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ABSTRACT 

 Experimental testing is an essential tool for understanding how structures respond 
to extreme events, thus allowing the design and construction of safer structures. Methods 
currently used to determine the behavior of structural systems subjected to dynamic 
loading are quasi-static, shaking-table, and hybrid (or pseudodynamic) testing. In hybrid 
testing, the dynamic response of the structure is calculated numerically on a computer, 
and then the restoring forces from the structure are obtained by applying the calculated 
displacements to a test specimen. The combination of physical testing with numerical 
simulation provided by hybrid testing facilitates accurate and efficient testing of large and 
complex structural systems.  

Because conventional hybrid testing is executed at slow speeds, the method is not 
applicable for structures with rate-dependent components (for example, devices 
associated with vibration control). To allow testing of such structures, researchers have 
proposed a variation of the method called real-time hybrid testing in which the 
experiment is executed in real time.  

Real-time hybrid testing is challenging because it requires guaranteed execution 
of each testing cycle within a fixed, small increment of time (typically less than 10 msec). 
Furthermore, unless appropriate compensation for time delays (from communication and 
computing time) and actuator dynamics is implemented, stability problems are likely to 
occur during the experiment. Traditionally, researchers have lumped the effects of time 
delays and actuator dynamics together and treated them as a constant time delay; 
techniques were then developed to compensate for this total time delay. However, these 
techniques only perform well when the delay is small compared to the fundamental 
period of the structure. 

 The focus of this report is to develop an approach for real-time hybrid testing that 
uses model-based methods to compensate for time delays and actuator dynamics and 
combines fast hardware and software (for high-speed computations and communication) 
with high performance hydraulic components.  

 The studies presented in this report extend the capabilities of real-time hybrid 
testing by facilitating accurate testing of structural systems with larger natural 
frequencies (e.g., stiff structures or multi-degree-of-freedom systems) and handling larger 
delays/lags which are typically associated with actuators with high force capacity. 
Furthermore, these studies demonstrate that real-time hybrid testing is an effective and 
practical technique to evaluate the response of structures incorporating devices for 
passive and semiactive structural control. 
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CHAPTER 1 

INTRODUCTION

1.1 Importance of experimental testing 
 Natural hazards, such as earthquakes and strong winds, have caused tremendous 
human suffering and damage to national economies. Understanding how civil 
engineering structures respond to such dynamic events is extremely important to allow 
for reduction of the effects of these phenomena. Although design codes have experienced 
significant improvements over the years and computational methods for dynamic analysis 
have substantially increased their capabilities, the need for experimental testing still 
exists today. Indeed, design codes base their methods and requirements largely on the 
outcome of direct testing. Computational models and constitutive relationships are also 
developed and evaluated on the basis of the results of experimental testing. When the 
response characteristics of a structural system are not well understood or difficult to 
model numerically (e.g., inelasticity, nonlinear effects, and rate dependent behavior), 
physical testing provides the only accurate way to analyze the dynamic response of the 
structure. Experimental testing is an essential tool for understanding how structures 
respond to extreme events, thus allowing the design and construction of safer structures 
to mitigate natural hazards. 

1.2 Experimental testing methods 
 Several test methods are currently used to determine the behavior of structural 
systems subjected to dynamic loading. The simplest method is the quasi-static loading 
test, in which the structure or component to be tested is subjected to a predefined 
displacement or force time history. The predefined inputs (displacements or forces) are 
applied to the structural component on an extended time scale (i.e., slow rates); therefore, 
the interaction with the structure to which it is to be attached and the dynamic and rate-
dependent behavior of the structure are not considered. Typically, this type of test is used 
to investigate the hysteretic or cyclic behavior of structural materials or components 
under earthquake loading. A more realistic approach is the shaking-table test method, 
where the entire structure is subjected to a ground acceleration history applied by the 
shaking-table. Because the test is conducted in real time, dynamic effects and rate-
dependent behavior can be completely modeled. Although there are a few shaking-tables 
in the world capable of full-scale testing of building structures (e.g., the E-Defense table 
in Japan), tests generally must be conducted on a reduced scale model due to limitations 
on the size and payload capacity of the shaking-table, as well as for economical reasons. 
The results of a reduced-scale model do not necessarily represent the response of the full-
scale prototype. Certain types of behavior, especially local effects (e.g., bond and shear in 
reinforced concrete members, crack propagation, welding effects, and local buckling in 
steel structures), are well known to have size effects and not to scale, which limits the 
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applicability and accuracy of the shaking-table test method. The shaking-table test 
method is also restricted to structures subjected to dynamic base motion; therefore, 
different loading conditions (e.g., wind) cannot be considered. Inclusion of soil-structure 
interaction effects in shaking-table testing is also challenging. 

Hybrid (or pseudodynamic) testing provides an attractive alternative for dynamic 
testing of structural systems, combining physical testing with numerical simulation 
(Hakuno et al., 1969; Takanashi et al., 1975; Mahin & Shing, 1985; Takanashi & 
Nakashima, 1987; Mahin et al., 1989; Shing et al., 1996). The basis of the method is that 
the structure to be tested is divided into a physical component and a numerical model. 
The physical component is composed of a test specimen with the stiffness characteristics 
of the test structure. The numerical model includes the mass of the structure (lumped at 
discrete locations), and the structural damping. During the test, the dynamic response of 
the structure due to a particular loading (e.g., earthquake) is calculated numerically on a 
computer using time step-integration of the equation of motion. The calculated 
displacements are then applied to the test specimen using actuators at the discrete 
locations where the lumped masses are assumed. The forces required to produce these 
displacements are measured and fed back to the computer to calculate the displacements 
corresponding to the next time step (see Figure  1.1).  

Figure 1.1: Schematic diagram of hybrid test method. 

 Because damage is intrinsically a local phenomenon, testing of the entire 
structural system is frequently not required. The substructure technique allows physical 
testing of only the parts of the structure of interest (e.g., where damage is expected and 
the associated numerical modeling is difficult), while the rest of the structure is modeled 
numerically. Through the interaction of the physical and numerical substructures during 
the test, the dynamic response of the entire system is obtained.

In hybrid testing, the displacements are imposed on an extended time-scale which 
typically ranges from 100 to 1000 times the actual earthquake duration. This time 
modification allows for the use of larger actuators without high hydraulic flow 
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requirements, careful observation of the response of the structure during the test, and the 
ability to pause and resume the experiment. Because the actuators can generate larger 
forces, structures can be tested readily at large- or full-scale. The mass of the structure 
(which can be calculated with good accuracy) and the structural damping are modeled 
numerically and, therefore, need not be accommodated by the physical specimen, in 
contrast to shaking-table tests. The pseudodynamic test method also has some 
disadvantages. Because the number of actuators that can be attached to a structure is 
limited, the method is practical only for structures in which the physical substructure 
have concentrated masses or can be modeled with a few lumped masses (usually, the 
number of required actuators is equal to the number of degrees-of-freedom associated 
with lumped masses). Additionally, the use of an extended time scale renders the method 
inapplicable when the restoring forces also depend on the velocity (i.e., rate-dependent). 

 To expand the field of application of the pseudodynamic test method, several 
variations have been proposed. The continuous pseudodynamic method imposes 
continuous loading to avoid force relaxation effects. The continuous movement of the 
actuators is commonly achieved by using a response prediction-correction method to 
generate continuous command signals between each time step.  

Distributed pseudodynamic testing uses the internet to link geographically 
distributed facilities, expanding considerably the type and size of structural systems that 
can be tested. Because the time required for network communication is relatively large, 
response prediction-correction methods are required to generate the actuator command 
signals at continuous or fast-rate tests. 

 Real-time hybrid testing is a variation of the pseudodynamic test method in which 
the imposed displacements and response analysis are executed in real time, thus allowing 
testing of systems with rate-dependent components. Real-time hybrid testing makes 
possible the testing of a large class of structural components associated with vibration 
control, including passive, semiactive, and active control devices (e.g., base isolation and 
dampers), which are typically nonlinear and rate-dependent. 

 Real-time hybrid testing is challenging because it is necessary to perform all of 
the calculations, apply the displacements, and measure and feedback the forces within a 
single time step (typically less than 10 msec). Because the test is conducted in real time, 
the dynamics of the testing system and specimen become important.  For example, when 
hydraulic actuators are used to apply forces to the test specimen, a time lag exists 
between when the displacement is commanded and when the actuator actually reaches the 
commanded position. There are also some inevitable time delays associated with the 
numerical calculations and the communication between the computer and data acquisition 
systems. The computing time can become large, especially for complex models 
(numerous degrees-of-freedom) or numerical substructures with nonlinear response. 
Because of these time delays and lags, the force measured and fed back from the 
experiment does not correspond to the desired position (it is measured before the actuator 
has reached its target position). The effect of this error is to introduce additional energy 
into the system, which unless properly compensated, will typically cause the experiment 
to become unstable (Horiuchi et al., 1996).  
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 Traditionally, researchers have not differentiated between time delays and 
actuator lag; rather, they have been lumped together and treated as a constant time delay. 
Methods have then been developed to compensate for this total time delay. However, 
actuator dynamics, and the resulting time lag are, in general, frequency dependent; 
therefore, their approximation as a pure time delay is valid only in a limited frequency 
range (e.g., low frequency). Several time delay compensation techniques have been 
proposed, of which the response prediction method using polynomial extrapolation 
(Horiuchi et al., 1996) has been the most widely used. However, these techniques 
perform well only when the prediction time is small compared to the fundamental period 
of the structure; therefore, for tests in which long extrapolation is required or the structure 
has large natural frequencies, it is difficult to ensure that the test remains stable. To solve 
this problem, some researchers have increased the structural damping in the model 
(Darby et al., 1999; Blakeborough et al., 2001). Although solving the numerical stability 
problem, the additional damping reduces the accuracy of the test results. More rational 
methods for evaluating and compensating delay and lag effects are needed to extend the 
capabilities of the real-time hybrid test method.  

1.3 Objectives of the study 
 The objective of this study is to develop a method for real-time hybrid testing that 
incorporates model-based compensation techniques for time delays and actuator 
dynamics, and combines fast hardware and software (for high-speed computations and 
communication) with high performance hydraulic equipment. Efforts are directed toward 
algorithm development and experimental verification. There are five major components 
of this study: (a) advanced hardware and software system for fast hybrid testing, (b) delay 
compensation using model-based response prediction, (c) effects of actuator dynamics 
and compensation techniques, (d) model-based filtering in hybrid testing, and (e) 
verification experiments. 

 The types of structural systems considered in this study are structures with rate-
dependent behavior that cannot be tested using the conventional pseudodynamic testing 
technique. These systems are generally associated with structures employing 
supplemental energy dissipation devices. To achieve real-time testing rates, the structural 
behavior of these systems is represented using a reduced number of degrees-of-freedom 
and numerical substructures with relatively simple hysteretic behavior (e.g., linear, 
bilinear, and Bouc-Wen hysteresis). As the speed and capacity of digital processors 
increase, testing structures with a large number of degrees-of-freedom and with 
numerical substructures with complex behavior should be possible. Nevertheless, the 
methods developed in this study are independent of the number of degrees-of-freedom or 
the models used for the numerical substructures. 

 Because the focus of this study is to develop algorithms for real-time hybrid 
testing (as opposed to evaluating a particular structural system), the specimens and 
actuator used are of small scale and load capacity. Scaled models allow significant 
reductions in the time and cost of the experiments as well as the ability to investigate and 
understand the capabilities and limitations of the techniques in a safer and more 
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controlled manner than when using their full-scale counterparts. However, the techniques 
developed in this study are readily applicable to larger actuators and test specimens. 

 The studies presented in this report extend the capabilities of the real-time hybrid 
testing technique by allowing accurate testing of systems with larger natural frequencies 
(e.g., stiff structures or multi-degree-of-freedom systems) and handling larger 
delays/lags, typically associated with actuators with high force capacity. Testing of an 
MR damper specimen demonstrates the effectiveness of the compensation algorithms 
presented in this report to test specimens with complex nonlinear hysteretic response that 
are often encountered in building structures. These studies also demonstrate that real-time 
hybrid testing is an effective technique to evaluate the response of structural systems 
incorporating structural control devices. Furthermore, the methods and techniques 
presented in this report also contribute to the development and advance of the 
pseudodynamic test methodology by incorporating model-based response prediction 
techniques, which can also be applied to both continuous and distributed hybrid testing; 
and model-based filtering, to reduce the effect of experimental errors. These studies, 
therefore, not only contribute to the advance of the real-time hybrid testing technique but 
also to the overall hybrid test method.

1.4 Organization of the report 
 Chapter 2 presents a detailed review of previous studies on the pseudodynamic 
test method and its extensions for continuous, distributed, and real-time hybrid testing. 
Focus is placed on developments in fast hybrid testing methods. 

 Chapter 3 provides the technical background for this study. The pseudodynamic 
test method and algorithms used for numerical integration in hybrid testing are presented. 
Current methods for real-time hybrid testing and continuous pseudodynamic testing are 
reviewed and shortcomings of these approaches are identified. In the subsequent 
chapters, model-based approaches are developed to address these deficiencies. 

 In Chapter 4, the experimental setup for real-time hybrid testing is presented. This 
testing system combines fast hardware and software for high speed calculations and 
communication with high-performance hydraulic components for dynamic loading of the 
test specimens. Experiments conducted to characterize the testing system are presented. 
This testing system is extensively used in subsequent chapters to conduct real-time hybrid 
experiments and evaluate proposed methods and algorithms.  

 Chapter 5 presents an approach for real-time hybrid testing in which time 
delay/lag compensation is implemented using model-based response prediction. The 
efficacy of the proposed strategy is experimentally verified using both linear-elastic and 
rate-dependent test specimens. Experimental and analytical results are shown to be in 
good agreement, indicating the effectiveness of the method and testing system. Results 
also demonstrate that the proposed method allows accurate testing of structures with 
larger frequencies than when using conventional time delay compensation methods.   
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 The effects of actuator dynamics and actuator-specimen interaction in real-time 
hybrid testing are addressed in Chapter 6. First, models of the individual components of 
the testing system are reviewed and used to develop a model for the entire system. Next, 
using the experimental data, the parameters for the testing system used in this study are 
identified. This model is then used to investigate the effect of the testing system and 
specimen dynamics on the accuracy and stability of real-time hybrid experiments. Both 
detailed and simplified methods are developed and illustrated using numerical examples.  

 The models and insight obtained in Chapter 6, regarding the dynamics of the 
testing system, are used in Chapter 7 to develop model-based compensation techniques 
for actuator dynamics. The methods are first tested using numerical simulation and then 
implemented in the laboratory.  

 In Chapter 8, the compensation techniques developed in Chapter 7 as well as the 
testing system presented in Chapter 4 are used to conduct real-time hybrid testing of a 
semiactively controlled structure under earthquake loading. The structure is equipped 
with an MR damper, which is tested experimentally, and whose properties are varied 
during the experiment according to structural control algorithms. Experimental results 
demonstrate the effectiveness of the method and highlight the advantages of using real-
time hybrid testing to efficiently and accurately evaluate the response, not only of the 
energy dissipation device, but also the performance of the structural control strategy and 
overall structural system.  

 Chapter 9 presents a technique for reducing the effect of experimental errors on 
the measurements during hybrid experiments. The technique is based on the concept of 
model-based filtering using the Kalman filter. Numerical simulations as well as 
pseudodynamic experiments (using the Mini-Most-2 system) are used to verify the 
method. Areas that need further investigation are also identified.

  Chapter 10 summarizes the studies presented in this report and provides 
recommendations and possible directions for future research on real-time hybrid testing. 
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CHAPTER 2 

LITERATURE REVIEW 

 This chapter presents a review of the pseudodynamic test procedures and 
algorithms, focusing on the extensions of the method for continuous, distributed, and 
real-time hybrid testing. 

2.1 Pseudodynamic test method 
 The idea of experimentally obtaining the seismic response of a system without 
using the shaking table was initially proposed by Hakuno et al. (1969), who tested a 
single-degree-of-freedom system using an analog computer to solve the equation of 
motion and to control an electromagnetic actuator. The authors suggested the use of a 
digital computer to improve the accuracy of the simulation. This idea was successfully 
implemented by Takanashi et al. (1974, 1975, 1978) by discretizing the equation of 
motion in time and solving it using a digital computer. Because of these modifications, 
the loading process by the actuators was performed on an extended time scale in a ramp 
and hold method (i.e., as a repeated process of slow loading and pausing). Names 
typically used to designate this technique of combining experimental testing with 
vibration calculations using a computer are: pseudodynamic test method, hybrid testing, 
and computer-actuator on-line testing (Takanashi & Nakashima, 1987). The 
pseudodynamic test method has been the subject of significant research contributing to 
the development and improvement of the method (Mahin & Shing 1985; Takanashi & 
Nakashima 1987; Mahin et al., 1989; Shing et al., 1996). Figure  2.1 shows a schematic 
diagram with the different extensions of the method. 

Figure 2.1: Schematic diagram of various types of hybrid testing. 
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 The substructuring technique, which allows testing experimentally only the 
components or parts of the structure where damage is expected, was first implemented for 
pseudodynamic testing by Dermitzakis and Mahin (1985), and subsequently has been 
widely used.  

 Since its origin, the pseudodynamic test method has been successfully applied in 
numerous tests to determine the seismic response of structures. 

2.2 Continuous pseudodynamic 
 As opposed to conventional pseudodynamic testing methods, in which the load is 
applied to the specimen using a ramp-hold procedure, continuous pseudodynamic testing 
applies the load smoothly, without starts and stops. By eliminating the effects of force 
relaxation that can occur during the hold phase of each step, the overall quality of the test 
can be improved. Continuous pseudodynamic testing also enables achievement of a 
smooth loading for the test structure and a reduction of the test duration (Magonette, 
2001).

 Takanashi and Ohi (1983) introduced the concept of continuous loading and fast 
(rapid) hybrid testing. The main differences with conventional pseudodynamic testing 
were the use of a dynamic actuator and the improvement of the servo-control so that the 
actuator velocity could be continuously adjusted. The algorithm produced a continuous 
movement of the actuator in the same direction as in the previous step until receiving the 
new, updated signal. During load reversals, the method caused the actuator to trace an 
incorrect path, resulting in an overshoot error. Tests were conducted on a single-degree-
of-freedom (SDOF) structure composed of a steel beam connected to two pin-supported 
rigid columns. The loading rate was the main parameter of the study. Two verification 
tests were conducted: a quasistatic test with a time-scale factor of 24, and a fast hybrid 
test with a time-scale factor of 4.4, which was the fastest test that could be performed due 
to limitations on the processing speed of the computer system. The results showed that 
the algorithm functioned properly and that no significant differences between the two 
tests were observed (peak forces about 4% higher for the fast test). 

 Magonette (2001) presented a method for continuous pseudodynamic testing that 
was based on subdividing each conventional pseudodynamic step into a number of 
substeps (matching the sampling rate of the controller, typically 1 or 2 msec), and then 
conducting the pseudodynamic cycle at each substep. The achievable testing speed 
depended on the test conditions. For simple tests, the time expansion scale factor was 
near one, while for large-scale, multi-degree-of-freedom (MDOF) tests, the time-scale 
factor was as large as 500. The adaptive Minimal Control Synthesis (MCS) algorithm 
(Stoten & Benchoubane, 1990) was adopted for control of both displacement and 
velocity. To minimize tracking phase lag during fast substructure tests, a supplementary 
feedforward circuit was inserted upstream of the MCS algorithm. The feedforward 
transfer function was the inverse of the MCS reference model combined with a low pass 
filter. To allow testing of structures with strain-rate dependent elements using the 
continuous pseudodynamic method at low speeds (i.e., time expansion scale factor much 
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greater than one), a simple compensation technique was developed. The devices were 
first characterized by imposing sinusoidal displacements at different speeds (loading 
frequencies), and then a constant correction factor for the restoring force was determined 
based on the relation between the forces obtained at real time-speed as compared to the 
speed at which the pseudodynamic test was to be conducted. During the pseudodynamic 
experiment, the measured restoring force (applied at slow speed) was multiplied by the 
constant factor to account for rate effects. To validate the method, tests were conducted 
on two structures with rate-dependent devices. The first test was applied on a scale model 
of a three-dimensional, four-story steel frame using high-damping rubber bearing seismic 
isolators. The test was conducted using a time-scale factor of 500 and with a correction 
factor for rate effects determined by trial and error to optimize the response in 
comparison with dynamic tests. The results from the pseudodynamic test were compared 
to results from a shaking-table test. The results were similar, although some discrepancies 
existed. The second validation test was performed on a two-thirds-scale model of a two-
story reinforced concrete building protected by rate-sensitive rubber energy dissipators 
(viscoelastic dampers) using a time scale expansion factor of 200. The effectiveness of 
the strain-rate compensation was evaluated by comparing the results of pseudodynamic 
experiments, with and without the compensation, with results from a dynamic test, 
showing that the compensation approach produced good results. Although this correction 
method provides some compensation for the strain-rate effects (not accounted for when 
conducting slow speed testing), this approach is, in general, neither practical nor accurate.  

 Mosqueda et al. (2004) presented a system for continuous hybrid simulation with 
distributed experimental sites connected through the internet. Because the time required 
for network communication is random, a solution using an event-driven controller was 
proposed. The resulting system was an event-driven version of the system proposed by 
Nakashima and Masaoka (1999), in which the tasks of integration of the equation of 
motion and signal generation (using polynomial extrapolation/interpolation) run as two 
different processes. The event-driven algorithm included the following states: 
extrapolate, interpolate, slow, hold, and free-vibration. The method developed by 
Horiuchi et al. (1999) was used to compensate for the time lag in the actuators. The 
method was validated by computing the earthquake response of a two-story shear 
building model. Response analysis was conducted on a computer 5 miles away from the 
location of the two remote physical substructures (connected using an Ethernet network). 
The first and second natural frequencies of the two-degree-of-freedom model were 1.6 
and 4.2 Hz, respectively; a stiffness proportional damping with 5% on the first mode was 
used. The Newmark explicit method was used for numerical integration with a time step 
of 0.01 sec. A time scale factor of 120 was selected so that 95% of the steps could be 
executed without slowing down the actuators. The resulting method reduced, and in some 
cases eliminated, the hold phase at each integration step. Test results for both linear-
elastic and inelastic tests correlated well with numerical simulation, showing a maximum 
drift error of 10%. In the steps in which the hold state was not activated, a smooth force-
displacement response was obtained. For steps in which there was a hold of about 5 sec, 
force relaxation was observed, and because the measured force value is taken while the 
specimen is recovering from the relaxation, an error is introduced in the simulation (about 
1.5% error in the restoring force for a 5-sec.-hold period). For tests involving more 
distant sites, longer network delays are expected. Therefore, development of predictor-
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corrector methods that can accurately predict responses beyond one integration time step 
is necessary. 

2.3 Real-time hybrid experiments 
 The idea of conducting a real-time hybrid experiment was introduced by Hakuno 
et al. (1969). The response of a single-degree-of-freedom structure was investigated using 
an analog computer to solve the equation of motion, while simultaneously controlling an 
electromagnetic actuator in real time. Because of the limitations of the hardware available 
at that time, the test was not ideal in terms of control and accuracy. The authors also 
recognized that, because they used an analog computer, there was phase lag that affected 
the accuracy of the simulation.  

 Nakashima et al. (1992) developed an innovative system to test structures with 
velocity-dependent characteristics. The system was composed of a single dynamic 
actuator and incorporated a digital servo-mechanism placed between the computer 
performing the numerical integration of the equation of motion and the actuator’s analog 
servo-controller. The digital servo-mechanism performed digital feedback control at a 
fast rate ( t = 2 msec) by generating the signal using linear interpolation (between the 
displacement at the previous step and the new target displacement) and then correcting 
the signals by using the difference between target and measured displacements at each 
substep. Analog feedback control for the displacements at each t step was performed by 
the servo-controller (with the displacement signal converted from digital-to-analog). The 
algorithm used for numerical integration was a modified version of the Central 
Difference Method (CDM) called staggered CDM, which performed two integrations 
running independently, one for the even steps and another for the odd steps. A buffer was 
provided in the digital servo-mechanism to temporarily store the target displacement for 
the next time step while the actuator was still moving to the current target displacement, 
allowing continuous actuator motion. The structure tested was a building sitting on two 
rubber isolation bearings; a viscous damper was installed in parallel with the isolation 
bearings. The physical substructure was the viscous damper; the rest of the structure was 
modeled numerically as a linear-elastic SDOF. The viscous damper used consisted of a 
steel plate immersed in a high viscosity polymeric material inside a steel box. A time step 

t of 0.02 sec. was used, which implied a time step of 0.04 sec. on each of the two 
independent integrators. This time step was based on the speed limitations of the system. 
The test was performed successfully, achieving a time-scale factor of 1.0 (i.e., real-time 
performance); however, because of the time step constraint, the system was capable of 
tracing responses at most about 1 Hz; for stiff or MDOF structures, the relatively large 
time steps used in this research will cause numerical stability and accuracy problems. 

 The effect of the dynamic response of hydraulic actuators on real-time hybrid 
experiments was initially considered by Horiuchi et al. (1996) who identified this effect 
as a “response delay” (i.e., pure time delay). Using a linear-elastic SDOF system 
Horiuchi et al. (1996) demonstrated that this delay causes an increase in the total energy, 
which is equivalent to introducing negative damping into the real-time hybrid 
experiment. When this negative damping is larger than the structural damping, the 
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response becomes unstable and the experiment is impossible. Previous tests performed 
without considering such compensation had been applied only to structures with long 
natural periods or large damping. To make the test applicable to a wider range of 
systems, Horiuchi et al. (1996) introduced a method to compensate for this actuator 
delay. The compensation method basically predicted the displacement of the actuator 
after the delay, Td, which was then used as the control signal to the actuator. The method 
used for the prediction was an n-th order polynomial extrapolation based on the previous 
and current displacements. The limitations of the method were investigated. The 
prediction was found to cause the damping to become negative and the simulation to 
diverge when the nondimensional parameter, Td (where  is the fundamental frequency 
of the system), is larger than a critical value that is dependent on the order of the 
polynomial used for the extrapolation. This limitation imposed by the critical value 
becomes very important when the natural frequency of the structure or the actuator delay 
is large, as is the case for actuators with large-load capacity. Horiuchi et al. (1996) used 
the method to experimentally determine the seismic response of several systems, 
including an electrical power system supported by metal frames with fiber-reinforced-
plastic (FRP) columns, an energy absorber for piping systems, and a 4-story steel 
building with an oil-hydraulic damper. To perform large calculations with a small time 
step and communicate with other devices, a Super Real-Time Controller (Umekita et al., 
1995) had to be used as the main computer. 

 The method developed by Horiuchi et al. (1996) was further explored by Horiuchi 
et al. (1999). A digital signal processor (DSP-1) performed response analysis and actuator 
delay compensation at a time step t = 0.5 msec (2 KHz). The actuator was simulated 
using an electronic delay element (with a time delay of 8 msec), while the test specimen 
was simulated using a second digital signal processor (DSP-2), which output a reaction 
force based on the input displacement. The test structure was a SDOF system with 5 Hz 
natural frequency and 5% damping.  The mass and damping were considered in the 
numerical substructure, while the spring element (linear and bilinear) was considered in 
the experimental substructure. Test results were close to the analytical (exact) solution, 
with small errors assumed to be a result of the prediction error (from the delay 
compensation). The method was then used to evaluate the seismic performance of a 
piping system with an energy absorber. The energy absorber was the physical 
substructure while the piping system was modeled numerically. Additional tests of the 
whole system were also performed using a shaking-table. Test results from the hybrid 
experiment and shaking-table were close but contained discrepancies assumed to be due 
to differences in the actual earthquake records imposed and the specimens used for the 
energy absorber.  

 Nakashima and Masaoka (1999) pointed out some difficulties on the system 
developed by Horiuchi et al. (1996). To achieve a complete cycle of computation and 
control within 0.5 msec, a “super real-time controller” was used. The parallel computing 
techniques and special programming language required made the scheme difficult to 
adapt to different structural systems. For most structures, an integration time step of 10 
msec is sufficient and preferable, because it allows testing of larger systems and use of 
commercially available processors. Nakashima and Masaoka (1999) proposed a system 
that separated the tasks of signal generation and response analysis running as two 
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independent procedures on a single digital signal processor. The response analysis task 
was to calculate the target displacements at a time interval t of 10 msec by solving the 
equation of motion. The signal generation task was to generate commands for the 
actuator’s servo-controller at a faster rate of t = 1 msec using polynomial extrapolation 
and interpolation based on information from the previous displacements. Before the 
target displacement is available, the command signals are generated using extrapolation 
(see Figure  2.2). Once the response analysis task is completed, extrapolation stops and 
signals are generated using interpolation. The central difference method was used for 
systems with a few degrees-of-freedom, while the operator-splitting method (Nakashima 
et al., 1990) was used for larger systems. To compensate for the actuator lag, the method 
introduced by Horiuchi et al. (1996) was adopted using a third-order polynomial.  

t t t t

t

x(t)

t

Extrapolation Interpolation

Figure 2.2: Extrapolation and interpolation procedure. 

 Nakashima and Masaoka (1999) used this procedure and system to test the 
seismic response of base-isolated buildings with high-damping rubber bearings. Because 
the response of the bearings is highly dependent on the frequency, amplitude, and loading 
cycle, real-time testing was required.  The physical substructure was a base isolation 
system consisting of four rubber bearings with a reduced scale of one-third to one-quarter 
of typical bearings. The superstructure was modeled numerically using a lumped mass 
approach. Validation tests were conducted using an elastic SDOF system (in which a 
rigid mass was assumed on the top of the base-isolation system) with 2% critical 
damping. The mass of the system (in the numerical model) was modified to obtain SDOF 
systems with natural frequencies ranging from 0.5 to 3.0 Hz. In the tests without 
compensation, a time delay of about 30 msec was observed throughout the response. The 
tests with delay compensation produced good results with almost no delay in the 
response. The effectiveness of the extrapolation/interpolation procedure was also 
investigated. The number of extrapolation steps was varied to determine the maximum 
number that can be tolerated. For the system with a natural frequency of 1 Hz, the results 
between tests with one and nine extrapolations were nearly identical. However, when the 
natural frequency of the system was 3 Hz, the response was accurate for six 
extrapolations, but for seven extrapolations the response diverged quickly, and the test 
had to be stopped. Tests of multistory, base-isolated buildings were also conducted. 
Damping was stiffness proportional with 2% specified on the first mode. The method 
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produced reasonable results for a 9-story building (10 DOFs) with response frequencies 
not greater than 3 Hz (three extrapolations required) and for an 11-story building (12 
DOFs) with response frequencies not greater than 2 Hz (four extrapolations required), for 
the cases with a linear superstructure. A 5-story building (five DOFs) was also tested 
using an inelastic superstructure where about four to five extrapolations were required to 
simulate the response accurately. The errors in the simulation were controlled by the 
number of extrapolations employed, the response frequency, and the number of degrees-
of-freedom of the structure. While accurate results were obtained, response frequencies 
beyond 3 Hz were not stable, primarily because of limitations in the extrapolation and 
interpolation procedures.

Darby et al. (1999) conducted several tests using the real-time substructure 
technique. The first set of tests consisted of a simple single-degree-of-freedom system 
(spring-mass-damper) modeled computationally under the action of an external force 
with an additional physical test specimen which could be either a spring, inertial (mass), 
or damper element. The natural frequency of the system was 2 Hz. Real-time processing 
was performed using a dedicated board in a PC. A single hydraulic actuator with a 
conventional PID controller was used. For the first test, the physical substructure was an 
additional mass element. Reported experimental and theoretical results compare well for 
the cases with 0 and 20% critical damping, although some differences in amplitude and 
period were observed. For the second test, the physical substructure was a spring element 
represented by a steel cantilever column. The measured and theoretical responses to a 
step input were close; however, some differences, especially a period error, existed for 
the case of zero damping. For the third test, a damper (from a car suspension) was used. 
Cases of 1% and 25% damping were tested. The experimental and theoretical results 
compared poorly, yielding a large period error. This poor comparison was attributed to 
the highly nonlinear behavior of the damper, which made it difficult to characterize. In all 
of the experiments, the central difference method was used for numerical integration, 
with a time step chosen so that the response of the system, with zero damping, was stable. 
Choice of the time step was critical for the case with the mass specimen.  

The second set of tests considered a multi-degree-of-freedom-system representing 
a simple portal frame. The physical substructure was a column with the actuator placed at 
the pin-jointed, beam-column interface. The rest of the frame (second column and cross 
beam) were modeled numerically. For this case, actuator lag compensation was 
performed using the method proposed by Horiuchi et al. (1996) with a fourth-order 
polynomial. The fundamental natural frequency of the system was 5 Hz. A large value of 
damping (10%) had to be used (typical damping for steel structures is much smaller), 
because the negative damping introduced by the actuator delay was not fully cancelled by 
the delay compensation. The response of the system to an earthquake record and to 
sinusoidal excitations of 2.5 and 5 Hz was calculated, with the physical specimen 
remaining linear-elastic throughout the response. The experimental results had significant 
differences when compared to numerical simulation, particularly with respect to the 
amplitude of the response. These differences were attributed to nonlinearities in the 
experimental system, actuator lag compensation, inertial forces in the measured force, 
and central difference approximations. 
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 To improve the results obtained by Darby et al. (1999) using the central difference 
method with a large time step (required to allow computation in real time), Darby et al. 
(2001) presented a new method applicable to structures with linear numerical 
substructures. The equations of motion were expressed in modal coordinates, and the 
response was obtained using mode superposition. The numerical substructure was 
discretized using a first-order-hold approximation, producing an equation of motion 
whose solution requires matrix exponentials for the solution of the MDOF system. To 
create an explicit form of the method, the output at the next time step was calculated 
using a first-order (linear) extrapolation based on the output at the previous steps. To 
consider significant variations in the input due to large time steps, an integral form of the 
equation of motion was used (Chang, 1998), which required integration of the measured 
force over the time-step interval. Because a displacement-held, piecewise constant over 
each time step would generate erroneous integrals, a quadratic interpolation was used to 
generate intersample displacements to be sent as command signals to the actuator 
(generating a smooth response). The measured force for these short time intervals within 
the time step was then integrated using the trapezoidal rule. Actuator lag compensation 
was performed using the method proposed by Horiuchi et al. (1996) with a fourth-order 
polynomial. The actuator lag was estimated to be 15 msec. The method was used to 
calculate the response of the simple portal frame used by Darby et al. (1999). The 
fundamental frequency of the system was 5.13 Hz, and a damping ratio of 5% was 
assumed. The time step was 20 msec (about 1/4 the period of the highest mode 
considered). The results showed an improved accuracy of the proposed method over the 
central difference method used by Darby et al. (1999). The systems presented by Darby et 
al. (1999, 2001) both use relatively large time steps. 

