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Abstract

The dynamics of the unobservable “short” or “instantaneous” rate
of interest are frequently estimated using a proxy. We show how the
biases resulting from this practice (the “proxy problem”) are related to
the derivatives of the proxy with respect to the short rate and the (in-
verse) function from the proxy to the short rate. Analytic results show
that the proxy problem is not economically significant for single-factor
affine models, for parameter values consistent with US data. In addi-
tion, for the two-factor affine model of Longstaff and Schwartz (1992),
the proxy problem is only economically significant for pricing discount
bonds with maturities of more than five years. We also describe two
different procedures which can be used to assess the magnitude of the
proxy problem in more general interest rate models. Numerical evalua-
tion of a nonlinear single-factor model suggests that the proxy problem
can significantly affect both estimates of the diffusion function and dis-
count bond prices.
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1 Introduction

There is a large recent empirical literature devoted to examining the time se-
ries properties of short-term interest rate data. Examples of this research in-
clude Chan, Karolyi, Longstaff, and Sanders (1992), Ait-Sahalia (1996a,b),
Conley, Hansen, Luttmer, and Scheinkman (1997) (hereafter CHLS), An-
dersen and Lund (1997), and Stanton (1997). These authors use a variety
of econometric techniques including simple method of moments, efficient
method of moments, and nonparametric estimators. Regardless of tech-
nique, this research is often motivated, explicitly or implicitly, by a desire
to understand the time series properties of the (unobservable) rate of return
on a default-free bond maturing in the next instant of time, the so-called
“instantaneous” or “short” rate. This rate often plays a critical role in sim-
ple models of the term structure of interest rates. See, for example, Vasicek
(1977), Cox, Ingersoll and Ross (1985) (hereafter CIR), or Brennan and
Schwartz (1979).

Empirical research on the time-series properties of the short rate typi-
cally requires specifying a proxy for this unobservable variable. The papers
cited above make a variety of different choices. For example, Anderson and
Lund (1997) and Stanton (1997) use the yield on a 3-month Treasury bill as
a proxy for the short rate, while Chan et al (1992) use the 1-month Treasury
bill yield. In contrast, Ait-Sahalia (1996a,b) uses the 1-week Eurodollar rate,
and CHLS use the Federal Funds rate. In making these choices, researchers
face a clear trade-off. Longer term rates, like the yield on a 3-month Trea-
sury bill, may deviate in important ways from the unobservable short rate.
For example, the CIR model provides an explicit formula for the yield of
a three-month discount bond, and it clearly differs from the instantaneous
rate. On the other hand, there are potentially serious microstructure or
institutional features of the markets for very short-term instruments that
make the use of these data problematic in estimating and testing simple
term structure models. See, for example, the bi-weekly settlement effect
in the Federal Funds market documented in Hamilton (1996) or the “cash
equivalence” effect on the prices of 1-month Treasury bills discussed in Knez,
Litterman, and Scheinkman (1994).

In this paper, we examine the magnitude of the biases (the “proxy prob-
lem”) associated with the use of a 1- or 3-month discount bond yield in place
of the unobservable short rate. When a proxy is used, the drift and diffusion



functions estimated by an econometrician are those of the proxy process, not
the short rate process. We first show how the drift and diffusion functions
of the proxy process are related to the derivatives of the proxy with respect
to the short rate and the (inverse) function from the proxy to the short
rate. Using this framework, we analyze the class of single-factor affine bond
pricing models, which includes the Vasicek (1977) and CIR (1985) models
as special cases, and the two-factor affine model of Longstaff and Schwartz
(1992) (hereafter LS). In addition, we develop two procedures for analyzing
more general (i.e., nonlinear) interest rate models, and apply them to a sim-
ple nonlinear single-factor model based on the empirical work of Ait-Sahalia
(1996b), CHLS (1997), and Stanton (1997).

Our first result is that the proxy problem does not appear to be eco-
nomically significant in the case of single-factor affine bond price models,
for parameter values that are consistent with the US data. Analytic results
show that the errors in the estimation of the drift and diffusion functions
are trivial, even when using a 3-month bill as a proxy. Simple method of
moments parameter estimates based on short-maturity proxies in the Va-
sicek (1977) and CIR cases and the bond prices based on these parameter
estimates are virtually indistinguishable from the true parameters and bond
prices, for maturities from one to twenty years. In the case of the two-factor
affine model of LS, the proxy problem (using a 3-month Treasury bill) is
generally small when pricing discount bonds of maturities of five years or
less, although there are some significant pricing differences when the short
rate is high while the variance is simultaneously low.

In the case of the nonlinear model, analytic results are not possible, since
there is no closed-form solution to the fundamental bond pricing partial
differential equation (PDE). However, we describe two separate procedures
for evaluating the magnitude of the proxy problem. The first procedure is
based on a finite-difference approximation to the bond pricing PDE and a
numerical approximation to the derivatives of the yield function. The second
approximation approach is to use a truncated Taylor series expansion of the
yield function and then define the derivatives in terms of the approximate
yield function. Both approaches can be implemented with only knowledge
of the drift and diffusion functions of the short rate and the market price
of risk process. When applied to the nonlinear single-factor model, both
approaches provide very similar results.

A comparison of the drift functions of the true short rate and the 1-
and 3-month proxies in the nonlinear model shows that the proxies display
approximately the same amount of mean reversion as the estimates based
on the true short rate, which is consistent with the results in the affine case.



The diffusion functions of the proxies, however, exhibit some important
differences from the true diffusion. In fact, the diffusion function for the
3-month yield appears to be a concave function of the interest rate for a
substantial portion of the support of the short rate even though the true
diffusion is a convez function. The shape of the diffusion function has been
a focus of the empirical literature, and it remains an unresolved question. It
is obvious that the shape of this function has implications for pricing interest
rate options and other fixed-income instruments with “option-like” features.
In fact, it turns out that even for discount bonds with maturities from one
to ten years there are differences of roughly one percent per year between
the true bond prices and the prices implied by the functions estimated from
the 3-month proxy.

These results illustrate that empirical analyses and conclusions about
the short rate process can depend on the choice of proxy. They also provide
information about when it is reasonable to interpret the results of the empir-
ical literature as saying something substantive about the nature of the short
rate process and when such an interpretation might be misleading. The
results suggest that the trade-off between maturity misspecification and po-
tential microstructure problems must be evaluated on a model by model
basis. While these results should be treated with some caution, since they
only apply directly to a specific set of term structure models and for pa-
rameters consistent with US data, the two numerical procedures described
in the paper provide general tools for identifying situations where the proxy
problem is severe. In addition, although we do not emphasize it in this
paper, the Taylor series approximation can be used to construct moment-
based estimators of the true short rate (or multiple state variables) from the
moments of observed yields of short term bonds.

The remainder of the paper is organized as follows. Section 2 introduces
some basic definitions, including the fundamental bond pricing equation. It
also shows how the drift and diffusion functions of the process for the proxy
are related to the derivatives of the proxy with respect to the short rate
and the function mapping the proxy to the short rate. Section 3 contains
the results for the affine bond pricing models. A nonlinear model consistent
with some of the recent empirical literature is examined in Section 4, and
Section 5 contains the results on the two-factor LS model. The conclusions
are in Section 6. Appendix A provides some evidence on the robustness and
accuracy of the finite-difference approach, and Appendix B contains some
calculations used in Section 5.



2 Bond Pricing and the Proxy Problem

The short rate is assumed to be the solution to a stochastic differential
equation (SDE) of the form

dry = p(ry) dt + o (ry) dWy, (1)

where 1 and o are the “drift” and “diffusion” functions, respectively, and
W is a standard Brownian motion. A unique solution to (1), for any initial
condition, is assumed to exist, and given that p and ¢ do not depend on
time, the solution is time-homogeneous.

The essence of a single-factor bond pricing model is the assumption that
the prices of default-free bonds of all maturities are given by a function of
a single state variable and the term to maturity. In particular, let the price
at time ¢ of a (default-free) bond making a fixed payment at date s < T'
be a function of the short rate, and denote this price by B (r,7), where
T = s — t. Assuming that the function B (r,7) is differentiable as required,
It6’s formula implies

dB (r¢,7) = a(re, 7) B (re,7) dt + 6 (14, 7) B (1, 7) dWr, (2)

where the expected rate of return « (r,7) and volatility ¢ (r, ) are
1
a(r,7)B = 502 (r) Byr + p(r) B, — By (3)

and
6(r,T)B =0 (r)B,, (4)

respectively. B, denotes the partial derivative B (r,7) /Or, and B, and By,
are defined analogously.

Since bond prices are functions solely of the short rate, price changes
on bonds of different maturities must be perfectly correlated. It follows
that, in order to preclude arbitrage, the risk premiums on bonds of different
maturities must be proportional to the standard deviations of their returns.’
Therefore, the expected rate of return in (2) must satisfy

B, (r,7)

a(r,T):r—l-)\(r)m, (5)

!See Vasicek (1977), pages 180-181, or Ingersoll (1987), pages 381-382 and page 394.



where ), the risk premium process, is a function of the short rate alone.?

Substituting (5) into (3) yields the PDE

%02 () Brp + [1(r) = A ()] By = By — 1B = 0 (6)

with the associated boundary condition
B(r,0)=1, (7)

where the bond’s payment has been normalized to one unit of account.

The potential bias in using the yield on a finite-maturity bond as a proxy
for the short rate (the “proxy problem”) stems from the obvious fact that
the yield-to-maturity on a 7-period bond, defined as

y(r,7) = ——log (B (7)), )

is, in general, not identical to the short rate. As a result, the stochastic
process for the yield-to-maturity,

dyr = pi¥ (y¢) dt + 0¥ (yr) AW, 9)

is not identical to the short rate process (1). If y is used as a proxy for r,
the functions being estimated are p¥ and o¥ of (9) and not the functions
and o that appear in (1). The “biases” ¥ — p and 0¥ — o (note that they
are functions) may be due to p¥ and o¥ having different functional forms
than p and 0. Even when p¥ and oY have the same functional forms as p
and o, the biases may also be due to the values of the parameters of p¥ and
oY differing from the values of the corresponding parameters of p and o.

