost	of	electric	energy
cents
kWh

100 ∗ Annual cost $/yr
Annual energy kWh/yr

 
(3.4)

 

 

Hence, the annual energy generated is found by the product of the nameplate capacity of the 

wind farm reduced by the collector system losses, number of hours in a year, and the capacity 

factor of the wind farm.  

 

 
AE = (PR × N – Ploss) × 8760 × CF                                         (3.5)

 

     

where AE is the annual energy generated, N is the number of turbines, Ploss is the collector 

system losses (in kW), and the capacity factor (CF) of the wind farm.   

The capital cost CC of the wind farm project is computed as: 
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CC = 1.05 × (N × CT + L × Ct + Cc)                                       (3.6)

 

     

where CT is the cost of a turbine ($1× 106/turbine), L is the total trenching length, Ct is trenching 

costs of $15/ft, and Cc is the total cable costs. A multiplication factor of 1.05 is used to take into 

account other components of the capital cost such as site preparation, grid connections, project 

development, and feasibility study. 

It is assumed that the wind project is financed by a loan which is 75% of the capital cost 

with a 7% interest rate and loan term of 20 years and the remaining by equity. The capital cost is 

spread out over the projected lifetime of the wind farm.  

The annual cost AC in $/yr incurred is given by [18]:   

 

 
                           AC = A + E + M (3.7)

 

where A is the annual loan payments, E is annual return on equity, and M is operation and 

maintenance costs. 

The annual payment on the loan is given by [18]: 

 

 A $/yr P
i 1 i
1 i 1

P. CRF i, n  
(3.8)

 

      

where CRF is the Capital recovery factor and P is the principle borrowed.  

The remaining capital cost is met with an equity on which a 15% return is required per year. 

Annual return on equity (E) is given by: 
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E $/yr 0.15 ∗ 25% ∗ CC                          

 

(3.9)
 

The operation and maintenance costs are assumed to be 3% of the capital cost and include 

parts and labor, insurance, contingencies, land lease, property taxes, maintenance of transmission 

lines, and general and miscellaneous costs. 

  M $/yr 0.03 ∗ CC (3.10)
 

Finally, a levelized cost estimate for energy delivered by the wind farm has been found as 

follows [18]:  

 
                               CEE = AC /AE                                                       (3.11)

 

    

3.11 Computing the reliability of the design 

        In Section 3.3, a metric was introduced to measure reliability of the collector system design. 

This metric, namely the mean number of turbines lost due to a single cable fault is used again to 

develop an algorithm to compute reliability of a system.  The algorithm has the following steps.                           

 Step 1 – Two sets are initialized. Set 1 is the set of all turbine and splice nodes. Set 2 is 

the set of all branches. 

 Step 2 – A node is selected from Set 1 such that it corresponds to only one branch in Set 

2. This node is named Node-A. The purpose of this step is to select one of the terminal 

nodes in the graph. The Node-A is denoted a “from node.” The node which it (Node-A) is 

connected to is denoted a “to node.” The number of turbines lost due to fault on cable 

(“from node”, “to node”) equals number of turbines beyond “from node.” The number of 

turbines beyond “to node” is incremented by unity.  
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 Step 3 – Node-A (“from node”) is deleted from Set 1 and the branch connecting the “to 

node” and “from node” is deleted from Set 2 thus resulting in a smaller dimension graph. 

 Step 4 – The steps 2 and 3 are repeated till the Set 1 is empty.  

 Step 5 – Finally the reliability of the design is computed using equation (3.1). 

      This algorithm has been further illustrated with a flow chart in Figure 63. 

IS THIS ALGORITHM IS VERY SIMILAR TO ALGORITHM CTH 

 

 

Figure 63: Computation of design reliability 
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N 

Select  Node-A in Set 1 | (Node-A corresponds to only one branch  in Set 2) 

 “from node” = Node-A, “to node”= node connected to Node-A 
 Connecting cable = branch connecting “from node” and “to node” 
 No. of turbines lost due to fault on connecting cable (“from node”, “to node”) = No. 

of turbines beyond “from node” 
 No. of turbines beyond “to node” = no. of turbines lost due to fault on connecting 

cable + 1 

Delete Node-A from Set 1 and branch connecting “to node” and “from node” from Set 2 

Compute expected no. of 
turbines lost due to fault on 
a cable using equation (3.1) 
and stop 

Is Set 1 empty? 

Initiate with connected undirected graph 
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3.12 Results and discussions    

The results for all the cases are summarized in Table 5. 

 
Table 5: Results summary 

 

Layouts 
Max. 

turbines 
on feeder 

Total 
trenching 
length (m) 

Total cable 
length (m) 

Trenching 
costs 

(× 106 $) 

Cable costs 
(× 106 $) 

Case I (min. 
spanning tree) 

63 33896 40197 1.69 2.13 

Case II 
(splices) 

63 33732 39672 1.68 2.06 

Case III 
(normal 

clustering) 
20 41844 41844 2.09 1.36 

Case III (radial 
clustering) 

17 39037 39037 1.95 1.29 

Case IV 
(splices and 

radial 
clustering ) 

17 38870 38870 1.94 1.28 

Case V 
(splices, radial 
clustering, and 

trenching 
restrictions) 

17 

 

39666 

 

39666 1.98 

 

1.29 

 

Case VI (same 
clusters as 

actual layout) 
24 37131 37131 1.86 1.37 

Actual layout 24 43186 43186 2.16 1.44 
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It should be noted that adding a constraint, namely limiting number of turbines on a feeder 

as in Cases III (Figure 56) and IV (Figure 57) results in an increase of the total trenching length 

compared to Case I (Figure 50) and Case II (Figure 53). For the same reason, the total trenching 

length in Case VI (Figure 60) is lower than the previous layout Case III (Figure 56). Also, it is 

noticed that the higher the number of turbines allowed to be connected to a feeder, the greater the 

cable costs since more higher-sized and hence higher-cost cables are required as branch currents 

add up close to the substation. Furthermore, radial clustering generates better results compared to 

clustering by turbine locations. 

The costs of energy for the different layouts are also calculated. Since the costs of energy 

are levelized costs, there is not a significant change between different layouts, varying between 

4.6 to 4.7 cents/kWh. For example, the cost of energy in the layout with splices, radially 

clustered turbines and with trenching restrictions is 4.74 cents/kWh. 

The reliability (expected no. of turbines lost due to fault on a cable) of the layout with 

splices, radially clustered turbines and with trenching restrictions (Case V) is computed to be 

433*P (= 0.022 for p = 0.1). 

It should be noted that the objective of the current work is to minimize the trenching lengths 

which is achieved. Also, with the layouts in Cases IV and VI, significant savings of respectively 

$380,000 and $370,000 are made compared to the actual layout in cabling and trenching. These 

savings are important considerations during project planning. It should also be noted that an 

important contribution of this work is that these layouts are generated automatically, thus saving 

manual labor. 
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3.13 Conclusions 

    This chapter presents applications of graph theory and data mining for generating a basic 

design for a wind farm collector system cable layout configuration. Several novel algorithms are 

developed. The first algorithm improves on a minimum spanning tree design by creating external 

splice locations separate from the wind turbine locations. The second algorithm applies 

clustering to address the constraint of a prespecified maximum number of turbines connected to a 

feeder cable. The third proposed algorithm addresses the constraint of trenching restrictions by 

modifying the spanning tree algorithm from graph theory. The fourth algorithm computes 

direction and magnitude of power flow on each cable, assigns cable sizes from a table of 

available cable sizes converting an undirected to a directed graph. Also, methods are developed 

for computing reliability and economic analysis of the generated designs.  

