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Abstract

Motivated by the intriguing slowing down of dynamics in glassy and polymeric fluids, mi-

croscopic theories for the dynamical behavior of these systems are explored. Of particular

interest is the relative importance of equilibrium structure and topological constraints on

system dynamics, and theories studying each effect are constructed and applied in this dis-

sertation.

The first part of this thesis treats suspensions of hard-sphere colloids — the theorist’s

idealization of a dense liquid — by connecting two-point equilibrium structure with the

emergence of glassy dynamics. An earlier single-particle theory is qualitatively extended

to study the dynamically correlated motion of two tagged particles in the fluid. A theory

for Gaussian density fluctuations is constructed at the level of two tagged particles in a

fluid of identical particles, and this theory is then extended to study highly non-Gaussian

activated “hopping” events by modeling motion on a dynamic free energy surface. By coarse

graining over the initial separation between the tagged particles many aspects of “dynamic

heterogeneity,” a set of phenomena accompanying the glass transition, can be understood.

Connections with diverse alternative theories for describing the glass transition are also

made.

The second part of this thesis studies polymeric fluids from a quite different perspective.

By modeling macromolecules of various geometries as infinitely thin, zero-excluded-volume

objects (rods, crosses, random walks) all equilibrium structural information is removed from

the problem. Instead, system dynamics are determined by exactly including topological

constraints, i.e., by rigorously enforcing macromolecular uncrossability at the two-body level.
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This advance permits a wide variety of phenomena to be studied. The initial focus is on the

equilibrium dynamics of cross- and rod-shaped macromolecules, and the theory is compared

with both simulation and experimental results on synthetic and biological polymers. The

theory is generalized to treat flexible polymers as random walks of coarse-grained primitive

path steps.

The non-equilibrium behavior of rods under nonlinear rheological conditions is then stud-

ied in depth. We first posit a generalized Maxwell model for the constitutive equations

controlling relaxation after an instantaneous step strain, the so-called “fundamental defor-

mation.” This model is then generalized to a generic, time-dependent shear deformation,

and the consequences for continuous, constant-rate shear flows are studied. Finally, we ex-

ploit our ability to describe polymer interactions microscopically to compute the entangle-

ment shear modulus directly from intermolecular contributions; this represents a potentially

radical departure from the standard theoretical model of how stresses are stored in dense

polymeric media.
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Chapter 1

INTRODUCTION

Broadly speaking, this dissertation looks at two mechanisms that can radically slow down

system dynamics in the fluid state. The first, presented in the context of glassy colloidal

suspensions, is an investigation into the connection between equilibrium fluid structure and

correlated dynamical motion. The second, in attempting a microscopic account of entan-

gled polymer dynamics under a variety of equilibrium and nonlinear rheological conditions,

ignores structural considerations and explores the effect of topological constraints on the

dynamics. Leaving aside for the moment the intrinsic theoretical interest of these problems

and the practical importance of glassy and polymeric materials, at first blush the chosen

systems seem to arise out of fairly unrelated questions from the edges of fluid mechanics:

“What happens to a fluid when it is supercooled rapidly enough to avoid crystallization?” or

“What occurs when the constituent parts of the fluid become long and complicated enough

to form entanglements?”

As we will see, though, some of the fundamental obstacles to a microscopic understanding

of these systems are much the same. This is not the textbook view. In particular, neither set

of systems has yet yielded to a critical phenomena or renormalization-group approach, and

in the phase-space regimes of interest primary fluctuations have a distinctly non-Gaussian

character (e.g. in glassy systems the dominant relaxation mechanism appears to be thermally

activated “barrier-hopping” events). Describing such fluctuations is a daunting challenge

within any statistical-mechanical framework. Our approach to both problems will involve

first formulating a microscopic model that operates at the Gaussian-fluctuation level, and

then invoking a particular framework to treat the non-Gaussian fluctuations. The first step

1



separates the two problems but, once done, the second step provides a unifying perspective.

Below we briefly introduce the basic phenomenology of the two systems we wish to study,

describing for each why a mean-field theory with Gaussian fluctuations is insufficient, and

then work through a simple example of moving to the level of non-Gaussian fluctuations.

1.1 The Colloidal Glass Transition

1Understanding the glassy dynamics of molecular liquids is an outstanding challenge in con-

densed matter physics, chemistry, and materials science. Although theorists have searched

for a (possibly avoided) transition to an underlying ideal glass phase, the “glass transition”

is in fact a dynamic crossover to a regime of activated behavior in the liquid state associ-

ated with a crossover temperature or density, Tc or ρc. Experimentally, the glass transition

point Tg or ρg is a working definition that answers a very practical question: when does

the characteristic relaxation time of the system exceed the experimental time scale (e.g.

τα ∼ 102 − 104s, where τα is a time scale associated with particle motions larger than the

short-time vibrational modes of a particle rattling in its cage of local neighbors)? This is

often framed as the dynamic viscosity of the smaple growing to ∼ 1012 Pa s — the two

quantities are proportionally related by the high-frequency shear modulus [1].

The dynamical changes in the fluid occur over a region of the control parameter (tem-

perature or volume fraction, φ = ρπσ3/6, with σ the particle diameter) where the static

structure changes very little. For instance, the radial distribution function g(r) describes

the probability of finding a fluid particle at position r given a tagged particle at the ori-

gin; the normal liquid and supercooled liquid or glassy g(r)’s have only minor quantitative

differences. This is shown in Fig. 1.1A, which plots both the radial distribution function

and the static structure factor, S(k) = 1 + ρ
∫

exp
(
−~k · ~r

)
(g(~r) − 1)d~r for a hard-sphere

suspension. Over the range of volume fractions shown (φ = 0.5, 0.53, 0.56) the characteristic

1This section contains text from D. M. Sussman and K. S. Schweizer, Phys. Rev. E 85, 061504 (2012),
Copyright APS 2012
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relaxation time changes by over two orders of magnitude, but the two-point correlation func-

tions change very little. Recently there has been theoretical and simulation-based efforts to

study whether there is a larger structural signature of the glass transition in higher-order

correlation functions, but at the moment such studies are inconclusive [2].

The most basic experimental fact in describing glasses is that when a fluid is cooled below

its freezing point rapidly enough to avoid crystallization its viscosity grows enormously over

a relatively narrow range of the control parameter (typically temperature, T , or density,

ρ, for molecular liquids and colloidal suspensions, respectively). For instance, the viscosity

of the molecular liquid ortho-terphenyl (OTP) increases by 11 orders of magnitude as the

temperature is rapidly dropped from 293 K to 243 K [3]. The theorist’s idealization of a

dense liquid - diffusing spherical particles interacting only via hard-core interactions - can

be approximately realized in the laboratory in the form of colloidal suspensions, for instance

∼ 1 micron poly(methyl methacrylate) beads stabilized with a thin surface layer of poly-

hydroxysteric acid to minimize van der Waals-induced aggregation [4]. For these colloidal

particles, though, the bare relaxation times is not the picosecond motion of molecular liq-

uids but is rather on the order of ∼ 0.001− 1s. The consequence is that these experiments,

while much easier to perform (e.g. with light microscopy), can only probe 4 − 5 orders of

magnitude of glassy slowing down. Coincident with this dramatic increase in the typical

time scale of system relaxation, simulations and experiments have found many other sig-

nature dynamical behaviors as a fluid enters the glassy regime (even in the limited regime

that colloidal experiments and simulations can probe). Notably, as particle volume frac-

tion increases, typical particle trajectories change from smooth and diffusive-like to being

characterized by intermittent “hopping” events separated by long periods of highly localized

vibrational motion [5]; this is schematically illustrated in Fig. 1.1B. This effect shows up as

a plateau in the mean square displacement of ensemble-averaged particle displacements, and

can also be directly visualized in confocal microscopy experiments on hard-sphere colloidal

suspensions and computer simulations.

3



( )C r
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A 

B 

C 

Figure 1.1: (A) Approximate two-point equilibrium correlation functions, g(r) and S(k),
using the Percus-Yevick closure [6] over a range of hard-sphere volume fractions (φ =
0.5, 0.53, 0.56) in which the relaxation time increases by over two orders of magnitude.
(B) Cartoon change of typical particle trajectories from diffusive to caged. (C) Schematic
real-space picture of the terms contributing to the vertex in the self-consistent localization-
length equation.
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Complicating the picture even more, the dynamics of the fluid become heterogeneous

in time and space, with clusters of more mobile particles forming against a background

of largely immobile particles. This feature is evident in direct microscopy observations and

also manifests itself through more subtle experimental signatures. One example is the break-

down of the Stoke-Einstein (SE) relation between the viscosity and diffusion; in the normal

fluid state SE relates the translation diffusion constant D to the viscosity η by D ∼ η−1.

In the supercooled regime, though, diffusion has a weaker dependence on viscosity than

that suggested by SE. Additionally, correlation functions that are normally expected to

decay exponentially with characteristic time τ , such as observations from dielectric relax-

ation or NMR spectroscopy, are found to have a so-called “stretched-exponential” decay,

C(t) ≈ exp
(
−(t/τ)β

)
, with β < 1 [3]. A common interpretation given to these observa-

tions is that beyond the glass transition the fluid is transiently divided into heterogeneous

regions with different characteristic relaxation times. The lifetime of these regions is typi-

cally of order τα. Averaging exponentially decaying correlation functions over these regions

results in stretched exponential correlation functions. Furthermore, if one imagines that

diffusion/mass transport is dominated by contributions from fast regions but that viscos-

ity/rotational relaxation requires the slow tails of the distribution to be sampled, then the

decoupling of relaxation and diffusion also follows [7]. These “dynamic heterogeneities,”

along with the dynamical crossover to activated barrier crossing behavior, are among the

prime reasons why the well-developed theories of simple liquid behavior break down in the

glassy regime [2].

In some ways the field suffers from an embarrassment of riches in the sense that a wide

variety of seemingly very different ideas and theoretical methods are able to capture some

features of glassy dynamics with varying levels of predictive or descriptive power. An incom-

plete list includes: the random first order transition entropy crisis approach (RFOT) built

on spin-glass-like ideas; microscopic force-level theories based on collective density fluctua-

tions (mode coupling theory) and activated particle hopping (nonlinear Langevin equation
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theory); coarse-grained dynamic facilitation models based on diffusing mobility fields and

phenomenological kinetic constraints; potential-energy-landscape approaches; and the con-

cept of frustration-limited domains [2]. At the same time, issues as fundamental as whether

the controlling mechanisms of the transition are dynamic, structural, and/or thermodynamic,

and whether dynamic heterogeneity is important to first order for the massive slowing down

of structural relaxation, remain highly contested [8].

In terms of approaches that attempt to operate at a truly predictive, microscopic, force-

level description, the most advanced program is mode-coupling theory (MCT) [9–11], which

nonlinearly couples liquid relaxation to collective pair-density fluctuations to try to explain

glassy dynamics. After invoking uncontrolled projection and dynamic Gaussian (factoriza-

tion) approximations (described in more detail in Sec. 1.3), the collective and self dynamic

structure factors can be computed using only the equilibrium pair structure as input. De-

spite the very modest changes in equilibrium pair structure as the glass transition is crossed,

MCT has a highly nonlinear feedback mechanism that greatly amplifies these small changes

in structure, resulting in a divergent dynamical slowing down of the system. Ideal MCT

has had considerable success in the dynamic “precursor” or “crossover” regime in which the

relaxation slows down by only a few orders of magnitude. However, the use of a particular

uncontrolled approximation, essentially the factorization of a four-point correlator into a

product of two-point correlators (a dynamic Gaussian approximation), results in a spurious

non-ergodicity transition at a relatively high temperature in viscous liquids (or low volume

fraction in particle suspensions). In reality, ergodicity is restored via highly non-Gaussian

activated barrier hopping events. As alluded to above, it is the fundamental importance

of these non-Gaussian ergodicity-restoring fluctuations and their dynamic correlations that

limits MCT and which this work seeks to address.
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1.2 Entangled Polymer Liquids

Solutions and melts of polymers, long macromolecules of diverse topology formed by repeat-

ing molecular units, are prime ingredients in modern materials. Schematically depicted in

Fig. 1.2A, polymers can be manufactured in a variety of geometrical shapes, from rigid rods

to flexible chains to branched “star” polymers (and, indeed, even more exotic shapes, such

as H’s and combs). The topology of the polymers composing a melt is extremely important

in determining the material properties of the bulk, often more important than the particular

chemistry of the chain. As such, it is easiest to initially adopt a coarse-grained model of

polymers as being N linked statistical segments of size σ, each of which is a coarse-graining

over some chemistry-dependent number of molecular repeat units, that are connected into

the geometry we wish to study (rods, random walks, etc.). By also introducing a material

parameter that quantifies how chemically different polymer species fill space — the “invari-

ant packing length” p = (ρsσ
2)−1 with ρs the segmental density — polymers fluids can be

described at a fairly universal level. Typical numbers for these material parameters in, e.g.,

polyethylene melts are of order σ ∼ 1nm, ρs ∼ 0.8g/cm−3, and p ∼ 0.17nm. In a melt, at

this level of coarse graining synthetic chains become essentially random walks, whose spatial

extent can be characterized by the mean end-to-end vector, Ree = σ
√
N , or the radius of

gyration, Rg = σ
√
N/6. For synthetic chains these length scales are typically on the order

of 10− 100nm.

The viscoelastic properties of polymeric systems are both spectacular and spectacularly

sensitive to polymer architecture. For instance, in a melt of relatively short chains the self-

diffusion is inversely proportional to chain length, D ∼ N−1, and the viscosity is proportional

to chain length, η ∼ N . However, when the chains grow sufficiently long, N > Ne, the power

laws become much more strongly dependent on chain length, with D ∼ N−2.3 and η ∼ N3.4.

In this crossover from “unentangled” to “entangled” behavior the response of the system to

external deformation also changes, with entangled chains exhibiting a soft rubbery response
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over some (potentially long) intermediate time scale. This is schematically shown in the shear

modulus depicted in Fig. 1.2B, which develops a plateau between the characteristic times τe,

the time at which a chain first feels an entanglement, and τrot, the terminal relaxation time.

The value of the plateau determines how strong the elastic response is in that time window

(typically the plateau is of order 0.1 − 1MPa — much less than the GPa scale associated

with a glassy short-time modulus) and is sensitive to the material parameter p; the duration

of the plateau depends on the properties of the melt in that it scales as N3¿ Nevertheless,

the generic viscoelastic response of polymer melts is common across all entangled chains.

All of these results can change drastically when considering other polymer architectures.

For instance, melts of star polymers have an exponential suppression of diffusion with arm

length and an exponential growth of the viscosity.

Achieving a first-principles theoretical understanding of the spectacular viscoelasticity

of strongly entangled synthetic and biological polymer liquids is an extremely challenging

problem in time-dependent statistical mechanics, but one that has potentially broad im-

plications: for the processing of synthetic macromolecules [12]; understanding the motion

of biopolymers in the cellular matrix [13]; and even in more exotic systems, such as the

behavior of entangled flux lines in high-Tc superconductors [14]. The unifying feature across

these different systems and physical phenomena is the concept of “topological constraints,”

an interplay between the long-range connectivity of the constituent parts and their inability

to pass through each other, i.e. their “uncrossability.” For highly extended objects this sin-

gular contribution to the intermolecular potential dominates viscoelasticity and relaxation,

but capturing these topological interactions within a microscopic framework has generally

been impossible. In polymer physics the most popular and well-developed approaches for

linear macromolecules (rigid rods and flexible chains) are built on the phenomenological

ideas of deGennes, Doi, and Edwards [12, 15]. There a single-polymer dynamic mean-field

theory is constructed in which inter-chain interactions are replaced by ansatz with an in-

finitely strong confining “tube” that strictly forbids large-scale displacement transverse to

8
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A 

Figure 1.2: (A) Cartoon of entangled rods (left), a flexible chain in a tube of diameter dT
perpendicular to the polymer backbone formed by other chains (center) and four-armed star
polymers (right). (B) Schematic log-log plot of the shear modulus for an unentangled (blue)
and entangled (red) melt of flexible polymers.
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the polymer backbone. Multiple corrections to the quiescent tube model which enhance

polymer mobility and reduce motional anisotropy are experimentally important [16], but

are not derived in a rigorous way. Both the corrections and even the tube itself simply rely

on inspired guesswork to encode the consequences of topological constraints on the physical

motion of a single tagged polymer.

To make some of these ideas clearer, it is worthwhile to quickly review the simplest tube-

model derivation of scaling laws. The model is meant to apply to a Brownian suspension of

infinitely thin rigid rods of length L and number density ρ, where the bare diffusion tensor has

components D‖,0, D⊥,0, and Drot,0 for longitudinal, transverse, and rotational motions (here

we closely follow the development in [12] and [17]). This system is schematically illustrated

in Fig. 1.3. Since the rods are infinitely thin their equilibrium structure is that of an ideal

gas (and is thus unimportant), but the topological constraint of rod-rod uncrossability can

have a profound effect on the system’s dynamics. The tube model is meant to apply for large

dimensionless densities, ρL3 � 1, and the key idea is to replace the complicated many-rod

system by a dynamic mean field theory for the effective motion of a single rod. In this

picture the longitudinal motion of the tagged rod is unconstrained (infinitely thin rods will

never run into another needle end-on), but its transverse and rotational diffusion is hindered

by an effective confining tube of diameter dT . In general, this length scale and the mean-

field confining potential generating it are not constructed in a self-consistent, first-principles

manner; they are simply postulated with adjustable parameters to fit experimental data.

The calculation of this most crucial parameter of the theory for entangled rods comes

from solving the following geometry problem: draw a cylinder of radius r around the tagged

rod, and calculate the number of other rods that intersect this cylinder, N(r). The tube

diameter is then estimated as N(dT/2) ≈ 1 → dT ≈ (ρL2)−1. From here the tube-model

predictions for the reduction of the long-time diffusion in the hindered directions follows

immediately. Within the tube the rod can neither translate laterally nor rotate (i.e. the

constraints are infinitely strong), and the characteristic time for a rod to exit its local tube

10



longitudinally follows from Fick’s law as τr ∼ L2/D‖,0. Each time it exits the tube the rod

enters a new tube, and on average this new tube is displaced ∆r⊥ ∼ dtube laterally and

rotated ∆θ ∼ dtube/L relative to the axis of the original tube. Long-time diffusion proceeds

via these small steps each time the rod “reptates” out of tube, leading to

Drot ∼
∆θ2

τr
∼
D‖,0L

−2

(ρL3)2
, D⊥ ∼

d2
T

τr
∼

D‖,0
(ρL3)2

. (1.1)

The proportionality of transverse and rotational motion at high densities is a welcome sim-

plifying fact. For reasons of tractability we will be studying a microscopic theory of rods

with frozen rotational motion; dealing with rod rotations even under simplified conditions

or reduced dimensionality adds a great deal of complexity to the calculation [18,19], and so

we will exploit the slaving of transverse and rotational motion in our approach.

The scaling relations above are compared with simulation data in Fig. 1.3 — at high

densities they are fairly accurate, but they of course give no hint about their regime of

validity or the crossover behavior from unentangled to entangled dynamics. Nor do they

have anything to say about the prefactors, for instance β relates the rotational diffusion

constant to the reduced density, Drot/Drot,0 = β(ρL3)−2, and turns out to be surprisingly

large: fitting the data requires β ∼ 103 − 104 [12]. In flexible chain systems the scaling

relations are slightly less accurate even for high degrees of entanglement. To take one

example, the terminal relaxation time is predicted to grow with chain length as τ ∼ N3, but

experiments find a power law closer to the aforementioned τ ∼ N3.4 [12].

The Doi-Edwards (DE) reptation-tube approach is a powerful one that can be extended

to polymers of diverse architecture. However, the confining tube has not been deduced from

the statistical mechanics of the fundamental inter-polymer interactions in a first-principles,

self-consistent manner. Recent perspective and opinion articles [22, 23] emphasize that the

tube model lacks a microscopic foundation, and a “bottom up” conceptual breakthrough on

the crucial tube diameter length scale is needed to address open questions, such as: What
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Figure 1.3: Cartoon defining the tube diameter and the direction of the diffusion constants
relative to a tagged rod. The plot shows simulation data from [20,21] for decreasing normal-
ized diffusion constants versus normalized density, and compares it with scaling functions rep-
resenting independent binary collisions (dashed) and reptative motion (dot-dashed), as well
as the theoretical expectation from a model which avoids tube-model approximations [17]
(solid).
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is the nature of an entanglement and of the tube confinement field? Can it be derived

theoretically? Can the connection between polymer chemistry, concentration, and the tube

diameter be understood from first principles? In later chapters we hope to show that these

questions, and many more, can be answered in the affirmative.

To a certain extent some of these questions can be addressed reasonably accurately via

a microscopic but purely Gaussian theory. Indeed, for rigid rods a relatively overlooked mi-

croscopic theory exists that reproduces many of the scaling features of the phenomenological

harmonic tube theory [17,24]. However, the assumptions of an infinitely strong confinement

potential is both physically unrealistic and potentially problematic in driven non-equilibrium

situations. Several recent experimental and simulation studies have challenged the com-

monly postulated one-parameter harmonic approximation for the tube confinement field.

Particularly relevant for this thesis are experiments and complementary theoretical work on

entangled solutions of the semiflexible biopolymer F-actin [25,26], and simulations of F-actin

and rigid-rod model polymers [27]. By studying displacement distributions at intermediate

times, or averaging mean-square displacements over many trajectories, these studies have

revealed an effective transverse confining potential that is significantly softer than harmonic.

Evidence of strong anharmonic softening has also been observed in DNA solutions [28] and

in simulations of entangled flexible chain melts [29, 30]. Anharmonicities in the confining

field qualitatively modify the equilibrium distribution, of course, but they are of utterly

crucial importance when it comes to polymer rheology. Flowing or otherwise deforming a

polymer sample can introduce very large stresses, and in the presence of stress a harmonic

confining potential (which can provide a restoring force of effectively infinite strength) and

an anharmonically softened one (which can support only a finite restoring force) lead to

completely different predictions for the response of the system to deformation.
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1.3 The Nonlinear Langevin Equation

2Since the abstracted strategy of (i) solving a Gaussian microscopic theory and (ii) extending

it to treat non-Gaussian fluctuations motivates much of our work, here we outline a relatively

simple example that appears in the literature, the “single-particle non-linear Langevin equa-

tion (NLE) theory” for glassy hard-sphere colloidal suspensions [31]. Ultimately, for these

systems the NLE was derived using dynamic density-functional methods under a type of

“local-equilibrium” approximation [32]; here we present a still-technical but more heuristic

“derivation” but one that contains all of the essential physics.

The initial goal is a single-particle localization length based on Gaussian fluctuations or

an amorphous Einstein-solid model of a glass. We start with a simplified (“naive”) version

of a mode-coupling theory (NMCT [33]) that self-consistently renormalizes the effective

friction acting on a tagged particle. The generalized Langevin equation for a tagged particle

of mass m and diameter σ in an overdamped Brownian hard-sphere suspension follows from

choosing the variables of interest to be the tagged particle position ~R(t) and velocity ~V (t).

Using standard projection-operator methods one has [34]

m
d~V (t)

dt
= −

∫ t

0

dt′M(t− t′)~V (t′) + ~fQ(t). (1.2)

The superscript Q indicates time-evolution according to projected dynamics, and the pro-

jected random force ~fQ satistfies the fluctuation-dissipation relation and is orthogonal to

both ~R and ~V . Decomposing the random force into a rapidly fluctuating part due to short-

time friction (ζs) and a slowly-changing part associated with structural relaxation [34], the

memory function is given by [6, 9, 10,31]

M(t) =
β

3
〈~f(0) · ~fQ(t)〉 ≈ ζsδ(t) +K(t), (1.3)

2This section contains text and a figure reprinted with permission from D. M. Sussman and K. S.
Schweizer, J. Chem. Phys. 134 064516 (2011) Copyright 2011, American Institute of Physics.
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where β = 1/kBT . The heart of NMCT is an approximate computation of the slowly

decaying part, K(t). To do this, forces are projected onto a bilinear product of tagged particle

density and the fluid collective density, conveniently written in fourier space as ρs(~k, t) =

exp
(
i~k · ~r1

)
and ρc(k, t) =

∑N
i=1 exp

(
i~k · ~ri

)
. The projected dynamics are replaced by the

true dynamics, and four-point correlation functions are factorized into products of two-point

correlation functions (i.e. a “dynamic Gaussian” approximation). Schematically,

〈~f(0)·~fQ(t)〉 ∼
〈
ρs(~k1, 0)ρc(~k2, 0)ρs(~k3, t)ρc(~k4, t)

〉
∼
〈
ρs(~k1, 0)ρs(~k3, t)

〉〈
ρc(~k2, 0)ρc(~k4, t)

〉
.

(1.4)

Intuitively, this vertex can be thought of as a real-space accounting of forces between

particles as mediated by the fluid (shown in Fig. 1.1C). An effective interparticle potential

can be understood as Ueff (r) ∼ −kBT ~∇C(r) (where C(r) is the real-space direct correla-

tion function, related to the structure factor by S(k) = (1 − ρC(k))−1) and ρS quantifies

interparticle correlations of the forces beyond the binary-interaction level. Working through

a detailed calculation results in [31,33]

K(t) =
1

3β

∫
d~k

(2π)3
k2ρC2(k)S(k)Γs(k, t)Γc(k, t). (1.5)

Here ρ is the fluid number density, and Γs and Γc are the single-particle and collective

propagators (i.e. dynamic structure factors normalized by their t = 0 value):

Γs(~k, t) = 〈ei~k·(~R(0)−~R(t))〉 ≈ exp
(
−k2〈r2(t)〉/6

)
(1.6)

Γc(~k, t) = S−1(k)
N∑

i,j=1

N−1〈ei~k·(~Ri(0)−~Rj(t))〉 ≈ Γs(k/
√
S(k), t). (1.7)

The second approximate equalities above reflect yet another Gaussian approximation made

for the single-particle propagator, followed by a modified Vineyard approximation to relate

the collective propagator to the single-particle propagator in a way which properly captures
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the effect of equilibrium cage-scale structure on local-scale collective density fluctuations (the

de Gennes narrowing effect) [6, 31]. The variable r(t) now refers to the scalar displacement

of the tagged particle from its position at t = 0, and the theory has been closed at the

mean-square-displacement (MSD) level.

An ideal glass transition occurs when a long-time localized solution for the ensemble-

averaged MSD, rloc ≡ 〈r2(t → ∞)〉 < ∞, first emerges. NMCT adopts an amorphous

Einstein solid model for the frozen glass structure, corresponding to each particle experienc-

ing localization via a harmonic spring about an amorphous, liquid-like set of positions:

Γs(k, t→∞) = exp
(
−k2r2

loc/6
)
, (1.8)

Γc(k, t→∞) = exp
(
−k2r2

loc/6S(q)
)
. (1.9)

A self-consistent equation governing the localization length can be derived, either by using

the generalized Langevin equation with the NMCT simplifications [32], or, more simply,

by writing down the intuitive equipartition relation K(t → ∞)r2
loc/2 = 3kBT/2, thinking

of the long-time limit of the memory function as a localizing “spring.” In either case one

obtains [31]

1

r2
loc

=
1

9

∫
d~k

(2π)3
k2ρC2(k)S(k) exp

(
−k2r2

loc(1 + S−1(k))

6

)
. (1.10)

This is the sought-after microscopic result of the Gaussian theory. Using, e.g., the Percus-

Yevick approximation for the liquid structure of hard spheres of diameter σ [6], this equations

predicts an ideal glass transition at a volume fraction of φc ≈ 0.432, beyond which particles

are localized with characteristic vibrations on the order a tenth of a particle diameter.

To go beyond this Gaussian theory, the single-particle NLE theory takes the NMCT

ideal glass transition to signal the onset of transient localization together with a crossover to

thermally activated, barrier-hopping-driven transport. The scalar displacement of a tagged
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particle from its initial position, r(t), is employed as the primary dynamical variable, and a

stochastic equation of motion for its evolution is proposed (of a relaxational or “Model A”

[35] form describing a non-conserved order parameter) based on three physically-motivated

ideas [31, 32]: (i) NMCT correctly predicts localization in the absence of thermal noise,

(ii) particles undergo Fickian diffusion at short times before becoming transiently localized,

and (iii) thermal noise destroys the ideal NMCT glass transition, allowing for activated

hopping even when φ > φc. The nonlinear Langevin equation embodying condition (iii) in

the overdamped regime (i.e. ignoring the inertial term) is

ζs
d

dt
r − ∂

∂r
Fdyn + δf = 0, (1.11)

where the white noise δf satisfies the fluctuation-dissipation relation with respect to the short

time friction constant ζs. Fdyn is a “dynamic” free energy, and Eq. 1.11 is meant to describe

single-particle motion at intermediate times, i.e. times during which the particle rattles

around in its cage of neighbors and occasionally makes a rare, ergodicity-restoring jump

out of that cage. To satisfy condition (i) the dynamic free energy must be constructed so

that its minimization with respect to the order parameter recovers the NMCT self-consistent

equation for rloc above: ∂Fdyn/∂r|r=rloc = 0. To uniquely specify Fdyn (up to an irrelevant

constant) and satisfy condition (ii), we insist that one of the terms corresponds to Fickian

diffusion, with r2(t� 1) ∼ t. The result is

βFdyn(r) = −3 ln(r)−ρ
∫

d~k

(2π)3
C2(k)S(k)(1+S−1(k)) exp

(
−k2r2

loc(1 + S−1(k))

6

)
. (1.12)

The first term on the right hand side represents the ideal, entropic contribution to fluid

motion that describes short-time Fickian motion; the competing term reflects a structural

“caging” term that favors particle localization with increasing density. Figure 1.4 shows

Fdyn(r) for a hard-sphere fluid at different volume fractions. Below φc the dynamic free
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energy is a monotonically decreasing function of particle displacement, corresponding to the

absence of any localization and essentially smooth, fluid-like Brownian motion of individual

particles. At higher volume fractions, though, an entropic barrier emerges that serves to

transiently localize particles over a time scale related to how long it takes to surmount the

barrier. As a result of this entropic caging, the dynamics become “exponentially slow,” a

hallmark of glassy dynamics. This mean first-passage time for barrier crossing has been

shown to be connected with the α-relaxation time measured in colloidal suspensions [31].
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Figure 1.4: Dynamic free energy as a function of particle displacement based on the single-
particle NLE theory for hard-sphere fluids at volume fractions above and below φc. Inset
shows the height of the entropic barrier as a function of volume fraction.

To summarize, the intuitive physical picture of this method of describing non-Gaussian

fluctuations about a localized state can be described as follows. First, a Gaussian theory

is used to derive a self-consistent equation for a dynamical localization length. This self-

consistent equation is then physically reinterpreted (in the spirit of a local equilibrium ap-

proximation) as arising from a force-balance for the instantaneous displacement of a tagged

particle, which can typically be written as the sum of an entropic delocalizing force and an

opposing localizing force that depends on the physics of the system in question (e.g. a struc-

tural caging term for colloidal suspensions, or a topological entanglement term in polymer

melts). The force is then integrated to construct a dynamic free energy, and noise-driven dif-

fusion on this (anharmonic) free energy landscape is then taken to describe the non-Gaussian
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character of the fluctuations. This is qualitatively much like treating the inverse localiza-

tion length of the Gaussian theory as an order parameter of the system and writing down a

linear-response Landau-Ginzburg theory for r−1(t) [36], but where the Landau free energy

is non-perturbatively expressed instead of approximated as a truncated Taylor expansion of

the order parameter. Additionally, in Landau-Ginzburg or Model A theories the effective

forces follow from an equilibrium free energy; in contrast, the NLE approach considers an

Fdyn of explicitly dynamical origin.

1.4 Plan of the Thesis

The remainder of this dissertation is organized as follows. Chapter 2 presents a comprehen-

sive treatment of dynamically correlated two-particle motion in glassy colloidal suspensions.

The focus is on connecting equilibrium structure with the microscopic dynamics, and it

formally generalizes the single-particle NLE briefly described in Sec. 1.3. We show that

this advance allows one to analytically treat some aspects of dynamic heterogeneity more

naturally than the single-particle theory, and in the latter half of the chapter we show that

it also allows one to make contact with some of the diverse perspectives and theories for

glassy dynamics. Although the material in Chapter 2 stands somewhat apart from the rest

of the thesis, Chapter 3 acts as a bridge between the first and second parts of the the-

sis. It presents a microscopic analysis of an ideal glass-former — a Brownian suspension of

three dimensional cross-shaped objects with hard-core interactions — but proceeds by ignor-

ing equilibrium structural considerations and focusing solely on the topological constraints

imposed on the system’s dynamics by the mutual uncrossability of the arms of colliding

crosses. The results of this theory (with added density fluctuations) are then compared with

simulations.

Chapters 4 – 7 continue to discuss topological constraints in a wide variety of systems,

but generally outside of the glassy regime. Chapter 4 treats the equilibrium dynamics of en-
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tangled rigid-rod polymers, presenting a microscopic derivation of the anharmonic transverse

confinement potential such objects are subject to, and anticipates the discussion in Chapter

6 of deformation by examining the effect of stress and orientational order on the confine-

ment potential. Chapter 5 boldly generalizes the work on topologically entangled needles

to different coarse-grained models of fully flexible polymers. This enables the description of

much of the long-time phenomena of flexible chains at a microscopic level without needing

to resort to the phenomenological DE model.

Chapter 6 steps back from trying to understand how topological constraints of differ-

ent macromolecular geometries influence slow dynamics, and instead focuses on entangled

rods but under non-equilibrium driven conditions. Specifically the shear rheology of such

systems is addressed, under both step-strain and continuous shear deformations. Under-

standing polymer rheology and processing is, of course, tremendously important for their

real-world applications, and such non-equilibrium situations are precisely when we expect our

ability to microscopically predict the anharmonic softening of polymer confinement to have

the most spectacular consequences. Chapter 7 more speculatively attempts to address a fun-

damental aspect of the mechanical response of polymeric systems: the origin of the plateau

in the elastic modulus (which explains the rubbery response of un-crosslinked polymeric ma-

terials at intermediate time scales). In contrast to dense simple liquids, where the stress is

dominated by inter-molecular constributions, tube-model theories assume that in entangled

polymers the dominant contribution to stored stress via intramolecular degrees of freedom.

Simulations have challenged this long-held view, and we show that with a microscopic the-

ory in hand one can understand the entanglement modulus vie purely intermolecular stress

contributions.

Finally, this dissertation concludes in Chapter 8 with a brief summary and outlook for

future work. Chapters 2, 3, and 4 were all written so that they could be read as independent

units. In contrast, Chapters 5, 6, and 7 all rely to varying degrees on material presented in

Chapter 4 and, to a lesser extent, Section 3.6.
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Chapter 2

CORRELATED TWO-PARTICLE
DYNAMICS IN GLASSY
COLLOIDAL SUSPENSIONS

2.1 Introduction

1As introduced in Chapter 1, understanding the glassy dynamics of thermal liquids and col-

loidal suspensions is a challenging problem of wide interest and application [1, 37]. Despite

intense theoretical effort, even the problem of highly concentrated overdamped Brownian

hard-sphere suspensions remains incompletely understood. The first-principles approach

of ideal mode-coupling theory (MCT) [9] approximately describes nonlinear couplings of

spatially-resolved collective time-dependent density fluctuations, S(q, t), based on a self-

consistent Gaussian closure of a non-Markovian generalized Langevin equation of motion.

Local dynamical caging constraints are fully specified by the equilibrium pair structure.

Mode coupling theory has had impressive success in the dynamic precursor regime corre-

sponding to the first few orders of magnitude of dynamical slowing down, but a major weak-

ness and limitation of ideal MCT is its prediction of a sharp non-ergodicity transition [9–11].

That this feature is not seen in simulations or in experiments has many qualitatively im-

portant implications [5, 38–46]. The origin of the spurious ideal localization transition is

the Gaussian-like assumption that dynamics is controlled by collective, but small and con-

tinuous, particle displacements. Large amplitude, highly non-Gaussian “activated hopping”

events, which restore ergodicity, are not taken into account. Even for the hard sphere fluid,

confocal microscopy [5,44,46] and computer simulations [41–43,45] find that particle trajec-

1This chapter contains text and figures reprinted with permission from D. M. Sussman and K. S.
Schweizer, J. Chem. Phys. 134, 064516 (2011), Copyright AIP 2011; D. M. Sussman and K. S. Schweizer,
Phys. Rev. E 85, 061504 (2012), Copyright APS 2012.
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tories display intermittent hopping events which destroy the MCT nonergodicity transition.

Recent experiments [43] have established the dominance of activated dynamics above an

empirically deduced (based on fitting ideal MCT to data) critical volume fraction, φc, which

lies well below random close packing (RCP).

A large number of non-Gaussian dynamic heterogeneity phenomena at the single particle

level are also not properly described by ideal MCT, including relaxation-diffusion decou-

pling, large non-Gaussian parameters, exponential tails in the van Hove function, and highly

non-Fickian dependence of the wavevector-dependent relaxation time [38, 40, 42, 45, 47–49].

Moreover, the crucial importance of thermally-induced activated hopping as a mechanism

that “breaks” physical bonds in sticky, gel-forming spherical particle fluids has been empha-

sized in computer simulations [50–52]. These highly nongaussian phenomena are accurately

described at the single particle level by the nonlinear Langevin equation (NLE) theory, where

ergodicity is restored via activated barrier hopping and φc represents a dynamic crossover

or “onset” volume fraction [31,32,38,53].

The microscopic NLE approach [31,32] builds on a simplified (“naive”) version of mode-

coupling theory (NMCT) within a Landau-Ginzburg, or model A [35], type of description.

A particle is subjected to a displacement-dependent effective force due to its surroundings

described by a dynamic free energy formulated within a non-ensemble-averaged local equi-

librium picture. The theory predicts MCT-like critical power laws in the crossover region

largely as a result of hopping over relatively low barriers. Deep in the supercooled (or over-

compressed) regime the barriers to particle motion grow significantly but without divergence

below random close packing. The relative simplicity of the NLE approach has allowed it to

be generalized to many systems beyond hard spheres including polymer-particle depletion

gels [54], nonspherical particles that translate and rotate [55–58], soft colloids [59], binary

mixtures [60, 61], supercooled polymer melts and glasses [62–65] and nonlinear rheological

response [65–69]. The microscopic NLE theory is predictive in the same sense that MCT is

since it relates structure, interparticle forces, and slow dynamics. Extensive confrontation
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with experiment has been pursued in both the dynamical crossover and strongly activated

regimes.

An obvious limitation of the NLE approach is that it addresses only single-particle dy-

namics. Collective dynamic density fluctuations, the centerpiece of ideal MCT, are not

directly treated. Space- and time- correlated two-particle mobility directly impacts dynamic

heterogeneity phenomena which emerge when motion becomes activated and highly inter-

mittent [3, 5]. The goal of this chapter is to initiate the qualitative extension of the NLE

approach to describe the activated dynamics of two tagged particles initially separated by an

arbitrary distance in the fluid. The latter aspect is relevant to “structural relaxation” (e.g.

how the static pair correlations are dynamically randomized), the onset of irreversibility, and

the length scale of dynamic heterogeneity as defined by the separation at which the dynam-

ics of two particles become spatially uncorrelated [70–74]. All these questions are of intense

present study in the glass physics community, primarily based on computer simulations or

simplified coarse-grained kinetically constrained dynamical facilitation models [70,75]. This

new approach will be illustrated by applying it to the hard sphere fluid, both generically

and in the specific context of the “cage breakup” process [76].

The chapter is organized as follows. Section 2.2 presents the two-particle generalizations

of NMCT and NLE theory, the single-particle versions of which were discussed in Sec. 1.3.

Section 2.3 discusses key features of the dynamic free energy surfaces in the context of

hard sphere fluids, and model calculations of various properties are presented in Section 2.4.

Section 2.5 presents an application to the problem of cage breakup. Section 2.6 pauses to

summarize the status of the theory to that point, and discusses some potential extensions

of the work.

Section 2.7 presents new detailed calculations in hard-sphere fluids of dynamic free energy

barriers and relaxation times over many more initial separations. This information allows the

construction of a lightly coarse-grained picture of correlated-in-space-and-time two-particle

hopping, in which particles at an initial separation hop to a new relative separation via
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an activated event, are re-trapped in the spirit of a local-equilibrium approximation, hop

again after a characteristic time associated with the new relative separation, and so on.

In Sec. 2.8 this picture is employed to address the question of irreversible structural relax-

ation events. The challenge there lies in distinguishing between large-amplitude, stochastic

fluctuations that ultimately do not relax the system and those that lead to (statistically) ir-

reversible changes to the configuration. In simulations different coarse-graining schemes have

been proposed to address this question from the perspective of changes to lists of nearest-

neighbor particles [77–79]. We show that the statistics of such coarse graining schemes can

be understood by the statistics of correlated two-particle hops in our NLE theory. Section

2.9 makes contact with a different kind of space-time coarse graining that underlies dynamic

facilitation models [80–82] and examines its consequences on time-distribution statistics.

KCM-like statistics and relaxation-diffusion decoupling can be derived from a particular

coarse-graining over structure in the two-particle hopping picture. In Sec. 2.10 we suggest

an extension of our ideas to improve the venerable Vineyard approximation for the distinct

part of the van Hove function. The latter half of the chapter is briefly summariezed in Sec.

2.11.

2.2 Two-Particle Theory

2.2.1 Generalized Langevin Equation

Our starting point is the GLE for a pair of tagged particles. Its derivation based on projection

operator methods is well documented in the literature, at both the simplest Mori-Zwanzig

level (which uses the positions and velocities of the tagged particles as slow variables that are

projected onto [83]), and from a more general phase space perspective [84]. The latter starts

from the Liouville equation, which takes the slow variable to be the instantaneous reduced

phase-space distribution f(~R, ~P , t) =
2∏
i=1

δ(~ri − ~R)δ(~pi − ~P ), where ~R and ~P are the phase

space field variables, and the position and momentum coordinates of the particles are ~ri and
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~pi [84]. We adopt this more general starting point since it allows nonlinearities associated

with structure, such as the potential of mean force (PMF), to be naturally included in the

dynamical equations. Our goal is to obtain two coupled evolution equations for ~ri.