Applying Ito6’s lemma, it is possible to identify the specific nature and
magnitude of the bias. Holding the maturity 7 constant, y; =y () accord-
ing to (8), and

9y (re) 10%y (1) Oy (ry)
p(re) + §W”2 (re) | dt + =5 =20 (r2) W,

dyt =

or

? According to (5), A(r) determines (in part) the instantaneous excess holding period
return of a bond of maturity 7 over r. If A (r) = 0, then the “local expectations hypothesis”
holds, while A < 0 implies that all maturities offer an expected return premium above the
short rate.



WG, () + L T 2 1)

Ay (r ()
i or
where 7 = r (y;) and r : R — R is the inverse of the yield function y defined
by (8). Equation (10) reveals that p¥ and o¥ are given by

o (r(y)) AWy (10)

o () = 200 ) 4 STVE D 2y ()
and 5
ot (y) = 2O, 1)), (12)

According to (11) and (12), the magnitude of the biases are determined by
the partial derivatives dy/0r and 0%y/0r?, and the inverse function r.

The magnitude of the biases can be determined only for specific bond
pricing models; i.e., for specific choices of the functions p, o, and A. Given a
specific model, the magnitude of the biases can be examined by evaluating
the right-hand sides of (11) and (12) and comparing the results to the true
drift and diffusion functions, g and . While this can be done explicitly for
only a limited class of models, it is straightforward to compute numerical
approximations to the relevant derivatives and functions. Thus (11) and
(12) provide a general procedure for evaluating the magnitude of the bias.

The following sections first consider the class of affine bond pricing mod-
els, which include the well-known Vasicek (1977) and CIR models as special
cases, and then a nonlinear single-factor model inspired by recent empirical
research. In both cases, we focus on the magnitude of the biases introduced
by substituting an observable short-maturity bond for the true short rate,
and whether these biases are likely to be economically significant.

3 Affine Single-Factor Economies

3.1 General Results
Bond prices are said to be affine if they can be written as
B(r,7)=expla(T)+0b(T)7]. (13)

The following proposition provides the connection between the short rate
process, the risk premium, and affine bond prices:



Proposition 1 There exist functions a (1) and b(T) such that bond prices
are gwen by (13) if and only if the diffusion coefficient in (1) is

o (r)=+/Bo+ bir (14)

and the drift adjusted by the risk premium function is

p(r) = A(r) = po + p17, (15)
where py, p1, By, and (31 are constants.

Proof. See Duffie (1996), Section 7E. B

Since bond prices are given by (13), it follows that at time ¢ the yield-
to-maturity on a bond maturing at ¢ + 7 is

y(r7) = ——[a(r) + (7). (16)

The dynamics of y (r¢, 7) (for a constant value of 7) then follow from (16) and
the dynamics of r. For example, assume that the actual (not risk-adjusted)
drift of 7 is affine’

w(r) =ag+ aqr.
Then, equations (11) and (12) imply that the drift and diffusion functions
of y for a fixed 7 are

1 (y) = ag +ofy (17)
o (y) = /0 + By (18)

where
ag = [=b(7) /Tl ag — [~a(T) /7] au, (19)
af = ay, (20)
B =[=b(7) /7)* By — [—a(7) /7] [-D(7) /7] B, (21)

and

Bl =[=b(r) /7] By (22)

If y is used as a proxy for r, then of will be estimated instead of ag, BY
instead of 3, and 3Y instead of 3;. Equation (20) implies that ay, can be es-
timated from the finite-maturity proxy. The following proposition examines
the magnitude of the bias.

31f p(r) is affine, then (15) implies that A(r) is also affine, i.e., A(r) = Ao + Air.
Moreover, since A (r) should be zero whenever o (r) is zero, (14) implies Ao = ¢8, and
A1 = @B, for some ¢. Thus the risk adjusted drift parameters in (15) are p, = a0 — ¢85,
and p; = a1 — ¢B;.



Proposition 2 Let bond prices be defined by (13). The functions a (T) and
b(7) are the solutions to

V(1) = pib () + 518 () ~ 1, (23)

@ (r) = pob () + Bt (7), (24)

with the initial conditions b(0) = 0 and a(0) = 0, where By and (3, are
defined in (14), and py and p; are defined in (15). The second-order Taylor

series expansions of —b(7) /T and —a (1) /T around T =0 are

b(r) 1 1
D sy S g (B (29)
a(r 1 1

D o g+ % (pomn — o) 7 (26)

Proof. For (23) and (24), see Duffie (1996), Section 7E. The Taylor series
expansions follow by direct calculation. B

Together with (19) through (22), Proposition 2 suggests that the mis-
specification induced by substituting an observed bond yield for the true
short rate is small for short maturities and for cases when p; and (3; are
close to zero. Proposition 1 and (16) imply that the unconditional mean of
the yield on a 7-period bond is

Ely(r,7)] = —% [a(T) +0(7) E(r)], (27)
and the unconditional variance is
Varly (r,7)] = 5 (7) Var (r). (28)

Given a sequence of observations of the yield process at an arbitrary discrete
interval A, the unconditional k-th order autocorrelation of the yields is

Corr [yt-‘rkA (Ta 7_) > Yt (Tv 7_)] = Corr [Tt-i-kAv Td . (29)

If the observations on a yield with 7-periods until maturity were treated
as observations of r itself, (27) through (29) indicate the magnitude of the
misspecification error that would result from a simple method-of-moments
estimator. In particular, (29) demonstrates that the autocorrelation func-
tion can be inferred directly without a problem, while (27) and (28) show



that estimates of the long-run mean and the variance of the short rate will
have biases related to the levels of —a (7) /7 and —b(7) /7. The magnitude
of these effects will depend on the exact forms of the short rate and risk
premium functions and on the relevant parameter values.*

3.2 Vasicek (1977)
Consider a short rate process defined by the SDE
dry = k(0 —r) dt + odWy, (30)

where £ > 0. This is a Gaussian process. If A (r) = Ag (< 0), then ag = k0,
a1 = —kK, By = 0%, 3 = 0, and 7 and A (r) satisfy the conditions for an
affine bond price model.® Vasicek (1977) shows that

a(r) = (e—ﬁ —1”—2> [1 (1 — exp (—k7)) —T] _ 1~ exp (—kr)P,

ko 262) |k 4K
(31)
1
b(r) = - [1—exp(—kT)]. (32)
Equations (19) through (22) then give the dynamics of y for fixed 7 as
b b
dy, = {_Qme _ @K - /Qyt] dt — Qadwt. (33)

Figures 1 and 2 contain plots of the true drift and diffusion functions and
the functions implied by 1- and 3-month proxies for three sets of parameter
choices that embody different levels of persistence. The first two sets of
parameter choices are generally consistent with the short-term interest rate
data used in earlier research. The parameter 6 is set close to the value of the
long-run mean of the Eurodollar rate used in Ait-Sahalia (1996a,b), and the
k and o combinations are chosen to imply the same steady-state variance of
the short rate process. « is allowed to assume values that imply a first-order
autocorrelation of the discrete observations as high as 0.98 (k = 0.22) or as

"Equations (27) through (29) can be used, in conjunction with the sample moments
of (at least) two yields and an explicit specification for r and A (and, therefore, a (7)
and b(7)), in a standard generalized method of moments estimation of the short rate
parameters. This estimation is not the focus of the questions that we examine in this
paper. However, if the proxy problem is quantitatively small, then the corrections to a
moment-based estimation strategy implied by (27) through (29) will also be small.

?See Goldstein and Zapatero (1996) for an example of an exchange-economy equilibrium
model in which this bond pricing model holds.

10



low as 0.87 (k = 1.72). The small value for the risk premium parameter,
Ao = —0.02, is consistent with the estimate in Stanton (1997). The drift
and diffusion functions plotted in Figures 1 and 2 are quite close (essentially
identical for the drifts) to the true functions, which suggests that the proxy
problem is small.

Equation (30) is an Ornstein-Uhlenbeck process, which is a first-order
autoregressive process when observed at discrete intervals. The parameter
k reflects the speed of adjustment of r back towards its unconditional (or
long-run) mean of §. The unconditional moments of the short rate process
in this case are well known. In particular:

Elr] =0, (34)
o2
Var [r] = o (35)
and
Corr [reqa, 1] = exp (—KA) . (36)

In this case (27) through (28) become:

Bly(r,m)] =~ [a() +b(r)4], (37)
Varly (r,7)] = ¥ () (38)

and
Corr [yia (7, 7) ,ys (1, 7)] = exp (—KA), (39)

where a (1) and b (7) are defined in (31) and (32), respectively.®

The economic significance of the proxy problem is evaluated by assuming
that an econometrician has constructed the sample analogs of (37) through
(39), but proceeds under the assumption that they are the sample analogs
of (34) through (36). This results in (potentially) biased estimates of the
parameters. We then compare the yields on discount bonds computed using
the true and biased parameters. Comparing (36) and (39), it is clear that the
time series of observations on the yield of any bill allows k to be estimated,
and that the use of a proxy does not result in any bias for this parameter.

Using the yield moments to recover estimates of the short rate parameters is particu-
larly simple in the Vasicek case. Equation (39) and the sample autocorrelation coefficient
on any yield can be used to estimate k. Given an estimate of x, (38) and the sample
variance on any yield can be used to construct an estimate of o, and (37) and the sample
means of any two yields can be used to construct estimates of # and Ao.

11



The estimates of parameters 6 and ¢ are obtained by equating (34) and
(35) to the sample analogs of (37) and (38), and will be biased. The risk
premium Ag affects the results of this exercise through the form of (37) and
(38), and we assume that g is known.

Table 1 shows the results of this exercise in the Vasicek case. For each
of the three parameterizations used in Figures 1 and 2, the true yields on
discount bonds of maturities of up to twenty years are compared with the
yields that would be calculated under the following assumptions: (1) A
3-month bill is used in place of the true r; (2) A long enough sample of
observations of the proxy is used so that the sample moments are equal to
the population moments (37) through (39); and (3) The market price of risk
parameter is known. Consistent with the results in Figures 1 and 2, the
pricing differences implied by using a proxy in place of the true short rate
are quite small, with the largest pricing error being 25 basis points on a
20-year discount bond.”