        Results show that the algorithms proposed can be used to generate a design that has 

minimum total trenching length, also taking into account constraints on the maximum number of 

turbines on a feeder, and trenching restrictions. The total length of the minimum spanning tree is 

lowered by a factor of 1.01 by the introduction of intermediate splice nodes, but this total length 

increases when the constraint of 20 maximum turbines on a feeder are applied. The designs 

generated in Cases IV and VI achieve respectively 10% and 14% reduction in total trenching 

length compared to the actual cable layout configuration shown in Figure 49. The major 

contribution of this work is in the automatic generation of a starting layout design which is 

optimal with respect to total length and can be modified with heuristics to incorporate specific 

design requirements. Also, demonstrated in this work is the applicability of a graph-theoretic 

framework to address the wind farm collector system design problem and use of clustering 

algorithms to address design constraints. 
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4. ESTIMATION AND CONSIDERATION OF STATISTICAL 

DISTRIBUTION OF DATA IN WIND POWER INTEGRATION 

Wind power forecasting and integrating wind power with storage to firm outputs from wind 

farms are being considered critical for the large-scale integration of wind power in the Smart 

Grid. Incorporated with forecasting techniques and on-site energy storage, wind farms can 

participate in hour or day-ahead electricity markets similar to conventional power plants. The 

following three subsections address respectively the problems of (i) coordinating storage and 

stochastic wind power, (ii) sizing on-site energy storage units for energy balancing while taking 

into account the uncertainties of both wind and load forecasts, and (iii) a least squares based 

method for forecasting wind power between groups of wind farms. 

Statistical properties of data, namely wind power and load forecast data are very important 

inputs in the formulation of all three challenges and the case studies clearly show the effect of  

data distribution on the  result, whether it is coordinating storage and wind power or sizing on-

site energy storage or wind power forecasting. In addition, the third challenge directly applies 

data mining technique of estimation.   

 

4.1 Coordination of storage and wind power  

Motivation and prior art 

Incorporation of energy storage units with wind farms is being considered critical for wind 

farms to address variability in wind power generation and meeting committed generation 

schedules. A report by the American Institute of Chemical Engineers (AICE) on mass power 

storage for the grid in 2008 identified the availability of massive electricity storage as a key to 
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making the use of renewable energy possible on a broad scale [130]. In absence of energy 

storage units, the dearth of generated power caused by lower than scheduled wind farm output 

has to be produced by more expensive thermal units, thereby increasing system operating costs. 

Recognizing the importance of grid level storage, some wind to storage projects are being 

planned and implemented across the United States [131, 132]. However, a storage unit with 

finite limits on maximum and minimum energy, and charge and discharge rates, behaves as a 

limited energy plant. This in turn limits the capability of storage units in providing required 

support to wind farms. Therefore, optimal charge discharge coordination of a practical storage 

unit with a wind farm is necessary for optimal operation of the combined system. 

In the United States, wind generation is mostly a price taker participating in real-time 

electricity markets. The penalty charges imposed in day-ahead and hour-ahead electricity 

markets due to schedule deviations are therefore generally avoided by wind resources. However, 

according to a summary compiled by Utility Wind Integration Group [133], in markets such as 

PJM, for example, operating reserve deviation charges are applied on the differential between 

day-ahead schedules and real-time power generation levels exceeding a dead band if wind 

resources are self-scheduled. A wind generator participating as a “capacity resource” in MISO 

must also take part in day-ahead markets with imbalance charges imposed on net schedule 

deviations over a specified time. However, if the wind generation resource is designated as 

“intermittent,” then it is a price taker in the real-time market with no uninstructed deviation 

penalties. In ERCOT, wind generation may be exempt from charges due to deviations from 

submitted schedules when it is scheduled as a qualified scheduling entities’ portfolio. However, 

this has stimulated widespread dissatisfaction among owners of conventional generation in 
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ERCOT since conventional generation such as by coal and gas are imposed penalties on failing 

to meet committed schedules [134].  

With increasing wind penetration, wind generation will have to be scheduled in forward 

markets for maintaining the generation-demand balance. It can be expected that wind generation 

will soon be operating under same policies as other conventional generation with penalty charges 

for schedule deviations. An energy storage unit can serve as a hedge to forecasting uncertainties 

and maintain wind generation schedules in day-ahead and hour-ahead markets by absorbing 

excess generation than forecasted, and providing energy support during periods of lower than 

forecasted generation. 

Several technical works have described the effectiveness of integrating storage with wind. 

Optimal bids for day-ahead spot market have been found for a wind farm operating with a 

pumped-hydro storage plant by solving an optimization model [135]. The problem addressed is 

the bidding decisions taken by wind farm operators in a spot-market framework under 

uncertainty of both wind power outputs and electricity prices. Simulation results indicate that 

energy storage makes it possible for owners of wind power plants to take advantage of variations 

in the spot price, by thus increasing the value of wind power in electricity markets [136]. A 

dynamic programming algorithm has been used to determine the hourly trading of electricity in 

the spot market which maximizes the expected profit over the scheduling period. In [137], a 

stochastic model for the daily operation scheduling of a generation system including pumped 

storage hydro plants and wind power plants, where the uncertainty is represented by the hourly 

wind power production has been presented. However, these works focus on the maximization of 

profits for wind farms, and address the use of energy storage for electricity arbitrage. 
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In this dissertation, issues of maintaining a committed generation schedule by a wind farm 

over the period of one hour with the availability of generalized energy storage is addressed. It 

has been shown that wind generation schedule deviations can be minimized and a maximum 

steady schedule can be obtained that a combined wind-storage plant can serve in presence of 

forecasts of wind power generation. 

 

Methodology incorporating statistical distribution of wind forecasts  

The operation of the combined wind farm-storage plant can be modeled as a wind farm and 

a storage unit connected to a load [138, 139]. Figure 64 shows the power flows between a 

storage unit, wind farm, and the connected load. The load represents the committed generation of 

the wind farm. 

 

 

Figure 64: Electric flows between a storage unit, wind farm, and system load 

 

Available literature documents several different technologies for storage of electric energy, 

some of them being batteries, compressed air storage, ultracapacitors, and SMES [140]. In this 

work, no specific storage technology has been addressed; rather the storage unit has been 
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modeled as a generalized limited energy plant with limits on the rates of charging and 

discharging, and the maximum and minimum energy that can be stored                                                     

The operating horizon is divided into a number of intervals which can be of two types, 

intervals when the storage unit is discharged {k}, and intervals when the storage unit is charged 

{i}. Neglecting losses, the constraints under which the combined storage and wind farm operates 

are: 

 
P P P 0 (4.1)

 

 
P P P P 0 (4.2)

 

Here P  is the load, P  is the value of the random variable representing the power generated by 

the wind with known probability distribution function at interval j, and P  is the electric power 

generated by the storage unit at an interval j, where j is a charging or discharging interval. It 

should be noted that by definition, P , the power generated by the storage unit at discharging 

interval k is positive and P ,  the power absorbed by the storage unit at charging interval i is 

negative. P , is the wind power generated in excess of the load that cannot be absorbed by 

the storage at charging interval i. This generated power needs to be curtailed or spilled by 

pitching turbine blades away from the wind. Hence, equations (4.1) and (4.2) present the power 

balance constraints at all charging and discharging intervals. The violation of the equality 

constraint presented by equation (4.1) indicates deviation from committed generation schedule 

due to under-generation. This work aims to minimize the expected sum of these deviations over 

the scheduling horizon. It should also be noted that this work does not minimize the spilled or 

curtailed wind power denoted by P , which represents the over-generation deviations over 

the scheduling horizon. 
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The intervals when no power needs to be absorbed or delivered by the storage unit, can be 

considered as a discharging interval with, 

 P 0 (4.3)
 

Stored energy continuity equations can be formulated as follows: 

 E E P ∗ n    at discharging interval k (4.4)
 

 E E P ∗ n       at charging interval i (4.5)
 

where E  is the stored energy at the end of interval j, and n 	is the duration of interval j. 

