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ABSTRACT 

Illinois apple growers produce approximately 17,963 metric tons of apples annually. Fire blight 

disease, caused by the bacterium Erwinia amylovora, is a serious threat to apple production in 

Illinois and other Midwestern states. Streptomycin has been the most effective chemical for 

control of fire blight of pome fruits in Illinois, as well as nationwide. In 2008 and 2009, severe 

fire blight occurred in Illinois apple orchards, leading to speculation that streptomycin-resistant 

strains of E. amylovora might be present in some orchards. Statewide surveys were conducted in 

2010, 2011, and 2012, and 117, 129, and 170, E. amylovora isolates were collected each year, 

respectively, from 19 counties. None of the 416 E. amylovora isolates tested were streptomycin-

resistant at 50 mg/L. However, nine non-E. amylovora isolates contained both a strA-strB 

streptomycin-resistance gene and IS1133 on transposon Tn5393, which could be a potential 

source of streptomycin-resistance for Illinois E. amylovora in the future. E. amylovora isolates 

collected in this survey also were tested for copper resistance. All 84 isolates evaluated were 

sensitive to 0.16 mM copper sulfate, indicating copper compounds are still effective for 

management of fire blight in Illinois. During 2011-2012, laboratory and field trials were 

conducted to evaluate efficacy of streptomycin-alternatives (oxytetracycline, kasugamycin, 

Bacillus subtilis, Pseudomonas fluorescens, and prohexadione calcium) for control of fire blight. 

Kasugamycin compounds (Kasumin 2L and ARY-4016-06) significantly (P<0.10) reduced 

blossom infection in the orchard. In 2012, effectiveness of growth regulator prohexadione 

calcium (Apogee 27.5DF) in combination with streptomycin-alternatives was also evaluated. An 

Apogee x Kasumin 2L interaction significantly (P<0.0009) reduced shoot blight infection. This 

interaction was not observed with ARY-4016-06 or any other treatment.  
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CHAPTER 1 

 

INTRODUCTION 

 

Apple (Malus x domestica Borkh.) and Pear (Pyrus spp.) are major pome crops worldwide. In 

2009, commercial apple production in the United States (US) was valued at 2.2 billion dollars 

(USDA/NASS, 2010). Illinois producers marketed 17,963 metric tons (39.6 million pounds) of 

apples in both 2008 and 2009 (USDA/NASS, 2010). Fire blight, caused by the bacterium 

Erwinia amylovora (Burrill) Winslow et al., is a serious disease of apple worldwide and 

particularly in the midwestern US. Yield losses to E. amylovora and control costs in the US are 

estimated at 100 million dollars per year (Norelli et al., 2009). Fire blight has become more 

destructive over the past twenty years, due to an increase of high density plantings and 

preference shifting to more susceptible cultivars (Cooley et al., 2008). In 2009, twenty apple 

cultivars accounted for 90% of US apple production (Economic Research Service, 2010). Of the 

top twenty cultivars in 2009, ten were highly susceptible to fire blight (representing 35.6% of 

total US apple tonnage), eight susceptible (representing 30.7% of total US apple tonnage), and 

two were moderately resistant (representing 24.4% of total US apple tonnage).  

 

Erwinia amylovora 

Erwinia amylovora, a member of the Enterobacteriaceae family, is a gram-negative, rod-shaped 

bacterium (3 x 0.5-1.0 μm) (Beer, 1997). Colonies of E. amylovora grow at 5-30ºC, with an 

optimum temperature of 27ºC (Beer, 1997). Moist conditions with humidity greater than 60% 
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favor reproduction of the pathogen (Kado, 2010).  Species in 39 genera of the Rosaceae family 

have been reported susceptible to E. amylovora (van der Zwet et al., 2012b). 

 

History of fire blight 

 In 1780, fire blight was observed on pears and quince in New York’s Hudson River Valley 

(Coxe, 1817; Denning, 1794; Kado, 2010). Subsequently, the disease was identified in other 

states and after 1826 it was considered a destructive disease (Kado, 2010). Fire blight occurred 

widely in Illinois by the 1840s and reported in California in 1887 (Kado, 2010; van der Zwet et 

al., 2012a). Three Illinois scientists conducted initial research to understand the development of 

fire blight. In 1870, E.S. Hull transmitted the disease by tissue grafts. In 1879, J.B. Turner 

reported transmission of fire blight by grafting knife. In 1880, T.J. Burill presented an “epoch-

making contribution in the field of plant pathology” by referring to the disease as “fire blight” 

and the “anthrax of fruit” (van der Zwet et al., 2012c). By 1883, T.J. Burrill believed the disease 

was caused by a bacterium, which was confirmed by J.C. Arthur in 1885 by completing Koch’s 

postulate. A series of fire blight epidemics from 1910 to 1930 shifted commercial apple and pear 

production from New York to the Midwest and then settling to the drier climate of the west coast 

(Kado, 2010).  E. amylovora was reported in British Columbia in 1911, New Zealand in 1919, 

throughout Northern Europe in the 1960s, and was considered distributed worldwide by 1997 

(Kado, 2010).  

 

Symptoms and signs of fire blight (Erwinia amylovora) 

The disease caused by E. amylovora is named fire bight because symptoms on hosts have a burnt 

or scorched appearance. Oozing of bacterial cells, the sign of the pathogen, is commonly 



 

3 

 

observed on infected tissues under humid, moist conditions. In apples and pears, six phases of 

infection occur, which are known as: blossom blight, shoot blight, fruit blight, trauma blight, 

rootstock blight, and cankers. Shoot infection (Fig. 1.2), usually originating from blossom 

infection (Fig. 1.1), results in the Sheppard’s crook symptom followed by gray-green 

discoloration of the shoot (Beer, 1997). Infected fruits (Fig. 1.3) usually remain small, shriveled, 

and dark when infected at early stages. Fruit infections following hail or insect damage develop 

red, brown, or black lesions; and ooze clear, milky, red to brown, and glassy when dry (Beer, 

1997). Cankers (Fig. 1.4) form on the truck, scaffold branches, and limbs. Cankers become the 

overwintering location for the bacterium and can expand to girdle portions of the tree. Rootstock 

blight (Fig. 1.5) occurs when the rootstock become infected and rapidly leads to death of the 

entire tree. 

 

Disease cycle of fire blight 

 E. amylovora overwinters at the edges of cankers and in spring, when temperatures exceed 

18.3ºC, the bacterium rapidly multiply and becomes the source of primary inoculum (Cooley et 

al., 2008). Rain splash, wind, and insects spread the bacteria onto the blossoms, leaves, and 

shoots (Fig. 1.6). Infection of plant tissues takes place through natural openings and wounds. 

Bacteria multiply, invade, and kill host tissue. Secondary cycles of the disease occur as the 

bacteria are disseminated by rain splash, wind, and insects. Three factors determine the severity 

of fire blight each season: (i) presence of virulent pathogen in the orchard, (ii) conducive weather 

conditions (e.g., warm temperatures with moisture), and (iii) host cultivar susceptibility.  
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Management of fire blight 

Control of fire blight requires year-round comprehensive management practices. The most 

effective control of the disease is avoiding susceptible cultivars (e.g., Jonathan, Gala, Idared, 

Rome Beauty) and susceptible rootstocks (e.g., M.9 and M.26). Newly infected shoots should be 

removed throughout the growing season by cutting 20 cm below the visible margin of infection 

(Beer, 1997). Piercing and sucking insects, such as aphids and leafhoppers, should be controlled 

to prevent wounding and possible pathogen movement. A higher degree of insect control is 

required for fire blight control than necessary for preventing insect damage to the tree (Beer, 

1997). Following trauma events, such as wind or hail storms, applications of a bactericide may 

be warranted. During winter pruning, cankers harboring the pathogen should be removed. In 

early spring, at the ‘silver tip’ growth stage of apple, it is important to apply copper at high 

concentrations to all trees in the orchard. Copper reduces the bacterial population potential to 

build up on buds and bark before bloom (Cooley et al., 2008). As bloom approaches, the 

potential for E. amylovora infections increases when certain temperature and moisture 

requirements are met. A bactericide, traditionally streptomycin, is applied during bloom to 

prevent the bacterium from entering through the stigma and infecting the plant. 

 

Disease prediction models of fire blight 

Weather monitoring sensors, such as Watch Dog 1000 Micro Station (Spectrum Technologies; 

Plainfield, IL), can be placed in the orchard and used in conjunction with computer programs 

such as MARYBLYT or Cougarblight. These forecasting systems monitor weather conditions, 

assesses fire blight infection risk, and help growers determine the appropriate timing of 

bactericide applications. For instance, the MARYBLYT model predicts blossom infection when 
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all of the following conditions are met: (1) open flowers with petals intact; (2) accumulation of at 

least 110 degree hours > 18.3ºC from full pink; (3) dew, rain ≥ 0.25 mm current day or ≥ 2.5 mm 

rain the previous day; and (4) an average daily temperature of ≥ 15.6ºC (Steiner, 1990).   

  

Streptomycin resistance of Erwinia amylovora 

Since the 1950s, streptomycin has been the primary bactericide used for fire blight control and 

has been highly effective. However, in 1971, the first detection of streptomycin-resistant (SmR) 

E. amylovora occurred in California (Miller and Schroth, 1972). The first case of streptomycin-

resistance occurred in the western US and is believed to have been caused by growers applying 

streptomycin throughout the growing season when infection was unlikely to occur (Jones and 

Schnabel, 2000). Currently, SmR E. amylovora are widespread throughout the western US, 

Michigan, Canada, and Israel and have been isolated in New York (Bartels, 2012; Kleitman et al., 

2004; Loper et al., 1991; McGhee et al., 2011; Russo et al., 2008; Sholberg et al., 2001).  

 

In 1983 and 1984, SmR (>500 mg/L) E. amylovora was reported to be localized in three 

neighboring orchards in west-central Missouri (Shaffer and Goodman, 1985). In 1989 in Indiana, 

three E. amylovora isolates from Morgan and Daviess counties were classified as “SmR” (5-10 

mg/L on 5% sucrose nutrient agar) (Shoeib and Pecknold, 1991). However, there has been no 

further reports of SmR in any of these regions.  

 

During 2003-2009, in Michigan, two genotypes of SmR isolates were collected: (i) strA-strB 

gene, encoding phosphtranserase enzymes modifying streptomycin to a non-bactericidal form, 

and (ii) a point mutation of ribosomal S12 protein, RspL. (McGhee et al., 2011). McGhee et al. 
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(2011) discovered that strA-strB genes harbored on transposon Tn5393 made up 98.7% SmR 

isolates in Michigan; where as, RspL mutations dominate other streptomycin resistant regions. 

This indicates that in Michigan, SmR likely moved from SmR non-target orchard bacteria via 

horizontal gene transfer on Tn5393 into E. amylovora, but apparently this transfer does not occur 

readily because only two different insertion sites were detected (McGhee et al., 2011). 

 

Streptomycin-alternative antibiotics and biocontrol agents 

Although alternatives to streptomycin for fire blight control have been researched for some time, 

available agricultural bactericides are generally considered less effective, unless SmR 

populations are present. Oxytetracycline (e.g., Mycoshield 17WP) is bacteriostatic compound 

inhibiting E. amylovora growth (McManus and Jones, 1994; Norelli and Gilpatrick, 1982). 

 Kasugamycin (e.g., Kasumin 2L) is an antibiotic in the same class as streptomycin, but has a 

different mode of action (Copping and Duke, 2007; McGhee and Sundin, 2011). Recent field 

data suggest Kasumin 2L is suitable for use in regions with SmR (Adaskaveg et al. 2011; 

McGhee and Sundin, 2011); however, its use currently is restricted.  

 

In the eastern US (Michigan, New York, Virginia), biocontrol agents (e.g., Pseudomonas 

fluorescens A506, Pantoea agglomerans C9-1, P. agglomerans E325, and Bacillus subtilis 

Serenade) have been evaluated for control of fire blight, but results have been inconsistent and 

less effective than streptomycin when used as the sole control agent (Sundin et al., 2009). 

However, integrating biocontrol agents with streptomycin allowed a reduction in streptomycin 

applications, which may help reduce selection pressure for SmR development (Sundin et al., 

2009).  
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Growth regulators 

Growth regulator, prohexadione-calcium (e.g. Apogee 27.5WG), has been utilized to help reduce 

shoot blight severity and is an important tool in areas with SmR resistant areas (McGrath et al., 

2009; Norelli et al., 2003). In multiple studies, prohexadione-calcium applications have 

decreased shoot blight, formation of overwintering cankers, and in some cases even blossom 

blight (Miller and Yoder, 2012). McGrath et al. (2009) reported that bacterial populations are not 

reduced in Apogee treated strikes and hypothesized the growth regulator induces a physical 

barrier in shoot-cell tissue stopping the systemic spread of the pathogen.  

 

Cultivar and rootstock resistance to fire blight 

After many years of research and breeding there is still no commercial apple cultivar with 

complete-resistance to E. amylovora. However, there are marked differences among cultivars 

and how they respond to fire blight infection as shown in Table 1.1 (van der Zwet et al., 2012c). 

Furthermore, cultivars (i.e., scions) have been shown to vary in susceptibility depending on the 

rootstock to which grafted (van der Zwet et al., 2012c). The scion-rootstock interaction has been 

attributed to earlier flower production and may also alter scion physiology making the scion 

more susceptible (van der Zwet et al., 2012c). In the future, development of resistant cultivars 

and rootstocks may be greatly enhanced with genome and QTL data generated by the Genome 

Database for Rosacae project. 

 

Important aspects for Illinois apple growers  

Fire blight historically has been important in Illinois. In 1909, there were 9.9 million apple trees 

of bearing age in Illinois (Pickett, 1916).  A fire blight outbreak in 1914 was responsible for 
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apple and pear crop losses estimated at 1.5 million dollars (Pickett, 1914). Another blight 

epidemic was reported in southern Illinois in 1930, reducing the crop by at least 30% (Anderson, 

1924-1936). In northern Illinois, fire blight was reported to be severe in 1938 (Anderson, 1939). 