3.3 Cox, Ingersoll, and Ross (1985)
In this case, the short rate follows a square-root diffusion
dry = k(0 —ry) dt + o/ridW;. (40)

Let A(r) = Air, where A\; < 0. This structure fits into the general affine
class with ag = k6, a1 = —k, B, = 0, and 3; = 02. It is further assumed
that , § > 0 and 2x0 > 0. Bond prices in this model satisfy (13) with

_2_/<;9 N 27 exp (%T(K-f—)\l +’y))
‘= 8 | e ) e G — 1+ 23 “
and
b (T) _ —2 [exp (77—) — 1} (42)

(M) exp(y7) — 1]+ 29

where v = \/(/{ + \1)% +202. Equations (19) through (22) then give the
dynamics of y for fixed 7 as

iy = [-2 00 - L] - [ 2O VD qa

T T2

"Note that if the market price of risk had also been estimated, the proxy-generated
prices would have been even more accurate, since the estimated market prices of risk
reported in the previous footnote are all smaller in absolute value than the true Ao.

12



Figures 3 and 4 contain plots of the drift and diffusion functions of the
short rate in the CIR case for three parameterizations that imply the same
unconditional mean, variance, and first-order autocorrelation coefficients as
the parameterizations used in the Vasicek (1977) case. Again, as in the
Vasicek case, these plots suggest that the magnitude of any misspecification
due to substituting a finite maturity bond in place of the true short rate is
quite small.

In the case of the CIR short rate model, the unconditional moments of
the true short rate process are:

Elr] =0, (44)
o2
Var [r¢] = 92—’{, (45)
and
Corr [riya, 7| = exp (—KA) (46)

in this case. The unconditional moments of a proxy for the short rate with
T periods until maturity are

E(ye(r,7)) = — [a(r) +b(r) 6], (47)
Var (e (r, 7)) = b (1) 2 (48)

and
Corr [ygrn (1, 7) ,y: (r,7)] = exp (—KA) , (49)

where a (1) and b (7) are defined by (41) and (42), respectively.

Table 2 shows the economic significance of differences in the estimates
of the parameters of the short rate associated with the use of a 3-month bill
as a proxy, again by examining the yields-to-maturity on zero-coupon bonds
and using the same procedure used in Table 1. As in the Vasicek case, the
implied pricing differences are small across all three parameterizations and
for all maturities from three months to twenty years.®

8The calculations in Table 3 are based on the same assumptions used to generate the
results in Table 2.
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3.4 Summary of the Affine Examples

These two examples demonstrate, in an affine bond price model, that ac-
curate estimates of the drift and diffusion of the short rate process can be
obtained, even using proxies with maturities as long as three months. How-
ever, CHLS, Ait-Sahalia (1996b) and Stanton (1997) all find evidence that
is inconsistent with the assumption of a linear drift in the short rate pro-
cess, and Stanton (1997) estimates a nonlinear risk premium function.” The
following section examines a simple example that is consistent with these
findings.

4 A Nonlinear Single-Factor Model

4.1 The Structure of the Model
The short rate process is defined by the SDE

dry = p(ry) dt + o (1) dWe, (50)
where
fu(r) = or™t + 4y + o1 + g1 (51)
and
o(r)=ar’?. (52)

The drift specification in (51) is the flexible functional form used in Aft-
Sahalia (1996b) and CHLS, and (52) is the diffusion specification suggested
by Chan et al (1992) and further examined in CHLS. The diffusion function
(52) is also a special case of the flexible diffusion specification used by Ait-
Sahalia (1996b). The risk premium function is

A(r)=oa(r)[do+Mr+ )\27’2} , (53)

where o (r) is the diffusion function in (52). The arbitrage-free bond prices
associated with (50) and (53) follow from the PDE (6) and the boundary
condition (7). As Stanton (1997) notes, this specification of X (r) is consis-
tent with the absence of arbitrage because it satisfies the condition that

AF) =0 if  o(r)=0. (54)

9Chapman and Pearson (1998) examine the finite-sample properties of the estimators
used in Stanton (1997) and Ait-Sahalia (1996b), and they conclude that these papers
do not provide compelling evidence that the drift of the short rate is actually nonlinear.
Chapman and Pearson (1998), however, do not examine the estimator in CHLS. Nor do
they conclude that the drift function in the actual data is linear.

14



Violation of (54) results in an arbitrage opportunity in an “arbitrage-free”
term structure model (see CIR page 398 or Ingersoll (1987), pages 400-401).

The parameter values for the drift and diffusion functions are taken
from CHLS. In particular, ¥y = 0.0073, ¥, = —0.4446, ¢y = 9.5178, )3 =
—56.9038, and o = 1.00.1 The risk premium function (53) can approximate
the nonparametric risk premium function estimated in Stanton (1997) for
the parameter choices A\g = —1.0, A; = 15, and Ay = —115.

4.2 Approximating the Proxy Drift and Diffusion Functions

As in the affine case, the proxy problem can be analyzed using equations
(11) and (12). In this nonlinear case, however, there are no closed-form
expressions for bond prices and yields, which makes it impossible to compute
explicitly the partial derivatives dy/0r and 0%y/0r?. Nonetheless, there are
approximations to the price and yield functions that can be used to construct
approximations to p¥ and o¥%. In this sub-section we describe two different
approaches that can be used to extend an analysis of the proxy problem
to any single-factor term structure model in which the drift and diffusion
functions of the short rate and the market price of interest rate risk function
can be specified.!!

The first approach is based on a finite-difference approximation to the
solution of the bond pricing PDE, equation (6), subject to the boundary
condition (7). It consists of the following steps. First, use a finite-difference
algorithm to find an approximate solution to (6).'> Given the approximation
to the bond price function, compute the yield function at the grid points
of the bond price function. Interpolate between the grid points using cu-
bic splines to construct an approximation to the continuous yield function.
Given the yield function, at a maturity 7, construct a grid of size N on
a bounded interval of the short rate [r,7] and approximate the required
derivatives as

oy (1, 7) ~ y(riv1,7) =y (ri-1,7)
or 26
108ee CHLS, Appendix G, for the drift parameter estimates.
' The following section discusses how to extend these approaches to a specific multi-
factor term structure example.
2In the following sub-section (and in the appendix), the numerical approximation is
conducted using a Crank-Nicholson finite-difference algorithm, as described in Sections H
and I of Chapter 11 of Duffie (1996). The backward iterations through the time steps of
the problem are computed by solving a tridiagonal system of linear equations. This was

accomplished using the tridag(e) function defined in Section 2.4 (page 51) of Press et al.
(1992) (as implemented in MathCad’s Numerical Recipes Function Pack).

(55)
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and
Y (ri,7) Y (riv1,7) =2y (ri, 7) +§ (rim1,7)
or 52 ’
where ¥ is the approximation to the yield function, ¢ — 1, 4, and ¢ + 1
refer to points on the partition of [r,7], and ¢ is the (constant) width of
the partition intervals. Finally, the partial derivatives (55) and (56) and
the approximate yield function (and its inverse) from the finite-difference
solution, it is possible to construct approximations to (11) and (12).

There are three sources of approximation error in this “finite-difference
approach.” The first is introduced by the computation of the finite-difference
approximation. The second comes from the interpolation of the finite-
difference solution, and the final source of error is due to the approximations
to the true derivatives given in (55) and (56). The error order of magnitude
of the finite-difference approximation depends on the particular algorithm
used to solve (6).!% The derivative approximations, (55) and (56), both have
error order of magnitudes of 6%, where § = (F —r) /N. The size of these er-
rors, and the associated quality of the drift and diffusion approximations
from the finite-difference approach is examined in detail in Appendix A,
where it is shown (for the affine case) that the errors are small and econom-
ically insignificant. In all of the results reported in the next sub-section,
the finite-difference grid uses 720 time points and 240 space points, and
the numerical derivatives, (55) and (56), are constructed using a grid of 76
points.

A second approximation, the “Taylor series approach,” can be imple-
mented using only knowledge of the drift and diffusion functions of the
short rate and the market price of risk function. It is defined in the follow-
ing proposition and corollary.

(56)

Proposition 3 Let pu(r), A (r), and o® (r) be continuous and have 2 (N — 2)
continuous derivatives, for N > 2 and r € D, where D is the support of the
stochastic process v. The N''-order Taylor series approximation of B (r,T)

is v
B(r,7,N) = Zﬁf” (r)yr",

n=0

" The Crank-Nicholson scheme used below has an error that is O ((AT)2)7 where AT is
the size of the grid in the time dimension. O (h) is the asymptotic order symbol, meaning
that if f is a function of A and f is O (A) then

lim f(A) /A=K,

where K is a constant.
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where

T 2n T
frar (1) = [ () = A ) L) L2 gy D)

2 ot (r) —rfa (1),

n >0, and

fo (7") =1.

Proof. Under the assumptions of the proposition, fx (r) is continuous on
D. For 0 <n < N, f,(r) is continuous and has two continuous derivatives
on D. Itd’s formula then implies

ES [fn (rr) exp <— ./O‘T rsds>] =

fu (10) + E(? /(: frt1 (rs) exp (— /: rudu> ds

for 0 <n < N, where ES? [e] denotes expectation computed under the risk-
neutral measure. Thus

288 [t (= [ raas)| = 88 [ oyenp (- [ ruas)]

for 0 <n < N. Bond prices are given by

B (ro,7) = EY [fo () exp (— [ d)] .