The energy stored in the storage unit is constrained by maximum and minimum storage limits 

E  and E  : 

 E E E at any interval j (4.6)
 

The maximum charge and discharge rates are also constrained by: 

 P P   at any interval j (4.7)
 

 

Discretization of wind forecasts 

A typical waveform of the power output of a wind farm looks as shown in Figure 65. The 

proposed method requires dividing the scheduling horizon of 1 hour into 10 equal time intervals, 

and assumes the wind power output to be constant during each interval. This is a reasonable 

assumption considering that wind speeds and correspondingly wind power outputs do not vary 

significantly between two consecutive intervals of time, when the intervals of time are 

reasonably small. The wind farm power output, symbolized as P , is further quantized by 

allowing only five possible power outputs, 0 p.u., 0.25 p.u., 0.5 p.u., 0.75 p.u., and 1.0 p.u. It has 
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been assumed that probability distribution of wind power forecasts is available over the 

scheduling horizon at different intervals.  

 

                      

  

 

When the wind power output exceeds the committed schedule during any interval, there is 

an excess of power that can be used to charge the storage unit. If it is found that the amount of 

charging energy available exceeds the storage capacity of the storage unit, the power is spilled by 

pitching the turbine blades away from the wind. Similarly, when the power output is less than the 

committed schedule during an interval, energy is required to be discharged by the storage unit. If 

more energy is required than can be supplied by the storage, the combined output power fails to 

meet the committed schedule resulting in schedule deviations.  
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Assumptions 

It has been assumed that the turn-around time of the storage unit is zero, i.e., the storage unit 

can change its mode from charging to discharging and vice versa in consecutive time intervals. 

The storage unit is assumed to have an efficiency of 100% and has a maximum energy storage 

capability of storing the maximum power that can be delivered by the wind farm over the 

duration of one interval of time. For simplicity, an interval of time has been defined as 1 unit. 

Thus, the maximum energy	E , which can be stored by the storage unit is 1.0 p.u. It is further 

assumed that the storage unit can be fully discharged, so that the minimum energy that is 

required to be held by the storage unit	E , is assumed to be 0 p.u. The initial energy E , 

contained in the storage unit is 0.5 p.u. The constraints on the charging and discharging rates of 

the storage unit are such that the storage unit can be fully charged from fully discharged 

condition, and vice versa, in one interval, thus P  is 1.0 p.u. The power delivered or absorbed 

by the storage unit, P , is positive in the discharging mode, and negative in the charging mode. 

The committed generation at each interval, P , is also assumed to take only five possible values: 

0 p.u., 0.25 p.u., 0.5 p.u., 0.75 p.u., and 1.0 p.u. 

 

Problem formulation      

The optimization problem in this work has been solved using a stochastic dynamic 

programming based approach. In general, a stochastic dynamic programming problem for 

minimization can be formulated as follows: 
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Min V u, X, e  

X g X , u , e  

                              Such that 

u ∈ ψ X , e  

X ∈ Ω 

e  is observable 

(4.8)
 

 

The decision making involves finding the optimal set of controls {u∗, u∗ , u∗ , …… , u∗ 	} that 

minimizes the objective under a set of constraints. Here the objective function is the sum of 

expected schedule deviations over the scheduling horizon. X denotes the state variables, in this 

case being the energy stored in the storage unit, u denotes control variables which is the amount 

of energy discharged from the storage unit, and ̃ denotes the random events that influence the 

state variables, the objective function or both, in this case being the wind power generated. The 

distribution of the stochastic variable is known, a priori. The equations of motion define the 

dynamic evolution of the resource. At each stage, the level of a state variable is a function of the 

state variable level at the previous stage, the control variable, and the realized stochastic variable. 

The problem is bounded by feasibility constraints. The set ψ represents the feasibility constraints 

for controls given the level of the state variables and the stochastic variables. The set Ω 

characterizes the state variable feasibility constraints. In this case it corresponds to the 

discretized allowable levels of energy stored in the storage unit.  

The possible values of control variables, i.e. the power discharge levels at each interval of 

the scheduling horizon can be both positive and negative. A positive value corresponds to actual 

discharge from the energy storage unit and a negative value corresponds to charging of the 

energy storage unit. Thus, if at any interval, the energy stored in the unit is 0.75 p.u., the possible 

discharge levels are 0.75, 0.5, 0.25, 0, -0.25 p.u. The only negative discharge level is -0.25 p.u. 



 

117 
 

since the energy storage unit cannot absorb energy in excess of 0.25 p.u. The expected deviation 

is computed for every possible discharge level in an interval by summing the product of schedule 

deviation at that discharge level, which is a function of the stochastic wind power generation, 

and the probability of the wind power generation level, over all the wind power levels at that 

interval. At time interval t, let P  denote the load, P
,

 denote one of the wind power 

generation levels with probability Pr	 P
,

, and P
,

 denote one of the possible discharge 

levels. Then the schedule deviation at a particular discharge level at interval t is given by: 

 Dev , , P
,
, P

,
max 0, P P

,
P

,
  (4.9)

 

Expected deviation at interval t for a discharge level  P
,

  is given by 

 
E , P

,
Dev , , P

,
, P

,
∗ Pr P

,
 (4.10)

 

The objective is then to solve the Bellman equation: 

 	V∗ min
,
V∗ E , P

,
  (4.11)

 

                                               min
,
V∗ ∑ max 0, P P

,
P

,
∗ Pr P

,
      

and                                   V∗ 0 

subject to constraints given by equations (4.3) - (4.7). 

It should be mentioned here that dynamic programming is vulnerable to the “curse of 

dimensionality,” which means the problem can become computationally intractable with increase 

in size. There are several approximate approaches to deal with these problems [141]. One 

approach employing myopic policies has attracted a lot of attention. In this method, in each 

period, the objective function is optimized for that period, ignoring the potential effect on the 

decision in future periods. Such policies have been proven to be optimal in certain cases as well 

[142, 143]. In [138], the coordination of wind farm and storage was studied in a deterministic 
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framework, with the objective to find the maximum steady generation schedule without 

deviations over a period of time. The problem solved using both a classical dynamic 

programming model and a myopic policy based method yielded the same results.  

        For the problem in stochastic framework, the algorithm used has been provided in Figure 

66: 

 

 

 

Figure 66: Optimization algorithm 

Interval = 0 

Increment interval no. 

Find the possible control variables (power 
discharge levels) at this interval 

For each discharge level, find expected value 
of schedule deviation 

Find the optimal power discharge level at this 
interval = discharge level that minimizes the 
expected deviations at this interval 

Update the stored energy level in 
the energy storage unit 

Is end of scheduling 
horizon reached? 

Stop 

Y 
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Case study and results      

Table 6 shows probabilities of wind power over the scheduling horizon if the forecasts are 

considered accurate. Hence this is a deterministic case. In Table 7, the probability distribution of 

predicted wind power over the same scheduling horizon is tabulated if forecasts are not accurate. 

This is the stochastic case. The wind power prediction in any interval in the deterministic case is 

approximately the mean value of wind power obtained from the probability distribution in the 

corresponding interval in the stochastic case.  

 

 
Table 6: Probabilities of wind power generated (deterministic case) 

 

 Wind Power generation levels (p.u.) 