 

THESIS OBJECTIVES 

 

In 2008 and 2009, fire blight was severe and widespread throughout Illinois, particularly in 

western parts of the state. Some growers hypothesized SmR strains of E. amylovora might be 

present in Illinois. Russo et al. (2008) concluded that “streptomycin is the most effective 

antibiotic for use on apple and is likely to remain as such; therefore, it is imperative to identify 

cases of antibiotic-resistance early, before the bacterial populations become established.” The 

main goal of this study was to determine if streptomycin resistant populations could be detected 

in Illinois. The specific objectives of this project were:  

(i) To evaluate Illinois E. amylovora populations for streptomycin resistance 

(ii) To evaluate Illinois E. amylovora response to copper and streptomycin-alternatives  
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TABLES AND FIGURES 

 

Table 1.1. Popular commercial apple cultivars, listed by relative fire blight susceptibility ratings
a
.  

 

Least susceptible Moderately susceptible Most susceptible 

Arkansas Black Alkmene Abbondanaza 

Boskoop Baldwin Beacon 

Delicious (Red) Ben Davis Berlepsch 

Glockenapfel Cortland Burgundy 

Haralson Elstar Cox’s Orange Pippin 

Jamba Empire Fuji 

Jugol Fiesta Gala 

Liberty Golden Delcious Gloster 

Maigold Granny Smith Goldparmane 

Mantet Gravenstein Idared 

Nova Grimes Golden Ingrid Marie 

Ontario Jerseymac James Greive 

Priam Jonafree Jonagold 

Prima Jonamac Jonathan 

Priscilla Macoun Klarapfel 

Quinte McIntosh Lodi 

Redfree Melrose Mollies Delicious 

Sir Prize Monroe Morgenduft 

Splendor Mutsu Niagara 

Winesap Northwestern Greening Nittany 

 Oldenburg Northern Spy 

 Royal Gala Paulared 

 Spartan Rhode Island Greening 

 Stayman Rome Beauty 

 Summer Rambo Twenty Ounce 

  Tydeman’s Early 

  Wayne 

  Wealthy 

  Winter Banana 

  Yellow Newton 

  Yellow Transparent 

  York Imperial 
a 
Adapted from “Utilizing Host Resistance to Fire Blight.” Table 19. (van der Zwat et al., 2012b) 
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Fig. 1.1. Blossom blight        Fig. 1.2. Shoot blight (Courtesy of M. Babadoost) 

 

 

 

 
Fig. 1.3. Fruit blight (Courtesy of R.L. Jones)   Fig. 1.4. Cankers (Courtesy of J.L. Norelli) 

 

 

 
Fig. 1.5. Rootstock blight (Courtesy of M. Babadoost) 
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Fig. 1.6. Disease cycle of fire blight.  

 

 
 

 

Reproduced from Johnson, K.B. 2000. Fire blight of apple and pear. The Plant Health Instructor. 

DOI: 10.1094/PHI-I-2000-0726-01 Updated 2005. 



 

12 

 

LITERATURE CITED 

 

Adaskaveg, J.E., Forster, H., and Wade, M.L. 2011. Effectiveness of kasugamycin against 

Erwinia amylovora and is potential use for managing fire blight of pear. Plant Dis. 95:448-454. 

 

Anderson, H.W. 1924-1936. Seek pear resistant to destructive fire blight. Ill. Agric. Exp. Stn. 

Annu. Rep. 37:134-135; 38:152-153; 40:230-231; 41:263-264; 43:234-236; 44:238-239; 45:199-

200; 4:214-215: 48:251-252. 

 

Anderson, H.W. 1939. Fire blight in 1938: fire blight in Illinois. Plant Dis. Rep. 23:34. 

 

Bartels, Rebecca. 2012. Strep-Resistant Fire Blight Found in New York. American Fruit Grower. 

132 (2). Pp. 21. 

 

Beer, S.V. 1997. Fire Blight. Pp 61-63 in: Compendium of Apple and Pear Diseases, 3
rd

 ed. A.L 

Jones and H.S. Aldwinckle, eds. APS Press, St. Paul, MN. 

 

Bereswill, S., Jock, S., Bellemann, P., and Geider, K. 1998. Identification of Erwinia amylovora 

by growth morphology on agar containing copper sulfate and by capsule staining with lectin. 

Plant Dis. 82:158-164. 

 

Billing, E., Crosse, J.E., and Garrett, C.U.E. 1960. Laboratory diagnosis of fire blight and 

bacterial blossom blight of pear. Plant Pathol. 9:19-25. 

 

Chiou, C.S., and Jones, A.L. 1993. Nucleotide sequence analysis of a transposon (Tn5393) 

carrying streptomycin resistance genes in Erwinia amylovora and other gram negative bacteria. J. 

Bacteriol. 175:732-740. 

 

Chiou, C.S., and Jones, A.L. 1995. Molecular analysis of high level streptomycin resistance in 

Erwinia amylovora. Phytopathology 85:324-328. 

 



 

13 

 

Cooley D.R., Autio W.R., Clements J.M., Cowgill W.P., and Spitko R. 2008. Annual fire blight 

management programs for apples. University of Massachusetts Extension.  

url: http://www.umass.edu/fruitadvisor/factsheets/F-133.pdf 

 

Copping, L.G., and Duke, S.O. 2007. Natural products that have been used commercially as crop 

protection agents. Pest Manag. Sci. 63:524-554. 

 

Coxe, W. 1817. Pears. Pp 175-176 in: A View of the Cultivation of Fruit Trees. M. Carey & Son, 

Philadelphia. 

 

Denning, W. 1794. On the decay of apple trees. Trans. N.Y. Soc. Prom. Agric. Arts Manuf. 

2:219-222. 

 

Economic Research Service. 2010."U.S. Apple Statistics." USDA, accessed 3/2012, 

http://usda.mannlib.cornell.edu. 

 

Jock, S., Rondoni, B., Gillings, M., Kim., W.-S., Copes, C., Merriman, P., and Geider, K. 2000. 

Screening of ornamental plants from the botanic gardens of Melbourne and Adelaide for the 

occurrence of Erwinia amylovora. Australas. Plant Pathol. 29:251-258. 

 

Jones, A.L., and Schnabel, E.L. 2000. The development of streptomycin-resistant strains. Pp 

235-251 in: Fire Blight: The Disease and Its Causative Agent, Erwinia amylovora. J.L. Vanneste 

ed. CABI Publishing, New York, NY. 

 

Kado, C.I. 2010. Rapid Necrotizing Diseases. Pp 79-84 in: Plant Bacteriology. APS Press, St. 

Paul, MN. 336 pp. 

 

Kleitman, F., Manulis, S., Kritzman, G., Oppenheim, D., Zilberstaine, M., and Shtienber, D. 

2004. Use of a diagnostic medium for in situ determination of the response of Erwinia 

amylovora strains to bactericides. Phytoparastica 32:127-131. 

 

 



 

14 

 

Lindow, S.E., McGourty, G., and Elkins, R. 1996. Interactions of antibiotics with Pseudomonas 

fluorescens strain A506 in the control of fire blight and frost injury to pear. Phytopathology 

86:841-848. 

 

Loper, J.E., Henkels, M.D., Roberts, R.G., Grove, G.G., Willet, T.J., and Smith, T.J. 1991. 

Evaluation of streptomycin, oxytetracycline and copper resistance of Erwinia amylovora isolated 

from pear orchards in Washington State. Plant Dis. 75:287-290. 

 

McGhee, G., Guasco, J., Bellomo, L., Blumer-Schuette, S., Shane, W., Irish-Brown, A., and 

Sundin, G.W. 2011. Genetic analysis of streptomycin-resistant (SmR) strains of Erwinia 

amylovora suggests that dissemination of two genotypes is responsible for the current 

distribution of SmR E. amylovora in Michigan. Phytopathology 101:182-191. 

 

McGhee, G., and Sundin, G. W. 2011. Evaluation of kasugamycin for fire blight management, 

effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia 

amylovora. Phytopathology 101:192-204. 

 

McGrath, M. J., Koczan, J. M., Kennelly, M. M., and Sundin, G. W. 2009. Evidence that 

prohexadione-calcium induces structural resistance to fire blight infection. Phytopathology 

99:591-596. 

 

McManus, P.S., and Jones, A.L. 1995. Detection of Erwinia amylovora by nested PCR and PCR-

dot-blot and reverse-blot hybridizations. Phytopathology 85:618-623. 

 

McManus P.S. and Jones, AL. 1994. Epidemiology and genetic analysis of streptomycin 

resistant Erwinia amylovora from Michigan and evaluation of oxytetracycline for control. 

Phytopathology 84:627–33. 

 

McManus, P.S., Stockwell, V.O., Sundin G.W., and Jones A.L. 2002. Antibiotic use in plant 

agriculture. Ann. Rev. Phytopath. 40:443–65. 

 



 

15 

 

Miller, S.S., and  Yoder, K.S. 2012. Plant Growth Regulators. Pp 249-255 in: Fire Blight: 

History, Biology, and Management. van der Zwet, T., Orolaza-Halbrendt, and N. Zeller, W. eds. 

APS Press, St. Paul, MN. 421pp. 

 

Miller, T.D., and Schroth, M.N. 1972. Monitoring the epiphytic population of Erwinia 

amylovora on pear with selective medium. Phytopathology 62:1175-82. 

 

Norelli, J.L., and Gilpatrick, J.D. 1982. Techniques for screening chemicals for fire blight 

control. Plant Dis. 66:1162-65. 

 

Norelli J.L., Farrell R.E., Bassett C.L., Baldo A.M., Lalli D.A., Aldwinckle H.S., and 

Wisniewski M.E. 2009. Rapid transcriptional response of apple to fire blight disease revealed by 

cDNA suppression and subtractive hybridization analysis. Tree Genetics & Genomes. 5:27-40. 

 

Norelli, J.L., Jones, A.L., and Aldwinckle, H.S. 2003. Fire blight management in the twenty-first 

century: using new technologies that enhance host resistance in apple. Plant Dis. 87:756-765. 

 

Pickett, B.S. 1914. The blight of apples, pears, and quinces. Ill. Agric. Exp. Stn. Circ. 172. 

 

Pickett, B.S. 1916. Field Experiments in Spraying Apple Orchards. Ill. Agric. Exp. Stn. Circ. 185. 

 

Russo, N.L., Burr, T.J., Breth, D.I., and Aldwinckle, H.S. 2008. Isolation of streptomycin 

resistant isolates of Erwinia amylovora in New York. Plant Dis. 92:714-718. 

 

Schaad, N.W., Jones B.J., and Chun, W. 2001. Laboratory Guide for Identification of Plant 

Pathogenic Bacteria, 3
rd

 ed. APS, St. Paul, MN. 373 pp.  

 

Shaffer, W.H., and Goodman, R.N. 1985. Appearance of streptomycin-resistant Erwinia 

amylovora in Missouri apple orchards. Phytopathology 75:1281-1281. 

 



 

16 

 

Shoeib, A.A., and Pecknold, P.C. 1991. Streptomycin resistance in Erwinia amylovora and 

Pseudomonas syringae pv. Papulans in pear and apple orchards of Indiana. Alexandria J. Agric. 

Res. 36:61-75. 

 

Sholberg, P.L., Bedford, K.E., Haag, P., and Randall, P. 2001. Survey of Erwinia amylovora 

isolates from British Columbia for resistance to bactericides and virulence on apple. Can. J. Plant 

Pathol. 23:60-67. 

 

Steiner, P.W. 1990. Predicting apple blossom infections by Erwinia amylovora using the 

MARYBLYT model. Acta Hort. 273:139-148. 

 

Sundin, G.W., Werner, N.A., Yoder, K.S., and Aldwinckle, H.S. 2009. Field evaluation of 

biological control of fire blight in the eastern United States. Plant Dis. 93:386-394. 

 

United States Department of Agriculture, National Agricultural Statistical Service. 2010. Crop 

Values 2009 Summary.  

url:http://usda.mannlib.cornell.edu/usda/current/CropValuSu/CropValuSu-02-19-

2010_new_format.pdf 

 

United States Department of Agriculture, National Agricultural Statistical Service. 2010. Illinois 

Farm Report. Vol 31, No. 2.  

url:http://www.nass.usda.gov/Statistics_by_State/Illinois/Publications/Farm_Reports/2010/ifr100

2.pdf 

 

van der Zwet, T., Orolaza-Halbrendt, N., and  Zeller, W. 2012a. Early Theories and Discoveries 

Regarding Fire Blight. Pp 3- 14 in: Fire Blight: History, Biology, and Management. APS Press, 

St. Paul, MN. 421pp. 

 

van der Zwet, T., Orolaza-Halbrendt, N., and Zeller, W. 2012b. Symptomatology of Fire Blight 

and Host Range of Erwinia amylovora. Pp 45-64 in: Fire Blight: History, Biology, and 

Management. APS Press, St. Paul, MN. 421pp. 



 

17 

 

 

van der Zwet, T., Orolaza-Halbrendt, N., and Zeller, W. 2012c. Utilizing Host Resistance to Fire 

Blight. Pp 227-247 in: Fire Blight: History, Biology, and Management. APS Press, St. Paul, MN. 

421pp. 



 

18 

 

CHAPTER 2 

 

STATUS OF STREPTOMYCIN-RESISTANT ERWINIA AMYLOVORA IN ILLINOIS 

APPLE ORCHARDS 

 

This study was conducted to determine if streptomycin-resistant strains of Erwinia amylovora 

could be detected in apple orchards in Illinois. Statewide surveys were conducted in 2010, 2011, 

and 2012, and 117, 129, and 170, E. amylovora isolates were collected, respectively, from 19 

counties. None of the 416 E. amylovora isolates tested were streptomycin-resistant at 50 mg/L. 

However, nine non-E. amylovora isolates contained both a strA-strB streptomycin-resistance 

gene and IS1133 on transposon Tn5393, which could be a potential source of streptomycin-

resistance for Illinois E. amylovora in the future. Differences in the streptomycin-sensitivity of 

133 E. amylovora isolates were evaluated. Boone (P<0.0014) and Champaign (P<0.0028) county 

isolates were less sensitive to streptomycin than the state mean. In contrast, Calhoun (P<0.0143), 

Madison (P<0.0002), and Union (P<0.0056) county isolates were more sensitive to streptomycin 

than the state mean. 
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MATERIALS AND METHODS 

 

Field survey and sample collection 

During 2010-2012, fire blight incidence and severity were assessed in Illinois apple orchards 

(Fig 2.1). In 2010, 2011, and 2012, 24, 35, and 39 apple orchards, respectively, were surveyed. 