% B(ro,7) = EY { fn () exp (_ | /O Tsdsﬂ (57)

for 0 < n < N. B(rg,7) and its first N derivatives with respect to 7
are continuous with respect to 7 for 0 < 7 < oco. The approximation in
the proposition is the truncated Taylor series expansion of B (rg, ) around
7 = 0. It is based on

Thus

87’1
WB(T‘OJ)

7=0

for 1 <n < N, which is an implication of (57). H
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Corollary 1 Let y (r,7), % (r,7), and ¥ (r,T) be the bond yield, the drift
of the yield (for a constant T), and the volatility of the yield (for a constant
T), as functions of r and 7. Approzimations of these functions based on
B(r,7,N) are

1
y(T,T,N) = —;]Og(B(T‘,T,N)),

8y (TvTvN) 1 2 aQy (TvTaN)
Yy — z
K (T7T7N) =p (7") 67’ + 20- (T) 8’7’2 ’
and 5 ~

o (r,7,N)=0(r) it AKALAY (Té:’ ) .

Proof. This follows immediately from It6’s lemma, and the derivatives can
be calculated from the results in Proposition 3. B

In the results reported in the next sub-section, the Taylor series approach is
implemented using a third order (N = 3) approximation.!4

4.3 The Results

As a first step in examining the nonlinear model, we construct estimates of
the stationary density of the true short rate and the 1-month and 3-month
yields. Following Karlin and Taylor (1981), the stationary density, denoted
7 (r), is the solution to the stationary version of the Kolmogorov forward
equation:

2
0= 3 2o [P (7 ()] — o () ()] (58)

The density 7 (r) must, of course, also satisfy the conditions: fbb m(r)=1

and 7 (r) > 0 for r € [b, 5], where [Q,E] is the support of the_stationary
density. Karlin and Taylor (1981) show that the stationary density is of the
form

w(r)=Cim(r)S(r)+ Com(r), (59)

where

The process of “inverting” the moments of finite-maturity yields to recover the short
rate (and market price of risk) parameters is more complicated in this nonlinear problem
because there is no closed-form solution for yields. However, the yield moments based on
the Taylor series approximation in Proposition 3 are nonlinear functions that relate the
moments of observed yields to the parameters of short rate process, and they could be
used in a generalized method of moments estimation of the short rate parameters.
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and
1

s(x)o?(z)’

S(x):exp{—/m i’;g;’;dr},

and C7 and Cs are constants of integration chosen to ensure that 7 (r) is a
density. In this case, the conditions above imply that Cy = 0 and

m(z) =

with

Cy = /;m(r) dr.

In computing this constant, we use the interval [0.03,0.18] as an approxi-
mation to the support of the stationary density.!?

The stationary density of the true short rate is computed using the true
drift and diffusion functions, and the stationary densities of the 1- and 3-
month yield series are computed using the numerical estimates of the drift
and diffusion functions. Figure 5 shows the resulting densities based on the
finite-difference approximation approach, and Figure 6 shows the compara-
ble results based on the Taylor series approximation. In both pictures, the
3-month yield has the highest peak and the smallest tails. The means of the
1-month yield and the 3-month yield are both higher than the mean of the
true short rate. All of the densities in both figures suggest that both the
true short rate and proxies are generally between 0.05 and 0.16.

Figures 7 plots the drift function of the true short rate, (51), along with
the numerical approximations to 1% (y) based on both the 1- and 3-month
yields using the finite-difference approximation. Figure 8 shows the same
functions based on the Taylor series approximation. A researcher using a
1-month proxy would observe the second panel in each figure instead of
the first panel, and a researcher using a 3-month proxy would observe the
third panel. All three functions in Figure 7 are essentially identical, which
suggests that the proxy problem is not a substantial issue in the estimation
of the drift function. However, using the Taylor series approximation, Figure
8 suggests that the drift of the 1-month rate exhibits slightly more curvature
(i.e., mean reversion at higher rate levels) than the true short rate drift, and
the 3-month rate exhibits even more curvature than the 1-month rate. The
economic significance of these apparently minor differences depends on their

'5The numerical calculations of the integrals involved in solving for « (r) is done using
MathCad?7, Professional. MathCad uses the Romberg method to compute the integrals.
See Press, et al. (1992), Section 4.3.
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implications (along with the effect of the proxy on the diffusion function)
for bond prices and interest rate derivative prices.

The diffusion functions for the true short rate and the 1- and 3-month
proxies, using the two different approximation approaches, are shown in
Figures 9 and 10. These figures have the same general structure as Figures
7 and 8, with the true function in the top panel and what a researcher using
a 1- or 3-month proxy would observe in the middle and bottom panels,
respectively. One important issue addressed in Chan et al (1992), Ait-
Sahalia (1996a,b), and CHLS is the shape of the diffusion function. It is
related to potentially delicate issues of stationarity as well as consistency
with existing single-factor models. Figures 9 and 10 show that the shape
of the diffusion can depend on the choice of proxy. The true diffusion is a
convex function of the short rate, whereas the 1-month diffusion is essentially
linear. Strikingly, in the bottom panels of Figures 9 and 10, the diffusion
functions based on the 3-month proxy are concave for a large part of the
range of interest rates, and it appears that the diffusion functions have
inflection points at a yield level of approximately 11 percent.'® Given the
importance of the diffusion function in pricing options and other interest rate
derivatives, the result that the shape of the diffusion function can be sensitive
to the choice of proxy suggests that proxy problem can be significant.

The partial differential equation (6) demonstrates that it is the diffusion
and the drift under the equivalent martingale measure, p () — X\ (1), that are
important in pricing discount bonds. Figures 11 and 12 show plots of the
drift under the equivalent martingale measure constructed from the actual
drifts of the true rate and the 1- and 3-month proxies and the true risk
premium function. Again, these figures have the same general structures
as Figures 7 and 8 and Figures 9 and 10. In both Figures 11 and 12, the
adjusted drifts of the 1-month proxy (plotted against the 1-month yield)
looks very similar to the shape of the true risk adjusted drift. However, the
drifts of the 3-month proxy differ for large yields.!”

6The bottom panels of Figures 9 and 10 indicate that the two different approximation
schemes produce different estimates of the diffusion function for large values of the 3-
month yield. Figures 5 and 6 indicate that such large yield values are realized infrequently,
suggesting that these differences due to the different approximation methods may not be
important for pricing bonds. Tables 3 and 4 show that this is in fact the case. The
estimates of the drift and diffusion functions from the different approximation schemes
result in bond prices and yields that are very similar.

'"The shape of the risk neutral drift for the 3-month yield based on the finite-difference
approximation is different from the shape of the same function estimated using the Taylor
series approximation to the yield function, for large interest rates. In particular, the finite-
difference based approximation in Figure 11 implies yield processes with substantially less
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Tables 3 and 4 examine the economic significance of Figures 7 through
12. They show the yields on discount bonds of maturities from one to ten
years using the true risk premium function combined with the true drift
and diffusion functions and with the drift and diffusion functions obtained
using the 1- and 3-month yields as proxies. The first thing to note about
these tables is that there is virtually no difference between the prices based
on the functions from the finite-difference approximation when compared to
the prices from the Taylor series approximation. Accordingly, the analysis
will focus on the finite-difference results in Table 3.

Panel A of Table 3 presents the results using the true functions. The
model implies upward sloping term structures for low levels of r and inverted
term structures for high levels of . Furthermore, comparing down the
columns of Panel A shows that the yields on shorter maturity bonds are
more volatile than the yields on longer maturity bonds. The results in
Panels B and C are quite similar to each other. The entries for corresponding
maturities and levels of the relevant proxy are, typically within three basis
points of each other. Panels B and C demonstrate that the proxies produce
discount yields that are both higher and more variable than the true bond
prices. The increased variability is particularly true of maturities at the
short-end of the yield curve.

These results indicate that the proxy problem can be important for non-
linear interest rate models. moreover, there are two reasons to suspect that
Tables 3 and 4 may understate the extent of the proxy problem. First, by
using the true functions for the drifts and diffusions of the true short rate
and the short rate proxies and using the true market price of risk function,
these tables abstract from any estimation error. Second, the differences in
the shape of the diffusion functions documented in Figures 9 and 10 will
have a greater impact on the pricing of interest rate and bond options than
on the pricing of discount bonds.

5 The Longstaff and Schwartz (1992) Model

The preceding analysis of the proxy problem can be extended to multi-factor
term structure models. While there is no unifying framework analogous to
the affine structure of (13), (14), and (15) in a multi-factor setting'®, the

mean reversion than the comparable estimate based on the Taylor series approach, shown
in Figure 12. However, Tables 3 and 4 show that the differences for large yields due to
the different approximation schemes have little impact on bond prices.

18 A few examples of alternate formulations of multi-factor term structure models are
Brennan and Schwartz (1979), Brown and Schaefer (1993), Pearson and Sun (1994), and
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general procedures outlined in the previous sections can still be applied to
specific multi-factor models. As an example, we examine the two-factor
model described in Longstaff and Schwartz (1992). This model begins by
specifying the realized returns on physical capital:

aQ
Q

where p, 6, and o are positive constants and Wi is a Brownian motion. The
two state variables in this model are

= (uX + 0Y) dt + oY dWA, (60)

dX = (a—bX)dt + cVXdW, (61)

and
dY = (d —eY ) dt + fVY dWs, (62)

where a,b, ¢, d, e, f > 0, Wy and W3 are Brownian motions, and W5
is uncorrelated with W; and W3.' Both (61) and (62) are square-root
diffusions, which implies that their stationary and transition densities are
known, as are their conditional and unconditional moments. X is interpreted
as an exogenous shock to the expected return on a constant returns to scale
production technology, and Y is a shock to both the expected return and
volatility of production.

Under the additional assumption that the economy consists of a large
number of identical individuals with constant rate of time preference and log-
arithmic preferences over real consumption, LS demonstrate that the equi-
librium term structure can be written as a function of two state variables:
the instantaneous interest rate, r, and the variance of changes in the instan-
taneous rate, V. The dynamics of these state variables are

dr = (cw—}—ﬁn—ﬂ;: 67’ g:iV)dt

1/ dWQ A5G- ﬁ_ (63)
Duffie and Kan (1996).