 0 0.25 0.5 0.75 1.0 

 

Intervals in 

Scheduling 

Horizon 

1 0 1 0 0 0 

2 0 0 1 0 0 

3 0 0 0 1 0 

4 0 1 0 0 0 

5 0 0 1 0 0 

6 0 0 0 0 1 

7 0 0 0 1 0 

8 0 1 0 0 0 

9 1 0 0 0 0 

10 0 1 0 0 0 
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Table 7: Probability distribution of predicted wind power (stochastic case) 
 

 Wind Power generation levels (p.u.) 

 0 0.25 0.5 0.75 1.0 

 

Intervals 

in 

Scheduling 

Horizon 

1 0.1 0.8 0.1 0 0 

2 0 0.2 0.7 0.1 0 

3 0 0 0.2 0.7 0.1 

4 0 0.6 0.4 0 0 

5 0 0.1 0.8 0.1 0 

6 0 0 0 0.3 0.7 

7 0 0 0.1 0.8 0.1 

8 0 0.9 0.1 0 0 

9 0.5 0.5 0 0 0 

10 0.1 0.8 0.1 0 0 

 

The algorithm implemented in MATLAB programming is run for four different cases 

corresponding to four different steady generation commitment levels, 0.25 p.u., 0.5 p.u., 0.75 

p.u., and 1.0 p.u. with initial energy stored in storage unit assumed 0.5 p.u. The resulting optimal 

charge discharge schedules and total deviations over scheduling horizon are as follows: 
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Case 1: 

Committed Generation Schedule = 0.25 p.u. 
Deviations in deterministic case = 0 p.u. 
Expected deviations in probabilistic case = 0 p.u. 

 

Figure 67: Deterministic case with generation commitment of 0.25 p.u. 
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Figure 68: Probabilistic case with generation commitment of 0.25 p.u. 
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Case 2: 

Committed generation schedule = 0.5 p.u. 
Deviation in deterministic case = 0 p.u. 
Expected deviation in probabilistic case = 0.85 p.u. 

 

Figure 69: Deterministic case with generation commitment 0.5 p.u. 
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Figure 70: Probabilistic case with generation commitment 0.5 p.u. 
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Case 3: 

Committed generation schedule = 0.75 p.u. 
Deviations in deterministic case = 2.5 p.u. 
Expected deviations in probabilistic case = 2.625 p.u. 
 

 

Figure 71: Deterministic case with generation commitment 0.75 p.u. 
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Figure 72: Probabilistic case with generation commitment 0.75 p.u. 
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Case 4: 

Committed generation schedule = 1.0 p.u. 
Deviations in deterministic case = 5.0 p.u. 
Expected deviations in probabilistic case = 4.875 p.u. 
 

 

Figure 73: Deterministic case with generation commitment 1.0 p.u. 
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Figure 74: Probabilistic case with generation commitment 1.0 p.u. 
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capacity of the wind farm. Also, in this case, the expected deviations in the probabilistic case are 

less than the deviations in the deterministic case. This is because there are nonzero probability 

values associated with wind power generated during some intervals being greater than the 

deterministic values of wind power generated during the same intervals of the scheduling 

horizon. 

Thus results show that with good short-term forecasts available, a combined wind-storage 

plant may guarantee meeting the committed generation schedules over at least a small period of 

time. The better the available forecasts, the higher is the generation commitment that can be met 

by wind farms coupled with energy storage units. Also, it can be clearly seen that the outcome of 

this analysis is dependent on statistical distribution of the wind power forecast data. This brings 

out the importance of incorporating the information embedded in probability distribution of wind 

power forecasts in the formulation.    

 

4.2   Storage sizing for wind energy balancing applications 

Motivation and prior art 

Balancing supply and demand of electric power is becoming increasingly difficult with 

increasing wind penetration into existing power grids since both wind power and the system 

loads are variable and represented by forecasts. Even with state-of-the art forecasting techniques, 

actual wind generation can be substantially deviated from the forecasted values. In addition, the 

system load is also variable and needs to be forecasted ahead of time for unit commitment and 

system planning and operation purposes. Although daily loads follow a pattern, every forecast is 

associated with a certain degree of uncertainty. In a system consisting of only wind generation 

and load, with minimum or no connection to the grid, the task of energy balancing is extremely 
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difficult. Incorporation of energy storage units is being considered as a possible solution to this 

problem. However, energy storage units till date are expensive. Hence the question that arises is, 

given a generation-load system, what is the optimal amount of storage required. 

Different energy storage sizing requirements for different load balancing horizons such as 

intra-week, intra-day, intra-hour, and real time have been addressed in [144]. However, 

uncertainties of load and generation forecasts are not considered. In [145] authors have addressed 

optimal sizing of storage based on forecast uncertainties of wind power generation. However, 

meeting the load is not the objective here. Rather, the forecasted wind generation is treated as the 

bid in an electricity market, and storage serves as a hedge for the uncertainties. Also, an 

exhaustive approach is used to compute the energy storage requirement followed by a 

probabilistic study of the computed required storage sizes. In [146], a methodology on the design 

of a wind farm battery energy storage system to realize power dispatchability is described. The 

uncertainties of wind forecasts have been considered by studying the battery sizing under 

different forecast scenarios. However, load forecast uncertainties have not been considered here. 

Furthermore, the uncertainties have not been considered in the problem formulation. In [147] a 

methodology capable of evaluating the impact of wind generation and load uncertainties on the 

balancing resources requirements has been developed. However, authors have mainly considered 

the spinning and non-spinning reserves required on a large-scale grid-level system. Energy 

storage options have not been considered. 

In this work [148, 149] the optimal storage size has been computed for energy balance in a 

system consisting of wind generation and load taking into consideration the uncertainties in 

forecasts of both load and the wind generation. Optimal storage size is given by the optimal 

energy capacity and the optimal power capacity. The minimum initial stored energy is also 
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computed. The methodology presented can be easily modified to address a system with other 

renewable sources of generation such as solar power. In addition, since no specific storage 

technology had been considered, the methodology can be modified to consider any specific type 

of storage and scaled to consider a renewable-storage system at the large-scale grid level or at a 

small-scale system such as smart buildings. The idea is also applicable in the microgrid 

framework with renewable generation and with minimum or no connection to the electric grid.   

 

Methodology incorporating statistical distribution of wind generation and load forecasts  

The overall methodology can be depicted by Figure 75. It has two main stages, the 

optimization stage and the validation stage. The inputs to the optimization stage are load and 

wind generation forecasts with uncertainty specifications and outputs are estimates of optimal 

storage size required. These estimates are validated in the Monte Carlo simulation based 

validation stage. 

  

Figure 75: Overview of methodology     
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Treatment of wind power and load forecast data 

It has been assumed that wind power and load forecasts are available for every interval over 

the planning period. In addition, the forecast uncertainties quantified by confidence intervals or 

probability distribution of errors are also available. The probability distribution of forecast errors 

is taken to be Gaussian with zero mean and known standard deviation which may vary between 

different intervals.  

 

 

 

 

 

 

   

 

 

 

 

 

 

 

Figure 76: Wind power forecast with probability distribution of errors      
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Figure 76 demonstrates the discretization process for the wind power forecasts. The 

continuous probability distribution curve is discretized to quantize the forecasts into different 

levels. The process of discretization is required for the optimization formulation. In this work, 

the discrete levels considered are [µ-3σ, µ-2σ, µ-σ, µ, µ+σ, µ+2σ, µ+3σ] with corresponding 

probabilities obtained from the given probability distribution function. Here µ is the sum of the 

forecasted value at an interval and the mean of the forecast error. Since the forecast error is 

assumed to have a zero mean, µ represents the forecasted wind power. Also, σ represents the 

known standard deviation of the forecast error which can vary between different intervals.  