We do not repeat derivations in the literature [84,85], but rather just recall the approx-

imations and physical ideas required for the phase space memory function matrix needed

to obtain the starting point of our analysis. Three key points are that (1) momentum

relaxes quickly compared to particle displacement, the situation relevant in the high fric-

tion regime of interest; (2) the ensemble-averaged time correlation of forces exerted on the

two tagged particles by the surrounding fluid evolves via real, not projected, dynamics;

and (3) most importantly, the relevant force-force time correlation functions are not depen-

dent on the instantaneous trajectories of the tagged particles [85]. The last two simplifica-

tions imply the central dynamical object is the force-force time correlation function matrix,

Kαβ(t) = 〈~Fα(0) · ~Fβ(t)〉, which has a “fast” delta-function component, and a “slow part”

associated with structural relaxation. With these simplifications the two coupled GLEs gov-

erning the correlated dynamics of the two particles in the overdamped regime of interest

are [84]:

ζs
d~ri
dt

=
−1

β

∂ ln g(~rij)

∂~ri
+ β

∫ t

0

(
d~ri
dτ
Kii(t− τ) +

d~rj
dτ

Kij(t− τ)

)
dτ + fQ(i)(t), (2.1)

for i 6= j. The leading term on the right hand side represents the “systematic” or “ther-

modynamic” force associated with the equilibrium PMF, while the Kij(t) are the long-time

parts of the total memory function, Mij(t) = 〈f i(0) · fQ(j)(t)〉 = ζsδ(t) +Kij(t).

We now rewrite Eq. 2.1 in terms of center-of-mass and relative vector coordinates, ~R =

(~r1+~r2)/2 and ~r = (~r1−~r2)/2, a choice which symmetrizes some of the subsequent equations.

By adding and subtracting the GLEs for particles 1 and 2, one has:

ζ0
d~R

dt
= β

∫ t

0

d~R

dτ
KR(~R,~r, t)dτ + fQ(R), (2.2)
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ζ0
d~r

dt
= − 1

β

∂ ln g(2r + r(0))

∂r
+ β

∫ t

0

d~r

dτ
Kr(~R,~r, t)dτ + fQ(r). (2.3)

The PMF term is written in a fashion that exposes the dependence on initial particle sep-

aration, r(0) ≡ 2|~r(0)| ≡ r0, and implicitly defines the dynamical evolution of the relative

scalar separation coordinate, r. The two equations are coupled via the center-of-mass and

relative memory functions, KR(~R,~r, t) and Kr(~R,~r, t).

2.2.2 Naive Mode Coupling Theory

Explicit approximate expressions for the memory functions are obtained by projecting the

forces onto bilinear products of the collective fluid density field with the center-of-mass or

relative coordinate density. Hence, there are now two slow variables, and the projection pro-

cess involves well-known matrix manipulations [6, 34, 83–85]. The relevant time correlation

functions are factored into a product of time- and space- dependent contributions. For ex-

ample, defining ρR(q, t) = (ei~q·
−→r1(t) +ei~q·

−→r2(t))/2, ∆~R(t) = ~R(t)− ~R(0), and ∆~r(t) = ~r(t)−~r(0)

one obtains

〈ρReQLtρR〉 =
1

4
〈ei~q·∆R

(
ei~q·∆r + e−i~q·∆r + ei~q·(~r(t)+~r(0) + e−i~q·(~r(t)+~r(0)

)
〉

≈ 1

2
〈ei~q·(∆R+∆r)〉〈1 + ei~q·~r(0)〉 (2.4)

=
1

2
(1 +

sin(qr0)

qr0

)〈ei~q·(∆R+∆r)〉.

The self-propagator is

〈ei~q·(∆R+∆r)〉 ≈ exp

(
−q2(~Rloc + ~rloc)

2

6

)
, (2.5)
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and its collective analog is of the same form but with the deGennes narrowing factor. The

final memory functions are then:

KR(t→∞) =
1

3β(2π)3

∫
ρq2C2(q)S(q)ω(q, r0) exp

(
−q2(~Rloc + ~rloc)

2

6
(1 + S−1(q))

)
d~q,

(2.6)

Kr(t→∞) =
1

3β(2π)3

∫
ρq2C2(q)S(q)ω2(q, r0)

1− sin(qr0)/(qr0)
exp

(
−q2(~Rloc + ~rloc)

2

6
(1 + S−1(q))

)
d~q

(2.7)

where ω(q, r0) = 1+sin(qr0)/qr0. The initial particle separation thus enters via both memory

functions as well as the structural (PMF) term in the GLE for the relative coordinate.

For reasons of tractability, we desire only two coupled self-consistency equations for the

scalar variables R and r, which can be written in an intuitive equipartition form as:

1

2
KR,∞R

2
loc =

3

2
kBT (2.8)

1

2
Kr,∞r

2
loc =

3

2
kBT (2.9)

To achieve this scalar description, the angular dependence in the memory functions is aver-

aged over. Such a procedure was effectively carried out in the single-particle theory [31,32],

where it is a very natural and weak approximation for an isotropic fluid. However, at the

two-particle level there is nontrivial relative angular dynamical information, but retaining

it would require structural information beyond the usual scalar functions. To be consistent

with our neglect of such angular static structure, in addition to the rigorously true state-

ments 〈~R(0) · ~r(0)〉 = 〈~R(t) · ~r(t)〉 = 0, we assume 〈~R(0) · ~r(t)〉 = 0 in the long-time limit.

This simplification implies the neglect of any Rr coupling in the Debye-Waller factors, and

with only the vertex carrying Rr coupling information the ability to describe events such as

rotation of the tagged particles about their center of mass is lost. The two coupled NMCT
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self-consistency relations are then:

0 =
−3

R
+

3φ

π3

∫ ∞
0

q2C2(q)S(q)ω(q, r0)

r(1 + S−1(q))
V (q, R, r)dq,

0 =
−3

r
+

3φ

π3

∫ ∞
0

q2C2(q)S(q)ω2(q, r0)

1− sin(kr0)
kr0

1

R(1 + S−1(q))
V (q, R, r)dq, (2.10)

where V (q, R, r) = sinh
(
q2Rr

3
(1 + S−1(q))

)
exp

(
−q2(R2+r2)

6
(1 + S−1(q))

)
. As r0 →∞, these

two equations become identical.

We have numerically solved Eq. 2.10 for a hard sphere fluid to determine the critical (ideal

arrest) volume fraction as a function of r0. We find φc(r0)exhibits decaying oscillations with

a period of ∼ σ which deviate at most by ∼ 1% about φc(r0 → ∞) = 0.432, precisely

the ideal glass transition volume fraction of the single-particle theory [31]. However, the

formal difference in self-consistency equations between the single-particle theory and the

infinite-separation (or independent-particle) limit of the two-particle theory associated with

the angular pre-averaging approximation implies the NLE generalization will not precisely

reduce to its single particle analog as r0 →∞.

2.2.3 Nonlinear Langevin Equation Theory

Before proceeding to develop the two-particle NLE theory, we comment on some of the

primary aims of our work. The initial separation of the two tagged particles, r0, crucially

enters the theory via the PMF and both memory functions. Characterizing its effect on

the motion of the tagged particles is a central goal. Such a question can be investigated

in computer simulations [39] and via confocal microscopy experiments [5]. For example,

recent simulations have studied the “cage breakup” process, defined as when a particle in

the first solvation shell leaves the local cage for the first time [76]. Alternatively, one can

study the distribution of time scales for a particle to “lose” a specified number of nearest

neighbors [77]. One motivation for this question is the desire to quantify “irreversibility” or
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“structural relaxation” on a microscopic scale. A length scale of dynamic heterogeneity is

often defined as the separation at which the motion of two particles becomes uncorrelated

in space and time. The r0-dependence of two-particle dynamics is relevant to this question.

If one is interested in ensemble averaged properties, then the theory must be solved as a

function of r0, and the results then averaged using the equilibrium pair correlation function,

g(r0).

To construct the two coupled NLE’s, we proceed per the heuristic implementation of

the local equilibrium idea employed to propose the single-particle theory [32]. The NMCT

self-consistency equations are utilized to define a field of effective dynamical forces,

~f(R, r) = fR(R, r)R̂ + fr(R, r)r̂, (2.11)

where fR ≡ −∂Feff (r, R)/∂R and fr ≡ −∂Feff (r, R)/∂r are given by the right hand side

of Eq. 2.10 and now Rloc → R and rloc → r are dynamical variables. Knowledge of these

forces is all that is required to construct the NLE evolution equations, which, in principle,

can then be numerically solved using stochastic Brownian trajectory simulation. However,

for both intuitive physical reasons, and practical considerations related to using Kramers

theory to compute mean first-passage times for barrier hopping, one also wants to construct

the dynamical free energy.

To determine the dynamical free energy surface, the effective forces must be integrated

and added to the PMF, w(r) = ln g(r), to obtain:

Feff (R, r) =

∫
C

~f(~l) · d~l + (w(2r + r0)− w(r0)), (2.12)

where ~l = RR̂+ rr̂. Since Feff is not a thermodynamic free energy, the integration is path-

dependent. The constraint that the NLE theory should reduce to NMCT in the limit of

no thermal noise (i.e. without activated barrier hopping) is sufficient to uniquely specify
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an integration path for the one-particle NLE theory [31, 32]. However, this is not true for

the two-particle problem, nor for mixtures of particles or nonspherical particles with both

translational and rotational degrees of freedom. In previous work on mixtures of hard and

sticky spheres [60, 61], and on translation and rotation of hard uniaxial objects [55, 57], the

integration path was chosen to be of a sequential form, first along one coordinate, and then

the other. The choice of which “orthogonal” two-step path to choose was justified by ruling

one of them out on the basis that it yielded unphysical results. For our present two-particle

problem one can try a similar approach, but we find that both such two-step paths yield

unphysical results in the sense that the resulting dynamic free energy surface is grossly asym-

metric, favoring easy particle motion along one coordinate or the other depending on which

of the two straight-leg paths are chosen. Additionally, the associated highly asymmetric

barriers have an absolute height much smaller than that predicted by the single-particle

theory. Since there is no physical reason to expect such asymmetric behavior, we chose

to approximately determine F (R, r) by integrating over the maximally symmetric path: a

straight-line diagonal trajectory from the NMCT values (Rloc, rloc) to the point (R, r).

2.3 Dynamic Free Energy Surface

Figure 2.1a shows a representative dynamic free energy surface for a hard sphere fluid at

φ = 0.55 and an initial particle separation of r0 = σ, i.e. “at contact.” The latter condition

is relevant to the question of structural relaxation, or “pair unbinding.” The shown surface

displays many of the features we find common to all the dynamic free energies we have

computed over a wide range of volume fractions (φ > φc) and initial particle pair separations.

There are two obvious relaxation channels, one primarily in the R-direction and one primarily

along the positive r-direction, which can be thought of as the “eigenvectors” of the two-

particle cooperative barrier crossing trajectories. These two relaxation pathways correspond

largely to changing the absolute magnitude of R or increasing the magnitude of r. Separating
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the escape paths is a very high, rapidly growing barrier that has been truncated in the figure

to preserve the scale. This barrier is essentially impassible to particles moving only via

thermal noise. If the initial particle separation is large enough (r0 > σ for hard spheres)

then a decrease in the relative separation of the particles is also a permissible motion. An

example is shown in Fig. 2.1b in a steepest-descent-path representation. Dynamic free energy

surfaces can also be constructed corresponding to these motions precisely as outlined above,

except now the change in the PMF must be subtracted, not added, to the path integral over

the field of forces:

F (R, r−) =

∫
C

~f(~l) · d~l − (w(2r + r0)− w(r0)). (2.13)
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Figure 2.1: (a) Representative dynamic free energy surface, F (R, r), in units of kBT for a
φ = 0.55 hard sphere fluid and initial 2-particle separation of r0 = σ. (b) 1-Dimensional
cuts along the “escape paths” drawn in the above figure. The red curves designate barriers
in the R-direction, blue curves in the r-direction. Solid curves correspond to r0 = σ and
dashed curves to r0 = 1.4σ.
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The three relaxation pathways leading to cage escape and relaxation discussed above

have similar, but not identical, features. Systematic differences exist with regards to the

barrier region (saddle point) curvature and barrier height as the volume fraction and initial

separation are varied. In general, though, increasing volume fraction increases the barrier

height at a fixed initial separation. Varying the initial separation non-monotonically modifies

the relative difference in height of the R and r barriers, and also causes the location of the

r-direction barriers to move in or out, correlated with the distance to the nearest minimum

or maximum of g(r).

The paths for easiest escape from the localization well across the saddle points follow

additional generic trends. Consistently, we find that crossing an r-directional barrier cor-

responds to a change in r by approximately σ/4, which is correlated with variations in

distance between consecutive minima and maxima of g(r). Since the variable r is defined as

r ≡ |~r1 − ~r2|/2, this trend implies that a barrier-crossing event corresponds to a real-space

modification of the interparticle separation of approximately one half a particle diameter.

This seems to be an intuitive result since it corresponds to a particle hop from the first

solvation shell to an “interstitial” site. As a concrete example, to separate two particles that

start at contact (r0 = σ) when φ = 0.55, a barrier must be crossed that involves increasing

their relative separation by 0.41σ; if the two particles are initially separated by a distance

corresponding to the second maximum of g(r) (r0 = 2.02σ), then barrier crossing involves

changing their relative separation by 0.55σ. For comparison, at this volume fraction the dis-

tance from the first peak of g(r) to its first minimum is 0.39σ,and the distance from the first

minimum to the second maximum is 0.63σ.

The angular averaging approximation made to reduce the NLE equations of motion

from a full vector description of the center of mass and relative coordinates to the scalar

displacements R and r renders a fully unambiguous physical interpretation of the dynamic

free energy surface in terms of real space particle motion difficult. For instance, slaving the

displacements of particle 1 and particle 2 corresponds to following a trajectory directly up
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the enormous barrier separating the relaxation channels, but not uniquely so; other forms of

particle motion map onto the same path. The r coordinate, with our ability to distinguish

positive and negative r via the PMF, remains a valid measure of the magnitude of the change

in relative separation, which is a classic microscopic metric of structural relaxation. On the

other hand, after the absolute value has been taken the R coordinate no longer uniquely

tracks the dynamical change in the center of mass. Thus we can identify an r-barrier

crossing as a structural relaxation event that will decorrelate g(r), but for the R-barrier

crossing trajectory we can only state that it corresponds to some more general relaxation

event. Perhaps it is related to simulation and microscopy observations of “cluster motions,”

i.e. particles that move together in a more-or-less coherent fashion [86, 87]. In any case, in

this initial study we focus primarily on the barriers in the positive and negative r-direction.

An additional subtle issue with regards to interpreting the barrier-crossing events is that

the trajectories going from the localization well to the saddle point are not perfectly parallel

with the axes. That is, the saddle trajectories correspond to some combination of R and r

motion. However, we do find that the approximate interpretation of barriers corresponding

to “pure” trajectories parallel to the axes in Fig. 2.1a improves as the fluid volume fraction

increases. As a measure of trajectory “purity” we define the function PR,r(φ, r0) as the ratio

of the vector components from the localization well to one barrier or the other. While there

is some moderate variation at fixed volume fraction as r0changes, in all cases the purity

increases as φ is increased. For example, as φ grows from 0.5 to 0.6, Pr(φ, σ)increases from

3.6 to 5.4, and PR(φ, 2σ)increase from 4.7 to 7.6.

2.4 Model Calculations

2.4.1 Quantitative Analysis of the Dynamic Free Energy Surface

Figure 2.2 shows the total displacement, in units of x ≡
√
R2 + r2, corresponding to the

localization well and barrier saddle point in the positive r- and R-directions. The single-
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particle theory found that the localization length(i.e. the minimum of Feff (r)) is well-

described by an exponential decay in volume fraction, rloc ∼ e−12.2φ, and a barrier location

of ∼ σ/3 that very slowly shifts outwards as volume fraction increases [31]. Here we see the

localization well follows this same behavior: the two-particle theory predicts xloc ∼ e−12.2φ,

albeit with a different constant of proportionality. In both the single- and two-particle

theories, the barrier location is a weak function of volume fraction. For the present theory,

there are subtle, but small, variations of barrier location with changing volume fraction and

initial particle separation, likely due primarily to changes of the PMF. Note that the barrier

in the r and R direction relaxation channels are very similar.

Figure 2.3 shows the barrier height for motion in the positive r and R directions as

a function of initial particle separation for several volume fractions. The barrier height

strongly oscillates in phase with g(r), with an amplitude closely tracking the PMF (see Fig.

2.4). We note that for a given volume fraction the barrier height that is oscillated about is

lower than predicted by the single-particle NLE theory. This is consistent with our physical

intuition since by allowing two-particle correlated motion a degree of freedom is added and so

constraints are more easily avoided. Of course, the single-particle theory does not explicitly

address the question of the dynamical separation of a pair of particles.

Limiting analytic analysis of the single-particle theory has shown that the barrier height

for hard spheres (but not soft spheres [59]) scales with the inverse of the localization length:

FB ∼ σ/rloc [31, 88] We find that this scaling works very well for the r-directional barrier

when r0 = σ, but fails for the R-direction barrier at that initial separation, and for both

barriers at all other initial separations. We have not been able to derive, nor numerically find,

a simple functional form for the barrier in terms of the two natural length scales available,

xloc and r0.

Figure 2.5 shows barrier heights as a function of volume fraction for fixed initial sep-

aration. We empirically find that the barrier heights closely follow the critical power law
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Figure 2.2: Log-linear plot of the location of the saddle point in the (a) relative-coordinate
and (b) center-of-mass coordinate (rB, RB) and localization well (rloc = Rloc ≡ xloc) in units
of
√
R2 + r2 as a function of volume fraction. In both figures the solid blue line corresponds

to r0 = σ,the dashed line to the first minima of g(r),the dotted line to the second maxima
of g(r),and the dot-dashed line to the large r0limit, computed at r0 = 10σ. The lower lines
show the location of the localization well for these same initial separations, and as can be
seen there is very little r0 dependence.
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Figure 2.3: Barrier height in the (a) forward r-direction, and (b) R-direction, as a function
of initial 2-particle separation for several volume fractions. The lines simply connect the dis-
crete computed points. Horizontal lines in (a) indicate the infinite-separation, independent-
particle limit.
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Figure 2.4: The potential of mean force, w(r), in units of kBT for volume fractions of 0.50
(solid blue), 0.55 (dashed red), and 0.60 (dot-dashed yellow).
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form:

FB(φ, r0) = A(r0)(φ− φc)ν(r0), (2.14)

where φc = 0.432, and the exponent ν(r0) oscillates between 1.5 and 3.0 for barriers in

the r-direction, and between 2.0 and 2.8 for barriers in the R-direction (the single-particle

theory’s result is 2.1), again on the scale of g(r). Note that there is some inherent error in this

fitting, since FB(φ, r0) has been computed not at fixed r0, but rather at initial separations

corresponding to the minima and maxima of g(r). As volume fraction changes in the range

of 0.50 ≤ φ ≤ 0.60 the position of a local minimum or maximum of g(r) can shift by ∼ 4%

relative to the position at φ = 0.55.

2.4.2 Mean Barrier Hopping Time

We now apply multidimensional Kramers’ theory to calculate the mean first barrier-crossing

time [89,90]:

τ

τ0

=
2π

λ+

(
| det KB|
det K0

)1/2

eβFB . (2.15)

Here, τ0 = βζ0σ
2 is the elementary Brownian time scale, FB is the height of the barrier,

KB and K0 are the matrices of second derivatives at the saddle point and localization well,

respectively, λ+is the positive eigenvalue of the matrix (−D ·KB), and D is the matrix of

short-time diffusion coefficients in units of the elementary (dilute-limit) diffusion constant

D0. As in prior work [60], D is taken to be Dij = δij/g(σ), based on Enskog binary collision

theory [6]. Our calculations find that the exponential pre-factor in Eq. 2.15 varies only

weakly with volume fraction and initial separation, and so the mean first passage time is

dominated by the barrier heights.

Figure 2.6 presents the Kramers time as a function of volume fraction for several initial

separations, along with the results of the single-particle NLE calculation for comparison. The

barrier crossing time increases monotonically with volume fraction for any initial separation,

although the increase is quantitatively slower than the corresponding single-particle NLE
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Figure 2.5: Barrier height as a function of differential volume fraction relative to the NMCT
crossover in the (a) forward r-direction, and (b) R-direction, for r0 corresponding to contact,
the first minimum of g(r), the second maximum of g(r),and the second minimum of g(r)
(the solid red, dashed green, dotted blue, and dot-dashed purple curves, respectively). The

numerical calculations are fit to the form FB(φ, r0) = A(r0)(φ− φc)ν(r0), where the exponent
ν(r0)for the r-barriers is 1.55, 2.99, 2.15, and 2.96, respectively.

38



calculation. This reinforces the differences between our present theory and the earlier single

particle approach. At fixed volume fraction, the Kramers time varies non-monotonically with

initial separation, again strongly correlated with the minima and maxima of g(r): the longest

mean first-passage time occurs when the particles are at contact (r0 = σ), the shortest mean

first-passage time occurs when the particles are separated by a distance corresponding to

the first minima (interstitial) of the radial distribution function (r0 ≈ 1.4σ), and τ(r0) then

continues to oscillate in phase with g(r).
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Figure 2.6: Log-linear plot of the dimensionless Kramers mean first passage time, τ/τ0 , as a
function of volume fraction for r0 = 1, 1.4, 2 (blue, red, and yellow curves, respectively). The
dashed line shows the single-particle result, and the solid green curve shows the two-particle
result in the r0 →∞ limit. Inset: The four solid lines of the main plot, normalized by their
φ = 0.50 value.

The inset of Fig. 2.6 re-plots the Kramers times in a normalized format to expose the

relative rate of increase with volume fraction and r0, a representation relevant to the ques-

tion of “dynamic fragility” [37, 57, 59, 91]. The fragility is weakest for an initial interstitial

configuration, and strongest when the two particles are initially in contact.

2.4.3 Dynamic Correlation Length

As the hopping times are dominated by the barrier heights, a simple estimate of a two-

particle dynamical correlation length can be made by characterizing how quickly the barrier

39



height oscillations decay with growing initial interparticle separation. This length scale quan-

tifies the interparticle separation at which the activated dynamics of two particles becomes

uncorrelated in space and time. The barrier heights at consecutive maxima of g(r) are fit as

an exponential decay to the asymptotic value:

FB(r0) = FB(r0 →∞) + Ae−(r0−σ)/ξp . (2.16)

Theoretical analysis has shown the peaks of the radial distribution function can be fit to a

Yukawa potential when the initial separation is sufficiently large [6]. In a similar spirit, then,

we use the above form to fit the barrier heights at the largest separations we have computed:

with initial separations corresponding to the third through sixth maxima of g(r) and the

infinite-separation limit. We find (not plotted) that the correlation length computed in this

way grows modestly, from ξp ≈ 1.3σ to ξp ≈ 1.7σ as the volume fraction increases from 0.50

to 0.60. This length scale is both modestly smaller and more slowly growing than the result

of the analogous procedure applied to g(r).

Including the effects of the hard-core constraints, our results suggest a volume of cooper-

ative, correlated motion whose radius, ξc ∼= (σ+ ξp), slowly increases from 2.3 to 2.7 particle

diameters while the characteristic relaxation time grows by over two orders of magnitude.

This is in reasonable agreement with simulations and hard-sphere confocal microscopy ex-

periments, which, using a similar procedure to fit correlation functions to an exponential

decay, found dynamic length scales relating to the relative displacement on the order of 2

to 3 particle diameters that were also only weakly dependent on φ over a range of volume

fractions where the alpha relaxation time grows by 2 order of magnitude, per our present

calculations [39, 87]. Moreover, the confocal experiments also found the correlated motion

was strongly coupled with the oscillations of the radial distribution function.
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2.5 Application to Cage Breakup

2.5.1 Background

We now apply our theory to the problem of a particle escaping from its cage of nearest

neighbors, the elementary step of structural relaxation. A simulation study of this problem

[76, 79] was based on defining a generalized neighbor list for particle i as a vector with

components (li(t))j = f(rij(t)), where f(rij(t)) is a step function equal to 1 if particle j is

within the first solvation shell of i, and zero otherwise. The cut-off used is gmin, the distance

from contact to the first minimum of g(r). Schematically, this process is shown in the inset

of Fig. 2.7. There are several ways to define a cage correlation function; one simple choice

is [76]

C(t) ≡ 〈Θ(c− nouti (t))〉, (2.17)

where

nouti (t) = |li(0)|2 − li(0) · li(t) (2.18)

quantifies the number of particles that have left the generalized neighbor list of particle i

after a time t. The parameter c quantifies the number of particles presumed to be required

for a relevant degree of change in the surroundings of particle i. Simulations find that

qualitatively the correlation function is not very sensitive to the precise value of c chosen,

and c = 1 was adopted for convenience [76]. A more recent simulation study has focused on

identifying the elementary structural relaxation process underlying irreversability in terms

of neighbor exchanges which in the above language corresponds to c > 1 [77].

We pause here to note that while we take the model of a cage escape presented by

Rabani et al. [76] as inspiration, a direct comparison of our results with their simulations

is not applicable since it focused on the Arrhenius-like relaxation regime far from the glass

transition. Later work [79] studied colder, one-component Lennard-Jones liquids, but were

complicated by the presence of local crystalline order and defects.

41



2.5.2 Theoretical Results

In the context of our dynamic free energy surface, crossing a barrier in the r-direction leads

to a change in interparticle separation on the order of one half a particle diameter. This

corresponds to a relative displacement at least as large as that required to move a particle

from the first solvation shell to an interstitial site. Thus, any hopping event in the forward

r-direction that starts with an initial separation within the first solvation shell leads to new

separation where the two particles are not nearest neighbors. Hence, we can use the r+-

barrier crossing times from within the first shell to characterize the same sort of neighbor

list cage escape events studied in simulations.

We examine two different cage escape correlation functions. The first,

C1(t) = 〈exp

(
−t
τ̄

)
〉, (2.19)

corresponds to a generic exponential function for the loss of correlation [53, 92]. It is mo-

tivated as a toy model of experimental time correlation functions, such as the dynamic

structure factor at the cage wavevector, or perhaps dielectric relaxation. The second is

C2(t) = 〈Θ (τ̄ − t)〉, (2.20)

which corresponds to the function defined in Rabani et al. [76] with the choice c = 1.

To proceed, we compute the mean first passage time over the r+-barrier at many initial

separations between contact and the first minimum of g(r) at fixed volume fraction. The

cage escape time is then averaged over spatial disorder (i.e. over the initial conditions as:

(τcage)s = 〈τ(r0)〉s =
24φ

∫ gmin
1

r2
0g(r0)τ(r0)dr0

24φ
∫ gmin

1
r2

0g(r0)dr0

. (2.21)

Figure 2.7 shows the part of the radial distribution function corresponding to the range of

initial separations averaged over. Analogous expressions define the other spatial-disorder-
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averaged quantities of interest, C1(t), C2(t), and (τ−1
cage)s. The latter is a simple surrogate

for the self-diffusion constant, and in the presence of heterogeneity it is not expected to be

exactly equal to 1/(τcage)s. We initially assume the hopping times are unique for fixed values

of the initial separation r0, in the spirit of Kramers’ mean first passage time.
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Figure 2.7: Hard sphere fluid radial distribution function at φ = 0.55, with the region
controlling cage-escape phenomena shaded. Inset: Schematic of nearest neighbor particles
breaking up structure via cage escape.

Figure 2.8 shows an example of the disorder-averaged time correlation functions for φ =

0.55. Note that (C2(t))s goes to zero at a finite time because the spatial disorder average

involves a longest hopping time (when particles are at contact), and so eventually all of the

step functions vanish. On the other hand (C1(t))s involves exponential tails and thus has no

such finite-time decay.

In reality, barrier hopping is a thermal noise-driven process. Hence, the full solution of

the NLE equations yields a distribution of escape times corresponding to pure “dynamic”

disorder [92]. This suggests an immediate improvement to our analytic model by introducing

a distribution of barrier crossing times for fixed r0. For barriers greater than a few kBT, the

rare hopping events follow a Poissonian distribution with a mean time given by the calculated

Kramers’ time [92]:

P (τ) =
τ

τ̄ 2
e−τ/τ̄ . (2.22)

In the single-particle theory, this distribution was found to accurately describe the numer-
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Figure 2.8: Cage correlation functions C1(t) (in red) and C2(t) (in blue) for φ = 0.55. Solid
curves indicate an average over only the static disorder, whereas the dashed curves include
both the static and dynamic disorder. Inset: Representative fit of the full static-plus-dynamic
disorder averaged C1(t) to a stretched exponential function for φ = 0.55.

ical results obtained from Brownian trajectory solutions of the NLE for φ = 0.50 and above.

Using the distribution of Eq. 2.22 the dynamic averages can be performed analytically, with

the result:

τcage = 〈τ(r0)〉 = 〈
∫ ∞

0

τP (τ)dτ〉s

= 〈
∫ ∞

0

(τ
τ̄

)2

e−τ/τ̄dτ〉s = 2〈τ(r0)〉s. (2.23)

Similarly,

τ−1
cage = 〈(τ(r0))−1〉s, (2.24)

〈C1(t)〉 =

〈
2t

τ(r0)
K2

(
2

√
t

τ(r0)

)〉
s

, (2.25)

where K2 refers to the Bessel function of the second kind, and

〈C2(t)〉 =

〈
t+ τ(r0)

τ(r0)
e−t/τ(r0)

〉
s

. (2.26)

Note that dynamic disorder of this elementary kind can by itself strongly modify exponential

decay.
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Figure 2.9 presents results for the full static- and dynamic-disorder averaged cage escape

time. The above analysis shows that for this quantity including the dynamic disorder merely

introduces a multiplicative factor of two. The cage escape time is both faster and more

slowly growing with volume fraction than the mean first passage time calculated in the

single particle NLE theory. Intuitively, this seems a reasonable consequence of allowing

for two-particle dynamic correlation. In contrast, the cage escape time is longer than the

mean hopping time in the large initial separation limit of the two-particle theory. This

demonstrates that the cage escape process is largely controlled by the slower-than-average

dynamics of particles (near contact) within the first neighbor shell.
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Figure 2.9: Log-linear plot of the dimensionless mean cage escape time as a function of
volume fraction (blue curve). For comparison, the mean first passage time of two-particle
theory in the r0 →∞ limit is shown (dashed red curve), along with the single particle mean
first passage time (dashed yellow curve). Inset: Log-linear plot of the decoupling factor R,
along with an exponential fit: R ∼ exp(12.8φ).

2.5.3 Decoupling

By separately calculating 〈τ(r0)〉, qualitatively proportional to the viscosity, and 〈(τ(r0))−1〉,

a simple surrogate for the self-diffusion coefficient, we can define an analog of the translation-

viscosity (or relaxation) decoupling parameter, R = 〈τ(r0)〉〈(τ(r0))−1〉. The inset of Fig. 2.9

shows the decoupling parameter grows strongly with increasing volume fraction. Qualita-

tively, this is consistent with observations in experiment and simulation of a decoupling of the
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viscosity (or rotational diffusion constant) and translational diffusion constant under condi-

tions where activated dynamics are dominant [40, 41, 47, 48, 93]. As shown in the inset, R

grows exponentially with the volume fraction, R ∼ exp(12.8φ), which, remarkably, is essen-

tially identical to how the transient localization length decreases, i.e., xloc ∼ σ exp(−12.2φ).

Hence, our two-particle theory predicts a deep connection between the highly localized state

and the long time heterogeneous decoupling phenomenon. Such connections between short

and long time dynamics are well documented in glass forming liquids, but their microscopic

origin has remained largely a mystery [1].

A related question of great interest is how the decoupling factor may be related to a

mean structural relaxation time. We find that the square root of R is well fit by

√
R ∼ 2.0 + 0.25 ln(τcage/τ0) (2.27)

Our numerical data can also be fairly well fit (but not as accurately) by R ∼ 3.2 +

1.5 ln(τcage/τ0). Hence, the degree of decoupling is predicted to grow in a slow logarithmic

manner with increasing relaxation time, not as an effective power law in the “fractional”

Stokes-Einstein spirit. Interestingly, experiments also find an apparently weaker-than-power-

law relation between the decoupling factor and mean alpha relaxation time [93].

It is interesting to compare our decoupling results with the predictions of the single-

particle NLE theory, which found 〈τ〉〈τ−1〉 ∼ exp(12.3φ) and RD ≡
√
Dτ/(Dτ)φ=0.4 ∼

0.65 + 0.15 ln(τ/τ0) based on the full trajectory simulation solution, where D is the long

time self diffusion constant and τ is the mean alpha relaxation time associated with the

incoherent dynamic structure factor at the cage peak wavevector [92]. Qualitatively there

is good agreement, but the physics involved is not identical. In our two-particle theory, the

essential origin of decoupling is the disorder associated with the initial configuration of two

neighboring particles in the first solvation shell, which deeply modifies activation barriers and

the escape rate. On the other hand, such physics is not present in the single-particle theory,
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where the dynamical free energy has no analog of r0. There, decoupling emerges as a purely

dynamical effect associated with the distribution of time scales for escaping a local trap

in an activated manner, with variation of trajectories and escape times being “weighted”

differently by the finite length scale relaxation process versus the translational diffusion

process [38]. We believe both these mechanisms for the origin of heterogeneous dynamics

are generally important, though perhaps their relative importance is system-specific.

Although our present decoupling results are for a hard sphere fluid, they can be expressed

in a generic form involving only the cage relaxation time and its “bare” analog, τ0 = βζ0σ
2 =

σ2/D0, where σ is the particle diameter and D0 is the diffusion constant in the “normal” fluid

regime. The two thermal liquids where translation-relaxation decoupling has been measured

down to Tg are orthoterphenyl (OTP, σ ∼ 0.7 nm) and tris-napthylbenzene (TNB, σ ∼ 1

nm) [93]. Typical values of the normal state self-diffusion constant in small molecule liquids

lie in the range D0 ≈ 10−6 − 10−4 cm2/s, and hence τ0 ≈ 10−10 − 10−8 s for OTP and

TNB. The kinetic glass temperature is usually defined as when the alpha relaxation time ∼

100− 10, 000 seconds. Assembling these numbers, the ratio τ(Tg)/τ0 ≈ 1010 − 1014. Hence,

using Eq. 2.27, we estimate the decoupling factor at Tg for these liquids is ∼ 60 − 100.

Remarkably, this is essentially precisely the range of values experimentally observed for OTP

and TNB [94]. The key to obtaining such a sensible result is the logarithmic growth of the

decoupling factor, or in a qualitatively equivalent sense, the prediction that the decoupling

factor scales linearly with the activation barrier. For multiple reasons we do not wish to

over-emphasize the quantitative aspects of the above result, but given that there are no

adjustable parameters we do believe this a priori calculation provides significant support for

our theory of cage escape and structural relaxation.

2.5.4 Nonexponential Relaxation

We now discuss the time dependence of the relaxation functions and deviations from simple

exponential decay. Figure 2.8 shows both the static-disorder-only and the full static-and-

47



dynamic-disorder-averaged cage correlation functions. As noted above, (C2(t))s vanishes at

a finite time because the spatial disorder average involves a longest hopping time. However,

including dynamic disorder removes this unphysical feature. With the obvious exception of

(C2(t))s, we generally find that the cage correlation functions are very well fit, over at least

2 decades, by a stretched exponential function:

Cα(t) ≈ exp
(
−(γt)βk

)
, (2.28)

where γ is an inverse relaxation time determined by fitting Eq. 2.28 to the numerical cal-

culations. The linear-linear plot in the inset is shown since many experiments are reported

in this format, and the measurements are limited to observing only 1-2 orders of magnitude

of decay in signal amplitude. In general, the detailed time dependence predicted by our

theory is affected by both the “static disorder” associated with initial cage conditions, and

the dynamic disorder associated with the Poissonian distribution of hopping times. Hence,

uniquely separating the origin of relaxation stretching into independent “static” and “dy-

namic” contributions does not seem possible.

Figure 2.10 shows results for the stretching exponents, βk, as a function of volume frac-

tion based on fitting Eq. 2.28 to the numerical calculations. The absolute magnitude of the

stretching exponent clearly depends strongly on which correlation function is considered,

ranging from βk ≈ 0.56 for C1(t), to βk ≈ 0.95 for C2(t). On the other hand it is nearly con-

stant, or decreases only weakly with volume fraction, for all cases. The stretching exponent

associated with C2(t), which is relevant to the cage correlation function studied in Rabani et

al. [76, 79], is far from the value of βk = 0.5 reported [79]. However, interestingly, our value

of βk ≈ 0.56 for the full static- and dynamic-disorder averaged generic relaxation function,

C1(t), is very close to what is observed in dense hard-sphere colloidal suspensions for the

alpha process on the cage wavevector scale [94], and also the prediction of ideal MCT [95].

Moreover, this value is close to that observed in the dielectric experiments on TNB [96], the
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decoupling behavior for which was discussed in the preceding section.
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Figure 2.10: Stretching exponent of Eq. 2.28 for the static-disorder-only average of C1(t)
(blue), the full static- and dynamic- disorder average of C1(t) (red), and the full static- and
dynamic-disorder average of C2(t) (yellow).

Perhaps most significant is our prediction that the stretching exponent is nearly inde-

pendent of volume fraction. This occurs despite the fact that the relaxation time changes by

many orders of magnitude and there is significant decoupling. This combination of features is

qualitatively what is observed in computer simulations of glassy hard sphere fluids [41], and

for experiments on thermal molecular liquids OTP and TNB [94]. Such observations have

been characterized as a major “mystery” in the sense that most classic theoretical explana-

tions (for structural and spin glasses) of decoupling involve a postulated static-domain-like

model on a mesocopic scale where finite size thermodynamic fluctuations of the relevant

local structural variable (e.g. entropy [97], density [98, 99], or free volume [37]) that deter-

mines the hopping time is the origin of a distribution of relaxation times. Such models can

indeed predict reasonable decoupling, but at the same time will predict strong variations of

the stretching exponent with the thermodynamic control variable (temperature or volume

fraction) that are not observed in TNB or OTP [94] or hard sphere fluids [41].
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2.6 Initial Summary

We have generalized the nonlinear Langevin equation theory of single-particle activated

barrier hopping to address correlated two-particle dynamics in a glassy or gel regime. Key

technical approximations include the assumption of isotropy and an angular pre-averaging

which reduce the problem to two scalar dynamic variables, one corresponding to the relative

separation of the two particles, and the other to a center-of mass-like coordinate. The angular

averaging approximation, invoked for technical tractability reasons, does raise difficulties, or

ambiguities, with regards to the physical meaning of the CM-like variable in terms of the

two-particle trajectories. For this reason, our detailed initial studies have focused on the

correlated dynamics of two tagged particles approaching or separating from each other, the

primary motion relevant to structural relaxation.

We have numerically determined the dynamic free energy surface corresponding to a

fluid of hard-spheres, and found they generically display two relaxation channels or reactive

trajectory paths, corresponding largely, but not exclusively, to motion parallel to the pure

R or r displacement axes. The systematic numerical variation of these barriers was then

studied as a function of both volume fraction and the initial separation of the particles, and

oscillations related to the pair correlation function are predicted. The latter persists up to

a dynamical correlation length beyond which the two-particle dynamics are uncorrelated in

space and time. The dynamical length scale is modest in absolute size for the moderate

barrier height systems studied (. 13 kBT ), but does grow significantly with increasing

volume fraction and is systematically different from the static correlation length of g(r).

Our calculations of mean first-passage times can, in principle, be compared with confocal

microscopy experiments or computer simulations which track the motion of a pair of tagged

particles [100].

As an application of our new theory, a simplified model of cage escape was presented

which addresses the elementary step of structural relaxation. Predictions for characteristic
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mean relaxation times, translation-relaxation decoupling, and stretched-exponential behav-

ior of correlation functions were obtained. A consistent picture emerges for the origin of

dynamic heterogeneity as encoded in translation-relaxation decoupling and stretched ex-

ponential decay of time correlation functions based on a combination of dynamic disorder

associated with the noise driven hopping process and “static” disorder associated with the

distribution of initial separations of a pair of caged particles. The theoretical results seem to

be remarkably consistent with experiments on two thermal molecular liquids and simulations

of the hard sphere fluid.

Since our theory requires as input only the equilibrium pair structure, there is nothing

restricting its application to systems other than hard spheres. Particularly interesting would

be a correlated two-particle study of the interplay between glassy and gel dynamics in very

dense fluids where particles (colloids) interact via a strong but short-ranged depletion at-

traction [101]. Such a system has been found to exhibit a complex “two-step” cage escape

process under quiescent “attractive glass” conditions [50], and double yielding behavior is

observed in nonlinear rheological experiments [102]. The ability of the two-particle theory to

explicitly treat the pair separation dynamics is clearly important for understanding “physical

bond” breakage in gel-like systems, especially under high volume fraction conditions where

steric blocking is simultaneously present.

Other important topics of future work include: (i) understanding better the physical

meaning of the R dynamical variable and its possible connection to “cluster-like” coopera-

tive motions, (ii) employing stochastic Brownian simulation to compute two-particle time-

correlation functions of interest including dynamical heterogeneity signatures, and (iii) gen-

eralizing the two-particle theory to compute the elastic shear modulus and the full nonlinear

mechanical response, as has been achieved based on the single particle NLE approach [69].

Finally, a key parameter of our formulation is the initial interparticle separation, r0, which

was treated as an initial condition to the two coupled NLE’s. Both computer simulation

and experiment (for colloids) can study two-particle correlated dynamics as a function of
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initial particle separation. Given that deep in the glassy regime the particle motions are

highly intermittent (undergoing long periods of localized intra-cage vibration interspersed

with very rapid, larger amplitude, cage-breaking jumps), one can imagine extending our

approach to develop a simple model of multiple correlated caging and hopping (forward

and backward) events of a tagged pair of particles. Crossing a barrier in the r direction

would take a characteristic time (or distribution of times) and correspond to a change in

interparticle separation related to the position of that barrier. Subsequent to this event, the

particles can be viewed as “re-caged” at a new value of r0 via a local equilibration process

which has time to occur due to the highly intermittent nature of motion. In such a way, a

multi-state Markov model of pair particle motion (e.g. an “unbinding from contact” process)

could be built up, which may have rich potential for making connections to existing studies

of coarse-grained and phenomenological descriptions such as kinetically constrained models

and continuous-time random walks [70, 75,103].

We now begin a discussion of such a combination of the two-particle activated hopping

model derived in the first part of this chapter with such a markovian recaging process can

help make contact with a variety of other theories of the glass transition. The purpose being

to both extend the two-particle NLE theory to address new questions, and also use the NLE

framework to search for connections with other ways of thinking about the glassy dynamics

problem. Three topics are addressed. (i) The formulation and application of a multi-state

Markov model to describe space-time correlated hopping associated with dynamical interpar-

ticle separation (structural relaxation). (ii) A study of the relative importance of neighbor

exchange and neighbor loss in distinguishing irreversible relaxation events from reversible

ones [77,78,104]. (iii) The proposal of a microscopic, structure-based scenario based on mod-

est coarse graining in which the ideas of persistence and exchange from phenomenological,

kinetically constrained models (KCMs) [80–82] can be identified from the correlated motion

of pairs of particles.
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2.7 Multiple Hopping Events and the Role of the

Initial State

Above we reported computations of the dynamic free energy surfaces over a range of volume

fractions (φ = 0.5−0.6) and at initial separations corresponding to the minima and maxima

of the radial distribution function [105]. The primary quantities of interest were the barrier

heights and mean first passage times along the direction of CM motion, R, and increasing

or decreasing relative separation, r+ and r−, respectively. In creating a description of “cage

escape,” mean first-passage times at many initial separations between the first maximum and

first minimum of g(r) were computed. This led to two key predictions: a decoupling between

the diffusion constant and the relaxation time (translation-relaxation decoupling) associated

with motion in the r-direction of a magnitude and thermodynamic state dependence in

semi-quantitative agreement with data on hard sphere suspensions and molecular liquids;

and a “cage escape correlation function” that showed stretched-exponential behavior but

with a nearly volume-fraction-independent stretching exponent. This qualitative behavior

of strong decoupling with no change in the shape of the relaxation function has been observed

in hard-sphere simulations [41] and experiments on molecular glass formers [94].