Y For this section of the paper, we have (generally) adopted the notation used in LS.

and
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av = <a27+5277_ aB(6-8) B —aav) »

80—« 08—«
5 | Br—=V o [ V—ar
—|— « deQ —|— ﬁ de:g, (64)

where a = uc?, vy =a/c?, 3= (60— 02) f2n=4d/f? §=0,and £ =e. The
parameters «, vy, 3, 0, 8,  are also all positive. Furthermore, (63) and (64)
show that these six parameters determine the joint distribution of the state
variables r and V.

In particular — analogous to (34) and (35) or (44) and (45) in the Vasicek
and CIR examples — the unconditional means and variances of the state
variables (from LS) are

E[r}:%+%, (65)
2 2
Var [r| = % + 5—527 (66)
a2 2
E[V]:T”Jr%, (67)
and . .
Var [V] = 02‘—63 n *2—;- (68)

The unconditional autocovariances of  and V, for an arbitrary time interval
A, are

2 2
Cov [y arm] = L exp (—8A) + 21 exp (—¢A) (69)
25 2%
and
aty B
Cov [Vian, Vi] = 257 exp (—0A) + 2—52 exp (—EA). (70)

We use the means, variances, and covariances in assessing the impor-
tance of the proxy problem. Clearly the choice of these moments is some-
what arbitrary. For example, an alternative estimation strategy is to use
both short and long-term yields, as Boudoukh, Richardson, Stanton, and
Whitelaw (1998) do in their estimation of a nonlinear two-factor model. We
use these six moments, and construct all of them using a proxy for the short
rate, because it seems likely that this choice of moments is the case when
the proxy problem will be most severe.

In the single-factor Vasicek and CIR cases, it is straightforward to in-
vert the mean, variance, and autocorrelation definitions to recover the three
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model parameters. In the LS model, however, the six moment conditions
(65) through (70) each involve all six parameters. Given estimates of the
population moments of r and V' (assuming they are observable), we can
recover the six parameters of the model by solving for a and § numerically
and using these values to solve for 6, £, v and n. Appendix B provides the
calculations. Of course, we are interested in assessing the magnitude of the
proxy problem in this two-factor model. This first requires computing the
unconditional moments of the short-maturity proxies.

LS prove that the yield-to-maturity on a 7-period discount bond can be
written as

_ KT +27log (A(7)) +2nlog (B (7)) + C(1)r + D (1) V

y(r,V,7) = - (71)
where 2%
A = o e or 1+ 26"
B(r) = i

(v + ) [exp (Y1) = 1] + 20’
C(r) = ag[exp (¢7) — 1] B (1) — B [exp (¢7) — 1] A(7)

oY (B —a) ’
_ WYlexp(¢7) —1JA(T) — ¢ lexp (¢7) — 1] B(7)
D= 90 (G- ) ’
and
v==E+ A

=2+ 6%,
b+¢)+nv+v),

where A is the market price of risk parameter. That is, LS show that the
instantaneous expected return on a 7-period bond is

\lexp (@) ~ 1B (7)
(G- a)

Given a proxy yield with 7-periods until maturity, the moment conditions
analogous to the short-rate moment conditions (65), (66), and (69) are

¢
(&
K=

r—+

(ar =V).

Bly(r,V,7)] =~ — L log (A (r)) ~ L log (B (7))
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~C()E@) - D) E(WV), (72)
Var [y (r,V,7)] = %C (1)? Var [r] + %D (1)? Var [V]
+255C(r) D(7) Covlr, V], (73)

and

C (1)

Cov {ytJrA (T7 V7 T) > Yt (7", V’? T)} = 7_2 Cov [TtJrAa Tt]

D (7)? ¢(r)D
+ 7(-72—) Cov [W+A;Vt}+% {Cov [riva, Vi] + Cov [Viga, ]}, (74)
where 3 53
a’y n
CovinVi=ge e
and

3

3
Cov [repn, Vi] = % exp (—8A) + % exp (—EA) = Cov [Viga, 74 .

Applying It6’s lemma to (63) and (64) and taking expectations, the
volatility of the yield proxy is

VY — |:_OKC(T) - aQD(T)r G-V

T T a(f—a)
2 2 —ar
N [_ﬁCT(T) B IZ(T)] ﬁ‘zﬁ—a)'

The moment conditions analogous to the volatility moment conditions (67),

(68), and (70) are

By = [_aC(T) _ oﬂD(T)r%+ [_60(7) - ﬂQD(T)]Q 0

T T T T E’ (75)
aC a? 4 C 2 !
VMW%=P s qu§%+rﬁ;ﬂ_ﬁ€wq2;4m)
and ) 4
o 7] = [ 0SB 2
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) 4
|2 CT(T) 0 Ji ) 2—;72 exp(—€A).  (T7)
Similar to our approach with the one-factor affine models, we evaluate the
proxy problem by assuming that an econometrician has constructed the
sample analogs of (72) through (77), but proceeds as if he has constructed
the sample analogs of (65) through (70).

The first step in examining the extent of any possible proxy problem in
the LS model is to obtain reasonable estimates of the model parameters. To
do this, we assume that the one-week Eurodollar data used in Ait-Sahalia
(1996a,b) is effectively the short-rate, construct estimates of the uncondi-
tional moments of  and V, and use (65) through (70) to obtain estimates of
the parameters.?’ Figure 13 contains plots of the end-of-month value of the
Eurodollar rate and the square-root of the monthly average of the volatility
of the daily change in the Eurodollar rate, an estimate of V. The point esti-
mates of the unconditional moments used to identify the model parameters
are shown in Table 5.%!

Given these moment conditions, the nonlinear equations defined in Ap-
pendix B can be solved numerically for o and [ to yield the values o = 0.0447
and B = 0.0030.%22 These values imply that § = 0.1679, and & = 0.1294,
which (combined with o and () imply that v = 0.0121 and n = 3.5359.
These are the “true” parameter values implied by the “true” state variables
r and V. These six parameter values, along with the risk premium parame-
ter A = —0.235, imply values for the moments of finite-maturity yields and
the volatility of yield changes. Calculating these moments for a three-month
bond and using these moments in the calculation of the model parameters,
yields the following proxy-based parameters: of = 0.1770, ¥ = 0.0044,
oP = 0.1455, &P = 0.1407, v = 0.0000335, and n = 2.8202. A compari-
son of the true and the proxy-based parameters indicates that the largest
differences are in the calculation of o and .

These parameter differences imply different estimates of the drift and
the diffusion functions. In order to assess the economic significance of these
differences, Table 6 presents calculations of the differences in the yields on
discount bonds of different maturities implied by the Longstaff and Schwartz

20We thank Yacine Ait-Sahalia for generously making his data available.

21 Pigure 13 suggests that the volatility of Eurodollar rate changes over this period expe-
rienced two distinct “regimes,” a high volatility regime in the first half of the sample and
a low volatility regime in the second half of the sample. Regime switching is inconsistent
with the model’s assumptions about the evolution of V', but our goal here is to provide a
rough calibration of the model’s parameters.

22These are not necessarily the unique solution to the pair of nonlinear equations.
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model evaluated at the two sets of parameters. When the difference has a
negative sign, it indicates that the proxy-based parameters understate the
yield levels relative to the true parameter values. Consistent with the results
from the single-factor affine cases, these differences are generally small for
maturities of five years or less, although extreme values of volatility and
the short rate can generate pricing differences as large as 1 percent. At the
ten and twenty year horizons, the differences in the yields can be larger. At
high short rate levels, the proxy-based estimates understate the true ten-year
yields by as much as 2.9 percent for low volatility, and for low levels of the
short rate, the proxy-based estimates overstate the true yield by 1.8 percent
for high volatility. At the twenty year horizon, the proxy-based estimates
always undervalue the bonds (relative to the true price), with the largest
difference being 8.8 percent. This implies that using a three-month proxy to
construct bond price estimates will result in flatter yield curve than would
be implied by the true state variables.

As in the single-factor affine models, it is possible to invert the moments
of the measured yields and yield volatilities to recover estimates of the pa-
rameters of the true state variables » and V. However, as in the single
factor case, if the proxy problem is unimportant, then the corrections to a
moment-based estimation strategy will also be unimportant.

An examination of the proxy problem in multi-factor term structure
models can be generalized in at least two directions. First, there are two-
factor affine models that identify the state variables differently from LS, and
these formulations will generate moment conditions that can be evaluated
in a manner that is qualitatively similar to the LS case.?® In fact, because
it relies on a proxy for the short rate to construct the moments of both
factors, it may well be the case that when estimation is based on moments
of the short rate and its volatility the LS formulation of a two-factor affine
model has a larger proxy problem than other formulations. Second, the
Taylor series approximation introduced in Proposition 3 can be extended in
a straightforward manner to evaluate a nonlinear multivariate model.?*

#3For example, CIR and Pearson and Sun (1994) identify the factors as a “real rate”
process and an “expected inflation” process, and Brennan and Schwartz (1979) and
Boudoukh, Richardson, Stanton, and Whitelaw (1998) use a short rate and a long rate.

24 This multivariate Taylor series expansion could also serve as the basis for method of
moments estimation of the parameters of r, V, and .
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6 Conclusions

In this paper, we have provided a detailed analysis of the impact of using a
1- or 3-month yield as a proxy for the unobservable short rate. The results
are encouraging for a large part of the existing literature. For single factor
affine models in general and for the two-factor affine model we examined,
the economic significance of the parameter estimate errors and the resulting
bond price errors is generally negligible, although for long-term bonds there
can be noticeable differences between the true bond prices and the prices
based on the use of a short maturity proxy in the two-factor LS model.
However, the use of a proxy results in economically significant errors in
the nonlinear model we examined. In particular, one of the most basic
properties of the diffusion function, whether it is convex or concave, can be
sensitive to the choice of proxy. Of course, these conclusions apply only to
the specific models that we examined. In addition, the economic significance
of the deviations in the estimates of the drift and diffusion functions was
only evaluated using the prices of discount bonds. Nonetheless, the results
indicate that the proxy problem can be important for nonlinear models and
suggest that researchers who estimate such models may need to evaluate it
on a case-by-case basis.