A similar procedure is followed for the load forecast curve, i.e. the continuous probability 

distribution curve is discretized to generate discrete load levels with probabilities from the 

continuous probability distribution function. 

 

Problem Formulation 

First consider the optimization stage. Since the variables, namely wind generation and loads 

are probabilistic, a linear program is formulated in stochastic framework [150].  

 

      Minimize 

C . E C . P C . E +∑ π∑ ρ ρ .max 0, P P,

P  

 

(4.12)
 

In each case the search space is restricted by the following constraints:  

 E E P ∀ k 1,2, … . N  (4.13)
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 E E E ∀ k 1,2, … . N (4.14)
 

  

        P P ∀ k 1,2, … . N (4.15)
 

  

where Prob P P ρ  (4.16)
 

  

and Prob P P ρ  (4.17)
 

 

      P  is the load in interval k. P  is the power discharged from the storage unit in interval k 

with a positive value indicating discharge and a negative value indicating charging of the storage 

unit. P  is the maximum rate of charge or discharge from the storage unit and is computed 

from the optimization program. E  is the maximum energy limit of the storage and is 

computed by the optimization program, E  is the minimum energy required in the storage unit 

at the start of the planning horizon and is also computed from the optimization program. Here 

E  is taken as zero, i.e. allowing deep discharge. 

      The capital cost of energy storage consists of an energy component, C  ($/kWh) and a 

power component, C  ($/kW).  Another cost term C  ($/kWh) is introduced to reduce the 

dependence on initial stored energy of the storage unit to meet the objectives. π is a  constant 

penalty term which is chosen to be extremely high (here taken as 40,000) to minimize the effect 

of the energy imbalances. This term is assumed to be the product of two components, a market 

price in the interval (40$/kWh), and a penalty factor over the market price for energy imbalances 
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(1000 p.u.). The treatment of the penalty term is similar to that taken in [135]. N is the number of 

intervals considered in the planning period.  

The efficiency of the battery has been assumed to be 100% and no constraint has been 

placed on the cycle life of the battery.  

Now consider the validation stage which computes the “goodness measure” of the optimal 

storage estimates by computing system reliability. LOLP is calculated using Monte Carlo type 

simulations as described in the following [151]: 

 Step 1 – Set the maximum iteration number and let the initial iteration number n = 1. 

 Step 2 – Sample the system state randomly (load level, wind generation) based on the 

given forecast error distribution and perform a simulation to check for a loss-of-load 

event. Let αn be defined as follows: 

α 1						 					sampled	scenario is loss of load event
0						 																							 otherwise

 

 

     (4.18) 
 

Please note that the sampled scenario is the entire period under study (here a week). Thus, 

even with the occurrence of a single time interval (here one hour) of loss of load, the 

corresponding entire period under study (the whole week) is classified as a loss-of-load 

event. The resulting LOLP estimates the probability that a particular period (the week) will 

encounter at least one interval (hour) of loss of load. 

 Step 3 – Calculate LOLP, and variance of the estimated LOLP. 

 LOLP
1
n

α  
(4.19) 

 

 V LOLP
1
n

1
n
α LOLP  

(4.20) 
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 Step 4 – Check whether the variation V LOLP  is less than a specified threshold. If 

true or n > Nmax, stop; otherwise, n = n + 1, go to step 2.  

 

Case study and results       

The proposed methodology has been tested on a system consisting of a commercial facility 

which derives its energy requirements from wind power. The policy of the commercial facility is 

to maximize the use of “green” wind power and minimize energy purchased from the grid. 

Hence, the facility intends to invest in battery energy storage for energy balance. The problem is 

to find out the optimal size of the required energy storage unit.  

It should be noted that instead of commercial load, residential or industrial loads could also 

have been considered. Further, the analysis presented here could be extended to grid-level 

renewable generation and loads with grid-level storage technologies such as pumped hydro or 

compressed air energy storage. 

The planning horizon considered here is a week with granularity of one hour. The logic 

behind such a consideration is that the weekday load patterns are different from weekend load 

patterns, and the load patterns for the entire week repeat itself during a season. The methodology 

could be easily extended to incorporate longer term forecasts encompassing multiple seasons. 

The optimal storage size required for the system in presence of wind power and load 

forecasts is obtained. Both the wind generation and load forecast errors are assumed to have a 

Gaussian probability distribution [152] with zero mean. The wind power forecast errors are 

assumed to have a standard deviation of 20% [152] of the maximum wind power generated 

during the week, and the load forecast errors are assumed to have a standard deviation of 2% 
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([153], [154]) of the peak demand. For simplicity, the standard deviations of the forecasts are 

considered uniform over all intervals of the period under study here. However, the formulation 

can also incorporate different standard deviations for different intervals. This feature is 

particularly important since forecast uncertainties are higher for longer-term forecasts compared 

to shorter-term forecasts. 

The optimal storage parameters, namely the energy capacity, power capacity, and minimum 

initial energy required at the start of the week, are computed. For comparison, the same 

parameters are also computed for the system in a deterministic scenario when both the forecasts 

are accurate. Thus two cases are considered: 

(I) Deterministic wind and deterministic load 

(II) Stochastic wind and stochastic load 

The energy storage unit considered for this work is a NaS battery. A NaS battery is one of 

the storage technologies that can be used for commercial and industrial energy management 

applications. However, it should be noted that instead of NaS batteries, any other battery energy 

storage technology can be considered using the same analysis by using the corresponding 

characteristics. Table 8 shows some of the typical cost specifications of a NaS battery used in 

such applications. Referring to these cost figures, C  was taken as 500$/kWh, C  as 3000$/kW, 

and C  as 500$/kWh in the optimization program. 

 

Table 8: Cost Specifications for NaS battery (From Table 4-15 in [155]) 

 
Total cost ($/kW) 3200-4000 

Cost ($/kW-h) 445-555 
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The load considered is a commercial facility [156]. The available data being per-unitized, 

the base power is assumed to be 1 MW. This assumption is based on average power consumption 

data in a commercial building [157]. The daily load cycle for a weekday is provided in Table 9 

for ease of reference. The load forecast for the week is simulated by repeating the given load 

curve five times for five weekdays and a 90% scaled-down load curve twice for the weekend as 

shown in Figure 77.  

 

Table 9: Average hourly demand in a day for a commercial facility ([156]) 

 
Hour  Load (MW) Hour Load (MW) 

1 0.908 13 1.355 

2 0.852 14 1.338 

3 0.89 15 1.37 

4 0.865 16 1.385 

5 0.824 17 1.426 

6 0.93 18 1.403 

7 1.042 19 1.261 

8 1.167 20 1.217 

9 1.302 21 1.1 

10 1.49 22 0.999 

11 1.538 23 0.961 

12 1.454 24 0.878 
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Figure 77: Load forecast for the week 

 

Hourly wind generation data for a week has been used as wind forecasts. The data 

corresponds to total wind generation in the PJM RTO from Jan 20-26, 2010 [158]. The wind 

forecasts for a week are shown in Figure 78. 
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Figure 78: Wind forecast for the week 

 

Consider the case when both the wind forecast and load forecasts are accurate. This is the 

deterministic case. Thus, the actual demand follows Figure 77 and actual wind power generated 

follows Figure 78. 