The bulk of the numerical effort relevant for the rest of the chapter involves the extension

of the above program to compute barriers and mean first-passage times at many more values

of the initial separation for each volume fraction studied. As detailed in the following

sections, this permits the construction of a more sophisticated description of relaxation

events, which in turn allows us to make contact with different ways of looking at the glassy

dynamics problem.

Figure 2.11 presents calculations of the entropic barrier height for motion in the r+ and

r− directions as a function of initial separation out to the second minima of the radial dis-

tribution function. Figure 2.12 shows the corresponding mean first-passage times. Several

points are evident. First, the logarithm of the mean first-passage time closely tracks the bar-
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rier height. Second, the barrier heights qualitatively track the PMF at different separations,

a fact shown explicitly in Ref. [105]. Third, the mean relaxation time calculations are noisier

than the barrier height calculations since small numerical inaccuracies in Fdyn are amplified

in the calculation of the curvatures required in Eq. 2.15. This is a second-order effect which

does not affect the general oscillation of barrier heights/relaxation times on the scale of g(r),

a key feature of our analysis. In Fig. 2.12, spline interpolations are shown which smooth

the discrete numerical hopping-time data; all our subsequent results are only very weakly

sensitive to the specific curve-fitting procedure employed.
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Figure 2.11: Relative-separation barrier heights in the (A) forward (r+) and (B) backwards
(r−) directions versus initial separation for φ = 0.50− 0.6 (in increments of 0.01, bottom to
top)

In the following sections we adopt a specific jargon and notation to indicate the different
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types of changes in the relative separation coordinate of two tagged particles. The “hopping”

motion of this relative coordinate is often described in the language of a particle hopping,

but in reality this means one of the particles is used to define the origin of an instantaneous

radial distribution function in the local-equilibrium approximation centered at that particle.

Increases and decreases in the relative separation are referred to as forward and backwards

hops, respectively, and (consistent with the above notation) superscripts pluses and minuses

are employed on both the coordinate itself and the characteristic time to move in a specific

direction (r+, τ+, r−, τ−). Finally, when coarse-graining over shells of the radial distribution

function, the characteristic time for the relative coordinate to indicate a change from shell i

to shell j is denoted by τi→j.
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Figure 2.12: Relative-separation hopping times in the (A) forward (r+) and (B) backwards
(r−) directions versus initial separation for φ = 0.53− 0.6 (in increments of 0.01, bottom to
top), along with the interpolation curves (see text).
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2.8 Irreversible Neighbor Loss and Structural

Relaxation

2.8.1 Neighbor Loss, Recovery, and Irreversibility

The notion of “irreversibility” in single-particle statistics of glassy systems has long been a

thorny problem. At issue is that a tagged particle spends the majority of its time rattling

around in its cage, and then occasionally makes a jump of broadly distributed amplitude,

including large displacements of order a particle radius, ∼ σ/2 [5,78]. However, such “cage-

breaking” jumps do not always lead to an irreversible change in the configuration of the

liquid: when viewing trajectories, sometimes the particle hops further away and the cage

closes behind it, but other times the particle fluctuates back into the cage, essentially restor-

ing the initial configuration [40,78,106]. One technique employed in simulations and confocal

microscopy experiments on colloids for distinguishing reversible from irreversible rearrange-

ments is to track fluctuations that induce changes in the list of nearest-neighbor particles

before and after a tagged particle hops [77,104,107].

Our present goal is to address the irreversibility question in the context of the space-time-

correlated two-particle hopping model. The physical picture of a particle first hopping some

distance and then hopping either further away from or closer to its initial position relative

to other particles maps quite intuitively to the combination of our two-particle theory and

a local equilibrium idea. The latter means that after a hop the two particles are re-caged

and must escape via another activated event. Our ideas are general with regards to the

interparticle pair potential, but we analyze the problem in the context of a hard-sphere

fluid.

The relative statistics of a given jump being reversible or irreversible will be treated based

on a multi-state Markov model. Additionally, we connect our results to the above-mentioned

ideas of nearest-neighbor loss. In particular, we initially determine the probability to first
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lose some fixed number of neighbors as a function of time, and then study the probability

distributions that at time t at least (x − n) nearest neighbors have been irreversibly lost

if at some earlier time, t′ < t, x nearest neighbors were lost. Our results are qualitatively

compared to the simulations on model thermal 2D glass formers below the onset temperature

[77]. Of course, quantitative comparison between our calculations for a 3D hard sphere fluid

and the 2D Lennard-Jones thermal mixture simulations is not possible.

2.8.2 Multi-state Markov Hopping Model

The basic spirit of our model is illustrated in the schematic cartoons of Fig. 2.13. We have

previously observed that at all separations a hop in the relative separation coordinate cor-

responds to a change in r on the order of σ/2, a natural length scale for defining solvation

shells and interstitial configurations [105]. For example, two particles initially at contact can

undergo a relative hop that places their separation in an “interstitial”-like configuration, or

vice-versa. We use this as motivation to coarse grain over the shells of the radial distri-

bution function, arguing that a forward or backward hop amounts to changing the relative

shell the two particles occupy. In this way we track the two-particle separation, computing

characteristic times and rates to hop from one shell to the next under the local equilibrium

assumption that after a hop the particles temporarily equilibrate and behave as if their new

separation serves as the “initial” separation (r0) of a subsequent hopping event. Since the

dynamic free energy surface depends on r0 via both the PMF and the dynamical forces of

the surrounding particles, subsequent forward and backward hopping events are modified

relative to the initial activated motion.

As a more general comment, our focus on large amplitude single- and two-particle hop-

ping events should not be interpreted as denying there is more cooperativity involved in

the elementary alpha relaxation process. Indeed, the latter no doubt involves the correlated

motion, on relatively small scales, of many particles; no microscopic theory exists for such

many-particle cooperative dynamics. However, the achievement of irreversibility and struc-
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Figure 2.13: (A) Schematic cartoon of forward/backwards barriers at different initial sepa-
rations. The differently-hatched regions correspond to coarse-grained sites. (B) Schematic
cartoon of coarse-graining g(r) into (left) a 4-state Markov model and (right) persis-
tence/exchange events, defined as a near-neighbor pair of particles first separating and then
moving farther away, respectively.
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tural renewal as defined via neighbor exchange must involve some small number of particles

moving a significant fraction of their diameter. It is this latter aspect that we focus on

using the NLE approach and our present lightly coarse-grained description. In this regard,

we note there is simulation and experimental evidence that on the alpha relaxation time

scale the key motions involve compact clusters of particles (not the strings relevant at earlier

times) [108,109]. Moreover, irreversible structural rearrangements have been experimentally

imaged in glassy hard-sphere colloidal systems, where compact rearranging regions always

involve a few particles displacing by distances of order their radius, dressed by small corre-

lated motions of surrounding colloids [107]. The relationship between the smaller and large

displacements, and whether “one triggers the other,” remains poorly understood.

Previously we evaluated the time for two particles initially at contact (i.e., within the

first shell of the radial distribution function, σ ≤ r0 ≤ gmin, where gmin is the first minima

of g(r)) to first separate, defining a “cage escape” time, τcage = τ1→2, analogous to an alpha-

relaxation time [105]. We assumed that the white-noise-driven hopping over a (high) barrier

is a Poissonian process [53], so that the probability to hop from an initial separation r0 at

time t in either the forward or backwards direction is given by

P (t, τ±(r0)) =
t

(τ±(r0))2 e
−t/τ±(r0). (2.29)

Then, averaging over both the dynamic disorder of this Poisson process, and the static

disorder from coarse-graining g(r), the probability to exit the cage of nearest neighbors is

τ1→2 =

∫ gmin
1

r2
0g(r0)

∫∞
0
tP (t, τ+(r0)) dt dr0∫ gmin

1
r2

0g(r0) dr0

. (2.30)

Similarly, the average hopping time from site 2 to 3 is

τ2→3 =

∫ g2
gmin

r2
0g(r0)

∫∞
0
tP (t, τ+(r0))dt dr0∫ g2

gmin
r2

0g(r0) dr0

, (2.31)
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where g2 is the location of the second peak of g(r). The other rates are computed analogously,

using either the forward or backwards hopping times in P (t, τ(r0)) as appropriate.

Treating the question of irreversibility requires the determination of how often a particle

is recovered after it first jumps away. To do so, we separately consider the probability of

first leaving the contact shell, and then the probability of returning given that the particle

has left. The first of these questions is straightforward. Defining the function

P ′(t, τ±(r0)) =

∫ t

0

P (t′, τ±(r0)) dt′ = 1− e−t/τ±(r0)

(
1 +

t

τ±(r0)

)
, (2.32)

as the probability for two particles separated by r0 to have a jump in their relative separation

by time t, and averaging over the spatial disorder in the first shell, gives the probability that

by time t a particle has escaped from the first (contact) shell:

p(t) =

∫ gmin
1

r2
0g(r0)P ′(t, τ+(r0)) dr0∫ gmin
1

r2
0g(r0) dr0

. (2.33)

To determine whether this escape is irreversible or not we construct a simple 4-site Markov

model as schematically illustrated in Fig. 2.13B, with each site corresponding to a shell of

the radial distribution function. Particle separations can hop back and forth between three

sites corresponding to the two particles being nearest neighbors, next-nearest neighbors,

and next-next-nearest neighbors. The fourth shell of g(r) is treated as a semi-absorbing

boundary, in that particles can continue to hop further away but cannot hop back to the

third shell (schematically shown in Fig. 2.13B and represented in the transfer matrix in Eq.

2.34 below). Over the time scales that we study, this (easily relaxed) approximation makes

no quantitative difference to our results. Average hopping rates between these shells are

computed in complete analogy with the above, taking the mean rates to be the inverse of

the mean hopping times. Concretely, the model assumes that if the particles hop “forward”

from the third site then they never return to being nearest-neighbors. That is, particles
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can hop back and forth between contact and the second shell, but once they are separated

by more than this distance they are never recovered. Rigorously this will not always be

true, but on the time scales we consider, and those examined in the simulations (on the

order of the mean alpha time, i.e. to hop from the first to the second site), the exceedingly

low probability of a recovery makes this a reasonable approximation. We could, of course,

use a more sophisticated semi-Markov model that takes into account the Poisson hopping

processes instead of using such processes to define the rate constants, but we expect such an

improvement to make only a modest quantitative change to our ultimate predictions.

The 4-site Markov model can be easily solved to give the probability, pc(t), that the

particles occupy the “nearest-neighbor” site at time t. We define a transition matrix as

T =



−τ−1
1→2 τ−1

2→1 0 0

τ−1
1→2 −(τ−1

2→3 + τ−1
2→1) τ−1

3→2 0

0 τ−1
2→3 −(τ−1

3→4 + τ−1
3→2) 0

0 0 τ−1
3→4 −τ−1

4→5


(2.34)

and numerically solve for its eigenvalues λi and eigenvectors ξi. The initial condition is
4∑
i=1

aiξi = {1, 0, 0, 0}, i.e. the two tagged particles are initially nearest neighbors. The

probability of occupying the nearest-neighbor site is then just the first element of
4∑
i=1

aiξie
λit.

Combining this result with Eq. 2.33 which gives the probability that the particles have ever

left contact, p(t), the probability to regain a nearest-neighbor contact given that such a

contact was lost (i.e. the probability that a particle was “recovered”) is estimated as

pr(t) =
pc(t)− (1− p(t))

p(t)
. (2.35)

Addressing irreversibility at the characteristic time to first hop away, the probability

of a typical jump being irreversible is 1 − pr(τ1→2); this quantity is plotted in the inset

of Fig. 2.14A. We emphasize that a large hop (> σ/2) is not necessary for a jump to be
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irreversible; even a jump to the interstitial site has a chance to be deemed irreversible with our

definition, as we demonstrate in the numerical calculations presented below. The resulting

non-monotonicity is a highly non-trivial prediction that results from the complex interplay

between forward and backwards hopping times, both of which grow with volume fraction but

do so at different rates. We note that such a weak non-monotonicity, and an irreversible-

jump-fraction magnitude close to our calculation, has been observed in binary Lennard-

Jones mixture simulations as a function of inverse temperature [78]. Our interpretation for

irreversibility is then that a particle trying to escape its cage of neighbors must first hop into

an “interstitial” site corresponding to the first minimum of the radial distribution function.

From there, the average structural constraints determine the relative rates of continuing

the cage escape process (“unbinding”) or falling back (“recovery”) into the nearest-neighbor

position.

If one assumes that the different particles forming the cage leave and return in an uncor-

related manner, a simple binomial model suffices for the probability that n lost neighbors

were recovered given that x nearest neighbors were at some point lost:

Pn,x(t) =

x
n

 pr(t)
n(1− p(t))x−n. (2.36)

The idea that the neighbors can be treated in this uncorrelated manner is perhaps reminiscent

of the finding that local density does not correlate well with local dynamic propensity in

a constrained lattice gas simulation [110]. Indeed, the distribution of nearest and next-

nearest neighbor vacancies found in the simulation is qualitatively quite similar to our Pn,x

distributions.

Figure 2.14A shows calculations for various x at t = τ1→2 and φ = 0.55; qualitatively the

results are very similar to the distributions observed in 2D simulations of a binary LJ mixture

model below the onset temperature [77]. Figure 2.14B presents calculations at just two

different values of neighbors initially lost but for different volume fractions, and the observed
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Figure 2.14: (A) Probability of neighbor loss/recovery at the cage-escape time, Pn,x(τcage), for
x = 2, 3, 4, 6, 9. Inset. Fraction of irreversible jumpers for τ = 0.5τcage (dashed), τcage (solid),
and τ = 0.5τcage, τcage, 2τcage (dash-dotted). (B) Pn,x(τcage) for (left) x = 3 and (right) x = 6
at τ = 0.5τcage, τcage, 2τcage(dashed, solid, and dash-dotted curves, respectively) at φ = 0.52.
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volume fraction dependence of Pn,x is rather weak. One can then define, as was done in

analyzing the simulation data, an “irreversible” event by finding the x such that probability

of recovering all of the lost particles falls below some threshold at the characteristic relaxation

time, e.g., P0,x(τcage) < 0.05. In two dimensions at one specific temperature Widmer-Cooper

et al. found x = 4 [77], and an experimental study of 2D slices of an ultra-dense 3D hard-

sphere colloidal suspension reported x = 3 [104]. We estimate that for hard-spheres in three

dimensions one also expects x = 4 over a broad range of volume fractions, except at the

lowest and highest volume fractions we study (φ = 0.5− 0.53, 0.59, 0.60) where a greater

fraction of jumps fail to return to contact and the critical x drops to 3. We also find that

this distribution often peaks at n = x−2, as has been reported in the 2D simulation, but we

expect this is a coincidence and not a general result. Note that a slightly different definition

of “recovery” was used in the simulations: a neighbor was counted as “recovered” at time t

if it has been recovered at any time prior to t, even if it was then subsequently lost and no

longer in the neighbor list at t.

We can also compute quantities like the probability distribution to first lose a fixed

number of neighbors, a property that has been studied via the 2D simulations [77]. Results

for the probability to first lose the fourth neighbor are presented in Fig. 2.15; the inset

shows this quantity up to t/τcage = 2/7, roughly the range studied in the simulations and

over which the probability is a monotonically increasing function. We predict that, for the

two volume fractions examined, the distribution peaks soon thereafter, and then quickly

decays to zero.

2.9 Facilitation, KCM Statistics, and Decoupling

2.9.1 KCM Picture

In this section we propose a specific spatial coarse-graining over activated two-particle mo-

tion to try to connect our microscopic theory that relates structure and slow intermittent
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Figure 2.15: Probability distribution to first lose four neighbors, P4(t/τcage), for φ = 0.52
(solid curve) and φ = 0.55 (dashed curve). Inset. P4(t/τcage) at short times.

activated dynamics with the ideas of dynamic facilitation that form the cornerstone of kinet-

ically constrained models. The KCMs seek to phenomenologically provide a coarse-grained

description of glass-formers in the language of lattice spin models. Rules governing the spin

flips are chosen so that all configurations are equally likely — resulting in trivial thermody-

namics — but where at low temperatures relaxation is governed by increasingly rare diffusing

defects, leading to non-trivial dynamically facilitated behavior. Although the microscopic

origin of the dynamic rules at the level of atoms and forces is unclear, specific KCMs have

been shown to be capable of describing some statistics that result from coarse-graining atom-

istic MD simulations, and can describe many features of dynamic heterogeneity [82,111,112].

In our opinion, there must be some structural basis for the postulated kinetic rules, and

searching for them is our present goal. While a first-principles coarse graining of particle

trajectories to recover the facilitation rules of specific KCMs (e.g. the Fredrickson-Andersen

or East model) does not seem to be a feasible task, one can ask if the statistics of coarse

grained particle mobility are similar to the KCM predictions. Here we take a modest first

step towards connecting with KCMs, and do not address the full, most-recently proposed

picture [82].

Fundamental to the KCM perspective of diffusion-relaxation decoupling is the division of

events into “persistence” and “exchange,” which correspond to the first nucleation of particle
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mobility and subsequent manifestations of mobility, respectively. The basic insight behind

this division is the idea that once particle mobility has been nucleated at a site, further

mobility becomes more likely at that site. In the facilitation picture, a particle spends a

long time waiting for a (rare) excitation line to sweep past, but once an excitation line is

in the particle’s vicinity it is likely to diffuse back and forth across the particle’s position,

triggering further relaxation and diffusion. It is first and foremost this division that we seek

to understand at a microscopic level.

2.9.2 Dynamical Mapping and Model Calculations

Current attempts to coarse-grain particle trajectories from molecular dynamics (MD) sim-

ulations onto KCM statistics have relied on interpreting the distribution of persistence and

exchange times as the first time a particle moves beyond a threshold distance and then subse-

quent times between further, similarly large particle motions. This characteristic threshold

is often taken to be half a particle diameter, a = σ/2 [111], quite similar to our earlier

study of particle escapes from a nearest-neighbor list [105]. Qualitatively similar features

are found for a range of choices for this threshold displacement provided that irrelevant

small-amplitude vibrational motions are coarse grained out (either by averaging over short

vibrational periods or by resolving only inherent structures) and that the displacement is

not so large as to obscure a longer time scale associated with broader system relaxation [82].

We adopt the above perspective as inspiration for the analysis of our real-space NLE

theory of correlated two-particle hopping. However, we emphasize that the distinction be-

tween “persistence” and “exchange” in our microscopic theory arises from the underlying

structure of the fluid; spatial correlations imprinted on the hopping times as a function of r0

make some interparticle separations more favorable for activated events to occur than oth-

ers. We will take the fundamental persistence event to be the irreversible separation of two

particles from the first to the second shell of the radial distribution function (Fig. 2.13B).

This definition is in the spirit of recent work on KCMs, where excitations are viewed as
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“non-trivial particle displacements associated with transitions between relatively long-lived

configurations” [82]. That is, since excitations are not just particles moving but an underly-

ing feature of the structure that promotes mobility, we wish to exclude from our definition

of “persistence” events those particles motions which quickly lead to a return to the original

configuration. Using the notation of Sec. 2.8, the probability distribution of a persistence

event at a fixed initial separation can thus be described as

Ppersist(t, τ
+(r0), τ−) =

∫ t

0

P (t′, τ+(r0)) ·
(
1− P ′(t− t′, τ−)

)
dt′, (2.37)

where P (t, τ+(r0)) as given in Eq. 2.29 is the probability to separate from contact at time

t given a mean first-passage time of such an event τ+(r0), and (1 − P ′(t − t′, τ−)) from

Eq. 2.32 is the probability that the particle pair has not returned to contact in the time

interval (t− t′) given a mean time for such an event τ−. As in our previous work [105], this

distribution is then averaged over the spatial disorder in the first shell, taking for convenience

the backwards-hopping, irreversibility-revoking events to occur at the characteristic rate

τ2→1 as computed in the previous section. Thus, our final estimate for the persistence time

distribution is

P (τp) = A

gmin∫
1

r2
0g(r0)Ppersist(τp, τ

+(r0), τ2→1) dr0, (2.38)

with A the normalization constant.

The distribution of Eq. 2.38 is plotted in Fig. 2.16 for a variety of hard-sphere-fluid volume

fractions, and its first moment is plotted versus volume fraction in Fig. 2.18. We note that

the variance of this distribution closely tracks the mean, a feature of many distributions in

the exponential family. A key feature of the best-supported facilitated models is a parabolic-

law dependence of the relaxation time [113], and this is clearly shown by the fitting curve in

Fig. 2.18. Specifically, over the range φ = 0.5− 0.6 the calculations are very well described

by ln(τp/τ0) ∝ (φ− φc)2 for volume fractions greater than an empirical onset φc ≈ 0.47.

This is greater than the NMCT crossover volume fraction of φNMCT ≈ 0.43, and in the
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single-particle theory corresponds to a small barrier of Fb ≈ 0.6 kBT.
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Figure 2.16: Logarithmic probability distributions for the exchange (P (log10τx), dashed) and
persistence times (P (log10τp), solid) for φ = 0.52, 0.54, 0.56, 0.58, 0.6.

Consistent with the above we then define the exchange-time distribution as arising from

forward hops out of the second shell (i.e. the probability of hopping away before hopping

back to contact), which up to a normalization constant B results in

P (τx) = B

∫ g
2ndmax

gmin

r2
0g(r0)P (τx, τ

+(r0)) ·
(
1− P ′(τx, τ−(r0)

)
dr0. (2.39)

Numerical results for this distribution are also plotted in Fig. 2.16. We note that the decision

to exclude backward hops in the definition of an exchange event makes only a very minor

quantitative difference to the distribution, but choosing these irreversible hops to be the

fundamental persistence event in Eq. 2.38 is important. This choice results in a small

quantitative adjustment to the mean persistence time, but qualitatively suppresses much of

the short-time part of the distribution since backward hops can occur more rapidly than

the cage-breaking event, and emphasizes the large skew of the distribution, consistent with

observed persistence distributions in the literature [111,112,114].

Figure 2.17 plots both distributions, normalized by their peak height and position. One

sees that the persistence and exchange distributions are significantly different in both their

shape and response to increasing volume fraction. Thus, it appears we recover this funda-
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mental feature of KCMs, but do note that some details of our distributions are unlike those

deduced in the coarse-grained atomistic MD simulations [111]. In particular, in that work

the exchange-time distribution acquires a (slight) skewness opposite that of the persistence-

time distribution, whereas we find a slight skewness of the same sign. Additionally, at the

lowest two temperatures studied in the MD simulations the peak of the exchange distribu-

tion showed almost no shift, whereas we find the peak monotonically shifts to longer times

with increasing volume fraction.
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Figure 2.17: P (log10τx) normalized by its peak height and position. Inset. P (log10τp)
normalized by its peak height and position.

The short-time behavior of the exchange-time distributions exhibit the expected Poisso-

nian behavior, but the rest of the exchange-time distribution is a less-good match to observed

distributions in simulations of the thermal liquid model. We expect this is partly a result of

including only one type of exchange event: hopping from the second shell to the third. In

reality, one should likely include the statistics of all other types of hops in the exchange time

distribution: hopping back and forth from the third shell, center-of-mass hops that we have

neglected here, and so on. Additionally, particularly for the relatively low barrier hops that

characterize the exchange events, it is known that our choice of a Poissonian distribution

for the barrier-hopping process is quantitatively inaccurate [92]. All of these factors would

serve to broaden our predicted exchange time distribution in line with what is observed com-
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putationally, where particles are typically tracked over relatively long time scales thereby

allowing for the sampling of long exchange times [111].

Within the KCM perspective the difference between persistence and exchange times has

been proposed to explain the Stokes-Einstein decoupling of viscosity (or alpha relaxation

time) and diffusion observed in supercooled liquids and also models of hard sphere suspen-

sions [111,112,114]. The argument is that while relaxation is governed by the slowest (most

local) characteristic time scale of the system, τp, mass transport requires multiple hops to

become diffusive and is controlled by the faster exchange processes, and hence proceeds on

the time scale τx. Thus, the ratio R = τp/τx provides a quantitative measure of the de-

coupling in a given model. For the hard-sphere system, our calculations of this decoupling

parameter are plotted against the persistence time in the inset of Fig. 2.18. We find that to

within our numerical accuracy the data is well fit by R ≈ 3.95 + 1.0 log(τp/τ0). In earlier

work using a simpler “cage escape” model [105] we found R ≈ 3.2 + 1.5 log(τcage/τ0) or
√
R ≈ 1.0 + 0.25 log(τcage/τ0). As previously discussed in that reference, the latter agrees

well with hard sphere simulations, and also decoupling experiments on molecular liquids at

Tg; these forms are also quite similar to earlier estimates based on the single-particle NLE

theory which fully took into account trajectory fluctuations (dynamic disorder) by numeri-

cally solving the stochastic equation-of-motion [53]. The quantitative similarity between the

aforementioned studies again points to the degeneracy of theoretical approaches to the glass

problem, and also supports our belief of strong connections between slow single-particle and

many-particle activated dynamics.

2.10 New Approximation for the Distinct Van Hove

Function

Continuous time random walk (CTRW) models, in which a walker takes a step of random

size at random points in continuous time [115], have been used in diverse phenomenological
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Figure 2.18: Average persistence time (circles), exchange time (diamonds), and cage escape
time (triangles) as a function of volume fraction, and an empirical “parabolic law” fit to the
persistence time, ln(τp/τ0) ≈ 480(φ− 0.47)2. Inset. Decoupling parameter R = τp/τx. Solid
line is R = 3.9 + log(τp/τ0), and dashed lines are earlier decoupling predictions based on the
“cage escape” model [21], R = 3.2 + 1.5 log(τp/τ0) and R = (2 + 0.25 log(τp/τ0))2.

descriptions of amorphous materials [116, 117]. Persistence and exchange events have been

embedded in this formalism as a way of translating distributions of events into an expres-

sion for the self-part of the van Hove function, Gs(r, t), where two distinct time-scales are

necessary to recover the correct expression for the van Hove function [118]. The essence

of this approach is to take the distribution of displacements associated with persistence

and exchange events to be fp(r) and fx(r), where fp(r) is associated with intra-cage local

Gaussian vibrations, and the distribution of jump sizes associated with fx(r) might similarly

be drawn from a Gaussian distribution but with a larger characteristic length, e.g., σ/2.

Defining probability distributions for the times at which these events occur, φp(t) and φx(t),

the probability that the random variable X of interest (for instance Gs) has the value r at

time t is given by

X(r, t) =
∞∑
n=0

p(n, t)f(n, r), (2.40)

where p(n, t) is the probability that the variable undergoes exactly n jumps in time t, and

f(n, r) is the probability that in n jumps the displacement is r. With the above distributions

the CTRW framework allows one to carry out the sum in Fourier-Laplace space, with the
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result [118]

X(q, s) = fp(q)
1− φp(s)

s
+ f 2

p (q)fx(q)
φp(s)(1− φx(s))

s(1− φx(s)fp(q)fx(q))
. (2.41)

This sort of formula can be (and has been [70, 119]) used to write down an expression for

Gs(r, t) or Fs(k, t) given information from a single-particle theory about localization, jump

distances, and average hopping and reaction times. In the KCM perspective of persistence

and exchange events the expression is largely the same, except the distributions of persistence

and exchange jumps are both taken to be drawn from the same (Gaussian) distribution [70].

Our theory of two-particle hopping is not suitable for studying the self part of the van

Hove function because the jumps are not single particle events. However, if the analysis

in Sec. 2.9 is embedded in a CTRW framework one could construct a theory for a variable

X(r, t) that gives the probability that two particles with initial separation r0 are separated

by r0 + r at time t. Here we sketch an idea for how information of this sort might be used

to improve on the standard Vineyard approximation and estimate the distinct part of the

van Hove function, Gd(r, t).

First, one imagines coarse graining over the shells of the radial distribution and proceeds

as outlined in Sec. 2.9, defining the set X(r, t; i) for each shell i. Vineyard’s original idea

was to write the convolution [120]

Gd(r, t) =

∫
d~r′g(~r′)H(~r, ~r′, t), (2.42)

defining the unknown function Gd in terms of the unknown function H, and then making the

approximation H(~r, ~r′, t) ≈ Gs(~r− ~r′, t). As a first step, motivated by the above discussion,

one could alternatively approximate

H(~r, ~r′, t) ≈ X(|~r − ~r′|, t; i|~r−~r′|). (2.43)
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where i is the shell of g(r) indicated by the value of |~r − ~r′|. Indeed, one could coarse

grain to any desired degree - doing so exploits the observation that relative particle hops

take (on average) particles from one shell to the next. This improves on the usual Vineyard

approximation in two ways: first, the convoluting function for the radial distribution function

is not identical to the single-particle time evolution, Gs, but rather is a genuine two-particle

function, and second the convolution function itself varies with displacement. While the

numerical work necessary to carry out this scheme is non-trivial, it may nevertheless prove

useful to go beyond the venerable Vineyard approximation.

2.11 Summary

The second half of this chapter extended the two-particle NLE formalism to study the rel-

ative motion of two tagged particles over many correlated hopping and caging motions.

This picture closely corresponds to the intuition embedded in the local-equilibrium approx-

imation, that after a hop the fluid quickly re-equilibrates and tagged particles once again

find themselves caged by local neighbors at a new spatial position. Qualitatively, this ad-

vance uncovers connection between dynamical statistics predicted by kinetically constrained

models and microscopic structural correlations, for instance by finding persistence/exchange

decoupling in close agreement with simulations. Working at a more sophisticated level of

neighbor-loss creates a probe of the notion of irreversible particle motions that contribute to

system relaxation and reversible hops that do not. Identifying such irreversible rearrange-

ments has long been considered an especially thorny problem in understanding supercooled

and glassy materials. Quantitative comparisons of our theoretical results with experiments

and simulations are presently limited for several reasons, including the fact that our theory

has been developed for 3D fluids while the former have been largely focused on 2D systems.

Future work could generalize the theory to two dimensions, and new 3D simulations

could also be performed to more critically test our ideas. Additionally, while the focus here
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has been on hard spheres for simplicity, extension to other potentials for spherical particles

is in principle straightforward, as has been extensively achieved in diverse contexts based

on the single particle NLE approach [121]. In colloidal systems, the presence of short-range

attractive forces and/or shape anisotropy can result in qualitatively new behaviors, and it

could be interesting to study such systems from the perspective proposed here. Additionally,

at present the multi-state Markov framework has been developed only out to the third shell

of the radial distribution function, but in principle it can be extended much further. In

addition to suggesting a new approximation for the distinct van Hove function as outlined

in Sec. 2.10, this would allow new questions to be addressed. A natural next step might

be to continue building up the Markov model to fully address the problem of 2-particle

“unbinding.” That is, the process of two particles starting at contact and then separating

to such a point that their motion becomes dynamically uncorrelated. The length and time

scales over which that occurs are a key metric of dynamic heterogeneity.
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Chapter 3

DYNAMICS IN SYSTEMS WITH
TOPOLOGICAL CONSTRAINTS:
THREE-DIMENSIONAL CROSSES
1This chapter forms a convenient bridge between the two parts of this thesis. The divisions

are between glassy dynamics and macromolecular entanglement dynamics, between systems

where equilibrium structure controls dynamical behavior and where the equilibrium struc-

ture is trivial and cannot influence the dynamics. The bridging systems discussed in this

chapter are dense Brownian suspensions of non-rotating three-dimensional crosses composed

of three orthogonal infinitely thin arms joined at their midpoint and interacting only via

binary arm collisions. Such crosses were previously studied in a series of simulations, al-

beit using Newtonian instead of Brownian dynamics [122, 123]. The motivation behind the

simulations was an attempt to get at one of the ongoing disputes in the glass-physics com-

munity mentioned in Chapter 1: whether it is possible to have purely dynamically-driven

glass-like behavior, without complicated nonlinear feedback from liquid structure [8]. By

construction the crosses are an ideal test system. They move isotropically as in the case

of spherical particles, but as objects with zero excluded volume they always have trivial,

ideal-gas-like structure and thermodynamics. Thus the only influence on their dynamics

are the non-trivial topological constraints that arise from the uncrossability of the the cross

arms. Not surprisingly, these topological constraints become crucially important for the

system dynamics with increasing cross number density. As model glass-formers there are

real differences between their phenomenology and that of real glass-formers, for instance the

apparent absence of any decoupling phenomena [123].

Understanding the simulations from a theoretical perspective requires the ability to mi-

1This chapter contains text and figures reprinted with permission from D. M. Sussman and K. S.
Schweizer, Physical Review E 83 061501 (2011), Copyright APS 2011
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croscopically account for the topological constraints represented here by arm-arm collisions;

historically, describing such constraints has been an open and quite challenging problem [12].

Here we generalize a Gaussian theory that respects topological constraints to understand this

model glass former. In later chapters we will exploit the combination of this formalism with

the NLE to microscopically study a rather different phenomena: entangled polymer dynam-

ics, where topological constraints show up as “entanglements.”

3.1 Introduction

Understanding the uniquely slow motion of fluids of extended synthetic and biological macro-

molecules that experience dynamic constraints due to so-called “topological entanglements”

is a problem of broad theoretical and practical interest. Topological constraints are the dy-

namical consequence of macromolecular connectivity and uncrossability, and they become

relevant when polymers are large enough and/or dense enough. Their emergence is signaled

by a dramatic change of the intermediate and macromolecular length scale viscoelasticity

in a manner that generally depends on polymer architecture. The current theoretical state-

of-the-art description for such systems is the phenomenological tube model and its many

extensions [12,15,16], which have been quite successful in describing quiescent entanglement

dynamics for various architectures (e.g., chains and many-armed stars). However, differ-

ent extensions of the basic theory can sometimes appear to be mutually incompatible [23].

More importantly, the entire approach is phenomenological since a “confining tube,” and the

motional mechanisms to escape it (e.g., reptation or arm retraction), are postulated rather

than derived from first principles. The need for foundational advances in our theoretical

understanding of entangled polymers has been recently emphasized, and is being actively

pursued via computer simulation [22,23,124].

In the glassy dynamics area, phenomenological kinetically constrained models (KCMs),

formulated in terms of coarse-grained mobility fields (not molecules or forces) and postulated
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rules, are able to account for many aspects of slow dynamics without invoking nontrivial

structure or thermodynamics [75,80]. In some sense, this is the spirit of the reptation/tube

models which postulate the real space motional mechanisms that control entangled dynamics.

However, it is unclear how to specifically coarse-grain any given system (let alone entangled

polymer solutions or melts) onto a specific set of rules for the kinetic constraints within the

KCM framework.

A different microscopic approach to describing entangled polymer liquids builds on the

mode-coupling theory of glassy dynamics [125] generalized to linear chain polymers [85,126].

The polymer mode coupling theory (PMCT) predicts many aspects of entangled polymer

chain melt and solution dynamics rather well as a consequence of a specific macromolecular

structural feature: the long range correlation hole which emerges due to segmental-scale finite

excluded volume repulsions between connected chains that are “long enough.” However, al-

though this approach accounts for chain connectivity and local excluded volume constraints,

its formulation at the pair correlation function level implies it does not explicitly respect

the topological constraints that rigorously preclude chain crossing (or bond cutting). Such

constraints can only be captured by higher order dynamical correlations. For this reason,

the applicability of PMCT to the entanglement regime in molten polymers is controversial,

particularly in light of simulation studies which find that two different systems with identi-

cal static structure, differing only in whether chain crossing is allowed or not, have globally

different dynamical properties if the chains in the simulation are sufficiently long [127].

The only truly first-principles microscopic theory for fluids of strongly entangling objects

formulated at the level of forces that does account for uncrossability is Szamel’s dynamic

mean-field theory [17, 24]. In this approach a solution of infinitely thin, non-rotating rigid

rods was studied by self-consistently renormalizing exact binary collisions to take into ac-

count many-body effects. In the very long rod (or high reduced density) limit, the theory

predicts not only tube localization and anisotropic motion, but also scaling laws for the

tube diameter and long-time transverse diffusion constant, which all agree with the pre-
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dictions of a reptationlike tube theory. Szamel’s theory was later shown to be related to a

MCT-based microscopic approach that goes beyond the standard “Gaussian approximation”

of factorizing 4-point dynamic correlations into a product of 2-point functions. While the

Szamel theory necessarily then invokes other uncontrolled approximations, keeping 4-point

correlations is a necessary step to explicitly account for polymer uncrossability [128].

Recently there have been simulation studies of the system mentioned above: an ideal gas

of non-rotating three-dimensional crosses, formed by three mutually orthogonal infinitely

thin rods joined at their midpoints, studied as a function of density [122, 123]. Since these

crosses have zero excluded volume their equilibrium structure and thermodynamics is triv-

ial, and dynamics are controlled solely by the fact that two crosses cannot pass through

each other. Standard MCT-based approaches, which account for dynamical correlations as

a consequence of static correlations, are inapplicable to this system. Nevertheless, at a qual-

itative level many of the classic predictions of MCT are observed in the simulations [123], a

provocative and puzzling situation that is not understood. In contrast to fragile glass form-

ers, but consistent with the behavior of strong glass formers, the cross fluid simulations find

little or no “decoupling” between translational diffusion and relaxation. This is consistent

with the polymer physics view that entanglement dynamics is a “local” effect that occurs

on the single-polymer length scale of interpenetrating objects, with center-of-mass diffusion

and rotational (or longest) relaxation slaved to essentially the same elementary physical

process [12].

Most recently, computer simulations were carried out on an extended tangent-bead model

of a cross, i.e. a similar shape as discussed above but with finite excluded volume and

where rotations were allowed [129]. Qualitative agreement between these simulations and

the analogous topological model was found. This provides zeroth-order support for the

classic polymer physics view that, when the aspect ratio of the macromolecule is large,

local excluded volume effects are not the primary origin of the dynamical slowing-down

phenomenon called “entanglement.”
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In this section we generalize the dynamic mean-field theory approach of Szamel to study

a solution of non-rotating crosses. In addition to providing one more example in what is cur-

rently a vanishingly small library of molecular architectures for which topological constraints

have been rigorously included at some nontrivial level, our hope is that the understanding

gained will provide a foundation for deeper insight into the relationship between topological

constraints and macromolecular dynamics. We shall also consider the consequences of a spe-

cific local-density-fluctuation effect in qualitatively modifying a dynamic arrest transition

that we predict.

The rest of the chapter is organized as follows. In Sec. 3.2 we recall the relevant results of

Szamel’s dynamic mean-field theory for infinitely thin, non-rotating rods that provides the

starting point for our work. This material will be recalled throughout much of the rest of

this thesis as we discuss rods and chains in a variety of quiescent and rheological conditions.

Section 3.3 generalizes this theory beyond the prior asymptotic analysis for rods, and also

presents the new extension to treat non-rotating crosses. Results are derived for the long-time

diffusion constant of the fluid, as well as a characteristic localization length of the entangled

crosses in a dynamically frozen phase. Section 3.4 compares the results of these calculations

with simulations, and proposes corrections from (Gaussian) local density fluctuations to

explain the exponential suppression of diffusion and strong-glass behavior observed in the

simulations. Section 3.5 contains a summary and discussion of this present work, and outline

plans for future studies. Some technical details relating to the mathematical calculations in

Sec. 3.3 are relegated to Sec. 3.6.

3.2 Dynamic Mean-Field Theory for Rods

3.2.1 Derivation of the Effective Diffusion Tensor

The mathematical framework underpinning the dynamic mean-field theory of Szamel is the

N -particle generalized Smoluchowski equation [17, 24]. From this equation one can derive
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an infinite (in the N → ∞ limit) hierarchy of equations that relate the time evolution of

the reduced m-body distribution function to an integral over the reduced (m + 1)-body

distribution function. Defining ρ1(~r1, ~u1; t) as the density of a tagged rod at position ~r1

oriented along the unit vector ~u1, and ρ2(~r1, ~u1, ~r2, ~u2; t) as the two-particle distribution of

the tagged rod and a second rod, the first two levels of the infinite hierarchy are

∂ρ1

∂t
= ∇1 ·

(
↔
D0 (~u1) · ∇1ρ1−

↔
D0 (~u1) ·

∫
d2
↔
T (12)ρ2

)
, (3.1)

∂ρ2

∂t
=

(
∇1·

↔
D0 (~u1) ·

[
∇1−

↔
T (12)

]
+∇2·

↔
D0 (~u2) ·

[
∇2−

↔
T (21)

])
ρ2

−
2∑
i=1

∇i·
↔
D0 (~ui) ·

∫
d3
↔
T (i3)ρ3, (3.2)

where for brevity we have suppressed the arguments of the reduced distribution functions

and abbreviated the variables of integration as d# = (4π)−1d~r#d~u#. In the above equations
↔
D0 is the diffusion tensor in the limit of zero concentration which describes Brownian short

time motion in an implicit solvent; it can be written in terms of the bare longitudinal and

transverse diffusion coefficients of the rod as
↔
D0 (~u1) = D‖,0~u

T
1 ~u1 +D⊥,0(

↔
I −~uT1 ~u1). Playing

the role of “forces” in the Smoluchowski equations are the T -operators, which directly encode

into the evolution equations for the reduced distribution functions the constraint that the

infinitely hard rods cannot overlap and that rod-rod collisions occur impulsively. The T -

operators can be thought of as exactly describing the classical mechanics of two colliding

hard objects, and rigorously enforcing the uncrossability constraint at all times. For hard,

infinitely thin rods of length L the T -operator is given by [130]

↔
T (12) = ŵ12T (12) = ŵ12 lim

b→0+
δ(~w12 − b)Θ(L/2− |α|)Θ(L/2− |β|), (3.3)
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where b is the radius of the rod, ~w is the component of the relative CM separation of the

two rods, ~r, along the vector ~u1 × ~u2, and

α =
~r · ~u1 − (~r · ~u2)(~u1 · ~u2)

1− (~u1 · ~u2)2 , (3.4)

β =
~r · ~u2 − (~r · ~u1)(~u1 · ~u2)

1− (~u1 · ~u2)2 . (3.5)

Two approximations are now introduced to self-consistently close the infinite hierarchy.