 Blakeborough et al. (2001) used the method developed by Darby et al. (2001) to 
test the same simple portal frame but modified it to have two rigid beam-column 
connections. The physical substructure was again the left column, but with two-degrees-
of-freedom (lateral displacement and rotation at the top of the column) imposed using 
two actuators. Both the physical and numerical substructures were linear elastic. The 
results for a 2.5 Hz sinusoidal excitation were satisfactory, with the rotation response 
containing larger errors. The results for an actual earthquake record were less 
satisfactory, especially in the 6 to 7 Hz range. A high value of damping (5% critical 
damping) had to be used because the tests were highly prone to instabilities due to the 
physical coupling between the two actuators, which made it difficult to achieve accurate 
control. The method was also used to test a 10-story building incorporating a type of 
knee-bracing element that dissipates energy through inelastic deformation. The physical 
substructure (knee element which yielded first) was represented by a beam with a single-
degree-of-freedom (midspan displacement). The rest of the building was modeled 
numerically and restricted to linear behavior. The simulation was stable, but the results 
had errors, which were assumed to be due to large deformations of the test rig. To extend 
the method for nonlinear problems, a new approximate nonlinear algorithm was 
developed using a reduced basis of eigenvectors and other orthogonalized deformation 
shapes. The new reduced set of basis vectors was obtained by adding to the elastic modes 
a set of vectors corresponding to successive yield events obtained from a pushover 
analysis of the structure. Because the resulting eigenvectors are not all orthogonal, 
another eigenvalue problem needed to be solved to obtain a new set of vectors that are 
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orthogonal, each with its corresponding frequency. This nonlinear algorithm was used to 
test the portal frame (with the one-degree-of-freedom column as the physical 
substructure) under an earthquake record scaled to produce nonlinear behavior in both the 
test specimen and the numerical substructure. A time step of 25 msec was used to allow 
for computation in real time. Test results were stable, but no comparison with 
theoretically expected values was presented. The authors recognize that although the 
results are encouraging, more work was needed to improve the technique.   

 Continuing the work by Darby et al. (1999, 2001) and Blakeborough et al. (2001) 
on real-time hybrid testing, Williams et al. (2001) considered a detailed model of the 
components of a dynamic testing system. The model was implemented using Simulink 
and included nonlinear effects such as servovalve spool dynamics, flow through the valve 
orifices, and changes in the actuator oil volumes. The majority of the parameters for the 
model were obtained from the manufacturer’s specifications, while other parameters were 
determined experimentally by tuning the model against simple (prescribed displacement) 
tests. The model showed good agreement against these tests; however, results were 
observed to be quite sensitive to the value of the oil bulk modulus. The model was also 
compared with results from substructure real-time hybrid experiments. The test structure 
was the simple portal frame used by Darby et al. (1999, 2001), where a single-degree-of-
freedom cantilever column was the physical specimen. Both linear and nonlinear 
responses were considered. The predictions by the model for these tests, however, did not 
compare as well as in the tests used to calibrate the model. 

 Shing et al. (2004) developed a system for fast hybrid testing with rates of loading 
approaching real time. The system was based on the unconditionally stable -method 
(Hilber et al., 1977). To make this implicit algorithm suitable for pseudodynamic 
applications, Shing et al. (1991) proposed a modified Newton method that uses the initial 
stiffness of the structure, instead of the tangent stiffness, during the iterative corrections. 
Because the number of iterations to reach equilibrium at each time step is unknown, and 
the incremental correction decreases as convergence is approached, the method was not 
appropriate for high-speed tests. Shing et al. (2004) proposed a new method with a fixed 
number of iterations and time intervals within each time step. Using quadratic 
interpolation, the displacements are updated at each iteration, and the displacements at 
the previous two time steps are used to generate displacement commands at a faster rate 
(matching the sampling frequency of the controller), allowing the actuators to move in a 
continuous and smooth way. A time step, t, of 10 msec was used, and the interpolated 
displacements were generated every 1 msec; therefore, 10 interpolations were required 
per time step. To account for the inherent delay due to digital control (a few milli-
seconds), the PID control was supplemented with a feed-forward control implemented in 
the digital servo-controller (by MTS). Discrete feedback compensation was also 
incorporated to account for differences between the calculated and measured 
displacements. The calculated displacement (to be used for the interpolation) was 
adjusted with the difference between the calculated and measured displacements at the 
end of the previous time step, times a gain smaller than 1. This compensation also 
embeds an ad hoc correction for the time lag in the actuator response caused by the 
dynamics of the servo-hydraulic actuator (described to be as large as 10 msec) by 
overshooting the displacement commands in the next correction if there is a time lag in 
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the previous correction (Shing et al., 2002). The method and numerical simulation were 
implemented using Simulink, for tests without substructuring, and using OpenSees for 
test with substructuring. In both cases, the processes ran on a PC with a real-time kernel. 
Validation tests were conducted using the system to determine the linear response of two 
structures to seismic excitation. A two-degree-of-freedom model, representative of a 
scaled, two-story steel frame, was tested using a cantilever column with two actuators 
(one at each story level). The natural frequencies of the structure were 2.1 and 11.8 Hz, 
with critical damping in the two modes of 4% for the test, and 6% for the theoretical 
solution (the reasons for using different damping ratios in the experiment and the 
theoretical response are not explained by the authors.). The results between the test, 
theoretical solution, and a virtual test simulation, were close with some amplitude errors 
in the response. The second test consisted of a two-story, two-bay steel frame. The 
physical substructure was a cantilever column with one actuator, and the rest of the frame 
was modeled using OpenSees. The fundamental natural frequency of the structure was 
2.3 Hz, and Rayleigh damping was used with 2% in the first two modes. Experimental 
and theoretical results were very close. 

 A conceptually different real-time dynamic testing method is Effective Force 
Testing (EFT), which was proposed by Mahin and coworkers (Mahin et al., 1985, 1989) 
and experimentally evaluated and implemented by Dimig et al. (1999) and Shield et al. 
(2001). The basis of the method is to apply the equivalent inertial forces induced by the 
earthquake ground motion at each degree-of-freedom using hydraulic actuators under 
force control. The attractive feature of the method is that the command to the actuators 
(i.e., equivalent inertial forces) can be calculated prior to the experiment, based on the 
ground acceleration and mass of the structure. Although the effective forces imposed are 
independent of the structural stiffness and damping, a natural velocity feedback path 
(intrinsic to servo-hydraulic systems, Dyke et al., 1995) combined with the force control 
algorithm required by EFT, results in the inability of the actuators to apply the effective 
forces near the natural frequencies of the structure. Therefore, dynamic force control is 
effective only when very accurate natural velocity feedback compensation is 
incorporated, which includes the dynamics of the servovalve and its controller. Servo-
system nonlinearities have a significant effect on the performance of the EFT method 
(Zhao et al., 2003); accurate compensation is very challenging, even after conducting 
extensive system identification of all the testing components. To date, the EFT method 
has been successfully used only to test single-degree-of-freedom systems (Shield et al., 
2001; Zhao et al., 2005). From a conceptual point of view, the EFT method has some 
severe limitations for testing large systems when compared to the hybrid test method. The 
mass and damping must be physically included in the experimental specimen, instead of 
being modeled numerically as is done in hybrid or pseudodynamic testing. Furthermore, 
because the basis of the method is that the forces to be applied to the specimen are known 
before starting the test, the substructuring technique cannot be used.

 Real-time hybrid testing is particularly suitable for testing structures with rate-
dependent devices. Recently, special attention has been directed toward the application of 
this technique to evaluate the response of structures with MR dampers. Real-time hybrid 
experiments of structures with MR dampers have already been conducted by Emmons 
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and Christenson (2006; numerical simulations and proposed experiments only), Wu et al. 
(2006), and Carrion and Spencer (2006; as part of the studies presented in this report).

 Emmons and Christenson (2006) proposed the experimental verification of 
semiactive control through the use of real-time hybrid testing. Proposed experiments will 
employ hybrid testing (at the NEES Fast Hybrid Test System, University of Colorado at 
Boulder) to simulate the nonlinear response of a building structure with three semiactive, 
large-scale MR dampers. Analytical results for semiactive control of the nonlinear 
building model are presented as well as details of the experiments to be conducted. 

 Wu et al. (2006) used real-time hybrid testing with substructuring to evaluate the 
performance of an offshore platform with semiactive MR dampers under earthquake- and 
ice-induced vibration. For the controller, the LQG algorithm was used with the Kalman 
filter to estimate the states based on measurements from the isolation layer drift and main 
deck acceleration. The Hrovat optimal control algorithm was used to track the active 
control force calculated by the LQG algorithm. The authors were not able to accurately 
represent the dynamic behavior of the damper using existing models (e.g., Spencer et al., 
1997); therefore, they used the real-time hybrid testing technique to evaluate the response 
of the platform. For the hybrid tests, a full-scale damper was the physical substructure, 
while the rest of the structure was the numerical substructure. A reduced model of the 
platform (with 8 DOFs) was used for the hybrid test. Numerical integration was 
performed using the Central Difference Method (CDM), and to avoid stability problems, 
the mode superposition technique was used considering only the first three modes, whose 
natural frequencies were 0.57, 2.75, and 5.91 Hz, respectively. The actuator time lag for 
the system was estimated as a delay of 80 msec. Using numerical simulation, the authors 
found that the real-time hybrid experiment was stable without using delay compensation 
for the first three modes.  For the cases considered, the actuator lag had a small effect on 
the test results. Test results showed that the vibration of the structure is effectively 
controlled with MR dampers both in cases of passive-off (i.e., without input voltage) and 
semiactive control. When the natural frequencies of the test structure are small (which 
was the case for the experiments reported by the authors), and the forces from the 
physical substructure are small compared to the rest of the forces (e.g., forces from the 
numerical substructure), the effect of actuator dynamics (and experimental errors in 
general) on the overall system response was not significant. However, when the forces 
from the test specimen (e.g., MR damper) are considerable compared to the other forces, 
and the frequencies from the structure are larger, the effect of actuator dynamics is 
important, and unless properly compensated, the experiment can potentially become 
unstable.

2.4 Distributed pseudodynamic 
 The capabilities of the pseudodynamic test method can be greatly expanded by 
distributing the different substructures at geographically separated facilities and using the 
internet to link these facilities with the main simulation computer. Distributed 
pseudodynamic tests have been conducted in Korea by Yun et al. (2000; considering 
numerical simulations only), between Japan and Korea (Watanabe et al., 2001), in 
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Taiwan (Tsai et al., 2003), and between Taiwan and Canada (Chang et al., 2005; Yang et 
al., 2006). In the United States, a major research project was initiated by the National 
Science Foundation (NSF) in 1999, the George E. Brown, Jr. Network for Earthquake 
Engineering Simulation (NEES). NEES provided over $80 million to enhance the testing 
facilities of 15 universities across the United States and build the necessary cyber 
infrastructure (NEESgrid) to link the different facilities using leading-edge computing 
resources and the newest and fastest communications technologies. NEESgrid provides 
resources that support distributed hybrid simulations (e.g., tele-operation, tele-
observation, and data repository). Spencer et al. (2004) conducted a geographically 
distributed pseudodynamic test of a simple steel frame in which the left and right 
columns were physically tested at the University of Illinois at Urbana-Champaign and the 
University of Colorado at Boulder, respectively, and the rest of the frame was 
numerically modeled on a computer at the National Center for Supercomputer 
Applications (NCSA) at the University of Illinois at Urbana-Champaign. The test was 
successful, demonstrating the capabilities of the NEESgrid. The continuous 
pseudodynamic test performed by Mosqueda et al. (2004) was also distributed, with the 
computer 5 miles apart from the two remote physical substructures; however, this test 
was not conducted through NEESgrid. 

2.5 Summary
 This section reviewed some of the studies about the pseudodynamic test method 
as well as recent developments in the extensions of the method for continuous, real-time, 
and distributed hybrid testing. Developed over 30 years ago, the pseudodynamic test 
method is becoming a mature and reliable technique. However, further development is 
required to realize the full potential of the method and its extensions. 
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CHAPTER 3 

BACKGROUND ON HYBRID TESTING 

 To lay the foundation of this study, this chapter presents technical background 
regarding the pseudodynamic test method, the substructuring technique, and algorithms 
for numerical integration. The effects of rate-of-loading and force relaxation on hybrid 
experiments are reviewed. Extensions of the pseudodynamic test method for continuous 
and fast hybrid testing are described, as well as current techniques for these methods and 
their shortcomings.  

3.1 The Pseudodynamic Test Method 
 The pseudodynamic test method provides an efficient way of simulating the 
seismic response of large structural systems by combining numerical simulation with 
experimental testing. The equation of motion of the structural system to be tested is given 
by the following second-order differential equation

, ,t t t tMx( ) Cx( ) R(x x ) F( )  ( 3-1) 

in which M is the mass matrix, C the damping matrix (for linear damping), R the 
resisting force vector, F the vector of externally applied forces,  and x the displacement 
vector. The dots denote differentiation with respect to time. If the system is linear elastic, 
R = K x(t), where K is the elastic stiffness matrix of the structure. In conventional 
pseudodynamic testing, it is assumed that the restoring force does not depend 
significantly on the velocity and, therefore, rate-dependent effects can be neglected. 
When the structure is subjected to a ground acceleration, gx , the external force vector is 
F = - M gx , where  is a mass influence vector. The equation of motion is discretized 
by dividing the time interval at a uniform interval of t, giving the following equation 

1111 iiii FRxCxM  ( 3-2) 

which is then solved using a step-by-step time integration algorithm. During each time 
step, the response of the system is obtained by first solving the discrete equation of 
motion on a computer and then applying the displacements to the test structure using 
hydraulic actuators. The reaction forces on the actuators are measured and fed back to the 
computer to calculate the response at the next time step. The procedure is then repeated 
until the complete response is calculated. 
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Substructuring

 The damage produced to a structure by seismic loads is usually localized within 
only a few critical regions; therefore, in many cases it is unnecessary to experimentally 
test the entire structural system. The substructuring technique (also employed in finite 
element analyses) divides the structure in major components called substructures that are 
analyzed in a coordinated way to obtain the response of the entire system. In a 
pseudodynamic test, the structure is divided into physical and numerical substructures, as 
shown on Figure  3.1. The physical substructure, composed of the parts of the structure of 
special interest (e.g., where damage is expected, or difficult to model numerically) is 
tested physically in the laboratory, while the rest of the structure, the numerical
substructure, is analyzed numerically typically using a finite element model. Because the 
substructures interact during the test, the dynamic response of the entire system is 
simulated, allowing accurate testing of large and complex structural systems.  

Figure 3.1: Substructuring technique for pseudodynamic testing. 

 In pseudodynamic testing with substructuring, the restoring force vector, R,
includes the contributions from the physical and numerical substructures, 1

exp
iR  and 1

num
iR ,

respectively. The equation of motion for the complete system is then given by (Mahin et 
al., 1989), 

1 1 1 1 1
exp num

i i i i iMx Cx R R F  ( 3-3) 

 Because the number of degrees-of-freedom of the entire system is typically large 
for pseudodynamic tests with substructuring, special attention must be taken in the 
selection of the numerical integration algorithm to ensure numerical stability and avoid 
spurious higher mode responses.  
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3.2 Numerical integration in pseudodynamic testing 
 The numerical integration algorithm used to solve the equation of motion is a key 
component in the pseudodynamic test method. Most of the numerical integration 
algorithms are based on the Newmark method (Newmark, 1959). The acceleration is 
assumed to vary in a predefined way over the time step (e.g., constant, linear, etc.), and 
then the velocity and displacements are obtained through integration of the acceleration. 
The following equations are obtained for the velocity and displacement 
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1 1

1 1

1
2

1

i i i i i

i i i i

t t

t

x x x x x

x x x x
 ( 3-4) 

in which  and  are the Newmark integration parameters that determine the stability and 
accuracy of the method and produce the different methods of the family. For  = 0 and 
= ½, the Central Difference Method (CDM) is obtained. The expression to calculate 
displacements using the CDM is given by 
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 The advantage of CDM is that it is an explicit method; therefore, it requires only 
information from the current and previous steps to compute the response at the next time 
step, making its application to hybrid testing straightforward. For this reason, the CDM 
has been widely used on pseudodynamic testing. However, the method is only 
conditionally stable (with stability criterion given by t  2, where  is the highest 
natural frequency of the system). 

For  = 1/4 and  = 1/2, the Constant Average Acceleration Method is obtained, 
which is unconditionally stable. This method is implicit and of all the Newmark family of 
algorithms, it is probably the most commonly used. When simulating structures with 
nonlinear behavior, implicit methods require iteration to accurately capture the path-
dependent nature of the response. This required iteration makes implicit methods 
undesirable for pseudodynamic testing. The additional computing time required by 
implicit methods also makes them difficult to employ for real-time hybrid tests. 

 An important property of the Newmark family of methods is that numerical 
damping can be introduced to the system through the parameter  (for  = ½, no 
numerical damping is introduced, for  < ½, negative numerical damping is introduced, 
and for  > ½, positive numerical damping is introduced). Typically, finite element 
models represent the lower mode response much more accurately than response in the 
higher modes. Therefore, it is sometimes advantageous to introduce positive numerical 
damping to damp out spurious higher-mode responses. In pseudodynamic testing, 
damping out high-frequency responses is particularly important because the higher modes 
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of a system are more sensitive to experimental errors than the lower ones (Mahin and 
Shing, 1985). However, when introducing numerical damping in the Newmark family of 
methods (i.e.,  1/2), the method drops from second-order to first order-accurate,
reducing significantly the accuracy of the method. 

 Hilber et al. (1977) proposed a modification for the Newmark method, classically 
known as the HHT-  method (for Hilber, Hughes, and Taylor), which retains the 
desirable characteristics of the Newmark family of methods, while allowing the 
introduction of numerical algorithmic damping without degrading the order of accuracy. 
This result was achieved by introducing a new parameter,  to control the amount of 
numerical damping. The discrete equation of motion was expressed as 

iiiiiii FFRRxCxCxM 1111 )1()1()1(  ( 3-6) 

with the displacement xi+1 and velocity 1ix  given by Equation ( 3-4) and the , , and 
parameters given by 
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 The resulting algorithm is unconditionally stable, second-order accurate, and 
posses numerical damping controlled by the   parameter with adequate dissipation in the 
higher modes without affecting the lower modes too strongly. For  = 0, the method 
reduces to the Constant Average Acceleration method of the Newmark family, which 
introduces no numerical damping. 

 Hughes et al. (1979) proposed a method for nonlinear transient analysis using 
implicit-explicit, finite-element mesh partitions. The method was motivated by the 
advantages that can be obtained when solving problems with interacting media (e.g., 
fluid-structure interaction), by treating different parts of the overall system with implicit 
and explicit algorithms. For the implicit region of the mesh, an implicit algorithm was 
used implemented in a predictor/corrector way. For the explicit region, the same 
integration algorithm was expressed as an explicit “predictor-corrector” method, in which 
the calculations are rendered explicit by evaluating the internal forces based on the 
predictors (i.e., exclusively in terms of the data available from the previous step). The 
implicit and explicit methods are then combined producing the following equation 
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where N is a nonlinear algebraic function divided into the implicit and explicit terms, NI

and NE respectively. In structural dynamics problems, this function represents the 
restoring force. The quantities 1

~
ix and 1

~
ix  are referred as the predictors and 1ix  and 

1ix  as the correctors and are given by
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 Following the idea of combining implicit and explicit finite element mesh 
partitions, Plesha and Belytshko (1985) proposed a constitutive operator-splitting method 
for the solution of problems with nonlinear material behavior. The nonlinear constitutive 
relation is split into a constant, history-independent relation (linear part), which is 
integrated using an implicit method, and a variable history dependent relation (nonlinear 
part), which is integrated using an explicit method. Analysis of the stability indicated that 
the method is unconditionally stable for materials with softening type nonlinearities. 

 Based on the ideas from Hughes et al. and Plesha and Belytschko, Nakashima et 
al. (1990) proposed an operator-splitting algorithm for pseudodynamic testing 
(designated as the OS-method). The algorithm applies an explicit method for the elastic 
part of the response and an implicit method for the nonlinear part of the response. The 
key idea of the method is to use the following approximation for the restoring force 
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where Ko is a stiffness matrix as close as possible to the elastic stiffness. This 
approximation allows obtaining the restoring force at the end of the time step, based on 
the measured restoring force from the experiment at the predictor step (Figure  3.2). 

Figure 3.2: OS-method for pseudodynamic testing.

 The stability of the method was investigated for both single and multi-degree-of-
freedom systems; the algorithm was found to be unconditionally stable if the tangent 
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stiffness is not greater than the initial elastic stiffness (i.e., the stiffness of the system is of 
the softening type), which is the case in most structural engineering applications. 

 Combescure and Pegon (1997) suggested the use of the so-called OS-method (a 
combination of the OS-method with the HHT-  method) to damp out numerical, 
undesired, spurious oscillations associated with high frequencies. The method was found 
to be accurate when the structure does not lose too much of its initial stiffness during the 
test. However, when the structure undergoes severe stiffness degradation, the method still 
behaves accurately for the low-frequency modes of the structure. The equations as well as 
a flow chart for the implementation of the method in pseudodynamic testing are 
illustrated in Figure  3.3.  

Ghaboussi et al. (2006) presented a new predictor–corrector (P–C) method for 
multisite substructure pseudodynamic testing. The method is an extension of the classical 
implicit-explicit technique (Hughes & Liu, 1978). The computational components are 
solved using an implicit time integration method (e.g., Newmark’s constant-average-
acceleration method), while the restoring forces from the experimental components are 
obtained based on an explicit prediction of the displacement. The P–C method has the 
advantage that it does not require the determination of the initial stiffness of the 
experimental components, making it suitable for analyzing systems where the initial 
stiffness is difficult to obtain (e.g., earth structures for considering the soil–foundation–
structure interaction effect). However, the method is conditionally stable, which poses a 
potential disadvantage over the -OS method for real-time hybrid testing. 

 Among all of the numerical algorithms proposed for hybrid testing, the central 
difference method (CDM) and the alpha operator-splitting method ( -OS) are the most 
widely used and are the ones considered in this study. Because of its simplicity and low 
computational cost, the central difference method is used whenever possible. For 
structures in which the stability criterion of the CDM becomes difficult to satisfy, the -
OS method (which is unconditionally stable for systems of softening type) is used. 
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Figure 3.3: Implementation of the -OS method for pseudodynamic testing. 
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3.3 Rate-of-loading and force relaxation effects 

3.3.1 Strain-rate effects 

 The load resistance of most structural materials is sensitive to the rate of loading; 
therefore, the seismic response of a structure evaluated on the basis of its quasi-static 
behavior could be different from the actual response during an earthquake (Shing & 
Mahin, 1988). Structures subjected to severe earthquakes can experience strain rates as 
high as 0.1 sec-1 at critical sections, depending on the fundamental frequency of the 
structure and amplitude of vibration (Chang & Lee, 1987; Shing & Mahin, 1988). 

 Increases in strain rate produce increases in both yield and ultimate strengths of 
steel, with the yield strength being more sensitive than the ultimate. However, the elastic 
properties (e.g., Young’s modulus) do not demonstrate rate-sensitivity (Shing & Mahin, 
1988). Chang and Lee (1987) conducted a series of tests to determine the effects of strain 
rate and strain rate history on structural steel A36 at room temperature under monotonic 
and cyclic loading. Strain rates between 10-6 to 10-1 sec-1 were used, covering the typical 
range that might be experienced by steel frames during earthquakes. Considerable strain 
rate effects were observed, resulting in higher yield stress and longer plastic plateau for 
the higher strain rates. Tests results showed relatively more significant strain rate 
sensitivity for monotonic loading than cyclic loading. Changes in strain rates from 10-2 to
10-5 sec-1 resulted in differences as high as 27% for monotonic tests with loading and 
unloading, and about 10% for cyclic tests. The strain rate history effect, however, was not 
significant. Tests conducted by Udagawa et al. (1984) showed an increase on the moment 
capacity of wide-flange steel and composite beams of 16-20%  for monotonic tests and 5-
11% for cyclic tests corresponding to a change of  200 times in the loading rate. 

 Shing and Mahin (1988) studied the rate-of-loading effects on pseudodynamic 
tests using a single-degree-of-freedom model with the rate-dependant characteristics of 
mild steel. Numerical results indicate that the higher the rate of loading is, the larger is 
the load resistance and the smaller is the displacement induced by plastic deformation. It 
was also found that neglecting rate effects (i.e., using the static strength) can lead to a 
significant overestimation of the inelastic response for structures that have a fundamental 
period less than 0.6 sec (Shing & Mahin, 1988). For the model used, the dynamic 
strength was about 30% higher than the static strength and 13% higher than that 
developed under a typical pseudodynamic rate of loading (using a 200 time scale factor). 
These numerical analyses indicated higher rate-of-loading-effects in pseudodynamic 
testing than previous comparisons between results from pseudodynamic and shaking-
table tests (Thewalt et al., 1986). Some of the explanations given are the limited amount 
of experimental data used to calibrate the model, strain hardening, and the fact that 
inelastic deformation in multi-degree-of-freedom structures may not occur 
simultaneously at various critical locations.  
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 Results from tests conducted at slower rates (e.g., pseudodynamic) tend to be 
conservative (Shing & Mahin, 1988). However, rate-of-loading effects can be significant 
for structures that have relatively high fundamental frequencies and structures subjected 
primarily to impulsive type loading. By assuming a minimum fundamental response 
period of 0.1 sec, the strain-rate effects can be neglected for most steel structures under 
seismic excitation (Mahin & Shing, 1985).  

 When conducting real-time and fast hybrid testing, rate effects are directly taken 
into account on the measured restoring force from the specimen (i.e., physical 
substructure). However, typical models used for the numerical substructure do not 
include rate effects because it is assumed that the critical components, or those that suffer 
most of the damage, are tested experimentally. However, for numerical substructures in 
which significant rate sensitivity is expected, models that include these effects should be 
considered.

 A relatively simple relation for uniaxial, rate-dependent behavior is given by an 
elastic/viscoplastic model (Perzyna, 1966). The basis for the model is that the total strain 
rate, , can be separated into two components: an elastic strain rate, e  obtainable from 
an elastic stress-strain relation (e.g., /e E , where E is the Young’s modulus), and the 
viscoplastic flow, p , which occurs only when the stress exceeds a critical value, 
therefore,

e p   ( 3-12) 

 Malvern (1951) proposed a model for the viscoplastic flow based on the fact that 
the plastic strain rate is a function of the excess of the instantaneous stress over the stress 
at the same strain in a static test. An overstress relation used for problems regarding the 
dynamic plastic deformation of structures is: 

1p

y

 ( 3-13) 

where  and   are material constants that can be obtained from experimental tests,  is 
the dynamic flow stress, and y is the quasi-static (reference)  yield stress. Using this 
model, the total strain rate can be expressed as: 

1 ( )
y

sign
E

 ( 3-14) 

 Bending behavior can be considered by using the above constitutive model with a 
fiber formulation. Based on experimental data for mild steel, Shing and Mahin (1988) 
estimated the material parameters as   = 14, and  = 3 for cyclic loading (however, these 
values tend to overestimate strain-rate effects). Figure  3.4 shows the normalized stress 
( / y) vs. the normalized strain ( / y) obtained using the model for a triangular strain time 
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history producing strain rates of 10-5, 10-3, 10-2, and 10-1 sec-1 corresponding to loading 
frequencies of approximately 4x10-4, 0.04, 0.4, and 4 Hz. Increases on the stress as high 
as 20% are observed for the faster rate.
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Figure 3.4: Stress-strain behavior of elastic/viscoplastic model. 

 The numerical solution of models that include rate-dependent behavior is 
definitely more time consuming than conventional models excluding these effects. 
Therefore, the applicability of rate-dependent models for high-speed and real-time hybrid 
testing is highly dependent on the computing speed of the system. To date, hybrid tests 
have not included rate-dependent models. 

 For reinforced concrete structures, the effects of the rate-of-loading should be 
carefully considered because cracking and other failure mechanisms occur in real time 
(Mahin & Shing, 1985). Experiments by Mahin and Bertero (1972) indicated an increase 
of 20% on the yield resistance of a reinforced concrete beam, for a change in the loading 
rate of 100 times. 

 In general, there is a significant scatter on the results presented regarding the 
strain-rate effect for conventional structural materials. However, reported experimental 
results indicate that the effect is significantly smaller for cyclic tests than for monotonic 
test. Therefore, for experiments conducted to determine the earthquake response of 
structures, strain-rate effects may not be very significant (except for structures with large 
natural frequencies). Fast- and real-time hybrid testing methods can be used to efficiently 
evaluate the relevance of strain-rate effects on conventional structural materials under 
realistic earthquake loading histories.

3.3.2 Stress relaxation 

 During the hold period in conventional pseudodynamic testing, reductions in the 
restoring force can occur due to force relaxation. Force relaxation is caused by stress 
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relaxation, which is the decay in stress over time while the strain is held constant. Stress 
relaxation results from the redistribution of elastic and inelastic strain (Stouffer & Dame, 
1996). In general, stress relaxation follows a logarithmic behavior with most of the 
effects occurring during the initial seconds. Stress relaxation effects in structural steel 
have been observed by Chang and Lee (1987), about 8% during a 10-min hold for a strain 
rate of 10-4 sec-1, Mosqueda et al. (2004), about 1.5% on a 5-sec hold period, and Mahin 
et al. (1989), reductions of as high as 10% within a 0.5-sec hold interval. 

 A very important characteristic of stress relaxation is that once straining is 
resumed at the end of the relaxation period, the original stress-strain characteristics are 
reached quickly (transition strains as low as 0.01% can be observed), and the material 
follows the same stress-strain curve as without relaxation periods (Krempl, 2001). This 
result indicates that after a relaxation event, the stress-strain curve is reached quickly, and 
the relaxation periods are forgotten, as illustrated in Figure  3.5. 

Figure 3.5: Stress-strain curve with stress relaxation. 

 During pseudodynamic testing, if force relaxation occurs during a given step, the 
force-deformation characteristics of the specimen and, therefore, future force values will 
not be directly affected. However, if the restoring forces are measured after force 
relaxation has occurred, their values are incorrect, and errors are introduced into the 
experiment. Force-relaxations errors in pseudodynamic testing can, therefore, be 
mitigated by measuring the restoring force immediately after the actuator has reached the 
commanded target displacement and by reducing or eliminating the hold period. 

3.4 Fast hybrid testing 
 Fast hybrid testing is a variation of the pseudodynamic test method in which the 
speed of the test is significantly increased. In the limit, when the imposed displacements 
and response analysis are executed in a common time scale (i.e., real time), the method is 
called real-time hybrid testing. Real-time hybrid testing allows testing systems with rate-
dependent components. In principle, real-time hybrid testing can be conducted to 
experimentally test the entire structure, or only the critical components (using the 
substructuring technique), as in pseudodynamic testing. However, only tests using the 
substructuring technique have been conducted to date.
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 Real-time hybrid testing requires high performance of both the physical testing 
system and the computers and software used to perform the numerical calculations and 
data acquisition. Furthermore, because the test is conducted in real time, the dynamics of 
the testing system and specimen become important.  

3.4.1 Types of delays 

 In hybrid testing, there are some inevitable time lags and delays that can be 
grouped into three main categories: communication delays, computing time delays, and 
actuator dynamics. 

Communication delays 

 Because hybrid testing is a closed-loop experiment, there is a continuous 
exchange of information between all of the components required to conduct the test (i.e., 
computer, servo-controller, and data acquisition systems) producing communication 
delays. The main communication delays are associated with: (a) the time required to pass 
the target displacements from the computer solving the equation of motion to the 
actuator’s controller, and (b) the time required to send back the measured force and 
displacement from the data acquisition system to the computer performing numerical 
integration. These delays become especially important when conducting distributed 
simulations through the internet, where network delays are random and can be 
significant.

Computing time 

 The computer solving the equation of motion requires some time to perform the 
calculations associated with the numerical integration.  This time required to calculate the 
target displacements for the next time step becomes important especially for large models 
(several degrees-of-freedom), and for numerical substructures with nonlinear response.

Actuator dynamics 

 Displacements in hybrid testing are generally imposed on the structure using 
hydraulic actuators. When displacements are applied at fast rates, the dynamics of the 
actuator and attached specimen become important. Dyke et al. (1995) analyzed the effects 
of control-structure-interaction (CSI) and showed that the dynamics of the actuator and 
structure are intrinsically coupled through a natural velocity feedback link. This work 
demonstrated that neglecting phase differences between the command input and the 
resulting force (i.e., neglecting the CSI) resulted in an apparent time delay associated in 
the literature with generation of the control forces. In structural testing, this effect is not 
significant when the tests are conducted at slow speeds. However, when performing fast- 
and real-time hybrid tests, this dynamic coupling and the finite response time of the 
hydraulic actuators become particularly important, resulting in a time lag between the 
commanded displacement and the realization of this command by the actuator. Although 
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the time lag is caused by both actuator dynamics and the attached test specimen, the 
contribution from the former is dominant (Zhao et al., 2003). Typically, the natural 
frequency of the test specimen is large compared to the bandwidth of interest and in the 
pseudostatic region (low-frequency region), the phase of the actuator transfer function 
can be approximated as linear and modeled as a pure time delay. Actuator time lags can 
be several times larger than the typical time-step used for seismic testing. Typical values 
reported in the literature range from 8 to 30 msec (Horiuchi et al., 1999; Nakashima & 
Masaoka, 1999; Darby et al., 2001; Shing et al., 2004).  

 The time lag due to actuator dynamics and actuator-specimen interaction depends 
on the response frequency; therefore, the characterization by a constant time delay is 
accurate only over a limited range (e.g., low frequency).  

3.4.2 Effects of time delays and time lag 

 In real-time hybrid testing, the effect of time delays (denoted here as Td) is that 
the output or imposed displacement lags the commanded displacement by an amount of 
time equal to the delay, as shown in Figure  3.6 (a). Because of this delay, the force 
measured and fed back from the experiment does not correspond to the commanded 
displacement (it is measured before the actuator has reached its target position), however, 
the algorithm assumes that the measured force corresponds to the commanded 
displacement. For a linear-elastic system, the resulting response, as seen by the algorithm, 
is a counter-clockwise hysteretic loop, instead of the straight line corresponding to the 
linear behavior, as shown schematically in Figure  3.6 (b). The effect of this counter-
clockwise loop is to introduce additional energy into the simulation. Horiuchi et al. 
(1996) demonstrated that for a linear-elastic SDOF system, the increase in the total 
system energy caused by the delay/lag is equivalent to introducing negative damping into 
the system (given by ceq = -kTd, where k is the stiffness of the system). This artificial 
negative damping becomes large when either the stiffness of the system or the time 
delay/lag is large. When this negative damping is larger than the structural damping, the 
response will diverge (become unstable), and the experiment must be halted. Instability 
almost invariably occurs in practice due to the low levels of damping associated with 
structural frames and the large time delays/lags associated with large hydraulic actuators 
(Darby et al., 2001). Therefore, introduction of compensation for time delays/lags is 
essential when conducting fast-hybrid experiments.   
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Figure 3.6: Effects of time delays/lags: (a) displacement history, (b) load-deformation curve.  

 The effects of the delays and actuator time lag have been traditionally treated 
together by determining a total delay that includes all of these effects. However, because 
the actuator time lag varies with frequency, this approximation is valid only over the 
frequency range used for the approximation. If the conditions change significantly during 
the test (e.g., natural frequency of the test structure due to changes in specimen stiffness), 
this method is not very satisfactory because the system can become unstable 
(Blakeborough et al., 2001). Additionally, when the response of the test structure includes 
significant contributions at different frequencies (e.g., multi-degree-of-freedom-systems), 
approximating the actuator time lag with a single time delay may not yield satisfactory 
results. In this study, methods that allow evaluating and compensating time delays and 
actuator dynamics independently are developed.

3.5 Continuous pseudodynamic test method 
 In conventional pseudodynamic testing, the displacements are imposed by the 
actuators as a repeated process of slow loading and pausing. The servo-controller 
receives the target displacement and generates the command signals for the actuator 
typically using a ramp function, which is then applied to the specimen (loading phase). 
Once the target displacement is reached, the actuator pauses and holds in that position 
until a new target displacement is received (hold phase). This process of ramp loading 
and holding is generally denoted as ramp-hold procedure and is schematically shown on
Figure  3.7.  
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Figure 3.7: Ramp-Hold procedure used in conventional pseudodynamic testing. 