At each orchard, 20 symptomatic shoots and 50 asymptomatic blossoms were collected for 

isolation of the bacterium (Erwinia amylovora). No symptomatic blossoms were observed. Each 

infected shoot was cut 20 cm below visible necrotic tissue and pruners were dipped in 95% 

ethanol between cuts. Collected blossoms and shoots were placed in plastic bags, kept on ice 

during transportation, and stored at 4ºC in the laboratory within 12 h of collection. In 2010, 

shoots were collected during 3 June and 22 July. In 2011, blossoms were collected during 10 

April and 16 May; and shoots collected during 7 June and 22 June. In 2012, blossoms were 

collected during 23 March and 9 April; and shoots collected during 25 May and 8 June. 

 

Isolation, purification, and maintenance of E. amylovora 

Luria-Bertani (LB) medium was used for isolation and maintenance of E. amylovora (McGhee et 

al., 2011). LB medium was amended with cycloheximde (50 mg/L) to make LBch. LBch was 

amended with 50 mg/L of streptomycin (Agrimycin 17 WP, Nufarm Americas Inc.,  Burr Ridge, 

IL) to make LBcham.  All collected sample tissues were processed within 36 h from collection.  

 

Five blossoms were placed in a sample mesh bag (Agida, Inc., Elkhart, IN) with 5 ml of 

sterilized 0.5x PBS buffer, on ice. Blossom tissue was macerated for approximately 20 seconds 

or until tissue was well ground using a tissue homogenizer (Agdia, Inc., Elkhart, IN) attached to 
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a drill press. For isolation of the bacterium from shoots, a 10-15 mm piece of shoot tissue was 

cut immediately below the necrotic lesion and bark was removed using sterile scalpel and 

tweezers. Leaf petioles adjacent to a lesion were also used for isolation. The shoot tissues were 

macerated as described for blossoms. Then underneath a sterile hood, extract from ground tissue 

was diluted (3:1) in sterilized 0.5x PBS buffer. Using a bacterial loop, the suspension was 

streaked to single colonies on LBch and LBcham. The plates were incubated at 27ºC for 48 h (12 

h light/12 h dark). White colonies characteristic of E. amylovora on LBch and all white colonies 

growing on LBcham were sub-cultured, transferred to cryogenic vials containing 15% glycerol, 

and stored at -20ºC and -80ºC for further studies. 

 

PCR identification of E. amylovora 

The identity of each E. amylovora isolate was confirmed by using polymerase chain reaction 

(PCR). PCR was conducted using identification primers AJ75 (5’CGC ATT CAC GGC TTC 

GCA GAT 3’) and AJ76 (5’AAC CGC CAG GAT AGT CGC ATA 3’) targeting ubiquitous 

plasmid pEA29 in E. amylovora (McManus and Jones, 1995). Using a sterile pipette tip, a 

colony was suspended in 100-μl of sterile-distilled water (SDW). Then, 0.5-μl of the colony 

suspension was added to 10-μl DNA-free water, 1-μl of each primer AJ75 and AJ76 (10 pmol/ 1-

μl) and 12.5-μl Gotag Green Master Mix 2x (Promega Corporation, Madison, WI) for a final 

reaction volume of 25-μl. Cycling conditions for PCR (Model PCT-200, MJ Research Inc., 

Waltham, MA) included initial denaturation at 94ºC for 5 min; 37 cycles of denaturation for 1 

min, annealing at 52ºC for 2 min, and extension at 72ºC for 2 min; followed by 15 min final 

extension at 72ºC and kept at 4ºC until electrophoresis. The PCR product was run on 1% agarose 

gel containing ethidium bromide at 100 volts for 60 minutes, and photographed under UV light. 
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The bands were compared to known streptomycin-sensitive E. amylovora isolate, MK1, and 

streptomycin-resistant E. amylovora isolate, Ea88, supplied by George Sundin (Michigan State 

University). The process was repeated at least once for each isolate.  

 

16S rRNA sequencing of bacterial isolates 

 Some bacterial isolates were selected for 16S rRNA sequencing. PCR was performed to amplify 

the 16S rRNA genes from the extracted DNA using the primers 27F (5’AGA GTT TGA TCM 

GGC TCA G 3’) and 1492R (5’ GGT TAC CTT GTT ACG ACT T 3’) (Lane, 1991). Cycling 

conditioning included initial denaturing at 95°C for 2 min; 35 cycles of denaturation at 94°C for 

45 s, annealing at 55°C for 30 s, and extension at 72°C for 1.5 min; followed by a final extension 

at 72°C for 5 min. PCR products were purified with the Wizard SV gel and PCR Clean-Up 

system (Promega, Madison, WI). Purified 16S rRNAs were single-end sequenced from 27F at 

the University of Illinois Core DNA Sequencing Facility. Edited sequences were compared using 

the BLASTn database (http://www.ncbi.nlm.nih.gov).   

 

Virulence of E. amylovora isolates 

 An immature pear fruit assay (Billing, et al., 1960) was used to determine isolate pathogenicity 

and virulence of 48 E. amylovora isolates from Illinois. Immature ‘Seckel’ pear fruit were 

collected from Peoria County in early August and stored at 4ºC. Pears were surface disinfested in 

a 75% ethanol solution, rinsed in SDW, and dried on a sterile lab bench.  Using a sterile pipette, 

a 15-μl suspension (10
7
 CFU/ml) of each isolate was inoculated into each pear fruit 

(approximately 2 mm deep). E. amylovora isolates MK1 and Ea88 (a less virulent isolate 

(McGhee et al., 2011)) and SDW were used as positive and negative controls.  Inoculated and 
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control pears were placed in a humidity box and stored at 27ºC in darkness. Necrotic lesions 

were considered a positive reaction of E. amylovora pathogenicity and lesion diameter was 

measured perpendicularly 4 and 7 days post inoculation. To re-isolate the bacterium from pear 

fruit, tissue from the edge of the necrotic lesion was removed with a sterile scalpel, suspended in 

SDW, and shaken vigorously. The suspension was serially diluted onto LB medium and colony 

development was observed after 48 h and compared to original cultures. Each virulence 

experiment had five replications (e.g., five pears per isolate). All experiments were repeated once.  

 

The virulence tests were complimented with the tobacco leaf assay (Kado, 2010) to determine 

the presence of hrp genes. Leaves, on actively growing Nicotiana benthamiana in a greenhouse, 

were used to evaluate isolates for a hypersensitive response. Using a sterilized needle-less 

syringe, 1 ml of E. amylovora suspension (10
7
 CFU/ml) of each isolate was injected into the sub-

axial surface between secondary leaf veins. SDW was used as a negative control. Plants were 

examined five days post-injection for hypersensitive response (rapid death of cells in the local 

region of injection).  Each isolate was tested twice, with three replications (three sub-leaf areas 

on three separate leaves). 

 

Screening E. amylovora isolates for streptomycin-resistance  

Each E. amylovora isolate was recovered from glycerol storage by culturing on LB medium for 

48 h LB and LB amended with 50 mg/L of streptomycin (Agrimycin 17) were prepared and 

bacterial colonies were streaked onto replicate Petri plates. A sub-set of 85 isolates was selected 

and additionally screened at 25 mg/L streptomycin (Agrimycin 17). Streptomycin-susceptible 

isolate, MK1, and streptomycin-resistant isolate, Ea88, were used as negative and positive 
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controls. Colony development was rated at 24 and 48 h. Each isolate was evaluated in two 

experiments with three replications per experiment.   

 

Determining streptomycin sensitivity by inhibition zone 

One hundred thirty-three E. amylovora isolates, collected during 2010-2012, were recovered 

from glycerol storage and tested for streptomycin sensitivity. Each isolate was grown separately 

on LB medium in Petri plates for 48 h. Colonies were washed in SDW and the suspension was 

adjusted to 10
7
 CFU/ml using a spectrophotometer (Smart Spec 3000; Bio-Rad, Philadelphia, 

PA). Using a sterilized bent glass rod, a 50-μl bacterial suspension was spread onto LB agar in a 

Petri plate. Using methods described by Loper et al. (1991) and Russo et al. (2008), a 12-mm 

filter-disc paper was soaked in a 100 mg/L solution of streptomycin (Agrimycin 17), briefly 

dried, and placed onto the agar surface.  Streptomycin-susceptible isolate (MK1) and 

streptomycin-resistant isolate (Ea88) were used as positive and negative controls. Clear zones of 

inhibition were measured at 24 and 48 h. Width of zone with no bacterial colony was considered 

a measure of sensitivity of E. amylovora to streptomycin. In our studies, an inhibition zone 1mm 

or greater on LB medium was considered a sensitive isolate response. Each isolate was tested 

twice. Each test had three replications and each replication had four measured zones (e.g., 

separate filter discs). 

 

Streptomycin-sensitivity of E. amylovora in amended liquid medium 

Ten Illinois E. amylovora isolates were compared in LB broth, Miller (Arcos Organics, Geel, 

Belgium) amended with 0, 0.5, 1, 2, 3, 4 and 5 mg/L streptomycin (Agrimycin 17).  Additionally, 

the same isolates were compared in nutrient broth (BD, Sparks, MD) amended with 0, 0.25, 0.5, 



 

24 

 

and 1 mg/L streptomycin (Agrimycin 17). The test was conducted using sterile 24-well plates 

(351147; BD Falcon, Franklin Lakes, NJ). Twenty microliters from each bacterial suspension 

(10
8
 CFU/ml) was added to 2 ml of broth per well and incubated on a shaker at 28ºC for 18 h. 

Bacterial cell density was assessed using a spectrophotometer (Smart Spec 3000; Bio-Rad, 

Philadelphia, PA) at OD 600. The bacterial cell density from the streptomycin amended cultures 

were compared to un-amended cultures and expressed as a percent. Each isolate was tested twice 

with four replications. 

 

Non-Erwinia amylovora bacteria in Illinois orchards 

While testing blossom and shoot samples for the presence of E. amylovora, other bacteria were 

collected, such as Pseudomonas spp., Pantoea spp. Curtobacterium spp., and Bacillus ssp., that 

were capable of growing at 50 mg/L streptomycin. One hundred nineteen non-E. amylovora 

isolates were screened for the presence of IS1133 (associated with Tn5393) using primer set 

IS1133-F (‘GCG TGA TGC AGT TCG CAT AGC’) and IS1133-R (‘CAT ACG CGG CCT 

ACC ATA GCT’) (McGhee et al., 2011).  

 

The IS1133 region of nine isolates was sequenced using primer IS1133-F, as described 

previously for 16S rRNA, except the cycling parameters were modified as described below. 

These nine non-E. amylovora isolates were also screened with primers strab01-F (‘TGG TGT 

CCC GCA ATG CCG TC’ ) and strab01-R (‘CCC GGA TCG GGA GAA GGG CA’) to amplify 

a portion of strB region on Tn5393. PCR cycling conditioning included initial denaturing for 4 

min at 94°C; 40 cycles of denaturation at 94°C for 30 s, annealing at 55°C (IS1133 primer set) or 

60°C (strab01 primer set) for 30 s, and extension at 72°C for 2.5 min; followed by a final 
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extension at 72°C for 7 min. The PCR product was run on 1% agarose gel containing ethidium 

bromide at 100 volts for 60 min, and photographed under UV light. The bands were compared E. 

amylovora isolates MI 5-1 and W4 which are known to contain Tn5393 (McGhee et al, 2011). 

The process was repeated twice for each isolate. 

 

Data analysis  

All statistical analysis was performed using SAS 9.3 (SAS Institute Inc. Cary, NC). 

Homogeneity of variances was tested using the Brown-Forsyth test and normality was observed.  

Percent cell multiplication values from liquid amended media data were analyzed using ANOVA 

and least significant difference (LSD) mean separation procedures in PROC GLM at alpha=0.05. 

Pear pathogenicity data was square root transformed [√ (x + 1/6)] before analysis. Data were 

analyzed using analysis of variance (ANOVA) in PROC MIXED and macro pdmix800 (Saxton 

1998) was used to indicate mean letter separation (similar to an LSD in PROC GLM). Pear 

pathogenicity data were separated at alpha=0.01 and zone of inhibition data at alpha=0.05.  

 

 

RESULTS 

 

Occurrence of fire blight in Illinois apple orchards 

No blossom blight was observed during this study. E. amylovora was isolated from two of 214 

and one of 221 blossom samples in 2011 and 2012, respectively. In 2010, 2011, and 2012, 

percentage of orchards with shoot blight was 91.7, 74.3, and 82.0%, respectively. Central Illinois 

and northern Illinois had the highest and lowest incidence of shoot blight infection, respectively 

(Table 2.1.a). Calhoun County had the highest shoot blight incidence and severity in all three 
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years. The percentage of infected trees (within a fire blight occurrence) ranged from <1 to 100% 

(average 25.7%) in 2010; from <1 to 100% (average 24.6%) in 2011; and from <1 to 100% 

(average 28.4%) in 2012. Percentage of infected shoots (within individual trees with fire blight) 

ranged from <1 to 80% (average 6.0%) in 2010; from <1 to 60% (average 5.7%) in 2011; and 

from <1 to 70% (average 4.9%) in 2012. Apple cultivar ‘Jonathan’ had the highest 

incidence/severity of shoot blight in Illinois, while ‘Red Delicious’ had the lowest 

incidence/severity (Table 2.1.b). 

 

Streptomycin-resistant Erwinia amylovora  

E. amylovora was isolated from 117 of 218, 127 of 274, and 169 of 227 symptomatic shoots in 

2010, 2011, and 2012, respectively (Tables 2.2, 2.3, and 2.4). Overall, E. amylovora isolates 

were collected in 39 individual orchards in 19 counties during 2010-2012 (Fig 2.1). None of the 

416 E. amylovora isolates tested were streptomycin-resistant at 50 mg/L. Additionally, none of 

85 isolates developed colonies on culture medium with 25 mg/L streptomycin. 