First it is assumed that the right hand side of Eq. 3.1 can be written in terms of a tagged-rod

current density, ~j, that involves only one-body terms (not, that is, an explicit integral over

two-body terms). Thus, one defines ∂tρ1 = −∇1 ·~j(~r1, ~u1; t), with a current density

~j(~r1, ~u1; t) = −
↔
De(~r1, ~u1; t) ∗ ∇1ρ1(~r1, ~u1; t), (3.6)

where the asterisk denotes a time- and space-convolution, and
↔
De is a non-local effective

diffusion tensor. Second, a dynamic mean-field approximation is made to the second level of

the Smoluchowski hierarchy. Specifically, the integral over the three-body term is dropped

and the bare diffusion tensors are replaced with the same effective diffusion tensor defined

above. Hence, based on this approximation, the time evolution of the reduced two-body

distribution obeys the closed equation

∂ρ2

∂t
=
(
∇1 ·

↔
De(~u1) ∗

[
∇1−

↔
T (12)

]
+∇2 ·

↔
De(~u2) ∗

[
∇2−

↔
T (21)

])
ρ2. (3.7)

This type of self-consistent approximation is in the spirit of ideal MCT in that three- and

higher-body dynamic correlations are replaced by a self-consistent calculation involving only

one- and two-body dynamics. From this perspective, one can perhaps view the present

approach as a Gaussianlike dynamical theory, which is known to have strong limitations in

its glassy ideal MCT context [45, 131].
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With these approximations one can formulate a self-consistent equation for the effective

diffusion tensor. The two-particle correlations,

δρ2(~r1, ~u1, ~r2, ~u2; t) = ρ2(~r1, ~u1, ~r2, ~u2; t)− ρg(~r, ~u1, ~u2)ρ1(~r1, ~u1; t) (3.8)

where ρ is the mean number density of the fluid and g(~r, ~u1, ~u2) is the equilibrium pair

correlation function (equal to one almost everywhere for these objects with no excluded

volume), can be written in terms of the single-particle current density. Equating the resulting

expression with that of Eq. 3.6 yields, in Fourier-Laplace space,

↔
D
−1

e (~k, ~u1; z) =
↔
D
−1

0 (~u1) +
ρ

V

∫
d2d~r1e

−i~k·~r1
↔
T (12)

1

z − Ωe(12; z)

↔
T (12)g(~r, ~u1, ~u2)ei

~k·~r1 ,

(3.9)

where z is the reciprocal time variable and the effective Smoluchowski operator is

Ωe(12; z) =
(
∇~r ·

[↔
De(~u1; z) +

↔
De(~u2; z)

]
·
[
∇~r−

↔
T (12)

])
. (3.10)

A final technical approximation adopted to allow an analytic treatment is to ignore the ~k-

dependence of the effective diffusion tensors in Eq. 3.9 and set
↔
De(~k, ~u1; z) ≈

↔
De(~k = 0, ~u1; z).

Such an approximation, combined with the use of the same effective diffusion tensor to

capture the effect of the surroundings on both the tagged and the untagged rod in Eq. 3.7,

can be thought of as approximating the collective diffusion tensor by an effective self-diffusion

tensor [17]. This is reminiscent of a Vineyard-type approximation for self- and collective

propagators in simplified “naive” mode-coupling theories [31, 33]. Such a simplification

might be argued to be reasonable in the present context since disentanglement dynamics are

believed to be local, i.e. controlled by physics on the single macromolecule scale. Finally,

using the above approximation and writing the equation in terms of the effective adjoint
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Smoluchowski operator,

Ω†e(z) =
([
∇~r+

↔
T (12)

]
·
[↔
De(~u1; z) +

↔
De(~u2; z)

]
· ∇~r

)
, (3.11)

so that no derivatives act on the pair correlation function, one arrives at the self-consistent

equation defining the effective diffusion tensor:

↔
D
−1

e (~u1; z) =
↔
D
−1

0 (~u1) +
ρ

4π

∫
d~u2d~r g(~r, ~u1, ~u2)

↔
T (12)

1

z − Ω†e(z)

↔
T (12). (3.12)

Two specific results that emerge from Eq. 3.12 are the long-time diffusion constant and

the transverse localization length in a dynamically “frozen” phase of the rods. These are

discussed in the following subsections.

3.2.2 Long-Time Transverse Diffusion

To derive the long-time transverse diffusion constant for rods (the longitudinal component

always equals the bare value for infinitely thin needles), the z = 0 limit of Eq. 3.12 is

considered. A function f(~r, ~u1, ~u2) is introduced as the solution to the differential equation

Ω†e(z = 0)f(~r, ~u1, ~u2)ŵ12 = ŵ12T (12), (3.13)

and the long-time limit of the self-consistent equation can then be written as

↔
D
−1

e (~u1; z = 0) =
↔
D
−1

0 (~u1) +
ρ

4π

∫
d~u2ŵ

T
12ŵ12

∫
d~r g(~r, ~u1, ~u2)T (12)f(~r, ~u1, ~u2). (3.14)
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The differential equation defining f can be broken up into a singular part (proportional to

the delta-function in T (12)) and a regular part. These equations are, respectively,

ŵ12 ·
[↔
De (~u1)+

↔
De (~u2)

]
· ∇~rf(~r, ~u1, ~u2) = 1,

∇~r ·
[↔
De (~u1)+

↔
De (~u2)

]
· ∇~rf(~r, ~u1, ~u2) = 0 (3.15)

One can analytically solve for f by first changing from the Cartesian coordinate system

to the “natural,” non-orthogonal coordinates defined by the orientations of rods 1 and 2

(~r → α~u1 + β~u2 + γŵ12), and then changing variables a second time to x = A(α + β),

y = B(α − β), z = cγ, for certain constants A, B, and c. After these transformations the

regular part of the differential equation for f is a Laplace equation, and the singular part

corresponds to a boundary condition in a rhombus-shaped region of the z = 0 plane. If one

specifies the remaining boundary conditions by assuming f vanishes outside of the rhombus

in the z = 0 plane then a “hydrodynamic analogy” [17] holds: the differential equation and

the boundary conditions are the same as for the velocity potential of an ideal, incompressible

fluid in which a flat rhombus moves in a direction normal to its surface [132]. The spatial

integral that needs to be performed in the self-consistent equation for the diffusion tensor is

thus proportional to the kinetic energy of the fluid.

An analytic solution for the above problem does not exist, so as a final technical approx-

imation the rhombus is replaced by an ellipse of equal area. The transverse component of

the long-time diffusion tensor is then finally shown to be [17]

D⊥ =
D⊥,0

1 + ρL3F (D⊥/D‖,0)
√
D2
⊥,0/D⊥D‖,0

. (3.16)

In the high-density regime this simplifies to

D⊥ ≈ 18π
D‖,0

(ρL3)2 . (3.17)
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Remarkably, this is precisely the scaling predicted by reptation/tube theory (c.f. Eq, 1.1).

The function F (x) is a known (but complicated) monotonically decaying function between

x = 0 and x = 1 [17], the details of which are dependent on the technical approximations

used to solve the hydrodynamic problem outline above. However, the general form of the

above equation for D⊥ is independent of those details, and so for the high-density scaling

the technical approximations used to solve for f affect only the numerical prefactor. As

discussed by Szamel [17], one can further estimate the rotational relaxation time within the

reptation/tube picture via a Fick’s law type argument:

τrot ∝ L2/D‖,0. (3.18)

3.2.3 Localization Length

To investigate the emergence of a new dynamical length scale, directly related to the effective

radius of a confining tube in reptation theories, a slightly simpler system is considered: the

rods are still assumed to be infinitely thin and non-rotating, but now their longitudinal

motion is frozen. This procedure is precisely how modern simulations are now employed to

perform so-called “primitive path” analysis to deduce the tube diameter [30,124]. Formally,

the D‖,0 → 0+ limit of Eq. 3.16 is taken, resulting in D⊥ = D⊥,0(1 − ρL3/(ρcL
3)), where

ρcL
3 ≈ 9.29. Thus, the theory predicts that above this critical density the system enters a

dynamically frozen phase. To study the corresponding localization length, d, one assumes

that for small z the transverse diffusion is D⊥,e(z) ≈ zd2/4. The resulting self-consistent

equation is

4

d2
=
−ρ
8π

(
↔
I −~uT1 ~u1) :

∫
d~rd~u2

↔
T (12)(Ω†loc)

−1 ↔
T (12), (3.19)

where the colon denotes a double contraction of tensorial indices and

Ω†loc = −1 +
d2

4

[
∇~r+

↔
T (12)

]
·
(

2
↔
I −~uT1 ~u1 − ~uT2 ~u2

)
· ∇~r. (3.20)
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Defining a function floc by

Ω†locflocŵ12 =
↔
T (12) (3.21)

and making variable changes analogous with those above, one finds floc obeys a Helmholtz

equation with boundary conditions. Szamel solved the resulting problem in the d� L limit.

In this very high-density regime the boundary conditions in the z = 0 plane coming from

the singular part of Eq. 3.21 can be taken to cover the entire plane, and thus the problem is

effectively 1-dimensional. The asymptotic result is [17]

d

L
≈ 8
√

2

π

1

ρL3
. (3.22)

This localization length, which has a purely dynamic origin, has the same asymptotic scaling

as the tube radius in reptation theory where it is imagined to be (and is computed as) a

static quantity.

3.3 Dynamic Mean-Field Theory for Crosses

3.3.1 Self-Consistent Equation and Technical Approximations

Extending the dynamic mean-field theory to treat infinitely thin, non-rotating crosses is

conceptually straightforward, although a tractable model requires additional technical ap-

proximations. Describing for convenience the orientation of each cross by two variables, the

orientation of an arbitrarily chosen arm ~u and an additional (scalar) angle γ to specify how

the other two arms are oriented in the plane orthogonal to ~u, the self-consistent equation

for the diffusion tensor is quite similar to what was derived earlier:

↔
D
−1

e (~u1, γ1; z) =
↔
D
−1

0 (~u1, γ1) +
ρ

8π2

∫
d~u2dγ2d~r

↔
T (12)

1

z − Ω†e(z)

↔
T (12). (3.23)
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For brevity we have omitted the pair distribution function, as it is again equal to one almost

everywhere. The major difference is that the T -operators in Eq. 3.23, including the one

implicit in Ω†e(z), are now T -operators for crosses. Thinking of each cross as being composed

of three mutually orthogonal rods of length L joined at their midpoints, it is easiest to

express the cross T -operator as a sum over the nine rod T -operators corresponding to the

nine possible rod-rod collisions that could be involved in the interaction of two crosses. So,

if i = 1, 2, 3 labels the rods composing the tagged cross and j = 1, 2, 3 labels the rods of the

second cross, then
↔
T (12) =

3∑
i,j=1

↔
T rod(ij). (3.24)

Our method of analyzing Eq. 3.23 mirrors what was done for rods and involves defining a

set of functions fij as the solutions to the differential equations

Ω†e(z)fij(~r, ~ui, ~uj)ŵij = Trod(ij)ŵij, (3.25)

where ŵij = ~ui × ~uj/|~ui × ~uj| and the adjoint effective Smoluchowski operator,

Ω†e(z) =
([
∇~r+

↔
T (12)

]
·
[↔
De(~u1; z) +

↔
De(~u2; z)

]
· ∇~r

)
, (3.26)

contains the cross T -operator, not that of a rod.

As motivation for the additional technical approximations needed in this section, at z = 0

the integral in Eq. 3.23 is expressed as

−ρ
8π2

∫
d~u2dγ2d~r

3∑
i,j,k,l=1

ŵTijŵklTrod(kl)fij(~r, ~ui, ~uj). (3.27)

Since the ŵij are not orthogonal, there are two sources of “off-diagonal” contributions in the

above expression that, for tractability, we will ignore. First, the left hand side of Eq. 3.25

defining the fij contains contributions from multiple rod T-operators. This prevents the
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neat division of the differential equation for each of the fij into simple regular and singular

parts, and thus the exploitation of the hydrodynamic analogy. Second, there are the obvious

integrals to be done in Eq. 3.27 when (ij) 6= (kl).

The neglect of the first type of off-diagonal term in the definition of the fij is related

to a physical assumption that only one pair of arms is involved in the collision of two

crosses. That is, fij describes the influence of a collision of rods i and j on the two colliding

crosses. Dropping the off-diagonal terms in Eq. 3.25 assumes the collision of rods i and j is

unaffected by the collision of any other rod pairs. In a sense, this amounts to ignoring those

events that involve multiple-arm collisions, and in fact this type of event was disregarded in

simulations of the crosses [122, 123] since it is expected to make a contribution of measure

zero for these objects. Having made this assumption, the fij are straightforward to define

(as demonstrated in the next sections), but there are still the off-diagonal integrals in Eq.

3.27, and the above argument says nothing about whether those should equal zero. We have

numerically computed these integrals under the assumption that the first type of off-diagonal

contribution is negligible, and find they do indeed vanish. This seems to be a consequence

of the fact that although the ŵij are not orthogonal for any arbitrary relative orientation

of the crosses, on average they are. That is, a full angular average over ŵij · ŵkl is equal

to zero when (ij) 6= (kl). Thus, the neglect of this second type of off-diagonal contribution

is apparently intimately related to the geometry of the objects we are studying, a fact that

limits the range of shapes that this formalism can be easily extended to cover.

3.3.2 Long-Time Diffusion Constant

After making the approximations described above in Eq. 3.23, the long-time, z = 0 limit of

the self-consistent equation for the diffusion tensor can be written as

↔
D
−1

e (~u1, γ1; z) =
↔
D
−1

0 (~u1, γ1)− ρ

8π2

∫
d~u2dγ2d~r

3∑
i,j=1

ŵTijŵijTrod(ij)f(ij). (3.28)
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The diffusion tensor for these objects is isotropic, and so the long time diffusion constant is

D =
↔
De:

↔
I /3. Under the angular averaging over ~u2 and ν in the integral of Eq. 3.28 all nine

of the rod-rod pairs are equivalent, so to evaluate the second term on the right-hand side

of Eq. 3.28 we simply work out the total integral for any one pair of rods and multiply by

nine. The coordinate system is first changed as ~r → αûi + βûj + γŵij, followed by a second

variable change to

x =

√
1 + µ

2
(α + β), y =

√
1− µ

2
(α− β), z = γ, (3.29)

where µ = ~ui · ~uj. The fij are then defined by the differential equations

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
fij(x, y, z) = 0,

∂

∂z
fij(x, y, z) =

1

2D
, (3.30)

where the second equation holds on the rhombus in the z = 0 plane which is the x, y

transformation of the square defined by |α|, |β| ≤ L/2. This is precisely the hydrodynamic

analogy mentioned in the previous section, with the above two equations describing the

velocity potential of a rhombus moving with velocity 1/2D normal to its surface through an

ideal, incompressible fluid. Replacing the rhombus with an equal-area ellipse (with minor

and major axes g = L
√

(1− µ)/π, h = L
√

(1 + µ)/π) we exploit this hydrodynamic analogy

to approximate

−
∫

rhombus

dxdy fij(x, y, z = 0) ≈ −2D

∫
ellipse

dxdy fij
∂fij
∂z

. (3.31)
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The negative of the second integral is twice the kinetic energy of the fluid through which

the ellipse moves [132], and so using that result we get

−
∫
dxdydz Trod(ij)fij ≈

2L3(1− µ2)

3D
√
π

ψ(µ), (3.32)

where

ψ(µ) =

 π/2∫
0

dθ
√

(1− µ)sin2θ + (1 + µ)cos2θ

−1

. (3.33)

Since the same analysis applies for any pair of i, j, we are essentially done. Contracting

both sides of Eq. 3.28 with
↔
I /3, accounting for the Jacobian determinants of the variable

transformations employed, and making use of the approximate hydrodynamic result in Eq.

3.32, the final expression for the long-time diffusion constant for an ideal gas of these crosses

is:

1

D
=

1

D0

+
ρL3

D
√
π

1∫
−1

dµ (1− µ2)ψ(µ). (3.34)

Numerically performing the last integral yields

D

D0

= 1− ρ

ρc
, ρcL

3 = 2.06. (3.35)

Thus, much like the “longitudinally frozen rod” calculation, above a critical dimensionless

density the system enters a dynamically frozen state. Note the critical density is a factor of

∼4.5 smaller than required for transverse localization of rods, but the functional dependence

of the diffusion constant on reduced density is identical.

3.3.3 Full Localization Length

To study cross localization above the critical density, we write for small reciprocal time z

the 3-dimensional isotropic diffusion constant as D(z) ≈ zr2
loc/6. With this expression for
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D(z), contracting both sides of Eq. 3.23 with
↔
I /3 yields

6

r2
loc

=
−ρ

24π2

↔
I :

∫
d~u2dγ2d~r

↔
T (12)(Ω†loc)

−1 ↔
T (12), (3.36)

where

Ω†loc = −1 +
r2
loc

3

[
∇~r+

↔
T (12)

]
·
↔
I ·∇~r. (3.37)

The functions gij(~r, ~ui, ~uj) are now defined as the solutions to Ω†locgijŵij = ŵijTrod(ij), and

we make all the same approximations involving the neglect of “off-diagonal” terms as when

calculating the diffusion constant. The resulting self-consistent equation for rloc is then

1

r2
loc

=
−ρ

144π2

↔
I :

∫
d~u2dγ2d~r

3∑
i,j=1

ŵTijŵijTrod(ij)gij(~r, ~ui, ~uj). (3.38)

As mentioned in Sec. 3.2, the earlier rod work evaluated the analogous spatial integral over

gij only in the high-density limit [17, 24]. With the aid of a slightly different technical

approximation on the gij we are able to extend the analytic calculation of rloc to any density.

The details of the analysis are given in Sec. 3.6, where the full self-consistent equation for

the localization length is shown to be

L2

r2
loc

=
6πρL3

4
√

3

L2

r2
loc

F

(
L

rloc

)
, (3.39)

where

F (x) =

∫ 1

0

∞∫
0

J1(m)J0(rm)√
m2 + x2

rdmdr =
x− I1(2x) + L1(2x)

2x2
. (3.40)

Here, J0 and J1 are Bessel functions, I1 is the first modified Bessel function of the first kind,

and L1 is the first modified Struve function.

The inset of Fig. 3.1 shows an order parameter plot for the inverse localization length

predicted by Eq. 3.39 versus the dimensionless density. In the highly localized limit (L >>
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rloc) the asymptotic result is

rloc =
4
√

3

3πρL2
. (3.41)

For positive x the function F (x) monotonically decays from 4/3π at x = 0 and asymptotically

approaches F (x) ∼ 1/2x for x � 1. This behavior implies there is a critical density,

ρcL
3 =
√

3/2, below which the only solution to Eq. 3.39 is rloc →∞. In addition, the large-x

scaling of F (x) ensures that our result for the localization length has the same high-density

scaling as in Eq. 3.22. This estimate of the critical density is not identical to that in Eq. 3.35

due to a different set of boundary conditions used in the mathematical analysis. As discussed

in Sec. 3.6, applying the same boundary conditions as in Sec. 3.3.2 here would lead to a

predicted critical density of ρcL
3 =
√

3, but would leave the L >> rloc behavior unchanged.

The quantitative similarity (∼ 15% numerical prefactor deviation) of this estimate of the

critical density compared to Eq. 3.35, together with the recovery of the same high-density

scaling of the localization length, suggests that the technical approximations adopted to

extend the calculation beyond the high-density regime are not severe. The fact that the

predicted critical density is not identical when determined from the diffusion constant or the

localization length “routes” is a common inconsistency of approximate theories, including

the simplified MCT and density functional approach [33]. Note that the monotonic decay

of F (x) implies an unusual behavior for the localization length. Rather than jumping from

zero to a finite value at some critical density, as might be expected for a transition to an

amorphous glassy state, instead the localization length continuously decreases from infinity

as the critical density threshold is crossed. Qualitatively, this prediction of localization on

a scale much larger than the cross itself near the critical density seems unlikely, and the

stability of this result to improvements in the theory and/or its mathematical analysis is

presently unknown.

For interest, we also mention that the mathematical techniques used to solve for the

localization length outside of the asymptotic regime do not depend on the diffusion tensor
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Figure 3.1: Log-log plot of rloc vs. dimensionless density. Circles identify the value of the
root-mean-square displacement at the inflection point of the MSD vs time plots, taken from
the data in Ref. [123]. The inset shows the order parameter plot of inverse localization length
vs dimensionless density.

being isotropic, nor on any of the technical approximations related to the shape of the three-

dimensional crosses. As such, with only a few changes we can extend the localization length

calculation for longitudinally frozen rods beyond the asymptotic limit considered by Szamel.

Starting from Eq. 3.19 and applying the techniques outlined in Sec. 3.6, the result is the

extremely similar-looking

L2

r2
loc

=
πρL3

4
√

2

L2

r2
loc

F

(
L

rloc

)
, (3.42)

where the function F (x) is the same as defined in Eq. 3.40. Note that taking the rloc � L

limit of this function, for which F (x) ≈ 1/2x, exactly recovers the high-density result in Eq.

3.22 derived by Szamel.

A calculation of the localization length for a system of rods that are assumed to diffuse

isotropically in three dimensions can be similarly performed, resulting in

L2

r2
loc

=
πρL3

6
√

3

L2

r2
loc

F

(
L

rloc

)
. (3.43)

Here, the critical density is ρcL
3 = 9

√
3/2, a factor 32 = 9 larger than for the cross, and the
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asymptotic limit of the localization length is

rloc =
12
√

3

πρL2
. (3.44)

An essential point of the above analysis is that with (i) the neglect of the second type of

off-diagonal terms in Eq. 3.27, and (ii) the assumption of isotropic diffusion in either 2 or 3

dimensions, the scaling predictions of the theory for both the localization length and long-

time diffusion constant becomes architecture independent. For the special class of shapes

where approximation (i) is valid (linear rods and crosses composed of 2 or 3 orthogonal

rods), shape only changes the predicted value of the critical density. Thus, plotting our

results against ρ/ρc would collapse the curves corresponding to different shapes or different

dimensionalities of isotropic diffusion. On the other hand, anisotropic diffusion can lead to

different scaling laws, as seen in Sec. 3.2.2.

3.4 Comparison with Simulation

3.4.1 Diffusion Constant at Low Densities and the Localization

Length

Since the present theory permits not just a scaling analysis but a quantitative computation of

the diffusion constant and dynamical localization length at all densities, we wish to compare

with the molecular dynamics simulations in Refs. [122,123]. However, these simulations were

performed using purely Newtonian dynamics, while our theory adopts a Brownian description

of short time motion (as relevant for a solution) and a Newtonian (impulsive) description

of cross-cross interactions. The implications of different microscopic dynamics have been

studied in depth in the glassy dynamics area, both theoretically [133] and via simulation

[134]. Physically, one expects that the slow long-time diffusion and its associated transient

localization length are not sensitive to the form of the short time dynamics (Newtonian versus
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Brownian). Indeed, for systems with non-trivial equilibrium structure it has been shown that

the ideal MCT non-ergodicity transition is independent of whether the microscopic dynamics

are Newtonian or Brownian [133]. Moreover, computer simulations find that while the short-

time (β-) relaxation of a simple liquid is sensitive to the chosen microscopic dynamics, in

the glassy regime the long-time (α-) relaxation is essentially independent of them [134].

Given the above discussion, the only point that needs to be addressed to confront

our theoretical results with simulation is how the diffusion constant is nondimensional-

ized. In Refs. [122, 123] the diffusion constant is reported in units of a bare diffusivity,

D0 =
√
kTL2/m, which is the average thermal velocity (the initial velocity of the simulated

crosses was drawn from a Maxwell-Boltzmann distribution) multiplied not by the mean free

path, but rather by the characteristic size of the cross. Thus, at high densities D/D0 has the

meaning of the average time for a cross to move a fixed distance at zero density (in this case,

inertially) relative to the average time for a cross to move the same distance via the long-

time relaxation process (i.e., diffusively due to inter-cross collisions) at a nonzero density.

More generally, the time scales for Brownian and Newtonian athermal systems are related

by a density-dependent scaling factor. At low densities this factor varies as the inverse of

density and hence formally diverges as ρ→ 0 since a diffusion constant is not defined based

on Newtonian dynamics in this limit. However, at high densities, when inter-particle col-

lisions become dominant, the scale factor becomes increasingly density-independent (since

the mean-free path becomes relatively short). It is in this sense that with increasing density

the simulation D/D0 becomes analogous to the D/D0 we compute for our Brownian system.

Given this ambiguity in the density-dependent time rescaling between Newtonian and

Brownian systems, our result for the diffusion constant, D/D0 = 1 − ρ/ρc, is difficult to

directly compare with the simulation. On the one hand, it is reasonable that at low densities

the diffusion constant decays linearly for the Brownian system, and our result ofD/D0 = 0.51

at ρL3 = 1 is within an order of magnitude of the simulation result of D/D0 = 0.34. This is

a qualitatively sensible result since at that density inter-cross collision effects are important

95



and thus the time re-scaling factor is expected to be of order unity. However, the prediction

of a critical density at which the diffusion literally goes to zero is expected to be an artifact of

the theoretical approximations made. The simulations do clearly show a rapidly decreasing

diffusion constant, but one that is non-zero at all densities simulated (up to ρL3 = 20, well

beyond our ρcL
3). Naively, it is perhaps not surprising that the dy mic mean-field theory

predicts this kind of non-ergodicity transition, given that it has been shown to be related

to a MCT [128], and MCT is well known to predict spurious non-ergodicity transitions [11].

However, this dynamical transition was not guaranteed to occur for the present topological

model. Indeed, it does not exist for the system of anisotropically diffusing infinitely thin

rods. Miyazaki and Yethiraj [128] have demonstrated that Szamel’s dynamic mean-field

theory is recovered in a MCT approach only by going beyond the Gaussian approximation

(commonly taken to be the origin of the ideal MCT non-ergodicity transition) by including 4-

body dynamical correlations that explicitly encode information about polymer uncrossability.

Just as in the MCT work, then, we interpret our critical density as signaling the onset

of a new microscopic transport mechanism. Moreover, the density value predicted seems

reasonably consistent with the simulation finding of a change in density dependence of D

around ρL3 ∼ 2.

Below we will describe a simple model for calculating the diffusion constant beyond

the critical density based on finite-sized density fluctuations of the local environment of

the cross. However, we first compare our prediction for the localization length in Eq. 3.39

with the simulation data. Of course, the simulations do not have an exact analog of our

localization length, since at all densities the dynamics are ergodic. Nevertheless, we can take

inspiration from the glassy physics field where a theoretically predicted localization length

is viewed as a transient quantity. As was found based on the nonlinear Langevin equation

(NLE) theory of hard-sphere suspensions, we expect that the localization length should be

qualitatively related to the dynamic localization length defined to be the root-mean-square

displacement of the tagged particle at the inflection point of a log-log plot of the mean-square
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displacement (MSD) vs. time [53]; equivalently, this corresponds to the displacement at the

time of most anomalous non-Fickian diffusion. We employ the MSD simulation results in

Figure 2 of Ref. [123] to extract this transient localization length, and the results are shown

in Fig. 3.1. Within the simulation error bars, this transient localization length and its

theoretical analog are nearly proportional, with the latter being a factor of ∼ 3 smaller than

the former. We note that the data at low densities are quite noisy; the minimum value of

the slope is well-determined but the precise time at which it occurs is relatively uncertain.

However, at the highest densities the scaling of the simulation data agrees unambiguously

with the predicted localization length, with both length scales proportional to the inverse of

the dimensionless density.

3.4.2 Local Density Fluctuations and Activated Diffusion

The prediction of strict arrest beyond a critical density very likely reflects a dynamical

crossover to a rare-event mechanism of transport that relies on some kind of finite length

scale fluctuation process not captured in a Gaussian theory. For glassy systems, MCT has

been generalized to address noise-driven activated barrier hopping within the NLE approach

based on the concept of a dynamic free energy or confinement potential [31, 32]. For these

topologically entangled objects, though, we find that the dynamic free energy has an infinite

barrier, as seen in Fig. 3.2 (the NLE extension for topological systems will be discussed in

much greater detail in Chapter 4, where it is more relevant). This results from the detailed

technical approximations we made, which break down at very large displacements. As seen

in the inset to Fig. 3.2, the barrier to move a fixed amount generally grows linearly at

large displacements, and so we intuitively expect an exponential suppression of the diffusion

constant. To motivate an alternate model, consider the following argument.

Schematically, we start with the NLE equation of motion,

ζs
d

dt
r − ∂

∂r
Fdyn + δf = 0, (3.45)

97



0.0 0.2 0.4 0.6 0.8 1.0
r�L

5

10

15

20

25
Fdyn

4 6 8 10 12 14
Ρ�Ρc

5

10

15

20

25

FB

Figure 3.2: Fdyn vs scalar displacement for crosses at ρ/ρc = 10. Inset. Height of the
dynamic free energy relative to the well depth at (top to bottom) r = L, r = L/2, and
r = L/

√
12 (the cross radius of gyration).

and take the r(t → ∞) limit. For large cross displacements (r � L) we enter the easily-

analyzed asymptotic regime of the free energy corresponding to the x � 1 limit of F (x),

which in the case of isotropic diffusion reduces to βFdyn(r � L) ≈ −3 ln(r/L) + 3ρ ln(R)/ρc.

Thus the NLE is

ζs
dr

dt
=

3

r

(
1− ρ

ρc

)
+ δf(t) (3.46)

→ ζs
d

dt
r2 = 6

(
1− ρ

ρc

)
+ 2rδf(t). (3.47)

We then take an ensemble average (where, by orthogonality of the noise and the position

variable the last term vanishes) and integrate in time to get our expression for the mean-

squared displacement. This equation for the MSD is nonsensical if the term in parentheses

is negative, so we assume that the mean-squared displacement is simply zero for ρ > ρc,

in the sense that 〈r2(t → ∞)〉 is some time-independent constant. On the other hand, if

we assume that the system includes density fluctuations that occasionally bring the local
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density below the critical density then we have

〈r2(t)〉 = 6Ds

〈(
1− ρ

ρc

)〉
t, (3.48)

where the diffusion constant Ds has been introduced to give proper units. The key point

is that we can relate an effective diffusion constant to an ensemble average over density

fluctuations, 〈1− ρ/ρc〉.

Another motivation to study such density fluctuations comes by recalling some of the

approximations made in the derivation of the self-consistent equation for the diffusion tensor

in Sec. 3.2. In particular, the effective collective-diffusion tensor (generally length scale

dependent) was replaced by the effective self-diffusion analog. In kinetic theories of fluids

with volume-excluding particles such approximations are usually found to be reasonably

accurate up to length scales associated with the cage of nearby particles [33]. In effect,

we can imagine that our theory accurately predicts the diffusion constant in some finite

region of the fluid surrounding the tagged cross. On this scale there are spontaneous density

fluctuations, which thereby modulate the strength of confining entanglements. Such an idea

is common in diverse theories of structural glasses, where activation barriers are distributed

due to finite-size thermodynamic fluctuations of the relevant property (e.g., configurational

entropy in the random first order phase transition theory [98], density fluctuations in the

NLE theory [93], free volume [135], etc.). Interestingly, for entangled polymers it is known

based on primitive path analysis that what is meant by a localization length (tube diameter)

is not uniquely defined even at the level of a single polymer, but rather has a distribution

arising from the underlying static disorder [30,124].

What we specifically assume, then, is that Eq. 3.35 correctly describes the diffusion

constant in regions with local density as high as the critical density, and that in higher-

density regions the local diffusion is zero. The ideal gas of crosses is subject to finite-size

Gaussian density fluctuations, and we expect their lifetime is effectively as long as the
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relaxation timescale of the diffusing crosses. Hence, we estimate the self-diffusion constant

at any density by averaging Eq. 3.35 over the probability that a region of a fluid with mean

density ρ̄L3 has local density ρL3 :

D(ρ̄L3)

D0

=

ρc∫
0

(
1− ρ

ρc

)
P(ρ, ρ̄) dρ, (3.49)

with

P(ρ, ρ̄) =

√
2Vc
πρ̄

1

1 + Erf(
√
ρ̄Vc/2)

exp

(
−Vc
2ρ̄

(ρ− ρ̄)2)

)
. (3.50)

The amplitude of the square density fluctuations follows from the bulk compressibility,〈
(δρ)2〉 = ρS0/Vc, where for an ideal gas of crosses of trivial structure S0 = 1 [93]. We

emphasize these regions of high and low density are not envisioned as literally static, but

rather fade in and out as a result of dynamic fluctuations on the macromolecular scale with

the low-density regions having a lifetime comparable to or longer than the timescale for a

cross to diffuse through them. This picture is partially motivated by the physical interpre-

tation of the cross simulations [123].

We do not have a rigorous criterion for choosing the size of the critical region, beyond the

earlier observation that we expect our approximations are reasonable up to a length scale

commensurate with the cage of nearby particles (a macromolecular scale for the present

system). A natural choice for the critical volume is a sphere that would enclose one cross,

Vc = πL3/6. This choice for the critical volume is in some ways analogous to the idea that

“tube escape” for rods or chain polymers — the onset of center-of-mass Fickian diffusion —

takes place after a displacement equal to the end-to-end vector [12]. In any case, with this Vc

our theory predicts an exponential decay of the diffusion constant at high densities, qualita-

tively similar to the observation that the simulation data is well fit by D ∼ exp(−0.42ρL3)

for ρL3 > 5. Figure 3.3 compares the results of this finite-sized density-fluctuation calcu-

lation for the diffusion constant with the simulation data. We note that Eq. 3.49 is fairly

100



sensitive to the chosen size of the critical volume, and that very modestly increasing the size

of the critical region to be a sphere of radius 0.57L results in a quantitatively good fit of

the simulation data at all densities beyond the critical density. Significantly, Fig. 3.3 also

shows that the exponential fit used to describe the simulation data at high densities works

quite well nearly all the way down to the theoretically predicted critical or onset density of

ρL3 ≈ 2. This finding is again consistent with the expectation that the crossover density

to an ultra-slow activated-like relaxation regime should be independent of the microscopic

dynamics (Brownian versus Newtonian).
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Figure 3.3: Log-linear plot of the three-dimensional cross long-time isotropic diffusion con-
stant vs. dimensionless density. Points are simulation data from Ref. [123], the thin curve
is the exponential fit to the simulation date at high densities [123], the solid curve is the
prediction of Eq. 3.49 with Vc = πL3/6, and the dashed curve is Eq. 3.49 with finite-size
density fluctuations in a critical region of radius 0.57L. The vertical dash-dotted line is our
theoretical estimate of the critical dimensionless density.

In the context of this model of diffusion via rare local density fluctuations we can use our

result for the long-time diffusion constant to also estimate the relaxation time in a Fickian

manner as τr(ρ) ≈ L2/D(ρ). Although a somewhat trivial estimate, this is consistent with the

observed strong-glass-former behavior this system exhibits [122], as by construction it avoids

any translation-relaxation decoupling. In this way the relaxation time grows exponentially

with ρL3 at high reduced densities.

Finally, given how radically this model of local density fluctuations alters the entangled

cross dynamics (effectively destroying a non-ergodicity transition), it is worth mentioning
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that when applied to other models or systems characterized by a non-zero diffusivity at

all densities the consequences of local density fluctuations are much less pronounced. For

example, using the same Eq. 3.50 for local density fluctuations but studying their effect on

the transverse diffusion constant under the assumption of anisotropic rod motion as originally

derived by Szamel — Eq. 3.16 — we find that the high-density “reptationlike” power-law

scaling is perfectly preserved. Additionally, the model becomes much less sensitive to the

choice of critical volume. Taking the radius of the critical region to be anything from 0.4L

to 5L, not only is the asymptotic scaling prediction unchanged, but the value of D⊥/D⊥,0

predicted by the local-density-fluctuation model is almost quantitatively identical to Eq.

3.16 over the full range of density.

3.5 Summary and Discussion

We have generalized the dynamic mean-field theory of Szamel [17] for infinitely thin non-

rotating rods to a new model architecture, non-rotating three-dimensional crosses, and also

extended the calculation of the localization length for rods beyond the high-density asymp-

totic regime. The initial theoretical results for the long-time diffusion constant and the

localization length of crosses are in reasonable agreement with simulation. Key technical ap-

proximations include a neglect of certain types of off-diagonal mathematical terms, as well

as minor modifications to the boundary conditions of Laplace and Helmholtz differential

equations. Numerical analysis indicates that many of these technical approximations are of

a relatively minor quantitative nature.

More severe, though, is the essentially local range of validity that the approximation

of the collective-diffusion tensor by an effective self-diffusion tensor imposes on the result-

ing self-consistent equation for
↔
De. This limitation was invoked as physical motivation for

going beyond the literal non-ergodicity transition the theory predicts, reasoning that we

have neglected rare fluctuations that would permit long-time transport processes. We then
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imagined partitioning the fluid into regions, with size comparable to the crosses themselves,

of local density drawn from the thermodynamically correct ideal gas Gaussian distribu-

tion. Although the prediction for the long-time diffusion constant obtained by averaging

over these regions was sensitive to the choice of critical region size, natural choices for this

size led to excellent reproduction of the simulated long-time diffusion at densities above

ρcL
3. The resulting picture of mobile regions of enhanced motion diffusing through the fluid

is perhaps qualitatively reminiscent of the general ideas underlying kinetically constrained

models [75, 80]. And, indeed, in addition to the generic “strong glass former” behavior ob-

served, some of the more advanced features seen in the simulations seem consistent with

facilitated models, such as the behavior of the multi-point dynamical susceptibility [123].

However, connecting either our theory or the simulations concretely to a specific KCM is an

open and daunting challenge.

The simulations have also quantified many other dynamical features of the gas of ideal

crosses that we hope to address in future work. In particular, the wavevector-dependent inco-

herent dynamic scattering function, mean-square displacement, nongaussian parameter, and

dynamical susceptibility all present more sensitive tests of the fundamental validity of our

theoretical approach. Particularly desirable, although presenting significant theoretical chal-

lenges, would be a self-consistent treatment of the collective diffusion tensor, rather than the

simple approximation of it by the self-diffusion tensor. In addition to resolving the unphysi-

cal nonergodicity transition in a consistent manner rather than via the physically-motivated

but heuristic approach of Sec. 3.4, this might shed light on the origin of a dynamical length

scale much larger than the system size discovered in the simulations [123]. Building directly

on the progress reported in this article, the extension of the NLE approach to the topo-

logical entanglement problem, combined with Brownian trajectory simulations, is presently

under study as a means of accomplishing many of the above goals. We anticipate that this

advance will also be relevant to the quiescent and stress-driven dynamics of entangled liq-

uids of non-rigid polymers including semiflexible F-actin, random coils, and star branched
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polymers.

3.6 Analytic Solution for the Localization Length

In this section we expand on our presentation of the approximations and mathematical

techniques used to derive an analytic expression for the localization length of fluids of crosses

at all density. The starting point is Eq. 3.38,

1

r2
loc

=
−ρ

144π2

↔
I :

∫
d~u2dγ2d~r

3∑
i,j=1

ŵTijŵijTrod(ij)gij(~r, ~ui, ~uj), (3.51)

where the gij are the solutions to

(
−1 +

r2
loc

3

[
∇~r+

↔
T (12)

]
·
↔
I ·∇~r

)
gijŵij = ŵijTrod(ij). (3.52)

Since each of the arm-arm interactions is identical after angular averaging, the sum is re-

placed by nine times the value of the integral for any particular gij. Performing one of the

angular integrals and contracting the identity matrix with ŵTijŵij gives

1

r2
loc

=
−ρ
8π

∫
d~u2d~r Trod(ij)gij(~r, ~ui, ~uj). (3.53)

We now transform the coordinate system as ~r → αûi + βûj + γŵij, and change variables to

x =

√
3(1 + µ)

2L2
(α + β), y =

√
3(1− µ)

2L2
(α− β), z =

√
3

L
γ, (3.54)

which have Jacobians of |J1| =
√

1− µ2 and |J2| = L3/(3
√

3
√

1− µ2), respectively, for

µ = ûi · ûj. Defining a new function G(x, y, z) =
r2loc
L
√

3
gij(x, y, z), in terms of these variables
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G satisfies the equations

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
G(x, y, z) =

(
L

rloc

)2

G(x, y, z)

∂

∂z
G(x, y, z) = 1, (3.55)

where the second equation is a boundary condition that holds on a rhombus of area Arhomb. =

3
√

1− µ2 in the z = 0 plane.

To make further progress, two new technical approximations are invoked, both related

to the boundary conditions that G must satisfy. Recall that in the computation of the long-

time diffusion constant the rhombus in the z = 0 plane was replaced with an equal-area

ellipse. Here we replace the rhombus by a circle of equal area, that is, a circle with radius

a =
√

3
√

1− µ2/π. If we were to make this approximation in the calculation of the long-

time diffusion constant, analysis shows the critical density becomes ρcL
3 = 1.94 instead of

ρcL
3 = 2.06. We thus conclude that for the isotropically diffusing crosses this first different

approximation is of very minor quantitative importance. Second, and more importantly,

rather than assuming that the function G vanishes in the z = 0 plane outside of the circle

(the “hydrodynamic-like” choice of boundary conditions), we instead assume it is the z-

derivative of G that vanishes in that region of the plane. Numerically carrying out these

calculations with the hydrodynamic-like boundary conditions at several densities indicates

that the implications of this choice are irrelevant at very high densities (i.e., when rloc is

small), and make only a minor quantitative difference as long as the self-consistent equation

ultimately results in rloc . L. At larger rloc the difference is more significant, though, so that

when using the hydrodynamic boundary conditions the critical density increases by a factor

of two: (ρcL
3)hd =

√
3.

Proceeding, we transform to scaled cylindrical coordinates, x = ar cos θ, y = ar sin θ,

z = aZ, and find the problem reduces to that of a spatial integral over a function with

circular symmetry satisfying the Helmholtz differential equation ∇2G = (L/rloc)
2G, whose
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boundary conditions are a Z-derivative of ∂ZG = 1/a inside a circle of radius 1 in the Z = 0

plane and zero outside of it in the plane. The generic solution for G given the circular

symmetry of the problem is

G(r, Z) =

∞∫
0

A(n)enZJ0

(
r

√
n2 − L2

r2
loc

)
dn, (3.56)

where the A(n) are the weighting coefficients that will be determined by the boundary

conditions. Changing variables to m =
√
n2 − L2/r2

loc, one obtains

∂G(r, Z)

∂Z

∣∣∣∣
Z=0

=

∞∫
iL/rloc

mA(m)J0(rm) dm = w(r), (3.57)

where w(r) = 1/a for r < 1 and w(r) = 0 otherwise. The variable of integration in Eq.

3.57 runs from iL/rloc to 0 along the imaginary axis, and then from 0 to ∞ along the real

axis. Recall that the present goal is only to choose the factors A(m) such that the boundary

condition is satisfied. Assuming that this can be achieved with A(m) = 0 for all m /∈ R,

we exploit standard Bessel function orthogonality relations by multiplying both sides of Eq.