 The tasks involved in each time step are: [1] compute target displacement, [2] 
send target displacement, [3] impose target displacement using the actuators, [4] measure 
the restoring force and displacement, [5] send force and displacement, and [6] update 
response.

 The ramp-hold procedure used in conventional pseudodynamic testing has some 
disadvantages. During the hold period, while the displacement is held constant, force 
relaxation may occur in the test specimen, causing the measured restoring force, which is 
fed back to the algorithm, to be erroneous. Because most of the force relaxation occurs 
during the initial portion of the hold period, only a few seconds of hold may be needed to 
produce force relaxation effects (Mosqueda et al., 2004). 

 An alternative to the ramp-hold loading procedure used in conventional hybrid 
tests is to use a continuous loading procedure. In this method, called continuous 
pseudodynamic, the displacements are applied continuously to the test specimen, and the 
restoring forces are measured when the specimen reaches the target displacement without 
stopping the actuators. By achieving a continuous motion of the actuators and eliminating 
the hold phase, force relaxation effects are eliminated and the speed of the test is 
increased. The smooth motion of the actuators also contributes to keep control errors 
small (Magonette, 2001).  

 The challenge in continuous pseudodynamic testing is that after the target 
displacement has been reached, there is a period of time in which the actuators have to 
continue moving even though the next target displacement is yet unknown. Therefore, to 
keep the actuators moving continuously, prediction of the response is necessary within 
the time step (prediction phase). Once the next target displacement has been calculated 
and is available, the actuators should correct their path and move towards the target 
displacement (correction phase). This allows for continuous movement of the actuators 
and smooth actuator displacement time history, as shown in Figure  3.8. 
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Figure 3.8: Response prediction for continuous pseudodynamic. 

 Response prediction is difficult because the main motivation to conduct a hybrid 
experiment is to determine the unknown response of a structural system. The 
predictor/corrector method should be as accurate as possible so that the actuator path is 
very close to actual one, while at the same time, simple enough so that the calculations 
can be executed rapidly, providing command signals in a fast and continuous manner. 
The method used for the prediction and correction of the response is the key component 
in a continuous hybrid simulation. 

 Different methods have been proposed for continuous hybrid testing (Takanashi 
& Ohi, 1983; Nakashima & Masaoka, 1999; Magonette, 2001; Mosqueda et al., 2004), 
however, only the method proposed by Nakashima and Masaoka (1999) has been 
successfully applied for real-time hybrid tests. The method proposed by Nakashima and 
Masaoka (1999) performed response prediction-correction using simple polynomial 
extrapolation-interpolation. Command signals are generated at a fast rate, t, while 
response analysis is performed at a slower rate t. Lagrangean polynomials based on the 
information from the previous displacements are used for the extrapolation and 
interpolation. By assuming that the structure’s response is sinusoidal, the differences 
between the extrapolated and true displacements were characterized by an amplitude 
change and a phase lag. The extrapolated displacement was found to be less accurate for 
a larger number of extrapolation steps, for a larger value of t, and for lower-order 
polynomials. Using a similar procedure, the interpolation was shown to be more accurate 
than the extrapolation (smaller amplitude change and phase lag) for the same t and 
number of predictions. The transition from extrapolation to interpolation is also important 
and was characterized by the velocity in the switching interval (given by the difference 
between the signals corresponding to the last extrapolation and the first interpolation 
divided by the time interval). By determining the amplitude change and phase lag, the 
third- and fourth-order polynomials were found to be significantly more accurate than the 
first- and second-order ones. The phase was shown to be advanced for the first- and 
second-order polynomials, while it is delayed for the third and fourth order, which was 
considered more acceptable. Nakashima and Masaoka (1999) suggested the use of a 

Correction 
Prediction

x(t)

xi+1

xi

tti ti+1

[1] [2] [3] [4] [5] [6] 

PredictionContinuous path



35

third-order polynomial for extrapolation and interpolation, because it has good accuracy 
in both extrapolation and velocity in the switching interval. For the third-order 
polynomial, the j-th command signal (at a time, j t, from the start of the current time 
step) is given by 

n

k
kkjj xax

0

ˆ  ( 3-15) 

where the coefficients for the case of extrapolation are given by 
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and for the case of interpolation by 
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 The number of extrapolation steps required depends on the size (number of 
degrees-of-freedom) and characteristics of the structural system (linear or nonlinear). 
Tests performed by Nakashima and Masaoka (1999) indicated that the limitations of the 
system based on stability and accuracy were controlled by the number of extrapolations 
required, the response frequency, and by the number of degrees-of-freedom of the 
structure. Response frequencies beyond 3 Hz were not guaranteed to be stable, primarily 
because of limitations of the extrapolation and interpolation procedures. Techniques for 
better prediction of the response are needed to allow testing of structures with larger 
natural frequencies, as is typically the case for multi-degree-of-freedom systems. 

3.6 Summary
 This section provided background information regarding the pseudodynamic test 
method and its implementation. Solution of the equation of motion is a key component in 
hybrid testing. Numerical integrations algorithms used for transient analysis were 
reviewed, with especial attention to stability and its applicability to hybrid testing. The 
effects of rate-of-loading and force relaxation on hybrid testing were reviewed. 
Extensions of the pseudodynamic test method (continuous and fast-hybrid testing) 
developed to account for these effects were presented. The sources and effects of time 
delays and lags on fast-hybrid testing were reviewed, and the need for more rational 
methods to account for these parameters was identified.  
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CHAPTER 4 

SYSTEM FOR REAL -TIME HYBRID TESTING 

 A testing system that combines fast hardware, for high-speed computations and 
communication, with high-performance hydraulic components has been designed to 
allow execution of real-time hybrid testing. The system is used throughout the remaining 
part of this report to experimentally evaluate proposed algorithms and compensation 
techniques. This chapter presents a description of the system architecture, components, 
and tests conducted to characterize its performance. 

4.1 System architecture 
 The architecture of the testing system is shown schematically in Figure  4.1. The 
system consists of a hydraulic actuator controlled by a digital servo-controller, a 
displacement transducer that measures the displacements imposed by the actuator and 
provides position feedback, a load cell to measure the force imposed by the actuator 
(which corresponds to the restoring force from the specimen), a computer with a board 
for real-time control (to solve the equation of motion and generate the target 
displacements), and digital-to-analog and analog-to-digital converters.

4.2 System components 
 Figure  4.2 shows the main components of the testing system, and Figure  4.3 
shows a detailed view of the load frame. This testing equipment is located at the Smart 
Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-
Champaign (http://sstl.cee.uiuc.edu).
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Figure 4.1: Schematic of system for real-time hybrid testing (xm = measured displacement, 
Rm = measured force, xcmd = command displacement, and i = command to actuator). 

Figure 4.2: Experimental setup (system for real-time hybrid testing).  
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Figure 4.3: Experimental setup (load frame). 

 Descriptions of the different components of this real-time hybrid testing system 
are as follows: 

Hydraulic actuation system  

 A double-ended hydraulic actuator manufactured by Nopak is used. The actuator 
has a 6 in ( 152 mm) stroke and is equipped with low-friction Teflon seals to reduce 
friction effects. The actuator has a cylinder diameter of 1.5 in (38.1 mm) and a rod 
diameter of 1.0 in (25.4 mm), which results in an effective piston area of 0.98 in2 (633 
mm2). A steel plate with a thickness of 0.5 in (12.7 mm) is used as mounting plate, to 
connect the actuator and test specimen to the test floor. A Schenck-Pegasus 132A two-
stage servovalve rated for 10 gpm at 1,000 psi pressure drop is used to control the 
actuator. A hydraulic service manifold provides conditioning and filtering of the oil 
supply. The system is connected to the main hydraulic power supply line of the Newmark 
Structural Engineering Laboratory operating at 3,000 psi pressure.

Controller and sensors 

 The actuator is controlled by a Schenck-Pegasus 5910 digital servo-hydraulic 
controller in displacement feedback mode. The displacement of the actuator is measured 
using a Lucas-Schaevitz 10,000 DC-EC linear variable differential transformer (LVDT) 
having a range of 10 in ( 254 mm). An Omega load cell with a range of 1.0 Kip 
( 4,540 N) is used to measure the applied force.  

DSP and hardware

 A PC computer with a dSPACE DS1003 (dSPACE Inc., www.dspaceinc.com)
parallel processing DSP board based on a Texas Instrument TMS320C40 processor is 
used to solve the equations of motion and provide real-time control. A dSPACE DS2102 
High-Resolution, 6-channel D/A Board and a dSPACE DS2002/DS2003 32-channel A/D 

Specimen Load cellLVDTServovalveHydraulic actuator Mounting plate 
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Board are employed to convert the signals from digital to analog, and analog to digital, 
respectively, both having a resolution of 16 bits. Access to the input and output channels 
is provided by dSPACE connector panels that allow the signals to be connected via BNC 
ports. During system characterization tests, a 4-input/2-output channel, PC-based SigLab 
spectrum analyzer manufactured by DSP Technology is used for data acquisition and 
analysis. 

Software

 The algorithms (numerical integration and compensation techniques) are 
implemented in SIMULINK/MATLAB and then downloaded to the dSPACE processor 
using the Real-time Workshop (http://www.mathworks.com/products/rtw/). Because real-
time hybrid testing is a closed-loop experiment, the displacements to be imposed to the 
test specimen are not known in advance (they are determined during the experiment). To 
prevent damage of the specimens and testing system, limits are set to prevent these values 
from becoming too large. At each time step, the values of certain key quantities (e.g., 
command displacement to the actuator) are compared to user-defined maximum 
allowable values, and if any of these values is exceeded, the experiment is stopped 
automatically. 

 During the real-time hybrid experiments, two additional programs are run on the 
PC and have access to the DSP board: (a) COCKPIT for signal monitoring and control of 
the experiment, and (b) TRACE for data acquisition. Figure  4.4 shows a schematic 
diagram of the software configuration and its interaction with the hardware. 

Figure 4.4: Hardware and software configuration. 

 The software TRACE allows capturing data during the real-time hybrid 
experiments. This software records and displays graphically time histories of variables 
and measurements (of processes running on the dSPACE processor board) without 
interrupting or interfering with the DSP application.  Some of the measurements that are 
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typically captured during a hybrid experiment, include calculated displacements (i.e., 
structural response), commanded displacement (to servo-controller), measured 
displacement (from LVDT), and measured force (from load-cell).  

 COCKPIT allows monitoring and interacting with the DSP application running on 
the dSPACE processor board. Using this software, a supervisory program was created 
that runs on the PC during the real-time hybrid experiments and controls the application 
running on the DSP. Figure  4.5 shows the version of this program used for the real-time 
hybrid experiments conducted in Chapter 8 (testing of a semiactively controlled 
structure).  

Figure 4.5: COCKPIT supervisory program for real-time hybrid experiments.  

The main functions that this supervisory program provides are the following: 

Control of the real-time hybrid experiment by allowing the user to start, pause, or 
stop the DSP application and, therefore, the experiment.  

Real-time monitoring of certain quantities and measurements during the 
experiment (e.g., command displacement, LVDT and load cell measurements, and 



41

execution time). Warnings are implemented when some of the values exceed 
certain limits. 

Ability to interactively modify parameters before or during the experiments (e.g., 
magnitude of the earthquake record and maximum allowable command 
displacement). 

Options to select between several compensation strategies for time-delays/lags or 
a no-compensation option. 

Option to select between simulation and experiment modes for running the real-
time hybrid test. In the simulation mode, displacements are still imposed to the 
specimen and measurements acquired; however, the force corresponding to the 
physical substructure is determined using a numerical model of the test specimen 
instead of the measurement from the load cell. This mode is very useful for 
debugging the system and ensuring that all of the components are working 
properly (e.g., sensors, actuator, and algorithms). Once the system has been 
checked, the running mode is set to experiment, and the real-time hybrid 
experiment is conducted using the measurement from the load cell. 

4.3 Limits of testing system 
 Every testing system has a limited range on its ability to apply forces and 
displacements. These limitations depend on several factors; to properly conduct 
experiments, understanding and quantifying these limits is critical.  

Displacement limits 

 The displacement transducer used to provide the feedback signal to the controller 
should have a range equal or larger than the actuator stroke. For the system considered in 
this study, the actuator and LVDT have ranges of ±6 in (±152.4 mm) and ±10 in (±254 
mm), respectively, which are larger than the displacements intended during the 
experiments, less than 1 in (25.4 mm). 

Force-velocity limits 

 In dynamic applications, the maximum force that can be applied by the actuator is 
dependent on the velocity at which this force must be achieved. The following analysis 
determines this force-velocity limitation of the testing system.  

 Servovalves are typically rated by the load flow, QL, called rated flow, QR

obtained with a maximum input current, iR, and at a given valve pressure drop, P,
across the valve (Merritt, 1967). The steady-state flow-load characteristics of a 
servovalve are defined by the following flow equation:
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 The rated conditions of a particular servovalve are typically found in the technical 
specifications from the manufacturer. The servovalve used in this study has a rated flow 
QR of 10 gpm (38.5 in3/s) at a 1,000 psi pressure drop P, and a rated current iR of 50 
mA. The supply pressure, Ps, of the system is 3,000 psi. Figure  4.6 shows the resulting 
flow graph of the servovalve. Notice that the rated flow is obtained when the input 
current to the valve is equal to the rated current (i.e., ic/iR = 1.0) and the pressure drop 
across the valve (Ps - PL) is equal to the rated pressure drop, P, which results in a 
pressure ratio, PL/Ps of 2/3. 
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Figure 4.6: Flow Graph of servovalve. 

 The force generated by the actuator, fp, is obtained by the product of the effective 
piston area, A, and the pressure drop across the load, pL. The piston velocity, v, and the 
power generated by the hydraulic actuator are given by the following equations:

LQv
A

 ( 4-2) 

Power = fp v  ( 4-3) 

Figure  4.7 shows the relationship between the power and the pressure ratio (PL/Ps). As 
observed from the graph, maximum power is generated and transmitted to the load when 
PL/Ps = 2/3, i.e., the pressure across the load is two-thirds of the supply pressure (PL = 2/3 
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Ps). For this reason, and because a supply pressure of 3,000 psi is the most widely used, a 
valve drop of 1,000 psi is typically used for rating servovalves. 
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Figure 4.7: Power transmitted to the load (ic/iR = 1).  
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Figure 4.8: Force vs. velocity graph of actuator (ic/iR = 1). 

 Figure  4.8 shows the force-velocity relationship for the servo-hydraulic actuator 
used in this study. The force generated by the actuator is divided into several 
components: the force to the load, an inertial force, and a friction force. The friction force 
is considered small in the system because the actuator employs low-friction Teflon seals. 
The inertial force depends on the accelerations generated by the piston as well as on the 
mass of the piston, specimen, and attachments. Based on the maximum forces and 
velocities expected to be imposed on the specimens (less than 500 lb and 20 in/sec, 
respectively), this force-velocity envelope is adequate for the applications considered in 
this study. 
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4.4 Test specimens 
 Two different specimens are provided to be used as physical substructures during 
the real-time hybrid experiments conducted in subsequent chapters: a linear elastic 
specimen and a specimen with rate-dependent behavior. The specimens are designed to 
have relatively similar properties (length, displacement, and force capacity) in order to fit 
in the same test setup, making the two specimens easily interchangeable. 

4.4.1 Linear elastic specimen 

 The linear elastic specimen is composed of a steel compression spring having a 
length of 8 in (203 mm), an outside diameter of 1.9375 in (49.2 mm), and a wire size of 
0.312 in (7.9 mm), see Figure  4.9. The specimen was designed to minimize backlash 
effects and deformation of the loading frame, while fitting into the experimental setup. 
The spring is mounted on end supports made of aluminum. The spring has a nominal 
stiffness of 215 lb/in (37.7 N/mm), and a maximum deflection capacity of 2.77 in (70.4 
mm), which corresponds to a maximum load of 0.6 kips (2,669 N). To avoid nonlinear 
effects on the supports (e.g., backlash), the spring is set to work under compression only. 
An initial precompression of 0.4 in (10.16 mm) is applied for all the experiments 
conducted using this specimen, followed by displacements with amplitudes smaller than 
this initial displacement. 

Figure 4.9: Spring specimen. 

 The spring specimen was subjected to a low-frequency (0.2 Hz) sinusoidal 
displacement excitation with an amplitude of 0.2 in (5.08 mm). Figure  4.10 shows the 
force-displacement response of the specimen, which is seen to be very linear behavior, 
without any backlash or hysteretic effects due to friction. Using a least-squares linear fit, 
the stiffness of the specimen was found to be 234 lb/in (41.0 N/mm), which was about 
9% higher than the manufacturer’s specification.
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Figure 4.10: Spring specimen force vs. displacement response. 

4.4.2 MR Damper specimen  

 The second specimen used in this study is a small-scale magnetorheological 
damper (MR damper). The damper considered is a RD-1005 MR fluid damper 
manufactured by the Lord Corporation (http://www.lord.com/), see Figure  4.11 (a).  

Figure 4.11: Small-scale MR damper. 

The damper is 8.5 in (216 mm) long in its extended position, and the main 
cylinder is 1.5 in (38.1 mm) diameter. The damper has a stroke of  1.0 in (25.4 mm) and 
can generate forces up to about 0.67 kip (3,000 N). The main cylinder of the damper 
accommodates the piston, the magnetic circuit, an accumulator, and 50 ml of MR fluid, 
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see Figure  4.11 (b). The magnetic field produced in the device is generated by a small 
electromagnet in the piston head (Spencer et al., 1997). Input current commands are 
supplied to the damper using an RD-1002 Wonder Box™ Device Controller from Lord, 
which uses a PWM amplifier to generate a current that is proportional to the applied 
voltage. By selecting the input current, the characteristics of the damper may be changed 
in real-time to vary the forces exerted by the damper. The power required by the MR 
damper is very small (less than 10 watts), and the system, damper and the current driver, 
have a response time of typically less than 10 msec (Spencer et al., 1997).  

 The response of the MR damper to a 0.4 in (10.16 mm) sinusoidal displacement 
excitation with a frequency of 1.273 Hz is shown in Figure  4.12. Two cases are 
presented: without input current and with maximum current applied to the damper. As 
observed the response of the damper is velocity-dependent and nonlinear, and the 
magnitude of the force generated by the damper increases significantly with the input 
current (i.e., magnetic field). 
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Figure 4.12: Response of MR damper to sinusoidal command displacement.  

4.5 System characterization
 When conducting real-time hybrid experiments, the dynamic response of the 
testing system is extremely important. Effects associated with actuator dynamics and time 
delays must be properly determined before conducting the hybrid experiments. This 
section presents the experiments conducted to understand and quantify these effects.
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4.5.1 Actuator dynamics 

 The linear-elastic spring specimen was used to determine the characteristics of the 
testing system. First, the gains of the PID controller were selected. The following values, 
Kprop = 3.0, Kint = 0, and Kder = 0, were found to give a good step response (2% overshoot 
and 15 msec rise time). Figure  4.13 shows the response of the system to a 0.4 in 
amplitude step function.   
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Figure 4.13: Step response of the actuator. 

 The dynamics of the actuator and the resulting time-lag are critical parameters in 
real-time hybrid testing. Figure  4.14 shows the response of the system to a 1 Hz 
displacement sine wave having a 0.25 in amplitude. The difference between the 
command and measured displacement (i.e., time lag) is estimated to be 12 msec, which is 
within the typical values reported in the literature. 
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Figure 4.14: Command and measured displacements. 

 To understand the behavior of the system over a wide range of frequencies, the 
frequency response function (FRF) from the commanded displacement to the measured 
displacement was determined using a random excitation as input. The excitation signal 
was a band-limited white noise with a bandwidth of 50 Hz and an RMS of 0.01 in. A PC-
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based SigLab spectrum analyzer manufactured by DSP Technology was employed for 
data acquisition and analysis. The data were captured using a sampling rate of 128 Hz.  
The FRF was calculated using 2,048 FFT points, resulting in a frequency resolution of 
0.0625 Hz, a Hanning windowing with 50% overlap, and 10 averages. Eight-pole elliptic 
anti-aliasing (AA) filters were used during the data acquisition. Figure  4.15 shows the 
frequency response function of the system. Ideally, one would want a system with a 
magnitude of one (0 dB) and a phase of zero over the entire frequency range, however, 
this behavior is not possible. After about 15 Hz, the magnitude starts to roll off, and 
assuming a cutoff frequency of -3dB, the bandwidth of the system is determined to be 
28.7 Hz. The phase plot shows that within the bandwidth, the phase of the system is 
nearly linear, resulting in a relatively constant time lag of about 12.4 msec.  
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Figure 4.15: Frequency response function from command displacement to measured 
displacement. 

4.5.2 Time delays 

 In contrast to time lags, which are frequency-dependent, time delays have a 
constant magnitude and, therefore, do not depend on frequency. In addition to the 
actuator time lag, some pure time delays exist in a real-time hybrid experiment. Possible 
sources of these delays are the following: 

Computation time 

D/A converter for command signal 
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Communication delays 

Sampling rate of controller 

A/D converter for measured signals 

 Several tests where performed to quantify these time delays. For the first test, a 
simple step function was generated on the DSP, sent out the D/A, and subsequently 
captured by the A/D. The DSP was set to run with a sampling time of 0.1 msec (sampling 
rate of 10,000 Hz). Figure  4.16 shows the results of this test, where two delayed signals 
were monitored, data 1 and data 2. The data 1 signal incorporates the total delay 
associated with the D/A and A/D converters. As can be observed, the associated delay is 
one time step (i.e., 0.1 msec). The second signal monitored, data 2, also includes the time 
delay associated with the digital servo-controller as well as the communication delays 
that are found in a real-time hybrid experiment. The resulting time delay is approximately 
1.2 msec.  
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Figure 4.16: Time delays in experimental setup (using simple model for signal generation). 

 For the second experiment, a larger and more complex model was set to run on 
the DSP during the delay estimation. The model was the same as the one used for 
conducting real-time hybrid testing of a semiactively controlled, three-story building 
employing a MR damper, as described in Chapter 8. Because of the larger size of the 
model and, therefore, the more calculations required at each time step, the fastest rate at 
which the DSP could run this application was 2,000 Hz (sampling time of 0.5 msec). 
Figure  4.17 shows the measured signal that includes the computation time and delays 
associated with the converters, digital servo-controller, and communication. The total 
time delay is estimated as 1.5 msec for this larger model. Therefore, the computing time 
can be estimated as the difference between the delays obtained using the simple model (in 
which the computation time is assumed negligible) and the larger model. For this 
application the computing time is estimated as 0.3 msec.  
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Figure 4.17: Time delays in experimental setup (using complex model for RTHT). 

 The characterization of the testing system conducted provides valuable insight 
regarding the performance of the testing system for real-time hybrid experiments. 
Comparison between the magnitude of the different delays/lags shows that the main 
source of delay in a real-time hybrid experiment corresponds to the lag associated with 
the dynamics of the actuator.  

4.6 Selection of sampling rate 
 Several factors must be considered when evaluating the sampling rate that is 
required for satisfactory execution of a real-time hybrid experiment. These factors 
include accurate integration of the equation of motion (capturing all of the natural 
frequencies of interest), stability of the numerical integration strategy, maintaining a 
sufficiently smooth displacement command signal, and accurately imposing velocities by 
the actuator.  

 The numerical model to be integrated in a real-time hybrid experiment includes 
the components of the test structure (mass, damping, and numerical substructures), as 
well as additional dynamic components (e.g., delay/lag compensators). To accurately 
integrate the entire dynamical system, the sampling rate is typically required to be 10-25 
times greater than the significant frequencies and damping in the measured responses, 
depending on the specific application (Dyke, 1996). The stability of the numerical 
integration depends on the algorithm used. For the Central Difference Method, the 
stability condition is given by t Tn/ , where Tn is the period corresponding to the 
highest natural frequency of the system. 

 One of the main motivations to conduct a real-time hybrid experiment is to test 
systems with rate-dependent components. Therefore, when the restoring force depends 
also on the velocity, care must be taken to assure that velocities are accurately imposed. 
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With the state-of-the-practice of servo-hydraulic control, simultaneous realization of 
velocity and displacement feedback control is difficult (Wu et al., 2005). In principle, if 
the displacements are accurately imposed and the experiment is conducted in real-time, 
the correct velocity should be automatically achieved on the specimen during a real-time 
hybrid experiment. However, if the sampling time of the experiment is relatively large, 
the actuator will impose the displacement at the beginning of the time step and then hold 
that displacement for the remaining portion of the time step, i.e., ramp-hold procedure. 
The resulting velocity will be large at the beginning of the time step and small, or zero, at 
the end of the time step. The measured restoring force, therefore, will be erroneous, and 
consequently, the entire experiment inaccurate.  

 Two approaches have been used to accurately impose the velocities in real-time 
hybrid testing. The first approach consists of making the time step of the experiment 
relatively small (Horiuchi et al., 1996, 1999), resulting in smooth displacements and 
velocities imposed on the specimen. The second approach consists of using two different 
time steps during the experiment.  Response analysis is performed using a relatively large 
time step (determined to accurately integrate the equation of motion), while a smaller 
time step is used to generate the command displacements for the actuator’s servo-
controller. The intermediate displacements are generated using some type of 
interpolation, e.g., linear interpolation (Nakashima et al., 1992), or polynomial 
extrapolation/interpolation (Nakashima & Masaoka, 1999).  

 The spring specimen used in this study is basically rate-independent; therefore, 
only displacements need to be imposed accurately. However, the MR damper specimen is 
highly rate-dependent; therefore, both displacement and velocity must be accurately 
imposed. To determine the required sampling rate for satisfactory response of the MR 
damper, tests were conducted by imposing a predefined command displacement at 
different execution rates. The command displacement was a sinusoidal with 0.2 in (5.08 
mm) amplitude and 1 Hz frequency, which resembles typical responses of the specimen 
during the hybrid experiments conducted in subsequent chapters.
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Figure 4.18: Effect of sampling rate on MR damper response. 

 Figure  4.18 shows the response of the MR damper for different values of the 
sampling rate used on the dSPACE processor for running the experiment. The sampling 
times varied from 0.0005 to 0.012 sec (sampling frequencies from 2 kHz to 83.3 Hz, 
respectively). As observed, although the command displacement is the same in all cases, 
the measured force from the damper varies. For the larger values of the sampling time 
(0.006 and 0.012 sec), the response from the damper was considerably different from the 
tests with faster samplings rates and from the expected response, which indicates that this 
sampling times are inappropriate. For the faster sampling rates, no significant difference 
was observed when the sampling time was reduced from 0.001 to 0.0005 sec (sampling 
rate increased from 1 to 2 kHz). This result indicates that a sampling time of a least 0.001 
sec (1-kHz sampling frequency) is required to properly impose both displacement and 
velocity to the MR damper specimen during the real-time hybrid experiments. The 
dSPACE digital signal processor used in this study easily accommodates this sampling 
frequency, even for the largest and most complex models considered in this study. 
Therefore, there is no need to run the response analysis and signal generation at different 
rates.

4.7 Summary
 A testing system that combines fast hardware and software with high-performance 
hydraulic components has been assembled for conducting real-time hybrid testing. 
Characterization tests conducted show that the system is capable of performing high-
speed computations and communication as well as delivering the high loading rates 
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required for fast hybrid testing. Two specimens (spring and MR damper) with rather 
different behavior are considered for later use in the real-time hybrid experiments.  

 Time delays/lags are critical parameters in real-time hybrid testing. Tests 
conducted to quantify these parameters show that the time lag associated with the 
dynamics of the actuator is the dominant factor, while computing time and delays related 
to communication, converters, and controller are, in general, relatively small.  
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CHAPTER 5 

MODEL-BASED TIME DELAY COMPENSATION 

 This chapter presents an approach for real-time hybrid testing that implements 
model-based time delay/lag compensation. The efficacy of the proposed strategy is 
verified by conducting substructure real-time hybrid testing of a steel frame under 
earthquake loads in which the physical substructure is a small-scale specimen 
representing one of the columns. The performance of the testing system and 
compensation technique is investigated by considering structures with different 
fundamental frequencies. The proposed time delay/lag compensation technique is also 
compared to the traditionally used polynomial extrapolation method. The proposed 
method is then used to conduct real-time hybrid tests of a structure with a supplementary 
energy dissipation device, a magnetorheological damper (MR damper), which is tested 
experimentally. 

5.1 Delay compensation 
 When conducting fast and real-time hybrid experiments, delay compensation is 
essential to ensure the stability of the experiment. Several techniques have been proposed 
to compensate for time delays and actuator lags, of which the response prediction method 
(Horiuchi et al., 1996) has been the most widely used. In this approach, instead of using 
the calculated displacement as the command signal to the actuator, the displacement of 
the actuator after the delay, Td, is predicted and used as the command signal to the 
actuator. Because of the time delay, the resulting displacement imposed by the actuator 
approximates the calculated one. This approach is illustrated in Figure  5.1, where x(ti+1)
is the calculated displacement, x̂ (ti+1 + Td) is the predicted (compensated) displacement, 
and xm(ti+1) is the actual displacement achieved by the actuator. 

Figure 5.1: Delay compensation using response prediction. 
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  The method used for response prediction by Horiuchi et al. (1996) was based on 
an n-th order polynomial extrapolation of the displacements at the present and previous 
time steps (Figure  5.2).  

Figure 5.2: Polynomial extrapolation (n =  3).  

The predicted command signal (at a time, Td, from the beginning of the current time step) 
is given by 

0

ˆ
n

i i
i

x a x   ( 5-1) 

where xi is the displacement corresponding to a time, i Td units ago, and ai are 
coefficients that depend on the order of the polynomial. The accuracy and stability of the 
method were investigated using a linear single-degree-of-freedom system. The prediction 
method was found to cause variations in both stiffness and damping. Furthermore, 
damping becomes negative and the simulation diverges when the nondimensional 
parameter, Td, (where  is the natural frequency of the system) is larger than a critical 
value that depends on the order of the polynomial used for the extrapolation. For multi-
degree-of-freedom systems, the critical value should be based on the highest natural 
frequency of the structure (Horiuchi et al., 1999). A third-order polynomial extrapolation 
was recommended because it requires little calculation time and gives a relatively large 
critical value, Td = 1.571. For the third-order polynomial extrapolation, the coefficients 
are: a0 = 4, a1 = -6, a2 = 4, and a3 = -1. The limitation imposed by the critical value for 
stability becomes more important when the delays/lags are large compared to the smallest 
period of the structure (e.g., for stiff structures or multi-degree-of-freedom systems that 
have higher modal frequencies). 

5.2 Model-based response prediction 
 The polynomial extrapolation method for response prediction uses only 
information from the displacements at a few previous time steps. For small prediction 
times, the response of a structure (which is nearly harmonic) can be well represented by 

t

x(t)
x0x1

x2

x3

x̂
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polynomials, but when longer prediction times are required, or for systems with larger 
natural frequencies (i.e., shorter natural periods), more precise prediction methods are 
necessary. A model-based response prediction method estimates the response using 
known information and physical characteristics of the system. Although complete 
characteristics of the system are not known in advance, there is some information that is 
known prior to testing or can be calculated at the beginning of the experiment. This 
information includes: the mass matrix, M, the damping matrix, C, the external excitation, 
F (e.g., ground acceleration gx for seismic loading), and the initial elastic stiffness of the 
structure, Ke. By incorporating known information about the system and the excitation, a 
more accurate prediction of the response can be achieved, allowing larger prediction 
horizons, stability improvements, and testing of structures with higher natural frequencies 
or more degrees-of-freedom. 

 The proposed model-based response predictor uses the information available at 
the beginning of each time step to predict the displacement response at the end of the 
prediction horizon (i.e., the time delay/lag). The prediction is performed using a model of 
the system with the uncompensated target displacement, xi+1, as the initial condition. The 
response of the predictor model is then computed for the displacements, ( )

1ˆ k
ix for k = 1, 

2,…, , where  is the ratio between the time delay and the time step (i.e.,  = Td/ t), as 
shown on Figure  5.3. (The time step size, t, is set so that the time delay is an integer 
multiple of t for simplicity). The predicted displacement at the end of the prediction 
horizon, ( )

1ˆix , is then sent as a command to the actuator, providing compensation for the 
time delay. 

Figure 5.3: Calculation of predicted displacements using model-based response prediction. 

 To predict the response of structural systems with a small number of degrees-of-
freedom, a complete model of the system is used to generate the predictions. By 
considering the solution of the equation of motion [e.g., Equation ( 3-5) when using the 
Central Difference Method], the only unknown parameter is the restoring force vector, R, 
while the mass matrix, damping matrix, and external force vector are known. An 
approximation of the restoring force vector can be obtained using the previous measured 
restoring force vector and a certain stiffness matrix, K, as given by

1 1i i i iR R K x x  ( 5-2) 

x(t)

t

Td

(1)
1ˆix

(2)
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1ˆix...
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 When the stiffness of the system does not change significantly during the 
experiment (e.g., linear and moderately nonlinear response), using the initial elastic 
stiffness of the system for the approximation (i.e., K = Ke) yields good estimates of the 
restoring force (a similar approximation is used in the Operator-Splitting method for 
numerical integration; Nakashima et al., 1990). When the response of the structure is 
limited to the elastic range, this approximation and the proposed model-based 
compensation method yields the exact prediction; theoretically the experiment should be 
stable for any value of the parameter Td.

 For cases when the stiffness of the system changes significantly during the 
experiment, an estimate of the tangent stiffness based on the last increment of the 
measured restoring force is used. A simple estimate of the tangent stiffness can be 
obtained using the Broyden formula (Broyden, 1965), which corresponds to a 
generalization of the one-dimensional secant approximation to the tangent stiffness. The 
tangent stiffness, Ki, is obtained by making the least change to Ki-1 that satisfies the 
equation, i i iK x r , where xi = xi – xi-1 and ri = Ri – Ri-1 are the displacement and 
force increments, respectively. The equation for the stiffness using the Broyden formula 
is

1
1

T
i i i i

i i T
i i

r K x x
K K

x x
 ( 5-3) 

 For systems with a large number of degrees-of-freedom, using a complete model 
of the system to conduct the response prediction is not efficient. Considering that the 
earthquake response of typical structures is dominated by a few lower modes, the mode 
superposition technique (based on the elastic mode shapes) is used to predict the response 
of larger systems.  

 The above formulation provides a simple and efficient method for model-based 
response prediction, which gives good predictions of the response even for systems with 
inelastic response. The next section describes the experiments conducted to validate the 
proposed approach.   

5.3 Verification experiments 

5.3.1 Structure with linear-elastic physical substructure 

 Real-time hybrid testing of a simple structural system under earthquake loads was 
conducted to verify the efficacy of the testing system and compensation strategy. The test 
structure consisted of a single-story, one-bay steel frame assumed to have a rigid floor 
beam (i.e., shear frame), as shown schematically in Figure  5.4.
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Figure 5.4: Structural model and substructures for hybrid experiment. 

 The structure was divided into two substructures: The left column is tested 
experimentally (physical substructure), while the right column is modeled numerically 
(numerical substructure). The columns have stiffnesses of 20.6 Kip/in (3.61 KN/mm) and 
38.0 Kip/in (6.65 KN/mm) for the physical and numerical substructures, respectively. 
The force-displacement relationship corresponding to the numerical substructure is 
modeled using a bilinear hysteretic model with a yield displacement of 0.04 in (1 mm) 
and a ratio of post- to pre-yield stiffness of 0.02. Because the purpose of this experiment 
is to verify the testing system and methodology, instead of using an actual steel cantilever 
column as the physical substructure, an alternative small-scale specimen was used. The 
specimen used was the steel compression spring described previously (Section  4.4.1 and 
Figure  4.9). The spring has a stiffness of 234 lb/in (41.0 N/mm); therefore, a force scaling 
factor of 88.0 is used (to match the stiffness of the full-scale column). The linear elastic 
behavior of the spring specimen allows repeatable test results that can be compared 
against the theoretical expected response, providing an assessment of the effectiveness of 
the proposed approach. 