With the target of minimizing under-generation, the optimal parameters are computed by the 

optimization program and LOLP is estimated. These are shown in Table 10. As it can be seen the 

system has zero LOLP, indicating that there are no events of unmet demand with the computed 

optimal storage size parameters. 
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Table 10: Deterministic case results 
 

Condition Min. under-generation 

ESinit (MWh) 54.24 

ESmax (MWh) 54.24 

PSmax (MW) 1.45 

Reliability 

measures for loss 

of load 

LOLP 0 

Mean lost load frequency 

(hrs/week) 
0 

Mean unmet energy 

(MWh/week) 
0 

 

Results show that in presence of accurate forecasts, the energy storage size recommended 

for the given system for the week under study is 54.2401 MWh and power capacity required is 

1.4467 MW. Also, a minimum of 54.2401 MWh of energy needs to be stored at the beginning of 

the week. It is interesting to note that the total energy consumed by the load during the week 

(190.094 MWh) is greater than the total energy generated from wind during the week (141.7958 

MWh). The difference of energy between these two quantities is the net energy deficit of the 

system and is found to be equal to the difference of energy stored in the storage unit at the 

beginning (54.2401 MWh) and the end of the week (5.9419 MWh). This fact directly follows 

from the law of energy conservation. The state of charge of the battery during different times is 

shown in Figure 79. 
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Figure 79: Energy level in storage in the deterministic scenario 

  

The state of charge of the storage unit has a downhill slope for the most part indicating that 

the storage unit is in discharge mode. This is again because the total energy available from the 

wind is less than the total energy consumed by the load. At the 133rd hour (midway between the 

5th and 6th day) the storage is completely discharged. This fact in addition to the zero LOLP 

indicates that the storage parameters computed by the optimization program are indeed optimal. 

Depending on the wind and load forecasts of the next week, the initial energy required at the 

beginning of the next week may or may not be different from the final energy in the storage unit 

at the end of the week under consideration. The balance is assumed to be taken up by the grid. 

Now consider the case when the load and wind forecasts are not accurate. With the target of 

minimizing under-generation, the optimal storage size required is 192 MWh. With this storage 
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size, there is no loss-of-load event. Thus, to achieve the same level of reliability in meeting load, 

the storage size to be invested in is approximately 4 times the size required when the forecasts 

are accurate. The results are shown in Table 11. These results illustrate the effect of forecast 

uncertainties on system reliability and performance. 

 

Table 11: Stochastic load and stochastic wind 
 

Condition Min. under-generation 

ESinit (MWh) 191.75 

ESmax (MWh) 191.75 

PSmax (MW) 2.17 

Reliability 

measures for loss 

of load 

LOLP 0 

Mean lost load frequency  

(hrs/week) 
0 

Mean unmet energy (MWh/week) 0 

 

Figure 80 and Figure 81 show respectively the forecasted and actual values of the load and 

wind generation over a week, generated by the Monte Carlo simulations with given forecast 

uncertainties. 

If the storage size used is the same as the deterministic case, i.e. not considering the forecast 

uncertainties, the unmet demand is shown in Figure 82. With this storage size, there is 86% 

chance that a week will encounter a loss of load, and the average unmet energy is 0.95 

MWh/week. Some load outage events are as high as 1.2 MW (Figure 82) which might be 
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unacceptable. The mean loss-of-load frequency (4.142 hrs/week) can be roughly guessed from 

the clusters of dots in Figure 82. 

 

 

Figure 80: The actual and forecasted wind power obtained by Monte Carlo simulations 
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Figure 81: The actual and forecasted load obtained by Monte Carlo simulations 

 

 

Figure 82: Unmet demand with storage parameters corresponding to deterministic case 
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Different weekly wind generation and load scenarios change the requirement of storage size 

accordingly. Hence, historic load and wind data for an extended period, such as a year should be 

used in a deterministic formulation to compute the optimal storage requirement for a system. 

However, this storage should be considered base-level storage. In the shorter term, when 

forecasts are available, the storage to be considered and allocated should be mobile storage 

technologies such as hybrid and electric cars. 

The methodology presented in this work is effective in determining the optimal storage size 

required for energy balance purposes in a renewable generation-load system taking into account 

forecast uncertainties and meeting required reliability criteria. The approach is also useful in 

assessing performance and reliability metrics of a system with existing storage facilities. And 

once more, the importance of incorporating statistical properties of the forecast data into the 

formulation is clearly seen. 

 

4.3   Forecasting of wind power  

Motivation and prior art 

 Numerous studies have addressed the problem of accurately predicting the power output 

from wind farms both in long-term as well as short-term scenarios. Several sophisticated wind 

power forecasting techniques have also been developed and implemented. In [159], a 

bibliographical survey on the research and developments in the fields of wind speed and wind 

power forecasting has been presented. 

Physical models based on numerical weather prediction (NWP) models developed by 

meteorologists for large-scale weather prediction provide good results when predicting the wind 
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speeds in the long term, but are not as effective for short-term prediction. Several statistical 

models have been developed for the purpose of wind atlas preparations, prediction of wind 

turbine maintenance scheduling, and estimation of monthly and annual energy production at 

wind farm sites. These techniques based on analyzing historical wind speeds and wind directions 

at the sites under consideration are not effective for hourly wind speed forecasting. Time series 

based models are extremely popular models for wind speed and wind power forecasting.  These 

models can surpass many other models in short-term prediction. In fact, most state-of-the-art 

short-term wind energy forecasts build upon this idea by taking recent data and using more 

sophisticated mathematical techniques to produce a forecast of the wind energy. This is very 

similar to the short-term load forecast, where a major predictor is past behavior. However, this 

causes a characteristic error of “delay.” The forecast tends to trail reality as it is strongly 

influenced by a persistence forecast. Alternatively, a day-ahead wind energy forecast may have 

the correct profile of the wind production, but shifted in time forward or backward. This would also 

give larger errors when the wind production is moving in fast ramps before or after it was expected. 

In both instances, it is up to the system operator to prepare for the wind event, and by looking at both 

the forecast and actual generation data, act appropriately. For example, on February 26, 2008, the 

Electric Reliability Council of Texas (ERCOT) had to call for an Emergency Electric 

Curtailment Plan (EECP) at 18:41 due to a worsening imbalance between generation and load 

which led to a decline in system frequency [160]. One of the major causes of this event was a 

large and rapid ramp-down of about 1,500 MW in 3 hours in wind generation. Post event 

analysis identified a lack of good wind power forecast methods, especially those for predicting 

wind power ramp-ups and ramp-downs. 

Advanced short-term wind energy forecasts should use offsite observations to get signals about 

the upcoming ramping behavior. With the ideal scenario of having multiple offsite observations all 
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being a radius of an hour away, an oncoming ramp could be more accurately forecast an hour ahead 

of time. Spatial correlation models take the spatial relationship of wind speeds at different sites 

into account. These models involve the measurement and timely transmission of wind speed 

values at a number of spatially correlated sites. Furthermore, since these techniques are direction 

dependent, collection of wind direction data is also essential for application in wind power 

forecasting. These models are useful when estimating wind speeds at a wind farm location using 

measured wind speeds at another wind farm location within a group of wind farms as depicted in 

Figure 83. The short-term wind power forecasting method presented here is based on these 

models. 

With the development of artificial intelligence techniques, various new models for wind 

speed and power prediction are being researched. These methods include ANN, fuzzy logic 

methods, support vector machine, and various hybrid methods. These models have been proved 

effective for short-term predictions in most experiments, but these require large sets of historical 

data for parameter estimation and model training which can be a time consuming process. 

While no single method is sufficient, most researchers use a combination of multiple 

methods to develop wind prediction models addressing the peculiarities of the wind speed 

prediction problem. A spatial correlation based wind speed prediction model has been proposed 

in [161] which uses the fuzzy logic method. In [162] an ANN-based method is used to predict 

wind speeds by spatial correlation. A fuzzy neural network based wind speed forecasting method 

using spatial correlation model is presented in [163], where two remote sites were chosen with 

the base site so that the three sites were lined along the direction of the prevailing winds. The 

pressure gradients, the heat transfer, the terrain landscape, and three cases of time delay were 

considered in the study. The proposed model exhibited superior results compared to other 

network models. Another model based on the ANN method and spatial correlation was proposed 
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in [164]. The mean monthly wind speeds of reference stations were used to predict the wind 

speeds at target stations. A comparison of prediction results with actual data confirmed that the 

ANN method based on wind speed of reference stations could predict the wind speed of target 

stations without any topographic details or other meteorological data. In [165] a linear prediction 

model for wind speed time series prediction in the short term has been proposed that uses least 

squares to determine the coefficients of the linear model. However, spatial correlation is not 

taken into account. 