3.57 by rJ0(rm′) and integrating over r. We then find that the boundary conditions can be

satisfied by choosing

A(m) =

 J1(m)/am m ≥ 0

0 Im(m) 6= 0
(3.58)

Thus, the solution to the given Helmholtz problem in cylindrical polar coordinates is

G(r, z) =
1

a

∞∫
0

J0(rm)J1(m)ez
√
m2+L2/r2loc√

m2 + L2/r2
loc

dm. (3.59)

Substituting this result into Eq. 3.53, integrating over both sides of the circle, and taking into

account the factors arising from all the variable transformations, the self-consistent equation
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for the localization length finally reads

L2

r2
loc

=
6πρL3

4
√

3

L2

r2
loc

F

(
L

rloc

)
, (3.60)

where

F (x) =

∫ 1

0

∞∫
0

J1(m)J0(rm)√
m2 + x2

rdmdr =
x− I1(2x) + L1(2x)

2x2
. (3.61)
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Chapter 4

RIGID RODS: EQUILIBRIUM
DYNAMICS

4.1 Introduction

1As briefly discussed in Chapter 1, achieving a first-principles theoretical understanding of

the spectacular viscoelasticity of strongly entangled synthetic and biological polymer liq-

uids is a very challenging problem in time-dependent statistical mechanics [12]. The key

concept that must be addressed is the emergence of “topological constraints,” the dynam-

ical consequence of polymer connectivity and uncrossability in liquids of interpenetrating

macromolecules that are sufficiently large and/or concentrated. For many decades the pri-

mary theoretical approach for linear entangled polymer solutions and melts has been the

phenomenological reptation-tube model [12, 15]. Its central postulate is that the dynamical

effect of many surrounding macromolecules on single polymer motion can be represented as

an effectively static confining potential that strictly prohibits motion transverse to the poly-

mer backbone beyond a mesoscopic length scale, the tube diameter. At zeroth order, this

single material parameter is assumed to fully quantify the lateral dynamical constraints and

consequences of intermolecular forces. For random-coil chains, long-time transport proceeds

via one-dimensional curvilinear diffusion, and scaling laws close (but not equal to) exper-

imental observations are predicted. In practice, many competing non-reptative processes

are of high importance (e.g., contour-length fluctuations, dynamic dilution, and constraint

release), all of which reduce motional anisotropy and are required to understand experi-

1This chapter contains text and figures reprinted with permission from: D. M. Sussman and K. S.
Schweizer, Physical Review Letters. 107 078102 (2011), Copyright APS 2011; D. M. Sussman and K. S.
Schweizer, Journal of Chemical Physics 135 131104 (2011), Copyright AIP 2011; D. M. Sussman and K.
S. Schweizer, Macromolecules 45 3270 (2012), Copyright ACS 2012
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ment [16].

The reptation-tube approach has been undeniably very useful for polymers of diverse

architecture. However, the confining tube concept is a bold ansatz that is not deduced from

the statistical mechanics of the fundamental inter-polymer interactions in a first-principles,

self-consistent manner. Recent perspective and opinion articles [22, 23] emphasize that the

tube model lacks a microscopic foundation, and a “bottom up” conceptual breakthrough on

the crucial tube diameter length scale is needed to address open questions, some of which

were mentioned in chapter 1. In particular we recall the following: (i) What is the nature

of an entanglement and of the tube confinement field, and can it be derived theoretically?

(ii) What is the microscopic basis of constraint release? (iii) Can the connection between

polymer chemistry, concentration, and the tube diameter be understood from first principles?

(iv) How does the branch point in a star polymer diffuse subject to the tube constraint?

Several recent studies, both experimental and simulation-based, have challenged the com-

monly postulated one-parameter harmonic approximation for the tube confinement field.

Particularly relevant for our work are experiments and complementary theoretical work

on entangled solutions of the semiflexible biopolymer F-actin [25, 26], and simulations of

F-actin and rigid rod model polymers [27]. By studying displacement distributions at in-

termediate times, or averaging mean-square displacements over many trajectories, these

studies have revealed an effective transverse confining potential that is significantly softer

than harmonic. Evidence of strong anharmonic softening has also been observed in DNA

solutions [28] and in primitive-path simulations of entangled flexible chain melts [29, 30].

Hybrid Monte-Carlo/primitive-path simulations of polyethylene melts have found highly

non-gaussian distributions of effective tube diameters [136, 137], which could be indicative

of an underlying softer-than-harmonic confining potential. We note that some alternative

simulation methods of extracting probability distributions of the radial displacement of a

monomer from its mean position in a flexible polymer melt appear to find an effectively

harmonic confinement potential over the (limited) displacement range studied [138], but the
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bulk of the evidence points towards ubiquitous anharmonicities. The latter are relevant for a

deeper understanding of quiescent non-reptative motions involving lateral motion, and even

more importantly can have qualitative consequences for large-deformation response.

We have very recently proposed a new microscopic approach for the quiescent and stressed

dynamics of entangled, non-rotating rigid rod fluids [139, 140]. Its centerpiece is the self-

consistent construction of an anharmonic transverse confinement (tube) field based solely on

topological entanglements. Under quiescent equilibrium conditions, the theory is consistent

with the DE model for how the tube diameter and rotational/transverse center-of-mass

(CM) diffusion constants vary with rod density. It also predicts a strongly anharmonic

confinement field with key features in quantitative accord with highly entangled F-actin

experiments [25,139], and qualitatively consistent with chain melt simulations [29] and DNA

solution measurements [28]. The single most important feature of our theory is that the

dynamic entanglement force localizing a polymer in a tube is of finite strength, which results

in multiple novel consequences for the role of applied stress on the tube diameter, diffusion,

and relaxation [140] that are not anticipated by existing reptation-tube models.

In this chapter we present a detailed exposition of our theory. Questions (i)-(iii) above

are directly addressed, and question (iv) was partially treated in Chapter 3 by studying

fluctuation-driven activated hopping of the center-of-mass of topologically entangled 3D

crosses, a potential analog for the branch-point motion of rigid six-arm stars [141]. Our aim

is a unified presentation of the new ideas; we thus repeat some of the material from Sec. 3.2,

but supplemented with additional physical discussion.

The rest of the chapter — in which we present the key theoretical aspects for both qui-

escent and stressed conditions (self-diffusion constant; tube diameter; dynamic confinement

potential; incorporation of stress and orientation; and the concept and definition of “micro-

scopic yielding”) — is organized as follow. Sections 4.2 and 4.3 review some of the more

technical aspects of the prior work we build on, deriving expressions for the long-time dif-

fusion constant and a characteristic localization length for a needle in a tube, respectively.
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These first two sections also comment on the limitations of approximations used and present

a different analysis of the critical entanglement density than was presented in Chapter 3.

Section 4.4 combines this formal starting point with the NLE theory to construct the tube

confinement potential, and Sec. 4.5 discusses stochastic trajectory simulations on the quies-

cent transverse confinement potential to gain additional insight into the anharmonicities of

the tube. Section 4.6 generalizes the confinement potential to treat applied shear stress. Sec-

tion 4.7 allows for the confinement potential to be modified by an anisotropic distribution of

needle orientations, important both in considering liquid crystalline order but also of poten-

tial relevance for our later rheological applications, where external deformations can induce

orientational order on the polymer system. Section 4.8 briefly summarizes the material in

the chapter.

4.2 Quiescent Long-Time Diffusion

Our starting point is the self-consistent dynamic mean-field theory of Szamel, which describes

a solution of infinitely thin, non-rotating rigid rods or needles of length L [17, 24]. The rod

fluid has ideal-gas structure and thermodynamics, so the dynamics are determined solely by

topological constraints. For heavily entangled rods that are allowed to rotate the long-time

rotational diffusion constant is proportional to its transverse CM diffusion analog (D⊥), and

is inversely related to the terminal rotational relaxation time [17]; thus, knowledge of D⊥

captures all long-time dynamics [17,24]. Polymer connectivity and uncrossability are exactly

enforced at the two-rod-collision level, in contrast to the usual mode coupling theories which

do not rigorously forbid polymer backbone crossing at any level due to a factorization of

multipoint dynamic correlations [128]. In both Szamel’s and our approach, beyond-two-body

effects are described via a self-consistent renormalization. A schematic illustrating the spirit

of the approach is presented in Fig. 4.1.

The Szamel theory is formulated in terms of coupled equations for reduced distribution
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Figure 4.1: (a) Uncrossable rods diffusing with bare dynamics in between impulsive hard-
core collisions. (b) Self-consistent renormalization of many-body effects into an effective
diffusion tensor at the two-rod-dynamics level. (c) Analysis of the short-time structure of
↔
De determines the full transverse dynamic tube confinement potential.

functions, ρi, derived from the N -particle generalized Smoluchowski equation, the first two

of which are [24]

∂ρ1

∂t
= ∇1 ·

(
↔
D0 (~u1) · ∇1ρ1−

↔
D0 (~u1) ·

∫
d2
↔
T (12)ρ2

)
, (4.1)

∂ρ2

∂t
=

(
∇1·

↔
D0 (~u1) ·

[
∇1−

↔
T (12)

]
+∇2·

↔
D0 (~u2) ·

[
∇2−

↔
T (21)

])
ρ2

−
2∑
i=1

∇i·
↔
D0 (~ui) ·

∫
d3
↔
T (i3)ρ3, (4.2)

where the arguments of the reduced distribution functions have been suppressed, the vari-

ables of integration are denoted as dl = (4π)−1d~rld~ul, and ~ul is the orientation of rod l.

Here
↔
D0 is the bare diffusion tensor in the limit of zero concentration describing Brownian

short-time motion in an implicit solvent, which in terms of the longitudinal and transverse

components can be written as
↔
D0 (~u1) = D‖,0~u

T
1 ~u1 + D⊥,0(

↔
I −~uT1 ~u1). The key features are

the T-operators, which exactly describe binary collisions and rigorously enforce rod uncross-

ability at all times. They correspond to an impulsive “entanglement force” perpendicular to

the plane formed by the orientations of the two colliding rods. For hard, infinitely thin rods
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of length L the T-operator is [130]

↔
T (12) = ŵ12T (12) = ŵ12 lim

b→0+
δ(~w12 − b)Θ(L/2− |α|)Θ(L/2− |β|) (4.3)

where b→ 0 is the rod radius, ~w is the component of the relative CM separation of the two

rods, ~r, along the vector ~u1 × ~u2, and

α =
~r · ~u1 − (~r · ~u2)(~u1 · ~u2)

1− (~u1 · ~u2)2
, β =

~r · ~u2 − (~r · ~u1)(~u1 · ~u2)

1− (~u1 · ~u2)2
. (4.4)

The infinite dynamic hierarchy is closed by writing a self-consistent equation for
↔
De,

a non-local in space and time effective diffusion tensor. This is achieved by dropping the

integral over the three-body term in Eq. 4.2, and replacing the bare diffusion tensor with this

same effective self-diffusion tensor. By comparing the definition of the test-rod current with

a derived expression, one obtains in Fourier-Laplace space the self-consistent equation [17]:

↔
D
−1

e (~u1; z) =
↔
D
−1

0 (~u1; z) +
ρ

4π

∫
d~u2d~rg(~r, ~u1, ~u2)

↔
T (12)

1

z − Ω†e(z)

↔
T (12). (4.5)

Here z is the reciprocal time variable, g(~r, ~u1, ~u2) is the 2-rod equilibrium pair correlation

function (equal to unity almost everywhere for an isotropic solution of infinitely thin needles),

and the effective adjoint Smoluchowski operator is given by:

Ω†e(z) =
[
∇~r+

↔
T (12)

]
·
[↔
De (~u1; z)+

↔
De (~u2; z)

]
· ∇~r. (4.6)

Two main approximations have been used to derive this expression: (i) neglect of the

~k-dependence of the effective diffusion tensor,
↔
De (~k, ~u1; z) ≈

↔
De (~k = 0, ~u1; z), and (ii)

use of the same effective diffusion tensor to capture the effect of the surroundings on both

the tagged and the untagged rod. Together these approximations can be thought of as

replacing the wavevector-dependent collective diffusion tensor by an effective self-diffusion
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tensor [17], reminiscent of a Vineyard-like approximation successfully employed in glassy-

dynamics contexts [31,33]. Szamel’s theory has been shown to be related to a sophisticated

version of a MCT-like approach that avoids factorizing four-point correlation functions into

products of two-point correlations [128], the crucial feature required to capture dynamical

polymer backbone uncrossability.

Equations 4.5, 4.6 are infinite order in the effective diffusion constant and T-operator.

Hence, an infinite sequence of correlated collisions of a tagged rod with its surroundings

is approximately taken into account. If the effective diffusion constant in Eq. 4.6 is re-

placed by its dilute solution value, then an independent binary collision (IBC) theory [6]

is recovered, akin to dynamic second-order perturbation theory. The IBC description can

describe the initial consequences of inter-rod collisions, but cannot predict tube localization,

a non-perturbative phenomenon.

The self-consistent dynamic mean field theory makes several notable predictions. The

most elementary comes from asking what happens if one assumes that rods diffuse isotropi-

cally. By ignoring the distinction between transverse and longitudinal motion, and employing

the same mathematical methods discussed previously [17,141], we find D/D0 = 1−(ρ/ρc,iso),

corresponding to a non-ergodicity transition at ρc,isoL
3 ≈ 18.2. This quenching of isotropic

motion, or formation of a “topological glass,” occurs at an eminently reasonable density in

the sense that it requires (18.2/L3)(πL3/6) ≈ 10 interpenetrating rods to occupy a sphere

of diameter L. Of course, such an isotropic glass is not expected to be realized since the

system can exploit anisotropic modes of transport.

Carrying out the full anisotropic calculation, wherein D|| = D||,0 (unconstrained longitu-

dinal reptation) and D⊥ is self-consistently computed [24], agreement with the asymptotic

high-density scaling law of the static tube-reptation theory is obtained, D⊥/D0 ∝ (ρL3)
−2

.

A full numerical analysis from the IBC to the reptative scaling regime yields a dynamical

crossover at ρeL
3 ≈ 10.1 [139]. Recall that the underlying physics controlling long-time

transverse center-of-mass and rotational diffusion is qualitatively identical: each proceeds
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via a small lateral displacement or a rotation when a rod reptates out of its local tube [17].

The practical estimate of the entanglement crossover above agrees quite well with what

is predicted if reptation as a mode of motion is removed by hand. Doing so (i.e., setting

D||,0 = 0) one finds D⊥/D0 = 1 − (ρ/ρ∗c), corresponding to strict transverse localization at

ρ∗cL
3 = 9.29 [17]. After rescaling ρ by its crossover value the full anisotropic theory agrees

quantitatively with simulations for both the rotational and transverse translational diffusion

constants over the entire density range [20,21], as seen in Fig. 4.2.
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Figure 4.2: Dimensionless diffusion constant vs. rescaled density. Solid line: D⊥/D⊥,0 as
predicted by Eq. (15) of Ref. [24], with ρcL

3 ≈ 10.1. Circles, squares and diamonds are
simulation data for Dr/Dr,0 taken from Fig. (9.7) of Ref. [20] and Dr/Dr,0 and D⊥/D⊥,0
from [21], with ρcL

3 ≈ 34, 55, and 23, respectively. Dashed and dot-dashed lines are the
IBC and high-density scaling. Inset: Normalized transverse diffusion versus orientational
order parameter at several reduced densities, along with the Doi-Edwards (DE) result [12].

4.3 Gaussian Transverse Localization

The possibility of tube localization can be addressed by taking the low-frequency limit of the

effective self-diffusion tensor, De(z → 0), and assuming Gaussian localization characterized

by a mean harmonic localization radius, rl. A self-consistent expression for the transverse

localization length (half of the mean tube diameter) can thus be derived [17]:

4

r2
l

=
−ρ
8π

(
↔
I −~uT1 ~u1) :

∫
d~rd~u2

↔
T (12)(Ω†loc)

−1 ↔
T (12), (4.7)
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where the colon denotes a double contraction of tensorial indices, and

Ω†loc = −1 +
rl

2

4

[
∇~r+

↔
T (12)

]
·
(

2
↔
I −~uT1 ~u1 − ~uT2 ~u2

)
· ∇~r. (4.8)

Equation 4.7 is derived by analyzing a system where the longitudinal (reptative) motion of

all rods is quenched. Conceptually this is similar to how simulations perform primitive path

analyses to deduce the tube diameter [124]. We re-emphasize that no equilibrium structural-

correlation information enters Eqs. 4.7, 4.8, since thermodynamically the rods are an ideal

gas. Note that since rl and the T -operators enter the adjoint “localized” Smoluchowski

operator, Eq. 4.7 corresponds to an infinite-order re-summation of the multiple correlated

collisions which are the microscopic origin of tube localization.

With a particular choice of boundary conditions for the Helmholtz differential equation

(discussed in Sec. 3.6) used to solve Eq. 4.7 for rl, transverse localization is found to emerge

at a critical density ρcL
3 = 3

√
2 [141]. The numerical discrepancy between this critical

density and the entanglement crossover for the long-time diffusion constant discussed above

is partly a result of the technical mathematical approximations used to solve the Helmholtz

equation, and partly a result of the inaccuracy of the theory at very large displacements

[141]. Specifically, at ρc the theory predicts that the inverse localization length increases

continuously from zero, and r−1
l � L−1 is precisely the regime in which the Vineyard-like

replacement of the collective-diffusion tensor with a k-independent self-diffusion tensor is

expected to be least accurate. However, we emphasize that the theory predicts sensible

localization lengths (rl < L) at all rod densities greater than 2.3ρc ≈ ρe. Our focus here is

ρ � ρc, where the theory is not sensitive to the approximations discussed above. In the

heavily entangled limit one finds [24] dt ≡ 2rl = 16
√

2/ (πρL2). This is in agreement with

the DE scaling law for the tube diameter [12], and is quantitatively close to the result found

in simulations of rotating and translating needles at high density [142], dt ≈ 5/ρL2.
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4.4 Quiescent Transverse Confinement Potential

Starting from the microscopic dynamics of a fluid of entangled needles of length L, the pre-

vious sections derive results for the long-time longitudinal and transverse diffusion constants

of a tagged needle and for a localization length that characterizes the spatial extent of fluc-

tuations transverse to the needle when it is inside the confining tube (i.e., a tube diameter).

The theory predicts the distinctive connection between the transverse localization length

and long-time transport, D⊥/D‖,0 ∝ (ρL3)
−2 ∝ (dt/L)2, which is also the result of the real

space reptation-tube ansatz for entangled rod solutions. The key result for our purposes here

is Eq. 4.7, which is a self-consistent equation for the localization length rl assuming purely

gaussian fluctuations. The above approach has been qualitatively extended [139] to create a

microscopic theory of the full dynamic transverse confinement potential as a function of the

instantaneous CM transverse displacement, r⊥, that goes beyond a Gaussian description.

We start by re-writing the explicit form of Eq. 4.7 as a force balance:

f(rl) =
2kBT

rl
− 2rlK⊥(rl) = 0, (4.9)

K⊥(rl) =
πρLkBT

8
√

2
(L/rl − I1(2L/rl) + L1(2L/rl)) ≡

πρLkBT

8
√

2
g(L/rl), (4.10)

where L1 (I1) is the first Struve function (modified Bessel function of the first kind). Equa-

tion 4.9 suggests interpreting the derived tube localization result as a competition between

a delocalizing entropic driving force and a localizing entanglement force. The fact that

the entanglement force takes the form of a highly nonlinear spring with the displacement-

dependent coefficient K⊥(rl) is an early hint that the confining tube is more complicated than

a simple harmonic potential. The basis for reinterpreting the localization length equation as

a force balance stems from recent theoretical work in glass physics, where a self-consistent

localization result of the form of Eq. 4.7 emerges from a dynamical-Gaussian-approximation

treatment of kinetic vitrification within an amorphous solid model [31]. It is well known for
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structural glasses that such strict-localization results are an artifact of the Gaussian approx-

imations used (common to both ideal MCT and the Szamel approach), which only address

the stability of kinetic arrest to small-amplitude fluctuations and ignore large-amplitude,

ergodicity-restoring, barrier hopping events. We thus use some of the microscopic methods

and concepts developed in the glass physics community for describing such large-amplitude

events to probe the stability of the confining tube to non-gaussian fluctuations.

One such highly developed microscopic approach to treat activated dynamics at the

single-particle level is the nonlinear Langevin equation (NLE) theory [31,32]. Its key insight

is to interpret Eq. 4.9 as a force balance at the instantaneous tagged-particle-displacement

level, coupled with a non-ensemble-averaged version of the local equilibrium concept, so that

the tagged needle stochastically samples transverse displacements in a way consistent with

the forces prescribed by Eq. 4.9. Predicting tagged particle trajectories requires additional

noise and short-time friction terms, and in the overdamped limit this leads to the stochastic

NLE for the transverse rod center-of-mass displacement

−ζs
dr⊥
dt
− ∂

∂r⊥
Fdyn(r⊥) + δfs = 0, (4.11)

where ζs is the short-time friction constant, δfs the corresponding white noise random force,

and

Fdyn(r⊥) =

∫ r⊥

rl

f(r)dr (4.12)

is a “dynamic free energy.” This corresponds to the transverse tube potential that captures

the effects of entanglement forces, including an exact accounting of two-rod uncrossability.

Unlike in the phenomenological tube theory, the resulting confinement field is not a static,

geometrically determined object, but is rather the consequence of dynamic intermolecular

correlations [32].

We note that the NLE framework has been derived from microscopic statistical mechanics

for sphere fluids, and can describe activated relaxation via highly non-gaussian trajectory
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fluctuations [32]. The underlying physical ideas are not tied to the precise nature of the

Gaussian self-consistent theory that serves as its starting point (here, Eq. 4.7), and thus

can be applied to topologically entangled liquids. For numerical convenience, in subsequent

calculations g(x) in Eq. 4.10 is replaced with a Pade approximation that correctly recovers

its asymptotic behavior:

r2

2L2
g

(
L

r

)
≈

r
(
a+ 48π r

L

)
2L
(
a+ 48π r

L
+ 18π2 r2

L2

) '


r
2L
, r � L

4
3π
− L

4r
, r � L

, (4.13)

where a = 128− 9π2.
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Figure 4.3: Transverse tube confinement potential (in units of the thermal energy) as a func-
tion of the dimensionless rod CM transverse displacement at fixed reduced density, ρ/ρc = 10.
From top to bottom the solid curves correspond to S = 0 and σ/σy = 0, 1/3 , 2/3 . From
top to bottom the dashed curves correspond to S = 1/2 and σ/σy = 0, 1/3 , 2/3 .

There are many interesting features of the dynamic tube confinement potential (see Fig.

4.3 for examples). In qualitative contrast with particle glasses where activation barriers are

finite [31,32], for all densities ρ > ρc the topological confinement potential is predicted to be

infinitely deep. This would seem to provide some justification for the most basic aspect of the

reptation-tube ansatz, that is, the quenching of unbounded lateral motion or the idea that

polymers must reptatively “diffuse around” entanglement constraints. However, in contrast

to phenomenological harmonic tube models which typically postulate a confinement field
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characterized by a single parameter, the tube diameter (e.g., spring or slip-link models [143]),

the dynamic free energy is only parabolic up to ∼ kBT above its minimum. It then crosses

over to a weaker quasi-linear regime out to displacements of order the rod length, and finally

grows logarithmically for very large displacements. The predicted harmonic and quasi-linear

regimes are in very good accord with experiments on heavily-entangled F-actin solutions,

which observe long exponential tails in the rod displacement distribution on time scales short

compared to the reptation time [25].

The large-displacement form of the tube potential follows from Eqs. 4.10, 4.12 as

Fdyn(r⊥ � L) ∼ (ρ/ρc − 2) log(r⊥/L). (4.14)

We caution that this logarithmic growth, and hence our prediction that the transverse barrier

is infinitely high, is a technically subtle result that we believe is sensitive to the Vineyard-like

and local-equilibrium approximations of the theory. One might have physically expected a

large, but finite, entropic barrier at r⊥ ≈ L. However, the very-large-displacement form of

the transverse tube confinement potential is not relevant in practice. The reason is that in

strongly entangled systems its height at r⊥ ≈ L (before the crossover to logarithmic growth)

is already enormous relative to the thermal energy, and thus a tagged rod reptates out of the

local tube by longitudinal motion long before its transverse displacement ever approaches

the logarithmic regime.

To quantitatively test our theory, we compare with recent experiments on heavily entan-

gled solutions of the biopolymer F-actin [25] which measured the probability distribution of

transverse displacements from the mean position (tube axis), P (r⊥), on intermediate time

scales when reptation is not active. A lateral tube confinement potential was deduced as

V (r⊥)/kBT = − ln (P (r⊥)/P (0)) , and the results reported in terms of a “restoring force,”

f(r⊥) = −dV⊥/dr⊥. We employ the experimental conditions of L = 23 µm and room tem-

perature. Since the F-actin’s semiflexibility results in a tube radius with a density scaling
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(rl ∼ ρ−3/5) different than in our rigid-rod theory, we choose ρ such that the rl predicted by

Eq. 4.9 equals the measured most probable tube radius. This choice connects experimen-

tal and theoretical measures of the harmonic portion of the confinement potential, but all

anharmonic features are then predicted in an a priori manner.

Figure 4.4 presents the theory-experiment comparison for the restoring force as a function

of dimensionless transverse displacement at three concentrations. The bold curves are the

theory, while the dashed curves indicate the range of density mappings corresponding to the

measurement error bars2 of rl. The theory agrees in all aspects with the observations.3 This

quantitative comparison, and the observations of a nearly linear form of Fdyn at intermediate

displacements in DNA solutions [28] and simulations of flexible chain melts [29], provide

further support for our theoretical approach and its generality.
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Figure 4.4: Transverse displacement force versus dimensionless displacement from the most
probably localization position. Curves correspond to Eq. 4.9 at different reduced densities,
points are experimental data from Ref. [25] at the 3 concentrations indicated.

We emphasize that the key to this quantitative agreement with F-actin experiments [25]

(and, qualitatively, the consistency of our approach with DNA experiments [28] and the

entangled-chain-melt primitive-path simulations [29, 30]) is the harmonic and quasi-linear

2Not shown are the error bars associated with each experimental data point: ∼ 1fN in the harmonic
regime, and ∼ 10fN outside of it [Bo Wang (private communication)].

3Two alternative phenomenological explanations of F-actin data have been recently presented. Both
make use of binary collision approximation ideas where topological interactions are replaced by ansatz with
a harmonic potential, which is then either exploited [25] or self-consistently renormalized [26]. Since we
begin with bare rod-rod collisions our theory makes no assumptions about the form of the effective potential
prior to the renormalization of the diffusion tensor.
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part of the dynamic tube potential and the concomitant prediction of a maximum entangle-

ment restoring force. Such confinement softening emerges from a self-consistent treatment

of nonlinear feedback between lateral polymer displacements and the transverse dynamic lo-

calization constraints. As a speculative comment, this feature can perhaps be qualitatively

viewed as a microscopic realization of local constraint release or a “double reptation”-like

process in the language of the classic tube model [16]. Szamel previously showed that the

needle theory captures some constraint-release-like effects at the CM self-diffusion level [17],

and we here propose that our theory for the dynamic confinement potential similarly self-

consistently captures some matrix-mobility effects. That is, as the tagged rod displaces the

dynamical constraints it experiences are also relaxed via the motion of the other polymers

entangled with it (since
↔
De is responsible for the dynamic evolution of both the one- and

two-body density distributions), resulting in a dynamical softening of the tube constraint.

Note this is certainly not the textbook global constraint release mechanism tied to the rep-

tative motion of a matrix rod end past a tagged polymer [12]; it is fundamentally more

general since it exists when reptation is quenched. A generalized constraint release motion

not tied to reptation has also been suggested based on primitive path simulations of chain

melts [142].

Indirect, but we believe significant, evidence for the anharmonic nature of the tube con-

finement field for thin, rigid macromolecules can also be found in recent Brownian simulation

studies of heavily entangled semiflexible chains constructed to mimic F-actin [27] and rigid

needles [142]. These studies investigated the lateral mean square displacement (MSD) of the

center of a polymer defined in a way that ignored contributions from the longitudinal mo-

tion. The classic tube idea predicts that this MSD would saturate at quite early times after

a displacement of order d2
T . However, even at very high degrees of entanglement this was

not found, neither for stiff semiflexible chains nor rigid rods [142]. Instead a slow, seemingly

unbounded increase (at lower densities) or steadily upwards creep (at high densities) of the

lateral MSD was detected, and significant lateral displacements beyond the putative mean
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tube diameter occurred on time scales less than the reptation-controlled rotational relax-

ation time. Moreover, by varying the longitudinal friction the simulations determined that

this “tube leakage” is not due to a simple constraint-release effect of one polymer reptating

past a local entanglement [142], and that it can be eliminated if all polymers surrounding

the tagged one are frozen, per a network. Hence, these tube-leakage phenomena appear to

be an intrinsic, many-polymer property of lateral dynamical constraints, and their essence

seems qualitatively consistent with our prediction of an anharmonic confinement potential.

In the heavily entangled regime, the displacement at which a rod feels the maximum

confining force, rm, is much less than L. A series expansion of Eq. 4.10 in inverse density

can be carried out to obtain

fmax '
kBT

L

(
πρL3

4
√

2
− 2

√
ρL3/

√
2 + · · ·

)
= 2 kBT

(
1

rl
+
−2
√

2
√
πrl

+ · · ·

)
= 2kBT (r−1

l − 2r−1
m ), (4.15)

where in the second equality the high-density approximation for the localization length is

used. The displacement at which the maximum force occurs is

r−1
m '

√
ρL/(4

√
2) � r−1

l ' πρL2/(8
√

2) (4.16)

At high densities rm is small compared to L, and hence is unaffected by the long-range

logarithmic growth of the confinement potential, but is large compared to the localization

length. In the heavily entangled limit we obtain fmax = 2kBT/rl, a direct connection between

the maximum entanglement force and the tube diameter. Although we derive this result only

for rigid needles, it perhaps provides a theoretical basis for a speculative argument by Wang

et.al. based on dimensional analysis concerning the finite strength of tube localization for

entangled flexible chain liquids [144].
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4.5 Stochastic Trajectories on the Transverse

Confinement Potential

To probe alternate measures of the tube’s anharmonicity we solve the equation of motion

for the transverse displacement of a rod in the confinement potential, Eq. 4.11, at the level

of stochastic trajectories. This amounts to integrating this equation starting with the initial

condition r⊥(t = 0) = 0 over many instantiations of the Gaussian white noise, and then

taking ensemble averages of these trajectories to address questions of interest. In colloidal

glasses the stochastic integration of the NLE was a key method for addressing questions of

dynamical heterogeneity [53, 92, 119]. Here the polymers are not in a glassy state and our

free energy permits no activated barrier hopping processes in equilbrium, and so our goals

are more limited. Implementing the Brownian trajectory algorithm is a standard exercise,

and we refer the more curious reader to a favorite text [145].

The first question we address is the ensemble-averaged transverse mean square displace-

ment (MSD) as a function of time. In the absence of a microscopic treatment of the tube, the

standard cartoon for rods would simply be diffusive (r2
⊥(t) ∼ t) behavior at very short times

before the rod “discovers” that there is a confining tube, followed by either a sharp, instan-

taneous transition to a constant plateau or an exponential decay to the plateau, depending

on whether the confinement is assumed to be of a step-potential or harmonic form [12].

Our prediction for the MSD is show in Fig. 4.5 for reduced densities ranging from ρ/ρc =

10 to ρ/ρc = 1000, obtained by simulating 50000 trajectories at each density. Several

points are immediately evident. First, we find a complete collapse of the MSD curves by

normalizing both displacement and time by a quantity related to the plateau value of the

MSD (i.e. τe = τ0L
2/〈r2

⊥〉). Such a joint normalization would be expected for Brownian

motion in a purely harmonic potential, so the fact that it works here is surprising. However,

instead of an exponential decay of (1−MSD(t)) to the plateau value, the curves transition

from a diffusive regime to one of modestly stretched exponential decay to the plateau. This

124



10-4 0.001 0.01 0.1 1 10
t�Τe

0.001

0.01

0.1

1

r
¦

2 HtL�<r
¦

2
>

10-7 10-4 0.1
t�Τ0

10-6

10-3

1
r

¦

2 HtL�L2

Figure 4.5: Transverse MSD vs. time normalized by plateau values. Dash-dotted curve
represents the short-time diffusive behavior r2

⊥ = 4t/τe: the dashed curve corresponds to
stretched exponential decay to the plateau, r2

⊥ = 1 − exp (−2(t/τe)
0.86). Inset: Transverse

MSD vs time for ρ/ρc = 10, 20, 40, 80, 160, 320, 640, 1000 (top to bottom).

reflects the anharmonic nature of the tube confinement potential. Our predicted collapse

of the MSD curves agrees with recent simulations of rigid and semi-flexible rods [27, 142],

and the universal “approach to entanglement” curve we predict is, in principle, also directly

testable.

The predicted stretched-exponential behavior should remind the reader of the signature

correlation functions in glassy systems. For interest we also study so-called “non-Gaussian

parameters” (NGP), of which there are two primary definitions. The classic definition is [6]

α2(t) =
3

5

〈r4
⊥(t)〉

〈r2
⊥(t)〉2

− 1, (4.17)

and a recently proposed alternative is [47]

γ =
1

3

〈
r2
⊥(t)

〉〈 1

r2
⊥(t)

〉
− 1. (4.18)

The classic NGP emphasizes departures from diffusive motion at short times and small

displacements, whereas the alternate NGP emphasizes deviations at relatively longer times

or larger displacements. In glassy particle fluids the “maximum non-gaussian state” —
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in which nongaussian fluctuations, activated events, and dynamic heterogeneity are most

important — can be identified by the peak of these functions, and in particular simulations

have found that the peak of the alternate NGP closely tracks the alpha relaxation time [47].

In the present topologically entangled case the NGPs are somewhat less revealing. The

dynamic free energy associated with Eq. 4.11 features an infinitely deep potential well, so

activated hopping events are completely suppressed and both NGPs will simply approach

a plateau value associated with the Boltzmann distribution P ∼ exp(−βFdyn) as the rod

equilibrates within the tube. However, the nongaussian parameters still serve as a more

sensitive probe of anharmonicities than considering just the MSD. This is shown in Fig.

4.6: despite the complete collapse of the MSD curves under the above normalization, we see

that even given the large noise (for the same number of simulated trajectories) a complete

collapse of the NGPs requires going to higher rod densities. The classic NGP exhibits a

power law scaling of α2(t < τe) ∼
√
t over roughly two decades before saturating at the

plateau. The alternate NGP looks qualitatively similar, but is too noisy to reliably extract

a power law exponent without running more simulations.

4.6 Applied Stress and Microscopic Yielding

To include the effect of applied deformation at the single-polymer level in the framework of

NLE theory, a stress-based microrheology approach is employed as previously formulated for

finite-excluded-volume complex liquids that interact via conservative forces [65,67–69]. This

treatment is significantly less microscopically rigorous than our theory for quiescent dynam-

ics, but the stress-generalized NLE theory has been successfully applied to quantitatively

understand many aspects of nonlinear activated relaxation and mechanics in colloidal and

polymer glasses. The appropriate stress-generalization of the NLE is expected to depend

on the particular deformation of interest, and here we focus specifically on shear stresses.

For both simplicity (and consistency with the scalar localization length derived above) we

126



0 1 2 3 4 5
t�Τe

0.2

0.4

0.6

0.8

1.0
Α2HtL

0 1 2 3 4 5
t�Τe

0.5

1.0

1.5

2.0
ΓHtL
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40, 80, 160, 320, 640, 1000.
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neglect the tensorial nature of the deformation and formulate a theory in terms of a scalar

stress, σ. The key physical idea is that the macroscopic stress results in a constant effective

force on the CM of a particle, molecule, or polymer (a microrheological-like perspective).

This external force weakens the dynamical constraints encoded in Fdyn, which thus acquires

a mechanical-work-like contribution that is linear in both stress and instantaneous transverse

displacement:

Fdyn(r⊥, σ) = Fdyn(r⊥, σ = 0)− πL2σr⊥/4. (4.19)

Since the theory treats the ensemble-averaged confinement potential, we neglect the fact that

the transverse displacement of any given tagged rod may not be in the direction of the stress

plane; that is, Eq. 4.19 conceptually represents the effect of constructing the confinement

potential and averaging it over (an isotropic distribution of) all rod orientations. Breaking

the assumption of isotropy and treating orientational ordering effects will be presented in

the following section.

The relevant cross-sectional area, A, for converting macroscopic stress to microscopic

force is taken to be a circle of diameter L. For spheres the relevant area seems obvious, i.e.

proportional to the square of the particle diameter [68, 69]. For needles the choice is less

obvious, but since L is the only intrapolymer length scale choosing A ∼ L2 seems a natural

and inevitable choice. The only plausible alternative would be to employ an area determined

by the localization length (tube diameter). This is an emergent length scale that in some

way quantifies how the surrounding interpenetrating polymers transmit stress (and hence

applied force) to the tagged rod. However, for this needle system we find that such a choice

leads to seemingly unphysical or counterintuitive predictions, e.g. the ability of the fluid to

support arbitrarily large strains at high density (cf. Eqs. 4.22, 4.23 below).

A general consequence of our theory, also true for glasses and gels within the NLE

framework [65, 68, 69], is the existence of an “absolute yield” stress at which the transverse

entropic barrier first vanishes and hence tube localization is destroyed, σy ≡ fmax/A. One
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can think of it as the onset of an imbalance between the larger applied force experienced by

a tagged macromolecule and the intrinsic entanglement force that keeps it in a tube. Beyond

this critical stress, lateral motion occurs spontaneously in a barrier-free manner.

We note that our subsequent numerical results are quantitatively sensitive to the choice

of A, but qualitatively depend only on adopting A ∝ L2. We also point out that stress

directly effects only the transverse motion. So far, deformation is assumed not to modify

the (isotropic) rod orientation distribution; this restriction is relaxed later.

In general, the stress dependence of key features of the tube confinement potential must

be determined numerically. A critical general finding is that any nonzero value of σ destroys

the infinitely deep nature of the lateral confining field, resulting in a stress-induced finite

entropic barrier. This is a direct consequence of the fragile logarithmic localization predicted

for large displacements in the quiescent theory. The two extreme limits for the entropic

barrier can be analytically analyzed. For relatively low values of stress the barrier is given

by

FB ≈ 2(1− ρ/ρc) log σ̃, (4.20)

where σ̃ ≡ σL3/kBT . In the opposite extreme where the stress is close to its absolute yield

value (defined microscopically here as when the localization well and entropic barrier first

vanish), the dynamic confinement potential exhibits a “fold catastrophe” form with

FB ∝ (1− σ/σy)3/2. (4.21)

This result can be derived in the limit of large density using Eqs. 4.15, 4.16 and the small-

displacement approximation for Fdyn obtained from Eqs. 4.9 – 4.13. However, we find that

the practical relevance of these two limiting results is small, for different physical reasons,

as will be discussed when we take up rheology in a later chapter.

The explicit expression for the absolute yield stress at very high densities follows from
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Eq. 4.15 (keeping only the dominant term) as

σy =
4fmax

πL2
' ρkBT√

2
=

5

3
√

2
Ge, (4.22)

where Ge = 3ρkBT/5 is the needle-fluid shear modulus [12]. Adopting an elastic solid

perspective of the entanglement network, one estimates a corresponding absolute yield strain

as

γy =
σy
Ge

' 5

3
√

2
≈ 1.18, ρ� ρc. (4.23)

Although the precise numerical results are sensitive to our choice of cross-sectional area, a

yield strain of order unity seems to be at least qualitatively consistent with recent exper-

iments on entangled microtubulin (rigid rod) networks [146]. Intriguingly, yield strains of

order unity have also been reported in entangled flexible chain liquids [144,147,148].

Two features of the stress-dependent confinement potential can have dramatic conse-

quences for the long-time dynamics. First, as is implicit in the above and explicitly shown in

the inset of Fig. 4.7, at fixed density the most probable (and the mean) transient localization

length grows with increasing σ, corresponding to deformation-induced tube dilation. Within

the phenomenological tube framework, conflicting arguments have been advanced that the

tube diameter grows, shrinks, or remains unchanged under deformation [16]. For shear de-

formations we predict tube dilation, and the ratio of the tube radius at absolute yield to its

quiescent value grows as rl,yield/rl ∼
√
ρL3 for ρ� ρc. Since in the static tube model (and

dynamic theory [17, 24, 139]) the rotational diffusion constant Drot ∝ D⊥ ∝ (rl/L)2, tube

dilation results in a significant acceleration of reptative relaxation, especially for heavily-

entangled solutions near σy. Second, as shown in Fig. 4.7, since FB decreases rapidly with

stress, a deformation-assisted transverse barrier hopping process emerges as a parallel relax-

ation channel which competes with reptation. These relaxation times will be discussed in

much greater detail in Chapter 6 when we take up the rheology of entangled rods. There

the competing relaxation channels and their differing responses to stress and orientation can

130



radically change system relaxation.
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Figure 4.7: Barrier height in units of kBT vs normalized stress for ρ/ρc = 3, 6, 10 (bottom
to top). Inset: normalized tube radius vs. normalized stress for ρ/ρc = 10 (lower curve)
and ρ/ρc = 100 (upper). At these four densities, the estimated absolute yield strains are
σy/Ge ≈ 0.28, 0.52, 0.67, and 1.04, respectively.

4.7 Effect of Orientational Order

Since we consider zero-excluded-volume rods, spontaneous nematic ordering cannot occur.

However, the dynamical consequences of externally-induced rod alignment can still be treated

as long as the distribution of rod centers of mass remains random, since in that case all the

technical approximations employed for the isotropic fluid are still valid [139]. Specifically,

the effect of rod alignment on entanglement dynamics for both the Szamel and NLE theories

can be captured by modifying the pair correlation function in Eq. 4.5 with an Onsager-like

distribution [12] for the relative orientation of two rods: f(µ, α) = α cosh(µα)/4π sinhα,

where α parameterizes the degree of orientation relative to some axis and µ = ~u1 · ~u2

Expressing our results in terms of the nematic order parameter, S = 〈(3cos2θ − 1)/2〉, we

find [139]

D⊥(S)/D⊥(0) ≈ (1− S)−1, (4.24)

rl(S)/rl(0) ≈ (1− S)−1/2. (4.25)

131



Orientation reduces inter-rod collisions, thereby enhancing lateral and rotational diffusion.

The inset of Fig. 4.2 demonstrates the density-dependent enhancement of diffusion and

compares it with the standard Doi-Edwards expression. A reduction of collisions also results

in the tube diameter increasing with orientation (see Fig. 4.3. The predicted rod-alignment

effects are qualitatively similar to the Doi-Edwards calculation for rod densities beyond the

purely topological regime, where nonzero-excluded-volume physics enters [12]. We also find

that the predicted tube-model scaling of D⊥ ∝ (rl/L)2 continues to hold in the presence

of rod orientation. Moreover, all features of the tube confinement potential, including the

maximum entanglement force, soften with orientation and stress (see Fig. 4.3).