 The dynamics of the actuator and the resulting time-lag of the actuator are critical 
parameters in real-time hybrid testing. The actuator frequency response function (with the 
spring specimen attached) from the commanded displacement to the measured 
displacement was experimentally determined and presented in the previous chapter. The 
bandwidth of the system (assuming a cutoff frequency of -3dB) was determined to be 
28.7 Hz. Within this bandwidth, the phase of the system is nearly linear. From this slope, 
the time lag of the actuator is approximated as a time delay of 12.4 msec. The 
approximation of the transfer function as a pure time delay is shown in Figure  5.5.  As 
can be observed, the approximation is accurate in the low-frequency range (up to 
approximately 10 to 13 Hz for the magnitude, and 28 Hz for the phase).   
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Figure 5.5: Transfer function from command displacement to measured displacement. 

 Several real-time hybrid tests were conducted by changing the fundamental 
frequency of the test structure. During each experiment, the mass of the structure was 
adjusted accordingly to obtain the desired natural frequency. Modal damping was 
assumed to be 2% of critical damping. The structure was subjected to the artificial 
earthquake record shown in Figure  5.6 (which was used for the MOST experiment; 
Spencer et al., 2004). The Central Difference Method (CDM) was used for integration of 
the equation of motion with a time step, t = 0.0062 sec, which corresponds to half of the 
time delay, (i.e., Td = 2 t). This time step was adequate to accurately integrate the 
equation of motion for all of the natural frequencies considered in the experiments (0.5 to 
15 Hz). The stability criterion for the CDM was easily satisfied with this time step. 
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Figure 5.6: Input ground acceleration. 

 For the initial set of experiments, the structure was assumed to be linear–elastic; 
therefore the ratio of post- to pre-yield stiffness in the numerical substructure was set to 
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1.0. Tests corresponding to natural frequencies of the test structure of 0.5, 1, 5, 6, 7, 8, 
10, 13, and 15 Hz were conducted. The amplitude of the ground acceleration was scaled 
so that the maximum displacement (calculated using an analytical model) was about 0.2 
in (5.08 mm). For each natural frequency, tests were conducted using (a) no delay 
compensation, (b) proposed model-based compensation, and (c) third-order polynomial 
extrapolation. To evaluate the accuracy of the tests results, the analytical response was 
calculated using a numerical model of the test structure with the experimentally measured 
stiffness of the test specimen. Figure  5.7 shows the experimental results for the structure 
with a 1.0 Hz natural frequency. The duration of the earthquake record used is 15 sec; 
therefore, the additional 5 sec shown in the figure correspond to zeros padded at the end 
of the input record to observe the effect of the compensation methods on the free 
vibration response of the system. As can be seen, excellent agreement is obtained 
between the test results and the analytical solution for both compensation methods 
(polynomial extrapolation and model-based). The test without delay compensation results 
in a larger response than the exact analytical solution due to the effect of the negative 
damping introduced by the uncompensated phase lag from the actuator.  

0 5 10 15 20

-0.2

-0.1

0

0.1

0.2

0.3

Time (sec)

x 
(in

)

Analytical
No Delay Comp.
Pol. Extrapolation
Model-based

Figure 5.7: Test results for 1 Hz natural frequency. 

 The effect of the time delays on the real-time hybrid experiment and the 
performance of the delay compensation approach can be further analyzed using x-y plots 
of the response. The parameters considered are the desired displacement (calculated by 
solving the equation of motion), the commanded displacement sent to the controller 
(which includes the delay/lag compensation), the measured displacement (displacement 
actually applied by the actuator), and measured restoring force. Figure  5.8 (a) shows the 
measured force vs. desired displacement (i.e., response of the specimen, as seen by the 
numerical integration algorithm) for the case when no delay compensation is used. As 
observed, a counter-clockwise loop is obtained because of the uncompensated time 
delay/lag (which adds energy into the experiment), instead of the straight line 
corresponding to the linear response of the spring specimen. The results for the case 
when model-based delay compensation is used are presented in Figure  5.9. Figure  5.9 (a) 
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shows the measured force vs. the desired displacement; as observed, because of the time 
delay compensation, the response is linear and accurate. Figure  5.9 (b) shows the effect 
of the time delay (a counter-clockwise loop in the force vs. commanded displacement 
response), which is cancelled by the delay compensation. Figure  5.9 (c) shows the 
performance of the delay compensation method by comparing the desired displacement 
with the measured displacement. The resulting response is effectively a straight line with 
a slope of one, which demonstrates the accuracy and efficiency of the delay 
compensation approach. 
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Figure 5.8: Test results for 1 Hz natural frequency (no delay compensation): (a) Force vs. 
desired displacement, (b) Measured displacement vs. desired displacement.
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Figure 5.9: Test results for 1 Hz natural frequency (with model-based delay compensation): 
(a) Force vs. desired displacement, (b) Force vs. command displacement, (c) Measured 

displacement vs. desired displacement

 To measure the error between the analytical and experimental results and allow 
comparison between the different compensation strategies, the RMS of the error 
normalized by the RMS of the analytical solution is used. Figure  5.10 shows the results 
for the tests conducted considering different natural frequencies of the test structure and 
using the different compensation strategies. For each delay compensation method, the 
highest natural frequency plotted corresponds to the highest natural frequency of the test 
structure that was tested prior to the experiment becoming unstable. 

(a) (c) (b)

(a) (b) 
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Figure 5.10: Test results using different delay compensation methods, linear case. 

 As observed, when no delay/lag compensation is used, the experiment becomes 
unstable even for relatively low frequencies of the structure. The theoretical stability limit 
corresponds to the frequency where the negative damping introduced by the actuator lag 
becomes equal to the inherent structural damping (1.46 Hz for the test structure 
considered). Using the proposed model-based compensation method, experiments with 
natural frequencies as high as 13 Hz were successfully conducted. The maximum 
frequency that was effectively tested using the polynomial extrapolation was 8 Hz. Figure 
 5.10 (a) shows that the error is small and, therefore, the tests are accurate for frequencies 
of about 5-6 Hz for the polynomial extrapolation and up to 10 Hz for the model-based 
delay compensation method. Figure  5.11 shows the results for the test corresponding to a 
natural frequency of 10 Hz using model-based delay compensation; results are seen to 
match well with the analytical solution.  
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Figure 5.11: Test results for 10 Hz natural frequency using model-based compensation: (a) 
Displacement response, (b) Displacement response (close up view), (c) Power spectrum of 

displacement. 

 The maximum natural frequencies for which the experiment was stable using both 
delay compensation methods are smaller than theoretically predicted. Possible causes are: 
the effect of experimental errors present in the hybrid experiment, which are more severe 
at higher frequencies; differences in the estimated actuator time delay and the actual 
phase lag; the fact that the time lag is close, but not exactly, a constant time delay; and 
the effect of the roll-off in the magnitude of the actuator transfer function (e.g., at a 
frequency of 15 Hz, the magnitude is 0.94, causing an undershoot error, which adds 
energy to the system and results in a negative damping that can led to system instability, 
Mahin et al., 1989).

 To evaluate the performance of the delay compensation methods for nonlinear 
structures, tests were conducted considering a structure with inelastic response 
(numerical substructure with a bilinear force-displacement relationship). Tests 
corresponding to natural frequencies of the structure of 0.5, 5, 10, 13, and 15 Hz were 
performed using both delay compensation methods. For the model-based compensation 
method, the initial elastic stiffness was used for the approximation of the restoring force 
in Equation ( 5-2). The ratio between the maximum and yield displacement (i.e., 
displacement ductility) was about 4.0. The error norms for the test results are shown on 
Figure  5.13.  As can be seen, the trends are similar to the linear case; however, the 

(a)

(b) (c)
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maximum frequencies that were achieved are slightly larger (10 Hz for the polynomial 
extrapolation and 15 Hz for model-based compensation). This greater stability is due to 
the damping introduced by the energy dissipated during inelastic deformation. 
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Figure 5.12: Test results using different delay compensation methods, nonlinear case.

5.3.2 Structure with MR damper 

 The use of magnetorheological (MR) dampers as supplemental damping devices 
for reducing the response of civil engineering structures under severe earthquakes and 
winds is becoming increasingly accepted (Spencer & Nagarajaiah, 2003). MR dampers 
can be used as semiactive control devices, offering the reliability of passive devices, yet 
maintaining the versatility and adaptability of fully active systems. Some of the attractive 
features of MR dampers include: very low power requirements (allowing operation under 
battery power), the ability to provide a readily controllable damping force, large 
achievable force capacity, and low sensitivity to temperature changes (Spencer et al., 
1997). The second application considered in this study consists of a building structure 
with an MR damper used as a supplementary energy dissipation device. The specimen 
used is the small-scale RD-1005 MR fluid damper described previously (Section  4.4.2  
and Figure  4.11).  

Characterization of MR Damper 

 A model that represents the behavior of the MR damper is necessary to calculate 
the expected response of the test structure and, therefore, allow comparison with the 
results from the real-time hybrid experiment. A series of simple tests were conducted to 
measure the response of the damper and provide the necessary data to characterize/model 
its behavior. The MR damper (with 0 V input voltage) was subjected to sinusoidal 
displacement excitations of 0.2 in (5.08 mm) and 0.4 in (10.16 mm) amplitude with 
frequencies of 0.637, 1.273, and 2 Hz. Figure  5.13 shows the response of the MR damper 
for the tests corresponding to 0.4 in (10.16 mm) amplitude. As observed the response of 
the damper is rate-dependent and nonlinear. 



65

−0.5 0 0.5
−40

−20

0

20

40

Displacement (in)

F
or

ce
 (

lb
)

−8 −4 0 4 8
−40

−20

0

20

40

Velocity (in/sec)

F
or

ce
 (

lb
)

0.637 Hz
1.273 Hz
2 Hz

Figure 5.13: Response of MR damper for test with 0.4 in amplitude sinusoidal displacement. 

 A simple model that can be used to represent the behavior of MR dampers (and 
ER dampers) is based on the Bingham viscoplastic model. The model can be idealized 
using mechanical elements, e.g., a viscous damper and a Coulomb friction element placed 
in parallel (Stanway et al., 1987; Spencer et al., 1997). For the data obtained from the 
tests conducted in this study, a better fit can be obtained by adding a stiffness term to the 
model. The model is represented schematically in Figure  5.14; the force produced by the 
damper, FD, is given by 

 sgn( )D c oF f x cx kx f  ( 5-4) 

where fc is the frictional force, c is the damping coefficient, k is the stiffness coefficient, 
and fo is the offset in force. The parameters for the model were determined to fit the entire 
set of data using nonlinear least-squares parameter estimation, which yielded the 
following results: fc = 8.94 lb (39.8 N), c = 4.57 lb-s/in (0.801 N-sec/mm), fo = 0.336 lb 
(1.49 N), and k = 12.2 lb/in (2.14 N/mm). Figure  5.15 shows a comparison between the 
response of the damper measured experimentally and that predicted by the model for the 
test corresponding to a frequency of 1.273 Hz and an amplitude of 0.4 in (10.16 mm) 
(similar results were obtained for the other tests using these parameters). As observed, 
except for the response at velocities near zero, the behavior of the damper is reasonably 
well represented by the model.  

x

FD - fo

c

k

Figure 5.14: Model for MR damper. 
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Figure 5.15: Comparison between experimentally measured damper force and predicted by 
model for 1.273 Hz frequency test with 0.4 in (10.16 mm) amplitude. 

Real-time hybrid experiment 

 Because MR dampers, as most semiactive control devices, are rate-dependent 
(and highly nonlinear), real-time hybrid testing is required to accurately test structural 
systems that incorporate such devices. The test structure for this example is a one-story, 
one-bay, steel shear frame with an installed MR damper, as shown schematically in 
Figure  5.16. The structure is identical to the one used in the previous example, with the 
exception of the added MR damper. To conduct the real-time hybrid experiment, the 
structure was divided into two substructures: the MR damper was tested experimentally 
(physical substructure), while the rest of the structure was tested numerically (numerical 
substructure), see Figure  5.16. 
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Figure 5.16: Structure with MR damper: structural model and substructures for real-time 
hybrid test. 

The stiffness of the test structure, structural damping, earthquake record, and 
numerical integration method were the same as in the previous example. Delay 
compensation was performed using the proposed model-based approach. The amplitude 
of the ground acceleration was scaled so that the maximum displacement was about 5.08 
mm (0.2 in). Because the specimen is small-scale, a force scaling factor of 100 was used 
to represent the behavior of a full-scale damper (Yang et al., 2002). Input voltage for the 
damper was set to 0 V throughout the experiment; therefore, the MR damper was used as 
a passive energy dissipation device.

 Because the force generated by the MR damper is rate dependent, it is important 
to impose accurately not only the displacement but also the velocity. Preliminary 
experiments conducted on the MR damper using sinusoidal input displacements showed 
that a sampling time of 0.001 sec allows both the displacement and velocity to be 
accurately imposed (see Section  4.6 ). Therefore, a time step of 0.001 sec was selected 
for numerical integration in this real-time hybrid experiment. 

 Experiments were conducted for natural frequencies of the test structure of 0.5, 
1.0, and 2.0 Hz. The behavior of the numerical substructure (i.e., steel frame) was 
assumed to remain in the linear range and, therefore, the ratio of the post- to pre-yield 
stiffness in the numerical substructure was set to 1.0. Figure 5.17 shows a comparison 
between the results from the real-time hybrid experiments as well as the analytically 
predicted responses for the three cases considered. As observed, very good agreement is 
achieved between the experimental results and the analytical solution. Small 
discrepancies can be attributed to experimental errors and differences between the actual 
damper response and the model used to characterize its behavior. Figure  5.17 also shows 
the analytical response of the structure without the damper; as observed here, the damper 
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significantly reduces the response of the structure (the maximum displacement for the 
case with the damper is, in general, about half of the corresponding one without the 
damper). 
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Figure 5.17: Results from real-time hybrid experiment: (a) 0.5 Hz structure,  
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5.4 Summary
 An approach for real-time hybrid testing has been presented in which time 
delay/lag compensation is implemented using model-based response prediction. Two sets 
of verification experiments were conducted. Experimental results from the first example 
demonstrate that the proposed approach performs well for structures exhibiting both 
elastic and inelastic response. Model-based compensation allowed testing systems with 
natural frequencies as high as 13 Hz for linear response and 15 Hz for inelastic response, 
which corresponds to a relatively large bandwidth for hybrid testing. The model-based 
compensation method allows accurately testing of systems with natural frequencies about 
twice as large as the traditionally-used polynomial extrapolation method. However, the 
computationally cost is somewhat larger for the model-based approach. Experimental 
results from the second example (structure with the MR damper) verify that the approach 
and testing system presented are capable of accurately testing rate-dependent devices.  
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CHAPTER 6 

MODELING OF ACTUATOR DYNAMICS 

 Numerical simulation can be a useful technique to understand the behavior of 
testing systems and their influence on hybrid experiments. This chapter analyses the 
effects of the dynamics of the testing system (e.g., actuator dynamics) on experiments 
conducted using the real-time hybrid testing technique. Initially, a model of the entire 
dynamic testing system (including servo-hydraulic actuator, controller, and test 
specimen) is presented. The model of the testing system is then used to develop a 
complete numerical representation of the real-time hybrid experiment. Figure  6.1 shows a 
schematic block diagram of the real-time hybrid experiment with the components of the 
testing system. The resulting model allows “virtual” experiments to be conducted in a 
similar way as the actual experiment, providing an efficient and safe method to 
investigate the performance and stability of the system, compensation strategies, and the 
influence of the different system parameters. 

Figure 6.1: Schematic block diagram of the components of a hybrid experiment.  

6.1 Model of dynamic testing system 
 This section presents a model of the entire dynamic testing system. The model 
includes mathematical representations of the different components of the testing system, 
including the servo-hydraulic actuator, the controller, and the test specimen. Initially, the 
equations for modeling of the different components of the system are introduced. 
Because some of the equations are nonlinear, a linear version of the model is obtained by 
linearizing the equations with respect to an operating point. The resulting linear model 
allows use of techniques for linear systems such as Laplace transforms and frequency 
response methods to understand the system behavior.  
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6.1.1 Test specimen 

 Typically, real-time hybrid testing is conducted using the substructuring 
technique, with the physical specimen corresponding to a critical component of the 
structural system being analyzed. In this section, the physical specimen is modeled as a 
linear elastic single-degree-of-freedom system, with mass (m), damping (c), and stiffness 
(k). The specimen, therefore, has its own dynamic characteristics, which can be described 
using the following equation of motion:  

Lmx cx kx f   ( 6-1) 

where fL is the force applied to the specimen by the actuator. The specimen transfer 
function, Gxf, is obtained by taking the Laplace transform of Equation (6-1), and is given 
by the following equation:

2

1( )xfG s
ms cs k

  ( 6-2) 

where s is the Laplace variable. 

6.1.2 Servo hydraulic actuator 

Testing systems intended for the assessment of structural components typically 
use hydraulic actuators to impose the loads (or displacements) on the test specimens.  
Hydraulic actuators can generate large forces and apply them within a relatively large 
frequency bandwidth.

 The servo hydraulic actuator is composed of two main components: a servovalve 
and a hydraulic actuator. The servovalve responds to an electrical input signal and 
controls the movement of oil to and from the actuator chambers. The oil flow produces a 
pressure drop between the two chambers which generates a force that causes the actuator 
piston to move and apply a force to the test specimen. The servo-hydraulic actuator is one 
of the key components in a hybrid simulation; therefore, to understand its behavior is 
critical. This section provides a detailed description of the components and operation of 
the servovalve and hydraulic actuator, as well as the mathematical models that describe 
their behavior.

Servovalve 

The servovalve connects the electronic and mechanical parts of the system. While 
there are many different types of servovalves, the following description (MOOG 1965, 
technical publication) corresponds to a two-stage servovalve similar to the one used in 
the testing system described in this study.
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Figure 6.2: Detail of servovalve/actuator system. 

Figure 6.3: System responding to an input.
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Figure  6.2 shows the main components of a two-stage electrohydraulic servovalve 
and hydraulic actuator, while Figure  6.3 shows the system responding to an input signal. 
The servovalve receives an electrical command signal that is applied to the torque motor 
coils and creates a torque on the armature, causing a deflection of the armature/flapper 
assembly. The flapper closes the right nozzle and diverts flow to the other end of spool, 
producing a displacement of the spool to the right. Movement of the spool opens flow 
paths between the pressure and return (P and R ports), and the two control ports (A and 
B), allowing oil to flow to and from the actuator chambers. The spool motion also applies 
a force to the cantilever spring, creating a restoring torque on the armature/flapper 
assembly. Once the restoring torque becomes equal to the torque from the magnetic 
forces, the armature/flapper assembly moves back to the neutral position, and the spool 
remains in this equilibrium position until a new command signal is received. In addition 
to this mechanical feedback, external feedback is necessary to control the actuator 
through the servovalve. 

Servovalve dynamics 
Servovalves are relatively complex devices that exhibit high-order, nonlinear 

responses (Poley 2005). Each of the components of the servovalve has some dynamics; 
for example, torque motor dynamics (from input voltage or current to armature/flapper 
rotation) and spool valve dynamics (from armature/flapper rotation to spool position). 
Merritt (1967) presented detailed linear models of the dynamics of each of these 
components, resulting in a quite complex eighth-order servovalve transfer function. The 
difficulty with explicit transfer functions for servovalves is that many design factors, as 
well as operational and environmental variables, produce significant differences in the 
actual dynamic response under operating conditions (MOOG, 1965). Additionally, not all 
factors contribute significantly to the servovalve response. Because information about the 
required parameters is rarely available, simplified models are typically used. In general, 
the dynamic response of a servovalve is much faster than the other elements of the testing 
system; therefore, these simplified models of servovalve dynamics are generally 
satisfactory. An alternative way of modeling the servovalve dynamics is to use an 
assumed model with certain dynamics. Different models have been used. For example, a 
pure time delay (Conte & Trombetti, 2000), a second order model (Williams et al., 2001; 
Zhao et al., 2003; Jung & Shing, 2006), or when the dynamics of the servovalve are much 
faster than the other elements, a simple lag can generally yield satisfactory results 
(Merritt, 1967). Typically, a first-order transfer function usually produces good 
approximations throughout the frequency range, to about 50 Hz (MOOG, 1965). For 
servovalve responses to frequencies up to the 90o phase lag point, a second-order transfer 
function is better suited (MOOG, 1965). For low frequencies, the servovalve dynamics 
have also been approximated by a constant (Merritt, 1967; Dyke et al., 1995; Zhao et al., 
2003), as given by: 

v v cx k i   ( 6-3) 

or in the Laplace domain as: 



74

( )( )
( )

v
v v

c

x sG s k
i s

 ( 6-4) 

where xv is the valve (spool) displacement from the neutral position, ic is the electrical 
command signal to the servovalve, and kv is the valve gain. For a first-order model, the 
servovalve transfer function is given by:

( )
1

v
v

v

kG s
s

 ( 6-5) 

where v is the servovalve time constant.  

Figure  6.4 shows the typical frequency response (obtained from the manufacturer 
specifications) of a Schenck-Pegasus 132A two-stage servovalve, which is the servovalve 
used in this study. As observed, for frequencies less than approximately 10 Hz, the 
transfer function is close to a constant; for frequencies up to about 50 Hz, the transfer 
function can be well represented using a first-order system, and for frequencies larger 
than approximately 50 Hz, a higher-order model is needed. For the frequency range 
typically required for hybrid experiments (i.e., less than 50 Hz), the simple models given 
by the above equations (constant and first-order models) are considered adequate to 
represent the servovalve dynamics.  

Figure 6.4: Servovalve frequency response (illustration courtesy of Schenck Pegasus).

Flow equation of servovalve 
The flow characteristics of the servovalve (i.e., the relationship between spool 

displacement, controlled flow, and pressure drop across the load) are given by the 
following general flow equation (Merritt, 1967): 
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where pL is the pressure drop across the load (i.e., difference in pressure between the two 
actuator chambers), QL is the controlled flow through the load, xv is the valve (spool) 
displacement from the neutral position, Ps is the system supply pressure, w is the opening 
or area gradient of the valve orifices (rate of change of orifice area with spool 
displacement), Cd is the coefficient of discharge of the valve orifices, and  is the fluid 
density. This equation is a complete description of the steady-state performance of the 
valve, and its plot is known as the pressure-flow curves of the valve (Merritt, 1967). The 
equation assumes that the return pressure is negligible, as it is typically much smaller 
than the other pressure values in the equation. The nonlinear flow equation can be 
linearized with respect to an operating point producing the following linearized flow 
equation:

' '
L q v c LQ K x K p  ( 6-7) 

where K’q is the valve flow gain and K’c is the valve flow-pressure gain. The operating 
point that is typically used to evaluate these valve coefficients is the origin (i.e., QL = pL = 
xv = 0), because the system typically operates near this region (Merritt, 1967); however, 
this point may vary depending on each application. 

Hydraulic actuator 

A hydraulic actuator converts the hydraulic energy into mechanical force or 
motion. The actuator used in the testing system described herein, is a double-ended linear 
actuator. In double-ended actuators, the pressure is applied to both sides of the piston (see 
Figure  6.2); therefore, these types of actuators are capable of controlling movement in 
both directions with equal force and speed (Poley, 2005). The actuator consists of a rod 
and central piston, and incorporates low-friction seals fitted to the piston at each of the 
cylinder end caps to minimize leakage. Control ports at the ends of the actuator allow 
hydraulic fluid to flow in and out of the actuator chambers. The position of the piston is 
determined by the hydraulic fluid pressures in the chambers on either side of the piston 
and may be adjusted by forcing fluid into one control port (e.g., port A), while allowing it 
to escape from the other (e.g., port B). This movement of fluid causes an increase in fluid 
pressure in one chamber (e.g., A) and a decrease in pressure in the other chamber (e.g., 
B). The net pressure difference exerts a force on the active area of the piston, causing the 
piston to move (e.g., movement to the right, as shown in Figure  6.3). The position of the 
piston is, therefore, adjusted by controlling the differential oil flow between the two 
actuator control ports (Poley, 2005).

The fundamental equations that govern the behavior of a hydraulic actuator are 
the continuity equation and the equilibrium or force balance. The continuity equation is 
given by the following relationship (Merritt, 1967): 
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which can be expressed in the Laplace domain as: 
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where QL is the controlled flow through the load, pL is the pressure drop across the load, x
is the displacement of the piston, A is the area of the piston, Cl is the total leakage 
coefficient of the piston, Vt is the total volume of fluid under compression in both 
actuator chambers, and e is the effective bulk modulus of the system (including oil, 
entrapped air, and mechanical compliance of the champers). The load flow, QL, has three 
components: the flow to displace the actuator (proportional to the piston position 
derivative), flow consumed by leakage (proportional to the pressure), and flow stored due 
to compressibility (proportional to the pressure derivative), also known as compressibility 
flow (Merritt, 1967). The force generated by the actuator piston, fp, is given by the 
following equation: 

p Lf A p . ( 6-10) 

The equilibrium of forces on the piston or force balance equation is obtained using 
Newton’s second law, 

p t t sf m x c x kx F , ( 6-11) 

where mt is the total mass of piston and load referred to piston (e.g., mass of specimen 
and attachments used to connect specimen to piston), ct is the viscous damping 
coefficient for the piston and load, k is the stiffness of the load, and Fs is the force on the 
piston due to seal friction.

The actuator used in this study is equipped with low-friction Teflon seals; 
therefore, the friction force is assumed negligible. The transfer function of the specimen 
can be modified to include the additional mass and damping, resulting in the following 
expression that corresponds to the transfer function of the experimental component: 

'
2

( ) 1( )
( )xf

p t t

x sG s
f s m s c s k

. ( 6-12) 

 The trapped volume of oil in both actuator chambers produces a hydraulic spring 
with stiffness: 

24 e
h

t

AK
V

.  ( 6-13) 
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The interaction of this oil spring with the mass, mt produces a hydraulic natural 
frequency, h, which is given by the following equation: 

24 e
h

t t

A
mV

. ( 6-14) 

This hydraulic natural frequency is an important parameter because it determines the 
overall speed of response of the actuator (Merritt, 1967). 

6.1.3 Servo controller 

Hydraulic actuators are inherently unstable, therefore, some type of control (e.g., 
position, velocity, and/or force feedback) is needed to stabilize the system (Dyke et al., 
1995). In pseudodynamic and hybrid testing, actuators are typically controlled using 
displacement feedback, where the commanded displacement, u, is compared against the 
measured displacement, x, obtained using a displacement transducer.  The error signal, e,
is then defined as the difference between the command and measured displacements: 

 e = u – x.  ( 6-15) 

One of the most common and well-known closed-loop control algorithms is the 
Proportional-Integral-Derivative (PID) where the control law is given by the following 
equation:

c prop int der
dei K e K edt K
dt

 ( 6-16) 

or expressed in the Laplace domain as: 

( ) ( )int
c prop der

ki s K k s e s
s

 ( 6-17) 

where ic is the electrical command signal to the servovalve, and Kprop, Kint, and Kder are 
the proportional, integral, and derivative gains, respectively.

Proportional control reduces the error response to reference inputs or 
disturbances; however, it allows a nonzero, steady-state error to constant inputs. As the 
gain is increased, the steady-state error becomes smaller, but the overshoot of the system 
is increased.  Furthermore, large values of the proportional gain almost always lead to 
instability; therefore, a limit is placed on the value of this gain in order to achieve a well-
damped stable response (Franklin et al., 2002).  Integral control improves the steady-
state error properties. The integral gain, Kint, is used to reduce or eliminate steady-state 
errors without adding extremely high-proportional gains. However, these improvements 
are achieved typically at the cost of deterioration in the dynamic response (increased 
oscillatory behavior and reduced system stability). Integral control is typically used only 
in slow or quasi-static tests (e.g., conventional pseudodynamic testing). In practice, the 
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gain is set to zero for dynamic applications (e.g., real-time hybrid testing). Derivative 
control is introduced to improve the system’s dynamic response. The derivative term 
usually increases the damping in the system, resulting in a reduced oscillatory behavior 
and improved stability (Franklin et al., 2002).  

Most applications using position loops can be handled with a straight proportional 
controller. Therefore, only the proportional part of the controller is considered herein. 
The resulting control law is given by: 

( )c propi K u x  ( 6-18) 

6.1.4 Combined model of testing system 

The model of the servo-hydraulic testing system can be obtained by combining 
the mathematical models of the controller, servovalve (dynamic and flow characteristics), 
hydraulic actuator (continuity and force balance equations), and test specimen. Figure  6.5 
shows a block diagram of the combined system with the linearized models for each 
component.  

Figure 6.5: Block diagram of servo controlled hydraulic system. 

Note the intrinsic interaction between the dynamics of the actuator and the experimental 
component (or test specimen), which is proportional to the velocity response of the 
actuator piston. Through this “natural” velocity feedback, the dynamics of the 
experimental component directly affect the response of the actuator (Dyke et al., 1995). 

In real-time hybrid testing, the dynamic response of the testing system can be 
characterized by the transfer function, Gxu, from the command displacement (input) to the 
measured displacement (output). By combining the linear models of the different 
components of the testing system and using the expression for constant servovalve 
dynamics, the following expression is obtained after some algebraic manipulation: 
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where Kq = K’q ·Kv is the servovalve gain, and Kc = K’c + Cl  is the total flow pressure 
coefficient. The resulting transfer function has three poles and no zeros. When a first-
order model for the servovalve dynamics is used, the following expression is obtained 
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   ( 6-20) 

which has four poles and no zeros. 

In cases where commanded forces are prescribed instead of displacements, for 
example Effective Force Testing (Dimig et al., 1999; Shield et al., 2001), the dynamics of 
the transfer function Gfu become critically important. This transfer function is given by 
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 Notice that the zeros of this transfer function correspond to the poles of the 
experimental component (or attached structure to the actuator). Therefore, actuators 
attached to lightly damped structures have a greatly limited ability to apply forces at the 
natural frequencies of the structure; and if the structure is undamped, the actuator will not 
be able to apply a force at its natural frequency (Dyke et al., 1995). Therefore, force 
control in dynamic applications is effective only when very accurate natural velocity 
feedback compensation is incorporated, which has proven to be challenging due to 
nonlinearities and uncertainties in the servo-system.  

6.2 Experimental parameters 
 The previous section presented the equations for modeling a servo-hydraulic 
testing system. In this section, numerical models of the testing system and its parameters 
are estimated using experimental measurements of the dynamic behavior of the system. 

 In theory, the values of the parameters required for modeling of the testing system 
can be determined using data from the manufacturer, and experimental tests conducted to 
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determine individually the remaining parameters. See, for example, Zhao et al. (2006) 
and Williams et al. (2001). Although all of the information about the individual 
parameters may be available, models determined based on this data usually do not 
correlate well with the experimental response. The response of the system is highly 
dependent on the actual conditions during testing.  For example, the effective oil bulk 
modulus can exhibit significant variations on its value, and the response of the system is, 
in general, quite sensitive to this parameter (Williams et al., 2001). Additionally, servo-
controlled hydraulic actuators are very complex and nonlinear devices, therefore, the 
response, as approximated by a linear model, is valid only on a range close to the 
linearization conditions. Therefore, in order for the response from the models to match 
the experimental behavior, estimation based on the overall system response is, in general, 
required for some of the parameters.  

 In this study, two approaches are used for determining the numerical values of the 
parameters: (a) a frequency domain identification technique that allows obtaining 
accurate representations of the measured actuator transfer functions for different test 
specimens and testing conditions; and (b) a time domain identification that provides 
individual values of each parameter and, therefore, allows investigating their effect on the 
overall system response.

6.2.1 Frequency domain identification 

 Assuming linear behavior of the dynamics of the actuator and testing system, the 
transfer function, Gxu, from the command actuator displacement to the measured 
displacement can be determined. The approach used in this section to estimate the 
parameters for the actuator and testing system is as follows: First, the characteristics of 
the transfer function (i.e., number of zeros and poles) are determined based on the 
theoretical models developed in previous sections. Second, using an experimentally 
measured frequency response data, rational polynomial transfer function models of the 
system dynamics are identified. For this estimation, the software MFDID (Multiple-
Input-Multiple-Output Structural System Frequency Domain Identification) is used (Kim 
et al., 2005).

 The mathematical model of the testing system presented previously demonstrated 
that the dynamics of the testing system are dependent on the test specimen attached to the 
actuator (i.e., actuator-specimen interaction). The actuator transfer function for the case 
of the spring specimen was presented in Chapter 4. Using the same procedure 
(bandlimited white-noise excitation), the actuator transfer function was determined with 
the MR damper attached to the actuator. Figure  6.6 shows the resulting actuator transfer 
function for two extreme conditions of the MR damper, as well as for the spring 
specimen case. The actuator transfer function when the MR damper is OFF (i.e., 0V input 
voltage) is very similar to the transfer function with the spring specimen. The other 
extreme case, MR damper ON, corresponds to when a constant maximum input voltage is 
supplied to the MR damper (i.e., 5V input). For this case, the actuator transfer function is 
different than for the spring and MR damper OFF cases (and also not as smooth, due to 
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nonlinearities in the system introduced by the MR damper). Therefore, separate models 
are required for each case.  
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Figure 6.6: Actuator transfer function for spring and MR damper specimens.  

 For a linear elastic single-degree-of-freedom test specimen, the actuator transfer 
function has a third-order denominator (i.e., three poles) and a zero-order numerator (i.e., 
no zeros), when the expression for constant servovalve dynamics is used (see Equation 
 6-19). When the first-order model of servovalve dynamics is used, the actuator transfer 
function presents four poles and no zeros (see Equation  6-20). When a second-order 
model for the servovalve dynamics is used, the resulting actuator transfer function 
presents five poles and no zeros. Using the measured frequency response function of the 
actuator with the spring specimen, the software MFDID was used to estimate the poles 
(and, therefore, the polynomial coefficients) for the third-, fourth-, and fifth-order 
models. The resulting models are given by the following transfer functions, respectively:  

3 2
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s s s e

  ( 6-22) 
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 Figure  6.7 shows the location of the poles of the models in the s-plane. Lines of 
constant damping ratio and natural frequency (i.e., s-grid) are also shown in the plot. As 
observed from the plot, even though an independent fit was used for each model, the 
dominant complex poles from the three models are located relatively closely.  
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Figure 6.7: Pole location for different models of actuator dynamics. 

 Figure  6.8, 6.9, and 6.10 compare the frequency response functions of the models 
with the experimentally measured data. As can be observed, the three-pole model 
provides a good fit up to about 25 Hz. After this frequency, the magnitude and the time 
lag start to deviate from the measured data. The model with four poles provides a good fit 
for magnitude and phase within the 50 Hz frequency range, however, the time lag from 
the model deviates from the measured data, especially in the low frequency range, from 0 
to about 20 Hz. The five-pole model provides an excellent match in terms of magnitude, 
phase, and time lag throughout the measured frequency range. Furthermore, comparison 
of this model with measured data in the frequency range 0 to 100 Hz, shows that this 
model provides a very good fit up to about 70 Hz.
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Figure 6.8: Three-pole model. 
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Figure 6.9: Four-pole model. 
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Figure 6.10: Five-pole model. 