 

Virulence of E. amylovora isolates  

All 48 isolates of E. amylovora tested produced lesions on immature ‘Seckel’ pear fruit and 

produced a hypersensitive reaction on tobacco leaves. E. amylovora was recovered from the 

necrotic lesions of fruit. Previously determined less virulent isolate Ea88 (McGhee et al., 2011) 

did not produce lesions on pear fruit. Isolate 7711 from Woodford County produced the largest 

lesion (Table 2.5). Overall, isolates from all counties were similar in virulence (P<0.1928). 

However, isolates from St. Clair county were more virulent than the state mean on immature 

pear fruit (P<0.0091).  
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Differences in streptomycin sensitivity 

 Orchards within a county had similar streptomycin-sensitivity, with a few exceptions (Calhoun 

2011, 2012; Jackson 2012; St. Clair 2012) (Table 2.6).  However, differences in streptomycin 

sensitivity at the county level were detected (Table 2.7). When zone of inhibition data from 2010, 

2011, and 2012 were combined for analysis, Boone (P<0.0014) and Champaign (P<0.0028) 

county isolates were less sensitive to streptomycin than the state mean. In contrast, Calhoun 

(P<0.0143), Madison (P<0.0002), and Union (P<0.0056) county isolates were more sensitive to 

streptomycin than the state mean.  Results from ten individual isolates in liquid medium tests 

also supported these results (Table 2.8). Calhoun isolate 6081 was the most sensitive isolate with 

0% cell multiplication at 3 mg/L streptomycin; while, Boone isolate 7101 was the least sensitive 

isolate with 16.1% cell multiplication at 5 mg/L streptomycin. The remaining nine isolates were 

capable of cell multiplication between 0 and 4 mg/L streptomycin. However, at 1 mg/L 

streptomycin, rate of cell multiplication of all Illinois isolates was significantly (P<0.05) reduced 

when compared to the streptomycin-resistant control (Ea88). In amended nutrient broth, none of 

the 10 selected Illinois E. amylovora isolates were capable of cell multiplication at 0.25, 0.5, or 1 

mg/L streptomycin. 

 

Occurrence of non-Erwinia amylovora bacteria with Tn5393 with IS1133 

Nine of the 119 non-E. amylovora streptomycin-resistant bacteria tested produced a band similar 

to the positive controls containing IS1133 (Fig. 2.2). Sequencing of the IS1133 region for six of 

six (100%) isolates produced a 400 bp sequence nearly identical to the portion of the 

streptomycin-resistant controls. Seven of the nine non-E. amylovora isolates developed bands 

similar to the control isolates using primers strab01-F and strab01-R amplifying the strB region 
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of Tn5393 (Fig. 2.3). In summary, seven non-E. amylovora isolates developed on streptomycin 

(50 mg/L) amended LB medium; and molecular analysis confirmed these isolates to contain both 

IS1133 and strB on Tn5393.  Three isolates (5897, 7234, and 5174) were identified as Pantoea 

agglomerans and one isolate (6114) as Psuedomonas graminis based on 16s rRNA sequences 

(450 to 600 bp) when compared in BLASTn. 

 

DISCUSSION 

 

 

Erwinia amylovora was isolated from only three of 435 blossom samples tested during 2011 and 

2012. Although 2011 and 2012 seasons were not highly conducive for blossom infection, the 

results support our observations in the past 13 years that blossom blight is not common in apple 

orchards in Illinois. The reasons for not having blossom blight in Illinois are: (i) streptomycin is 

still an effective bactericide in Illinois, (ii) almost all apple growers apply streptomycin during 

bloom; (iii) and unfavorable temperature/moisture conditions for production and dispersal of E 

amylovora population. 

 

Using the MARYBLYT disease prediction model, it was observed in warm seasons individual 

flowers can be open for a few days, but without sufficient moisture escapes infection (Steiner, 

1990). Steiner (1990) also observed, that in cool seasons when average temperatures exceed 

4.4ºC, but rarely exceeds 18.3ºC, flowers may mature before sufficient inoculum has built up. 

Both of these conditions were observed in Illinois in 2011 and may explain the low E. amylovora 

recovery from blossoms. In 2011, the low recovery could be explained in southern Illinois due to 

sudden extremely warm conditions, the bloom period was unusually short and dry from 9-11 
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April. In central and northern Illinois, temperatures were unseasonably warm then rapidly 

became cool at bloom. In Champaign, bloom period was unusually extended under cool 

conditions from 20 April to 11 May.   

 

Since blossom infection is not a common phase of fire blight in Illinois apple orchards, how fruit 

blight, shoot blight, and root-stock blight occurs widely in this state is not clearly known. One 

possible explanation for higher incidence of shoot blight is that rain storms are common during 

April and May in Illinois. We believe that injuries caused by windstorms on new shoots is the 

main factor in initiating fruit and shoot blight, as streptomycin applications have ceased by the 

end of the bloom period. Further epidemiological study is required to determine what, if any, role 

blossom blight infection plays in Illinois apple orchards.  

  

All E. amylovora isolates tested were virulent on immature pear. Overall, virulence of isolates 

from different counties were not significantly different than the state mean. However, a single 

isolate from Woodford and isolates from St. Clair county produced larger lesions in the 

immature fruit assay. Although E. amylovora infection is most common in apple orchards in 

Calhoun and Jersey counties, isolates from these counties were not more virulent than the state 

mean at P<0.6998 and P<0.5585, respectively.  Thus, the higher incidence and severity of E. 

amylovora infection in Calhoun and Jersey counties is not due to increased virulence in E. 

amylovora populations. The wide occurrence of fire blight in these counties may be due to 

irregularity in timely-applications of copper and streptomycin. 
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While no streptomycin-resistance E. amylovora isolate was detected in Illinois during 2010-2012, 

it was observed that isolates collected from Boone and Champaign counties were less sensitive to 

streptomycin than the state average.  In contrast, E. amylovora isolates from Calhoun, Madison, 

and Union counties were more sensitive to streptomycin than the state average. While, slight 

streptomycin-sensitivity differences were determined in some Illinois counties, they are not 

expected to affect the effectivness of streptomycin applications in the field.  In our studies, no 

bacterial multiplication was observed in nutrient broth amended with 0.25 mg/L streptomycin. In 

comparison, E. amylovora isolates in California were reported to have reduced bacterial 

multiplication rate beginning at 0.30 mg/L streptomycin in nutrient agar (Adaskaveg, et al., 

2011).  

 

The detection of Tn5393 is common in bacteria in orchards that have received streptomycin 

applications (McGhee et al., 2011; Sundin and Bender, 1995; Sundin and Bender, 1996). 

However, this study is the first confirmation of bacterial isolates containing strA-strB paired 

with IS1133 in the Illinois orchards. We detected both the strB gene and the insertion sequence 

IS1133 on Tn5393 on nine non-E. amylovora isolates in Illinois (Calhoun, Jersey, McHenry, St. 

Clair, and Union counties). The insertion sequence IS1133 is required for expression of strA-

strB resistant genes via promoting transcription of streptomycin-resistance genes (Chiou and 

Jones, 1993; McGhee et al., 2011; Sundin and Bender, 1995; Sundin and Bender, 1996). The 

finding in this study indicates that all the pieces are in place for the chance of acquisition of 

Tn5393 streptomycin-resistance into Illinois E. amylovora populations.  
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Results from the 2010-2012 surveys indicated that no streptomycin-resistant E. amylovora was 

detected in Illinois. However, it is very possible a streptomycin-resistant strain will be introduced 

or develop in the state. We encourage growers to be vigilant when ordering nursery stock from 

states with streptomycin-resistant populations, since the streptomycin-resistance occurrence in 

New York was likely related to imported nursery stock (Russo et al., 2008). It is also believed 

that the original occurrence of streptomycin-resistance was due to repeated unnecessary 

streptomycin applications (Jones and Schnabel, 2000); therefore, we encourage growers to use 

less frequent, but high rate antibiotic applications. A key component of this strategy is applying 

antibiotics only when disease monitoring models, such as MARYBLYT, indicate infection is 

likely. We also must emphasize the continued importance of integrated disease management 

approaches, such as planting less susceptible cultivars/rootstocks, proper pruning, and timely 

applications of copper in early spring. Since streptomycin has been the sole antibiotic used in 

Illinois orchards for decades, further research is warranted on integrating oxytetracycline, 

kasugamycin, and biocontrol agents into the spray rotation to prevent or delay streptomycin-

resistance.  
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TABLES AND FIGURES 

 

Table 2.1.a. Occurrence of shoot blight (Erwinia amylovora) in Illinois apple orchards during 2010-2012. 
 

Fire blight in orchards and infected orchard blocks 

 2010 2011 2012 

 Orchards Blocks
 a
 Orchards Blocks Orchards Blocks  

 
 

Total 

With 

blight Incidence  Severity 

 

Total 

With 

blight Incidence  Severity 

 

Total 

With  

blight Incidence Severity 

Region (no.) [no.(%)
b
] (%)

c
 (%)

d
 (no.) [no. (%)] (%) (%) (no.) [no. (%)] (%) (%) 

Northern 4   2(50.0) 1.0 < 0.1 6   5(83.3) 3.0 0.6 6   1(16.7) < 0.1 < 0.1 

Central 16 16(100) 32.6 7.9 19 14(73.7) 35.7 7.0 19 16(84.2) 33.3 4.5 

Southern  4 4(100) 10.5 1.4 10   7(70.0) 19.3 6.9 15 15(100) 23.4 5.4 

Illinois 24 22(91.7) 25.7 6.0 35  26(74.3) 24.6 5.7 39 32(82.0) 28.4 4.9 
a 
Incidence and severity data were collected in a non-random fashion. Surveying was focused at blocks (50 trees) within orchards with 

a history of fire blight, susceptible cultivars, and/or localized disease. 
b 

Percentage of orchards where shoot blight symptoms were observed. 
c
 If shoot blight was observed in an orchard, percent trees with shoot blight symptoms within a diseased area. 

d
 If shoot blight was observed in an orchard, percent infected shoots within each tree (evaluated as percent of tree canopy). 
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Table 2.1.b. Occurrence of shoot blight (Erwinia amylovora) on apple cultivars when disease is 

present in Illinois in 2012. 

 

Cultivar 
a
 

Locations
 b 

(no.) 

Fire blight occurrence 

Incidence
 c 

(%) 

Severity
 d 

(%) 

Jonathan (no streptomycin application) 1 100.0 42.50 

Jonathan (with streptomycin application) 14 36.4 1.50 

    

Golden (no streptomycin application) 1 60.0 0.60 

Golden (with streptomycin application) 10 27.8 0.82 

    

Red Delicious (with streptomycin application) 8 6.25 0.09 
a
 Cultivars were identified by growers or by tree phenotype.

 

b
 Locations were selected as diseased areas within an orchard and adjacent cultivars were 

assessed for shoot blight incidence and severity.  
c
 Percent trees with fire blight symptoms; an average of 10 trees per location. 

d
 Percent infected shoots within each tree.
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Table 2.2. Occurrence of streptomycin-resistant Erwinia amylovora in Illinois apple orchards in 

2010.  

County 

Shoot 

samples 

tested 

(no.) 

Tested
 
 

Erwinia amylovora 

isolates
 a
 

(no.) 

Streptomycin-resistant
 b

 

Erwinia amylovora 

isolates 

(no.) 

Boone 15 5 0 

Calhoun 36 35 0 

Champaign 6 6 0 

Jersey 29 16 0 

Kane 11 0 - 

Macoupin 9 8 0 

Madison 10 0 - 

Marshall 16 15 0 

McHenry 6 0 - 

Peoria 11 0 - 

Putnam 10 10 0 

Sangamon 6 4 0 

St. Clair 42 15 0 

Winnebago 4 0 - 

Woodford 7 3 0 

Total 218 117 0 
a 
 E. amylovora isolates were identified using primers AJ75 (5’CGC ATT CAC GGC TTC GCA 

GAT 3’) and AJ76 (5’AAC CGC CAG GAT AGT CGC ATA 3’). 
b
 Colony development was assessed on Luria-Bertani agar amended with 50 mg/L streptomycin  

   (Agrimycin 17) after 48 h.  

 

 



 

35 

 

 

Table 2.3. Occurrence of streptomycin-resistant Erwinia amylovora in Illinois apple orchards in 

2011. 

County 

Shoot  

samples 

tested 

(no.) 

Tested 

Erwinia amylovora 

isolates
a
 

(no.) 

   Streptomycin-resistant
b
 

Erwinia amylovora 

isolates 

(no.) 

Boone 14  9
 
 0 

Calhoun 53  25  0 

Champaign 17  18  0 

Dekalb 0  - - 

Jackson 22  8  0 

Jefferson 0  -  - 

Jersey 30  11  0 

Kane 5  2  0 

Macoupin 0  - - 

Madison 11  5  0 

Marshall 17  8  0 

McHenry 8 0  - 

Peoria 17  7  0 

Piatt 1  0  - 

Pope 0  - - 

Putnam 7  3  0 

Randolph 0  -  - 

St. Clair 34  16  0 

Union 18  12  0 

Winnebago 5 0  - 

Woodford 15  3  0 

Total 274  127  0 
a 
 E. amylovora isolates were identified using primers AJ75 (5’CGC ATT CAC GGC TTC GCA      

GAT 3’) and AJ76 (5’AAC CGC CAG GAT AGT CGC ATA 3’). 
b
 Colony development was assessed on Luria-Bertani agar amended with 50 mg/L streptomycin  

  (Agrimycin 17) after 48 h.  
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Table 2.4. Occurrence of streptomycin-resistant Erwinia amylovora in Illinois apple orchards in 

2012. 

County 

Shoot 

samples 

tested 

(no.) 

Tested 

Erwinia amylovora 

isolates
a
 

(no.) 

   Streptomycin-resistant
b
 

Erwinia amylovora 

isolates 

(no.) 