One of the principal contributions of the paper is to provide two sep-
arate methods, based on the numerical solution to the fundamental bond
pricing partial differential equation and truncated Taylor series expansions,
to assess the magnitude of the proxy problem. For models in which the
proxy problem is not severe, empirical researchers can feel confident in ex-
amining the properties of the model using the yields of bills with maturities
as long as three months. These data are more likely to be free from some
of the microstructure problems or institutional features of the market that
might affect the observed prices of very short-term interest rate series like
the Federal Funds rate, overnight repo rates or even the 1-month Treasury
bill rate. However, for some single factor models, an explicit calculation of
the magnitude of the proxy problem might dictate devoting more attention
to explicit modelling of some of the data issues associated with the use of
very short-term interest rate series. Furthermore, the Taylor series approx-
imation could serve as the basis for a direct method of moments estimation
of the short rate parameters from the moments of finite-maturity bonds,
even in settings where there are no closed-form bond pricing solutions.
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Figure 1: The Drift Functions in the Vasicek (1977) Case.
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Figure 2: The Diffusion Functions in the Vasicek (1977) Case.
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Figure 3: The Drift Functions in the CIR Case.

31



Kappa=0.22 Theta=0.085 Sigma=0.023
00 T T T T

0.04+

5 0.03

50.02-

0.01- B

0 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Short Rate

Kappa=0.86 Theta=0.085 Sigma=0.047
0.1, T T T T T T

0.08 —

5 0.06+
‘B

£
00.04-

0.02- o i

L L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 016 0.8 0.2
Short Rate

Kappa=1.72 Theta=0.085 Sigma =0.066
T T T T

0.1!

0.1+

Diffusion

0.05

L L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.8 0.2
Short Rate

Figure 4: The Diffusion Functions in the CIR, Case.
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Figure 5: The Stationary Densities of the True short rate, the
1-month Yield, and the 3-Month Yield in the Nonlinear Model
Approximated Using the Finite-Difference Approach.
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Figure 6: The Stationary Densities of the True short rate, the
1-month Yield, and the 3-Month Yield in the Nonlinear Model
Approximated Using the Taylor Series Approach.
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Figure 7: The Drift Functions in the Nonlinear Model Approx-
imated Using the Finite-Difference Approach.
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Figure 8: The Drift Functions in the Nonlinear Model Approx-
imated Using the Taylor-Series Approach.
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Figure 9: The Diffusion Functions in the Nonlinear Model Ap-
proximated Using the Finite-Difference Approach.
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Figure 10: The Diffusion Functions in the Nonlinear Model
Approximated Using the Taylor-Series Approach.
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Figure 11: The Drift Functions in the Nonlinear Model Un-
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Finite-Difference Approach.
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Table 1: The Effect of Maturity-Induced Specification Error on
Measured Yields in the Vasicek (1977) Model.

Panel A: k = 0.22, 6 = 0.0850, o = 0.023, and Ao = —0.02.

Maturities
Estimates 3-month 1-year 5-year 10-year 20-year
True 8.74 9.42 11.97 13.69 15.19
Simple MoM 8.75 9.45 12.08 13.85 15.40

Panel B: kK = 0.86, 6 = 0.0850, 0 = 0.047, and A\g = —0.02.

Maturities
Estimates 3-month 1-year 5-year 10-year 20-year
True 8.73 9.25 10.19 10.43 10.55
Simple MoM 8.76 9.33 10.39 10.66 10.80

Panel C: Kk = 1.72, § = 0.0850, 0 = 0.066, and Ao = —0.02.

Maturities
Estimates 3-Month 1-year b5-year 10-year 20-year
True 8.71 9.08 9.47 9.53 9.56
Simple MoM 8.76 9.20 9.68 9.75 9.79

“True” refers to the bond yields implied by the assumed pa-
rameter values evaluated at the true long-run mean. “Simple
MoM?” are the bond yields implied by using the simple method-
of-moments estimator described in the text applied to a sample
of observations of a proxy bill with three months to maturity;
i.e., 7 = 0.25, evaluated at the long-run mean estimated from the
method-of-moments. The sample is assumed to be long enough
to recover the population moments of the proxy, and the market
price of risk parameter is assumed to be known in constructing
the estimated yields.
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Table 2: The Effect of Maturity-Induced Specification Error on
Measured Yields in the CIR Model.

Panel A: k = 0.22, 6 = 0.085, o = 0.078, and \; = —0.235.

Maturities
Estimates 3-month 1-year 5-year 10-year 20-year
True 8.75 9.49 13.33 17.63 24.04
Simple MoM 8.76 9.52 13.47 17.90 24.53

Panel B: kK = 0.86, 6 = 0.085, 0 = 0.157, and \; = —0.235.

Maturities
Estimates 3-month 1-year 5-year 10-year 20-year
True 8.74 9.30 10.54 10.93 11.14
Simple MoM 8.76 9.38 10.79 11.23 11.47

Panel C: k =1.72, 8 = 0.085, 0 = 0.221, and A; = —0.235.

Maturities
Estimates 3-Month 1-year b5-year 10-year 20-year
True 8.72 9.12 9.58 9.66 9.70
Simple MoM 8.76 9.25 9.83 9.92 9.97

“True” refers to the bond yields implied by the assumed pa-
rameter values evaluated at the true long-run mean. “Simple
MoM?” are the bond yields implied by using the simple method-
of-moments estimator described in the text applied to a sample
of observations of a proxy bill with three months to maturity;
i.e., 7 = 0.25, evaluated at the long-run mean estimated from the
method-of-moments. The sample is assumed to be long enough
to recover the population moments of the proxy, and the market
price of risk parameter is assumed to be known in constructing
the estimated yields.
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Table 3: Discount Bond Yields in the Nonlinear Model Using the
Drift and Diffusion Functions Constructed Using the
Finite-Difference Approach.

Panel A: Bond Yields Using the True Drift and Diffusion Functions.

Maturities
Short Rate 1-Year 3-Year 5-Year 10-Year
0.08 9.75 10.48 10.65 10.77
0.10 10.63 10.80 10.84 10.87
0.12 11.28 11.03 10.98 10.94
0.14 11.78 11.21 11.08 10.99

Panel B: Bond Yields Using the Drift and Diffusion Functions from
the 1-month Yield.

Maturities
1-month Proxy 1-Year 3-Year 5-Year 10-Year
0.08 10.31 11.37 11.62 11.80
0.10 11.28 11.73 11.83 11.91
0.12 12.02 12.00 11.99 11.99
0.14 12.63 12.21 12.12 12.05

Panel C: Bond Yields Using the Drift and Diffusion Functions from
the 3-month Yield.

Maturities
3-month Proxy 1-Year 3-Year 5-Year 10-Year
0.08 10.27 11.35 11.59 11.77
0.10 11.25 11.71 11.81 11.88
0.12 11.99 11.97 11.96 11.96
0.14 12.59 12.18 12.09 12.02

Discount bond prices are found by solving (6) numerically, us-
ing the drift and diffusion functions computed from the finite-
difference approximation and the true risk premium function
(53). All yields are expressed in percent at an annual rate.
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Table 4: Discount Bond Yields in the Nonlinear Model Using the
Drift and Diffusion Functions Constructed Using the
Taylor-Series Approach.

Panel A: Bond Yields Using the True Drift and Diffusion Functions.

Maturities
Short Rate 1-Year 3-Year 5-Year 10-Year
0.08 9.75 10.48 10.65 10.77
0.10 10.63 10.80 10.84 10.87
0.12 11.28 11.03 10.98 10.94
0.14 11.78 11.21 11.08 10.99

Panel B: Bond Yields Using the Drift and Diffusion Functions from
the 1-month Yield.

Maturities
1-month Proxy 1-Year 3-Year 5-Year 10-Year
0.08 10.31 11.39 11.63 11.81
0.10 11.29 11.75 11.85 11.92
0.12 12.03 12.01 12.01 12.00
0.14 12.64 12.23 12.14 12.07

Panel C: Bond Yields Using the Drift and Diffusion Functions from
the 3-month Yield.

Maturities
3-month Proxy 1-Year 3-Year 5-Year 10-Year
0.08 10.27 11.33 11.57 11.75
0.10 11.26 11.69 11.78 11.86
0.12 11.98 11.95 11.94 11.93
0.14 12.51 12.13 12.05 11.99

Discount bond prices are found by solving (6) numerically, using
the drift and diffusion functions computed from the Taylor-series
approximation and the true risk premium function (53). All
yields are expressed in percent at an annual rate.
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Table 5: Unconditional Sample Moments of the Short-Rate and
Volatility, Based on the One-Week Eurodollar Rate.
June 1973 to February 1995.

Moment Short-Rate () Volatility (V)
Mean 0.0853 0.00039
Variance 0.00138 8.61 x 107
Autocovariance 0.00132 3.46 x 107

The short-rate is the one week Eurodollar rate, from Ait-Sahalia
(1996a,b), recorded on the last trading day of each month. The
volatility series is estimated as the monthly variance of the daily
changes in the Eurodollar rate, calculated as V; = Zf\ﬁf ! Ary s,
where V; is the number of days in month ¢, Ary; = r¢; — -1,
and 7 indexes days within month ¢. ‘Autocovariance’ is the first-
order autocovariance, defined as Cov[ri1a, 7] and Cov[Vipa, V]
with A corresponding to one month.
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Table 6: Differences in the Yields on Discount Bonds in the Longstaff
and Schwartz Model: Yield Implied by.the Proxies Minus
Yields Implied by the True State Variables.

Panel A: One Year Maturity.

VvV 2.0 6.0 10.0 14.0
0.316 —0.0144 —0.0694 —0.1240 —0.1800
2.000 0.0853 0.0302 —0.0248 —0.0799
3.160 0.2390 0.1840 0.1280 0.0734

Panel B: Five Years Maturity.

VvV 2.0 6.0 10.0 14.0
0.316 —0.1110 —0.4350 —0.7590 —1.1000
2.000 0.3670 0.0430 —0.2810 —0.605
3.160 1.1000 0.7780 0.4540 0.1300

Panel C: Ten Years Maturity.