Actuator transfer function for system with MR damper 

 The actuator transfer function when the MR damper is OFF (i.e., 0V input 
voltage) was very similar to the transfer function with the spring specimen; therefore, the 
models developed for that specimen are also used for the MR damper OFF case. 
However, for the other extreme case (MR damper ON), the actuator transfer function was 
different than for the spring and MR damper OFF cases. Using a similar procedure as for 
the spring specimen, models of different orders were obtained for this damper condition. 
The fourth-order model was found to give a good representation of the actuator dynamics 
throughout the measured frequency range. The transfer function of this model is 

4 3 2

1.478 9( )
430 1.780 5 2.846 7 1.478 9xu

eG s
s s e s e s e

.  ( 6-25) 

The two sets of complex poles of the model are located at -108±26.2i (natural frequency 
17.7 Hz and damping 0.972) and at -107±328i (natural frequency 54.9 Hz and damping 
0.31), respectively. Figure  6.11 shows a comparison of the frequency response of the 
model with the experimentally measured data. As can be seen, the four-pole model 
provides a very good fit of the actuator transfer function. 
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Figure 6.11: Actuator transfer function with MR damper ON. 

 Using the software MFDID, rational polynomial transfer function models of the 
actuator transfer function have been identified for the spring and MR damper cases. 
Comparison with the experimentally measured frequency response data shows that 
excellent fits throughout the 0 – 50 Hz range are obtained using: a fifth-order model for 
the spring specimen (and MR damper OFF), and a fourth-order model for the MR damper 
ON case. 

6.2.2 Time domain identification 

 Although the models of actuator dynamics presented in the previous section 
provide a very good representation of the dynamic response of the testing system, they do 
not provide information about the system’s individual parameters. In this section, the 
individual parameters of the system are determined using measured data in the time 
domain. The resulting model allows analyzing the effect of the different parameters on 
the dynamic response of the system. Figure  6.12 shows a SIMULINK implementation of 
the dynamical model of the testing system. The servovalve dynamics in this model have 
been represented using the first order model (i.e., Equation  6-5).  
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Figure 6.12: SIMULINNK model of the testing system. 

 The approach for determining the individual parameters was the following: First, 
an initial estimate of the parameters was obtained using different sources depending on 
the parameter, e.g., system settings for Kprop, physical measurements for A, Vt, k, and mt,
manufacturer’s technical data for v, and Kq, and values published in the literature for e.
Second, a constrained, nonlinear least-squares parameter estimation was conducted using 
MATLAB/SIMULINK. The allowable range for the different parameters was set, 
depending on the level of confidence in the initial estimates. Experimental data 
corresponding to the spring specimen were used for the estimation, which included 
sinusoidal and random excitation tests, and data generated using the measured system 
transfer function. The parameters resulting from this estimation are presented on Table 
 6.1. Figure  6.13 shows a comparison of the experimentally measured response to a 
sinusoidal input command (having an amplitude of 0.15 in and a frequency of 5 Hz), as 
well as the simulated response obtained using the model. As can be observed, the 
response from the model matches well with the measured response.

Table 6.1: System parameters 

Component Parameter Value Unit Description 

Controller Kp 3.0 mA/in proportional gain 

v 0.00332 s servovalve time constant 

Kq 23.01 in3/s/mA valve gain  Servovalve

K'c 1.36e-05 in3/s/psi valve flow-pressure gain 

A 0.751 in2 area of the piston 

Cl 5.89e-06 in3/s/psi leakage coefficient of the actuator 

Vt 48.66 in3 total volume of fluid in actuator chambers 
Actuator 

e 95958 psi effective oil bulk modulus 

mt 0.023 lb-s2/in total mass of piston and load referred to piston  

ct 9.509 lb-s/in viscous damping coefficient of actuator and load 
Experimental 
component 

k 234.0 Lb/in stiffness of the load  
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 The actuator transfer function, Gxu(s), can be obtained using Equation ( 6-20) and 
the estimated values of the parameters, resulting in the following transfer function: 

4 3 2

5.362e9( )
715 3.285e5 6.145e7 5.362e9xuG s

s s s s
. ( 6-26) 

 Figure  6.14 shows a comparison of the frequency response of the model with the 
experimentally measured data. As can be observed, the model matches reasonably well 
with the experimental data, and although there are some small discrepancies, the model is 
considered adequate for the purpose of analyzing the effect of the different parameters.  
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Figure 6.14: Frequency response from model and experimentally measured data. 
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6.3 Effect of parameters on actuator transfer function 
 The numerical model of the testing system developed in the previous section is 
used to investigate the effect of some of its parameters on the response of the actuator and 
testing system.

Effect of proportional gain 

 Initially, the effect of the proportional gain is investigated. Figure  6.15 shows the 
frequency response of the actuator transfer function for different values of the gain. As 
the proportional gain increases in size, the bandwidth of the system is also increased and 
the phase (and, therefore, the time lag) is reduced. From this plot, it may seem apparent 
that one would want the gain as large as possible; however, as mentioned previously, 
large values of this gain can make the system unstable. Figure  6.16 shows the root-locus 
of the system, where the locations of the closed-loop poles are given for different values 
of the proportional gain. From this plot, the maximum value of the gain for stability is 
determined to be Kprop = 11.7. As the proportional gain is increased, the oscillatory 
response and overshoot are also increased; therefore, to have a good response, the value 
of this gain must be set significantly smaller than the stability limit (e.g., Kprop = 3.0, as in 
the current configuration). 
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Figure 6.15: Bode plot of actuator transfer function, Gxu for different values of the 
proportional gain, Kprop.
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Figure 6.16: Root locus of the system with respect to the proportional gain, Kprop.

Effect of mass 

 The effective mass includes the mass of the actuator’s piston, the specimen, and 
any moving attachments that may be used to connect the actuator to the specimen. Figure 
 6.17 shows the frequency response of the actuator transfer function for different values of 
the effective mass, where m represents the effective mass normalized with respect to the 
initially estimated value. For relatively small values of the total mass (e.g., m = 0.5 and 
1.0), the variations have a small effect both in the magnitude and phase of the transfer 
function. However, as the effective mass becomes large (e.g., m = 3), the transfer 
function is significantly affected. The large peak observed in the magnitude is associated 
with the oil-column resonance that gets smaller as the total mass increases (see Equation 
 6-14), therefore, affecting more severely the low-frequency response.

Kprop = 11.7 



90

0

0.5

1

1.5

2

M
ag

ni
tu

de
 (

ab
s)

5 10 15 20 25 30 35 40 45 50
−360

−270

−180

−90

0

P
ha

se
 (

de
g)

Frequency  (Hz)

α
m

 = 0.5

α
m

 = 1

α
m

 = 2

α
m

 = 3

Figure 6.17: Bode plot of actuator transfer function, Gxu, for different values of total mass. 

Effect of specimen stiffness 

 The stiffness of the test specimen can, in general, change during the experiment. 
Figure  6.18 shows the frequency response of the actuator transfer function for different 
values of the specimen stiffness, where k represents the ratio between the varied and 
initial values of the stiffness. When the stiffness is decreased 10 times (i.e., k = 0.1), the 
transfer function does not change significantly, which is believed to be due to the fact that 
the forces imposed by the actuator during these two cases (i.e., k = 0.1 and 1.0), are 
small compared to the capacity of the actuator. Therefore, the actuator behaves as if there 
was no load attached. However, when the stiffness of the specimen is increased by a 
factor of 10 (i.e., k = 10), significant changes are observed, especially in the magnitude 
of the transfer function. The bandwidth is reduced (and the phase lag is slightly 
increased), i.e., the actuator gets slower and has more difficulty following the 
commanded displacement.  
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Figure 6.18: Bode plot of actuator transfer function, Gxu, for different values of specimen 
stiffness, k.

Summary

 The analysis conducted provides insight into the effect of some important 
parameters of the testing system on its response. The proportional gain of the controller 
has a significant effect on both magnitude and phase. However, this gain is typically set 
prior to the experiments (through tuning of the actuator) and, in general, does not change 
during the experiment. The effective mass referred to the piston has a direct influence on 
the location of the hydraulic natural frequency, and if the mass becomes significant, the 
actuator transfer function is greatly modified. A similar effect is obtained when the 
hydraulic stiffness is low due to large volumes of oil in the actuator chambers, as in the 
case of long-stroke or large-capacity actuators. Variations on specimen stiffness were 
shown to have a small effect on the actuator transfer function when the loads applied by 
the actuator are small compared to its capacity. However, as the relative magnitude of 
applied force is increased, changes in the stiffness have a more substantial effect on the 
magnitude of the transfer function, with a smaller effect on the phase.  

 The analysis conducted by varying some important parameters on the testing 
system shows that, in general, the phase lag (and, therefore, the time lag), does not 
change significantly, except for the case of the proportional gain. 

6.4 Simplified actuator transfer function 
 Under certain conditions, the actuator transfer function can be reasonably well 
approximated by a lower-order model. When the first-order servovalve model is used, the 
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complete actuator transfer function has four poles and no zeros (see Equation  6-20). This 
equation can also be expressed as 

1( )
1 11 1 1 1

4 ' ( )

xu
c t

v v
q prop prop q e c xf

G s
A K Vs s s s

K K K K A K G s

  ( 6-27) 

where G’xf(s) was defined in previous sections and represents the transfer function of the 
experimental component (i.e., the transfer function of the specimen modified to include 
the additional mass and damping from the actuator and attachments), see Equation ( 6-12). 
When the last term of the denominator of Gxu(s) is small compared to the first two terms 
(and, therefore, can be neglected), the following approximation for the actuator transfer 
function is obtained: 

2

1( )
1xu

xu v xu

G s
s s

  ( 6-28) 

where xu is defined as the actuator time constant and is given by 

xu
q prop

A
K K

.  ( 6-29) 

When the servovalve dynamics are modeled using a constant transfer function (i.e., v = 
0), the actuator transfer function can be further simplified as

1( )
1xu

xu

G s
s

  ( 6-30) 

These simplified transfer functions are close to the actual actuator transfer function and, 
therefore, are considered accurate when: (a) the term 1/G’xf (s) is small, i.e., at 
frequencies close to the natural frequency of the experimental component (this effect was 
also observed by Zhao et al., 2003); and (b) when the high-frequency dynamics in the 
actuator transfer function can be neglected (e.g., dynamics associated with oil-column 
resonance and actuator specimen interaction).  

 The parameters of the testing system and actuator estimated in the previous 
section (see Table  6.1) are used to illustrate the approximations of the actuator transfer 
function. The effective mass has been increased by a factor of 3 to highlight the effects of 
the oil-column resonance. Figure  6.19 shows a comparison of the first- and second-order 
approximations of the actuator transfer function (Equations  6-30 and  6-28, respectively). 
As observed, both approximations capture relatively well the low-frequency response in 
terms of both magnitude and phase. However, the accuracy of the approximations 
decreases as the frequency increases, and effects such as oil-column resonance 
(represented by the resonant peak on the exact transfer function at about 35 Hz), are not 
captured. Nevertheless, these approximations are practical for representing the low- 
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frequency response and are used in subsequent sections to derive simplified stability 
formulas. 
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Figure 6.19: Simplified actuator transfer functions. 

6.5 Modeling of real-time hybrid experiments 
 The dynamic model of the testing system presented in Section  6.1 is now used to 
develop a complete model of the real-time hybrid experiment. This model allows the 
investigation of the influence of various parameters, the stability characteristics of the 
experiment, and the development and evaluation of compensation strategies.

6.5.1 Model of the structural system 

 To understand the effects of the substructure real-time hybrid experiment on the 
calculated structural response, a linear, elastic, single-degree-of-freedom system is used 
as the test structure. Figure  6.20 shows a schematic of the entire structural system and 
substructures, where d(t) is the displacement of the system, M is the mass, C is the 
damping, K is the stiffness, and F(t) is the external force applied to the system. The 
subscripts, num and exp, are used to indicate properties corresponding to the numerical 
and experimental substructures, respectively. The system has a natural frequency, n, and 
damping ratio,  given by: 

,      
2

exp num exp num
n

exp num

K K C C
M M K K

 ( 6-31) 
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Figure 6.20: SDOF system for substructure real-time hybrid testing. 

The stiffness and damping properties of the test specimen are denoted as kexp and cexp,
respectively. Except for the case when a scaled version of the physical substructure is 
used as a test specimen, these properties are the same as the ones from the physical 
substructure. When using a scaled specimen, factors must be introduced to properly 
account for scaling effects. The two scaling factors that are needed in a hybrid simulation 
are the length scale factor, SL, and the force scale factor, SF. In both cases, the scaling 
factor represents the ratio between the variable in the prototype (i.e., full-scale) over the 
variable in the model (i.e., test specimen). 

6.5.2 Exact response

 The response of the system determined analytically (i.e., without using a hybrid 
simulation approach) is referred to herein as the exact response, and is determined by 
solving the equation of motion of the system, which is given by: 

num exp num expMd C C d K K d F . ( 6-32) 

The characteristics of the system response can be analyzed using the transfer function, 
GdF(s), from the external force applied to the system, (input) F, to the resulting 
displacement of the system, (output) d, see Figure  6.21. The exact transfer function of the 
system, determined from the equation of motion, is the following: 

2

1( )dF
num exp num exp

G s
Ms C C s K K

 ( 6-33) 
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Figure 6.21: Input-output relationship for exact response. 

6.5.3 Response from real-time hybrid test  

 To investigate the effect of the real-time hybrid experiment on the response of the 
test structure, the system transfer function is also calculated considering that the response 
of the structure is determined using the hybrid testing method. The effects of the hybrid 
simulation can then be analyzed by comparing this experimental transfer function with 
the exact one. Figure  6.22 shows the block diagram and signal flow of the real-time 
hybrid experiment. The calculated displacement, d, is scaled using the length scale factor, 
1/SL, which results in the command displacement, u, to the controller; x, is the 
displacement imposed by the actuator to the specimen; fL is the force to the load (i.e., 
force that the actuator piston applies to the specimen); and R is the restoring force which 
results from scaling the measured actuator force using the force scale factor, SF.

Figure 6.22: Block diagram of real-time hybrid experiment. 

 In a hybrid simulation, the restoring force, R, which, in general, is a function of 
the displacement and velocity, is obtained directly from the experiment. The equation of 
motion for the system is then given by: 

,num numMd C d K d R d d F . ( 6-34) 

Because the physical substructure is assumed linear elastic, the restoring force can be 
expressed as: 

, exp expR d d K d C d . ( 6-35) 
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The response of the system, expressed in the Laplace domain, is: 

2

1( ) ( ) ( )
num num

d s F s R s
Ms C s K

. ( 6-36) 

From the block diagram (Figure  6.22), the restoring force is given by 

( )( ) ( )
( )

xuF

L xf

G sSR s d s
S G s

. ( 6-37) 

 The experimental transfer function of the system (i.e., when the response is 
determined using the hybrid testing method), GdF_RTHT (s), is given by:

_
2

1( ) ( )
( )

dF RTHT
xuF

num num
L xf

G s G sSMs C s K
S G s

. ( 6-38) 

The actuator transfer function, Gxu(s), can be expressed in terms of its numerator and 
denominator polynomials, nxu(s) and dxu(s), respectively. Considering that the specimen 
transfer function is given by 

2

1( )xf
exp exp

G s
ms c s k

, ( 6-39) 

the transfer function for the real-time hybrid experiment is 

_
2 2

( )( )
( ) ( )

xu
dF RTHT

F
num num xu xu exp exp

L

d sG s SMs C s K d s n s ms c s k
S

. ( 6-40) 

 In contrast to the exact transfer function of the system, which had two poles and 
no zeros (see Equation  6-33), in the closed-loop real-time hybrid simulation, the poles of 
the actuator transfer function become zeros of the system transfer function, and the 
number of poles is equal to the number of poles of the actuator transfer function plus two. 
The additional terms are due to the actuator and specimen dynamics that are present 
during the hybrid simulation.  

Specific cases: no-actuator dynamics and slow speed pseudodynamic testing 

 In the ideal case that the actuator has no dynamics, i.e., Gxu(s) = 1, the 
experimental transfer function becomes 
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. ( 6-41) 

This equation shows that for this ideal case, a sufficient condition for stability is that the 
mass, damping, and stiffness of both test structure and specimen are positive. 
Furthermore, if the displacements are applied slowly, as in conventional pseudodynamic 
testing, the terms corresponding to the specimen mass and damping can be neglected. 
The experimental transfer function for pseudodynamic testing, GdF_PsD (s), is then given 
by:

_
2

1( )uF PsD
F

num exp
L

G s SM s C s k
S

, ( 6-42) 

which yields the same results as the exact transfer function when the experimental 
substructure is rate independent (i.e., Cexp = 0), and assuming no experimental errors. 

6.5.4 Stability analysis 

 One of the most important effects of actuator dynamics on a real-time hybrid 
experiment is the stability reduction. By approximating actuator dynamics as a pure time 
delay, Horiuchi et al. (1996) demonstrated that the effect of this delay was to introduce 
energy into the system, in a manner similar to negative damping. If this negative damping 
was larger than the structural damping, the experiment became unstable. However, the 
time-delay approximation is only accurate for relatively low frequencies. The approach 
considered in this study is to investigate the stability of the real-time hybrid experiment 
using the mathematical models of the testing system dynamics presented in previous 
sections, therefore, without restricting the analysis to the time-delay approximation. 

 The stability of a linear time-invariant system can be determined by analyzing the 
location of its poles. A system is BIBO stable (bounded-input bounded-output stable) if 
and only if every pole of the system has a negative real part or, equivalently, lies inside 
the left-half s-plane (Chen, 1999). This condition guarantees that the transient response of 
a stable system will decay exponentially with time. If any pole has a positive real part 
(i.e., is in the right-half s-plane), then the system is unstable. Therefore, the j  –axis is 
the stability boundary between stable and unstable response. If the system has 
nonrepeated j  –axis poles, then the system is neutrally stable (Franklin et al., 2002).

 The stability of the real-time hybrid experiment can, therefore, be analyzed from 
the poles of the experiment transfer function, GdF_RTHT (s). These poles are the roots of the 
transfer function denominator, which is given by: 

2 2
_ ( ) ( ) ( )F

dF RTHT num num xu xu exp exp
L

Sd s Ms C s K d s n s ms c s k
S

. ( 6-43) 



98

 Finding a closed-form solution for the roots of this equation (i.e., for the poles of 
the system), is very laborious. Even though symbolic manipulation software can be used 
(e.g., Matlab’s symbolic toolbox), the solutions are extremely long and involve numerous 
terms. An alternative approach is to determine the roots of the equation, and consequently 
the stability conditions, numerically as in the example presented in the following section. 

6.5.5 Illustrative example 

 The effect of actuator dynamics on real-time hybrid testing is illustrated 
considering a simple, linear elastic, single-degree-of-freedom structure, similar to the one 
shown in Figure  6.20. The properties of the structure and test specimen are listed in Table 
 6.2. The parameters of the testing system described in Table  6.1 are used to determine the 
actuator dynamics.  

Table 6.2: Properties of structure and test specimen. 

Parameter Value Unit   Parameter Value Unit 
Test structure  Test specimen  

fn 1 Hz kexp 234 lb/in 

5.0 % M 0.0023 lb-sec2/in
Kexp 234 lb/in  1.0 % 
Cexp 0.0148 lb-sec/in  cexp 0.0148 lb-sec/in 
Knum 0 lb/in Scaling factors  
Cnum 3.71 lb-sec/in SL 1 - 

M 5.93 lb-sec2/in SF 1 - 

 Figure  6.23 shows a comparison between the exact transfer function of the test 
structure and the transfer function calculated assuming that the response of the structure 
is obtained using the real-time hybrid testing method (RTHT), i.e., including actuator 
dynamics. The figure shows that the two transfer functions are, in general, similar; both 
have a resonant peak at the natural frequency of the test structure, (i.e., 1 Hz). However, 
some differences are evident, especially close to the natural frequency: (a) the magnitude 
is larger, and (b) the slope of the phase is steeper for the RTHT case. Both of these 
differences are due to actuator dynamics, and as clearly seen, the effect is similar to a 
reduction on the damping during the experiment (i.e., by introducing negative damping). 
This result is equivalent to the one obtained by Horiuchi et al. (1996) in the time domain 
and using a time delay to represent actuator dynamics.  
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Figure 6.23: Comparison of exact and real-time hybrid experiment transfer functions of test 
structure. 

 Figure  6.25 shows a comparison of the impulse response of the structure using 
both exact and real-time hybrid simulation approaches. The effect of actuator dynamics 
on the amplitude of the response is pronounced, and although the system is still stable, 
the response is greatly amplified for the RTHT case. 
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Figure 6.24: Comparison of impulse response of tested structure. 

  Figure  6.25 shows the location of the poles and zeros of the transfer function of 
the structure for the cases of exact response and real-time hybrid simulation. For the 
exact response, two complex poles (located at s = -0.314 ± 6.28i) are found, which 
correspond to a natural frequency of 1 Hz and a damping ratio of 5 %, as expected. The 
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real-time hybrid simulation case has six poles and four zeros. The additional poles and 
zeros are due to the dynamics of the testing system, and as can be observed in the figure, 
these poles and zeros practically cancel each other. However, a close-up view of the 
dominant complex poles [see Figure  6.25 (c)] shows that these poles are shifted to the 
right for the RTHT case, which shows that the stability of the system is reduced (if the 
poles cross into the right-half plane, the simulation will be unstable). The complex poles 
for the RTHT case are located at s = -0.0892 ± 6.27i, corresponding to a natural 
frequency of 0.998 Hz and a damping ratio of 1.42 %, which shows that although the 
main effect of the uncompensated actuator dynamics is to reduce the damping on the 
system, it also produces small errors on the natural frequency of the tested structure.
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Figure 6.25: Location of poles and zeros of tested structure: (a) Exact transfer function, (b) 
Real-time hybrid simulation, (c) Close-up view of dominant poles. 

 The stability of the real-time hybrid simulation can be analyzed using the method 
described in the previous section, i.e., analyzing the roots of the denominator of the 
RTHT transfer function GdF_RTHT (s) using Equation ( 6-43). The analysis shows that for 
the 1 Hz structure considered, the minimum damping required for stability (i.e., critical 
damping) is cr = 3.54 %. Figure  6.26 shows the impulse response for a case where the 
structural damping of the test structure is 3% (i.e., less than the minimum required for 
stability). As can be seen, the response of the real-time hybrid simulation is unstable, 
increasing with time.  The pole-zero map shown (Figure  6.27) shows that the dominant 
complex poles from the real-time hybrid simulation are now on the right-half plane, 
which confirms the instability of the system.  
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Figure 6.27: Location of poles and zeros for exact and real-time hybrid experiment transfer 
functions ( = 3%). 

6.5.6 Stability analysis using simplified actuator transfer function 

 The previous example illustrated the effects that the dynamics of the testing 
system have on the stability of the overall experiment. To further analyze the stability 
conditions of the real-time hybrid experiment, an approximation of the actuator transfer 
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function is used. This approximation allows finding a closed-form solution for the 
stability condition. 

 The simplified, first-order model of the actuator transfer function was shown in 
Section  6.4  to provide a good approximation of the actuator dynamics (and especially of 
the phase) at low frequencies. The transfer function of this simplified model is given by 

1( )
1xu

xu

G s
s

. ( 6-44) 

Using this first-order model of actuator transfer function, the experimental transfer 
function GdF_RTHT (s), is given by 

_
3 2

1( ) xu
dF RTHT

F F F
xu num xu num xu num exp num exp

L L L

sG s
S S SM s C M m s K C c s K k
S S S

  ( 6-45) 

 The stability of the real-time hybrid experiment can be determined by analyzing 
the denominator of this transfer function. The Routh-Hurwitz stability criterion allows 
determining the ranges of the polynomial coefficients required for stability without 
actually solving for the roots. Using the Routh-Hurwitz method, the following conditions 
are required in order for the poles of the system (or roots of the denominator) to be stable: 

1. M > 0 

2. 0F
num exp

L

SK k
S

3. 0F F F
num xu num xu num exp xu num exp

L L L

S S SC M m K C c M K k
S S S

 The first two conditions are the general conditions for stability of a linear, single-
degree-of-freedom system. However, the third condition introduces additional 
requirements based on the actuator and specimen dynamics. For simplicity and to find a 
closed-form solution, assume Knum = 0, SL = SF = 1 (i.e., full-scale test specimen), and that 
the mass and damping of the specimen are small compared to the ones from the test 
structure, and, therefore, can be neglected (i.e., m = c = 0) . The last stability condition 
then becomes: 

2 0xu num num xu expC M C k M  ( 6-46) 

or alternatively 

2 22 2 0n xu n n xu  ( 6-47) 
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where and n are the damping ratio and natural frequency of the single-degree-of-
freedom test structure. After rearranging terms, the stability condition is: 

2

2
1 4xu

n

 ( 6-48) 

which gives the maximum or critical value of the actuator time constant, xu, for stability. 
Figure  6.28 shows the frequency response of the simplified first-order actuator transfer 
function for different values of xu. As can be observed, as xu increases, the phase lag 
also increases and the bandwidth is reduced. Therefore, as the time constant increases, the 
actuator becomes slower, and the stability of the real-time hybrid experiment is reduced. 
If the time constant is larger than the critical value, the experiment will be unstable. 
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Figure 6.28: Effect of the time constant ( xu) on the actuator transfer function. 

 Alternatively, the stability condition can be used to determine the minimum 
damping of the system required for stability. The stability condition is then expressed as: 

2 1 1 0
2 4n xu

 ( 6-49) 

The solution of the quadratic inequality is  

2 21 1 4
4

n xu

n xu

 ( 6-50) 
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which gives the minimum value of damping (i.e., critical damping) that is required to 
ensure the stability of the experiment. 

 When the structural damping of the system is small, the approximation, 
21 4 1 , is accurate (see Equation  6-48). Therefore, the stability condition becomes  

2
xu n  ( 6-51) 

or is expressed in terms of the stiffness and total damping  
xuC K  ( 6-52) 

The above equation provides a simple way to check the stability of the real-time hybrid 
experiment. As can be seen, the required damping for stability increases as the natural 
frequency (and stiffness) of the system and the time constant of the actuator increase.

Relation between the time constant, xu, and the time delay, d

 To compare the stability condition obtained using the above approach to the 
stability criterion traditionally used in the literature (i.e., based on the time delay 
approximation; Horiuchi et al., 1996), the relationship between the actuator time constant 
and the actuator time delay needs to be determined. 

 The magnitude and phase of the transfer function can be determined using a 
semigraphic method. The magnitude (evaluated at so = j ) is the ratio between the 
product of the distances from the zeros to so, and the product of the distances from the 
poles. The phase is given by the sum of the angles from the zeros to so, minus the sum of 
the angles from the poles (Franklin et al., 2002). Figure  6.29 shows the location of the 
single pole in the s-plane for the first-order approximation of the actuator transfer 
function.

Figure 6.29: S-plane with pole location.

Using the semigraphic method, the magnitude and phase of the transfer function are 
given by 

p = -1/ xu

so = j

Re

Im

×

1( )
1xu

xu

G s
s
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1

2 2

1( ) ,       ( ) tan
1

xu xu xu

xu

G . ( 6-53) 

 The time lag of the transfer function,  lag, is defined as the negative of the phase 
divided by the angular frequency. The time lag for the actuator transfer function is, 
therefore, given by 

1tan
( ) xu

lag  ( 6-54) 

 The actuator transfer function has been traditionally approximated as a pure time 
delay for low frequencies, i.e., ( ) dT sTd

xuG s e . This approximation assumes that within 
the frequency range of interests (i.e., low frequency) the magnitude is very close to unity 
and the phase is linear, which results in a constant time lag. The time delay (Td)
approximation of the actuator transfer function can be obtained considering the limit of 
the time lag of the system, as the frequency tends to zero: 

0
lim ( )d lagT . ( 6-55) 

Using the expression for the time lag of the actuator transfer function, the time delay is 
then given by 

1

0

tan
lim xu

dT  ( 6-56) 

Because both numerator and denominator go to zero, this is an indeterminate form. Using 
L'Hospital's rule to solve the limit, we obtain 

20
lim

1 ( )
xu

d
xu

T  ( 6-57) 

which yields 

d xu  ( 6-58) 

 This result shows that at low frequencies (i.e.,  0), the time delay is equal to 
the time constant of the actuator transfer function. However for other frequencies, the 
time lag varies according to the expression obtained previously (Equation  6-54). 

 With this result, the previously determined stability condition for the real-time 
hybrid experiment, i.e., xuC K , becomes at low frequencies the same as the one 
presented in the literature when using a pure time delay, i.e., dC K (Horiuchi et al., 
1996). However, the approach considered herein is more general and includes the time 
delay approximation as a degenerate case. 
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Example

 The simplified stability condition derived using the above procedure is used to 
analyze the example presented in Section 6.5.5. Figure  6.30 shows the minimum damping 
required for the stability of the real-time hybrid simulation (i.e., minimum damping) as a 
function of the natural frequency of the test structure, calculated using both exact and 
simplified analysis (i.e., Equations  6-43 and  6-52, respectively). As can be observed, the 
results from the simplified stability condition are very close to the exact one, up to 
frequencies of about 10 Hz. After this point, the simplified method overestimates the 
critical damping, therefore providing a conservative estimate of the stability condition. 
For the 1 Hz structure considered, the minimum damping required for stability is 3.54% 
and 3.42% for the exact and simplified analyses, respectively.  
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Figure 6.30: Minimum damping for stability as a function of the natural frequency of the 
test structure. 

 Figure  6.30 also shows how the required damping for stability becomes very large 
as the natural frequency of the test structure increases, becoming far greater than the 
damping associated with typical structural systems. Compensation for actuator dynamics 
is, therefore, essential, especially for systems with important high frequencies, such as are 
associated with stiff structures and multi-degree-of-freedom systems.  

6.5.7 Effect of specimen mass on the real-time hybrid simulation 

 The effect of the specimen mass on real-time hybrid experiments is analyzed in 
this section. The effective mass of the experimental component includes the mass of the 
test specimen, any attachments that may be used to connect the actuator to the specimen, 
and the mass of the actuator’s piston. Because the first-order approximation for the 
actuator transfer function does not include actuator-specimen interaction, the complete 
actuator transfer function (i.e., Equation  6-20) is used for the analysis. 

 The normalized mass of the experimental component with respect to the mass of 
the test structure is termed the effective mass ratio, mt, defined as the mass of the 
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experimental component divided by the mass of the test structure (i.e., mt = mt/M). For 
the 1 Hz natural frequency test structure considered throughout this chapter, the effective 
mass ratio is 0.4% ( mt = 0.004).
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Figure 6.31: Comparison of exact and real-time hybrid experiment transfer functions of test 
structure for changes in total mass. 

 Figure  6.31 shows the effect of an increase on the mass of the experimental 
component by a factor of 5 (which results in mt = 0.02). As can be seen, the responses 
from the two real-time hybrid simulation cases with different mass ratios are nearly 
identical. However, an analysis on the location of the poles and zeros from the real-time 
hybrid testing transfer function indicates some interesting effects associated with the 
mass of the experimental component. Figure  6.32 shows the pole-zero maps for the real-
time hybrid simulation cases. As observed, although the effect from the increased mass of 
the experimental component is negligible on the low-frequency complex poles, the 
location of the remaining poles and zeros changes considerably. The increase in the mass 
ratio from 0.4 to 2% causes a pair of fast, complex poles to move to the right (and also 
closer to the real-axis), which corresponds to a reduction on the natural frequency and 
damping of the poles. The position of the poles is now closer to the imaginary axis and 
right-half plane; therefore, a reduction in the stability of the simulation is found. Figure 
 6.32 also shows the pole-zero map for a further increase in the total mass ratio to 4% 
(which results in mt = 0.04). Similar trends to the previous case are observed; however, 
now the fast complex poles are actually in the right-half plane, and the real-time hybrid 
simulation is unstable.   
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Figure 6.32: Effect of total mass ratio on the location of poles and zeros of real-time hybrid 
simulations.

 The analysis conducted shows that although the total mass of the experimental 
component has a small effect on the amplitude and phase of the simulated response, the 
effect on the stability of the simulation is pronounced. If the mass of the experimental 
component is large and causes the total mass ratio to exceed a critical value, the real-time 
hybrid experiment will be unstable.  For the structure considered in this example, 
instability of the hybrid simulations occurred when the mass of the experimental 
component exceeded 2% of the mass of the test structure. 

6.6 Summary
 Equations for modeling the different components of the testing system (including 
servo-hydraulic actuator, controller, and test specimen) have been presented. The 
individual models were then combined to produce a linearized dynamic representation of 
the entire testing system. Numerical values of the parameters of the testing system were 
obtained using both time domain and frequency domain identification techniques. The 
time domain method allowed individual values to be obtained for each parameter; 
subsequently, analyses were conducted to determine their effect on the overall system 
response. The frequency domain identification technique allowed accurate 
representations of the measured actuator transfer function to be obtained for different test 
specimens and testing conditions.  

 The linearized dynamic model of the testing system was used to develop a 
complete model of the real-time hybrid experiment. This “virtual” model allowed the 
effect of the dynamics of the testing system on the accuracy and stability of the real-time 
hybrid testing technique to be investigated. Methods for predicting the stability of the 
hybrid experiment were developed considering detailed and simplified models for the 
actuator dynamics. The stability analysis confirmed that the minimum damping of the 
system required for stability increases as the natural frequency of the test structure and 
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time constant of the actuator increase. Stability of the low-frequency, dominant poles was 
predicted quite well by the formula derived using the approximation of the actuator 
transfer function. The stability criteria based on the complete-detailed model allowed 
investigation of effects that cannot be captured by simple approximations of actuator 
dynamics. The mass of the experimental component (which includes the mass of the test 
specimen, any attachments that may be used to connect the actuator to the specimen, and 
the mass of the actuator’s piston) was found to be important on the stability of the hybrid 
experiment. For the structure considered in this chapter, the real-time hybrid simulation 
became unstable when the relative value of the mass with respect to the mass of the tested 
structure became larger than 2%.  

 The models for actuator dynamics and hybrid testing presented in this chapter 
have proven to be valuable for investigating the stability of the real-time hybrid testing 
technique as well as the effect of system parameters. These models are used in 
subsequent chapters for developing and evaluating compensation strategies for actuator 
dynamics. 
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CHAPTER 7 

COMPENSATION FOR ACTUATOR DYNAMICS 

The effects of actuator dynamics in real-time hybrid testing were analyzed in 
detail in the previous chapter. Both magnitude and phase lag (and, therefore, time lag) 
were demonstrated to vary with frequency (i.e., were not constant). Because time lag 
varies with frequency, compensation techniques based on their approximation as a pure 
time delay become ineffective for structures that present significant responses at different 
frequencies, e.g., multi-degree-of-freedom systems. Additionally, the actuator transfer 
function was found to be dependent on the specimen that is attached to the actuator (i.e., 
actuator-specimen interaction). Consequently, the dynamics of the actuator may vary 
during the experiment, because of changes in the properties of the test specimen (e.g., 
stiffness). Therefore, when the characteristics of the specimen change significantly and 
frequently (e.g., nonlinear hysteretic systems and semiactively controlled MR dampers), 
traditional delay-compensation methods may not perform adequately. In this chapter, 
compensation strategies are developed directly for actuator dynamics, without using the 
time-delay approximation. The models exhibiting the observed actuator dynamics are 
used to develop a model-based compensation approach that provides compensation for 
both phase and magnitude effects. The approach is verified experimentally and then used 
in the next chapter to conduct hybrid testing of a semiactively controlled structure.   