Boone 1 0 - 

Calhoun 31  27  0 

Champaign 13  8  0 

Clinton 8  8  0 

Dekalb 0  - - 

Jackson 23  14  0 

Jefferson 5  6  0 

Jersey 32  18  0 

Kane 1  0  - 

Macoupin 10  7  0 

Madison 8  8  0 

Marion 5  4  0 

Marshall 8  5  0 

McHenry 0  -  - 

Peoria 4  3  0 

Piatt 4  3  0 

Pope 5  1  0 

Putnam 2  2  0 

Sangamon 8  7  0 

St. Clair 36  33  0 

Union 15  12  0 

Winnebago 1  0  - 

Woodford 7  3  0 

Total 227  169 0 
a 
 E. amylovora isolates were identified using primers AJ75 (5’CGC ATT CAC GGC TTC GCA 

GAT 3’) and AJ76 (5’AAC CGC CAG GAT AGT CGC ATA 3’). 
b
 Colony development was assessed on Luria-Bertani agar amended with 50 mg/L streptomycin  

  (Agrimycin 17) after 48 h.  
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Table 2.5. Virulence assessment of Illinois Erwinia amylovora isolates on immature pear fruit.  

 

 2010  2011 

County Isolate
a
 

Lesion 
diameter  

 

Isolate
 a
 

Lesion 
diameter 

(mm)
b
  (mm)

b
 

Boone 

193b 0.3 hi
c
  6951 5.7 a-c

 c
 

196b 0.3 hi  7101 5.7 a-d 

- -  7071 5.2 a-d 

Calhoun 

49c 3.8 a-f  7651 5.5 a-d 

45d 2.2 a-h  7621 5.0 a-e 

15a 1.7 c-i  6081 4.4 b-g 

68d 1.7 a-i  7571 3.9 b-g 

26d 1.3 d-i  7751 3.2 d-g 

38c 1.3 f-i  - - 

Champaign  2a 1.7 a-i  4802 1.8 g 

Jackson  - -  5341 3.9 b-g 

Jersey  

75a 4.3 ab  6002 4.3 b-g 

30b 3.0 a-e  7671 3.1 c-g 

28b 2.6 a-f  7531 3.0 fg 

Kane - -  4951 2.5 e-g 

Madison  - -  5472 4.9 a-f 

Macoupin 10c 4.5 a-c  - - 

Marshall  

108d 3.7 a-c  7841 5.3 b-f 

118b 2.6 a-g  7501 4.1 b-g 

111c 0.1 g-i  - - 

Peoria  - -  7461 4.9 b-f 

Putnam 170c 1.2 f-i  7691 4.8 b-f 

Sangamon  84d 1.9 b-i  - - 

St. Clair 

93c 4.6 a  5461 6.6 ab 

89a 4.1 a-c  5752 5.3 a-d 

128c 3.7 a-d  - - 

127b 3.0 a-g  - - 

Union  
- -  5152 3.2 c-g 

- -  5232 3.2 c-g 

Woodford 
165e 2.5 a-g  7711 8.9 a 

- -  7731 5.0 b-f 

 

MK1
 d
 0.9 e-i  MK1 2.6 g 
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Table 2.5. Continued. 

 
a
 Isolates were evaluated in two separate experiments.  

b
 Using a sterile pipette, a 15-μl suspension (10

7
 CFU/ml) of each isolate was inoculated into each   

immature ‘Seckel’ pear fruit (approximately 2 mm deep). Pears were placed in a humidity box and 

stored at 27ºC. Necrotic lesions were measured perpendicularly 7 days post inoculation.  
c  

A larger lesion was considered more virulent. Data were transformed [√ (x + 1/6)] and analyzed using 

PROC MIXED with macro pdmix800; in each column values with a letter in common are not 

significantly different from each other (P<0.01). 
d 
MK1: a pathogenic Erwinia amylovora isolate. 
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Table 2.6. Streptomycin-sensitivity of Erwinia amylovora isolates collected from Illinois apple orchards during 2010-2012. 

 

County 

2010
a
 2011 2012 

Isolates
b
 

  Inhibition zone 

radius (mm)
c
  

Isolates 
 Inhibition zone 

radius (mm) 
Isolates 

Inhibition zone 
radius (mm) 

tested 
(no.)

 
 

Range 
Orchard 
 mean 

tested 
(no.) 

Range 
Orchard  
mean 

tested 
(no.) 

Range 
Orchard 
mean 

Boone 
3 3.2-3.5 3.3 d

 d
 2 1.6-2.6 2.1 e-h - - - 

- - - 2 1.7-2.0 1.8 h - - - 

Calhoun 

2 4.2-4.3 4.3 ab 1 - 3.6 a-e 1 - 4.6 a 

3 4.2-4.3 4.3 a 3 3.1-3.6 3.3 a-d 1 - 3.7 a-g 

1 - 4.6 a 1 - 1.7 gh  1 - 3.0 c-j 

4 4.0-4.4 4.3 a 3 3.1-4.8 3.6 ab 1 - 3.0 d-j 

2 3.5-4.0 3.7 a-d - -   - 1 - 3.9 a-f 

Champaign 

- - - 2 2.7-3.1 2.9 a-h 1 - 3.3 a-j 

1 - 3.8 a-d 2 1.8-3.0 2.4 c-h 1 - 2.1 ij 

- - - - -   - 1 - 2.5 g-j 

- - - - -   - 1 - 2.0 j 

Clinton - - - - -   - 1 - 3.0 c-j 

Jackson 

- - - 2 2.1-2.7 2.4 c-h 1 - 3.1 c-j 

- - - - - - 2 2.5-2.9 2.7 g-j 

- - - - - - 2 3.9-4.1 4.0 a-d 

Jefferson - - - - - - 2 2.1-3.4 2.9 f-j 

Jersey 

2 3.2-3.5 3.3 cd 2 3.6-3.6 3.6 a-c 2 2.5-3.1 2.8 f-j 

2 4.1-4.1 4.1 a-c 3 2.6-3.1 2.9 a-h 2 3.0-3.6 3.3 b-i 

- - - - -   - 1 - 3.4 a-i 

Kane - - - 1 - 2.7 a-h - - - 

Macoupin 3 3.8-4.9 4.4 a - -  - 2 2.3-3.0 2.6 h-j 

Madison - - - 1 - 4.4 a 2 4.0-4.5 4.2 ab 

Marion - - - - -  - 2 2.8-3.3 3.0 f-j 

Marshall 
2 3.4-4.3 3.8 a-d - -  - - -   - 

6 3.1-4.4 3.7 b-d 3 2.7-3.2 3.0 a-h 2 2.7-3.5 3.1 d-j 

Peoria - - - 2 2.6-2.8 2.7 b-h 2 2.8-3.2 3.0 f-j 

Piatt - - - - - - 2 3.5-3.9 3.7 a-f 

Putnam 2 3.9-4.1 4.0 a-d 2 1.7-2.7 2.2 d-h 1 - 2.0 j 
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Table 2.6. Continued.  

 

County 

2010
a
 2011 2012 

Isolates
b
 

Inhibition zone 

radius (mm)
c
 

Isolates 
Inhibition zone 
radius (mm) Isolates 

Inhibition zone 
radius (mm) 

tested 
(no.)

 
 

Range 
Orchard 
mean 

tested 
(no.) 

Range 
Orchard  
mean 

tested 
(no.) 

Range 
Orchard 

mean 

Sangamon 2 3.2-3.6 3.4 cd
 d

 - -   - 2 3.2-3.8 3.5 a-h 

St. Clair 

5 3.4-4.7 4.2 ab 3 2.4-3.4 3.1 a-g 1 - 3.4 a-j 

- - - 2 2.4-4.6 3.5 a-e 2 2.3-2.6 2.5 ij 

4 4.1-4.3 4.2 a - -   - 2 3.4-3.5 3.5 b-h 

Union 
- - - 2 3.0-3.6 3.3 a-e 1 - 4.4 a-c 

- - - - -   - 2 3.6-4.3 4.0 a-e 

Woodford 
- - - 1 - 2.0 d-h - - - 

2 3.7-4.1 3.9 a-d 1 - 1.9 d-h 1 - 2.3 ij 

MK1  
(Streptomycin-sensitive) 

4.4
    

-   2.6
  
- 

 
 2.9 - 

Ea88  
(Streptomycin-resistant) 

0.0   -   0.0  - 
 

 0.0 - 

a
 Isolates were tested in three separate experiments.  

b 
Each group of the isolates represents a separate orchard. 

c
 A 50-μl of bacterial suspension (10

7 
CFU/ml) was spread on Luria-Bertani agar, then a 12 mm filter disk was soaked in 100 mg/L 

solution of streptomycin (Agrimycin 17), briefly dried and placed on the agar surface. Zone of inhibition was measured after 48 h.  
d
 Data were analyzed using PROC MIXED with macro pdmix800, in each column values with a letter in common are not significantly   

different from each other (P<0.05). 
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Table 2.7. Streptomycin-sensitivity of Erwinia amylovora populations in Illinois apple orchards 

during 2010-2012. 

 

County 

Isolates
 a
 

tested 

(no.) 

Inhibition zone 

radius 

  (mm)
 b
 

P value 

compared to 

state mean
 c
 

Boone 7    2.4
- d

 P<0.0014 

Calhoun 25  3.5
+
 P<0.0143 

Champaign 9  2.6
-
 P<0.0028 

Clinton 1 3.0 P<0.8560 

Jackson 7 3.1 P<0.9626 

Jefferson 2 2.9 P<0.4742 

Jersey 14 3.2 P<0.6900 

Kane 1 3.2 P<0.9031 

Macoupin 5 3.2 P<0.8728 

Madison 3  4.4
+
 P<0.0002 

Marion 2 3.1 P<0.9806 

Marshall 13 3.1 P<0.6079 

Peoria 4 3.2 P<0.9780 

Piatt 2 3.8 P<0.0964 

Putnam 5 2.6 P<0.0256 

Sangamon 4 3.4 P<0.5290 

St. Clair 19 3.3 P<0.3828 

Union 5  3.9
+
 P<0.0056 

Woodford 5 2.6 P<0.0442 

Illinois 133 3.3 - 
a
 Isolates were tested in three separate years and combined for analysis.  

b
 A 50-μl of bacterial suspension (10

7 
CFU/ml) was spread on Luria-Bertani agar, then a 12 mm 

filter disk was soaked in 100 mg/L solution of streptomycin (Agrimycin 17), briefly dried and 

placed on the agar surface. Zone of inhibition was measured after 48 h.  
c
 Data were analyzed using PROC MIXED, the lsmean of each county was compared to the 

lsmean of all counties combined. 
d
  

-
 = less sensitive to streptomycin than the state mean at P<0.02,   

+
 = more sensitive to 

streptomycin than the state mean at P<0.02. 
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Table 2.8.  Cell multiplication of Erwinia amylovora in streptomycin-amended Luria-Bertani (LB) Broth. 

 

    mg/L streptomycin (Agrimycin 17)
 
 in LB Broth    

County Isolate
a
 0 0.5  1 2 3 4 5 

 Ea88
b
 100%

 c
 94.6% b-d

 d 
 100.2% a 115.7% a 105.6% a 104.7% a 99.7% a 

Boone 7101 100 96.6 b-d 88.9 b 81.7 bc 70.8 b 44.6 b 16.1 b 

Boone 6951 100 86.6 d 87.3 b 90.2 bc 28.4 e 0.8 g 0.0 c 

Calhoun 68d 100 105.8 a-c 86.0 b 87.9 bc 41.1 d 10.1 de 0.0 c 

Calhoun 6081 100 92.7 cd 88.7 b 27.8 d 0.0 g 0.0 g 0.0 c 

Jersey 6002 100 100.5 a-d 89.3 b 77.2 bc 60.6 c 15.6 c 0.8 c 

Madison 5471 100 99.2 a-d 88.6 b 48.6 d 10.1 f 1.3 fg 0.0 c 

Marshall 118b 100 95.8 b-c 85.8 b 80.7 bc 27.6 e 6.1 ef 0.0 c 

St. Clair 89a 100 104.6 a-c 88.4 b 73.4 c 30.0 e 7.5 de 0.0 c 

Union 5232 100 110.1 ab 89.4 b 80.6 bc 37.2 d 8.1 de 0.0 c 

Woodford 165e 100 113.8 a 88.3 b 98.4 ab 40.0 d 12.7 dc 0.0 c 

LSD (P<0.05)    17.1   11.0   21.8   5.7   5.2   9.9  

Illinois  mean   100.6   88.1   74.6   34.6   10.7   1.7   
a 
Isolates in streptomycin-amended Luria-Bertani Broth were compared to the un-amended culture at 18 h using OD 600 values 

measured by a spectrophotometer and expressed as a percent. 
b 

Streptomycin-resistant control. 
c
 A value of 100% indicates colony developmend was not reduced compared to the control. 

d
 According to Fishers Protected LSD (P<0.05) values in each column with a letter in common are not significantly different from 

each other. 
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Fig. 2.1. Illinois apple orchards for surveyed for streptomycin-resistant Erwinia amylovora. 

 

 

 
Illinois apple growing regions 

 
24 orchards surveyed in 2010.  

 
35 orchards surveyed in 2011. 

 
39 orchards surveyed in 2012. 

South 

Central 

North 
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Fig. 2.2. Streptomycin-resistant non-Erwinia amylovora in Illinois apple orchards. Bacteria were 

screened with primers IS1133-F (‘GCG TGA TGC AGT TCG CAT AGC’)  and IS1133-R 

(‘CAT ACG CGG CCT ACC ATA GCT’)  to detect IS1133 on Tn5393. E. amylovora isolate 

‘W4’ containing Tn5393 was used as positive control. Nine of 119 isolates screened produced 

similar bands to the positive control.   

 

 

 

 

 
 

Fig. 2.3. Positive identification of strA-B genes in seven non-Erwinia amylovora bacterial 

colonies from Illinois apple orchards with primers strab01-F (‘TGG TGT CCC GCA ATG CCG 

TC’ ) and strab01-R (‘CCC GGA TCG GGA GAA GGG CA’). Lane: (1) DNA ladder; (2) 

negative control [Mk1]; (3) 5897 [Jersey], (4) 7234 [McHenry], (5) 5374 (no band) [Jackson], 

(6) 6114 [Calhoun], (7) 5814 [St. Clair], (8) 6004 [Jersey], (9) 4264 [Calhoun], (10) 5174 

[Union]; (11) and (12) positive controls [W4 and MI 5-1]; and (13) water  negative control. 