 

 

Figure 83: A group of wind farms and the wind direction 
 

Methodology based on least squares estimation 

This work presents a least squares based method that predicts wind power in the short term 

using the spatial correlation of wind speeds of a group of wind farms distributed over a region.      

The first step of the method [166] consists of identifying a reference wind farm location from a 

group of wind farms under study. The reference wind farm location is identified as one that 
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results in maximum cross correlation of wind speeds with other wind farm locations at a positive 

time lag. A study similar to that done in [167] and [168] has been conducted for the delay at 

maximum cross correlation for pairs of wind farms for this purpose. The wind direction during 

the time interval considered can be used to corroborate the findings of the varying time lag cross 

correlation study. The next step is the prediction of wind speeds by the least squares method 

using the time lag at maximum cross correlation. 

In this method, the time lag at maximum cross correlation of wind speeds between two 

locations is used.  The wind speed predicted at the i   instant at location 2, denoted by v  is 

expressed as a linear function of the wind speed at location 1 at the instant “i-lag” given by the 

following equation: 

 v β β w  (4.21)
 

 

The parameters of equation (4.21),		β 	and		β 	 are determined by the relationship of the last 

five measurements of wind speeds at location 2 and those at location 1 delayed by the lag at 

maximum correlation.  Matrices A and B are defined as follows: 

 A ≜

1 w
1 w
1 w
1 w
1 w

 

(4.22) 
 

 B ≜

v
v
v
v
v

 

(4.23) 
 

 

     Where w 	and	v 	are	the measured wind speeds at the j  instant at locations 1 and 2 



 

151 
 

respectively. This is followed by computation of the parameters β 	and		β  using the least 

squares method expressed as:    

 y
β
β A A . A B  

(4.24)
 

 

Once the wind speeds are estimated, the wind power outputs can be found from power 

curves of wind turbines. These curves mapping wind speeds to power outputs are typically 

provided by the manufacturer of the turbines.      

                                                                                 

 Case study and results   

Measurements of wind speeds starting from 10:10:00 AM on May15, 2006 to 11:50:00 PM 

on May 20, 2006, taken at intervals of 10 minutes from meteorological towers at heights of 50 m 

in Bureau County and Henry County have been compiled together for this experiment. The 

locations of these counties in Illinois are shown in Figure 84. 

 

 

Figure 84: Location of wind data measurement stations (Source: www.illinoiswind.org) 

  

 

Henry County 

Bureau County 
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The distance between the measurement towers at the two counties is approximately 40 

miles. The cross correlation coefficients of wind speed time series using data from 10:10:00 AM 

on May15, 2006 to 4:20:00 AM on May 18, 2006 between the two counties at zero time lag are 

presented in Table 12. 

 

Table 12: Cross correlation coefficients 
 

 Bureau Co. Henry Co.  

Bureau Co. 1.0000 0.5214 

Henry Co. 0.5214 1.0000 

 

The cross correlation factors of the wind speed time series between the two counties were 

studied for varying time lags. The wind farm that yielded peak cross correlation value with wind 

speeds at the other location at a positive time lag was designated as the reference wind farm. In 

the case study conducted, it was found that the peak in the cross correlation values at Henry Co. 

with respect to wind speeds at Bureau Co. occurred at a positive time lag. Thus, Bureau Co. is 

designated as a reference location. Wind speeds at the other location were predicted using the 

measurement of wind speeds at Bureau Co. as the reference. Figure 85 and Figure 86 show the 

variation of cross correlation factors of Henry Co. with respect to Bureau Co. for varying time 

lags. 
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Figure 85: Cross correlation of Bureau Co. with respect to Bureau Co. for varying time lag 

 

Figure 86: Cross correlation of Henry Co. with respect to Bureau Co. for varying time lag 
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Figure 85 shows the cross correlation of the wind speed time series measured at Bureau Co. 

with respect to Bureau Co. As expected, the maximum cross correlation occurs at a zero time 

lag. The varying time-lag cross-correlation of the wind speed time series at Henry Co. with 

respect to Bureau Co. in Figure 86 shows a maximum correlation for a positive time lag of +1 

which equals 10 minutes. The wind direction during the period under consideration was also 

studied. It was found that the wind predominantly blew from the North and North-East directions 

during this time. Comparing the relative geographic positions of the four counties, it was found 

that Bureau Co. was located upwind compared to Henry Co. In the next step, wind speeds at 

Henry Co. were simulated from the wind speed time series at Bureau Co. as a reference using the 

proposed least squares based method using data starting from 4:30:00 AM on May18, 2006.  

 

Figure 87: Estimated (in red) and measured (in green) wind speeds at Henry Co. 
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Figure 87 depicts the least squares predicted wind speed time series compared to the 

actually measured wind speed time series at Henry Co. The least squares based methodology was 

compared with the predictions of wind speeds using the Persistence model. For a Persistence 

model of order “p”, the forecasted value of wind speeds in the next time interval is given by the 

mean wind speeds over the last “p” intervals [169]. In most studies, a value of p = 1 is used to 

generate short-term wind speed predictions. This kind of model is a time series based model for 

wind speed prediction which assumes that the average value of wind speeds measured during an 

interval of time persists and remains the same over the next interval of time. However, 

Persistence models suffer from the drawback that the predictions of wind speeds are made 

without taking into account the wind speeds at nearby locations. Also, with increase in the 

duration of time intervals, errors in prediction increase. 

To quantify the error in predictions using both the proposed least squares based model and 

the Persistence model of order p = 1, percentage error was defined as: 

 

 Percentage	error
|Predicted speed Actual speed|

Actual speed
100 

(4.25)
 

 

The average percentage errors of wind speed predictions at Henry Co. are tabulated in Table 

13. It can be seen that the proposed model yields superior forecasts of wind speeds compared to 

the Persistence model. 
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Table 13: Average percentage errors 
 

Location Least squares model Persistence model 

Henry Co. 0.3712% 0.866% 

 

Comparing the least squares predicted wind speeds at Henry Co. with the actual measured 

wind speeds, it was found that the proposed  method yielded fairly accurate predictions of wind 

speeds in the short term. The proposed model also generated superior results compared to  the 

Persistence model of order 1. This application demonstrates the effectiveness of least squares 

estimation in wind forecasting using spatial correlation information. 
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5. CONCLUSIONS AND FUTURE WORK 

This dissertation has demonstrated the applicability of data mining and graph-theoretic 

algorithms and concepts in solving three problems of power systems in the era of Smart Grids, 

namely information processing and visualization of power system time-varying data, optimal 

design of wind farm collector systems, and large-scale integration of wind power into power 

grids. In addressing each of these problems, it has been found that several techniques and tools 

available in data mining and graph theory literature are extremely useful when applied directly as 

off-the-shelf solutions or in a slightly modified manner to suit the nature of the problem. Hence it 

is concluded that graph theory and data mining serve as rich resources, and it is hoped that this 

dissertation will pave the way for utilizing these to address other Smart Grid problems as well. 

The overall contribution of this dissertation is in identifying three challenges posed by Smart 

Grids and proposing data mining and graph theory based techniques and methodologies to solve 

them. 