7.1 Framework for actuator dynamics compensation 
The dynamics of the actuator and testing system can be accurately approximated 

by the actuator transfer function, Gxu(s). This transfer function includes the effects of the 
actuator, servovalve, servocontroller, and test specimen. In the experimental setup used in 
this study, the actuator servocontroller can perform PID (proportional-integral-derivate) 
control; the associated dynamics and settings are already included in the actuator transfer 
function, Gxu(s). The approach proposed in this chapter is to add an outer controller or 
outer loop that performs the compensation for actuator dynamics, while the PID control 
performed by the actuator servocontroller is treated as an internal, or inner, loop. Figure 
 7.1 shows a schematic block diagram of the configuration for the additional 
compensation for actuator dynamics, where d is the desired displacement (or reference 
signal), u is the command to the actuator servocontroller generated by the outer 
controller, and x is the measured displacement realized by the actuator. 

For the outer controller performing the compensation for actuator dynamics, the 
plant or system to be compensated is the closed-loop system represented by the actuator 
transfer function, Gxu(s). The main objective of the additional control is to cause the 
measured displacement, x, to more accurately track the desired displacement, d,
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minimizing phase lag and amplitude changes. Compensation techniques and their 
implementation are presented in the following sections. 

Figure 7.1: Schematic block diagram of compensation for actuator dynamics. 

7.2 Open-loop feedforward compensation 
When the controller does not use a measurement of the system being controlled in 

computing the control action, the control system is called open-loop (Franklin et al., 
2002). Feedforward is a type of open-loop control that processes the reference signal 
directly by calculating a best guess or prediction to produce the ideal response of the 
plant (Ellis, 2000). Feedforward control allows combining knowledge of the command 
and the plant to improve the system response (Ellis, 2000). Because the output of the 
system is not used in calculating the control signal (i.e., does not form a closed loop), 
feedforward control does not have the potential stability problems associated with 
feedback control, provided that the plant and controller are stable (Ellis, 2000). 
Feedforward control also avoids the slowness and delays associated with feedback 
control, therefore, allowing much faster responses.  

 Figure  7.2 shows a block diagram of the system with the implementation of 
feedforward control, where the controller transfer function, GFF(s), is placed before the 
plant, Gxu(s). The resulting transfer function of the compensated system, Gxd(s), including 
controller and plant, is given by 

 ( ) ( ) ( )xd FF xuG s G s G s  ( 7-1) 
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Figure 7.2: Block diagram of feedforward control. 

7.2.1 Feedforward controller with pure inverse dynamics 

 Ideally, the feedforward controller should completely cancel the dynamics of the 
plant, resulting in a compensated system with a magnitude of one and a phase of zero. 
The design of a feedforward compensator, therefore, is in essence the calculation of the 
inverse of a dynamic system (Åström & Wittenmark, 1984). Given the model of the 
system to be controlled, ( )xuG s , the feedforward controller can be designed as a pure 
inverse of the plant dynamics, as given by  

 1( ) ( )FF xuG s G s . ( 7-2) 

 When the model of the system provides a perfect representation of the plant 
dynamics, the resulting transfer function of the compensated system becomes ( ) 1xdG s ,
as desired. However, for a pure inverse controller to be applicable, the inverse of the 
plant has to be minimum-phase (which means that the system plant and its inverse are 
causal and stable).

 The characteristics of the system considered in this application were analyzed in 
detail the previous chapter. The transfer function, Gxu(s), had three poles and no zeros, for 
frequencies below 25 Hz, and four poles and no zeros, for frequencies below 50 Hz (see 
Equations  6-19 and  6-20). The actuator transfer function can therefore be expressed in the 
general form

,
1

( )xu n

xu i
i

KG s
s p

 ( 7-3) 

where K is the gain, pxu,i are the poles of the system, n is the number of poles, and 
represents the product operator. The transfer function of the controller with a pure inverse 
of the plant dynamics then becomes 

,
1( )

n

xu i
i

FF

s p
G s

K
. ( 7-4) 

d u
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This controller is not a proper system (i.e., the degree of the numerator exceeds the 
degree of the denominator) and is not stable.  It is a pure derivative action, which has a 
magnitude that increases unbounded with frequency (see Figure  7.3).  
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Figure 7.3: Bode plot of pure inverse controller [for third order ( )xuG s ].

 Under certain conditions, unstable controllers can result in stable, controlled 
systems. However, if the plant has uncertainty, use of unstable controllers is impractical. 
The plant model of the system considered in this study is a linearized version of the 
system, and consequently has uncertainties. Therefore, a requirement for the controller is 
to be stable 

7.2.2 Feedforward controller with modified inverse dynamics 

To obtain a stable, feedforward controller that approximates the controller with 
inverse dynamics, some modifications were made. The feedforward controller was 
realized using the inverse of the plant dynamics in series with a unity gain low-pass filter, 
with appropriate dynamics to make the controller stable. The order of the filter was the 
minimum to make the controller proper (i.e., n). The poles of the filter were selected as 
the zeros of the inverse controller times a factor, , greater than one, to make the poles 
large enough to not interfere with the low frequency dynamics of the original inverse 
controller. The resulting transfer function of the feedforward controller is given by 

,
1

,
1

( )

n

xu i
n i

FF n

xu i
i

s p
G s

s p
 ( 7-5) 
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For   = 1, the transfer function of the controller becomes one, therefore the controller 
provides no compensation. On the other hand, when  = , the controller becomes the 
pure inverse controller presented in the previous section. Therefore, the factor should
be large enough so that the dynamics of the pure inverse controller are not much affected 
in the frequency range of interest (and, therefore, cancel the dynamics of the plant), while 
at the same time, small enough so that the frequencies associated with the poles can be 
represented on the digital implementation of the controller with the sampling period used 
for the experiment. When the reference signal is subject to sudden changes, the value of 

 should be kept small enough so that the derivative action introduced by the controller is 
not too high. For the application considered in this study, the reference signal (i.e., target 
displacements) is the result of a double integration and, therefore, is rather smooth and 
without sudden changes.

Analysis using first order actuator transfer function 

 The simplified, first-order model of the actuator transfer function is used to 
analyze the characteristics of the compensated system. The transfer function of this 
simplified model is given by 

1( )
1xu

xu

G s
s

 ( 7-6) 

where the single pole is located at  pxu = -1/ xu. The transfer function of the feedforward 
controller with modified inverse dynamics can be expressed as  

1( )
1

xu
FF

xu

sG s
s

 ( 7-7) 

which is similar to the expression of a lead compensator (Franklin et al., 2002). Because 
 is assumed larger than one, the poles are larger than the zeros, and, therefore, the 

compensator provides a phase lead. The transfer function of the compensated system is 
given by 

1( )
1

xd
xu

G s
s

 ( 7-8) 

which shows that the effect of the compensation is to reduce the actuator time constant by 
a factor equal to the parameter , therefore, making the system faster and increasing the 
bandwidth. The magnitude, phase, and time lag of this transfer function are given by 

2 2

2

1( )
1

xd

xu

G  ( 7-9) 
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1( ) tan xu
xd  ( 7-10) 

1

,

tan
( )

xu

lag xd . ( 7-11) 

In the limit when  tends to zero, the time lag of the compensated system becomes 

, (0) xu
lag xd . ( 7-12) 

 The above equations show that the magnitude and phase lag for the compensated 
system tends to one and zero, respectively, as  increases. The time lag at low 
frequencies is reduced by an amount equal to the magnitude of , which suggests that 
values of , such as 10 or 20, can produce significant reductions on the phase and time 
lag, resulting in values that are adequate for real-time hybrid testing (and typically within 
the accuracy of the estimated parameters). 

Application of feedforward controller to MR damper 

 The performance of the feedforward compensator with modified inverse 
dynamics was experimentally verified using the MR damper specimen for the case of 
zero input voltage. The model of actuator dynamics used to create the feedforward 
compensator was a third-order model with the following transfer function 

2

6118670( )
( 161.5) (    222.2   3.79e4)xuG s
s s s

  ( 7-13) 

where the poles are located at -161.5 and -111.1±159.9i. The low-pass filter for the 
feedforward controller was designed using a value of  = 15 and three poles. Figure  7.4 
shows the frequency response of the low-pass filter which has a cut-off frequency 
(determined at -3 dB) of 390 Hz.  
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Figure 7.4: Frequency response of low pass filter.  

Figure  7.5 shows the frequency response of the resulting feedforward compensator for 
the system with the MR damper specimen which has the following transfer function 

2

2

3375( 161.5) (    222.2   3.79 4)( )
( 2422) (    3333   8.527 6)FF

s s s eG s
s s s e

  ( 7-14) 
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Figure 7.5: Feedforward compensator for MR damper with 0V.  
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Figure  7.6 shows a comparison of the step response of the compensated and 
uncompensated systems. As can be observed, the compensation algorithm significantly 
improves the response, resulting in a much smaller rise time, 0.93 msec as compared to 
14 msec for the uncompensated system (rise time specified at 10 and 90%). The 
overshoot for both compensated and uncompensated cases, is about 3%, which is 
adequate.
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0
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Figure 7.6: Step response of compensated system (Feedforward compensator for MR 
damper with 0V).  

Figure  7.7 shows a comparison of the frequency response of the compensated and 
uncompensated systems. The dynamics of the compensated system have improved 
significantly: the magnitude is very close to unity up to about 25 Hz; the phase is nearly 
zero throughout the 0-50 Hz range; and the time lag has been reduced to less than 1 msec. 
The increase in the magnitude at frequencies larger than 25 Hz is due to differences 
between the model used for actuator dynamics (which is only accurate up to about 25 Hz) 
and the actual plant response. After 25 Hz, the model underestimates the magnitude, 
which when inverted, results in larger magnitude values. Higher-order models of actuator 
dynamics could be used, like the fourth- and fifth-order models, which were accurate in 
the entire 50 Hz frequency range, however, for the applications considered in this study, 
the 25 Hz range is sufficient. 
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Experimental verification 

 The performance of the feedforward controller with modified inverse dynamics 
was verified experimentally. Figure  7.8 shows schematically the implementation of the 
control algorithm.  

Figure 7.8: Schematic block diagram for experimental verification of feedforward 
compensator. 

Two different reference signals were used to verify the compensation algorithm: (a)
sinusoidal displacement with an amplitude of 0.2 in (5.08 mm) and 1 Hz frequency, and 
(b) bandlimited white noise random reference signal with a bandwidth of 5 Hz and an 
RMS of 0.11 in (2.85 mm). These two reference signals were selected because they 
represent approximately the fundamental and highest natural frequencies, respectively, of 

d u
GFF(s)

Actuator, servovalve, 
and specimen

x

Feedforward
controller

Signal
generation
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the structure described in the next chapter, which is tested using the real-time hybrid 
technique. The sampling time used in the experiments was 0.0005 sec, which corresponds 
to a sampling frequency of 2,000 Hz.  

Figure  7.9 shows the results for the test using a sinusoidal reference signal. 
Similarly to previous cases, the performance of the compensation approach is analyzed 
by comparing the desired, commanded, and measured displacements. To make the results 
easier to compare, a low-pass filter (with a 30 Hz cutoff frequency) was used as a 
postprocess to remove sensor noise in the measured displacement. As can be observed 
from the time history plots, the measured and desired displacements are almost identical, 
which shows the good tracking performance of the control algorithm. Figure  7.9 (c-d) 
shows x-y plots of the response. The plot of desired versus measured displacement is 
nearly a straight line with a slope of one, which demonstrates the accuracy and efficiency 
of the compensation approach for actuator dynamics. The plot of commanded 
displacement versus measured displacement shows the effect of actuator dynamics, i.e., a 
counter-clockwise loop that is effectively cancelled by the compensation algorithm. The 
large command from the feedforward controller at the beginning of the simulation is 
caused by the sudden change on the reference signal (and its derivatives) when the 
sinusoidal signal starts. However, the effect of this discontinuity disappears quickly and 
is not present on the measured displacement. The accuracy of the compensation approach 
was quantified using the error norm defined as the RMS of the control error (desired 
displacement minus measured displacement) divided by the RMS of the desired 
displacement, as given by 

2

2

1

1

N

i i
i i

N

i
i i

d x
NError norm

d
N

 ( 7-15) 

where N is the number of number of time steps. The error norm for the tests with and 
without compensation was 0.98% and 7.48%, respectively, demonstrating the good 
performance of the control algorithm.  
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Figure 7.9: Test results for sinusoidal reference signal. 

 Figure  7.10 shows the experimental results for the bandlimited white noise 
random reference signal. As in the sinusoidal case, the desired and measured 
displacements are almost identical and the plot of desired displacement versus measured 
displacement is practically a straight line with slope of one. The error norm for the case 
with and without compensation was 2.09% and 22.15%, respectively, demonstrating the 
good accuracy of the compensation algorithm to track signals with broadband frequency 
content.

(a) (b)

(c) (d) 
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Figure 7.10: Test results for bandlimited white noise reference signal: (a) time histories, (b) 
close-up view, (c-d) x-y plots. 

7.3 Closed-loop compensation 
Because feedforward is an open-loop compensation, it requires a good model of 

the process to be controlled (Åström & Wittenmark, 1984). Feedforward control is, 
therefore, more sensitive to errors in the model used to create the compensator and also to 
variations on the plant dynamics. In contrast, feedback control uses the error between the 
desired and measured signals to determine the desired control action; inaccuracies in the 
model usually have a smaller effect on the controller performance. However, feedback 
control is slower than feedforward control; therefore, an outer control loop based on 

(a)

(b)

(c) (d) 
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feedback only is not effective for reducing or eliminating the actuator time lag, which is 
the main objective in this application (i.e., real-time hybrid testing).  

A compensator using both feedforward and feedback, can combine the advantages 
of both control approaches. Figure  7.11 shows a schematic block diagram of a combined 
feedforward and feedback controller, where GFF(s) and GFB(s) are the transfer functions 
of the feedforward and feedback controllers, respectively. The total control command, u,
is obtained by adding the two individual control signals from the feedforward and 
feedback controllers, uff and ufb, respectively.

Figure 7.11: Block diagram of combined feedforward-feedback controller.  

 The characteristics of the controller depend on the feedforward and feedback 
links. For the feedforward link, the method with modified inverse dynamics is used, 
while for the feedback term a proportional controller with constant gain, KFF, is adopted. 
The transfer functions of the two controllers are, therefore, given by

,
1

,
1

( ) ,         ( )

n

xu i
i

FF FF FB FBn

xu i
i

s p
G s K G s K

s p
 ( 7-16) 

When the feedforward controller completely cancels the plant dynamics, the error, 
e, is zero (and, therefore, also the command from the feedback block, ufb) and the 
combined controller works as a pure feedforward compensator. However, when the 
dynamics of the plant are not completely cancelled by the feedforward control, the 
feedback term works to reduce the error between desired and measured signals.  

A nonzero error signal can be caused by several sources: differences between the 
model used for the feedforward controller and the plant (e.g., nonlinearities in the servo-
hydraulic system), dynamics that have to be added to the feedforward control to make it 
realizable and stable, or due to variations in the plant during the experiment (e.g., due to 
changes in specimen stiffness). 
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Stability analysis of combined compensator

 Because feedback is used in the combined compensator, the system can 
potentially become unstable; therefore, understanding the stability of the compensated 
system, whose transfer function is given by 

( ) ( ) ( )
( )

1 ( ) ( )
xu FF FB

xd
xu FB

G s G s G s
G s

G s G s
 ( 7-17) 

is important. The stability conditions of the compensated system can be determined by 
analyzing the location of the poles of its transfer function. For the case when the feedback 
term is a proportional gain (i.e., GFB(s) = KFB), the transfer function can be expressed as: 

( ) ( ) ( )
( )

( ) ( ) ( )
xu FF FB FF

xd
FF xu FB xu

n s n s K d s
G s

d s d s K n s
 ( 7-18) 

where the transfer functions of the actuator and feedforward controller have been 
expressed in terms of their numerator and denominator polynomials, as given by 

( ) ( )( ) ,  and   ( )
( ) ( )

xu FF
xu FF

xu FF

n s n sG s G s
d s d s

. ( 7-19) 

The stability of the combined system is governed by the denominator of Gxd(s). Because 
the poles of the feedforward controller [roots of dFF(s)] are selected to be stable, the 
stability condition of the combined system is determined from the roots of  

  ( ) ( ) ( )xu FB xus d s K n s  ( 7-20) 

This equation was used to determine the maximum value of the feedback gain for 
the case considered previously in this chapter, i.e., actuator with MR damper specimen 
(with zero input voltage). The dynamics of the plant were represented using the most 
accurate actuator transfer function, i.e., the fifth-order model given by Equation  6-24. 
The maximum value of the feedback gain for stability was determined to be KFB = 2.72. 
Figure  7.12 presents a root locus plot showing the stability limit and the effect of the 
feedback gain on the roots of the characteristic equation. As can be observed, values of 
the feedback gain larger than 2.72 cause two of the complex poles to move into the right-
half plane and, therefore, the system becomes unstable. 
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Figure 7.12: Root locus plot for stability of combined controller. 

Experimental verification 

 The feedforward-feedback controller was verified experimentally using the 
sinusoidal and bandlimited white noise reference signals employed previously. Figure 
 7.13 shows a schematic block diagram of the implementation of the control algorithm for 
the experiments.

Figure 7.13: Schematic block diagram for experimental verification of feedback-
feedforward controller. 

 Results from the experiments using sinusoidal reference signal demonstrated that 
the tracking performance of the combined controller surpassed the performance of the 
feedforward-only controller, producing an error norm of 0.58%, which is about 60% of 
the one obtained with the feedforward controller alone.
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Figure 7.14: Test results for bandlimited white noise reference signal using combined 
controller with KFB = 0.5: (a) Time histories, (b-c) Close-up views, (d-e) x-y plots. 

Figure  7.14 shows the results for the bandlimited white noise reference signal 
with the feedback gain set to KFB = 0.5. As can be observed from the time history and x-y
plots, the measured displacement tracks very well the reference signal. The error norm 
for this test was 1.19%, which is about half of the value obtained with feedforward-only 

(a)

(b) (c)

(d) (e) 
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compensation, demonstrating that the combined feedforward-feedback compensator 
produces accuracy improvements over the feedforward-only compensator.  

 Tests were also conducted for different values of the feedback gain, KFB, to 
observe its effect on the tracking performance and the stability of the controller; values of 
0.25, 0.5, 1.0, 1.5, 2.0, and 3.0 were used. As the gain increased, the control error 
decreased. However, when the gain became large (e.g., 1.5 or larger), oscillatory 
behavior was observed on the command, u, generated by the controller. This oscillatory 
behavior had a deleterious effect on the measured force from the MR damper, because 
this force is greatly dependent on the velocity, and oscillations on the displacement have 
a large effect on the velocity. When the gain was set to 3.0, the test actually became 
unstable and was stopped. This result agreed well with the stability limit of the combined 
controller determined analytical in the previous section (i.e., KFB,max = 2.72).

 Experiments conducted using the combined feedforward-feedback compensation 
demonstrate that this technique produces very good results, offering improvements over 
the feedforward-only compensator. However, because of the closed-loop term, oscillatory 
behavior and instability can occur when the feedback gain is large. The analytically 
determined stability limit was shown to correlate well with the experimentally observed 
limit; therefore, adequate values of the gain can be obtained prior to the experiment.  

7.4 Controller for MR damper with variable voltage 
 The model-based feedforward compensator works very well for cases in which 
the characteristics of the system to be compensated do not change significantly. When the 
changes are small, the feedback term helps to accommodate differences between the plant 
and the model. However, when the changes in the plant are significant, the model-based 
combined compensator does not provide adequate compensation. When testing 
semiactive control devices (e.g., MR dampers), the properties of the specimen change 
substantially in only a few milliseconds, producing variations on the plant dynamics. 
Compensation of actuator dynamics is, therefore, challenging when testing MR dampers 
used as semiactive control devices. A compensation method that accommodates changes 
in the plant dynamics is presented in this section and verified experimentally using the 
MR damper specimen subjected to changes on the input voltage. 

7.4.1 Actuator dynamics for MR damper with variable input voltage 

Figure  7.15 shows the frequency response of the actuator for the cases of the MR 
damper with zero input voltage (v = Vo) and with maximum input voltage (v = Vmax). As 
can be observed, the dynamic response of the actuator is different for both cases. Because 
the feedforward part of the compensator for actuator dynamics is based on a model of the 
plant, plant variations must also be considered in controller design. 
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Figure 7.15: Actuator dynamics with MR damper specimen. 

Models of actuator dynamics for the cases of zero and maximum input voltage to 
the MR damper are developed independently. The transfer functions for these two cases 
(using models with three poles) are given by  

, 2

6118670( )
( 161.5) ( 222.2 3.79 4)xu VoG s
s s s e

  ( 7-21) 

, 2

4056971( )
( 106.1) ( 221   3.82e4)xu VmaxG s
s s s

.  ( 7-22) 

For cases in which the input voltage applied to the MR damper switches between Vo and 
Vmax during the structural response (e.g., clipped-optimal control algorithm, Dyke, et al., 
1996), the compensation algorithm for actuator dynamics developed previously can be 
modified to take into account the difference in the models for each voltage input. The 
feedforward part of the controller (which is the one based on the model of the plant) can 
be selected depending on the voltage command, v, sent to the MR damper, as given by 

,

,

( )   for   
( )

( )   for   
FF Vo o

FF
FF Vmax max

G s v V
G s

G s v V
 ( 7-23) 

where the two feedforward controllers, GFF,Vo and GFF,Vmax, are designed independently, 
using the method with modified inverse dynamics presented previously in this chapter.

 Although easy to implement, this simple switching compensation algorithm has 
the disadvantage that produces a discontinuous control signal whenever there is a change 
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in the voltage command to the MR damper. Therefore, to properly implement the 
combined compensator, a model that accurately represents the dynamics of the actuator 
must first be developed when the MR damper specimen is subjected to voltage changes. 
This model can then be used to develop a feedforward controller that produces smooth 
control signals. 

Model of actuator dynamics with semiactive MR damper specimen 

 The models of actuator dynamics developed for the two extreme cases of the MR 
damper voltage can be combined using a smooth transition between the two 
representative models. In control system theory, this type of smooth transition is called 
bumpless transfer and is typically used when switching between different regulators 
(Åström & Wittenmark, 1984).  

 An algorithm was developed in this study to represent the dynamics of the 
actuator with the MR damper specimen. The algorithm combines individual models of 
actuator dynamics (i.e., Gxu,Vo and Gxu,Vmax) using a smooth transition. Figure  7.16 shows 
the block diagram of this model of actuator dynamics. 

Figure 7.16: Block diagram of algorithm for actuator dynamics with bumpless transfer. 

 The model is given by the following equations, where capital letters have been 
used to represent variables in the Laplace domain: 

 ( ) ( ) ( ) ( )a bX s X s X s W s  ( 7-24) 

where

 ( ) ( ) ( )a aX s G s U s  ( 7-25) 

 ( ) ( ) ( )b bX s G s U s  ( 7-26) 
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 ( ) ( ) ( )tW s G s V s  ( 7-27) 

and the two transfer functions, Ga(s) and Gb(s), are given by 

,( ) ( )a xu VoG s G s  ( 7-28) 

, ,( ) ( ) ( )b xu Vmax xu VoG s G s G s  ( 7-29) 

The transfer function, Gt(s), is used to model the dynamics of the actuator associated with 
the change in the voltage of the MR damper. This transfer function provides a smooth 
transition between the two transfer functions, Ga(s) and Gb(s), and is given by 

1/( )
1

max
t

t

VG s
s

 ( 7-30) 

where  t is the time constant of the transfer filter. As the time constant becomes small, 
the transition becomes faster, approaching a simple switching algorithm, while for large 
values of the time constant the transition is slower and smoother. 

 This actuator dynamics algorithm, in addition to providing a smooth transition 
between the two states, Vo and Vmax, also provides a representation of the system 
dynamics for intermediate values of the input voltage, v.

 This model was used to represent the dynamics of the actuator with the MR 
damper considered in this study. The time constant of the transition filter,  f, was 
determined using parameter estimation with measured experimental data. For the 
experimental data, a random displacement excitation reference signal with a 5 Hz 
bandwidth was commanded to the actuator, while simultaneously applying a square 
voltage signal (with 0.5 Hz frequency and changing from 0 to 5 V) to the MR damper.  
The resulting estimated value of the time constant of the transition filter was  f = 0.0048.

Figure  7.17 compares the results obtained from the model and the experimental 
data. As can be observed, excellent agreement is achieved between the displacement 
obtained from the model and from the experiment.  
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Figure 7.17: Comparison between predicted (model) and experimentally obtained responses 
of actuator with MR damper specimen under variable input voltage. 

7.4.2 Model-based feedforward controller for MR damper with 
          variable input voltage 

 The actuator dynamics model presented in the previous section is used as a basis 
to modify the feedforward term of the combined controller to include the effects of 
changes in plant dynamics. Figure  7.18 shows a schematic block diagram of the modified 
feedforward term, GFF(s), of the controller that accounts for the variations on actuator 
dynamics (caused by changes on the applied voltage to the MR damper). As can be 
observed, the configuration of the controller is similar to the model developed for 
actuator dynamics with the smooth transition between the two states Vo and Vmax,.
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Figure 7.18: Block diagram of feedforward part of combined controller.  

 The controller is given by the following equations, with capital letters used to 
represent variables in the Laplace domain: 

 ( ) ( ) ( ) ( )ff a bU s U s U s W s  ( 7-31) 

where

,( ) ( ) ( )a FF aU s G s D s  ( 7-32) 

,( ) ( ) ( )b FF bU s G s D s  ( 7-33) 

 ( ) ( ) ( )tW s G s V s  ( 7-34) 

and the transfer functions GFF,a(s), GFF,b(s), and Gt(s) are given by 

, ,( ) ( )FF a FF VoG s G s  ( 7-35) 

, , ,( ) ( ) ( )FF b FF Vmax FF VoG s G s G s  ( 7-36) 

1/( )
1

max
t

t

VG s
s

 ( 7-37) 

The two individual feedforward terms, GFF,Vo(s) and GFF,Vmax(s), are determined 
independently using the method of modified inverse dynamics (Section 7.2.2), as given 
by
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 ( 7-38) 

where xuVop  and xuVmaxp are the poles for the cases of v = Vo and v = Vmax, respectively; n
is the number of poles in each model; and Vo  and Vmax are the values of the parameter 

as defined in the method of modified inverse dynamics, Section 7.2.2) for each of the 
individual controllers, GFF,Vo(s) and GFF,Vmax(s), respectively.    

7.4.3 Experimental verification 

 The algorithm developed for the feedforward part of the compensator was verified 
experimentally using the MR damper specimen subjected to changes on the applied 
voltage. The reference or desired displacement was the same as in the previous cases in 
this chapter, i.e., a bandlimited white noise with a bandwidth of 5 Hz and an RMS of 0.11 
in (2.85 mm). Simultaneously a square voltage signal having 0.5 Hz frequency and 
changing from 0 to 5 V was applied to the MR damper. Figure  7.19 shows the results 
from the experiment. As can be observed, the measured displacement matches very well 
the desired displacement. Figure  7.20 shows a close-up view of the response during a 
time interval where there is a change in the voltage applied to the damper. The measured 
displacement tracks the desired displacement very well. The figure also shows the 
command displacement calculated by the compensator, which does not possess 
discontinuities at the point of voltage change, i.e., has a smooth or bumpless transition.   
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Figure 7.19: Test results of feedforward controller for bandlimited white noise reference 
signal and variable input voltage to MR damper 
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Figure 7.20: Test results of feedforward controller for bandlimited white noise reference 
signal and variable input voltage to MR damper (close-up view). 

 Figure  7.21 shows x-y plots of the response. As can be seen, the plot of measured 
displacement versus commanded displacement is very close to a straight line, with a 
slope of one. The error norm for the cases with and without compensation was 2.36% and 
23.3%, respectively, demonstrating the good performance of the compensator.  
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Figure 7.21: Test results of feedforward controller for bandlimited white noise reference 
signal with variable input voltage to MR damper (x-y plots). 
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7.5 Summary
In this chapter, models of actuator dynamics obtained in previous chapters are 

used to develop model-based strategies to compensate for the effects of actuator 
dynamics.  

First, a feedforward controller is considered. The compensator is based on the 
inverse of the plant dynamics modified to make the controller realizable. The algorithm 
provides compensation for both magnitude and phase effects. Experiments conducted 
demonstrate the good performance of the compensator, which significantly reduces the 
tracking errors. 

A combined feedback-feedforward compensator was then investigated. This 
compensator combines the good features of both feedforward and feedback strategies. 
This controller reduces the effect of differences between the estimated model and the 
actual plant response over the performance of a feedforward-only compensator. This 
combined feedback-feedforward compensator was verified experimentally; test results 
demonstrate that this technique produces very good results and improves over the 
feedforward-only compensator.  

A method for modeling and compensating actuator dynamics for cases in which 
the plant dynamics exhibit significant changes was presented. The algorithm was 
implemented for the case of an MR damper with variable input voltage. Test results show 
that the compensator performs very well and is able to provide accurate compensation for 
actuator dynamics, even when the properties of the MR damper specimen change 
significantly. As will be shown in the next chapter, this compensation approach facilitates 
real-time hybrid testing of semi-actively controlled structures employing MR dampers.  
This approach also provides a framework for compensating actuator dynamics when 
testing of specimens that exhibit severe changes in material properties (e.g., stiffness and 
strength degradation). 
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CHAPTER 8  

REAL-TIME HYBRID TESTING OF A SEMIACTIVELY 

CONTROLLED STRUCTURE 

 The use of controllable, or semiactive, dampers is increasingly accepted as a 
means to reduce the response of civil engineering structures due to severe earthquakes 
and winds. One of the most studied classes of controllable dampers is the 
magnetorheological (MR) fluid damper.  MR dampers offer the reliability of passive 
devices, yet maintaining the versatility and adaptability of fully active systems (Spencer 
et al., 1997). MR dampers, as with most semiactive devices, are intrinsically nonlinear; 
therefore, developing control strategies that can optimally reduce structural responses is 
challenging (Dyke, 1996). Real-time hybrid testing can be extremely helpful for verifying 
control strategies for structures that use such devices. This chapter presents an application 
of the real-time hybrid testing technique to evaluate the response of a semiactively 
controlled structure that incorporates an MR damper. The purpose of this experiment is to 
demonstrate how the real-time hybrid testing technique and the model-based 
compensation approach developed in this study can be used to efficiently and accurately 
evaluate the response of a structure incorporating a nonlinear rate-dependent semiactive 
control device. Therefore, no efforts have been placed in this study to develop or improve 
existing structural control algorithms.   

8.1 Structural control

8.1.1 Overview of structural control 

In recent years, significant research attention has been devoted to the application 
and use of structural control devices to reduce the response of civil engineering structures 
under strong earthquakes and winds. Today, we have many such devices installed in a 
wide variety of structures (Soong & Spencer, 2002). Passive and active control systems 
represent the two ends of the spectrum in the use of protective systems for civil structures 
(Spencer et al., 1997). Passive control systems are limited because they cannot adapt to 
varying load conditions. Therefore, while passive systems may perform well under the 
conditions for which they were designed, their efficiency can be limited in other 
situations (Dyke et al., 1997). Active control systems offer the ability to adapt to 
changing conditions of both structure and external excitation. However, even though 
active control systems have been designed and installed in full-scale structures, the 
engineering community has yet to fully embrace this technology (Yang et al., 2002). This 
lack of acceptance is in part due to questions regarding cost effectiveness, power 
requirements, reliability, and the potential that active control systems have to destabilize 
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the structure (Yang et al., 2002). Semiactive control devices offer an attractive alternative 
in structural control by providing the adaptability of active control devices while 
retaining the reliability of passive devices. A semiactive control device is defined as one 
that cannot increase the mechanical energy of the controlled system (i.e., including both 
the structure and the control device), but has properties that can be dynamically varied. 
Because semiactive control devices are inherently stable (in a bounded input – bounded 
output sense), high authority control strategies may be designed and implemented, which 
may result in performances that can even surpass that of actively controlled structures 
(Dyke et al., 1996).

8.1.2 Control algorithm for structure with MR damper 

 Structural control algorithms based on full-state feedback (i.e., displacements and 
velocities at every degree-of-freedom) are difficult to implement in practice for full-scale 
applications. On the other hand, accelerometers have the advantage that they can provide 
reliable and inexpensive measurements of the absolute acceleration at arbitrary locations 
of the structure. Dyke et al. (1996) proposed a type of clipped-optimal controller based on 
acceleration feedback for controlling a structure with an MR damper used as a semiactive 
control device. This control strategy was verified both numerically (Dyke et al., 1996) 
and experimentally (Dyke et al., 1997) using a three-story scaled building model 
equipped with an MR damper and subjected to ground excitation, as shown in Figure  8.1. 
Results demonstrated that the MR damper and the control strategy were effective in 
reducing the structural response over a wide range of seismic excitations. Because the 
semiactive system had the ability to adjust its properties to more effectively control the 
structure, the proposed clipped-optimal control controller performed better than the two 
extreme cases of the damper used as a passive device (i.e., no input voltage and constant 
maximum input voltage to the damper). Furthermore, the semiactive control system was 
capable of surpassing the performance of a linear active control system, while employing 
only a small fraction of the power required by the active controller.

Clipped-optimal control based on acceleration feedback 

 In this section, the clipped-optimal control algorithm based on acceleration 
feedback that was proposed by Dyke et al. (1996) is reviewed and the design 
methodology for the controller is provided. 

 Consider a structure that is subjected to ground excitation and controlled with a 
single MR damper (see Figure  8.1). The semiactive controller is assumed to be adequate 
to keep the response of the structure in the linear range, therefore, the equation of motion 
of the system can be written as 

gf x
f

z Az B E
y Cz D v

 ( 8-1) 
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Figure 8.1: Experimental setup of the building model with an MR damper installed (Dyke et 
al., 1996).  

where gx  is the ground acceleration, f is the measured damper force, z is the state vector, 
y is the vector of measured outputs, and v is the measurement noise vector. The 
measurements used for feedback are the acceleration at select points on the structure, ax ,
the displacement of the MR damper, x, and the measured control force, f,  provided by the 
MR damper. The vector of output responses from the system is   

x
ax

y  ( 8-2) 

 In the clipped-optimal controller, the approach is to append a force feedback loop 
to induce the MR damper to produce approximately a desired control force, fc. A linear 
optimal controller, Kc(s), is designed using the H2 / LQG method to determine the desired 
control force, fc, based on the measured response vector, y, and the measured control 
force, f, as expressed by 

1 ( )c cf s
f
y

KL L  ( 8-3) 

x, f

gx

1ax

2ax

3ax

Control
Computer 

Current
Driver
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where L  { }  and 1
L  { }  are the Laplace transform and the inverse Laplace transform, 

respectively. 

 The force generated by the MR damper cannot be commanded directly, as it 
depends on the relative structural displacement and velocity at the point of attachment of 
the damper (Dyke et al., 1997). However, the voltage, v, and, therefore, the current to the 
MR damper, can be directly controlled to induce the damper to generate approximately 
the desired control force. The algorithm for selecting the input voltage to the MR damper 
is given by the following equation (Dyke et al., 1996) 

max cv V H f f f  ( 8-4) 

where Vmax is the maximum voltage applied to the current driver, and H{·} is the 
Heaviside step function.  