 

 control Non-Erwinia amylovora bacteria with IS133 on Tn5393 

W4  

  1         2         3          4         5        6          7         8          9       10         11      12        13    
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CHAPTER 3 

 

EVALUATION OF STREPTOMYCIN-ALTERNATIVE COMPOUNDS FOR 

MANAGEMENT OF FIRE BLIGHT DISEASE OF APPLE 

 

During 2011-2012, laboratory and field trials were conducted to evaluate the efficacy of 

streptomycin-alternatives, including oxytetracycline, kasugamycin, Bacillus subtilis, 

Pseudomonas fluorescens, and prohexadione calcium for control of fire blight disease of apple 

(Erwinia amylovora). Kasugamycin products (Kasumin 2L and ARY-4016-06) significantly 

(P<0.10) reduced blossom infection in the orchard. In 2012, effectiveness of growth regulator 

prohexadione calcium (Apogee 27.5DF) in combination with streptomycin-alternatives were also 

evaluated. In our one-year experiment an Apogee x Kasumin 2L interaction significantly 

(P<0.0009) reduced shoot blight infection. All 84 E. amylovora isolates evaluated were sensitive 

to 0.16 mM copper sulfate, indicating copper compounds are still effective for management of 

fire blight disease in Illinois. 
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MATERIALS AND METHODS 

 

Bacterial strains and culture preparation 

Eighty-four Erwinia amylovora isolates collected from Illinois were selected for in-vitro 

evaluation of streptomycin-alternative compounds. Bacterial isolates were routinely cultured on 

Luria-Bertani (LB) medium (McGhee et al., 2011) for three days.  Bacterial suspensions were 

prepared by washing Petri plates with sterile-distilled water (SDW) and the suspension was 

adjusted to 10
7
 CFU/ml using a spectrophotometer (Smart Spec 3000; Bio-Rad, Philadelphia, 

PA). Also, Casitone-Yeast Extract (CYE) medium (1.7 g of casitone, 0.35g yeast extract, 2 g 

glucose, and 15 g agar per liter) was used for evaluation of copper compounds (Loper et al., 

1991). 

 

In-vitro evaluation of copper sulfate 

Eighty-four Erwinia amylovora isolates collected from Illinois were selected for in-vitro 

evaluation of copper sulfate. CYE medium was amended with 0.08, 0.16, and 1.1 mM copper 

sulfate (Cuprofix Ultra 40DF; United Phosphorus, King of Prussia, PA). A 10-μl aliquot of 

bacterial suspension from each isolate was spotted onto the agar surface with a pipet tip. All 

experiments were designed as a randomized complete block design and included non-amended 

agar plates for controls. Colony development was assessed after 48 h and 72 h on CYE medium.  

 

In-vitro comparison of copper compound formulations  

Eleven E. amylovora isolates were used to evaluate effects of different copper formulations on 

colony development. CYE medium was amended with copper sulfate (Cuprofix Ultra 40); 
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copper hydroxide (Kocide 3000 40.1DF; Dupont, Wilmington, DE ); cuprous oxide (Nordox 75 

WG; Nordox Industrier AS, Oslo Norway); and a mixture of copper hydroxide/ copper 

oxychloride (Badge X2 45DF; Isagro USA, Morrisville, NC). All copper compounds were 

evaluated at 0 and 14 mg/L of metallic copper. Using a bacterial loop, colony suspensions (10
7
 

CFU/ml) were streaked onto agar on each Petri plate and colony development was assessed after 

four days.  All tests were designed as a randomized complete block design and included non-

amended agar for controls. Each isolate was tested twice with three replications (plates) per test.   

 

Cuprofix Ultra 40, Kocide 3000 40.1DF, Nordox 75WG, and Badge X2 45DF were additionally 

evaluated in CYE broth (CYE medium without agar), with Illinois E. amylovora isolate 26D, at 0, 

7, and 14 mg/L metallic copper. The test was conducted using sterile 24-well plates. Twenty 

microliters from a bacterial suspension (10
8
 CFU/ml) was added to 2 ml of broth per well and 

incubated on a shaker at 28ºC for 18 h. Bacterial cell density was assessed using a 

spectrophotometer at OD600 and expressed as percent compared with the non-amended control. 

CYE medium only, and CYE medium with compounds only, and CYE medium with isolate only 

served as the negative and positive controls.  Each compound was tested twice with four 

replications (individual wells) per test in a randomized complete block design.   

 

In-vitro evaluation of oxytetracycline and kasugamycin  

Eighty-four E. amylovora isolates collected from Illinois were selected for 

in-vitro evaluation of antibiotics. LB medium (pH 7) was amended with oxytetracycline 

(Mycoshield 17 WP; NuFarm Americas Inc., Burr Ridge, IL) at 0, 50, 100, and 200 mg/L. Also, 

two formulations of kasugamycin (Kasumin 2L and ARY-4016-06; Arysta Life Science, Cary, 
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NC ) were evaluated at 0, 25, 50, and 100 mg/L on amended LB medium with bacterial 

suspensions streaked on the agar surface. All experiments were designed as a randomized 

complete block design and included non-amended agar for controls. Colony development was 

assessed after 24 and 48 h.  

 

In-vitro comparison of kasugamycin formulations in amended liquid medium 

Eleven Illinois E. amylovora isolates were compared in nutrient broth (pH 7) amended with 

kasugamycin (Kasumin 2L) and kasugamycin (ARY-4016-06) at 0, 3, 5, 10 mg/L. The test was 

conducted using sterile 24-well plates. Twenty microliters from each bacterial suspension (10
8
 

CFU/ml) was added to 2 ml of broth per well and incubated on a shaker at 28ºC for 18 h. 

Bacterial cell density was assessed using a spectrophotometer at OD600 and expressed as 

percent compared to the non-amended control. Each isolate was tested twice with four 

replications (individual wells) per test in a randomized complete block design.   

 

In-vitro evaluation of biocontrol agents  

Biocontrol agents: Bacillus pumilus QST 2808 (Sonota ASO; Agraquest, Davis, CA), Bacillus 

subtilis QST 713 (Serenade Max; Agraquest, Davis, CA), Pseudomonas fluorescens A506 

(BlightBan A506; Nufarm Americas Inc., Burr Ridge, IL), and the negative control, 

Xanthamonas cucurbitae 621, were evaluated in-vitro as follows. On day 0, 10-µl aliquots of 

biocontrol suspensions were spotted down the center of a 110-mm diameter Petri plate 

containing LB agar. On day 3, 10-µl aliquots of E. amylovora 2A suspensions were spotted 

adjacent to the established biocontrol colonies. On day 5, zones of inhibition were measured 

from the edge of the biocontrol colony to the closest E. amylovora colony. Each biocontrol agent 
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was tested twice with at least four replications (plates) per test in a randomized complete block 

design.    

 

Field trials 

 Field experiments were conducted on ‘Jonathan’ apple at the University of Illinois Fruit 

Research Farm, Urbana, IL. E. amylovora inoculum was prepared from freshly growing colonies 

of native orchard isolate 2A and suspended in 0.5x PBS buffer at 10
8
 CFU/ml (in 2011) and 

5x10
6 

CFU/ml (in 2012). The bacterial suspension was transported on ice and applied when 

MARYBLYT disease forecasting logger (Spectrum Technologies, Plainfield, IL) indicated high 

risk of fire blight infection. All treatments and inoculations were applied using a gas powered 

backpack mist sprayer (SR400; Stihl, Virginia Beach, VA) at 1,407 liters/ha (150 gallons/acre). 

Data were collected on four sides of each tree from the upper, middle, and lower canopy. A total 

of 120 blossoms and 120 shoots were observed in each tree when possible. 

 

Field evaluation in 2011 

The 2011 experiment was designed as randomized complete block design with three blocks, 

eight treatments, and two spray-application times (24 h pre- and 24 h post-inoculation). 

Treatments included: control (no inoculum applied), control (inoculum applied), streptomycin 

(Agrimycin 17 Nufarm, Burr Ridge, IL) at 100 mg/L, oxytetracycline (Mycoshield) at 200 mg/L, 

and kausgamycin (Kasumin 2L and ARY-4016-06) at 100 mg/L. Biocontrol agents 

Pseudomonas florescences A506 (BlightBan A506) at 369 mg/L, and Bacillus subtillus QST713 

(Serendade Max) at 525 mg/L were also included. 
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 Cuprofix Ultra 40D (7.8 kg/ha) and dormant oil were applied to all trees on 31 Mar 2011. Apple 

tree growth development stages were full pink (18 April), 1% bloom (20 April), 40-60% bloom 

(25 April), and petal fall (11 May). The trees were inoculated with the pathogen on 26 April and 

8 May. Pre-inoculation spray treatments were applied on 25 April and 7 May and post-

inoculation sprays were applied on 27 April and 9 May. Treatments were also applied on 29 

April. Blossom infection was evaluated on 12 May and 23 May; and shoot infection was 

evaluated on 10 June, 30 June, and 27 July. 

 

Field evaluation in 2012 

The 2012 experiment was designed as a split-plot in a randomized complete block design with 

four blocks, 11 main-plot treatments (antibiotics and biocontrol agents) and a split-plot, with or 

without growth regulator prohexadione calcium (Apogee 27.5DF; BASF Corporation, Research 

Triangle Park, NC) at 600 mg/L. The main plot treatments included: (i) control (inoculum 

applied); (ii) copper hydroxide (Kocide 3000) at 240 mg/L + mancozeb at 2,700 mg/L (Dithane 

75DF; Dow AgroSciences LLC, Indianapolis, IN); (iii) streptomycin (Agrimycin 17) at 100 

mg/L; (iv) oxytetracycline (Mycoshield) at 200 mg/L; (v) oxytetracycline (Mycoshield) at 200 

mg/L+ copper hydroxide (Kocide 3000) at 240 mg/L; (vi) kausgamycin (ARY-4016-06) at 100 

mg/L; (vii) kausgamycin (Kasumin 2L) at 100 mg/L; (viii) Pseudomonas florescences A506 

(BlightBan A506 71) at 369 mg/L; (ix) Bacillus subtillus QST713 (Serenade Max 14.6) 525 at 

mg/L; (x) kausgamycin (Kasumin 2L) at 100 mg/L and (xi) streptomycin (Agrimycin 17) at 100 

mg/L. Treatments i, ii, iii, iv, v, vi, and vii, were applied 24 h pre- and 24 h post-inoculation; 

biocontrol agent treatments viii and ix were applied 24 h pre- and 48 h pre-inoculation (to help 

encourage biological control agent establishment on the apple blossoms); and treatments x and xi 
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were applied 24 h post-inoculation only.  All eleven treatment applications included a nonionic 

surfactant, Regulaid (Kalo, Inc., Overland Park, KS), at 125ml/100 liters. 

 

 Cuprofix Ultra 40D (7.8 kg/ha) and dormant oil were applied to all trees on 13 March 2012. 

Apple tree growth development stages were full pink (23 March), 1% bloom (26 March), 40-

60% bloom (28 March), and petal fall (12 April). Split applications of Apogee were applied on 

29 March and 12 April. The trees were inoculated on 30 March and 3 April. Main-plot 

treatments were applied on 29 March, 31 March, 2 April, and 4 April, respectively. Additional 

applications of Serenade Max and BlightBan A506 were applied on 28 March to help encourage 

biocontrol agent establishment. Blossom infection was evaluated on 17 April, 24 April, and 1 

May; and shoot infection was evaluated on 8 May, 22 May, 5 June, and 3 July.  

 

Data analysis 

All statistical analysis was performed using SAS 9.3 (SAS Institute Inc. Cary, NC). 

Homogeneity of variances was tested using the Brown-Forsyth test and data were checked for 

normality. Data were square root transformed [√(x + 1/6)], when necessary, to meet valid 

assumptions. Data were analyzed using ANOVA in PROC MIXED and macro pdmix800 

(Saxton 1998) was used to indicate mean letter separation (alpha=0.10 for field and alpha=0.05 

for laboratory data). Blossom data in 2012 were analyzed as a covariate to account for uneven 

blossom distribution in each tree.  

 

 

 



 

 

54 

 

RESULTS 

 

In-vitro evaluation of copper compounds 

All 84 isolates tested developed colonies on CYE medium amended with 0.08 mM copper 

sulfate. At 0.16 mM and 1.1 mM copper sulfate, none of the isolates developed colonies (Table 

3.1). Moreover, all copper formulations (e.g., copper sulfate, copper hydroxide, cuprous oxide, 

and copper hydroxide/copper oxychloride) at 14 mg/L metallic copper inhibited colony 

development on CYE medium and bacteria cell multiplication in CYE broth. At 7 mg/L metallic 

copper in CYE broth, copper hydroxide, copper sulfate, copper hydroxide/copper oxychloride, 

and cuprous oxide reduced cell multiplication of E. amylovora by 94.0, 92.8, 85.0, and 83.0%, 

respectively, compared to the un-amended control. 

 

In-vitro evaluation of oxytetracycline and kasugamycin 

Development of colonies of all 84 E. amylovora isolates were inhibited on LB medium amended 

with oxytetracycline at 50, 100, and 200 mg/L. Also, colony development of all E. amylovora 

isolates were inhibited at 100 mg/L kasugamycin (Kasumin 2L). However, the same 

concentration of active ingredient (100 mg/L kasugamycin) in ARY-4016-06 inhibited colony 

development of only 35 of 84 (42%) of the Illinois isolates tested (Table 3.2). Similarly, at 50 

mg/L kasugamycin, Kausmin 2L inhibited 29 of 84 (35%) of isolates, while ARY-4016-06 at the 

same active ingredient rate, inhibited only 1 (<1%) of the isolates. At 25 mg/L kasugamycin 

neither formulation inhibited colony development; however, colony development was visually 

slower compared to the non-amended control.  
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A comparison of both kasugamycin formulations by measuring the optical density in amended 

liquid medium showed similar results as the solid media (Table 3.3). Compared to the un-

amended controls at 18 h, mean colony growth was 7.1% and 31.1% with Kasumin 2L (10 mg/L 

kasugamycin) and ARY- 4016-06 (10 mg/L kasugamycin), respectively. Two E. amylovora 

isolates tested from Calhoun County were among the most kasugamycin-sensitive isolates. One 

isolate (7711) from Woodford County was the least-sensitive; but another isolate, (165E) also 

from Woodford county was more sensitive and comparable to other Illinois isolates.   

 

In-vitro evaluation of biocontrol agents  

The negative control, Xanthamonas cucurbitae, did not produce zones of inhibition in any test. 