The above results suggest, and we have numerically verified, that to a very good approx-

imation the effect of orientational order can be thought of as modifying the effective fluid

density as ρ→ ρ
√

1− S, and hence

Fdyn(r⊥, ρ, σ, S) = Fdyn(r⊥, ρ
√

1− S, σ = 0)− πL2σr⊥/4. (4.26)

This expression succinctly captures how the consequences of macroscopic stress and orienta-

tion are microscopically included at the tagged-rod level. The approach is self-consistent in

the sense that stress modifies the tube confinement potential and hence polymer dynamics,

but polymer displacement weakens the confining force and also determines stress relaxation.

The effects of stress and orientation on rl follow from this dynamic tube potential. For

example, one can derive the high-density result

(
rl(ρ, 0, 0)

rl(ρ, S, σ)

)2

≈ (
√

1− S − σ̃/3(ρ/ρc))
2
, (4.27)

an expression valid as long as the localization length is finite (i.e., for stresses not too high).

This result follows by expanding Eq. 4.26 in powers of inverse density, and combining Eqs.

4.9-4.12 to write the quiescent dynamic confining potential in limit when the localization
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length is small, rl � L. Then, employing the full stress- and orientation-dependent Fdyn,

differentiating, and solving for the minimum yields Eq. 4.27. At the highest density consid-

ered in this paper (ρ/ρc = 1000), we find Eq. 4.27 is reasonably accurate all the way up to

the absolute yield stress. However, for only modestly entangled systems (e.g., ρ/ρc = 10),

this expression grossly underestimates tube dilation. Combining Eqs. 4.15 and 4.27, the

reduction of the maximum entanglement force by rod alignment in the heavily entangled

regime is

fmax '
2kBT

rl(ρ, 0, 0)

√
1− S. (4.28)

This implies the absolute yield stress (and strain) decrease with increasing rod alignment.

Figure 4.3 shows sample dynamic tube confinement potentials computed numerically at

fixed density and various levels of applied stress and orientational order. Both can mas-

sively weaken the entropic barrier to transverse motion. Note that all the effects of stress

and orientation on the tube potential, and the dynamical consequences discussed above

and in subsequent sections, are absent by assumption in the Doi-Edwards theory of purely

topologically entangled rods [12].

4.8 Summary

In summary, by combining recent extensions of a dynamical theory for topologically entan-

gled rigid rods with a dynamic free energy perspective inspired from the field of glass physics,

we have formulated a microscopic theory for the transverse confinement potential. In essence

we have attempted to statistically describe what an entanglement is and where a confining

tube comes from at the level of (impulsive) forces arising from an exact accounting of poly-

mer uncrossability at the two-rod level combined with a self-consistent renormalization to

account for many-body terms. Above a critical reduced density (whose value corresponds to

an eminently sensible number of interpentrating rods occupying the same local volume) an

infinite barrier to lateral motion emerges, qualitatively supporting the idea that unbounded
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transverse displacements are suppressed. However, in contrast to phenomenological tube

models we predict a highly anharmonic confining potential, key features of which are in

quantitative agreement with experiment [25].The anharmonic nature of the transverse dy-

namical confinement potential implies that there is a maximum restoring force keeping a

tagged rod in its tube due to topological interactions with its surroundings, i.e., physical

entanglements cannot always be literally treated as chemical crosslinks in rubber networks.

In this sense, the theory might be viewed as having some features in common with venerable

“transient network” models [149–151]. The consequences of a finite entanglement force are

especially dramatic under applied deformation, leading to phenomena such as stress- and

orientation-driven tube dilation, transverse entropic barrier reduction, and ultimately tube

destruction beyond a critical level of stress or strain when the external force on a tagged

rod exceeds the intrinsic entanglement force localizing the polymer in a tube. This last fea-

ture may be akin to empirical attempts to describe stress-dependent crosslinks in transient

network models [150, 151], and recent experimentally-motivated physical ideas about force

imbalance in entangled chain liquids [144,148].

Our prediction that the confining tube has a finite strength has many dramatic and

novel consequences. Applied stress and induced polymer alignment can result in a dramatic

acceleration of terminal relaxation not anticipated by the reptation-tube approach. With in-

creasing stress we predict: (i) the tube widens, resulting in reduced entanglement and faster

reptative relaxation, in qualitative agreement with a recent chain polymer simulation [152],

(ii) a transverse activated barrier hopping relaxation process emerges that can become faster

than reptation, and (iii) the tube is completely destroyed (microscopic absolute yielding) for

σ > σy. The latter two regimes appear to be qualitatively consistent (at zeroth order)

with recent experimentally-based suggestions that tubes can become severely weakened or

destroyed by stress [144,148,153], and also the observation of yield strains of order unity for

rigid rod (microtubules) [146] and flexible chain liquids [144]. Although at present there is a

dearth of data on isotropic, high-aspect-ratio rod solutions under deformation, new simula-
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tions of entangled needle fluids based on primitive path methods [124] can be performed to

critically test all aspects of our predicted dynamic tube confinement potential. The ability to

construct this potential sets the stage for developing a first-principles treatment of nonlinear

rheology where applied stress may qualitatively modify the confinement potential. Moreover,

many open issues can be addressed such as: the time [29] and deformation [16] dependence of

the tube diameter, possible destruction of entanglement localization when polymers become

strongly aligned and/or deformed [144], and construction of a self-consistent description of

constraint release under both quiescent and strongly sheared (convective [16]) conditions.

Our development of molecular-based constitutive equations for rheological response under

step-strain and startup continuous shear conditions are discussed in Chapter 6.
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Chapter 5

COARSE GRAININGS OF
FLEXIBLE CHAIN POLYMERS

5.1 Introduction

1Understanding the fascinating and complex dynamics of concentrated liquids of flexible

polymer coils has been an ongoing challenge spanning many decades. From the point of view

of simulations the vast range of length and time scales associated with dense melts of long

chains poses a formidable challenge to studying the long-time dynamics [154]. The theoreti-

cal difficulty is that when polymers become sufficiently long “entanglements,” the topological

constraints arising from chain connectivity and uncrossability, dominate intermediate and

long-time elasticity, relaxation, and transport. These singular interactions, combined with

the statistical nature of polymer conformations, render a first-principles theory exceptionally

challenging to formulate. Since its introduction the phenomenological reptation-tube model

of deGennes, Doi, and Edwards [12, 15] has been the most common starting point for theo-

retical analysis. This single-chain approach is based on assuming the existence of transverse

localization beyond a mesoscopic material-specific length scale, the tube diameter dT . By

ansatz the localization arises as the dynamical consequences of the many interpenetrating

chains on tagged polymer motion, and is modeled by an infinitely strong (e.g., harmonic)

confinement field which permits long-time diffusion only via anisotropic curvilinear motion

or “reptation.”

The phenomenological nature of the reptation-tube theory, including its diverse elab-

orations which help explain a broad class of experimental data [16], renders the connec-

1This chapter contains text and figures from D. M. Sussman and K. S. Schweizer, Phys. Rev. Lett.;
submitted 2012.
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tion between its mathematical foundation and real-space polymer motions somewhat un-

clear [23]. Particularly desirable is a theoretical explanation of the tube diameter, the full

spatially-resolved dynamic confinement potential, and the critical chain length that signals

the crossover from unentangled to entangled dynamics, Ne [23].

In this chapter we adopt the classic Doi-Edwards picture of a single entangled chain of

N segments as an ideal random walk of Z = N/Ne “primitive path” (PP) steps of length

Le = σ
√
Ne, where σ is the statistical segment length such that Ree = σ

√
N is the mean

polymer end-to-end distance. This picture has been extensively used in simulations to nu-

merically compute properties of the confining tube [29,124]. By building on and qualitatively

generalizing our recently developed and quantitatively accurate theory for the dynamics of

entangled rigid needles [139] to treat the topological interactions between PP steps on dif-

ferent chains, we construct a microscopic theory for the full tube confinement potential

governing the distribution of transverse segment displacement relative to the nearest PP

step. We also examine the theory’s consequences on long time diffusion and relaxation.

Intriguingly, and surprisingly, we find that the results from studying chains at the level of

interacting PP steps are very similar to a “super coarse-graining” procedure [154] which

replaces the entire chain with its end-to-end vector and applies the topological needle theory

to that object. Traditionally, the goal of such coarse-graining schemes has been to create a

fast computational model for larger-scale rheological applications. In contrast, here we will

explore the coarse-graining idea from the perspective of the fundamental physics.

5.2 Coarse-Grained Chains

We begin by considering our microscopic theory for the transverse confinement of a single PP

step α on a tagged polymer in a melt with chain number density ρ, schematically depicted

in the inset of Fig. 5.1. We initially treat transverse localization as a Gaussian distribution

with a mean characteristic length r̄l (the tube radius). Generalizing the dynamic mean-field
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theory of Szamel for non-rotating needles [17,24], the formal expression for this localization

length under the condition that the longitudinal reptative motion is turned off (“quenched”)

is:

4

r̄2
l

=
−ρ
16π

(
↔
I −~u1~u1) :

Z∑
j,k=1

∫
d~vdγd~rα2

↔
T (αj)(Ω†loc)

−1 ↔
T (αk). (5.1)

Here ~ui is the orientation of the PP step i, ~v and γ describe the orientation of an instantaneous

conformation of a second chain, ~rα2 is the center of mass (CM) separation between α and

the second chain, and the colon denotes a double contraction of tensorial indices.
↔
T (αj)

represents an impulsive interaction (the uncrossability constraint) between α and the PP

segment j on the second chain treated at the needle-level (the form of which is given by [130]),

and the “localized” two-chain evolution operator governing transverse PP motion is.

Ω†loc = −1 +
r̄2
l

4

Z∑
n,m=1

(
∇+ ~T (nm)

)
·
(

2~I − ~un~un − ~um~um
)
· ∇. (5.2)

Further progress requires approximations to treat the Z2 possible time-dependent collisional

correlations between a tagged PP unit and those on a different interpenetrating chain. We

assume that the off-diagonal elements in Eq. 5.1 (i.e. where j 6= k) vanish, and that when

evaluating the integral over diagonal elements the terms in Ω†loc with n 6= α, m 6= j can

also be neglected. These approximations are consistent with our theory for infinitely thin,

non-rotating 3D crosses [141], which was favorably compared with simulation [122, 123].

Physically, under quenched-reptation conditions we interpret the first assumption as both

neglecting simultaneous three-body collisions and assuming that on average there is no an-

gular correlation between steps at the primitive path level. The second assumption is also

consistent with the quenching of reptation, i.e., during the time scales of interest to describe

localization in a tube the chain does not displace enough to change the pair of interacting

PP steps.

After these approximations, Eq. 5.1 is a sum over Z identical terms, each of which can be
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1i Z 


1j Z 

Figure 5.1: Normalized tube confinement potential for the PP mapping vs. transverse
displacement (solid curves, A−1 = 0.5, 0.22, 0.18, left to right), and for the super coarse-
grained needle limit with N/Ne = 10, 20, 100, 200 (dashed curves, bottom to top) Cartoons
above and below curves schematically depict the two mappings.
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evaluated according to previous work [17,139,141]. This yields the self-consistent relation

r̄ −2
l = F (Le/r̄l)ZπρL

3
e/(r̄

2
l 4
√

2)
−1
, (5.3)

where F (x) is a combination of modified Bessel and Struve functions determined by ap-

proximately evaluating the integral [141]. The length of the PP steps is commonly taken

to be related to the tube diameter, Le = σ
√
Ne = Arl, where typically one expects

A = 2. Writing the expression for the localization length in terms of the invariant packing

length (which quantifies the system-specific way different polymer chains fill space [155]),

p = (Nρσ2)
−1 ≡ (ρsσ)−1, the evaluation of the self-consistent expression with A = 2 leads

to

r̄l =
4
√

2

AπF (A)
→ Le = 2rl = 9.99p (5.4)

The level of quantitative agreement between Eq. 5.4 and the experimental result of dT ≈

17.7p [155] seems remarkable given the simplified nature of the approximations employed.

This tube-diameter scaling can be viewed as a first-principles derivation of the Lin-Noolandi

conjecture for polymer melts, which asserts that the number n of primitive path segments

that can fit inside a volume d3
t is a fixed, universal number [156, 157]. Our estimate of

n = dt/p is roughly a factor of two smaller than experiment, consistent with the fact that

quenching the rotational PP degree of freedom should lead to an overestimate of the confining

constraints.

Just as in the needle-theory, one can go beyond the above Gaussian analysis to con-

struct the full anharmonic tube-confinement potential using the nonlinear-Langevin-equation

(NLE) approach [139]. The NLE stochastic equation of motion for the transverse CM dis-

placement of a PP (r⊥) step is −ζs dr⊥dt −
∂
∂r⊥

Fdyn(r⊥) + δfs = 0. Here, ζs is the short-time

(bare) friction constant, δfs is the corresponding white noise random force, and Fdyn(r⊥) is

a dynamic confinement potential that follows from integrating the displacement-dependent
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force,

f(r⊥) =
−2

r⊥
+

2

r⊥F (A)
F

(
Le
r⊥

)
. (5.5)

For rigid needles we successfully compared the relatively small-displacement limit of the NLE

theory (but large enough to include a strongly anharmonic, exponential-tail regime) with

experiments on heavily entangled semiflexible f-actin solutions [25]. Here we predict that this

function depends only on the ratio of the PP step size to the average transverse displacement,

and Fig. 5.1 shows confinement potentials for three values of A. Exponentiating the negative

of Fdyn(r⊥) and normalizing yields the probability distribution of transverse displacements

relative to the primitive path on time scales when the polymer has equilibrated inside the

tube but not yet relaxed via reptative motions of the primitive path.

Figure 5.2 presents a comparison between our predicted transverse-displacement proba-

bility distribution, P (r⊥), and the distribution of individual segments from their primitive-

path-step center in units of the average tube radius deduced via simulation [30]. A modest

quantitative complication is that the simulations report the displacement of beads relative

to the PP step containing the bead, whereas it is most natural for us to predict the dis-

tribution of transverse primitive path displacements from their initial position. To perform

the comparison we assume the bead displacement distribution can be modeled taking r̄l/Le

to be the ratio of the average bead displacement to primitive path length; the polyethylene

(PE) melt data in Table 1 of Ref. [30] implies r̄l/Le = A−1 ≈ 0.18. The agreement between

theory and simulation using this value, while imperfect, is striking. Not only is the shape of

the distribution quite accurate, but the exponential tail is very well reproduced. Addition-

ally, the simulations find that when normalized by r̄l the distribution is universal, and the

confinement potential we predict is similarly universal (up to the value of ≈ 0.18− 0.22 for

PE and polybutadiene (PB) [30]).

Within the classic tube-model framework one could then argue that the rigid PP nee-

dle must take (L/dT )2 ∝ N/Ne “steps” to exit the tube and for the mapped chain to
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Figure 5.2: Probability distribution comparison with simulation [30] (points). Solid curves
are predicted PP distributions with A−1 = 0.5, 0.22, 0.18 (left to right, corresponding to
PP and monomer displacements); dashed curves are the chain-to-needle results forN/Ne =
6, 18000 (left and right). Inset: Log plot of PP distribution with A−1 = 0.5, 0.22, 0.18
overlaid on the simulation data.

fully randomize its orientation. One thus expects the terminal relaxation time to scale as

τrot ∝ τRouse(N/Ne) ∝ N3/Ne, where the standard result for the Rouse time has been em-

ployed, and that by invoking a Fickian perspective the CM diffusion constant would be

D ∝ L2/τrot ∝ Ne/N
2. However, it is possible to extend our approach to directly predict

these scaling relations, rather than resorting to a deGennes-like argument. First, making

the same approximations involving the neglect of off-diagonal terms above, the formal result

for the isotropic, long-time CM diffusion of the chain is

D−1
CM = D−1

0 −
ρ

24π

↔
I :

∫
d~vdγd~r12

↔
T (ij)(Ω†e)

−1 ↔
T (ij), (5.6)

where now each T-operator describes all Z2 possible PP collisions between a pair of chains.

The bare diffusion constant corresponds to Rouse diffusion of a single PP step of length Ne,

and hence D0 = Dmon/Ne, where Dmon is the segmental diffusion constant. Eq. 5.6 describes

the effective diffusion of a chain represented by an instantaneous conformation of PP steps

interacting with other instantaneous conformations of PP steps, subject to the constraint

that the conformations are allowed to neither change nor rotate. Evaluating the terms in
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the integral leads to DCM/Dmon ≈ N−1
e − 0.54N/N2

e . Hence, based on our computation of

prefactors, we predict that isotropic motion vanishes when the chain is roughly twice the

entanglement length.

There seems to be no way to rigorously include anisotropic, reptative-like diffusion in

this framework due to the geometric complexities of many connected primitive paths. In

contrast to the needle theory where one can straightforwardly decompose the motion into fast

longitudinal (reptative) motion and constrained transverse motion, for chains the direction

of longitudinal motion along different PP step adds incoherently in the laboratory frame.

However, one can invoke the physically-motivated idea that reptative diffusion is controlled

by the coherent motion of PP steps due to chain connectivity. Using Szamel’s theory for

transverse PP motion as a sensible surrogate for the rotational relaxation of the PP steps [17],

and assuming that long-time CM chain diffusion proceeds only when all steps have relaxed

in this way, the self-consistent equation for the diffusion constant becomes

DCM

D0

≈

(
1 + 9.99

N

Ne

√
D0

DCM

FD

(
DCM

D0

))−1

, (5.7)

where the function FD is defined in the Appendix of Ref. [17]. In the limit of N � Ne this

simplifies considerably; expressed relative to the Rouse diffusion constant (DR = Dmon/N)

we find DCM/DR ≈ 0.567Ne/N , almost exactly the classic result of DCM/DR ≈ Ne/3N [12].

To check our interpretation of the physical meaning of the off-diagonal terms discarded

above, we consider another, even simpler model: mapping the chains to a fluid of discon-

nected primitive path segments. The needle theory [17, 139] is then applied to a fluid of

segments of length Le and number density ρpp = Zρ. We find that the mean tube radius

and effective confining forces for a given primitive path step are identical to the calculation

presented above. This concurs with the physical intuition that on the time-scale of inter-

est, primitive-path localization is “aware” of intra-chain connectivity only as a second-order

effect. In contrast, computing the PP transverse diffusion constant at asymptotically high-
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densities (hence, long chains) for this model results in D⊥/D⊥,0 ≈ 18πp2/L2
e, a factor of Z−2

different from the chain CM diffusion constant obtained above. This is again sensible, since

by disconnecting the chain diffusive motion has been massively (and artificially) enhanced.

We now demonstrate that the results from mapping chains to connected primitive-path

steps are, surprisingly, quite similar to a much simpler mapping: replacing the entire chain

by a single uncrossable needle representing its end-to-end vector. Clearly, at this level of

description internal chain modes are ignored. The idea of replacing an entire chain with one

degree of freedom is in the spirit of recent “super coarse-graining” methods that substitute a

single fictitious particle for the entire polymer chain [154]. For short chains, soft ellipsoidal

particles are able to accurately predict long-time unentangled Rouse dynamics [158], but as

the chains get longer correctly modeling the interparticle interactions to recover both the

equilibrium structure and the dynamics is very difficult [154,159]. Our goal is to investigate

whether such a radical reduction of degrees of freedom is able to accurately predict, from

first principles, various entanglement phenomena. Certainly for studying the crossover from

unentangled to entangled behavior such an approach is well known to be sensible from

simulation-based primitive-path analyses of the topology-preserving network that defines

the melt. In such analyses each chain is represented by rod-like primitive path segments,

and entanglements correspond to the intersection of these rod-like segments as different

polymers wrap around each other. Crucially, in a melt of chains with N < Ne there are

no entanglements and a primitive path analysis results in a liquid of rigid rods with mean

length equal to the average polymer end-to-end distance [160,161]. In the same spirit as the

PP-step-based calculation above, one would expect this mapping to correctly capture the

crossover behavior of relatively short chains.

Our specific implementation of the super coarse-graining idea is to identify the average

long axis of an instantaneous chain conformation with the mean rod length, schematically

illustrated in the inset of Fig. 5.1. This acknowledges that instantaneous polymer conforma-

tions are quite anisotropic. Using simulation data from Ref. [162] to quantify this anisotropy,
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a flexible chain is coarse-grained to a needle of length L ≈ σ
√
N/1.3. The dimensionless

coupling constant of the needle theory can thus be expressed as ρL3 ≈ σ
√
N/(1.481p). The

number of segments in an entanglement strand follows from our prior prediction for the

crossover density ρeL
3 ≈ 10.1, defined as the intersection between a regime of independent

binary collisions and a regime of reptative scaling behavior [139]. We note that this value of

the crossover density corresponds to having of order 10 entangled chains within an end-to-

end distance of a given chain. Combining the calculated crossover density with the relation

between length and number of segments yields Ne ≈ 244(p/σ)2 = 244ρsp
3, very close to

the experimental finding of Ne ≈ 313ρsp
3 [155]. The tube diameter can be independently

predicted when N >> Ne by identifying the tube radius with the transverse localization

length of the rod CM [17, 139], a surrogate for the localization of a PP step. The result is

dT = 2rl = 2 8
√

2
πρL2 ≈ 9.36p, very similar to the PP analysis presented above. Finally, and

perhaps most remarkably, this chain-to-needle mapping also results in an accurate tube con-

finement potential, as shown in Fig. 5.2, although here the normalized potential is weakly

N/Ne-dependent, apparently in contrast to the simulations [30].

One additional issue needs consideration here, and that is the meaning of the bare dif-

fusion constant, D⊥,0, in this needle mapping. Since the theory already accounts for the

topological uncrossability we need not worry about “entanglement friction” terms, but it is

nonetheless true that the bare friction of a needle in solution and the mapped chain in a

melt or solution should differ. Thus, we make the assumption that our theory treats addi-

tional effects due to topological uncrossability, and that the bare dynamics are Rouse-like:

D⊥,0 → DRouse. With this one can directly convert the diffusion constant as calculated for

rods in Chapter 4 to predict the long-time CM diffusion of chains by using the transverse

diffusion of a needle as a surrogate for the rotational diffusion of the chain. Since the theory

for needles predicts in the high-density limit that D⊥/D⊥,0 ' 18π(ρL3)
−2 → 0.55Ne/N ,

one obtains DCM = 0.55DRouse · Ne/N. This is remarkably close to the Doi-Edwards re-

sult DCM = DRouseNe/3N, [Doi1986] where the error is consistent with our underprediction

145



of Ne. Again making a Fickian assumption that there is no decoupling between diffusion

and viscosity one gets back τrot/τRouse = DRouse/DCM ≈ 1.8N/Ne, again just as would be

expected by the phenomenological model and with the same slight prefactor error. This

ansatz suggests a possible simulation-based test of our proposed mapping: one could study

the dynamics of fluids of entangled rods whose length is allowed to fluctuate according to

the statistics of the end-to-end vector of an ideal chain, L→ L(t), and compare them with

known data on flexible chains.

5.3 Coarse-Grained Star Polymers

One of the great successes of tube theories is that they can be extended to polymer archi-

tectures other than linear chains, in particular to branched macromolecules [16]; one can

ask if our formalism is similarly flexible. Previously we showed that the Szamel theory can

be successfully extended to topologically entangled 3D crosses, a rigid coarse-grained analog

of a six-arm star-branched polymer [141]. Combining the exact results from simulations,

DCM,cross ∼ exp(−0.42ρL3) [122, 123], with the super coarse-grained mapping proposed

above, we can study stars composed of six flexible chain arms. However, one would ex-

pect our prediction for the self-diffusion of a star to be wrong since tube theories argue

that it is dominated by branch point hopping events triggered by arm-retraction, leading

to DCM,cross ∼ exp(−νNa/Ne), where ν ≈ 0.6 and the important quantity is the degree

of entanglement of the arms [16]. Re-expressing the reduced cross density in terms of the

arm-lengths, and applying our mapping, we predict a density-fluctuation-mediated activated

star CM diffusion constant of:

DCM,cross ∼ exp(−0.42(ρL3)cross) ∼ exp

(
−0.42

ρs
6Na

(
2σ
√
Na√

1.3

)3
)
∼ exp

(
−0.38

σ

p

√
Na

)
.

(5.8)
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Using the experimental σ/p ≈
√

313/Ne [155], this implies DCM,cross ∼ exp
(
−6.7

√
Na/Ne

)
.

Formally this shows a weaker dependence on arm length than is experimentally observed,

but the large prefactor in the exponent implies this new mode of motion is unimportant until

6.7
√
Na/Ne ≈ νN/Ne. The latter condition corresponds to arm lengths with Na/Ne ≥ 100,

well beyond the experimentally-studied regime of exponentially slow dynamics [163]. In

this sense the mapping is not inconsistent: our secondary branch-point-hopping mechanism

is hidden by a faster relaxation mechanism not yet taken into account in our theoretical

approach.

5.4 Summary

In summary, we have constructed a first-principles microscopic theory for the dynamics of

entangled polymers at the primitive-path level, self-consistently renormalizing interchain

PP interactions to define an effective dynamic confining potential. This advance responds

to a major outstanding theoretical challenge in the understanding of highly entangled poly-

mer chain dynamics [23]. Furthermore, we have gone beyond computing only a particular

moment of the transverse displacement distribution to construct the full anharmonic con-

finement potential. The close agreement between the theoretical confining potential and

simulation at the primitive-path level suggests a potential application of our work in im-

proving slip-link model simulations by replacing the harmonic springs typically employed

to mimic entanglement constraints. This direction may be particularly important for non-

linear rheology, where the question of how large deformations soften, or even destroy, the

confining tube is a frontier issue [140, 144, 147, 152, 164]. Another potential application of

our present work is a microscopic investigation of the “rubbery plateau” modulus, one of the

key experimental manifestations of entanglement in long chains. Here, a long-standing and

theoretically difficult issue is the relative importance of bonded and non-bonded stresses (or

intra- and inter-chain interactions) in determining the plateau modulus and stress relaxation
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functions [12,165–167]. Different decompositions of the stress appear to all be proportional

to the total stress at long enough times, suggesting that the usual Doi-Edwards assumption

that intrachain terms dominate might be reasonable up to a (large) numerical prefactor.

However, simulations also find that the magnitude and sign of the interchain terms is much

more compatible with the total contribution to the stress [167], and how these different stress

storage contributions change under deformation could be quite different. We discuss this

issue in some detail in Chapter 7.

Finally, a potential advantage of our mapping perspective is that the underlying micro-

scopic theory provides a tractable conceptual and computational framework to implement

specific modifications to the basic tube-reptation model. For instance, the effect of contour

length fluctuations can be modeled by allowing the length of the PP steps (or the mapped

needle in the super coarse-graining) to be stochastically sampled from Gaussian length fluc-

tuations, while keeping the mean value fixed at the equilibrium length. We also anticipate

that our prediction of anharmonic transverse confinement may have deep implications for

how the tube model is modified when large stresses or shear rates are applied to flexible

chain liquids, as we demonstrated recently under large amplitude step-strain for entangled

needle fluids [168].
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Chapter 6

SHEAR RHEOLOGY OF RODS

6.1 Introduction

1In this chapter we build upon our quiescent theory for the transverse, topologically-induced

confinement of rigid rods to try to study such systems under applied deformations. Un-

derstanding the rheological behavior of heavily-entangled polymer melts and solutions has

been an outstanding theoretical challenge for many decades. The key issue is that when

the polymers become sufficiently long and/or dense the dominant obstacles to relaxation

are “topological entanglements,” the dynamical constraints that arise from polymer con-

nectivity and uncrossability. As discussed in previous chapters, encoding these constraints

in a rigorous microscopic theory is exceptionally challenging. For many decades, the pri-

mary framework for studying entangled polymer dynamics has been the phenomenological

reptation-tube model of de Gennes [15], Doi and Edwards [12], and its many recent exten-

sions [16]. This single-chain approach is based on an ansatz for a mean-field that encodes the

effect of the surrounding chains with an infinitely strong confining tube around the tagged

chain, but it is not self-consistently constructed. Constrained in this way, long time relax-

ation and mass transport can only proceed via one-dimensional curvilinear diffusion of the

polymer (a chain or rigid rod) along the tube axis, and from this starting point one can go

on to predict a variety of viscoelastic and time-dependent phenomena.

For monodisperse melts and concentrated solutions of chains in equilibrium the reptation-

1This chapter contains text and figures reprinted with permission from D. M. Sussman and K. S.
Schweizer, Macromolecules 45 3270 (2012), Copyright ACS 2012; D. M. Sussman and K. S. Schweizer,
J. Rheology; submitted 2012.
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tube model has had many successes. The simplest version of the theory predicts, for instance,

scaling laws for the relaxation time and the self-diffusion with increasing chain length that

are close to experimental observations in the heavily-entangled regime. Elaborations on the

theory that incorporate additional competing relaxation processes, such as constraint re-

lease and contour length fluctuations [169], can bring the theory into essentially quantitative

agreement with many linear response experiments and some non-linear rheology measure-

ments, based on employing a few adjustable parameters. Impressively, the tube approach

can be generalized to treat a variety of polymeric architectures, from rigid rods to branched

macromolecules such as stars and combs [16]. However, when applied to nonlinear rheology

the reptation-tube approach must invoke additional strong assumptions and approxima-

tions. These effectively involve making guesses for the true nature of entanglements and

tube confinement potentials. For example, nonlinear step-strain experiments are treated by

picturing physical entanglements as chemical crosslink of effectively infinite strength, allow-

ing very rapid retraction of stretched chains, and assuming a quiescent reptation process

relaxes chain orientation. A notable success of the theory for this deformation is the predic-

tion of an accurate damping function, defined as h(γ) = G(t > τx, γ)/G(t > τx, γ0 << 1),

where G(t, γ) = σ(t, γ)/γ is the ratio between the shear stress σ and the applied strain γ,

and τx is a crossover time often cited as of order the longest Rouse relaxation time [12].

In continuous shear, the original Doi-Edwards theory predicts an unphysically large de-

gree of shear thinning at high deformation rates due to affine-deformation polymer “over-

orientation.” To address this issue, additional qualitative modifications to the theory must

be invoked. The most promising is “convective constraint release” (CCR), which posits that

that fast flows can mechanically convect the many entangled chains surrounding a tagged

polymer at a rate set by the imposed shear rate, effectively releasing constraints to its mo-

tion faster than the bare tube theory would predict based on quiescent reptation. The

essential idea behind CCR, schematically, is to modify the polymer relaxation rate under

flow as τ−1 = τ−1
q + γ̇, where τq is the quiescent relaxation time and γ̇ is the flow rate [170].
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Present implementations of CCR include more sophisticated changes to the relaxation time

that depend on deformation time and history, contour length fluctuations, and other fac-

tors [16, 169, 170]. The CCR idea can “cure” the shear-thinning problem in the original

reptation-tube theory at the cost of an additional fitting parameter, but issues still remain.

For instance, many of the ideas that have worked so well in describing simple shear flow seem

to fail to describe experimental data in extensional flow, a rather puzzling situation [171].

Additionally, there is some ambiguity about the physical meaning of the mathematical terms

CCR adds to the tube model [23].

Another set of poorly understood issues concerns the strength of the physical entan-

glements that collectively define the confining tube potential. The standard tube-model

assumption that the tube can provide an infinite restoring force, i.e. mimic unbreakable

chemical crosslinks, cannot be literally true, but the relevant question is whether such an

approximation is physically reasonable under deformation conditions of interest. Infinitely

strong constraints would imply a tube diameter that does not change under deformation [12].

Subsequent work by others argued for the other two postulates: stress increases [16, 172] or

decreases (for extensional deformation) [173] the tube diameter. This issue remains un-

resolved within the phenomenological tube-model framework, but recent simulations have

found evidence for stress-induced tube widening (“dilation”) or the reduction of entangle-

ment upon extensional [152] or shear [164] deformation. There is also a growing body of evi-

dence that the finite size of the entropic barrier to transverse motion is important [144,174].

The most spectacular consequence of tube breakability under stress would be “microscopic

yielding,” in analogy with this well-accepted phenomena as observed in colloidal gels and

glasses of all types [67, 69, 144, 175]. Even before tube destruction may occur, recent sim-

ulations support the idea that the tube is strongly and nonperturbatively deformed under

flow conditions. For instance, atomistic simulations and primitive chain network slip-link

studies of shear and extensional flows have found power-law reductions of steady-state num-

ber of entanglements and increased effective tube diameters [152, 164, 176]. This may be
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a consequence of an effectively softer-than-harmonic tube, a feature observed in quiescent

primitive-path simulation analysis of entangled chain melts [29] and experiments on biopoly-

mers [25,28]. Anharmonic softening may also be important for the power-law scaling of the

“yield strain” (the value of strain at the stress overshoot), γy ∼ (γ̇τR)1/3, observed for Rouse

Weissenberg numbers in excess of unity, γ̇τR > 1. This observation, first seen in solu-

tions [144] and recently independently confirmed in melts [177], remains unexplained by any

statistical mechanical theory, although a phenomenological force-imbalance-based scenario

has been constructed [144].

In addition to the concerns they raised under quiescent conditions mentioned in previ-

ous chapters, recent perspective articles [22, 23] have emphasized the need for conceptual

advances nonlinear driven conditions as well, particularly for the microscopic foundation of

CCR and the way entanglements and tubes are modified by large deformations. To address

such issues theoretically we choose to study a simpler model system - a solution of infinitely

thin, non-rotating rods of length L. The Doi-Edwards (DE) theory for entangled rod-like

polymers [12, 178] shares many features and predictions with the full flexible chain tube-

based rheological theory, including an excessive shear thinning behavior at high shear rates,

but to our knowledge CCR elaborations have not been developed for rigid-rod polymers. We

find that by starting from a first-principles, microscopic perspective we naturally arrive at

(i) a highly anharmonic transverse confining potential, and (ii) a way to include the effects of

shear stress that leads to an emergent CCR-like behavior in continuous shear flows without

the need to explicitly include additional relaxation mechanisms by hand. A key new feature

is that under stress our microscopic theory involves relaxation in parallel via longitudinal

reptative motion and transverse activated barrier hopping.

This chapter discusses the shear rheology of rigid rods under the two most important

deformation conditions: instantaneous step-strains and continuous shear deformations. The

remainder of the chapter is organized as follows. Chapter 4 has already discussed the key

theoretical aspects for both quiescent and stressed conditions (self-diffusion constant, tube
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diameter, dynamic confinement potential, incorporation of stress and orientation, concept

and definition of “microscopic yielding”), including a full exposition of various analytically-

derivable results and a new analysis of entanglement onset. Section 6.2 briefly discusses

the initial consequences of stress and orientation immediately after an instantaneous step-

shear strain, including how the tube dilates and is possibly destroyed. Section 6.3 presents

calculations of the two competing relaxation times (relevant for all shear deformations) from

knowledge of the dynamic confinement potential’s dependence on degree of entanglement

and strain amplitude. Our theory for the time evolution of stress and rod orientation under

nonlinear step-strain deformations is given in Section 6.4, along with numerical calculations.

We emphasize that our treatment of nonlinear rheology is carried out under the assumption

of homogeneous deformation, which ignores the possibility of constitutive instabilities (such

as strain localization or shear banding) and macroscopically non-quiescent relaxation. A

summary of our findings for instantaneous step strains is presented in Section 6.5.

Section 6.6 generalizes the step-strain model to continuous shear deformations. Our

rheological theory has formal mathematical similiarities with the Doi-Edwards model, but

there are qualitative physical differences associated with our ability to compute a time-,

stress-, and strain-dependent effective relaxation time from the dynamic tube confinement

potential. The model also introduces a second evolution equation governing the relaxation of

orientation, which is nonlinearly coupled with stress relaxation, based on a modified version

of the generalized Maxwell model used to study step strain deformations [168]. Section 6.7

presents calculations for different degrees of entanglement and constant deformation rates.

We conclude in Sec. 6.8 with a brief summary and discussion.

6.2 Step-Strain Deformation: Initial State

An applied stress or strain results in both an effective force on the polymer CM and an

external torque that orients rods. For a step shear strain, the initial induced stress and
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orientation are treated via the standard assumption of affine deformation: an instantaneous

shear strain of dimensionless amplitude γ results in a stress [12]

σ(t = 0+) =
3ρkBTγ

(5 + γ2)
= Geγh(γ), (6.1)

where an approximate, but accurate, analytic form of the DE damping function, h(γ), is

utilized. The Lodge-Meissner relation is then used to relate the alignment angle to shear

and normal stresses [12], resulting in an initial orientational order of

S(t = 0+) =
2

−1 + 3
√

1 + 4γ−2
. (6.2)

Combining Eqs. 6.1 and 6.2 with 4.26, the combined effects of stress and orientation on the

dynamic confinement potential can be determined as a function of applied strain.

Using Eqs. 4.22, 4.23, 4.28, the absolute yield strain corresponding to tube destruction

then becomes a self-consistent equation which in the heavily entangled limit is:

γy =
σy(S(γy))

Ge

' 5

3
√

2

√
1− S(γy). (6.3)

Employing Eq. 6.2 in Eq. 6.3, one finds γy ≈ 0.96, which is modestly smaller than the result

in Eq. 4.23 due to rod-alignment-induced weakening of the maximum tube confinement force.

We note this precise value is subject to small errors owing to the approximations that enter

the calculation of σy (cf. yield strain numbers below).

Figure 6.1 plots calculations of the initial change (t = 0+) in the normalized localization

length as a function of strain. The tube diameter is monotonically widened (dilated) by

deformation due to the combined effect of applied stress and rod alignment. The inverse

tube diameter decreases roughly linearly with strain over an extended range until the absolute

yield strain is approached, beyond which the tube no longer exists. For a relatively modest

degree of entanglement (ρ/ρc = 10), the tube is stable up γy ∼ 0.6, and at higher degrees of
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entanglement (ρ/ρc = 1000) it is stable up to γy ≈ 1.12, comparable to the estimate in Sec.

4.6 based on an elastic solid model. The normalized initial tube radius can be analytically

estimated from Eqs. 4.27, 6.1, 6.2; the result is shown as the uppermost curve in Fig. 6.1, and

is an increasingly good approximation as rod density increases. The analytic form predicts

a density-independent yield strain of γy = 1.16, quite close to the estimate in Sec. 4.6.
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Figure 6.1: Inverse localization length (normalized by its quiescent value) at t = 0+ after
an instantaneous step strain of amplitude γ. From left to right the curves correspond to
calculations at ρ/ρc = 10, 100, 1000, and the dashed curve (indistinguishable on the scale
of this plot with the ρ/ρc = 1000 calculation) is the approximate prediction based on Eqs.
4.27, 6.1, 6.2.

6.3 Parallel Relaxation Mechanisms

Recall that the Doi-Edwards tube model assumes that for a step strain deformation of any

amplitude, affinely-oriented rods relax via unperturbed quiescent reptation. As described

below, our theory agrees with this picture for very low strain amplitudes. However, as the

strain amplitude grows the initial stress and rod orientation increase, which we predict trig-

gers tube dilation and thus speeds up reptation-driven rotational relaxation. In addition,

the transverse entropic barrier is decreased, effectively “turning on” a competing activated

hopping process where the lateral tube confinement can be dynamically surmounted. More-

over, the entire transverse confinement potential evolves in time in a manner that depends
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on the degree of entanglement and strain.

6.3.1 Stress-Accelerated Reptation

Knowledge of the confinement potential allows microscopic predictions to be made for the

two longest relaxation times as a function of density, stress and orientational order — the

critical information required to describe nonlinear stress relaxation after a step-strain in

our theory. In the quiescent heavily entangled state the terminal rotational relaxation time

(which is controlled by the reptative process) is inversely proportional to the transverse

diffusion constant [17,139] D⊥/D⊥,0 ∝ Drot/Drot,0, and in the absence of stress one has

τrot(ρ) =
τ0

36
· D⊥,0
D⊥(ρ)

, (6.4)

where τ0 = L2/D||,0 is proportional to the fast (dilute-solution-like for rods [12]) CM longi-

tudinal “reptation time.” For notational clarity we will occasionally refer to the quiescent

value of the terminal relaxation time (unmodified by stress or orienatation) by τrot,q.

Including stress in the full dynamical calculation of the long-time transverse diffusion

constant is a daunting task. For simplicity, we exploit the connection between τrot, D⊥, and

rl to express the reptation-controlled rotational relaxation time in terms of the localization

length, τrot ∝ r−2
l . The effects of stress and orientation on rl are then obtained from the

confinement potential and related back to τrot. Since the tube dilates with increasing stress,

the terminal rotational relaxation time is reduced as

τrot(ρ, S, σ)

τrot(ρ, 0, 0)
=

(
rl(ρ, 0, 0)

rl(ρ, S, σ)

)2

≈ (
√

1− S − σ̃/3(ρ/ρc))
2
, (6.5)

where the limitations of the final approximate equality were discussed in section 4.7. The

stress- and orientation-dependence of the tube potential can have dramatic consequences for

the long-time dynamics because the transient localization length grows with S and σ. Specif-
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ically, since Drot ∝ D⊥ ∝ τ−1
rot ∝ (rl/L)2, tube dilation can significantly accelerate reptative

rotational relaxation and transverse diffusion, especially for heavily-entangled solutions near

the absolute yield stress, σy.

Sample rotational relaxation times immediately after an instantaneous step-strain are

plotted in Fig. 6.2 for three degrees of entanglement. The degree of stress-accelerated re-

laxation is heavily density-dependent, since rl(ρ, σy)/rl(ρ, 0) ∼
√
ρL3 at ρ� ρc, and hence

the maximum enhancement of τrot increases linearly with ρ. As the absolute yield strain is

approached the rotational relaxation time is predicted to accelerate by over two orders of

magnitude for the most heavily entangled system. Figure 6.2 also shows the quantitative

increase of the absolute yield strain with degree of entanglement, which ultimately saturates

as ρ/ρc →∞.
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Figure 6.2: Log-linear plot of the initial mean transverse hopping (dashed) and terminal
rotational relaxation (solid) times normalized by the quiescent terminal relaxation time given
by Eq. 6.4. From left to right the curves correspond to calculations at ρ/ρc = 10, 100, 1000.
The yield strains at these rod densities are γy = 0.6, 1.0, 1.12, respectively.

6.3.2 Activated Transverse Barrier Hopping

We also predict the emergence of a qualitatively new relaxation channel due to stress-

reduction of the transverse entropic barrier. The characteristic rate of lateral barrier hopping
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can be computed from Kramers’ result for the mean first-passage time [90]:

τ⊥,hop(ρ, S, σ)

τ0

=
2π√
K0KB

eβFB(ρ,S,σ), (6.6)

where K0 and KB are the absolute magnitudes of the local curvatures at the confinement

potential minimum and barrier location, respectively. We find that lateral hopping times

become comparable to the reptation-controlled terminal relaxation process only when the

barrier is relatively small (i.e. at high stress). In these cases, the relevant part of the

quiescent tube potential is not the large-displacement logarithmic part, but rather the well-

validated [139] quasi-linear regime. Nevertheless, analytic analysis of the low-stress regime

is straightforward and yields important insight.