 Using the separation principle, the LQG controller can be designed as an LQR 
(Linear Quadratic Regulator) controller with full-state feedback and a Kalman filter, 
which provides the estimates of the states based on the measurements. For the H2 / LQR 
method, an infinite horizon performance index is selected, which is given by 

2

0

1lim T
cJ E r f dtCz Q Cz  ( 8-5) 

where Q and r are the weights on the output and control, respectively. The Kalman filter 
equations for the semiactive controlled structure with the MR damper are given by 

ˆ ˆ ˆ
ˆ ˆ

f
f

z = Az + B + L(y - y)
y = Cz D

 ( 8-6) 

where ẑ  is the estimated state and L is the Kalman gain. Assuming the measurement 
noise to be identically distributed, statistically independent Gaussian white noise 
processes, the ratio of the spectral densities of measurement noise, (

i iv vS ), to process 
noise (

g gx xS ) is defined as 

i i

g g

v v

x x

S
S

 ( 8-7) 

Both the LQR gain matrix K and the Kalman filter gain L can be determined after 
solving the corresponding algebraic Ricatti equations. The desired control force 
determined using the LQG controller is given by 

ˆcf K z  ( 8-8) 
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Figure 8.2: Block diagram of semiactive control system. 

 Figure  8.2 shows a block diagram of the clipped-optimal, semiactive control 
system. The attractive feature of this control strategy is that the feedback for the 
controller is based on acceleration measurements, which are readily available, therefore, 
making the controller implementable for full-scale applications.  

8.2 Semi-actively controlled structure  

8.2.1 Test structure 

 The test structure considered in this study is a full-scale version of the structure 
used by Dyke et al. (1996, 1997). This structure is a three-story steel building which has 
an MR damper installed between the ground and the first floor (see Figure  8.1). The 
building is assumed to be equipped with a number of sensors to provide feedback for the 
control algorithm. These measurements include the absolute acceleration at each of the 
three floors, the displacement of the damper, and the force applied by the damper to the 
structure (i.e., control force).  

 The structure tested by Dyke et al. (1996, 1997) was a scaled model of the 
prototype building described by Chung et al. (1989). The scaling of the structure was 
done to conduct the experiments on a small-scale shaking table. However, since the 
substructure real-time hybrid testing technique is used in this study, there is no need to 
use a scale model of the entire building. Small-scale physical specimens can be used with 
the appropriate scaling factors applied only to the physical component. The full-scale 
properties of the structure were obtained using the parameters of the small-scale model 

gf x
f

z Az B E
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ˆ ˆ ˆ
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and scaling factors reported by Dyke (1996). These scaling factors are: length = 7.25, 
time = 5, mass = 206, force = 60, and acceleration = 0.29.  

 The dynamic response of the semiactively controlled structure is given by the 
equation of motion

s s s s s s gG f L xM x C x K x M  ( 8-9) 

where the numerical values of the structural parameters are 

2

115.65 0 0 41.36 11.82 0
0 115.65 0 lb-s /in,    11.82 23.63 11.82 lb-s/in
0 0 115.65 0 11.82 11.82

56720 32330 0 1
32330 64750 32330 lb/in,    0 ,    

0 32330 32330 0

s s

s s sG L

M C

K
1
1
1

 ( 8-10) 

The matrices corresponding to the state-space representation of the system are given by 

1 1 1

1 1 1

,    ,    

,
1 0 0 0 0 0 0

s s s s s s s

s s s s s s

G L

L

0 I 0 0
A B E

M K M C M

M K M C M
C D

 ( 8-11) 

The natural frequencies of the structure corresponding to the first, second, and third mode 
are 1.09 Hz, 3.17 Hz, and 4.74 Hz, respectively, with corresponding damping ratios of 
0.31%, 0.62%, 0.63%, respectively. 

 The LQG controller was designed using the same parameters as Dyke et al. 
(1996) in which the Q matrix was selected to weight the absolute acceleration of third 
floor (i.e., all elements of Q equal zero, except for Q33 = 1), r = 10-17, and 

0.02
i i g gv v x xS S . Calculation of the LQR and Kalman gains (i.e., K and L,

respectively) was performed using the control toolbox in MATLAB. 

8.2.2 MR Damper  

 The MR damper specimen used for the experiments is the same one as described 
previously in this report. Because this is a small-scale damper, a length scale factor, SL = 
7.25, and force scale factor, SF = 60, are used during the real-time hybrid experiments to 
relate the response of this component to the rest of the structure.  
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Model of the MR damper 

 A model that represents the behavior of the MR damper (including voltage 
changes) is necessary to predict the behavior of the semiactively controlled structure and 
allow comparison with the results from the real-time hybrid experiments. The Bingham 
model (presented in Chapter 5) predicts reasonably well the force-displacement behavior 
of the MR damper; however, the force-velocity response has considerable errors, 
especially for velocities near zero (Spencer et al., 1997). When the velocity is small and 
presents frequent sign changes, the damper force predicted by the model fluctuates 
significantly (due to the friction element in the model). Therefore, although this model 
may be adequate for response analysis; it is not adequate for control analysis (Spencer et 
al., 1997). An alternative model, which is simple to implement and predicts well the 
behavior of the MR damper, is depicted in Figure  8.3 (Spencer et al., 1997).  

Figure 8.3: Bouc-Wen model of MR damper. 

 This mechanical idealization is based on the Bouc-Wen model where the damper 
force is given by 

0 0 0f c x k x x z  ( 8-12) 

and the evolutionary variable z of the Bouc-Wen model is governed by 

1( ) ( ) ( ) ( ) ( ) ( ) ( )n nz t x t z t z t x t z t Ax t  ( 8-13) 

The parameters , , n, and A control the shape of the hysteretic loop. Similar to the 
model presented by Spencer et al. (1997), the effect of changes in the voltage applied to 
the current driver (and, therefore, in the magnetic field in the MR damper) are 
represented using the following expressions 

a bu u  ( 8-14) 

0 0 0 0a bk k u k k u  ( 8-15) 

0 0 0 0a bc c u c c u  ( 8-16) 

x

c0

k0

Bouc-Wen

f
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where u is the output of a first-order filter introduced to model the dynamics of the MR 
damper and is given by  

u u v  ( 8-17) 

 The parameters for the Bouc-Wen model were determined using nonlinear, least-
squares parameter estimation to fit experimentally measured response of the damper. The 
experimental data included sinusoidal and bandlimited white noise tests with constant 
input voltage applied to the damper (0 and 5 V). The tests were similar to the ones 
described in Section 5.3.2 for the 0 V case, as well as tests in which the input voltage was 
varied during the experiment (between 0 and 5 V).  The resulting parameters of the model 
are presented on Table  8.1.  

Table 8.1: Parameters for MR damper model 

Parameter Value Unit 

 a 0.190 lb/in 

 b 1.043 lb/in-V 
C0a 4.308 lb-s/in 
C0b 4.070 lb-s/in-V 
K0a 6.496 lb/in 
K0b 8.243 lb/in 
x0 0 in 

2.716 in-2

2.713 in-2

A 10346 - 
N 2 - 

57 s-1

 Comparison between the responses obtained from the Bouc-Wen model and the 
experiment is presented in Figure  8.4 (for a 5 Hz sinusoidal displacement) and in Figure 
 8.5 (for a 5 Hz bandlimited white noise displacement). The input voltage to the MR 
damper was set to change from 0 to 5 V at a frequency of 0.5 Hz. As can be observed, the 
predictions by the model match very well with the experimentally measured response. 
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Figure 8.4: Comparison between response from the Bouc-Wen model and experimentally 
measured data (5 Hz sinusoidal displacement). 
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Figure 8.5: Comparison between response from the Bouc-Wen model and experimentally 
measured data (5 Hz bandlimited white noise displacement). 

8.3 Real-time hybrid experiments 
 Real-time hybrid testing is used to experimentally verify the response of the 
semiactively controlled building. As shown in Figure  8.6, the structure is divided into two 
substructures: the MR damper, which is tested experimentally (physical substructure) and 
the rest of the structure, which is modeled numerically (numerical substructure).    
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Figure 8.6: Schematic of real-time time hybrid experiment of a semiactively 
controlled structure. 

 The structure was subjected to the NS component of the 1940 El Centro 
earthquake. The ground acceleration record is shown in Figure  8.7. An amplitude scale 
factor of 0.8 was used. Compensation for actuator dynamics was performed using the 
model-based approach presented in Chapter 7. The parameters for the feedforward 
compensator were the same as those used in the previous chapter. The feedback gain of 
the combined compensator was set to zero, i.e., providing feedforward compensation 
only. The model of the structure, structural control algorithms, and compensation for 
actuator dynamics were implemented in SIMULINK using continuous time systems. 
Numerical integration was performed using the fourth-order Runge-Kutta solver of 
SIMULINK with a fixed time step of 0.0005 sec (i.e., 2,000 Hz sampling frequency). 
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Figure 8.7: Ground acceleration record (NS component of the 1940 El Centro earthquake). 
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 During the real-time hybrid experiments, all of the states (displacements, and 
velocities at every degree-of-freedom) and accelerations are available for feedback to the 
LQG controller (because they can be calculated numerically at each time step). However, 
using all of these parameters as available measurements is not realistic for the full-scale 
implementation. Therefore, the same measurements that were used by Dyke et al. (1996, 
1997) during the shaking-table experiments (i.e., absolute accelerations, damper force, 
and damper displacement) are used as feedback to the controller during the real-time 
hybrid experiment. The remaining states of the system required by the controller are 
estimated using the Kalman filter. 

 Four different cases of structural control are considered: (a) uncontrolled
structure: structure without MR damper, (b) passive-OFF case: MR damper used as a 
passive device with zero input voltage, (c) passive-ON case: MR damper used as a 
passive device with constant maximum input voltage (i.e., 5 V), and (d) controlled case: 
voltage to MR damper varies during the experiment as determined by the clipped-optimal 
control algorithm.  

 The response of the structure without the MR damper (uncontrolled case), was 
determined analytically using only numerical simulation. For the other three cases, which 
use the MR damper (passive-OFF, passive-ON, and clipped-optimal control), the 
response of the structure was determined from real-time hybrid experiments. Because the 
significant responses occur during the initial portion of the earthquake, only the first 20 
seconds of the response were considered. For each case, the response of the building was 
also determined numerically using the Bouc-Wen model of the MR damper with the 
parameters presented previously.  

8.3.1 Experimental results 

The results from the real-time hybrid experiments as well as the analytically 
predicted responses are presented in Figures 8.8, 8.9, and 8.10. The hysteretic behavior of 
the damper for the clipped-optimal control case is shown in Figure  8.11. As can be 
observed from the time histories and force-displacement/velocity plots, good agreement 
is found between the experimental and analytical results. Some small discrepancies are 
assumed to be caused by differences between the model used for the MR damper and the 
actual specimen. 
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Figure 8.8: Results from real-time hybrid experiment for passive-OFF case. 
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Figure 8.10: Results from real-time hybrid experiment for clipped-optimal case. 
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Figure 8.11: Results from real-time hybrid experiment for clipped-optimal case (force-
displacement and force-velocity plots). 

8.3.2 Performance of model-based actuator dynamics compensation 

 The model-based compensator for actuator dynamics performed very well during 
the real-time hybrid experiments for both the case of constant and variable input voltage 
to the MR damper. Figure  8.12 shows a comparison between the desired or target 
displacement and the measured displacement for the case of variable voltage to the 
damper (i.e., clipped-optimal case). As can be observed, except for some small amplitude 
sensor noise existing on the measured displacement, the two displacements are almost 
indistinguishable, demonstrating the good performance of the compensator.  
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Figure 8.12: Results from model-based compensator during  
the real-time hybrid test of clipped-optimal case. 

 The effect of actuator dynamics on real-time hybrid experiments (i.e., the 
introduction of an equivalent negative damping) is more severe on systems with low 
structural damping than in systems with high damping. For this reason, some researchers 
have conducted real-time hybrid testing of systems with damping devices (e.g., MR 
dampers) without using compensation (see Wu et al., 2006). When the natural 
frequencies of the test structure are small or the forces generated from the test specimen 
are small compared to the forces from the numerical substructure, the effect of actuator 
dynamics is in general also small. Figure  8.13 shows the results of a real-time hybrid test 
for the passive-OFF case conducted without using compensation for actuator dynamics. 
Comparison of this figure with the one for the case with-compensation (Figure  8.8) 
shows that the two results are almost identical, therefore, the effect of actuator dynamics 
is very small for this case where the damper forces are small. However, when the forces 
from the test specimen are large, the effects of actuator dynamics become significant 
even for high damping devices. Figure  8.14 shows the results from the real-time hybrid 
test for the passive-ON case conducted without using actuator dynamics compensation. 
As can be seen, the results without compensation are poor (with significant oscillatory 
behavior) and very different from the ones using the compensation (Figure  8.9). These 
results demonstrate that accurate actuator dynamics compensation is necessary even 
when testing systems with high damping.  
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Figure 8.13: Results from real-time hybrid experiment without actuator dynamics 
compensation for passive-OFF case. 
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compensation for passive-ON case.  
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8.4 Summary
 In this chapter, real-time hybrid testing was used to evaluate the response of a 
structure equipped with an MR damper. The damper was used for both passive and 
semiactive control.  

 Experimental results correlated well with predictions from numerical simulations 
using a model of the MR damper. Some small differences between the two responses 
were attributed to differences existing between the estimated model of the MR damper 
and the actual specimen, highlighting the advantages of the real-time hybrid experiment 
where the response is obtained directly from the physical specimen. 

 Soong and Spencer (2002) recognized that in order for innovative vibration 
control systems to be widely accepted in structural engineering, analytical, and 
experimental techniques to realistically assess the performance of theses devices and their 
impact on the structural system are needed. The experiments presented in this chapter 
demonstrate that real-time hybrid testing provides an efficient and accurate way of testing 
devices for vibration control including passive and semiactive devices. This testing 
method allowed evaluation of the response of the device (MR damper), the control 
strategies, and the performance of the overall structural system. By using the 
substructuring technique, the overall cost and time of the experiment was greatly reduced. 
Real-time hybrid testing also allows investigation of the response a structure with an MR 
damper for cases when the structural system undergoes inelastic deformation. Therefore, 
this testing technique allows for assessment of the applicability and robustness of 
controllers designed based on a linear model of the structure, to cases of nonlinear 
response. Furthermore, since the MR damper does not suffer damage during the 
experiment, real-time hybrid testing allows parametric studies of the structural system to 
be conducted. 
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CHAPTER 9 

MODEL-BASED FILTERING IN HYBRID TESTING 

 In hybrid testing, the experimental restoring forces are measured and fed back in 
the solution of the equations of motion; thus, errors have a direct and cumulative effect 
on the computed displacement response. Indeed, these errors can propagate throughout 
the entire test, adversely affecting the results, and in some cases, even producing damage 
of the test specimen (Mahin et al., 1989).  The hybrid test method is, therefore, more 
sensitive to experimental errors than are other methods in which a predefined 
displacement command history is used (i.e., quasi-static and shake-table testing). 
Techniques to reduce the impact of experimental errors will greatly improve this testing 
method. This chapter presents background information about the experimental errors 
encountered in hybrid testing, initial studies of a filtering technique developed for 
minimizing random errors in hybrid testing (based on a widely used method for linear 
filtering), and analyses and experiments conducted to verify the method.  

9.1 Experimental errors 
 Common sources of experimental errors encountered in hybrid testing include: 
inaccurate displacement control of the hydraulic actuators, flexibility in the test setup and 
reaction frame, calibration errors in the instrumentation, noise generated in the 
instrumentation and analog to digital converters, precision errors due to limited range of 
the instrumentation, frictional force in the actuator connections, force relaxation, and 
strain-rate effects. 

 The effect of the errors in hybrid testing is, in general, different, depending on 
whether the errors are systematic or random in nature. Systematic errors are much more 
severe than random errors. Systematic position control errors in the actuators can be due 
to overshoot and undershoot. Systematic overshooting numerically dissipates energy in 
the simulation, resulting in an apparent high-system damping, while systematic 
undershooting numerically adds energy to the system, resulting in a negative damping, 
which can even cause system instability (Mahin et al., 1989).  

 Stiff structures may introduce large force errors at each step, even if the 
displacements are fairly accurately controlled, as small errors in the displacement 
produce large force errors. In cases involving stiff multi-degree-of-freedom systems, 
force fluctuations can occur due to the difficulty in accurately controlling the 
displacements (Thewalt & Mahin, 1994).

 Force relaxation and strain-rate effects also produce systematic errors in the 
restoring force measurement, especially when yielding occurs. Continuous and real-time 
hybrid testing have been used to reduce these effects. 
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 Typically the instrumentation used in a test facility has limited precision. If the 
measured quantity is small compared to the precision of the instruments used, the results 
will be inaccurate. When the physical substructure involves quantities with different 
orders of magnitude (e.g., displacement and rotation), assuring that all the quantities are 
precisely controlled and measured becomes challenging. The MOST experiment (Spencer 
et al., 2004) and tests conducted by Blakeborough et al. (2001) have demonstrated the 
difficulty of imposing simultaneously a displacement and a rotation using two coupled 
actuators. This limitation potentially imposes a severe constraint on the types of tests and 
scales that can be conducted at a testing facility. 

 Several techniques have been used to minimize the effect of errors in hybrid 
testing, e.g., improving displacement control, correcting the measured restoring force for 
the error between the target and measured displacements using the initial elastic stiffness 
(so-called I-modification), adding numerical damping (especially in the higher modes) to 
offset the effect of spurious negative damping, and the use of classical lowpass filters to 
reduce high frequency noise in the measurements. However, some intrinsic noise is 
unavoidably present on the measurements. Techniques for reducing the effect of these 
errors will allow increasing the accuracy and types of tests that can be conducted.  

9.2 Model-based filtering
 Filtering can be viewed as a procedure for noise removal from a measured process 
to reveal or enhance information about some quantity of interest. All measured data 
includes some degree of noise from various possible sources. Often, classical filters (e.g., 
lowpass, bandpass, highpass, or bandreject filters) can be employed to achieve an 
acceptable result in basic problems. In more complex problems, however, these types of 
filters fall short of achieving an optimal or best estimate of the desired signal. To achieve 
an optimum linear filtering solution, model-based filters, such as the Kalman filter, may 
be used (Zaknich, 2005). Classical filters have the disadvantage of introducing a phase 
lag on the filtered results, which is undesirable in pseudodynamic and real-time hybrid 
testing.

9.2.1 The Kalman filter 

 The Kalman filter was first introduced for discrete-time processes by Kalman 
(1960), and later extended for the continuous-time case (Kalman & Bucy, 1961). The 
Kalman filter implements a predictor-corrector type estimator that, under the assumption 
of the system being linear and the excitation and measurement noise being Gaussian 
random process, is optimal in the sense that it minimizes the variance of the estimated 
error covariance in the process (Stengel, 1986). The Kalman filter takes into account 
system dynamics and inputs, and incorporates measurements and measurement-error 
statistics into the estimate (Stengel, 1986). The Kalman filter has been used in a broad 
range of applications and represents the most widely applied result to emerge from the 
state variable approach of “modern control” theory (Zaknich, 2005). In this study, the 
Kalman filter is used to filter experimental errors in hybrid testing. 
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Kalman filter formulation 

 Consider a linear dynamical system with noise that is represented using the 
following state-space model 

z Az Bu Gw
y Cz Du v

 ( 9-1) 

where w and v are the process (input) and measurement (output) noises, respectively, 
considered white, zero-mean Gaussian random processes and specified by their spectral 
density matrices, Q(t) and R(t), respectively, which are defined as follows 

E[w(t) wT( )]  = Q(t) (t- ) ( 9-2) 

E[v(t) vT( )]  = R(t) (t- ) ( 9-3) 

 The Kalman filter has the general structure of a state estimator, producing an 
estimate, ẑ , of the actual state, z, based on the noisy measurements, y. The equations of 
the estimator are formed by including a model of the system dynamics (represented by 
the A and B system matrices) and by feeding back the estimation error signal (difference 
between measured and estimated outputs). The structure of the Kalman filter is given by 
the block diagram shown in Figure  9.1. 

Figure 9.1: Kalman filter block diagram. 

 Notice that the matrix D has been omitted (i.e., D = 0), because in the proposed 
application the input to the system does not have a direct path to the measurements. The 
equation for the estate estimator is then given by  

ˆ ˆ ˆz = Az + Bu + L(y - y)  ( 9-4) 
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where L is the estimator gain selected to achieve a satisfactory estimation performance. 
Analyzing the right-hand side of this equation, the first and second terms give the state 
estimate (prediction), while the last term, called the corrector term, represents how much 
to correct the estimated state based on the measurement. After grouping and rearranging 
terms, the following estimator equations are obtained: 

ˆ ˆ

ˆ ˆ

e e

e

u
z = A z + B

y
y = C z

 ( 9-5) 

where

e e eA = (A - LC ), B = [B L] ( 9-6) 

 In the Kalman filter, the matrix gain, L, is selected to minimize the error 
covariance by properly blending prior information and current measurements. Given 
knowledge of the system, its inputs, and its uncertainties, minimizing this error 
covariance amounts to minimizing the mean-square estimation error, which is assumed to 
make ẑ  most likely z (Stengel, 1986). The Kalman filter is an optimal linear estimator if 
the stochastic distributions are Gaussian (Zaknich, 2005).

The Kalman filter gain is calculated using the following equation (Stengel, 1986) 

1( ) ( ) ( ) ( )Tt t t tL P C R  ( 9-7) 

where the error covariance estimate, P(t), is defined as 

ˆ ˆ( ) ( ) ( ) ( ) ( ) Tt E t t t tP z - z z - z  ( 9-8) 

and is calculated from the following Riccati equation 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T Tt t t t t t t t t t t t tP A P P A G Q G P C R C P   ( 9-9) 

 For the case of time-invariant systems with stationary noises, ( )tP 0 , and the 
Kalman filter gain becomes time invariant and can be precomputed based on the noise 
statistics, Q and R.

 Estimates of the measurement noise covariance may be obtained by examining 
the response of the sensor devices prior to operation of the filter. The process noise can 
include input noise and system uncertainties; therefore, the process noise covariances are 
difficult to obtain by direct measurement, and some tuning is usually required (Juang, 
1993). However, the filter gain, L, is proportional to the relative magnitude of the process 
and measurement noises; therefore, the filter performance can be tuned by selecting an 
appropriate value for their relative magnitudes, even though the individual parameters are 
not precisely known. 
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 Typically, the Kalman filter is implemented for discrete-time systems in a 
predictor-corrector way. The equations of the discrete-time system are the following: 

1 1 1k k k k

k k k

z Az Bu Gw
y Cz v

 ( 9-10) 

The predictor-corrector implementation considers a prediction, ˆ kz  of the state estimation 
before the measurements y are considered, and a corrected state estimate ẑ  that accounts 
for the measurements. The implementation of the filter for a time-invariant system is 
given by the following procedure (Stengel, 1986): 

Initialization: 

0 0

0 0 0 0 0

ˆ

ˆ ˆ( )( )T

E

E

z z

P z z z z
          ( 9-11) 

For k = 1, 2,… 

1. State estimate prediction:  1 1ˆ ˆk k kz = Az + Bu        ( 9-12) 

2. Covariance estimate prediction: 1 1
T T

k k kP AP A GQ G       ( 9-13) 

3. Filter gain computation:  
1T T

k k k kL P C CP C R       ( 9-14) 

4. State estimate update:  ˆ ˆ ˆk k k k kz z L y Cz       ( 9-15) 

5. Covariance estimate update: k k kP I L C P        ( 9-16) 

 At any step, the estimate of the output is given by ˆ ˆk ky = Cz . Similar to the 
continuous case, if the noises are stationary, the error covariance and Kalman filter gain 
do not change with time and can be precomputed. 

9.2.2 Model-based filtering in hybrid testing 

 When standard filters (e.g., lowpass filters) are used to remove random noise on 
the measured force at discrete time steps, there is an unavoidable time lag in the filtered 
response resulting from the filter dynamics. This time lag is problematic in hybrid testing, 
because the algorithm requires the forces at the current time step instead of the forces 
corresponding to some previous step. 

 A framework has been developed in this study for filtering noise in the measured 
restoring forces (and measured displacements) during hybrid experiments using model-
based estimation and the Kalman filter. A schematic of the filter implementation is shown 
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in Figure  9.2. The Kalman filter receives the measured displacements and restoring forces 
(with noise), xm and Rm, respectively, and the input to the system (i.e., ground 
acceleration, gx ) and produces an estimate of the restoring forces, with noise reduced R̂ .

Figure 9.2: Application of Kalman filtering in hybrid testing. 

 The equations of the Kalman filter for hybrid testing for the case of linear 
response are given by 

ˆ ˆ

ˆ
ˆ ˆˆ

gx
e e

e

z = A z + B
y

x
y = = C z

R

  ( 9-17) 

where
TT Tˆ ˆ ˆz x x  and 

TT Tm my = x R  is the vector with the measured 

displacements and restoring forces from the physical substructure. The Kalman filter 
matrices are given by 

exp
e

e e e e

I 0
A = (A - LC ), B = [B L], C

K 0
  ( 9-18) 

in which exp
eK  is the initial elastic stiffness of the physical substructure.
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9.3 Verification experiments 

9.3.1 The MOST experiment 

 The Multi-Site Online Simulation Test (MOST) was a full-scale pseudodynamic 
experiment conducted in multiple geographical locations on July 30, 2003 (Spencer et al., 
2004). The structure used in the experiment (Figure  9.3) represents a two-bay, single-
story steel frame, with one pinned beam-column connection at the right and moment 
connections for the other columns. 

Figure 9.3: Structure tested in the MOST experiment. 

 The structure was tested using the pseudodynamic substructuring technique. The 
structure was divided into three substructures, as illustrated in Figure  9.4. The left and 
right columns were tested at the University of Illinois at Urbana-Champaign (UIUC) and 
the University of Colorado at Boulder (CU-Boulder), respectively, and the rest of the 
frame was numerically simulated on a computer at the National Center for 
Supercomputing Applications (NCSA). 

gx

Pinned Connection Moment Connections 
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Figure 9.4: Substructures for the MOST experiment. 

The Mini-MOST 

 The Mini-MOST is a small-scale version of the MOST experiment. There are two 
versions of this system, referred to here as Mini-Most-1 (one degree-of-freedom) and 
Mini-Most-2 (two degrees-of-freedom). The systems have a single column made of steel 
plate (which is the test specimen), stepper motors to impose the target displacements, and 
LVDTs and load-cells to measure the displacements and restoring forces, respectively. 
The two Mini-MOST systems are shown in Figure  9.5. 

Figure 9.5: Mini-MOST systems. 

 These two small-scale systems provide complete experimental setups for 
conducting simple pseudodynamic experiments with linear physical substructures with 
one and two degrees-of-freedom. Because the left column of the MOST structure is 
rigidly connected to the beam, the Mini-Most-2 has two degrees-of-freedom, i.e., 
displacement and rotation at the top of the column. To impose the two degrees-of-
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x1

1



160

freedom to the Mini-Most-2 substructure, two stepper motors are used, as shown in 
Figure  9.6. 

Figure 9.6: Mini-Most-2 physical substructure. 

 The response of the Mini-Most-2 physical substructure (i.e., displacement, 
rotation, lateral force, and moment) is calculated with respect to an arbitrary point 
denoted here as control point (see Figure  9.6).  Assuming that the rotation,  is small and 
that no deformation is present above the control point, the transformation between the 
global degrees-of-freedom, Txx , and the actuator degrees-of-freedom, 

Tactactact xx 21x , is given by

 xact = T x  ( 9-19) 

where the transformation matrix T, is given by 

2

1

1
1

d
d

T  ( 9-20) 

 During the pseudodynamic experiment, the target displacements, x, are 
transformed to actuator displacements, xact, and applied by the actuators. The measured 
forces at each actuator, 

T

1 2
act act actr rr , are then transformed to the restoring forces 

in global degrees-of-freedom,  TF Mr , by 

 r = TT r act  ( 9-21) 

 For the Mini-Most-2 physical substructure, the two stepper motors are located at 
distances d1 = 11.5 in (0.292 m) and d2 = 1.5 in (0.0381 m) from the control point, see 
Figure  9.6. 
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9.3.2 Application of the Kalman filter to the Mini-MOST experiment 

 The Mini-MOST experiment provides a very good test bed for the application of 
the Kalman filter in hybrid testing. The substructuring technique is used with the Mini-
Most-2 (i.e., left column) being the physical substructure, while the rest of the frame (i.e., 
center frame and right column) is modeled numerically. The Mini-Most-2 is selected as 
the physical substructure because it possesses two degrees-of-freedom of different 
magnitude (i.e., displacement and rotation) that are applied using a set of two coupled 
actuators. Experiments performed using the Mini-Most-2 have shown that unless the 
properties of the structure are such that the magnitude of both displacement and rotation 
are adequate in size, the experimental results disagree significantly with the analytical 
solution, as will be shown later. 

9.3.3 Initial experiments 

Properties of the Mini-Most-2 (stiffness) 

 The stiffness of the Mini-Most-2 was evaluated experimentally by first 
commanding a 12 mm (0.47 in) amplitude triangular signal as the displacement with no 
rotation, followed by a 0.025-rad (1.43-deg) amplitude triangular signal as the rotation, 
with no displacement. Figure  9.7 shows the force vs. displacement plots as well as the 
results from a linear least-squares fit. The response of the specimen is essentially linear, 
although some nonlinear stiffening effects are observed at large amplitudes, which are 
produced by the way the stepper motors are attached to the specimen.  
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Figure 9.7: Force vs. displacement plots for stiffness evaluation. 
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 The experimentally measured stiffness of the Mini-Most-2 is (using units of 
meters for displacement and kN for force): 

MM2

3.260 0.961
1.011 0.457

K   ( 9-22) 

Experimental results from pseudodynamic testing 

 To understand the sensitivity of the test results to the magnitude of the 
displacement and rotation applied to the physical substructure, the stiffness of the beam 
in the numerical substructure that connects the columns on the MOST structure was 
varied (by changing the beam’s inertia), producing the three cases given on Table  9.1. 

Table 9.1: Cases for pseudodynamic simulation. 

Case Beam stiffness Ibeam Relative Stiffness Natural frequency 
(m4) (Hz) 

1 Intermediate 1.91E-10 1 3.82 
2 Flexible 5.05E-12 1/38 3.09 
3 Stiff 7.66e-09 40 4.75 

Pseudodynamic tests were conducted for the three cases. The structure was subjected to 
the artificial earthquake record shown in Figure  5.6 (which was used for the MOST 
experiment; Spencer et al., 2004) with the amplitude scaled by 60%. The -OS method 
was used for integration of the equations of motion with a time step of 0.01 seconds. For 
this initial set of experiments, only the first 5 seconds of the record was used (i.e., 500 
steps). Test results for the three cases considered are shown in Figures 9.8, 9.9, and 9.10.

 The experimental results for Case 1 (intermediate) are in very good agreement 
with the analytical solution. For Case 2 (flexible), the experimental results contain 
significant noise in the measured moment, which also affects the rotational response. In 
Case 3 (stiff), the measured rotation has noise and causes the response to deviate from the 
analytical response. 
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Figure 9.8: Experimental pseudodynamic test results for Case 1 (intermediate). 
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Figure 9.9: Experimental pseudodynamic test results for Case 2 (flexible). 
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Figure 9.10: Experimental pseudodynamic test results for Case 3 (stiff). 

Both extreme cases (Case 2 and Case 3) have proven to be challenging. In Case 2, 
the beam is so flexible that the column top connection is close to a pinned connection, 
making the moment very small and, therefore, difficult to control and measure. In Case 3, 
the beam is so stiff that the frame is close to a shear frame, with the column having very 
small rotation, which is difficult to control and measure. 

Application of the Kalman filter on the Mini-Most-2 

 The Kalman filter was implemented for the Mini-Most-2 experiment. For the 
initial tests, the output of the system, y, was composed of the measured forces (i.e., lateral 
force R and moment M), as given by 

R
M

y   ( 9-23) 

The Kalman filter matrices for the Mini-Most application are the following: 
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y

y = K 0 z = C z
 ( 9-24) 

where

2 6, xe e e e MM2A = (A - LC ), B = [B L] C K 0 . ( 9-25) 

Because the noise statistics Q and R are unknown, the following procedure based on the 
ratio of the process noise and measurement noise is used to select the parameters for the 
Kalman filter gain, L. First, the noise statistics are expressed in the following form 

2

2

0

0
F

M

R , Q = q ( 9-26) 

where 2 2,
F M

, and q are the variances of the force, moment and process noise, 
respectively. In earthquake analysis with hybrid testing, the input to the dynamic system 
(i.e., gx ) is deterministic, therefore, it contains no random input noise. The process noise 
covariance is used here as a fictitious noise to represent system uncertainties.  The 
relative magnitude between the measurement noise and the process noise can be 
represented by 
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RQ  ( 9-27) 

where 2 2 2/  and /
F FMq . By setting q = 1, R depends on the parameters,  and 

, as given by 

1 0
0

R  ( 9-28) 

The parameter,  relates the magnitude of the variance in the moment to the variance in 
the lateral force, whereas  defines the relative amount of weight that the filter puts on 
the measurements and the model. As  gets smaller, the estimator believes the 
measurements more, and as  gets larger, the estimator believes the model more. 

 Pseudodynamic tests were conducted for Case 2 (Flexible) using the Kalman 
filter. From the force and the moment responses in previous tests and numerical analyses, 
the parameter, was selected as 10-2. Table  9.2 shows the values of  used as well as the 
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resulting error norms (characterized by the distance in the L2 or Euclidean norm) between 
the experimental results and analytical solution for each test, given by the following 
expression:

n

i

exact
i

n

i
i

exact
i

x

xx
eLd

0

2

0

2

2

ˆ
)(_  ( 9-29) 

Table 9.2: Error norm of experimental results using Kalman filter for Case 2. 

Error norm 
x R M 

 w/o KFa 0.687 1.368 2.658 68.227 
10-9 0.190 0.200 0.198 1.461 
10-8 0.250 0.258 0.273 3.982 
10-4 3.172 b b b

a Test without Kalman filter, b Test diverged and had to be stopped. 

 The tests using the Kalman filter with  equal to 10-9 and 10-8 show a significant 
improvement over the test without the Kalman filter, especially on the measured moment. 
For the case of   = 10-4 the filter gain became very small and the test diverged and had 
to be stopped.

 Figure  9.11 presents the test results for  = 10-9, showing very good agreement 
with the analytical solution. By comparing the forces before the filter (Exp. unfiltered)
and after going through the filter (Exp. filtered), the Kalman filter is observed to 
significantly reduce the noise in the measured forces, improving the overall test results. 
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Figure 9.11: Experimental results for Case 2 (Flexible) using Kalman filter (   = 10-9).
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9.3.4 Further experiments 

 Encouraged by the good results obtained using the Kalman filter for Case 2 
(Flexible), a second and more comprehensive set of experiments was conducted. In these 
experiments the following adjustments were made: improved displacement control and 
calibration, experimental estimation of noise statistics for Kalman filter, forces and 
displacements in actuator space used as measurements for the filter, and parametric 
analyses (numerical simulations and experimental tests) for the three cases considered.  
These results will be presented in the next section. 

Displacement control and calibration 

 For the experiments presented in the previous section, the calibration data and the 
Mini-Most-2 controller developed during the NEES-Grid activities were used directly. 
However, the controller was found to return the target displacements as measured 
displacements, and the displacement control error was significant. Figure  9.12 shows the 
target and measured displacements as well as the control error (defined as the difference 
between target and measured displacements) for a triangular command displacement 
profile similar to the one used for the stiffness evaluation. A significant control error is 
observed, especially for the rotation, where an error as large as 0.32 deg (22% of the 
target value) is present. 
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Figure 9.12: Measured displacements and control error. 