Pseudomonas fluorescens (BlightBan A506), Bacillus pumilus (Sonota ASO), and Bacillus 

subtilis (Serenade Max), produced 8.2, 10.9 and 12.1 mm zones of inhibition, respectively. 

Statistically, the two Bacillus species performed the same (P<0.2076); and both Bacillus species 

produced significantly (P< 0.0023) larger zones of inhibition than Pseudomonas fluorescens. 

 

Field evaluation in 2011 

Due to high inoculum density applied, disease pressure was high in the 2011 trial; however, 

some treatments reduced blossom infection (Table 3.4). The industry-standard streptomycin 

(Agrimycin 17) applied pre-infection was not significantly different (P<0.20) from the control 

treatments in 2011. However, three antibiotics treatments (Kasumin 2L pre-, Agrimycin 17 post- 

and ARY-4016-06 post-inoculation) did significantly (P<0.10) reduce blossom infection 

compared to the control. Shoot infection was not significantly (P<0.50) reduced by bloom-time 

applications (Table 3.5).   
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Field evaluation in 2012 

Apple trees in Urbana, IL bloomed about four weeks earlier in 2012 than in normal years. 

Nearing petal fall, a freezing event occurred on 11 April with a nightly low temperature reaching 

-3.9°C, which resulted in a 100% crop loss; however, blossom infection still occurred in 

inoculated trials. Four antibiotic treatments significantly reduced blossom infection compared to 

the control which included, Agrimcyin 17, pre/post-inoculation (P<0.0485); Agrimycin 17, post-

inoculation only (P<0.0951); ARY 0416-06, pre/post-inoculation (P<0.0698); and Kasumin 2L, 

pre/post-inoculation (P<0.1081), (Table 3.6). Applications of Serenade Max also reduced 

infection but to a lesser extent (Table 3.6).   

 

In this experiment, growth regulator Apogee (split-application at 5% bloom and petal fall), did 

not significantly (P<99.19) affect blossom infection and no significant (P<0.7174) Apogee x 

treatment interactions were observed. Similarly, no significant (P<0.2161) difference in shoot 

infection was observed between Apogee and non-Apogee treated plots on 8 May. However, two 

weeks later (22 May), averaged over all bactericide and biocontrol treatments, the application of 

Apogee significantly (P<0.0004) reduced shoot infection by 26.6%. Though not statistically 

significant, it was also observed following the 28 May hail storm, bloom-time Apogee 

applications reduced trauma shoot infections by 28.0% (Table 3.9). 

 

Plots that received both Apogee and Kasumin 2L (pre/post- and post-inoculation) had 

significantly less (P<0.03 and P<0.0009, respectively) shoot infection than Kasumin 2L alone 

(Table 3.8). This interaction was not observed in plots treated with ARY-0416-06 (P<0.45), 

another formulation of kasugamycin, or any other treatment.  
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DISCUSSION 

 

All 84 Illinois Erwinia amylovora isolates tested were sensitive to copper sulfate at 0.16 mM. 

Sholberg et al. (2001) reported that 18 of 42 (43%) E. amylovora isolates tested in British 

Columbia developed colonies in the presence of 0.16 mM copper sulfate on CYE medium. They 

also reported that two of 42 isolates (5%) developed at 0.32 mM copper sulfate on CYE. 

However, Sholberg et al. (2001) concluded, these levels were not a cause for concern in copper 

sprayed orchards because all isolates were controlled at 1.1 mM. In our study, various copper 

compounds evaluated in CYE broth showed in-vitro differences in effectiveness at 7 mg/L 

metallic copper. However, at 14 mg/L metallic copper, all copper compounds tested inhibited in-

vitro cell multiplication of E. amylovora. Since all Illinois E. amylovora isolates were sensitive 

to both 0.16 mM copper sulfate and 14 mg/L metallic copper, thus copper is still an effective 

compound in managing fire blight of apple in Illinois. 

 

Our study showed that kasugamycin in Kasumin 2L was more effective in prohibiting cell 

multiplication of E. amylovora in-vitro than kasugamycin in ARY-406-06. The results agree with 

the report of McGhee and Sundin (2011) that the carrier in Kasumin 2L does increase the 

efficacy of the compound. We think the higher concentration of kausgamycin in ARY-4016-06 

(e.g., lower concentration of carrier per volume) explains the different efficacy of the 

kasugamycin products in-vitro. However, both kasugamycin formulations provide effective field 

control.  Adaskavey et al. (2011) reported kausgamycin was more effective at pH 5 than pH 7 in-

vitro and also reported that flower blossoms have approximately pH 5. This may explain why 

kasuagmycin is more effective in the orchard than laboratory assays. The carrier in Kasumin 2L 
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may serve as another “mode of action” to help prevent/delay kasugamycin-resistance 

development in E. amylovora in the future if it is used for control of fire blight. Two E. 

amylovora isolates tested from Calhoun were among the most kasugamycin-sensitive isolates. 

This is especially interesting as Calhoun isolates were also among the most sensitive to 

streptomycin.  

 

In the 2011 field trial, disease pressure was too high. We inoculated the pathogen at 10
8
 CFU/ml, 

while other investigators commonly use 10
6
 CFU/ml. Additionally, rainfall was more frequent at 

the experimental site during bloom and after applying treatments. The combination of these 

factors may explain why the industry-standard pre-inoculation streptomycin application was not 

effective at reducing blossom infection. However, application of post-inoculation streptomycin 

and kasugamycin products provided blossom blight control under such conducive conditions for 

blossom blight development. Although some treatments in 2011 reduced blossom infection, none 

of the treatments significantly affected shoot infection by E. amylovora. These data may partially 

explain why severe shoot blight can be observed in orchards even though streptomycin is still 

effective against blossom blight and applied at the recommend time (during bloom). The high 

inoculum density used in this study, may explain the high disease incidence and severity that 

occurs in Calhoun county each year, as Calhoun orchards are in closer proximity and likely 

inoculum sources and density are abundant compared to most other apple orchards in Illinois.  

 

In the 2012 field trial, disease pressure was moderate. Similar to 2011, streptomycin (pre/post- 

and post-inoculation) and kasugamycin products (pre/post-inoculation) reduced blossom blight 

infection. The kasugamycin post-inoculation treatment did not provide the same blossom blight 
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control observed in the 2011 trial. Further studies comparing effectiveness of kasugamycin post-

blossom infection may be warranted. Similar to the 2011 trial, bloom-time treatments did not 

reduce shoot blight occurrence in the summer.  

 

In 2011 and 2012 trials, oxytetracycline (Mycoshield) did not significantly reduce blossom blight 

infection. Similarly, biocontrol agents Serenade Max and BlightBan A506 did not effectively  

reduce blossom blight infection. Although, Serenade Max did reduce blossom infection more 

than BlightBan A506. These results are similar to the multi-year, multi-location observations 

reported by Sundin, et al. (2009). Our data indicates that in the Illinois climate (also in other 

Midwestern states), applications of biocontrol agents alone can not provide effective control of 

fire blight of apple, and may not be considered a streptomycin alternative.  

 

Our 2012 field trial showed reductions in shoot blight incidence when Apogee was applied to 

Kasumin 2L (kasugamycin) treated trees. Application of Apogee with ARY-4016-06, which also 

contains kasugamycin, did not significantly affect shoot blight incidence. Although based on 

one-year of field data, to our knowledge, this is the first documentation of a synergistic 

interaction between Kasumin 2L and Apogee significantly reducing shoot blight in apple. 

Additional field trials are needed to evaluate interactions between kasugamycin, the carrier in 

Kasumin 2L, and Apogee in controlling fire blight in pome fruit.  

 

This study evaluated various compounds for fire blight control in apple orchards and established 

Illinois’ E. amylovora population’s base line sensitivities to kasugamycin. In this study, we did 

not detect copper-resistance in Illinois populations, indicating copper remains an effective 



 

 

60 

 

management tool. Streptomycin remains the best available antibiotic to protect apple trees from 

E. amylovora infection in Illinois. Every effort should be made to avoid the development/ 

introduction of streptomycin-resistant strains in Illinois. Also, our data indicates kasugamycin 

compounds, if registered in Illinois, would be a suitable compliment/replacement to streptomycin. 

If kasugamycin is available for use in Illinois prior to the appearance of streptomycin-resistant E. 

amylovora, it would provide an effective chemical alternation using a different mode of action 

than streptomycin.  



 

 

61 

 

TABLES AND FIGURES 

 

Table 3.1. Effect of oxytetracycline and copper on inhibition of colony development of Illinois 

Erwinia amylovora isolates.   

 

 Isolates Colony development 

 tested oxytetracycline  mg/L
a
   copper sulfate

 
mM

b
 

County (no.) 0 50 100 200  0 0.08 0.16 1.1 

Boone 6 6
 c
 0

 
 0 0  6 6 0 0 

Calhoun 20 20 0 0 0  20 20 0
 
 0 

Champaign 6 6 0 0 0  6 6 0
 
 0 

Jackson 2 2 0 0 0  2 2 0 0 

Jersey 9 9 0 0 0  9 9 0
 
 0 

Kane 2 2 0 0 0  2 2 0 0 

Macoupin 3 3 0 0 0  3 3 0
 
 0 

Madison 2 2 0 0 0  2 2 0 0 

Marshall 9 9 0 0 0  9 9 0 0 

Peoria 2 2 0 0 0  2 2 0 0 

Putnam 4 4 0 0 0  4 4 0 0 

Sangamon 2 2 0 0 0  2 2 0 0 

St. Clair 11 11 0 0 0  11 11 0
 
 0 

Union 2 2 0 0 0  2 2 0 0 

Woodford 4 4 0 0 0  4 4 0 0 

Illinois 84 84 0 0 0  84 84 0 0 
a
 Colony development was evaluated on Luria-Bertani medium amended with oxytetracyline 

(Mycoshield 17WP) after 48 h. 
b
 Colony development was evaluated on casitone-yeast extract (CYE) medium amended with 

copper sulfate (Cuprofix Ultra 40DF) after 72 h. 
c
 Number of isolates tested that developed colonies.
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Table 3.2. In-vitro evaluation of colony development of Erwinia amylovora on kasugamycin amended Luria-Bertani (LB) medium. 

 

   Colony development 

 Isolates  Kasumin 2L  ARY-4016-06 

 tested  50 mg/L  a.i.
a
 100 mg/L  a.i.  50 mg/L  a.i. 100 mg/L  a.i. 

County (no.)  - 
b
 -/+ + - -/+ +  - -/+ + - -/+ + 

Boone 6  3
 c

 2
 
 1

 
 6 0 0  0 0 6 2 4 0 

Calhoun 20  9 11 0 20 0 0  0 3 17 12 8 0 

Champaign 6  4 2 0 6 0 0  1 1 4 5 1 0 

Jackson 2  1 1 0 2 0 0  0 1 1 2 0 0 

Jersey 9  4 5 0 9 0 0  0 0 9 5 4 0 

Kane 2  1 1 0 2 0 0  0 1 1 1 1 0 

Macoupin 3  0 2 1 3 0 0  0 0 3 1 1 1 

Madison 2  0 1 1 2 0 0  0 0 2 0 2 0 

Marshall 9  2 4 3 9 0 0  0 2 7 2 6 1 

Peoria 2  1 1 0 2 0 0  0 0 2 0 2 0 

Putnam 4  1 1 2 4 0 0  0 1 3 2 2 0 

Sangamon 2  0 2 0 2 0 0  0 0 2 0 1 1 

St. Clair 11  2 8 1 11 0 0  0 0 11 2 8 1 

Union 2  0 1 1 2 0 0  0 0 2 0 0 2 

Woodford 4  1 2 1 4 0 0  0 1 3 1 2 1 

Total 

(Percent) 

84 

(100) 

 29 

(35) 

44 

(52) 

11 

(13) 

84 

(100) 

0 

(0) 

0 

(0) 

 1 

(<1) 

10 

(12) 

73 

(87) 

35 

(42) 

42 

(50) 

7 

(8) 
a
 a.i.=active ingredient (kasugamycin).  

b
 LB medium (pH 7) was amended with each concentration of kasugamycin and bacterial colonies were streaked onto the agar surface 

with a bacterial loop. Colony development was assessed after 48 h. 

   ( – ) indicates no colony development, ( -/+ ) indicates colony development was sometimes observed,  

   ( + ) indicates colony development was consistently observed. 
c 
Number of isolates tested that developed colonies.
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Table 3.3. In-vitro evaluation of the effects of kasugamycin formulations on Erwinia amylovora 

multiplication in nutrient broth
a
 . 

 

  mg/L kasugamycin (Kasumin 2L) mg/L kasugamycin (ARY 4016-06) 

County Isolate 3 5 10 3 5 10 

Boone 6951 98.9%
b
 bc

c
 55.8%c 0.0% e 78.7% b-d 37.5% cd 11.3%d 

Calhoun 6081 100.7 a-c 1.0 e 0.0 e  60.7 b-e 21.1 de 0.0 e 

Calhoun 7651 52.4 e 1.1 e 0.0 e 46.4 de 10.1 e 0.0 e 

Champaign 4802 72.0 d 9.4 d 0.0 e 38.0 e 6.9 e 0.0 e 

Jersey 6002 95.6 b 67.9 bc 0.0 e 83.9 b 51.6 bc 20.7 c 

Sangamon 84d 97.8 b 85.9 a 37.7 a 82.0 b 69.5 b 59.9 a 

St. Clair 89a 87.6 c 73.4 b 12.7 c 73.2 cd 69.2 b 58.5 a 

Union 5232 94.9 b 70.3 b 0.0 e 81.7 b 70.8 b 55.4 a 

Woodford 7711 116.6 a 102.1 a 24.0 b 117.7 a 98.4 a 56.9 a 

Woodford 165e 94.6 b 73.5 b 3.7 d 79.4 bc 51.1 c 37.7 b 

 Mean 96.1 61.1 7.1 78.8 51.5 31.1 
a
 Nutrient Broth was adjusted to pH 7. 

b
 Bacterial cell densities were measured with a spectrophotometer at OD600 at 18 h and 

expressed as a percent compared to un-amended control. A value of 100% indicates colony 

development was not reduced compared to the control; 0% indicates no colony development 

detected. 
c
 Data were analyzed using PROC MIXED with macro pdmix800. In each column values with a 

letter in common are not significantly different from each other (P<0.05). 
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Table 3.4. Field evaluation of antibiotics and biocontrol agents for control of blossom blight 

(Erwinia amylovora) on ‘Jonathan’ apple trees in Urbana, IL in 2011. 