Recall that as a consequence of Eq. 4.14, for relatively low stresses the barrier is given

by Eq. 4.20. Hence, for σ � σy the hopping time decreases as a power law with an exponent

determined by the degree of entanglement:

τ⊥,hop ∝ (σ/σy)
−θ, (6.7)

where θ = 2(ρ/ρc − 1). Thus, while the lateral hopping time is astronomically long for

low stress and high density, it decreases with stress at an enormously faster rate than the

acceleration of τrot. Sample calculations of the hopping time as a function of strain amplitude

are shown in Fig. 6.2.

Physically, as the strain approaches its absolute yield value entanglements and tube

localization are destroyed, FB → 0, and the transverse hopping time must smoothly recover

its “bare” value [92], τ⊥,hop → τ0. In practice it is well known that Eq. 6.6 is a poor

approximation as the barrier height approaches the thermal energy, and thus in Fig. 6.2

curves are shown only for FB ≥ 1.5 kBT . In the calculations below, when an activated

hopping time is required under conditions where the barrier is lower than this threshold, as

158



a practical numerical approach we fix S and use a simple linear interpolation between the

hopping time at the stress value that gives a barrier of 2 kBT and the bare time τ0 relevant

at σ = σy(S).

6.3.3 Stress-Modified Relaxation: Reptation Versus Transverse

Barrier Hopping

Figure 6.2 compares the mean initial transverse barrier hopping (a tube-breaking event) and

terminal rotational relaxation times after a step strain of variable amplitude, each normalized

by the quiescent relaxation time, τrot(ρ), given by Eq. 6.4. The massive reduction of τ⊥,hop

relative to the comparatively weak tube-dilation effect on the rotational relaxation time is

evident. Even for ρ/ρc ∼ 100−1000, very high degrees of entanglement relevant to synthetic

rods or stiff biopolymers (e.g., long PBLG synthetic rods and F-actin [25–27,142]), entropic

barriers can become sufficiently low that transverse hopping becomes faster than (tube-

dilated) reptation at strains of order unity, which is well below the classic “over-orientation”

stress maximum [12] at γ =
√

5.

Due to the strain-dependent competition between tube-dilated reptation and activated

transverse hopping, three distinct dynamical regimes are predicted. (i) For γ/γy sufficiently

less than unity, the hopping time is astronomically long relative to τrot, the transverse con-

finement is dynamically stable, and hence the quiescent reptation-tube picture remains es-

sentially unchanged in accord with the Doi-Edwards theory. (ii) In the opposite limit of

γ > γy, a microscopic instability-like, or “absolute yielding,” phenomenon is predicted, de-

fined by the complete destruction of the transverse barrier and hence the tube constraints.

(iii) A third dynamical regime emerges at high-enough densities over an intermediate range

of strains, in which the entropic barrier still exists but it is small enough that τ⊥,hop < τrot.

This regime occurs when, on average, the strain causes the entanglement network to collapse

via transverse barrier hopping before reptative relaxation is completed. In the context of
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structural glasses and gels, this behavior is often called “dynamic yielding” corresponding to

achieving irreversible motion and flow via thermally-induced activation on the experimental

time scale [65,67–69]. These latter two regimes have no analog in classic tube theories.

6.4 Generalized Maxwell Model for Instantaneous

Step Strains

6.4.1 Coupled Evolution Equations

We now consider the coupled nonlinear stress and orientational relaxation following an in-

stantaneous shear strain. A minimalist generalized Maxwell model is adopted in which

relaxation can proceed in parallel via reptation-controlled terminal rotational motion and

transverse barrier hopping. Thus, at any moment we take the effective relaxation rate to be

τ−1
eff (t) = τ−1

rot (ρ, S(t), σ(t)) + τ−1
hop(ρ, S(t), σ(t)). (6.8)

The coupling between the relaxation time and the system stress and orientational order

renders the non-local-in-time integral representation of evolution equations unwieldy. Hence,

we employ a time-local differential formulation. The evolution equations are formally first

order in time, but highly nonlinear in stress and orientation due to the coupling via τeff :

dσ

dt
=
−σ(t)

τeff (t)
, (6.9)

dS

dt
=
−S(t)

τeff (t)
. (6.10)

Eqs. 6.8, 6.9, 6.10 assume a 1/e increment of stress and orientational relaxation associ-

ated with each type of dynamical event. While one can image countless variations on this

assumption, as a first approximation it should correctly capture the qualitative implica-
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tions of having two competing terminal relaxation processes. Eqs. 6.9 and 6.10 imply the

logarithmic derivatives of the time dependent stress and orientation are equal, and hence

d(log(σ/S))/dt = 0. Thus, stress and S are proportional at all times, a type of stress-optical

relation [12].

The key input to the evolution equations is the time evolution of the tube diameter,

rotational reptation time, and transverse barrier-hopping time, which are all nonlinear func-

tions of strain (their detailed properties were discussed in section 6.3. Extensive calculations

of all aspects of the dynamic tube confinement potential and stress and orientational re-

laxation after step-strains have been performed over a wide range of strain amplitudes and

degrees of entanglement. Results will be presented for ρ/ρc = 10, 100, 1000. The essential

new physics emerges from the self-consistent, microscopically-computed connection between

time-dependent stress, orientational order parameter, and characteristic single-rod relax-

ation times. The latter are directly connected to the dynamic confinement potential, most

notably the tube diameter and entropic barrier height.

6.4.2 Nonequilibrium Relaxation of the Dynamic Confinement

Potential

Figure 6.3 shows the time-dependence of the tube diameter after various step strains, both

above and below the absolute yield strain. For very low strain amplitudes the tube diameter

remains essentially unperturbed. At intermediate strain amplitudes below absolute yield

there is a period of nearly constant tube dilation at short times, followed by a decrease to

its quiescent value at long times. For large deformations the tube is initially completely

destroyed (i.e. there is no lateral confinement force), and this state persists for some finite

period of time. As stress and orientation are relaxed the tube then eventually re-emerges and

slowly grows back in (“heals”) with increasing time, with the localization length monoton-

ically approaching the quiescent value from above. Similarly, since the terminal rotational
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time is linked to the tube diameter, τrot ∼ r−2
l , it is initially much smaller than its quiescent

value, which it approaches from below at long times. Since the rotational relaxation time

and tube diameter are directly related, the former is plotted only for the highest degree of

entanglement in Fig. 6.4a; for the other cases, τrot can be inferred from the behavior of the

tube diameter. In contrast, the mean transverse barrier hopping time is initially very fast

for large enough strains. Indeed, Fig. 6.4b shows that if the barrier initially vanishes after a

large step strain the hopping time approaches the bare time, but then grows to astronomical

values rather quickly as stress and rod orientation decay and entanglements are restored over

short time scales. Note that Fig. 6.4b contains only two representative curves, both above

the yield strain; the mean hopping time for lower strains is far off the scale of this plot (cf.

Fig. 6.2).
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Figure 6.3: Time evolution of the normalized localization length or tube diameter for var-
ious initial strain amplitudes. Solid curves correspond to ρ/ρc = 1000, dashed curves to
ρ/ρc = 100, and dash-dotted curves to ρ/ρc = 10. Read in the direction of the arrow, strain
amplitudes are γ = 0.1, 0.7, 1, 5, 2.

Intriguingly, when the tube is initially either strongly dilated or destroyed, the temporal

manner in which the tube diameter approaches its equilibrium value has an apparent power-

law behavior, roughly independent of strain amplitude and degree of entanglement, over an

intermediate time window (Fig. 6.3. The scaling is roughly rl ∼ t−0.3, with higher densities

supporting this behavior over an ever-larger time regime. This behavior implies a regime

of power-law growth of the terminal reptative rotational relaxation time (τrot ∼ t0.6) as the
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entanglement network reforms, as seen in Fig. 6.4a.
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Figure 6.4: (A) Time evolution of the terminal rotational relaxation time (nondimension-
alized by the quiescent terminal relaxation time) with increasing strain (top to bottom) at
ρ/ρc = 1000. (B) Time evolution of normalized transverse hopping time for γ = 2 (solid
curve) and γ = 5 (dashed curve) at ρ/ρc = 1000.

In those cases where the initial deformation is sufficient to destroy the entanglement

network (“microscopic yielding”), the transverse hopping relaxation channel, which now

proceeds on the short time scale of the bare relaxation time (Fig. 6.4b), rapidly relaxes both

stress and orientation and allows the entanglement network to reform. The time t∗ at which

a tube first re-emerges when γ > γy is plotted in Fig. 6.5. This time is a non-monotonic

function of strain that reflects the non-monotonicity of the initial stress, σ(t = 0+). However,

in all cases tube reformation occurs at a short time of order τ0. The radius of the newly-

reformed tube at t∗ can be implicitly read off from Fig. 6.3. The main trends are that rl(t
∗)

becomes much larger with increasing rod density since (as discussed in section 4.6) at higher

degrees of entanglement the tube can grow to a larger radius before being destroyed, i.e.,

rl(ρ, σy)/rl(ρ, 0) ∼
√
ρL3. Above the absolute yield strain there is a comparatively modest

variation in rl(t
∗) with increasing γ.

Entanglement-constraint healing can also be characterized by the growing back in of the

maximum lateral confinement force after the tube has been initially destroyed by a large step

strain. Even though the relation fmax ∼ kBT/rl in Eq. 4.22 was derived under equilibrium

conditions, we find that it continues to be reasonably accurate numerically at high densities
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Figure 6.5: Normalized time at which the tube constraints first re-emerge for deformations
γ > γy. From top to bottom the curves correspond ρ/ρc = 10, 100, 1000.

under large deformation conditions:

fmax (ρ� ρc, S(t), σ(t)) ∼ rl(ρ, S(t), σ(t))−1. (6.11)

Thus, the maximum transverse force also exhibits intermediate-time power-law healing ki-

netics, fmax ∼ t0.3, until enough time elapses for it to approach its quiescent value.

6.4.3 Nonlinear Stress and Orientation Relaxation

Figure 6.6 presents calculations of orientational relaxation, and Fig. 6.7 shows the dynamic

nonlinear relaxation modulus, for three degrees of entanglement. Given that a stress-optical-

like relation is obeyed by our theory, these two quantities are directly connected. Thus, we

plot the orientational order in a log-linear fashion to highlight the return to single-exponential

decay with time, and the modulus in a log-log plot to highlight the ultra-fast, short-time

relaxation at high strains. Several trends are evident. For low dimensionless strains (γ � 1),

the effective relaxation time is only very weakly perturbed from its equilibrium reptation

value, resulting in essentially unmodified exponential decay of both S(t) and G(t). Note that

if the time scale is nondimensionalized by the quiescent relaxation time there is only a very

weak dependence on degree of entanglement, most readily seen in Fig. 6.6. This corresponds
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to the Doi-Edwards scenario. However, we predict this behavior eventually breaks down due

to modification of the tube potential by the imposed deformation.
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Figure 6.6: Log-linear plot of the decay of orientational order parameter after step strains of
(top to bottom) γ =10, 5, 1, 0.5, 0.1, 0.01. Dash-dotted, dashed, and solid curves correspond
to ρ/ρc = 10, 100, 1000, respectively.

At intermediate strains (but still γ < γy), acceleration of the terminal reptative rotational

time is the first observable correction to quiescent relaxation, and at even higher strains

much more dramatic effects emerge. In the latter case, a significant amount of stress and

orientation relax on the bare time scale, τ0, since the large deformation temporarily removes

the transverse barrier and thereby allows very rapid relaxation until stress and orientation

decrease sufficiently for the tube to reform. The separation in time scales between the

quiescent terminal and bare times is greatest for larger degrees of entanglement, thereby

allowing a clear short-time plateau in the relaxation modulus to be observed (Fig. 6.7a).

This feature emerges due to an ultra-fast relaxation of stress, which then necessitates much

slower rotational (or transverse diffusive) motions for further relaxation to continue as the

entanglement constraints are re-established (cf. the very rapid growth of τhop in Fig. 6.4b).

For weaker degrees of entanglement (Fig. 6.7b and 6.7c) well-developed stress plateaus are

less apparent. Note that the apparent non-monotonicity of the height of the stress plateau

as a function of strain for the two highest strain values in Fig. 6.7 is the result of our

choice to normalize the curves by the strain-dependent G(t = 0) instead of the entanglement
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modulus Ge. Thus, in the results for the damping function discussed below no such non-

monotonicity is present. In any event, in all cases of nonperturbative strain amplitude, Fig.

6.7 demonstrates that the relaxation of stress and orientation is strongly modified from the

quiescent reptation behavior, in contrast to the Doi-Edwards model. Moreover, stress and

orientation relaxation is highly nonexponential in time for two physical reasons: the tube

constraints are time-dependent and there are two competing relaxation mechanisms.
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Figure 6.7: (A) Log-log plot of normalized stress relaxation modulus as a function of time
at six strain amplitudes for (A) ρ/ρc = 1000 (B) ρ/ρc = 100 (C) ρ/ρc = 10.

6.4.4 Damping Function

Regardless of the strain amplitude or rod density, at long times both stress and orientation

relax to low enough values that the tube reforms and purely exponential decay of stress and

S occurs, characterized by the quiescent terminal relaxation time (inset of Fig. 6.8). This
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allows an apparent damping function to be defined via superposition at long times as

h(γ) = G(t→∞, γ)/G(t→∞, γ0), (6.12)

where we have used γ0 = 10−3, and “t→∞” indicates a long enough time that superposition

can be achieved. As seen in Fig. 6.8, since there are additional fast relaxation processes,

qualitative departures from the classic DE damping function appear [12]. In particular, our

damping function is not well-described as a Lorentzian, and decays with strain amplitude

much faster due to stress- and orientation-induced dynamical softening of the tube potential.

As a secondary effect, there is a very weak dependence of the damping function on density.
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Figure 6.8: Log-log plot of the damping function (Eq. 6.12) at ρ/ρc = 10, 100, 1000 (points).
The solid curve is the original DE h = 5/(5 + γ2), and the dashed curve corresponds to
the modified classic tube model that includes an orientation-dependent tube diameter (see
text). Inset. Log-log superposition plot of the nonlinear relaxation modulus from which the
damping function is determined.

To more thoroughly understand the physical origin of our predicted deviations from the

Doi-Edwards theory, the calculations were repeated with modified input but still within an

effective tube model framework. Specifically, in the original DE theory of entangled rods,

a tube dilation effect can arise from orientational considerations in the more concentrated

nematic-liquid-crystal regime [12]. This effect does not enter in the pure topologically en-

tangled “semi-dilute” regime [178], but we can adopt this orientational-tube-dilation effect
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to take into account transient, deformation-induced orientational order as discussed above.

We have performed numerical calculations of a modified classic tube model analogous to

the calculations in Sec. 6.4.1 where: (a) transverse activated barrier hopping was turned

off by hand (τhop → ∞), but (b) the terminal rotational time was modified by orientation-

dependent tube-dilation. We emphasize that in the context of our NLE theory, point (b) is

equivalent to assuming that orientation modifies the tube confinement potential but stress

does not. The damping function that results is shown in Fig. 6.8 as the dashed curve. While

it differs from the classic DE prediction, functionally it is very similar in the sense that it is

again well-described by a Lorentzian, h(γ) ≈ 2/(2 + γ2). The corresponding time evolution

of stress is also more like the original DE model than our full theory since the nonlinear re-

laxation modulus never develops a plateau at short times. This is a consequence of τrot being

accelerated via orientation but not including tube-breaking, transverse hopping events.

Given the above analysis, we can unambiguously conclude that the most dramatic new

effects predicted by our theory of nonlinear stress relaxation are the direct result of the

explicit and self-consistent coupling of the tube confinement field to stress, which results in

both strongly accelerated reptative rotational relaxation and barrier-free lateral motion for

deformations beyond the absolute yield strain. It is interesting to note that this explicit

coupling of stress and confinement potential also underlies distinctive aspects of nonlinear

relaxation and mechanical response in polymer and colloidal glasses within the NLE theory

framework [65,69].

6.5 Step-Strain Summary

We have now presented our self-consistent microscopic theory for the transverse tube con-

finement potential and dynamics of topologically entangled needle solutions under both equi-

librium quiescent and nonequilibrium stressed conditions. In essence, we have attempted to

statistically describe at the level of (impulsive) forces what an entanglement is and where a
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confining tube comes from. The key physics of polymer connectivity and uncrossability is

exactly taken into account at the 2-rod level, with three and higher body dynamical effects

renormalizing the 2-rod entanglement problem in a self-consistent manner via single poly-

mer diffusive motion [17,24]. An explicit accounting of dynamical uncrossability at the 2-rod

level is the minimum level of description required to discuss entanglement, and is already

beyond the single-chain reptation model where tube localization is postulated, not deduced.

Under quiescent conditions, and as discussed in Chapter 4, the theory predicts with

quantitative accuracy: (i) a very sensible value of the number of interpenetrating rods re-

quired for the onset of entanglements and tube localization, (ii) perpendicular and rotational

diffusion over the full range of rod densities [139] including agreement with the Doi-Edwards

asymptotic scaling laws [12] and several computer simulations [20, 21], and (iii) key an-

harmonic features of the confinement field [139] observed in recent experiments on heavily

entangled F-actin solutions [25] and more qualitatively in both DNA experiments [28] and

primitive-path simulations of chain melts [29]. The anharmonicity of the confinement field

is an emergent, not assumed, feature of our NLE approach which predicts that lateral tube

constraints continuously weaken as a tagged polymer and its neighbors move.

The anharmonic nature of the transverse dynamical confinement potential has the im-

portant qualitative implication that there is a maximum restoring force keeping a tagged rod

in its tube due to topological interactions with its surroundings, i.e., physical entanglements

cannot always be literally treated as chemical crosslinks in rubber networks. In this sense,

the theory might be viewed as having some features in common with venerable “transient

network” models [149–151]. The consequences of a finite entanglement force are especially

dramatic under applied deformation, leading to phenomena such as stress- and orientation-

driven tube dilation, transverse entropic barrier reduction, and ultimately tube destruction

beyond a critical level of stress or strain when the external force on a tagged rod exceeds

the intrinsic entanglement force localizing the polymer in a tube. This last feature may

be akin to empirical attempts to describe stress-dependent crosslinks in transient network
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models [150,151], and recent experimentally-motivated physical ideas about force imbalance

in entangled chain liquids [144,148].

By building on the above advances, we formulated a minimalist, generalized Maxwell

model theory for stress and orientational relaxation after an instantaneous (and homoge-

neous) step-strain deformation. The richness of this theory arises from taking into account

nonlinear couplings to a time- and deformation-dependent tube diameter, a maximum con-

finement force, and an entropic barrier. As a consequence, time- and deformation-dependent

reptative rotational relaxation and transverse activated barrier hopping processes emerge as

competing relaxation mechanisms. We predict both the acceleration of the terminal ro-

tational time due to stress- and orientation-dependent tube dilation, and the emergence at

sufficiently high deformations of a transverse barrier-hopping (tube breaking) relaxation pro-

cess as a consequence of the highly anharmonic form of the dynamic confinement potential.

These features result in an extended regime of strongly nonexponential stress relaxation after

a step strain of sufficient magnitude. All these aspects are not present in classic reptation-

tube models of topologically entangled rods.

An important finding is that beyond a large enough step strain, the tube is destroyed in

a manner that can be thought of as an elastic instability or microscopic yielding event [144].

This results in a regime of ultra-fast relaxation of stress and orientation on a time scale

much shorter than the (reptation-controlled) terminal relaxation time. After this initially

very fast relaxation we predict that, as a consequence of the reduced levels of stress and

orientation, the entanglement constraints re-emerge, resulting in the slower, reptative re-

laxation process again becoming dominant at long times. The approach to this state of

quiescent reptation-tube dynamics is characterized by intriguing apparent power-law evolu-

tion, or healing kinetics, of the tube diameter, maximum entanglement force, and rotational

relaxation time towards their quiescent values. An important consequence of including the

stress-assisted transverse hopping process is the prediction of a qualitatively different damp-

ing function compared to the Doi-Edwards model.
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For entangled chain solutions and melts, there has been a long ongoing debate about

whether the tube diameter should couple to deformation [16]. Some researchers argue that

in a step-strain deformation the competition between tube dilation and contraction should

cancel and leave the tube diameter unchanged [170], the original simplifying assumption of

Doi and Edwards [12]. Clearly, for rods we do not have the processes thought to govern one

side of that competition - chain retraction dilating the tube. Other workers have proposed

either tube dilation or contraction, which might depend on deformation type for flexible

chains (e.g., shear versus extension), based on qualitatively different ansatzes [16,173]. Our

microscopic theory for rigid rods always predicts tube dilation under applied shear stress

or strain as a direct consequence of the anharmonic nature of the quiescent dynamic tube

potential. This result, and others we have obtained, suggests it is essential to self-consistently

couple stress to the microscopic construction of the tube field, in analogy with the situation

for colloid and polymer glasses [65,68,175,179].

Unfortunately, there is a dearth of experimental data on the nonlinear rheological re-

sponse (especially for step-strains) of high-aspect-ratio rod solutions in the isotropic state

which could serve to test our theory. This presumably is in part due to the difficulty of

studying such systems while avoiding the liquid crystalline regime. Nevertheless, this prob-

lem seems experimentally addressable based on synthetic or biological (e.g., microtubules)

rigid rod polymers that interact via short range repulsive forces, and we encourage new

measurements to be undertaken.

There is also very little computer simulation data for Brownian solutions of entangled

rigid needles that can be used to incisively test our ideas, especially under nonlinear step

strain conditions. For the quiescent topologically entangled needle system, there is a tenta-

tive study long ago by Doi [178] and a more recent work by Ramanathan and Morse [142].

This is surely a tractable problem for simulation, including the application of primitive path

analysis under both quiescent [29] and highly deformed [164] conditions. We suggest that

new simulations of the topologically entangled needle system be performed to critically test
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the key features of our quiescent tube confinement potential, and its response to prescribed

applied stress and imposed rod orientation. Our many predicted consequences of the latter

on entanglement dynamics are also testable, such as how the terminal rotational relaxation

time and tube diameter respond to stress and rod orientation, and the detailed time de-

pendence of stress relaxation and various dynamical properties after a nonlinear step strain.

Perhaps the most penetrating test would be to determine whether the tube can be com-

pletely destroyed beyond a critical strain (microscopic yielding), and, if so, the nature of its

reformation-kinetics.

We note that some of our results seem intriguingly similar to the physical interpretations

given by Wang and coworkers of recent rheology/microscopy studies of step-strain, startup

shear, and creep nonlinear response of heavily entangled chain polymer liquids [144,147,148].

Specifically, the concept of a tube or entanglement network that has a finite strength related

to the tube diameter (including the functional dependence of fmax on dT ), and the possibility

of stress- or strain-induced microscopic yielding [144]. Of course, the nonlinear rheology of

such systems is presumably influenced by processes not present in rigid rods, most notably

chain stretch and retraction. However, it is interesting to recall that Doi and Edwards, in

their seminal work, emphasized that most of the nonlinear rheological response predicted

by their tube model is essentially the same for rods and chains based on the assumed rapid

equilibration of chain stretch via fast Rouse dynamics [12, 178]. Efforts are underway to

generalize our theory to apply to entangled flexible chains. Although this is a theoretically

formidable task, preliminary results in equilibrium are discussed in Chapter 5.

6.6 Theory of Continuous Shear Deformations

Here we generalize this model to time-dependent shear deformations, where we must switch

to an integral representation for the shear stress. Closely following the standard Doi-Edwards
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prescription for a time-continuous shear deformation in the xy-plane [12,180], we begin with

σ(t) = Ge

∫ t

−∞
dt′
(
dψ(t− t′)

dt′

)
Q[E(t, t′)], (6.13)

The plateau modulus for rigid rods is Ge = 3ρkBT/5, a very simple result that stems

from the decay of single-rod orientational autocorrelations [12]. The key point is that even

though the tube diameter is a function of orientation and stress, the elastic modulus is

not; this contrasts sharply with what we expect for entangled flexible-chain liquids. The

quantity Q(x) ≈ 5x/(5 + x2) is the classic deformation “over-orientation” factor, and E is

the accumulated deformation that, for start-up shear deformations, is

E(t, t′) =

∫ t

t′
dt′′γ̇(t′′) =

γ̇(t− t′), t′ > 0

γ̇(t), t′ < 0
. (6.14)

The normalized “tube survival” relaxation function ψ is taken to be the accumulated

exponential relaxations along the two parallel channels:

ψ(t− t′) = exp

(
−
∫ t

t′

dt′′

τeff (ρ, S(t′′), σ(t′′))

)
. (6.15)

Note this “tube survival” function does not in general decay exponentially in time due to

the orientation and stress dependence of the effective relaxation time. This is the crucial

difference between our theory and the DE model. Undoing an integration-by-parts used to

get to the above equation for σ gives

σ(t) = −Ge

∫ t

−∞
dt′ψ(t− t′) d

dt′
Q[E(t, t′)], (6.16)

d

dt′
Q(t, t′) =

γ̇−γ̇dQ(x)/dx|x=γ̇(t−t′), t′ > 0

0, t′ < 0
. (6.17)
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Combining these expressions, the final expression for the stress of the system as a function

of time is then:

σ(t) = Geγ̇

∫ t

0

dt′

(
ψ(t− t′)

[
d

dx

(
5x

x2 + 5

)]
x=γ̇(t−t′)

)
. (6.18)

We now must generalize the evolution equation governing orientational order for time-

dependent deformations, and we employ a simple, physically intuitive extension that reduces

to our step-strain formalism in the limit of a very rapid, interrupted continuous shear defor-

mation (physically distinguished from a step strain as a delta-function deformation). The

initial value of the orientation following a step-strain is the result of a purely geometric

(affine deformation) argument. For an arbitrary γ̇(t) in the absence of relaxation (i.e. in

the limit where deformation occurs much faster than any relaxation process) one expects

that after a total strain of γ =
∫ t

0
γ̇(t′)dt′ the orientation has built up to the same value it

would have had after a step-strain of equal total amplitude. Evidently, then, in the absence

of relaxation one has

dS

dt
=

(
dSa
dγ

∣∣∣∣
γ=

∫ t
0 γ̇(t′)dt′

)
γ̇(t) (6.19)

where Sa(γ) is the orientation that results from an affine deformation of strain γ,

Sa(γ) =
−2γ

γ − 3
√
γ2 + 4

. (6.20)

To reintroduce orientational relaxation we posit the following evolution equation:

dS

dt
=

−S(t)

τeff (ρ, S(t), σ(t))
+

(
dSa
dγ

∣∣∣∣
γ=γeff

)
γ̇(t). (6.21)

Here we have included the “relaxation” term exactly as in the previous step-strain calcula-

tion, but instead of evaluating the derivative of Sa at the total strain as in Eq. 6.19, it is

evaluated at an effective value of the strain. This allows one to capture the intuition that,
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as the orientation relaxes, the amount by which the deformation re-orients the rods depends

more on the current state of the system than on some hypothetical state that exists in the

absence of relaxation. As such, the theory is closed via the approximation of introducing an

effective strain, γeff , which satisfies Sa(γeff ) = S(t). Explicitly inverting Eq. 6.20 gives

γeff (t) =
3S(t)√

1 + S(t)− 2S2(t)
. (6.22)

Note that, as desired, in the limit of τ−1
eff � γ̇ one has γeff → γ =

∫ t
0
γ̇(t′)dt′, and so Eq. 6.21

reduces to Eq. 6.19. Together Eqs. 6.18, 6.21, 6.22 form a set of coupled nonlinear equations,

functionally coupled to the dynamic tube confinement potential, which govern the evolution

of an entangled needle system under a general time-dependent shear deformation. These

equations are solved numerically below for a constant deformation rate, γ̇(t)→ γ̇, and hence

a strain γ = γ̇t . The full transient response is obtained, during which stress, orientation,

relaxation time, and tube confinement potential all evolve in a dynamically coupled and

self-consistent manner.

6.7 Continuous Shear Results

6.7.1 Approach to Steady State

We now present numerical calculations of stress and orientational relaxation during a con-

tinuous startup shear deformation for two reduced densities which correspond to modestly

(ρ/ρc = 10) and heavily-entangled (ρ/ρc = 1000) rod systems, at a variety of deformation

rates. These reduced densities are relevant, e.g., to entangled solutions of long synthetic

PBLG rods and semiflexible f-actin or rigid microtubules, respectively [12, 25]. An impor-

tant limitation is the range of deformation rates we expect to be able to describe given that

our theory has no mechanism for single rod motion to proceed faster than the “bare” time

scale set by τ0. In light of this, the computations are restricted to a range of flow rates

175



γ̇τrot,q . (τrot,q/τ0). Under quiescent conditions the separation in time scales between the

terminal rotational relaxation time and the bare time is controlled by the ratio D⊥/D⊥,0,

as in Eq. 6.4. This ratio is highly density-dependent: at ρ/ρc = 10, (D⊥/D⊥,0)−1 ≈ 30,

whereas for ρ/ρc = 1000, (D⊥/D⊥,0)−1 ≈ 1.6 × 105. Thus, we study the lower-density sys-

tem at Weissenberg numbers up to Wi ≡ γ̇τrot,q = 50 and the higher-density system up to

Wi = 1000.
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Figure 6.9: Stress normalized by the equilibrium shear modulus vs. strain at increasing
deformation rates (bottom to top) for (A) ρ/ρc = 1000 and (B) ρ/ρc = 10. Inset of (A):
Value of stress at the yield peak normalized by the entanglement modulus as a function of
deformation rate. Curves are the calculation according to Doi-Edwards [12], orientation-
modified Doi-Edwards, and the present work at high and low densities (top to bottom).

Figure 6.9 shows the stress normalized by the shear modulus as a function of accumulated

strain curves for different shear rates. As the Weissenberg number exceeds a value of order

unity, one sees the weak overshoot characteristic of entangled rod solutions; recall that in the
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absence of chain stretch the stress overshoot is expected to be weaker here than for flexible

chains [178]. The stress normalized curves in Fig. 6.9A and 6.9B at the two densities are

very similar: at the lowest rate the normalized calculations would overlap, and at higher

rates (subject to γ̇τrot,q . (τrot,q/τ0)) there are only relatively minor differences in the region

of crossover to steady state. In the inset to Fig. 6.9A the magnitude of the stress (overshoot

or yield) peak vs. shear rate is plotted as a function of Weissenberg number. Qualitatively, a

strong increase is predicted at low shear rates, followed by a slower approach to saturation at

high Wi numbers. Overall, the behavior is very similar to the usual Doi-Edwards result [12],

which is also shown in the figure, although with a lower magnitude due to our prediction

that the tube confinement potential softens with increasing deformation. The corresponding

“yield strain” is a weakly non-monotonic (concave down) function of imposed shear rate (not

shown). For the high-density system we find γy ≈ 1− 1.1, quite close to the “absolute yield

strain” estimated for this system for step-strain deformations [168]. For the lower-density

fluid the peak is at γy ≈ 0.8 − 0.9, slightly higher than the corresponding step-strain yield

strain [168]. In all cases, the strain at the overshoot is smaller than the DE result of
√

5.

Figure 6.10 shows the growth of orientational order during the deformation. In contrast

to the stress curves, there is no overshoot. This raises an important point: in our prior step-

strain work the form of the generalized Maxwell model guaranteed a type of stress-optical

law relation between stress and orientation [168], but here our use of γeff suggests that no

such relationship will hold. Although the orientation does not go through a maximum, there

does seem to be a qualitative change in its rate of growth at an accumulated strain close to

the stress maximum. The absolute magnitude of S at high strains is also significantly smaller

than predicted by Doi-Edwards theory (not shown), a trend that follows from our prediction

that tube confinement self-consistently weakens with growing stress and rod alignment.

One can also study the microscopic dynamical state of the sheared fluid. In Fig. 6.11

calculations of the effective relaxation time normalized by its quiescent (reptation-controlled)

value are shown. Strong acceleration of relaxation is generically predicted, which is more
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Figure 6.10: Orientational order parameter vs. strain at increasing deformation rates (bot-
tom to top) for (A) ρ/ρc = 1000, and (B) ρ/ρc = 10
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Figure 6.11: Effective relaxation time normalized by the quiescent terminal relaxation time
as a function of strain at increasing deformation rates (top to bottom) for (A) ρ/ρc = 1000,
and (B) ρ/ρc = 10
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pronounced as the Weissenberg number increases. One also sees a weak undershoot at a

strain close to the stress maximum for high Wi number. Figure 6.12 shows the relative

importance of (accelerated) reptative relaxation and transverse barrier hopping. For the

high density fluid, even up to very large rates there is still a substantial entropic barrier,

and only at the highest rate is transverse activated hopping competitive with reptation. In

contrast, the entanglement constraints are much weaker for the lower density fluid, and as a

consequence at the fastest deformation rate studied we find the barrier to transverse motion

(the tube) is completely destroyed. This is akin to a microscopic “absolute” yielding event,

in the spirit of recent experimentally-motivated discussions for entangled chain polymer

solutions and melts [144].
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Figure 6.12: Ratio of mean transverse (tube breaking) hopping time to terminal reptative
rotational relaxation time, τh/τrot, as a function of strain at increasing deformation rates
(bottom to top) for (A) ρ/ρc = 1000, and (B) ρ/ρc = 10
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The behavior described above is more explicitly documented in Figs. 6.13 and 6.14

in the context of key features of the tube confinement potential. Figure 6.13 shows the

strain-evolution of the barrier height for a wide range of shear rates. The entropic barrier

generically drops by orders of magnitude with increasing deformation rate. However, at

the shear rates we study the high-density system always exhibits a transverse barrier large

compared to thermal energy, in contrast to the more weakly entangled fluid. Figure 6.14

shows the concomitant widening (and breaking at high Wi for the lower density system) of

the effective tube diameter during the deformation. Again, the long-time steady state value

is achieved at a strain roughly equal to, or just beyond, the stress overshoot. Quantitatively,

the tube diameter can widen by a highly nonperturbative factor depending on rod density

and Wi number.

0.01 0.05 0.10 0.50 1.00 5.00
Γ

10

50
100

500
1000

5000

FBHΓL

Wi=1000

Wi=500

Wi=200

Wi=50

Wi=10

Wi=5

Wi
 

=2

Wi=1

Wi=.1

0.05 0.10 0.50 1.00 5.00
Γ

0.1

1

10

FBHΓL

Wi=50

Wi=10

Wi=5

Wi
 

=2

Wi=1

Wi=.1

Figure 6.13: Entropic barrier height (in units of thermal energy) vs. strain at increasing
deformation rates (top to bottom) for (A) ρ/ρc = 1000 , and (B) ρ/ρc = 10
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(A) ρ/ρc = 1000, and (B) ρ/ρc = 10
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6.7.2 Steady State Properties

We now turn to the long-time, nonequilibrium steady-state properties. Perhaps our most

dramatic finding is the flow curve shown in Fig. 6.15. In contrast to the Doi-Edwards

model which displays an unphysical non-monotonicity at high deformation rate [12, 178],

we predict a sensible plateau in the stress at both rod densities studied; the modulus-

normalized limiting stress is only weakly dependent on rod density or quiescent degree of

entanglement. This stress-plateau behavior is an emergent aspect of the theory that is

a consequence of our microscopic, self-consistent construction of a deformation-dependent

tube confinement field. Hence, it is quite different than the phenomenological CCR approach

where an ansatz concerning many chain physics in strong flows is inserted into the single

chain DE model. As previously done in our investigation of step-strain deformations [168],

a Doi-Edwards-like calculation is also shown in Fig. 6.15 where the tube is allowed to dilate

with orientation but which remains insensitive to stress. This delays the non-monotonicity to

higher deformation rates, but does not remove the unphysical behavior. Thus, we conclude

that the most dramatic predictions of our theory are primarily due to the self-consistent

coupling of the macroscopic stress to the microscopic dynamical state of the tube confinement

potential. Figure 6.16 shows the corresponding long-time orientational order parameter,

which monotonically grows with strain rate. Though qualitatively similar, we note that our

theory predicts much less steady state alignment under shear than the Doi-Edwards model,

consistent with expectations based on Fig. 6.10.

The form of the stress plateau here is in some ways qualitatively similar to the modifica-

tion of the tube-model to include CCR effects in systems of flexible chains. For example, in

Fig. 6.17 the long-time value of the effective Weissenberg number, defined by Wieff = γ̇τeff ,

is plotted and a plateau is evident at Wieff of order unity. This suggests that the long-time

value of the effective relaxation time scales roughly as τeff,∞ ∼ γ̇−1. Such a relation is essen-

tially assumed in models of CCR [16], but here it is an emergent feature of our self-consistent
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Figure 6.15: Normalized steady-state shear stress vs. strain rate. Curves are the calculation
according to Doi-Edwards [12], orientation-modified Doi-Edwards (thin, dashed), and the
present work at high (thick) and low densities (thick, dashed).
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Figure 6.16: Steady-state orientational order vs. strain rate. Curves are the calculation
according to Doi-Edwards [12], orientation-modified Doi-Edwards (thin, dashed), and the
present work at high (thick) and low densities (thick, dashed).
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treatment which allows the tube confinement field to evolve dynamically. To get a sense of

when this CCR behavior emerges, in Fig. 6.18 the effective Weissenberg number is plotted

as a function of strain for the high-density system. In all cases it is clear that the qualitative

change in the behavior of Wieff from the initial behavior to the steady-state behavior occurs

at a strain comparable in magnitude to the location of the yield or stress overshoot peak.

Note that the full flow-induced modification of the relaxation time is not complete until a

strain of order γy.
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Figure 6.17: Effective Weissenberg number vs. strain rate. Curves are the calculation
according to Doi-Edwards [12], orientation-modified Doi-Edwards (thin, dashed), and the
present work at high (thick) and low densities (thick, dashed).
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Figure 6.18: Effective Weissenberg number vs. accumulated strain for ρ/ρc = 1000. From
bottom to top curves correspond to Wi = 0.1, 1, 5, 10, 50, 500, 1000, and the stars correspond
to the value of strain at the stress maximum at each of those rates.

Figure 6.19 examines the steady-state tube diameter as a function of deformation rate.
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After an initial complicated regime of tube widening, the transverse localization length

continues to dilate in a power-law fashion, rl ∼ Wi−0.4. Computing the localization length

using the full calculation’s steady-state degree of orientational order but neglecting the

effects of stress, we can probe the relative importance of flow-induced orientation vs direct

stress effects in dilating the tube. We find that the dominant effect comes from the direct

stress effect - using only orientational order results in a power-law tube dilation with much

smaller exponent, rl ∼ Wi−0.05. Taking standard tube-model relationships between the tube

diameter and the number of entanglements [12], this could similarly be interpreted as a

power-law reduction in the number of effective entanglements, shown in the inset to Fig.

6.19. Intriguingly, precisely such power-law entanglement-reduction behaviors have been

observed in simulations of flexible and semi-flexible chains under both shear and extensional

deformation, although for these flexible-chain systems the observed power laws have smaller

exponents than the ones we predict here [152,164,176].
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Figure 6.19: Inverse normalized steady-state localization length vs. strain rate. Curves
are the high-density (thick) and low-density (dashed) calculations, plus a power-law guide
to the eye with -0.4 Inset. Effective entanglement density vs. strain rate. Curves are the
high-density (thick) and low-density (dashed) calculations, plus a power-law guide to the
eye with -0.8

From the above discussion and the various figures showing both transient and steady-

state properties, it is clear that there is a regime of flow rates for which the tube is no

longer present: the stresses induced by the flow are sufficient to destroy it. This is seen for
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the upper range of rates at ρ/ρc = 10, and would also be seen for the high-density fluid at

higher rates. Interestingly, the behavior of the stress peak implies that there would be a

(very narrow) range of flow rates at which the tube would be only transiently destroyed in

the vicinity of the stress peak, but then would reform at a very weak level in steady state.

However, we emphasize that the possibility of transient or permanent tube destruction are

of only modest importance for the quantities we study. In the range of rates prescribed

above, the main finding is that the tube is sufficiently softened for transverse activated

barrier hopping to become competitive with (stress- and orientation-accelerated) longitudinal

reptative relaxation. Even without tube destruction, it is this feature that underlies the

qualitatively sensible CCR-like behavior seen in Fig. 6.15. For other quantities, such as the

Wi-scaling of the location of the yield peak [144, 177], whether the tube is destroyed or not

may be a more important question to address, but at least in the lower-density system in

which we have studied a high-enough shear rate to destroy the tube, this occurs beyond the

γ̇τrot . (τrot/τ0) limit we have imposed on our model.

6.8 Summary

We have generalized our microscopic theory of rigid macromolecules interacting via topo-

logical constraints to predict their nonlinear response under continuous shear deformation.

Our earlier results for instantaneous step strains [168] are recovered in the limit of an in-

terrupted continuous shear deformation that proceeds at very high rates for a small but

nonzero amount of time. As a consequence of (i) the nonlinear coupling between stress,

orientation, and effective relaxation rate via the tube confinement potential, and (ii) the

introduction of a competing “transverse tube hopping” relaxation channel, a variety of novel

phenomena are predicted. These include: (a) the strain and Weissenberg number dependent

dilation of the tube in shear flows, (b) a purely monotonic growth, and ultimate apparent

saturation, of the steady state stress with shear rate, (c) an emergent CCR-like phenomena
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in which the terminal relaxation time is (nearly) inversely related to the shear rate, and (d)

a decrease in the effective entanglement density under flow. Qualitatively these effects all

seem consistent with recent experiments and simulations of entangled flexible chain polymer

liquids [144, 164, 176]. Extending our theory to explicitly address flexible polymers instead

of the rigid macromolecules is a formidable theoretical task but is presently under study.

Unfortunately, there is relatively little experimental data characterizing the response of

high-aspect-ratio rod solutions in the isotropic state to continuous shear deformations. This

would seem to be an experimentally accessible problem based on synthetic or biological rigid

rod polymers (e.g., microtubule solutions [146,181]). Similarly there is little simulation data

for the nonlinear rheology of Brownian solutions of entangled rigid needles. This is undoubt-

edly a tractable problem for computer simulation, and we suggest that new simulations of

the topologically entangled needle system be performed to critically probe the key features

of our quiescent tube confinement potential, its response to prescribed applied stress and rod

orientation, and other predicted consequences of deformation on entanglement dynamics.

The next natural step in the development of our theory is to consider the relaxation of

rigid-rod solutions under different deformation protocols. In particular, given the mysteries

surrounding the observed differences between shear and extensional deformation experiments

and simulations [12,152,171,176], formulating the theory to treat extensional deformation is

a worthwhile direction of future study. However, we believe the task of highest importance

is to extend of our approach to treat entangled flexible chain liquids. We have begun work

in this direction based on a microscopic version of the classic DE ansatz of treating ideal

coils as random walks of primitive path steps under equilibrium conditions (as discussed in

Chapter 5). Generalization to nonlinear rheological conditions will at a minimum require

introducing ideas about how chain stretching enters the problem. We anticipate it may also

require a critical evaluation of how stress is stored, both at the intra- and inter-polymer

level [165,167].
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Chapter 7

INTERMOLECULAR STRESS IN
ENTANGLED POLYMER MELTS

7.1 Introduction

In adopting the classic Doi-Edwards expressions [12] for polymer stress under deformation in

Chapter 6 a crucial question was glossed over. Namely, how is stress stored in dense liquids

of extended macromolecules? There are many ways to pose this more specifically, but classic

theories understand stress storage as a fundamentally intramolecular phenomena [12, 182].