VV 2.0 6.0 10.0 14.0
0.316 —0.4740 —1.3000 —2.1000 —2.9000
2.000 —0.4270 —0.3890 —1.2000 —2.0000
3.160 1.8000 0.9960 0.1810 —0.6350

Panel D: Twenty Years Maturity.

VvV 0.02 0.06 0.10 0.14
0.316 —2.7000 —4.7000 —6.8000 —8.8000
2.000 —1.2000 —3.3000 —5.3000 —7.4000
3.160 —0.9750 —1.1000 —3.1000 —5.2000

The yield, at each maturity, under the proxies is calculated using the pa-
rameter values constructed from the moment conditions (72) through (77)
and the yield equation (71). The yields under the true state variables is
computed analogously, using the moment conditions (65) through (70). All
differences are reported in percent at an annual rate.
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Appendix A: Evaluating the Finite-Difference Approach.

This appendix provides information on the magnitude of the approxima-
tion errors associated with the finite-difference approach, when applied to
the Vasicek and CIR models. Tables A-1 through A-4 show the maximum
absolute error in approximating the 1- and 3-month yield functions for the
three parameterizations examined in Figures 1 through 4, for a variety of
grid sizes in the time and space dimensions.?® For all parameterization, both
maturities, and both models, these tables show that the approximation error
declines uniformly in the number of time points, but the error is insensitive
to increases in the number of space points. When the number of time points
equals 480, the maximum absolute error in approximation the yield over
the range of 0.01 to 0.20 is roughly four basis points. When the number
of times points is increased to 720, the maximum absolute error reduces to
three basis points. These results are consistent across both models and all
of the parameterizations examined in Tables A-1 through A-4.

Tables A-5 and A-6 evaluate the maximum absolute error in the nu-
merical approximation of the first and second derivative of the yield in the
Vasicek case. Tables A-7 and A-8 report the same quantities for the CIR
case. Each table reports the results from grids of size N = 19 to N = 152
defined on the interpolated yield function for the interval r € [0.03,0.20].26
The magnitudes of the errors for the first derivatives in both models are
roughly the same, and they appear to be small. The magnitudes of the
errors of the second derivative estimates are larger and they are increasing
in K, the mean reversion parameter in each model. The maximum abso-
lute error for the Vasicek case with a 3-month maturity and £ = 1.72 are
an order of magnitude larger than the errors for other parameterizations of
either model. However, graphs of the approximation (not reported here)
indicate that the error is only large for very small levels of the short rate
(approximately 0.03 to 0.035).

The previous tables provide important information on the overall per-

5 As Wilmot, Howison, and Dewynne (1995) note: “The Crank-Nicholson implicit finite-
difference scheme is essentially an average of . . . implicit and explicit methods.” [pages
156-157]. It is both stable and unconditionally convergent. See Wilmot, Howison, and
Dewynne (1995) Exercise 17 on page 163. Press et al (1992) Section 19.2 also discusses
the unconditional convergence properties of the Crank-Nicholson scheme. This means that
there is no need to constrain the ratio of the size of the time steps and the state steps to
any specific magnitude.

26 Using the results from Tables A-1 through A-4, all of the results in Tables A-5 through
A-8 are based on a finite difference approximation with 720 time points and 240 space
points.
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formance of the approximation, but they do not answer the most important
question: How close are the approximate drift and diffusion functions to the
true drift and diffusion functions? This question is answered in Table A-9
(for the Vasicek case) and Table A-10 (for the CIR case). In both cases,
the approximations are quite precise. The maximum error is typically just
a few basis points, and the approximations are accurate for both the drift
and diffusion functions. On the basis of these results, we conclude that the
finite-difference approach can provide valuable information on the extent of
the proxy problem in cases where there is no explicit solution for the yield
function.

This appendix has evaluated the finite-difference approach only. How-
ever, the absolute value of the maximum error — over the range [0.03,0.18] —
in constructing the drift and diffusion functions using the Taylor series ap-
proximations of order 3 was less than 1/100 of a basis point. These results
are available upon request.
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Table A-1: Maximum Absolute Error in the Finite-Difference
Calculation of y (r,7 = 1 month) in theVasicek Case.

Panel A: k =0.22, 8 = 0.085, 0 = 0.023, and \g = —0.02.
No. of Space Points

No. of Time Points 120 240 480 720
120 0.00166 0.00164 0.00166 0.00166
240 0.00083 0.00082 0.00083 0.00083
480 0.00042 0.00041 0.00042 0.00042
720 0.00028 0.00027 0.00028 0.00028

Panel B: k = 0.86, 8 = 0.085, 0 = 0.047, and Ay = —0.02.
No. of Space Points

No. of Time Points 120 240 480 720
120 0.00164 0.00160 0.00162 0.00161
240 0.00083 0.00081 0.00081 0.00081
480 0.00043 0.00041 0.00041 0.00041
720 0.00030 0.00028 0.00027 0.00027

Panel C: k = 1.72, # = 0.085, 0 = 0.066, and A\g = —0.02.
No. of Space Points

No. of Time Points 120 240 480 720
120 0.00161 0.00156 0.00156 0.00155
240 0.00083 0.00079 0.00079 0.00078
480 0.00044 0.00040 0.00040 0.00040
720 0.00032 0.00031 0.00032 0.00032

The bond pricing function is approximated using a Crank-Nicholson finite
difference algorithm, as described in Duffie (1996). The maximum error is
reported over the range r € [0.01,0.20].
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Table A-2: Maximum Absolute Error in the Finite-Difference
Calculation of y (r,7 = 3 months) in theVasicek Case.

Panel A: k =0.22, 8 = 0.085, 0 = 0.023, and \g = —0.02.
No. of Space Points

No. of Time Points 120 240 480 720
120 0.00166 0.00163 0.00165 0.00165
240 0.00083 0.00082 0.00083 0.00083
480 0.00042 0.00041 0.00041 0.00041
720 0.00028 0.00027 0.00028 0.00028

Panel B: k = 0.86, 8 = 0.085, 0 = 0.047, and Ay = —0.02.
No. of Space Points

No. of Time Points 120 240 480 720
120 0.00159 0.00153 0.00153 0.00152
240 0.00083 0.00078 0.00077 0.00077
480 0.00045 0.00046 0.00048 0.00049
720 0.00040 0.00045 0.00046 0.00047

Panel C: k = 1.72, # = 0.085, 0 = 0.066, and A\g = —0.02.
No. of Space Points

No. of Time Points 120 240 480 720
120 0.00150 0.00141 0.00140 0.00138
240 0.00098 0.00105 0.00107 0.00109
480 0.00091 0.00098 0.00100 0.00102
720 0.00088 0.00095 0.00097 0.00099

The bond pricing function is approximated using a Crank-Nicholson finite
difference algorithm, as described in Duffie (1996). The maximum error is
reported over the range r € [0.01,0.20].
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Table A-3: Maximum Absolute Error in the Finite-Difference
Calculation of y (r,7 = 1 month) in the CIR Case.

Panel A: k =0.22, § = 0.085, 0 = 0.078, and A\; = —0.235.
No. of Space Points

No. of Time Points 120 240 480 720
120 0.00167 0.00165 0.00168 0.00167
240 0.00083 0.00082 0.00084 0.00084
480 0.00041 0.00041 0.00042 0.00042
720 0.00027 0.00027 0.00028 0.00028

Panel B: k = 0.86, 8 = 0.085, 0 = 0.157, and A\; = —0.235.
No. of Space Points

No. of Time Points 120 240 480 720
120 0.00164 0.00161 0.00163 0.00163
240 0.00083 0.00081 0.00082  0.00081
480 0.00042 0.00041 0.00041 0.00041
720 0.00029 0.00027 0.00027  0.00027

Panel C: k =1.72, 8 = 0.085, 0 = 0.221, and A; = —0.235.
No. of Space Points

No. of Time Points 120 240 480 720
120 0.00161 0.00157 0.00158  0.00157
240 0.00083 0.00079 0.00079 0.00079
480 0.00043 0.00041 0.00040 0.00040
720 0.00030 0.00028 0.00027  0.00027

The bond pricing function is approximated using a Crank-Nicholson finite
difference algorithm, as described in Duffie (1996). The maximum error is
reported over the range r € [0.01,0.20].
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Table A-4: Maximum Absolute Error in the Finite-Difference
Calculation of y (r,7 = 3 month) in the CIR Case.

Panel A: k =0.22, § = 0.085, 0 = 0.078, and A\; = —0.235.
No. of Space Points

No. of Time Points 120 240 480 720
120 0.00168 0.00167 0.00170 0.00170
240 0.00083 0.00083 0.00085  0.00085
480 0.00040 0.00041 0.00042 0.00042
720 0.00026 0.00027 0.00028 0.00028

Panel B: k = 0.86, 8 = 0.085, 0 = 0.157, and A\; = —0.235.
No. of Space Points

No. of Time Points 120 240 480 720
120 0.00160 0.00156 0.00157  0.00157
240 0.00082 0.00079 0.00079 0.00079
480 0.00043 0.00040 0.00040 0.00040
720 0.00030 0.00027 0.00027  0.00027

Panel C: k =1.72, 8 = 0.085, 0 = 0.221, and A; = —0.235.
No. of Space Points

No. of Time Points 120 240 480 720
120 0.00151 0.00143 0.00143 0.00141
240 0.00081 0.00074 0.00072 0.00071
480 0.00046 0.00039 0.00037  0.00037
720 0.00034 0.00028 0.00026  0.00025

The bond pricing function is approximated using a Crank-Nicholson finite
difference algorithm, as described in Duffie (1996). The maximum error is
reported over the range r € [0.01,0.20].
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Table A-5: Maximum Absolute Error in the Estimates of
Oy /0r for the Vasicek Case.