 

Treatment
a
 

Active 

ingredient  

(rate) 

Application 

time
b
 

Infected blossom 

clusters (%) 

  12 May  23 May 

Control (un-inoculated) - -   4.4 bc
 c
 31.1 a-c

 
 

Control (inoculated) - -   6.9 abc 29.1 a-c 

     

Agrimycin 17 
streptomycin pre-inoculation   6.4 bc 22.7 b-e 

(100 mg/L) post-inoculation   2.5 c 15.7 de 

     

Mycoshield 
oxytetracycline pre-inoculation   5.8 bc 33.1 a-c 

(200 mg/L) post-inoculation   4.2 bc 24.4 b-d 

     

Serenade Max 

Bacillus subtilis 

QST713 
pre-inoculation   7.7 abc 23.9 b-e 

(525 mg/L) post-inoculation 10.8 a 38.5 a 

     

Blight Ban A506 

Pseudomonas 

syringae A506 
pre-inoculation   5.8 bc 31.4 a-c 

(369 mg/L) post-inoculation   7.5 ab 34.4 ab 

     

Kasumin 2L 
kasugamycin pre-inoculation   3.1 bc 15.7 de 

(100 mg/L) post-inoculation   2.5 c 17.5 de 

     

ARY-0416-06 
kasugamycin pre-inoculation   2.5 c 21.7 c-e 

(100 mg/L) post-inoculation   2.5 c 13.6 e 
a 
All treatments were applied at maximum label rates using gas powered backpack sprayer at 

1,407 liters/ha. 
b
 Pre-inoculation treatments applied 24 h before and post-inoculation treatments applied 24 h 

after inoculation. All trees were inoculated with E. amylovora isolate 2A at 10
8
 CFU/ml on 26 

April and 8 May. 
c
 On each tree, 120 blossom clusters were evaluated per tree. Data were transformed [√(x + 1/6)] 

and analyzed in PROC MIXED. Values within each column with a letter in common are not 

significantly different from each other (P<0.10) using macro pdmix800 to indicate mean letter 

separation.  
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Table 3.5. Severity of shoot blight (Erwinia amylovora) on ‘Jonathan’ apple trees following 

applications of antibiotics and biocontrol agents at bloom in Urbana, IL in 2011. 

 

 

Active ingredient Application Tree canopy infection (%) 

Treatment
a
 (rate) time

b
 10 June 30 June 27 July 

Control (un-inoculated) - - 35.0 59.3 52.0 

Control (inoculated) - - 38.0 48.7 47.7 

      

Agrimycin 17 

 

streptomycin Pre 34.3 44.7 44.7 

(100 mg/L) Post 24.3 37.7 28.3 

      

Mycoshield 

 

oxytetracycline Pre 40.3 46.3 39.3 

(200 mg/L) Post 33.0 43.3 39.0 

      

Serenade Max 

 

Bacillus subtilis QST713 Pre 38.3 57.7 47.7 

(525 mg/L) Post 41.7 41.0 35.7 

      

Blight Ban A506 

 

Pseudomonas syringae 

A506 Pre 37.3 49.0 41.3 

(369 mg/L) Post 40.3 49.3 45.7 

      

Kasumin 2L 

 

kasugamycin Pre 33.3 48.3 34.7 

(100 mg/L) Post 35.7 51.3 46.3 

      

ARY-0416-06 

 

kasugamycin Pre 41.7 53.3 44.0 

(100 mg/L) Post 32.7 51.7 50.0 

LSD (P<0.10)  

 

NS
c
 NS NS 

 
a 
All bloom-time treatments were applied at maximum label rates using gas powered backpack 

sprayer at 1,407 liters/ha. (150 gallons/acre). 
b
 Pre, indicates applied 24 h before inoculation and post, indicates applied 24 h after inoculation. 

All trees were inoculated with E. amylovora isolate 2A at 10
8
 CFU/ml on 26 April and  

   8 May. 
c
 Data were analyzed using PROC GLM, values within each column were not significantly 

different (NS) from each other according to Fisher’s protected LSD (P<0.10).    
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Table 3.6. Field evaluation of antibiotics and biocontrol agents for control of blossom blight (Erwinia amylovora) on ‘Jonathan’ apple 

trees in Urbana, IL in 2012. 

  

Application   Infected blossom clusters (%)
a
 

Treatment
 b 

Active ingredient  (rate) time
c
 17 April 24 April 1 May 

Control (inoculated) - - 3.3 a
d
 9.5  18.7 a

 
 

Agrimycin 17 streptomycin (100 mg/L) 
Pre/Post 0.2 cd 2.1 1.9 d 

Post only 0.0 d 1.1 2.5 cd 

Mycoshield oxytetracycline (200 mg/L) Pre/Post 1.3 ab 3.0 5.7 a-d 

Mycoshield + Kocide 
oxytetracycline (200 mg/L)+ 

Pre/Post 1.7 a-c 1.9 5.6 a-d 
copper hydroxide (240 mg/L) 

Serenade Max Bacillus subtilis QST713 (525 mg/L) Pre only 2.3 b-d 3.6 4.0 b-d 

Blight Ban A506 Pseudomonas syringae A506 (369 mg/L) Pre only 1.3 a-d 3.3 4.8 ab 

Dithane + Kocide 
mancozeb (2,700 mg/L) + 

Pre/Post 0.9 a-c 2.4 5.9 a-d 
copper hydroxide (240 mg/L) 

Kasumin 2L kasugamycin (100 mg/L) 
Pre/Post 0.0 d 1.2 2.4 cd 

Post only 2.0 ab 4.5 7.3 a-c 

ARY 0416-06 kasugamycin (100 mg/L) Pre/Post 0.2 b-d 1.1 1.8 cd 

    NS  

a
 The number of clusters present varied among trees, (on average 70 clusters were present per tree). Total and infected clusters were counted and 

expressed as a percent for comparison.  
b
 All treatments included Regulaid (125 ml/100 liters) and were applied at 1,407 liters/ha. All trees were inoculated with E. amylovora isolate 2A 

at 5 x 10
6
 CFU/ml on 30 March and 3 April.

 

c 
Pre, indicates treatment application 24 h before inoculation; Post, indicates treatment application 24 h after inoculation.  

d 
Data is presented as percent blossom cluster infection. Original counted cluster data were transformed [√(x + 1/6)] and analyzed as a covariate in 

PROC MIXED. Values within each column with a letter in common are not significantly different from each other (P<0.10) using macro 

pdmix800 to indicate mean letter separation. Blossom cluster infection on 24 April was not significantly different (NS). 
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Table 3.7. Severity of shoot blight (Erwinia amylovora) on ‘Jonathan’ apple trees following 

applications of antibiotics and biocontrol agents at bloom in Urbana, IL in 2012. 

 

Active ingredient Application Tree canopy infection (%) 

Treatment
a
 (rate) timeb 8 May 5 June 3 July 

 

Control (inoculated) 
- - 

9.0 abc 15.7 b-e 20.1 a-e 

         

Agrimycin 17 streptomycin Pre/post 7.0 de 9.0 de 12.8 e 

 (100 mg/L) Post only 5.0 e 9.6 c-e 17.8 c-e 

         

Mycoshield oxytetracycline Pre/post 13.9 a-c 18.6 a-c 27.5 a-c 

 (200 mg/L)        

         

Mycoshield + Kocide oxytetracycline (200 mg/L)+ Pre/post 5.9 b-d 22.4 ab 27.6 a-c 

 copper hydroxide (240 mg/L)        

         

Serenade Max Bacillus subtilis QST713 Pre only 4.0 b-e 20.0 ab 28.4 ab 

 (525 mg/L)        

         

Blight Ban A506 Pseudomonas syringae A506 Pre only 12.3 a 26.9 a 32.0 a 

 (369 mg/L)        

         

Dithane + Kocide mancozeb (2,700 mg/L) + Pre/post 4.6 b-e 19.5 ab 26.5 a-c 

 copper hydroxide (240 mg/L)        

         

Kasumin 2L kasugamycin Pre/post 3.6 c-e 18.6 a-c 23.3 b-e 

 (100 mg/L) Post only 8.2 a-c 18.3 a-d 22.5 a-d 

         

ARY 0416-06 kasugamycin Pre/post 2.5 e 8.3 e 15.8 de 

 (100 mg/L)        
a
 All treatments included Regulaid (125 ml/100 liters) and were applied at 1,403 liters/ha. All trees were 

inoculated with E. amylovora isolate 2A at 5 x 10
6
 CFU/ml on 30 March and 3 April.  

b
 Pre, indicates treatment application 24 h before inoculation; Post, indicates treatment application 24 h 

after inoculation.  
c 
Data were collected and averaged over all plots (e.g., Apogee and non-Apogee treatments were 

combined). Data were transformed [√(x)] and analyzed in PROC MIXED using macro pdmix800. 

Values within a column with a letter in common are not significantly different from each other (P<0.10).  
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Table 3.8. Severity of shoot blight (Erwinia amylovora) on ‘Jonathan’ apple trees following 

application of antibiotics/biocontrol agents and prohexadione calcium (Apogee) and in Urbana, 

IL in 2012. 

 

Treatment
a
 

Active ingredient 

(rate) 

Apogee  

application
b
 

Infected shoots  

(no.)
c
 Difference P value

d
 

Control - 
-
 e
 14.3 

1.2 0.9285 
Apogee 15.5 

Agrimycin 17 
streptomycin  

(100 mg/L) 
- 8.5 

-3 
0.6368 

 Apogee 5.5 

Agrimycin 17             

(Post only) 

streptomycin  

(100 mg/L) 
- 7 

-4 0.2216 
Apogee 3 

Mycoshield 
oxytetracycline 

(200 mg/L) 
- 17 

-6.2 0.2992 
Apogee 10.8 

Mycoshield+ 

Kocide 

oxytetracycline 

(200 mg/L) + 

copper hydroxide 

(240 mg/L) 

- 18.5 

-8.7 0.2733 

Apogee 9.8 

Serenade Max 

(Pre only) 

Bacillus subtilis 

QST713  

(525 mg/L) 

- 13.9 
-5.9 0.2870 

Apogee 8 

Blight Ban  

A 506 

(Pre only) 

Pseudomonas 

syringae A506 

(369 mg/L) 

- 31.3 
-12.8 0.1882 

Apogee 18.5 

Dithane + 

Kocide 

mancozeb  

(2,700 mg/L) + 

copper hydroxide 

(240 mg/L) 

- 9.3 

1 0.7899 

Apogee 10.3 

Kasumin 2L 
kasugamycin  

(100 mg/L) 
- 23.3 

-19.8 0.0009 
Apogee 3.5 

Kasumin 2L             

 (Post only) 

kasugamycin  

(100 mg/L) 
- 23.5 

-15 0.0388 
Apogee 8.5 

ARY-0416-06 
kasugamycin  

(100 mg/L) 
- 5.5 

-1 0.4526 
Apogee 4.5 

a
 Treatments were applied 24 h pre- and 24 h post-inoculation, unless otherwise indicated. Treatments 

included Regulaid (125 ml/100 liters) and were applied at 1,407 liters/ha. All trees were inoculated with 

E. amylovora isolate 2A at 5 x 10
6
 CFU/ml on 30 March and 3 April.  

b 
A split-application of Apogee ( 600 mg/L prohexadione calcium) plus Regulaid (125 ml/100 liters) 

was applied on 29 March (40-60% bloom) and 12 April (petal fall).  
c 
 On 22 May, 120 shoots were evaluated in each tree. 

d
 Data were transformed [√(x)] and analyzed in PROC MIXED. Treatment x Apogee P value is shown.  

e  -  =No prohexadione calcium (Apogee) application.
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Table 3.9. Severity of trauma shoot blight (Erwinia amylovora) on ‘Jonathan’ apple trees, 

following applications of antibiotics/biocontrol agents and prohexadione calcium (Apogee), in 

Urbana, IL in 2012. 

 

Treatment
 a
 

Apogee 

application
b
 

Trauma  

shoot infection 

(no.)
c
 

 Reduction 

in shoot 

infection(%)
d
 

Control 
  - e

 4.0  
5.0 

Apogee 3.8 

Agrimycin 17 
- 5.8  

69.0 
Apogee 1.8 

Agrimycin 17             

(Post only) 

- 9.3  
59.1 

Apogee 3.8 

Mycoshield 
- 10.8  

44.4 
Apogee 6.0 

Mycoshield+ Kocide 
- 14.5  

17.2 
Apogee 12.0 

Serenade Max 

(Pre only) 

- 12.6  
4.8 

Apogee 12.0 

Blight Ban A 506 

(Pre only) 

- 9.5  
44.2 

Apogee 5.3 

Dithane + Kocide 
- 16.3  

33.0 
Apogee 11.0 

Kasumin 2L 
- 8.5  

-8.6 
Apogee 9.3 

Kasumin 2L             

 (Post only) 

- 6.0  
3.4 

Apogee 5.8 

ARY-0416-06 
- 5.3  

56.6 
Apogee 3.3 

Overall Mean 
- 9.3  

28.0 
Apogee 6.7 

a
 Treatments were applied 24 h pre- and 24 h post-inoculation unless otherwise indicated. All treatments 

included Regulaid (125 ml/100 liters) and were applied at 1,407 liters/ha. All trees were inoculated with 

E. amylovora isolate 2A at 5 x 10
6
 CFU/ml on 30 March and 3 April. 

 

b 
A split-application of Apogee ( 600 mg/L prohexadione calcium) plus Regulaid (125 ml/100 liters) 

was applied on 29 March (40-60% bloom) and 12 April (petal fall).  
c 
 A hail storm occurred on 28 May. On 5 June, 120 shoots were evaluated in each tree for new shoot 

infection.  
d
 Data were analyzed in PROC MIXED. Overall, bloom-time Apogee applications did not statistically 

reduce (P< 0.1551) trauma shoot infection following the hail storm, but a 28.0% reduction was 

observed. 
e  -  =No prohexadione calcium (Apogee) application. 
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