Polymers are modeled as beads connected by entropic springs, and it is the deformation

of these springs, or persistent orientational correlations of nearest-neighbor bond vectors,

that contribute to the stress. The assumption is that entanglements do not themselves store

stress, but that they do slow the relaxation of intrapolymer conformations. So, the direct

effect of intermolecular interactions is taken to be negligible, but they can indirectly change

stress storage by modifying the distribution and relaxation of polymer conformations. It has

been suggested that the theoretical justification for neglecting the direct contribution stems

from an incorrectly taken limit of an intermolecular separation vanishing while the bond

vectors connecting the nearby beads remains finite [165]. More generally, from a historical

perspective the problem of microscopically accounting for interchain forces has been viewed

as intractable; thus, the possible role of direct interchain contributions to stress storage has

generally been discarded a priori as a first step towards any theoretical description.

More concretely, in dense polymer melts the tube model [12] imagines the effect of in-

terpolymer interactions to be the construction of the transverse confining tube, and in the

rubbery plateau region of viscoelastic polymer response this tube significantly restricts how
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a polymer can change from its initial orientation. Thus, in melts the tube model predicts

that the α, β = x, y, or z component of the stress tensor can be approximated by dyadic

products of the bond vectors bi, i = 1 . . . N connecting the beads along a chain:

σαβ ≈
3

d2
tβ

N∑
j=1

bαi b
β
j , (7.1)

and the tube plays an important role in the behavior of the bond correlations. All of the

predictions that the tube-model makes for the viscoelastic response of polymers to deforma-

tion rest upon this assumption, effectively adopting by ansatz the classic view of rubbery

elasticity despite the absence of permanent chemical crosslinks. As an aside, it is interesting

to note that the tube model was originally invented by Edwards and others to describe the

interchain contributions to the elasticity of rubbers [183].

However, there is mounting evidence from simulations that this assumption may be

deeply problematic. A series of MD simulations by Gao and Weiner revealed that for devia-

toric stresses following a volume-preserving uniaxial extension the bond-vector contribution

to the total stress was the minority contribution to the total stress (see, e.g., Refs. [166,184]).

In fact, not only was the non-bonded contribution to the stress much larger and more com-

mensurate with the total stress — at high, melt-like densities they found that the bonded

contribution became negative [166]. Taking a slightly different perspective, Fixman divided

the stress not into bonded and non-bonded contributions but rather into inter- and intra-

molecular components. This allows one to think about entangled polymers in the same

conceptual framework as simple liquids, but generalized to have an intramolecular com-

ponent. Contrary to the classical expectation, it was the intermolecular contribution that

dominated [165].

More recent simulations have also been carried out, and the result is unambiguous: the

bonded contribution to the stress in all (melt-density) cases is the minority component, and

its sign is often wrong [167]. A natural question is how the theoretical situation could persist
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— if the classic theories are approximating the stress storage with what seem from the above

discussion to be inappropriate terms, why have the theories been able to describe any results

at all? The answer lies is in another revelation of the simulations: even though the bonded

contribution to the total stress is small and often of the wrong sign, at the intermediate

and long times of interest (e.g. those times that correspond to the rubbery stress plateau)

the bonded stress is proportional to the total stress [165–167]. Since the phenomenological

tube theory has an arbitrary prefactor built into it (the tube diameter), this proportionality

can easily be absorbed into the theory. Certainly in the small-deformation, linear-response

regime one might thus still expect the classic theory to be able to account for experimental

observations, but for nonlinear deformations it is not at all clear that the way the stress

is changed in the bonded (or intramolecular) terms at all follows the change in the non-

bonded (or intermolecular) terms. Perhaps, then, the fact that the tube model needs so

many additional ad hoc assumptions in the nonlinear regime [12,16,144] is not an accident.

In this chapter we explore the possibility of understanding stress at the intermolecular

level as an alternative to adopting the classic tube-theory perspective of intramolecular

dominance. The key quantity to compute is the stress relaxation modulus, G(t), and as

a first step we will be particularly interested in the “plateau” value of the modulus, Ge.

We strive for a first-principles derivation of the experimental result that for flexible chain

melts the plateau modulus can be written as Ge ∝ kBT/p
3, where p = (ρsσ

2)−1 is again the

invariant packing length. To date this result has been deduced from a scaling-law argument

and as an experimental [155] or simulation-based [185] empiricism.

The rest of this chapter is organized as follows. Section 7.2 quickly reviews Fixman’s

expressions for G(t), dividing it into intramolecular, intermolecular, and cross-correlation

terms. Section 7.3 calculates the intermolecular stress contribution in four entangled systems:

chains mapped to needles, chains mapped to random walks of primitive-path steps, rigid

rods, and rigid three-dimensional crosses. Section 7.4 discusses a way to study the effects

of orientational order via a general deformation tensor, demonstrating the technique with
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a calculation of potential relevance to polymer thin films. Section 7.5 closes with a brief

discussion.

7.2 Microscopic Shear Stress Relaxation Modulus

At the molecular level the modulus can be written as [165]

G(t) = β−1ρNbC∞(t), (7.2)

where β is the inverse thermal energy, ρ is the number of molecules per unit volume, Nb is

the number of bonds per molecule, and C∞(t) is the K →∞ limit of

CK(t) =
β2

KNb

K∑
ν,λ=1

〈σν(0)σλ(t)〉e. (7.3)

In this expression ν, λ label different molecules and 〈· · · 〉e refers to an equilibrium ensemble

average. We will restrict our attention to shear deformations, and so σα is the xy component

of the stress associated with molecule α.

We adopt the Fixman stress perspective and begin by formally dividing the total stress

into “internal” (intramolecular) and “external” (intermolecular) parts, σα = σIα + σEα . At

the center-of-mass (CM) level these contributions can be written as [165]

σIα = −
N∑
i=1

(~rα,i − ~rαCM )~Fiα (7.4)

σEα = −1

2

K∑
γ=1

~rαγ ~Fγ,α. (7.5)

Here ~rα,i is the position of monomer i on chain α, ~rαCM is the CM position of chain α, ~Fiα is

the total force acting on monomer i of chain α, ~rαγ is the relative CM separation of chains

α and γ, and ~Fγ,α is the total force exerted on chain γ by chain α. Note that since ~Fiα is
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a total force acting on a monomer it implicitly includes some forces acting on the monomer

from a different chain (and thus has both an intramolecular and intermolecular character;

it is similar to a total deformational stress on the single chain), but that ~Fγ,α is purely

intermolecular. Since we are interested in the xy component of the stress tensor it is the x

component of the forces and the y component of CM separations that we must calculated,

denoted as F x
γα and Yαγ, respectively.

An expanded expression for CK(t) is then

CK(t) =
β2

KNb

K∑
ν,λ=1

〈
(
σIν(0) + σEν (0)

) (
σIλ(t) + σEλ (t)

)
〉e. (7.6)

We divide the modulus into the three physically distinct terms:

G(t) = GEE(t) +GII(t) + 2GIE(t), (7.7)

where

GEE(t) =
ρβ

K

K∑
ν,λ=1

〈σEν (0)σEλ (t)〉e (7.8)

GII(t) =
ρβ

K

K∑
ν,λ=1

〈σIν(0)σIλ(t)〉e (7.9)

GIE(t) =
ρβ

K

K∑
ν,λ=1

〈σIν(0)σEλ (t)〉e. (7.10)

These correspond to the direct intermolecular stress contributions, the direct internal chain

stress contributions, and the intra-inter cross-correlations, respectively. In simulations that

divided stress into bonded (b) and non-bonded (nb) contributions a ranking of relative im-

portance in stress storage implied that nb-nb correlations dominated, nb-b cross terms were

of intermediate importance, and finally b-b correlations contributed much less to the total

stress [167]. Fixman’s simulations for the relative importance of intra- and intermolec-
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ular contributions did not explicitly study the cross terms, but nevertheless found that

GEE � GII . In that spirit, we will approximate the total modulus by considering solely the

intermolecular correlations, writing G(t) ≈ GEE(t).

7.3 Calculating Intermolecular Stress Correlations

Our task is now the evaluation of the inter-chain stress correlations, starting from Eq. 7.8.

The most immediate simplification comes from recognizing that under the ensemble average

each chain contributes equally to the stress. Hence, one of the sums returns K identical

terms; choosing ν = α we have

GEE(t) = ρβ
K∑
λ=1

〈σEα (0)σEλ (t)〉e (7.11)

= ρβ
K∑
λ=1

〈[
−1

2

K∑
γ=1

Yαγ(0)F x
γα(0)

]
·

[
−1

2

K∑
µ=1

Yλµ(t)F x
µλ(t)

]〉
e

.

This is a rather daunting number of terms, but under natural assumptions (together with

the approximation of treating the polymers as infinitely thin PP segments) most of them

can be ignored. To illustrate this, it is convenient to break up the sum as follows:

GEE(t) =
ρβ

4

2

〈∑
γ,µ

Yαγ(0)F x
γα(0)Yαµ(t)F x

µα(t)

〉
e

+2

〈∑
λ,µ

λ,µ6=α

Yαµ(0)F x
µα(0)Yλµ(t)F x

µλ(t)

〉
e

(7.12)

+

〈 ∑
γ,λ,µ, γ 6=λ,µ
λ,µ 6=α; λ 6=µ

Yαγ(0)F x
γα(0)Yλµ(t)F x

µλ(t)

〉
e

 .
The first sum comes from setting λ = α or µ = α (hence the factor of two); the second

sum contains terms where γ = λ or γ = µ; the third sum is everything else. A cartoon of
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these different types of correlations is shown in Fig. 7.1. Physically, the first sum is a self-

consistent renormalization of strictly binary (two-chain) interactions, the second sum treats

the correlations of a tagged chain with different nearby chains at different times, and the

third sum involves the correlation between a collision at t = 0 with a collision of a different

pair of chains at a later time.

12 21(0) (0)xY T 12 21( ) ( )xt T tY

12 21(0) (0)xY T 23 32( ) ( )xt T tY

12 21(0) (0)xY T 34 43( ) ( )xt T tY

Figure 7.1: Cartoon schematically corresponding to the terms in the first (top left), second
(top right), and third (bottom) sums in Eq. 7.12. Cartoons on the left and right of each
box correspond to t = 0 and some later t, respectively. Colored lines represent polymer
end-to-end vectors, and black lines connect polymers whose y-component CM separation
and x-component interchain forces must be calculated.

To get a physical and mathematical intuition for why, given the approximations we

make, the second and third set of sums vanish (i.e. decay before the plateau regime), it

helps to observe that later we will make a Gaussian-like closure of factorizing the four-point

correlation functions into products of two-point functions. Most simply, then, terms like
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〈Yαβ(0)Yγδ(t)〉〈F x
αβ(0)F x

γδ(t)〉 = 0 vanish if α, β, γ, δ are all different: even in the rub-

bery stress-plateau regimes, the relative separations of different pairs of molecules become

uncorrelated over the time-scale to explore the tube, τe, and the topological interactions

are similarly uncorrelated. Crucially, this time scale is shorter than the plateau regime of

interest, and so the third sum in Eq. 7.12 vanishes. The second sum is also negligible:

〈F x
αβ(0)F x

αγ(t)〉=0 because in the “thread” limit of purely topological interactions we neglect

3-rod (3-chain) interactions, thus F x
αβ and F x

αγ are again uncorrelated over timescales related

to τe. This consideration of the force correlations of course also applies to the 4-rod interac-

tions in the third sum. We note that simulations of thin but finite-excluded-volume chains

suggest that the terms we are neglecting here are indeed quantitatively small compared the

terms we keep [165,186].

We are left with the first sum, but for the same reason just outlined we need only consider

the terms for which γ = µ:

GEE(t) =
ρβ

2

〈
K∑
γ=1

Yαγ(0)Yαγ(t)F
x
γα(0)F x

γα(t)

〉
e

. (7.13)

Each term in this sum is identical, so to simplify we bring out a factor of K and we re-

place the now-fixed Greek indices with (arbitrarily) molecules 1 and 2. Finally, we fac-

torize the four-point correlation into a product of two-point correlations, but we must be

careful about how we define the averages. Naively splitting 〈Y12(0)Y12(t)F x
12(0)F x

12(t)〉e =

〈Y12(0)Y12(t)〉e 〈F x
12(0)F x

12(t)〉e would be incorrect: the ensemble average of Y12(0)Y12(t) van-

ishes because most of the average would be involve considering two molecules arbitrarily

far apart (whose motion would be uncorrelated over short times) and thus not part of the

colliding processes (with nonzero intermolecular force terms) in which correlations persist.

Hence we factorize the expression as

GEE(t) ≈ ρKβ

2
〈Y12(0)Y12(t)〉c 〈F

x
12(0)F x

12(t)〉e , (7.14)
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where the conditional average over the CM separation, denoted by 〈· · · 〉c, is an ensemble

average over the configurations in which the molecules are colliding, i.e. in contact with each

other. This consideration respects the fact that the true G(t) contains “beyond two-point-

correlator” information. This result is now specialized (i.e. the constrained and ensemble

averages are evaluated) for coarse-grained linear and star polymers; for rigid rod suspensions

it is shown that this intermolecular contribution is unimportant. The essential argument

that will be made in those systems is that the intermolecular terms, Eq. 7.8, actually decay

more quickly than the intramolecular contribution, Eq. 7.9. The fact that intermolecular

correlations may persist just as long as intramolecular ones for entangled flexible polymers

[165–167,186] is an essential physical motivation for our considering the intermolecular terms

in the above analysis.

Mapping chains to needles

Invoking the chain-to-rod mapping from Chapter 5 allows us to explicitly calculate the GEE

modulus in the localized regime under quenched-reptation conditions. We now calculate the

two-point correlation functions from Eq. 7.14 individually.

At first the calculation of 〈Y12(0)Y12(t→∞)〉c ≈ 〈Y 2
12(0)〉c might seem to be a tractable-

but-ungainly geometry problem (“What is the average y-component CM separation of two

lines of length L that touch at any point?”), but fortunately we can use the T -operators

themselves to impose the requirement in the constrained average that the two rods be in

contact. That is, 〈
Y 2

12(0)
〉
c

=

∫
d~u1d~u2d~r (ŷ · ~r)2T (12)∫

d~u1d~u2d~r T (12)
≡ A

B
(7.15)

The denominator is easiest to calculate. Recall that (in units where L = 1) the T -operator is

T (12) = δ(~r · ŵ)Θ(1/2−|α|)Θ(1/2−|β|) expressed in coordinates where ~r = α~u1 +β~u2 +γ ~w,

a transformation with Jacobian |J1| =
√

1− (~u1 · ~u2)2. The denominator can be expressed
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and numerically calculated as

B =

∫
d~u1d~u2 |J1|

∫ 1/2

−1/2

dα

∫ 1/2

−1/2

dβ ≈ 124.02. (7.16)

With this formalism the numerator is not much more challenging:

A =

∫
d~u1d~u2 |J1|

∫ 1/2

−1/2

dα

∫ 1/2

−1/2

dβ (α~u1 · ŷ + β~u2 · ŷ)2 ≈ 6.885, (7.17)

and restoring units the result is

〈
Y 2

12(0)
〉
c
≈ A

B
= 0.0555L2. (7.18)

Calculating 〈F x
12(0)F x

12(t)〉e requires a bit more work, but is still straightforward. By

definition of the ensemble average we start with

〈F x
12(0)F x

12(t)〉e =

∫
d~u1d~u2d~rd~R

[
x̂·
↔
T
(

Ω†loc

)−1 ↔
T ·x̂

]
∫
d~u1d~u2d~rd~R

=
1

β216π2V

∫
d~u1d~u2d~r

[
x̂·
↔
T
(

Ω†loc

)−1 ↔
T ·x̂

]
. (7.19)

In this expression ~R is the CM of the two rods and
↔
T /β = ŵT/β represents the force.
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Making use of the variable transformations and approximations of Sec. 3.6 we can write

∫
d~u1d~u2d~r

[
x̂·
↔
T
(

Ω†loc

)−1 ↔
T ·x̂

]
=

∫
d~u1d~u2(x̂ · ŵ)2

∫
d~r T

(
Ω†loc

)−1

T

=

∫
d~u1d~u2(x̂ · ŵ)2|J1||J2|

L
√

2

r2
l

2

√
2

L

∫
rhomb

G(x, y, 0)dxdy (7.20)

=
4
√

2L3

r2
l

F

(
L

rl

)∫
d~u1d~u2(x̂ · ŵ)2|J1|

=
4
√

2L3

r2
l

F

(
L

rl

)
· (41.34) ,

where in the above |J2| = L2/4
√

2, G and F are the functions described in Sec. 3.6, and the

last integral has been done numerically. Combining this with with Eq. 7.19 yields

〈F x
12(0)F x

12(t)〉e = 4
√

2
41.34L3

16β2π2V r2
l

F

(
L

rl

)
=

1.481L3

β2V r2
l

F

(
L

rl

)
. (7.21)

Finally, combining Eqs. 7.14, 7.18, and 7.21 leads to this intermolecular-perspective’s

prediction for the entanglement modulus. Absorbing the factor K/V as another power of

density gives

GEE
e ≈ ρKβ

2
〈Y12(0)Y12(t)〉c 〈F

x
12(0)F x

12(t)〉e

=
ρ2β

2

(
0.0555L2

)(1.481L3

β2V r2
l

F

(
L

rl

))
≈

rl�L (0.0205)kBT
(ρL2)2

rl
, (7.22)

where in the last approximate equality the high-density limit F
(
L
rl

)
≈ rl/(2L) from Chap-

ters 3 and 4 has been invoked. The mapping results described in Chapter 5 give rl ≈ 4.68p

and ρL2 ≈ ρsσ
2/(1.3) ≈ 1/(1.3p), where p is the invariant packing length, so the modulus
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can be expressed as

GEE
e ≈ (0.0205)

kBT

4.68× (1.3)2p3
= 0.00259

kBT

p3
. (7.23)

This is extremely close to experimental observations; Fetters et al. report the value of the

plateau modulus to be G0
N ≈ 4B2kBT/(5p

3) = 0.00256kBT/p
3. We do not wish to over-

state the quantitative accuracy of this result, especially given the approximations made and

numerous neglected terms in Eq. 7.7. Nevertheless, we believe this to be a powerful demon-

stration of the predictive power of the microscopic, topological theory we have developed,

and that it thus is a promising starting point for future investigations of nonlinear rheology.

We also note that a key prediction of our microscopic theory, the inverse relationship

between the localization length and density, helps understand why the phenomenological

single-chain picture leads to the correct scaling relation vis-a-vis experiments. Specifically,

the high-density intermolecular contribution scales as

GEE
e ∝ kBTρ

2L4

rl
∝ kBTρσ

2

r2
l

∝ ρkBT/Ne, (7.24)

where in the second proportionality the crucial inverse relationship between density and the

predicted localization length has been invoked. This allows the result to be cast in a single-

chain form of an entirely intramolecular nature that is linear in the density and apparently

involves a harmonic spring confining the chain on the scale of the tube diameter; in actuality

the result stems from a detailed analysis of the intermolecular stress terms. This situation is

analogous to the situation in colloidal glasses and gels, where the plateau modulus is entirely

determined by intermolecular contributions (since there are no intramolecular terms!), but

the result can nevertheless be written as Ge ∼ ρkBT (σ/rl)
2 [54, 68].
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Coarse-grained chains as random walks of primitive paths

We here show that the above pleasing result is not merely the result of an accidental can-

cellation of errors arising from a vastly oversimplified coarse-graining. Making use of the

results of the primitive path mapping from Chapter 5, it is straightforward to calculate the

intermolecular entanglement modulus for a chain mapped to a random walk of PP steps,

subject to all of the same approximations and discared terms above. The main result from

the previous section is the factorized expression

GEE
e ≈ ρKβ

2
〈Y12(0)Y12(t)〉c 〈F

x
12(0)F x

12(t)〉 . (7.25)

The first term is again the y-component of the CM separation between two random walks

subject to the constraint that they intersect. We make the assumption that these two random

walks intersect in only one place (an approximation consistent with our earlier neglect of

ternary PP interactions), in which case the result is

〈Y12(0)Y12(t)〉c ≈
〈
Y 2

12

〉
c

=
ZL2

e

9
. (7.26)

Deriving this is a straightforward exercise in the statistical mechanics of random walks; to

first order, the square center of mass separation between the two chains is twice thesquare

of the radius of gyration of a single chain (R2
g = ZL2

e/6), and then the y component is one

third of that.

The force-force correlation is more directly related to the calculation in the needle map-

ping. Consistent with the “single-intersection” approximation (or, alternately, with the idea

that chain 2 only contributes to the confinement of one PP segment of chain 1, say, segment
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i) one can write

〈F x
12(0)F x

12(t)〉 =
1

β216π2V

∫
d~ui

Z∑
j=1

d~ujd~rijx̂·
↔
T (ij)(Ω†loc)

−1
↔
T (ij) · x̂. (7.27)

= Z
1.48L3

e

β2V r2
l

F

(
Le
rl

)
, (7.28)

where the second line follows from noting that each term in the sum is identical and then

evaluating the integral for rods of length Le. As in Chapter 5, Le and rl are self consistently

related, so combining this result with Eq. 7.26 yields

GEE
e

kBT
=

ρ2

2

ZL2
e

9
Z

1.481× L3
e

r2
l

F (A)

=
1.481

18

π(AF (A))2

4
√

2

1

p3
(7.29)

=
0.00593

p3
,

where in the last line the intuitive choice of A = 2 (primitive path step length equal to the

tube diameter and hence twice the localization length) has been used. That is, whereas in

Chapter 5 we used a different value to understand the distribution of monomers relative to

the primitive path, here there is no need to mix and match monomer displacement and PP

step length — we simply imagine the stress to be stored by the primitive path links. The

result is, as before, strikingly close to the experimental result, and it is reassuring that this

more detailed model leads to a quantitative overprediction of the stored stress (by roughly a

factor of two): just as the neglect of rotational motions led us to overpredict the transverse

confinement (i.e. underpredict the localization length), the same set of approximations

should overpredict the value of the stress plateau.
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Stress modulus for rigid crosses

We can apply the same formalism to work out the intermolecular entanglement modulus for

crosses. Our model for the T-operator of a cross is the sum of the nine possible rod-rod

interactions of two colliding crosses (precisely as in Chapter 3), and we again ignore all off-

diagonal terms. From there it is straightforward to carry out calculations analogous to the

above. The results are

〈Y12(0)Y12(t)〉c ≈ 0.0555L2, (7.30)

〈F x
12(0)F x

12(t)〉e ≈
8.2

β2V

L2

rl
, (7.31)

where for crosses the localization length is rl = 4
√

3/(3πρL2). Combining everything yields

GE
e,crossE ≈ 0.23kBT

(ρL2)2

rl
= 0.3(ρL2)3. (7.32)

Can this calculation say anything about the linear response of star polymers? We use

the proposed mapping between crosses and six-armed stars from Chapter 5, with ρL2 =

ρs
6NA

(
2σ
√
Na/1.3

)
≈ 0.51

p
, to predict

GEE
e,6−star ≈

0.04kBT

p3
≈ 16GEE

e,rod. (7.33)

This is quite far from the canonical Ge,6−star ∼ (Ne/Na)Ge,chain relevant at the terminal

time [187]. This is, however, consistent with the observation that our theory for a mapped

cross neglects the primary motions which dominate transport (in Chapter 5) and here serve

to relax the stress, and so we grossly over-predict the modulus. Unfortunately, the shear

rheology of rigid crosses is an understudied problem, and so even this more straightforward

prediction of our theory for crosses is untested. However, future simulations can directly

address this issue.
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Stress modulus in rigid rods

We close this section by briefly commenting on why this consideration of intermolecular

stress is not important in suspensions of actual rigid rods, per the classic Doi-Edwards

model. Of course the formalism of the Fixman stress tensor is still valid, and all of the

terms we discarded in the sums over GII
e are all still negligible. The question is why

we can now also neglect the terms that were so important in the chain system, i.e. the

〈Y12(0)Y12(t)F x
12(0)F x

12(t)〉e terms. The important point here is that for mapped chains in

the localized state, CM separation is still slow; reptation along the primitive path (which is

the motional process on the timescale of interest) has very little effect on the CM separation

of the two chains.

More specifically, the CM motion of a given chain in the tube is (from DE theory and

experiments) both weaker than the segmental motion and still subdiffusive: 〈r2
CM(t)〉 ∼ t1/2.

This weak time-dependence allows us to approximate 〈Y12(0)Y12(t)〉 ≈ 〈Y12(0)2〉. Consider by

contrast the situation for thin rigid rods. Localization is enforced in the transverse direction,

but longitudinal motion remains a bare diffusion process. Thus, for rods the intermolecular

part decays rapidly as 〈Y12(0)Y12(t)〉 ∼ exp (−t/τ0), the bare diffusion time.

On the other hand, for rods we still must consider the intramolecular part of the stress

tensor. A standard result [12, 142] is that one can split the intramolecular stress tensor for

rods as

σintra = σtens + σorient = ρ

〈∫ t

0

ds T (s, t)~u(t)~u(t)

〉
+ 3ρkBT

〈
~u(t)~u(t−

↔
I /3

〉
. (7.34)

The first term is tension in the rod induced by fluid flow (viscous stress), and the second

term reflects orientational order (elastic stress). The shear stress modulus corresponding to

these terms is

G(t) =
ζ‖L

3

180
δ(t) +

3

5
ρkBTe

−t/τrot . (7.35)
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The crucial point is that inter-rod interactions do not contribute directly to the stress, since

they relax on a time scale τ0 � τrot, but they indirectly enter by massively lengthening the

rotational relaxation time. In a dilute solution τrot is proportional to the bare time, but it

grows with density as (ρL3)2. Thus, for dense rod suspensions there can be a plateau regime

from this part of the modulus that decays much slower than the intermolecular contribution

to the modulus does, and we have simply

Ge,rod =
3

5
ρkBT. (7.36)

7.4 Polymer Films: A Toy Model

We now introduce a simple toy model of polymer thin films. Understanding how entangle-

ments change under confinement is an active topic of research, and rheological measurements

of the modulus are often the most straightforward way to probe the system [188]. In real

films there is a complicated spatial dependence of chain orientation and conformation on

the position of the polymer within the thin film. Our approach will be to calculate a film-

averaged polymer behavior and then study a bulk reference fluid whose polymers all adopt

this film-averaged anisotropic conformation and orientational order. This allows us to ex-

ploit our ability to describe the effect such changes have as in Chapters 4 – 6. We also make

use of a more general deformation-tensor approach to describe these changes [12].

Simple models of random walks in confinement treat thin films by modifying the dis-

tribution of the out-of-plane component of the chain end-to-end vectors [189], and also

sometimes treat confinement as inducing an effective discotic liquid-crystalline order [190].

Here we study the former model. The essential idea is that in the presence of a reflecting

boundary the components of a random walk parallel to that boundary (which we take to be

the x and y components) is unaffected, but the component perpendicular to the boundary

(the z component) are reduced. The “principle of conformation transfer” [189] quantify-
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ing this effect is depicted in Fig. 7.2A. The random walk through the points ABCD′E ′ is

equally probable with the walk through the points A′B′CDE, but both walks violate the

constraint at the surface. Exchanging the sections CD′E ′ and CDE between this pair of

conformations leaves the local melt structure unchanged while returning two random walks

that now respect the boundary condition imposed by the surface. Performing this procedure

for every boundary-violating chain leads to an analytic prediction for the average change in

the component of the end-to-end vector of the chain in the z-direction as a function of the

position of the start of the chain (i.e. the chain endpoint closest to the wall at z = 0). Evi-

dence from simulations and experiments suggests that this model of the changes to polymer

conformation is an excellent first-order approximation [190–192]. The physical picture is

schematically shown in Fig. 7.2B; the reduced spatial extent of chain conformations reduces

the effective degree of entanglement between chains.

It is simplest to work out the consequences of such confinement effects on the modulus

in the chain-to-needle mapping, where it instigates two changes. First, the magnitude of the

end-to-end vector changes relative to its equilibrium value as

L(α)

Leq
=

√
2 + α2

3
, (7.37)

where α is defined by Ree,z(α) = αRbulk
ee,z . That is, the end-to-end vector shrinks a bit, and

note that in GEE
e four powers of L enter the final result. In real thin films the z-component

of the end-to-end vector is a function of the position of the polymer CM relative to the

film boundaries but again, in the spirit of trying to capture the first-order physics, we will

average over this distribution and compute a single film-averaged value of α for the whole

film.

Second, the changes in the end-to-end vectors induce a change in the angular distribu-

tion of the rods (i.e. if all of the z components are reduced the angular distribution is no

longer isotropic). We can encode this using the “deformation tensor” formalism invoked
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Figure 7.2: (Left) Silberberg’s principle of conformational swapping near a wall (see text).
Cartoon adapted from [189]. (Right) Cartoon of conformational change induced by a film
of thickness h. On average, the polymers extend less in the direction of film thinness (qual-
itatively shown with the dotted ellipses), and there is a lower degree of chain overlap (i.e.
entanglements) as a result.
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to study the change of angular distribution under shear and extensional deformations in

polymer liquids [12]. There the ensemble average of the vectors ~u are transformed by tensor
↔
E as ~u→

↔
E ·~u/|

↔
E ·~u|. Although analytic progress is possible only with particular forms of

the deformation tensor, numerically carrying out the angular integrals in Sec. 7.3 over dis-

tributions of arbitrarily deformed orientations whose undeformed distribution was isotropic

is straightforward. That is, d~u is still sin θdθdφ, but the vectors ~u themselves in the inte-

grals are replaced by the deformed vectors and the integral done with standard numerical

techniques.

In the specific model of thin-film confinement the deformation tensor we need is

↔
E (α) =


1 0 0

0 1 0

0 0 α

 . (7.38)

Note that this is not an affine deformation, as it is not volume preserving (i.e. in making the

z component shrink we are not enforcing any kind of expansion of the x or y components).

In any event, this allows us to numerically compute the modulus as a function of α. The

final task is to relate α to an experimentally measurable/controllable quantity, the thickness

of the film. For this we employ and extend the Silberberg approach.

Silberberg’s original model was intended for relatively thick films, exactly solving a poly-

mer random walk model with one reflecting boundary and then assuming the film was thick

enough that the behavior in the center mimicked the bulk behavior (allowing the same calcu-

lation to apply to both halves of the film) [189]. That calculation solves for the z-component

of the end-to-end vector as a function of polymer position; averaging it over the film thickness

gives

α(h) =
6h− 8

√
2
π
− 2e−

h2

8 (−4 + h2)
√

2
π

+ h3Erfc
[

h
2
√

2

]
6h

, (7.39)

where h is the total film thickness in units of the bulk Ree,z. The full problem of two reflecting
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boundaries can be solved by the method of images with an infinite series of images [193].

Computing the first correction is simple (if tedious), with the result

α(h) =
e−2h2

√
2

3h
√
π

(
6− e

7h2

8

(
4 + 4e

9h2

8 − 3h2 + eh
2 (−4 + h2

)
+ e

5h2

8

(
2 + 4h2

)))
+ 1

+
h2

6
Erfc

[
h

2
√

2

]
+

(
1 +

4h2

3

)
Erfc

[
h√
2

]
− 3h2

2
Erfc

[
3h

2
√

2

]
− 2Erfc

[√
2h
]
.

(7.40)

Note that we have neglected the complication that the distribution of chain starts is not

uniform in the film; by definition the leftmost end of a random walk is more common

close to the left wall and quite unlikely near the right wall. We simply assume a uniform

distribution — a reasonable approximation for thick films, but potentially problematic for

h� 1. Figure 7.3 compares the result of the two analytic models with simulation data from

simulated binary thin film polymer blends [194]. The most noteworthy feature of the first

correction to the Silberberg result is simply that it removes the unphysical upturn for films

thinner than h ≈ 2, but it also seems to almost quantitatively match the simulation data.

0 1 2 3 4 5
h

0.2

0.4

0.6

0.8

1.0
Α

Figure 7.3: Film-thickness-averaged values of α for the Silberberg calculation (Dash-dotted
curve) and the first correction to the Silberberg calculation (Thick curve). Points are data
from [194]

We numerically calculate the modulus as function of α using Eq. 7.40 to convert α to film
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thickness. An effective entanglement molecular weight (related to the inverse of the elastic

modulus) is extracted from this prediction and compared with experiments on thin films of

polystyrene [188] in Fig. 7.4. Qualitatively we predict the observed trend that the effective

degree of entanglement decreases as the film thins (i.e. the system has a larger effective Me,

the molecular weight of a PP step or an entanglement strand). However, two discrepancies

are noted. First, for all film thicknesses we overpredict the effect on the modulus; at h = 1

our effective entanglement molecular weight is roughly a factor of two too large. Second,

we predict a modest effect of film thickness for films an order of magnitude larger than

Ree,z, whereas the experiments seem to approach the bulk value much more quickly. This

might point to the inaccuracy of using a film-thickness-averaged value of α for the whole

sample as we have done above instead of averaging the effective modulus itself over the film

(i.e. the average of the inverse need not be the inverse of the average). On the other hand,

the (complicated) experiments only very indirectly deduced Me, and a simulation study of

this problem should allow a more definitive assessment of the accuracy of the theoretical

prediction.
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Figure 7.4: Effective normalized entanglement weight versus dimensionless film thickness
using the corrected Silberberg calculation (Blue) and the simulation’s interpolation formula
(red) for connecting α and h. Data points are estimated from Ref. [188] from three different
molecular-weight samples of polystyrene.
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7.5 Summary

Our calculation for the entanglement plateau value of the shear modulus represents a po-

tentially radical departure from the standard theoretical model of how stresses are stored in

dense polymeric fluids. However, both the quantitative agreement with experiment and the

scaling agreement with the classic phenomenological theories is very encouraging. In linear

response the natural next step is to use the deformation-tensor approach outlined above to

study different types of orientational order, particularly as induced under shear and exten-

sional deformations. Perhaps the greatest impact of this advance, though, would be on the

understanding of nonlinear deformations. As mentioned above, the standard tube-model

approach requires extensive modification to describe nonlinear rheology [16,169], and a key

issue may be that the theoretical developments and approximations needed to understand

the intramolecular part of the modulus may be formally correct but nevertheless addressing

the wrong part of the problem.
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Chapter 8

CONCLUSION AND OUTLOOK

This dissertation has explored the key role of non-Gaussian fluctuations in a variety of soft

condensed matter systems, and attempted to do so at a microscopic, predictive, force-based

level. Although the study of critical phenomena and the renormalization group have been

the source of a vast amount of progress in condensed matter systems [36], unfortunately not

all systems of interest find themselves close enough to a critical point to be well-described

by such analyses. For instance, in the glass transition problem an apparently diverging

relaxation time is accompanied by a static correlation length not more than an order of

magnitude greater than a particle diameter [2,3,8] — hardly a system-spanning correlation.

As such, we have approached these problems by combining self-consistent dynamical mean-

field descriptions with the powerful nonlinear Langevin equation theory to capture some of

the non-Gaussianity inherent in the problems.

In the realm of glassy colloidal dynamics — the first part of this thesis — we have ex-

tended the single-particle NLE theory [31] of activated dynamics to treat the correlated

dynamics of two tagged particles in the a dense suspension [105, 195]. Such multi-particle

correlations are at the heart of the wide variety of experimental phenomena that are collec-

tively referred to as “dynamic heterogeneity” and are key indicators of the glassy regime of

fluid behavior. We were able to qualitatively and quantitatively describe many such dynam-

ically heterogeneous features, such as diffusion-relaxation decoupling, stretched-exponential

behavior of correlation functions, and a modestly growing dynamical correlation length that

matches well with experimental observations on hard-sphere suspensions.

We then extended the two-particle NLE theory to treat multiple space-time correlated
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hopping, caging, and re-hopping events. This allowed the construction of simple models for

the dynamics of neighbor loss and recovery that underlie the structural relaxation process.

Comparisons with available simulations and colloid experiments reveal at least qualitative

agreement. Our ability to define an “irreversible” event allows contact to be made with con-

cepts that are at the heart of phenomenological, coarse-grained kinetically constrained mod-

els. In particular, we found persistence times that are well-described by the KCM-inspired

parabolic law [113], decoupling that is reasonably well accounted for based on differences

between mean persistence and exchange times, and some more general features of the per-

sistence and exchange time distributions which are in qualitative accord with simulations of

KCMs and coarse-grainings of atomistic glass-formers [111]. A general point is that by com-

bining our microscopic theory for space-time correlated hopping with an intuitive picture of

tracking the dynamics of two particles separating through multiple correlated hopping and

re-caging processes starting from some initial configuration, we have suggested concrete,

structure-based connections with diverse ways of thinking about the glass problem.

Our perspective in extending the single-particle NLE to the two-particle level is that

cooperative rearrangements seem to involve many small motions combined with a few larger,

particle-radius-scale attendant displacements, which in sum are related to unrecoverable

thermal strains [107, 196]. The hope is that in the context of a dynamic mean-field theory

one can capture information about the whole rearrangement event with a coarse-grained

description of these larger motions. It is in this sense we expect the present two-particle

approach to be more representative of structural relaxation events in real glass-forming

liquids that the earlier single-particle activated dynamics NLE approach. Better still would

be a microscopic activated-event theory which includes a collective mode(s) involving a

cluster of particles that undergo a diversity of correlated displacements- a daunting challenge

for a force-based theory. In addition to the topics addressed in Sec. 2.11, attempting to

construct such a theory is a natural step to take next.

The second half of the dissertation studied a wide variety of macromolecular systems
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where it is not equilibrium structure but rather topological constraints that completely deter-

mine system dynamics. Microscopic descriptions of entangled polymers have been exception-

ally challenging to formulate, largely because exactly including these topological constraints

(a singular interaction acting transverse to the statistically random backbone of a polymer

chain) is so difficult. Early attempts at doing so relied on the mathematical discipline of

knot theory and its description of topological invariants [197–199], but this program is beset

with problems and is now viewed as intractable. For flexible linear chains the “knots” are

at best transient objects that can unravel and disentwine over time. But even in the case of

concatenated ring polymers, in which the knots that form are permanent, topological invari-

ants are insufficiently unique to properly describe the problem. As such, for the past forty

years the field has largely abandoned attempts at a microscopic description of entangled

polymers, relying instead on the phenomenological single-chain mean-field theory.

The core of our theoretical advances combined the NLE theory with various extensions

of a Gaussian dynamical mean-field theory that exactly expresses two-body uncrossability

within a framework of self-consistent renormalization to approximately compute three- and

higher-body effects [17,24]. This allowed us to construct one of the only microscopic deriva-

tions of the ansatz at the heart of tube theories: the existence of a transverse confinement

potential that hinders polymer motion and thus enforces the one-dimensional curvilinear

diffusion process called reptation. However, whereas the phenomenological theory is forced

to simply posit either a step [15] or harmonic [12] potential, our microscopic theory allows

for a prediction of the anharmonic form of the tube [139]. A simple mapping between rigid

rods and semiflexible biopolymers revealed excellent agreement with the specific anharmonic

form we predict [25], and our theory of flexible chains as random walks of primitive path

steps similarly seemed to accurately capture the effective confinement experienced by chain

monomers relative to their closest primitive path step [30].

The anharmonic softening we predict is crucially important for rheological deformations,

in which the distinction between a tube that can supply an effectively infinite restoring force
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and one with a maximum restoring force becomes all-important. We thoroughly explored the

rheology of rigid rods under nonlinear shear deformations, and found phenomena analogous

to microscopic yielding in colloidal glasses and gels [168] that are utterly unanticipated by

the tube model. Unfortunately, the deformation response of isotropic suspensions of rods

has received much less attention experimentally or via simulations than flexible chains, and

so there is precious little data for us to compare with.

With the advance of our theory to describe flexible chains this limitation may soon disap-

pear, as such polymer systems have been extensively studied and the potential shortcomings

of the tube model are well-documented [12, 16]. As a first step we needed to consider the

very nature of stress in entangled polymer fluids, and we concluded that in the context of

our model it is actually intermolecular interactions that store stress. This is in agreement

with recent simulations [165–167] but diametrically opposed to the standard tube-model

perspective [12]. We plan to combine this advance with appropriate constitutive equations

to describe the shear rheology of flexible chains from our microscopic perspective, although

some issues remain to be dealt with. In particular, the way chains retract after deformation-

induced stretching is a key question, and while standard theories have assumed the chain

retraction process occurs on a Rouse-like timescale it is not clear how topological constraints

may affect the chain as it retracts back in its tube. This and other details are currently under

study, and will hopefully be reported soon.

As one of the vanishingly few microscopic theories that respects topological constraints,

there is also a great number of potential extensions of this work, particularly by generalizing

the theory to simultaneously include the effects of both singular topological interactions and

finite-range forces, such as those arising from excluded volume effects or coulombic repulsion.

This is an unexplored frontier of research, and a unified theory capable of treating both

types of interactions would open up a host of problems to microscopic study: polyelectrolyte

solutions; entangled nematic liquid crystals; and an array of biopolymers where rigidity,

charge, entanglements, and nonlinear mechanical response (rheology) is of high importance
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in cell function, to name just a few.

Another more straightforward extension of the theory is the careful fleshing out of the

“tracer” problem — one tagged polymer in a melt, solution, or cross-linked network of other

macromolecules — which is key to understanding, e.g., the motion of biomolecules in F-

actin/microtubule networks. Aspects of the tracer problem have been phenomenologically

treated in the literature [20], but a full microscopic and predictive treatment is yet to be

achieved. Although this would represent a highly non-trivial advance, much of the theoretical

groundwork has already been laid for the simplest version of the microscopic tracer problem

[17, 139]. The tracer problem treating a tagged particle in a polymer melt is also a first

step in considering the (zero-concentration) limit of polymer nano-composites, an extremely

important and burgeoning class of systems for the engineering of new materials.

As a concrete example, combining results of such a tracer calculation with the more foun-

dational advance outlined above for also including finite-range forces could allow for a first

microscopic treatment of DNA gel electrophoresis. This is a crucial technique in modern

biological studies (e.g., genome mapping, where DNA must be separated by size), and differ-

ent motions and relaxation mechanisms must be described depending on the architecture of

the biopolymers and the level of applied field. Models based on the phenomenological tube

theory are able to describe some of these, particularly in the low-field limit, but at higher

fields ever more involved approximations must be brought to bear on the problem, just as

in the case of applied deformations. As an example, because of the insistence on infinitely

strong confinement constraints in the model, “herniation” events in which a section of DNA

is pulled out of the tube must be introduced by hand [200], whereas in our microscopic

theory the tube already has only a finite strength and such entropic-barrier-hopping events

might be described very naturally, without the need for additional assumptions [140].
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