Panel A: k =0.22, § = 0.085, 0 = 0.023, and A\g = —0.02.
N = # of Grid Points

Maturity N=19 N=38 N=176 N =152
1-month 0.00141 0.00141 0.00141 0.00141
3-months 0.00144 0.00144 0.00144 0.00144

Panel B: k = 0.86, 8 = 0.085, 0 = 0.047, and A\g = —0.02.
N = # of Grid Points

Maturity N=19 N=38 N=76 N =152
1-month 0.00146 0.00146 0.00146 0.00146
3-months 0.00369 0.00262 0.00155 0.00232

Panel C: kK =1.72, # = 0.085, 0 = 0.066, and A\g = —0.02.
N = # of Grid Points

Maturity N=19 N=38 N=76 N =152
1-month 0.00151 0.00151 0.00151 0.00151
3-months 0.01356 0.01185 0.00854 0.01134

The approximation to the partial derivative of the yield function with respect
to r is calculated by interpolating the finite-difference solution using, 720
time points and 240 space points, over the range of r from [0.01,0.20] using
cubic splines. The interpolated function is then evaluated at a grid of size
N, and the first derivative is approximated using the formula

8:3(7%7') ~ ??(Tiﬂﬁ) —?7(7“1'71,7')
or 26

where 7 is held constant, and ¥ (r;,7) refers to the approximate yield func-
tion evaluated at the grid point 7. 6 is the constant width of the interval
between grid points. The maximum errors are reported over the range of
r € [0.03,0.20]. There were large approximation errors for extremely small
values of r.
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Table A-6: Maximum Absolute Error in the Estimates of
0%y /0r? for the Vasicek Case.

Panel A: kK =0.22, § = 0.085, 0 = 0.023, and A\g = —0.02.
N = # of Grid Points

Maturity N=19 N=38 N=76 N =152
1-month 0.00010 0.00012 0.00012 0.00013
3-months 0.01095 0.00556 0.00164 0.00433

Panel B: k = 0.86, 8 = 0.085, 0 = 0.047, and A\g = —0.02.
N = # of Grid Points

Maturity N=19 N=38 N=76 N =152
1-month 0.07889 0.05498 0.02549 0.04858
3-months 0.64403 0.57596 0.39545 0.55577

Panel C: kK =1.72, # = 0.085, 0 = 0.066, and A\g = —0.02.
N = # of Grid Points

Maturity N=19 N=38 N=176 N =152
1-month 0.40229 0.34343 0.21587 0.32624
3-months 1.40602 1.32290 1.01671 1.29778

The approximation to the partial derivative of the yield function with respect
to r is calculated by interpolating the finite-difference solution using, 720
time points and 240 space points, over the range of r from [0.01,0.20] using
cubic splines. The interpolated function is then evaluated at a grid of size
N, and the second derivative is approximated using the formula

Y (ri,7) G (rig1,7) =29 (i, 7) +§ (rica, 7)
672 ~ 62

where 7 is held constant, and ¥ (r;,7) refers to the approximate yield func-
tion evaluated at the grid point 7. 6 is the constant width of the interval
between grid points. The maximum errors are reported over the range of
r € [0.03,0.20]. There were large approximation errors for extremely small
values of r.
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Table A-7: Maximum Absolute Error in the Estimates of
0y /0r for the CIR Case.

Panel A: k =0.22, § = 0.085, 0 = 0.023, and A\g = —0.02.
N = # of Grid Points

Maturity N=19 N=38 N=76 N =152
1-month 0.00139 0.00139 0.00139 0.00139
3-months 0.00138 0.00138 0.00138 0.00138

Panel B: k = 0.86, 8 = 0.085, 0 = 0.047, and A\g = —0.02.
N = # of Grid Points

Maturity N=19 N=38 N=76 N =152
1-month 0.00143 0.00143 0.00143 0.00143
3-months 0.00149 0.00149 0.00149 0.00149

Panel C: kK =1.72, # = 0.085, 0 = 0.066, and A\g = —0.02.
N = # of Grid Points

Maturity N=19 N=38 N=76 N =152
1-month 0.00147 0.00148 0.00148 0.00148
3-months 0.00158 0.00159 0.00159 0.00159

The approximation to the partial derivative of the yield function with respect
to r is calculated by interpolating the finite-difference solution using, 720
time points and 240 space points, over the range of r from [0.01,0.20] using
cubic splines. The interpolated function is then evaluated at a grid of size
N, and the first derivative is approximated using the formula

8:3(7%7') ~ ??(Tiﬂﬁ) —?7(7“1'71,7')
or 26

where 7 is held constant, and ¥ (r;,7) refers to the approximate yield func-
tion evaluated at the grid point 7. 6 is the constant width of the interval
between grid points. The maximum errors are reported over the range of
r € [0.03,0.20]. There were large approximation errors for extremely small
values of r.
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Table A-8: Maximum Absolute Error in the Estimates of
0%y /or? for the CIR Case.

Panel A: kK =0.22, § = 0.085, 0 = 0.023, and A\g = —0.02.
N = # of Grid Points

Maturity N=19 N=38 N=76 N =152
1-month 0.00012 0.00012 0.00011 0.00012
3-months 0.00035 0.00035 0.00033 0.00035

Panel B: k = 0.86, 8 = 0.085, 0 = 0.047, and A\g = —0.02.
N = # of Grid Points

Maturity N=19 N=38 N=76 N =152
1-month 0.00049 0.00049 0.00046 0.00049
3-months 0.00123 0.00122 0.00116 0.00122

Panel C: kK =1.72, # = 0.085, 0 = 0.066, and A\g = —0.02.
N = # of Grid Points

Maturity N=19 N=38 N=76 N =152
1-month 0.00089 0.00088 0.00083 0.00088
3-months 0.00187 0.00186 0.00177 0.00186

The approximation to the partial derivative of the yield function with respect
to r is calculated by interpolating the finite-difference solution using, 720
time points and 240 space points, over the range of r from [0.01,0.20] using
cubic splines. The interpolated function is then evaluated at a grid of size
N, and the second derivative is approximated using the formula

Y (ri,7) G (rig1,7) =29 (i, 7) +§ (rica, 7)
672 ~ 62

where 7 is held constant, and ¥ (r;,7) refers to the approximate yield func-
tion evaluated at the grid point 7. 6 is the constant width of the interval
between grid points. The maximum errors are reported over the range of
r € [0.03,0.20]. There were large approximation errors for extremely small
values of r.
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Table A-9: Maximum Absolute Error in the Estimates of the
Drift and Diffusion Functions in the Vasicek Case
Using the Finite-Difference Approach.

Panel A k =0.22, 8 = 0.085, 0 = 0.023, and A\g = —0.02.

1-month Proxy 3-month Proxy
Drift Function 0.00003 0.00003
Diffusion Function 0.00003 0.00003

Panel B: k = 0.86, 8 = 0.085, ¢ = 0.047, and A\g = —0.02.

1-month Proxy 3-month Proxy
Drift Function 0.00012 0.00042
Diffusion Function 0.00007 0.00007

Panel C: k=1.72, 0 =0.085, 0 = 0.066, and A\g = —0.02.

1-month Proxy 3-month Proxy
Drift Function 0.00057 0.00164
Diffusion Function 0.00010 0.00056

The approximation is on the interval » € [0.03,0.18]. The finite-difference
algorithm is a Crank-Nicholson scheme with 720 time points and 240 space
points. The numerical derivatives are constructed using a grid of size N = 76
applied to the interpolated yield function.
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Table A-10: Maximum Absolute Error in the Estimates of the
Drift and Diffusion Functions in the CIR Case
Using the Finite-Difference Approach.

Panel A k =0.22, 8 =0.085, 0 = 0.078, and A\; = —0.235.

1-month Proxy 3-month Proxy
Drift Function 0.00003 0.00002
Diffusion Function 0.00002 0.00002

Panel B: k = 0.86, 8 = 0.085, 0 = 0.157, and Ay = —0.235.

1-month Proxy 3-month Proxy
Drift Function 0.00010 0.00009
Diffusion Function 0.00005 0.00006

Panel C: k=1.72,0=0.085, 0 =0.221, and \; = —0.235.

1-month Proxy 3-month Proxy
Drift Function 0.00019 0.00018
Diffusion Function 0.00008 0.00009

The approximation is on the interval » € [0.03,0.18]. The finite-difference
algorithm is a Crank-Nicholson scheme with 720 time points and 240 space
points. The numerical derivatives are constructed using a grid of size N = 76
applied to the interpolated yield function.
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Appendix B: Inverting the Longstaff-Schwartz Model.

In the LS model, the six parameters are recovered from the six moment
conditions by reducing the six nonlinear equations to three pairs of nonlinear
equations. The first step in this process is to re-write (66) and (68) as the
following “linear” system

1 1 %g _ | Var(r)
o? 2 5 Var (V) |-
Solving (and re-arranging) yields

v 26%Var (r) — 2Var (V)

BT (o) ™
wd 2Var (V) — 202 Var (1)
n _ 2Var — 2a*Var (r
? - 62 (62 - 042) (79)
The two expected return conditions, (65) and (67), can be written as
a Blls]_[ EM
o Bl E] | EV
Solving (and re-arranging) yields
v _BE()-EWV)
5 a(B-a) (80)
and
n_ E(V)—aF (7’) (81)

3 B(B—a)

Taking the ratio of (80) to (78) and (81) to (79) produces the following
expressions for 6 and ¢ as functions of the moments of » and V' and the
parameters « and [3:

a(a+p) (BE(R) - E(V))

5(e, ) = 23*Var (r) — 2Var (V)

and

pla+B)(EV)—aE(r)

o) = 2Var (V) — 2a2Var (r)
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The two equation system for « and 3 (the key to the entire inversion process)
follows by substituting ¢ («, 3) and £ (¢, 3) into (69) and (70) and simplifying
to get

Var (V) — o?Var (r)
+ T

exp (=€ (o, B) A) — Cov [reya, e =0 (82)
and

a?3*Var (r) — a?Var (V)
7l

exp (=6 (a, §) A)

B*Var (V) — a?3*Var (r)
+ T

Given «, (3, 6, and £, the remaining two parameters can be solved as

exp (=€ (a, 8) A) = Cov [Via, Vi] = 0. (83)

_BE() - E(V)

"}/(Oé,ﬁ) a(ﬁ—a) 5(0&,5) (84)
nd E(V) - aE(r)
v = 22020 o g, (85)
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