In Chapter 2, the first challenge has been addressed and a methodology has been proposed 

for processing power system time-varying data for important information and its visualization. 

Hence this work presents a direct application of data mining in power systems. Transient 

stability run results are the source of such data in this work. Extracted information includes 

abnormal dynamic response indicating some form of error or condition requiring attention. Also 

identified are the characteristics of the wide area power system, grouping nodes of similar 

response. Data volume, a problem frequently encountered in large power systems is also 

addressed with a clustering based method to reduce data volume without loss of information. 

Another contribution is in use of spark-lines for visualizing transient stability information and 
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their graph drawing based automatic placement without overlaps on a geographic map of the 

system. Important to note is that although the case study presented analyzes generator 

frequencies, the presented methodology can also be applied to other data from transient stability 

results such as bus voltages. The algorithms are extremely fast even when run on thousands of 

data points and hence can be used for real-time analysis in tracking mode with PMU 

measurements for example. These applications can be addressed in a future continuation of the 

work presented in this dissertation. 

Chapter 3 proposes novel algorithms for automatically generating an optimal design for a 

wind farm collector system cable layout configuration. Developed algorithms have capabilities 

including improving on a minimum spanning tree design by creating external splice locations 

separate from the wind turbine locations, addressing the constraint of a prespecified maximum 

number of turbines connected to a feeder cable, computing direction and magnitude of power 

flow on each cable and assigning cable sizes from a table of available cable sizes, addressing 

trenching restrictions in the design, computing reliability, and performing economic analysis of 

the layout. Results show that the algorithms proposed can be used to generate a design that has 

minimum total trenching length, also taking into account constraints on maximum number of 

turbines on a feeder, and trenching restrictions. The generated designs achieve ~10% reduction in 

capital costs compared to a real-life cable layout configuration of a wind farm. The major 

contribution of this work is in the automatic generation of a starting layout design which is 

optimal with respect to total length. For other real-life constraints, this design can be considered 

as a base case and heuristics can be applied to cater to specific applications. Future work will 

involve automating voltage studies, short-circuit studies, insulation coordination which are 
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crucial in analyzing the design of a wind farm collector system. The graph-theoretic approach 

established in this dissertation is anticipated to be useful in these future extensions. 

In Chapter 4 the challenge of large-scale wind power integration has been addressed. 

Effectiveness of maintaining committed generation schedules over the period of an hour by 

incorporating energy storage with wind farms has been considered. Optimal charge discharge 

schedules have been computed with the objective of minimizing total expected schedule 

deviations over the scheduling horizon of one hour. Statistical distribution of the wind forecast 

data is found to be one of the main factors affecting the maximum steady generation 

commitment that can be met by a wind farm. Probabilities of predicted wind power in different 

intervals of the scheduling horizon are inputs in the problem formulation. Tests on a simple 

wind-storage model connected to a load verified the desired objectives. The results showed that 

with good short-term forecasts available, a combined wind-storage plant may guarantee meeting 

the committed generation schedules over at least a small period of time. The better the available 

forecasts, the higher the generation commitment that can be met by wind farms coupled with 

energy storage units. 

Optimal sizing of an energy storage unit for energy balancing purposes has also been 

considered in Chapter 4. The optimal size, characterized by optimal energy capacity and optimal 

power capacity of the storage unit, has been computed. In addition, the minimum initial energy 

required to be stored at the beginning of an operational period has also been computed. The 

uniqueness of this work is in taking into account uncertainties of both wind generation and load 

forecasts. Another contribution of this work is in the use of reliability index loss-of-load 

probability (LOLP) to validate the computed optimal parameters. A linear programming method 

has been used in a stochastic framework to solve the optimization problem and Monte Carlo 
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based simulations have been used to compute the reliability index. A system consisting of wind 

generation and a commercial load have been tested with the proposed methodology considering 

forecast errors of the order of 20% for wind generation and 2% for the load. It was found that for 

meeting a zero LOLP reliability criteria, the optimal storage requirement increased by about 4 

times under uncertain forecasts compared to that in the accurate forecasts scenario. Also, the 

storage parameters found to be optimal in accurate forecasts scenario result in higher LOLP 

values and hence lower reliability under uncertain forecasts. The methodology presented is hence 

effective in determining the optimal storage size required for energy balance purposes in a 

renewable generation-load system taking into account forecast uncertainties and meeting 

required reliability criteria. The approach is also useful in assessing performance and reliability 

metrics of a system with existing storage facilities. 

Finally, Chapter 4 also addressed wind power forecasting methods. A least squares based 

methodology forecasted wind speeds using spatial correlation information and wind speeds at 

nearby locations. The developed methods tested with wind speeds at locations in state of Illinois 

achieved better forecasts compared to the persistence model for wind speed forecasting. The 

proposed method is also important since it can capture wind ramp ups and ramp downs 

effectively. Future extensions of this work can take into account information of terrain of the 

group of wind farms. In spite of the extensive research in the area of wind power forecasting 

there is not a sufficient number of prediction models that encompass the topological behavior of 

different geographic regions, terrains, climate zones, and situations. Therefore building accurate 

and robust prediction models presents an open and challenging research area. 

In summary, the term Smart Grid definitely encompasses a broad area, and it is beyond the 

scope of a single dissertation to address all of the problems associated with its real-life 
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implementation. Again data mining and graph theory each represent a broad and rich resource of 

techniques, concepts, and algorithms which could be applied to several problems of Smart Grids. 

The critical step is to exploit these resources properly and narrow down on the best technique to 

solve the Smart Grid problems. Hence, the work in this thesis has required a deep understanding 

of all three areas of data mining, graph theory, and power systems. An important contribution of 

this work is to provide a coverage of data mining and graph theory and potential uses and 

application areas in Smart Grids, and in general power systems. It is hoped that this thesis will 

motivate further extensions in the areas addressed in this dissertation and beyond. The 

publications associated with this dissertation have already been receiving interest in the power 

systems community and hence it is anticipated that this dissertation will be a useful guide and 

foundation for future research. 
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APPENDIX: AVAILABLE CONDUCTOR SIZES AND PROPERTIES  

The cable layout designs are dependent on the types of cables available. So here a 

discussion has been provided on available conductor sizes and properties. Most cables in the 

wind farm collector system are the underground type. Some of the common cable sizes used in 

large-scale wind farms can be found in [8]. In the collector system design work it is assumed that 

ACSR (Aluminum Conductor Steel Reinforced) cables of only the sizes mentioned in Table 14 

are available for the collector system cable layout. Cables have limits on the amount of power 

that can be carried by them represented by cable ampacity limits. So, at cables closer to the 

substation where power from turbine units gets consolidated, multiple (double and triple) circuits 

of cables might be needed to provide sufficient ampacity levels. The cable ampacity is based on 

conditions [15] that cables are installed in sand with minimum cover of approximately 1 m, load 

factor is 100%, and maximum ambient earth temperature is 20 deg C. The dc resistances of the 

different conductors were obtained from [15] and [16]. The ac resistances are computed from the 

dc resistances according to the method described in [17] and are tabulated in Table 14. 

Approximate cable costs are also provided. 

Table 14: ACSR cable sizes, properties, and costs 
 

Al strand 
conductor size 

Continuous 
ampacity (Amps) 

[15] 

DC resistance 
at 25 deg C 

(mΩ/m)  [16] 

AC resistance 
at 25 deg C 

(mΩ/m)   

Cost 
($/m) 

1/0 150 0.5482 0.5482 28 
4/0 211  0.2741 0.2741 35 

500 kcmil 332  0.1161 0.1184 42 
750 kcmil 405  0.0774 0.0813 85 
1000 kcmil 462  0.0577 0.0633 125 
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