 To solve these problems, the instrumentation (LVDTs and stepper motors) were 
first recalibrated and a new controller was developed using LabView. The new controller 
implements a discrete integral control using the measured displacements. This controller 
then sends back the measured displacements and forces in actuator space (which is more 
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desirable for the Kalman filter implementation). A schematic diagram of the 
implementation is shown in Figure  9.13, 

Figure 9.13: New controller for Mini-Most-2 with displacement feedback. 

where K1 and K2 are the controller gains, and SFmotor is a factor to transform from 
engineering units (e.g, meters) to the number of stepper motor steps (Nstep). The 
maximum accuracy that can be achieved is limited by the minimum displacement 
increment of the motors that corresponds to 1 step, about 0.0005 in (1.25E-5 m); this 
level of accuracy is considered adequate. 

Properties of the Mini-Most-2 (stiffness) 

 The stiffness of the Mini-Most-2 was reevaluated experimentally using the same 
triangular displacement wave as for the stiffness evaluation test in the previous section. 
Figure  9.14 shows the force vs. displacement plots as well as the results from a linear 
least-squares fit.  

 The experimentally measured stiffness of the Mini-Most-2 (using units of meters
for displacement and kN for force) is 

MM2

4.088 1.264
1.298 0.572

K  ( 9-30) 

which is close to the theoretically calculated stiffness based on the dimensions and 
properties of the test specimen 

MM2

4.552 1.416
1.416 0.588

calcK  ( 9-31) 
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Figure 9.14: Force vs. displacement plots and stiffness evaluation. 

Pseudodynamic tests without Kalman filter 

 Pseudodynamic tests were conducted for the three cases (intermediate, flexible, 
and stiff) using the new calibration data and improved controller. The test results are 
shown in Figures 9.15, 9.16, and 9.17 for the three cases, respectively. 
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Figure 9.15: Experimental pseudodynamic test results for Case 1 (intermediate). 
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Figure 9.16: Experimental pseudodynamic test results for Case 2 (flexible). 
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Figure 9.17: Experimental pseudodynamic test results for Case 3 (stiff). 

 The results from these tests are significantly better than the previous results, 
showing that accurate calibration and control significantly improve the results from the 
pseudodynamic tests. However, similar trends for the errors are observed as in the 
previous cases, but at a much smaller level. The results from Case 1 (intermediate) are in 
good agreement with the analytical solution. In Case 2 (flexible), the measured moment 
has significant noise, while in Case 3 (stiff), the rotation has a considerable amount of 
noise.

 The test for Case 2 (Figure  9.16) had to be stopped at about 11 sec because the 
target displacements started to exceed the maximum limits, which was found to be caused 
by a saturation limit set on the controller for the target displacements. For this reason, in 
the following sections only test results up to 10 sec are reported for this case. 

Application of the Kalman filter on the Mini-Most-2 

 The Kalman filter was applied in a similar manner to the previous set of 
experiments with the difference that for this case, the measured outputs of the system 
were the measured displacements and forces from the Mini-Most-2 in actuator space, i.e., 

T

1 2 1 2   m m m mx x f fy . The advantage of working directly with the data in actuator 
space is that the noise statistics can be determined from each sensor and assigned to each 
parameter independently. The Kalman filter matrices for the Mini-Most application are as 
follows 
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with 

2 2 2 6

2 2 2 6

,
[ ]

x x
T

x x
e e e e

MM2

T 0
A = (A - LC ), B = [B L] C

T K 0
 ( 9-33) 

where T is the transformation matrix between the global degrees-of-freedom 
Txx , and the actuator degrees-of-freedom, 1 2

Tact x xx .

Estimation of noise statistics 

 Because the noise statistics can now be expressed for each sensor independently, 
estimates of the measurement noise statistics were obtained by examining the response of 
each sensor device. The error in x1

m  and x2
m  is determined by analyzing the control error 

during the previous tests. Figure  9.18 shows the probability distribution of the control 
error during the test for Case 2 (flexible), which is close to a normal distribution. Similar 
results are obtained for the other cases (Cases 1 and 3). The noise in x1

m  and x2
m  is then 

approximated by a Gaussian process with zero mean and a standard deviation of 7.87e-4 
in (2e-5 m). 
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Figure 9.18: Probability distribution of control error for Case 2 (flexible) test. 
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 To determine the noise on the measured forces f1
m  and f2

m, the two stepper motors 
were held at a constant position while a large number of discrete load-cell readings were 
taken (2000 measurements) in the same way as during the pseudodynamic experiments. 
The probability distribution of the forces is shown in Figure  9.19. 
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Figure 9.19: Probability distribution of noise in forces. 

The noise in the measured forces is approximated by a Gaussian process with zero mean 
and standard deviations of 0.011 lb (51e-6 KN) and 0.005 lb (22e-6 KN) for f1

m and f2
m,

respectively. 

 The process noise is used as a fictitious noise to include system uncertainties that 
are difficult to obtain by direct measurement; therefore, some tuning is still required. The 
procedure is similar to the one used before, where  is used as a weighting parameter 
between the measurement and process. The relative noise weight, RQ-1 is expressed as

1

2

1

1
1

f

f

RQ  ( 9-34) 

where

1 2

1 2

2 2
2 2

2 26.5 ( / ) ,    1.2 ( / )f f
f f

x x

KN m KN m . ( 9-35) 

Therefore,
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1

1
1

6.5
1.2

RQ  ( 9-36) 

and by setting Q = 1, R is given by 

1
1

6.5
1.2

R  ( 9-37) 

Numerical simulation 

 Before conducting the pseudodynamic experiments using the Kalman filter, a set 
of numerical simulations was conducted to analyze the effect of the weighting parameter, 

 on the filter performance. The physical substructure (i.e., Mini-Most-2) was replaced 
by a numerical model with the same stiffness characteristics. Noise was added to the 
simulation (control error for x1

m  and x2
m  and measurement noise for f1

m  and f2
m) based 

on the noise statistics determined experimentally in the previous section. Simulations 
were conducted for the three different cases for several values of . The results from the 
numerical simulations with noise were compared to the analytical solution (without 
noise); the corresponding error norms are shown in Figures 9.20, 9.21, and 9.22. 
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Figure 9.20: Numerical simulation with noise for Case 1 (intermediate). 



175

10
−14

10
−12

10
−10

10
−8

10
−6

10
−2

10
0

10
2

d L2
 (

x)

10
−14

10
−12

10
−10

10
−8

10
−6

10
−2

10
0

10
2

d L2
 (

θ)

10
−14

10
−12

10
−10

10
−8

10
−6

10
−2

10
0

10
2

d L2
 (

R
)

ρ = R/Q
10

−14
10

−12
10

−10
10

−8
10

−6
10

−2

10
0

10
2

d L2
 (

M
)

ρ = R/Q

w/o filter

w/Filter

Figure 9.21: Numerical simulation with noise for Case 2 (flexible). 
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Figure 9.22: Numerical simulation with noise for Case 3 (stiff). 

 The variation of the error norms is somehow similar for the three cases. There is 
an optimum value of  for which the error norms are minimum (i.e., better filter 
performance). As  gets smaller, the error increases slightly and then reaches a stable 
value. However, as  gets larger than the optimum value, the error norms start to increase 
rapidly, and if the value gets large enough, the combined system (i.e., experiment and 
filter) becomes unstable. Divergence occurs when the error covariance matrix, P,
computed by the filter becomes unreasonably small compared with the actual error in the 
estimate. When P becomes small, it causes the filter gain, L, to become too small and 
new measurements are given too little weight. The model of the system becomes more 
important in determining the estimates than the measured data. Any error in the model 
can build up over a period of time and cause a significant degradation in the accuracy of 
the estimate (Sorenson, 1970). The results from the numerical simulations conducted 
show that except for large values of , the tests conducted with the filter have a smaller 
error and, therefore, are more accurate than the tests without the filter.  
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Experimental results using the Kalman filter 

 Using the results from the numerical simulations to have a sense of the magnitude 
of the weighting parameter, , pseudodynamic tests where conducted for a smaller 
number of values of  for the three cases of beam stiffness (intermediate, flexible, and 
stiff). Results from the pseudodynamic tests for the three cases are shown in Figures 9.23, 
9.24, and 9.25. 
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Figure 9.23: Results for pseudodynamic test for Case 1 (intermediate) with Kalman filter. 
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Figure 9.24: Results for pseudodynamic test for Case 2 (flexible) with Kalman filter. 
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Figure 9.25: Results for pseudodynamic test for Case 3 (stiff) with Kalman filter. 
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 By observing the variation of the error norms with respect to the value of  for 
each test, the pseudodynamic tests using the filter are observed to exhibit similar behavior 
to that of the numerical simulations. Figure  9.26 shows the measured moment in the 
physical substructure (i.e., Mini-Most-2) for the tests corresponding to Case 2 (flexible) 
conducted using different values of . Without the filter, a significant amount of noise is 
present in the measured moment; however, once the filter is included in the experiments, 
the noise starts to reduce as  increases until a point after which divergence occurs (  = 
1e-6).

Figure  9.27 shows the variation of the error on the measured moment for Case 2 
(flexible) using a moving averaging window, where it is easier to observe the reduction 
of the error and noise as  changes. Without the filter, the error is significant, for  = 1e-
7, the error is minimum, and for for 1e-6, divergence occurs. 
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Figure 9.27: Moving error window for Case 2 (flexible). 

Figure  9.28 shows the results from the pseudodynamic test for Case 3 (stiff) using 
the Kalman filter with 10-7. As it can be observed, excellent agreement is achieved 
between the test results and the analytical solution. 
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Figure 9.28: Results for pseudodynamic test for Case 3 (stiff) with Kalman filter (   = 10-7).

 Initially, the results from the experiments for Case 3 (stiff) using the Kalman filter 
were not satisfactory. The error norm actually increased when using the filter. The poor 
filter performance was caused by a difference in the response obtained from the two time 
discretization schemes used simultaneously during the experiments with the Kalman 
filter. Numerical integration of the equation of motion in the pseudodynamic test was 
performed using the -OS method, while the Kalman filter matrices were obtain using a 
first-order-hold approximation. The response obtained from the two methods for Case 3 
(stiff) was somewhat different due to a combination of several conditions (e.g., the 
relatively large natural frequency corresponding to Case 3, a time-step size that was 
insufficiently small, and the very low damping ratio previously used (0.1%)). The results 
reported herein for Case 3 (stiff) correspond to experiments using a damping ratio of 2% 
for all modes (which is a value typically used for steel frames), in which case the two 
time discretization methods produce similar results. A more definitive solution is to use 
the same time discretization method for both, equation of motion and Kalman filter. 

 The results from the pseudodynamic tests conducted show that the Kalman filter 
significantly improves the response for all three cases (i.e., intermediate, flexible, and 
stiff), producing a smaller error norm for a wide range of values of the weighting 
parameter, .

9.4 Effect of stiffness estimate on filter performance 
 The Kalman filter uses a model of the system to perform the predictions. In 
general, this model is only an approximation of the real system, and, therefore, may 
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contain errors with respect to the actual system. This section analyzes the effect of errors 
in the model and their consequences on the performance of the Kalman filter. 

  In the proposed application of the Kalman filter for pseudodynamic testing, the 
model of the system includes the mass of the structure M, the damping C, and the 
stiffness K (including the contributions from the physical and numerical substructures). 
In pseudodynamic testing, the properties of the numerical components (i.e., mass, 
damping, and stiffness of numerical substructure) are known or can be accurately 
determined; therefore, the only source for errors in the model is the estimate of the initial 
elastic stiffness of the physical substructure. This stiffness estimate is used in both the 
system and the output equations of the filter. 

 The differences between the actual stiffness of the physical substructure expK  and 
the stiffness used by the model exp

mK  (e.g., measured initial elastic stiffness) are 
represented here by the nondimensional parameter, k, which is defined by the following 
equation

exp exp
m kK K  ( 9-38) 

 Numerical simulation was conducted to analyze the effect of the differences on 
the model used by the Kalman filter. The test structure was the same as in previous 
sections (Mini-Most-2), and the flexible beam case was considered (i.e., Case 2), which 
presents significant noise in the measured moment. A value of = 10-8 was used for the 
filter weighting parameter. Figure  9.29 shows simulation results, including noise, for 
different values of the parameter, k. The results are expressed in terms of the error with 
respect to the exact solution (i.e., analytical solution for system without noise). Results 
for the case without the filter are also shown and are used as a reference for the filter 
performance. As can be observed, the error norms are minimum, and, therefore, the 
performance of the filter is best when the model used by the filter matches the actual 
system (i.e., k = 1). For all the response quantities, the performance of the Kalman filter 
decreases as the model deviates from the actual system (as represented by the larger error 
norm). For the measured moment, all of the results using the filter are better than the ones 
without the filter, despite the errors introduced in the model. However, for the other 
response quantities (displacement, rotation, and lateral force), the results using the filter 
are better than the ones without the filter over a very limited range of k (close to 1.0). In 
such cases, the Kalman filter can be used to estimate only the measured moment. 
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Figure 9.29: Simulation results for Case 2 (flexible) considering errors in model. 

 The performance of the Kalman filter is also dependent on the filter weighting 
parameter, . Figure  9.30 shows the error norm for the measured moment for different 
values of . Two cases of the Kalman filter are presented: (a) with an exact model of the 
system ( k = 1), and (b) assuming that the stiffness of the physical substructure (used by 
the filter) is underestimated by 20% ( k = 0.8). As can be observed, for small values of 

the difference between the results of the two cases (i.e., k = 0.8 and 1.0) is small, due 
to the filter putting significant weight on the measurements and less on the model. As the 
value of  increases, the differences between the two cases are larger, and, therefore, the 
error due to the underestimation of expK  is more significant. This result is consistent 
because as  increases, the Kalman filter puts more weight on the estimates from the 
model and less on the measurements. For the other response quantities, this effect was 
less evident, because errors in the model had a large impact on the filter performance (see 
Figure  9.29).  
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filter weighting parameter, .

 The analysis performed indicates that, in general, the performance of the Kalman 
filter for hybrid testing is sensitive to differences between the model used by the filter 
and the actual system.  

9.5 Extension to nonlinear structural response 
 The analyses and experiments presented in the previous sections were limited to 
cases of linear response. However, hybrid testing is generally used to determine the 
nonlinear or inelastic response of structures. This section considers extensions of the 
method for these cases.   

9.5.1 Extended Kalman filter 

 The Kalman filter provides an optimum solution for the state estimation and 
filtering of linear systems (Stengel, 1986). However, almost all real systems and 
processes are nonlinear, and in many cases approximating the system with a linear model 
is not appropriate. This problem led to the development of extensions of the Kalman filter 
theory to nonlinear systems.  The Extended Kalman Filter (EKF) is an approximation that 
allows the Kalman filter to be adopted for application to nonlinear systems through an 
appropriate linearization procedure (Zaknich, 2005). The basic idea of the EKF is to 
linearize the state-space model at each time instant around the most recent state estimate. 
Once each linear model is determined, the standard Kalman filter equations can be 
applied (Zaknich, 2005).

 Consider a general continuous nonlinear system described by the following 
dynamic, output, and observation equations (Stengel, 1986) 
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 ( 9-39) 

where f and h are nonlinear functions, and the remaining parameters are as defined in 
previous sections. The EKF retains the linear calculation of covariance and gain matrices, 
and it updates the state estimate using a linear function of a filter residual; however, it 
uses the original nonlinear equations to propagate the state and define the output vector. 
The filter equations are given by 

0ˆ ˆ ˆ ˆ ˆ( ) ( ), , ( ) ( ) ( ) ,    (0)

ˆ ˆ( ) ( ), ,

mt t t t t t

t t t

z = f z u + L y - y z z

y h z u
 ( 9-40) 

The Kalman filter gain, L(t), and error covariance estimate, P(t), are calculated using the 
following equations 

1( ) ( ) ( ) ( )Tt t t tL P C R  ( 9-41) 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T Tt t t t t t t t t t t t tP A P P A G Q G P C R C P   ( 9-42) 

where

( ) ,    ( ) ,    ( ) ,    ( )t t t tf f f hA B G C
z u w z

  ( 9-43) 

These time-varying Jacobians are functions of the state estimate and the input and, 
therefore, cannot be precomputed. Consequently, the gain matrix and filter equations 
must be calculated in real time as the process develops (Stengel, 1986). 

 In hybrid testing, the system response is analyzed at discrete time steps; therefore, 
the Kalman filter has to be implemented in discrete form. A nonlinear discrete system can 
be represented by the following equations 

1

m

k k k k

k k

k k k

z f z Bu Gw

y h z

y h z v

 ( 9-44) 

where f and h are nonlinear functions of the state vector z, and the B and G matrices are 
assumed linear and time invariant. The nonlinear functions, f and h, can be expanded 
using the Taylor series about the corrected and predicted states, ˆ kz and ˆ kz , respectively, 
as given by 
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ˆ ˆ ˆ ...
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 ( 9-45) 

where

ˆ ˆ

ˆ ˆ   and    
k k

k k
z z

f hF z H z
z z

. ( 9-46) 

 The discrete EKF can be implemented using the following procedure (Kamen & 
Su, 1999): 

Initialization: 

0 0

0 0 0 0 0

ˆ

ˆ ˆ( )( )T

E

E

z z

P z z z z
      ( 9-47) 

For k = 1, 2,… 

- Prediction 

1 1ˆ ˆk k kz = f z + Bu        ( 9-48) 

1 1 1 1ˆ ˆT T
k k k k kP F z P F z GQ G     ( 9-49) 

- Filter gain computation and update 

ˆ

ˆ
k

k
z

hH z
z

       ( 9-50) 

1
ˆ ˆ ˆT T

k k k k k k kL P H z H z P H z R     ( 9-51) 

ˆ ˆ ˆm
k k k k kz z L y h z       ( 9-52) 

ˆk k k kP I L H z P       ( 9-53) 

ˆ

ˆ
k

k
z

fF z
z

        ( 9-54) 
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9.5.2 Application of Extended Kalman filter in pseudodynamic testing 

 In pseudodynamic testing, the discrete form of the nonlinear functions f and h
depends on the algorithm used for numerical integration of the equation of motion. When 
the Central Difference Method is used, the nonlinear discrete model of the system is 
given by 

1

1

1

k k

k

k k k ext
k

k k

k
k

k

F

y

1 2 3 1

Bz f z

h z

x xa a a R(x ) b
x xI 0 0 0

x
R(x )

 ( 9-55) 

where
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 ( 9-56) 

 The only nonlinear parameter is the restoring force, R(x), which can be expanded 
using the Taylor series about the displacement estimate, ˆ kx as given by 

ˆ ˆ ˆ ...k k t k k kkR x R x K x x x  ( 9-57) 

where ˆ kK x is the tangent stiffness matrix given by 

ˆ

ˆ
k

t k
x

RK x
x

. ( 9-58) 

In real-time hybrid testing, the restoring force depends also on the velocity; therefore, it is 
necessary to express both the restoring force and tangent stiffness in terms of the entire 

state vector 
TT Tz x x .

 The matrices, F and H, required by the Extended Kalman Filter, are obtained 
using the linearized form of the restoring forces, and are given by the following equations 
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t
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t

1 3 2a a K a
F

I 0

I 0
H

K 0

 ( 9-59) 

Therefore, to extend the method for filtering errors in hybrid testing to cases of nonlinear 
response, the tangent stiffness of the physical substructure, exp

tK  and the entire system, 

tK , need to be determined. The Broyden formula presented previously in this report (see 
Equation  5-3) can also be used in this case to obtain estimates of the tangent stiffness. 
However, when the forces and displacements contain significant noise, estimation of the 
tangent stiffness may be challenging.  

9.5.3 Numerical example 

 The procedure developed for using the Extended Kalman Filter in pseudodynamic 
testing is verified using numerical simulation. The test structure considered is the same as 
in the previous examples presented in this chapter, with the difference that the single-
degree-of-freedom column (right column) is used as the physical substructure for this 
case (i.e., Mini-Most-1 experiment). The force-displacement relationship corresponding 
to the physical substructure is modeled using a bilinear hysteretic model with a yield 
displacement of 0.24 in (6.10 mm) and a ratio of post- to preyield stiffness of 0.05. The 
rest of the frame is assumed to remain in the elastic range. Experimental errors (control 
error for the displacement and measurement noise for the restoring force) were added to 
the simulation in a similar way as in the previous experiments (using the values 
determined experimentally for actuator-1 of the Mini-Most-2). However, for this case 
(Mini-Most-1), the magnitude of the errors had to be increased significantly (by factors of 
5 and 50 for the control error and force noise, respectively) to produce comparable effects 
on the response as in the previous examples using the Mini-Most-2. This result confirms 
the fact that the effect of experimental errors is much more severe when the actuators are 
coupled. The results from the pseudodynamic numerical simulation without using the 
filter are presented in Figures 9.31 and 9.32. The error norms for the displacement and 
force are 0.432 and 0.585, respectively.
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Figure 9.31: Results for nonlinear response without Kalman filter (time histories). 
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Figure 9.32: Results for nonlinear response without Kalman filter (force-deformation). 
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 Initially, the Kalman filter was applied using the elastic stiffness of the physical 
substructure for the filter model. Results showed that although the filter effectively 
reduced the noise, the response of the system was not accurately simulated; the linear 
model in the filter cause the filtered response to be rather linear, instead of the actual 
bilinear response. The Extended Kalman Filter was then applied. For the tangent stiffness 
of the physical substructure, the stiffness value used to calculate the restoring force at 
each step was used (i.e., elastic stiffness or postyield stiffness). This procedure, although 
unrealistic, eliminates the uncertainty associated with the determination of the tangent 
stiffness using noisy measurements. The results of the simulations using the EKF with a 
filter weighting parameter  of 103 are presented in Figures 9.33 and 9.34. As can be 
observed, the filter effectively reduces the noise and captures the nonlinear behavior of 
the response. The error norms for the displacement and force are 0.112 and 0.089, 
respectively (which correspond to reductions on the error of 3.8 and 6.5, respectively, as 
compared to the case without the filter). 
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Figure 9.33: Results using Extended Kalman filter (time histories). 
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Figure 9.34: Results using Extended Kalman Filter (force-deformation). 

 The results of simulations conducted using different values of the filter weighting 
parameter,  are presented in Figure  9.35. The filter performance is characterized by the 
error norm with respect to the exact solution. As opposed to the cases of linear response 
in which the variation of the filter performance with  was smooth, for the nonlinear 
responses, significant scatter is found. 
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Figure 9.35: Results using Extended Kalman Filter with different values of .

 The performance of the filter was also found to be rather sensitive to specific 
parameters such as the yield displacement. Figures 9.36 and 9.37 show the results of the 
simulations using the EKF for the case when the value of the yield displacement is 
reduced to 0.2 in (5.08 mm). As can be observed in Figure  9.36, although the simulation 
is accurate at the beginning, after about 6 sec, the results start to deviate from the exact 
response, presenting an offset in both displacement and force values. Figure  9.37 shows 
the hysteretic filtered response, which also shows significant discrepancies with the exact 
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behavior. The magnitude possesses a clear offset in the forces, which is more evident in 
the post-yielding behavior.

0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6
x 

(in
)

0 5 10 15
−4

−2

0

2

4

R
 (

lb
)

Time (sec)

Exact
PsD sim (w/EKF)

Figure 9.36: Results using Extended Kalman Filter (time histories). 
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Figure 9.37: Results using Extended Kalman Filter (force-deformation). 
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 Possible causes for this lower filter performance are the fact that in the application 
for hybrid testing, the model is linearized with respect to the actual measured state, as 
opposed to the estimated state, while the Extended Kalman Filter is only an 
approximation. More research is needed to verify both numerically and experimentally 
the filtering technique for cases of nonlinear inelastic response.

9.6 Summary
 Minimizing experimental errors is very important in hybrid testing because errors 
can accumulate and propagate throughout the entire simulation. A technique for reducing 
the effect of experimental errors on the measurements from the physical substructures 
during hybrid experiments was presented. The technique is based on the concept of 
model-based filtering using the Kalman filter. 

 Initially, the method was verified numerically and experimentally by conducting 
pseudodynamic tests on a linear structure (Mini-Most-2). The physical substructure 
possessed two-degrees-of-freedom (displacement and rotation), which were imposed by 
two actuators. Pseudodynamic experiments conducted without the filter demonstrated 
that the accuracy of the test results was very sensitive to experimental errors and to the 
relative values of the degrees-of-freedom imposed on the specimen. Experiments 
conducted using the model-based filter demonstrated that the filtering technique 
significantly reduced the effects of the experimental errors, producing responses with 
good agreement with the analytical “exact” response.

 The Kalman filter uses a model of the system to perform the predictions. Analyses 
were conducted to determine the effect of differences between the model used by the 
filter and the actual system on the performance of the Kalman filter. Results showed that 
in general, the performance of the Kalman filter on hybrid testing is sensitive to 
differences between the model and the actual system.  

 The application of the filtering technique for hybrid testing of structures with 
inelastic response was also considered. An approximation that allows extending the 
Kalman filter to nonlinear applications (Extended Kalman Filter) was reviewed and 
implemented for hybrid testing. The method requires linearization of the model at each 
time step, which in hybrid testing corresponds to the calculation of the tangent stiffness. 
Numerical simulations were performed assuming that the tangent stiffness was known. 
Results indicated that the method was able to effectively reduce the noise on the 
measurements while retaining the inelastic characteristics of the response. However, the 
method was found to be rather sensitive to some factors like the filter weighting 
parameter and the amount of inelastic deformation (e.g., yield displacement).  

 Experiments and analyses conducted show that the application of the Kalman 
filter to hybrid testing allows reducing the effect of experimental errors and, therefore, 
providing more accurate results; however, further development is still needed. 
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

10.1 Conclusions
 In the studies presented in this report, model-based strategies for real-time hybrid 
testing have been developed and experimentally verified for structures under seismic 
excitation. These model-based techniques provide accurate compensation for the effects 
of time delays and actuator dynamics and, therefore, allow expanding the capabilities of 
the real-time hybrid testing technique to broader types of structural systems. Real-time 
hybrid experiments were successfully conducted for structures with relatively high 
natural frequencies and for a structure incorporating a semiactive control device, namely 
an MR damper. Because it is capability to test rate-dependent components, real-time 
hybrid testing is a very effective technique to test devices associated with vibration 
control.

 The background for this study was first provided. The hybrid testing technique 
was reviewed as well as its extensions. Emphasis was placed on real-time hybrid testing; 
challenges for this testing technique, as well as sources and effects of time delays and 
lags, were identified. Current methods for real-time hybrid testing were reviewed, and 
shortcomings of these techniques were identified, demonstrating the need for more 
rational methods to account for effects of time delays and actuator dynamics.  

 The experimental setup used for conducting real-time hybrid experiments was 
presented. The testing system uses equipment developed at the Smart Structures 
Technology Laboratory and combines fast hardware and software with high-performance 
hydraulic components. Characterization tests showed that the system is capable of 
performing high-speed computations and communication, as well as delivering the high 
loading rates required for fast hybrid testing. Experiments with sampling frequencies as 
high as 2,000 Hz were conducted. Because time delays and actuator dynamics are critical 
parameters in real-time hybrid testing, characterizations tests were conducted to quantify 
these parameters. Test results showed that the time lag associated with the dynamics of 
the actuator was the dominant factor, while computing time and delays related to 
communication, converters, and the controller were, in general, relatively small. 

 Traditional delay compensation approaches, which use only information from the 
displacements at a few previous time steps, only perform well when the time delays 
relative to the natural period of the structure are small. In this study, an approach for real-
time hybrid testing was developed in which time delay/lag compensation was 
implemented using model-based response prediction. This method incorporates known 
information about the system and the excitation, which results in a more accurate 
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prediction of the response. This approach allows for the handling of larger delays, 
stability improvements, and testing of structures with higher natural frequencies or with 
more degrees-of-freedom. The efficacy of the proposed strategy was experimentally 
verified using both linear-elastic (spring) and rate-dependent (MR damper) test 
specimens. Results from the experiments demonstrated that the model-based 
compensation approach allows accurate testing of systems with natural frequencies about 
twice as large as the traditionally-used polynomial extrapolation method; structures with 
frequencies as high as 13 Hz for linear response and 15 Hz for inelastic response were 
successfully tested. Experimental results for the structure with the MR damper verified 
that the approach and testing system presented are capable of accurately testing rate-
dependent devices. 

 To analyze the effects of actuator dynamics on the accuracy and stability of real-
time hybrid testing, a numerical model of the testing system was developed. First, the 
equations for modeling the different components of the testing system (including servo-
hydraulic actuator, controller, and test specimen) were reviewed and subsequently used to 
develop a model of the entire system. The dynamics of the testing system were 
represented concisely by the actuator transfer function, from the command displacement 
to the measured displacement. Two important characteristics of this transfer function are: 
(1) both magnitude and phase lag (and, therefore, time lag) are not constant but vary with 
frequency, and (2) the dynamics of the actuator are dependent on the test specimen 
(actuator-specimen interaction).  

 Using experimental data, the parameters for the testing system used in this study 
were identified. Because the dynamics of the actuator depend on the test specimen, 
different representations of the actuator transfer function were obtained for different test 
specimens and testing conditions. The model was then used to investigate the effect of 
the dynamics of the testing system and specimen on the accuracy and stability of real-
time hybrid experiments. Methods for predicting the stability of the hybrid experiment 
were developed based on the actuator dynamics models. Stability analysis conducted in 
the frequency domain confirmed that the minimum damping of the system required for 
stability increases as the natural frequency of the test structure and time lag of the 
actuator increase. The mass of the experimental component (which includes the mass of 
the test specimen, attachments, and actuator’s piston) was found to be important on the 
stability of the hybrid experiment. For the example considered, when this mass became 
larger than 2% of the mass of the test structure, the real-time hybrid simulation became 
unstable. The model of actuator dynamics was shown to be valuable for investigating the 
stability of the real-time hybrid testing technique as well as the effect of the different 
parameters. 

 The models and insight obtained regarding the dynamics of the testing system 
were used to develop model-based compensation techniques for actuator dynamics that 
account for both phase and magnitude effects. First, a feedforward compensator was 
considered. This compensator was based on the inverse of a model of the plant dynamics 
(i.e., actuator transfer function) with some modifications to make it realizable. The effect 
of the compensator was to make the compensated system have a magnitude close to one, 
and a phase that tends to zero. The experimental results demonstrated that the 
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performance of the compensator was excellent, significantly reducing tracking errors. For 
a sinusoidal displacement, the error norm was reduced from 7.48% (without 
compensation) to 0.98% (with compensation). 

 A combined feedforward-feedback compensator was then proposed. The feedback 
term was used to reduce the effect of differences between the model used for the 
feedforward compensator and the actual system. Experimental results produced error 
norms about half of the ones obtained with feedforward-only compensation. However, 
because feedback is used, the compensator has the potential to produce unstable 
responses when the feedback gain is set too high.  The compensator was then extended to 
account for variations on the dynamics of the actuator by modifying the feedforward 
portion of the compensator. Linearized models of the actuator-specimen system were 
obtained for different operating points; individual feedforward controllers were designed 
for each operating point and then combined using a smooth transition. The algorithm was 
implemented for the case of an MR damper with variable input voltage. Experimental 
results using predefined displacement signals demonstrated the good performance of the 
compensator, which provided accurate compensation, even when the properties of the 
MR damper (and, therefore, actuator dynamics) changed significantly. Furthermore, 
testing of the MR damper specimen demonstrates the effectiveness of the algorithm to 
test specimens with complex nonlinear hysteretic response that are often encountered in 
building structures. 

 The compensation techniques developed were used to conduct real-time hybrid 
testing of a semiactively controlled structure under earthquake loading. The structure was 
equipped with an MR damper, which was tested experimentally. Several cases were 
considered: uncontrolled (without MR damper), passive control (voltage to the MR 
damper held constant), and semiactive control (voltage to MR damper varied during the 
experiment according to the clipped-optimal control algorithm). For all of the cases 
considered, the results from the experiments were in very good agreement with analytical 
results. Experimental results demonstrated the effectiveness of the real-time hybrid 
testing method to efficiently and accurately evaluate the response, not only for rate-
dependent energy dissipation devices, but also the performance of the structural control 
strategy and overall structural system.  

 The hybrid test method is more sensitive to experimental errors than other 
methods, such as quasi-static and shaking-table testing in which a predefined 
displacement command history is used. Following a description of the types of errors 
typically encountered in hybrid testing, a filtering technique based on the concept of 
model-based filtering was developed to mitigate the effect of random errors in hybrid 
testing. The technique is based on the Kalman filter, which is a widely used method for 
linear filtering. The method was verified experimentally using a linear structure with a 
two-degree-of-freedom physical substructure (Mini-Most-2 system) that was particularly 
sensitive to experimental errors. Experiments conducted demonstrated that the filtering 
technique significantly reduced the effects of the experimental errors, resulting in overall 
improvements in the test results.  
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 Because the proposed filtering technique is model-based, analyses were 
conducted to estimate the impact of differences between the model used by the Kalman 
filter and the actual system. Numerical simulation indicated that, in general, the 
performance of the filter is sensitive to differences between the model and the actual 
system.  

 The filtering technique was extended to nonlinear response cases using the 
Extended Kalman Filter. Numerical analyses indicated that the method effectively 
reduced the noise on the measurements while retaining the inelastic character of the 
response. However, the method was found to be rather sensitive to factors such as the 
filter weighting parameters and the amount of inelastic deformation (e.g., yield 
displacement). The experiments and analyses conducted show that the application of the 
Kalman filter to hybrid testing reduces the effect of experimental errors; however, further 
development is still needed. 

 The experiments conducted demonstrate that substructure real-time hybrid testing 
is an efficient method to experimentally evaluate the response of structural systems in 
which the conventional slow-speed pseudodynamic testing is not applicable (e.g., 
structures having rate dependent components). The model-based strategies and 
compensation techniques developed in this study allow accurate testing of structures with 
supplementary energy dissipation devices (including passive and semiactive control 
devices).

10.2 Future Studies 
This section provides recommendations for future studies related to this work. 

• The experiments conducted in this study used small-scale actuator and test specimens. 
Efforts should be directed toward verifying the proposed real-time hybrid testing 
strategies using larger-scale structures. 

• When using actuators with larger force capacity and full-scale test specimens, the 
hydraulic natural frequency (oil-column resonance) is expected to occur at a smaller 
frequency; therefore, its effect on the hybrid experiments may be more significant and 
should be assessed.

• The experiments conducted in this study involved one physical substructure with a 
single actuator. Extension of the methodologies and techniques developed should be 
investigated for multiple physical substructures and with more than one degree-of-
freedom.  

• Although the digital signal processor used in this study performed satisfactorily, its 
technology is more than a decade old.  Newer and faster processors should allow real-
time hybrid experiments to be conducted for structures with more degrees-of-freedom
or with more complex numerical substructures. 
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• Significant scatter is present in the results available in the literature for the strain-rate 
effect on conventional structural materials. Reported results indicate that the effect is 
significantly smaller for cyclic tests than for monotonic tests (therefore, depends on 
the type of loading). Real-time hybrid testing should be used to verify the strain-rate 
effect on conventional structural materials under realistic earthquake loading 
histories.

• Actuator dynamics are dependent on the test specimen. Most specimens respond 
nonlinearly. In this study, the effect of the nonlinear behavior of the MR damper on 
the dynamics of the actuator was accounted for using linearized models at two 
different operating points, and then using a smooth transition between these points. 
This model was used to develop model-based compensation that accounted for the 
specimen variations. Although this method produced very good results, nonlinear 
compensation strategies should be investigated.

• The model-based filtering technique for nonlinear hybrid experiments based on the 
Extended Kalman Filter was implemented numerically; however, this technique 
should also be verified experimentally. 

• The filtering technique proposed in this study was based on the Kalman filter (which 
is a model-based filter). The applicability of other filters that do not require a model 
of the system and do not produce a time lag should be investigated (e.g., acausal 
filters). 
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